summaryrefslogtreecommitdiffstats
path: root/Documentation/x86/buslock.rst
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /Documentation/x86/buslock.rst
parentInitial commit. (diff)
downloadlinux-upstream/6.1.76.tar.xz
linux-upstream/6.1.76.zip
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/x86/buslock.rst')
-rw-r--r--Documentation/x86/buslock.rst126
1 files changed, 126 insertions, 0 deletions
diff --git a/Documentation/x86/buslock.rst b/Documentation/x86/buslock.rst
new file mode 100644
index 000000000..7c051e714
--- /dev/null
+++ b/Documentation/x86/buslock.rst
@@ -0,0 +1,126 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+.. include:: <isonum.txt>
+
+===============================
+Bus lock detection and handling
+===============================
+
+:Copyright: |copy| 2021 Intel Corporation
+:Authors: - Fenghua Yu <fenghua.yu@intel.com>
+ - Tony Luck <tony.luck@intel.com>
+
+Problem
+=======
+
+A split lock is any atomic operation whose operand crosses two cache lines.
+Since the operand spans two cache lines and the operation must be atomic,
+the system locks the bus while the CPU accesses the two cache lines.
+
+A bus lock is acquired through either split locked access to writeback (WB)
+memory or any locked access to non-WB memory. This is typically thousands of
+cycles slower than an atomic operation within a cache line. It also disrupts
+performance on other cores and brings the whole system to its knees.
+
+Detection
+=========
+
+Intel processors may support either or both of the following hardware
+mechanisms to detect split locks and bus locks.
+
+#AC exception for split lock detection
+--------------------------------------
+
+Beginning with the Tremont Atom CPU split lock operations may raise an
+Alignment Check (#AC) exception when a split lock operation is attemped.
+
+#DB exception for bus lock detection
+------------------------------------
+
+Some CPUs have the ability to notify the kernel by an #DB trap after a user
+instruction acquires a bus lock and is executed. This allows the kernel to
+terminate the application or to enforce throttling.
+
+Software handling
+=================
+
+The kernel #AC and #DB handlers handle bus lock based on the kernel
+parameter "split_lock_detect". Here is a summary of different options:
+
++------------------+----------------------------+-----------------------+
+|split_lock_detect=|#AC for split lock |#DB for bus lock |
++------------------+----------------------------+-----------------------+
+|off |Do nothing |Do nothing |
++------------------+----------------------------+-----------------------+
+|warn |Kernel OOPs |Warn once per task and |
+|(default) |Warn once per task and |and continues to run. |
+| |disable future checking | |
+| |When both features are | |
+| |supported, warn in #AC | |
++------------------+----------------------------+-----------------------+
+|fatal |Kernel OOPs |Send SIGBUS to user. |
+| |Send SIGBUS to user | |
+| |When both features are | |
+| |supported, fatal in #AC | |
++------------------+----------------------------+-----------------------+
+|ratelimit:N |Do nothing |Limit bus lock rate to |
+|(0 < N <= 1000) | |N bus locks per second |
+| | |system wide and warn on|
+| | |bus locks. |
++------------------+----------------------------+-----------------------+
+
+Usages
+======
+
+Detecting and handling bus lock may find usages in various areas:
+
+It is critical for real time system designers who build consolidated real
+time systems. These systems run hard real time code on some cores and run
+"untrusted" user processes on other cores. The hard real time cannot afford
+to have any bus lock from the untrusted processes to hurt real time
+performance. To date the designers have been unable to deploy these
+solutions as they have no way to prevent the "untrusted" user code from
+generating split lock and bus lock to block the hard real time code to
+access memory during bus locking.
+
+It's also useful for general computing to prevent guests or user
+applications from slowing down the overall system by executing instructions
+with bus lock.
+
+
+Guidance
+========
+off
+---
+
+Disable checking for split lock and bus lock. This option can be useful if
+there are legacy applications that trigger these events at a low rate so
+that mitigation is not needed.
+
+warn
+----
+
+A warning is emitted when a bus lock is detected which allows to identify
+the offending application. This is the default behavior.
+
+fatal
+-----
+
+In this case, the bus lock is not tolerated and the process is killed.
+
+ratelimit
+---------
+
+A system wide bus lock rate limit N is specified where 0 < N <= 1000. This
+allows a bus lock rate up to N bus locks per second. When the bus lock rate
+is exceeded then any task which is caught via the buslock #DB exception is
+throttled by enforced sleeps until the rate goes under the limit again.
+
+This is an effective mitigation in cases where a minimal impact can be
+tolerated, but an eventual Denial of Service attack has to be prevented. It
+allows to identify the offending processes and analyze whether they are
+malicious or just badly written.
+
+Selecting a rate limit of 1000 allows the bus to be locked for up to about
+seven million cycles each second (assuming 7000 cycles for each bus
+lock). On a 2 GHz processor that would be about 0.35% system slowdown.