summaryrefslogtreecommitdiffstats
path: root/Documentation/mm/page_migration.rst
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /Documentation/mm/page_migration.rst
parentInitial commit. (diff)
downloadlinux-b8823030eac27fc7a3d149e3a443a0b68810a78f.tar.xz
linux-b8823030eac27fc7a3d149e3a443a0b68810a78f.zip
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--Documentation/mm/page_migration.rst195
1 files changed, 195 insertions, 0 deletions
diff --git a/Documentation/mm/page_migration.rst b/Documentation/mm/page_migration.rst
new file mode 100644
index 000000000..11493bad7
--- /dev/null
+++ b/Documentation/mm/page_migration.rst
@@ -0,0 +1,195 @@
+.. _page_migration:
+
+==============
+Page migration
+==============
+
+Page migration allows moving the physical location of pages between
+nodes in a NUMA system while the process is running. This means that the
+virtual addresses that the process sees do not change. However, the
+system rearranges the physical location of those pages.
+
+Also see :ref:`Heterogeneous Memory Management (HMM) <hmm>`
+for migrating pages to or from device private memory.
+
+The main intent of page migration is to reduce the latency of memory accesses
+by moving pages near to the processor where the process accessing that memory
+is running.
+
+Page migration allows a process to manually relocate the node on which its
+pages are located through the MF_MOVE and MF_MOVE_ALL options while setting
+a new memory policy via mbind(). The pages of a process can also be relocated
+from another process using the sys_migrate_pages() function call. The
+migrate_pages() function call takes two sets of nodes and moves pages of a
+process that are located on the from nodes to the destination nodes.
+Page migration functions are provided by the numactl package by Andi Kleen
+(a version later than 0.9.3 is required. Get it from
+https://github.com/numactl/numactl.git). numactl provides libnuma
+which provides an interface similar to other NUMA functionality for page
+migration. cat ``/proc/<pid>/numa_maps`` allows an easy review of where the
+pages of a process are located. See also the numa_maps documentation in the
+proc(5) man page.
+
+Manual migration is useful if for example the scheduler has relocated
+a process to a processor on a distant node. A batch scheduler or an
+administrator may detect the situation and move the pages of the process
+nearer to the new processor. The kernel itself only provides
+manual page migration support. Automatic page migration may be implemented
+through user space processes that move pages. A special function call
+"move_pages" allows the moving of individual pages within a process.
+For example, A NUMA profiler may obtain a log showing frequent off-node
+accesses and may use the result to move pages to more advantageous
+locations.
+
+Larger installations usually partition the system using cpusets into
+sections of nodes. Paul Jackson has equipped cpusets with the ability to
+move pages when a task is moved to another cpuset (See
+:ref:`CPUSETS <cpusets>`).
+Cpusets allow the automation of process locality. If a task is moved to
+a new cpuset then also all its pages are moved with it so that the
+performance of the process does not sink dramatically. Also the pages
+of processes in a cpuset are moved if the allowed memory nodes of a
+cpuset are changed.
+
+Page migration allows the preservation of the relative location of pages
+within a group of nodes for all migration techniques which will preserve a
+particular memory allocation pattern generated even after migrating a
+process. This is necessary in order to preserve the memory latencies.
+Processes will run with similar performance after migration.
+
+Page migration occurs in several steps. First a high level
+description for those trying to use migrate_pages() from the kernel
+(for userspace usage see the Andi Kleen's numactl package mentioned above)
+and then a low level description of how the low level details work.
+
+In kernel use of migrate_pages()
+================================
+
+1. Remove pages from the LRU.
+
+ Lists of pages to be migrated are generated by scanning over
+ pages and moving them into lists. This is done by
+ calling isolate_lru_page().
+ Calling isolate_lru_page() increases the references to the page
+ so that it cannot vanish while the page migration occurs.
+ It also prevents the swapper or other scans from encountering
+ the page.
+
+2. We need to have a function of type new_page_t that can be
+ passed to migrate_pages(). This function should figure out
+ how to allocate the correct new page given the old page.
+
+3. The migrate_pages() function is called which attempts
+ to do the migration. It will call the function to allocate
+ the new page for each page that is considered for
+ moving.
+
+How migrate_pages() works
+=========================
+
+migrate_pages() does several passes over its list of pages. A page is moved
+if all references to a page are removable at the time. The page has
+already been removed from the LRU via isolate_lru_page() and the refcount
+is increased so that the page cannot be freed while page migration occurs.
+
+Steps:
+
+1. Lock the page to be migrated.
+
+2. Ensure that writeback is complete.
+
+3. Lock the new page that we want to move to. It is locked so that accesses to
+ this (not yet up-to-date) page immediately block while the move is in progress.
+
+4. All the page table references to the page are converted to migration
+ entries. This decreases the mapcount of a page. If the resulting
+ mapcount is not zero then we do not migrate the page. All user space
+ processes that attempt to access the page will now wait on the page lock
+ or wait for the migration page table entry to be removed.
+
+5. The i_pages lock is taken. This will cause all processes trying
+ to access the page via the mapping to block on the spinlock.
+
+6. The refcount of the page is examined and we back out if references remain.
+ Otherwise, we know that we are the only one referencing this page.
+
+7. The radix tree is checked and if it does not contain the pointer to this
+ page then we back out because someone else modified the radix tree.
+
+8. The new page is prepped with some settings from the old page so that
+ accesses to the new page will discover a page with the correct settings.
+
+9. The radix tree is changed to point to the new page.
+
+10. The reference count of the old page is dropped because the address space
+ reference is gone. A reference to the new page is established because
+ the new page is referenced by the address space.
+
+11. The i_pages lock is dropped. With that lookups in the mapping
+ become possible again. Processes will move from spinning on the lock
+ to sleeping on the locked new page.
+
+12. The page contents are copied to the new page.
+
+13. The remaining page flags are copied to the new page.
+
+14. The old page flags are cleared to indicate that the page does
+ not provide any information anymore.
+
+15. Queued up writeback on the new page is triggered.
+
+16. If migration entries were inserted into the page table, then replace them
+ with real ptes. Doing so will enable access for user space processes not
+ already waiting for the page lock.
+
+17. The page locks are dropped from the old and new page.
+ Processes waiting on the page lock will redo their page faults
+ and will reach the new page.
+
+18. The new page is moved to the LRU and can be scanned by the swapper,
+ etc. again.
+
+Non-LRU page migration
+======================
+
+Although migration originally aimed for reducing the latency of memory
+accesses for NUMA, compaction also uses migration to create high-order
+pages. For compaction purposes, it is also useful to be able to move
+non-LRU pages, such as zsmalloc and virtio-balloon pages.
+
+If a driver wants to make its pages movable, it should define a struct
+movable_operations. It then needs to call __SetPageMovable() on each
+page that it may be able to move. This uses the ``page->mapping`` field,
+so this field is not available for the driver to use for other purposes.
+
+Monitoring Migration
+=====================
+
+The following events (counters) can be used to monitor page migration.
+
+1. PGMIGRATE_SUCCESS: Normal page migration success. Each count means that a
+ page was migrated. If the page was a non-THP and non-hugetlb page, then
+ this counter is increased by one. If the page was a THP or hugetlb, then
+ this counter is increased by the number of THP or hugetlb subpages.
+ For example, migration of a single 2MB THP that has 4KB-size base pages
+ (subpages) will cause this counter to increase by 512.
+
+2. PGMIGRATE_FAIL: Normal page migration failure. Same counting rules as for
+ PGMIGRATE_SUCCESS, above: this will be increased by the number of subpages,
+ if it was a THP or hugetlb.
+
+3. THP_MIGRATION_SUCCESS: A THP was migrated without being split.
+
+4. THP_MIGRATION_FAIL: A THP could not be migrated nor it could be split.
+
+5. THP_MIGRATION_SPLIT: A THP was migrated, but not as such: first, the THP had
+ to be split. After splitting, a migration retry was used for it's sub-pages.
+
+THP_MIGRATION_* events also update the appropriate PGMIGRATE_SUCCESS or
+PGMIGRATE_FAIL events. For example, a THP migration failure will cause both
+THP_MIGRATION_FAIL and PGMIGRATE_FAIL to increase.
+
+Christoph Lameter, May 8, 2006.
+Minchan Kim, Mar 28, 2016.
+
+.. kernel-doc:: include/linux/migrate.h