diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /Documentation/driver-api/slimbus.rst | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/driver-api/slimbus.rst')
-rw-r--r-- | Documentation/driver-api/slimbus.rst | 132 |
1 files changed, 132 insertions, 0 deletions
diff --git a/Documentation/driver-api/slimbus.rst b/Documentation/driver-api/slimbus.rst new file mode 100644 index 000000000..410eec79b --- /dev/null +++ b/Documentation/driver-api/slimbus.rst @@ -0,0 +1,132 @@ +============================ +Linux kernel SLIMbus support +============================ + +Overview +======== + +What is SLIMbus? +---------------- +SLIMbus (Serial Low Power Interchip Media Bus) is a specification developed by +MIPI (Mobile Industry Processor Interface) alliance. The bus uses master/slave +configuration, and is a 2-wire multi-drop implementation (clock, and data). + +Currently, SLIMbus is used to interface between application processors of SoCs +(System-on-Chip) and peripheral components (typically codec). SLIMbus uses +Time-Division-Multiplexing to accommodate multiple data channels, and +a control channel. + +The control channel is used for various control functions such as bus +management, configuration and status updates. These messages can be unicast (e.g. +reading/writing device specific values), or multicast (e.g. data channel +reconfiguration sequence is a broadcast message announced to all devices) + +A data channel is used for data-transfer between 2 SLIMbus devices. Data +channel uses dedicated ports on the device. + +Hardware description: +--------------------- +SLIMbus specification has different types of device classifications based on +their capabilities. +A manager device is responsible for enumeration, configuration, and dynamic +channel allocation. Every bus has 1 active manager. + +A generic device is a device providing application functionality (e.g. codec). + +Framer device is responsible for clocking the bus, and transmitting frame-sync +and framing information on the bus. + +Each SLIMbus component has an interface device for monitoring physical layer. + +Typically each SoC contains SLIMbus component having 1 manager, 1 framer device, +1 generic device (for data channel support), and 1 interface device. +External peripheral SLIMbus component usually has 1 generic device (for +functionality/data channel support), and an associated interface device. +The generic device's registers are mapped as 'value elements' so that they can +be written/read using SLIMbus control channel exchanging control/status type of +information. +In case there are multiple framer devices on the same bus, manager device is +responsible to select the active-framer for clocking the bus. + +Per specification, SLIMbus uses "clock gears" to do power management based on +current frequency and bandwidth requirements. There are 10 clock gears and each +gear changes the SLIMbus frequency to be twice its previous gear. + +Each device has a 6-byte enumeration-address and the manager assigns every +device with a 1-byte logical address after the devices report presence on the +bus. + +Software description: +--------------------- +There are 2 types of SLIMbus drivers: + +slim_controller represents a 'controller' for SLIMbus. This driver should +implement duties needed by the SoC (manager device, associated +interface device for monitoring the layers and reporting errors, default +framer device). + +slim_device represents the 'generic device/component' for SLIMbus, and a +slim_driver should implement driver for that slim_device. + +Device notifications to the driver: +----------------------------------- +Since SLIMbus devices have mechanisms for reporting their presence, the +framework allows drivers to bind when corresponding devices report their +presence on the bus. +However, it is possible that the driver needs to be probed +first so that it can enable corresponding SLIMbus device (e.g. power it up and/or +take it out of reset). To support that behavior, the framework allows drivers +to probe first as well (e.g. using standard DeviceTree compatibility field). +This creates the necessity for the driver to know when the device is functional +(i.e. reported present). device_up callback is used for that reason when the +device reports present and is assigned a logical address by the controller. + +Similarly, SLIMbus devices 'report absent' when they go down. A 'device_down' +callback notifies the driver when the device reports absent and its logical +address assignment is invalidated by the controller. + +Another notification "boot_device" is used to notify the slim_driver when +controller resets the bus. This notification allows the driver to take necessary +steps to boot the device so that it's functional after the bus has been reset. + +Driver and Controller APIs: +--------------------------- +.. kernel-doc:: include/linux/slimbus.h + :internal: + +.. kernel-doc:: drivers/slimbus/slimbus.h + :internal: + +.. kernel-doc:: drivers/slimbus/core.c + :export: + +Clock-pause: +------------ +SLIMbus mandates that a reconfiguration sequence (known as clock-pause) be +broadcast to all active devices on the bus before the bus can enter low-power +mode. Controller uses this sequence when it decides to enter low-power mode so +that corresponding clocks and/or power-rails can be turned off to save power. +Clock-pause is exited by waking up framer device (if controller driver initiates +exiting low power mode), or by toggling the data line (if a slave device wants +to initiate it). + +Clock-pause APIs: +~~~~~~~~~~~~~~~~~ +.. kernel-doc:: drivers/slimbus/sched.c + :export: + +Messaging: +---------- +The framework supports regmap and read/write apis to exchange control-information +with a SLIMbus device. APIs can be synchronous or asynchronous. +The header file <linux/slimbus.h> has more documentation about messaging APIs. + +Messaging APIs: +~~~~~~~~~~~~~~~ +.. kernel-doc:: drivers/slimbus/messaging.c + :export: + +Streaming APIs: +~~~~~~~~~~~~~~~ +.. kernel-doc:: drivers/slimbus/stream.c + :export: |