diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /Documentation/security/keys | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/security/keys')
-rw-r--r-- | Documentation/security/keys/core.rst | 1849 | ||||
-rw-r--r-- | Documentation/security/keys/ecryptfs.rst | 73 | ||||
-rw-r--r-- | Documentation/security/keys/index.rst | 11 | ||||
-rw-r--r-- | Documentation/security/keys/request-key.rst | 207 | ||||
-rw-r--r-- | Documentation/security/keys/trusted-encrypted.rst | 428 |
5 files changed, 2568 insertions, 0 deletions
diff --git a/Documentation/security/keys/core.rst b/Documentation/security/keys/core.rst new file mode 100644 index 000000000..811b905b5 --- /dev/null +++ b/Documentation/security/keys/core.rst @@ -0,0 +1,1849 @@ +============================ +Kernel Key Retention Service +============================ + +This service allows cryptographic keys, authentication tokens, cross-domain +user mappings, and similar to be cached in the kernel for the use of +filesystems and other kernel services. + +Keyrings are permitted; these are a special type of key that can hold links to +other keys. Processes each have three standard keyring subscriptions that a +kernel service can search for relevant keys. + +The key service can be configured on by enabling: + + "Security options"/"Enable access key retention support" (CONFIG_KEYS) + +This document has the following sections: + +.. contents:: :local: + + +Key Overview +============ + +In this context, keys represent units of cryptographic data, authentication +tokens, keyrings, etc.. These are represented in the kernel by struct key. + +Each key has a number of attributes: + + - A serial number. + - A type. + - A description (for matching a key in a search). + - Access control information. + - An expiry time. + - A payload. + - State. + + + * Each key is issued a serial number of type key_serial_t that is unique for + the lifetime of that key. All serial numbers are positive non-zero 32-bit + integers. + + Userspace programs can use a key's serial numbers as a way to gain access + to it, subject to permission checking. + + * Each key is of a defined "type". Types must be registered inside the + kernel by a kernel service (such as a filesystem) before keys of that type + can be added or used. Userspace programs cannot define new types directly. + + Key types are represented in the kernel by struct key_type. This defines a + number of operations that can be performed on a key of that type. + + Should a type be removed from the system, all the keys of that type will + be invalidated. + + * Each key has a description. This should be a printable string. The key + type provides an operation to perform a match between the description on a + key and a criterion string. + + * Each key has an owner user ID, a group ID and a permissions mask. These + are used to control what a process may do to a key from userspace, and + whether a kernel service will be able to find the key. + + * Each key can be set to expire at a specific time by the key type's + instantiation function. Keys can also be immortal. + + * Each key can have a payload. This is a quantity of data that represent the + actual "key". In the case of a keyring, this is a list of keys to which + the keyring links; in the case of a user-defined key, it's an arbitrary + blob of data. + + Having a payload is not required; and the payload can, in fact, just be a + value stored in the struct key itself. + + When a key is instantiated, the key type's instantiation function is + called with a blob of data, and that then creates the key's payload in + some way. + + Similarly, when userspace wants to read back the contents of the key, if + permitted, another key type operation will be called to convert the key's + attached payload back into a blob of data. + + * Each key can be in one of a number of basic states: + + * Uninstantiated. The key exists, but does not have any data attached. + Keys being requested from userspace will be in this state. + + * Instantiated. This is the normal state. The key is fully formed, and + has data attached. + + * Negative. This is a relatively short-lived state. The key acts as a + note saying that a previous call out to userspace failed, and acts as + a throttle on key lookups. A negative key can be updated to a normal + state. + + * Expired. Keys can have lifetimes set. If their lifetime is exceeded, + they traverse to this state. An expired key can be updated back to a + normal state. + + * Revoked. A key is put in this state by userspace action. It can't be + found or operated upon (apart from by unlinking it). + + * Dead. The key's type was unregistered, and so the key is now useless. + +Keys in the last three states are subject to garbage collection. See the +section on "Garbage collection". + + +Key Service Overview +==================== + +The key service provides a number of features besides keys: + + * The key service defines three special key types: + + (+) "keyring" + + Keyrings are special keys that contain a list of other keys. Keyring + lists can be modified using various system calls. Keyrings should not + be given a payload when created. + + (+) "user" + + A key of this type has a description and a payload that are arbitrary + blobs of data. These can be created, updated and read by userspace, + and aren't intended for use by kernel services. + + (+) "logon" + + Like a "user" key, a "logon" key has a payload that is an arbitrary + blob of data. It is intended as a place to store secrets which are + accessible to the kernel but not to userspace programs. + + The description can be arbitrary, but must be prefixed with a non-zero + length string that describes the key "subclass". The subclass is + separated from the rest of the description by a ':'. "logon" keys can + be created and updated from userspace, but the payload is only + readable from kernel space. + + * Each process subscribes to three keyrings: a thread-specific keyring, a + process-specific keyring, and a session-specific keyring. + + The thread-specific keyring is discarded from the child when any sort of + clone, fork, vfork or execve occurs. A new keyring is created only when + required. + + The process-specific keyring is replaced with an empty one in the child on + clone, fork, vfork unless CLONE_THREAD is supplied, in which case it is + shared. execve also discards the process's process keyring and creates a + new one. + + The session-specific keyring is persistent across clone, fork, vfork and + execve, even when the latter executes a set-UID or set-GID binary. A + process can, however, replace its current session keyring with a new one + by using PR_JOIN_SESSION_KEYRING. It is permitted to request an anonymous + new one, or to attempt to create or join one of a specific name. + + The ownership of the thread keyring changes when the real UID and GID of + the thread changes. + + * Each user ID resident in the system holds two special keyrings: a user + specific keyring and a default user session keyring. The default session + keyring is initialised with a link to the user-specific keyring. + + When a process changes its real UID, if it used to have no session key, it + will be subscribed to the default session key for the new UID. + + If a process attempts to access its session key when it doesn't have one, + it will be subscribed to the default for its current UID. + + * Each user has two quotas against which the keys they own are tracked. One + limits the total number of keys and keyrings, the other limits the total + amount of description and payload space that can be consumed. + + The user can view information on this and other statistics through procfs + files. The root user may also alter the quota limits through sysctl files + (see the section "New procfs files"). + + Process-specific and thread-specific keyrings are not counted towards a + user's quota. + + If a system call that modifies a key or keyring in some way would put the + user over quota, the operation is refused and error EDQUOT is returned. + + * There's a system call interface by which userspace programs can create and + manipulate keys and keyrings. + + * There's a kernel interface by which services can register types and search + for keys. + + * There's a way for the a search done from the kernel to call back to + userspace to request a key that can't be found in a process's keyrings. + + * An optional filesystem is available through which the key database can be + viewed and manipulated. + + +Key Access Permissions +====================== + +Keys have an owner user ID, a group access ID, and a permissions mask. The mask +has up to eight bits each for possessor, user, group and other access. Only +six of each set of eight bits are defined. These permissions granted are: + + * View + + This permits a key or keyring's attributes to be viewed - including key + type and description. + + * Read + + This permits a key's payload to be viewed or a keyring's list of linked + keys. + + * Write + + This permits a key's payload to be instantiated or updated, or it allows a + link to be added to or removed from a keyring. + + * Search + + This permits keyrings to be searched and keys to be found. Searches can + only recurse into nested keyrings that have search permission set. + + * Link + + This permits a key or keyring to be linked to. To create a link from a + keyring to a key, a process must have Write permission on the keyring and + Link permission on the key. + + * Set Attribute + + This permits a key's UID, GID and permissions mask to be changed. + +For changing the ownership, group ID or permissions mask, being the owner of +the key or having the sysadmin capability is sufficient. + + +SELinux Support +=============== + +The security class "key" has been added to SELinux so that mandatory access +controls can be applied to keys created within various contexts. This support +is preliminary, and is likely to change quite significantly in the near future. +Currently, all of the basic permissions explained above are provided in SELinux +as well; SELinux is simply invoked after all basic permission checks have been +performed. + +The value of the file /proc/self/attr/keycreate influences the labeling of +newly-created keys. If the contents of that file correspond to an SELinux +security context, then the key will be assigned that context. Otherwise, the +key will be assigned the current context of the task that invoked the key +creation request. Tasks must be granted explicit permission to assign a +particular context to newly-created keys, using the "create" permission in the +key security class. + +The default keyrings associated with users will be labeled with the default +context of the user if and only if the login programs have been instrumented to +properly initialize keycreate during the login process. Otherwise, they will +be labeled with the context of the login program itself. + +Note, however, that the default keyrings associated with the root user are +labeled with the default kernel context, since they are created early in the +boot process, before root has a chance to log in. + +The keyrings associated with new threads are each labeled with the context of +their associated thread, and both session and process keyrings are handled +similarly. + + +New ProcFS Files +================ + +Two files have been added to procfs by which an administrator can find out +about the status of the key service: + + * /proc/keys + + This lists the keys that are currently viewable by the task reading the + file, giving information about their type, description and permissions. + It is not possible to view the payload of the key this way, though some + information about it may be given. + + The only keys included in the list are those that grant View permission to + the reading process whether or not it possesses them. Note that LSM + security checks are still performed, and may further filter out keys that + the current process is not authorised to view. + + The contents of the file look like this:: + + SERIAL FLAGS USAGE EXPY PERM UID GID TYPE DESCRIPTION: SUMMARY + 00000001 I----- 39 perm 1f3f0000 0 0 keyring _uid_ses.0: 1/4 + 00000002 I----- 2 perm 1f3f0000 0 0 keyring _uid.0: empty + 00000007 I----- 1 perm 1f3f0000 0 0 keyring _pid.1: empty + 0000018d I----- 1 perm 1f3f0000 0 0 keyring _pid.412: empty + 000004d2 I--Q-- 1 perm 1f3f0000 32 -1 keyring _uid.32: 1/4 + 000004d3 I--Q-- 3 perm 1f3f0000 32 -1 keyring _uid_ses.32: empty + 00000892 I--QU- 1 perm 1f000000 0 0 user metal:copper: 0 + 00000893 I--Q-N 1 35s 1f3f0000 0 0 user metal:silver: 0 + 00000894 I--Q-- 1 10h 003f0000 0 0 user metal:gold: 0 + + The flags are:: + + I Instantiated + R Revoked + D Dead + Q Contributes to user's quota + U Under construction by callback to userspace + N Negative key + + + * /proc/key-users + + This file lists the tracking data for each user that has at least one key + on the system. Such data includes quota information and statistics:: + + [root@andromeda root]# cat /proc/key-users + 0: 46 45/45 1/100 13/10000 + 29: 2 2/2 2/100 40/10000 + 32: 2 2/2 2/100 40/10000 + 38: 2 2/2 2/100 40/10000 + + The format of each line is:: + + <UID>: User ID to which this applies + <usage> Structure refcount + <inst>/<keys> Total number of keys and number instantiated + <keys>/<max> Key count quota + <bytes>/<max> Key size quota + + +Four new sysctl files have been added also for the purpose of controlling the +quota limits on keys: + + * /proc/sys/kernel/keys/root_maxkeys + /proc/sys/kernel/keys/root_maxbytes + + These files hold the maximum number of keys that root may have and the + maximum total number of bytes of data that root may have stored in those + keys. + + * /proc/sys/kernel/keys/maxkeys + /proc/sys/kernel/keys/maxbytes + + These files hold the maximum number of keys that each non-root user may + have and the maximum total number of bytes of data that each of those + users may have stored in their keys. + +Root may alter these by writing each new limit as a decimal number string to +the appropriate file. + + +Userspace System Call Interface +=============================== + +Userspace can manipulate keys directly through three new syscalls: add_key, +request_key and keyctl. The latter provides a number of functions for +manipulating keys. + +When referring to a key directly, userspace programs should use the key's +serial number (a positive 32-bit integer). However, there are some special +values available for referring to special keys and keyrings that relate to the +process making the call:: + + CONSTANT VALUE KEY REFERENCED + ============================== ====== =========================== + KEY_SPEC_THREAD_KEYRING -1 thread-specific keyring + KEY_SPEC_PROCESS_KEYRING -2 process-specific keyring + KEY_SPEC_SESSION_KEYRING -3 session-specific keyring + KEY_SPEC_USER_KEYRING -4 UID-specific keyring + KEY_SPEC_USER_SESSION_KEYRING -5 UID-session keyring + KEY_SPEC_GROUP_KEYRING -6 GID-specific keyring + KEY_SPEC_REQKEY_AUTH_KEY -7 assumed request_key() + authorisation key + + +The main syscalls are: + + * Create a new key of given type, description and payload and add it to the + nominated keyring:: + + key_serial_t add_key(const char *type, const char *desc, + const void *payload, size_t plen, + key_serial_t keyring); + + If a key of the same type and description as that proposed already exists + in the keyring, this will try to update it with the given payload, or it + will return error EEXIST if that function is not supported by the key + type. The process must also have permission to write to the key to be able + to update it. The new key will have all user permissions granted and no + group or third party permissions. + + Otherwise, this will attempt to create a new key of the specified type and + description, and to instantiate it with the supplied payload and attach it + to the keyring. In this case, an error will be generated if the process + does not have permission to write to the keyring. + + If the key type supports it, if the description is NULL or an empty + string, the key type will try and generate a description from the content + of the payload. + + The payload is optional, and the pointer can be NULL if not required by + the type. The payload is plen in size, and plen can be zero for an empty + payload. + + A new keyring can be generated by setting type "keyring", the keyring name + as the description (or NULL) and setting the payload to NULL. + + User defined keys can be created by specifying type "user". It is + recommended that a user defined key's description by prefixed with a type + ID and a colon, such as "krb5tgt:" for a Kerberos 5 ticket granting + ticket. + + Any other type must have been registered with the kernel in advance by a + kernel service such as a filesystem. + + The ID of the new or updated key is returned if successful. + + + * Search the process's keyrings for a key, potentially calling out to + userspace to create it:: + + key_serial_t request_key(const char *type, const char *description, + const char *callout_info, + key_serial_t dest_keyring); + + This function searches all the process's keyrings in the order thread, + process, session for a matching key. This works very much like + KEYCTL_SEARCH, including the optional attachment of the discovered key to + a keyring. + + If a key cannot be found, and if callout_info is not NULL, then + /sbin/request-key will be invoked in an attempt to obtain a key. The + callout_info string will be passed as an argument to the program. + + To link a key into the destination keyring the key must grant link + permission on the key to the caller and the keyring must grant write + permission. + + See also Documentation/security/keys/request-key.rst. + + +The keyctl syscall functions are: + + * Map a special key ID to a real key ID for this process:: + + key_serial_t keyctl(KEYCTL_GET_KEYRING_ID, key_serial_t id, + int create); + + The special key specified by "id" is looked up (with the key being created + if necessary) and the ID of the key or keyring thus found is returned if + it exists. + + If the key does not yet exist, the key will be created if "create" is + non-zero; and the error ENOKEY will be returned if "create" is zero. + + + * Replace the session keyring this process subscribes to with a new one:: + + key_serial_t keyctl(KEYCTL_JOIN_SESSION_KEYRING, const char *name); + + If name is NULL, an anonymous keyring is created attached to the process + as its session keyring, displacing the old session keyring. + + If name is not NULL, if a keyring of that name exists, the process + attempts to attach it as the session keyring, returning an error if that + is not permitted; otherwise a new keyring of that name is created and + attached as the session keyring. + + To attach to a named keyring, the keyring must have search permission for + the process's ownership. + + The ID of the new session keyring is returned if successful. + + + * Update the specified key:: + + long keyctl(KEYCTL_UPDATE, key_serial_t key, const void *payload, + size_t plen); + + This will try to update the specified key with the given payload, or it + will return error EOPNOTSUPP if that function is not supported by the key + type. The process must also have permission to write to the key to be able + to update it. + + The payload is of length plen, and may be absent or empty as for + add_key(). + + + * Revoke a key:: + + long keyctl(KEYCTL_REVOKE, key_serial_t key); + + This makes a key unavailable for further operations. Further attempts to + use the key will be met with error EKEYREVOKED, and the key will no longer + be findable. + + + * Change the ownership of a key:: + + long keyctl(KEYCTL_CHOWN, key_serial_t key, uid_t uid, gid_t gid); + + This function permits a key's owner and group ID to be changed. Either one + of uid or gid can be set to -1 to suppress that change. + + Only the superuser can change a key's owner to something other than the + key's current owner. Similarly, only the superuser can change a key's + group ID to something other than the calling process's group ID or one of + its group list members. + + + * Change the permissions mask on a key:: + + long keyctl(KEYCTL_SETPERM, key_serial_t key, key_perm_t perm); + + This function permits the owner of a key or the superuser to change the + permissions mask on a key. + + Only bits the available bits are permitted; if any other bits are set, + error EINVAL will be returned. + + + * Describe a key:: + + long keyctl(KEYCTL_DESCRIBE, key_serial_t key, char *buffer, + size_t buflen); + + This function returns a summary of the key's attributes (but not its + payload data) as a string in the buffer provided. + + Unless there's an error, it always returns the amount of data it could + produce, even if that's too big for the buffer, but it won't copy more + than requested to userspace. If the buffer pointer is NULL then no copy + will take place. + + A process must have view permission on the key for this function to be + successful. + + If successful, a string is placed in the buffer in the following format:: + + <type>;<uid>;<gid>;<perm>;<description> + + Where type and description are strings, uid and gid are decimal, and perm + is hexadecimal. A NUL character is included at the end of the string if + the buffer is sufficiently big. + + This can be parsed with:: + + sscanf(buffer, "%[^;];%d;%d;%o;%s", type, &uid, &gid, &mode, desc); + + + * Clear out a keyring:: + + long keyctl(KEYCTL_CLEAR, key_serial_t keyring); + + This function clears the list of keys attached to a keyring. The calling + process must have write permission on the keyring, and it must be a + keyring (or else error ENOTDIR will result). + + This function can also be used to clear special kernel keyrings if they + are appropriately marked if the user has CAP_SYS_ADMIN capability. The + DNS resolver cache keyring is an example of this. + + + * Link a key into a keyring:: + + long keyctl(KEYCTL_LINK, key_serial_t keyring, key_serial_t key); + + This function creates a link from the keyring to the key. The process must + have write permission on the keyring and must have link permission on the + key. + + Should the keyring not be a keyring, error ENOTDIR will result; and if the + keyring is full, error ENFILE will result. + + The link procedure checks the nesting of the keyrings, returning ELOOP if + it appears too deep or EDEADLK if the link would introduce a cycle. + + Any links within the keyring to keys that match the new key in terms of + type and description will be discarded from the keyring as the new one is + added. + + + * Move a key from one keyring to another:: + + long keyctl(KEYCTL_MOVE, + key_serial_t id, + key_serial_t from_ring_id, + key_serial_t to_ring_id, + unsigned int flags); + + Move the key specified by "id" from the keyring specified by + "from_ring_id" to the keyring specified by "to_ring_id". If the two + keyrings are the same, nothing is done. + + "flags" can have KEYCTL_MOVE_EXCL set in it to cause the operation to fail + with EEXIST if a matching key exists in the destination keyring, otherwise + such a key will be replaced. + + A process must have link permission on the key for this function to be + successful and write permission on both keyrings. Any errors that can + occur from KEYCTL_LINK also apply on the destination keyring here. + + + * Unlink a key or keyring from another keyring:: + + long keyctl(KEYCTL_UNLINK, key_serial_t keyring, key_serial_t key); + + This function looks through the keyring for the first link to the + specified key, and removes it if found. Subsequent links to that key are + ignored. The process must have write permission on the keyring. + + If the keyring is not a keyring, error ENOTDIR will result; and if the key + is not present, error ENOENT will be the result. + + + * Search a keyring tree for a key:: + + key_serial_t keyctl(KEYCTL_SEARCH, key_serial_t keyring, + const char *type, const char *description, + key_serial_t dest_keyring); + + This searches the keyring tree headed by the specified keyring until a key + is found that matches the type and description criteria. Each keyring is + checked for keys before recursion into its children occurs. + + The process must have search permission on the top level keyring, or else + error EACCES will result. Only keyrings that the process has search + permission on will be recursed into, and only keys and keyrings for which + a process has search permission can be matched. If the specified keyring + is not a keyring, ENOTDIR will result. + + If the search succeeds, the function will attempt to link the found key + into the destination keyring if one is supplied (non-zero ID). All the + constraints applicable to KEYCTL_LINK apply in this case too. + + Error ENOKEY, EKEYREVOKED or EKEYEXPIRED will be returned if the search + fails. On success, the resulting key ID will be returned. + + + * Read the payload data from a key:: + + long keyctl(KEYCTL_READ, key_serial_t keyring, char *buffer, + size_t buflen); + + This function attempts to read the payload data from the specified key + into the buffer. The process must have read permission on the key to + succeed. + + The returned data will be processed for presentation by the key type. For + instance, a keyring will return an array of key_serial_t entries + representing the IDs of all the keys to which it is subscribed. The user + defined key type will return its data as is. If a key type does not + implement this function, error EOPNOTSUPP will result. + + If the specified buffer is too small, then the size of the buffer required + will be returned. Note that in this case, the contents of the buffer may + have been overwritten in some undefined way. + + Otherwise, on success, the function will return the amount of data copied + into the buffer. + + * Instantiate a partially constructed key:: + + long keyctl(KEYCTL_INSTANTIATE, key_serial_t key, + const void *payload, size_t plen, + key_serial_t keyring); + long keyctl(KEYCTL_INSTANTIATE_IOV, key_serial_t key, + const struct iovec *payload_iov, unsigned ioc, + key_serial_t keyring); + + If the kernel calls back to userspace to complete the instantiation of a + key, userspace should use this call to supply data for the key before the + invoked process returns, or else the key will be marked negative + automatically. + + The process must have write access on the key to be able to instantiate + it, and the key must be uninstantiated. + + If a keyring is specified (non-zero), the key will also be linked into + that keyring, however all the constraints applying in KEYCTL_LINK apply in + this case too. + + The payload and plen arguments describe the payload data as for add_key(). + + The payload_iov and ioc arguments describe the payload data in an iovec + array instead of a single buffer. + + + * Negatively instantiate a partially constructed key:: + + long keyctl(KEYCTL_NEGATE, key_serial_t key, + unsigned timeout, key_serial_t keyring); + long keyctl(KEYCTL_REJECT, key_serial_t key, + unsigned timeout, unsigned error, key_serial_t keyring); + + If the kernel calls back to userspace to complete the instantiation of a + key, userspace should use this call mark the key as negative before the + invoked process returns if it is unable to fulfill the request. + + The process must have write access on the key to be able to instantiate + it, and the key must be uninstantiated. + + If a keyring is specified (non-zero), the key will also be linked into + that keyring, however all the constraints applying in KEYCTL_LINK apply in + this case too. + + If the key is rejected, future searches for it will return the specified + error code until the rejected key expires. Negating the key is the same + as rejecting the key with ENOKEY as the error code. + + + * Set the default request-key destination keyring:: + + long keyctl(KEYCTL_SET_REQKEY_KEYRING, int reqkey_defl); + + This sets the default keyring to which implicitly requested keys will be + attached for this thread. reqkey_defl should be one of these constants:: + + CONSTANT VALUE NEW DEFAULT KEYRING + ====================================== ====== ======================= + KEY_REQKEY_DEFL_NO_CHANGE -1 No change + KEY_REQKEY_DEFL_DEFAULT 0 Default[1] + KEY_REQKEY_DEFL_THREAD_KEYRING 1 Thread keyring + KEY_REQKEY_DEFL_PROCESS_KEYRING 2 Process keyring + KEY_REQKEY_DEFL_SESSION_KEYRING 3 Session keyring + KEY_REQKEY_DEFL_USER_KEYRING 4 User keyring + KEY_REQKEY_DEFL_USER_SESSION_KEYRING 5 User session keyring + KEY_REQKEY_DEFL_GROUP_KEYRING 6 Group keyring + + The old default will be returned if successful and error EINVAL will be + returned if reqkey_defl is not one of the above values. + + The default keyring can be overridden by the keyring indicated to the + request_key() system call. + + Note that this setting is inherited across fork/exec. + + [1] The default is: the thread keyring if there is one, otherwise + the process keyring if there is one, otherwise the session keyring if + there is one, otherwise the user default session keyring. + + + * Set the timeout on a key:: + + long keyctl(KEYCTL_SET_TIMEOUT, key_serial_t key, unsigned timeout); + + This sets or clears the timeout on a key. The timeout can be 0 to clear + the timeout or a number of seconds to set the expiry time that far into + the future. + + The process must have attribute modification access on a key to set its + timeout. Timeouts may not be set with this function on negative, revoked + or expired keys. + + + * Assume the authority granted to instantiate a key:: + + long keyctl(KEYCTL_ASSUME_AUTHORITY, key_serial_t key); + + This assumes or divests the authority required to instantiate the + specified key. Authority can only be assumed if the thread has the + authorisation key associated with the specified key in its keyrings + somewhere. + + Once authority is assumed, searches for keys will also search the + requester's keyrings using the requester's security label, UID, GID and + groups. + + If the requested authority is unavailable, error EPERM will be returned, + likewise if the authority has been revoked because the target key is + already instantiated. + + If the specified key is 0, then any assumed authority will be divested. + + The assumed authoritative key is inherited across fork and exec. + + + * Get the LSM security context attached to a key:: + + long keyctl(KEYCTL_GET_SECURITY, key_serial_t key, char *buffer, + size_t buflen) + + This function returns a string that represents the LSM security context + attached to a key in the buffer provided. + + Unless there's an error, it always returns the amount of data it could + produce, even if that's too big for the buffer, but it won't copy more + than requested to userspace. If the buffer pointer is NULL then no copy + will take place. + + A NUL character is included at the end of the string if the buffer is + sufficiently big. This is included in the returned count. If no LSM is + in force then an empty string will be returned. + + A process must have view permission on the key for this function to be + successful. + + + * Install the calling process's session keyring on its parent:: + + long keyctl(KEYCTL_SESSION_TO_PARENT); + + This functions attempts to install the calling process's session keyring + on to the calling process's parent, replacing the parent's current session + keyring. + + The calling process must have the same ownership as its parent, the + keyring must have the same ownership as the calling process, the calling + process must have LINK permission on the keyring and the active LSM module + mustn't deny permission, otherwise error EPERM will be returned. + + Error ENOMEM will be returned if there was insufficient memory to complete + the operation, otherwise 0 will be returned to indicate success. + + The keyring will be replaced next time the parent process leaves the + kernel and resumes executing userspace. + + + * Invalidate a key:: + + long keyctl(KEYCTL_INVALIDATE, key_serial_t key); + + This function marks a key as being invalidated and then wakes up the + garbage collector. The garbage collector immediately removes invalidated + keys from all keyrings and deletes the key when its reference count + reaches zero. + + Keys that are marked invalidated become invisible to normal key operations + immediately, though they are still visible in /proc/keys until deleted + (they're marked with an 'i' flag). + + A process must have search permission on the key for this function to be + successful. + + * Compute a Diffie-Hellman shared secret or public key:: + + long keyctl(KEYCTL_DH_COMPUTE, struct keyctl_dh_params *params, + char *buffer, size_t buflen, struct keyctl_kdf_params *kdf); + + The params struct contains serial numbers for three keys:: + + - The prime, p, known to both parties + - The local private key + - The base integer, which is either a shared generator or the + remote public key + + The value computed is:: + + result = base ^ private (mod prime) + + If the base is the shared generator, the result is the local + public key. If the base is the remote public key, the result is + the shared secret. + + If the parameter kdf is NULL, the following applies: + + - The buffer length must be at least the length of the prime, or zero. + + - If the buffer length is nonzero, the length of the result is + returned when it is successfully calculated and copied in to the + buffer. When the buffer length is zero, the minimum required + buffer length is returned. + + The kdf parameter allows the caller to apply a key derivation function + (KDF) on the Diffie-Hellman computation where only the result + of the KDF is returned to the caller. The KDF is characterized with + struct keyctl_kdf_params as follows: + + - ``char *hashname`` specifies the NUL terminated string identifying + the hash used from the kernel crypto API and applied for the KDF + operation. The KDF implemenation complies with SP800-56A as well + as with SP800-108 (the counter KDF). + + - ``char *otherinfo`` specifies the OtherInfo data as documented in + SP800-56A section 5.8.1.2. The length of the buffer is given with + otherinfolen. The format of OtherInfo is defined by the caller. + The otherinfo pointer may be NULL if no OtherInfo shall be used. + + This function will return error EOPNOTSUPP if the key type is not + supported, error ENOKEY if the key could not be found, or error + EACCES if the key is not readable by the caller. In addition, the + function will return EMSGSIZE when the parameter kdf is non-NULL + and either the buffer length or the OtherInfo length exceeds the + allowed length. + + + * Restrict keyring linkage:: + + long keyctl(KEYCTL_RESTRICT_KEYRING, key_serial_t keyring, + const char *type, const char *restriction); + + An existing keyring can restrict linkage of additional keys by evaluating + the contents of the key according to a restriction scheme. + + "keyring" is the key ID for an existing keyring to apply a restriction + to. It may be empty or may already have keys linked. Existing linked keys + will remain in the keyring even if the new restriction would reject them. + + "type" is a registered key type. + + "restriction" is a string describing how key linkage is to be restricted. + The format varies depending on the key type, and the string is passed to + the lookup_restriction() function for the requested type. It may specify + a method and relevant data for the restriction such as signature + verification or constraints on key payload. If the requested key type is + later unregistered, no keys may be added to the keyring after the key type + is removed. + + To apply a keyring restriction the process must have Set Attribute + permission and the keyring must not be previously restricted. + + One application of restricted keyrings is to verify X.509 certificate + chains or individual certificate signatures using the asymmetric key type. + See Documentation/crypto/asymmetric-keys.rst for specific restrictions + applicable to the asymmetric key type. + + + * Query an asymmetric key:: + + long keyctl(KEYCTL_PKEY_QUERY, + key_serial_t key_id, unsigned long reserved, + const char *params, + struct keyctl_pkey_query *info); + + Get information about an asymmetric key. Specific algorithms and + encodings may be queried by using the ``params`` argument. This is a + string containing a space- or tab-separated string of key-value pairs. + Currently supported keys include ``enc`` and ``hash``. The information + is returned in the keyctl_pkey_query struct:: + + __u32 supported_ops; + __u32 key_size; + __u16 max_data_size; + __u16 max_sig_size; + __u16 max_enc_size; + __u16 max_dec_size; + __u32 __spare[10]; + + ``supported_ops`` contains a bit mask of flags indicating which ops are + supported. This is constructed from a bitwise-OR of:: + + KEYCTL_SUPPORTS_{ENCRYPT,DECRYPT,SIGN,VERIFY} + + ``key_size`` indicated the size of the key in bits. + + ``max_*_size`` indicate the maximum sizes in bytes of a blob of data to be + signed, a signature blob, a blob to be encrypted and a blob to be + decrypted. + + ``__spare[]`` must be set to 0. This is intended for future use to hand + over one or more passphrases needed unlock a key. + + If successful, 0 is returned. If the key is not an asymmetric key, + EOPNOTSUPP is returned. + + + * Encrypt, decrypt, sign or verify a blob using an asymmetric key:: + + long keyctl(KEYCTL_PKEY_ENCRYPT, + const struct keyctl_pkey_params *params, + const char *info, + const void *in, + void *out); + + long keyctl(KEYCTL_PKEY_DECRYPT, + const struct keyctl_pkey_params *params, + const char *info, + const void *in, + void *out); + + long keyctl(KEYCTL_PKEY_SIGN, + const struct keyctl_pkey_params *params, + const char *info, + const void *in, + void *out); + + long keyctl(KEYCTL_PKEY_VERIFY, + const struct keyctl_pkey_params *params, + const char *info, + const void *in, + const void *in2); + + Use an asymmetric key to perform a public-key cryptographic operation a + blob of data. For encryption and verification, the asymmetric key may + only need the public parts to be available, but for decryption and signing + the private parts are required also. + + The parameter block pointed to by params contains a number of integer + values:: + + __s32 key_id; + __u32 in_len; + __u32 out_len; + __u32 in2_len; + + ``key_id`` is the ID of the asymmetric key to be used. ``in_len`` and + ``in2_len`` indicate the amount of data in the in and in2 buffers and + ``out_len`` indicates the size of the out buffer as appropriate for the + above operations. + + For a given operation, the in and out buffers are used as follows:: + + Operation ID in,in_len out,out_len in2,in2_len + ======================= =============== =============== =============== + KEYCTL_PKEY_ENCRYPT Raw data Encrypted data - + KEYCTL_PKEY_DECRYPT Encrypted data Raw data - + KEYCTL_PKEY_SIGN Raw data Signature - + KEYCTL_PKEY_VERIFY Raw data - Signature + + ``info`` is a string of key=value pairs that supply supplementary + information. These include: + + ``enc=<encoding>`` The encoding of the encrypted/signature blob. This + can be "pkcs1" for RSASSA-PKCS1-v1.5 or + RSAES-PKCS1-v1.5; "pss" for "RSASSA-PSS"; "oaep" for + "RSAES-OAEP". If omitted or is "raw", the raw output + of the encryption function is specified. + + ``hash=<algo>`` If the data buffer contains the output of a hash + function and the encoding includes some indication of + which hash function was used, the hash function can be + specified with this, eg. "hash=sha256". + + The ``__spare[]`` space in the parameter block must be set to 0. This is + intended, amongst other things, to allow the passing of passphrases + required to unlock a key. + + If successful, encrypt, decrypt and sign all return the amount of data + written into the output buffer. Verification returns 0 on success. + + + * Watch a key or keyring for changes:: + + long keyctl(KEYCTL_WATCH_KEY, key_serial_t key, int queue_fd, + const struct watch_notification_filter *filter); + + This will set or remove a watch for changes on the specified key or + keyring. + + "key" is the ID of the key to be watched. + + "queue_fd" is a file descriptor referring to an open pipe which + manages the buffer into which notifications will be delivered. + + "filter" is either NULL to remove a watch or a filter specification to + indicate what events are required from the key. + + See Documentation/core-api/watch_queue.rst for more information. + + Note that only one watch may be emplaced for any particular { key, + queue_fd } combination. + + Notification records look like:: + + struct key_notification { + struct watch_notification watch; + __u32 key_id; + __u32 aux; + }; + + In this, watch::type will be "WATCH_TYPE_KEY_NOTIFY" and subtype will be + one of:: + + NOTIFY_KEY_INSTANTIATED + NOTIFY_KEY_UPDATED + NOTIFY_KEY_LINKED + NOTIFY_KEY_UNLINKED + NOTIFY_KEY_CLEARED + NOTIFY_KEY_REVOKED + NOTIFY_KEY_INVALIDATED + NOTIFY_KEY_SETATTR + + Where these indicate a key being instantiated/rejected, updated, a link + being made in a keyring, a link being removed from a keyring, a keyring + being cleared, a key being revoked, a key being invalidated or a key + having one of its attributes changed (user, group, perm, timeout, + restriction). + + If a watched key is deleted, a basic watch_notification will be issued + with "type" set to WATCH_TYPE_META and "subtype" set to + watch_meta_removal_notification. The watchpoint ID will be set in the + "info" field. + + This needs to be configured by enabling: + + "Provide key/keyring change notifications" (KEY_NOTIFICATIONS) + + +Kernel Services +=============== + +The kernel services for key management are fairly simple to deal with. They can +be broken down into two areas: keys and key types. + +Dealing with keys is fairly straightforward. Firstly, the kernel service +registers its type, then it searches for a key of that type. It should retain +the key as long as it has need of it, and then it should release it. For a +filesystem or device file, a search would probably be performed during the open +call, and the key released upon close. How to deal with conflicting keys due to +two different users opening the same file is left to the filesystem author to +solve. + +To access the key manager, the following header must be #included:: + + <linux/key.h> + +Specific key types should have a header file under include/keys/ that should be +used to access that type. For keys of type "user", for example, that would be:: + + <keys/user-type.h> + +Note that there are two different types of pointers to keys that may be +encountered: + + * struct key * + + This simply points to the key structure itself. Key structures will be at + least four-byte aligned. + + * key_ref_t + + This is equivalent to a ``struct key *``, but the least significant bit is set + if the caller "possesses" the key. By "possession" it is meant that the + calling processes has a searchable link to the key from one of its + keyrings. There are three functions for dealing with these:: + + key_ref_t make_key_ref(const struct key *key, bool possession); + + struct key *key_ref_to_ptr(const key_ref_t key_ref); + + bool is_key_possessed(const key_ref_t key_ref); + + The first function constructs a key reference from a key pointer and + possession information (which must be true or false). + + The second function retrieves the key pointer from a reference and the + third retrieves the possession flag. + +When accessing a key's payload contents, certain precautions must be taken to +prevent access vs modification races. See the section "Notes on accessing +payload contents" for more information. + + * To search for a key, call:: + + struct key *request_key(const struct key_type *type, + const char *description, + const char *callout_info); + + This is used to request a key or keyring with a description that matches + the description specified according to the key type's match_preparse() + method. This permits approximate matching to occur. If callout_string is + not NULL, then /sbin/request-key will be invoked in an attempt to obtain + the key from userspace. In that case, callout_string will be passed as an + argument to the program. + + Should the function fail error ENOKEY, EKEYEXPIRED or EKEYREVOKED will be + returned. + + If successful, the key will have been attached to the default keyring for + implicitly obtained request-key keys, as set by KEYCTL_SET_REQKEY_KEYRING. + + See also Documentation/security/keys/request-key.rst. + + + * To search for a key in a specific domain, call:: + + struct key *request_key_tag(const struct key_type *type, + const char *description, + struct key_tag *domain_tag, + const char *callout_info); + + This is identical to request_key(), except that a domain tag may be + specifies that causes search algorithm to only match keys matching that + tag. The domain_tag may be NULL, specifying a global domain that is + separate from any nominated domain. + + + * To search for a key, passing auxiliary data to the upcaller, call:: + + struct key *request_key_with_auxdata(const struct key_type *type, + const char *description, + struct key_tag *domain_tag, + const void *callout_info, + size_t callout_len, + void *aux); + + This is identical to request_key_tag(), except that the auxiliary data is + passed to the key_type->request_key() op if it exists, and the + callout_info is a blob of length callout_len, if given (the length may be + 0). + + + * To search for a key under RCU conditions, call:: + + struct key *request_key_rcu(const struct key_type *type, + const char *description, + struct key_tag *domain_tag); + + which is similar to request_key_tag() except that it does not check for + keys that are under construction and it will not call out to userspace to + construct a key if it can't find a match. + + + * When it is no longer required, the key should be released using:: + + void key_put(struct key *key); + + Or:: + + void key_ref_put(key_ref_t key_ref); + + These can be called from interrupt context. If CONFIG_KEYS is not set then + the argument will not be parsed. + + + * Extra references can be made to a key by calling one of the following + functions:: + + struct key *__key_get(struct key *key); + struct key *key_get(struct key *key); + + Keys so references will need to be disposed of by calling key_put() when + they've been finished with. The key pointer passed in will be returned. + + In the case of key_get(), if the pointer is NULL or CONFIG_KEYS is not set + then the key will not be dereferenced and no increment will take place. + + + * A key's serial number can be obtained by calling:: + + key_serial_t key_serial(struct key *key); + + If key is NULL or if CONFIG_KEYS is not set then 0 will be returned (in the + latter case without parsing the argument). + + + * If a keyring was found in the search, this can be further searched by:: + + key_ref_t keyring_search(key_ref_t keyring_ref, + const struct key_type *type, + const char *description, + bool recurse) + + This searches the specified keyring only (recurse == false) or keyring tree + (recurse == true) specified for a matching key. Error ENOKEY is returned + upon failure (use IS_ERR/PTR_ERR to determine). If successful, the returned + key will need to be released. + + The possession attribute from the keyring reference is used to control + access through the permissions mask and is propagated to the returned key + reference pointer if successful. + + + * A keyring can be created by:: + + struct key *keyring_alloc(const char *description, uid_t uid, gid_t gid, + const struct cred *cred, + key_perm_t perm, + struct key_restriction *restrict_link, + unsigned long flags, + struct key *dest); + + This creates a keyring with the given attributes and returns it. If dest + is not NULL, the new keyring will be linked into the keyring to which it + points. No permission checks are made upon the destination keyring. + + Error EDQUOT can be returned if the keyring would overload the quota (pass + KEY_ALLOC_NOT_IN_QUOTA in flags if the keyring shouldn't be accounted + towards the user's quota). Error ENOMEM can also be returned. + + If restrict_link is not NULL, it should point to a structure that contains + the function that will be called each time an attempt is made to link a + key into the new keyring. The structure may also contain a key pointer + and an associated key type. The function is called to check whether a key + may be added into the keyring or not. The key type is used by the garbage + collector to clean up function or data pointers in this structure if the + given key type is unregistered. Callers of key_create_or_update() within + the kernel can pass KEY_ALLOC_BYPASS_RESTRICTION to suppress the check. + An example of using this is to manage rings of cryptographic keys that are + set up when the kernel boots where userspace is also permitted to add keys + - provided they can be verified by a key the kernel already has. + + When called, the restriction function will be passed the keyring being + added to, the key type, the payload of the key being added, and data to be + used in the restriction check. Note that when a new key is being created, + this is called between payload preparsing and actual key creation. The + function should return 0 to allow the link or an error to reject it. + + A convenience function, restrict_link_reject, exists to always return + -EPERM to in this case. + + + * To check the validity of a key, this function can be called:: + + int validate_key(struct key *key); + + This checks that the key in question hasn't expired or and hasn't been + revoked. Should the key be invalid, error EKEYEXPIRED or EKEYREVOKED will + be returned. If the key is NULL or if CONFIG_KEYS is not set then 0 will be + returned (in the latter case without parsing the argument). + + + * To register a key type, the following function should be called:: + + int register_key_type(struct key_type *type); + + This will return error EEXIST if a type of the same name is already + present. + + + * To unregister a key type, call:: + + void unregister_key_type(struct key_type *type); + + +Under some circumstances, it may be desirable to deal with a bundle of keys. +The facility provides access to the keyring type for managing such a bundle:: + + struct key_type key_type_keyring; + +This can be used with a function such as request_key() to find a specific +keyring in a process's keyrings. A keyring thus found can then be searched +with keyring_search(). Note that it is not possible to use request_key() to +search a specific keyring, so using keyrings in this way is of limited utility. + + +Notes On Accessing Payload Contents +=================================== + +The simplest payload is just data stored in key->payload directly. In this +case, there's no need to indulge in RCU or locking when accessing the payload. + +More complex payload contents must be allocated and pointers to them set in the +key->payload.data[] array. One of the following ways must be selected to +access the data: + + 1) Unmodifiable key type. + + If the key type does not have a modify method, then the key's payload can + be accessed without any form of locking, provided that it's known to be + instantiated (uninstantiated keys cannot be "found"). + + 2) The key's semaphore. + + The semaphore could be used to govern access to the payload and to control + the payload pointer. It must be write-locked for modifications and would + have to be read-locked for general access. The disadvantage of doing this + is that the accessor may be required to sleep. + + 3) RCU. + + RCU must be used when the semaphore isn't already held; if the semaphore + is held then the contents can't change under you unexpectedly as the + semaphore must still be used to serialise modifications to the key. The + key management code takes care of this for the key type. + + However, this means using:: + + rcu_read_lock() ... rcu_dereference() ... rcu_read_unlock() + + to read the pointer, and:: + + rcu_dereference() ... rcu_assign_pointer() ... call_rcu() + + to set the pointer and dispose of the old contents after a grace period. + Note that only the key type should ever modify a key's payload. + + Furthermore, an RCU controlled payload must hold a struct rcu_head for the + use of call_rcu() and, if the payload is of variable size, the length of + the payload. key->datalen cannot be relied upon to be consistent with the + payload just dereferenced if the key's semaphore is not held. + + Note that key->payload.data[0] has a shadow that is marked for __rcu + usage. This is called key->payload.rcu_data0. The following accessors + wrap the RCU calls to this element: + + a) Set or change the first payload pointer:: + + rcu_assign_keypointer(struct key *key, void *data); + + b) Read the first payload pointer with the key semaphore held:: + + [const] void *dereference_key_locked([const] struct key *key); + + Note that the return value will inherit its constness from the key + parameter. Static analysis will give an error if it things the lock + isn't held. + + c) Read the first payload pointer with the RCU read lock held:: + + const void *dereference_key_rcu(const struct key *key); + + +Defining a Key Type +=================== + +A kernel service may want to define its own key type. For instance, an AFS +filesystem might want to define a Kerberos 5 ticket key type. To do this, it +author fills in a key_type struct and registers it with the system. + +Source files that implement key types should include the following header file:: + + <linux/key-type.h> + +The structure has a number of fields, some of which are mandatory: + + * ``const char *name`` + + The name of the key type. This is used to translate a key type name + supplied by userspace into a pointer to the structure. + + + * ``size_t def_datalen`` + + This is optional - it supplies the default payload data length as + contributed to the quota. If the key type's payload is always or almost + always the same size, then this is a more efficient way to do things. + + The data length (and quota) on a particular key can always be changed + during instantiation or update by calling:: + + int key_payload_reserve(struct key *key, size_t datalen); + + With the revised data length. Error EDQUOT will be returned if this is not + viable. + + + * ``int (*vet_description)(const char *description);`` + + This optional method is called to vet a key description. If the key type + doesn't approve of the key description, it may return an error, otherwise + it should return 0. + + + * ``int (*preparse)(struct key_preparsed_payload *prep);`` + + This optional method permits the key type to attempt to parse payload + before a key is created (add key) or the key semaphore is taken (update or + instantiate key). The structure pointed to by prep looks like:: + + struct key_preparsed_payload { + char *description; + union key_payload payload; + const void *data; + size_t datalen; + size_t quotalen; + time_t expiry; + }; + + Before calling the method, the caller will fill in data and datalen with + the payload blob parameters; quotalen will be filled in with the default + quota size from the key type; expiry will be set to TIME_T_MAX and the + rest will be cleared. + + If a description can be proposed from the payload contents, that should be + attached as a string to the description field. This will be used for the + key description if the caller of add_key() passes NULL or "". + + The method can attach anything it likes to payload. This is merely passed + along to the instantiate() or update() operations. If set, the expiry + time will be applied to the key if it is instantiated from this data. + + The method should return 0 if successful or a negative error code + otherwise. + + + * ``void (*free_preparse)(struct key_preparsed_payload *prep);`` + + This method is only required if the preparse() method is provided, + otherwise it is unused. It cleans up anything attached to the description + and payload fields of the key_preparsed_payload struct as filled in by the + preparse() method. It will always be called after preparse() returns + successfully, even if instantiate() or update() succeed. + + + * ``int (*instantiate)(struct key *key, struct key_preparsed_payload *prep);`` + + This method is called to attach a payload to a key during construction. + The payload attached need not bear any relation to the data passed to this + function. + + The prep->data and prep->datalen fields will define the original payload + blob. If preparse() was supplied then other fields may be filled in also. + + If the amount of data attached to the key differs from the size in + keytype->def_datalen, then key_payload_reserve() should be called. + + This method does not have to lock the key in order to attach a payload. + The fact that KEY_FLAG_INSTANTIATED is not set in key->flags prevents + anything else from gaining access to the key. + + It is safe to sleep in this method. + + generic_key_instantiate() is provided to simply copy the data from + prep->payload.data[] to key->payload.data[], with RCU-safe assignment on + the first element. It will then clear prep->payload.data[] so that the + free_preparse method doesn't release the data. + + + * ``int (*update)(struct key *key, const void *data, size_t datalen);`` + + If this type of key can be updated, then this method should be provided. + It is called to update a key's payload from the blob of data provided. + + The prep->data and prep->datalen fields will define the original payload + blob. If preparse() was supplied then other fields may be filled in also. + + key_payload_reserve() should be called if the data length might change + before any changes are actually made. Note that if this succeeds, the type + is committed to changing the key because it's already been altered, so all + memory allocation must be done first. + + The key will have its semaphore write-locked before this method is called, + but this only deters other writers; any changes to the key's payload must + be made under RCU conditions, and call_rcu() must be used to dispose of + the old payload. + + key_payload_reserve() should be called before the changes are made, but + after all allocations and other potentially failing function calls are + made. + + It is safe to sleep in this method. + + + * ``int (*match_preparse)(struct key_match_data *match_data);`` + + This method is optional. It is called when a key search is about to be + performed. It is given the following structure:: + + struct key_match_data { + bool (*cmp)(const struct key *key, + const struct key_match_data *match_data); + const void *raw_data; + void *preparsed; + unsigned lookup_type; + }; + + On entry, raw_data will be pointing to the criteria to be used in matching + a key by the caller and should not be modified. ``(*cmp)()`` will be pointing + to the default matcher function (which does an exact description match + against raw_data) and lookup_type will be set to indicate a direct lookup. + + The following lookup_type values are available: + + * KEYRING_SEARCH_LOOKUP_DIRECT - A direct lookup hashes the type and + description to narrow down the search to a small number of keys. + + * KEYRING_SEARCH_LOOKUP_ITERATE - An iterative lookup walks all the + keys in the keyring until one is matched. This must be used for any + search that's not doing a simple direct match on the key description. + + The method may set cmp to point to a function of its choice that does some + other form of match, may set lookup_type to KEYRING_SEARCH_LOOKUP_ITERATE + and may attach something to the preparsed pointer for use by ``(*cmp)()``. + ``(*cmp)()`` should return true if a key matches and false otherwise. + + If preparsed is set, it may be necessary to use the match_free() method to + clean it up. + + The method should return 0 if successful or a negative error code + otherwise. + + It is permitted to sleep in this method, but ``(*cmp)()`` may not sleep as + locks will be held over it. + + If match_preparse() is not provided, keys of this type will be matched + exactly by their description. + + + * ``void (*match_free)(struct key_match_data *match_data);`` + + This method is optional. If given, it called to clean up + match_data->preparsed after a successful call to match_preparse(). + + + * ``void (*revoke)(struct key *key);`` + + This method is optional. It is called to discard part of the payload + data upon a key being revoked. The caller will have the key semaphore + write-locked. + + It is safe to sleep in this method, though care should be taken to avoid + a deadlock against the key semaphore. + + + * ``void (*destroy)(struct key *key);`` + + This method is optional. It is called to discard the payload data on a key + when it is being destroyed. + + This method does not need to lock the key to access the payload; it can + consider the key as being inaccessible at this time. Note that the key's + type may have been changed before this function is called. + + It is not safe to sleep in this method; the caller may hold spinlocks. + + + * ``void (*describe)(const struct key *key, struct seq_file *p);`` + + This method is optional. It is called during /proc/keys reading to + summarise a key's description and payload in text form. + + This method will be called with the RCU read lock held. rcu_dereference() + should be used to read the payload pointer if the payload is to be + accessed. key->datalen cannot be trusted to stay consistent with the + contents of the payload. + + The description will not change, though the key's state may. + + It is not safe to sleep in this method; the RCU read lock is held by the + caller. + + + * ``long (*read)(const struct key *key, char __user *buffer, size_t buflen);`` + + This method is optional. It is called by KEYCTL_READ to translate the + key's payload into something a blob of data for userspace to deal with. + Ideally, the blob should be in the same format as that passed in to the + instantiate and update methods. + + If successful, the blob size that could be produced should be returned + rather than the size copied. + + This method will be called with the key's semaphore read-locked. This will + prevent the key's payload changing. It is not necessary to use RCU locking + when accessing the key's payload. It is safe to sleep in this method, such + as might happen when the userspace buffer is accessed. + + + * ``int (*request_key)(struct key_construction *cons, const char *op, void *aux);`` + + This method is optional. If provided, request_key() and friends will + invoke this function rather than upcalling to /sbin/request-key to operate + upon a key of this type. + + The aux parameter is as passed to request_key_async_with_auxdata() and + similar or is NULL otherwise. Also passed are the construction record for + the key to be operated upon and the operation type (currently only + "create"). + + This method is permitted to return before the upcall is complete, but the + following function must be called under all circumstances to complete the + instantiation process, whether or not it succeeds, whether or not there's + an error:: + + void complete_request_key(struct key_construction *cons, int error); + + The error parameter should be 0 on success, -ve on error. The + construction record is destroyed by this action and the authorisation key + will be revoked. If an error is indicated, the key under construction + will be negatively instantiated if it wasn't already instantiated. + + If this method returns an error, that error will be returned to the + caller of request_key*(). complete_request_key() must be called prior to + returning. + + The key under construction and the authorisation key can be found in the + key_construction struct pointed to by cons: + + * ``struct key *key;`` + + The key under construction. + + * ``struct key *authkey;`` + + The authorisation key. + + + * ``struct key_restriction *(*lookup_restriction)(const char *params);`` + + This optional method is used to enable userspace configuration of keyring + restrictions. The restriction parameter string (not including the key type + name) is passed in, and this method returns a pointer to a key_restriction + structure containing the relevant functions and data to evaluate each + attempted key link operation. If there is no match, -EINVAL is returned. + + + * ``asym_eds_op`` and ``asym_verify_signature``:: + + int (*asym_eds_op)(struct kernel_pkey_params *params, + const void *in, void *out); + int (*asym_verify_signature)(struct kernel_pkey_params *params, + const void *in, const void *in2); + + These methods are optional. If provided the first allows a key to be + used to encrypt, decrypt or sign a blob of data, and the second allows a + key to verify a signature. + + In all cases, the following information is provided in the params block:: + + struct kernel_pkey_params { + struct key *key; + const char *encoding; + const char *hash_algo; + char *info; + __u32 in_len; + union { + __u32 out_len; + __u32 in2_len; + }; + enum kernel_pkey_operation op : 8; + }; + + This includes the key to be used; a string indicating the encoding to use + (for instance, "pkcs1" may be used with an RSA key to indicate + RSASSA-PKCS1-v1.5 or RSAES-PKCS1-v1.5 encoding or "raw" if no encoding); + the name of the hash algorithm used to generate the data for a signature + (if appropriate); the sizes of the input and output (or second input) + buffers; and the ID of the operation to be performed. + + For a given operation ID, the input and output buffers are used as + follows:: + + Operation ID in,in_len out,out_len in2,in2_len + ======================= =============== =============== =============== + kernel_pkey_encrypt Raw data Encrypted data - + kernel_pkey_decrypt Encrypted data Raw data - + kernel_pkey_sign Raw data Signature - + kernel_pkey_verify Raw data - Signature + + asym_eds_op() deals with encryption, decryption and signature creation as + specified by params->op. Note that params->op is also set for + asym_verify_signature(). + + Encrypting and signature creation both take raw data in the input buffer + and return the encrypted result in the output buffer. Padding may have + been added if an encoding was set. In the case of signature creation, + depending on the encoding, the padding created may need to indicate the + digest algorithm - the name of which should be supplied in hash_algo. + + Decryption takes encrypted data in the input buffer and returns the raw + data in the output buffer. Padding will get checked and stripped off if + an encoding was set. + + Verification takes raw data in the input buffer and the signature in the + second input buffer and checks that the one matches the other. Padding + will be validated. Depending on the encoding, the digest algorithm used + to generate the raw data may need to be indicated in hash_algo. + + If successful, asym_eds_op() should return the number of bytes written + into the output buffer. asym_verify_signature() should return 0. + + A variety of errors may be returned, including EOPNOTSUPP if the operation + is not supported; EKEYREJECTED if verification fails; ENOPKG if the + required crypto isn't available. + + + * ``asym_query``:: + + int (*asym_query)(const struct kernel_pkey_params *params, + struct kernel_pkey_query *info); + + This method is optional. If provided it allows information about the + public or asymmetric key held in the key to be determined. + + The parameter block is as for asym_eds_op() and co. but in_len and out_len + are unused. The encoding and hash_algo fields should be used to reduce + the returned buffer/data sizes as appropriate. + + If successful, the following information is filled in:: + + struct kernel_pkey_query { + __u32 supported_ops; + __u32 key_size; + __u16 max_data_size; + __u16 max_sig_size; + __u16 max_enc_size; + __u16 max_dec_size; + }; + + The supported_ops field will contain a bitmask indicating what operations + are supported by the key, including encryption of a blob, decryption of a + blob, signing a blob and verifying the signature on a blob. The following + constants are defined for this:: + + KEYCTL_SUPPORTS_{ENCRYPT,DECRYPT,SIGN,VERIFY} + + The key_size field is the size of the key in bits. max_data_size and + max_sig_size are the maximum raw data and signature sizes for creation and + verification of a signature; max_enc_size and max_dec_size are the maximum + raw data and signature sizes for encryption and decryption. The + max_*_size fields are measured in bytes. + + If successful, 0 will be returned. If the key doesn't support this, + EOPNOTSUPP will be returned. + + +Request-Key Callback Service +============================ + +To create a new key, the kernel will attempt to execute the following command +line:: + + /sbin/request-key create <key> <uid> <gid> \ + <threadring> <processring> <sessionring> <callout_info> + +<key> is the key being constructed, and the three keyrings are the process +keyrings from the process that caused the search to be issued. These are +included for two reasons: + + 1 There may be an authentication token in one of the keyrings that is + required to obtain the key, eg: a Kerberos Ticket-Granting Ticket. + + 2 The new key should probably be cached in one of these rings. + +This program should set it UID and GID to those specified before attempting to +access any more keys. It may then look around for a user specific process to +hand the request off to (perhaps a path held in placed in another key by, for +example, the KDE desktop manager). + +The program (or whatever it calls) should finish construction of the key by +calling KEYCTL_INSTANTIATE or KEYCTL_INSTANTIATE_IOV, which also permits it to +cache the key in one of the keyrings (probably the session ring) before +returning. Alternatively, the key can be marked as negative with KEYCTL_NEGATE +or KEYCTL_REJECT; this also permits the key to be cached in one of the +keyrings. + +If it returns with the key remaining in the unconstructed state, the key will +be marked as being negative, it will be added to the session keyring, and an +error will be returned to the key requestor. + +Supplementary information may be provided from whoever or whatever invoked this +service. This will be passed as the <callout_info> parameter. If no such +information was made available, then "-" will be passed as this parameter +instead. + + +Similarly, the kernel may attempt to update an expired or a soon to expire key +by executing:: + + /sbin/request-key update <key> <uid> <gid> \ + <threadring> <processring> <sessionring> + +In this case, the program isn't required to actually attach the key to a ring; +the rings are provided for reference. + + +Garbage Collection +================== + +Dead keys (for which the type has been removed) will be automatically unlinked +from those keyrings that point to them and deleted as soon as possible by a +background garbage collector. + +Similarly, revoked and expired keys will be garbage collected, but only after a +certain amount of time has passed. This time is set as a number of seconds in:: + + /proc/sys/kernel/keys/gc_delay diff --git a/Documentation/security/keys/ecryptfs.rst b/Documentation/security/keys/ecryptfs.rst new file mode 100644 index 000000000..0e2be0a6b --- /dev/null +++ b/Documentation/security/keys/ecryptfs.rst @@ -0,0 +1,73 @@ +========================================== +Encrypted keys for the eCryptfs filesystem +========================================== + +ECryptfs is a stacked filesystem which transparently encrypts and decrypts each +file using a randomly generated File Encryption Key (FEK). + +Each FEK is in turn encrypted with a File Encryption Key Encryption Key (FEKEK) +either in kernel space or in user space with a daemon called 'ecryptfsd'. In +the former case the operation is performed directly by the kernel CryptoAPI +using a key, the FEKEK, derived from a user prompted passphrase; in the latter +the FEK is encrypted by 'ecryptfsd' with the help of external libraries in order +to support other mechanisms like public key cryptography, PKCS#11 and TPM based +operations. + +The data structure defined by eCryptfs to contain information required for the +FEK decryption is called authentication token and, currently, can be stored in a +kernel key of the 'user' type, inserted in the user's session specific keyring +by the userspace utility 'mount.ecryptfs' shipped with the package +'ecryptfs-utils'. + +The 'encrypted' key type has been extended with the introduction of the new +format 'ecryptfs' in order to be used in conjunction with the eCryptfs +filesystem. Encrypted keys of the newly introduced format store an +authentication token in its payload with a FEKEK randomly generated by the +kernel and protected by the parent master key. + +In order to avoid known-plaintext attacks, the datablob obtained through +commands 'keyctl print' or 'keyctl pipe' does not contain the overall +authentication token, which content is well known, but only the FEKEK in +encrypted form. + +The eCryptfs filesystem may really benefit from using encrypted keys in that the +required key can be securely generated by an Administrator and provided at boot +time after the unsealing of a 'trusted' key in order to perform the mount in a +controlled environment. Another advantage is that the key is not exposed to +threats of malicious software, because it is available in clear form only at +kernel level. + +Usage:: + + keyctl add encrypted name "new ecryptfs key-type:master-key-name keylen" ring + keyctl add encrypted name "load hex_blob" ring + keyctl update keyid "update key-type:master-key-name" + +Where:: + + name:= '<16 hexadecimal characters>' + key-type:= 'trusted' | 'user' + keylen:= 64 + + +Example of encrypted key usage with the eCryptfs filesystem: + +Create an encrypted key "1000100010001000" of length 64 bytes with format +'ecryptfs' and save it using a previously loaded user key "test":: + + $ keyctl add encrypted 1000100010001000 "new ecryptfs user:test 64" @u + 19184530 + + $ keyctl print 19184530 + ecryptfs user:test 64 490045d4bfe48c99f0d465fbbbb79e7500da954178e2de0697 + dd85091f5450a0511219e9f7cd70dcd498038181466f78ac8d4c19504fcc72402bfc41c2 + f253a41b7507ccaa4b2b03fff19a69d1cc0b16e71746473f023a95488b6edfd86f7fdd40 + 9d292e4bacded1258880122dd553a661 + + $ keyctl pipe 19184530 > ecryptfs.blob + +Mount an eCryptfs filesystem using the created encrypted key "1000100010001000" +into the '/secret' directory:: + + $ mount -i -t ecryptfs -oecryptfs_sig=1000100010001000,\ + ecryptfs_cipher=aes,ecryptfs_key_bytes=32 /secret /secret diff --git a/Documentation/security/keys/index.rst b/Documentation/security/keys/index.rst new file mode 100644 index 000000000..647d58f25 --- /dev/null +++ b/Documentation/security/keys/index.rst @@ -0,0 +1,11 @@ +=========== +Kernel Keys +=========== + +.. toctree:: + :maxdepth: 1 + + core + ecryptfs + request-key + trusted-encrypted diff --git a/Documentation/security/keys/request-key.rst b/Documentation/security/keys/request-key.rst new file mode 100644 index 000000000..35f2296b7 --- /dev/null +++ b/Documentation/security/keys/request-key.rst @@ -0,0 +1,207 @@ +=================== +Key Request Service +=================== + +The key request service is part of the key retention service (refer to +Documentation/security/keys/core.rst). This document explains more fully how +the requesting algorithm works. + +The process starts by either the kernel requesting a service by calling +``request_key*()``:: + + struct key *request_key(const struct key_type *type, + const char *description, + const char *callout_info); + +or:: + + struct key *request_key_tag(const struct key_type *type, + const char *description, + const struct key_tag *domain_tag, + const char *callout_info); + +or:: + + struct key *request_key_with_auxdata(const struct key_type *type, + const char *description, + const struct key_tag *domain_tag, + const char *callout_info, + size_t callout_len, + void *aux); + +or:: + + struct key *request_key_rcu(const struct key_type *type, + const char *description, + const struct key_tag *domain_tag); + +Or by userspace invoking the request_key system call:: + + key_serial_t request_key(const char *type, + const char *description, + const char *callout_info, + key_serial_t dest_keyring); + +The main difference between the access points is that the in-kernel interface +does not need to link the key to a keyring to prevent it from being immediately +destroyed. The kernel interface returns a pointer directly to the key, and +it's up to the caller to destroy the key. + +The request_key_tag() call is like the in-kernel request_key(), except that it +also takes a domain tag that allows keys to be separated by namespace and +killed off as a group. + +The request_key_with_auxdata() calls is like the request_key_tag() call, except +that they permit auxiliary data to be passed to the upcaller (the default is +NULL). This is only useful for those key types that define their own upcall +mechanism rather than using /sbin/request-key. + +The request_key_rcu() call is like the request_key_tag() call, except that it +doesn't check for keys that are under construction and doesn't attempt to +construct missing keys. + +The userspace interface links the key to a keyring associated with the process +to prevent the key from going away, and returns the serial number of the key to +the caller. + + +The following example assumes that the key types involved don't define their +own upcall mechanisms. If they do, then those should be substituted for the +forking and execution of /sbin/request-key. + + +The Process +=========== + +A request proceeds in the following manner: + + 1) Process A calls request_key() [the userspace syscall calls the kernel + interface]. + + 2) request_key() searches the process's subscribed keyrings to see if there's + a suitable key there. If there is, it returns the key. If there isn't, + and callout_info is not set, an error is returned. Otherwise the process + proceeds to the next step. + + 3) request_key() sees that A doesn't have the desired key yet, so it creates + two things: + + a) An uninstantiated key U of requested type and description. + + b) An authorisation key V that refers to key U and notes that process A + is the context in which key U should be instantiated and secured, and + from which associated key requests may be satisfied. + + 4) request_key() then forks and executes /sbin/request-key with a new session + keyring that contains a link to auth key V. + + 5) /sbin/request-key assumes the authority associated with key U. + + 6) /sbin/request-key execs an appropriate program to perform the actual + instantiation. + + 7) The program may want to access another key from A's context (say a + Kerberos TGT key). It just requests the appropriate key, and the keyring + search notes that the session keyring has auth key V in its bottom level. + + This will permit it to then search the keyrings of process A with the + UID, GID, groups and security info of process A as if it was process A, + and come up with key W. + + 8) The program then does what it must to get the data with which to + instantiate key U, using key W as a reference (perhaps it contacts a + Kerberos server using the TGT) and then instantiates key U. + + 9) Upon instantiating key U, auth key V is automatically revoked so that it + may not be used again. + + 10) The program then exits 0 and request_key() deletes key V and returns key + U to the caller. + +This also extends further. If key W (step 7 above) didn't exist, key W would +be created uninstantiated, another auth key (X) would be created (as per step +3) and another copy of /sbin/request-key spawned (as per step 4); but the +context specified by auth key X will still be process A, as it was in auth key +V. + +This is because process A's keyrings can't simply be attached to +/sbin/request-key at the appropriate places because (a) execve will discard two +of them, and (b) it requires the same UID/GID/Groups all the way through. + + +Negative Instantiation And Rejection +==================================== + +Rather than instantiating a key, it is possible for the possessor of an +authorisation key to negatively instantiate a key that's under construction. +This is a short duration placeholder that causes any attempt at re-requesting +the key while it exists to fail with error ENOKEY if negated or the specified +error if rejected. + +This is provided to prevent excessive repeated spawning of /sbin/request-key +processes for a key that will never be obtainable. + +Should the /sbin/request-key process exit anything other than 0 or die on a +signal, the key under construction will be automatically negatively +instantiated for a short amount of time. + + +The Search Algorithm +==================== + +A search of any particular keyring proceeds in the following fashion: + + 1) When the key management code searches for a key (keyring_search_rcu) it + firstly calls key_permission(SEARCH) on the keyring it's starting with, + if this denies permission, it doesn't search further. + + 2) It considers all the non-keyring keys within that keyring and, if any key + matches the criteria specified, calls key_permission(SEARCH) on it to see + if the key is allowed to be found. If it is, that key is returned; if + not, the search continues, and the error code is retained if of higher + priority than the one currently set. + + 3) It then considers all the keyring-type keys in the keyring it's currently + searching. It calls key_permission(SEARCH) on each keyring, and if this + grants permission, it recurses, executing steps (2) and (3) on that + keyring. + +The process stops immediately a valid key is found with permission granted to +use it. Any error from a previous match attempt is discarded and the key is +returned. + +When request_key() is invoked, if CONFIG_KEYS_REQUEST_CACHE=y, a per-task +one-key cache is first checked for a match. + +When search_process_keyrings() is invoked, it performs the following searches +until one succeeds: + + 1) If extant, the process's thread keyring is searched. + + 2) If extant, the process's process keyring is searched. + + 3) The process's session keyring is searched. + + 4) If the process has assumed the authority associated with a request_key() + authorisation key then: + + a) If extant, the calling process's thread keyring is searched. + + b) If extant, the calling process's process keyring is searched. + + c) The calling process's session keyring is searched. + +The moment one succeeds, all pending errors are discarded and the found key is +returned. If CONFIG_KEYS_REQUEST_CACHE=y, then that key is placed in the +per-task cache, displacing the previous key. The cache is cleared on exit or +just prior to resumption of userspace. + +Only if all these fail does the whole thing fail with the highest priority +error. Note that several errors may have come from LSM. + +The error priority is:: + + EKEYREVOKED > EKEYEXPIRED > ENOKEY + +EACCES/EPERM are only returned on a direct search of a specific keyring where +the basal keyring does not grant Search permission. diff --git a/Documentation/security/keys/trusted-encrypted.rst b/Documentation/security/keys/trusted-encrypted.rst new file mode 100644 index 000000000..9bc9db8ec --- /dev/null +++ b/Documentation/security/keys/trusted-encrypted.rst @@ -0,0 +1,428 @@ +========================== +Trusted and Encrypted Keys +========================== + +Trusted and Encrypted Keys are two new key types added to the existing kernel +key ring service. Both of these new types are variable length symmetric keys, +and in both cases all keys are created in the kernel, and user space sees, +stores, and loads only encrypted blobs. Trusted Keys require the availability +of a Trust Source for greater security, while Encrypted Keys can be used on any +system. All user level blobs, are displayed and loaded in hex ASCII for +convenience, and are integrity verified. + + +Trust Source +============ + +A trust source provides the source of security for Trusted Keys. This +section lists currently supported trust sources, along with their security +considerations. Whether or not a trust source is sufficiently safe depends +on the strength and correctness of its implementation, as well as the threat +environment for a specific use case. Since the kernel doesn't know what the +environment is, and there is no metric of trust, it is dependent on the +consumer of the Trusted Keys to determine if the trust source is sufficiently +safe. + + * Root of trust for storage + + (1) TPM (Trusted Platform Module: hardware device) + + Rooted to Storage Root Key (SRK) which never leaves the TPM that + provides crypto operation to establish root of trust for storage. + + (2) TEE (Trusted Execution Environment: OP-TEE based on Arm TrustZone) + + Rooted to Hardware Unique Key (HUK) which is generally burnt in on-chip + fuses and is accessible to TEE only. + + (3) CAAM (Cryptographic Acceleration and Assurance Module: IP on NXP SoCs) + + When High Assurance Boot (HAB) is enabled and the CAAM is in secure + mode, trust is rooted to the OTPMK, a never-disclosed 256-bit key + randomly generated and fused into each SoC at manufacturing time. + Otherwise, a common fixed test key is used instead. + + * Execution isolation + + (1) TPM + + Fixed set of operations running in isolated execution environment. + + (2) TEE + + Customizable set of operations running in isolated execution + environment verified via Secure/Trusted boot process. + + (3) CAAM + + Fixed set of operations running in isolated execution environment. + + * Optional binding to platform integrity state + + (1) TPM + + Keys can be optionally sealed to specified PCR (integrity measurement) + values, and only unsealed by the TPM, if PCRs and blob integrity + verifications match. A loaded Trusted Key can be updated with new + (future) PCR values, so keys are easily migrated to new PCR values, + such as when the kernel and initramfs are updated. The same key can + have many saved blobs under different PCR values, so multiple boots are + easily supported. + + (2) TEE + + Relies on Secure/Trusted boot process for platform integrity. It can + be extended with TEE based measured boot process. + + (3) CAAM + + Relies on the High Assurance Boot (HAB) mechanism of NXP SoCs + for platform integrity. + + * Interfaces and APIs + + (1) TPM + + TPMs have well-documented, standardized interfaces and APIs. + + (2) TEE + + TEEs have well-documented, standardized client interface and APIs. For + more details refer to ``Documentation/staging/tee.rst``. + + (3) CAAM + + Interface is specific to silicon vendor. + + * Threat model + + The strength and appropriateness of a particular trust source for a given + purpose must be assessed when using them to protect security-relevant data. + + +Key Generation +============== + +Trusted Keys +------------ + +New keys are created from random numbers. They are encrypted/decrypted using +a child key in the storage key hierarchy. Encryption and decryption of the +child key must be protected by a strong access control policy within the +trust source. The random number generator in use differs according to the +selected trust source: + + * TPM: hardware device based RNG + + Keys are generated within the TPM. Strength of random numbers may vary + from one device manufacturer to another. + + * TEE: OP-TEE based on Arm TrustZone based RNG + + RNG is customizable as per platform needs. It can either be direct output + from platform specific hardware RNG or a software based Fortuna CSPRNG + which can be seeded via multiple entropy sources. + + * CAAM: Kernel RNG + + The normal kernel random number generator is used. To seed it from the + CAAM HWRNG, enable CRYPTO_DEV_FSL_CAAM_RNG_API and ensure the device + is probed. + +Users may override this by specifying ``trusted.rng=kernel`` on the kernel +command-line to override the used RNG with the kernel's random number pool. + +Encrypted Keys +-------------- + +Encrypted keys do not depend on a trust source, and are faster, as they use AES +for encryption/decryption. New keys are created either from kernel-generated +random numbers or user-provided decrypted data, and are encrypted/decrypted +using a specified ‘master’ key. The ‘master’ key can either be a trusted-key or +user-key type. The main disadvantage of encrypted keys is that if they are not +rooted in a trusted key, they are only as secure as the user key encrypting +them. The master user key should therefore be loaded in as secure a way as +possible, preferably early in boot. + + +Usage +===== + +Trusted Keys usage: TPM +----------------------- + +TPM 1.2: By default, trusted keys are sealed under the SRK, which has the +default authorization value (20 bytes of 0s). This can be set at takeownership +time with the TrouSerS utility: "tpm_takeownership -u -z". + +TPM 2.0: The user must first create a storage key and make it persistent, so the +key is available after reboot. This can be done using the following commands. + +With the IBM TSS 2 stack:: + + #> tsscreateprimary -hi o -st + Handle 80000000 + #> tssevictcontrol -hi o -ho 80000000 -hp 81000001 + +Or with the Intel TSS 2 stack:: + + #> tpm2_createprimary --hierarchy o -G rsa2048 -c key.ctxt + [...] + #> tpm2_evictcontrol -c key.ctxt 0x81000001 + persistentHandle: 0x81000001 + +Usage:: + + keyctl add trusted name "new keylen [options]" ring + keyctl add trusted name "load hex_blob [pcrlock=pcrnum]" ring + keyctl update key "update [options]" + keyctl print keyid + + options: + keyhandle= ascii hex value of sealing key + TPM 1.2: default 0x40000000 (SRK) + TPM 2.0: no default; must be passed every time + keyauth= ascii hex auth for sealing key default 0x00...i + (40 ascii zeros) + blobauth= ascii hex auth for sealed data default 0x00... + (40 ascii zeros) + pcrinfo= ascii hex of PCR_INFO or PCR_INFO_LONG (no default) + pcrlock= pcr number to be extended to "lock" blob + migratable= 0|1 indicating permission to reseal to new PCR values, + default 1 (resealing allowed) + hash= hash algorithm name as a string. For TPM 1.x the only + allowed value is sha1. For TPM 2.x the allowed values + are sha1, sha256, sha384, sha512 and sm3-256. + policydigest= digest for the authorization policy. must be calculated + with the same hash algorithm as specified by the 'hash=' + option. + policyhandle= handle to an authorization policy session that defines the + same policy and with the same hash algorithm as was used to + seal the key. + +"keyctl print" returns an ascii hex copy of the sealed key, which is in standard +TPM_STORED_DATA format. The key length for new keys are always in bytes. +Trusted Keys can be 32 - 128 bytes (256 - 1024 bits), the upper limit is to fit +within the 2048 bit SRK (RSA) keylength, with all necessary structure/padding. + +Trusted Keys usage: TEE +----------------------- + +Usage:: + + keyctl add trusted name "new keylen" ring + keyctl add trusted name "load hex_blob" ring + keyctl print keyid + +"keyctl print" returns an ASCII hex copy of the sealed key, which is in format +specific to TEE device implementation. The key length for new keys is always +in bytes. Trusted Keys can be 32 - 128 bytes (256 - 1024 bits). + +Trusted Keys usage: CAAM +------------------------ + +Usage:: + + keyctl add trusted name "new keylen" ring + keyctl add trusted name "load hex_blob" ring + keyctl print keyid + +"keyctl print" returns an ASCII hex copy of the sealed key, which is in a +CAAM-specific format. The key length for new keys is always in bytes. +Trusted Keys can be 32 - 128 bytes (256 - 1024 bits). + +Encrypted Keys usage +-------------------- + +The decrypted portion of encrypted keys can contain either a simple symmetric +key or a more complex structure. The format of the more complex structure is +application specific, which is identified by 'format'. + +Usage:: + + keyctl add encrypted name "new [format] key-type:master-key-name keylen" + ring + keyctl add encrypted name "new [format] key-type:master-key-name keylen + decrypted-data" ring + keyctl add encrypted name "load hex_blob" ring + keyctl update keyid "update key-type:master-key-name" + +Where:: + + format:= 'default | ecryptfs | enc32' + key-type:= 'trusted' | 'user' + +Examples of trusted and encrypted key usage +------------------------------------------- + +Create and save a trusted key named "kmk" of length 32 bytes. + +Note: When using a TPM 2.0 with a persistent key with handle 0x81000001, +append 'keyhandle=0x81000001' to statements between quotes, such as +"new 32 keyhandle=0x81000001". + +:: + + $ keyctl add trusted kmk "new 32" @u + 440502848 + + $ keyctl show + Session Keyring + -3 --alswrv 500 500 keyring: _ses + 97833714 --alswrv 500 -1 \_ keyring: _uid.500 + 440502848 --alswrv 500 500 \_ trusted: kmk + + $ keyctl print 440502848 + 0101000000000000000001005d01b7e3f4a6be5709930f3b70a743cbb42e0cc95e18e915 + 3f60da455bbf1144ad12e4f92b452f966929f6105fd29ca28e4d4d5a031d068478bacb0b + 27351119f822911b0a11ba3d3498ba6a32e50dac7f32894dd890eb9ad578e4e292c83722 + a52e56a097e6a68b3f56f7a52ece0cdccba1eb62cad7d817f6dc58898b3ac15f36026fec + d568bd4a706cb60bb37be6d8f1240661199d640b66fb0fe3b079f97f450b9ef9c22c6d5d + dd379f0facd1cd020281dfa3c70ba21a3fa6fc2471dc6d13ecf8298b946f65345faa5ef0 + f1f8fff03ad0acb083725535636addb08d73dedb9832da198081e5deae84bfaf0409c22b + e4a8aea2b607ec96931e6f4d4fe563ba + + $ keyctl pipe 440502848 > kmk.blob + +Load a trusted key from the saved blob:: + + $ keyctl add trusted kmk "load `cat kmk.blob`" @u + 268728824 + + $ keyctl print 268728824 + 0101000000000000000001005d01b7e3f4a6be5709930f3b70a743cbb42e0cc95e18e915 + 3f60da455bbf1144ad12e4f92b452f966929f6105fd29ca28e4d4d5a031d068478bacb0b + 27351119f822911b0a11ba3d3498ba6a32e50dac7f32894dd890eb9ad578e4e292c83722 + a52e56a097e6a68b3f56f7a52ece0cdccba1eb62cad7d817f6dc58898b3ac15f36026fec + d568bd4a706cb60bb37be6d8f1240661199d640b66fb0fe3b079f97f450b9ef9c22c6d5d + dd379f0facd1cd020281dfa3c70ba21a3fa6fc2471dc6d13ecf8298b946f65345faa5ef0 + f1f8fff03ad0acb083725535636addb08d73dedb9832da198081e5deae84bfaf0409c22b + e4a8aea2b607ec96931e6f4d4fe563ba + +Reseal (TPM specific) a trusted key under new PCR values:: + + $ keyctl update 268728824 "update pcrinfo=`cat pcr.blob`" + $ keyctl print 268728824 + 010100000000002c0002800093c35a09b70fff26e7a98ae786c641e678ec6ffb6b46d805 + 77c8a6377aed9d3219c6dfec4b23ffe3000001005d37d472ac8a44023fbb3d18583a4f73 + d3a076c0858f6f1dcaa39ea0f119911ff03f5406df4f7f27f41da8d7194f45c9f4e00f2e + df449f266253aa3f52e55c53de147773e00f0f9aca86c64d94c95382265968c354c5eab4 + 9638c5ae99c89de1e0997242edfb0b501744e11ff9762dfd951cffd93227cc513384e7e6 + e782c29435c7ec2edafaa2f4c1fe6e7a781b59549ff5296371b42133777dcc5b8b971610 + 94bc67ede19e43ddb9dc2baacad374a36feaf0314d700af0a65c164b7082401740e489c9 + 7ef6a24defe4846104209bf0c3eced7fa1a672ed5b125fc9d8cd88b476a658a4434644ef + df8ae9a178e9f83ba9f08d10fa47e4226b98b0702f06b3b8 + + +The initial consumer of trusted keys is EVM, which at boot time needs a high +quality symmetric key for HMAC protection of file metadata. The use of a +trusted key provides strong guarantees that the EVM key has not been +compromised by a user level problem, and when sealed to a platform integrity +state, protects against boot and offline attacks. Create and save an +encrypted key "evm" using the above trusted key "kmk": + +option 1: omitting 'format':: + + $ keyctl add encrypted evm "new trusted:kmk 32" @u + 159771175 + +option 2: explicitly defining 'format' as 'default':: + + $ keyctl add encrypted evm "new default trusted:kmk 32" @u + 159771175 + + $ keyctl print 159771175 + default trusted:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b3 + 82dbbc55be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e0 + 24717c64 5972dcb82ab2dde83376d82b2e3c09ffc + + $ keyctl pipe 159771175 > evm.blob + +Load an encrypted key "evm" from saved blob:: + + $ keyctl add encrypted evm "load `cat evm.blob`" @u + 831684262 + + $ keyctl print 831684262 + default trusted:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b3 + 82dbbc55be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e0 + 24717c64 5972dcb82ab2dde83376d82b2e3c09ffc + +Instantiate an encrypted key "evm" using user-provided decrypted data:: + + $ evmkey=$(dd if=/dev/urandom bs=1 count=32 | xxd -c32 -p) + $ keyctl add encrypted evm "new default user:kmk 32 $evmkey" @u + 794890253 + + $ keyctl print 794890253 + default user:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b382d + bbc55be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e0247 + 17c64 5972dcb82ab2dde83376d82b2e3c09ffc + +Other uses for trusted and encrypted keys, such as for disk and file encryption +are anticipated. In particular the new format 'ecryptfs' has been defined +in order to use encrypted keys to mount an eCryptfs filesystem. More details +about the usage can be found in the file +``Documentation/security/keys/ecryptfs.rst``. + +Another new format 'enc32' has been defined in order to support encrypted keys +with payload size of 32 bytes. This will initially be used for nvdimm security +but may expand to other usages that require 32 bytes payload. + + +TPM 2.0 ASN.1 Key Format +------------------------ + +The TPM 2.0 ASN.1 key format is designed to be easily recognisable, +even in binary form (fixing a problem we had with the TPM 1.2 ASN.1 +format) and to be extensible for additions like importable keys and +policy:: + + TPMKey ::= SEQUENCE { + type OBJECT IDENTIFIER + emptyAuth [0] EXPLICIT BOOLEAN OPTIONAL + parent INTEGER + pubkey OCTET STRING + privkey OCTET STRING + } + +type is what distinguishes the key even in binary form since the OID +is provided by the TCG to be unique and thus forms a recognizable +binary pattern at offset 3 in the key. The OIDs currently made +available are:: + + 2.23.133.10.1.3 TPM Loadable key. This is an asymmetric key (Usually + RSA2048 or Elliptic Curve) which can be imported by a + TPM2_Load() operation. + + 2.23.133.10.1.4 TPM Importable Key. This is an asymmetric key (Usually + RSA2048 or Elliptic Curve) which can be imported by a + TPM2_Import() operation. + + 2.23.133.10.1.5 TPM Sealed Data. This is a set of data (up to 128 + bytes) which is sealed by the TPM. It usually + represents a symmetric key and must be unsealed before + use. + +The trusted key code only uses the TPM Sealed Data OID. + +emptyAuth is true if the key has well known authorization "". If it +is false or not present, the key requires an explicit authorization +phrase. This is used by most user space consumers to decide whether +to prompt for a password. + +parent represents the parent key handle, either in the 0x81 MSO space, +like 0x81000001 for the RSA primary storage key. Userspace programmes +also support specifying the primary handle in the 0x40 MSO space. If +this happens the Elliptic Curve variant of the primary key using the +TCG defined template will be generated on the fly into a volatile +object and used as the parent. The current kernel code only supports +the 0x81 MSO form. + +pubkey is the binary representation of TPM2B_PRIVATE excluding the +initial TPM2B header, which can be reconstructed from the ASN.1 octet +string length. + +privkey is the binary representation of TPM2B_PUBLIC excluding the +initial TPM2B header which can be reconstructed from the ASN.1 octed +string length. |