diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /Documentation/translations/zh_CN/scheduler/sched-stats.rst | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/translations/zh_CN/scheduler/sched-stats.rst')
-rw-r--r-- | Documentation/translations/zh_CN/scheduler/sched-stats.rst | 156 |
1 files changed, 156 insertions, 0 deletions
diff --git a/Documentation/translations/zh_CN/scheduler/sched-stats.rst b/Documentation/translations/zh_CN/scheduler/sched-stats.rst new file mode 100644 index 000000000..c5e0be663 --- /dev/null +++ b/Documentation/translations/zh_CN/scheduler/sched-stats.rst @@ -0,0 +1,156 @@ +.. SPDX-License-Identifier: GPL-2.0 +.. include:: ../disclaimer-zh_CN.rst + +:Original: Documentation/scheduler/sched-stats.rst + +:翻译: + + 唐艺舟 Tang Yizhou <tangyeechou@gmail.com> + +============== +调度器统计数据 +============== + +第15版schedstats去掉了sched_yield的一些计数器:yld_exp_empty,yld_act_empty +和yld_both_empty。在其它方面和第14版完全相同。 + +第14版schedstats包括对sched_domains(译注:调度域)的支持,该特性进入内核 +主线2.6.20,不过这一版schedstats与2.6.13-2.6.19内核的版本12的统计数据是完全 +相同的(内核未发布第13版)。有些计数器按每个运行队列统计是更有意义的,其它则 +按每个调度域统计是更有意义的。注意,调度域(以及它们的附属信息)仅在开启 +CONFIG_SMP的机器上是相关的和可用的。 + +在第14版schedstat中,每个被列出的CPU至少会有一级域统计数据,且很可能有一个 +以上的域。在这个实现中,域没有特别的名字,但是编号最高的域通常在机器上所有的 +CPU上仲裁平衡,而domain0是最紧密聚焦的域,有时仅在一对CPU之间进行平衡。此时, +没有任何体系结构需要3层以上的域。域统计数据中的第一个字段是一个位图,表明哪些 +CPU受该域的影响。 + +这些字段是计数器,而且只能递增。使用这些字段的程序将需要从基线观测开始,然后在 +后续每一个观测中计算出计数器的变化。一个能以这种方式处理其中很多字段的perl脚本 +可见 + + http://eaglet.pdxhosts.com/rick/linux/schedstat/ + +请注意,任何这样的脚本都必须是特定于版本的,改变版本的主要原因是输出格式的变化。 +对于那些希望编写自己的脚本的人,可以参考这里描述的各个字段。 + +CPU统计数据 +----------- +cpu<N> 1 2 3 4 5 6 7 8 9 + +第一个字段是sched_yield()的统计数据: + + 1) sched_yield()被调用了#次 + +接下来的三个是schedule()的统计数据: + + 2) 这个字段是一个过时的数组过期计数,在O(1)调度器中使用。为了ABI兼容性, + 我们保留了它,但它总是被设置为0。 + 3) schedule()被调用了#次 + 4) 调用schedule()导致处理器变为空闲了#次 + +接下来的两个是try_to_wake_up()的统计数据: + + 5) try_to_wake_up()被调用了#次 + 6) 调用try_to_wake_up()导致本地CPU被唤醒了#次 + +接下来的三个统计数据描述了调度延迟: + + 7) 本处理器运行任务的总时间,单位是纳秒 + 8) 本处理器任务等待运行的时间,单位是纳秒 + 9) 本CPU运行了#个时间片 + +域统计数据 +---------- + +对于每个被描述的CPU,和它相关的每一个调度域均会产生下面一行数据(注意,如果 +CONFIG_SMP没有被定义,那么*没有*调度域被使用,这些行不会出现在输出中)。 + +domain<N> <cpumask> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 + +第一个字段是一个位掩码,表明该域在操作哪些CPU。 + +接下来的24个字段是load_balance()函数的各个统计数据,按空闲类型分组(空闲, +繁忙,新空闲): + + + 1) 当CPU空闲时,load_balance()在这个调度域中被调用了#次 + 2) 当CPU空闲时,load_balance()在这个调度域中被调用,但是发现负载无需 + 均衡#次 + 3) 当CPU空闲时,load_balance()在这个调度域中被调用,试图迁移1个或更多 + 任务且失败了#次 + 4) 当CPU空闲时,load_balance()在这个调度域中被调用,发现不均衡(如果有) + #次 + 5) 当CPU空闲时,pull_task()在这个调度域中被调用#次 + 6) 当CPU空闲时,尽管目标任务是热缓存状态,pull_task()依然被调用#次 + 7) 当CPU空闲时,load_balance()在这个调度域中被调用,未能找到更繁忙的 + 队列#次 + 8) 当CPU空闲时,在调度域中找到了更繁忙的队列,但未找到更繁忙的调度组 + #次 + 9) 当CPU繁忙时,load_balance()在这个调度域中被调用了#次 + 10) 当CPU繁忙时,load_balance()在这个调度域中被调用,但是发现负载无需 + 均衡#次 + 11) 当CPU繁忙时,load_balance()在这个调度域中被调用,试图迁移1个或更多 + 任务且失败了#次 + 12) 当CPU繁忙时,load_balance()在这个调度域中被调用,发现不均衡(如果有) + #次 + 13) 当CPU繁忙时,pull_task()在这个调度域中被调用#次 + 14) 当CPU繁忙时,尽管目标任务是热缓存状态,pull_task()依然被调用#次 + 15) 当CPU繁忙时,load_balance()在这个调度域中被调用,未能找到更繁忙的 + 队列#次 + 16) 当CPU繁忙时,在调度域中找到了更繁忙的队列,但未找到更繁忙的调度组 + #次 + 17) 当CPU新空闲时,load_balance()在这个调度域中被调用了#次 + 18) 当CPU新空闲时,load_balance()在这个调度域中被调用,但是发现负载无需 + 均衡#次 + 19) 当CPU新空闲时,load_balance()在这个调度域中被调用,试图迁移1个或更多 + 任务且失败了#次 + 20) 当CPU新空闲时,load_balance()在这个调度域中被调用,发现不均衡(如果有) + #次 + 21) 当CPU新空闲时,pull_task()在这个调度域中被调用#次 + 22) 当CPU新空闲时,尽管目标任务是热缓存状态,pull_task()依然被调用#次 + 23) 当CPU新空闲时,load_balance()在这个调度域中被调用,未能找到更繁忙的 + 队列#次 + 24) 当CPU新空闲时,在调度域中找到了更繁忙的队列,但未找到更繁忙的调度组 + #次 + +接下来的3个字段是active_load_balance()函数的各个统计数据: + + 25) active_load_balance()被调用了#次 + 26) active_load_balance()被调用,试图迁移1个或更多任务且失败了#次 + 27) active_load_balance()被调用,成功迁移了#次任务 + +接下来的3个字段是sched_balance_exec()函数的各个统计数据: + + 28) sbe_cnt不再被使用 + 29) sbe_balanced不再被使用 + 30) sbe_pushed不再被使用 + +接下来的3个字段是sched_balance_fork()函数的各个统计数据: + + 31) sbf_cnt不再被使用 + 32) sbf_balanced不再被使用 + 33) sbf_pushed不再被使用 + +接下来的3个字段是try_to_wake_up()函数的各个统计数据: + + 34) 在这个调度域中调用try_to_wake_up()唤醒任务时,任务在调度域中一个 + 和上次运行不同的新CPU上运行了#次 + 35) 在这个调度域中调用try_to_wake_up()唤醒任务时,任务被迁移到发生唤醒 + 的CPU次数为#,因为该任务在原CPU是冷缓存状态 + 36) 在这个调度域中调用try_to_wake_up()唤醒任务时,引发被动负载均衡#次 + +/proc/<pid>/schedstat +--------------------- +schedstats还添加了一个新的/proc/<pid>/schedstat文件,来提供一些进程级的 +相同信息。这个文件中,有三个字段与该进程相关: + + 1) 在CPU上运行花费的时间(单位是纳秒) + 2) 在运行队列上等待的时间(单位是纳秒) + 3) 在CPU上运行了#个时间片 + +可以很容易地编写一个程序,利用这些额外的字段来报告一个特定的进程或一组进程在 +调度器策略下的表现如何。这样的程序的一个简单版本可在下面的链接找到 + + http://eaglet.pdxhosts.com/rick/linux/schedstat/v12/latency.c |