summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/kvm
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /arch/powerpc/kvm
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--arch/powerpc/kvm/Kconfig254
-rw-r--r--arch/powerpc/kvm/Makefile139
-rw-r--r--arch/powerpc/kvm/book3s.c1101
-rw-r--r--arch/powerpc/kvm/book3s.h38
-rw-r--r--arch/powerpc/kvm/book3s_32_mmu.c415
-rw-r--r--arch/powerpc/kvm/book3s_32_mmu_host.c395
-rw-r--r--arch/powerpc/kvm/book3s_32_sr.S148
-rw-r--r--arch/powerpc/kvm/book3s_64_entry.S429
-rw-r--r--arch/powerpc/kvm/book3s_64_mmu.c670
-rw-r--r--arch/powerpc/kvm/book3s_64_mmu_host.c407
-rw-r--r--arch/powerpc/kvm/book3s_64_mmu_hv.c2136
-rw-r--r--arch/powerpc/kvm/book3s_64_mmu_radix.c1486
-rw-r--r--arch/powerpc/kvm/book3s_64_slb.S145
-rw-r--r--arch/powerpc/kvm/book3s_64_vio.c798
-rw-r--r--arch/powerpc/kvm/book3s_emulate.c1072
-rw-r--r--arch/powerpc/kvm/book3s_exports.c19
-rw-r--r--arch/powerpc/kvm/book3s_hv.c6326
-rw-r--r--arch/powerpc/kvm/book3s_hv.h52
-rw-r--r--arch/powerpc/kvm/book3s_hv_builtin.c624
-rw-r--r--arch/powerpc/kvm/book3s_hv_hmi.c50
-rw-r--r--arch/powerpc/kvm/book3s_hv_interrupts.S156
-rw-r--r--arch/powerpc/kvm/book3s_hv_nested.c1675
-rw-r--r--arch/powerpc/kvm/book3s_hv_p9_entry.c930
-rw-r--r--arch/powerpc/kvm/book3s_hv_p9_perf.c219
-rw-r--r--arch/powerpc/kvm/book3s_hv_ras.c377
-rw-r--r--arch/powerpc/kvm/book3s_hv_rm_mmu.c1300
-rw-r--r--arch/powerpc/kvm/book3s_hv_rm_xics.c924
-rw-r--r--arch/powerpc/kvm/book3s_hv_rmhandlers.S3015
-rw-r--r--arch/powerpc/kvm/book3s_hv_tm.c248
-rw-r--r--arch/powerpc/kvm/book3s_hv_tm_builtin.c119
-rw-r--r--arch/powerpc/kvm/book3s_hv_uvmem.c1219
-rw-r--r--arch/powerpc/kvm/book3s_interrupts.S239
-rw-r--r--arch/powerpc/kvm/book3s_mmu_hpte.c386
-rw-r--r--arch/powerpc/kvm/book3s_paired_singles.c1261
-rw-r--r--arch/powerpc/kvm/book3s_pr.c2121
-rw-r--r--arch/powerpc/kvm/book3s_pr_papr.c496
-rw-r--r--arch/powerpc/kvm/book3s_rmhandlers.S162
-rw-r--r--arch/powerpc/kvm/book3s_rtas.c307
-rw-r--r--arch/powerpc/kvm/book3s_segment.S412
-rw-r--r--arch/powerpc/kvm/book3s_xics.c1507
-rw-r--r--arch/powerpc/kvm/book3s_xics.h153
-rw-r--r--arch/powerpc/kvm/book3s_xive.c2984
-rw-r--r--arch/powerpc/kvm/book3s_xive.h314
-rw-r--r--arch/powerpc/kvm/book3s_xive_native.c1285
-rw-r--r--arch/powerpc/kvm/booke.c2232
-rw-r--r--arch/powerpc/kvm/booke.h112
-rw-r--r--arch/powerpc/kvm/booke_emulate.c511
-rw-r--r--arch/powerpc/kvm/booke_interrupts.S535
-rw-r--r--arch/powerpc/kvm/bookehv_interrupts.S682
-rw-r--r--arch/powerpc/kvm/e500.c553
-rw-r--r--arch/powerpc/kvm/e500.h339
-rw-r--r--arch/powerpc/kvm/e500_emulate.c452
-rw-r--r--arch/powerpc/kvm/e500_mmu.c956
-rw-r--r--arch/powerpc/kvm/e500_mmu_host.c803
-rw-r--r--arch/powerpc/kvm/e500_mmu_host.h15
-rw-r--r--arch/powerpc/kvm/e500mc.c422
-rw-r--r--arch/powerpc/kvm/emulate.c307
-rw-r--r--arch/powerpc/kvm/emulate_loadstore.c366
-rw-r--r--arch/powerpc/kvm/fpu.S278
-rw-r--r--arch/powerpc/kvm/irq.h22
-rw-r--r--arch/powerpc/kvm/mpic.c1852
-rw-r--r--arch/powerpc/kvm/powerpc.c2551
-rw-r--r--arch/powerpc/kvm/timing.c213
-rw-r--r--arch/powerpc/kvm/timing.h99
-rw-r--r--arch/powerpc/kvm/tm.S398
-rw-r--r--arch/powerpc/kvm/trace.h127
-rw-r--r--arch/powerpc/kvm/trace_book3s.h32
-rw-r--r--arch/powerpc/kvm/trace_booke.h211
-rw-r--r--arch/powerpc/kvm/trace_hv.h525
-rw-r--r--arch/powerpc/kvm/trace_pr.h265
70 files changed, 53371 insertions, 0 deletions
diff --git a/arch/powerpc/kvm/Kconfig b/arch/powerpc/kvm/Kconfig
new file mode 100644
index 000000000..a9f57dad6
--- /dev/null
+++ b/arch/powerpc/kvm/Kconfig
@@ -0,0 +1,254 @@
+# SPDX-License-Identifier: GPL-2.0
+#
+# KVM configuration
+#
+
+source "virt/kvm/Kconfig"
+
+menuconfig VIRTUALIZATION
+ bool "Virtualization"
+ help
+ Say Y here to get to see options for using your Linux host to run
+ other operating systems inside virtual machines (guests).
+ This option alone does not add any kernel code.
+
+ If you say N, all options in this submenu will be skipped and
+ disabled.
+
+if VIRTUALIZATION
+
+config KVM
+ bool
+ select PREEMPT_NOTIFIERS
+ select HAVE_KVM_EVENTFD
+ select HAVE_KVM_VCPU_ASYNC_IOCTL
+ select SRCU
+ select KVM_VFIO
+ select IRQ_BYPASS_MANAGER
+ select HAVE_KVM_IRQ_BYPASS
+ select INTERVAL_TREE
+
+config KVM_BOOK3S_HANDLER
+ bool
+
+config KVM_BOOK3S_32_HANDLER
+ bool
+ select KVM_BOOK3S_HANDLER
+ select KVM_MMIO
+
+config KVM_BOOK3S_64_HANDLER
+ bool
+ select KVM_BOOK3S_HANDLER
+
+config KVM_BOOK3S_PR_POSSIBLE
+ bool
+ select KVM_MMIO
+ select MMU_NOTIFIER
+
+config KVM_BOOK3S_HV_POSSIBLE
+ bool
+
+config KVM_BOOK3S_32
+ tristate "KVM support for PowerPC book3s_32 processors"
+ depends on PPC_BOOK3S_32 && !SMP && !PTE_64BIT
+ depends on !CONTEXT_TRACKING_USER
+ select KVM
+ select KVM_BOOK3S_32_HANDLER
+ select KVM_BOOK3S_PR_POSSIBLE
+ select PPC_FPU
+ help
+ Support running unmodified book3s_32 guest kernels
+ in virtual machines on book3s_32 host processors.
+
+ This module provides access to the hardware capabilities through
+ a character device node named /dev/kvm.
+
+ If unsure, say N.
+
+config KVM_BOOK3S_64
+ tristate "KVM support for PowerPC book3s_64 processors"
+ depends on PPC_BOOK3S_64
+ select KVM_BOOK3S_64_HANDLER
+ select KVM
+ select KVM_BOOK3S_PR_POSSIBLE if !KVM_BOOK3S_HV_POSSIBLE
+ select PPC_64S_HASH_MMU
+ select SPAPR_TCE_IOMMU if IOMMU_SUPPORT && (PPC_PSERIES || PPC_POWERNV)
+ help
+ Support running unmodified book3s_64 and book3s_32 guest kernels
+ in virtual machines on book3s_64 host processors.
+
+ This module provides access to the hardware capabilities through
+ a character device node named /dev/kvm.
+
+ If unsure, say N.
+
+config KVM_BOOK3S_64_HV
+ tristate "KVM for POWER7 and later using hypervisor mode in host"
+ depends on KVM_BOOK3S_64 && PPC_POWERNV
+ select KVM_BOOK3S_HV_POSSIBLE
+ select MMU_NOTIFIER
+ select CMA
+ help
+ Support running unmodified book3s_64 guest kernels in
+ virtual machines on POWER7 and newer processors that have
+ hypervisor mode available to the host.
+
+ If you say Y here, KVM will use the hardware virtualization
+ facilities of POWER7 (and later) processors, meaning that
+ guest operating systems will run at full hardware speed
+ using supervisor and user modes. However, this also means
+ that KVM is not usable under PowerVM (pHyp), is only usable
+ on POWER7 or later processors, and cannot emulate a
+ different processor from the host processor.
+
+ If unsure, say N.
+
+config KVM_BOOK3S_64_PR
+ tristate "KVM support without using hypervisor mode in host"
+ depends on KVM_BOOK3S_64
+ depends on !CONTEXT_TRACKING_USER
+ select KVM_BOOK3S_PR_POSSIBLE
+ help
+ Support running guest kernels in virtual machines on processors
+ without using hypervisor mode in the host, by running the
+ guest in user mode (problem state) and emulating all
+ privileged instructions and registers.
+
+ This is only available for hash MMU mode and only supports
+ guests that use hash MMU mode.
+
+ This is not as fast as using hypervisor mode, but works on
+ machines where hypervisor mode is not available or not usable,
+ and can emulate processors that are different from the host
+ processor, including emulating 32-bit processors on a 64-bit
+ host.
+
+ Selecting this option will cause the SCV facility to be
+ disabled when the kernel is booted on the pseries platform in
+ hash MMU mode (regardless of PR VMs running). When any PR VMs
+ are running, "AIL" mode is disabled which may slow interrupts
+ and system calls on the host.
+
+config KVM_BOOK3S_HV_EXIT_TIMING
+ bool
+
+config KVM_BOOK3S_HV_P9_TIMING
+ bool "Detailed timing for the P9 entry point"
+ select KVM_BOOK3S_HV_EXIT_TIMING
+ depends on KVM_BOOK3S_HV_POSSIBLE && DEBUG_FS
+ help
+ Calculate time taken for each vcpu during vcpu entry and
+ exit, time spent inside the guest and time spent handling
+ hypercalls and page faults. The total, minimum and maximum
+ times in nanoseconds together with the number of executions
+ are reported in debugfs in kvm/vm#/vcpu#/timings.
+
+ If unsure, say N.
+
+config KVM_BOOK3S_HV_P8_TIMING
+ bool "Detailed timing for hypervisor real-mode code (for POWER8)"
+ select KVM_BOOK3S_HV_EXIT_TIMING
+ depends on KVM_BOOK3S_HV_POSSIBLE && DEBUG_FS && !KVM_BOOK3S_HV_P9_TIMING
+ help
+ Calculate time taken for each vcpu in the real-mode guest entry,
+ exit, and interrupt handling code, plus time spent in the guest
+ and in nap mode due to idle (cede) while other threads are still
+ in the guest. The total, minimum and maximum times in nanoseconds
+ together with the number of executions are reported in debugfs in
+ kvm/vm#/vcpu#/timings. The overhead is of the order of 30 - 40
+ ns per exit on POWER8.
+
+ If unsure, say N.
+
+config KVM_BOOK3S_HV_NESTED_PMU_WORKAROUND
+ bool "Nested L0 host workaround for L1 KVM host PMU handling bug" if EXPERT
+ depends on KVM_BOOK3S_HV_POSSIBLE
+ default !EXPERT
+ help
+ Old nested HV capable Linux guests have a bug where they don't
+ reflect the PMU in-use status of their L2 guest to the L0 host
+ while the L2 PMU registers are live. This can result in loss
+ of L2 PMU register state, causing perf to not work correctly in
+ L2 guests.
+
+ Selecting this option for the L0 host implements a workaround for
+ those buggy L1s which saves the L2 state, at the cost of performance
+ in all nested-capable guest entry/exit.
+
+config KVM_BOOKE_HV
+ bool
+
+config KVM_EXIT_TIMING
+ bool "Detailed exit timing"
+ depends on KVM_E500V2 || KVM_E500MC
+ help
+ Calculate elapsed time for every exit/enter cycle. A per-vcpu
+ report is available in debugfs kvm/vm#_vcpu#_timing.
+ The overhead is relatively small, however it is not recommended for
+ production environments.
+
+ If unsure, say N.
+
+config KVM_E500V2
+ bool "KVM support for PowerPC E500v2 processors"
+ depends on PPC_E500 && !PPC_E500MC
+ depends on !CONTEXT_TRACKING_USER
+ select KVM
+ select KVM_MMIO
+ select MMU_NOTIFIER
+ help
+ Support running unmodified E500 guest kernels in virtual machines on
+ E500v2 host processors.
+
+ This module provides access to the hardware capabilities through
+ a character device node named /dev/kvm.
+
+ If unsure, say N.
+
+config KVM_E500MC
+ bool "KVM support for PowerPC E500MC/E5500/E6500 processors"
+ depends on PPC_E500MC
+ depends on !CONTEXT_TRACKING_USER
+ select KVM
+ select KVM_MMIO
+ select KVM_BOOKE_HV
+ select MMU_NOTIFIER
+ help
+ Support running unmodified E500MC/E5500/E6500 guest kernels in
+ virtual machines on E500MC/E5500/E6500 host processors.
+
+ This module provides access to the hardware capabilities through
+ a character device node named /dev/kvm.
+
+ If unsure, say N.
+
+config KVM_MPIC
+ bool "KVM in-kernel MPIC emulation"
+ depends on KVM && PPC_E500
+ select HAVE_KVM_IRQCHIP
+ select HAVE_KVM_IRQFD
+ select HAVE_KVM_IRQ_ROUTING
+ select HAVE_KVM_MSI
+ help
+ Enable support for emulating MPIC devices inside the
+ host kernel, rather than relying on userspace to emulate.
+ Currently, support is limited to certain versions of
+ Freescale's MPIC implementation.
+
+config KVM_XICS
+ bool "KVM in-kernel XICS emulation"
+ depends on KVM_BOOK3S_64 && !KVM_MPIC
+ select HAVE_KVM_IRQCHIP
+ select HAVE_KVM_IRQFD
+ default y
+ help
+ Include support for the XICS (eXternal Interrupt Controller
+ Specification) interrupt controller architecture used on
+ IBM POWER (pSeries) servers.
+
+config KVM_XIVE
+ bool
+ default y
+ depends on KVM_XICS && PPC_XIVE_NATIVE && KVM_BOOK3S_HV_POSSIBLE
+
+endif # VIRTUALIZATION
diff --git a/arch/powerpc/kvm/Makefile b/arch/powerpc/kvm/Makefile
new file mode 100644
index 000000000..5319d889b
--- /dev/null
+++ b/arch/powerpc/kvm/Makefile
@@ -0,0 +1,139 @@
+# SPDX-License-Identifier: GPL-2.0
+#
+# Makefile for Kernel-based Virtual Machine module
+#
+
+ccflags-y := -Ivirt/kvm -Iarch/powerpc/kvm
+
+include $(srctree)/virt/kvm/Makefile.kvm
+
+common-objs-y += powerpc.o emulate_loadstore.o
+obj-$(CONFIG_KVM_EXIT_TIMING) += timing.o
+obj-$(CONFIG_KVM_BOOK3S_HANDLER) += book3s_exports.o
+
+AFLAGS_booke_interrupts.o := -I$(objtree)/$(obj)
+
+kvm-e500-objs := \
+ $(common-objs-y) \
+ emulate.o \
+ booke.o \
+ booke_emulate.o \
+ booke_interrupts.o \
+ e500.o \
+ e500_mmu.o \
+ e500_mmu_host.o \
+ e500_emulate.o
+kvm-objs-$(CONFIG_KVM_E500V2) := $(kvm-e500-objs)
+
+kvm-e500mc-objs := \
+ $(common-objs-y) \
+ emulate.o \
+ booke.o \
+ booke_emulate.o \
+ bookehv_interrupts.o \
+ e500mc.o \
+ e500_mmu.o \
+ e500_mmu_host.o \
+ e500_emulate.o
+kvm-objs-$(CONFIG_KVM_E500MC) := $(kvm-e500mc-objs)
+
+kvm-pr-y := \
+ fpu.o \
+ emulate.o \
+ book3s_paired_singles.o \
+ book3s_pr.o \
+ book3s_pr_papr.o \
+ book3s_emulate.o \
+ book3s_interrupts.o \
+ book3s_mmu_hpte.o \
+ book3s_64_mmu_host.o \
+ book3s_64_mmu.o \
+ book3s_32_mmu.o
+
+kvm-book3s_64-builtin-objs-$(CONFIG_KVM_BOOK3S_64_HANDLER) += \
+ book3s_64_entry.o \
+ tm.o
+
+ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
+kvm-book3s_64-builtin-objs-$(CONFIG_KVM_BOOK3S_64_HANDLER) += \
+ book3s_rmhandlers.o
+endif
+
+kvm-hv-y += \
+ book3s_hv.o \
+ book3s_hv_interrupts.o \
+ book3s_64_mmu_hv.o \
+ book3s_64_mmu_radix.o \
+ book3s_hv_nested.o
+
+kvm-hv-$(CONFIG_PPC_UV) += \
+ book3s_hv_uvmem.o
+
+kvm-hv-$(CONFIG_PPC_TRANSACTIONAL_MEM) += \
+ book3s_hv_tm.o
+
+kvm-book3s_64-builtin-xics-objs-$(CONFIG_KVM_XICS) := \
+ book3s_hv_rm_xics.o
+
+kvm-book3s_64-builtin-tm-objs-$(CONFIG_PPC_TRANSACTIONAL_MEM) += \
+ book3s_hv_tm_builtin.o
+
+ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+kvm-book3s_64-builtin-objs-$(CONFIG_KVM_BOOK3S_64_HANDLER) += \
+ book3s_hv_hmi.o \
+ book3s_hv_p9_entry.o \
+ book3s_hv_rmhandlers.o \
+ book3s_hv_rm_mmu.o \
+ book3s_hv_ras.o \
+ book3s_hv_builtin.o \
+ book3s_hv_p9_perf.o \
+ $(kvm-book3s_64-builtin-tm-objs-y) \
+ $(kvm-book3s_64-builtin-xics-objs-y)
+endif
+
+kvm-book3s_64-objs-$(CONFIG_KVM_XICS) += \
+ book3s_xics.o
+
+kvm-book3s_64-objs-$(CONFIG_KVM_XIVE) += book3s_xive.o book3s_xive_native.o
+kvm-book3s_64-objs-$(CONFIG_SPAPR_TCE_IOMMU) += book3s_64_vio.o
+
+kvm-book3s_64-module-objs := \
+ $(common-objs-y) \
+ book3s.o \
+ book3s_rtas.o \
+ $(kvm-book3s_64-objs-y)
+
+kvm-objs-$(CONFIG_KVM_BOOK3S_64) := $(kvm-book3s_64-module-objs)
+
+kvm-book3s_32-objs := \
+ $(common-objs-y) \
+ emulate.o \
+ fpu.o \
+ book3s_paired_singles.o \
+ book3s.o \
+ book3s_pr.o \
+ book3s_emulate.o \
+ book3s_interrupts.o \
+ book3s_mmu_hpte.o \
+ book3s_32_mmu_host.o \
+ book3s_32_mmu.o
+kvm-objs-$(CONFIG_KVM_BOOK3S_32) := $(kvm-book3s_32-objs)
+
+kvm-objs-$(CONFIG_KVM_MPIC) += mpic.o
+
+kvm-y += $(kvm-objs-m) $(kvm-objs-y)
+
+obj-$(CONFIG_KVM_E500V2) += kvm.o
+obj-$(CONFIG_KVM_E500MC) += kvm.o
+obj-$(CONFIG_KVM_BOOK3S_64) += kvm.o
+obj-$(CONFIG_KVM_BOOK3S_32) += kvm.o
+
+obj-$(CONFIG_KVM_BOOK3S_64_PR) += kvm-pr.o
+obj-$(CONFIG_KVM_BOOK3S_64_HV) += kvm-hv.o
+
+obj-y += $(kvm-book3s_64-builtin-objs-y)
+
+# KVM does a lot in real-mode, and 64-bit Book3S KASAN doesn't support that
+ifdef CONFIG_PPC_BOOK3S_64
+KASAN_SANITIZE := n
+endif
diff --git a/arch/powerpc/kvm/book3s.c b/arch/powerpc/kvm/book3s.c
new file mode 100644
index 000000000..6d525285d
--- /dev/null
+++ b/arch/powerpc/kvm/book3s.c
@@ -0,0 +1,1101 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
+ *
+ * Authors:
+ * Alexander Graf <agraf@suse.de>
+ * Kevin Wolf <mail@kevin-wolf.de>
+ *
+ * Description:
+ * This file is derived from arch/powerpc/kvm/44x.c,
+ * by Hollis Blanchard <hollisb@us.ibm.com>.
+ */
+
+#include <linux/kvm_host.h>
+#include <linux/err.h>
+#include <linux/export.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/miscdevice.h>
+#include <linux/gfp.h>
+#include <linux/sched.h>
+#include <linux/vmalloc.h>
+#include <linux/highmem.h>
+
+#include <asm/reg.h>
+#include <asm/cputable.h>
+#include <asm/cacheflush.h>
+#include <linux/uaccess.h>
+#include <asm/io.h>
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+#include <asm/mmu_context.h>
+#include <asm/page.h>
+#include <asm/xive.h>
+
+#include "book3s.h"
+#include "trace.h"
+
+/* #define EXIT_DEBUG */
+
+const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
+ KVM_GENERIC_VM_STATS(),
+ STATS_DESC_ICOUNTER(VM, num_2M_pages),
+ STATS_DESC_ICOUNTER(VM, num_1G_pages)
+};
+
+const struct kvm_stats_header kvm_vm_stats_header = {
+ .name_size = KVM_STATS_NAME_SIZE,
+ .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
+ .id_offset = sizeof(struct kvm_stats_header),
+ .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
+ .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
+ sizeof(kvm_vm_stats_desc),
+};
+
+const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
+ KVM_GENERIC_VCPU_STATS(),
+ STATS_DESC_COUNTER(VCPU, sum_exits),
+ STATS_DESC_COUNTER(VCPU, mmio_exits),
+ STATS_DESC_COUNTER(VCPU, signal_exits),
+ STATS_DESC_COUNTER(VCPU, light_exits),
+ STATS_DESC_COUNTER(VCPU, itlb_real_miss_exits),
+ STATS_DESC_COUNTER(VCPU, itlb_virt_miss_exits),
+ STATS_DESC_COUNTER(VCPU, dtlb_real_miss_exits),
+ STATS_DESC_COUNTER(VCPU, dtlb_virt_miss_exits),
+ STATS_DESC_COUNTER(VCPU, syscall_exits),
+ STATS_DESC_COUNTER(VCPU, isi_exits),
+ STATS_DESC_COUNTER(VCPU, dsi_exits),
+ STATS_DESC_COUNTER(VCPU, emulated_inst_exits),
+ STATS_DESC_COUNTER(VCPU, dec_exits),
+ STATS_DESC_COUNTER(VCPU, ext_intr_exits),
+ STATS_DESC_COUNTER(VCPU, halt_successful_wait),
+ STATS_DESC_COUNTER(VCPU, dbell_exits),
+ STATS_DESC_COUNTER(VCPU, gdbell_exits),
+ STATS_DESC_COUNTER(VCPU, ld),
+ STATS_DESC_COUNTER(VCPU, st),
+ STATS_DESC_COUNTER(VCPU, pf_storage),
+ STATS_DESC_COUNTER(VCPU, pf_instruc),
+ STATS_DESC_COUNTER(VCPU, sp_storage),
+ STATS_DESC_COUNTER(VCPU, sp_instruc),
+ STATS_DESC_COUNTER(VCPU, queue_intr),
+ STATS_DESC_COUNTER(VCPU, ld_slow),
+ STATS_DESC_COUNTER(VCPU, st_slow),
+ STATS_DESC_COUNTER(VCPU, pthru_all),
+ STATS_DESC_COUNTER(VCPU, pthru_host),
+ STATS_DESC_COUNTER(VCPU, pthru_bad_aff)
+};
+
+const struct kvm_stats_header kvm_vcpu_stats_header = {
+ .name_size = KVM_STATS_NAME_SIZE,
+ .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
+ .id_offset = sizeof(struct kvm_stats_header),
+ .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
+ .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
+ sizeof(kvm_vcpu_stats_desc),
+};
+
+static inline void kvmppc_update_int_pending(struct kvm_vcpu *vcpu,
+ unsigned long pending_now, unsigned long old_pending)
+{
+ if (is_kvmppc_hv_enabled(vcpu->kvm))
+ return;
+ if (pending_now)
+ kvmppc_set_int_pending(vcpu, 1);
+ else if (old_pending)
+ kvmppc_set_int_pending(vcpu, 0);
+}
+
+static inline bool kvmppc_critical_section(struct kvm_vcpu *vcpu)
+{
+ ulong crit_raw;
+ ulong crit_r1;
+ bool crit;
+
+ if (is_kvmppc_hv_enabled(vcpu->kvm))
+ return false;
+
+ crit_raw = kvmppc_get_critical(vcpu);
+ crit_r1 = kvmppc_get_gpr(vcpu, 1);
+
+ /* Truncate crit indicators in 32 bit mode */
+ if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
+ crit_raw &= 0xffffffff;
+ crit_r1 &= 0xffffffff;
+ }
+
+ /* Critical section when crit == r1 */
+ crit = (crit_raw == crit_r1);
+ /* ... and we're in supervisor mode */
+ crit = crit && !(kvmppc_get_msr(vcpu) & MSR_PR);
+
+ return crit;
+}
+
+void kvmppc_inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 flags)
+{
+ vcpu->kvm->arch.kvm_ops->inject_interrupt(vcpu, vec, flags);
+}
+
+static int kvmppc_book3s_vec2irqprio(unsigned int vec)
+{
+ unsigned int prio;
+
+ switch (vec) {
+ case 0x100: prio = BOOK3S_IRQPRIO_SYSTEM_RESET; break;
+ case 0x200: prio = BOOK3S_IRQPRIO_MACHINE_CHECK; break;
+ case 0x300: prio = BOOK3S_IRQPRIO_DATA_STORAGE; break;
+ case 0x380: prio = BOOK3S_IRQPRIO_DATA_SEGMENT; break;
+ case 0x400: prio = BOOK3S_IRQPRIO_INST_STORAGE; break;
+ case 0x480: prio = BOOK3S_IRQPRIO_INST_SEGMENT; break;
+ case 0x500: prio = BOOK3S_IRQPRIO_EXTERNAL; break;
+ case 0x600: prio = BOOK3S_IRQPRIO_ALIGNMENT; break;
+ case 0x700: prio = BOOK3S_IRQPRIO_PROGRAM; break;
+ case 0x800: prio = BOOK3S_IRQPRIO_FP_UNAVAIL; break;
+ case 0x900: prio = BOOK3S_IRQPRIO_DECREMENTER; break;
+ case 0xc00: prio = BOOK3S_IRQPRIO_SYSCALL; break;
+ case 0xd00: prio = BOOK3S_IRQPRIO_DEBUG; break;
+ case 0xf20: prio = BOOK3S_IRQPRIO_ALTIVEC; break;
+ case 0xf40: prio = BOOK3S_IRQPRIO_VSX; break;
+ case 0xf60: prio = BOOK3S_IRQPRIO_FAC_UNAVAIL; break;
+ default: prio = BOOK3S_IRQPRIO_MAX; break;
+ }
+
+ return prio;
+}
+
+void kvmppc_book3s_dequeue_irqprio(struct kvm_vcpu *vcpu,
+ unsigned int vec)
+{
+ unsigned long old_pending = vcpu->arch.pending_exceptions;
+
+ clear_bit(kvmppc_book3s_vec2irqprio(vec),
+ &vcpu->arch.pending_exceptions);
+
+ kvmppc_update_int_pending(vcpu, vcpu->arch.pending_exceptions,
+ old_pending);
+}
+
+void kvmppc_book3s_queue_irqprio(struct kvm_vcpu *vcpu, unsigned int vec)
+{
+ vcpu->stat.queue_intr++;
+
+ set_bit(kvmppc_book3s_vec2irqprio(vec),
+ &vcpu->arch.pending_exceptions);
+#ifdef EXIT_DEBUG
+ printk(KERN_INFO "Queueing interrupt %x\n", vec);
+#endif
+}
+EXPORT_SYMBOL_GPL(kvmppc_book3s_queue_irqprio);
+
+void kvmppc_core_queue_machine_check(struct kvm_vcpu *vcpu, ulong flags)
+{
+ /* might as well deliver this straight away */
+ kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_MACHINE_CHECK, flags);
+}
+EXPORT_SYMBOL_GPL(kvmppc_core_queue_machine_check);
+
+void kvmppc_core_queue_syscall(struct kvm_vcpu *vcpu)
+{
+ kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_SYSCALL, 0);
+}
+EXPORT_SYMBOL(kvmppc_core_queue_syscall);
+
+void kvmppc_core_queue_program(struct kvm_vcpu *vcpu, ulong flags)
+{
+ /* might as well deliver this straight away */
+ kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_PROGRAM, flags);
+}
+EXPORT_SYMBOL_GPL(kvmppc_core_queue_program);
+
+void kvmppc_core_queue_fpunavail(struct kvm_vcpu *vcpu)
+{
+ /* might as well deliver this straight away */
+ kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, 0);
+}
+
+void kvmppc_core_queue_vec_unavail(struct kvm_vcpu *vcpu)
+{
+ /* might as well deliver this straight away */
+ kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_ALTIVEC, 0);
+}
+
+void kvmppc_core_queue_vsx_unavail(struct kvm_vcpu *vcpu)
+{
+ /* might as well deliver this straight away */
+ kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_VSX, 0);
+}
+
+void kvmppc_core_queue_dec(struct kvm_vcpu *vcpu)
+{
+ kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_DECREMENTER);
+}
+EXPORT_SYMBOL_GPL(kvmppc_core_queue_dec);
+
+int kvmppc_core_pending_dec(struct kvm_vcpu *vcpu)
+{
+ return test_bit(BOOK3S_IRQPRIO_DECREMENTER, &vcpu->arch.pending_exceptions);
+}
+EXPORT_SYMBOL_GPL(kvmppc_core_pending_dec);
+
+void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu)
+{
+ kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_DECREMENTER);
+}
+EXPORT_SYMBOL_GPL(kvmppc_core_dequeue_dec);
+
+void kvmppc_core_queue_external(struct kvm_vcpu *vcpu,
+ struct kvm_interrupt *irq)
+{
+ /*
+ * This case (KVM_INTERRUPT_SET) should never actually arise for
+ * a pseries guest (because pseries guests expect their interrupt
+ * controllers to continue asserting an external interrupt request
+ * until it is acknowledged at the interrupt controller), but is
+ * included to avoid ABI breakage and potentially for other
+ * sorts of guest.
+ *
+ * There is a subtlety here: HV KVM does not test the
+ * external_oneshot flag in the code that synthesizes
+ * external interrupts for the guest just before entering
+ * the guest. That is OK even if userspace did do a
+ * KVM_INTERRUPT_SET on a pseries guest vcpu, because the
+ * caller (kvm_vcpu_ioctl_interrupt) does a kvm_vcpu_kick()
+ * which ends up doing a smp_send_reschedule(), which will
+ * pull the guest all the way out to the host, meaning that
+ * we will call kvmppc_core_prepare_to_enter() before entering
+ * the guest again, and that will handle the external_oneshot
+ * flag correctly.
+ */
+ if (irq->irq == KVM_INTERRUPT_SET)
+ vcpu->arch.external_oneshot = 1;
+
+ kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL);
+}
+
+void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu)
+{
+ kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL);
+}
+
+void kvmppc_core_queue_data_storage(struct kvm_vcpu *vcpu, ulong dar,
+ ulong flags)
+{
+ kvmppc_set_dar(vcpu, dar);
+ kvmppc_set_dsisr(vcpu, flags);
+ kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE, 0);
+}
+EXPORT_SYMBOL_GPL(kvmppc_core_queue_data_storage);
+
+void kvmppc_core_queue_inst_storage(struct kvm_vcpu *vcpu, ulong flags)
+{
+ kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_INST_STORAGE, flags);
+}
+EXPORT_SYMBOL_GPL(kvmppc_core_queue_inst_storage);
+
+static int kvmppc_book3s_irqprio_deliver(struct kvm_vcpu *vcpu,
+ unsigned int priority)
+{
+ int deliver = 1;
+ int vec = 0;
+ bool crit = kvmppc_critical_section(vcpu);
+
+ switch (priority) {
+ case BOOK3S_IRQPRIO_DECREMENTER:
+ deliver = (kvmppc_get_msr(vcpu) & MSR_EE) && !crit;
+ vec = BOOK3S_INTERRUPT_DECREMENTER;
+ break;
+ case BOOK3S_IRQPRIO_EXTERNAL:
+ deliver = (kvmppc_get_msr(vcpu) & MSR_EE) && !crit;
+ vec = BOOK3S_INTERRUPT_EXTERNAL;
+ break;
+ case BOOK3S_IRQPRIO_SYSTEM_RESET:
+ vec = BOOK3S_INTERRUPT_SYSTEM_RESET;
+ break;
+ case BOOK3S_IRQPRIO_MACHINE_CHECK:
+ vec = BOOK3S_INTERRUPT_MACHINE_CHECK;
+ break;
+ case BOOK3S_IRQPRIO_DATA_STORAGE:
+ vec = BOOK3S_INTERRUPT_DATA_STORAGE;
+ break;
+ case BOOK3S_IRQPRIO_INST_STORAGE:
+ vec = BOOK3S_INTERRUPT_INST_STORAGE;
+ break;
+ case BOOK3S_IRQPRIO_DATA_SEGMENT:
+ vec = BOOK3S_INTERRUPT_DATA_SEGMENT;
+ break;
+ case BOOK3S_IRQPRIO_INST_SEGMENT:
+ vec = BOOK3S_INTERRUPT_INST_SEGMENT;
+ break;
+ case BOOK3S_IRQPRIO_ALIGNMENT:
+ vec = BOOK3S_INTERRUPT_ALIGNMENT;
+ break;
+ case BOOK3S_IRQPRIO_PROGRAM:
+ vec = BOOK3S_INTERRUPT_PROGRAM;
+ break;
+ case BOOK3S_IRQPRIO_VSX:
+ vec = BOOK3S_INTERRUPT_VSX;
+ break;
+ case BOOK3S_IRQPRIO_ALTIVEC:
+ vec = BOOK3S_INTERRUPT_ALTIVEC;
+ break;
+ case BOOK3S_IRQPRIO_FP_UNAVAIL:
+ vec = BOOK3S_INTERRUPT_FP_UNAVAIL;
+ break;
+ case BOOK3S_IRQPRIO_SYSCALL:
+ vec = BOOK3S_INTERRUPT_SYSCALL;
+ break;
+ case BOOK3S_IRQPRIO_DEBUG:
+ vec = BOOK3S_INTERRUPT_TRACE;
+ break;
+ case BOOK3S_IRQPRIO_PERFORMANCE_MONITOR:
+ vec = BOOK3S_INTERRUPT_PERFMON;
+ break;
+ case BOOK3S_IRQPRIO_FAC_UNAVAIL:
+ vec = BOOK3S_INTERRUPT_FAC_UNAVAIL;
+ break;
+ default:
+ deliver = 0;
+ printk(KERN_ERR "KVM: Unknown interrupt: 0x%x\n", priority);
+ break;
+ }
+
+#if 0
+ printk(KERN_INFO "Deliver interrupt 0x%x? %x\n", vec, deliver);
+#endif
+
+ if (deliver)
+ kvmppc_inject_interrupt(vcpu, vec, 0);
+
+ return deliver;
+}
+
+/*
+ * This function determines if an irqprio should be cleared once issued.
+ */
+static bool clear_irqprio(struct kvm_vcpu *vcpu, unsigned int priority)
+{
+ switch (priority) {
+ case BOOK3S_IRQPRIO_DECREMENTER:
+ /* DEC interrupts get cleared by mtdec */
+ return false;
+ case BOOK3S_IRQPRIO_EXTERNAL:
+ /*
+ * External interrupts get cleared by userspace
+ * except when set by the KVM_INTERRUPT ioctl with
+ * KVM_INTERRUPT_SET (not KVM_INTERRUPT_SET_LEVEL).
+ */
+ if (vcpu->arch.external_oneshot) {
+ vcpu->arch.external_oneshot = 0;
+ return true;
+ }
+ return false;
+ }
+
+ return true;
+}
+
+int kvmppc_core_prepare_to_enter(struct kvm_vcpu *vcpu)
+{
+ unsigned long *pending = &vcpu->arch.pending_exceptions;
+ unsigned long old_pending = vcpu->arch.pending_exceptions;
+ unsigned int priority;
+
+#ifdef EXIT_DEBUG
+ if (vcpu->arch.pending_exceptions)
+ printk(KERN_EMERG "KVM: Check pending: %lx\n", vcpu->arch.pending_exceptions);
+#endif
+ priority = __ffs(*pending);
+ while (priority < BOOK3S_IRQPRIO_MAX) {
+ if (kvmppc_book3s_irqprio_deliver(vcpu, priority) &&
+ clear_irqprio(vcpu, priority)) {
+ clear_bit(priority, &vcpu->arch.pending_exceptions);
+ break;
+ }
+
+ priority = find_next_bit(pending,
+ BITS_PER_BYTE * sizeof(*pending),
+ priority + 1);
+ }
+
+ /* Tell the guest about our interrupt status */
+ kvmppc_update_int_pending(vcpu, *pending, old_pending);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvmppc_core_prepare_to_enter);
+
+kvm_pfn_t kvmppc_gpa_to_pfn(struct kvm_vcpu *vcpu, gpa_t gpa, bool writing,
+ bool *writable)
+{
+ ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM;
+ gfn_t gfn = gpa >> PAGE_SHIFT;
+
+ if (!(kvmppc_get_msr(vcpu) & MSR_SF))
+ mp_pa = (uint32_t)mp_pa;
+
+ /* Magic page override */
+ gpa &= ~0xFFFULL;
+ if (unlikely(mp_pa) && unlikely((gpa & KVM_PAM) == mp_pa)) {
+ ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
+ kvm_pfn_t pfn;
+
+ pfn = (kvm_pfn_t)virt_to_phys((void*)shared_page) >> PAGE_SHIFT;
+ get_page(pfn_to_page(pfn));
+ if (writable)
+ *writable = true;
+ return pfn;
+ }
+
+ return gfn_to_pfn_prot(vcpu->kvm, gfn, writing, writable);
+}
+EXPORT_SYMBOL_GPL(kvmppc_gpa_to_pfn);
+
+int kvmppc_xlate(struct kvm_vcpu *vcpu, ulong eaddr, enum xlate_instdata xlid,
+ enum xlate_readwrite xlrw, struct kvmppc_pte *pte)
+{
+ bool data = (xlid == XLATE_DATA);
+ bool iswrite = (xlrw == XLATE_WRITE);
+ int relocated = (kvmppc_get_msr(vcpu) & (data ? MSR_DR : MSR_IR));
+ int r;
+
+ if (relocated) {
+ r = vcpu->arch.mmu.xlate(vcpu, eaddr, pte, data, iswrite);
+ } else {
+ pte->eaddr = eaddr;
+ pte->raddr = eaddr & KVM_PAM;
+ pte->vpage = VSID_REAL | eaddr >> 12;
+ pte->may_read = true;
+ pte->may_write = true;
+ pte->may_execute = true;
+ r = 0;
+
+ if ((kvmppc_get_msr(vcpu) & (MSR_IR | MSR_DR)) == MSR_DR &&
+ !data) {
+ if ((vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
+ ((eaddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
+ pte->raddr &= ~SPLIT_HACK_MASK;
+ }
+ }
+
+ return r;
+}
+
+int kvmppc_load_last_inst(struct kvm_vcpu *vcpu,
+ enum instruction_fetch_type type, u32 *inst)
+{
+ ulong pc = kvmppc_get_pc(vcpu);
+ int r;
+
+ if (type == INST_SC)
+ pc -= 4;
+
+ r = kvmppc_ld(vcpu, &pc, sizeof(u32), inst, false);
+ if (r == EMULATE_DONE)
+ return r;
+ else
+ return EMULATE_AGAIN;
+}
+EXPORT_SYMBOL_GPL(kvmppc_load_last_inst);
+
+int kvmppc_subarch_vcpu_init(struct kvm_vcpu *vcpu)
+{
+ return 0;
+}
+
+void kvmppc_subarch_vcpu_uninit(struct kvm_vcpu *vcpu)
+{
+}
+
+int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ int ret;
+
+ vcpu_load(vcpu);
+ ret = vcpu->kvm->arch.kvm_ops->get_sregs(vcpu, sregs);
+ vcpu_put(vcpu);
+
+ return ret;
+}
+
+int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ int ret;
+
+ vcpu_load(vcpu);
+ ret = vcpu->kvm->arch.kvm_ops->set_sregs(vcpu, sregs);
+ vcpu_put(vcpu);
+
+ return ret;
+}
+
+int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
+{
+ int i;
+
+ regs->pc = kvmppc_get_pc(vcpu);
+ regs->cr = kvmppc_get_cr(vcpu);
+ regs->ctr = kvmppc_get_ctr(vcpu);
+ regs->lr = kvmppc_get_lr(vcpu);
+ regs->xer = kvmppc_get_xer(vcpu);
+ regs->msr = kvmppc_get_msr(vcpu);
+ regs->srr0 = kvmppc_get_srr0(vcpu);
+ regs->srr1 = kvmppc_get_srr1(vcpu);
+ regs->pid = vcpu->arch.pid;
+ regs->sprg0 = kvmppc_get_sprg0(vcpu);
+ regs->sprg1 = kvmppc_get_sprg1(vcpu);
+ regs->sprg2 = kvmppc_get_sprg2(vcpu);
+ regs->sprg3 = kvmppc_get_sprg3(vcpu);
+ regs->sprg4 = kvmppc_get_sprg4(vcpu);
+ regs->sprg5 = kvmppc_get_sprg5(vcpu);
+ regs->sprg6 = kvmppc_get_sprg6(vcpu);
+ regs->sprg7 = kvmppc_get_sprg7(vcpu);
+
+ for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
+ regs->gpr[i] = kvmppc_get_gpr(vcpu, i);
+
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
+{
+ int i;
+
+ kvmppc_set_pc(vcpu, regs->pc);
+ kvmppc_set_cr(vcpu, regs->cr);
+ kvmppc_set_ctr(vcpu, regs->ctr);
+ kvmppc_set_lr(vcpu, regs->lr);
+ kvmppc_set_xer(vcpu, regs->xer);
+ kvmppc_set_msr(vcpu, regs->msr);
+ kvmppc_set_srr0(vcpu, regs->srr0);
+ kvmppc_set_srr1(vcpu, regs->srr1);
+ kvmppc_set_sprg0(vcpu, regs->sprg0);
+ kvmppc_set_sprg1(vcpu, regs->sprg1);
+ kvmppc_set_sprg2(vcpu, regs->sprg2);
+ kvmppc_set_sprg3(vcpu, regs->sprg3);
+ kvmppc_set_sprg4(vcpu, regs->sprg4);
+ kvmppc_set_sprg5(vcpu, regs->sprg5);
+ kvmppc_set_sprg6(vcpu, regs->sprg6);
+ kvmppc_set_sprg7(vcpu, regs->sprg7);
+
+ for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
+ kvmppc_set_gpr(vcpu, i, regs->gpr[i]);
+
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
+{
+ return -EOPNOTSUPP;
+}
+
+int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
+{
+ return -EOPNOTSUPP;
+}
+
+int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id,
+ union kvmppc_one_reg *val)
+{
+ int r = 0;
+ long int i;
+
+ r = vcpu->kvm->arch.kvm_ops->get_one_reg(vcpu, id, val);
+ if (r == -EINVAL) {
+ r = 0;
+ switch (id) {
+ case KVM_REG_PPC_DAR:
+ *val = get_reg_val(id, kvmppc_get_dar(vcpu));
+ break;
+ case KVM_REG_PPC_DSISR:
+ *val = get_reg_val(id, kvmppc_get_dsisr(vcpu));
+ break;
+ case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
+ i = id - KVM_REG_PPC_FPR0;
+ *val = get_reg_val(id, VCPU_FPR(vcpu, i));
+ break;
+ case KVM_REG_PPC_FPSCR:
+ *val = get_reg_val(id, vcpu->arch.fp.fpscr);
+ break;
+#ifdef CONFIG_VSX
+ case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
+ if (cpu_has_feature(CPU_FTR_VSX)) {
+ i = id - KVM_REG_PPC_VSR0;
+ val->vsxval[0] = vcpu->arch.fp.fpr[i][0];
+ val->vsxval[1] = vcpu->arch.fp.fpr[i][1];
+ } else {
+ r = -ENXIO;
+ }
+ break;
+#endif /* CONFIG_VSX */
+ case KVM_REG_PPC_DEBUG_INST:
+ *val = get_reg_val(id, INS_TW);
+ break;
+#ifdef CONFIG_KVM_XICS
+ case KVM_REG_PPC_ICP_STATE:
+ if (!vcpu->arch.icp && !vcpu->arch.xive_vcpu) {
+ r = -ENXIO;
+ break;
+ }
+ if (xics_on_xive())
+ *val = get_reg_val(id, kvmppc_xive_get_icp(vcpu));
+ else
+ *val = get_reg_val(id, kvmppc_xics_get_icp(vcpu));
+ break;
+#endif /* CONFIG_KVM_XICS */
+#ifdef CONFIG_KVM_XIVE
+ case KVM_REG_PPC_VP_STATE:
+ if (!vcpu->arch.xive_vcpu) {
+ r = -ENXIO;
+ break;
+ }
+ if (xive_enabled())
+ r = kvmppc_xive_native_get_vp(vcpu, val);
+ else
+ r = -ENXIO;
+ break;
+#endif /* CONFIG_KVM_XIVE */
+ case KVM_REG_PPC_FSCR:
+ *val = get_reg_val(id, vcpu->arch.fscr);
+ break;
+ case KVM_REG_PPC_TAR:
+ *val = get_reg_val(id, vcpu->arch.tar);
+ break;
+ case KVM_REG_PPC_EBBHR:
+ *val = get_reg_val(id, vcpu->arch.ebbhr);
+ break;
+ case KVM_REG_PPC_EBBRR:
+ *val = get_reg_val(id, vcpu->arch.ebbrr);
+ break;
+ case KVM_REG_PPC_BESCR:
+ *val = get_reg_val(id, vcpu->arch.bescr);
+ break;
+ case KVM_REG_PPC_IC:
+ *val = get_reg_val(id, vcpu->arch.ic);
+ break;
+ default:
+ r = -EINVAL;
+ break;
+ }
+ }
+
+ return r;
+}
+
+int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id,
+ union kvmppc_one_reg *val)
+{
+ int r = 0;
+ long int i;
+
+ r = vcpu->kvm->arch.kvm_ops->set_one_reg(vcpu, id, val);
+ if (r == -EINVAL) {
+ r = 0;
+ switch (id) {
+ case KVM_REG_PPC_DAR:
+ kvmppc_set_dar(vcpu, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_DSISR:
+ kvmppc_set_dsisr(vcpu, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
+ i = id - KVM_REG_PPC_FPR0;
+ VCPU_FPR(vcpu, i) = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_FPSCR:
+ vcpu->arch.fp.fpscr = set_reg_val(id, *val);
+ break;
+#ifdef CONFIG_VSX
+ case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
+ if (cpu_has_feature(CPU_FTR_VSX)) {
+ i = id - KVM_REG_PPC_VSR0;
+ vcpu->arch.fp.fpr[i][0] = val->vsxval[0];
+ vcpu->arch.fp.fpr[i][1] = val->vsxval[1];
+ } else {
+ r = -ENXIO;
+ }
+ break;
+#endif /* CONFIG_VSX */
+#ifdef CONFIG_KVM_XICS
+ case KVM_REG_PPC_ICP_STATE:
+ if (!vcpu->arch.icp && !vcpu->arch.xive_vcpu) {
+ r = -ENXIO;
+ break;
+ }
+ if (xics_on_xive())
+ r = kvmppc_xive_set_icp(vcpu, set_reg_val(id, *val));
+ else
+ r = kvmppc_xics_set_icp(vcpu, set_reg_val(id, *val));
+ break;
+#endif /* CONFIG_KVM_XICS */
+#ifdef CONFIG_KVM_XIVE
+ case KVM_REG_PPC_VP_STATE:
+ if (!vcpu->arch.xive_vcpu) {
+ r = -ENXIO;
+ break;
+ }
+ if (xive_enabled())
+ r = kvmppc_xive_native_set_vp(vcpu, val);
+ else
+ r = -ENXIO;
+ break;
+#endif /* CONFIG_KVM_XIVE */
+ case KVM_REG_PPC_FSCR:
+ vcpu->arch.fscr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TAR:
+ vcpu->arch.tar = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_EBBHR:
+ vcpu->arch.ebbhr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_EBBRR:
+ vcpu->arch.ebbrr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_BESCR:
+ vcpu->arch.bescr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_IC:
+ vcpu->arch.ic = set_reg_val(id, *val);
+ break;
+ default:
+ r = -EINVAL;
+ break;
+ }
+ }
+
+ return r;
+}
+
+void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+ vcpu->kvm->arch.kvm_ops->vcpu_load(vcpu, cpu);
+}
+
+void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
+{
+ vcpu->kvm->arch.kvm_ops->vcpu_put(vcpu);
+}
+
+void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
+{
+ vcpu->kvm->arch.kvm_ops->set_msr(vcpu, msr);
+}
+EXPORT_SYMBOL_GPL(kvmppc_set_msr);
+
+int kvmppc_vcpu_run(struct kvm_vcpu *vcpu)
+{
+ return vcpu->kvm->arch.kvm_ops->vcpu_run(vcpu);
+}
+
+int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
+ struct kvm_translation *tr)
+{
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
+ struct kvm_guest_debug *dbg)
+{
+ vcpu_load(vcpu);
+ vcpu->guest_debug = dbg->control;
+ vcpu_put(vcpu);
+ return 0;
+}
+
+void kvmppc_decrementer_func(struct kvm_vcpu *vcpu)
+{
+ kvmppc_core_queue_dec(vcpu);
+ kvm_vcpu_kick(vcpu);
+}
+
+int kvmppc_core_vcpu_create(struct kvm_vcpu *vcpu)
+{
+ return vcpu->kvm->arch.kvm_ops->vcpu_create(vcpu);
+}
+
+void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
+{
+ vcpu->kvm->arch.kvm_ops->vcpu_free(vcpu);
+}
+
+int kvmppc_core_check_requests(struct kvm_vcpu *vcpu)
+{
+ return vcpu->kvm->arch.kvm_ops->check_requests(vcpu);
+}
+
+void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
+{
+
+}
+
+int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
+{
+ return kvm->arch.kvm_ops->get_dirty_log(kvm, log);
+}
+
+void kvmppc_core_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
+{
+ kvm->arch.kvm_ops->free_memslot(slot);
+}
+
+void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
+{
+ kvm->arch.kvm_ops->flush_memslot(kvm, memslot);
+}
+
+int kvmppc_core_prepare_memory_region(struct kvm *kvm,
+ const struct kvm_memory_slot *old,
+ struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ return kvm->arch.kvm_ops->prepare_memory_region(kvm, old, new, change);
+}
+
+void kvmppc_core_commit_memory_region(struct kvm *kvm,
+ struct kvm_memory_slot *old,
+ const struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ kvm->arch.kvm_ops->commit_memory_region(kvm, old, new, change);
+}
+
+bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ return kvm->arch.kvm_ops->unmap_gfn_range(kvm, range);
+}
+
+bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ return kvm->arch.kvm_ops->age_gfn(kvm, range);
+}
+
+bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ return kvm->arch.kvm_ops->test_age_gfn(kvm, range);
+}
+
+bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ return kvm->arch.kvm_ops->set_spte_gfn(kvm, range);
+}
+
+int kvmppc_core_init_vm(struct kvm *kvm)
+{
+
+#ifdef CONFIG_PPC64
+ INIT_LIST_HEAD_RCU(&kvm->arch.spapr_tce_tables);
+ INIT_LIST_HEAD(&kvm->arch.rtas_tokens);
+ mutex_init(&kvm->arch.rtas_token_lock);
+#endif
+
+ return kvm->arch.kvm_ops->init_vm(kvm);
+}
+
+void kvmppc_core_destroy_vm(struct kvm *kvm)
+{
+ kvm->arch.kvm_ops->destroy_vm(kvm);
+
+#ifdef CONFIG_PPC64
+ kvmppc_rtas_tokens_free(kvm);
+ WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
+#endif
+
+#ifdef CONFIG_KVM_XICS
+ /*
+ * Free the XIVE and XICS devices which are not directly freed by the
+ * device 'release' method
+ */
+ kfree(kvm->arch.xive_devices.native);
+ kvm->arch.xive_devices.native = NULL;
+ kfree(kvm->arch.xive_devices.xics_on_xive);
+ kvm->arch.xive_devices.xics_on_xive = NULL;
+ kfree(kvm->arch.xics_device);
+ kvm->arch.xics_device = NULL;
+#endif /* CONFIG_KVM_XICS */
+}
+
+int kvmppc_h_logical_ci_load(struct kvm_vcpu *vcpu)
+{
+ unsigned long size = kvmppc_get_gpr(vcpu, 4);
+ unsigned long addr = kvmppc_get_gpr(vcpu, 5);
+ u64 buf;
+ int srcu_idx;
+ int ret;
+
+ if (!is_power_of_2(size) || (size > sizeof(buf)))
+ return H_TOO_HARD;
+
+ srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+ ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, size, &buf);
+ srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
+ if (ret != 0)
+ return H_TOO_HARD;
+
+ switch (size) {
+ case 1:
+ kvmppc_set_gpr(vcpu, 4, *(u8 *)&buf);
+ break;
+
+ case 2:
+ kvmppc_set_gpr(vcpu, 4, be16_to_cpu(*(__be16 *)&buf));
+ break;
+
+ case 4:
+ kvmppc_set_gpr(vcpu, 4, be32_to_cpu(*(__be32 *)&buf));
+ break;
+
+ case 8:
+ kvmppc_set_gpr(vcpu, 4, be64_to_cpu(*(__be64 *)&buf));
+ break;
+
+ default:
+ BUG();
+ }
+
+ return H_SUCCESS;
+}
+EXPORT_SYMBOL_GPL(kvmppc_h_logical_ci_load);
+
+int kvmppc_h_logical_ci_store(struct kvm_vcpu *vcpu)
+{
+ unsigned long size = kvmppc_get_gpr(vcpu, 4);
+ unsigned long addr = kvmppc_get_gpr(vcpu, 5);
+ unsigned long val = kvmppc_get_gpr(vcpu, 6);
+ u64 buf;
+ int srcu_idx;
+ int ret;
+
+ switch (size) {
+ case 1:
+ *(u8 *)&buf = val;
+ break;
+
+ case 2:
+ *(__be16 *)&buf = cpu_to_be16(val);
+ break;
+
+ case 4:
+ *(__be32 *)&buf = cpu_to_be32(val);
+ break;
+
+ case 8:
+ *(__be64 *)&buf = cpu_to_be64(val);
+ break;
+
+ default:
+ return H_TOO_HARD;
+ }
+
+ srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+ ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, size, &buf);
+ srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
+ if (ret != 0)
+ return H_TOO_HARD;
+
+ return H_SUCCESS;
+}
+EXPORT_SYMBOL_GPL(kvmppc_h_logical_ci_store);
+
+int kvmppc_core_check_processor_compat(void)
+{
+ /*
+ * We always return 0 for book3s. We check
+ * for compatibility while loading the HV
+ * or PR module
+ */
+ return 0;
+}
+
+int kvmppc_book3s_hcall_implemented(struct kvm *kvm, unsigned long hcall)
+{
+ return kvm->arch.kvm_ops->hcall_implemented(hcall);
+}
+
+#ifdef CONFIG_KVM_XICS
+int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
+ bool line_status)
+{
+ if (xics_on_xive())
+ return kvmppc_xive_set_irq(kvm, irq_source_id, irq, level,
+ line_status);
+ else
+ return kvmppc_xics_set_irq(kvm, irq_source_id, irq, level,
+ line_status);
+}
+
+int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *irq_entry,
+ struct kvm *kvm, int irq_source_id,
+ int level, bool line_status)
+{
+ return kvm_set_irq(kvm, irq_source_id, irq_entry->gsi,
+ level, line_status);
+}
+static int kvmppc_book3s_set_irq(struct kvm_kernel_irq_routing_entry *e,
+ struct kvm *kvm, int irq_source_id, int level,
+ bool line_status)
+{
+ return kvm_set_irq(kvm, irq_source_id, e->gsi, level, line_status);
+}
+
+int kvm_irq_map_gsi(struct kvm *kvm,
+ struct kvm_kernel_irq_routing_entry *entries, int gsi)
+{
+ entries->gsi = gsi;
+ entries->type = KVM_IRQ_ROUTING_IRQCHIP;
+ entries->set = kvmppc_book3s_set_irq;
+ entries->irqchip.irqchip = 0;
+ entries->irqchip.pin = gsi;
+ return 1;
+}
+
+int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
+{
+ return pin;
+}
+
+#endif /* CONFIG_KVM_XICS */
+
+static int kvmppc_book3s_init(void)
+{
+ int r;
+
+ r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
+ if (r)
+ return r;
+#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
+ r = kvmppc_book3s_init_pr();
+#endif
+
+#ifdef CONFIG_KVM_XICS
+#ifdef CONFIG_KVM_XIVE
+ if (xics_on_xive()) {
+ kvm_register_device_ops(&kvm_xive_ops, KVM_DEV_TYPE_XICS);
+ if (kvmppc_xive_native_supported())
+ kvm_register_device_ops(&kvm_xive_native_ops,
+ KVM_DEV_TYPE_XIVE);
+ } else
+#endif
+ kvm_register_device_ops(&kvm_xics_ops, KVM_DEV_TYPE_XICS);
+#endif
+ return r;
+}
+
+static void kvmppc_book3s_exit(void)
+{
+#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
+ kvmppc_book3s_exit_pr();
+#endif
+ kvm_exit();
+}
+
+module_init(kvmppc_book3s_init);
+module_exit(kvmppc_book3s_exit);
+
+/* On 32bit this is our one and only kernel module */
+#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
+MODULE_ALIAS_MISCDEV(KVM_MINOR);
+MODULE_ALIAS("devname:kvm");
+#endif
diff --git a/arch/powerpc/kvm/book3s.h b/arch/powerpc/kvm/book3s.h
new file mode 100644
index 000000000..58391b4b3
--- /dev/null
+++ b/arch/powerpc/kvm/book3s.h
@@ -0,0 +1,38 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * Copyright IBM Corporation, 2013
+ * Author Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
+ */
+
+#ifndef __POWERPC_KVM_BOOK3S_H__
+#define __POWERPC_KVM_BOOK3S_H__
+
+extern void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
+ struct kvm_memory_slot *memslot);
+extern bool kvm_unmap_gfn_range_hv(struct kvm *kvm, struct kvm_gfn_range *range);
+extern bool kvm_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range);
+extern bool kvm_test_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range);
+extern bool kvm_set_spte_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range);
+
+extern int kvmppc_mmu_init_pr(struct kvm_vcpu *vcpu);
+extern void kvmppc_mmu_destroy_pr(struct kvm_vcpu *vcpu);
+extern int kvmppc_core_emulate_op_pr(struct kvm_vcpu *vcpu,
+ unsigned int inst, int *advance);
+extern int kvmppc_core_emulate_mtspr_pr(struct kvm_vcpu *vcpu,
+ int sprn, ulong spr_val);
+extern int kvmppc_core_emulate_mfspr_pr(struct kvm_vcpu *vcpu,
+ int sprn, ulong *spr_val);
+extern int kvmppc_book3s_init_pr(void);
+void kvmppc_book3s_exit_pr(void);
+extern int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr);
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+extern void kvmppc_emulate_tabort(struct kvm_vcpu *vcpu, int ra_val);
+#else
+static inline void kvmppc_emulate_tabort(struct kvm_vcpu *vcpu, int ra_val) {}
+#endif
+
+extern void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr);
+extern void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags);
+
+#endif
diff --git a/arch/powerpc/kvm/book3s_32_mmu.c b/arch/powerpc/kvm/book3s_32_mmu.c
new file mode 100644
index 000000000..0215f3293
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_32_mmu.c
@@ -0,0 +1,415 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ *
+ * Copyright SUSE Linux Products GmbH 2009
+ *
+ * Authors: Alexander Graf <agraf@suse.de>
+ */
+
+#include <linux/types.h>
+#include <linux/string.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/highmem.h>
+
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+
+/* #define DEBUG_MMU */
+/* #define DEBUG_MMU_PTE */
+/* #define DEBUG_MMU_PTE_IP 0xfff14c40 */
+
+#ifdef DEBUG_MMU
+#define dprintk(X...) printk(KERN_INFO X)
+#else
+#define dprintk(X...) do { } while(0)
+#endif
+
+#ifdef DEBUG_MMU_PTE
+#define dprintk_pte(X...) printk(KERN_INFO X)
+#else
+#define dprintk_pte(X...) do { } while(0)
+#endif
+
+#define PTEG_FLAG_ACCESSED 0x00000100
+#define PTEG_FLAG_DIRTY 0x00000080
+#ifndef SID_SHIFT
+#define SID_SHIFT 28
+#endif
+
+static inline bool check_debug_ip(struct kvm_vcpu *vcpu)
+{
+#ifdef DEBUG_MMU_PTE_IP
+ return vcpu->arch.regs.nip == DEBUG_MMU_PTE_IP;
+#else
+ return true;
+#endif
+}
+
+static inline u32 sr_vsid(u32 sr_raw)
+{
+ return sr_raw & 0x0fffffff;
+}
+
+static inline bool sr_valid(u32 sr_raw)
+{
+ return (sr_raw & 0x80000000) ? false : true;
+}
+
+static inline bool sr_ks(u32 sr_raw)
+{
+ return (sr_raw & 0x40000000) ? true: false;
+}
+
+static inline bool sr_kp(u32 sr_raw)
+{
+ return (sr_raw & 0x20000000) ? true: false;
+}
+
+static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr,
+ struct kvmppc_pte *pte, bool data,
+ bool iswrite);
+static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
+ u64 *vsid);
+
+static u32 find_sr(struct kvm_vcpu *vcpu, gva_t eaddr)
+{
+ return kvmppc_get_sr(vcpu, (eaddr >> 28) & 0xf);
+}
+
+static u64 kvmppc_mmu_book3s_32_ea_to_vp(struct kvm_vcpu *vcpu, gva_t eaddr,
+ bool data)
+{
+ u64 vsid;
+ struct kvmppc_pte pte;
+
+ if (!kvmppc_mmu_book3s_32_xlate_bat(vcpu, eaddr, &pte, data, false))
+ return pte.vpage;
+
+ kvmppc_mmu_book3s_32_esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
+ return (((u64)eaddr >> 12) & 0xffff) | (vsid << 16);
+}
+
+static hva_t kvmppc_mmu_book3s_32_get_pteg(struct kvm_vcpu *vcpu,
+ u32 sre, gva_t eaddr,
+ bool primary)
+{
+ struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
+ u32 page, hash, pteg, htabmask;
+ hva_t r;
+
+ page = (eaddr & 0x0FFFFFFF) >> 12;
+ htabmask = ((vcpu_book3s->sdr1 & 0x1FF) << 16) | 0xFFC0;
+
+ hash = ((sr_vsid(sre) ^ page) << 6);
+ if (!primary)
+ hash = ~hash;
+ hash &= htabmask;
+
+ pteg = (vcpu_book3s->sdr1 & 0xffff0000) | hash;
+
+ dprintk("MMU: pc=0x%lx eaddr=0x%lx sdr1=0x%llx pteg=0x%x vsid=0x%x\n",
+ kvmppc_get_pc(vcpu), eaddr, vcpu_book3s->sdr1, pteg,
+ sr_vsid(sre));
+
+ r = gfn_to_hva(vcpu->kvm, pteg >> PAGE_SHIFT);
+ if (kvm_is_error_hva(r))
+ return r;
+ return r | (pteg & ~PAGE_MASK);
+}
+
+static u32 kvmppc_mmu_book3s_32_get_ptem(u32 sre, gva_t eaddr, bool primary)
+{
+ return ((eaddr & 0x0fffffff) >> 22) | (sr_vsid(sre) << 7) |
+ (primary ? 0 : 0x40) | 0x80000000;
+}
+
+static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr,
+ struct kvmppc_pte *pte, bool data,
+ bool iswrite)
+{
+ struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
+ struct kvmppc_bat *bat;
+ int i;
+
+ for (i = 0; i < 8; i++) {
+ if (data)
+ bat = &vcpu_book3s->dbat[i];
+ else
+ bat = &vcpu_book3s->ibat[i];
+
+ if (kvmppc_get_msr(vcpu) & MSR_PR) {
+ if (!bat->vp)
+ continue;
+ } else {
+ if (!bat->vs)
+ continue;
+ }
+
+ if (check_debug_ip(vcpu))
+ {
+ dprintk_pte("%cBAT %02d: 0x%lx - 0x%x (0x%x)\n",
+ data ? 'd' : 'i', i, eaddr, bat->bepi,
+ bat->bepi_mask);
+ }
+ if ((eaddr & bat->bepi_mask) == bat->bepi) {
+ u64 vsid;
+ kvmppc_mmu_book3s_32_esid_to_vsid(vcpu,
+ eaddr >> SID_SHIFT, &vsid);
+ vsid <<= 16;
+ pte->vpage = (((u64)eaddr >> 12) & 0xffff) | vsid;
+
+ pte->raddr = bat->brpn | (eaddr & ~bat->bepi_mask);
+ pte->may_read = bat->pp;
+ pte->may_write = bat->pp > 1;
+ pte->may_execute = true;
+ if (!pte->may_read) {
+ printk(KERN_INFO "BAT is not readable!\n");
+ continue;
+ }
+ if (iswrite && !pte->may_write) {
+ dprintk_pte("BAT is read-only!\n");
+ continue;
+ }
+
+ return 0;
+ }
+ }
+
+ return -ENOENT;
+}
+
+static int kvmppc_mmu_book3s_32_xlate_pte(struct kvm_vcpu *vcpu, gva_t eaddr,
+ struct kvmppc_pte *pte, bool data,
+ bool iswrite, bool primary)
+{
+ u32 sre;
+ hva_t ptegp;
+ u32 pteg[16];
+ u32 pte0, pte1;
+ u32 ptem = 0;
+ int i;
+ int found = 0;
+
+ sre = find_sr(vcpu, eaddr);
+
+ dprintk_pte("SR 0x%lx: vsid=0x%x, raw=0x%x\n", eaddr >> 28,
+ sr_vsid(sre), sre);
+
+ pte->vpage = kvmppc_mmu_book3s_32_ea_to_vp(vcpu, eaddr, data);
+
+ ptegp = kvmppc_mmu_book3s_32_get_pteg(vcpu, sre, eaddr, primary);
+ if (kvm_is_error_hva(ptegp)) {
+ printk(KERN_INFO "KVM: Invalid PTEG!\n");
+ goto no_page_found;
+ }
+
+ ptem = kvmppc_mmu_book3s_32_get_ptem(sre, eaddr, primary);
+
+ if(copy_from_user(pteg, (void __user *)ptegp, sizeof(pteg))) {
+ printk_ratelimited(KERN_ERR
+ "KVM: Can't copy data from 0x%lx!\n", ptegp);
+ goto no_page_found;
+ }
+
+ for (i=0; i<16; i+=2) {
+ pte0 = be32_to_cpu(pteg[i]);
+ pte1 = be32_to_cpu(pteg[i + 1]);
+ if (ptem == pte0) {
+ u8 pp;
+
+ pte->raddr = (pte1 & ~(0xFFFULL)) | (eaddr & 0xFFF);
+ pp = pte1 & 3;
+
+ if ((sr_kp(sre) && (kvmppc_get_msr(vcpu) & MSR_PR)) ||
+ (sr_ks(sre) && !(kvmppc_get_msr(vcpu) & MSR_PR)))
+ pp |= 4;
+
+ pte->may_write = false;
+ pte->may_read = false;
+ pte->may_execute = true;
+ switch (pp) {
+ case 0:
+ case 1:
+ case 2:
+ case 6:
+ pte->may_write = true;
+ fallthrough;
+ case 3:
+ case 5:
+ case 7:
+ pte->may_read = true;
+ break;
+ }
+
+ dprintk_pte("MMU: Found PTE -> %x %x - %x\n",
+ pte0, pte1, pp);
+ found = 1;
+ break;
+ }
+ }
+
+ /* Update PTE C and A bits, so the guest's swapper knows we used the
+ page */
+ if (found) {
+ u32 pte_r = pte1;
+ char __user *addr = (char __user *) (ptegp + (i+1) * sizeof(u32));
+
+ /*
+ * Use single-byte writes to update the HPTE, to
+ * conform to what real hardware does.
+ */
+ if (pte->may_read && !(pte_r & PTEG_FLAG_ACCESSED)) {
+ pte_r |= PTEG_FLAG_ACCESSED;
+ put_user(pte_r >> 8, addr + 2);
+ }
+ if (iswrite && pte->may_write && !(pte_r & PTEG_FLAG_DIRTY)) {
+ pte_r |= PTEG_FLAG_DIRTY;
+ put_user(pte_r, addr + 3);
+ }
+ if (!pte->may_read || (iswrite && !pte->may_write))
+ return -EPERM;
+ return 0;
+ }
+
+no_page_found:
+
+ if (check_debug_ip(vcpu)) {
+ dprintk_pte("KVM MMU: No PTE found (sdr1=0x%llx ptegp=0x%lx)\n",
+ to_book3s(vcpu)->sdr1, ptegp);
+ for (i=0; i<16; i+=2) {
+ dprintk_pte(" %02d: 0x%x - 0x%x (0x%x)\n",
+ i, be32_to_cpu(pteg[i]),
+ be32_to_cpu(pteg[i+1]), ptem);
+ }
+ }
+
+ return -ENOENT;
+}
+
+static int kvmppc_mmu_book3s_32_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
+ struct kvmppc_pte *pte, bool data,
+ bool iswrite)
+{
+ int r;
+ ulong mp_ea = vcpu->arch.magic_page_ea;
+
+ pte->eaddr = eaddr;
+ pte->page_size = MMU_PAGE_4K;
+
+ /* Magic page override */
+ if (unlikely(mp_ea) &&
+ unlikely((eaddr & ~0xfffULL) == (mp_ea & ~0xfffULL)) &&
+ !(kvmppc_get_msr(vcpu) & MSR_PR)) {
+ pte->vpage = kvmppc_mmu_book3s_32_ea_to_vp(vcpu, eaddr, data);
+ pte->raddr = vcpu->arch.magic_page_pa | (pte->raddr & 0xfff);
+ pte->raddr &= KVM_PAM;
+ pte->may_execute = true;
+ pte->may_read = true;
+ pte->may_write = true;
+
+ return 0;
+ }
+
+ r = kvmppc_mmu_book3s_32_xlate_bat(vcpu, eaddr, pte, data, iswrite);
+ if (r < 0)
+ r = kvmppc_mmu_book3s_32_xlate_pte(vcpu, eaddr, pte,
+ data, iswrite, true);
+ if (r == -ENOENT)
+ r = kvmppc_mmu_book3s_32_xlate_pte(vcpu, eaddr, pte,
+ data, iswrite, false);
+
+ return r;
+}
+
+
+static u32 kvmppc_mmu_book3s_32_mfsrin(struct kvm_vcpu *vcpu, u32 srnum)
+{
+ return kvmppc_get_sr(vcpu, srnum);
+}
+
+static void kvmppc_mmu_book3s_32_mtsrin(struct kvm_vcpu *vcpu, u32 srnum,
+ ulong value)
+{
+ kvmppc_set_sr(vcpu, srnum, value);
+ kvmppc_mmu_map_segment(vcpu, srnum << SID_SHIFT);
+}
+
+static void kvmppc_mmu_book3s_32_tlbie(struct kvm_vcpu *vcpu, ulong ea, bool large)
+{
+ unsigned long i;
+ struct kvm_vcpu *v;
+
+ /* flush this VA on all cpus */
+ kvm_for_each_vcpu(i, v, vcpu->kvm)
+ kvmppc_mmu_pte_flush(v, ea, 0x0FFFF000);
+}
+
+static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
+ u64 *vsid)
+{
+ ulong ea = esid << SID_SHIFT;
+ u32 sr;
+ u64 gvsid = esid;
+ u64 msr = kvmppc_get_msr(vcpu);
+
+ if (msr & (MSR_DR|MSR_IR)) {
+ sr = find_sr(vcpu, ea);
+ if (sr_valid(sr))
+ gvsid = sr_vsid(sr);
+ }
+
+ /* In case we only have one of MSR_IR or MSR_DR set, let's put
+ that in the real-mode context (and hope RM doesn't access
+ high memory) */
+ switch (msr & (MSR_DR|MSR_IR)) {
+ case 0:
+ *vsid = VSID_REAL | esid;
+ break;
+ case MSR_IR:
+ *vsid = VSID_REAL_IR | gvsid;
+ break;
+ case MSR_DR:
+ *vsid = VSID_REAL_DR | gvsid;
+ break;
+ case MSR_DR|MSR_IR:
+ if (sr_valid(sr))
+ *vsid = sr_vsid(sr);
+ else
+ *vsid = VSID_BAT | gvsid;
+ break;
+ default:
+ BUG();
+ }
+
+ if (msr & MSR_PR)
+ *vsid |= VSID_PR;
+
+ return 0;
+}
+
+static bool kvmppc_mmu_book3s_32_is_dcbz32(struct kvm_vcpu *vcpu)
+{
+ return true;
+}
+
+
+void kvmppc_mmu_book3s_32_init(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
+
+ mmu->mtsrin = kvmppc_mmu_book3s_32_mtsrin;
+ mmu->mfsrin = kvmppc_mmu_book3s_32_mfsrin;
+ mmu->xlate = kvmppc_mmu_book3s_32_xlate;
+ mmu->tlbie = kvmppc_mmu_book3s_32_tlbie;
+ mmu->esid_to_vsid = kvmppc_mmu_book3s_32_esid_to_vsid;
+ mmu->ea_to_vp = kvmppc_mmu_book3s_32_ea_to_vp;
+ mmu->is_dcbz32 = kvmppc_mmu_book3s_32_is_dcbz32;
+
+ mmu->slbmte = NULL;
+ mmu->slbmfee = NULL;
+ mmu->slbmfev = NULL;
+ mmu->slbfee = NULL;
+ mmu->slbie = NULL;
+ mmu->slbia = NULL;
+}
diff --git a/arch/powerpc/kvm/book3s_32_mmu_host.c b/arch/powerpc/kvm/book3s_32_mmu_host.c
new file mode 100644
index 000000000..4b3a8d80c
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_32_mmu_host.c
@@ -0,0 +1,395 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2010 SUSE Linux Products GmbH. All rights reserved.
+ *
+ * Authors:
+ * Alexander Graf <agraf@suse.de>
+ */
+
+#include <linux/kvm_host.h>
+
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+#include <asm/book3s/32/mmu-hash.h>
+#include <asm/machdep.h>
+#include <asm/mmu_context.h>
+#include <asm/hw_irq.h>
+#include "book3s.h"
+
+/* #define DEBUG_MMU */
+/* #define DEBUG_SR */
+
+#ifdef DEBUG_MMU
+#define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__)
+#else
+#define dprintk_mmu(a, ...) do { } while(0)
+#endif
+
+#ifdef DEBUG_SR
+#define dprintk_sr(a, ...) printk(KERN_INFO a, __VA_ARGS__)
+#else
+#define dprintk_sr(a, ...) do { } while(0)
+#endif
+
+#if PAGE_SHIFT != 12
+#error Unknown page size
+#endif
+
+#ifdef CONFIG_SMP
+#error XXX need to grab mmu_hash_lock
+#endif
+
+#ifdef CONFIG_PTE_64BIT
+#error Only 32 bit pages are supported for now
+#endif
+
+static ulong htab;
+static u32 htabmask;
+
+void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
+{
+ volatile u32 *pteg;
+
+ /* Remove from host HTAB */
+ pteg = (u32*)pte->slot;
+ pteg[0] = 0;
+
+ /* And make sure it's gone from the TLB too */
+ asm volatile ("sync");
+ asm volatile ("tlbie %0" : : "r" (pte->pte.eaddr) : "memory");
+ asm volatile ("sync");
+ asm volatile ("tlbsync");
+}
+
+/* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using
+ * a hash, so we don't waste cycles on looping */
+static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
+{
+ return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
+ ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
+ ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
+ ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
+ ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
+ ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
+ ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
+ ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
+}
+
+
+static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
+{
+ struct kvmppc_sid_map *map;
+ u16 sid_map_mask;
+
+ if (kvmppc_get_msr(vcpu) & MSR_PR)
+ gvsid |= VSID_PR;
+
+ sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
+ map = &to_book3s(vcpu)->sid_map[sid_map_mask];
+ if (map->guest_vsid == gvsid) {
+ dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n",
+ gvsid, map->host_vsid);
+ return map;
+ }
+
+ map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask];
+ if (map->guest_vsid == gvsid) {
+ dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n",
+ gvsid, map->host_vsid);
+ return map;
+ }
+
+ dprintk_sr("SR: Searching 0x%llx -> not found\n", gvsid);
+ return NULL;
+}
+
+static u32 *kvmppc_mmu_get_pteg(struct kvm_vcpu *vcpu, u32 vsid, u32 eaddr,
+ bool primary)
+{
+ u32 page, hash;
+ ulong pteg = htab;
+
+ page = (eaddr & ~ESID_MASK) >> 12;
+
+ hash = ((vsid ^ page) << 6);
+ if (!primary)
+ hash = ~hash;
+
+ hash &= htabmask;
+
+ pteg |= hash;
+
+ dprintk_mmu("htab: %lx | hash: %x | htabmask: %x | pteg: %lx\n",
+ htab, hash, htabmask, pteg);
+
+ return (u32*)pteg;
+}
+
+extern char etext[];
+
+int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte,
+ bool iswrite)
+{
+ kvm_pfn_t hpaddr;
+ u64 vpn;
+ u64 vsid;
+ struct kvmppc_sid_map *map;
+ volatile u32 *pteg;
+ u32 eaddr = orig_pte->eaddr;
+ u32 pteg0, pteg1;
+ register int rr = 0;
+ bool primary = false;
+ bool evict = false;
+ struct hpte_cache *pte;
+ int r = 0;
+ bool writable;
+
+ /* Get host physical address for gpa */
+ hpaddr = kvmppc_gpa_to_pfn(vcpu, orig_pte->raddr, iswrite, &writable);
+ if (is_error_noslot_pfn(hpaddr)) {
+ printk(KERN_INFO "Couldn't get guest page for gpa %lx!\n",
+ orig_pte->raddr);
+ r = -EINVAL;
+ goto out;
+ }
+ hpaddr <<= PAGE_SHIFT;
+
+ /* and write the mapping ea -> hpa into the pt */
+ vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid);
+ map = find_sid_vsid(vcpu, vsid);
+ if (!map) {
+ kvmppc_mmu_map_segment(vcpu, eaddr);
+ map = find_sid_vsid(vcpu, vsid);
+ }
+ BUG_ON(!map);
+
+ vsid = map->host_vsid;
+ vpn = (vsid << (SID_SHIFT - VPN_SHIFT)) |
+ ((eaddr & ~ESID_MASK) >> VPN_SHIFT);
+next_pteg:
+ if (rr == 16) {
+ primary = !primary;
+ evict = true;
+ rr = 0;
+ }
+
+ pteg = kvmppc_mmu_get_pteg(vcpu, vsid, eaddr, primary);
+
+ /* not evicting yet */
+ if (!evict && (pteg[rr] & PTE_V)) {
+ rr += 2;
+ goto next_pteg;
+ }
+
+ dprintk_mmu("KVM: old PTEG: %p (%d)\n", pteg, rr);
+ dprintk_mmu("KVM: %08x - %08x\n", pteg[0], pteg[1]);
+ dprintk_mmu("KVM: %08x - %08x\n", pteg[2], pteg[3]);
+ dprintk_mmu("KVM: %08x - %08x\n", pteg[4], pteg[5]);
+ dprintk_mmu("KVM: %08x - %08x\n", pteg[6], pteg[7]);
+ dprintk_mmu("KVM: %08x - %08x\n", pteg[8], pteg[9]);
+ dprintk_mmu("KVM: %08x - %08x\n", pteg[10], pteg[11]);
+ dprintk_mmu("KVM: %08x - %08x\n", pteg[12], pteg[13]);
+ dprintk_mmu("KVM: %08x - %08x\n", pteg[14], pteg[15]);
+
+ pteg0 = ((eaddr & 0x0fffffff) >> 22) | (vsid << 7) | PTE_V |
+ (primary ? 0 : PTE_SEC);
+ pteg1 = hpaddr | PTE_M | PTE_R | PTE_C;
+
+ if (orig_pte->may_write && writable) {
+ pteg1 |= PP_RWRW;
+ mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
+ } else {
+ pteg1 |= PP_RWRX;
+ }
+
+ if (orig_pte->may_execute)
+ kvmppc_mmu_flush_icache(hpaddr >> PAGE_SHIFT);
+
+ local_irq_disable();
+
+ if (pteg[rr]) {
+ pteg[rr] = 0;
+ asm volatile ("sync");
+ }
+ pteg[rr + 1] = pteg1;
+ pteg[rr] = pteg0;
+ asm volatile ("sync");
+
+ local_irq_enable();
+
+ dprintk_mmu("KVM: new PTEG: %p\n", pteg);
+ dprintk_mmu("KVM: %08x - %08x\n", pteg[0], pteg[1]);
+ dprintk_mmu("KVM: %08x - %08x\n", pteg[2], pteg[3]);
+ dprintk_mmu("KVM: %08x - %08x\n", pteg[4], pteg[5]);
+ dprintk_mmu("KVM: %08x - %08x\n", pteg[6], pteg[7]);
+ dprintk_mmu("KVM: %08x - %08x\n", pteg[8], pteg[9]);
+ dprintk_mmu("KVM: %08x - %08x\n", pteg[10], pteg[11]);
+ dprintk_mmu("KVM: %08x - %08x\n", pteg[12], pteg[13]);
+ dprintk_mmu("KVM: %08x - %08x\n", pteg[14], pteg[15]);
+
+
+ /* Now tell our Shadow PTE code about the new page */
+
+ pte = kvmppc_mmu_hpte_cache_next(vcpu);
+ if (!pte) {
+ kvm_release_pfn_clean(hpaddr >> PAGE_SHIFT);
+ r = -EAGAIN;
+ goto out;
+ }
+
+ dprintk_mmu("KVM: %c%c Map 0x%llx: [%lx] 0x%llx (0x%llx) -> %lx\n",
+ orig_pte->may_write ? 'w' : '-',
+ orig_pte->may_execute ? 'x' : '-',
+ orig_pte->eaddr, (ulong)pteg, vpn,
+ orig_pte->vpage, hpaddr);
+
+ pte->slot = (ulong)&pteg[rr];
+ pte->host_vpn = vpn;
+ pte->pte = *orig_pte;
+ pte->pfn = hpaddr >> PAGE_SHIFT;
+
+ kvmppc_mmu_hpte_cache_map(vcpu, pte);
+
+ kvm_release_pfn_clean(hpaddr >> PAGE_SHIFT);
+out:
+ return r;
+}
+
+void kvmppc_mmu_unmap_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
+{
+ kvmppc_mmu_pte_vflush(vcpu, pte->vpage, 0xfffffffffULL);
+}
+
+static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
+{
+ struct kvmppc_sid_map *map;
+ struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
+ u16 sid_map_mask;
+ static int backwards_map = 0;
+
+ if (kvmppc_get_msr(vcpu) & MSR_PR)
+ gvsid |= VSID_PR;
+
+ /* We might get collisions that trap in preceding order, so let's
+ map them differently */
+
+ sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
+ if (backwards_map)
+ sid_map_mask = SID_MAP_MASK - sid_map_mask;
+
+ map = &to_book3s(vcpu)->sid_map[sid_map_mask];
+
+ /* Make sure we're taking the other map next time */
+ backwards_map = !backwards_map;
+
+ /* Uh-oh ... out of mappings. Let's flush! */
+ if (vcpu_book3s->vsid_next >= VSID_POOL_SIZE) {
+ vcpu_book3s->vsid_next = 0;
+ memset(vcpu_book3s->sid_map, 0,
+ sizeof(struct kvmppc_sid_map) * SID_MAP_NUM);
+ kvmppc_mmu_pte_flush(vcpu, 0, 0);
+ kvmppc_mmu_flush_segments(vcpu);
+ }
+ map->host_vsid = vcpu_book3s->vsid_pool[vcpu_book3s->vsid_next];
+ vcpu_book3s->vsid_next++;
+
+ map->guest_vsid = gvsid;
+ map->valid = true;
+
+ return map;
+}
+
+int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
+{
+ u32 esid = eaddr >> SID_SHIFT;
+ u64 gvsid;
+ u32 sr;
+ struct kvmppc_sid_map *map;
+ struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
+ int r = 0;
+
+ if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
+ /* Invalidate an entry */
+ svcpu->sr[esid] = SR_INVALID;
+ r = -ENOENT;
+ goto out;
+ }
+
+ map = find_sid_vsid(vcpu, gvsid);
+ if (!map)
+ map = create_sid_map(vcpu, gvsid);
+
+ map->guest_esid = esid;
+ sr = map->host_vsid | SR_KP;
+ svcpu->sr[esid] = sr;
+
+ dprintk_sr("MMU: mtsr %d, 0x%x\n", esid, sr);
+
+out:
+ svcpu_put(svcpu);
+ return r;
+}
+
+void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
+{
+ int i;
+ struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
+
+ dprintk_sr("MMU: flushing all segments (%d)\n", ARRAY_SIZE(svcpu->sr));
+ for (i = 0; i < ARRAY_SIZE(svcpu->sr); i++)
+ svcpu->sr[i] = SR_INVALID;
+
+ svcpu_put(svcpu);
+}
+
+void kvmppc_mmu_destroy_pr(struct kvm_vcpu *vcpu)
+{
+ int i;
+
+ kvmppc_mmu_hpte_destroy(vcpu);
+ preempt_disable();
+ for (i = 0; i < SID_CONTEXTS; i++)
+ __destroy_context(to_book3s(vcpu)->context_id[i]);
+ preempt_enable();
+}
+
+int kvmppc_mmu_init_pr(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
+ int err;
+ ulong sdr1;
+ int i;
+ int j;
+
+ for (i = 0; i < SID_CONTEXTS; i++) {
+ err = __init_new_context();
+ if (err < 0)
+ goto init_fail;
+ vcpu3s->context_id[i] = err;
+
+ /* Remember context id for this combination */
+ for (j = 0; j < 16; j++)
+ vcpu3s->vsid_pool[(i * 16) + j] = CTX_TO_VSID(err, j);
+ }
+
+ vcpu3s->vsid_next = 0;
+
+ /* Remember where the HTAB is */
+ asm ( "mfsdr1 %0" : "=r"(sdr1) );
+ htabmask = ((sdr1 & 0x1FF) << 16) | 0xFFC0;
+ htab = (ulong)__va(sdr1 & 0xffff0000);
+
+ kvmppc_mmu_hpte_init(vcpu);
+
+ return 0;
+
+init_fail:
+ for (j = 0; j < i; j++) {
+ if (!vcpu3s->context_id[j])
+ continue;
+
+ __destroy_context(to_book3s(vcpu)->context_id[j]);
+ }
+
+ return -1;
+}
diff --git a/arch/powerpc/kvm/book3s_32_sr.S b/arch/powerpc/kvm/book3s_32_sr.S
new file mode 100644
index 000000000..6cfcd20d4
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_32_sr.S
@@ -0,0 +1,148 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ *
+ * Copyright SUSE Linux Products GmbH 2009
+ *
+ * Authors: Alexander Graf <agraf@suse.de>
+ */
+
+/******************************************************************************
+ * *
+ * Entry code *
+ * *
+ *****************************************************************************/
+
+.macro LOAD_GUEST_SEGMENTS
+
+ /* Required state:
+ *
+ * MSR = ~IR|DR
+ * R1 = host R1
+ * R2 = host R2
+ * R3 = shadow vcpu
+ * all other volatile GPRS = free except R4, R6
+ * SVCPU[CR] = guest CR
+ * SVCPU[XER] = guest XER
+ * SVCPU[CTR] = guest CTR
+ * SVCPU[LR] = guest LR
+ */
+
+#define XCHG_SR(n) lwz r9, (SVCPU_SR+(n*4))(r3); \
+ mtsr n, r9
+
+ XCHG_SR(0)
+ XCHG_SR(1)
+ XCHG_SR(2)
+ XCHG_SR(3)
+ XCHG_SR(4)
+ XCHG_SR(5)
+ XCHG_SR(6)
+ XCHG_SR(7)
+ XCHG_SR(8)
+ XCHG_SR(9)
+ XCHG_SR(10)
+ XCHG_SR(11)
+ XCHG_SR(12)
+ XCHG_SR(13)
+ XCHG_SR(14)
+ XCHG_SR(15)
+
+ /* Clear BATs. */
+
+#define KVM_KILL_BAT(n, reg) \
+ mtspr SPRN_IBAT##n##U,reg; \
+ mtspr SPRN_IBAT##n##L,reg; \
+ mtspr SPRN_DBAT##n##U,reg; \
+ mtspr SPRN_DBAT##n##L,reg; \
+
+ li r9, 0
+ KVM_KILL_BAT(0, r9)
+ KVM_KILL_BAT(1, r9)
+ KVM_KILL_BAT(2, r9)
+ KVM_KILL_BAT(3, r9)
+
+.endm
+
+/******************************************************************************
+ * *
+ * Exit code *
+ * *
+ *****************************************************************************/
+
+.macro LOAD_HOST_SEGMENTS
+
+ /* Register usage at this point:
+ *
+ * R1 = host R1
+ * R2 = host R2
+ * R12 = exit handler id
+ * R13 = shadow vcpu - SHADOW_VCPU_OFF
+ * SVCPU.* = guest *
+ * SVCPU[CR] = guest CR
+ * SVCPU[XER] = guest XER
+ * SVCPU[CTR] = guest CTR
+ * SVCPU[LR] = guest LR
+ *
+ */
+
+ /* Restore BATs */
+
+ /* We only overwrite the upper part, so we only restoree
+ the upper part. */
+#define KVM_LOAD_BAT(n, reg, RA, RB) \
+ lwz RA,(n*16)+0(reg); \
+ lwz RB,(n*16)+4(reg); \
+ mtspr SPRN_IBAT##n##U,RA; \
+ mtspr SPRN_IBAT##n##L,RB; \
+ lwz RA,(n*16)+8(reg); \
+ lwz RB,(n*16)+12(reg); \
+ mtspr SPRN_DBAT##n##U,RA; \
+ mtspr SPRN_DBAT##n##L,RB; \
+
+ lis r9, BATS@ha
+ addi r9, r9, BATS@l
+ tophys(r9, r9)
+ KVM_LOAD_BAT(0, r9, r10, r11)
+ KVM_LOAD_BAT(1, r9, r10, r11)
+ KVM_LOAD_BAT(2, r9, r10, r11)
+ KVM_LOAD_BAT(3, r9, r10, r11)
+
+ /* Restore Segment Registers */
+
+ /* 0xc - 0xf */
+
+ li r0, 4
+ mtctr r0
+ LOAD_REG_IMMEDIATE(r3, 0x20000000 | (0x111 * 0xc))
+ lis r4, 0xc000
+3: mtsrin r3, r4
+ addi r3, r3, 0x111 /* increment VSID */
+ addis r4, r4, 0x1000 /* address of next segment */
+ bdnz 3b
+
+ /* 0x0 - 0xb */
+
+ /* switch_mmu_context() needs paging, let's enable it */
+ mfmsr r9
+ ori r11, r9, MSR_DR
+ mtmsr r11
+ sync
+
+ /* switch_mmu_context() clobbers r12, rescue it */
+ SAVE_GPR(12, r1)
+
+ /* Calling switch_mmu_context(<inv>, current->mm, <inv>); */
+ lwz r4, MM(r2)
+ bl switch_mmu_context
+
+ /* restore r12 */
+ REST_GPR(12, r1)
+
+ /* Disable paging again */
+ mfmsr r9
+ li r6, MSR_DR
+ andc r9, r9, r6
+ mtmsr r9
+ sync
+
+.endm
diff --git a/arch/powerpc/kvm/book3s_64_entry.S b/arch/powerpc/kvm/book3s_64_entry.S
new file mode 100644
index 000000000..6c2b1d17c
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_64_entry.S
@@ -0,0 +1,429 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+#include <asm/asm-offsets.h>
+#include <asm/cache.h>
+#include <asm/code-patching-asm.h>
+#include <asm/exception-64s.h>
+#include <asm/export.h>
+#include <asm/kvm_asm.h>
+#include <asm/kvm_book3s_asm.h>
+#include <asm/mmu.h>
+#include <asm/ppc_asm.h>
+#include <asm/ptrace.h>
+#include <asm/reg.h>
+#include <asm/ultravisor-api.h>
+
+/*
+ * These are branched to from interrupt handlers in exception-64s.S which set
+ * IKVM_REAL or IKVM_VIRT, if HSTATE_IN_GUEST was found to be non-zero.
+ */
+
+/*
+ * This is a hcall, so register convention is as
+ * Documentation/powerpc/papr_hcalls.rst.
+ *
+ * This may also be a syscall from PR-KVM userspace that is to be
+ * reflected to the PR guest kernel, so registers may be set up for
+ * a system call rather than hcall. We don't currently clobber
+ * anything here, but the 0xc00 handler has already clobbered CTR
+ * and CR0, so PR-KVM can not support a guest kernel that preserves
+ * those registers across its system calls.
+ *
+ * The state of registers is as kvmppc_interrupt, except CFAR is not
+ * saved, R13 is not in SCRATCH0, and R10 does not contain the trap.
+ */
+.global kvmppc_hcall
+.balign IFETCH_ALIGN_BYTES
+kvmppc_hcall:
+#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+ lbz r10,HSTATE_IN_GUEST(r13)
+ cmpwi r10,KVM_GUEST_MODE_HV_P9
+ beq kvmppc_p9_exit_hcall
+#endif
+ ld r10,PACA_EXGEN+EX_R13(r13)
+ SET_SCRATCH0(r10)
+ li r10,0xc00
+ /* Now we look like kvmppc_interrupt */
+ li r11,PACA_EXGEN
+ b .Lgot_save_area
+
+/*
+ * KVM interrupt entry occurs after GEN_INT_ENTRY runs, and follows that
+ * call convention:
+ *
+ * guest R9-R13, CTR, CFAR, PPR saved in PACA EX_xxx save area
+ * guest (H)DAR, (H)DSISR are also in the save area for relevant interrupts
+ * guest R13 also saved in SCRATCH0
+ * R13 = PACA
+ * R11 = (H)SRR0
+ * R12 = (H)SRR1
+ * R9 = guest CR
+ * PPR is set to medium
+ *
+ * With the addition for KVM:
+ * R10 = trap vector
+ */
+.global kvmppc_interrupt
+.balign IFETCH_ALIGN_BYTES
+kvmppc_interrupt:
+#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+ std r10,HSTATE_SCRATCH0(r13)
+ lbz r10,HSTATE_IN_GUEST(r13)
+ cmpwi r10,KVM_GUEST_MODE_HV_P9
+ beq kvmppc_p9_exit_interrupt
+ ld r10,HSTATE_SCRATCH0(r13)
+#endif
+ li r11,PACA_EXGEN
+ cmpdi r10,0x200
+ bgt+ .Lgot_save_area
+ li r11,PACA_EXMC
+ beq .Lgot_save_area
+ li r11,PACA_EXNMI
+.Lgot_save_area:
+ add r11,r11,r13
+BEGIN_FTR_SECTION
+ ld r12,EX_CFAR(r11)
+ std r12,HSTATE_CFAR(r13)
+END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
+ ld r12,EX_CTR(r11)
+ mtctr r12
+BEGIN_FTR_SECTION
+ ld r12,EX_PPR(r11)
+ std r12,HSTATE_PPR(r13)
+END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
+ ld r12,EX_R12(r11)
+ std r12,HSTATE_SCRATCH0(r13)
+ sldi r12,r9,32
+ or r12,r12,r10
+ ld r9,EX_R9(r11)
+ ld r10,EX_R10(r11)
+ ld r11,EX_R11(r11)
+
+ /*
+ * Hcalls and other interrupts come here after normalising register
+ * contents and save locations:
+ *
+ * R12 = (guest CR << 32) | interrupt vector
+ * R13 = PACA
+ * guest R12 saved in shadow HSTATE_SCRATCH0
+ * guest R13 saved in SPRN_SCRATCH0
+ */
+ std r9,HSTATE_SCRATCH2(r13)
+ lbz r9,HSTATE_IN_GUEST(r13)
+ cmpwi r9,KVM_GUEST_MODE_SKIP
+ beq- .Lmaybe_skip
+.Lno_skip:
+#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
+ cmpwi r9,KVM_GUEST_MODE_GUEST
+ beq kvmppc_interrupt_pr
+#endif
+ b kvmppc_interrupt_hv
+#else
+ b kvmppc_interrupt_pr
+#endif
+
+/*
+ * "Skip" interrupts are part of a trick KVM uses a with hash guests to load
+ * the faulting instruction in guest memory from the hypervisor without
+ * walking page tables.
+ *
+ * When the guest takes a fault that requires the hypervisor to load the
+ * instruction (e.g., MMIO emulation), KVM is running in real-mode with HV=1
+ * and the guest MMU context loaded. It sets KVM_GUEST_MODE_SKIP, and sets
+ * MSR[DR]=1 while leaving MSR[IR]=0, so it continues to fetch HV instructions
+ * but loads and stores will access the guest context. This is used to load
+ * the faulting instruction using the faulting guest effective address.
+ *
+ * However the guest context may not be able to translate, or it may cause a
+ * machine check or other issue, which results in a fault in the host
+ * (even with KVM-HV).
+ *
+ * These faults come here because KVM_GUEST_MODE_SKIP was set, so if they
+ * are (or are likely) caused by that load, the instruction is skipped by
+ * just returning with the PC advanced +4, where it is noticed the load did
+ * not execute and it goes to the slow path which walks the page tables to
+ * read guest memory.
+ */
+.Lmaybe_skip:
+ cmpwi r12,BOOK3S_INTERRUPT_MACHINE_CHECK
+ beq 1f
+ cmpwi r12,BOOK3S_INTERRUPT_DATA_STORAGE
+ beq 1f
+ cmpwi r12,BOOK3S_INTERRUPT_DATA_SEGMENT
+ beq 1f
+#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+ /* HSRR interrupts get 2 added to interrupt number */
+ cmpwi r12,BOOK3S_INTERRUPT_H_DATA_STORAGE | 0x2
+ beq 2f
+#endif
+ b .Lno_skip
+1: mfspr r9,SPRN_SRR0
+ addi r9,r9,4
+ mtspr SPRN_SRR0,r9
+ ld r12,HSTATE_SCRATCH0(r13)
+ ld r9,HSTATE_SCRATCH2(r13)
+ GET_SCRATCH0(r13)
+ RFI_TO_KERNEL
+#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+2: mfspr r9,SPRN_HSRR0
+ addi r9,r9,4
+ mtspr SPRN_HSRR0,r9
+ ld r12,HSTATE_SCRATCH0(r13)
+ ld r9,HSTATE_SCRATCH2(r13)
+ GET_SCRATCH0(r13)
+ HRFI_TO_KERNEL
+#endif
+
+#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+
+/* Stack frame offsets for kvmppc_p9_enter_guest */
+#define SFS (144 + STACK_FRAME_MIN_SIZE)
+#define STACK_SLOT_NVGPRS (SFS - 144) /* 18 gprs */
+
+/*
+ * void kvmppc_p9_enter_guest(struct vcpu *vcpu);
+ *
+ * Enter the guest on a ISAv3.0 or later system.
+ */
+.balign IFETCH_ALIGN_BYTES
+_GLOBAL(kvmppc_p9_enter_guest)
+EXPORT_SYMBOL_GPL(kvmppc_p9_enter_guest)
+ mflr r0
+ std r0,PPC_LR_STKOFF(r1)
+ stdu r1,-SFS(r1)
+
+ std r1,HSTATE_HOST_R1(r13)
+
+ mfcr r4
+ stw r4,SFS+8(r1)
+
+ reg = 14
+ .rept 18
+ std reg,STACK_SLOT_NVGPRS + ((reg - 14) * 8)(r1)
+ reg = reg + 1
+ .endr
+
+ ld r4,VCPU_LR(r3)
+ mtlr r4
+ ld r4,VCPU_CTR(r3)
+ mtctr r4
+ ld r4,VCPU_XER(r3)
+ mtspr SPRN_XER,r4
+
+ ld r1,VCPU_CR(r3)
+
+BEGIN_FTR_SECTION
+ ld r4,VCPU_CFAR(r3)
+ mtspr SPRN_CFAR,r4
+END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
+BEGIN_FTR_SECTION
+ ld r4,VCPU_PPR(r3)
+ mtspr SPRN_PPR,r4
+END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
+
+ reg = 4
+ .rept 28
+ ld reg,__VCPU_GPR(reg)(r3)
+ reg = reg + 1
+ .endr
+
+ ld r4,VCPU_KVM(r3)
+ lbz r4,KVM_SECURE_GUEST(r4)
+ cmpdi r4,0
+ ld r4,VCPU_GPR(R4)(r3)
+ bne .Lret_to_ultra
+
+ mtcr r1
+
+ ld r0,VCPU_GPR(R0)(r3)
+ ld r1,VCPU_GPR(R1)(r3)
+ ld r2,VCPU_GPR(R2)(r3)
+ ld r3,VCPU_GPR(R3)(r3)
+
+ HRFI_TO_GUEST
+ b .
+
+ /*
+ * Use UV_RETURN ultracall to return control back to the Ultravisor
+ * after processing an hypercall or interrupt that was forwarded
+ * (a.k.a. reflected) to the Hypervisor.
+ *
+ * All registers have already been reloaded except the ucall requires:
+ * R0 = hcall result
+ * R2 = SRR1, so UV can detect a synthesized interrupt (if any)
+ * R3 = UV_RETURN
+ */
+.Lret_to_ultra:
+ mtcr r1
+ ld r1,VCPU_GPR(R1)(r3)
+
+ ld r0,VCPU_GPR(R3)(r3)
+ mfspr r2,SPRN_SRR1
+ LOAD_REG_IMMEDIATE(r3, UV_RETURN)
+ sc 2
+
+/*
+ * kvmppc_p9_exit_hcall and kvmppc_p9_exit_interrupt are branched to from
+ * above if the interrupt was taken for a guest that was entered via
+ * kvmppc_p9_enter_guest().
+ *
+ * The exit code recovers the host stack and vcpu pointer, saves all guest GPRs
+ * and CR, LR, XER as well as guest MSR and NIA into the VCPU, then re-
+ * establishes the host stack and registers to return from the
+ * kvmppc_p9_enter_guest() function, which saves CTR and other guest registers
+ * (SPRs and FP, VEC, etc).
+ */
+.balign IFETCH_ALIGN_BYTES
+kvmppc_p9_exit_hcall:
+ mfspr r11,SPRN_SRR0
+ mfspr r12,SPRN_SRR1
+ li r10,0xc00
+ std r10,HSTATE_SCRATCH0(r13)
+
+.balign IFETCH_ALIGN_BYTES
+kvmppc_p9_exit_interrupt:
+ /*
+ * If set to KVM_GUEST_MODE_HV_P9 but we're still in the
+ * hypervisor, that means we can't return from the entry stack.
+ */
+ rldicl. r10,r12,64-MSR_HV_LG,63
+ bne- kvmppc_p9_bad_interrupt
+
+ std r1,HSTATE_SCRATCH1(r13)
+ std r3,HSTATE_SCRATCH2(r13)
+ ld r1,HSTATE_HOST_R1(r13)
+ ld r3,HSTATE_KVM_VCPU(r13)
+
+ std r9,VCPU_CR(r3)
+
+1:
+ std r11,VCPU_PC(r3)
+ std r12,VCPU_MSR(r3)
+
+ reg = 14
+ .rept 18
+ std reg,__VCPU_GPR(reg)(r3)
+ reg = reg + 1
+ .endr
+
+ /* r1, r3, r9-r13 are saved to vcpu by C code */
+ std r0,VCPU_GPR(R0)(r3)
+ std r2,VCPU_GPR(R2)(r3)
+ reg = 4
+ .rept 5
+ std reg,__VCPU_GPR(reg)(r3)
+ reg = reg + 1
+ .endr
+
+ LOAD_PACA_TOC()
+
+ mflr r4
+ std r4,VCPU_LR(r3)
+ mfspr r4,SPRN_XER
+ std r4,VCPU_XER(r3)
+
+ reg = 14
+ .rept 18
+ ld reg,STACK_SLOT_NVGPRS + ((reg - 14) * 8)(r1)
+ reg = reg + 1
+ .endr
+
+ lwz r4,SFS+8(r1)
+ mtcr r4
+
+ /*
+ * Flush the link stack here, before executing the first blr on the
+ * way out of the guest.
+ *
+ * The link stack won't match coming out of the guest anyway so the
+ * only cost is the flush itself. The call clobbers r0.
+ */
+1: nop
+ patch_site 1b patch__call_kvm_flush_link_stack_p9
+
+ addi r1,r1,SFS
+ ld r0,PPC_LR_STKOFF(r1)
+ mtlr r0
+ blr
+
+/*
+ * Took an interrupt somewhere right before HRFID to guest, so registers are
+ * in a bad way. Return things hopefully enough to run host virtual code and
+ * run the Linux interrupt handler (SRESET or MCE) to print something useful.
+ *
+ * We could be really clever and save all host registers in known locations
+ * before setting HSTATE_IN_GUEST, then restoring them all here, and setting
+ * return address to a fixup that sets them up again. But that's a lot of
+ * effort for a small bit of code. Lots of other things to do first.
+ */
+kvmppc_p9_bad_interrupt:
+BEGIN_MMU_FTR_SECTION
+ /*
+ * Hash host doesn't try to recover MMU (requires host SLB reload)
+ */
+ b .
+END_MMU_FTR_SECTION_IFCLR(MMU_FTR_TYPE_RADIX)
+ /*
+ * Clean up guest registers to give host a chance to run.
+ */
+ li r10,0
+ mtspr SPRN_AMR,r10
+ mtspr SPRN_IAMR,r10
+ mtspr SPRN_CIABR,r10
+ mtspr SPRN_DAWRX0,r10
+BEGIN_FTR_SECTION
+ mtspr SPRN_DAWRX1,r10
+END_FTR_SECTION_IFSET(CPU_FTR_DAWR1)
+
+ /*
+ * Switch to host MMU mode (don't have the real host PID but we aren't
+ * going back to userspace).
+ */
+ hwsync
+ isync
+
+ mtspr SPRN_PID,r10
+
+ ld r10, HSTATE_KVM_VCPU(r13)
+ ld r10, VCPU_KVM(r10)
+ lwz r10, KVM_HOST_LPID(r10)
+ mtspr SPRN_LPID,r10
+
+ ld r10, HSTATE_KVM_VCPU(r13)
+ ld r10, VCPU_KVM(r10)
+ ld r10, KVM_HOST_LPCR(r10)
+ mtspr SPRN_LPCR,r10
+
+ isync
+
+ /*
+ * Set GUEST_MODE_NONE so the handler won't branch to KVM, and clear
+ * MSR_RI in r12 ([H]SRR1) so the handler won't try to return.
+ */
+ li r10,KVM_GUEST_MODE_NONE
+ stb r10,HSTATE_IN_GUEST(r13)
+ li r10,MSR_RI
+ andc r12,r12,r10
+
+ /*
+ * Go back to interrupt handler. MCE and SRESET have their specific
+ * PACA save area so they should be used directly. They set up their
+ * own stack. The other handlers all use EXGEN. They will use the
+ * guest r1 if it looks like a kernel stack, so just load the
+ * emergency stack and go to program check for all other interrupts.
+ */
+ ld r10,HSTATE_SCRATCH0(r13)
+ cmpwi r10,BOOK3S_INTERRUPT_MACHINE_CHECK
+ beq .Lcall_machine_check_common
+
+ cmpwi r10,BOOK3S_INTERRUPT_SYSTEM_RESET
+ beq .Lcall_system_reset_common
+
+ b .
+
+.Lcall_machine_check_common:
+ b machine_check_common
+
+.Lcall_system_reset_common:
+ b system_reset_common
+#endif
diff --git a/arch/powerpc/kvm/book3s_64_mmu.c b/arch/powerpc/kvm/book3s_64_mmu.c
new file mode 100644
index 000000000..61290282f
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_64_mmu.c
@@ -0,0 +1,670 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ *
+ * Copyright SUSE Linux Products GmbH 2009
+ *
+ * Authors: Alexander Graf <agraf@suse.de>
+ */
+
+#include <linux/types.h>
+#include <linux/string.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/highmem.h>
+
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+#include <asm/book3s/64/mmu-hash.h>
+
+/* #define DEBUG_MMU */
+
+#ifdef DEBUG_MMU
+#define dprintk(X...) printk(KERN_INFO X)
+#else
+#define dprintk(X...) do { } while(0)
+#endif
+
+static struct kvmppc_slb *kvmppc_mmu_book3s_64_find_slbe(
+ struct kvm_vcpu *vcpu,
+ gva_t eaddr)
+{
+ int i;
+ u64 esid = GET_ESID(eaddr);
+ u64 esid_1t = GET_ESID_1T(eaddr);
+
+ for (i = 0; i < vcpu->arch.slb_nr; i++) {
+ u64 cmp_esid = esid;
+
+ if (!vcpu->arch.slb[i].valid)
+ continue;
+
+ if (vcpu->arch.slb[i].tb)
+ cmp_esid = esid_1t;
+
+ if (vcpu->arch.slb[i].esid == cmp_esid)
+ return &vcpu->arch.slb[i];
+ }
+
+ dprintk("KVM: No SLB entry found for 0x%lx [%llx | %llx]\n",
+ eaddr, esid, esid_1t);
+ for (i = 0; i < vcpu->arch.slb_nr; i++) {
+ if (vcpu->arch.slb[i].vsid)
+ dprintk(" %d: %c%c%c %llx %llx\n", i,
+ vcpu->arch.slb[i].valid ? 'v' : ' ',
+ vcpu->arch.slb[i].large ? 'l' : ' ',
+ vcpu->arch.slb[i].tb ? 't' : ' ',
+ vcpu->arch.slb[i].esid,
+ vcpu->arch.slb[i].vsid);
+ }
+
+ return NULL;
+}
+
+static int kvmppc_slb_sid_shift(struct kvmppc_slb *slbe)
+{
+ return slbe->tb ? SID_SHIFT_1T : SID_SHIFT;
+}
+
+static u64 kvmppc_slb_offset_mask(struct kvmppc_slb *slbe)
+{
+ return (1ul << kvmppc_slb_sid_shift(slbe)) - 1;
+}
+
+static u64 kvmppc_slb_calc_vpn(struct kvmppc_slb *slb, gva_t eaddr)
+{
+ eaddr &= kvmppc_slb_offset_mask(slb);
+
+ return (eaddr >> VPN_SHIFT) |
+ ((slb->vsid) << (kvmppc_slb_sid_shift(slb) - VPN_SHIFT));
+}
+
+static u64 kvmppc_mmu_book3s_64_ea_to_vp(struct kvm_vcpu *vcpu, gva_t eaddr,
+ bool data)
+{
+ struct kvmppc_slb *slb;
+
+ slb = kvmppc_mmu_book3s_64_find_slbe(vcpu, eaddr);
+ if (!slb)
+ return 0;
+
+ return kvmppc_slb_calc_vpn(slb, eaddr);
+}
+
+static int mmu_pagesize(int mmu_pg)
+{
+ switch (mmu_pg) {
+ case MMU_PAGE_64K:
+ return 16;
+ case MMU_PAGE_16M:
+ return 24;
+ }
+ return 12;
+}
+
+static int kvmppc_mmu_book3s_64_get_pagesize(struct kvmppc_slb *slbe)
+{
+ return mmu_pagesize(slbe->base_page_size);
+}
+
+static u32 kvmppc_mmu_book3s_64_get_page(struct kvmppc_slb *slbe, gva_t eaddr)
+{
+ int p = kvmppc_mmu_book3s_64_get_pagesize(slbe);
+
+ return ((eaddr & kvmppc_slb_offset_mask(slbe)) >> p);
+}
+
+static hva_t kvmppc_mmu_book3s_64_get_pteg(struct kvm_vcpu *vcpu,
+ struct kvmppc_slb *slbe, gva_t eaddr,
+ bool second)
+{
+ struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
+ u64 hash, pteg, htabsize;
+ u32 ssize;
+ hva_t r;
+ u64 vpn;
+
+ htabsize = ((1 << ((vcpu_book3s->sdr1 & 0x1f) + 11)) - 1);
+
+ vpn = kvmppc_slb_calc_vpn(slbe, eaddr);
+ ssize = slbe->tb ? MMU_SEGSIZE_1T : MMU_SEGSIZE_256M;
+ hash = hpt_hash(vpn, kvmppc_mmu_book3s_64_get_pagesize(slbe), ssize);
+ if (second)
+ hash = ~hash;
+ hash &= ((1ULL << 39ULL) - 1ULL);
+ hash &= htabsize;
+ hash <<= 7ULL;
+
+ pteg = vcpu_book3s->sdr1 & 0xfffffffffffc0000ULL;
+ pteg |= hash;
+
+ dprintk("MMU: page=0x%x sdr1=0x%llx pteg=0x%llx vsid=0x%llx\n",
+ page, vcpu_book3s->sdr1, pteg, slbe->vsid);
+
+ /* When running a PAPR guest, SDR1 contains a HVA address instead
+ of a GPA */
+ if (vcpu->arch.papr_enabled)
+ r = pteg;
+ else
+ r = gfn_to_hva(vcpu->kvm, pteg >> PAGE_SHIFT);
+
+ if (kvm_is_error_hva(r))
+ return r;
+ return r | (pteg & ~PAGE_MASK);
+}
+
+static u64 kvmppc_mmu_book3s_64_get_avpn(struct kvmppc_slb *slbe, gva_t eaddr)
+{
+ int p = kvmppc_mmu_book3s_64_get_pagesize(slbe);
+ u64 avpn;
+
+ avpn = kvmppc_mmu_book3s_64_get_page(slbe, eaddr);
+ avpn |= slbe->vsid << (kvmppc_slb_sid_shift(slbe) - p);
+
+ if (p < 16)
+ avpn >>= ((80 - p) - 56) - 8; /* 16 - p */
+ else
+ avpn <<= p - 16;
+
+ return avpn;
+}
+
+/*
+ * Return page size encoded in the second word of a HPTE, or
+ * -1 for an invalid encoding for the base page size indicated by
+ * the SLB entry. This doesn't handle mixed pagesize segments yet.
+ */
+static int decode_pagesize(struct kvmppc_slb *slbe, u64 r)
+{
+ switch (slbe->base_page_size) {
+ case MMU_PAGE_64K:
+ if ((r & 0xf000) == 0x1000)
+ return MMU_PAGE_64K;
+ break;
+ case MMU_PAGE_16M:
+ if ((r & 0xff000) == 0)
+ return MMU_PAGE_16M;
+ break;
+ }
+ return -1;
+}
+
+static int kvmppc_mmu_book3s_64_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
+ struct kvmppc_pte *gpte, bool data,
+ bool iswrite)
+{
+ struct kvmppc_slb *slbe;
+ hva_t ptegp;
+ u64 pteg[16];
+ u64 avpn = 0;
+ u64 r;
+ u64 v_val, v_mask;
+ u64 eaddr_mask;
+ int i;
+ u8 pp, key = 0;
+ bool found = false;
+ bool second = false;
+ int pgsize;
+ ulong mp_ea = vcpu->arch.magic_page_ea;
+
+ /* Magic page override */
+ if (unlikely(mp_ea) &&
+ unlikely((eaddr & ~0xfffULL) == (mp_ea & ~0xfffULL)) &&
+ !(kvmppc_get_msr(vcpu) & MSR_PR)) {
+ gpte->eaddr = eaddr;
+ gpte->vpage = kvmppc_mmu_book3s_64_ea_to_vp(vcpu, eaddr, data);
+ gpte->raddr = vcpu->arch.magic_page_pa | (gpte->raddr & 0xfff);
+ gpte->raddr &= KVM_PAM;
+ gpte->may_execute = true;
+ gpte->may_read = true;
+ gpte->may_write = true;
+ gpte->page_size = MMU_PAGE_4K;
+ gpte->wimg = HPTE_R_M;
+
+ return 0;
+ }
+
+ slbe = kvmppc_mmu_book3s_64_find_slbe(vcpu, eaddr);
+ if (!slbe)
+ goto no_seg_found;
+
+ avpn = kvmppc_mmu_book3s_64_get_avpn(slbe, eaddr);
+ v_val = avpn & HPTE_V_AVPN;
+
+ if (slbe->tb)
+ v_val |= SLB_VSID_B_1T;
+ if (slbe->large)
+ v_val |= HPTE_V_LARGE;
+ v_val |= HPTE_V_VALID;
+
+ v_mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_LARGE | HPTE_V_VALID |
+ HPTE_V_SECONDARY;
+
+ pgsize = slbe->large ? MMU_PAGE_16M : MMU_PAGE_4K;
+
+ mutex_lock(&vcpu->kvm->arch.hpt_mutex);
+
+do_second:
+ ptegp = kvmppc_mmu_book3s_64_get_pteg(vcpu, slbe, eaddr, second);
+ if (kvm_is_error_hva(ptegp))
+ goto no_page_found;
+
+ if(copy_from_user(pteg, (void __user *)ptegp, sizeof(pteg))) {
+ printk_ratelimited(KERN_ERR
+ "KVM: Can't copy data from 0x%lx!\n", ptegp);
+ goto no_page_found;
+ }
+
+ if ((kvmppc_get_msr(vcpu) & MSR_PR) && slbe->Kp)
+ key = 4;
+ else if (!(kvmppc_get_msr(vcpu) & MSR_PR) && slbe->Ks)
+ key = 4;
+
+ for (i=0; i<16; i+=2) {
+ u64 pte0 = be64_to_cpu(pteg[i]);
+ u64 pte1 = be64_to_cpu(pteg[i + 1]);
+
+ /* Check all relevant fields of 1st dword */
+ if ((pte0 & v_mask) == v_val) {
+ /* If large page bit is set, check pgsize encoding */
+ if (slbe->large &&
+ (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
+ pgsize = decode_pagesize(slbe, pte1);
+ if (pgsize < 0)
+ continue;
+ }
+ found = true;
+ break;
+ }
+ }
+
+ if (!found) {
+ if (second)
+ goto no_page_found;
+ v_val |= HPTE_V_SECONDARY;
+ second = true;
+ goto do_second;
+ }
+
+ r = be64_to_cpu(pteg[i+1]);
+ pp = (r & HPTE_R_PP) | key;
+ if (r & HPTE_R_PP0)
+ pp |= 8;
+
+ gpte->eaddr = eaddr;
+ gpte->vpage = kvmppc_mmu_book3s_64_ea_to_vp(vcpu, eaddr, data);
+
+ eaddr_mask = (1ull << mmu_pagesize(pgsize)) - 1;
+ gpte->raddr = (r & HPTE_R_RPN & ~eaddr_mask) | (eaddr & eaddr_mask);
+ gpte->page_size = pgsize;
+ gpte->may_execute = ((r & HPTE_R_N) ? false : true);
+ if (unlikely(vcpu->arch.disable_kernel_nx) &&
+ !(kvmppc_get_msr(vcpu) & MSR_PR))
+ gpte->may_execute = true;
+ gpte->may_read = false;
+ gpte->may_write = false;
+ gpte->wimg = r & HPTE_R_WIMG;
+
+ switch (pp) {
+ case 0:
+ case 1:
+ case 2:
+ case 6:
+ gpte->may_write = true;
+ fallthrough;
+ case 3:
+ case 5:
+ case 7:
+ case 10:
+ gpte->may_read = true;
+ break;
+ }
+
+ dprintk("KVM MMU: Translated 0x%lx [0x%llx] -> 0x%llx "
+ "-> 0x%lx\n",
+ eaddr, avpn, gpte->vpage, gpte->raddr);
+
+ /* Update PTE R and C bits, so the guest's swapper knows we used the
+ * page */
+ if (gpte->may_read && !(r & HPTE_R_R)) {
+ /*
+ * Set the accessed flag.
+ * We have to write this back with a single byte write
+ * because another vcpu may be accessing this on
+ * non-PAPR platforms such as mac99, and this is
+ * what real hardware does.
+ */
+ char __user *addr = (char __user *) (ptegp + (i + 1) * sizeof(u64));
+ r |= HPTE_R_R;
+ put_user(r >> 8, addr + 6);
+ }
+ if (iswrite && gpte->may_write && !(r & HPTE_R_C)) {
+ /* Set the dirty flag */
+ /* Use a single byte write */
+ char __user *addr = (char __user *) (ptegp + (i + 1) * sizeof(u64));
+ r |= HPTE_R_C;
+ put_user(r, addr + 7);
+ }
+
+ mutex_unlock(&vcpu->kvm->arch.hpt_mutex);
+
+ if (!gpte->may_read || (iswrite && !gpte->may_write))
+ return -EPERM;
+ return 0;
+
+no_page_found:
+ mutex_unlock(&vcpu->kvm->arch.hpt_mutex);
+ return -ENOENT;
+
+no_seg_found:
+ dprintk("KVM MMU: Trigger segment fault\n");
+ return -EINVAL;
+}
+
+static void kvmppc_mmu_book3s_64_slbmte(struct kvm_vcpu *vcpu, u64 rs, u64 rb)
+{
+ u64 esid, esid_1t;
+ int slb_nr;
+ struct kvmppc_slb *slbe;
+
+ dprintk("KVM MMU: slbmte(0x%llx, 0x%llx)\n", rs, rb);
+
+ esid = GET_ESID(rb);
+ esid_1t = GET_ESID_1T(rb);
+ slb_nr = rb & 0xfff;
+
+ if (slb_nr > vcpu->arch.slb_nr)
+ return;
+
+ slbe = &vcpu->arch.slb[slb_nr];
+
+ slbe->large = (rs & SLB_VSID_L) ? 1 : 0;
+ slbe->tb = (rs & SLB_VSID_B_1T) ? 1 : 0;
+ slbe->esid = slbe->tb ? esid_1t : esid;
+ slbe->vsid = (rs & ~SLB_VSID_B) >> (kvmppc_slb_sid_shift(slbe) - 16);
+ slbe->valid = (rb & SLB_ESID_V) ? 1 : 0;
+ slbe->Ks = (rs & SLB_VSID_KS) ? 1 : 0;
+ slbe->Kp = (rs & SLB_VSID_KP) ? 1 : 0;
+ slbe->nx = (rs & SLB_VSID_N) ? 1 : 0;
+ slbe->class = (rs & SLB_VSID_C) ? 1 : 0;
+
+ slbe->base_page_size = MMU_PAGE_4K;
+ if (slbe->large) {
+ if (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE) {
+ switch (rs & SLB_VSID_LP) {
+ case SLB_VSID_LP_00:
+ slbe->base_page_size = MMU_PAGE_16M;
+ break;
+ case SLB_VSID_LP_01:
+ slbe->base_page_size = MMU_PAGE_64K;
+ break;
+ }
+ } else
+ slbe->base_page_size = MMU_PAGE_16M;
+ }
+
+ slbe->orige = rb & (ESID_MASK | SLB_ESID_V);
+ slbe->origv = rs;
+
+ /* Map the new segment */
+ kvmppc_mmu_map_segment(vcpu, esid << SID_SHIFT);
+}
+
+static int kvmppc_mmu_book3s_64_slbfee(struct kvm_vcpu *vcpu, gva_t eaddr,
+ ulong *ret_slb)
+{
+ struct kvmppc_slb *slbe = kvmppc_mmu_book3s_64_find_slbe(vcpu, eaddr);
+
+ if (slbe) {
+ *ret_slb = slbe->origv;
+ return 0;
+ }
+ *ret_slb = 0;
+ return -ENOENT;
+}
+
+static u64 kvmppc_mmu_book3s_64_slbmfee(struct kvm_vcpu *vcpu, u64 slb_nr)
+{
+ struct kvmppc_slb *slbe;
+
+ if (slb_nr > vcpu->arch.slb_nr)
+ return 0;
+
+ slbe = &vcpu->arch.slb[slb_nr];
+
+ return slbe->orige;
+}
+
+static u64 kvmppc_mmu_book3s_64_slbmfev(struct kvm_vcpu *vcpu, u64 slb_nr)
+{
+ struct kvmppc_slb *slbe;
+
+ if (slb_nr > vcpu->arch.slb_nr)
+ return 0;
+
+ slbe = &vcpu->arch.slb[slb_nr];
+
+ return slbe->origv;
+}
+
+static void kvmppc_mmu_book3s_64_slbie(struct kvm_vcpu *vcpu, u64 ea)
+{
+ struct kvmppc_slb *slbe;
+ u64 seg_size;
+
+ dprintk("KVM MMU: slbie(0x%llx)\n", ea);
+
+ slbe = kvmppc_mmu_book3s_64_find_slbe(vcpu, ea);
+
+ if (!slbe)
+ return;
+
+ dprintk("KVM MMU: slbie(0x%llx, 0x%llx)\n", ea, slbe->esid);
+
+ slbe->valid = false;
+ slbe->orige = 0;
+ slbe->origv = 0;
+
+ seg_size = 1ull << kvmppc_slb_sid_shift(slbe);
+ kvmppc_mmu_flush_segment(vcpu, ea & ~(seg_size - 1), seg_size);
+}
+
+static void kvmppc_mmu_book3s_64_slbia(struct kvm_vcpu *vcpu)
+{
+ int i;
+
+ dprintk("KVM MMU: slbia()\n");
+
+ for (i = 1; i < vcpu->arch.slb_nr; i++) {
+ vcpu->arch.slb[i].valid = false;
+ vcpu->arch.slb[i].orige = 0;
+ vcpu->arch.slb[i].origv = 0;
+ }
+
+ if (kvmppc_get_msr(vcpu) & MSR_IR) {
+ kvmppc_mmu_flush_segments(vcpu);
+ kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
+ }
+}
+
+static void kvmppc_mmu_book3s_64_mtsrin(struct kvm_vcpu *vcpu, u32 srnum,
+ ulong value)
+{
+ u64 rb = 0, rs = 0;
+
+ /*
+ * According to Book3 2.01 mtsrin is implemented as:
+ *
+ * The SLB entry specified by (RB)32:35 is loaded from register
+ * RS, as follows.
+ *
+ * SLBE Bit Source SLB Field
+ *
+ * 0:31 0x0000_0000 ESID-0:31
+ * 32:35 (RB)32:35 ESID-32:35
+ * 36 0b1 V
+ * 37:61 0x00_0000|| 0b0 VSID-0:24
+ * 62:88 (RS)37:63 VSID-25:51
+ * 89:91 (RS)33:35 Ks Kp N
+ * 92 (RS)36 L ((RS)36 must be 0b0)
+ * 93 0b0 C
+ */
+
+ dprintk("KVM MMU: mtsrin(0x%x, 0x%lx)\n", srnum, value);
+
+ /* ESID = srnum */
+ rb |= (srnum & 0xf) << 28;
+ /* Set the valid bit */
+ rb |= 1 << 27;
+ /* Index = ESID */
+ rb |= srnum;
+
+ /* VSID = VSID */
+ rs |= (value & 0xfffffff) << 12;
+ /* flags = flags */
+ rs |= ((value >> 28) & 0x7) << 9;
+
+ kvmppc_mmu_book3s_64_slbmte(vcpu, rs, rb);
+}
+
+static void kvmppc_mmu_book3s_64_tlbie(struct kvm_vcpu *vcpu, ulong va,
+ bool large)
+{
+ u64 mask = 0xFFFFFFFFFULL;
+ unsigned long i;
+ struct kvm_vcpu *v;
+
+ dprintk("KVM MMU: tlbie(0x%lx)\n", va);
+
+ /*
+ * The tlbie instruction changed behaviour starting with
+ * POWER6. POWER6 and later don't have the large page flag
+ * in the instruction but in the RB value, along with bits
+ * indicating page and segment sizes.
+ */
+ if (vcpu->arch.hflags & BOOK3S_HFLAG_NEW_TLBIE) {
+ /* POWER6 or later */
+ if (va & 1) { /* L bit */
+ if ((va & 0xf000) == 0x1000)
+ mask = 0xFFFFFFFF0ULL; /* 64k page */
+ else
+ mask = 0xFFFFFF000ULL; /* 16M page */
+ }
+ } else {
+ /* older processors, e.g. PPC970 */
+ if (large)
+ mask = 0xFFFFFF000ULL;
+ }
+ /* flush this VA on all vcpus */
+ kvm_for_each_vcpu(i, v, vcpu->kvm)
+ kvmppc_mmu_pte_vflush(v, va >> 12, mask);
+}
+
+#ifdef CONFIG_PPC_64K_PAGES
+static int segment_contains_magic_page(struct kvm_vcpu *vcpu, ulong esid)
+{
+ ulong mp_ea = vcpu->arch.magic_page_ea;
+
+ return mp_ea && !(kvmppc_get_msr(vcpu) & MSR_PR) &&
+ (mp_ea >> SID_SHIFT) == esid;
+}
+#endif
+
+static int kvmppc_mmu_book3s_64_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
+ u64 *vsid)
+{
+ ulong ea = esid << SID_SHIFT;
+ struct kvmppc_slb *slb;
+ u64 gvsid = esid;
+ ulong mp_ea = vcpu->arch.magic_page_ea;
+ int pagesize = MMU_PAGE_64K;
+ u64 msr = kvmppc_get_msr(vcpu);
+
+ if (msr & (MSR_DR|MSR_IR)) {
+ slb = kvmppc_mmu_book3s_64_find_slbe(vcpu, ea);
+ if (slb) {
+ gvsid = slb->vsid;
+ pagesize = slb->base_page_size;
+ if (slb->tb) {
+ gvsid <<= SID_SHIFT_1T - SID_SHIFT;
+ gvsid |= esid & ((1ul << (SID_SHIFT_1T - SID_SHIFT)) - 1);
+ gvsid |= VSID_1T;
+ }
+ }
+ }
+
+ switch (msr & (MSR_DR|MSR_IR)) {
+ case 0:
+ gvsid = VSID_REAL | esid;
+ break;
+ case MSR_IR:
+ gvsid |= VSID_REAL_IR;
+ break;
+ case MSR_DR:
+ gvsid |= VSID_REAL_DR;
+ break;
+ case MSR_DR|MSR_IR:
+ if (!slb)
+ goto no_slb;
+
+ break;
+ default:
+ BUG();
+ break;
+ }
+
+#ifdef CONFIG_PPC_64K_PAGES
+ /*
+ * Mark this as a 64k segment if the host is using
+ * 64k pages, the host MMU supports 64k pages and
+ * the guest segment page size is >= 64k,
+ * but not if this segment contains the magic page.
+ */
+ if (pagesize >= MMU_PAGE_64K &&
+ mmu_psize_defs[MMU_PAGE_64K].shift &&
+ !segment_contains_magic_page(vcpu, esid))
+ gvsid |= VSID_64K;
+#endif
+
+ if (kvmppc_get_msr(vcpu) & MSR_PR)
+ gvsid |= VSID_PR;
+
+ *vsid = gvsid;
+ return 0;
+
+no_slb:
+ /* Catch magic page case */
+ if (unlikely(mp_ea) &&
+ unlikely(esid == (mp_ea >> SID_SHIFT)) &&
+ !(kvmppc_get_msr(vcpu) & MSR_PR)) {
+ *vsid = VSID_REAL | esid;
+ return 0;
+ }
+
+ return -EINVAL;
+}
+
+static bool kvmppc_mmu_book3s_64_is_dcbz32(struct kvm_vcpu *vcpu)
+{
+ return (to_book3s(vcpu)->hid[5] & 0x80);
+}
+
+void kvmppc_mmu_book3s_64_init(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
+
+ mmu->mfsrin = NULL;
+ mmu->mtsrin = kvmppc_mmu_book3s_64_mtsrin;
+ mmu->slbmte = kvmppc_mmu_book3s_64_slbmte;
+ mmu->slbmfee = kvmppc_mmu_book3s_64_slbmfee;
+ mmu->slbmfev = kvmppc_mmu_book3s_64_slbmfev;
+ mmu->slbfee = kvmppc_mmu_book3s_64_slbfee;
+ mmu->slbie = kvmppc_mmu_book3s_64_slbie;
+ mmu->slbia = kvmppc_mmu_book3s_64_slbia;
+ mmu->xlate = kvmppc_mmu_book3s_64_xlate;
+ mmu->tlbie = kvmppc_mmu_book3s_64_tlbie;
+ mmu->esid_to_vsid = kvmppc_mmu_book3s_64_esid_to_vsid;
+ mmu->ea_to_vp = kvmppc_mmu_book3s_64_ea_to_vp;
+ mmu->is_dcbz32 = kvmppc_mmu_book3s_64_is_dcbz32;
+
+ vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
+}
diff --git a/arch/powerpc/kvm/book3s_64_mmu_host.c b/arch/powerpc/kvm/book3s_64_mmu_host.c
new file mode 100644
index 000000000..bc6a381b5
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_64_mmu_host.c
@@ -0,0 +1,407 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved.
+ *
+ * Authors:
+ * Alexander Graf <agraf@suse.de>
+ * Kevin Wolf <mail@kevin-wolf.de>
+ */
+
+#include <linux/kvm_host.h>
+#include <linux/pkeys.h>
+
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+#include <asm/book3s/64/mmu-hash.h>
+#include <asm/machdep.h>
+#include <asm/mmu_context.h>
+#include <asm/hw_irq.h>
+#include "trace_pr.h"
+#include "book3s.h"
+
+#define PTE_SIZE 12
+
+void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
+{
+ mmu_hash_ops.hpte_invalidate(pte->slot, pte->host_vpn,
+ pte->pagesize, pte->pagesize,
+ MMU_SEGSIZE_256M, false);
+}
+
+/* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using
+ * a hash, so we don't waste cycles on looping */
+static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
+{
+ return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
+ ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
+ ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
+ ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
+ ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
+ ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
+ ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
+ ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
+}
+
+
+static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
+{
+ struct kvmppc_sid_map *map;
+ u16 sid_map_mask;
+
+ if (kvmppc_get_msr(vcpu) & MSR_PR)
+ gvsid |= VSID_PR;
+
+ sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
+ map = &to_book3s(vcpu)->sid_map[sid_map_mask];
+ if (map->valid && (map->guest_vsid == gvsid)) {
+ trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
+ return map;
+ }
+
+ map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask];
+ if (map->valid && (map->guest_vsid == gvsid)) {
+ trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
+ return map;
+ }
+
+ trace_kvm_book3s_slb_fail(sid_map_mask, gvsid);
+ return NULL;
+}
+
+int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte,
+ bool iswrite)
+{
+ unsigned long vpn;
+ kvm_pfn_t hpaddr;
+ ulong hash, hpteg;
+ u64 vsid;
+ int ret;
+ int rflags = 0x192;
+ int vflags = 0;
+ int attempt = 0;
+ struct kvmppc_sid_map *map;
+ int r = 0;
+ int hpsize = MMU_PAGE_4K;
+ bool writable;
+ unsigned long mmu_seq;
+ struct kvm *kvm = vcpu->kvm;
+ struct hpte_cache *cpte;
+ unsigned long gfn = orig_pte->raddr >> PAGE_SHIFT;
+ unsigned long pfn;
+
+ /* used to check for invalidations in progress */
+ mmu_seq = kvm->mmu_invalidate_seq;
+ smp_rmb();
+
+ /* Get host physical address for gpa */
+ pfn = kvmppc_gpa_to_pfn(vcpu, orig_pte->raddr, iswrite, &writable);
+ if (is_error_noslot_pfn(pfn)) {
+ printk(KERN_INFO "Couldn't get guest page for gpa %lx!\n",
+ orig_pte->raddr);
+ r = -EINVAL;
+ goto out;
+ }
+ hpaddr = pfn << PAGE_SHIFT;
+
+ /* and write the mapping ea -> hpa into the pt */
+ vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid);
+ map = find_sid_vsid(vcpu, vsid);
+ if (!map) {
+ ret = kvmppc_mmu_map_segment(vcpu, orig_pte->eaddr);
+ WARN_ON(ret < 0);
+ map = find_sid_vsid(vcpu, vsid);
+ }
+ if (!map) {
+ printk(KERN_ERR "KVM: Segment map for 0x%llx (0x%lx) failed\n",
+ vsid, orig_pte->eaddr);
+ WARN_ON(true);
+ r = -EINVAL;
+ goto out;
+ }
+
+ vpn = hpt_vpn(orig_pte->eaddr, map->host_vsid, MMU_SEGSIZE_256M);
+
+ kvm_set_pfn_accessed(pfn);
+ if (!orig_pte->may_write || !writable)
+ rflags |= PP_RXRX;
+ else {
+ mark_page_dirty(vcpu->kvm, gfn);
+ kvm_set_pfn_dirty(pfn);
+ }
+
+ if (!orig_pte->may_execute)
+ rflags |= HPTE_R_N;
+ else
+ kvmppc_mmu_flush_icache(pfn);
+
+ rflags |= pte_to_hpte_pkey_bits(0, HPTE_USE_KERNEL_KEY);
+ rflags = (rflags & ~HPTE_R_WIMG) | orig_pte->wimg;
+
+ /*
+ * Use 64K pages if possible; otherwise, on 64K page kernels,
+ * we need to transfer 4 more bits from guest real to host real addr.
+ */
+ if (vsid & VSID_64K)
+ hpsize = MMU_PAGE_64K;
+ else
+ hpaddr |= orig_pte->raddr & (~0xfffULL & ~PAGE_MASK);
+
+ hash = hpt_hash(vpn, mmu_psize_defs[hpsize].shift, MMU_SEGSIZE_256M);
+
+ cpte = kvmppc_mmu_hpte_cache_next(vcpu);
+
+ spin_lock(&kvm->mmu_lock);
+ if (!cpte || mmu_invalidate_retry(kvm, mmu_seq)) {
+ r = -EAGAIN;
+ goto out_unlock;
+ }
+
+map_again:
+ hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
+
+ /* In case we tried normal mapping already, let's nuke old entries */
+ if (attempt > 1)
+ if (mmu_hash_ops.hpte_remove(hpteg) < 0) {
+ r = -1;
+ goto out_unlock;
+ }
+
+ ret = mmu_hash_ops.hpte_insert(hpteg, vpn, hpaddr, rflags, vflags,
+ hpsize, hpsize, MMU_SEGSIZE_256M);
+
+ if (ret == -1) {
+ /* If we couldn't map a primary PTE, try a secondary */
+ hash = ~hash;
+ vflags ^= HPTE_V_SECONDARY;
+ attempt++;
+ goto map_again;
+ } else if (ret < 0) {
+ r = -EIO;
+ goto out_unlock;
+ } else {
+ trace_kvm_book3s_64_mmu_map(rflags, hpteg,
+ vpn, hpaddr, orig_pte);
+
+ /*
+ * The mmu_hash_ops code may give us a secondary entry even
+ * though we asked for a primary. Fix up.
+ */
+ if ((ret & _PTEIDX_SECONDARY) && !(vflags & HPTE_V_SECONDARY)) {
+ hash = ~hash;
+ hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
+ }
+
+ cpte->slot = hpteg + (ret & 7);
+ cpte->host_vpn = vpn;
+ cpte->pte = *orig_pte;
+ cpte->pfn = pfn;
+ cpte->pagesize = hpsize;
+
+ kvmppc_mmu_hpte_cache_map(vcpu, cpte);
+ cpte = NULL;
+ }
+
+out_unlock:
+ spin_unlock(&kvm->mmu_lock);
+ kvm_release_pfn_clean(pfn);
+ if (cpte)
+ kvmppc_mmu_hpte_cache_free(cpte);
+
+out:
+ return r;
+}
+
+void kvmppc_mmu_unmap_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
+{
+ u64 mask = 0xfffffffffULL;
+ u64 vsid;
+
+ vcpu->arch.mmu.esid_to_vsid(vcpu, pte->eaddr >> SID_SHIFT, &vsid);
+ if (vsid & VSID_64K)
+ mask = 0xffffffff0ULL;
+ kvmppc_mmu_pte_vflush(vcpu, pte->vpage, mask);
+}
+
+static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
+{
+ unsigned long vsid_bits = VSID_BITS_65_256M;
+ struct kvmppc_sid_map *map;
+ struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
+ u16 sid_map_mask;
+ static int backwards_map;
+
+ if (kvmppc_get_msr(vcpu) & MSR_PR)
+ gvsid |= VSID_PR;
+
+ /* We might get collisions that trap in preceding order, so let's
+ map them differently */
+
+ sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
+ if (backwards_map)
+ sid_map_mask = SID_MAP_MASK - sid_map_mask;
+
+ map = &to_book3s(vcpu)->sid_map[sid_map_mask];
+
+ /* Make sure we're taking the other map next time */
+ backwards_map = !backwards_map;
+
+ /* Uh-oh ... out of mappings. Let's flush! */
+ if (vcpu_book3s->proto_vsid_next == vcpu_book3s->proto_vsid_max) {
+ vcpu_book3s->proto_vsid_next = vcpu_book3s->proto_vsid_first;
+ memset(vcpu_book3s->sid_map, 0,
+ sizeof(struct kvmppc_sid_map) * SID_MAP_NUM);
+ kvmppc_mmu_pte_flush(vcpu, 0, 0);
+ kvmppc_mmu_flush_segments(vcpu);
+ }
+
+ if (mmu_has_feature(MMU_FTR_68_BIT_VA))
+ vsid_bits = VSID_BITS_256M;
+
+ map->host_vsid = vsid_scramble(vcpu_book3s->proto_vsid_next++,
+ VSID_MULTIPLIER_256M, vsid_bits);
+
+ map->guest_vsid = gvsid;
+ map->valid = true;
+
+ trace_kvm_book3s_slb_map(sid_map_mask, gvsid, map->host_vsid);
+
+ return map;
+}
+
+static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid)
+{
+ struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
+ int i;
+ int max_slb_size = 64;
+ int found_inval = -1;
+ int r;
+
+ /* Are we overwriting? */
+ for (i = 0; i < svcpu->slb_max; i++) {
+ if (!(svcpu->slb[i].esid & SLB_ESID_V))
+ found_inval = i;
+ else if ((svcpu->slb[i].esid & ESID_MASK) == esid) {
+ r = i;
+ goto out;
+ }
+ }
+
+ /* Found a spare entry that was invalidated before */
+ if (found_inval >= 0) {
+ r = found_inval;
+ goto out;
+ }
+
+ /* No spare invalid entry, so create one */
+
+ if (mmu_slb_size < 64)
+ max_slb_size = mmu_slb_size;
+
+ /* Overflowing -> purge */
+ if ((svcpu->slb_max) == max_slb_size)
+ kvmppc_mmu_flush_segments(vcpu);
+
+ r = svcpu->slb_max;
+ svcpu->slb_max++;
+
+out:
+ svcpu_put(svcpu);
+ return r;
+}
+
+int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
+{
+ struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
+ u64 esid = eaddr >> SID_SHIFT;
+ u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V;
+ u64 slb_vsid = SLB_VSID_USER;
+ u64 gvsid;
+ int slb_index;
+ struct kvmppc_sid_map *map;
+ int r = 0;
+
+ slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK);
+
+ if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
+ /* Invalidate an entry */
+ svcpu->slb[slb_index].esid = 0;
+ r = -ENOENT;
+ goto out;
+ }
+
+ map = find_sid_vsid(vcpu, gvsid);
+ if (!map)
+ map = create_sid_map(vcpu, gvsid);
+
+ map->guest_esid = esid;
+
+ slb_vsid |= (map->host_vsid << 12);
+ slb_vsid &= ~SLB_VSID_KP;
+ slb_esid |= slb_index;
+
+#ifdef CONFIG_PPC_64K_PAGES
+ /* Set host segment base page size to 64K if possible */
+ if (gvsid & VSID_64K)
+ slb_vsid |= mmu_psize_defs[MMU_PAGE_64K].sllp;
+#endif
+
+ svcpu->slb[slb_index].esid = slb_esid;
+ svcpu->slb[slb_index].vsid = slb_vsid;
+
+ trace_kvm_book3s_slbmte(slb_vsid, slb_esid);
+
+out:
+ svcpu_put(svcpu);
+ return r;
+}
+
+void kvmppc_mmu_flush_segment(struct kvm_vcpu *vcpu, ulong ea, ulong seg_size)
+{
+ struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
+ ulong seg_mask = -seg_size;
+ int i;
+
+ for (i = 0; i < svcpu->slb_max; i++) {
+ if ((svcpu->slb[i].esid & SLB_ESID_V) &&
+ (svcpu->slb[i].esid & seg_mask) == ea) {
+ /* Invalidate this entry */
+ svcpu->slb[i].esid = 0;
+ }
+ }
+
+ svcpu_put(svcpu);
+}
+
+void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
+ svcpu->slb_max = 0;
+ svcpu->slb[0].esid = 0;
+ svcpu_put(svcpu);
+}
+
+void kvmppc_mmu_destroy_pr(struct kvm_vcpu *vcpu)
+{
+ kvmppc_mmu_hpte_destroy(vcpu);
+ __destroy_context(to_book3s(vcpu)->context_id[0]);
+}
+
+int kvmppc_mmu_init_pr(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
+ int err;
+
+ err = hash__alloc_context_id();
+ if (err < 0)
+ return -1;
+ vcpu3s->context_id[0] = err;
+
+ vcpu3s->proto_vsid_max = ((u64)(vcpu3s->context_id[0] + 1)
+ << ESID_BITS) - 1;
+ vcpu3s->proto_vsid_first = (u64)vcpu3s->context_id[0] << ESID_BITS;
+ vcpu3s->proto_vsid_next = vcpu3s->proto_vsid_first;
+
+ kvmppc_mmu_hpte_init(vcpu);
+
+ return 0;
+}
diff --git a/arch/powerpc/kvm/book3s_64_mmu_hv.c b/arch/powerpc/kvm/book3s_64_mmu_hv.c
new file mode 100644
index 000000000..e9744b41a
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_64_mmu_hv.c
@@ -0,0 +1,2136 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ *
+ * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
+ */
+
+#include <linux/types.h>
+#include <linux/string.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/highmem.h>
+#include <linux/gfp.h>
+#include <linux/slab.h>
+#include <linux/hugetlb.h>
+#include <linux/vmalloc.h>
+#include <linux/srcu.h>
+#include <linux/anon_inodes.h>
+#include <linux/file.h>
+#include <linux/debugfs.h>
+
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+#include <asm/book3s/64/mmu-hash.h>
+#include <asm/hvcall.h>
+#include <asm/synch.h>
+#include <asm/ppc-opcode.h>
+#include <asm/cputable.h>
+#include <asm/pte-walk.h>
+
+#include "book3s.h"
+#include "trace_hv.h"
+
+//#define DEBUG_RESIZE_HPT 1
+
+#ifdef DEBUG_RESIZE_HPT
+#define resize_hpt_debug(resize, ...) \
+ do { \
+ printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \
+ printk(__VA_ARGS__); \
+ } while (0)
+#else
+#define resize_hpt_debug(resize, ...) \
+ do { } while (0)
+#endif
+
+static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
+ long pte_index, unsigned long pteh,
+ unsigned long ptel, unsigned long *pte_idx_ret);
+
+struct kvm_resize_hpt {
+ /* These fields read-only after init */
+ struct kvm *kvm;
+ struct work_struct work;
+ u32 order;
+
+ /* These fields protected by kvm->arch.mmu_setup_lock */
+
+ /* Possible values and their usage:
+ * <0 an error occurred during allocation,
+ * -EBUSY allocation is in the progress,
+ * 0 allocation made successfully.
+ */
+ int error;
+
+ /* Private to the work thread, until error != -EBUSY,
+ * then protected by kvm->arch.mmu_setup_lock.
+ */
+ struct kvm_hpt_info hpt;
+};
+
+int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
+{
+ unsigned long hpt = 0;
+ int cma = 0;
+ struct page *page = NULL;
+ struct revmap_entry *rev;
+ unsigned long npte;
+
+ if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
+ return -EINVAL;
+
+ page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
+ if (page) {
+ hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
+ memset((void *)hpt, 0, (1ul << order));
+ cma = 1;
+ }
+
+ if (!hpt)
+ hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
+ |__GFP_NOWARN, order - PAGE_SHIFT);
+
+ if (!hpt)
+ return -ENOMEM;
+
+ /* HPTEs are 2**4 bytes long */
+ npte = 1ul << (order - 4);
+
+ /* Allocate reverse map array */
+ rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
+ if (!rev) {
+ if (cma)
+ kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
+ else
+ free_pages(hpt, order - PAGE_SHIFT);
+ return -ENOMEM;
+ }
+
+ info->order = order;
+ info->virt = hpt;
+ info->cma = cma;
+ info->rev = rev;
+
+ return 0;
+}
+
+void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
+{
+ atomic64_set(&kvm->arch.mmio_update, 0);
+ kvm->arch.hpt = *info;
+ kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
+
+ pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
+ info->virt, (long)info->order, kvm->arch.lpid);
+}
+
+long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
+{
+ long err = -EBUSY;
+ struct kvm_hpt_info info;
+
+ mutex_lock(&kvm->arch.mmu_setup_lock);
+ if (kvm->arch.mmu_ready) {
+ kvm->arch.mmu_ready = 0;
+ /* order mmu_ready vs. vcpus_running */
+ smp_mb();
+ if (atomic_read(&kvm->arch.vcpus_running)) {
+ kvm->arch.mmu_ready = 1;
+ goto out;
+ }
+ }
+ if (kvm_is_radix(kvm)) {
+ err = kvmppc_switch_mmu_to_hpt(kvm);
+ if (err)
+ goto out;
+ }
+
+ if (kvm->arch.hpt.order == order) {
+ /* We already have a suitable HPT */
+
+ /* Set the entire HPT to 0, i.e. invalid HPTEs */
+ memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
+ /*
+ * Reset all the reverse-mapping chains for all memslots
+ */
+ kvmppc_rmap_reset(kvm);
+ err = 0;
+ goto out;
+ }
+
+ if (kvm->arch.hpt.virt) {
+ kvmppc_free_hpt(&kvm->arch.hpt);
+ kvmppc_rmap_reset(kvm);
+ }
+
+ err = kvmppc_allocate_hpt(&info, order);
+ if (err < 0)
+ goto out;
+ kvmppc_set_hpt(kvm, &info);
+
+out:
+ if (err == 0)
+ /* Ensure that each vcpu will flush its TLB on next entry. */
+ cpumask_setall(&kvm->arch.need_tlb_flush);
+
+ mutex_unlock(&kvm->arch.mmu_setup_lock);
+ return err;
+}
+
+void kvmppc_free_hpt(struct kvm_hpt_info *info)
+{
+ vfree(info->rev);
+ info->rev = NULL;
+ if (info->cma)
+ kvm_free_hpt_cma(virt_to_page(info->virt),
+ 1 << (info->order - PAGE_SHIFT));
+ else if (info->virt)
+ free_pages(info->virt, info->order - PAGE_SHIFT);
+ info->virt = 0;
+ info->order = 0;
+}
+
+/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
+static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
+{
+ return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
+}
+
+/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
+static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
+{
+ return (pgsize == 0x10000) ? 0x1000 : 0;
+}
+
+void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
+ unsigned long porder)
+{
+ unsigned long i;
+ unsigned long npages;
+ unsigned long hp_v, hp_r;
+ unsigned long addr, hash;
+ unsigned long psize;
+ unsigned long hp0, hp1;
+ unsigned long idx_ret;
+ long ret;
+ struct kvm *kvm = vcpu->kvm;
+
+ psize = 1ul << porder;
+ npages = memslot->npages >> (porder - PAGE_SHIFT);
+
+ /* VRMA can't be > 1TB */
+ if (npages > 1ul << (40 - porder))
+ npages = 1ul << (40 - porder);
+ /* Can't use more than 1 HPTE per HPTEG */
+ if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
+ npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
+
+ hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
+ HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
+ hp1 = hpte1_pgsize_encoding(psize) |
+ HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
+
+ for (i = 0; i < npages; ++i) {
+ addr = i << porder;
+ /* can't use hpt_hash since va > 64 bits */
+ hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
+ & kvmppc_hpt_mask(&kvm->arch.hpt);
+ /*
+ * We assume that the hash table is empty and no
+ * vcpus are using it at this stage. Since we create
+ * at most one HPTE per HPTEG, we just assume entry 7
+ * is available and use it.
+ */
+ hash = (hash << 3) + 7;
+ hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
+ hp_r = hp1 | addr;
+ ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
+ &idx_ret);
+ if (ret != H_SUCCESS) {
+ pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
+ addr, ret);
+ break;
+ }
+ }
+}
+
+int kvmppc_mmu_hv_init(void)
+{
+ unsigned long nr_lpids;
+
+ if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
+ return -EINVAL;
+
+ if (cpu_has_feature(CPU_FTR_HVMODE)) {
+ if (WARN_ON(mfspr(SPRN_LPID) != 0))
+ return -EINVAL;
+ nr_lpids = 1UL << mmu_lpid_bits;
+ } else {
+ nr_lpids = 1UL << KVM_MAX_NESTED_GUESTS_SHIFT;
+ }
+
+ if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
+ /* POWER7 has 10-bit LPIDs, POWER8 has 12-bit LPIDs */
+ if (cpu_has_feature(CPU_FTR_ARCH_207S))
+ WARN_ON(nr_lpids != 1UL << 12);
+ else
+ WARN_ON(nr_lpids != 1UL << 10);
+
+ /*
+ * Reserve the last implemented LPID use in partition
+ * switching for POWER7 and POWER8.
+ */
+ nr_lpids -= 1;
+ }
+
+ kvmppc_init_lpid(nr_lpids);
+
+ return 0;
+}
+
+static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
+ long pte_index, unsigned long pteh,
+ unsigned long ptel, unsigned long *pte_idx_ret)
+{
+ long ret;
+
+ preempt_disable();
+ ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
+ kvm->mm->pgd, false, pte_idx_ret);
+ preempt_enable();
+ if (ret == H_TOO_HARD) {
+ /* this can't happen */
+ pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
+ ret = H_RESOURCE; /* or something */
+ }
+ return ret;
+
+}
+
+static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
+ gva_t eaddr)
+{
+ u64 mask;
+ int i;
+
+ for (i = 0; i < vcpu->arch.slb_nr; i++) {
+ if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
+ continue;
+
+ if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
+ mask = ESID_MASK_1T;
+ else
+ mask = ESID_MASK;
+
+ if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
+ return &vcpu->arch.slb[i];
+ }
+ return NULL;
+}
+
+static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
+ unsigned long ea)
+{
+ unsigned long ra_mask;
+
+ ra_mask = kvmppc_actual_pgsz(v, r) - 1;
+ return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
+}
+
+static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
+ struct kvmppc_pte *gpte, bool data, bool iswrite)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct kvmppc_slb *slbe;
+ unsigned long slb_v;
+ unsigned long pp, key;
+ unsigned long v, orig_v, gr;
+ __be64 *hptep;
+ long int index;
+ int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
+
+ if (kvm_is_radix(vcpu->kvm))
+ return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
+
+ /* Get SLB entry */
+ if (virtmode) {
+ slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
+ if (!slbe)
+ return -EINVAL;
+ slb_v = slbe->origv;
+ } else {
+ /* real mode access */
+ slb_v = vcpu->kvm->arch.vrma_slb_v;
+ }
+
+ preempt_disable();
+ /* Find the HPTE in the hash table */
+ index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
+ HPTE_V_VALID | HPTE_V_ABSENT);
+ if (index < 0) {
+ preempt_enable();
+ return -ENOENT;
+ }
+ hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
+ v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
+ gr = kvm->arch.hpt.rev[index].guest_rpte;
+
+ unlock_hpte(hptep, orig_v);
+ preempt_enable();
+
+ gpte->eaddr = eaddr;
+ gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
+
+ /* Get PP bits and key for permission check */
+ pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
+ key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
+ key &= slb_v;
+
+ /* Calculate permissions */
+ gpte->may_read = hpte_read_permission(pp, key);
+ gpte->may_write = hpte_write_permission(pp, key);
+ gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
+
+ /* Storage key permission check for POWER7 */
+ if (data && virtmode) {
+ int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
+ if (amrfield & 1)
+ gpte->may_read = 0;
+ if (amrfield & 2)
+ gpte->may_write = 0;
+ }
+
+ /* Get the guest physical address */
+ gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
+ return 0;
+}
+
+/*
+ * Quick test for whether an instruction is a load or a store.
+ * If the instruction is a load or a store, then this will indicate
+ * which it is, at least on server processors. (Embedded processors
+ * have some external PID instructions that don't follow the rule
+ * embodied here.) If the instruction isn't a load or store, then
+ * this doesn't return anything useful.
+ */
+static int instruction_is_store(unsigned int instr)
+{
+ unsigned int mask;
+
+ mask = 0x10000000;
+ if ((instr & 0xfc000000) == 0x7c000000)
+ mask = 0x100; /* major opcode 31 */
+ return (instr & mask) != 0;
+}
+
+int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu,
+ unsigned long gpa, gva_t ea, int is_store)
+{
+ u32 last_inst;
+
+ /*
+ * Fast path - check if the guest physical address corresponds to a
+ * device on the FAST_MMIO_BUS, if so we can avoid loading the
+ * instruction all together, then we can just handle it and return.
+ */
+ if (is_store) {
+ int idx, ret;
+
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+ ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
+ NULL);
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ if (!ret) {
+ kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
+ return RESUME_GUEST;
+ }
+ }
+
+ /*
+ * If we fail, we just return to the guest and try executing it again.
+ */
+ if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
+ EMULATE_DONE)
+ return RESUME_GUEST;
+
+ /*
+ * WARNING: We do not know for sure whether the instruction we just
+ * read from memory is the same that caused the fault in the first
+ * place. If the instruction we read is neither an load or a store,
+ * then it can't access memory, so we don't need to worry about
+ * enforcing access permissions. So, assuming it is a load or
+ * store, we just check that its direction (load or store) is
+ * consistent with the original fault, since that's what we
+ * checked the access permissions against. If there is a mismatch
+ * we just return and retry the instruction.
+ */
+
+ if (instruction_is_store(last_inst) != !!is_store)
+ return RESUME_GUEST;
+
+ /*
+ * Emulated accesses are emulated by looking at the hash for
+ * translation once, then performing the access later. The
+ * translation could be invalidated in the meantime in which
+ * point performing the subsequent memory access on the old
+ * physical address could possibly be a security hole for the
+ * guest (but not the host).
+ *
+ * This is less of an issue for MMIO stores since they aren't
+ * globally visible. It could be an issue for MMIO loads to
+ * a certain extent but we'll ignore it for now.
+ */
+
+ vcpu->arch.paddr_accessed = gpa;
+ vcpu->arch.vaddr_accessed = ea;
+ return kvmppc_emulate_mmio(vcpu);
+}
+
+int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu,
+ unsigned long ea, unsigned long dsisr)
+{
+ struct kvm *kvm = vcpu->kvm;
+ unsigned long hpte[3], r;
+ unsigned long hnow_v, hnow_r;
+ __be64 *hptep;
+ unsigned long mmu_seq, psize, pte_size;
+ unsigned long gpa_base, gfn_base;
+ unsigned long gpa, gfn, hva, pfn, hpa;
+ struct kvm_memory_slot *memslot;
+ unsigned long *rmap;
+ struct revmap_entry *rev;
+ struct page *page;
+ long index, ret;
+ bool is_ci;
+ bool writing, write_ok;
+ unsigned int shift;
+ unsigned long rcbits;
+ long mmio_update;
+ pte_t pte, *ptep;
+
+ if (kvm_is_radix(kvm))
+ return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr);
+
+ /*
+ * Real-mode code has already searched the HPT and found the
+ * entry we're interested in. Lock the entry and check that
+ * it hasn't changed. If it has, just return and re-execute the
+ * instruction.
+ */
+ if (ea != vcpu->arch.pgfault_addr)
+ return RESUME_GUEST;
+
+ if (vcpu->arch.pgfault_cache) {
+ mmio_update = atomic64_read(&kvm->arch.mmio_update);
+ if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
+ r = vcpu->arch.pgfault_cache->rpte;
+ psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
+ r);
+ gpa_base = r & HPTE_R_RPN & ~(psize - 1);
+ gfn_base = gpa_base >> PAGE_SHIFT;
+ gpa = gpa_base | (ea & (psize - 1));
+ return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
+ dsisr & DSISR_ISSTORE);
+ }
+ }
+ index = vcpu->arch.pgfault_index;
+ hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
+ rev = &kvm->arch.hpt.rev[index];
+ preempt_disable();
+ while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
+ cpu_relax();
+ hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
+ hpte[1] = be64_to_cpu(hptep[1]);
+ hpte[2] = r = rev->guest_rpte;
+ unlock_hpte(hptep, hpte[0]);
+ preempt_enable();
+
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
+ hpte[1] = hpte_new_to_old_r(hpte[1]);
+ }
+ if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
+ hpte[1] != vcpu->arch.pgfault_hpte[1])
+ return RESUME_GUEST;
+
+ /* Translate the logical address and get the page */
+ psize = kvmppc_actual_pgsz(hpte[0], r);
+ gpa_base = r & HPTE_R_RPN & ~(psize - 1);
+ gfn_base = gpa_base >> PAGE_SHIFT;
+ gpa = gpa_base | (ea & (psize - 1));
+ gfn = gpa >> PAGE_SHIFT;
+ memslot = gfn_to_memslot(kvm, gfn);
+
+ trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
+
+ /* No memslot means it's an emulated MMIO region */
+ if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
+ return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
+ dsisr & DSISR_ISSTORE);
+
+ /*
+ * This should never happen, because of the slot_is_aligned()
+ * check in kvmppc_do_h_enter().
+ */
+ if (gfn_base < memslot->base_gfn)
+ return -EFAULT;
+
+ /* used to check for invalidations in progress */
+ mmu_seq = kvm->mmu_invalidate_seq;
+ smp_rmb();
+
+ ret = -EFAULT;
+ page = NULL;
+ writing = (dsisr & DSISR_ISSTORE) != 0;
+ /* If writing != 0, then the HPTE must allow writing, if we get here */
+ write_ok = writing;
+ hva = gfn_to_hva_memslot(memslot, gfn);
+
+ /*
+ * Do a fast check first, since __gfn_to_pfn_memslot doesn't
+ * do it with !atomic && !async, which is how we call it.
+ * We always ask for write permission since the common case
+ * is that the page is writable.
+ */
+ if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
+ write_ok = true;
+ } else {
+ /* Call KVM generic code to do the slow-path check */
+ pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
+ writing, &write_ok, NULL);
+ if (is_error_noslot_pfn(pfn))
+ return -EFAULT;
+ page = NULL;
+ if (pfn_valid(pfn)) {
+ page = pfn_to_page(pfn);
+ if (PageReserved(page))
+ page = NULL;
+ }
+ }
+
+ /*
+ * Read the PTE from the process' radix tree and use that
+ * so we get the shift and attribute bits.
+ */
+ spin_lock(&kvm->mmu_lock);
+ ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
+ pte = __pte(0);
+ if (ptep)
+ pte = READ_ONCE(*ptep);
+ spin_unlock(&kvm->mmu_lock);
+ /*
+ * If the PTE disappeared temporarily due to a THP
+ * collapse, just return and let the guest try again.
+ */
+ if (!pte_present(pte)) {
+ if (page)
+ put_page(page);
+ return RESUME_GUEST;
+ }
+ hpa = pte_pfn(pte) << PAGE_SHIFT;
+ pte_size = PAGE_SIZE;
+ if (shift)
+ pte_size = 1ul << shift;
+ is_ci = pte_ci(pte);
+
+ if (psize > pte_size)
+ goto out_put;
+ if (pte_size > psize)
+ hpa |= hva & (pte_size - psize);
+
+ /* Check WIMG vs. the actual page we're accessing */
+ if (!hpte_cache_flags_ok(r, is_ci)) {
+ if (is_ci)
+ goto out_put;
+ /*
+ * Allow guest to map emulated device memory as
+ * uncacheable, but actually make it cacheable.
+ */
+ r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
+ }
+
+ /*
+ * Set the HPTE to point to hpa.
+ * Since the hpa is at PAGE_SIZE granularity, make sure we
+ * don't mask out lower-order bits if psize < PAGE_SIZE.
+ */
+ if (psize < PAGE_SIZE)
+ psize = PAGE_SIZE;
+ r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa;
+ if (hpte_is_writable(r) && !write_ok)
+ r = hpte_make_readonly(r);
+ ret = RESUME_GUEST;
+ preempt_disable();
+ while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
+ cpu_relax();
+ hnow_v = be64_to_cpu(hptep[0]);
+ hnow_r = be64_to_cpu(hptep[1]);
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
+ hnow_r = hpte_new_to_old_r(hnow_r);
+ }
+
+ /*
+ * If the HPT is being resized, don't update the HPTE,
+ * instead let the guest retry after the resize operation is complete.
+ * The synchronization for mmu_ready test vs. set is provided
+ * by the HPTE lock.
+ */
+ if (!kvm->arch.mmu_ready)
+ goto out_unlock;
+
+ if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
+ rev->guest_rpte != hpte[2])
+ /* HPTE has been changed under us; let the guest retry */
+ goto out_unlock;
+ hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
+
+ /* Always put the HPTE in the rmap chain for the page base address */
+ rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
+ lock_rmap(rmap);
+
+ /* Check if we might have been invalidated; let the guest retry if so */
+ ret = RESUME_GUEST;
+ if (mmu_invalidate_retry(vcpu->kvm, mmu_seq)) {
+ unlock_rmap(rmap);
+ goto out_unlock;
+ }
+
+ /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
+ rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
+ r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
+
+ if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
+ /* HPTE was previously valid, so we need to invalidate it */
+ unlock_rmap(rmap);
+ hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
+ kvmppc_invalidate_hpte(kvm, hptep, index);
+ /* don't lose previous R and C bits */
+ r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
+ } else {
+ kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
+ }
+
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ r = hpte_old_to_new_r(hpte[0], r);
+ hpte[0] = hpte_old_to_new_v(hpte[0]);
+ }
+ hptep[1] = cpu_to_be64(r);
+ eieio();
+ __unlock_hpte(hptep, hpte[0]);
+ asm volatile("ptesync" : : : "memory");
+ preempt_enable();
+ if (page && hpte_is_writable(r))
+ set_page_dirty_lock(page);
+
+ out_put:
+ trace_kvm_page_fault_exit(vcpu, hpte, ret);
+
+ if (page)
+ put_page(page);
+ return ret;
+
+ out_unlock:
+ __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
+ preempt_enable();
+ goto out_put;
+}
+
+void kvmppc_rmap_reset(struct kvm *kvm)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ int srcu_idx, bkt;
+
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+ slots = kvm_memslots(kvm);
+ kvm_for_each_memslot(memslot, bkt, slots) {
+ /* Mutual exclusion with kvm_unmap_hva_range etc. */
+ spin_lock(&kvm->mmu_lock);
+ /*
+ * This assumes it is acceptable to lose reference and
+ * change bits across a reset.
+ */
+ memset(memslot->arch.rmap, 0,
+ memslot->npages * sizeof(*memslot->arch.rmap));
+ spin_unlock(&kvm->mmu_lock);
+ }
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+}
+
+/* Must be called with both HPTE and rmap locked */
+static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
+ struct kvm_memory_slot *memslot,
+ unsigned long *rmapp, unsigned long gfn)
+{
+ __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
+ struct revmap_entry *rev = kvm->arch.hpt.rev;
+ unsigned long j, h;
+ unsigned long ptel, psize, rcbits;
+
+ j = rev[i].forw;
+ if (j == i) {
+ /* chain is now empty */
+ *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
+ } else {
+ /* remove i from chain */
+ h = rev[i].back;
+ rev[h].forw = j;
+ rev[j].back = h;
+ rev[i].forw = rev[i].back = i;
+ *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
+ }
+
+ /* Now check and modify the HPTE */
+ ptel = rev[i].guest_rpte;
+ psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
+ if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
+ hpte_rpn(ptel, psize) == gfn) {
+ hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
+ kvmppc_invalidate_hpte(kvm, hptep, i);
+ hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
+ /* Harvest R and C */
+ rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
+ *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
+ if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
+ kvmppc_update_dirty_map(memslot, gfn, psize);
+ if (rcbits & ~rev[i].guest_rpte) {
+ rev[i].guest_rpte = ptel | rcbits;
+ note_hpte_modification(kvm, &rev[i]);
+ }
+ }
+}
+
+static void kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
+ unsigned long gfn)
+{
+ unsigned long i;
+ __be64 *hptep;
+ unsigned long *rmapp;
+
+ rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
+ for (;;) {
+ lock_rmap(rmapp);
+ if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
+ unlock_rmap(rmapp);
+ break;
+ }
+
+ /*
+ * To avoid an ABBA deadlock with the HPTE lock bit,
+ * we can't spin on the HPTE lock while holding the
+ * rmap chain lock.
+ */
+ i = *rmapp & KVMPPC_RMAP_INDEX;
+ hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
+ if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
+ /* unlock rmap before spinning on the HPTE lock */
+ unlock_rmap(rmapp);
+ while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
+ cpu_relax();
+ continue;
+ }
+
+ kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
+ unlock_rmap(rmapp);
+ __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
+ }
+}
+
+bool kvm_unmap_gfn_range_hv(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ gfn_t gfn;
+
+ if (kvm_is_radix(kvm)) {
+ for (gfn = range->start; gfn < range->end; gfn++)
+ kvm_unmap_radix(kvm, range->slot, gfn);
+ } else {
+ for (gfn = range->start; gfn < range->end; gfn++)
+ kvm_unmap_rmapp(kvm, range->slot, gfn);
+ }
+
+ return false;
+}
+
+void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
+ struct kvm_memory_slot *memslot)
+{
+ unsigned long gfn;
+ unsigned long n;
+ unsigned long *rmapp;
+
+ gfn = memslot->base_gfn;
+ rmapp = memslot->arch.rmap;
+ if (kvm_is_radix(kvm)) {
+ kvmppc_radix_flush_memslot(kvm, memslot);
+ return;
+ }
+
+ for (n = memslot->npages; n; --n, ++gfn) {
+ /*
+ * Testing the present bit without locking is OK because
+ * the memslot has been marked invalid already, and hence
+ * no new HPTEs referencing this page can be created,
+ * thus the present bit can't go from 0 to 1.
+ */
+ if (*rmapp & KVMPPC_RMAP_PRESENT)
+ kvm_unmap_rmapp(kvm, memslot, gfn);
+ ++rmapp;
+ }
+}
+
+static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
+ unsigned long gfn)
+{
+ struct revmap_entry *rev = kvm->arch.hpt.rev;
+ unsigned long head, i, j;
+ __be64 *hptep;
+ bool ret = false;
+ unsigned long *rmapp;
+
+ rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
+ retry:
+ lock_rmap(rmapp);
+ if (*rmapp & KVMPPC_RMAP_REFERENCED) {
+ *rmapp &= ~KVMPPC_RMAP_REFERENCED;
+ ret = true;
+ }
+ if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
+ unlock_rmap(rmapp);
+ return ret;
+ }
+
+ i = head = *rmapp & KVMPPC_RMAP_INDEX;
+ do {
+ hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
+ j = rev[i].forw;
+
+ /* If this HPTE isn't referenced, ignore it */
+ if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
+ continue;
+
+ if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
+ /* unlock rmap before spinning on the HPTE lock */
+ unlock_rmap(rmapp);
+ while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
+ cpu_relax();
+ goto retry;
+ }
+
+ /* Now check and modify the HPTE */
+ if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
+ (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
+ kvmppc_clear_ref_hpte(kvm, hptep, i);
+ if (!(rev[i].guest_rpte & HPTE_R_R)) {
+ rev[i].guest_rpte |= HPTE_R_R;
+ note_hpte_modification(kvm, &rev[i]);
+ }
+ ret = true;
+ }
+ __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
+ } while ((i = j) != head);
+
+ unlock_rmap(rmapp);
+ return ret;
+}
+
+bool kvm_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ gfn_t gfn;
+ bool ret = false;
+
+ if (kvm_is_radix(kvm)) {
+ for (gfn = range->start; gfn < range->end; gfn++)
+ ret |= kvm_age_radix(kvm, range->slot, gfn);
+ } else {
+ for (gfn = range->start; gfn < range->end; gfn++)
+ ret |= kvm_age_rmapp(kvm, range->slot, gfn);
+ }
+
+ return ret;
+}
+
+static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
+ unsigned long gfn)
+{
+ struct revmap_entry *rev = kvm->arch.hpt.rev;
+ unsigned long head, i, j;
+ unsigned long *hp;
+ bool ret = true;
+ unsigned long *rmapp;
+
+ rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
+ if (*rmapp & KVMPPC_RMAP_REFERENCED)
+ return true;
+
+ lock_rmap(rmapp);
+ if (*rmapp & KVMPPC_RMAP_REFERENCED)
+ goto out;
+
+ if (*rmapp & KVMPPC_RMAP_PRESENT) {
+ i = head = *rmapp & KVMPPC_RMAP_INDEX;
+ do {
+ hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
+ j = rev[i].forw;
+ if (be64_to_cpu(hp[1]) & HPTE_R_R)
+ goto out;
+ } while ((i = j) != head);
+ }
+ ret = false;
+
+ out:
+ unlock_rmap(rmapp);
+ return ret;
+}
+
+bool kvm_test_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ WARN_ON(range->start + 1 != range->end);
+
+ if (kvm_is_radix(kvm))
+ return kvm_test_age_radix(kvm, range->slot, range->start);
+ else
+ return kvm_test_age_rmapp(kvm, range->slot, range->start);
+}
+
+bool kvm_set_spte_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ WARN_ON(range->start + 1 != range->end);
+
+ if (kvm_is_radix(kvm))
+ kvm_unmap_radix(kvm, range->slot, range->start);
+ else
+ kvm_unmap_rmapp(kvm, range->slot, range->start);
+
+ return false;
+}
+
+static int vcpus_running(struct kvm *kvm)
+{
+ return atomic_read(&kvm->arch.vcpus_running) != 0;
+}
+
+/*
+ * Returns the number of system pages that are dirty.
+ * This can be more than 1 if we find a huge-page HPTE.
+ */
+static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
+{
+ struct revmap_entry *rev = kvm->arch.hpt.rev;
+ unsigned long head, i, j;
+ unsigned long n;
+ unsigned long v, r;
+ __be64 *hptep;
+ int npages_dirty = 0;
+
+ retry:
+ lock_rmap(rmapp);
+ if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
+ unlock_rmap(rmapp);
+ return npages_dirty;
+ }
+
+ i = head = *rmapp & KVMPPC_RMAP_INDEX;
+ do {
+ unsigned long hptep1;
+ hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
+ j = rev[i].forw;
+
+ /*
+ * Checking the C (changed) bit here is racy since there
+ * is no guarantee about when the hardware writes it back.
+ * If the HPTE is not writable then it is stable since the
+ * page can't be written to, and we would have done a tlbie
+ * (which forces the hardware to complete any writeback)
+ * when making the HPTE read-only.
+ * If vcpus are running then this call is racy anyway
+ * since the page could get dirtied subsequently, so we
+ * expect there to be a further call which would pick up
+ * any delayed C bit writeback.
+ * Otherwise we need to do the tlbie even if C==0 in
+ * order to pick up any delayed writeback of C.
+ */
+ hptep1 = be64_to_cpu(hptep[1]);
+ if (!(hptep1 & HPTE_R_C) &&
+ (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
+ continue;
+
+ if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
+ /* unlock rmap before spinning on the HPTE lock */
+ unlock_rmap(rmapp);
+ while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
+ cpu_relax();
+ goto retry;
+ }
+
+ /* Now check and modify the HPTE */
+ if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
+ __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
+ continue;
+ }
+
+ /* need to make it temporarily absent so C is stable */
+ hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
+ kvmppc_invalidate_hpte(kvm, hptep, i);
+ v = be64_to_cpu(hptep[0]);
+ r = be64_to_cpu(hptep[1]);
+ if (r & HPTE_R_C) {
+ hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
+ if (!(rev[i].guest_rpte & HPTE_R_C)) {
+ rev[i].guest_rpte |= HPTE_R_C;
+ note_hpte_modification(kvm, &rev[i]);
+ }
+ n = kvmppc_actual_pgsz(v, r);
+ n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
+ if (n > npages_dirty)
+ npages_dirty = n;
+ eieio();
+ }
+ v &= ~HPTE_V_ABSENT;
+ v |= HPTE_V_VALID;
+ __unlock_hpte(hptep, v);
+ } while ((i = j) != head);
+
+ unlock_rmap(rmapp);
+ return npages_dirty;
+}
+
+void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
+ struct kvm_memory_slot *memslot,
+ unsigned long *map)
+{
+ unsigned long gfn;
+
+ if (!vpa->dirty || !vpa->pinned_addr)
+ return;
+ gfn = vpa->gpa >> PAGE_SHIFT;
+ if (gfn < memslot->base_gfn ||
+ gfn >= memslot->base_gfn + memslot->npages)
+ return;
+
+ vpa->dirty = false;
+ if (map)
+ __set_bit_le(gfn - memslot->base_gfn, map);
+}
+
+long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
+ struct kvm_memory_slot *memslot, unsigned long *map)
+{
+ unsigned long i;
+ unsigned long *rmapp;
+
+ preempt_disable();
+ rmapp = memslot->arch.rmap;
+ for (i = 0; i < memslot->npages; ++i) {
+ int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
+ /*
+ * Note that if npages > 0 then i must be a multiple of npages,
+ * since we always put huge-page HPTEs in the rmap chain
+ * corresponding to their page base address.
+ */
+ if (npages)
+ set_dirty_bits(map, i, npages);
+ ++rmapp;
+ }
+ preempt_enable();
+ return 0;
+}
+
+void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
+ unsigned long *nb_ret)
+{
+ struct kvm_memory_slot *memslot;
+ unsigned long gfn = gpa >> PAGE_SHIFT;
+ struct page *page, *pages[1];
+ int npages;
+ unsigned long hva, offset;
+ int srcu_idx;
+
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+ memslot = gfn_to_memslot(kvm, gfn);
+ if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
+ goto err;
+ hva = gfn_to_hva_memslot(memslot, gfn);
+ npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
+ if (npages < 1)
+ goto err;
+ page = pages[0];
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+
+ offset = gpa & (PAGE_SIZE - 1);
+ if (nb_ret)
+ *nb_ret = PAGE_SIZE - offset;
+ return page_address(page) + offset;
+
+ err:
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+ return NULL;
+}
+
+void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
+ bool dirty)
+{
+ struct page *page = virt_to_page(va);
+ struct kvm_memory_slot *memslot;
+ unsigned long gfn;
+ int srcu_idx;
+
+ put_page(page);
+
+ if (!dirty)
+ return;
+
+ /* We need to mark this page dirty in the memslot dirty_bitmap, if any */
+ gfn = gpa >> PAGE_SHIFT;
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+ memslot = gfn_to_memslot(kvm, gfn);
+ if (memslot && memslot->dirty_bitmap)
+ set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+}
+
+/*
+ * HPT resizing
+ */
+static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
+{
+ int rc;
+
+ rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
+ if (rc < 0)
+ return rc;
+
+ resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
+ resize->hpt.virt);
+
+ return 0;
+}
+
+static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
+ unsigned long idx)
+{
+ struct kvm *kvm = resize->kvm;
+ struct kvm_hpt_info *old = &kvm->arch.hpt;
+ struct kvm_hpt_info *new = &resize->hpt;
+ unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
+ unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
+ __be64 *hptep, *new_hptep;
+ unsigned long vpte, rpte, guest_rpte;
+ int ret;
+ struct revmap_entry *rev;
+ unsigned long apsize, avpn, pteg, hash;
+ unsigned long new_idx, new_pteg, replace_vpte;
+ int pshift;
+
+ hptep = (__be64 *)(old->virt + (idx << 4));
+
+ /* Guest is stopped, so new HPTEs can't be added or faulted
+ * in, only unmapped or altered by host actions. So, it's
+ * safe to check this before we take the HPTE lock */
+ vpte = be64_to_cpu(hptep[0]);
+ if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
+ return 0; /* nothing to do */
+
+ while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
+ cpu_relax();
+
+ vpte = be64_to_cpu(hptep[0]);
+
+ ret = 0;
+ if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
+ /* Nothing to do */
+ goto out;
+
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ rpte = be64_to_cpu(hptep[1]);
+ vpte = hpte_new_to_old_v(vpte, rpte);
+ }
+
+ /* Unmap */
+ rev = &old->rev[idx];
+ guest_rpte = rev->guest_rpte;
+
+ ret = -EIO;
+ apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
+ if (!apsize)
+ goto out;
+
+ if (vpte & HPTE_V_VALID) {
+ unsigned long gfn = hpte_rpn(guest_rpte, apsize);
+ int srcu_idx = srcu_read_lock(&kvm->srcu);
+ struct kvm_memory_slot *memslot =
+ __gfn_to_memslot(kvm_memslots(kvm), gfn);
+
+ if (memslot) {
+ unsigned long *rmapp;
+ rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
+
+ lock_rmap(rmapp);
+ kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
+ unlock_rmap(rmapp);
+ }
+
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+ }
+
+ /* Reload PTE after unmap */
+ vpte = be64_to_cpu(hptep[0]);
+ BUG_ON(vpte & HPTE_V_VALID);
+ BUG_ON(!(vpte & HPTE_V_ABSENT));
+
+ ret = 0;
+ if (!(vpte & HPTE_V_BOLTED))
+ goto out;
+
+ rpte = be64_to_cpu(hptep[1]);
+
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ vpte = hpte_new_to_old_v(vpte, rpte);
+ rpte = hpte_new_to_old_r(rpte);
+ }
+
+ pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
+ avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
+ pteg = idx / HPTES_PER_GROUP;
+ if (vpte & HPTE_V_SECONDARY)
+ pteg = ~pteg;
+
+ if (!(vpte & HPTE_V_1TB_SEG)) {
+ unsigned long offset, vsid;
+
+ /* We only have 28 - 23 bits of offset in avpn */
+ offset = (avpn & 0x1f) << 23;
+ vsid = avpn >> 5;
+ /* We can find more bits from the pteg value */
+ if (pshift < 23)
+ offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
+
+ hash = vsid ^ (offset >> pshift);
+ } else {
+ unsigned long offset, vsid;
+
+ /* We only have 40 - 23 bits of seg_off in avpn */
+ offset = (avpn & 0x1ffff) << 23;
+ vsid = avpn >> 17;
+ if (pshift < 23)
+ offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
+
+ hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
+ }
+
+ new_pteg = hash & new_hash_mask;
+ if (vpte & HPTE_V_SECONDARY)
+ new_pteg = ~hash & new_hash_mask;
+
+ new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
+ new_hptep = (__be64 *)(new->virt + (new_idx << 4));
+
+ replace_vpte = be64_to_cpu(new_hptep[0]);
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
+ replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
+ }
+
+ if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
+ BUG_ON(new->order >= old->order);
+
+ if (replace_vpte & HPTE_V_BOLTED) {
+ if (vpte & HPTE_V_BOLTED)
+ /* Bolted collision, nothing we can do */
+ ret = -ENOSPC;
+ /* Discard the new HPTE */
+ goto out;
+ }
+
+ /* Discard the previous HPTE */
+ }
+
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ rpte = hpte_old_to_new_r(vpte, rpte);
+ vpte = hpte_old_to_new_v(vpte);
+ }
+
+ new_hptep[1] = cpu_to_be64(rpte);
+ new->rev[new_idx].guest_rpte = guest_rpte;
+ /* No need for a barrier, since new HPT isn't active */
+ new_hptep[0] = cpu_to_be64(vpte);
+ unlock_hpte(new_hptep, vpte);
+
+out:
+ unlock_hpte(hptep, vpte);
+ return ret;
+}
+
+static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
+{
+ struct kvm *kvm = resize->kvm;
+ unsigned long i;
+ int rc;
+
+ for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
+ rc = resize_hpt_rehash_hpte(resize, i);
+ if (rc != 0)
+ return rc;
+ }
+
+ return 0;
+}
+
+static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
+{
+ struct kvm *kvm = resize->kvm;
+ struct kvm_hpt_info hpt_tmp;
+
+ /* Exchange the pending tables in the resize structure with
+ * the active tables */
+
+ resize_hpt_debug(resize, "resize_hpt_pivot()\n");
+
+ spin_lock(&kvm->mmu_lock);
+ asm volatile("ptesync" : : : "memory");
+
+ hpt_tmp = kvm->arch.hpt;
+ kvmppc_set_hpt(kvm, &resize->hpt);
+ resize->hpt = hpt_tmp;
+
+ spin_unlock(&kvm->mmu_lock);
+
+ synchronize_srcu_expedited(&kvm->srcu);
+
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ kvmppc_setup_partition_table(kvm);
+
+ resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
+}
+
+static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
+{
+ if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
+ return;
+
+ if (!resize)
+ return;
+
+ if (resize->error != -EBUSY) {
+ if (resize->hpt.virt)
+ kvmppc_free_hpt(&resize->hpt);
+ kfree(resize);
+ }
+
+ if (kvm->arch.resize_hpt == resize)
+ kvm->arch.resize_hpt = NULL;
+}
+
+static void resize_hpt_prepare_work(struct work_struct *work)
+{
+ struct kvm_resize_hpt *resize = container_of(work,
+ struct kvm_resize_hpt,
+ work);
+ struct kvm *kvm = resize->kvm;
+ int err = 0;
+
+ if (WARN_ON(resize->error != -EBUSY))
+ return;
+
+ mutex_lock(&kvm->arch.mmu_setup_lock);
+
+ /* Request is still current? */
+ if (kvm->arch.resize_hpt == resize) {
+ /* We may request large allocations here:
+ * do not sleep with kvm->arch.mmu_setup_lock held for a while.
+ */
+ mutex_unlock(&kvm->arch.mmu_setup_lock);
+
+ resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
+ resize->order);
+
+ err = resize_hpt_allocate(resize);
+
+ /* We have strict assumption about -EBUSY
+ * when preparing for HPT resize.
+ */
+ if (WARN_ON(err == -EBUSY))
+ err = -EINPROGRESS;
+
+ mutex_lock(&kvm->arch.mmu_setup_lock);
+ /* It is possible that kvm->arch.resize_hpt != resize
+ * after we grab kvm->arch.mmu_setup_lock again.
+ */
+ }
+
+ resize->error = err;
+
+ if (kvm->arch.resize_hpt != resize)
+ resize_hpt_release(kvm, resize);
+
+ mutex_unlock(&kvm->arch.mmu_setup_lock);
+}
+
+long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
+ struct kvm_ppc_resize_hpt *rhpt)
+{
+ unsigned long flags = rhpt->flags;
+ unsigned long shift = rhpt->shift;
+ struct kvm_resize_hpt *resize;
+ int ret;
+
+ if (flags != 0 || kvm_is_radix(kvm))
+ return -EINVAL;
+
+ if (shift && ((shift < 18) || (shift > 46)))
+ return -EINVAL;
+
+ mutex_lock(&kvm->arch.mmu_setup_lock);
+
+ resize = kvm->arch.resize_hpt;
+
+ if (resize) {
+ if (resize->order == shift) {
+ /* Suitable resize in progress? */
+ ret = resize->error;
+ if (ret == -EBUSY)
+ ret = 100; /* estimated time in ms */
+ else if (ret)
+ resize_hpt_release(kvm, resize);
+
+ goto out;
+ }
+
+ /* not suitable, cancel it */
+ resize_hpt_release(kvm, resize);
+ }
+
+ ret = 0;
+ if (!shift)
+ goto out; /* nothing to do */
+
+ /* start new resize */
+
+ resize = kzalloc(sizeof(*resize), GFP_KERNEL);
+ if (!resize) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ resize->error = -EBUSY;
+ resize->order = shift;
+ resize->kvm = kvm;
+ INIT_WORK(&resize->work, resize_hpt_prepare_work);
+ kvm->arch.resize_hpt = resize;
+
+ schedule_work(&resize->work);
+
+ ret = 100; /* estimated time in ms */
+
+out:
+ mutex_unlock(&kvm->arch.mmu_setup_lock);
+ return ret;
+}
+
+static void resize_hpt_boot_vcpu(void *opaque)
+{
+ /* Nothing to do, just force a KVM exit */
+}
+
+long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
+ struct kvm_ppc_resize_hpt *rhpt)
+{
+ unsigned long flags = rhpt->flags;
+ unsigned long shift = rhpt->shift;
+ struct kvm_resize_hpt *resize;
+ long ret;
+
+ if (flags != 0 || kvm_is_radix(kvm))
+ return -EINVAL;
+
+ if (shift && ((shift < 18) || (shift > 46)))
+ return -EINVAL;
+
+ mutex_lock(&kvm->arch.mmu_setup_lock);
+
+ resize = kvm->arch.resize_hpt;
+
+ /* This shouldn't be possible */
+ ret = -EIO;
+ if (WARN_ON(!kvm->arch.mmu_ready))
+ goto out_no_hpt;
+
+ /* Stop VCPUs from running while we mess with the HPT */
+ kvm->arch.mmu_ready = 0;
+ smp_mb();
+
+ /* Boot all CPUs out of the guest so they re-read
+ * mmu_ready */
+ on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
+
+ ret = -ENXIO;
+ if (!resize || (resize->order != shift))
+ goto out;
+
+ ret = resize->error;
+ if (ret)
+ goto out;
+
+ ret = resize_hpt_rehash(resize);
+ if (ret)
+ goto out;
+
+ resize_hpt_pivot(resize);
+
+out:
+ /* Let VCPUs run again */
+ kvm->arch.mmu_ready = 1;
+ smp_mb();
+out_no_hpt:
+ resize_hpt_release(kvm, resize);
+ mutex_unlock(&kvm->arch.mmu_setup_lock);
+ return ret;
+}
+
+/*
+ * Functions for reading and writing the hash table via reads and
+ * writes on a file descriptor.
+ *
+ * Reads return the guest view of the hash table, which has to be
+ * pieced together from the real hash table and the guest_rpte
+ * values in the revmap array.
+ *
+ * On writes, each HPTE written is considered in turn, and if it
+ * is valid, it is written to the HPT as if an H_ENTER with the
+ * exact flag set was done. When the invalid count is non-zero
+ * in the header written to the stream, the kernel will make
+ * sure that that many HPTEs are invalid, and invalidate them
+ * if not.
+ */
+
+struct kvm_htab_ctx {
+ unsigned long index;
+ unsigned long flags;
+ struct kvm *kvm;
+ int first_pass;
+};
+
+#define HPTE_SIZE (2 * sizeof(unsigned long))
+
+/*
+ * Returns 1 if this HPT entry has been modified or has pending
+ * R/C bit changes.
+ */
+static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
+{
+ unsigned long rcbits_unset;
+
+ if (revp->guest_rpte & HPTE_GR_MODIFIED)
+ return 1;
+
+ /* Also need to consider changes in reference and changed bits */
+ rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
+ if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
+ (be64_to_cpu(hptp[1]) & rcbits_unset))
+ return 1;
+
+ return 0;
+}
+
+static long record_hpte(unsigned long flags, __be64 *hptp,
+ unsigned long *hpte, struct revmap_entry *revp,
+ int want_valid, int first_pass)
+{
+ unsigned long v, r, hr;
+ unsigned long rcbits_unset;
+ int ok = 1;
+ int valid, dirty;
+
+ /* Unmodified entries are uninteresting except on the first pass */
+ dirty = hpte_dirty(revp, hptp);
+ if (!first_pass && !dirty)
+ return 0;
+
+ valid = 0;
+ if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
+ valid = 1;
+ if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
+ !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
+ valid = 0;
+ }
+ if (valid != want_valid)
+ return 0;
+
+ v = r = 0;
+ if (valid || dirty) {
+ /* lock the HPTE so it's stable and read it */
+ preempt_disable();
+ while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
+ cpu_relax();
+ v = be64_to_cpu(hptp[0]);
+ hr = be64_to_cpu(hptp[1]);
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ v = hpte_new_to_old_v(v, hr);
+ hr = hpte_new_to_old_r(hr);
+ }
+
+ /* re-evaluate valid and dirty from synchronized HPTE value */
+ valid = !!(v & HPTE_V_VALID);
+ dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
+
+ /* Harvest R and C into guest view if necessary */
+ rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
+ if (valid && (rcbits_unset & hr)) {
+ revp->guest_rpte |= (hr &
+ (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
+ dirty = 1;
+ }
+
+ if (v & HPTE_V_ABSENT) {
+ v &= ~HPTE_V_ABSENT;
+ v |= HPTE_V_VALID;
+ valid = 1;
+ }
+ if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
+ valid = 0;
+
+ r = revp->guest_rpte;
+ /* only clear modified if this is the right sort of entry */
+ if (valid == want_valid && dirty) {
+ r &= ~HPTE_GR_MODIFIED;
+ revp->guest_rpte = r;
+ }
+ unlock_hpte(hptp, be64_to_cpu(hptp[0]));
+ preempt_enable();
+ if (!(valid == want_valid && (first_pass || dirty)))
+ ok = 0;
+ }
+ hpte[0] = cpu_to_be64(v);
+ hpte[1] = cpu_to_be64(r);
+ return ok;
+}
+
+static ssize_t kvm_htab_read(struct file *file, char __user *buf,
+ size_t count, loff_t *ppos)
+{
+ struct kvm_htab_ctx *ctx = file->private_data;
+ struct kvm *kvm = ctx->kvm;
+ struct kvm_get_htab_header hdr;
+ __be64 *hptp;
+ struct revmap_entry *revp;
+ unsigned long i, nb, nw;
+ unsigned long __user *lbuf;
+ struct kvm_get_htab_header __user *hptr;
+ unsigned long flags;
+ int first_pass;
+ unsigned long hpte[2];
+
+ if (!access_ok(buf, count))
+ return -EFAULT;
+ if (kvm_is_radix(kvm))
+ return 0;
+
+ first_pass = ctx->first_pass;
+ flags = ctx->flags;
+
+ i = ctx->index;
+ hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
+ revp = kvm->arch.hpt.rev + i;
+ lbuf = (unsigned long __user *)buf;
+
+ nb = 0;
+ while (nb + sizeof(hdr) + HPTE_SIZE < count) {
+ /* Initialize header */
+ hptr = (struct kvm_get_htab_header __user *)buf;
+ hdr.n_valid = 0;
+ hdr.n_invalid = 0;
+ nw = nb;
+ nb += sizeof(hdr);
+ lbuf = (unsigned long __user *)(buf + sizeof(hdr));
+
+ /* Skip uninteresting entries, i.e. clean on not-first pass */
+ if (!first_pass) {
+ while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
+ !hpte_dirty(revp, hptp)) {
+ ++i;
+ hptp += 2;
+ ++revp;
+ }
+ }
+ hdr.index = i;
+
+ /* Grab a series of valid entries */
+ while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
+ hdr.n_valid < 0xffff &&
+ nb + HPTE_SIZE < count &&
+ record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
+ /* valid entry, write it out */
+ ++hdr.n_valid;
+ if (__put_user(hpte[0], lbuf) ||
+ __put_user(hpte[1], lbuf + 1))
+ return -EFAULT;
+ nb += HPTE_SIZE;
+ lbuf += 2;
+ ++i;
+ hptp += 2;
+ ++revp;
+ }
+ /* Now skip invalid entries while we can */
+ while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
+ hdr.n_invalid < 0xffff &&
+ record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
+ /* found an invalid entry */
+ ++hdr.n_invalid;
+ ++i;
+ hptp += 2;
+ ++revp;
+ }
+
+ if (hdr.n_valid || hdr.n_invalid) {
+ /* write back the header */
+ if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
+ return -EFAULT;
+ nw = nb;
+ buf = (char __user *)lbuf;
+ } else {
+ nb = nw;
+ }
+
+ /* Check if we've wrapped around the hash table */
+ if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
+ i = 0;
+ ctx->first_pass = 0;
+ break;
+ }
+ }
+
+ ctx->index = i;
+
+ return nb;
+}
+
+static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
+ size_t count, loff_t *ppos)
+{
+ struct kvm_htab_ctx *ctx = file->private_data;
+ struct kvm *kvm = ctx->kvm;
+ struct kvm_get_htab_header hdr;
+ unsigned long i, j;
+ unsigned long v, r;
+ unsigned long __user *lbuf;
+ __be64 *hptp;
+ unsigned long tmp[2];
+ ssize_t nb;
+ long int err, ret;
+ int mmu_ready;
+ int pshift;
+
+ if (!access_ok(buf, count))
+ return -EFAULT;
+ if (kvm_is_radix(kvm))
+ return -EINVAL;
+
+ /* lock out vcpus from running while we're doing this */
+ mutex_lock(&kvm->arch.mmu_setup_lock);
+ mmu_ready = kvm->arch.mmu_ready;
+ if (mmu_ready) {
+ kvm->arch.mmu_ready = 0; /* temporarily */
+ /* order mmu_ready vs. vcpus_running */
+ smp_mb();
+ if (atomic_read(&kvm->arch.vcpus_running)) {
+ kvm->arch.mmu_ready = 1;
+ mutex_unlock(&kvm->arch.mmu_setup_lock);
+ return -EBUSY;
+ }
+ }
+
+ err = 0;
+ for (nb = 0; nb + sizeof(hdr) <= count; ) {
+ err = -EFAULT;
+ if (__copy_from_user(&hdr, buf, sizeof(hdr)))
+ break;
+
+ err = 0;
+ if (nb + hdr.n_valid * HPTE_SIZE > count)
+ break;
+
+ nb += sizeof(hdr);
+ buf += sizeof(hdr);
+
+ err = -EINVAL;
+ i = hdr.index;
+ if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
+ i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
+ break;
+
+ hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
+ lbuf = (unsigned long __user *)buf;
+ for (j = 0; j < hdr.n_valid; ++j) {
+ __be64 hpte_v;
+ __be64 hpte_r;
+
+ err = -EFAULT;
+ if (__get_user(hpte_v, lbuf) ||
+ __get_user(hpte_r, lbuf + 1))
+ goto out;
+ v = be64_to_cpu(hpte_v);
+ r = be64_to_cpu(hpte_r);
+ err = -EINVAL;
+ if (!(v & HPTE_V_VALID))
+ goto out;
+ pshift = kvmppc_hpte_base_page_shift(v, r);
+ if (pshift <= 0)
+ goto out;
+ lbuf += 2;
+ nb += HPTE_SIZE;
+
+ if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
+ kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
+ err = -EIO;
+ ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
+ tmp);
+ if (ret != H_SUCCESS) {
+ pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
+ "r=%lx\n", ret, i, v, r);
+ goto out;
+ }
+ if (!mmu_ready && is_vrma_hpte(v)) {
+ unsigned long senc, lpcr;
+
+ senc = slb_pgsize_encoding(1ul << pshift);
+ kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
+ (VRMA_VSID << SLB_VSID_SHIFT_1T);
+ if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
+ lpcr = senc << (LPCR_VRMASD_SH - 4);
+ kvmppc_update_lpcr(kvm, lpcr,
+ LPCR_VRMASD);
+ } else {
+ kvmppc_setup_partition_table(kvm);
+ }
+ mmu_ready = 1;
+ }
+ ++i;
+ hptp += 2;
+ }
+
+ for (j = 0; j < hdr.n_invalid; ++j) {
+ if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
+ kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
+ ++i;
+ hptp += 2;
+ }
+ err = 0;
+ }
+
+ out:
+ /* Order HPTE updates vs. mmu_ready */
+ smp_wmb();
+ kvm->arch.mmu_ready = mmu_ready;
+ mutex_unlock(&kvm->arch.mmu_setup_lock);
+
+ if (err)
+ return err;
+ return nb;
+}
+
+static int kvm_htab_release(struct inode *inode, struct file *filp)
+{
+ struct kvm_htab_ctx *ctx = filp->private_data;
+
+ filp->private_data = NULL;
+ if (!(ctx->flags & KVM_GET_HTAB_WRITE))
+ atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
+ kvm_put_kvm(ctx->kvm);
+ kfree(ctx);
+ return 0;
+}
+
+static const struct file_operations kvm_htab_fops = {
+ .read = kvm_htab_read,
+ .write = kvm_htab_write,
+ .llseek = default_llseek,
+ .release = kvm_htab_release,
+};
+
+int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
+{
+ int ret;
+ struct kvm_htab_ctx *ctx;
+ int rwflag;
+
+ /* reject flags we don't recognize */
+ if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
+ return -EINVAL;
+ ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
+ if (!ctx)
+ return -ENOMEM;
+ kvm_get_kvm(kvm);
+ ctx->kvm = kvm;
+ ctx->index = ghf->start_index;
+ ctx->flags = ghf->flags;
+ ctx->first_pass = 1;
+
+ rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
+ ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
+ if (ret < 0) {
+ kfree(ctx);
+ kvm_put_kvm_no_destroy(kvm);
+ return ret;
+ }
+
+ if (rwflag == O_RDONLY) {
+ mutex_lock(&kvm->slots_lock);
+ atomic_inc(&kvm->arch.hpte_mod_interest);
+ /* make sure kvmppc_do_h_enter etc. see the increment */
+ synchronize_srcu_expedited(&kvm->srcu);
+ mutex_unlock(&kvm->slots_lock);
+ }
+
+ return ret;
+}
+
+struct debugfs_htab_state {
+ struct kvm *kvm;
+ struct mutex mutex;
+ unsigned long hpt_index;
+ int chars_left;
+ int buf_index;
+ char buf[64];
+};
+
+static int debugfs_htab_open(struct inode *inode, struct file *file)
+{
+ struct kvm *kvm = inode->i_private;
+ struct debugfs_htab_state *p;
+
+ p = kzalloc(sizeof(*p), GFP_KERNEL);
+ if (!p)
+ return -ENOMEM;
+
+ kvm_get_kvm(kvm);
+ p->kvm = kvm;
+ mutex_init(&p->mutex);
+ file->private_data = p;
+
+ return nonseekable_open(inode, file);
+}
+
+static int debugfs_htab_release(struct inode *inode, struct file *file)
+{
+ struct debugfs_htab_state *p = file->private_data;
+
+ kvm_put_kvm(p->kvm);
+ kfree(p);
+ return 0;
+}
+
+static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
+ size_t len, loff_t *ppos)
+{
+ struct debugfs_htab_state *p = file->private_data;
+ ssize_t ret, r;
+ unsigned long i, n;
+ unsigned long v, hr, gr;
+ struct kvm *kvm;
+ __be64 *hptp;
+
+ kvm = p->kvm;
+ if (kvm_is_radix(kvm))
+ return 0;
+
+ ret = mutex_lock_interruptible(&p->mutex);
+ if (ret)
+ return ret;
+
+ if (p->chars_left) {
+ n = p->chars_left;
+ if (n > len)
+ n = len;
+ r = copy_to_user(buf, p->buf + p->buf_index, n);
+ n -= r;
+ p->chars_left -= n;
+ p->buf_index += n;
+ buf += n;
+ len -= n;
+ ret = n;
+ if (r) {
+ if (!n)
+ ret = -EFAULT;
+ goto out;
+ }
+ }
+
+ i = p->hpt_index;
+ hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
+ for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
+ ++i, hptp += 2) {
+ if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
+ continue;
+
+ /* lock the HPTE so it's stable and read it */
+ preempt_disable();
+ while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
+ cpu_relax();
+ v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
+ hr = be64_to_cpu(hptp[1]);
+ gr = kvm->arch.hpt.rev[i].guest_rpte;
+ unlock_hpte(hptp, v);
+ preempt_enable();
+
+ if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
+ continue;
+
+ n = scnprintf(p->buf, sizeof(p->buf),
+ "%6lx %.16lx %.16lx %.16lx\n",
+ i, v, hr, gr);
+ p->chars_left = n;
+ if (n > len)
+ n = len;
+ r = copy_to_user(buf, p->buf, n);
+ n -= r;
+ p->chars_left -= n;
+ p->buf_index = n;
+ buf += n;
+ len -= n;
+ ret += n;
+ if (r) {
+ if (!ret)
+ ret = -EFAULT;
+ goto out;
+ }
+ }
+ p->hpt_index = i;
+
+ out:
+ mutex_unlock(&p->mutex);
+ return ret;
+}
+
+static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
+ size_t len, loff_t *ppos)
+{
+ return -EACCES;
+}
+
+static const struct file_operations debugfs_htab_fops = {
+ .owner = THIS_MODULE,
+ .open = debugfs_htab_open,
+ .release = debugfs_htab_release,
+ .read = debugfs_htab_read,
+ .write = debugfs_htab_write,
+ .llseek = generic_file_llseek,
+};
+
+void kvmppc_mmu_debugfs_init(struct kvm *kvm)
+{
+ debugfs_create_file("htab", 0400, kvm->debugfs_dentry, kvm,
+ &debugfs_htab_fops);
+}
+
+void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
+
+ vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */
+
+ mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
+
+ vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
+}
diff --git a/arch/powerpc/kvm/book3s_64_mmu_radix.c b/arch/powerpc/kvm/book3s_64_mmu_radix.c
new file mode 100644
index 000000000..5d5e12f3b
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_64_mmu_radix.c
@@ -0,0 +1,1486 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ *
+ * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
+ */
+
+#include <linux/types.h>
+#include <linux/string.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/anon_inodes.h>
+#include <linux/file.h>
+#include <linux/debugfs.h>
+#include <linux/pgtable.h>
+
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+#include <asm/page.h>
+#include <asm/mmu.h>
+#include <asm/pgalloc.h>
+#include <asm/pte-walk.h>
+#include <asm/ultravisor.h>
+#include <asm/kvm_book3s_uvmem.h>
+#include <asm/plpar_wrappers.h>
+#include <asm/firmware.h>
+
+/*
+ * Supported radix tree geometry.
+ * Like p9, we support either 5 or 9 bits at the first (lowest) level,
+ * for a page size of 64k or 4k.
+ */
+static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
+
+unsigned long __kvmhv_copy_tofrom_guest_radix(int lpid, int pid,
+ gva_t eaddr, void *to, void *from,
+ unsigned long n)
+{
+ int old_pid, old_lpid;
+ unsigned long quadrant, ret = n;
+ bool is_load = !!to;
+
+ /* Can't access quadrants 1 or 2 in non-HV mode, call the HV to do it */
+ if (kvmhv_on_pseries())
+ return plpar_hcall_norets(H_COPY_TOFROM_GUEST, lpid, pid, eaddr,
+ (to != NULL) ? __pa(to): 0,
+ (from != NULL) ? __pa(from): 0, n);
+
+ if (eaddr & (0xFFFUL << 52))
+ return ret;
+
+ quadrant = 1;
+ if (!pid)
+ quadrant = 2;
+ if (is_load)
+ from = (void *) (eaddr | (quadrant << 62));
+ else
+ to = (void *) (eaddr | (quadrant << 62));
+
+ preempt_disable();
+
+ asm volatile("hwsync" ::: "memory");
+ isync();
+ /* switch the lpid first to avoid running host with unallocated pid */
+ old_lpid = mfspr(SPRN_LPID);
+ if (old_lpid != lpid)
+ mtspr(SPRN_LPID, lpid);
+ if (quadrant == 1) {
+ old_pid = mfspr(SPRN_PID);
+ if (old_pid != pid)
+ mtspr(SPRN_PID, pid);
+ }
+ isync();
+
+ pagefault_disable();
+ if (is_load)
+ ret = __copy_from_user_inatomic(to, (const void __user *)from, n);
+ else
+ ret = __copy_to_user_inatomic((void __user *)to, from, n);
+ pagefault_enable();
+
+ asm volatile("hwsync" ::: "memory");
+ isync();
+ /* switch the pid first to avoid running host with unallocated pid */
+ if (quadrant == 1 && pid != old_pid)
+ mtspr(SPRN_PID, old_pid);
+ if (lpid != old_lpid)
+ mtspr(SPRN_LPID, old_lpid);
+ isync();
+
+ preempt_enable();
+
+ return ret;
+}
+
+static long kvmhv_copy_tofrom_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr,
+ void *to, void *from, unsigned long n)
+{
+ int lpid = vcpu->kvm->arch.lpid;
+ int pid = vcpu->arch.pid;
+
+ /* This would cause a data segment intr so don't allow the access */
+ if (eaddr & (0x3FFUL << 52))
+ return -EINVAL;
+
+ /* Should we be using the nested lpid */
+ if (vcpu->arch.nested)
+ lpid = vcpu->arch.nested->shadow_lpid;
+
+ /* If accessing quadrant 3 then pid is expected to be 0 */
+ if (((eaddr >> 62) & 0x3) == 0x3)
+ pid = 0;
+
+ eaddr &= ~(0xFFFUL << 52);
+
+ return __kvmhv_copy_tofrom_guest_radix(lpid, pid, eaddr, to, from, n);
+}
+
+long kvmhv_copy_from_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *to,
+ unsigned long n)
+{
+ long ret;
+
+ ret = kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, to, NULL, n);
+ if (ret > 0)
+ memset(to + (n - ret), 0, ret);
+
+ return ret;
+}
+
+long kvmhv_copy_to_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *from,
+ unsigned long n)
+{
+ return kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, NULL, from, n);
+}
+
+int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr,
+ struct kvmppc_pte *gpte, u64 root,
+ u64 *pte_ret_p)
+{
+ struct kvm *kvm = vcpu->kvm;
+ int ret, level, ps;
+ unsigned long rts, bits, offset, index;
+ u64 pte, base, gpa;
+ __be64 rpte;
+
+ rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
+ ((root & RTS2_MASK) >> RTS2_SHIFT);
+ bits = root & RPDS_MASK;
+ base = root & RPDB_MASK;
+
+ offset = rts + 31;
+
+ /* Current implementations only support 52-bit space */
+ if (offset != 52)
+ return -EINVAL;
+
+ /* Walk each level of the radix tree */
+ for (level = 3; level >= 0; --level) {
+ u64 addr;
+ /* Check a valid size */
+ if (level && bits != p9_supported_radix_bits[level])
+ return -EINVAL;
+ if (level == 0 && !(bits == 5 || bits == 9))
+ return -EINVAL;
+ offset -= bits;
+ index = (eaddr >> offset) & ((1UL << bits) - 1);
+ /* Check that low bits of page table base are zero */
+ if (base & ((1UL << (bits + 3)) - 1))
+ return -EINVAL;
+ /* Read the entry from guest memory */
+ addr = base + (index * sizeof(rpte));
+
+ kvm_vcpu_srcu_read_lock(vcpu);
+ ret = kvm_read_guest(kvm, addr, &rpte, sizeof(rpte));
+ kvm_vcpu_srcu_read_unlock(vcpu);
+ if (ret) {
+ if (pte_ret_p)
+ *pte_ret_p = addr;
+ return ret;
+ }
+ pte = __be64_to_cpu(rpte);
+ if (!(pte & _PAGE_PRESENT))
+ return -ENOENT;
+ /* Check if a leaf entry */
+ if (pte & _PAGE_PTE)
+ break;
+ /* Get ready to walk the next level */
+ base = pte & RPDB_MASK;
+ bits = pte & RPDS_MASK;
+ }
+
+ /* Need a leaf at lowest level; 512GB pages not supported */
+ if (level < 0 || level == 3)
+ return -EINVAL;
+
+ /* We found a valid leaf PTE */
+ /* Offset is now log base 2 of the page size */
+ gpa = pte & 0x01fffffffffff000ul;
+ if (gpa & ((1ul << offset) - 1))
+ return -EINVAL;
+ gpa |= eaddr & ((1ul << offset) - 1);
+ for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
+ if (offset == mmu_psize_defs[ps].shift)
+ break;
+ gpte->page_size = ps;
+ gpte->page_shift = offset;
+
+ gpte->eaddr = eaddr;
+ gpte->raddr = gpa;
+
+ /* Work out permissions */
+ gpte->may_read = !!(pte & _PAGE_READ);
+ gpte->may_write = !!(pte & _PAGE_WRITE);
+ gpte->may_execute = !!(pte & _PAGE_EXEC);
+
+ gpte->rc = pte & (_PAGE_ACCESSED | _PAGE_DIRTY);
+
+ if (pte_ret_p)
+ *pte_ret_p = pte;
+
+ return 0;
+}
+
+/*
+ * Used to walk a partition or process table radix tree in guest memory
+ * Note: We exploit the fact that a partition table and a process
+ * table have the same layout, a partition-scoped page table and a
+ * process-scoped page table have the same layout, and the 2nd
+ * doubleword of a partition table entry has the same layout as
+ * the PTCR register.
+ */
+int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
+ struct kvmppc_pte *gpte, u64 table,
+ int table_index, u64 *pte_ret_p)
+{
+ struct kvm *kvm = vcpu->kvm;
+ int ret;
+ unsigned long size, ptbl, root;
+ struct prtb_entry entry;
+
+ if ((table & PRTS_MASK) > 24)
+ return -EINVAL;
+ size = 1ul << ((table & PRTS_MASK) + 12);
+
+ /* Is the table big enough to contain this entry? */
+ if ((table_index * sizeof(entry)) >= size)
+ return -EINVAL;
+
+ /* Read the table to find the root of the radix tree */
+ ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry));
+ kvm_vcpu_srcu_read_lock(vcpu);
+ ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry));
+ kvm_vcpu_srcu_read_unlock(vcpu);
+ if (ret)
+ return ret;
+
+ /* Root is stored in the first double word */
+ root = be64_to_cpu(entry.prtb0);
+
+ return kvmppc_mmu_walk_radix_tree(vcpu, eaddr, gpte, root, pte_ret_p);
+}
+
+int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
+ struct kvmppc_pte *gpte, bool data, bool iswrite)
+{
+ u32 pid;
+ u64 pte;
+ int ret;
+
+ /* Work out effective PID */
+ switch (eaddr >> 62) {
+ case 0:
+ pid = vcpu->arch.pid;
+ break;
+ case 3:
+ pid = 0;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ ret = kvmppc_mmu_radix_translate_table(vcpu, eaddr, gpte,
+ vcpu->kvm->arch.process_table, pid, &pte);
+ if (ret)
+ return ret;
+
+ /* Check privilege (applies only to process scoped translations) */
+ if (kvmppc_get_msr(vcpu) & MSR_PR) {
+ if (pte & _PAGE_PRIVILEGED) {
+ gpte->may_read = 0;
+ gpte->may_write = 0;
+ gpte->may_execute = 0;
+ }
+ } else {
+ if (!(pte & _PAGE_PRIVILEGED)) {
+ /* Check AMR/IAMR to see if strict mode is in force */
+ if (vcpu->arch.amr & (1ul << 62))
+ gpte->may_read = 0;
+ if (vcpu->arch.amr & (1ul << 63))
+ gpte->may_write = 0;
+ if (vcpu->arch.iamr & (1ul << 62))
+ gpte->may_execute = 0;
+ }
+ }
+
+ return 0;
+}
+
+void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
+ unsigned int pshift, unsigned int lpid)
+{
+ unsigned long psize = PAGE_SIZE;
+ int psi;
+ long rc;
+ unsigned long rb;
+
+ if (pshift)
+ psize = 1UL << pshift;
+ else
+ pshift = PAGE_SHIFT;
+
+ addr &= ~(psize - 1);
+
+ if (!kvmhv_on_pseries()) {
+ radix__flush_tlb_lpid_page(lpid, addr, psize);
+ return;
+ }
+
+ psi = shift_to_mmu_psize(pshift);
+
+ if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE)) {
+ rb = addr | (mmu_get_ap(psi) << PPC_BITLSHIFT(58));
+ rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(0, 0, 1),
+ lpid, rb);
+ } else {
+ rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
+ H_RPTI_TYPE_NESTED |
+ H_RPTI_TYPE_TLB,
+ psize_to_rpti_pgsize(psi),
+ addr, addr + psize);
+ }
+
+ if (rc)
+ pr_err("KVM: TLB page invalidation hcall failed, rc=%ld\n", rc);
+}
+
+static void kvmppc_radix_flush_pwc(struct kvm *kvm, unsigned int lpid)
+{
+ long rc;
+
+ if (!kvmhv_on_pseries()) {
+ radix__flush_pwc_lpid(lpid);
+ return;
+ }
+
+ if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE))
+ rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(1, 0, 1),
+ lpid, TLBIEL_INVAL_SET_LPID);
+ else
+ rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
+ H_RPTI_TYPE_NESTED |
+ H_RPTI_TYPE_PWC, H_RPTI_PAGE_ALL,
+ 0, -1UL);
+ if (rc)
+ pr_err("KVM: TLB PWC invalidation hcall failed, rc=%ld\n", rc);
+}
+
+static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
+ unsigned long clr, unsigned long set,
+ unsigned long addr, unsigned int shift)
+{
+ return __radix_pte_update(ptep, clr, set);
+}
+
+static void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
+ pte_t *ptep, pte_t pte)
+{
+ radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
+}
+
+static struct kmem_cache *kvm_pte_cache;
+static struct kmem_cache *kvm_pmd_cache;
+
+static pte_t *kvmppc_pte_alloc(void)
+{
+ pte_t *pte;
+
+ pte = kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
+ /* pmd_populate() will only reference _pa(pte). */
+ kmemleak_ignore(pte);
+
+ return pte;
+}
+
+static void kvmppc_pte_free(pte_t *ptep)
+{
+ kmem_cache_free(kvm_pte_cache, ptep);
+}
+
+static pmd_t *kvmppc_pmd_alloc(void)
+{
+ pmd_t *pmd;
+
+ pmd = kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL);
+ /* pud_populate() will only reference _pa(pmd). */
+ kmemleak_ignore(pmd);
+
+ return pmd;
+}
+
+static void kvmppc_pmd_free(pmd_t *pmdp)
+{
+ kmem_cache_free(kvm_pmd_cache, pmdp);
+}
+
+/* Called with kvm->mmu_lock held */
+void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa,
+ unsigned int shift,
+ const struct kvm_memory_slot *memslot,
+ unsigned int lpid)
+
+{
+ unsigned long old;
+ unsigned long gfn = gpa >> PAGE_SHIFT;
+ unsigned long page_size = PAGE_SIZE;
+ unsigned long hpa;
+
+ old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift);
+ kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
+
+ /* The following only applies to L1 entries */
+ if (lpid != kvm->arch.lpid)
+ return;
+
+ if (!memslot) {
+ memslot = gfn_to_memslot(kvm, gfn);
+ if (!memslot)
+ return;
+ }
+ if (shift) { /* 1GB or 2MB page */
+ page_size = 1ul << shift;
+ if (shift == PMD_SHIFT)
+ kvm->stat.num_2M_pages--;
+ else if (shift == PUD_SHIFT)
+ kvm->stat.num_1G_pages--;
+ }
+
+ gpa &= ~(page_size - 1);
+ hpa = old & PTE_RPN_MASK;
+ kvmhv_remove_nest_rmap_range(kvm, memslot, gpa, hpa, page_size);
+
+ if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap)
+ kvmppc_update_dirty_map(memslot, gfn, page_size);
+}
+
+/*
+ * kvmppc_free_p?d are used to free existing page tables, and recursively
+ * descend and clear and free children.
+ * Callers are responsible for flushing the PWC.
+ *
+ * When page tables are being unmapped/freed as part of page fault path
+ * (full == false), valid ptes are generally not expected; however, there
+ * is one situation where they arise, which is when dirty page logging is
+ * turned off for a memslot while the VM is running. The new memslot
+ * becomes visible to page faults before the memslot commit function
+ * gets to flush the memslot, which can lead to a 2MB page mapping being
+ * installed for a guest physical address where there are already 64kB
+ * (or 4kB) mappings (of sub-pages of the same 2MB page).
+ */
+static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full,
+ unsigned int lpid)
+{
+ if (full) {
+ memset(pte, 0, sizeof(long) << RADIX_PTE_INDEX_SIZE);
+ } else {
+ pte_t *p = pte;
+ unsigned long it;
+
+ for (it = 0; it < PTRS_PER_PTE; ++it, ++p) {
+ if (pte_val(*p) == 0)
+ continue;
+ kvmppc_unmap_pte(kvm, p,
+ pte_pfn(*p) << PAGE_SHIFT,
+ PAGE_SHIFT, NULL, lpid);
+ }
+ }
+
+ kvmppc_pte_free(pte);
+}
+
+static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full,
+ unsigned int lpid)
+{
+ unsigned long im;
+ pmd_t *p = pmd;
+
+ for (im = 0; im < PTRS_PER_PMD; ++im, ++p) {
+ if (!pmd_present(*p))
+ continue;
+ if (pmd_is_leaf(*p)) {
+ if (full) {
+ pmd_clear(p);
+ } else {
+ WARN_ON_ONCE(1);
+ kvmppc_unmap_pte(kvm, (pte_t *)p,
+ pte_pfn(*(pte_t *)p) << PAGE_SHIFT,
+ PMD_SHIFT, NULL, lpid);
+ }
+ } else {
+ pte_t *pte;
+
+ pte = pte_offset_map(p, 0);
+ kvmppc_unmap_free_pte(kvm, pte, full, lpid);
+ pmd_clear(p);
+ }
+ }
+ kvmppc_pmd_free(pmd);
+}
+
+static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud,
+ unsigned int lpid)
+{
+ unsigned long iu;
+ pud_t *p = pud;
+
+ for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) {
+ if (!pud_present(*p))
+ continue;
+ if (pud_is_leaf(*p)) {
+ pud_clear(p);
+ } else {
+ pmd_t *pmd;
+
+ pmd = pmd_offset(p, 0);
+ kvmppc_unmap_free_pmd(kvm, pmd, true, lpid);
+ pud_clear(p);
+ }
+ }
+ pud_free(kvm->mm, pud);
+}
+
+void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd, unsigned int lpid)
+{
+ unsigned long ig;
+
+ for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
+ p4d_t *p4d = p4d_offset(pgd, 0);
+ pud_t *pud;
+
+ if (!p4d_present(*p4d))
+ continue;
+ pud = pud_offset(p4d, 0);
+ kvmppc_unmap_free_pud(kvm, pud, lpid);
+ p4d_clear(p4d);
+ }
+}
+
+void kvmppc_free_radix(struct kvm *kvm)
+{
+ if (kvm->arch.pgtable) {
+ kvmppc_free_pgtable_radix(kvm, kvm->arch.pgtable,
+ kvm->arch.lpid);
+ pgd_free(kvm->mm, kvm->arch.pgtable);
+ kvm->arch.pgtable = NULL;
+ }
+}
+
+static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd,
+ unsigned long gpa, unsigned int lpid)
+{
+ pte_t *pte = pte_offset_kernel(pmd, 0);
+
+ /*
+ * Clearing the pmd entry then flushing the PWC ensures that the pte
+ * page no longer be cached by the MMU, so can be freed without
+ * flushing the PWC again.
+ */
+ pmd_clear(pmd);
+ kvmppc_radix_flush_pwc(kvm, lpid);
+
+ kvmppc_unmap_free_pte(kvm, pte, false, lpid);
+}
+
+static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud,
+ unsigned long gpa, unsigned int lpid)
+{
+ pmd_t *pmd = pmd_offset(pud, 0);
+
+ /*
+ * Clearing the pud entry then flushing the PWC ensures that the pmd
+ * page and any children pte pages will no longer be cached by the MMU,
+ * so can be freed without flushing the PWC again.
+ */
+ pud_clear(pud);
+ kvmppc_radix_flush_pwc(kvm, lpid);
+
+ kvmppc_unmap_free_pmd(kvm, pmd, false, lpid);
+}
+
+/*
+ * There are a number of bits which may differ between different faults to
+ * the same partition scope entry. RC bits, in the course of cleaning and
+ * aging. And the write bit can change, either the access could have been
+ * upgraded, or a read fault could happen concurrently with a write fault
+ * that sets those bits first.
+ */
+#define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED))
+
+int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
+ unsigned long gpa, unsigned int level,
+ unsigned long mmu_seq, unsigned int lpid,
+ unsigned long *rmapp, struct rmap_nested **n_rmap)
+{
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud, *new_pud = NULL;
+ pmd_t *pmd, *new_pmd = NULL;
+ pte_t *ptep, *new_ptep = NULL;
+ int ret;
+
+ /* Traverse the guest's 2nd-level tree, allocate new levels needed */
+ pgd = pgtable + pgd_index(gpa);
+ p4d = p4d_offset(pgd, gpa);
+
+ pud = NULL;
+ if (p4d_present(*p4d))
+ pud = pud_offset(p4d, gpa);
+ else
+ new_pud = pud_alloc_one(kvm->mm, gpa);
+
+ pmd = NULL;
+ if (pud && pud_present(*pud) && !pud_is_leaf(*pud))
+ pmd = pmd_offset(pud, gpa);
+ else if (level <= 1)
+ new_pmd = kvmppc_pmd_alloc();
+
+ if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd)))
+ new_ptep = kvmppc_pte_alloc();
+
+ /* Check if we might have been invalidated; let the guest retry if so */
+ spin_lock(&kvm->mmu_lock);
+ ret = -EAGAIN;
+ if (mmu_invalidate_retry(kvm, mmu_seq))
+ goto out_unlock;
+
+ /* Now traverse again under the lock and change the tree */
+ ret = -ENOMEM;
+ if (p4d_none(*p4d)) {
+ if (!new_pud)
+ goto out_unlock;
+ p4d_populate(kvm->mm, p4d, new_pud);
+ new_pud = NULL;
+ }
+ pud = pud_offset(p4d, gpa);
+ if (pud_is_leaf(*pud)) {
+ unsigned long hgpa = gpa & PUD_MASK;
+
+ /* Check if we raced and someone else has set the same thing */
+ if (level == 2) {
+ if (pud_raw(*pud) == pte_raw(pte)) {
+ ret = 0;
+ goto out_unlock;
+ }
+ /* Valid 1GB page here already, add our extra bits */
+ WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) &
+ PTE_BITS_MUST_MATCH);
+ kvmppc_radix_update_pte(kvm, (pte_t *)pud,
+ 0, pte_val(pte), hgpa, PUD_SHIFT);
+ ret = 0;
+ goto out_unlock;
+ }
+ /*
+ * If we raced with another CPU which has just put
+ * a 1GB pte in after we saw a pmd page, try again.
+ */
+ if (!new_pmd) {
+ ret = -EAGAIN;
+ goto out_unlock;
+ }
+ /* Valid 1GB page here already, remove it */
+ kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT, NULL,
+ lpid);
+ }
+ if (level == 2) {
+ if (!pud_none(*pud)) {
+ /*
+ * There's a page table page here, but we wanted to
+ * install a large page, so remove and free the page
+ * table page.
+ */
+ kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa, lpid);
+ }
+ kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte);
+ if (rmapp && n_rmap)
+ kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
+ ret = 0;
+ goto out_unlock;
+ }
+ if (pud_none(*pud)) {
+ if (!new_pmd)
+ goto out_unlock;
+ pud_populate(kvm->mm, pud, new_pmd);
+ new_pmd = NULL;
+ }
+ pmd = pmd_offset(pud, gpa);
+ if (pmd_is_leaf(*pmd)) {
+ unsigned long lgpa = gpa & PMD_MASK;
+
+ /* Check if we raced and someone else has set the same thing */
+ if (level == 1) {
+ if (pmd_raw(*pmd) == pte_raw(pte)) {
+ ret = 0;
+ goto out_unlock;
+ }
+ /* Valid 2MB page here already, add our extra bits */
+ WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) &
+ PTE_BITS_MUST_MATCH);
+ kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd),
+ 0, pte_val(pte), lgpa, PMD_SHIFT);
+ ret = 0;
+ goto out_unlock;
+ }
+
+ /*
+ * If we raced with another CPU which has just put
+ * a 2MB pte in after we saw a pte page, try again.
+ */
+ if (!new_ptep) {
+ ret = -EAGAIN;
+ goto out_unlock;
+ }
+ /* Valid 2MB page here already, remove it */
+ kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT, NULL,
+ lpid);
+ }
+ if (level == 1) {
+ if (!pmd_none(*pmd)) {
+ /*
+ * There's a page table page here, but we wanted to
+ * install a large page, so remove and free the page
+ * table page.
+ */
+ kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa, lpid);
+ }
+ kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
+ if (rmapp && n_rmap)
+ kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
+ ret = 0;
+ goto out_unlock;
+ }
+ if (pmd_none(*pmd)) {
+ if (!new_ptep)
+ goto out_unlock;
+ pmd_populate(kvm->mm, pmd, new_ptep);
+ new_ptep = NULL;
+ }
+ ptep = pte_offset_kernel(pmd, gpa);
+ if (pte_present(*ptep)) {
+ /* Check if someone else set the same thing */
+ if (pte_raw(*ptep) == pte_raw(pte)) {
+ ret = 0;
+ goto out_unlock;
+ }
+ /* Valid page here already, add our extra bits */
+ WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) &
+ PTE_BITS_MUST_MATCH);
+ kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0);
+ ret = 0;
+ goto out_unlock;
+ }
+ kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
+ if (rmapp && n_rmap)
+ kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
+ ret = 0;
+
+ out_unlock:
+ spin_unlock(&kvm->mmu_lock);
+ if (new_pud)
+ pud_free(kvm->mm, new_pud);
+ if (new_pmd)
+ kvmppc_pmd_free(new_pmd);
+ if (new_ptep)
+ kvmppc_pte_free(new_ptep);
+ return ret;
+}
+
+bool kvmppc_hv_handle_set_rc(struct kvm *kvm, bool nested, bool writing,
+ unsigned long gpa, unsigned int lpid)
+{
+ unsigned long pgflags;
+ unsigned int shift;
+ pte_t *ptep;
+
+ /*
+ * Need to set an R or C bit in the 2nd-level tables;
+ * since we are just helping out the hardware here,
+ * it is sufficient to do what the hardware does.
+ */
+ pgflags = _PAGE_ACCESSED;
+ if (writing)
+ pgflags |= _PAGE_DIRTY;
+
+ if (nested)
+ ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
+ else
+ ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
+
+ if (ptep && pte_present(*ptep) && (!writing || pte_write(*ptep))) {
+ kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, gpa, shift);
+ return true;
+ }
+ return false;
+}
+
+int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu,
+ unsigned long gpa,
+ struct kvm_memory_slot *memslot,
+ bool writing, bool kvm_ro,
+ pte_t *inserted_pte, unsigned int *levelp)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct page *page = NULL;
+ unsigned long mmu_seq;
+ unsigned long hva, gfn = gpa >> PAGE_SHIFT;
+ bool upgrade_write = false;
+ bool *upgrade_p = &upgrade_write;
+ pte_t pte, *ptep;
+ unsigned int shift, level;
+ int ret;
+ bool large_enable;
+
+ /* used to check for invalidations in progress */
+ mmu_seq = kvm->mmu_invalidate_seq;
+ smp_rmb();
+
+ /*
+ * Do a fast check first, since __gfn_to_pfn_memslot doesn't
+ * do it with !atomic && !async, which is how we call it.
+ * We always ask for write permission since the common case
+ * is that the page is writable.
+ */
+ hva = gfn_to_hva_memslot(memslot, gfn);
+ if (!kvm_ro && get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
+ upgrade_write = true;
+ } else {
+ unsigned long pfn;
+
+ /* Call KVM generic code to do the slow-path check */
+ pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
+ writing, upgrade_p, NULL);
+ if (is_error_noslot_pfn(pfn))
+ return -EFAULT;
+ page = NULL;
+ if (pfn_valid(pfn)) {
+ page = pfn_to_page(pfn);
+ if (PageReserved(page))
+ page = NULL;
+ }
+ }
+
+ /*
+ * Read the PTE from the process' radix tree and use that
+ * so we get the shift and attribute bits.
+ */
+ spin_lock(&kvm->mmu_lock);
+ ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
+ pte = __pte(0);
+ if (ptep)
+ pte = READ_ONCE(*ptep);
+ spin_unlock(&kvm->mmu_lock);
+ /*
+ * If the PTE disappeared temporarily due to a THP
+ * collapse, just return and let the guest try again.
+ */
+ if (!pte_present(pte)) {
+ if (page)
+ put_page(page);
+ return RESUME_GUEST;
+ }
+
+ /* If we're logging dirty pages, always map single pages */
+ large_enable = !(memslot->flags & KVM_MEM_LOG_DIRTY_PAGES);
+
+ /* Get pte level from shift/size */
+ if (large_enable && shift == PUD_SHIFT &&
+ (gpa & (PUD_SIZE - PAGE_SIZE)) ==
+ (hva & (PUD_SIZE - PAGE_SIZE))) {
+ level = 2;
+ } else if (large_enable && shift == PMD_SHIFT &&
+ (gpa & (PMD_SIZE - PAGE_SIZE)) ==
+ (hva & (PMD_SIZE - PAGE_SIZE))) {
+ level = 1;
+ } else {
+ level = 0;
+ if (shift > PAGE_SHIFT) {
+ /*
+ * If the pte maps more than one page, bring over
+ * bits from the virtual address to get the real
+ * address of the specific single page we want.
+ */
+ unsigned long rpnmask = (1ul << shift) - PAGE_SIZE;
+ pte = __pte(pte_val(pte) | (hva & rpnmask));
+ }
+ }
+
+ pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED);
+ if (writing || upgrade_write) {
+ if (pte_val(pte) & _PAGE_WRITE)
+ pte = __pte(pte_val(pte) | _PAGE_DIRTY);
+ } else {
+ pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY));
+ }
+
+ /* Allocate space in the tree and write the PTE */
+ ret = kvmppc_create_pte(kvm, kvm->arch.pgtable, pte, gpa, level,
+ mmu_seq, kvm->arch.lpid, NULL, NULL);
+ if (inserted_pte)
+ *inserted_pte = pte;
+ if (levelp)
+ *levelp = level;
+
+ if (page) {
+ if (!ret && (pte_val(pte) & _PAGE_WRITE))
+ set_page_dirty_lock(page);
+ put_page(page);
+ }
+
+ /* Increment number of large pages if we (successfully) inserted one */
+ if (!ret) {
+ if (level == 1)
+ kvm->stat.num_2M_pages++;
+ else if (level == 2)
+ kvm->stat.num_1G_pages++;
+ }
+
+ return ret;
+}
+
+int kvmppc_book3s_radix_page_fault(struct kvm_vcpu *vcpu,
+ unsigned long ea, unsigned long dsisr)
+{
+ struct kvm *kvm = vcpu->kvm;
+ unsigned long gpa, gfn;
+ struct kvm_memory_slot *memslot;
+ long ret;
+ bool writing = !!(dsisr & DSISR_ISSTORE);
+ bool kvm_ro = false;
+
+ /* Check for unusual errors */
+ if (dsisr & DSISR_UNSUPP_MMU) {
+ pr_err("KVM: Got unsupported MMU fault\n");
+ return -EFAULT;
+ }
+ if (dsisr & DSISR_BADACCESS) {
+ /* Reflect to the guest as DSI */
+ pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
+ kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
+ return RESUME_GUEST;
+ }
+
+ /* Translate the logical address */
+ gpa = vcpu->arch.fault_gpa & ~0xfffUL;
+ gpa &= ~0xF000000000000000ul;
+ gfn = gpa >> PAGE_SHIFT;
+ if (!(dsisr & DSISR_PRTABLE_FAULT))
+ gpa |= ea & 0xfff;
+
+ if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
+ return kvmppc_send_page_to_uv(kvm, gfn);
+
+ /* Get the corresponding memslot */
+ memslot = gfn_to_memslot(kvm, gfn);
+
+ /* No memslot means it's an emulated MMIO region */
+ if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
+ if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
+ DSISR_SET_RC)) {
+ /*
+ * Bad address in guest page table tree, or other
+ * unusual error - reflect it to the guest as DSI.
+ */
+ kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
+ return RESUME_GUEST;
+ }
+ return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
+ }
+
+ if (memslot->flags & KVM_MEM_READONLY) {
+ if (writing) {
+ /* give the guest a DSI */
+ kvmppc_core_queue_data_storage(vcpu, ea, DSISR_ISSTORE |
+ DSISR_PROTFAULT);
+ return RESUME_GUEST;
+ }
+ kvm_ro = true;
+ }
+
+ /* Failed to set the reference/change bits */
+ if (dsisr & DSISR_SET_RC) {
+ spin_lock(&kvm->mmu_lock);
+ if (kvmppc_hv_handle_set_rc(kvm, false, writing,
+ gpa, kvm->arch.lpid))
+ dsisr &= ~DSISR_SET_RC;
+ spin_unlock(&kvm->mmu_lock);
+
+ if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
+ DSISR_PROTFAULT | DSISR_SET_RC)))
+ return RESUME_GUEST;
+ }
+
+ /* Try to insert a pte */
+ ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, writing,
+ kvm_ro, NULL, NULL);
+
+ if (ret == 0 || ret == -EAGAIN)
+ ret = RESUME_GUEST;
+ return ret;
+}
+
+/* Called with kvm->mmu_lock held */
+void kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
+ unsigned long gfn)
+{
+ pte_t *ptep;
+ unsigned long gpa = gfn << PAGE_SHIFT;
+ unsigned int shift;
+
+ if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) {
+ uv_page_inval(kvm->arch.lpid, gpa, PAGE_SHIFT);
+ return;
+ }
+
+ ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
+ if (ptep && pte_present(*ptep))
+ kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
+ kvm->arch.lpid);
+}
+
+/* Called with kvm->mmu_lock held */
+bool kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
+ unsigned long gfn)
+{
+ pte_t *ptep;
+ unsigned long gpa = gfn << PAGE_SHIFT;
+ unsigned int shift;
+ bool ref = false;
+ unsigned long old, *rmapp;
+
+ if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
+ return ref;
+
+ ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
+ if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
+ old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
+ gpa, shift);
+ /* XXX need to flush tlb here? */
+ /* Also clear bit in ptes in shadow pgtable for nested guests */
+ rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
+ kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_ACCESSED, 0,
+ old & PTE_RPN_MASK,
+ 1UL << shift);
+ ref = true;
+ }
+ return ref;
+}
+
+/* Called with kvm->mmu_lock held */
+bool kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
+ unsigned long gfn)
+
+{
+ pte_t *ptep;
+ unsigned long gpa = gfn << PAGE_SHIFT;
+ unsigned int shift;
+ bool ref = false;
+
+ if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
+ return ref;
+
+ ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
+ if (ptep && pte_present(*ptep) && pte_young(*ptep))
+ ref = true;
+ return ref;
+}
+
+/* Returns the number of PAGE_SIZE pages that are dirty */
+static int kvm_radix_test_clear_dirty(struct kvm *kvm,
+ struct kvm_memory_slot *memslot, int pagenum)
+{
+ unsigned long gfn = memslot->base_gfn + pagenum;
+ unsigned long gpa = gfn << PAGE_SHIFT;
+ pte_t *ptep, pte;
+ unsigned int shift;
+ int ret = 0;
+ unsigned long old, *rmapp;
+
+ if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
+ return ret;
+
+ /*
+ * For performance reasons we don't hold kvm->mmu_lock while walking the
+ * partition scoped table.
+ */
+ ptep = find_kvm_secondary_pte_unlocked(kvm, gpa, &shift);
+ if (!ptep)
+ return 0;
+
+ pte = READ_ONCE(*ptep);
+ if (pte_present(pte) && pte_dirty(pte)) {
+ spin_lock(&kvm->mmu_lock);
+ /*
+ * Recheck the pte again
+ */
+ if (pte_val(pte) != pte_val(*ptep)) {
+ /*
+ * We have KVM_MEM_LOG_DIRTY_PAGES enabled. Hence we can
+ * only find PAGE_SIZE pte entries here. We can continue
+ * to use the pte addr returned by above page table
+ * walk.
+ */
+ if (!pte_present(*ptep) || !pte_dirty(*ptep)) {
+ spin_unlock(&kvm->mmu_lock);
+ return 0;
+ }
+ }
+
+ ret = 1;
+ VM_BUG_ON(shift);
+ old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
+ gpa, shift);
+ kvmppc_radix_tlbie_page(kvm, gpa, shift, kvm->arch.lpid);
+ /* Also clear bit in ptes in shadow pgtable for nested guests */
+ rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
+ kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_DIRTY, 0,
+ old & PTE_RPN_MASK,
+ 1UL << shift);
+ spin_unlock(&kvm->mmu_lock);
+ }
+ return ret;
+}
+
+long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
+ struct kvm_memory_slot *memslot, unsigned long *map)
+{
+ unsigned long i, j;
+ int npages;
+
+ for (i = 0; i < memslot->npages; i = j) {
+ npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
+
+ /*
+ * Note that if npages > 0 then i must be a multiple of npages,
+ * since huge pages are only used to back the guest at guest
+ * real addresses that are a multiple of their size.
+ * Since we have at most one PTE covering any given guest
+ * real address, if npages > 1 we can skip to i + npages.
+ */
+ j = i + 1;
+ if (npages) {
+ set_dirty_bits(map, i, npages);
+ j = i + npages;
+ }
+ }
+ return 0;
+}
+
+void kvmppc_radix_flush_memslot(struct kvm *kvm,
+ const struct kvm_memory_slot *memslot)
+{
+ unsigned long n;
+ pte_t *ptep;
+ unsigned long gpa;
+ unsigned int shift;
+
+ if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)
+ kvmppc_uvmem_drop_pages(memslot, kvm, true);
+
+ if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
+ return;
+
+ gpa = memslot->base_gfn << PAGE_SHIFT;
+ spin_lock(&kvm->mmu_lock);
+ for (n = memslot->npages; n; --n) {
+ ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
+ if (ptep && pte_present(*ptep))
+ kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
+ kvm->arch.lpid);
+ gpa += PAGE_SIZE;
+ }
+ /*
+ * Increase the mmu notifier sequence number to prevent any page
+ * fault that read the memslot earlier from writing a PTE.
+ */
+ kvm->mmu_invalidate_seq++;
+ spin_unlock(&kvm->mmu_lock);
+}
+
+static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
+ int psize, int *indexp)
+{
+ if (!mmu_psize_defs[psize].shift)
+ return;
+ info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
+ (mmu_psize_defs[psize].ap << 29);
+ ++(*indexp);
+}
+
+int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
+{
+ int i;
+
+ if (!radix_enabled())
+ return -EINVAL;
+ memset(info, 0, sizeof(*info));
+
+ /* 4k page size */
+ info->geometries[0].page_shift = 12;
+ info->geometries[0].level_bits[0] = 9;
+ for (i = 1; i < 4; ++i)
+ info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
+ /* 64k page size */
+ info->geometries[1].page_shift = 16;
+ for (i = 0; i < 4; ++i)
+ info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
+
+ i = 0;
+ add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
+ add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
+ add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
+ add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
+
+ return 0;
+}
+
+int kvmppc_init_vm_radix(struct kvm *kvm)
+{
+ kvm->arch.pgtable = pgd_alloc(kvm->mm);
+ if (!kvm->arch.pgtable)
+ return -ENOMEM;
+ return 0;
+}
+
+static void pte_ctor(void *addr)
+{
+ memset(addr, 0, RADIX_PTE_TABLE_SIZE);
+}
+
+static void pmd_ctor(void *addr)
+{
+ memset(addr, 0, RADIX_PMD_TABLE_SIZE);
+}
+
+struct debugfs_radix_state {
+ struct kvm *kvm;
+ struct mutex mutex;
+ unsigned long gpa;
+ int lpid;
+ int chars_left;
+ int buf_index;
+ char buf[128];
+ u8 hdr;
+};
+
+static int debugfs_radix_open(struct inode *inode, struct file *file)
+{
+ struct kvm *kvm = inode->i_private;
+ struct debugfs_radix_state *p;
+
+ p = kzalloc(sizeof(*p), GFP_KERNEL);
+ if (!p)
+ return -ENOMEM;
+
+ kvm_get_kvm(kvm);
+ p->kvm = kvm;
+ mutex_init(&p->mutex);
+ file->private_data = p;
+
+ return nonseekable_open(inode, file);
+}
+
+static int debugfs_radix_release(struct inode *inode, struct file *file)
+{
+ struct debugfs_radix_state *p = file->private_data;
+
+ kvm_put_kvm(p->kvm);
+ kfree(p);
+ return 0;
+}
+
+static ssize_t debugfs_radix_read(struct file *file, char __user *buf,
+ size_t len, loff_t *ppos)
+{
+ struct debugfs_radix_state *p = file->private_data;
+ ssize_t ret, r;
+ unsigned long n;
+ struct kvm *kvm;
+ unsigned long gpa;
+ pgd_t *pgt;
+ struct kvm_nested_guest *nested;
+ pgd_t *pgdp;
+ p4d_t p4d, *p4dp;
+ pud_t pud, *pudp;
+ pmd_t pmd, *pmdp;
+ pte_t *ptep;
+ int shift;
+ unsigned long pte;
+
+ kvm = p->kvm;
+ if (!kvm_is_radix(kvm))
+ return 0;
+
+ ret = mutex_lock_interruptible(&p->mutex);
+ if (ret)
+ return ret;
+
+ if (p->chars_left) {
+ n = p->chars_left;
+ if (n > len)
+ n = len;
+ r = copy_to_user(buf, p->buf + p->buf_index, n);
+ n -= r;
+ p->chars_left -= n;
+ p->buf_index += n;
+ buf += n;
+ len -= n;
+ ret = n;
+ if (r) {
+ if (!n)
+ ret = -EFAULT;
+ goto out;
+ }
+ }
+
+ gpa = p->gpa;
+ nested = NULL;
+ pgt = NULL;
+ while (len != 0 && p->lpid >= 0) {
+ if (gpa >= RADIX_PGTABLE_RANGE) {
+ gpa = 0;
+ pgt = NULL;
+ if (nested) {
+ kvmhv_put_nested(nested);
+ nested = NULL;
+ }
+ p->lpid = kvmhv_nested_next_lpid(kvm, p->lpid);
+ p->hdr = 0;
+ if (p->lpid < 0)
+ break;
+ }
+ if (!pgt) {
+ if (p->lpid == 0) {
+ pgt = kvm->arch.pgtable;
+ } else {
+ nested = kvmhv_get_nested(kvm, p->lpid, false);
+ if (!nested) {
+ gpa = RADIX_PGTABLE_RANGE;
+ continue;
+ }
+ pgt = nested->shadow_pgtable;
+ }
+ }
+ n = 0;
+ if (!p->hdr) {
+ if (p->lpid > 0)
+ n = scnprintf(p->buf, sizeof(p->buf),
+ "\nNested LPID %d: ", p->lpid);
+ n += scnprintf(p->buf + n, sizeof(p->buf) - n,
+ "pgdir: %lx\n", (unsigned long)pgt);
+ p->hdr = 1;
+ goto copy;
+ }
+
+ pgdp = pgt + pgd_index(gpa);
+ p4dp = p4d_offset(pgdp, gpa);
+ p4d = READ_ONCE(*p4dp);
+ if (!(p4d_val(p4d) & _PAGE_PRESENT)) {
+ gpa = (gpa & P4D_MASK) + P4D_SIZE;
+ continue;
+ }
+
+ pudp = pud_offset(&p4d, gpa);
+ pud = READ_ONCE(*pudp);
+ if (!(pud_val(pud) & _PAGE_PRESENT)) {
+ gpa = (gpa & PUD_MASK) + PUD_SIZE;
+ continue;
+ }
+ if (pud_val(pud) & _PAGE_PTE) {
+ pte = pud_val(pud);
+ shift = PUD_SHIFT;
+ goto leaf;
+ }
+
+ pmdp = pmd_offset(&pud, gpa);
+ pmd = READ_ONCE(*pmdp);
+ if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
+ gpa = (gpa & PMD_MASK) + PMD_SIZE;
+ continue;
+ }
+ if (pmd_val(pmd) & _PAGE_PTE) {
+ pte = pmd_val(pmd);
+ shift = PMD_SHIFT;
+ goto leaf;
+ }
+
+ ptep = pte_offset_kernel(&pmd, gpa);
+ pte = pte_val(READ_ONCE(*ptep));
+ if (!(pte & _PAGE_PRESENT)) {
+ gpa += PAGE_SIZE;
+ continue;
+ }
+ shift = PAGE_SHIFT;
+ leaf:
+ n = scnprintf(p->buf, sizeof(p->buf),
+ " %lx: %lx %d\n", gpa, pte, shift);
+ gpa += 1ul << shift;
+ copy:
+ p->chars_left = n;
+ if (n > len)
+ n = len;
+ r = copy_to_user(buf, p->buf, n);
+ n -= r;
+ p->chars_left -= n;
+ p->buf_index = n;
+ buf += n;
+ len -= n;
+ ret += n;
+ if (r) {
+ if (!ret)
+ ret = -EFAULT;
+ break;
+ }
+ }
+ p->gpa = gpa;
+ if (nested)
+ kvmhv_put_nested(nested);
+
+ out:
+ mutex_unlock(&p->mutex);
+ return ret;
+}
+
+static ssize_t debugfs_radix_write(struct file *file, const char __user *buf,
+ size_t len, loff_t *ppos)
+{
+ return -EACCES;
+}
+
+static const struct file_operations debugfs_radix_fops = {
+ .owner = THIS_MODULE,
+ .open = debugfs_radix_open,
+ .release = debugfs_radix_release,
+ .read = debugfs_radix_read,
+ .write = debugfs_radix_write,
+ .llseek = generic_file_llseek,
+};
+
+void kvmhv_radix_debugfs_init(struct kvm *kvm)
+{
+ debugfs_create_file("radix", 0400, kvm->debugfs_dentry, kvm,
+ &debugfs_radix_fops);
+}
+
+int kvmppc_radix_init(void)
+{
+ unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE;
+
+ kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
+ if (!kvm_pte_cache)
+ return -ENOMEM;
+
+ size = sizeof(void *) << RADIX_PMD_INDEX_SIZE;
+
+ kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor);
+ if (!kvm_pmd_cache) {
+ kmem_cache_destroy(kvm_pte_cache);
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+void kvmppc_radix_exit(void)
+{
+ kmem_cache_destroy(kvm_pte_cache);
+ kmem_cache_destroy(kvm_pmd_cache);
+}
diff --git a/arch/powerpc/kvm/book3s_64_slb.S b/arch/powerpc/kvm/book3s_64_slb.S
new file mode 100644
index 000000000..4d958dd21
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_64_slb.S
@@ -0,0 +1,145 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ *
+ * Copyright SUSE Linux Products GmbH 2009
+ *
+ * Authors: Alexander Graf <agraf@suse.de>
+ */
+
+#include <asm/asm-compat.h>
+#include <asm/feature-fixups.h>
+
+#define SHADOW_SLB_ENTRY_LEN 0x10
+#define OFFSET_ESID(x) (SHADOW_SLB_ENTRY_LEN * x)
+#define OFFSET_VSID(x) ((SHADOW_SLB_ENTRY_LEN * x) + 8)
+
+/******************************************************************************
+ * *
+ * Entry code *
+ * *
+ *****************************************************************************/
+
+.macro LOAD_GUEST_SEGMENTS
+
+ /* Required state:
+ *
+ * MSR = ~IR|DR
+ * R13 = PACA
+ * R1 = host R1
+ * R2 = host R2
+ * R3 = shadow vcpu
+ * all other volatile GPRS = free except R4, R6
+ * SVCPU[CR] = guest CR
+ * SVCPU[XER] = guest XER
+ * SVCPU[CTR] = guest CTR
+ * SVCPU[LR] = guest LR
+ */
+
+BEGIN_FW_FTR_SECTION
+
+ /* Declare SLB shadow as 0 entries big */
+
+ ld r11, PACA_SLBSHADOWPTR(r13)
+ li r8, 0
+ stb r8, 3(r11)
+
+END_FW_FTR_SECTION_IFSET(FW_FEATURE_LPAR)
+
+ /* Flush SLB */
+
+ li r10, 0
+ slbmte r10, r10
+ slbia
+
+ /* Fill SLB with our shadow */
+
+ lbz r12, SVCPU_SLB_MAX(r3)
+ mulli r12, r12, 16
+ addi r12, r12, SVCPU_SLB
+ add r12, r12, r3
+
+ /* for (r11 = kvm_slb; r11 < kvm_slb + kvm_slb_size; r11+=slb_entry) */
+ li r11, SVCPU_SLB
+ add r11, r11, r3
+
+slb_loop_enter:
+
+ ld r10, 0(r11)
+
+ andis. r9, r10, SLB_ESID_V@h
+ beq slb_loop_enter_skip
+
+ ld r9, 8(r11)
+ slbmte r9, r10
+
+slb_loop_enter_skip:
+ addi r11, r11, 16
+ cmpd cr0, r11, r12
+ blt slb_loop_enter
+
+slb_do_enter:
+
+.endm
+
+/******************************************************************************
+ * *
+ * Exit code *
+ * *
+ *****************************************************************************/
+
+.macro LOAD_HOST_SEGMENTS
+
+ /* Register usage at this point:
+ *
+ * R1 = host R1
+ * R2 = host R2
+ * R12 = exit handler id
+ * R13 = shadow vcpu - SHADOW_VCPU_OFF [=PACA on PPC64]
+ * SVCPU.* = guest *
+ * SVCPU[CR] = guest CR
+ * SVCPU[XER] = guest XER
+ * SVCPU[CTR] = guest CTR
+ * SVCPU[LR] = guest LR
+ *
+ */
+
+ /* Remove all SLB entries that are in use. */
+
+ li r0, 0
+ slbmte r0, r0
+ slbia
+
+ /* Restore bolted entries from the shadow */
+
+ ld r11, PACA_SLBSHADOWPTR(r13)
+
+BEGIN_FW_FTR_SECTION
+
+ /* Declare SLB shadow as SLB_NUM_BOLTED entries big */
+
+ li r8, SLB_NUM_BOLTED
+ stb r8, 3(r11)
+
+END_FW_FTR_SECTION_IFSET(FW_FEATURE_LPAR)
+
+ /* Manually load all entries from shadow SLB */
+
+ li r8, SLBSHADOW_SAVEAREA
+ li r7, SLBSHADOW_SAVEAREA + 8
+
+ .rept SLB_NUM_BOLTED
+ LDX_BE r10, r11, r8
+ cmpdi r10, 0
+ beq 1f
+ LDX_BE r9, r11, r7
+ slbmte r9, r10
+1: addi r7, r7, SHADOW_SLB_ENTRY_LEN
+ addi r8, r8, SHADOW_SLB_ENTRY_LEN
+ .endr
+
+ isync
+ sync
+
+slb_do_exit:
+
+.endm
diff --git a/arch/powerpc/kvm/book3s_64_vio.c b/arch/powerpc/kvm/book3s_64_vio.c
new file mode 100644
index 000000000..40864373e
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_64_vio.c
@@ -0,0 +1,798 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ *
+ * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
+ * Copyright 2011 David Gibson, IBM Corporation <dwg@au1.ibm.com>
+ * Copyright 2016 Alexey Kardashevskiy, IBM Corporation <aik@au1.ibm.com>
+ */
+
+#include <linux/types.h>
+#include <linux/string.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/highmem.h>
+#include <linux/gfp.h>
+#include <linux/slab.h>
+#include <linux/sched/signal.h>
+#include <linux/hugetlb.h>
+#include <linux/list.h>
+#include <linux/anon_inodes.h>
+#include <linux/iommu.h>
+#include <linux/file.h>
+#include <linux/mm.h>
+
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+#include <asm/book3s/64/mmu-hash.h>
+#include <asm/hvcall.h>
+#include <asm/synch.h>
+#include <asm/ppc-opcode.h>
+#include <asm/udbg.h>
+#include <asm/iommu.h>
+#include <asm/tce.h>
+#include <asm/mmu_context.h>
+
+static struct kvmppc_spapr_tce_table *kvmppc_find_table(struct kvm *kvm,
+ unsigned long liobn)
+{
+ struct kvmppc_spapr_tce_table *stt;
+
+ list_for_each_entry_lockless(stt, &kvm->arch.spapr_tce_tables, list)
+ if (stt->liobn == liobn)
+ return stt;
+
+ return NULL;
+}
+
+static unsigned long kvmppc_tce_pages(unsigned long iommu_pages)
+{
+ return ALIGN(iommu_pages * sizeof(u64), PAGE_SIZE) / PAGE_SIZE;
+}
+
+static unsigned long kvmppc_stt_pages(unsigned long tce_pages)
+{
+ unsigned long stt_bytes = sizeof(struct kvmppc_spapr_tce_table) +
+ (tce_pages * sizeof(struct page *));
+
+ return tce_pages + ALIGN(stt_bytes, PAGE_SIZE) / PAGE_SIZE;
+}
+
+static void kvm_spapr_tce_iommu_table_free(struct rcu_head *head)
+{
+ struct kvmppc_spapr_tce_iommu_table *stit = container_of(head,
+ struct kvmppc_spapr_tce_iommu_table, rcu);
+
+ iommu_tce_table_put(stit->tbl);
+
+ kfree(stit);
+}
+
+static void kvm_spapr_tce_liobn_put(struct kref *kref)
+{
+ struct kvmppc_spapr_tce_iommu_table *stit = container_of(kref,
+ struct kvmppc_spapr_tce_iommu_table, kref);
+
+ list_del_rcu(&stit->next);
+
+ call_rcu(&stit->rcu, kvm_spapr_tce_iommu_table_free);
+}
+
+extern void kvm_spapr_tce_release_iommu_group(struct kvm *kvm,
+ struct iommu_group *grp)
+{
+ int i;
+ struct kvmppc_spapr_tce_table *stt;
+ struct kvmppc_spapr_tce_iommu_table *stit, *tmp;
+ struct iommu_table_group *table_group = NULL;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(stt, &kvm->arch.spapr_tce_tables, list) {
+
+ table_group = iommu_group_get_iommudata(grp);
+ if (WARN_ON(!table_group))
+ continue;
+
+ list_for_each_entry_safe(stit, tmp, &stt->iommu_tables, next) {
+ for (i = 0; i < IOMMU_TABLE_GROUP_MAX_TABLES; ++i) {
+ if (table_group->tables[i] != stit->tbl)
+ continue;
+
+ kref_put(&stit->kref, kvm_spapr_tce_liobn_put);
+ }
+ }
+ cond_resched_rcu();
+ }
+ rcu_read_unlock();
+}
+
+extern long kvm_spapr_tce_attach_iommu_group(struct kvm *kvm, int tablefd,
+ struct iommu_group *grp)
+{
+ struct kvmppc_spapr_tce_table *stt = NULL;
+ bool found = false;
+ struct iommu_table *tbl = NULL;
+ struct iommu_table_group *table_group;
+ long i;
+ struct kvmppc_spapr_tce_iommu_table *stit;
+ struct fd f;
+
+ f = fdget(tablefd);
+ if (!f.file)
+ return -EBADF;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(stt, &kvm->arch.spapr_tce_tables, list) {
+ if (stt == f.file->private_data) {
+ found = true;
+ break;
+ }
+ }
+ rcu_read_unlock();
+
+ fdput(f);
+
+ if (!found)
+ return -EINVAL;
+
+ table_group = iommu_group_get_iommudata(grp);
+ if (WARN_ON(!table_group))
+ return -EFAULT;
+
+ for (i = 0; i < IOMMU_TABLE_GROUP_MAX_TABLES; ++i) {
+ struct iommu_table *tbltmp = table_group->tables[i];
+
+ if (!tbltmp)
+ continue;
+ /* Make sure hardware table parameters are compatible */
+ if ((tbltmp->it_page_shift <= stt->page_shift) &&
+ (tbltmp->it_offset << tbltmp->it_page_shift ==
+ stt->offset << stt->page_shift) &&
+ (tbltmp->it_size << tbltmp->it_page_shift >=
+ stt->size << stt->page_shift)) {
+ /*
+ * Reference the table to avoid races with
+ * add/remove DMA windows.
+ */
+ tbl = iommu_tce_table_get(tbltmp);
+ break;
+ }
+ }
+ if (!tbl)
+ return -EINVAL;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(stit, &stt->iommu_tables, next) {
+ if (tbl != stit->tbl)
+ continue;
+
+ if (!kref_get_unless_zero(&stit->kref)) {
+ /* stit is being destroyed */
+ iommu_tce_table_put(tbl);
+ rcu_read_unlock();
+ return -ENOTTY;
+ }
+ /*
+ * The table is already known to this KVM, we just increased
+ * its KVM reference counter and can return.
+ */
+ rcu_read_unlock();
+ return 0;
+ }
+ rcu_read_unlock();
+
+ stit = kzalloc(sizeof(*stit), GFP_KERNEL);
+ if (!stit) {
+ iommu_tce_table_put(tbl);
+ return -ENOMEM;
+ }
+
+ stit->tbl = tbl;
+ kref_init(&stit->kref);
+
+ list_add_rcu(&stit->next, &stt->iommu_tables);
+
+ return 0;
+}
+
+static void release_spapr_tce_table(struct rcu_head *head)
+{
+ struct kvmppc_spapr_tce_table *stt = container_of(head,
+ struct kvmppc_spapr_tce_table, rcu);
+ unsigned long i, npages = kvmppc_tce_pages(stt->size);
+
+ for (i = 0; i < npages; i++)
+ if (stt->pages[i])
+ __free_page(stt->pages[i]);
+
+ kfree(stt);
+}
+
+static struct page *kvm_spapr_get_tce_page(struct kvmppc_spapr_tce_table *stt,
+ unsigned long sttpage)
+{
+ struct page *page = stt->pages[sttpage];
+
+ if (page)
+ return page;
+
+ mutex_lock(&stt->alloc_lock);
+ page = stt->pages[sttpage];
+ if (!page) {
+ page = alloc_page(GFP_KERNEL | __GFP_ZERO);
+ WARN_ON_ONCE(!page);
+ if (page)
+ stt->pages[sttpage] = page;
+ }
+ mutex_unlock(&stt->alloc_lock);
+
+ return page;
+}
+
+static vm_fault_t kvm_spapr_tce_fault(struct vm_fault *vmf)
+{
+ struct kvmppc_spapr_tce_table *stt = vmf->vma->vm_file->private_data;
+ struct page *page;
+
+ if (vmf->pgoff >= kvmppc_tce_pages(stt->size))
+ return VM_FAULT_SIGBUS;
+
+ page = kvm_spapr_get_tce_page(stt, vmf->pgoff);
+ if (!page)
+ return VM_FAULT_OOM;
+
+ get_page(page);
+ vmf->page = page;
+ return 0;
+}
+
+static const struct vm_operations_struct kvm_spapr_tce_vm_ops = {
+ .fault = kvm_spapr_tce_fault,
+};
+
+static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma)
+{
+ vma->vm_ops = &kvm_spapr_tce_vm_ops;
+ return 0;
+}
+
+static int kvm_spapr_tce_release(struct inode *inode, struct file *filp)
+{
+ struct kvmppc_spapr_tce_table *stt = filp->private_data;
+ struct kvmppc_spapr_tce_iommu_table *stit, *tmp;
+ struct kvm *kvm = stt->kvm;
+
+ mutex_lock(&kvm->lock);
+ list_del_rcu(&stt->list);
+ mutex_unlock(&kvm->lock);
+
+ list_for_each_entry_safe(stit, tmp, &stt->iommu_tables, next) {
+ WARN_ON(!kref_read(&stit->kref));
+ while (1) {
+ if (kref_put(&stit->kref, kvm_spapr_tce_liobn_put))
+ break;
+ }
+ }
+
+ account_locked_vm(kvm->mm,
+ kvmppc_stt_pages(kvmppc_tce_pages(stt->size)), false);
+
+ kvm_put_kvm(stt->kvm);
+
+ call_rcu(&stt->rcu, release_spapr_tce_table);
+
+ return 0;
+}
+
+static const struct file_operations kvm_spapr_tce_fops = {
+ .mmap = kvm_spapr_tce_mmap,
+ .release = kvm_spapr_tce_release,
+};
+
+long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
+ struct kvm_create_spapr_tce_64 *args)
+{
+ struct kvmppc_spapr_tce_table *stt = NULL;
+ struct kvmppc_spapr_tce_table *siter;
+ struct mm_struct *mm = kvm->mm;
+ unsigned long npages, size = args->size;
+ int ret;
+
+ if (!args->size || args->page_shift < 12 || args->page_shift > 34 ||
+ (args->offset + args->size > (ULLONG_MAX >> args->page_shift)))
+ return -EINVAL;
+
+ npages = kvmppc_tce_pages(size);
+ ret = account_locked_vm(mm, kvmppc_stt_pages(npages), true);
+ if (ret)
+ return ret;
+
+ ret = -ENOMEM;
+ stt = kzalloc(struct_size(stt, pages, npages), GFP_KERNEL | __GFP_NOWARN);
+ if (!stt)
+ goto fail_acct;
+
+ stt->liobn = args->liobn;
+ stt->page_shift = args->page_shift;
+ stt->offset = args->offset;
+ stt->size = size;
+ stt->kvm = kvm;
+ mutex_init(&stt->alloc_lock);
+ INIT_LIST_HEAD_RCU(&stt->iommu_tables);
+
+ mutex_lock(&kvm->lock);
+
+ /* Check this LIOBN hasn't been previously allocated */
+ ret = 0;
+ list_for_each_entry(siter, &kvm->arch.spapr_tce_tables, list) {
+ if (siter->liobn == args->liobn) {
+ ret = -EBUSY;
+ break;
+ }
+ }
+
+ kvm_get_kvm(kvm);
+ if (!ret)
+ ret = anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops,
+ stt, O_RDWR | O_CLOEXEC);
+
+ if (ret >= 0)
+ list_add_rcu(&stt->list, &kvm->arch.spapr_tce_tables);
+ else
+ kvm_put_kvm_no_destroy(kvm);
+
+ mutex_unlock(&kvm->lock);
+
+ if (ret >= 0)
+ return ret;
+
+ kfree(stt);
+ fail_acct:
+ account_locked_vm(mm, kvmppc_stt_pages(npages), false);
+ return ret;
+}
+
+static long kvmppc_tce_to_ua(struct kvm *kvm, unsigned long tce,
+ unsigned long *ua)
+{
+ unsigned long gfn = tce >> PAGE_SHIFT;
+ struct kvm_memory_slot *memslot;
+
+ memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
+ if (!memslot)
+ return -EINVAL;
+
+ *ua = __gfn_to_hva_memslot(memslot, gfn) |
+ (tce & ~(PAGE_MASK | TCE_PCI_READ | TCE_PCI_WRITE));
+
+ return 0;
+}
+
+static long kvmppc_tce_validate(struct kvmppc_spapr_tce_table *stt,
+ unsigned long tce)
+{
+ unsigned long gpa = tce & ~(TCE_PCI_READ | TCE_PCI_WRITE);
+ enum dma_data_direction dir = iommu_tce_direction(tce);
+ struct kvmppc_spapr_tce_iommu_table *stit;
+ unsigned long ua = 0;
+
+ /* Allow userspace to poison TCE table */
+ if (dir == DMA_NONE)
+ return H_SUCCESS;
+
+ if (iommu_tce_check_gpa(stt->page_shift, gpa))
+ return H_TOO_HARD;
+
+ if (kvmppc_tce_to_ua(stt->kvm, tce, &ua))
+ return H_TOO_HARD;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(stit, &stt->iommu_tables, next) {
+ unsigned long hpa = 0;
+ struct mm_iommu_table_group_mem_t *mem;
+ long shift = stit->tbl->it_page_shift;
+
+ mem = mm_iommu_lookup(stt->kvm->mm, ua, 1ULL << shift);
+ if (!mem || mm_iommu_ua_to_hpa(mem, ua, shift, &hpa)) {
+ rcu_read_unlock();
+ return H_TOO_HARD;
+ }
+ }
+ rcu_read_unlock();
+
+ return H_SUCCESS;
+}
+
+/*
+ * Handles TCE requests for emulated devices.
+ * Puts guest TCE values to the table and expects user space to convert them.
+ * Cannot fail so kvmppc_tce_validate must be called before it.
+ */
+static void kvmppc_tce_put(struct kvmppc_spapr_tce_table *stt,
+ unsigned long idx, unsigned long tce)
+{
+ struct page *page;
+ u64 *tbl;
+ unsigned long sttpage;
+
+ idx -= stt->offset;
+ sttpage = idx / TCES_PER_PAGE;
+ page = stt->pages[sttpage];
+
+ if (!page) {
+ /* We allow any TCE, not just with read|write permissions */
+ if (!tce)
+ return;
+
+ page = kvm_spapr_get_tce_page(stt, sttpage);
+ if (!page)
+ return;
+ }
+ tbl = page_to_virt(page);
+
+ tbl[idx % TCES_PER_PAGE] = tce;
+}
+
+static void kvmppc_clear_tce(struct mm_struct *mm, struct kvmppc_spapr_tce_table *stt,
+ struct iommu_table *tbl, unsigned long entry)
+{
+ unsigned long i;
+ unsigned long subpages = 1ULL << (stt->page_shift - tbl->it_page_shift);
+ unsigned long io_entry = entry << (stt->page_shift - tbl->it_page_shift);
+
+ for (i = 0; i < subpages; ++i) {
+ unsigned long hpa = 0;
+ enum dma_data_direction dir = DMA_NONE;
+
+ iommu_tce_xchg_no_kill(mm, tbl, io_entry + i, &hpa, &dir);
+ }
+}
+
+static long kvmppc_tce_iommu_mapped_dec(struct kvm *kvm,
+ struct iommu_table *tbl, unsigned long entry)
+{
+ struct mm_iommu_table_group_mem_t *mem = NULL;
+ const unsigned long pgsize = 1ULL << tbl->it_page_shift;
+ __be64 *pua = IOMMU_TABLE_USERSPACE_ENTRY_RO(tbl, entry);
+
+ if (!pua)
+ return H_SUCCESS;
+
+ mem = mm_iommu_lookup(kvm->mm, be64_to_cpu(*pua), pgsize);
+ if (!mem)
+ return H_TOO_HARD;
+
+ mm_iommu_mapped_dec(mem);
+
+ *pua = cpu_to_be64(0);
+
+ return H_SUCCESS;
+}
+
+static long kvmppc_tce_iommu_do_unmap(struct kvm *kvm,
+ struct iommu_table *tbl, unsigned long entry)
+{
+ enum dma_data_direction dir = DMA_NONE;
+ unsigned long hpa = 0;
+ long ret;
+
+ if (WARN_ON_ONCE(iommu_tce_xchg_no_kill(kvm->mm, tbl, entry, &hpa,
+ &dir)))
+ return H_TOO_HARD;
+
+ if (dir == DMA_NONE)
+ return H_SUCCESS;
+
+ ret = kvmppc_tce_iommu_mapped_dec(kvm, tbl, entry);
+ if (ret != H_SUCCESS)
+ iommu_tce_xchg_no_kill(kvm->mm, tbl, entry, &hpa, &dir);
+
+ return ret;
+}
+
+static long kvmppc_tce_iommu_unmap(struct kvm *kvm,
+ struct kvmppc_spapr_tce_table *stt, struct iommu_table *tbl,
+ unsigned long entry)
+{
+ unsigned long i, ret = H_SUCCESS;
+ unsigned long subpages = 1ULL << (stt->page_shift - tbl->it_page_shift);
+ unsigned long io_entry = entry * subpages;
+
+ for (i = 0; i < subpages; ++i) {
+ ret = kvmppc_tce_iommu_do_unmap(kvm, tbl, io_entry + i);
+ if (ret != H_SUCCESS)
+ break;
+ }
+
+ iommu_tce_kill(tbl, io_entry, subpages);
+
+ return ret;
+}
+
+static long kvmppc_tce_iommu_do_map(struct kvm *kvm, struct iommu_table *tbl,
+ unsigned long entry, unsigned long ua,
+ enum dma_data_direction dir)
+{
+ long ret;
+ unsigned long hpa;
+ __be64 *pua = IOMMU_TABLE_USERSPACE_ENTRY(tbl, entry);
+ struct mm_iommu_table_group_mem_t *mem;
+
+ if (!pua)
+ /* it_userspace allocation might be delayed */
+ return H_TOO_HARD;
+
+ mem = mm_iommu_lookup(kvm->mm, ua, 1ULL << tbl->it_page_shift);
+ if (!mem)
+ /* This only handles v2 IOMMU type, v1 is handled via ioctl() */
+ return H_TOO_HARD;
+
+ if (WARN_ON_ONCE(mm_iommu_ua_to_hpa(mem, ua, tbl->it_page_shift, &hpa)))
+ return H_TOO_HARD;
+
+ if (mm_iommu_mapped_inc(mem))
+ return H_TOO_HARD;
+
+ ret = iommu_tce_xchg_no_kill(kvm->mm, tbl, entry, &hpa, &dir);
+ if (WARN_ON_ONCE(ret)) {
+ mm_iommu_mapped_dec(mem);
+ return H_TOO_HARD;
+ }
+
+ if (dir != DMA_NONE)
+ kvmppc_tce_iommu_mapped_dec(kvm, tbl, entry);
+
+ *pua = cpu_to_be64(ua);
+
+ return 0;
+}
+
+static long kvmppc_tce_iommu_map(struct kvm *kvm,
+ struct kvmppc_spapr_tce_table *stt, struct iommu_table *tbl,
+ unsigned long entry, unsigned long ua,
+ enum dma_data_direction dir)
+{
+ unsigned long i, pgoff, ret = H_SUCCESS;
+ unsigned long subpages = 1ULL << (stt->page_shift - tbl->it_page_shift);
+ unsigned long io_entry = entry * subpages;
+
+ for (i = 0, pgoff = 0; i < subpages;
+ ++i, pgoff += IOMMU_PAGE_SIZE(tbl)) {
+
+ ret = kvmppc_tce_iommu_do_map(kvm, tbl,
+ io_entry + i, ua + pgoff, dir);
+ if (ret != H_SUCCESS)
+ break;
+ }
+
+ iommu_tce_kill(tbl, io_entry, subpages);
+
+ return ret;
+}
+
+long kvmppc_h_put_tce(struct kvm_vcpu *vcpu, unsigned long liobn,
+ unsigned long ioba, unsigned long tce)
+{
+ struct kvmppc_spapr_tce_table *stt;
+ long ret, idx;
+ struct kvmppc_spapr_tce_iommu_table *stit;
+ unsigned long entry, ua = 0;
+ enum dma_data_direction dir;
+
+ /* udbg_printf("H_PUT_TCE(): liobn=0x%lx ioba=0x%lx, tce=0x%lx\n", */
+ /* liobn, ioba, tce); */
+
+ stt = kvmppc_find_table(vcpu->kvm, liobn);
+ if (!stt)
+ return H_TOO_HARD;
+
+ ret = kvmppc_ioba_validate(stt, ioba, 1);
+ if (ret != H_SUCCESS)
+ return ret;
+
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+
+ ret = kvmppc_tce_validate(stt, tce);
+ if (ret != H_SUCCESS)
+ goto unlock_exit;
+
+ dir = iommu_tce_direction(tce);
+
+ if ((dir != DMA_NONE) && kvmppc_tce_to_ua(vcpu->kvm, tce, &ua)) {
+ ret = H_PARAMETER;
+ goto unlock_exit;
+ }
+
+ entry = ioba >> stt->page_shift;
+
+ list_for_each_entry_lockless(stit, &stt->iommu_tables, next) {
+ if (dir == DMA_NONE)
+ ret = kvmppc_tce_iommu_unmap(vcpu->kvm, stt,
+ stit->tbl, entry);
+ else
+ ret = kvmppc_tce_iommu_map(vcpu->kvm, stt, stit->tbl,
+ entry, ua, dir);
+
+
+ if (ret != H_SUCCESS) {
+ kvmppc_clear_tce(vcpu->kvm->mm, stt, stit->tbl, entry);
+ goto unlock_exit;
+ }
+ }
+
+ kvmppc_tce_put(stt, entry, tce);
+
+unlock_exit:
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(kvmppc_h_put_tce);
+
+long kvmppc_h_put_tce_indirect(struct kvm_vcpu *vcpu,
+ unsigned long liobn, unsigned long ioba,
+ unsigned long tce_list, unsigned long npages)
+{
+ struct kvmppc_spapr_tce_table *stt;
+ long i, ret = H_SUCCESS, idx;
+ unsigned long entry, ua = 0;
+ u64 __user *tces;
+ u64 tce;
+ struct kvmppc_spapr_tce_iommu_table *stit;
+
+ stt = kvmppc_find_table(vcpu->kvm, liobn);
+ if (!stt)
+ return H_TOO_HARD;
+
+ entry = ioba >> stt->page_shift;
+ /*
+ * SPAPR spec says that the maximum size of the list is 512 TCEs
+ * so the whole table fits in 4K page
+ */
+ if (npages > 512)
+ return H_PARAMETER;
+
+ if (tce_list & (SZ_4K - 1))
+ return H_PARAMETER;
+
+ ret = kvmppc_ioba_validate(stt, ioba, npages);
+ if (ret != H_SUCCESS)
+ return ret;
+
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+ if (kvmppc_tce_to_ua(vcpu->kvm, tce_list, &ua)) {
+ ret = H_TOO_HARD;
+ goto unlock_exit;
+ }
+ tces = (u64 __user *) ua;
+
+ for (i = 0; i < npages; ++i) {
+ if (get_user(tce, tces + i)) {
+ ret = H_TOO_HARD;
+ goto unlock_exit;
+ }
+ tce = be64_to_cpu(tce);
+
+ ret = kvmppc_tce_validate(stt, tce);
+ if (ret != H_SUCCESS)
+ goto unlock_exit;
+ }
+
+ for (i = 0; i < npages; ++i) {
+ /*
+ * This looks unsafe, because we validate, then regrab
+ * the TCE from userspace which could have been changed by
+ * another thread.
+ *
+ * But it actually is safe, because the relevant checks will be
+ * re-executed in the following code. If userspace tries to
+ * change this dodgily it will result in a messier failure mode
+ * but won't threaten the host.
+ */
+ if (get_user(tce, tces + i)) {
+ ret = H_TOO_HARD;
+ goto unlock_exit;
+ }
+ tce = be64_to_cpu(tce);
+
+ if (kvmppc_tce_to_ua(vcpu->kvm, tce, &ua)) {
+ ret = H_PARAMETER;
+ goto unlock_exit;
+ }
+
+ list_for_each_entry_lockless(stit, &stt->iommu_tables, next) {
+ ret = kvmppc_tce_iommu_map(vcpu->kvm, stt,
+ stit->tbl, entry + i, ua,
+ iommu_tce_direction(tce));
+
+ if (ret != H_SUCCESS) {
+ kvmppc_clear_tce(vcpu->kvm->mm, stt, stit->tbl,
+ entry + i);
+ goto unlock_exit;
+ }
+ }
+
+ kvmppc_tce_put(stt, entry + i, tce);
+ }
+
+unlock_exit:
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(kvmppc_h_put_tce_indirect);
+
+long kvmppc_h_stuff_tce(struct kvm_vcpu *vcpu,
+ unsigned long liobn, unsigned long ioba,
+ unsigned long tce_value, unsigned long npages)
+{
+ struct kvmppc_spapr_tce_table *stt;
+ long i, ret;
+ struct kvmppc_spapr_tce_iommu_table *stit;
+
+ stt = kvmppc_find_table(vcpu->kvm, liobn);
+ if (!stt)
+ return H_TOO_HARD;
+
+ ret = kvmppc_ioba_validate(stt, ioba, npages);
+ if (ret != H_SUCCESS)
+ return ret;
+
+ /* Check permission bits only to allow userspace poison TCE for debug */
+ if (tce_value & (TCE_PCI_WRITE | TCE_PCI_READ))
+ return H_PARAMETER;
+
+ list_for_each_entry_lockless(stit, &stt->iommu_tables, next) {
+ unsigned long entry = ioba >> stt->page_shift;
+
+ for (i = 0; i < npages; ++i) {
+ ret = kvmppc_tce_iommu_unmap(vcpu->kvm, stt,
+ stit->tbl, entry + i);
+
+ if (ret == H_SUCCESS)
+ continue;
+
+ if (ret == H_TOO_HARD)
+ return ret;
+
+ WARN_ON_ONCE(1);
+ kvmppc_clear_tce(vcpu->kvm->mm, stt, stit->tbl, entry + i);
+ }
+ }
+
+ for (i = 0; i < npages; ++i, ioba += (1ULL << stt->page_shift))
+ kvmppc_tce_put(stt, ioba >> stt->page_shift, tce_value);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(kvmppc_h_stuff_tce);
+
+long kvmppc_h_get_tce(struct kvm_vcpu *vcpu, unsigned long liobn,
+ unsigned long ioba)
+{
+ struct kvmppc_spapr_tce_table *stt;
+ long ret;
+ unsigned long idx;
+ struct page *page;
+ u64 *tbl;
+
+ stt = kvmppc_find_table(vcpu->kvm, liobn);
+ if (!stt)
+ return H_TOO_HARD;
+
+ ret = kvmppc_ioba_validate(stt, ioba, 1);
+ if (ret != H_SUCCESS)
+ return ret;
+
+ idx = (ioba >> stt->page_shift) - stt->offset;
+ page = stt->pages[idx / TCES_PER_PAGE];
+ if (!page) {
+ vcpu->arch.regs.gpr[4] = 0;
+ return H_SUCCESS;
+ }
+ tbl = (u64 *)page_address(page);
+
+ vcpu->arch.regs.gpr[4] = tbl[idx % TCES_PER_PAGE];
+
+ return H_SUCCESS;
+}
+EXPORT_SYMBOL_GPL(kvmppc_h_get_tce);
diff --git a/arch/powerpc/kvm/book3s_emulate.c b/arch/powerpc/kvm/book3s_emulate.c
new file mode 100644
index 000000000..5bbfb2eed
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_emulate.c
@@ -0,0 +1,1072 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ *
+ * Copyright SUSE Linux Products GmbH 2009
+ *
+ * Authors: Alexander Graf <agraf@suse.de>
+ */
+
+#include <asm/kvm_ppc.h>
+#include <asm/disassemble.h>
+#include <asm/kvm_book3s.h>
+#include <asm/reg.h>
+#include <asm/switch_to.h>
+#include <asm/time.h>
+#include <asm/tm.h>
+#include "book3s.h"
+#include <asm/asm-prototypes.h>
+
+#define OP_19_XOP_RFID 18
+#define OP_19_XOP_RFI 50
+
+#define OP_31_XOP_MFMSR 83
+#define OP_31_XOP_MTMSR 146
+#define OP_31_XOP_MTMSRD 178
+#define OP_31_XOP_MTSR 210
+#define OP_31_XOP_MTSRIN 242
+#define OP_31_XOP_TLBIEL 274
+/* Opcode is officially reserved, reuse it as sc 1 when sc 1 doesn't trap */
+#define OP_31_XOP_FAKE_SC1 308
+#define OP_31_XOP_SLBMTE 402
+#define OP_31_XOP_SLBIE 434
+#define OP_31_XOP_SLBIA 498
+#define OP_31_XOP_MFSR 595
+#define OP_31_XOP_MFSRIN 659
+#define OP_31_XOP_DCBA 758
+#define OP_31_XOP_SLBMFEV 851
+#define OP_31_XOP_EIOIO 854
+#define OP_31_XOP_SLBMFEE 915
+#define OP_31_XOP_SLBFEE 979
+
+#define OP_31_XOP_TBEGIN 654
+#define OP_31_XOP_TABORT 910
+
+#define OP_31_XOP_TRECLAIM 942
+#define OP_31_XOP_TRCHKPT 1006
+
+/* DCBZ is actually 1014, but we patch it to 1010 so we get a trap */
+#define OP_31_XOP_DCBZ 1010
+
+#define OP_LFS 48
+#define OP_LFD 50
+#define OP_STFS 52
+#define OP_STFD 54
+
+#define SPRN_GQR0 912
+#define SPRN_GQR1 913
+#define SPRN_GQR2 914
+#define SPRN_GQR3 915
+#define SPRN_GQR4 916
+#define SPRN_GQR5 917
+#define SPRN_GQR6 918
+#define SPRN_GQR7 919
+
+enum priv_level {
+ PRIV_PROBLEM = 0,
+ PRIV_SUPER = 1,
+ PRIV_HYPER = 2,
+};
+
+static bool spr_allowed(struct kvm_vcpu *vcpu, enum priv_level level)
+{
+ /* PAPR VMs only access supervisor SPRs */
+ if (vcpu->arch.papr_enabled && (level > PRIV_SUPER))
+ return false;
+
+ /* Limit user space to its own small SPR set */
+ if ((kvmppc_get_msr(vcpu) & MSR_PR) && level > PRIV_PROBLEM)
+ return false;
+
+ return true;
+}
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+static inline void kvmppc_copyto_vcpu_tm(struct kvm_vcpu *vcpu)
+{
+ memcpy(&vcpu->arch.gpr_tm[0], &vcpu->arch.regs.gpr[0],
+ sizeof(vcpu->arch.gpr_tm));
+ memcpy(&vcpu->arch.fp_tm, &vcpu->arch.fp,
+ sizeof(struct thread_fp_state));
+ memcpy(&vcpu->arch.vr_tm, &vcpu->arch.vr,
+ sizeof(struct thread_vr_state));
+ vcpu->arch.ppr_tm = vcpu->arch.ppr;
+ vcpu->arch.dscr_tm = vcpu->arch.dscr;
+ vcpu->arch.amr_tm = vcpu->arch.amr;
+ vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
+ vcpu->arch.tar_tm = vcpu->arch.tar;
+ vcpu->arch.lr_tm = vcpu->arch.regs.link;
+ vcpu->arch.cr_tm = vcpu->arch.regs.ccr;
+ vcpu->arch.xer_tm = vcpu->arch.regs.xer;
+ vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
+}
+
+static inline void kvmppc_copyfrom_vcpu_tm(struct kvm_vcpu *vcpu)
+{
+ memcpy(&vcpu->arch.regs.gpr[0], &vcpu->arch.gpr_tm[0],
+ sizeof(vcpu->arch.regs.gpr));
+ memcpy(&vcpu->arch.fp, &vcpu->arch.fp_tm,
+ sizeof(struct thread_fp_state));
+ memcpy(&vcpu->arch.vr, &vcpu->arch.vr_tm,
+ sizeof(struct thread_vr_state));
+ vcpu->arch.ppr = vcpu->arch.ppr_tm;
+ vcpu->arch.dscr = vcpu->arch.dscr_tm;
+ vcpu->arch.amr = vcpu->arch.amr_tm;
+ vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
+ vcpu->arch.tar = vcpu->arch.tar_tm;
+ vcpu->arch.regs.link = vcpu->arch.lr_tm;
+ vcpu->arch.regs.ccr = vcpu->arch.cr_tm;
+ vcpu->arch.regs.xer = vcpu->arch.xer_tm;
+ vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
+}
+
+static void kvmppc_emulate_treclaim(struct kvm_vcpu *vcpu, int ra_val)
+{
+ unsigned long guest_msr = kvmppc_get_msr(vcpu);
+ int fc_val = ra_val ? ra_val : 1;
+ uint64_t texasr;
+
+ /* CR0 = 0 | MSR[TS] | 0 */
+ vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & ~(CR0_MASK << CR0_SHIFT)) |
+ (((guest_msr & MSR_TS_MASK) >> (MSR_TS_S_LG - 1))
+ << CR0_SHIFT);
+
+ preempt_disable();
+ tm_enable();
+ texasr = mfspr(SPRN_TEXASR);
+ kvmppc_save_tm_pr(vcpu);
+ kvmppc_copyfrom_vcpu_tm(vcpu);
+
+ /* failure recording depends on Failure Summary bit */
+ if (!(texasr & TEXASR_FS)) {
+ texasr &= ~TEXASR_FC;
+ texasr |= ((u64)fc_val << TEXASR_FC_LG) | TEXASR_FS;
+
+ texasr &= ~(TEXASR_PR | TEXASR_HV);
+ if (kvmppc_get_msr(vcpu) & MSR_PR)
+ texasr |= TEXASR_PR;
+
+ if (kvmppc_get_msr(vcpu) & MSR_HV)
+ texasr |= TEXASR_HV;
+
+ vcpu->arch.texasr = texasr;
+ vcpu->arch.tfiar = kvmppc_get_pc(vcpu);
+ mtspr(SPRN_TEXASR, texasr);
+ mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
+ }
+ tm_disable();
+ /*
+ * treclaim need quit to non-transactional state.
+ */
+ guest_msr &= ~(MSR_TS_MASK);
+ kvmppc_set_msr(vcpu, guest_msr);
+ preempt_enable();
+
+ if (vcpu->arch.shadow_fscr & FSCR_TAR)
+ mtspr(SPRN_TAR, vcpu->arch.tar);
+}
+
+static void kvmppc_emulate_trchkpt(struct kvm_vcpu *vcpu)
+{
+ unsigned long guest_msr = kvmppc_get_msr(vcpu);
+
+ preempt_disable();
+ /*
+ * need flush FP/VEC/VSX to vcpu save area before
+ * copy.
+ */
+ kvmppc_giveup_ext(vcpu, MSR_VSX);
+ kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
+ kvmppc_copyto_vcpu_tm(vcpu);
+ kvmppc_save_tm_sprs(vcpu);
+
+ /*
+ * as a result of trecheckpoint. set TS to suspended.
+ */
+ guest_msr &= ~(MSR_TS_MASK);
+ guest_msr |= MSR_TS_S;
+ kvmppc_set_msr(vcpu, guest_msr);
+ kvmppc_restore_tm_pr(vcpu);
+ preempt_enable();
+}
+
+/* emulate tabort. at guest privilege state */
+void kvmppc_emulate_tabort(struct kvm_vcpu *vcpu, int ra_val)
+{
+ /* currently we only emulate tabort. but no emulation of other
+ * tabort variants since there is no kernel usage of them at
+ * present.
+ */
+ unsigned long guest_msr = kvmppc_get_msr(vcpu);
+ uint64_t org_texasr;
+
+ preempt_disable();
+ tm_enable();
+ org_texasr = mfspr(SPRN_TEXASR);
+ tm_abort(ra_val);
+
+ /* CR0 = 0 | MSR[TS] | 0 */
+ vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & ~(CR0_MASK << CR0_SHIFT)) |
+ (((guest_msr & MSR_TS_MASK) >> (MSR_TS_S_LG - 1))
+ << CR0_SHIFT);
+
+ vcpu->arch.texasr = mfspr(SPRN_TEXASR);
+ /* failure recording depends on Failure Summary bit,
+ * and tabort will be treated as nops in non-transactional
+ * state.
+ */
+ if (!(org_texasr & TEXASR_FS) &&
+ MSR_TM_ACTIVE(guest_msr)) {
+ vcpu->arch.texasr &= ~(TEXASR_PR | TEXASR_HV);
+ if (guest_msr & MSR_PR)
+ vcpu->arch.texasr |= TEXASR_PR;
+
+ if (guest_msr & MSR_HV)
+ vcpu->arch.texasr |= TEXASR_HV;
+
+ vcpu->arch.tfiar = kvmppc_get_pc(vcpu);
+ }
+ tm_disable();
+ preempt_enable();
+}
+
+#endif
+
+int kvmppc_core_emulate_op_pr(struct kvm_vcpu *vcpu,
+ unsigned int inst, int *advance)
+{
+ int emulated = EMULATE_DONE;
+ int rt = get_rt(inst);
+ int rs = get_rs(inst);
+ int ra = get_ra(inst);
+ int rb = get_rb(inst);
+ u32 inst_sc = 0x44000002;
+
+ switch (get_op(inst)) {
+ case 0:
+ emulated = EMULATE_FAIL;
+ if ((kvmppc_get_msr(vcpu) & MSR_LE) &&
+ (inst == swab32(inst_sc))) {
+ /*
+ * This is the byte reversed syscall instruction of our
+ * hypercall handler. Early versions of LE Linux didn't
+ * swap the instructions correctly and ended up in
+ * illegal instructions.
+ * Just always fail hypercalls on these broken systems.
+ */
+ kvmppc_set_gpr(vcpu, 3, EV_UNIMPLEMENTED);
+ kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
+ emulated = EMULATE_DONE;
+ }
+ break;
+ case 19:
+ switch (get_xop(inst)) {
+ case OP_19_XOP_RFID:
+ case OP_19_XOP_RFI: {
+ unsigned long srr1 = kvmppc_get_srr1(vcpu);
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ unsigned long cur_msr = kvmppc_get_msr(vcpu);
+
+ /*
+ * add rules to fit in ISA specification regarding TM
+ * state transition in TM disable/Suspended state,
+ * and target TM state is TM inactive(00) state. (the
+ * change should be suppressed).
+ */
+ if (((cur_msr & MSR_TM) == 0) &&
+ ((srr1 & MSR_TM) == 0) &&
+ MSR_TM_SUSPENDED(cur_msr) &&
+ !MSR_TM_ACTIVE(srr1))
+ srr1 |= MSR_TS_S;
+#endif
+ kvmppc_set_pc(vcpu, kvmppc_get_srr0(vcpu));
+ kvmppc_set_msr(vcpu, srr1);
+ *advance = 0;
+ break;
+ }
+
+ default:
+ emulated = EMULATE_FAIL;
+ break;
+ }
+ break;
+ case 31:
+ switch (get_xop(inst)) {
+ case OP_31_XOP_MFMSR:
+ kvmppc_set_gpr(vcpu, rt, kvmppc_get_msr(vcpu));
+ break;
+ case OP_31_XOP_MTMSRD:
+ {
+ ulong rs_val = kvmppc_get_gpr(vcpu, rs);
+ if (inst & 0x10000) {
+ ulong new_msr = kvmppc_get_msr(vcpu);
+ new_msr &= ~(MSR_RI | MSR_EE);
+ new_msr |= rs_val & (MSR_RI | MSR_EE);
+ kvmppc_set_msr_fast(vcpu, new_msr);
+ } else
+ kvmppc_set_msr(vcpu, rs_val);
+ break;
+ }
+ case OP_31_XOP_MTMSR:
+ kvmppc_set_msr(vcpu, kvmppc_get_gpr(vcpu, rs));
+ break;
+ case OP_31_XOP_MFSR:
+ {
+ int srnum;
+
+ srnum = kvmppc_get_field(inst, 12 + 32, 15 + 32);
+ if (vcpu->arch.mmu.mfsrin) {
+ u32 sr;
+ sr = vcpu->arch.mmu.mfsrin(vcpu, srnum);
+ kvmppc_set_gpr(vcpu, rt, sr);
+ }
+ break;
+ }
+ case OP_31_XOP_MFSRIN:
+ {
+ int srnum;
+
+ srnum = (kvmppc_get_gpr(vcpu, rb) >> 28) & 0xf;
+ if (vcpu->arch.mmu.mfsrin) {
+ u32 sr;
+ sr = vcpu->arch.mmu.mfsrin(vcpu, srnum);
+ kvmppc_set_gpr(vcpu, rt, sr);
+ }
+ break;
+ }
+ case OP_31_XOP_MTSR:
+ vcpu->arch.mmu.mtsrin(vcpu,
+ (inst >> 16) & 0xf,
+ kvmppc_get_gpr(vcpu, rs));
+ break;
+ case OP_31_XOP_MTSRIN:
+ vcpu->arch.mmu.mtsrin(vcpu,
+ (kvmppc_get_gpr(vcpu, rb) >> 28) & 0xf,
+ kvmppc_get_gpr(vcpu, rs));
+ break;
+ case OP_31_XOP_TLBIE:
+ case OP_31_XOP_TLBIEL:
+ {
+ bool large = (inst & 0x00200000) ? true : false;
+ ulong addr = kvmppc_get_gpr(vcpu, rb);
+ vcpu->arch.mmu.tlbie(vcpu, addr, large);
+ break;
+ }
+#ifdef CONFIG_PPC_BOOK3S_64
+ case OP_31_XOP_FAKE_SC1:
+ {
+ /* SC 1 papr hypercalls */
+ ulong cmd = kvmppc_get_gpr(vcpu, 3);
+ int i;
+
+ if ((kvmppc_get_msr(vcpu) & MSR_PR) ||
+ !vcpu->arch.papr_enabled) {
+ emulated = EMULATE_FAIL;
+ break;
+ }
+
+ if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE)
+ break;
+
+ vcpu->run->papr_hcall.nr = cmd;
+ for (i = 0; i < 9; ++i) {
+ ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
+ vcpu->run->papr_hcall.args[i] = gpr;
+ }
+
+ vcpu->run->exit_reason = KVM_EXIT_PAPR_HCALL;
+ vcpu->arch.hcall_needed = 1;
+ emulated = EMULATE_EXIT_USER;
+ break;
+ }
+#endif
+ case OP_31_XOP_EIOIO:
+ break;
+ case OP_31_XOP_SLBMTE:
+ if (!vcpu->arch.mmu.slbmte)
+ return EMULATE_FAIL;
+
+ vcpu->arch.mmu.slbmte(vcpu,
+ kvmppc_get_gpr(vcpu, rs),
+ kvmppc_get_gpr(vcpu, rb));
+ break;
+ case OP_31_XOP_SLBIE:
+ if (!vcpu->arch.mmu.slbie)
+ return EMULATE_FAIL;
+
+ vcpu->arch.mmu.slbie(vcpu,
+ kvmppc_get_gpr(vcpu, rb));
+ break;
+ case OP_31_XOP_SLBIA:
+ if (!vcpu->arch.mmu.slbia)
+ return EMULATE_FAIL;
+
+ vcpu->arch.mmu.slbia(vcpu);
+ break;
+ case OP_31_XOP_SLBFEE:
+ if (!(inst & 1) || !vcpu->arch.mmu.slbfee) {
+ return EMULATE_FAIL;
+ } else {
+ ulong b, t;
+ ulong cr = kvmppc_get_cr(vcpu) & ~CR0_MASK;
+
+ b = kvmppc_get_gpr(vcpu, rb);
+ if (!vcpu->arch.mmu.slbfee(vcpu, b, &t))
+ cr |= 2 << CR0_SHIFT;
+ kvmppc_set_gpr(vcpu, rt, t);
+ /* copy XER[SO] bit to CR0[SO] */
+ cr |= (vcpu->arch.regs.xer & 0x80000000) >>
+ (31 - CR0_SHIFT);
+ kvmppc_set_cr(vcpu, cr);
+ }
+ break;
+ case OP_31_XOP_SLBMFEE:
+ if (!vcpu->arch.mmu.slbmfee) {
+ emulated = EMULATE_FAIL;
+ } else {
+ ulong t, rb_val;
+
+ rb_val = kvmppc_get_gpr(vcpu, rb);
+ t = vcpu->arch.mmu.slbmfee(vcpu, rb_val);
+ kvmppc_set_gpr(vcpu, rt, t);
+ }
+ break;
+ case OP_31_XOP_SLBMFEV:
+ if (!vcpu->arch.mmu.slbmfev) {
+ emulated = EMULATE_FAIL;
+ } else {
+ ulong t, rb_val;
+
+ rb_val = kvmppc_get_gpr(vcpu, rb);
+ t = vcpu->arch.mmu.slbmfev(vcpu, rb_val);
+ kvmppc_set_gpr(vcpu, rt, t);
+ }
+ break;
+ case OP_31_XOP_DCBA:
+ /* Gets treated as NOP */
+ break;
+ case OP_31_XOP_DCBZ:
+ {
+ ulong rb_val = kvmppc_get_gpr(vcpu, rb);
+ ulong ra_val = 0;
+ ulong addr, vaddr;
+ u32 zeros[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
+ u32 dsisr;
+ int r;
+
+ if (ra)
+ ra_val = kvmppc_get_gpr(vcpu, ra);
+
+ addr = (ra_val + rb_val) & ~31ULL;
+ if (!(kvmppc_get_msr(vcpu) & MSR_SF))
+ addr &= 0xffffffff;
+ vaddr = addr;
+
+ r = kvmppc_st(vcpu, &addr, 32, zeros, true);
+ if ((r == -ENOENT) || (r == -EPERM)) {
+ *advance = 0;
+ kvmppc_set_dar(vcpu, vaddr);
+ vcpu->arch.fault_dar = vaddr;
+
+ dsisr = DSISR_ISSTORE;
+ if (r == -ENOENT)
+ dsisr |= DSISR_NOHPTE;
+ else if (r == -EPERM)
+ dsisr |= DSISR_PROTFAULT;
+
+ kvmppc_set_dsisr(vcpu, dsisr);
+ vcpu->arch.fault_dsisr = dsisr;
+
+ kvmppc_book3s_queue_irqprio(vcpu,
+ BOOK3S_INTERRUPT_DATA_STORAGE);
+ }
+
+ break;
+ }
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ case OP_31_XOP_TBEGIN:
+ {
+ if (!cpu_has_feature(CPU_FTR_TM))
+ break;
+
+ if (!(kvmppc_get_msr(vcpu) & MSR_TM)) {
+ kvmppc_trigger_fac_interrupt(vcpu, FSCR_TM_LG);
+ emulated = EMULATE_AGAIN;
+ break;
+ }
+
+ if (!(kvmppc_get_msr(vcpu) & MSR_PR)) {
+ preempt_disable();
+ vcpu->arch.regs.ccr = (CR0_TBEGIN_FAILURE |
+ (vcpu->arch.regs.ccr & ~(CR0_MASK << CR0_SHIFT)));
+
+ vcpu->arch.texasr = (TEXASR_FS | TEXASR_EXACT |
+ (((u64)(TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
+ << TEXASR_FC_LG));
+
+ if ((inst >> 21) & 0x1)
+ vcpu->arch.texasr |= TEXASR_ROT;
+
+ if (kvmppc_get_msr(vcpu) & MSR_HV)
+ vcpu->arch.texasr |= TEXASR_HV;
+
+ vcpu->arch.tfhar = kvmppc_get_pc(vcpu) + 4;
+ vcpu->arch.tfiar = kvmppc_get_pc(vcpu);
+
+ kvmppc_restore_tm_sprs(vcpu);
+ preempt_enable();
+ } else
+ emulated = EMULATE_FAIL;
+ break;
+ }
+ case OP_31_XOP_TABORT:
+ {
+ ulong guest_msr = kvmppc_get_msr(vcpu);
+ unsigned long ra_val = 0;
+
+ if (!cpu_has_feature(CPU_FTR_TM))
+ break;
+
+ if (!(kvmppc_get_msr(vcpu) & MSR_TM)) {
+ kvmppc_trigger_fac_interrupt(vcpu, FSCR_TM_LG);
+ emulated = EMULATE_AGAIN;
+ break;
+ }
+
+ /* only emulate for privilege guest, since problem state
+ * guest can run with TM enabled and we don't expect to
+ * trap at here for that case.
+ */
+ WARN_ON(guest_msr & MSR_PR);
+
+ if (ra)
+ ra_val = kvmppc_get_gpr(vcpu, ra);
+
+ kvmppc_emulate_tabort(vcpu, ra_val);
+ break;
+ }
+ case OP_31_XOP_TRECLAIM:
+ {
+ ulong guest_msr = kvmppc_get_msr(vcpu);
+ unsigned long ra_val = 0;
+
+ if (!cpu_has_feature(CPU_FTR_TM))
+ break;
+
+ if (!(kvmppc_get_msr(vcpu) & MSR_TM)) {
+ kvmppc_trigger_fac_interrupt(vcpu, FSCR_TM_LG);
+ emulated = EMULATE_AGAIN;
+ break;
+ }
+
+ /* generate interrupts based on priorities */
+ if (guest_msr & MSR_PR) {
+ /* Privileged Instruction type Program Interrupt */
+ kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
+ emulated = EMULATE_AGAIN;
+ break;
+ }
+
+ if (!MSR_TM_ACTIVE(guest_msr)) {
+ /* TM bad thing interrupt */
+ kvmppc_core_queue_program(vcpu, SRR1_PROGTM);
+ emulated = EMULATE_AGAIN;
+ break;
+ }
+
+ if (ra)
+ ra_val = kvmppc_get_gpr(vcpu, ra);
+ kvmppc_emulate_treclaim(vcpu, ra_val);
+ break;
+ }
+ case OP_31_XOP_TRCHKPT:
+ {
+ ulong guest_msr = kvmppc_get_msr(vcpu);
+ unsigned long texasr;
+
+ if (!cpu_has_feature(CPU_FTR_TM))
+ break;
+
+ if (!(kvmppc_get_msr(vcpu) & MSR_TM)) {
+ kvmppc_trigger_fac_interrupt(vcpu, FSCR_TM_LG);
+ emulated = EMULATE_AGAIN;
+ break;
+ }
+
+ /* generate interrupt based on priorities */
+ if (guest_msr & MSR_PR) {
+ /* Privileged Instruction type Program Intr */
+ kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
+ emulated = EMULATE_AGAIN;
+ break;
+ }
+
+ tm_enable();
+ texasr = mfspr(SPRN_TEXASR);
+ tm_disable();
+
+ if (MSR_TM_ACTIVE(guest_msr) ||
+ !(texasr & (TEXASR_FS))) {
+ /* TM bad thing interrupt */
+ kvmppc_core_queue_program(vcpu, SRR1_PROGTM);
+ emulated = EMULATE_AGAIN;
+ break;
+ }
+
+ kvmppc_emulate_trchkpt(vcpu);
+ break;
+ }
+#endif
+ default:
+ emulated = EMULATE_FAIL;
+ }
+ break;
+ default:
+ emulated = EMULATE_FAIL;
+ }
+
+ if (emulated == EMULATE_FAIL)
+ emulated = kvmppc_emulate_paired_single(vcpu);
+
+ return emulated;
+}
+
+void kvmppc_set_bat(struct kvm_vcpu *vcpu, struct kvmppc_bat *bat, bool upper,
+ u32 val)
+{
+ if (upper) {
+ /* Upper BAT */
+ u32 bl = (val >> 2) & 0x7ff;
+ bat->bepi_mask = (~bl << 17);
+ bat->bepi = val & 0xfffe0000;
+ bat->vs = (val & 2) ? 1 : 0;
+ bat->vp = (val & 1) ? 1 : 0;
+ bat->raw = (bat->raw & 0xffffffff00000000ULL) | val;
+ } else {
+ /* Lower BAT */
+ bat->brpn = val & 0xfffe0000;
+ bat->wimg = (val >> 3) & 0xf;
+ bat->pp = val & 3;
+ bat->raw = (bat->raw & 0x00000000ffffffffULL) | ((u64)val << 32);
+ }
+}
+
+static struct kvmppc_bat *kvmppc_find_bat(struct kvm_vcpu *vcpu, int sprn)
+{
+ struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
+ struct kvmppc_bat *bat;
+
+ switch (sprn) {
+ case SPRN_IBAT0U ... SPRN_IBAT3L:
+ bat = &vcpu_book3s->ibat[(sprn - SPRN_IBAT0U) / 2];
+ break;
+ case SPRN_IBAT4U ... SPRN_IBAT7L:
+ bat = &vcpu_book3s->ibat[4 + ((sprn - SPRN_IBAT4U) / 2)];
+ break;
+ case SPRN_DBAT0U ... SPRN_DBAT3L:
+ bat = &vcpu_book3s->dbat[(sprn - SPRN_DBAT0U) / 2];
+ break;
+ case SPRN_DBAT4U ... SPRN_DBAT7L:
+ bat = &vcpu_book3s->dbat[4 + ((sprn - SPRN_DBAT4U) / 2)];
+ break;
+ default:
+ BUG();
+ }
+
+ return bat;
+}
+
+int kvmppc_core_emulate_mtspr_pr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
+{
+ int emulated = EMULATE_DONE;
+
+ switch (sprn) {
+ case SPRN_SDR1:
+ if (!spr_allowed(vcpu, PRIV_HYPER))
+ goto unprivileged;
+ to_book3s(vcpu)->sdr1 = spr_val;
+ break;
+ case SPRN_DSISR:
+ kvmppc_set_dsisr(vcpu, spr_val);
+ break;
+ case SPRN_DAR:
+ kvmppc_set_dar(vcpu, spr_val);
+ break;
+ case SPRN_HIOR:
+ to_book3s(vcpu)->hior = spr_val;
+ break;
+ case SPRN_IBAT0U ... SPRN_IBAT3L:
+ case SPRN_IBAT4U ... SPRN_IBAT7L:
+ case SPRN_DBAT0U ... SPRN_DBAT3L:
+ case SPRN_DBAT4U ... SPRN_DBAT7L:
+ {
+ struct kvmppc_bat *bat = kvmppc_find_bat(vcpu, sprn);
+
+ kvmppc_set_bat(vcpu, bat, !(sprn % 2), (u32)spr_val);
+ /* BAT writes happen so rarely that we're ok to flush
+ * everything here */
+ kvmppc_mmu_pte_flush(vcpu, 0, 0);
+ kvmppc_mmu_flush_segments(vcpu);
+ break;
+ }
+ case SPRN_HID0:
+ to_book3s(vcpu)->hid[0] = spr_val;
+ break;
+ case SPRN_HID1:
+ to_book3s(vcpu)->hid[1] = spr_val;
+ break;
+ case SPRN_HID2:
+ to_book3s(vcpu)->hid[2] = spr_val;
+ break;
+ case SPRN_HID2_GEKKO:
+ to_book3s(vcpu)->hid[2] = spr_val;
+ /* HID2.PSE controls paired single on gekko */
+ switch (vcpu->arch.pvr) {
+ case 0x00080200: /* lonestar 2.0 */
+ case 0x00088202: /* lonestar 2.2 */
+ case 0x70000100: /* gekko 1.0 */
+ case 0x00080100: /* gekko 2.0 */
+ case 0x00083203: /* gekko 2.3a */
+ case 0x00083213: /* gekko 2.3b */
+ case 0x00083204: /* gekko 2.4 */
+ case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
+ case 0x00087200: /* broadway */
+ if (vcpu->arch.hflags & BOOK3S_HFLAG_NATIVE_PS) {
+ /* Native paired singles */
+ } else if (spr_val & (1 << 29)) { /* HID2.PSE */
+ vcpu->arch.hflags |= BOOK3S_HFLAG_PAIRED_SINGLE;
+ kvmppc_giveup_ext(vcpu, MSR_FP);
+ } else {
+ vcpu->arch.hflags &= ~BOOK3S_HFLAG_PAIRED_SINGLE;
+ }
+ break;
+ }
+ break;
+ case SPRN_HID4:
+ case SPRN_HID4_GEKKO:
+ to_book3s(vcpu)->hid[4] = spr_val;
+ break;
+ case SPRN_HID5:
+ to_book3s(vcpu)->hid[5] = spr_val;
+ /* guest HID5 set can change is_dcbz32 */
+ if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
+ (mfmsr() & MSR_HV))
+ vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
+ break;
+ case SPRN_GQR0:
+ case SPRN_GQR1:
+ case SPRN_GQR2:
+ case SPRN_GQR3:
+ case SPRN_GQR4:
+ case SPRN_GQR5:
+ case SPRN_GQR6:
+ case SPRN_GQR7:
+ to_book3s(vcpu)->gqr[sprn - SPRN_GQR0] = spr_val;
+ break;
+#ifdef CONFIG_PPC_BOOK3S_64
+ case SPRN_FSCR:
+ kvmppc_set_fscr(vcpu, spr_val);
+ break;
+ case SPRN_BESCR:
+ vcpu->arch.bescr = spr_val;
+ break;
+ case SPRN_EBBHR:
+ vcpu->arch.ebbhr = spr_val;
+ break;
+ case SPRN_EBBRR:
+ vcpu->arch.ebbrr = spr_val;
+ break;
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ case SPRN_TFHAR:
+ case SPRN_TEXASR:
+ case SPRN_TFIAR:
+ if (!cpu_has_feature(CPU_FTR_TM))
+ break;
+
+ if (!(kvmppc_get_msr(vcpu) & MSR_TM)) {
+ kvmppc_trigger_fac_interrupt(vcpu, FSCR_TM_LG);
+ emulated = EMULATE_AGAIN;
+ break;
+ }
+
+ if (MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)) &&
+ !((MSR_TM_SUSPENDED(kvmppc_get_msr(vcpu))) &&
+ (sprn == SPRN_TFHAR))) {
+ /* it is illegal to mtspr() TM regs in
+ * other than non-transactional state, with
+ * the exception of TFHAR in suspend state.
+ */
+ kvmppc_core_queue_program(vcpu, SRR1_PROGTM);
+ emulated = EMULATE_AGAIN;
+ break;
+ }
+
+ tm_enable();
+ if (sprn == SPRN_TFHAR)
+ mtspr(SPRN_TFHAR, spr_val);
+ else if (sprn == SPRN_TEXASR)
+ mtspr(SPRN_TEXASR, spr_val);
+ else
+ mtspr(SPRN_TFIAR, spr_val);
+ tm_disable();
+
+ break;
+#endif
+#endif
+ case SPRN_ICTC:
+ case SPRN_THRM1:
+ case SPRN_THRM2:
+ case SPRN_THRM3:
+ case SPRN_CTRLF:
+ case SPRN_CTRLT:
+ case SPRN_L2CR:
+ case SPRN_DSCR:
+ case SPRN_MMCR0_GEKKO:
+ case SPRN_MMCR1_GEKKO:
+ case SPRN_PMC1_GEKKO:
+ case SPRN_PMC2_GEKKO:
+ case SPRN_PMC3_GEKKO:
+ case SPRN_PMC4_GEKKO:
+ case SPRN_WPAR_GEKKO:
+ case SPRN_MSSSR0:
+ case SPRN_DABR:
+#ifdef CONFIG_PPC_BOOK3S_64
+ case SPRN_MMCRS:
+ case SPRN_MMCRA:
+ case SPRN_MMCR0:
+ case SPRN_MMCR1:
+ case SPRN_MMCR2:
+ case SPRN_UMMCR2:
+ case SPRN_UAMOR:
+ case SPRN_IAMR:
+ case SPRN_AMR:
+#endif
+ break;
+unprivileged:
+ default:
+ pr_info_ratelimited("KVM: invalid SPR write: %d\n", sprn);
+ if (sprn & 0x10) {
+ if (kvmppc_get_msr(vcpu) & MSR_PR) {
+ kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
+ emulated = EMULATE_AGAIN;
+ }
+ } else {
+ if ((kvmppc_get_msr(vcpu) & MSR_PR) || sprn == 0) {
+ kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
+ emulated = EMULATE_AGAIN;
+ }
+ }
+ break;
+ }
+
+ return emulated;
+}
+
+int kvmppc_core_emulate_mfspr_pr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
+{
+ int emulated = EMULATE_DONE;
+
+ switch (sprn) {
+ case SPRN_IBAT0U ... SPRN_IBAT3L:
+ case SPRN_IBAT4U ... SPRN_IBAT7L:
+ case SPRN_DBAT0U ... SPRN_DBAT3L:
+ case SPRN_DBAT4U ... SPRN_DBAT7L:
+ {
+ struct kvmppc_bat *bat = kvmppc_find_bat(vcpu, sprn);
+
+ if (sprn % 2)
+ *spr_val = bat->raw >> 32;
+ else
+ *spr_val = bat->raw;
+
+ break;
+ }
+ case SPRN_SDR1:
+ if (!spr_allowed(vcpu, PRIV_HYPER))
+ goto unprivileged;
+ *spr_val = to_book3s(vcpu)->sdr1;
+ break;
+ case SPRN_DSISR:
+ *spr_val = kvmppc_get_dsisr(vcpu);
+ break;
+ case SPRN_DAR:
+ *spr_val = kvmppc_get_dar(vcpu);
+ break;
+ case SPRN_HIOR:
+ *spr_val = to_book3s(vcpu)->hior;
+ break;
+ case SPRN_HID0:
+ *spr_val = to_book3s(vcpu)->hid[0];
+ break;
+ case SPRN_HID1:
+ *spr_val = to_book3s(vcpu)->hid[1];
+ break;
+ case SPRN_HID2:
+ case SPRN_HID2_GEKKO:
+ *spr_val = to_book3s(vcpu)->hid[2];
+ break;
+ case SPRN_HID4:
+ case SPRN_HID4_GEKKO:
+ *spr_val = to_book3s(vcpu)->hid[4];
+ break;
+ case SPRN_HID5:
+ *spr_val = to_book3s(vcpu)->hid[5];
+ break;
+ case SPRN_CFAR:
+ case SPRN_DSCR:
+ *spr_val = 0;
+ break;
+ case SPRN_PURR:
+ /*
+ * On exit we would have updated purr
+ */
+ *spr_val = vcpu->arch.purr;
+ break;
+ case SPRN_SPURR:
+ /*
+ * On exit we would have updated spurr
+ */
+ *spr_val = vcpu->arch.spurr;
+ break;
+ case SPRN_VTB:
+ *spr_val = to_book3s(vcpu)->vtb;
+ break;
+ case SPRN_IC:
+ *spr_val = vcpu->arch.ic;
+ break;
+ case SPRN_GQR0:
+ case SPRN_GQR1:
+ case SPRN_GQR2:
+ case SPRN_GQR3:
+ case SPRN_GQR4:
+ case SPRN_GQR5:
+ case SPRN_GQR6:
+ case SPRN_GQR7:
+ *spr_val = to_book3s(vcpu)->gqr[sprn - SPRN_GQR0];
+ break;
+#ifdef CONFIG_PPC_BOOK3S_64
+ case SPRN_FSCR:
+ *spr_val = vcpu->arch.fscr;
+ break;
+ case SPRN_BESCR:
+ *spr_val = vcpu->arch.bescr;
+ break;
+ case SPRN_EBBHR:
+ *spr_val = vcpu->arch.ebbhr;
+ break;
+ case SPRN_EBBRR:
+ *spr_val = vcpu->arch.ebbrr;
+ break;
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ case SPRN_TFHAR:
+ case SPRN_TEXASR:
+ case SPRN_TFIAR:
+ if (!cpu_has_feature(CPU_FTR_TM))
+ break;
+
+ if (!(kvmppc_get_msr(vcpu) & MSR_TM)) {
+ kvmppc_trigger_fac_interrupt(vcpu, FSCR_TM_LG);
+ emulated = EMULATE_AGAIN;
+ break;
+ }
+
+ tm_enable();
+ if (sprn == SPRN_TFHAR)
+ *spr_val = mfspr(SPRN_TFHAR);
+ else if (sprn == SPRN_TEXASR)
+ *spr_val = mfspr(SPRN_TEXASR);
+ else if (sprn == SPRN_TFIAR)
+ *spr_val = mfspr(SPRN_TFIAR);
+ tm_disable();
+ break;
+#endif
+#endif
+ case SPRN_THRM1:
+ case SPRN_THRM2:
+ case SPRN_THRM3:
+ case SPRN_CTRLF:
+ case SPRN_CTRLT:
+ case SPRN_L2CR:
+ case SPRN_MMCR0_GEKKO:
+ case SPRN_MMCR1_GEKKO:
+ case SPRN_PMC1_GEKKO:
+ case SPRN_PMC2_GEKKO:
+ case SPRN_PMC3_GEKKO:
+ case SPRN_PMC4_GEKKO:
+ case SPRN_WPAR_GEKKO:
+ case SPRN_MSSSR0:
+ case SPRN_DABR:
+#ifdef CONFIG_PPC_BOOK3S_64
+ case SPRN_MMCRS:
+ case SPRN_MMCRA:
+ case SPRN_MMCR0:
+ case SPRN_MMCR1:
+ case SPRN_MMCR2:
+ case SPRN_UMMCR2:
+ case SPRN_TIR:
+ case SPRN_UAMOR:
+ case SPRN_IAMR:
+ case SPRN_AMR:
+#endif
+ *spr_val = 0;
+ break;
+ default:
+unprivileged:
+ pr_info_ratelimited("KVM: invalid SPR read: %d\n", sprn);
+ if (sprn & 0x10) {
+ if (kvmppc_get_msr(vcpu) & MSR_PR) {
+ kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
+ emulated = EMULATE_AGAIN;
+ }
+ } else {
+ if ((kvmppc_get_msr(vcpu) & MSR_PR) || sprn == 0 ||
+ sprn == 4 || sprn == 5 || sprn == 6) {
+ kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
+ emulated = EMULATE_AGAIN;
+ }
+ }
+
+ break;
+ }
+
+ return emulated;
+}
+
+u32 kvmppc_alignment_dsisr(struct kvm_vcpu *vcpu, unsigned int inst)
+{
+ return make_dsisr(inst);
+}
+
+ulong kvmppc_alignment_dar(struct kvm_vcpu *vcpu, unsigned int inst)
+{
+#ifdef CONFIG_PPC_BOOK3S_64
+ /*
+ * Linux's fix_alignment() assumes that DAR is valid, so can we
+ */
+ return vcpu->arch.fault_dar;
+#else
+ ulong dar = 0;
+ ulong ra = get_ra(inst);
+ ulong rb = get_rb(inst);
+
+ switch (get_op(inst)) {
+ case OP_LFS:
+ case OP_LFD:
+ case OP_STFD:
+ case OP_STFS:
+ if (ra)
+ dar = kvmppc_get_gpr(vcpu, ra);
+ dar += (s32)((s16)inst);
+ break;
+ case 31:
+ if (ra)
+ dar = kvmppc_get_gpr(vcpu, ra);
+ dar += kvmppc_get_gpr(vcpu, rb);
+ break;
+ default:
+ printk(KERN_INFO "KVM: Unaligned instruction 0x%x\n", inst);
+ break;
+ }
+
+ return dar;
+#endif
+}
diff --git a/arch/powerpc/kvm/book3s_exports.c b/arch/powerpc/kvm/book3s_exports.c
new file mode 100644
index 000000000..f08565885
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_exports.c
@@ -0,0 +1,19 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ *
+ * Copyright SUSE Linux Products GmbH 2009
+ *
+ * Authors: Alexander Graf <agraf@suse.de>
+ */
+
+#include <linux/export.h>
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+
+#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+EXPORT_SYMBOL_GPL(kvmppc_hv_entry_trampoline);
+#endif
+#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
+EXPORT_SYMBOL_GPL(kvmppc_entry_trampoline);
+#endif
+
diff --git a/arch/powerpc/kvm/book3s_hv.c b/arch/powerpc/kvm/book3s_hv.c
new file mode 100644
index 000000000..6ba68dd61
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_hv.c
@@ -0,0 +1,6326 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
+ * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
+ *
+ * Authors:
+ * Paul Mackerras <paulus@au1.ibm.com>
+ * Alexander Graf <agraf@suse.de>
+ * Kevin Wolf <mail@kevin-wolf.de>
+ *
+ * Description: KVM functions specific to running on Book 3S
+ * processors in hypervisor mode (specifically POWER7 and later).
+ *
+ * This file is derived from arch/powerpc/kvm/book3s.c,
+ * by Alexander Graf <agraf@suse.de>.
+ */
+
+#include <linux/kvm_host.h>
+#include <linux/kernel.h>
+#include <linux/err.h>
+#include <linux/slab.h>
+#include <linux/preempt.h>
+#include <linux/sched/signal.h>
+#include <linux/sched/stat.h>
+#include <linux/delay.h>
+#include <linux/export.h>
+#include <linux/fs.h>
+#include <linux/anon_inodes.h>
+#include <linux/cpu.h>
+#include <linux/cpumask.h>
+#include <linux/spinlock.h>
+#include <linux/page-flags.h>
+#include <linux/srcu.h>
+#include <linux/miscdevice.h>
+#include <linux/debugfs.h>
+#include <linux/gfp.h>
+#include <linux/vmalloc.h>
+#include <linux/highmem.h>
+#include <linux/hugetlb.h>
+#include <linux/kvm_irqfd.h>
+#include <linux/irqbypass.h>
+#include <linux/module.h>
+#include <linux/compiler.h>
+#include <linux/of.h>
+#include <linux/irqdomain.h>
+
+#include <asm/ftrace.h>
+#include <asm/reg.h>
+#include <asm/ppc-opcode.h>
+#include <asm/asm-prototypes.h>
+#include <asm/archrandom.h>
+#include <asm/debug.h>
+#include <asm/disassemble.h>
+#include <asm/cputable.h>
+#include <asm/cacheflush.h>
+#include <linux/uaccess.h>
+#include <asm/interrupt.h>
+#include <asm/io.h>
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+#include <asm/mmu_context.h>
+#include <asm/lppaca.h>
+#include <asm/pmc.h>
+#include <asm/processor.h>
+#include <asm/cputhreads.h>
+#include <asm/page.h>
+#include <asm/hvcall.h>
+#include <asm/switch_to.h>
+#include <asm/smp.h>
+#include <asm/dbell.h>
+#include <asm/hmi.h>
+#include <asm/pnv-pci.h>
+#include <asm/mmu.h>
+#include <asm/opal.h>
+#include <asm/xics.h>
+#include <asm/xive.h>
+#include <asm/hw_breakpoint.h>
+#include <asm/kvm_book3s_uvmem.h>
+#include <asm/ultravisor.h>
+#include <asm/dtl.h>
+#include <asm/plpar_wrappers.h>
+
+#include "book3s.h"
+#include "book3s_hv.h"
+
+#define CREATE_TRACE_POINTS
+#include "trace_hv.h"
+
+/* #define EXIT_DEBUG */
+/* #define EXIT_DEBUG_SIMPLE */
+/* #define EXIT_DEBUG_INT */
+
+/* Used to indicate that a guest page fault needs to be handled */
+#define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
+/* Used to indicate that a guest passthrough interrupt needs to be handled */
+#define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
+
+/* Used as a "null" value for timebase values */
+#define TB_NIL (~(u64)0)
+
+static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
+
+static int dynamic_mt_modes = 6;
+module_param(dynamic_mt_modes, int, 0644);
+MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
+static int target_smt_mode;
+module_param(target_smt_mode, int, 0644);
+MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
+
+static bool one_vm_per_core;
+module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
+
+#ifdef CONFIG_KVM_XICS
+static const struct kernel_param_ops module_param_ops = {
+ .set = param_set_int,
+ .get = param_get_int,
+};
+
+module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
+MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
+
+module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
+MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
+#endif
+
+/* If set, guests are allowed to create and control nested guests */
+static bool nested = true;
+module_param(nested, bool, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
+
+static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
+
+/*
+ * RWMR values for POWER8. These control the rate at which PURR
+ * and SPURR count and should be set according to the number of
+ * online threads in the vcore being run.
+ */
+#define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL
+#define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL
+#define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL
+#define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL
+#define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL
+#define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL
+#define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL
+#define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL
+
+static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
+ RWMR_RPA_P8_1THREAD,
+ RWMR_RPA_P8_1THREAD,
+ RWMR_RPA_P8_2THREAD,
+ RWMR_RPA_P8_3THREAD,
+ RWMR_RPA_P8_4THREAD,
+ RWMR_RPA_P8_5THREAD,
+ RWMR_RPA_P8_6THREAD,
+ RWMR_RPA_P8_7THREAD,
+ RWMR_RPA_P8_8THREAD,
+};
+
+static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
+ int *ip)
+{
+ int i = *ip;
+ struct kvm_vcpu *vcpu;
+
+ while (++i < MAX_SMT_THREADS) {
+ vcpu = READ_ONCE(vc->runnable_threads[i]);
+ if (vcpu) {
+ *ip = i;
+ return vcpu;
+ }
+ }
+ return NULL;
+}
+
+/* Used to traverse the list of runnable threads for a given vcore */
+#define for_each_runnable_thread(i, vcpu, vc) \
+ for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
+
+static bool kvmppc_ipi_thread(int cpu)
+{
+ unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
+
+ /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
+ if (kvmhv_on_pseries())
+ return false;
+
+ /* On POWER9 we can use msgsnd to IPI any cpu */
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ msg |= get_hard_smp_processor_id(cpu);
+ smp_mb();
+ __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
+ return true;
+ }
+
+ /* On POWER8 for IPIs to threads in the same core, use msgsnd */
+ if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
+ preempt_disable();
+ if (cpu_first_thread_sibling(cpu) ==
+ cpu_first_thread_sibling(smp_processor_id())) {
+ msg |= cpu_thread_in_core(cpu);
+ smp_mb();
+ __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
+ preempt_enable();
+ return true;
+ }
+ preempt_enable();
+ }
+
+#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
+ if (cpu >= 0 && cpu < nr_cpu_ids) {
+ if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
+ xics_wake_cpu(cpu);
+ return true;
+ }
+ opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
+ return true;
+ }
+#endif
+
+ return false;
+}
+
+static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
+{
+ int cpu;
+ struct rcuwait *waitp;
+
+ /*
+ * rcuwait_wake_up contains smp_mb() which orders prior stores that
+ * create pending work vs below loads of cpu fields. The other side
+ * is the barrier in vcpu run that orders setting the cpu fields vs
+ * testing for pending work.
+ */
+
+ waitp = kvm_arch_vcpu_get_wait(vcpu);
+ if (rcuwait_wake_up(waitp))
+ ++vcpu->stat.generic.halt_wakeup;
+
+ cpu = READ_ONCE(vcpu->arch.thread_cpu);
+ if (cpu >= 0 && kvmppc_ipi_thread(cpu))
+ return;
+
+ /* CPU points to the first thread of the core */
+ cpu = vcpu->cpu;
+ if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
+ smp_send_reschedule(cpu);
+}
+
+/*
+ * We use the vcpu_load/put functions to measure stolen time.
+ *
+ * Stolen time is counted as time when either the vcpu is able to
+ * run as part of a virtual core, but the task running the vcore
+ * is preempted or sleeping, or when the vcpu needs something done
+ * in the kernel by the task running the vcpu, but that task is
+ * preempted or sleeping. Those two things have to be counted
+ * separately, since one of the vcpu tasks will take on the job
+ * of running the core, and the other vcpu tasks in the vcore will
+ * sleep waiting for it to do that, but that sleep shouldn't count
+ * as stolen time.
+ *
+ * Hence we accumulate stolen time when the vcpu can run as part of
+ * a vcore using vc->stolen_tb, and the stolen time when the vcpu
+ * needs its task to do other things in the kernel (for example,
+ * service a page fault) in busy_stolen. We don't accumulate
+ * stolen time for a vcore when it is inactive, or for a vcpu
+ * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
+ * a misnomer; it means that the vcpu task is not executing in
+ * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
+ * the kernel. We don't have any way of dividing up that time
+ * between time that the vcpu is genuinely stopped, time that
+ * the task is actively working on behalf of the vcpu, and time
+ * that the task is preempted, so we don't count any of it as
+ * stolen.
+ *
+ * Updates to busy_stolen are protected by arch.tbacct_lock;
+ * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
+ * lock. The stolen times are measured in units of timebase ticks.
+ * (Note that the != TB_NIL checks below are purely defensive;
+ * they should never fail.)
+ *
+ * The POWER9 path is simpler, one vcpu per virtual core so the
+ * former case does not exist. If a vcpu is preempted when it is
+ * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate
+ * the stolen cycles in busy_stolen. RUNNING is not a preemptible
+ * state in the P9 path.
+ */
+
+static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
+{
+ unsigned long flags;
+
+ WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
+
+ spin_lock_irqsave(&vc->stoltb_lock, flags);
+ vc->preempt_tb = tb;
+ spin_unlock_irqrestore(&vc->stoltb_lock, flags);
+}
+
+static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
+{
+ unsigned long flags;
+
+ WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
+
+ spin_lock_irqsave(&vc->stoltb_lock, flags);
+ if (vc->preempt_tb != TB_NIL) {
+ vc->stolen_tb += tb - vc->preempt_tb;
+ vc->preempt_tb = TB_NIL;
+ }
+ spin_unlock_irqrestore(&vc->stoltb_lock, flags);
+}
+
+static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
+{
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+ unsigned long flags;
+ u64 now;
+
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ if (vcpu->arch.busy_preempt != TB_NIL) {
+ WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST);
+ vc->stolen_tb += mftb() - vcpu->arch.busy_preempt;
+ vcpu->arch.busy_preempt = TB_NIL;
+ }
+ return;
+ }
+
+ now = mftb();
+
+ /*
+ * We can test vc->runner without taking the vcore lock,
+ * because only this task ever sets vc->runner to this
+ * vcpu, and once it is set to this vcpu, only this task
+ * ever sets it to NULL.
+ */
+ if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
+ kvmppc_core_end_stolen(vc, now);
+
+ spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
+ if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
+ vcpu->arch.busy_preempt != TB_NIL) {
+ vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
+ vcpu->arch.busy_preempt = TB_NIL;
+ }
+ spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
+}
+
+static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+ unsigned long flags;
+ u64 now;
+
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ /*
+ * In the P9 path, RUNNABLE is not preemptible
+ * (nor takes host interrupts)
+ */
+ WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE);
+ /*
+ * Account stolen time when preempted while the vcpu task is
+ * running in the kernel (but not in qemu, which is INACTIVE).
+ */
+ if (task_is_running(current) &&
+ vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
+ vcpu->arch.busy_preempt = mftb();
+ return;
+ }
+
+ now = mftb();
+
+ if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
+ kvmppc_core_start_stolen(vc, now);
+
+ spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
+ if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
+ vcpu->arch.busy_preempt = now;
+ spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
+}
+
+static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
+{
+ vcpu->arch.pvr = pvr;
+}
+
+/* Dummy value used in computing PCR value below */
+#define PCR_ARCH_31 (PCR_ARCH_300 << 1)
+
+static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
+{
+ unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+
+ /* We can (emulate) our own architecture version and anything older */
+ if (cpu_has_feature(CPU_FTR_ARCH_31))
+ host_pcr_bit = PCR_ARCH_31;
+ else if (cpu_has_feature(CPU_FTR_ARCH_300))
+ host_pcr_bit = PCR_ARCH_300;
+ else if (cpu_has_feature(CPU_FTR_ARCH_207S))
+ host_pcr_bit = PCR_ARCH_207;
+ else if (cpu_has_feature(CPU_FTR_ARCH_206))
+ host_pcr_bit = PCR_ARCH_206;
+ else
+ host_pcr_bit = PCR_ARCH_205;
+
+ /* Determine lowest PCR bit needed to run guest in given PVR level */
+ guest_pcr_bit = host_pcr_bit;
+ if (arch_compat) {
+ switch (arch_compat) {
+ case PVR_ARCH_205:
+ guest_pcr_bit = PCR_ARCH_205;
+ break;
+ case PVR_ARCH_206:
+ case PVR_ARCH_206p:
+ guest_pcr_bit = PCR_ARCH_206;
+ break;
+ case PVR_ARCH_207:
+ guest_pcr_bit = PCR_ARCH_207;
+ break;
+ case PVR_ARCH_300:
+ guest_pcr_bit = PCR_ARCH_300;
+ break;
+ case PVR_ARCH_31:
+ guest_pcr_bit = PCR_ARCH_31;
+ break;
+ default:
+ return -EINVAL;
+ }
+ }
+
+ /* Check requested PCR bits don't exceed our capabilities */
+ if (guest_pcr_bit > host_pcr_bit)
+ return -EINVAL;
+
+ spin_lock(&vc->lock);
+ vc->arch_compat = arch_compat;
+ /*
+ * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
+ * Also set all reserved PCR bits
+ */
+ vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
+ spin_unlock(&vc->lock);
+
+ return 0;
+}
+
+static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
+{
+ int r;
+
+ pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
+ pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
+ vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
+ for (r = 0; r < 16; ++r)
+ pr_err("r%2d = %.16lx r%d = %.16lx\n",
+ r, kvmppc_get_gpr(vcpu, r),
+ r+16, kvmppc_get_gpr(vcpu, r+16));
+ pr_err("ctr = %.16lx lr = %.16lx\n",
+ vcpu->arch.regs.ctr, vcpu->arch.regs.link);
+ pr_err("srr0 = %.16llx srr1 = %.16llx\n",
+ vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
+ pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
+ vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
+ pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
+ vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
+ pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n",
+ vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
+ pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
+ pr_err("fault dar = %.16lx dsisr = %.8x\n",
+ vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
+ pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
+ for (r = 0; r < vcpu->arch.slb_max; ++r)
+ pr_err(" ESID = %.16llx VSID = %.16llx\n",
+ vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
+ pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
+ vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
+ vcpu->arch.last_inst);
+}
+
+static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
+{
+ return kvm_get_vcpu_by_id(kvm, id);
+}
+
+static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
+{
+ vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
+ vpa->yield_count = cpu_to_be32(1);
+}
+
+static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
+ unsigned long addr, unsigned long len)
+{
+ /* check address is cacheline aligned */
+ if (addr & (L1_CACHE_BYTES - 1))
+ return -EINVAL;
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ if (v->next_gpa != addr || v->len != len) {
+ v->next_gpa = addr;
+ v->len = addr ? len : 0;
+ v->update_pending = 1;
+ }
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+ return 0;
+}
+
+/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
+struct reg_vpa {
+ u32 dummy;
+ union {
+ __be16 hword;
+ __be32 word;
+ } length;
+};
+
+static int vpa_is_registered(struct kvmppc_vpa *vpap)
+{
+ if (vpap->update_pending)
+ return vpap->next_gpa != 0;
+ return vpap->pinned_addr != NULL;
+}
+
+static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
+ unsigned long flags,
+ unsigned long vcpuid, unsigned long vpa)
+{
+ struct kvm *kvm = vcpu->kvm;
+ unsigned long len, nb;
+ void *va;
+ struct kvm_vcpu *tvcpu;
+ int err;
+ int subfunc;
+ struct kvmppc_vpa *vpap;
+
+ tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
+ if (!tvcpu)
+ return H_PARAMETER;
+
+ subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
+ if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
+ subfunc == H_VPA_REG_SLB) {
+ /* Registering new area - address must be cache-line aligned */
+ if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
+ return H_PARAMETER;
+
+ /* convert logical addr to kernel addr and read length */
+ va = kvmppc_pin_guest_page(kvm, vpa, &nb);
+ if (va == NULL)
+ return H_PARAMETER;
+ if (subfunc == H_VPA_REG_VPA)
+ len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
+ else
+ len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
+ kvmppc_unpin_guest_page(kvm, va, vpa, false);
+
+ /* Check length */
+ if (len > nb || len < sizeof(struct reg_vpa))
+ return H_PARAMETER;
+ } else {
+ vpa = 0;
+ len = 0;
+ }
+
+ err = H_PARAMETER;
+ vpap = NULL;
+ spin_lock(&tvcpu->arch.vpa_update_lock);
+
+ switch (subfunc) {
+ case H_VPA_REG_VPA: /* register VPA */
+ /*
+ * The size of our lppaca is 1kB because of the way we align
+ * it for the guest to avoid crossing a 4kB boundary. We only
+ * use 640 bytes of the structure though, so we should accept
+ * clients that set a size of 640.
+ */
+ BUILD_BUG_ON(sizeof(struct lppaca) != 640);
+ if (len < sizeof(struct lppaca))
+ break;
+ vpap = &tvcpu->arch.vpa;
+ err = 0;
+ break;
+
+ case H_VPA_REG_DTL: /* register DTL */
+ if (len < sizeof(struct dtl_entry))
+ break;
+ len -= len % sizeof(struct dtl_entry);
+
+ /* Check that they have previously registered a VPA */
+ err = H_RESOURCE;
+ if (!vpa_is_registered(&tvcpu->arch.vpa))
+ break;
+
+ vpap = &tvcpu->arch.dtl;
+ err = 0;
+ break;
+
+ case H_VPA_REG_SLB: /* register SLB shadow buffer */
+ /* Check that they have previously registered a VPA */
+ err = H_RESOURCE;
+ if (!vpa_is_registered(&tvcpu->arch.vpa))
+ break;
+
+ vpap = &tvcpu->arch.slb_shadow;
+ err = 0;
+ break;
+
+ case H_VPA_DEREG_VPA: /* deregister VPA */
+ /* Check they don't still have a DTL or SLB buf registered */
+ err = H_RESOURCE;
+ if (vpa_is_registered(&tvcpu->arch.dtl) ||
+ vpa_is_registered(&tvcpu->arch.slb_shadow))
+ break;
+
+ vpap = &tvcpu->arch.vpa;
+ err = 0;
+ break;
+
+ case H_VPA_DEREG_DTL: /* deregister DTL */
+ vpap = &tvcpu->arch.dtl;
+ err = 0;
+ break;
+
+ case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
+ vpap = &tvcpu->arch.slb_shadow;
+ err = 0;
+ break;
+ }
+
+ if (vpap) {
+ vpap->next_gpa = vpa;
+ vpap->len = len;
+ vpap->update_pending = 1;
+ }
+
+ spin_unlock(&tvcpu->arch.vpa_update_lock);
+
+ return err;
+}
+
+static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
+{
+ struct kvm *kvm = vcpu->kvm;
+ void *va;
+ unsigned long nb;
+ unsigned long gpa;
+
+ /*
+ * We need to pin the page pointed to by vpap->next_gpa,
+ * but we can't call kvmppc_pin_guest_page under the lock
+ * as it does get_user_pages() and down_read(). So we
+ * have to drop the lock, pin the page, then get the lock
+ * again and check that a new area didn't get registered
+ * in the meantime.
+ */
+ for (;;) {
+ gpa = vpap->next_gpa;
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+ va = NULL;
+ nb = 0;
+ if (gpa)
+ va = kvmppc_pin_guest_page(kvm, gpa, &nb);
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ if (gpa == vpap->next_gpa)
+ break;
+ /* sigh... unpin that one and try again */
+ if (va)
+ kvmppc_unpin_guest_page(kvm, va, gpa, false);
+ }
+
+ vpap->update_pending = 0;
+ if (va && nb < vpap->len) {
+ /*
+ * If it's now too short, it must be that userspace
+ * has changed the mappings underlying guest memory,
+ * so unregister the region.
+ */
+ kvmppc_unpin_guest_page(kvm, va, gpa, false);
+ va = NULL;
+ }
+ if (vpap->pinned_addr)
+ kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
+ vpap->dirty);
+ vpap->gpa = gpa;
+ vpap->pinned_addr = va;
+ vpap->dirty = false;
+ if (va)
+ vpap->pinned_end = va + vpap->len;
+}
+
+static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
+{
+ if (!(vcpu->arch.vpa.update_pending ||
+ vcpu->arch.slb_shadow.update_pending ||
+ vcpu->arch.dtl.update_pending))
+ return;
+
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ if (vcpu->arch.vpa.update_pending) {
+ kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
+ if (vcpu->arch.vpa.pinned_addr)
+ init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
+ }
+ if (vcpu->arch.dtl.update_pending) {
+ kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
+ vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
+ vcpu->arch.dtl_index = 0;
+ }
+ if (vcpu->arch.slb_shadow.update_pending)
+ kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+}
+
+/*
+ * Return the accumulated stolen time for the vcore up until `now'.
+ * The caller should hold the vcore lock.
+ */
+static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
+{
+ u64 p;
+ unsigned long flags;
+
+ WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
+
+ spin_lock_irqsave(&vc->stoltb_lock, flags);
+ p = vc->stolen_tb;
+ if (vc->vcore_state != VCORE_INACTIVE &&
+ vc->preempt_tb != TB_NIL)
+ p += now - vc->preempt_tb;
+ spin_unlock_irqrestore(&vc->stoltb_lock, flags);
+ return p;
+}
+
+static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
+ struct lppaca *vpa,
+ unsigned int pcpu, u64 now,
+ unsigned long stolen)
+{
+ struct dtl_entry *dt;
+
+ dt = vcpu->arch.dtl_ptr;
+
+ if (!dt)
+ return;
+
+ dt->dispatch_reason = 7;
+ dt->preempt_reason = 0;
+ dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
+ dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
+ dt->ready_to_enqueue_time = 0;
+ dt->waiting_to_ready_time = 0;
+ dt->timebase = cpu_to_be64(now);
+ dt->fault_addr = 0;
+ dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
+ dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
+
+ ++dt;
+ if (dt == vcpu->arch.dtl.pinned_end)
+ dt = vcpu->arch.dtl.pinned_addr;
+ vcpu->arch.dtl_ptr = dt;
+ /* order writing *dt vs. writing vpa->dtl_idx */
+ smp_wmb();
+ vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
+
+ /* vcpu->arch.dtl.dirty is set by the caller */
+}
+
+static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu,
+ struct kvmppc_vcore *vc)
+{
+ struct lppaca *vpa;
+ unsigned long stolen;
+ unsigned long core_stolen;
+ u64 now;
+ unsigned long flags;
+
+ vpa = vcpu->arch.vpa.pinned_addr;
+ if (!vpa)
+ return;
+
+ now = mftb();
+
+ core_stolen = vcore_stolen_time(vc, now);
+ stolen = core_stolen - vcpu->arch.stolen_logged;
+ vcpu->arch.stolen_logged = core_stolen;
+ spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
+ stolen += vcpu->arch.busy_stolen;
+ vcpu->arch.busy_stolen = 0;
+ spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
+
+ vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen);
+
+ __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + vc->tb_offset, stolen);
+
+ vcpu->arch.vpa.dirty = true;
+}
+
+static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu,
+ struct kvmppc_vcore *vc,
+ u64 now)
+{
+ struct lppaca *vpa;
+ unsigned long stolen;
+ unsigned long stolen_delta;
+
+ vpa = vcpu->arch.vpa.pinned_addr;
+ if (!vpa)
+ return;
+
+ stolen = vc->stolen_tb;
+ stolen_delta = stolen - vcpu->arch.stolen_logged;
+ vcpu->arch.stolen_logged = stolen;
+
+ vpa->enqueue_dispatch_tb = cpu_to_be64(stolen);
+
+ __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta);
+
+ vcpu->arch.vpa.dirty = true;
+}
+
+/* See if there is a doorbell interrupt pending for a vcpu */
+static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
+{
+ int thr;
+ struct kvmppc_vcore *vc;
+
+ if (vcpu->arch.doorbell_request)
+ return true;
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ return false;
+ /*
+ * Ensure that the read of vcore->dpdes comes after the read
+ * of vcpu->doorbell_request. This barrier matches the
+ * smp_wmb() in kvmppc_guest_entry_inject().
+ */
+ smp_rmb();
+ vc = vcpu->arch.vcore;
+ thr = vcpu->vcpu_id - vc->first_vcpuid;
+ return !!(vc->dpdes & (1 << thr));
+}
+
+static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
+ return true;
+ if ((!vcpu->arch.vcore->arch_compat) &&
+ cpu_has_feature(CPU_FTR_ARCH_207S))
+ return true;
+ return false;
+}
+
+static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
+ unsigned long resource, unsigned long value1,
+ unsigned long value2)
+{
+ switch (resource) {
+ case H_SET_MODE_RESOURCE_SET_CIABR:
+ if (!kvmppc_power8_compatible(vcpu))
+ return H_P2;
+ if (value2)
+ return H_P4;
+ if (mflags)
+ return H_UNSUPPORTED_FLAG_START;
+ /* Guests can't breakpoint the hypervisor */
+ if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
+ return H_P3;
+ vcpu->arch.ciabr = value1;
+ return H_SUCCESS;
+ case H_SET_MODE_RESOURCE_SET_DAWR0:
+ if (!kvmppc_power8_compatible(vcpu))
+ return H_P2;
+ if (!ppc_breakpoint_available())
+ return H_P2;
+ if (mflags)
+ return H_UNSUPPORTED_FLAG_START;
+ if (value2 & DABRX_HYP)
+ return H_P4;
+ vcpu->arch.dawr0 = value1;
+ vcpu->arch.dawrx0 = value2;
+ return H_SUCCESS;
+ case H_SET_MODE_RESOURCE_SET_DAWR1:
+ if (!kvmppc_power8_compatible(vcpu))
+ return H_P2;
+ if (!ppc_breakpoint_available())
+ return H_P2;
+ if (!cpu_has_feature(CPU_FTR_DAWR1))
+ return H_P2;
+ if (!vcpu->kvm->arch.dawr1_enabled)
+ return H_FUNCTION;
+ if (mflags)
+ return H_UNSUPPORTED_FLAG_START;
+ if (value2 & DABRX_HYP)
+ return H_P4;
+ vcpu->arch.dawr1 = value1;
+ vcpu->arch.dawrx1 = value2;
+ return H_SUCCESS;
+ case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
+ /*
+ * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
+ * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
+ */
+ if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
+ kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
+ return H_UNSUPPORTED_FLAG_START;
+ return H_TOO_HARD;
+ default:
+ return H_TOO_HARD;
+ }
+}
+
+/* Copy guest memory in place - must reside within a single memslot */
+static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
+ unsigned long len)
+{
+ struct kvm_memory_slot *to_memslot = NULL;
+ struct kvm_memory_slot *from_memslot = NULL;
+ unsigned long to_addr, from_addr;
+ int r;
+
+ /* Get HPA for from address */
+ from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
+ if (!from_memslot)
+ return -EFAULT;
+ if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
+ << PAGE_SHIFT))
+ return -EINVAL;
+ from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
+ if (kvm_is_error_hva(from_addr))
+ return -EFAULT;
+ from_addr |= (from & (PAGE_SIZE - 1));
+
+ /* Get HPA for to address */
+ to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
+ if (!to_memslot)
+ return -EFAULT;
+ if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
+ << PAGE_SHIFT))
+ return -EINVAL;
+ to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
+ if (kvm_is_error_hva(to_addr))
+ return -EFAULT;
+ to_addr |= (to & (PAGE_SIZE - 1));
+
+ /* Perform copy */
+ r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
+ len);
+ if (r)
+ return -EFAULT;
+ mark_page_dirty(kvm, to >> PAGE_SHIFT);
+ return 0;
+}
+
+static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
+ unsigned long dest, unsigned long src)
+{
+ u64 pg_sz = SZ_4K; /* 4K page size */
+ u64 pg_mask = SZ_4K - 1;
+ int ret;
+
+ /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
+ if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
+ H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
+ return H_PARAMETER;
+
+ /* dest (and src if copy_page flag set) must be page aligned */
+ if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
+ return H_PARAMETER;
+
+ /* zero and/or copy the page as determined by the flags */
+ if (flags & H_COPY_PAGE) {
+ ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
+ if (ret < 0)
+ return H_PARAMETER;
+ } else if (flags & H_ZERO_PAGE) {
+ ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
+ if (ret < 0)
+ return H_PARAMETER;
+ }
+
+ /* We can ignore the remaining flags */
+
+ return H_SUCCESS;
+}
+
+static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
+{
+ struct kvmppc_vcore *vcore = target->arch.vcore;
+
+ /*
+ * We expect to have been called by the real mode handler
+ * (kvmppc_rm_h_confer()) which would have directly returned
+ * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
+ * have useful work to do and should not confer) so we don't
+ * recheck that here.
+ *
+ * In the case of the P9 single vcpu per vcore case, the real
+ * mode handler is not called but no other threads are in the
+ * source vcore.
+ */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
+ spin_lock(&vcore->lock);
+ if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
+ vcore->vcore_state != VCORE_INACTIVE &&
+ vcore->runner)
+ target = vcore->runner;
+ spin_unlock(&vcore->lock);
+ }
+
+ return kvm_vcpu_yield_to(target);
+}
+
+static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
+{
+ int yield_count = 0;
+ struct lppaca *lppaca;
+
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
+ if (lppaca)
+ yield_count = be32_to_cpu(lppaca->yield_count);
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+ return yield_count;
+}
+
+/*
+ * H_RPT_INVALIDATE hcall handler for nested guests.
+ *
+ * Handles only nested process-scoped invalidation requests in L0.
+ */
+static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
+{
+ unsigned long type = kvmppc_get_gpr(vcpu, 6);
+ unsigned long pid, pg_sizes, start, end;
+
+ /*
+ * The partition-scoped invalidations aren't handled here in L0.
+ */
+ if (type & H_RPTI_TYPE_NESTED)
+ return RESUME_HOST;
+
+ pid = kvmppc_get_gpr(vcpu, 4);
+ pg_sizes = kvmppc_get_gpr(vcpu, 7);
+ start = kvmppc_get_gpr(vcpu, 8);
+ end = kvmppc_get_gpr(vcpu, 9);
+
+ do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
+ type, pg_sizes, start, end);
+
+ kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
+ return RESUME_GUEST;
+}
+
+static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
+ unsigned long id, unsigned long target,
+ unsigned long type, unsigned long pg_sizes,
+ unsigned long start, unsigned long end)
+{
+ if (!kvm_is_radix(vcpu->kvm))
+ return H_UNSUPPORTED;
+
+ if (end < start)
+ return H_P5;
+
+ /*
+ * Partition-scoped invalidation for nested guests.
+ */
+ if (type & H_RPTI_TYPE_NESTED) {
+ if (!nesting_enabled(vcpu->kvm))
+ return H_FUNCTION;
+
+ /* Support only cores as target */
+ if (target != H_RPTI_TARGET_CMMU)
+ return H_P2;
+
+ return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
+ start, end);
+ }
+
+ /*
+ * Process-scoped invalidation for L1 guests.
+ */
+ do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
+ type, pg_sizes, start, end);
+ return H_SUCCESS;
+}
+
+int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ unsigned long req = kvmppc_get_gpr(vcpu, 3);
+ unsigned long target, ret = H_SUCCESS;
+ int yield_count;
+ struct kvm_vcpu *tvcpu;
+ int idx, rc;
+
+ if (req <= MAX_HCALL_OPCODE &&
+ !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
+ return RESUME_HOST;
+
+ switch (req) {
+ case H_REMOVE:
+ ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_ENTER:
+ ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6),
+ kvmppc_get_gpr(vcpu, 7));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_READ:
+ ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_CLEAR_MOD:
+ ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_CLEAR_REF:
+ ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_PROTECT:
+ ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_BULK_REMOVE:
+ ret = kvmppc_h_bulk_remove(vcpu);
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+
+ case H_CEDE:
+ break;
+ case H_PROD:
+ target = kvmppc_get_gpr(vcpu, 4);
+ tvcpu = kvmppc_find_vcpu(kvm, target);
+ if (!tvcpu) {
+ ret = H_PARAMETER;
+ break;
+ }
+ tvcpu->arch.prodded = 1;
+ smp_mb(); /* This orders prodded store vs ceded load */
+ if (tvcpu->arch.ceded)
+ kvmppc_fast_vcpu_kick_hv(tvcpu);
+ break;
+ case H_CONFER:
+ target = kvmppc_get_gpr(vcpu, 4);
+ if (target == -1)
+ break;
+ tvcpu = kvmppc_find_vcpu(kvm, target);
+ if (!tvcpu) {
+ ret = H_PARAMETER;
+ break;
+ }
+ yield_count = kvmppc_get_gpr(vcpu, 5);
+ if (kvmppc_get_yield_count(tvcpu) != yield_count)
+ break;
+ kvm_arch_vcpu_yield_to(tvcpu);
+ break;
+ case H_REGISTER_VPA:
+ ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6));
+ break;
+ case H_RTAS:
+ if (list_empty(&kvm->arch.rtas_tokens))
+ return RESUME_HOST;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ rc = kvmppc_rtas_hcall(vcpu);
+ srcu_read_unlock(&kvm->srcu, idx);
+
+ if (rc == -ENOENT)
+ return RESUME_HOST;
+ else if (rc == 0)
+ break;
+
+ /* Send the error out to userspace via KVM_RUN */
+ return rc;
+ case H_LOGICAL_CI_LOAD:
+ ret = kvmppc_h_logical_ci_load(vcpu);
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_LOGICAL_CI_STORE:
+ ret = kvmppc_h_logical_ci_store(vcpu);
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_SET_MODE:
+ ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6),
+ kvmppc_get_gpr(vcpu, 7));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_XIRR:
+ case H_CPPR:
+ case H_EOI:
+ case H_IPI:
+ case H_IPOLL:
+ case H_XIRR_X:
+ if (kvmppc_xics_enabled(vcpu)) {
+ if (xics_on_xive()) {
+ ret = H_NOT_AVAILABLE;
+ return RESUME_GUEST;
+ }
+ ret = kvmppc_xics_hcall(vcpu, req);
+ break;
+ }
+ return RESUME_HOST;
+ case H_SET_DABR:
+ ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
+ break;
+ case H_SET_XDABR:
+ ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5));
+ break;
+#ifdef CONFIG_SPAPR_TCE_IOMMU
+ case H_GET_TCE:
+ ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_PUT_TCE:
+ ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_PUT_TCE_INDIRECT:
+ ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6),
+ kvmppc_get_gpr(vcpu, 7));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+ case H_STUFF_TCE:
+ ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6),
+ kvmppc_get_gpr(vcpu, 7));
+ if (ret == H_TOO_HARD)
+ return RESUME_HOST;
+ break;
+#endif
+ case H_RANDOM:
+ if (!arch_get_random_seed_longs(&vcpu->arch.regs.gpr[4], 1))
+ ret = H_HARDWARE;
+ break;
+ case H_RPT_INVALIDATE:
+ ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6),
+ kvmppc_get_gpr(vcpu, 7),
+ kvmppc_get_gpr(vcpu, 8),
+ kvmppc_get_gpr(vcpu, 9));
+ break;
+
+ case H_SET_PARTITION_TABLE:
+ ret = H_FUNCTION;
+ if (nesting_enabled(kvm))
+ ret = kvmhv_set_partition_table(vcpu);
+ break;
+ case H_ENTER_NESTED:
+ ret = H_FUNCTION;
+ if (!nesting_enabled(kvm))
+ break;
+ ret = kvmhv_enter_nested_guest(vcpu);
+ if (ret == H_INTERRUPT) {
+ kvmppc_set_gpr(vcpu, 3, 0);
+ vcpu->arch.hcall_needed = 0;
+ return -EINTR;
+ } else if (ret == H_TOO_HARD) {
+ kvmppc_set_gpr(vcpu, 3, 0);
+ vcpu->arch.hcall_needed = 0;
+ return RESUME_HOST;
+ }
+ break;
+ case H_TLB_INVALIDATE:
+ ret = H_FUNCTION;
+ if (nesting_enabled(kvm))
+ ret = kvmhv_do_nested_tlbie(vcpu);
+ break;
+ case H_COPY_TOFROM_GUEST:
+ ret = H_FUNCTION;
+ if (nesting_enabled(kvm))
+ ret = kvmhv_copy_tofrom_guest_nested(vcpu);
+ break;
+ case H_PAGE_INIT:
+ ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6));
+ break;
+ case H_SVM_PAGE_IN:
+ ret = H_UNSUPPORTED;
+ if (kvmppc_get_srr1(vcpu) & MSR_S)
+ ret = kvmppc_h_svm_page_in(kvm,
+ kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6));
+ break;
+ case H_SVM_PAGE_OUT:
+ ret = H_UNSUPPORTED;
+ if (kvmppc_get_srr1(vcpu) & MSR_S)
+ ret = kvmppc_h_svm_page_out(kvm,
+ kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5),
+ kvmppc_get_gpr(vcpu, 6));
+ break;
+ case H_SVM_INIT_START:
+ ret = H_UNSUPPORTED;
+ if (kvmppc_get_srr1(vcpu) & MSR_S)
+ ret = kvmppc_h_svm_init_start(kvm);
+ break;
+ case H_SVM_INIT_DONE:
+ ret = H_UNSUPPORTED;
+ if (kvmppc_get_srr1(vcpu) & MSR_S)
+ ret = kvmppc_h_svm_init_done(kvm);
+ break;
+ case H_SVM_INIT_ABORT:
+ /*
+ * Even if that call is made by the Ultravisor, the SSR1 value
+ * is the guest context one, with the secure bit clear as it has
+ * not yet been secured. So we can't check it here.
+ * Instead the kvm->arch.secure_guest flag is checked inside
+ * kvmppc_h_svm_init_abort().
+ */
+ ret = kvmppc_h_svm_init_abort(kvm);
+ break;
+
+ default:
+ return RESUME_HOST;
+ }
+ WARN_ON_ONCE(ret == H_TOO_HARD);
+ kvmppc_set_gpr(vcpu, 3, ret);
+ vcpu->arch.hcall_needed = 0;
+ return RESUME_GUEST;
+}
+
+/*
+ * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
+ * handlers in book3s_hv_rmhandlers.S.
+ *
+ * This has to be done early, not in kvmppc_pseries_do_hcall(), so
+ * that the cede logic in kvmppc_run_single_vcpu() works properly.
+ */
+static void kvmppc_cede(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.shregs.msr |= MSR_EE;
+ vcpu->arch.ceded = 1;
+ smp_mb();
+ if (vcpu->arch.prodded) {
+ vcpu->arch.prodded = 0;
+ smp_mb();
+ vcpu->arch.ceded = 0;
+ }
+}
+
+static int kvmppc_hcall_impl_hv(unsigned long cmd)
+{
+ switch (cmd) {
+ case H_CEDE:
+ case H_PROD:
+ case H_CONFER:
+ case H_REGISTER_VPA:
+ case H_SET_MODE:
+#ifdef CONFIG_SPAPR_TCE_IOMMU
+ case H_GET_TCE:
+ case H_PUT_TCE:
+ case H_PUT_TCE_INDIRECT:
+ case H_STUFF_TCE:
+#endif
+ case H_LOGICAL_CI_LOAD:
+ case H_LOGICAL_CI_STORE:
+#ifdef CONFIG_KVM_XICS
+ case H_XIRR:
+ case H_CPPR:
+ case H_EOI:
+ case H_IPI:
+ case H_IPOLL:
+ case H_XIRR_X:
+#endif
+ case H_PAGE_INIT:
+ case H_RPT_INVALIDATE:
+ return 1;
+ }
+
+ /* See if it's in the real-mode table */
+ return kvmppc_hcall_impl_hv_realmode(cmd);
+}
+
+static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
+{
+ u32 last_inst;
+
+ if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
+ EMULATE_DONE) {
+ /*
+ * Fetch failed, so return to guest and
+ * try executing it again.
+ */
+ return RESUME_GUEST;
+ }
+
+ if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
+ vcpu->run->exit_reason = KVM_EXIT_DEBUG;
+ vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
+ return RESUME_HOST;
+ } else {
+ kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
+ return RESUME_GUEST;
+ }
+}
+
+static void do_nothing(void *x)
+{
+}
+
+static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
+{
+ int thr, cpu, pcpu, nthreads;
+ struct kvm_vcpu *v;
+ unsigned long dpdes;
+
+ nthreads = vcpu->kvm->arch.emul_smt_mode;
+ dpdes = 0;
+ cpu = vcpu->vcpu_id & ~(nthreads - 1);
+ for (thr = 0; thr < nthreads; ++thr, ++cpu) {
+ v = kvmppc_find_vcpu(vcpu->kvm, cpu);
+ if (!v)
+ continue;
+ /*
+ * If the vcpu is currently running on a physical cpu thread,
+ * interrupt it in order to pull it out of the guest briefly,
+ * which will update its vcore->dpdes value.
+ */
+ pcpu = READ_ONCE(v->cpu);
+ if (pcpu >= 0)
+ smp_call_function_single(pcpu, do_nothing, NULL, 1);
+ if (kvmppc_doorbell_pending(v))
+ dpdes |= 1 << thr;
+ }
+ return dpdes;
+}
+
+/*
+ * On POWER9, emulate doorbell-related instructions in order to
+ * give the guest the illusion of running on a multi-threaded core.
+ * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
+ * and mfspr DPDES.
+ */
+static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
+{
+ u32 inst, rb, thr;
+ unsigned long arg;
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_vcpu *tvcpu;
+
+ if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
+ return RESUME_GUEST;
+ if (get_op(inst) != 31)
+ return EMULATE_FAIL;
+ rb = get_rb(inst);
+ thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
+ switch (get_xop(inst)) {
+ case OP_31_XOP_MSGSNDP:
+ arg = kvmppc_get_gpr(vcpu, rb);
+ if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
+ break;
+ arg &= 0x7f;
+ if (arg >= kvm->arch.emul_smt_mode)
+ break;
+ tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
+ if (!tvcpu)
+ break;
+ if (!tvcpu->arch.doorbell_request) {
+ tvcpu->arch.doorbell_request = 1;
+ kvmppc_fast_vcpu_kick_hv(tvcpu);
+ }
+ break;
+ case OP_31_XOP_MSGCLRP:
+ arg = kvmppc_get_gpr(vcpu, rb);
+ if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
+ break;
+ vcpu->arch.vcore->dpdes = 0;
+ vcpu->arch.doorbell_request = 0;
+ break;
+ case OP_31_XOP_MFSPR:
+ switch (get_sprn(inst)) {
+ case SPRN_TIR:
+ arg = thr;
+ break;
+ case SPRN_DPDES:
+ arg = kvmppc_read_dpdes(vcpu);
+ break;
+ default:
+ return EMULATE_FAIL;
+ }
+ kvmppc_set_gpr(vcpu, get_rt(inst), arg);
+ break;
+ default:
+ return EMULATE_FAIL;
+ }
+ kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
+ return RESUME_GUEST;
+}
+
+/*
+ * If the lppaca had pmcregs_in_use clear when we exited the guest, then
+ * HFSCR_PM is cleared for next entry. If the guest then tries to access
+ * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
+ * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
+ * allow the guest access to continue.
+ */
+static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
+{
+ if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
+ return EMULATE_FAIL;
+
+ vcpu->arch.hfscr |= HFSCR_PM;
+
+ return RESUME_GUEST;
+}
+
+static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
+{
+ if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
+ return EMULATE_FAIL;
+
+ vcpu->arch.hfscr |= HFSCR_EBB;
+
+ return RESUME_GUEST;
+}
+
+static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
+{
+ if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
+ return EMULATE_FAIL;
+
+ vcpu->arch.hfscr |= HFSCR_TM;
+
+ return RESUME_GUEST;
+}
+
+static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
+ struct task_struct *tsk)
+{
+ struct kvm_run *run = vcpu->run;
+ int r = RESUME_HOST;
+
+ vcpu->stat.sum_exits++;
+
+ /*
+ * This can happen if an interrupt occurs in the last stages
+ * of guest entry or the first stages of guest exit (i.e. after
+ * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
+ * and before setting it to KVM_GUEST_MODE_HOST_HV).
+ * That can happen due to a bug, or due to a machine check
+ * occurring at just the wrong time.
+ */
+ if (vcpu->arch.shregs.msr & MSR_HV) {
+ printk(KERN_EMERG "KVM trap in HV mode!\n");
+ printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
+ vcpu->arch.trap, kvmppc_get_pc(vcpu),
+ vcpu->arch.shregs.msr);
+ kvmppc_dump_regs(vcpu);
+ run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ run->hw.hardware_exit_reason = vcpu->arch.trap;
+ return RESUME_HOST;
+ }
+ run->exit_reason = KVM_EXIT_UNKNOWN;
+ run->ready_for_interrupt_injection = 1;
+ switch (vcpu->arch.trap) {
+ /* We're good on these - the host merely wanted to get our attention */
+ case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
+ WARN_ON_ONCE(1); /* Should never happen */
+ vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
+ fallthrough;
+ case BOOK3S_INTERRUPT_HV_DECREMENTER:
+ vcpu->stat.dec_exits++;
+ r = RESUME_GUEST;
+ break;
+ case BOOK3S_INTERRUPT_EXTERNAL:
+ case BOOK3S_INTERRUPT_H_DOORBELL:
+ case BOOK3S_INTERRUPT_H_VIRT:
+ vcpu->stat.ext_intr_exits++;
+ r = RESUME_GUEST;
+ break;
+ /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
+ case BOOK3S_INTERRUPT_HMI:
+ case BOOK3S_INTERRUPT_PERFMON:
+ case BOOK3S_INTERRUPT_SYSTEM_RESET:
+ r = RESUME_GUEST;
+ break;
+ case BOOK3S_INTERRUPT_MACHINE_CHECK: {
+ static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
+ DEFAULT_RATELIMIT_BURST);
+ /*
+ * Print the MCE event to host console. Ratelimit so the guest
+ * can't flood the host log.
+ */
+ if (__ratelimit(&rs))
+ machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
+
+ /*
+ * If the guest can do FWNMI, exit to userspace so it can
+ * deliver a FWNMI to the guest.
+ * Otherwise we synthesize a machine check for the guest
+ * so that it knows that the machine check occurred.
+ */
+ if (!vcpu->kvm->arch.fwnmi_enabled) {
+ ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
+ kvmppc_core_queue_machine_check(vcpu, flags);
+ r = RESUME_GUEST;
+ break;
+ }
+
+ /* Exit to guest with KVM_EXIT_NMI as exit reason */
+ run->exit_reason = KVM_EXIT_NMI;
+ run->hw.hardware_exit_reason = vcpu->arch.trap;
+ /* Clear out the old NMI status from run->flags */
+ run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
+ /* Now set the NMI status */
+ if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
+ run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
+ else
+ run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
+
+ r = RESUME_HOST;
+ break;
+ }
+ case BOOK3S_INTERRUPT_PROGRAM:
+ {
+ ulong flags;
+ /*
+ * Normally program interrupts are delivered directly
+ * to the guest by the hardware, but we can get here
+ * as a result of a hypervisor emulation interrupt
+ * (e40) getting turned into a 700 by BML RTAS.
+ */
+ flags = vcpu->arch.shregs.msr & 0x1f0000ull;
+ kvmppc_core_queue_program(vcpu, flags);
+ r = RESUME_GUEST;
+ break;
+ }
+ case BOOK3S_INTERRUPT_SYSCALL:
+ {
+ int i;
+
+ if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) {
+ /*
+ * Guest userspace executed sc 1. This can only be
+ * reached by the P9 path because the old path
+ * handles this case in realmode hcall handlers.
+ */
+ if (!kvmhv_vcpu_is_radix(vcpu)) {
+ /*
+ * A guest could be running PR KVM, so this
+ * may be a PR KVM hcall. It must be reflected
+ * to the guest kernel as a sc interrupt.
+ */
+ kvmppc_core_queue_syscall(vcpu);
+ } else {
+ /*
+ * Radix guests can not run PR KVM or nested HV
+ * hash guests which might run PR KVM, so this
+ * is always a privilege fault. Send a program
+ * check to guest kernel.
+ */
+ kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
+ }
+ r = RESUME_GUEST;
+ break;
+ }
+
+ /*
+ * hcall - gather args and set exit_reason. This will next be
+ * handled by kvmppc_pseries_do_hcall which may be able to deal
+ * with it and resume guest, or may punt to userspace.
+ */
+ run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
+ for (i = 0; i < 9; ++i)
+ run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
+ run->exit_reason = KVM_EXIT_PAPR_HCALL;
+ vcpu->arch.hcall_needed = 1;
+ r = RESUME_HOST;
+ break;
+ }
+ /*
+ * We get these next two if the guest accesses a page which it thinks
+ * it has mapped but which is not actually present, either because
+ * it is for an emulated I/O device or because the corresonding
+ * host page has been paged out.
+ *
+ * Any other HDSI/HISI interrupts have been handled already for P7/8
+ * guests. For POWER9 hash guests not using rmhandlers, basic hash
+ * fault handling is done here.
+ */
+ case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
+ unsigned long vsid;
+ long err;
+
+ if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
+ unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
+ r = RESUME_GUEST; /* Just retry if it's the canary */
+ break;
+ }
+
+ if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
+ /*
+ * Radix doesn't require anything, and pre-ISAv3.0 hash
+ * already attempted to handle this in rmhandlers. The
+ * hash fault handling below is v3 only (it uses ASDR
+ * via fault_gpa).
+ */
+ r = RESUME_PAGE_FAULT;
+ break;
+ }
+
+ if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
+ kvmppc_core_queue_data_storage(vcpu,
+ vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
+ r = RESUME_GUEST;
+ break;
+ }
+
+ if (!(vcpu->arch.shregs.msr & MSR_DR))
+ vsid = vcpu->kvm->arch.vrma_slb_v;
+ else
+ vsid = vcpu->arch.fault_gpa;
+
+ err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
+ vsid, vcpu->arch.fault_dsisr, true);
+ if (err == 0) {
+ r = RESUME_GUEST;
+ } else if (err == -1 || err == -2) {
+ r = RESUME_PAGE_FAULT;
+ } else {
+ kvmppc_core_queue_data_storage(vcpu,
+ vcpu->arch.fault_dar, err);
+ r = RESUME_GUEST;
+ }
+ break;
+ }
+ case BOOK3S_INTERRUPT_H_INST_STORAGE: {
+ unsigned long vsid;
+ long err;
+
+ vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
+ vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
+ DSISR_SRR1_MATCH_64S;
+ if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
+ /*
+ * Radix doesn't require anything, and pre-ISAv3.0 hash
+ * already attempted to handle this in rmhandlers. The
+ * hash fault handling below is v3 only (it uses ASDR
+ * via fault_gpa).
+ */
+ if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
+ vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
+ r = RESUME_PAGE_FAULT;
+ break;
+ }
+
+ if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
+ kvmppc_core_queue_inst_storage(vcpu,
+ vcpu->arch.fault_dsisr);
+ r = RESUME_GUEST;
+ break;
+ }
+
+ if (!(vcpu->arch.shregs.msr & MSR_IR))
+ vsid = vcpu->kvm->arch.vrma_slb_v;
+ else
+ vsid = vcpu->arch.fault_gpa;
+
+ err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
+ vsid, vcpu->arch.fault_dsisr, false);
+ if (err == 0) {
+ r = RESUME_GUEST;
+ } else if (err == -1) {
+ r = RESUME_PAGE_FAULT;
+ } else {
+ kvmppc_core_queue_inst_storage(vcpu, err);
+ r = RESUME_GUEST;
+ }
+ break;
+ }
+
+ /*
+ * This occurs if the guest executes an illegal instruction.
+ * If the guest debug is disabled, generate a program interrupt
+ * to the guest. If guest debug is enabled, we need to check
+ * whether the instruction is a software breakpoint instruction.
+ * Accordingly return to Guest or Host.
+ */
+ case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
+ if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
+ vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
+ swab32(vcpu->arch.emul_inst) :
+ vcpu->arch.emul_inst;
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
+ r = kvmppc_emulate_debug_inst(vcpu);
+ } else {
+ kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
+ r = RESUME_GUEST;
+ }
+ break;
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ case BOOK3S_INTERRUPT_HV_SOFTPATCH:
+ /*
+ * This occurs for various TM-related instructions that
+ * we need to emulate on POWER9 DD2.2. We have already
+ * handled the cases where the guest was in real-suspend
+ * mode and was transitioning to transactional state.
+ */
+ r = kvmhv_p9_tm_emulation(vcpu);
+ if (r != -1)
+ break;
+ fallthrough; /* go to facility unavailable handler */
+#endif
+
+ /*
+ * This occurs if the guest (kernel or userspace), does something that
+ * is prohibited by HFSCR.
+ * On POWER9, this could be a doorbell instruction that we need
+ * to emulate.
+ * Otherwise, we just generate a program interrupt to the guest.
+ */
+ case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
+ u64 cause = vcpu->arch.hfscr >> 56;
+
+ r = EMULATE_FAIL;
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ if (cause == FSCR_MSGP_LG)
+ r = kvmppc_emulate_doorbell_instr(vcpu);
+ if (cause == FSCR_PM_LG)
+ r = kvmppc_pmu_unavailable(vcpu);
+ if (cause == FSCR_EBB_LG)
+ r = kvmppc_ebb_unavailable(vcpu);
+ if (cause == FSCR_TM_LG)
+ r = kvmppc_tm_unavailable(vcpu);
+ }
+ if (r == EMULATE_FAIL) {
+ kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
+ r = RESUME_GUEST;
+ }
+ break;
+ }
+
+ case BOOK3S_INTERRUPT_HV_RM_HARD:
+ r = RESUME_PASSTHROUGH;
+ break;
+ default:
+ kvmppc_dump_regs(vcpu);
+ printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
+ vcpu->arch.trap, kvmppc_get_pc(vcpu),
+ vcpu->arch.shregs.msr);
+ run->hw.hardware_exit_reason = vcpu->arch.trap;
+ r = RESUME_HOST;
+ break;
+ }
+
+ return r;
+}
+
+static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
+{
+ int r;
+ int srcu_idx;
+
+ vcpu->stat.sum_exits++;
+
+ /*
+ * This can happen if an interrupt occurs in the last stages
+ * of guest entry or the first stages of guest exit (i.e. after
+ * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
+ * and before setting it to KVM_GUEST_MODE_HOST_HV).
+ * That can happen due to a bug, or due to a machine check
+ * occurring at just the wrong time.
+ */
+ if (vcpu->arch.shregs.msr & MSR_HV) {
+ pr_emerg("KVM trap in HV mode while nested!\n");
+ pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
+ vcpu->arch.trap, kvmppc_get_pc(vcpu),
+ vcpu->arch.shregs.msr);
+ kvmppc_dump_regs(vcpu);
+ return RESUME_HOST;
+ }
+ switch (vcpu->arch.trap) {
+ /* We're good on these - the host merely wanted to get our attention */
+ case BOOK3S_INTERRUPT_HV_DECREMENTER:
+ vcpu->stat.dec_exits++;
+ r = RESUME_GUEST;
+ break;
+ case BOOK3S_INTERRUPT_EXTERNAL:
+ vcpu->stat.ext_intr_exits++;
+ r = RESUME_HOST;
+ break;
+ case BOOK3S_INTERRUPT_H_DOORBELL:
+ case BOOK3S_INTERRUPT_H_VIRT:
+ vcpu->stat.ext_intr_exits++;
+ r = RESUME_GUEST;
+ break;
+ /* These need to go to the nested HV */
+ case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
+ vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
+ vcpu->stat.dec_exits++;
+ r = RESUME_HOST;
+ break;
+ /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
+ case BOOK3S_INTERRUPT_HMI:
+ case BOOK3S_INTERRUPT_PERFMON:
+ case BOOK3S_INTERRUPT_SYSTEM_RESET:
+ r = RESUME_GUEST;
+ break;
+ case BOOK3S_INTERRUPT_MACHINE_CHECK:
+ {
+ static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
+ DEFAULT_RATELIMIT_BURST);
+ /* Pass the machine check to the L1 guest */
+ r = RESUME_HOST;
+ /* Print the MCE event to host console. */
+ if (__ratelimit(&rs))
+ machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
+ break;
+ }
+ /*
+ * We get these next two if the guest accesses a page which it thinks
+ * it has mapped but which is not actually present, either because
+ * it is for an emulated I/O device or because the corresonding
+ * host page has been paged out.
+ */
+ case BOOK3S_INTERRUPT_H_DATA_STORAGE:
+ srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+ r = kvmhv_nested_page_fault(vcpu);
+ srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
+ break;
+ case BOOK3S_INTERRUPT_H_INST_STORAGE:
+ vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
+ vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
+ DSISR_SRR1_MATCH_64S;
+ if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
+ vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
+ srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+ r = kvmhv_nested_page_fault(vcpu);
+ srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
+ break;
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ case BOOK3S_INTERRUPT_HV_SOFTPATCH:
+ /*
+ * This occurs for various TM-related instructions that
+ * we need to emulate on POWER9 DD2.2. We have already
+ * handled the cases where the guest was in real-suspend
+ * mode and was transitioning to transactional state.
+ */
+ r = kvmhv_p9_tm_emulation(vcpu);
+ if (r != -1)
+ break;
+ fallthrough; /* go to facility unavailable handler */
+#endif
+
+ case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
+ u64 cause = vcpu->arch.hfscr >> 56;
+
+ /*
+ * Only pass HFU interrupts to the L1 if the facility is
+ * permitted but disabled by the L1's HFSCR, otherwise
+ * the interrupt does not make sense to the L1 so turn
+ * it into a HEAI.
+ */
+ if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
+ (vcpu->arch.nested_hfscr & (1UL << cause))) {
+ vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
+
+ /*
+ * If the fetch failed, return to guest and
+ * try executing it again.
+ */
+ r = kvmppc_get_last_inst(vcpu, INST_GENERIC,
+ &vcpu->arch.emul_inst);
+ if (r != EMULATE_DONE)
+ r = RESUME_GUEST;
+ else
+ r = RESUME_HOST;
+ } else {
+ r = RESUME_HOST;
+ }
+
+ break;
+ }
+
+ case BOOK3S_INTERRUPT_HV_RM_HARD:
+ vcpu->arch.trap = 0;
+ r = RESUME_GUEST;
+ if (!xics_on_xive())
+ kvmppc_xics_rm_complete(vcpu, 0);
+ break;
+ case BOOK3S_INTERRUPT_SYSCALL:
+ {
+ unsigned long req = kvmppc_get_gpr(vcpu, 3);
+
+ /*
+ * The H_RPT_INVALIDATE hcalls issued by nested
+ * guests for process-scoped invalidations when
+ * GTSE=0, are handled here in L0.
+ */
+ if (req == H_RPT_INVALIDATE) {
+ r = kvmppc_nested_h_rpt_invalidate(vcpu);
+ break;
+ }
+
+ r = RESUME_HOST;
+ break;
+ }
+ default:
+ r = RESUME_HOST;
+ break;
+ }
+
+ return r;
+}
+
+static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ int i;
+
+ memset(sregs, 0, sizeof(struct kvm_sregs));
+ sregs->pvr = vcpu->arch.pvr;
+ for (i = 0; i < vcpu->arch.slb_max; i++) {
+ sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
+ sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
+ }
+
+ return 0;
+}
+
+static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ int i, j;
+
+ /* Only accept the same PVR as the host's, since we can't spoof it */
+ if (sregs->pvr != vcpu->arch.pvr)
+ return -EINVAL;
+
+ j = 0;
+ for (i = 0; i < vcpu->arch.slb_nr; i++) {
+ if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
+ vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
+ vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
+ ++j;
+ }
+ }
+ vcpu->arch.slb_max = j;
+
+ return 0;
+}
+
+/*
+ * Enforce limits on guest LPCR values based on hardware availability,
+ * guest configuration, and possibly hypervisor support and security
+ * concerns.
+ */
+unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
+{
+ /* LPCR_TC only applies to HPT guests */
+ if (kvm_is_radix(kvm))
+ lpcr &= ~LPCR_TC;
+
+ /* On POWER8 and above, userspace can modify AIL */
+ if (!cpu_has_feature(CPU_FTR_ARCH_207S))
+ lpcr &= ~LPCR_AIL;
+ if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
+ lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
+ /*
+ * On some POWER9s we force AIL off for radix guests to prevent
+ * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
+ * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
+ * be cached, which the host TLB management does not expect.
+ */
+ if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
+ lpcr &= ~LPCR_AIL;
+
+ /*
+ * On POWER9, allow userspace to enable large decrementer for the
+ * guest, whether or not the host has it enabled.
+ */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ lpcr &= ~LPCR_LD;
+
+ return lpcr;
+}
+
+static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
+{
+ if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
+ WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
+ lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
+ }
+}
+
+static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
+ bool preserve_top32)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+ u64 mask;
+
+ spin_lock(&vc->lock);
+
+ /*
+ * Userspace can only modify
+ * DPFD (default prefetch depth), ILE (interrupt little-endian),
+ * TC (translation control), AIL (alternate interrupt location),
+ * LD (large decrementer).
+ * These are subject to restrictions from kvmppc_filter_lcpr_hv().
+ */
+ mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
+
+ /* Broken 32-bit version of LPCR must not clear top bits */
+ if (preserve_top32)
+ mask &= 0xFFFFFFFF;
+
+ new_lpcr = kvmppc_filter_lpcr_hv(kvm,
+ (vc->lpcr & ~mask) | (new_lpcr & mask));
+
+ /*
+ * If ILE (interrupt little-endian) has changed, update the
+ * MSR_LE bit in the intr_msr for each vcpu in this vcore.
+ */
+ if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
+ struct kvm_vcpu *vcpu;
+ unsigned long i;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (vcpu->arch.vcore != vc)
+ continue;
+ if (new_lpcr & LPCR_ILE)
+ vcpu->arch.intr_msr |= MSR_LE;
+ else
+ vcpu->arch.intr_msr &= ~MSR_LE;
+ }
+ }
+
+ vc->lpcr = new_lpcr;
+
+ spin_unlock(&vc->lock);
+}
+
+static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
+ union kvmppc_one_reg *val)
+{
+ int r = 0;
+ long int i;
+
+ switch (id) {
+ case KVM_REG_PPC_DEBUG_INST:
+ *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
+ break;
+ case KVM_REG_PPC_HIOR:
+ *val = get_reg_val(id, 0);
+ break;
+ case KVM_REG_PPC_DABR:
+ *val = get_reg_val(id, vcpu->arch.dabr);
+ break;
+ case KVM_REG_PPC_DABRX:
+ *val = get_reg_val(id, vcpu->arch.dabrx);
+ break;
+ case KVM_REG_PPC_DSCR:
+ *val = get_reg_val(id, vcpu->arch.dscr);
+ break;
+ case KVM_REG_PPC_PURR:
+ *val = get_reg_val(id, vcpu->arch.purr);
+ break;
+ case KVM_REG_PPC_SPURR:
+ *val = get_reg_val(id, vcpu->arch.spurr);
+ break;
+ case KVM_REG_PPC_AMR:
+ *val = get_reg_val(id, vcpu->arch.amr);
+ break;
+ case KVM_REG_PPC_UAMOR:
+ *val = get_reg_val(id, vcpu->arch.uamor);
+ break;
+ case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
+ i = id - KVM_REG_PPC_MMCR0;
+ *val = get_reg_val(id, vcpu->arch.mmcr[i]);
+ break;
+ case KVM_REG_PPC_MMCR2:
+ *val = get_reg_val(id, vcpu->arch.mmcr[2]);
+ break;
+ case KVM_REG_PPC_MMCRA:
+ *val = get_reg_val(id, vcpu->arch.mmcra);
+ break;
+ case KVM_REG_PPC_MMCRS:
+ *val = get_reg_val(id, vcpu->arch.mmcrs);
+ break;
+ case KVM_REG_PPC_MMCR3:
+ *val = get_reg_val(id, vcpu->arch.mmcr[3]);
+ break;
+ case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
+ i = id - KVM_REG_PPC_PMC1;
+ *val = get_reg_val(id, vcpu->arch.pmc[i]);
+ break;
+ case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
+ i = id - KVM_REG_PPC_SPMC1;
+ *val = get_reg_val(id, vcpu->arch.spmc[i]);
+ break;
+ case KVM_REG_PPC_SIAR:
+ *val = get_reg_val(id, vcpu->arch.siar);
+ break;
+ case KVM_REG_PPC_SDAR:
+ *val = get_reg_val(id, vcpu->arch.sdar);
+ break;
+ case KVM_REG_PPC_SIER:
+ *val = get_reg_val(id, vcpu->arch.sier[0]);
+ break;
+ case KVM_REG_PPC_SIER2:
+ *val = get_reg_val(id, vcpu->arch.sier[1]);
+ break;
+ case KVM_REG_PPC_SIER3:
+ *val = get_reg_val(id, vcpu->arch.sier[2]);
+ break;
+ case KVM_REG_PPC_IAMR:
+ *val = get_reg_val(id, vcpu->arch.iamr);
+ break;
+ case KVM_REG_PPC_PSPB:
+ *val = get_reg_val(id, vcpu->arch.pspb);
+ break;
+ case KVM_REG_PPC_DPDES:
+ /*
+ * On POWER9, where we are emulating msgsndp etc.,
+ * we return 1 bit for each vcpu, which can come from
+ * either vcore->dpdes or doorbell_request.
+ * On POWER8, doorbell_request is 0.
+ */
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ *val = get_reg_val(id, vcpu->arch.doorbell_request);
+ else
+ *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
+ break;
+ case KVM_REG_PPC_VTB:
+ *val = get_reg_val(id, vcpu->arch.vcore->vtb);
+ break;
+ case KVM_REG_PPC_DAWR:
+ *val = get_reg_val(id, vcpu->arch.dawr0);
+ break;
+ case KVM_REG_PPC_DAWRX:
+ *val = get_reg_val(id, vcpu->arch.dawrx0);
+ break;
+ case KVM_REG_PPC_DAWR1:
+ *val = get_reg_val(id, vcpu->arch.dawr1);
+ break;
+ case KVM_REG_PPC_DAWRX1:
+ *val = get_reg_val(id, vcpu->arch.dawrx1);
+ break;
+ case KVM_REG_PPC_CIABR:
+ *val = get_reg_val(id, vcpu->arch.ciabr);
+ break;
+ case KVM_REG_PPC_CSIGR:
+ *val = get_reg_val(id, vcpu->arch.csigr);
+ break;
+ case KVM_REG_PPC_TACR:
+ *val = get_reg_val(id, vcpu->arch.tacr);
+ break;
+ case KVM_REG_PPC_TCSCR:
+ *val = get_reg_val(id, vcpu->arch.tcscr);
+ break;
+ case KVM_REG_PPC_PID:
+ *val = get_reg_val(id, vcpu->arch.pid);
+ break;
+ case KVM_REG_PPC_ACOP:
+ *val = get_reg_val(id, vcpu->arch.acop);
+ break;
+ case KVM_REG_PPC_WORT:
+ *val = get_reg_val(id, vcpu->arch.wort);
+ break;
+ case KVM_REG_PPC_TIDR:
+ *val = get_reg_val(id, vcpu->arch.tid);
+ break;
+ case KVM_REG_PPC_PSSCR:
+ *val = get_reg_val(id, vcpu->arch.psscr);
+ break;
+ case KVM_REG_PPC_VPA_ADDR:
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+ break;
+ case KVM_REG_PPC_VPA_SLB:
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
+ val->vpaval.length = vcpu->arch.slb_shadow.len;
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+ break;
+ case KVM_REG_PPC_VPA_DTL:
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ val->vpaval.addr = vcpu->arch.dtl.next_gpa;
+ val->vpaval.length = vcpu->arch.dtl.len;
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+ break;
+ case KVM_REG_PPC_TB_OFFSET:
+ *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
+ break;
+ case KVM_REG_PPC_LPCR:
+ case KVM_REG_PPC_LPCR_64:
+ *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
+ break;
+ case KVM_REG_PPC_PPR:
+ *val = get_reg_val(id, vcpu->arch.ppr);
+ break;
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ case KVM_REG_PPC_TFHAR:
+ *val = get_reg_val(id, vcpu->arch.tfhar);
+ break;
+ case KVM_REG_PPC_TFIAR:
+ *val = get_reg_val(id, vcpu->arch.tfiar);
+ break;
+ case KVM_REG_PPC_TEXASR:
+ *val = get_reg_val(id, vcpu->arch.texasr);
+ break;
+ case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
+ i = id - KVM_REG_PPC_TM_GPR0;
+ *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
+ break;
+ case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
+ {
+ int j;
+ i = id - KVM_REG_PPC_TM_VSR0;
+ if (i < 32)
+ for (j = 0; j < TS_FPRWIDTH; j++)
+ val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
+ else {
+ if (cpu_has_feature(CPU_FTR_ALTIVEC))
+ val->vval = vcpu->arch.vr_tm.vr[i-32];
+ else
+ r = -ENXIO;
+ }
+ break;
+ }
+ case KVM_REG_PPC_TM_CR:
+ *val = get_reg_val(id, vcpu->arch.cr_tm);
+ break;
+ case KVM_REG_PPC_TM_XER:
+ *val = get_reg_val(id, vcpu->arch.xer_tm);
+ break;
+ case KVM_REG_PPC_TM_LR:
+ *val = get_reg_val(id, vcpu->arch.lr_tm);
+ break;
+ case KVM_REG_PPC_TM_CTR:
+ *val = get_reg_val(id, vcpu->arch.ctr_tm);
+ break;
+ case KVM_REG_PPC_TM_FPSCR:
+ *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
+ break;
+ case KVM_REG_PPC_TM_AMR:
+ *val = get_reg_val(id, vcpu->arch.amr_tm);
+ break;
+ case KVM_REG_PPC_TM_PPR:
+ *val = get_reg_val(id, vcpu->arch.ppr_tm);
+ break;
+ case KVM_REG_PPC_TM_VRSAVE:
+ *val = get_reg_val(id, vcpu->arch.vrsave_tm);
+ break;
+ case KVM_REG_PPC_TM_VSCR:
+ if (cpu_has_feature(CPU_FTR_ALTIVEC))
+ *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
+ else
+ r = -ENXIO;
+ break;
+ case KVM_REG_PPC_TM_DSCR:
+ *val = get_reg_val(id, vcpu->arch.dscr_tm);
+ break;
+ case KVM_REG_PPC_TM_TAR:
+ *val = get_reg_val(id, vcpu->arch.tar_tm);
+ break;
+#endif
+ case KVM_REG_PPC_ARCH_COMPAT:
+ *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
+ break;
+ case KVM_REG_PPC_DEC_EXPIRY:
+ *val = get_reg_val(id, vcpu->arch.dec_expires);
+ break;
+ case KVM_REG_PPC_ONLINE:
+ *val = get_reg_val(id, vcpu->arch.online);
+ break;
+ case KVM_REG_PPC_PTCR:
+ *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
+ break;
+ default:
+ r = -EINVAL;
+ break;
+ }
+
+ return r;
+}
+
+static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
+ union kvmppc_one_reg *val)
+{
+ int r = 0;
+ long int i;
+ unsigned long addr, len;
+
+ switch (id) {
+ case KVM_REG_PPC_HIOR:
+ /* Only allow this to be set to zero */
+ if (set_reg_val(id, *val))
+ r = -EINVAL;
+ break;
+ case KVM_REG_PPC_DABR:
+ vcpu->arch.dabr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_DABRX:
+ vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
+ break;
+ case KVM_REG_PPC_DSCR:
+ vcpu->arch.dscr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_PURR:
+ vcpu->arch.purr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_SPURR:
+ vcpu->arch.spurr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_AMR:
+ vcpu->arch.amr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_UAMOR:
+ vcpu->arch.uamor = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
+ i = id - KVM_REG_PPC_MMCR0;
+ vcpu->arch.mmcr[i] = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_MMCR2:
+ vcpu->arch.mmcr[2] = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_MMCRA:
+ vcpu->arch.mmcra = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_MMCRS:
+ vcpu->arch.mmcrs = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_MMCR3:
+ *val = get_reg_val(id, vcpu->arch.mmcr[3]);
+ break;
+ case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
+ i = id - KVM_REG_PPC_PMC1;
+ vcpu->arch.pmc[i] = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
+ i = id - KVM_REG_PPC_SPMC1;
+ vcpu->arch.spmc[i] = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_SIAR:
+ vcpu->arch.siar = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_SDAR:
+ vcpu->arch.sdar = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_SIER:
+ vcpu->arch.sier[0] = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_SIER2:
+ vcpu->arch.sier[1] = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_SIER3:
+ vcpu->arch.sier[2] = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_IAMR:
+ vcpu->arch.iamr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_PSPB:
+ vcpu->arch.pspb = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_DPDES:
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
+ else
+ vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_VTB:
+ vcpu->arch.vcore->vtb = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_DAWR:
+ vcpu->arch.dawr0 = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_DAWRX:
+ vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
+ break;
+ case KVM_REG_PPC_DAWR1:
+ vcpu->arch.dawr1 = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_DAWRX1:
+ vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
+ break;
+ case KVM_REG_PPC_CIABR:
+ vcpu->arch.ciabr = set_reg_val(id, *val);
+ /* Don't allow setting breakpoints in hypervisor code */
+ if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
+ vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
+ break;
+ case KVM_REG_PPC_CSIGR:
+ vcpu->arch.csigr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TACR:
+ vcpu->arch.tacr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TCSCR:
+ vcpu->arch.tcscr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_PID:
+ vcpu->arch.pid = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_ACOP:
+ vcpu->arch.acop = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_WORT:
+ vcpu->arch.wort = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TIDR:
+ vcpu->arch.tid = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_PSSCR:
+ vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
+ break;
+ case KVM_REG_PPC_VPA_ADDR:
+ addr = set_reg_val(id, *val);
+ r = -EINVAL;
+ if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
+ vcpu->arch.dtl.next_gpa))
+ break;
+ r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
+ break;
+ case KVM_REG_PPC_VPA_SLB:
+ addr = val->vpaval.addr;
+ len = val->vpaval.length;
+ r = -EINVAL;
+ if (addr && !vcpu->arch.vpa.next_gpa)
+ break;
+ r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
+ break;
+ case KVM_REG_PPC_VPA_DTL:
+ addr = val->vpaval.addr;
+ len = val->vpaval.length;
+ r = -EINVAL;
+ if (addr && (len < sizeof(struct dtl_entry) ||
+ !vcpu->arch.vpa.next_gpa))
+ break;
+ len -= len % sizeof(struct dtl_entry);
+ r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
+ break;
+ case KVM_REG_PPC_TB_OFFSET:
+ {
+ /* round up to multiple of 2^24 */
+ u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24);
+
+ /*
+ * Now that we know the timebase offset, update the
+ * decrementer expiry with a guest timebase value. If
+ * the userspace does not set DEC_EXPIRY, this ensures
+ * a migrated vcpu at least starts with an expired
+ * decrementer, which is better than a large one that
+ * causes a hang.
+ */
+ if (!vcpu->arch.dec_expires && tb_offset)
+ vcpu->arch.dec_expires = get_tb() + tb_offset;
+
+ vcpu->arch.vcore->tb_offset = tb_offset;
+ break;
+ }
+ case KVM_REG_PPC_LPCR:
+ kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
+ break;
+ case KVM_REG_PPC_LPCR_64:
+ kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
+ break;
+ case KVM_REG_PPC_PPR:
+ vcpu->arch.ppr = set_reg_val(id, *val);
+ break;
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ case KVM_REG_PPC_TFHAR:
+ vcpu->arch.tfhar = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TFIAR:
+ vcpu->arch.tfiar = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TEXASR:
+ vcpu->arch.texasr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
+ i = id - KVM_REG_PPC_TM_GPR0;
+ vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
+ {
+ int j;
+ i = id - KVM_REG_PPC_TM_VSR0;
+ if (i < 32)
+ for (j = 0; j < TS_FPRWIDTH; j++)
+ vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
+ else
+ if (cpu_has_feature(CPU_FTR_ALTIVEC))
+ vcpu->arch.vr_tm.vr[i-32] = val->vval;
+ else
+ r = -ENXIO;
+ break;
+ }
+ case KVM_REG_PPC_TM_CR:
+ vcpu->arch.cr_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_XER:
+ vcpu->arch.xer_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_LR:
+ vcpu->arch.lr_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_CTR:
+ vcpu->arch.ctr_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_FPSCR:
+ vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_AMR:
+ vcpu->arch.amr_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_PPR:
+ vcpu->arch.ppr_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_VRSAVE:
+ vcpu->arch.vrsave_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_VSCR:
+ if (cpu_has_feature(CPU_FTR_ALTIVEC))
+ vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
+ else
+ r = - ENXIO;
+ break;
+ case KVM_REG_PPC_TM_DSCR:
+ vcpu->arch.dscr_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_TAR:
+ vcpu->arch.tar_tm = set_reg_val(id, *val);
+ break;
+#endif
+ case KVM_REG_PPC_ARCH_COMPAT:
+ r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
+ break;
+ case KVM_REG_PPC_DEC_EXPIRY:
+ vcpu->arch.dec_expires = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_ONLINE:
+ i = set_reg_val(id, *val);
+ if (i && !vcpu->arch.online)
+ atomic_inc(&vcpu->arch.vcore->online_count);
+ else if (!i && vcpu->arch.online)
+ atomic_dec(&vcpu->arch.vcore->online_count);
+ vcpu->arch.online = i;
+ break;
+ case KVM_REG_PPC_PTCR:
+ vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
+ break;
+ default:
+ r = -EINVAL;
+ break;
+ }
+
+ return r;
+}
+
+/*
+ * On POWER9, threads are independent and can be in different partitions.
+ * Therefore we consider each thread to be a subcore.
+ * There is a restriction that all threads have to be in the same
+ * MMU mode (radix or HPT), unfortunately, but since we only support
+ * HPT guests on a HPT host so far, that isn't an impediment yet.
+ */
+static int threads_per_vcore(struct kvm *kvm)
+{
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ return 1;
+ return threads_per_subcore;
+}
+
+static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
+{
+ struct kvmppc_vcore *vcore;
+
+ vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
+
+ if (vcore == NULL)
+ return NULL;
+
+ spin_lock_init(&vcore->lock);
+ spin_lock_init(&vcore->stoltb_lock);
+ rcuwait_init(&vcore->wait);
+ vcore->preempt_tb = TB_NIL;
+ vcore->lpcr = kvm->arch.lpcr;
+ vcore->first_vcpuid = id;
+ vcore->kvm = kvm;
+ INIT_LIST_HEAD(&vcore->preempt_list);
+
+ return vcore;
+}
+
+#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
+static struct debugfs_timings_element {
+ const char *name;
+ size_t offset;
+} timings[] = {
+#ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
+ {"vcpu_entry", offsetof(struct kvm_vcpu, arch.vcpu_entry)},
+ {"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)},
+ {"in_guest", offsetof(struct kvm_vcpu, arch.in_guest)},
+ {"guest_exit", offsetof(struct kvm_vcpu, arch.guest_exit)},
+ {"vcpu_exit", offsetof(struct kvm_vcpu, arch.vcpu_exit)},
+ {"hypercall", offsetof(struct kvm_vcpu, arch.hcall)},
+ {"page_fault", offsetof(struct kvm_vcpu, arch.pg_fault)},
+#else
+ {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
+ {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
+ {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
+ {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
+ {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
+#endif
+};
+
+#define N_TIMINGS (ARRAY_SIZE(timings))
+
+struct debugfs_timings_state {
+ struct kvm_vcpu *vcpu;
+ unsigned int buflen;
+ char buf[N_TIMINGS * 100];
+};
+
+static int debugfs_timings_open(struct inode *inode, struct file *file)
+{
+ struct kvm_vcpu *vcpu = inode->i_private;
+ struct debugfs_timings_state *p;
+
+ p = kzalloc(sizeof(*p), GFP_KERNEL);
+ if (!p)
+ return -ENOMEM;
+
+ kvm_get_kvm(vcpu->kvm);
+ p->vcpu = vcpu;
+ file->private_data = p;
+
+ return nonseekable_open(inode, file);
+}
+
+static int debugfs_timings_release(struct inode *inode, struct file *file)
+{
+ struct debugfs_timings_state *p = file->private_data;
+
+ kvm_put_kvm(p->vcpu->kvm);
+ kfree(p);
+ return 0;
+}
+
+static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
+ size_t len, loff_t *ppos)
+{
+ struct debugfs_timings_state *p = file->private_data;
+ struct kvm_vcpu *vcpu = p->vcpu;
+ char *s, *buf_end;
+ struct kvmhv_tb_accumulator tb;
+ u64 count;
+ loff_t pos;
+ ssize_t n;
+ int i, loops;
+ bool ok;
+
+ if (!p->buflen) {
+ s = p->buf;
+ buf_end = s + sizeof(p->buf);
+ for (i = 0; i < N_TIMINGS; ++i) {
+ struct kvmhv_tb_accumulator *acc;
+
+ acc = (struct kvmhv_tb_accumulator *)
+ ((unsigned long)vcpu + timings[i].offset);
+ ok = false;
+ for (loops = 0; loops < 1000; ++loops) {
+ count = acc->seqcount;
+ if (!(count & 1)) {
+ smp_rmb();
+ tb = *acc;
+ smp_rmb();
+ if (count == acc->seqcount) {
+ ok = true;
+ break;
+ }
+ }
+ udelay(1);
+ }
+ if (!ok)
+ snprintf(s, buf_end - s, "%s: stuck\n",
+ timings[i].name);
+ else
+ snprintf(s, buf_end - s,
+ "%s: %llu %llu %llu %llu\n",
+ timings[i].name, count / 2,
+ tb_to_ns(tb.tb_total),
+ tb_to_ns(tb.tb_min),
+ tb_to_ns(tb.tb_max));
+ s += strlen(s);
+ }
+ p->buflen = s - p->buf;
+ }
+
+ pos = *ppos;
+ if (pos >= p->buflen)
+ return 0;
+ if (len > p->buflen - pos)
+ len = p->buflen - pos;
+ n = copy_to_user(buf, p->buf + pos, len);
+ if (n) {
+ if (n == len)
+ return -EFAULT;
+ len -= n;
+ }
+ *ppos = pos + len;
+ return len;
+}
+
+static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
+ size_t len, loff_t *ppos)
+{
+ return -EACCES;
+}
+
+static const struct file_operations debugfs_timings_ops = {
+ .owner = THIS_MODULE,
+ .open = debugfs_timings_open,
+ .release = debugfs_timings_release,
+ .read = debugfs_timings_read,
+ .write = debugfs_timings_write,
+ .llseek = generic_file_llseek,
+};
+
+/* Create a debugfs directory for the vcpu */
+static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
+{
+ if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING))
+ debugfs_create_file("timings", 0444, debugfs_dentry, vcpu,
+ &debugfs_timings_ops);
+ return 0;
+}
+
+#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
+static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
+{
+ return 0;
+}
+#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
+
+static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
+{
+ int err;
+ int core;
+ struct kvmppc_vcore *vcore;
+ struct kvm *kvm;
+ unsigned int id;
+
+ kvm = vcpu->kvm;
+ id = vcpu->vcpu_id;
+
+ vcpu->arch.shared = &vcpu->arch.shregs;
+#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
+ /*
+ * The shared struct is never shared on HV,
+ * so we can always use host endianness
+ */
+#ifdef __BIG_ENDIAN__
+ vcpu->arch.shared_big_endian = true;
+#else
+ vcpu->arch.shared_big_endian = false;
+#endif
+#endif
+ vcpu->arch.mmcr[0] = MMCR0_FC;
+ if (cpu_has_feature(CPU_FTR_ARCH_31)) {
+ vcpu->arch.mmcr[0] |= MMCR0_PMCCEXT;
+ vcpu->arch.mmcra = MMCRA_BHRB_DISABLE;
+ }
+
+ vcpu->arch.ctrl = CTRL_RUNLATCH;
+ /* default to host PVR, since we can't spoof it */
+ kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
+ spin_lock_init(&vcpu->arch.vpa_update_lock);
+ spin_lock_init(&vcpu->arch.tbacct_lock);
+ vcpu->arch.busy_preempt = TB_NIL;
+ vcpu->arch.shregs.msr = MSR_ME;
+ vcpu->arch.intr_msr = MSR_SF | MSR_ME;
+
+ /*
+ * Set the default HFSCR for the guest from the host value.
+ * This value is only used on POWER9.
+ * On POWER9, we want to virtualize the doorbell facility, so we
+ * don't set the HFSCR_MSGP bit, and that causes those instructions
+ * to trap and then we emulate them.
+ */
+ vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
+ HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
+ if (cpu_has_feature(CPU_FTR_HVMODE)) {
+ vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
+ vcpu->arch.hfscr |= HFSCR_TM;
+#endif
+ }
+ if (cpu_has_feature(CPU_FTR_TM_COMP))
+ vcpu->arch.hfscr |= HFSCR_TM;
+
+ vcpu->arch.hfscr_permitted = vcpu->arch.hfscr;
+
+ /*
+ * PM, EBB, TM are demand-faulted so start with it clear.
+ */
+ vcpu->arch.hfscr &= ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM);
+
+ kvmppc_mmu_book3s_hv_init(vcpu);
+
+ vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
+
+ init_waitqueue_head(&vcpu->arch.cpu_run);
+
+ mutex_lock(&kvm->lock);
+ vcore = NULL;
+ err = -EINVAL;
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
+ pr_devel("KVM: VCPU ID too high\n");
+ core = KVM_MAX_VCORES;
+ } else {
+ BUG_ON(kvm->arch.smt_mode != 1);
+ core = kvmppc_pack_vcpu_id(kvm, id);
+ }
+ } else {
+ core = id / kvm->arch.smt_mode;
+ }
+ if (core < KVM_MAX_VCORES) {
+ vcore = kvm->arch.vcores[core];
+ if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
+ pr_devel("KVM: collision on id %u", id);
+ vcore = NULL;
+ } else if (!vcore) {
+ /*
+ * Take mmu_setup_lock for mutual exclusion
+ * with kvmppc_update_lpcr().
+ */
+ err = -ENOMEM;
+ vcore = kvmppc_vcore_create(kvm,
+ id & ~(kvm->arch.smt_mode - 1));
+ mutex_lock(&kvm->arch.mmu_setup_lock);
+ kvm->arch.vcores[core] = vcore;
+ kvm->arch.online_vcores++;
+ mutex_unlock(&kvm->arch.mmu_setup_lock);
+ }
+ }
+ mutex_unlock(&kvm->lock);
+
+ if (!vcore)
+ return err;
+
+ spin_lock(&vcore->lock);
+ ++vcore->num_threads;
+ spin_unlock(&vcore->lock);
+ vcpu->arch.vcore = vcore;
+ vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
+ vcpu->arch.thread_cpu = -1;
+ vcpu->arch.prev_cpu = -1;
+
+ vcpu->arch.cpu_type = KVM_CPU_3S_64;
+ kvmppc_sanity_check(vcpu);
+
+ return 0;
+}
+
+static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
+ unsigned long flags)
+{
+ int err;
+ int esmt = 0;
+
+ if (flags)
+ return -EINVAL;
+ if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
+ return -EINVAL;
+ if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
+ /*
+ * On POWER8 (or POWER7), the threading mode is "strict",
+ * so we pack smt_mode vcpus per vcore.
+ */
+ if (smt_mode > threads_per_subcore)
+ return -EINVAL;
+ } else {
+ /*
+ * On POWER9, the threading mode is "loose",
+ * so each vcpu gets its own vcore.
+ */
+ esmt = smt_mode;
+ smt_mode = 1;
+ }
+ mutex_lock(&kvm->lock);
+ err = -EBUSY;
+ if (!kvm->arch.online_vcores) {
+ kvm->arch.smt_mode = smt_mode;
+ kvm->arch.emul_smt_mode = esmt;
+ err = 0;
+ }
+ mutex_unlock(&kvm->lock);
+
+ return err;
+}
+
+static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
+{
+ if (vpa->pinned_addr)
+ kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
+ vpa->dirty);
+}
+
+static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
+{
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
+ unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
+ unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+}
+
+static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
+{
+ /* Indicate we want to get back into the guest */
+ return 1;
+}
+
+static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
+{
+ unsigned long dec_nsec, now;
+
+ now = get_tb();
+ if (now > kvmppc_dec_expires_host_tb(vcpu)) {
+ /* decrementer has already gone negative */
+ kvmppc_core_queue_dec(vcpu);
+ kvmppc_core_prepare_to_enter(vcpu);
+ return;
+ }
+ dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
+ hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
+ vcpu->arch.timer_running = 1;
+}
+
+extern int __kvmppc_vcore_entry(void);
+
+static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
+ struct kvm_vcpu *vcpu, u64 tb)
+{
+ u64 now;
+
+ if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
+ return;
+ spin_lock_irq(&vcpu->arch.tbacct_lock);
+ now = tb;
+ vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
+ vcpu->arch.stolen_logged;
+ vcpu->arch.busy_preempt = now;
+ vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
+ spin_unlock_irq(&vcpu->arch.tbacct_lock);
+ --vc->n_runnable;
+ WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
+}
+
+static int kvmppc_grab_hwthread(int cpu)
+{
+ struct paca_struct *tpaca;
+ long timeout = 10000;
+
+ tpaca = paca_ptrs[cpu];
+
+ /* Ensure the thread won't go into the kernel if it wakes */
+ tpaca->kvm_hstate.kvm_vcpu = NULL;
+ tpaca->kvm_hstate.kvm_vcore = NULL;
+ tpaca->kvm_hstate.napping = 0;
+ smp_wmb();
+ tpaca->kvm_hstate.hwthread_req = 1;
+
+ /*
+ * If the thread is already executing in the kernel (e.g. handling
+ * a stray interrupt), wait for it to get back to nap mode.
+ * The smp_mb() is to ensure that our setting of hwthread_req
+ * is visible before we look at hwthread_state, so if this
+ * races with the code at system_reset_pSeries and the thread
+ * misses our setting of hwthread_req, we are sure to see its
+ * setting of hwthread_state, and vice versa.
+ */
+ smp_mb();
+ while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
+ if (--timeout <= 0) {
+ pr_err("KVM: couldn't grab cpu %d\n", cpu);
+ return -EBUSY;
+ }
+ udelay(1);
+ }
+ return 0;
+}
+
+static void kvmppc_release_hwthread(int cpu)
+{
+ struct paca_struct *tpaca;
+
+ tpaca = paca_ptrs[cpu];
+ tpaca->kvm_hstate.hwthread_req = 0;
+ tpaca->kvm_hstate.kvm_vcpu = NULL;
+ tpaca->kvm_hstate.kvm_vcore = NULL;
+ tpaca->kvm_hstate.kvm_split_mode = NULL;
+}
+
+static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
+
+static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
+{
+ struct kvm_nested_guest *nested = vcpu->arch.nested;
+ cpumask_t *need_tlb_flush;
+ int i;
+
+ if (nested)
+ need_tlb_flush = &nested->need_tlb_flush;
+ else
+ need_tlb_flush = &kvm->arch.need_tlb_flush;
+
+ cpu = cpu_first_tlb_thread_sibling(cpu);
+ for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
+ i += cpu_tlb_thread_sibling_step())
+ cpumask_set_cpu(i, need_tlb_flush);
+
+ /*
+ * Make sure setting of bit in need_tlb_flush precedes testing of
+ * cpu_in_guest. The matching barrier on the other side is hwsync
+ * when switching to guest MMU mode, which happens between
+ * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
+ * being tested.
+ */
+ smp_mb();
+
+ for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
+ i += cpu_tlb_thread_sibling_step()) {
+ struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
+
+ if (running == kvm)
+ smp_call_function_single(i, do_nothing, NULL, 1);
+ }
+}
+
+static void do_migrate_away_vcpu(void *arg)
+{
+ struct kvm_vcpu *vcpu = arg;
+ struct kvm *kvm = vcpu->kvm;
+
+ /*
+ * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
+ * ptesync sequence on the old CPU before migrating to a new one, in
+ * case we interrupted the guest between a tlbie ; eieio ;
+ * tlbsync; ptesync sequence.
+ *
+ * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
+ */
+ if (kvm->arch.lpcr & LPCR_GTSE)
+ asm volatile("eieio; tlbsync; ptesync");
+ else
+ asm volatile("ptesync");
+}
+
+static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
+{
+ struct kvm_nested_guest *nested = vcpu->arch.nested;
+ struct kvm *kvm = vcpu->kvm;
+ int prev_cpu;
+
+ if (!cpu_has_feature(CPU_FTR_HVMODE))
+ return;
+
+ if (nested)
+ prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
+ else
+ prev_cpu = vcpu->arch.prev_cpu;
+
+ /*
+ * With radix, the guest can do TLB invalidations itself,
+ * and it could choose to use the local form (tlbiel) if
+ * it is invalidating a translation that has only ever been
+ * used on one vcpu. However, that doesn't mean it has
+ * only ever been used on one physical cpu, since vcpus
+ * can move around between pcpus. To cope with this, when
+ * a vcpu moves from one pcpu to another, we need to tell
+ * any vcpus running on the same core as this vcpu previously
+ * ran to flush the TLB.
+ */
+ if (prev_cpu != pcpu) {
+ if (prev_cpu >= 0) {
+ if (cpu_first_tlb_thread_sibling(prev_cpu) !=
+ cpu_first_tlb_thread_sibling(pcpu))
+ radix_flush_cpu(kvm, prev_cpu, vcpu);
+
+ smp_call_function_single(prev_cpu,
+ do_migrate_away_vcpu, vcpu, 1);
+ }
+ if (nested)
+ nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
+ else
+ vcpu->arch.prev_cpu = pcpu;
+ }
+}
+
+static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
+{
+ int cpu;
+ struct paca_struct *tpaca;
+
+ cpu = vc->pcpu;
+ if (vcpu) {
+ if (vcpu->arch.timer_running) {
+ hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
+ vcpu->arch.timer_running = 0;
+ }
+ cpu += vcpu->arch.ptid;
+ vcpu->cpu = vc->pcpu;
+ vcpu->arch.thread_cpu = cpu;
+ }
+ tpaca = paca_ptrs[cpu];
+ tpaca->kvm_hstate.kvm_vcpu = vcpu;
+ tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
+ tpaca->kvm_hstate.fake_suspend = 0;
+ /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
+ smp_wmb();
+ tpaca->kvm_hstate.kvm_vcore = vc;
+ if (cpu != smp_processor_id())
+ kvmppc_ipi_thread(cpu);
+}
+
+static void kvmppc_wait_for_nap(int n_threads)
+{
+ int cpu = smp_processor_id();
+ int i, loops;
+
+ if (n_threads <= 1)
+ return;
+ for (loops = 0; loops < 1000000; ++loops) {
+ /*
+ * Check if all threads are finished.
+ * We set the vcore pointer when starting a thread
+ * and the thread clears it when finished, so we look
+ * for any threads that still have a non-NULL vcore ptr.
+ */
+ for (i = 1; i < n_threads; ++i)
+ if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
+ break;
+ if (i == n_threads) {
+ HMT_medium();
+ return;
+ }
+ HMT_low();
+ }
+ HMT_medium();
+ for (i = 1; i < n_threads; ++i)
+ if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
+ pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
+}
+
+/*
+ * Check that we are on thread 0 and that any other threads in
+ * this core are off-line. Then grab the threads so they can't
+ * enter the kernel.
+ */
+static int on_primary_thread(void)
+{
+ int cpu = smp_processor_id();
+ int thr;
+
+ /* Are we on a primary subcore? */
+ if (cpu_thread_in_subcore(cpu))
+ return 0;
+
+ thr = 0;
+ while (++thr < threads_per_subcore)
+ if (cpu_online(cpu + thr))
+ return 0;
+
+ /* Grab all hw threads so they can't go into the kernel */
+ for (thr = 1; thr < threads_per_subcore; ++thr) {
+ if (kvmppc_grab_hwthread(cpu + thr)) {
+ /* Couldn't grab one; let the others go */
+ do {
+ kvmppc_release_hwthread(cpu + thr);
+ } while (--thr > 0);
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/*
+ * A list of virtual cores for each physical CPU.
+ * These are vcores that could run but their runner VCPU tasks are
+ * (or may be) preempted.
+ */
+struct preempted_vcore_list {
+ struct list_head list;
+ spinlock_t lock;
+};
+
+static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
+
+static void init_vcore_lists(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu) {
+ struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
+ spin_lock_init(&lp->lock);
+ INIT_LIST_HEAD(&lp->list);
+ }
+}
+
+static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
+{
+ struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
+
+ WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
+
+ vc->vcore_state = VCORE_PREEMPT;
+ vc->pcpu = smp_processor_id();
+ if (vc->num_threads < threads_per_vcore(vc->kvm)) {
+ spin_lock(&lp->lock);
+ list_add_tail(&vc->preempt_list, &lp->list);
+ spin_unlock(&lp->lock);
+ }
+
+ /* Start accumulating stolen time */
+ kvmppc_core_start_stolen(vc, mftb());
+}
+
+static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
+{
+ struct preempted_vcore_list *lp;
+
+ WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
+
+ kvmppc_core_end_stolen(vc, mftb());
+ if (!list_empty(&vc->preempt_list)) {
+ lp = &per_cpu(preempted_vcores, vc->pcpu);
+ spin_lock(&lp->lock);
+ list_del_init(&vc->preempt_list);
+ spin_unlock(&lp->lock);
+ }
+ vc->vcore_state = VCORE_INACTIVE;
+}
+
+/*
+ * This stores information about the virtual cores currently
+ * assigned to a physical core.
+ */
+struct core_info {
+ int n_subcores;
+ int max_subcore_threads;
+ int total_threads;
+ int subcore_threads[MAX_SUBCORES];
+ struct kvmppc_vcore *vc[MAX_SUBCORES];
+};
+
+/*
+ * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
+ * respectively in 2-way micro-threading (split-core) mode on POWER8.
+ */
+static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
+
+static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
+{
+ memset(cip, 0, sizeof(*cip));
+ cip->n_subcores = 1;
+ cip->max_subcore_threads = vc->num_threads;
+ cip->total_threads = vc->num_threads;
+ cip->subcore_threads[0] = vc->num_threads;
+ cip->vc[0] = vc;
+}
+
+static bool subcore_config_ok(int n_subcores, int n_threads)
+{
+ /*
+ * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
+ * split-core mode, with one thread per subcore.
+ */
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ return n_subcores <= 4 && n_threads == 1;
+
+ /* On POWER8, can only dynamically split if unsplit to begin with */
+ if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
+ return false;
+ if (n_subcores > MAX_SUBCORES)
+ return false;
+ if (n_subcores > 1) {
+ if (!(dynamic_mt_modes & 2))
+ n_subcores = 4;
+ if (n_subcores > 2 && !(dynamic_mt_modes & 4))
+ return false;
+ }
+
+ return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
+}
+
+static void init_vcore_to_run(struct kvmppc_vcore *vc)
+{
+ vc->entry_exit_map = 0;
+ vc->in_guest = 0;
+ vc->napping_threads = 0;
+ vc->conferring_threads = 0;
+ vc->tb_offset_applied = 0;
+}
+
+static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
+{
+ int n_threads = vc->num_threads;
+ int sub;
+
+ if (!cpu_has_feature(CPU_FTR_ARCH_207S))
+ return false;
+
+ /* In one_vm_per_core mode, require all vcores to be from the same vm */
+ if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
+ return false;
+
+ if (n_threads < cip->max_subcore_threads)
+ n_threads = cip->max_subcore_threads;
+ if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
+ return false;
+ cip->max_subcore_threads = n_threads;
+
+ sub = cip->n_subcores;
+ ++cip->n_subcores;
+ cip->total_threads += vc->num_threads;
+ cip->subcore_threads[sub] = vc->num_threads;
+ cip->vc[sub] = vc;
+ init_vcore_to_run(vc);
+ list_del_init(&vc->preempt_list);
+
+ return true;
+}
+
+/*
+ * Work out whether it is possible to piggyback the execution of
+ * vcore *pvc onto the execution of the other vcores described in *cip.
+ */
+static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
+ int target_threads)
+{
+ if (cip->total_threads + pvc->num_threads > target_threads)
+ return false;
+
+ return can_dynamic_split(pvc, cip);
+}
+
+static void prepare_threads(struct kvmppc_vcore *vc)
+{
+ int i;
+ struct kvm_vcpu *vcpu;
+
+ for_each_runnable_thread(i, vcpu, vc) {
+ if (signal_pending(vcpu->arch.run_task))
+ vcpu->arch.ret = -EINTR;
+ else if (vcpu->arch.vpa.update_pending ||
+ vcpu->arch.slb_shadow.update_pending ||
+ vcpu->arch.dtl.update_pending)
+ vcpu->arch.ret = RESUME_GUEST;
+ else
+ continue;
+ kvmppc_remove_runnable(vc, vcpu, mftb());
+ wake_up(&vcpu->arch.cpu_run);
+ }
+}
+
+static void collect_piggybacks(struct core_info *cip, int target_threads)
+{
+ struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
+ struct kvmppc_vcore *pvc, *vcnext;
+
+ spin_lock(&lp->lock);
+ list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
+ if (!spin_trylock(&pvc->lock))
+ continue;
+ prepare_threads(pvc);
+ if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
+ list_del_init(&pvc->preempt_list);
+ if (pvc->runner == NULL) {
+ pvc->vcore_state = VCORE_INACTIVE;
+ kvmppc_core_end_stolen(pvc, mftb());
+ }
+ spin_unlock(&pvc->lock);
+ continue;
+ }
+ if (!can_piggyback(pvc, cip, target_threads)) {
+ spin_unlock(&pvc->lock);
+ continue;
+ }
+ kvmppc_core_end_stolen(pvc, mftb());
+ pvc->vcore_state = VCORE_PIGGYBACK;
+ if (cip->total_threads >= target_threads)
+ break;
+ }
+ spin_unlock(&lp->lock);
+}
+
+static bool recheck_signals_and_mmu(struct core_info *cip)
+{
+ int sub, i;
+ struct kvm_vcpu *vcpu;
+ struct kvmppc_vcore *vc;
+
+ for (sub = 0; sub < cip->n_subcores; ++sub) {
+ vc = cip->vc[sub];
+ if (!vc->kvm->arch.mmu_ready)
+ return true;
+ for_each_runnable_thread(i, vcpu, vc)
+ if (signal_pending(vcpu->arch.run_task))
+ return true;
+ }
+ return false;
+}
+
+static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
+{
+ int still_running = 0, i;
+ u64 now;
+ long ret;
+ struct kvm_vcpu *vcpu;
+
+ spin_lock(&vc->lock);
+ now = get_tb();
+ for_each_runnable_thread(i, vcpu, vc) {
+ /*
+ * It's safe to unlock the vcore in the loop here, because
+ * for_each_runnable_thread() is safe against removal of
+ * the vcpu, and the vcore state is VCORE_EXITING here,
+ * so any vcpus becoming runnable will have their arch.trap
+ * set to zero and can't actually run in the guest.
+ */
+ spin_unlock(&vc->lock);
+ /* cancel pending dec exception if dec is positive */
+ if (now < kvmppc_dec_expires_host_tb(vcpu) &&
+ kvmppc_core_pending_dec(vcpu))
+ kvmppc_core_dequeue_dec(vcpu);
+
+ trace_kvm_guest_exit(vcpu);
+
+ ret = RESUME_GUEST;
+ if (vcpu->arch.trap)
+ ret = kvmppc_handle_exit_hv(vcpu,
+ vcpu->arch.run_task);
+
+ vcpu->arch.ret = ret;
+ vcpu->arch.trap = 0;
+
+ spin_lock(&vc->lock);
+ if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
+ if (vcpu->arch.pending_exceptions)
+ kvmppc_core_prepare_to_enter(vcpu);
+ if (vcpu->arch.ceded)
+ kvmppc_set_timer(vcpu);
+ else
+ ++still_running;
+ } else {
+ kvmppc_remove_runnable(vc, vcpu, mftb());
+ wake_up(&vcpu->arch.cpu_run);
+ }
+ }
+ if (!is_master) {
+ if (still_running > 0) {
+ kvmppc_vcore_preempt(vc);
+ } else if (vc->runner) {
+ vc->vcore_state = VCORE_PREEMPT;
+ kvmppc_core_start_stolen(vc, mftb());
+ } else {
+ vc->vcore_state = VCORE_INACTIVE;
+ }
+ if (vc->n_runnable > 0 && vc->runner == NULL) {
+ /* make sure there's a candidate runner awake */
+ i = -1;
+ vcpu = next_runnable_thread(vc, &i);
+ wake_up(&vcpu->arch.cpu_run);
+ }
+ }
+ spin_unlock(&vc->lock);
+}
+
+/*
+ * Clear core from the list of active host cores as we are about to
+ * enter the guest. Only do this if it is the primary thread of the
+ * core (not if a subcore) that is entering the guest.
+ */
+static inline int kvmppc_clear_host_core(unsigned int cpu)
+{
+ int core;
+
+ if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
+ return 0;
+ /*
+ * Memory barrier can be omitted here as we will do a smp_wmb()
+ * later in kvmppc_start_thread and we need ensure that state is
+ * visible to other CPUs only after we enter guest.
+ */
+ core = cpu >> threads_shift;
+ kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
+ return 0;
+}
+
+/*
+ * Advertise this core as an active host core since we exited the guest
+ * Only need to do this if it is the primary thread of the core that is
+ * exiting.
+ */
+static inline int kvmppc_set_host_core(unsigned int cpu)
+{
+ int core;
+
+ if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
+ return 0;
+
+ /*
+ * Memory barrier can be omitted here because we do a spin_unlock
+ * immediately after this which provides the memory barrier.
+ */
+ core = cpu >> threads_shift;
+ kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
+ return 0;
+}
+
+static void set_irq_happened(int trap)
+{
+ switch (trap) {
+ case BOOK3S_INTERRUPT_EXTERNAL:
+ local_paca->irq_happened |= PACA_IRQ_EE;
+ break;
+ case BOOK3S_INTERRUPT_H_DOORBELL:
+ local_paca->irq_happened |= PACA_IRQ_DBELL;
+ break;
+ case BOOK3S_INTERRUPT_HMI:
+ local_paca->irq_happened |= PACA_IRQ_HMI;
+ break;
+ case BOOK3S_INTERRUPT_SYSTEM_RESET:
+ replay_system_reset();
+ break;
+ }
+}
+
+/*
+ * Run a set of guest threads on a physical core.
+ * Called with vc->lock held.
+ */
+static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
+{
+ struct kvm_vcpu *vcpu;
+ int i;
+ int srcu_idx;
+ struct core_info core_info;
+ struct kvmppc_vcore *pvc;
+ struct kvm_split_mode split_info, *sip;
+ int split, subcore_size, active;
+ int sub;
+ bool thr0_done;
+ unsigned long cmd_bit, stat_bit;
+ int pcpu, thr;
+ int target_threads;
+ int controlled_threads;
+ int trap;
+ bool is_power8;
+
+ if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
+ return;
+
+ /*
+ * Remove from the list any threads that have a signal pending
+ * or need a VPA update done
+ */
+ prepare_threads(vc);
+
+ /* if the runner is no longer runnable, let the caller pick a new one */
+ if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
+ return;
+
+ /*
+ * Initialize *vc.
+ */
+ init_vcore_to_run(vc);
+ vc->preempt_tb = TB_NIL;
+
+ /*
+ * Number of threads that we will be controlling: the same as
+ * the number of threads per subcore, except on POWER9,
+ * where it's 1 because the threads are (mostly) independent.
+ */
+ controlled_threads = threads_per_vcore(vc->kvm);
+
+ /*
+ * Make sure we are running on primary threads, and that secondary
+ * threads are offline. Also check if the number of threads in this
+ * guest are greater than the current system threads per guest.
+ */
+ if ((controlled_threads > 1) &&
+ ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
+ for_each_runnable_thread(i, vcpu, vc) {
+ vcpu->arch.ret = -EBUSY;
+ kvmppc_remove_runnable(vc, vcpu, mftb());
+ wake_up(&vcpu->arch.cpu_run);
+ }
+ goto out;
+ }
+
+ /*
+ * See if we could run any other vcores on the physical core
+ * along with this one.
+ */
+ init_core_info(&core_info, vc);
+ pcpu = smp_processor_id();
+ target_threads = controlled_threads;
+ if (target_smt_mode && target_smt_mode < target_threads)
+ target_threads = target_smt_mode;
+ if (vc->num_threads < target_threads)
+ collect_piggybacks(&core_info, target_threads);
+
+ /*
+ * Hard-disable interrupts, and check resched flag and signals.
+ * If we need to reschedule or deliver a signal, clean up
+ * and return without going into the guest(s).
+ * If the mmu_ready flag has been cleared, don't go into the
+ * guest because that means a HPT resize operation is in progress.
+ */
+ local_irq_disable();
+ hard_irq_disable();
+ if (lazy_irq_pending() || need_resched() ||
+ recheck_signals_and_mmu(&core_info)) {
+ local_irq_enable();
+ vc->vcore_state = VCORE_INACTIVE;
+ /* Unlock all except the primary vcore */
+ for (sub = 1; sub < core_info.n_subcores; ++sub) {
+ pvc = core_info.vc[sub];
+ /* Put back on to the preempted vcores list */
+ kvmppc_vcore_preempt(pvc);
+ spin_unlock(&pvc->lock);
+ }
+ for (i = 0; i < controlled_threads; ++i)
+ kvmppc_release_hwthread(pcpu + i);
+ return;
+ }
+
+ kvmppc_clear_host_core(pcpu);
+
+ /* Decide on micro-threading (split-core) mode */
+ subcore_size = threads_per_subcore;
+ cmd_bit = stat_bit = 0;
+ split = core_info.n_subcores;
+ sip = NULL;
+ is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
+
+ if (split > 1) {
+ sip = &split_info;
+ memset(&split_info, 0, sizeof(split_info));
+ for (sub = 0; sub < core_info.n_subcores; ++sub)
+ split_info.vc[sub] = core_info.vc[sub];
+
+ if (is_power8) {
+ if (split == 2 && (dynamic_mt_modes & 2)) {
+ cmd_bit = HID0_POWER8_1TO2LPAR;
+ stat_bit = HID0_POWER8_2LPARMODE;
+ } else {
+ split = 4;
+ cmd_bit = HID0_POWER8_1TO4LPAR;
+ stat_bit = HID0_POWER8_4LPARMODE;
+ }
+ subcore_size = MAX_SMT_THREADS / split;
+ split_info.rpr = mfspr(SPRN_RPR);
+ split_info.pmmar = mfspr(SPRN_PMMAR);
+ split_info.ldbar = mfspr(SPRN_LDBAR);
+ split_info.subcore_size = subcore_size;
+ } else {
+ split_info.subcore_size = 1;
+ }
+
+ /* order writes to split_info before kvm_split_mode pointer */
+ smp_wmb();
+ }
+
+ for (thr = 0; thr < controlled_threads; ++thr) {
+ struct paca_struct *paca = paca_ptrs[pcpu + thr];
+
+ paca->kvm_hstate.napping = 0;
+ paca->kvm_hstate.kvm_split_mode = sip;
+ }
+
+ /* Initiate micro-threading (split-core) on POWER8 if required */
+ if (cmd_bit) {
+ unsigned long hid0 = mfspr(SPRN_HID0);
+
+ hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
+ mb();
+ mtspr(SPRN_HID0, hid0);
+ isync();
+ for (;;) {
+ hid0 = mfspr(SPRN_HID0);
+ if (hid0 & stat_bit)
+ break;
+ cpu_relax();
+ }
+ }
+
+ /*
+ * On POWER8, set RWMR register.
+ * Since it only affects PURR and SPURR, it doesn't affect
+ * the host, so we don't save/restore the host value.
+ */
+ if (is_power8) {
+ unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
+ int n_online = atomic_read(&vc->online_count);
+
+ /*
+ * Use the 8-thread value if we're doing split-core
+ * or if the vcore's online count looks bogus.
+ */
+ if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
+ n_online >= 1 && n_online <= MAX_SMT_THREADS)
+ rwmr_val = p8_rwmr_values[n_online];
+ mtspr(SPRN_RWMR, rwmr_val);
+ }
+
+ /* Start all the threads */
+ active = 0;
+ for (sub = 0; sub < core_info.n_subcores; ++sub) {
+ thr = is_power8 ? subcore_thread_map[sub] : sub;
+ thr0_done = false;
+ active |= 1 << thr;
+ pvc = core_info.vc[sub];
+ pvc->pcpu = pcpu + thr;
+ for_each_runnable_thread(i, vcpu, pvc) {
+ /*
+ * XXX: is kvmppc_start_thread called too late here?
+ * It updates vcpu->cpu and vcpu->arch.thread_cpu
+ * which are used by kvmppc_fast_vcpu_kick_hv(), but
+ * kick is called after new exceptions become available
+ * and exceptions are checked earlier than here, by
+ * kvmppc_core_prepare_to_enter.
+ */
+ kvmppc_start_thread(vcpu, pvc);
+ kvmppc_update_vpa_dispatch(vcpu, pvc);
+ trace_kvm_guest_enter(vcpu);
+ if (!vcpu->arch.ptid)
+ thr0_done = true;
+ active |= 1 << (thr + vcpu->arch.ptid);
+ }
+ /*
+ * We need to start the first thread of each subcore
+ * even if it doesn't have a vcpu.
+ */
+ if (!thr0_done)
+ kvmppc_start_thread(NULL, pvc);
+ }
+
+ /*
+ * Ensure that split_info.do_nap is set after setting
+ * the vcore pointer in the PACA of the secondaries.
+ */
+ smp_mb();
+
+ /*
+ * When doing micro-threading, poke the inactive threads as well.
+ * This gets them to the nap instruction after kvm_do_nap,
+ * which reduces the time taken to unsplit later.
+ */
+ if (cmd_bit) {
+ split_info.do_nap = 1; /* ask secondaries to nap when done */
+ for (thr = 1; thr < threads_per_subcore; ++thr)
+ if (!(active & (1 << thr)))
+ kvmppc_ipi_thread(pcpu + thr);
+ }
+
+ vc->vcore_state = VCORE_RUNNING;
+ preempt_disable();
+
+ trace_kvmppc_run_core(vc, 0);
+
+ for (sub = 0; sub < core_info.n_subcores; ++sub)
+ spin_unlock(&core_info.vc[sub]->lock);
+
+ guest_timing_enter_irqoff();
+
+ srcu_idx = srcu_read_lock(&vc->kvm->srcu);
+
+ guest_state_enter_irqoff();
+ this_cpu_disable_ftrace();
+
+ trap = __kvmppc_vcore_entry();
+
+ this_cpu_enable_ftrace();
+ guest_state_exit_irqoff();
+
+ srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
+
+ set_irq_happened(trap);
+
+ spin_lock(&vc->lock);
+ /* prevent other vcpu threads from doing kvmppc_start_thread() now */
+ vc->vcore_state = VCORE_EXITING;
+
+ /* wait for secondary threads to finish writing their state to memory */
+ kvmppc_wait_for_nap(controlled_threads);
+
+ /* Return to whole-core mode if we split the core earlier */
+ if (cmd_bit) {
+ unsigned long hid0 = mfspr(SPRN_HID0);
+ unsigned long loops = 0;
+
+ hid0 &= ~HID0_POWER8_DYNLPARDIS;
+ stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
+ mb();
+ mtspr(SPRN_HID0, hid0);
+ isync();
+ for (;;) {
+ hid0 = mfspr(SPRN_HID0);
+ if (!(hid0 & stat_bit))
+ break;
+ cpu_relax();
+ ++loops;
+ }
+ split_info.do_nap = 0;
+ }
+
+ kvmppc_set_host_core(pcpu);
+
+ if (!vtime_accounting_enabled_this_cpu()) {
+ local_irq_enable();
+ /*
+ * Service IRQs here before guest_timing_exit_irqoff() so any
+ * ticks that occurred while running the guest are accounted to
+ * the guest. If vtime accounting is enabled, accounting uses
+ * TB rather than ticks, so it can be done without enabling
+ * interrupts here, which has the problem that it accounts
+ * interrupt processing overhead to the host.
+ */
+ local_irq_disable();
+ }
+ guest_timing_exit_irqoff();
+
+ local_irq_enable();
+
+ /* Let secondaries go back to the offline loop */
+ for (i = 0; i < controlled_threads; ++i) {
+ kvmppc_release_hwthread(pcpu + i);
+ if (sip && sip->napped[i])
+ kvmppc_ipi_thread(pcpu + i);
+ }
+
+ spin_unlock(&vc->lock);
+
+ /* make sure updates to secondary vcpu structs are visible now */
+ smp_mb();
+
+ preempt_enable();
+
+ for (sub = 0; sub < core_info.n_subcores; ++sub) {
+ pvc = core_info.vc[sub];
+ post_guest_process(pvc, pvc == vc);
+ }
+
+ spin_lock(&vc->lock);
+
+ out:
+ vc->vcore_state = VCORE_INACTIVE;
+ trace_kvmppc_run_core(vc, 1);
+}
+
+static inline bool hcall_is_xics(unsigned long req)
+{
+ return req == H_EOI || req == H_CPPR || req == H_IPI ||
+ req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
+}
+
+static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
+{
+ struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
+ if (lp) {
+ u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
+ lp->yield_count = cpu_to_be32(yield_count);
+ vcpu->arch.vpa.dirty = 1;
+ }
+}
+
+/* call our hypervisor to load up HV regs and go */
+static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
+{
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+ unsigned long host_psscr;
+ unsigned long msr;
+ struct hv_guest_state hvregs;
+ struct p9_host_os_sprs host_os_sprs;
+ s64 dec;
+ int trap;
+
+ msr = mfmsr();
+
+ save_p9_host_os_sprs(&host_os_sprs);
+
+ /*
+ * We need to save and restore the guest visible part of the
+ * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
+ * doesn't do this for us. Note only required if pseries since
+ * this is done in kvmhv_vcpu_entry_p9() below otherwise.
+ */
+ host_psscr = mfspr(SPRN_PSSCR_PR);
+
+ kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
+ if (lazy_irq_pending())
+ return 0;
+
+ if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
+ msr = mfmsr(); /* TM restore can update msr */
+
+ if (vcpu->arch.psscr != host_psscr)
+ mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
+
+ kvmhv_save_hv_regs(vcpu, &hvregs);
+ hvregs.lpcr = lpcr;
+ hvregs.amor = ~0;
+ vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
+ hvregs.version = HV_GUEST_STATE_VERSION;
+ if (vcpu->arch.nested) {
+ hvregs.lpid = vcpu->arch.nested->shadow_lpid;
+ hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
+ } else {
+ hvregs.lpid = vcpu->kvm->arch.lpid;
+ hvregs.vcpu_token = vcpu->vcpu_id;
+ }
+ hvregs.hdec_expiry = time_limit;
+
+ /*
+ * When setting DEC, we must always deal with irq_work_raise
+ * via NMI vs setting DEC. The problem occurs right as we
+ * switch into guest mode if a NMI hits and sets pending work
+ * and sets DEC, then that will apply to the guest and not
+ * bring us back to the host.
+ *
+ * irq_work_raise could check a flag (or possibly LPCR[HDICE]
+ * for example) and set HDEC to 1? That wouldn't solve the
+ * nested hv case which needs to abort the hcall or zero the
+ * time limit.
+ *
+ * XXX: Another day's problem.
+ */
+ mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
+
+ mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
+ mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
+ switch_pmu_to_guest(vcpu, &host_os_sprs);
+ accumulate_time(vcpu, &vcpu->arch.in_guest);
+ trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
+ __pa(&vcpu->arch.regs));
+ accumulate_time(vcpu, &vcpu->arch.guest_exit);
+ kvmhv_restore_hv_return_state(vcpu, &hvregs);
+ switch_pmu_to_host(vcpu, &host_os_sprs);
+ vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
+ vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
+ vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
+ vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
+
+ store_vcpu_state(vcpu);
+
+ dec = mfspr(SPRN_DEC);
+ if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
+ dec = (s32) dec;
+ *tb = mftb();
+ vcpu->arch.dec_expires = dec + (*tb + vc->tb_offset);
+
+ timer_rearm_host_dec(*tb);
+
+ restore_p9_host_os_sprs(vcpu, &host_os_sprs);
+ if (vcpu->arch.psscr != host_psscr)
+ mtspr(SPRN_PSSCR_PR, host_psscr);
+
+ return trap;
+}
+
+/*
+ * Guest entry for POWER9 and later CPUs.
+ */
+static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
+ unsigned long lpcr, u64 *tb)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_nested_guest *nested = vcpu->arch.nested;
+ u64 next_timer;
+ int trap;
+
+ next_timer = timer_get_next_tb();
+ if (*tb >= next_timer)
+ return BOOK3S_INTERRUPT_HV_DECREMENTER;
+ if (next_timer < time_limit)
+ time_limit = next_timer;
+ else if (*tb >= time_limit) /* nested time limit */
+ return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
+
+ vcpu->arch.ceded = 0;
+
+ vcpu_vpa_increment_dispatch(vcpu);
+
+ if (kvmhv_on_pseries()) {
+ trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
+
+ /* H_CEDE has to be handled now, not later */
+ if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested &&
+ kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
+ kvmppc_cede(vcpu);
+ kvmppc_set_gpr(vcpu, 3, 0);
+ trap = 0;
+ }
+
+ } else if (nested) {
+ __this_cpu_write(cpu_in_guest, kvm);
+ trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
+ __this_cpu_write(cpu_in_guest, NULL);
+
+ } else {
+ kvmppc_xive_push_vcpu(vcpu);
+
+ __this_cpu_write(cpu_in_guest, kvm);
+ trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
+ __this_cpu_write(cpu_in_guest, NULL);
+
+ if (trap == BOOK3S_INTERRUPT_SYSCALL &&
+ !(vcpu->arch.shregs.msr & MSR_PR)) {
+ unsigned long req = kvmppc_get_gpr(vcpu, 3);
+
+ /*
+ * XIVE rearm and XICS hcalls must be handled
+ * before xive context is pulled (is this
+ * true?)
+ */
+ if (req == H_CEDE) {
+ /* H_CEDE has to be handled now */
+ kvmppc_cede(vcpu);
+ if (!kvmppc_xive_rearm_escalation(vcpu)) {
+ /*
+ * Pending escalation so abort
+ * the cede.
+ */
+ vcpu->arch.ceded = 0;
+ }
+ kvmppc_set_gpr(vcpu, 3, 0);
+ trap = 0;
+
+ } else if (req == H_ENTER_NESTED) {
+ /*
+ * L2 should not run with the L1
+ * context so rearm and pull it.
+ */
+ if (!kvmppc_xive_rearm_escalation(vcpu)) {
+ /*
+ * Pending escalation so abort
+ * H_ENTER_NESTED.
+ */
+ kvmppc_set_gpr(vcpu, 3, 0);
+ trap = 0;
+ }
+
+ } else if (hcall_is_xics(req)) {
+ int ret;
+
+ ret = kvmppc_xive_xics_hcall(vcpu, req);
+ if (ret != H_TOO_HARD) {
+ kvmppc_set_gpr(vcpu, 3, ret);
+ trap = 0;
+ }
+ }
+ }
+ kvmppc_xive_pull_vcpu(vcpu);
+
+ if (kvm_is_radix(kvm))
+ vcpu->arch.slb_max = 0;
+ }
+
+ vcpu_vpa_increment_dispatch(vcpu);
+
+ return trap;
+}
+
+/*
+ * Wait for some other vcpu thread to execute us, and
+ * wake us up when we need to handle something in the host.
+ */
+static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
+ struct kvm_vcpu *vcpu, int wait_state)
+{
+ DEFINE_WAIT(wait);
+
+ prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
+ if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
+ spin_unlock(&vc->lock);
+ schedule();
+ spin_lock(&vc->lock);
+ }
+ finish_wait(&vcpu->arch.cpu_run, &wait);
+}
+
+static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
+{
+ if (!halt_poll_ns_grow)
+ return;
+
+ vc->halt_poll_ns *= halt_poll_ns_grow;
+ if (vc->halt_poll_ns < halt_poll_ns_grow_start)
+ vc->halt_poll_ns = halt_poll_ns_grow_start;
+}
+
+static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
+{
+ if (halt_poll_ns_shrink == 0)
+ vc->halt_poll_ns = 0;
+ else
+ vc->halt_poll_ns /= halt_poll_ns_shrink;
+}
+
+#ifdef CONFIG_KVM_XICS
+static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
+{
+ if (!xics_on_xive())
+ return false;
+ return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
+ vcpu->arch.xive_saved_state.cppr;
+}
+#else
+static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
+{
+ return false;
+}
+#endif /* CONFIG_KVM_XICS */
+
+static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
+ kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
+ return true;
+
+ return false;
+}
+
+static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
+{
+ if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
+ return true;
+ return false;
+}
+
+/*
+ * Check to see if any of the runnable vcpus on the vcore have pending
+ * exceptions or are no longer ceded
+ */
+static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
+{
+ struct kvm_vcpu *vcpu;
+ int i;
+
+ for_each_runnable_thread(i, vcpu, vc) {
+ if (kvmppc_vcpu_check_block(vcpu))
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * All the vcpus in this vcore are idle, so wait for a decrementer
+ * or external interrupt to one of the vcpus. vc->lock is held.
+ */
+static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
+{
+ ktime_t cur, start_poll, start_wait;
+ int do_sleep = 1;
+ u64 block_ns;
+
+ WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
+
+ /* Poll for pending exceptions and ceded state */
+ cur = start_poll = ktime_get();
+ if (vc->halt_poll_ns) {
+ ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
+ ++vc->runner->stat.generic.halt_attempted_poll;
+
+ vc->vcore_state = VCORE_POLLING;
+ spin_unlock(&vc->lock);
+
+ do {
+ if (kvmppc_vcore_check_block(vc)) {
+ do_sleep = 0;
+ break;
+ }
+ cur = ktime_get();
+ } while (kvm_vcpu_can_poll(cur, stop));
+
+ spin_lock(&vc->lock);
+ vc->vcore_state = VCORE_INACTIVE;
+
+ if (!do_sleep) {
+ ++vc->runner->stat.generic.halt_successful_poll;
+ goto out;
+ }
+ }
+
+ prepare_to_rcuwait(&vc->wait);
+ set_current_state(TASK_INTERRUPTIBLE);
+ if (kvmppc_vcore_check_block(vc)) {
+ finish_rcuwait(&vc->wait);
+ do_sleep = 0;
+ /* If we polled, count this as a successful poll */
+ if (vc->halt_poll_ns)
+ ++vc->runner->stat.generic.halt_successful_poll;
+ goto out;
+ }
+
+ start_wait = ktime_get();
+
+ vc->vcore_state = VCORE_SLEEPING;
+ trace_kvmppc_vcore_blocked(vc->runner, 0);
+ spin_unlock(&vc->lock);
+ schedule();
+ finish_rcuwait(&vc->wait);
+ spin_lock(&vc->lock);
+ vc->vcore_state = VCORE_INACTIVE;
+ trace_kvmppc_vcore_blocked(vc->runner, 1);
+ ++vc->runner->stat.halt_successful_wait;
+
+ cur = ktime_get();
+
+out:
+ block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
+
+ /* Attribute wait time */
+ if (do_sleep) {
+ vc->runner->stat.generic.halt_wait_ns +=
+ ktime_to_ns(cur) - ktime_to_ns(start_wait);
+ KVM_STATS_LOG_HIST_UPDATE(
+ vc->runner->stat.generic.halt_wait_hist,
+ ktime_to_ns(cur) - ktime_to_ns(start_wait));
+ /* Attribute failed poll time */
+ if (vc->halt_poll_ns) {
+ vc->runner->stat.generic.halt_poll_fail_ns +=
+ ktime_to_ns(start_wait) -
+ ktime_to_ns(start_poll);
+ KVM_STATS_LOG_HIST_UPDATE(
+ vc->runner->stat.generic.halt_poll_fail_hist,
+ ktime_to_ns(start_wait) -
+ ktime_to_ns(start_poll));
+ }
+ } else {
+ /* Attribute successful poll time */
+ if (vc->halt_poll_ns) {
+ vc->runner->stat.generic.halt_poll_success_ns +=
+ ktime_to_ns(cur) -
+ ktime_to_ns(start_poll);
+ KVM_STATS_LOG_HIST_UPDATE(
+ vc->runner->stat.generic.halt_poll_success_hist,
+ ktime_to_ns(cur) - ktime_to_ns(start_poll));
+ }
+ }
+
+ /* Adjust poll time */
+ if (halt_poll_ns) {
+ if (block_ns <= vc->halt_poll_ns)
+ ;
+ /* We slept and blocked for longer than the max halt time */
+ else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
+ shrink_halt_poll_ns(vc);
+ /* We slept and our poll time is too small */
+ else if (vc->halt_poll_ns < halt_poll_ns &&
+ block_ns < halt_poll_ns)
+ grow_halt_poll_ns(vc);
+ if (vc->halt_poll_ns > halt_poll_ns)
+ vc->halt_poll_ns = halt_poll_ns;
+ } else
+ vc->halt_poll_ns = 0;
+
+ trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
+}
+
+/*
+ * This never fails for a radix guest, as none of the operations it does
+ * for a radix guest can fail or have a way to report failure.
+ */
+static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
+{
+ int r = 0;
+ struct kvm *kvm = vcpu->kvm;
+
+ mutex_lock(&kvm->arch.mmu_setup_lock);
+ if (!kvm->arch.mmu_ready) {
+ if (!kvm_is_radix(kvm))
+ r = kvmppc_hv_setup_htab_rma(vcpu);
+ if (!r) {
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ kvmppc_setup_partition_table(kvm);
+ kvm->arch.mmu_ready = 1;
+ }
+ }
+ mutex_unlock(&kvm->arch.mmu_setup_lock);
+ return r;
+}
+
+static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+ int n_ceded, i, r;
+ struct kvmppc_vcore *vc;
+ struct kvm_vcpu *v;
+
+ trace_kvmppc_run_vcpu_enter(vcpu);
+
+ run->exit_reason = 0;
+ vcpu->arch.ret = RESUME_GUEST;
+ vcpu->arch.trap = 0;
+ kvmppc_update_vpas(vcpu);
+
+ /*
+ * Synchronize with other threads in this virtual core
+ */
+ vc = vcpu->arch.vcore;
+ spin_lock(&vc->lock);
+ vcpu->arch.ceded = 0;
+ vcpu->arch.run_task = current;
+ vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
+ vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
+ vcpu->arch.busy_preempt = TB_NIL;
+ WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
+ ++vc->n_runnable;
+
+ /*
+ * This happens the first time this is called for a vcpu.
+ * If the vcore is already running, we may be able to start
+ * this thread straight away and have it join in.
+ */
+ if (!signal_pending(current)) {
+ if ((vc->vcore_state == VCORE_PIGGYBACK ||
+ vc->vcore_state == VCORE_RUNNING) &&
+ !VCORE_IS_EXITING(vc)) {
+ kvmppc_update_vpa_dispatch(vcpu, vc);
+ kvmppc_start_thread(vcpu, vc);
+ trace_kvm_guest_enter(vcpu);
+ } else if (vc->vcore_state == VCORE_SLEEPING) {
+ rcuwait_wake_up(&vc->wait);
+ }
+
+ }
+
+ while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
+ !signal_pending(current)) {
+ /* See if the MMU is ready to go */
+ if (!vcpu->kvm->arch.mmu_ready) {
+ spin_unlock(&vc->lock);
+ r = kvmhv_setup_mmu(vcpu);
+ spin_lock(&vc->lock);
+ if (r) {
+ run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+ run->fail_entry.
+ hardware_entry_failure_reason = 0;
+ vcpu->arch.ret = r;
+ break;
+ }
+ }
+
+ if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
+ kvmppc_vcore_end_preempt(vc);
+
+ if (vc->vcore_state != VCORE_INACTIVE) {
+ kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
+ continue;
+ }
+ for_each_runnable_thread(i, v, vc) {
+ kvmppc_core_prepare_to_enter(v);
+ if (signal_pending(v->arch.run_task)) {
+ kvmppc_remove_runnable(vc, v, mftb());
+ v->stat.signal_exits++;
+ v->run->exit_reason = KVM_EXIT_INTR;
+ v->arch.ret = -EINTR;
+ wake_up(&v->arch.cpu_run);
+ }
+ }
+ if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
+ break;
+ n_ceded = 0;
+ for_each_runnable_thread(i, v, vc) {
+ if (!kvmppc_vcpu_woken(v))
+ n_ceded += v->arch.ceded;
+ else
+ v->arch.ceded = 0;
+ }
+ vc->runner = vcpu;
+ if (n_ceded == vc->n_runnable) {
+ kvmppc_vcore_blocked(vc);
+ } else if (need_resched()) {
+ kvmppc_vcore_preempt(vc);
+ /* Let something else run */
+ cond_resched_lock(&vc->lock);
+ if (vc->vcore_state == VCORE_PREEMPT)
+ kvmppc_vcore_end_preempt(vc);
+ } else {
+ kvmppc_run_core(vc);
+ }
+ vc->runner = NULL;
+ }
+
+ while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
+ (vc->vcore_state == VCORE_RUNNING ||
+ vc->vcore_state == VCORE_EXITING ||
+ vc->vcore_state == VCORE_PIGGYBACK))
+ kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
+
+ if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
+ kvmppc_vcore_end_preempt(vc);
+
+ if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
+ kvmppc_remove_runnable(vc, vcpu, mftb());
+ vcpu->stat.signal_exits++;
+ run->exit_reason = KVM_EXIT_INTR;
+ vcpu->arch.ret = -EINTR;
+ }
+
+ if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
+ /* Wake up some vcpu to run the core */
+ i = -1;
+ v = next_runnable_thread(vc, &i);
+ wake_up(&v->arch.cpu_run);
+ }
+
+ trace_kvmppc_run_vcpu_exit(vcpu);
+ spin_unlock(&vc->lock);
+ return vcpu->arch.ret;
+}
+
+int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
+ unsigned long lpcr)
+{
+ struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
+ struct kvm_run *run = vcpu->run;
+ int trap, r, pcpu;
+ int srcu_idx;
+ struct kvmppc_vcore *vc;
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_nested_guest *nested = vcpu->arch.nested;
+ unsigned long flags;
+ u64 tb;
+
+ trace_kvmppc_run_vcpu_enter(vcpu);
+
+ run->exit_reason = 0;
+ vcpu->arch.ret = RESUME_GUEST;
+ vcpu->arch.trap = 0;
+
+ vc = vcpu->arch.vcore;
+ vcpu->arch.ceded = 0;
+ vcpu->arch.run_task = current;
+ vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
+
+ /* See if the MMU is ready to go */
+ if (unlikely(!kvm->arch.mmu_ready)) {
+ r = kvmhv_setup_mmu(vcpu);
+ if (r) {
+ run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+ run->fail_entry.hardware_entry_failure_reason = 0;
+ vcpu->arch.ret = r;
+ return r;
+ }
+ }
+
+ if (need_resched())
+ cond_resched();
+
+ kvmppc_update_vpas(vcpu);
+
+ preempt_disable();
+ pcpu = smp_processor_id();
+ if (kvm_is_radix(kvm))
+ kvmppc_prepare_radix_vcpu(vcpu, pcpu);
+
+ /* flags save not required, but irq_pmu has no disable/enable API */
+ powerpc_local_irq_pmu_save(flags);
+
+ vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
+
+ if (signal_pending(current))
+ goto sigpend;
+ if (need_resched() || !kvm->arch.mmu_ready)
+ goto out;
+
+ vcpu->cpu = pcpu;
+ vcpu->arch.thread_cpu = pcpu;
+ vc->pcpu = pcpu;
+ local_paca->kvm_hstate.kvm_vcpu = vcpu;
+ local_paca->kvm_hstate.ptid = 0;
+ local_paca->kvm_hstate.fake_suspend = 0;
+
+ /*
+ * Orders set cpu/thread_cpu vs testing for pending interrupts and
+ * doorbells below. The other side is when these fields are set vs
+ * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to
+ * kick a vCPU to notice the pending interrupt.
+ */
+ smp_mb();
+
+ if (!nested) {
+ kvmppc_core_prepare_to_enter(vcpu);
+ if (vcpu->arch.shregs.msr & MSR_EE) {
+ if (xive_interrupt_pending(vcpu))
+ kvmppc_inject_interrupt_hv(vcpu,
+ BOOK3S_INTERRUPT_EXTERNAL, 0);
+ } else if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
+ &vcpu->arch.pending_exceptions)) {
+ lpcr |= LPCR_MER;
+ }
+ } else if (vcpu->arch.pending_exceptions ||
+ vcpu->arch.doorbell_request ||
+ xive_interrupt_pending(vcpu)) {
+ vcpu->arch.ret = RESUME_HOST;
+ goto out;
+ }
+
+ if (vcpu->arch.timer_running) {
+ hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
+ vcpu->arch.timer_running = 0;
+ }
+
+ tb = mftb();
+
+ kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + vc->tb_offset);
+
+ trace_kvm_guest_enter(vcpu);
+
+ guest_timing_enter_irqoff();
+
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+
+ guest_state_enter_irqoff();
+ this_cpu_disable_ftrace();
+
+ trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
+ vcpu->arch.trap = trap;
+
+ this_cpu_enable_ftrace();
+ guest_state_exit_irqoff();
+
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+
+ set_irq_happened(trap);
+
+ vcpu->cpu = -1;
+ vcpu->arch.thread_cpu = -1;
+ vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
+
+ if (!vtime_accounting_enabled_this_cpu()) {
+ powerpc_local_irq_pmu_restore(flags);
+ /*
+ * Service IRQs here before guest_timing_exit_irqoff() so any
+ * ticks that occurred while running the guest are accounted to
+ * the guest. If vtime accounting is enabled, accounting uses
+ * TB rather than ticks, so it can be done without enabling
+ * interrupts here, which has the problem that it accounts
+ * interrupt processing overhead to the host.
+ */
+ powerpc_local_irq_pmu_save(flags);
+ }
+ guest_timing_exit_irqoff();
+
+ powerpc_local_irq_pmu_restore(flags);
+
+ preempt_enable();
+
+ /*
+ * cancel pending decrementer exception if DEC is now positive, or if
+ * entering a nested guest in which case the decrementer is now owned
+ * by L2 and the L1 decrementer is provided in hdec_expires
+ */
+ if (kvmppc_core_pending_dec(vcpu) &&
+ ((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
+ (trap == BOOK3S_INTERRUPT_SYSCALL &&
+ kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
+ kvmppc_core_dequeue_dec(vcpu);
+
+ trace_kvm_guest_exit(vcpu);
+ r = RESUME_GUEST;
+ if (trap) {
+ if (!nested)
+ r = kvmppc_handle_exit_hv(vcpu, current);
+ else
+ r = kvmppc_handle_nested_exit(vcpu);
+ }
+ vcpu->arch.ret = r;
+
+ if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
+ kvmppc_set_timer(vcpu);
+
+ prepare_to_rcuwait(wait);
+ for (;;) {
+ set_current_state(TASK_INTERRUPTIBLE);
+ if (signal_pending(current)) {
+ vcpu->stat.signal_exits++;
+ run->exit_reason = KVM_EXIT_INTR;
+ vcpu->arch.ret = -EINTR;
+ break;
+ }
+
+ if (kvmppc_vcpu_check_block(vcpu))
+ break;
+
+ trace_kvmppc_vcore_blocked(vcpu, 0);
+ schedule();
+ trace_kvmppc_vcore_blocked(vcpu, 1);
+ }
+ finish_rcuwait(wait);
+ }
+ vcpu->arch.ceded = 0;
+
+ done:
+ trace_kvmppc_run_vcpu_exit(vcpu);
+
+ return vcpu->arch.ret;
+
+ sigpend:
+ vcpu->stat.signal_exits++;
+ run->exit_reason = KVM_EXIT_INTR;
+ vcpu->arch.ret = -EINTR;
+ out:
+ vcpu->cpu = -1;
+ vcpu->arch.thread_cpu = -1;
+ vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
+ powerpc_local_irq_pmu_restore(flags);
+ preempt_enable();
+ goto done;
+}
+
+static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+ int r;
+ int srcu_idx;
+ struct kvm *kvm;
+ unsigned long msr;
+
+ start_timing(vcpu, &vcpu->arch.vcpu_entry);
+
+ if (!vcpu->arch.sane) {
+ run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ return -EINVAL;
+ }
+
+ /* No need to go into the guest when all we'll do is come back out */
+ if (signal_pending(current)) {
+ run->exit_reason = KVM_EXIT_INTR;
+ return -EINTR;
+ }
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ /*
+ * Don't allow entry with a suspended transaction, because
+ * the guest entry/exit code will lose it.
+ */
+ if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
+ (current->thread.regs->msr & MSR_TM)) {
+ if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
+ run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+ run->fail_entry.hardware_entry_failure_reason = 0;
+ return -EINVAL;
+ }
+ }
+#endif
+
+ /*
+ * Force online to 1 for the sake of old userspace which doesn't
+ * set it.
+ */
+ if (!vcpu->arch.online) {
+ atomic_inc(&vcpu->arch.vcore->online_count);
+ vcpu->arch.online = 1;
+ }
+
+ kvmppc_core_prepare_to_enter(vcpu);
+
+ kvm = vcpu->kvm;
+ atomic_inc(&kvm->arch.vcpus_running);
+ /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
+ smp_mb();
+
+ msr = 0;
+ if (IS_ENABLED(CONFIG_PPC_FPU))
+ msr |= MSR_FP;
+ if (cpu_has_feature(CPU_FTR_ALTIVEC))
+ msr |= MSR_VEC;
+ if (cpu_has_feature(CPU_FTR_VSX))
+ msr |= MSR_VSX;
+ if ((cpu_has_feature(CPU_FTR_TM) ||
+ cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
+ (vcpu->arch.hfscr & HFSCR_TM))
+ msr |= MSR_TM;
+ msr = msr_check_and_set(msr);
+
+ kvmppc_save_user_regs();
+
+ kvmppc_save_current_sprs();
+
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ vcpu->arch.waitp = &vcpu->arch.vcore->wait;
+ vcpu->arch.pgdir = kvm->mm->pgd;
+ vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
+
+ do {
+ accumulate_time(vcpu, &vcpu->arch.guest_entry);
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
+ vcpu->arch.vcore->lpcr);
+ else
+ r = kvmppc_run_vcpu(vcpu);
+
+ if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
+ accumulate_time(vcpu, &vcpu->arch.hcall);
+
+ if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) {
+ /*
+ * These should have been caught reflected
+ * into the guest by now. Final sanity check:
+ * don't allow userspace to execute hcalls in
+ * the hypervisor.
+ */
+ r = RESUME_GUEST;
+ continue;
+ }
+ trace_kvm_hcall_enter(vcpu);
+ r = kvmppc_pseries_do_hcall(vcpu);
+ trace_kvm_hcall_exit(vcpu, r);
+ kvmppc_core_prepare_to_enter(vcpu);
+ } else if (r == RESUME_PAGE_FAULT) {
+ accumulate_time(vcpu, &vcpu->arch.pg_fault);
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+ r = kvmppc_book3s_hv_page_fault(vcpu,
+ vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+ } else if (r == RESUME_PASSTHROUGH) {
+ if (WARN_ON(xics_on_xive()))
+ r = H_SUCCESS;
+ else
+ r = kvmppc_xics_rm_complete(vcpu, 0);
+ }
+ } while (is_kvmppc_resume_guest(r));
+ accumulate_time(vcpu, &vcpu->arch.vcpu_exit);
+
+ vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
+ atomic_dec(&kvm->arch.vcpus_running);
+
+ srr_regs_clobbered();
+
+ end_timing(vcpu);
+
+ return r;
+}
+
+static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
+ int shift, int sllp)
+{
+ (*sps)->page_shift = shift;
+ (*sps)->slb_enc = sllp;
+ (*sps)->enc[0].page_shift = shift;
+ (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
+ /*
+ * Add 16MB MPSS support (may get filtered out by userspace)
+ */
+ if (shift != 24) {
+ int penc = kvmppc_pgsize_lp_encoding(shift, 24);
+ if (penc != -1) {
+ (*sps)->enc[1].page_shift = 24;
+ (*sps)->enc[1].pte_enc = penc;
+ }
+ }
+ (*sps)++;
+}
+
+static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
+ struct kvm_ppc_smmu_info *info)
+{
+ struct kvm_ppc_one_seg_page_size *sps;
+
+ /*
+ * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
+ * POWER7 doesn't support keys for instruction accesses,
+ * POWER8 and POWER9 do.
+ */
+ info->data_keys = 32;
+ info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
+
+ /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
+ info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
+ info->slb_size = 32;
+
+ /* We only support these sizes for now, and no muti-size segments */
+ sps = &info->sps[0];
+ kvmppc_add_seg_page_size(&sps, 12, 0);
+ kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
+ kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
+
+ /* If running as a nested hypervisor, we don't support HPT guests */
+ if (kvmhv_on_pseries())
+ info->flags |= KVM_PPC_NO_HASH;
+
+ return 0;
+}
+
+/*
+ * Get (and clear) the dirty memory log for a memory slot.
+ */
+static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
+ struct kvm_dirty_log *log)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ int r;
+ unsigned long n, i;
+ unsigned long *buf, *p;
+ struct kvm_vcpu *vcpu;
+
+ mutex_lock(&kvm->slots_lock);
+
+ r = -EINVAL;
+ if (log->slot >= KVM_USER_MEM_SLOTS)
+ goto out;
+
+ slots = kvm_memslots(kvm);
+ memslot = id_to_memslot(slots, log->slot);
+ r = -ENOENT;
+ if (!memslot || !memslot->dirty_bitmap)
+ goto out;
+
+ /*
+ * Use second half of bitmap area because both HPT and radix
+ * accumulate bits in the first half.
+ */
+ n = kvm_dirty_bitmap_bytes(memslot);
+ buf = memslot->dirty_bitmap + n / sizeof(long);
+ memset(buf, 0, n);
+
+ if (kvm_is_radix(kvm))
+ r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
+ else
+ r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
+ if (r)
+ goto out;
+
+ /*
+ * We accumulate dirty bits in the first half of the
+ * memslot's dirty_bitmap area, for when pages are paged
+ * out or modified by the host directly. Pick up these
+ * bits and add them to the map.
+ */
+ p = memslot->dirty_bitmap;
+ for (i = 0; i < n / sizeof(long); ++i)
+ buf[i] |= xchg(&p[i], 0);
+
+ /* Harvest dirty bits from VPA and DTL updates */
+ /* Note: we never modify the SLB shadow buffer areas */
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
+ kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+ }
+
+ r = -EFAULT;
+ if (copy_to_user(log->dirty_bitmap, buf, n))
+ goto out;
+
+ r = 0;
+out:
+ mutex_unlock(&kvm->slots_lock);
+ return r;
+}
+
+static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
+{
+ vfree(slot->arch.rmap);
+ slot->arch.rmap = NULL;
+}
+
+static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
+ const struct kvm_memory_slot *old,
+ struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ if (change == KVM_MR_CREATE) {
+ unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
+
+ if ((size >> PAGE_SHIFT) > totalram_pages())
+ return -ENOMEM;
+
+ new->arch.rmap = vzalloc(size);
+ if (!new->arch.rmap)
+ return -ENOMEM;
+ } else if (change != KVM_MR_DELETE) {
+ new->arch.rmap = old->arch.rmap;
+ }
+
+ return 0;
+}
+
+static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
+ struct kvm_memory_slot *old,
+ const struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ /*
+ * If we are creating or modifying a memslot, it might make
+ * some address that was previously cached as emulated
+ * MMIO be no longer emulated MMIO, so invalidate
+ * all the caches of emulated MMIO translations.
+ */
+ if (change != KVM_MR_DELETE)
+ atomic64_inc(&kvm->arch.mmio_update);
+
+ /*
+ * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
+ * have already called kvm_arch_flush_shadow_memslot() to
+ * flush shadow mappings. For KVM_MR_CREATE we have no
+ * previous mappings. So the only case to handle is
+ * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
+ * has been changed.
+ * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
+ * to get rid of any THP PTEs in the partition-scoped page tables
+ * so we can track dirtiness at the page level; we flush when
+ * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
+ * using THP PTEs.
+ */
+ if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
+ ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
+ kvmppc_radix_flush_memslot(kvm, old);
+ /*
+ * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
+ */
+ if (!kvm->arch.secure_guest)
+ return;
+
+ switch (change) {
+ case KVM_MR_CREATE:
+ /*
+ * @TODO kvmppc_uvmem_memslot_create() can fail and
+ * return error. Fix this.
+ */
+ kvmppc_uvmem_memslot_create(kvm, new);
+ break;
+ case KVM_MR_DELETE:
+ kvmppc_uvmem_memslot_delete(kvm, old);
+ break;
+ default:
+ /* TODO: Handle KVM_MR_MOVE */
+ break;
+ }
+}
+
+/*
+ * Update LPCR values in kvm->arch and in vcores.
+ * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
+ * of kvm->arch.lpcr update).
+ */
+void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
+{
+ long int i;
+ u32 cores_done = 0;
+
+ if ((kvm->arch.lpcr & mask) == lpcr)
+ return;
+
+ kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
+
+ for (i = 0; i < KVM_MAX_VCORES; ++i) {
+ struct kvmppc_vcore *vc = kvm->arch.vcores[i];
+ if (!vc)
+ continue;
+
+ spin_lock(&vc->lock);
+ vc->lpcr = (vc->lpcr & ~mask) | lpcr;
+ verify_lpcr(kvm, vc->lpcr);
+ spin_unlock(&vc->lock);
+ if (++cores_done >= kvm->arch.online_vcores)
+ break;
+ }
+}
+
+void kvmppc_setup_partition_table(struct kvm *kvm)
+{
+ unsigned long dw0, dw1;
+
+ if (!kvm_is_radix(kvm)) {
+ /* PS field - page size for VRMA */
+ dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
+ ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
+ /* HTABSIZE and HTABORG fields */
+ dw0 |= kvm->arch.sdr1;
+
+ /* Second dword as set by userspace */
+ dw1 = kvm->arch.process_table;
+ } else {
+ dw0 = PATB_HR | radix__get_tree_size() |
+ __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
+ dw1 = PATB_GR | kvm->arch.process_table;
+ }
+ kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
+}
+
+/*
+ * Set up HPT (hashed page table) and RMA (real-mode area).
+ * Must be called with kvm->arch.mmu_setup_lock held.
+ */
+static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
+{
+ int err = 0;
+ struct kvm *kvm = vcpu->kvm;
+ unsigned long hva;
+ struct kvm_memory_slot *memslot;
+ struct vm_area_struct *vma;
+ unsigned long lpcr = 0, senc;
+ unsigned long psize, porder;
+ int srcu_idx;
+
+ /* Allocate hashed page table (if not done already) and reset it */
+ if (!kvm->arch.hpt.virt) {
+ int order = KVM_DEFAULT_HPT_ORDER;
+ struct kvm_hpt_info info;
+
+ err = kvmppc_allocate_hpt(&info, order);
+ /* If we get here, it means userspace didn't specify a
+ * size explicitly. So, try successively smaller
+ * sizes if the default failed. */
+ while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
+ err = kvmppc_allocate_hpt(&info, order);
+
+ if (err < 0) {
+ pr_err("KVM: Couldn't alloc HPT\n");
+ goto out;
+ }
+
+ kvmppc_set_hpt(kvm, &info);
+ }
+
+ /* Look up the memslot for guest physical address 0 */
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+ memslot = gfn_to_memslot(kvm, 0);
+
+ /* We must have some memory at 0 by now */
+ err = -EINVAL;
+ if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
+ goto out_srcu;
+
+ /* Look up the VMA for the start of this memory slot */
+ hva = memslot->userspace_addr;
+ mmap_read_lock(kvm->mm);
+ vma = vma_lookup(kvm->mm, hva);
+ if (!vma || (vma->vm_flags & VM_IO))
+ goto up_out;
+
+ psize = vma_kernel_pagesize(vma);
+
+ mmap_read_unlock(kvm->mm);
+
+ /* We can handle 4k, 64k or 16M pages in the VRMA */
+ if (psize >= 0x1000000)
+ psize = 0x1000000;
+ else if (psize >= 0x10000)
+ psize = 0x10000;
+ else
+ psize = 0x1000;
+ porder = __ilog2(psize);
+
+ senc = slb_pgsize_encoding(psize);
+ kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
+ (VRMA_VSID << SLB_VSID_SHIFT_1T);
+ /* Create HPTEs in the hash page table for the VRMA */
+ kvmppc_map_vrma(vcpu, memslot, porder);
+
+ /* Update VRMASD field in the LPCR */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
+ /* the -4 is to account for senc values starting at 0x10 */
+ lpcr = senc << (LPCR_VRMASD_SH - 4);
+ kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
+ }
+
+ /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
+ smp_wmb();
+ err = 0;
+ out_srcu:
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+ out:
+ return err;
+
+ up_out:
+ mmap_read_unlock(kvm->mm);
+ goto out_srcu;
+}
+
+/*
+ * Must be called with kvm->arch.mmu_setup_lock held and
+ * mmu_ready = 0 and no vcpus running.
+ */
+int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
+{
+ unsigned long lpcr, lpcr_mask;
+
+ if (nesting_enabled(kvm))
+ kvmhv_release_all_nested(kvm);
+ kvmppc_rmap_reset(kvm);
+ kvm->arch.process_table = 0;
+ /* Mutual exclusion with kvm_unmap_gfn_range etc. */
+ spin_lock(&kvm->mmu_lock);
+ kvm->arch.radix = 0;
+ spin_unlock(&kvm->mmu_lock);
+ kvmppc_free_radix(kvm);
+
+ lpcr = LPCR_VPM1;
+ lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
+ if (cpu_has_feature(CPU_FTR_ARCH_31))
+ lpcr_mask |= LPCR_HAIL;
+ kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
+
+ return 0;
+}
+
+/*
+ * Must be called with kvm->arch.mmu_setup_lock held and
+ * mmu_ready = 0 and no vcpus running.
+ */
+int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
+{
+ unsigned long lpcr, lpcr_mask;
+ int err;
+
+ err = kvmppc_init_vm_radix(kvm);
+ if (err)
+ return err;
+ kvmppc_rmap_reset(kvm);
+ /* Mutual exclusion with kvm_unmap_gfn_range etc. */
+ spin_lock(&kvm->mmu_lock);
+ kvm->arch.radix = 1;
+ spin_unlock(&kvm->mmu_lock);
+ kvmppc_free_hpt(&kvm->arch.hpt);
+
+ lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
+ lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
+ if (cpu_has_feature(CPU_FTR_ARCH_31)) {
+ lpcr_mask |= LPCR_HAIL;
+ if (cpu_has_feature(CPU_FTR_HVMODE) &&
+ (kvm->arch.host_lpcr & LPCR_HAIL))
+ lpcr |= LPCR_HAIL;
+ }
+ kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
+
+ return 0;
+}
+
+#ifdef CONFIG_KVM_XICS
+/*
+ * Allocate a per-core structure for managing state about which cores are
+ * running in the host versus the guest and for exchanging data between
+ * real mode KVM and CPU running in the host.
+ * This is only done for the first VM.
+ * The allocated structure stays even if all VMs have stopped.
+ * It is only freed when the kvm-hv module is unloaded.
+ * It's OK for this routine to fail, we just don't support host
+ * core operations like redirecting H_IPI wakeups.
+ */
+void kvmppc_alloc_host_rm_ops(void)
+{
+ struct kvmppc_host_rm_ops *ops;
+ unsigned long l_ops;
+ int cpu, core;
+ int size;
+
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ return;
+
+ /* Not the first time here ? */
+ if (kvmppc_host_rm_ops_hv != NULL)
+ return;
+
+ ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
+ if (!ops)
+ return;
+
+ size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
+ ops->rm_core = kzalloc(size, GFP_KERNEL);
+
+ if (!ops->rm_core) {
+ kfree(ops);
+ return;
+ }
+
+ cpus_read_lock();
+
+ for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
+ if (!cpu_online(cpu))
+ continue;
+
+ core = cpu >> threads_shift;
+ ops->rm_core[core].rm_state.in_host = 1;
+ }
+
+ ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
+
+ /*
+ * Make the contents of the kvmppc_host_rm_ops structure visible
+ * to other CPUs before we assign it to the global variable.
+ * Do an atomic assignment (no locks used here), but if someone
+ * beats us to it, just free our copy and return.
+ */
+ smp_wmb();
+ l_ops = (unsigned long) ops;
+
+ if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
+ cpus_read_unlock();
+ kfree(ops->rm_core);
+ kfree(ops);
+ return;
+ }
+
+ cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
+ "ppc/kvm_book3s:prepare",
+ kvmppc_set_host_core,
+ kvmppc_clear_host_core);
+ cpus_read_unlock();
+}
+
+void kvmppc_free_host_rm_ops(void)
+{
+ if (kvmppc_host_rm_ops_hv) {
+ cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
+ kfree(kvmppc_host_rm_ops_hv->rm_core);
+ kfree(kvmppc_host_rm_ops_hv);
+ kvmppc_host_rm_ops_hv = NULL;
+ }
+}
+#endif
+
+static int kvmppc_core_init_vm_hv(struct kvm *kvm)
+{
+ unsigned long lpcr, lpid;
+ int ret;
+
+ mutex_init(&kvm->arch.uvmem_lock);
+ INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
+ mutex_init(&kvm->arch.mmu_setup_lock);
+
+ /* Allocate the guest's logical partition ID */
+
+ lpid = kvmppc_alloc_lpid();
+ if ((long)lpid < 0)
+ return -ENOMEM;
+ kvm->arch.lpid = lpid;
+
+ kvmppc_alloc_host_rm_ops();
+
+ kvmhv_vm_nested_init(kvm);
+
+ /*
+ * Since we don't flush the TLB when tearing down a VM,
+ * and this lpid might have previously been used,
+ * make sure we flush on each core before running the new VM.
+ * On POWER9, the tlbie in mmu_partition_table_set_entry()
+ * does this flush for us.
+ */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ cpumask_setall(&kvm->arch.need_tlb_flush);
+
+ /* Start out with the default set of hcalls enabled */
+ memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
+ sizeof(kvm->arch.enabled_hcalls));
+
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
+
+ /* Init LPCR for virtual RMA mode */
+ if (cpu_has_feature(CPU_FTR_HVMODE)) {
+ kvm->arch.host_lpid = mfspr(SPRN_LPID);
+ kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
+ lpcr &= LPCR_PECE | LPCR_LPES;
+ } else {
+ /*
+ * The L2 LPES mode will be set by the L0 according to whether
+ * or not it needs to take external interrupts in HV mode.
+ */
+ lpcr = 0;
+ }
+ lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
+ LPCR_VPM0 | LPCR_VPM1;
+ kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
+ (VRMA_VSID << SLB_VSID_SHIFT_1T);
+ /* On POWER8 turn on online bit to enable PURR/SPURR */
+ if (cpu_has_feature(CPU_FTR_ARCH_207S))
+ lpcr |= LPCR_ONL;
+ /*
+ * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
+ * Set HVICE bit to enable hypervisor virtualization interrupts.
+ * Set HEIC to prevent OS interrupts to go to hypervisor (should
+ * be unnecessary but better safe than sorry in case we re-enable
+ * EE in HV mode with this LPCR still set)
+ */
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ lpcr &= ~LPCR_VPM0;
+ lpcr |= LPCR_HVICE | LPCR_HEIC;
+
+ /*
+ * If xive is enabled, we route 0x500 interrupts directly
+ * to the guest.
+ */
+ if (xics_on_xive())
+ lpcr |= LPCR_LPES;
+ }
+
+ /*
+ * If the host uses radix, the guest starts out as radix.
+ */
+ if (radix_enabled()) {
+ kvm->arch.radix = 1;
+ kvm->arch.mmu_ready = 1;
+ lpcr &= ~LPCR_VPM1;
+ lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
+ if (cpu_has_feature(CPU_FTR_HVMODE) &&
+ cpu_has_feature(CPU_FTR_ARCH_31) &&
+ (kvm->arch.host_lpcr & LPCR_HAIL))
+ lpcr |= LPCR_HAIL;
+ ret = kvmppc_init_vm_radix(kvm);
+ if (ret) {
+ kvmppc_free_lpid(kvm->arch.lpid);
+ return ret;
+ }
+ kvmppc_setup_partition_table(kvm);
+ }
+
+ verify_lpcr(kvm, lpcr);
+ kvm->arch.lpcr = lpcr;
+
+ /* Initialization for future HPT resizes */
+ kvm->arch.resize_hpt = NULL;
+
+ /*
+ * Work out how many sets the TLB has, for the use of
+ * the TLB invalidation loop in book3s_hv_rmhandlers.S.
+ */
+ if (cpu_has_feature(CPU_FTR_ARCH_31)) {
+ /*
+ * P10 will flush all the congruence class with a single tlbiel
+ */
+ kvm->arch.tlb_sets = 1;
+ } else if (radix_enabled())
+ kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
+ else if (cpu_has_feature(CPU_FTR_ARCH_300))
+ kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
+ else if (cpu_has_feature(CPU_FTR_ARCH_207S))
+ kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
+ else
+ kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
+
+ /*
+ * Track that we now have a HV mode VM active. This blocks secondary
+ * CPU threads from coming online.
+ */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ kvm_hv_vm_activated();
+
+ /*
+ * Initialize smt_mode depending on processor.
+ * POWER8 and earlier have to use "strict" threading, where
+ * all vCPUs in a vcore have to run on the same (sub)core,
+ * whereas on POWER9 the threads can each run a different
+ * guest.
+ */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ kvm->arch.smt_mode = threads_per_subcore;
+ else
+ kvm->arch.smt_mode = 1;
+ kvm->arch.emul_smt_mode = 1;
+
+ return 0;
+}
+
+static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm)
+{
+ kvmppc_mmu_debugfs_init(kvm);
+ if (radix_enabled())
+ kvmhv_radix_debugfs_init(kvm);
+ return 0;
+}
+
+static void kvmppc_free_vcores(struct kvm *kvm)
+{
+ long int i;
+
+ for (i = 0; i < KVM_MAX_VCORES; ++i)
+ kfree(kvm->arch.vcores[i]);
+ kvm->arch.online_vcores = 0;
+}
+
+static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
+{
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ kvm_hv_vm_deactivated();
+
+ kvmppc_free_vcores(kvm);
+
+
+ if (kvm_is_radix(kvm))
+ kvmppc_free_radix(kvm);
+ else
+ kvmppc_free_hpt(&kvm->arch.hpt);
+
+ /* Perform global invalidation and return lpid to the pool */
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ if (nesting_enabled(kvm))
+ kvmhv_release_all_nested(kvm);
+ kvm->arch.process_table = 0;
+ if (kvm->arch.secure_guest)
+ uv_svm_terminate(kvm->arch.lpid);
+ kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
+ }
+
+ kvmppc_free_lpid(kvm->arch.lpid);
+
+ kvmppc_free_pimap(kvm);
+}
+
+/* We don't need to emulate any privileged instructions or dcbz */
+static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
+ unsigned int inst, int *advance)
+{
+ return EMULATE_FAIL;
+}
+
+static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
+ ulong spr_val)
+{
+ return EMULATE_FAIL;
+}
+
+static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
+ ulong *spr_val)
+{
+ return EMULATE_FAIL;
+}
+
+static int kvmppc_core_check_processor_compat_hv(void)
+{
+ if (cpu_has_feature(CPU_FTR_HVMODE) &&
+ cpu_has_feature(CPU_FTR_ARCH_206))
+ return 0;
+
+ /* POWER9 in radix mode is capable of being a nested hypervisor. */
+ if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
+ return 0;
+
+ return -EIO;
+}
+
+#ifdef CONFIG_KVM_XICS
+
+void kvmppc_free_pimap(struct kvm *kvm)
+{
+ kfree(kvm->arch.pimap);
+}
+
+static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
+{
+ return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
+}
+
+static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
+{
+ struct irq_desc *desc;
+ struct kvmppc_irq_map *irq_map;
+ struct kvmppc_passthru_irqmap *pimap;
+ struct irq_chip *chip;
+ int i, rc = 0;
+ struct irq_data *host_data;
+
+ if (!kvm_irq_bypass)
+ return 1;
+
+ desc = irq_to_desc(host_irq);
+ if (!desc)
+ return -EIO;
+
+ mutex_lock(&kvm->lock);
+
+ pimap = kvm->arch.pimap;
+ if (pimap == NULL) {
+ /* First call, allocate structure to hold IRQ map */
+ pimap = kvmppc_alloc_pimap();
+ if (pimap == NULL) {
+ mutex_unlock(&kvm->lock);
+ return -ENOMEM;
+ }
+ kvm->arch.pimap = pimap;
+ }
+
+ /*
+ * For now, we only support interrupts for which the EOI operation
+ * is an OPAL call followed by a write to XIRR, since that's
+ * what our real-mode EOI code does, or a XIVE interrupt
+ */
+ chip = irq_data_get_irq_chip(&desc->irq_data);
+ if (!chip || !is_pnv_opal_msi(chip)) {
+ pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
+ host_irq, guest_gsi);
+ mutex_unlock(&kvm->lock);
+ return -ENOENT;
+ }
+
+ /*
+ * See if we already have an entry for this guest IRQ number.
+ * If it's mapped to a hardware IRQ number, that's an error,
+ * otherwise re-use this entry.
+ */
+ for (i = 0; i < pimap->n_mapped; i++) {
+ if (guest_gsi == pimap->mapped[i].v_hwirq) {
+ if (pimap->mapped[i].r_hwirq) {
+ mutex_unlock(&kvm->lock);
+ return -EINVAL;
+ }
+ break;
+ }
+ }
+
+ if (i == KVMPPC_PIRQ_MAPPED) {
+ mutex_unlock(&kvm->lock);
+ return -EAGAIN; /* table is full */
+ }
+
+ irq_map = &pimap->mapped[i];
+
+ irq_map->v_hwirq = guest_gsi;
+ irq_map->desc = desc;
+
+ /*
+ * Order the above two stores before the next to serialize with
+ * the KVM real mode handler.
+ */
+ smp_wmb();
+
+ /*
+ * The 'host_irq' number is mapped in the PCI-MSI domain but
+ * the underlying calls, which will EOI the interrupt in real
+ * mode, need an HW IRQ number mapped in the XICS IRQ domain.
+ */
+ host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
+ irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
+
+ if (i == pimap->n_mapped)
+ pimap->n_mapped++;
+
+ if (xics_on_xive())
+ rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
+ else
+ kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
+ if (rc)
+ irq_map->r_hwirq = 0;
+
+ mutex_unlock(&kvm->lock);
+
+ return 0;
+}
+
+static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
+{
+ struct irq_desc *desc;
+ struct kvmppc_passthru_irqmap *pimap;
+ int i, rc = 0;
+
+ if (!kvm_irq_bypass)
+ return 0;
+
+ desc = irq_to_desc(host_irq);
+ if (!desc)
+ return -EIO;
+
+ mutex_lock(&kvm->lock);
+ if (!kvm->arch.pimap)
+ goto unlock;
+
+ pimap = kvm->arch.pimap;
+
+ for (i = 0; i < pimap->n_mapped; i++) {
+ if (guest_gsi == pimap->mapped[i].v_hwirq)
+ break;
+ }
+
+ if (i == pimap->n_mapped) {
+ mutex_unlock(&kvm->lock);
+ return -ENODEV;
+ }
+
+ if (xics_on_xive())
+ rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
+ else
+ kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
+
+ /* invalidate the entry (what to do on error from the above ?) */
+ pimap->mapped[i].r_hwirq = 0;
+
+ /*
+ * We don't free this structure even when the count goes to
+ * zero. The structure is freed when we destroy the VM.
+ */
+ unlock:
+ mutex_unlock(&kvm->lock);
+ return rc;
+}
+
+static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
+ struct irq_bypass_producer *prod)
+{
+ int ret = 0;
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+
+ irqfd->producer = prod;
+
+ ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
+ if (ret)
+ pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
+ prod->irq, irqfd->gsi, ret);
+
+ return ret;
+}
+
+static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
+ struct irq_bypass_producer *prod)
+{
+ int ret;
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+
+ irqfd->producer = NULL;
+
+ /*
+ * When producer of consumer is unregistered, we change back to
+ * default external interrupt handling mode - KVM real mode
+ * will switch back to host.
+ */
+ ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
+ if (ret)
+ pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
+ prod->irq, irqfd->gsi, ret);
+}
+#endif
+
+static long kvm_arch_vm_ioctl_hv(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ struct kvm *kvm __maybe_unused = filp->private_data;
+ void __user *argp = (void __user *)arg;
+ long r;
+
+ switch (ioctl) {
+
+ case KVM_PPC_ALLOCATE_HTAB: {
+ u32 htab_order;
+
+ /* If we're a nested hypervisor, we currently only support radix */
+ if (kvmhv_on_pseries()) {
+ r = -EOPNOTSUPP;
+ break;
+ }
+
+ r = -EFAULT;
+ if (get_user(htab_order, (u32 __user *)argp))
+ break;
+ r = kvmppc_alloc_reset_hpt(kvm, htab_order);
+ if (r)
+ break;
+ r = 0;
+ break;
+ }
+
+ case KVM_PPC_GET_HTAB_FD: {
+ struct kvm_get_htab_fd ghf;
+
+ r = -EFAULT;
+ if (copy_from_user(&ghf, argp, sizeof(ghf)))
+ break;
+ r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
+ break;
+ }
+
+ case KVM_PPC_RESIZE_HPT_PREPARE: {
+ struct kvm_ppc_resize_hpt rhpt;
+
+ r = -EFAULT;
+ if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
+ break;
+
+ r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
+ break;
+ }
+
+ case KVM_PPC_RESIZE_HPT_COMMIT: {
+ struct kvm_ppc_resize_hpt rhpt;
+
+ r = -EFAULT;
+ if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
+ break;
+
+ r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
+ break;
+ }
+
+ default:
+ r = -ENOTTY;
+ }
+
+ return r;
+}
+
+/*
+ * List of hcall numbers to enable by default.
+ * For compatibility with old userspace, we enable by default
+ * all hcalls that were implemented before the hcall-enabling
+ * facility was added. Note this list should not include H_RTAS.
+ */
+static unsigned int default_hcall_list[] = {
+ H_REMOVE,
+ H_ENTER,
+ H_READ,
+ H_PROTECT,
+ H_BULK_REMOVE,
+#ifdef CONFIG_SPAPR_TCE_IOMMU
+ H_GET_TCE,
+ H_PUT_TCE,
+#endif
+ H_SET_DABR,
+ H_SET_XDABR,
+ H_CEDE,
+ H_PROD,
+ H_CONFER,
+ H_REGISTER_VPA,
+#ifdef CONFIG_KVM_XICS
+ H_EOI,
+ H_CPPR,
+ H_IPI,
+ H_IPOLL,
+ H_XIRR,
+ H_XIRR_X,
+#endif
+ 0
+};
+
+static void init_default_hcalls(void)
+{
+ int i;
+ unsigned int hcall;
+
+ for (i = 0; default_hcall_list[i]; ++i) {
+ hcall = default_hcall_list[i];
+ WARN_ON(!kvmppc_hcall_impl_hv(hcall));
+ __set_bit(hcall / 4, default_enabled_hcalls);
+ }
+}
+
+static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
+{
+ unsigned long lpcr;
+ int radix;
+ int err;
+
+ /* If not on a POWER9, reject it */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ return -ENODEV;
+
+ /* If any unknown flags set, reject it */
+ if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
+ return -EINVAL;
+
+ /* GR (guest radix) bit in process_table field must match */
+ radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
+ if (!!(cfg->process_table & PATB_GR) != radix)
+ return -EINVAL;
+
+ /* Process table size field must be reasonable, i.e. <= 24 */
+ if ((cfg->process_table & PRTS_MASK) > 24)
+ return -EINVAL;
+
+ /* We can change a guest to/from radix now, if the host is radix */
+ if (radix && !radix_enabled())
+ return -EINVAL;
+
+ /* If we're a nested hypervisor, we currently only support radix */
+ if (kvmhv_on_pseries() && !radix)
+ return -EINVAL;
+
+ mutex_lock(&kvm->arch.mmu_setup_lock);
+ if (radix != kvm_is_radix(kvm)) {
+ if (kvm->arch.mmu_ready) {
+ kvm->arch.mmu_ready = 0;
+ /* order mmu_ready vs. vcpus_running */
+ smp_mb();
+ if (atomic_read(&kvm->arch.vcpus_running)) {
+ kvm->arch.mmu_ready = 1;
+ err = -EBUSY;
+ goto out_unlock;
+ }
+ }
+ if (radix)
+ err = kvmppc_switch_mmu_to_radix(kvm);
+ else
+ err = kvmppc_switch_mmu_to_hpt(kvm);
+ if (err)
+ goto out_unlock;
+ }
+
+ kvm->arch.process_table = cfg->process_table;
+ kvmppc_setup_partition_table(kvm);
+
+ lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
+ kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
+ err = 0;
+
+ out_unlock:
+ mutex_unlock(&kvm->arch.mmu_setup_lock);
+ return err;
+}
+
+static int kvmhv_enable_nested(struct kvm *kvm)
+{
+ if (!nested)
+ return -EPERM;
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ return -ENODEV;
+ if (!radix_enabled())
+ return -ENODEV;
+
+ /* kvm == NULL means the caller is testing if the capability exists */
+ if (kvm)
+ kvm->arch.nested_enable = true;
+ return 0;
+}
+
+static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
+ int size)
+{
+ int rc = -EINVAL;
+
+ if (kvmhv_vcpu_is_radix(vcpu)) {
+ rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
+
+ if (rc > 0)
+ rc = -EINVAL;
+ }
+
+ /* For now quadrants are the only way to access nested guest memory */
+ if (rc && vcpu->arch.nested)
+ rc = -EAGAIN;
+
+ return rc;
+}
+
+static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
+ int size)
+{
+ int rc = -EINVAL;
+
+ if (kvmhv_vcpu_is_radix(vcpu)) {
+ rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
+
+ if (rc > 0)
+ rc = -EINVAL;
+ }
+
+ /* For now quadrants are the only way to access nested guest memory */
+ if (rc && vcpu->arch.nested)
+ rc = -EAGAIN;
+
+ return rc;
+}
+
+static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
+{
+ unpin_vpa(kvm, vpa);
+ vpa->gpa = 0;
+ vpa->pinned_addr = NULL;
+ vpa->dirty = false;
+ vpa->update_pending = 0;
+}
+
+/*
+ * Enable a guest to become a secure VM, or test whether
+ * that could be enabled.
+ * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
+ * tested (kvm == NULL) or enabled (kvm != NULL).
+ */
+static int kvmhv_enable_svm(struct kvm *kvm)
+{
+ if (!kvmppc_uvmem_available())
+ return -EINVAL;
+ if (kvm)
+ kvm->arch.svm_enabled = 1;
+ return 0;
+}
+
+/*
+ * IOCTL handler to turn off secure mode of guest
+ *
+ * - Release all device pages
+ * - Issue ucall to terminate the guest on the UV side
+ * - Unpin the VPA pages.
+ * - Reinit the partition scoped page tables
+ */
+static int kvmhv_svm_off(struct kvm *kvm)
+{
+ struct kvm_vcpu *vcpu;
+ int mmu_was_ready;
+ int srcu_idx;
+ int ret = 0;
+ unsigned long i;
+
+ if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
+ return ret;
+
+ mutex_lock(&kvm->arch.mmu_setup_lock);
+ mmu_was_ready = kvm->arch.mmu_ready;
+ if (kvm->arch.mmu_ready) {
+ kvm->arch.mmu_ready = 0;
+ /* order mmu_ready vs. vcpus_running */
+ smp_mb();
+ if (atomic_read(&kvm->arch.vcpus_running)) {
+ kvm->arch.mmu_ready = 1;
+ ret = -EBUSY;
+ goto out;
+ }
+ }
+
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+ for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
+ struct kvm_memory_slot *memslot;
+ struct kvm_memslots *slots = __kvm_memslots(kvm, i);
+ int bkt;
+
+ if (!slots)
+ continue;
+
+ kvm_for_each_memslot(memslot, bkt, slots) {
+ kvmppc_uvmem_drop_pages(memslot, kvm, true);
+ uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
+ }
+ }
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+
+ ret = uv_svm_terminate(kvm->arch.lpid);
+ if (ret != U_SUCCESS) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /*
+ * When secure guest is reset, all the guest pages are sent
+ * to UV via UV_PAGE_IN before the non-boot vcpus get a
+ * chance to run and unpin their VPA pages. Unpinning of all
+ * VPA pages is done here explicitly so that VPA pages
+ * can be migrated to the secure side.
+ *
+ * This is required to for the secure SMP guest to reboot
+ * correctly.
+ */
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ spin_lock(&vcpu->arch.vpa_update_lock);
+ unpin_vpa_reset(kvm, &vcpu->arch.dtl);
+ unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
+ unpin_vpa_reset(kvm, &vcpu->arch.vpa);
+ spin_unlock(&vcpu->arch.vpa_update_lock);
+ }
+
+ kvmppc_setup_partition_table(kvm);
+ kvm->arch.secure_guest = 0;
+ kvm->arch.mmu_ready = mmu_was_ready;
+out:
+ mutex_unlock(&kvm->arch.mmu_setup_lock);
+ return ret;
+}
+
+static int kvmhv_enable_dawr1(struct kvm *kvm)
+{
+ if (!cpu_has_feature(CPU_FTR_DAWR1))
+ return -ENODEV;
+
+ /* kvm == NULL means the caller is testing if the capability exists */
+ if (kvm)
+ kvm->arch.dawr1_enabled = true;
+ return 0;
+}
+
+static bool kvmppc_hash_v3_possible(void)
+{
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ return false;
+
+ if (!cpu_has_feature(CPU_FTR_HVMODE))
+ return false;
+
+ /*
+ * POWER9 chips before version 2.02 can't have some threads in
+ * HPT mode and some in radix mode on the same core.
+ */
+ if (radix_enabled()) {
+ unsigned int pvr = mfspr(SPRN_PVR);
+ if ((pvr >> 16) == PVR_POWER9 &&
+ (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
+ ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
+ return false;
+ }
+
+ return true;
+}
+
+static struct kvmppc_ops kvm_ops_hv = {
+ .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
+ .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
+ .get_one_reg = kvmppc_get_one_reg_hv,
+ .set_one_reg = kvmppc_set_one_reg_hv,
+ .vcpu_load = kvmppc_core_vcpu_load_hv,
+ .vcpu_put = kvmppc_core_vcpu_put_hv,
+ .inject_interrupt = kvmppc_inject_interrupt_hv,
+ .set_msr = kvmppc_set_msr_hv,
+ .vcpu_run = kvmppc_vcpu_run_hv,
+ .vcpu_create = kvmppc_core_vcpu_create_hv,
+ .vcpu_free = kvmppc_core_vcpu_free_hv,
+ .check_requests = kvmppc_core_check_requests_hv,
+ .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
+ .flush_memslot = kvmppc_core_flush_memslot_hv,
+ .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
+ .commit_memory_region = kvmppc_core_commit_memory_region_hv,
+ .unmap_gfn_range = kvm_unmap_gfn_range_hv,
+ .age_gfn = kvm_age_gfn_hv,
+ .test_age_gfn = kvm_test_age_gfn_hv,
+ .set_spte_gfn = kvm_set_spte_gfn_hv,
+ .free_memslot = kvmppc_core_free_memslot_hv,
+ .init_vm = kvmppc_core_init_vm_hv,
+ .destroy_vm = kvmppc_core_destroy_vm_hv,
+ .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
+ .emulate_op = kvmppc_core_emulate_op_hv,
+ .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
+ .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
+ .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
+ .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
+ .hcall_implemented = kvmppc_hcall_impl_hv,
+#ifdef CONFIG_KVM_XICS
+ .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
+ .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
+#endif
+ .configure_mmu = kvmhv_configure_mmu,
+ .get_rmmu_info = kvmhv_get_rmmu_info,
+ .set_smt_mode = kvmhv_set_smt_mode,
+ .enable_nested = kvmhv_enable_nested,
+ .load_from_eaddr = kvmhv_load_from_eaddr,
+ .store_to_eaddr = kvmhv_store_to_eaddr,
+ .enable_svm = kvmhv_enable_svm,
+ .svm_off = kvmhv_svm_off,
+ .enable_dawr1 = kvmhv_enable_dawr1,
+ .hash_v3_possible = kvmppc_hash_v3_possible,
+ .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv,
+ .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv,
+};
+
+static int kvm_init_subcore_bitmap(void)
+{
+ int i, j;
+ int nr_cores = cpu_nr_cores();
+ struct sibling_subcore_state *sibling_subcore_state;
+
+ for (i = 0; i < nr_cores; i++) {
+ int first_cpu = i * threads_per_core;
+ int node = cpu_to_node(first_cpu);
+
+ /* Ignore if it is already allocated. */
+ if (paca_ptrs[first_cpu]->sibling_subcore_state)
+ continue;
+
+ sibling_subcore_state =
+ kzalloc_node(sizeof(struct sibling_subcore_state),
+ GFP_KERNEL, node);
+ if (!sibling_subcore_state)
+ return -ENOMEM;
+
+
+ for (j = 0; j < threads_per_core; j++) {
+ int cpu = first_cpu + j;
+
+ paca_ptrs[cpu]->sibling_subcore_state =
+ sibling_subcore_state;
+ }
+ }
+ return 0;
+}
+
+static int kvmppc_radix_possible(void)
+{
+ return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
+}
+
+static int kvmppc_book3s_init_hv(void)
+{
+ int r;
+
+ if (!tlbie_capable) {
+ pr_err("KVM-HV: Host does not support TLBIE\n");
+ return -ENODEV;
+ }
+
+ /*
+ * FIXME!! Do we need to check on all cpus ?
+ */
+ r = kvmppc_core_check_processor_compat_hv();
+ if (r < 0)
+ return -ENODEV;
+
+ r = kvmhv_nested_init();
+ if (r)
+ return r;
+
+ if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
+ r = kvm_init_subcore_bitmap();
+ if (r)
+ goto err;
+ }
+
+ /*
+ * We need a way of accessing the XICS interrupt controller,
+ * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
+ * indirectly, via OPAL.
+ */
+#ifdef CONFIG_SMP
+ if (!xics_on_xive() && !kvmhv_on_pseries() &&
+ !local_paca->kvm_hstate.xics_phys) {
+ struct device_node *np;
+
+ np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
+ if (!np) {
+ pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
+ r = -ENODEV;
+ goto err;
+ }
+ /* presence of intc confirmed - node can be dropped again */
+ of_node_put(np);
+ }
+#endif
+
+ init_default_hcalls();
+
+ init_vcore_lists();
+
+ r = kvmppc_mmu_hv_init();
+ if (r)
+ goto err;
+
+ if (kvmppc_radix_possible()) {
+ r = kvmppc_radix_init();
+ if (r)
+ goto err;
+ }
+
+ r = kvmppc_uvmem_init();
+ if (r < 0) {
+ pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
+ return r;
+ }
+
+ kvm_ops_hv.owner = THIS_MODULE;
+ kvmppc_hv_ops = &kvm_ops_hv;
+
+ return 0;
+
+err:
+ kvmhv_nested_exit();
+ kvmppc_radix_exit();
+
+ return r;
+}
+
+static void kvmppc_book3s_exit_hv(void)
+{
+ kvmppc_uvmem_free();
+ kvmppc_free_host_rm_ops();
+ if (kvmppc_radix_possible())
+ kvmppc_radix_exit();
+ kvmppc_hv_ops = NULL;
+ kvmhv_nested_exit();
+}
+
+module_init(kvmppc_book3s_init_hv);
+module_exit(kvmppc_book3s_exit_hv);
+MODULE_LICENSE("GPL");
+MODULE_ALIAS_MISCDEV(KVM_MINOR);
+MODULE_ALIAS("devname:kvm");
diff --git a/arch/powerpc/kvm/book3s_hv.h b/arch/powerpc/kvm/book3s_hv.h
new file mode 100644
index 000000000..2f2e59d7d
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_hv.h
@@ -0,0 +1,52 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+/*
+ * Privileged (non-hypervisor) host registers to save.
+ */
+struct p9_host_os_sprs {
+ unsigned long iamr;
+ unsigned long amr;
+
+ unsigned int pmc1;
+ unsigned int pmc2;
+ unsigned int pmc3;
+ unsigned int pmc4;
+ unsigned int pmc5;
+ unsigned int pmc6;
+ unsigned long mmcr0;
+ unsigned long mmcr1;
+ unsigned long mmcr2;
+ unsigned long mmcr3;
+ unsigned long mmcra;
+ unsigned long siar;
+ unsigned long sier1;
+ unsigned long sier2;
+ unsigned long sier3;
+ unsigned long sdar;
+};
+
+static inline bool nesting_enabled(struct kvm *kvm)
+{
+ return kvm->arch.nested_enable && kvm_is_radix(kvm);
+}
+
+bool load_vcpu_state(struct kvm_vcpu *vcpu,
+ struct p9_host_os_sprs *host_os_sprs);
+void store_vcpu_state(struct kvm_vcpu *vcpu);
+void save_p9_host_os_sprs(struct p9_host_os_sprs *host_os_sprs);
+void restore_p9_host_os_sprs(struct kvm_vcpu *vcpu,
+ struct p9_host_os_sprs *host_os_sprs);
+void switch_pmu_to_guest(struct kvm_vcpu *vcpu,
+ struct p9_host_os_sprs *host_os_sprs);
+void switch_pmu_to_host(struct kvm_vcpu *vcpu,
+ struct p9_host_os_sprs *host_os_sprs);
+
+#ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
+void accumulate_time(struct kvm_vcpu *vcpu, struct kvmhv_tb_accumulator *next);
+#define start_timing(vcpu, next) accumulate_time(vcpu, next)
+#define end_timing(vcpu) accumulate_time(vcpu, NULL)
+#else
+#define accumulate_time(vcpu, next) do {} while (0)
+#define start_timing(vcpu, next) do {} while (0)
+#define end_timing(vcpu) do {} while (0)
+#endif
diff --git a/arch/powerpc/kvm/book3s_hv_builtin.c b/arch/powerpc/kvm/book3s_hv_builtin.c
new file mode 100644
index 000000000..da85f0463
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_hv_builtin.c
@@ -0,0 +1,624 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
+ */
+
+#include <linux/cpu.h>
+#include <linux/kvm_host.h>
+#include <linux/preempt.h>
+#include <linux/export.h>
+#include <linux/sched.h>
+#include <linux/spinlock.h>
+#include <linux/init.h>
+#include <linux/memblock.h>
+#include <linux/sizes.h>
+#include <linux/cma.h>
+#include <linux/bitops.h>
+
+#include <asm/cputable.h>
+#include <asm/interrupt.h>
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+#include <asm/machdep.h>
+#include <asm/xics.h>
+#include <asm/xive.h>
+#include <asm/dbell.h>
+#include <asm/cputhreads.h>
+#include <asm/io.h>
+#include <asm/opal.h>
+#include <asm/smp.h>
+
+#define KVM_CMA_CHUNK_ORDER 18
+
+#include "book3s_xics.h"
+#include "book3s_xive.h"
+
+/*
+ * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
+ * should be power of 2.
+ */
+#define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */
+/*
+ * By default we reserve 5% of memory for hash pagetable allocation.
+ */
+static unsigned long kvm_cma_resv_ratio = 5;
+
+static struct cma *kvm_cma;
+
+static int __init early_parse_kvm_cma_resv(char *p)
+{
+ pr_debug("%s(%s)\n", __func__, p);
+ if (!p)
+ return -EINVAL;
+ return kstrtoul(p, 0, &kvm_cma_resv_ratio);
+}
+early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
+
+struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
+{
+ VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
+
+ return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
+ false);
+}
+EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
+
+void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
+{
+ cma_release(kvm_cma, page, nr_pages);
+}
+EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
+
+/**
+ * kvm_cma_reserve() - reserve area for kvm hash pagetable
+ *
+ * This function reserves memory from early allocator. It should be
+ * called by arch specific code once the memblock allocator
+ * has been activated and all other subsystems have already allocated/reserved
+ * memory.
+ */
+void __init kvm_cma_reserve(void)
+{
+ unsigned long align_size;
+ phys_addr_t selected_size;
+
+ /*
+ * We need CMA reservation only when we are in HV mode
+ */
+ if (!cpu_has_feature(CPU_FTR_HVMODE))
+ return;
+
+ selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100);
+ if (selected_size) {
+ pr_info("%s: reserving %ld MiB for global area\n", __func__,
+ (unsigned long)selected_size / SZ_1M);
+ align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
+ cma_declare_contiguous(0, selected_size, 0, align_size,
+ KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
+ &kvm_cma);
+ }
+}
+
+/*
+ * Real-mode H_CONFER implementation.
+ * We check if we are the only vcpu out of this virtual core
+ * still running in the guest and not ceded. If so, we pop up
+ * to the virtual-mode implementation; if not, just return to
+ * the guest.
+ */
+long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
+ unsigned int yield_count)
+{
+ struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
+ int ptid = local_paca->kvm_hstate.ptid;
+ int threads_running;
+ int threads_ceded;
+ int threads_conferring;
+ u64 stop = get_tb() + 10 * tb_ticks_per_usec;
+ int rv = H_SUCCESS; /* => don't yield */
+
+ set_bit(ptid, &vc->conferring_threads);
+ while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
+ threads_running = VCORE_ENTRY_MAP(vc);
+ threads_ceded = vc->napping_threads;
+ threads_conferring = vc->conferring_threads;
+ if ((threads_ceded | threads_conferring) == threads_running) {
+ rv = H_TOO_HARD; /* => do yield */
+ break;
+ }
+ }
+ clear_bit(ptid, &vc->conferring_threads);
+ return rv;
+}
+
+/*
+ * When running HV mode KVM we need to block certain operations while KVM VMs
+ * exist in the system. We use a counter of VMs to track this.
+ *
+ * One of the operations we need to block is onlining of secondaries, so we
+ * protect hv_vm_count with cpus_read_lock/unlock().
+ */
+static atomic_t hv_vm_count;
+
+void kvm_hv_vm_activated(void)
+{
+ cpus_read_lock();
+ atomic_inc(&hv_vm_count);
+ cpus_read_unlock();
+}
+EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
+
+void kvm_hv_vm_deactivated(void)
+{
+ cpus_read_lock();
+ atomic_dec(&hv_vm_count);
+ cpus_read_unlock();
+}
+EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
+
+bool kvm_hv_mode_active(void)
+{
+ return atomic_read(&hv_vm_count) != 0;
+}
+
+extern int hcall_real_table[], hcall_real_table_end[];
+
+int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
+{
+ cmd /= 4;
+ if (cmd < hcall_real_table_end - hcall_real_table &&
+ hcall_real_table[cmd])
+ return 1;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
+
+int kvmppc_hwrng_present(void)
+{
+ return ppc_md.get_random_seed != NULL;
+}
+EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
+
+long kvmppc_rm_h_random(struct kvm_vcpu *vcpu)
+{
+ if (ppc_md.get_random_seed &&
+ ppc_md.get_random_seed(&vcpu->arch.regs.gpr[4]))
+ return H_SUCCESS;
+
+ return H_HARDWARE;
+}
+
+/*
+ * Send an interrupt or message to another CPU.
+ * The caller needs to include any barrier needed to order writes
+ * to memory vs. the IPI/message.
+ */
+void kvmhv_rm_send_ipi(int cpu)
+{
+ void __iomem *xics_phys;
+ unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
+
+ /* On POWER9 we can use msgsnd for any destination cpu. */
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ msg |= get_hard_smp_processor_id(cpu);
+ __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
+ return;
+ }
+
+ /* On POWER8 for IPIs to threads in the same core, use msgsnd. */
+ if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
+ cpu_first_thread_sibling(cpu) ==
+ cpu_first_thread_sibling(raw_smp_processor_id())) {
+ msg |= cpu_thread_in_core(cpu);
+ __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
+ return;
+ }
+
+ /* We should never reach this */
+ if (WARN_ON_ONCE(xics_on_xive()))
+ return;
+
+ /* Else poke the target with an IPI */
+ xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys;
+ if (xics_phys)
+ __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
+ else
+ opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
+}
+
+/*
+ * The following functions are called from the assembly code
+ * in book3s_hv_rmhandlers.S.
+ */
+static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
+{
+ int cpu = vc->pcpu;
+
+ /* Order setting of exit map vs. msgsnd/IPI */
+ smp_mb();
+ for (; active; active >>= 1, ++cpu)
+ if (active & 1)
+ kvmhv_rm_send_ipi(cpu);
+}
+
+void kvmhv_commence_exit(int trap)
+{
+ struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
+ int ptid = local_paca->kvm_hstate.ptid;
+ struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
+ int me, ee, i;
+
+ /* Set our bit in the threads-exiting-guest map in the 0xff00
+ bits of vcore->entry_exit_map */
+ me = 0x100 << ptid;
+ do {
+ ee = vc->entry_exit_map;
+ } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
+
+ /* Are we the first here? */
+ if ((ee >> 8) != 0)
+ return;
+
+ /*
+ * Trigger the other threads in this vcore to exit the guest.
+ * If this is a hypervisor decrementer interrupt then they
+ * will be already on their way out of the guest.
+ */
+ if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
+ kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
+
+ /*
+ * If we are doing dynamic micro-threading, interrupt the other
+ * subcores to pull them out of their guests too.
+ */
+ if (!sip)
+ return;
+
+ for (i = 0; i < MAX_SUBCORES; ++i) {
+ vc = sip->vc[i];
+ if (!vc)
+ break;
+ do {
+ ee = vc->entry_exit_map;
+ /* Already asked to exit? */
+ if ((ee >> 8) != 0)
+ break;
+ } while (cmpxchg(&vc->entry_exit_map, ee,
+ ee | VCORE_EXIT_REQ) != ee);
+ if ((ee >> 8) == 0)
+ kvmhv_interrupt_vcore(vc, ee);
+ }
+}
+
+struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
+EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
+
+#ifdef CONFIG_KVM_XICS
+static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
+ u32 xisr)
+{
+ int i;
+
+ /*
+ * We access the mapped array here without a lock. That
+ * is safe because we never reduce the number of entries
+ * in the array and we never change the v_hwirq field of
+ * an entry once it is set.
+ *
+ * We have also carefully ordered the stores in the writer
+ * and the loads here in the reader, so that if we find a matching
+ * hwirq here, the associated GSI and irq_desc fields are valid.
+ */
+ for (i = 0; i < pimap->n_mapped; i++) {
+ if (xisr == pimap->mapped[i].r_hwirq) {
+ /*
+ * Order subsequent reads in the caller to serialize
+ * with the writer.
+ */
+ smp_rmb();
+ return &pimap->mapped[i];
+ }
+ }
+ return NULL;
+}
+
+/*
+ * If we have an interrupt that's not an IPI, check if we have a
+ * passthrough adapter and if so, check if this external interrupt
+ * is for the adapter.
+ * We will attempt to deliver the IRQ directly to the target VCPU's
+ * ICP, the virtual ICP (based on affinity - the xive value in ICS).
+ *
+ * If the delivery fails or if this is not for a passthrough adapter,
+ * return to the host to handle this interrupt. We earlier
+ * saved a copy of the XIRR in the PACA, it will be picked up by
+ * the host ICP driver.
+ */
+static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
+{
+ struct kvmppc_passthru_irqmap *pimap;
+ struct kvmppc_irq_map *irq_map;
+ struct kvm_vcpu *vcpu;
+
+ vcpu = local_paca->kvm_hstate.kvm_vcpu;
+ if (!vcpu)
+ return 1;
+ pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
+ if (!pimap)
+ return 1;
+ irq_map = get_irqmap(pimap, xisr);
+ if (!irq_map)
+ return 1;
+
+ /* We're handling this interrupt, generic code doesn't need to */
+ local_paca->kvm_hstate.saved_xirr = 0;
+
+ return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
+}
+
+#else
+static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
+{
+ return 1;
+}
+#endif
+
+/*
+ * Determine what sort of external interrupt is pending (if any).
+ * Returns:
+ * 0 if no interrupt is pending
+ * 1 if an interrupt is pending that needs to be handled by the host
+ * 2 Passthrough that needs completion in the host
+ * -1 if there was a guest wakeup IPI (which has now been cleared)
+ * -2 if there is PCI passthrough external interrupt that was handled
+ */
+static long kvmppc_read_one_intr(bool *again);
+
+long kvmppc_read_intr(void)
+{
+ long ret = 0;
+ long rc;
+ bool again;
+
+ if (xive_enabled())
+ return 1;
+
+ do {
+ again = false;
+ rc = kvmppc_read_one_intr(&again);
+ if (rc && (ret == 0 || rc > ret))
+ ret = rc;
+ } while (again);
+ return ret;
+}
+
+static long kvmppc_read_one_intr(bool *again)
+{
+ void __iomem *xics_phys;
+ u32 h_xirr;
+ __be32 xirr;
+ u32 xisr;
+ u8 host_ipi;
+ int64_t rc;
+
+ if (xive_enabled())
+ return 1;
+
+ /* see if a host IPI is pending */
+ host_ipi = local_paca->kvm_hstate.host_ipi;
+ if (host_ipi)
+ return 1;
+
+ /* Now read the interrupt from the ICP */
+ xics_phys = local_paca->kvm_hstate.xics_phys;
+ rc = 0;
+ if (!xics_phys)
+ rc = opal_int_get_xirr(&xirr, false);
+ else
+ xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
+ if (rc < 0)
+ return 1;
+
+ /*
+ * Save XIRR for later. Since we get control in reverse endian
+ * on LE systems, save it byte reversed and fetch it back in
+ * host endian. Note that xirr is the value read from the
+ * XIRR register, while h_xirr is the host endian version.
+ */
+ h_xirr = be32_to_cpu(xirr);
+ local_paca->kvm_hstate.saved_xirr = h_xirr;
+ xisr = h_xirr & 0xffffff;
+ /*
+ * Ensure that the store/load complete to guarantee all side
+ * effects of loading from XIRR has completed
+ */
+ smp_mb();
+
+ /* if nothing pending in the ICP */
+ if (!xisr)
+ return 0;
+
+ /* We found something in the ICP...
+ *
+ * If it is an IPI, clear the MFRR and EOI it.
+ */
+ if (xisr == XICS_IPI) {
+ rc = 0;
+ if (xics_phys) {
+ __raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
+ __raw_rm_writel(xirr, xics_phys + XICS_XIRR);
+ } else {
+ opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
+ rc = opal_int_eoi(h_xirr);
+ }
+ /* If rc > 0, there is another interrupt pending */
+ *again = rc > 0;
+
+ /*
+ * Need to ensure side effects of above stores
+ * complete before proceeding.
+ */
+ smp_mb();
+
+ /*
+ * We need to re-check host IPI now in case it got set in the
+ * meantime. If it's clear, we bounce the interrupt to the
+ * guest
+ */
+ host_ipi = local_paca->kvm_hstate.host_ipi;
+ if (unlikely(host_ipi != 0)) {
+ /* We raced with the host,
+ * we need to resend that IPI, bummer
+ */
+ if (xics_phys)
+ __raw_rm_writeb(IPI_PRIORITY,
+ xics_phys + XICS_MFRR);
+ else
+ opal_int_set_mfrr(hard_smp_processor_id(),
+ IPI_PRIORITY);
+ /* Let side effects complete */
+ smp_mb();
+ return 1;
+ }
+
+ /* OK, it's an IPI for us */
+ local_paca->kvm_hstate.saved_xirr = 0;
+ return -1;
+ }
+
+ return kvmppc_check_passthru(xisr, xirr, again);
+}
+
+static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.ceded = 0;
+ if (vcpu->arch.timer_running) {
+ hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
+ vcpu->arch.timer_running = 0;
+ }
+}
+
+void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
+{
+ /* Guest must always run with ME enabled, HV disabled. */
+ msr = (msr | MSR_ME) & ~MSR_HV;
+
+ /*
+ * Check for illegal transactional state bit combination
+ * and if we find it, force the TS field to a safe state.
+ */
+ if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
+ msr &= ~MSR_TS_MASK;
+ vcpu->arch.shregs.msr = msr;
+ kvmppc_end_cede(vcpu);
+}
+EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv);
+
+static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
+{
+ unsigned long msr, pc, new_msr, new_pc;
+
+ msr = kvmppc_get_msr(vcpu);
+ pc = kvmppc_get_pc(vcpu);
+ new_msr = vcpu->arch.intr_msr;
+ new_pc = vec;
+
+ /* If transactional, change to suspend mode on IRQ delivery */
+ if (MSR_TM_TRANSACTIONAL(msr))
+ new_msr |= MSR_TS_S;
+ else
+ new_msr |= msr & MSR_TS_MASK;
+
+ /*
+ * Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and
+ * applicable. AIL=2 is not supported.
+ *
+ * AIL does not apply to SRESET, MCE, or HMI (which is never
+ * delivered to the guest), and does not apply if IR=0 or DR=0.
+ */
+ if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET &&
+ vec != BOOK3S_INTERRUPT_MACHINE_CHECK &&
+ (vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 &&
+ (msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) {
+ new_msr |= MSR_IR | MSR_DR;
+ new_pc += 0xC000000000004000ULL;
+ }
+
+ kvmppc_set_srr0(vcpu, pc);
+ kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
+ kvmppc_set_pc(vcpu, new_pc);
+ vcpu->arch.shregs.msr = new_msr;
+}
+
+void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
+{
+ inject_interrupt(vcpu, vec, srr1_flags);
+ kvmppc_end_cede(vcpu);
+}
+EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv);
+
+/*
+ * Is there a PRIV_DOORBELL pending for the guest (on POWER9)?
+ * Can we inject a Decrementer or a External interrupt?
+ */
+void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu)
+{
+ int ext;
+ unsigned long lpcr;
+
+ WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
+
+ /* Insert EXTERNAL bit into LPCR at the MER bit position */
+ ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1;
+ lpcr = mfspr(SPRN_LPCR);
+ lpcr |= ext << LPCR_MER_SH;
+ mtspr(SPRN_LPCR, lpcr);
+ isync();
+
+ if (vcpu->arch.shregs.msr & MSR_EE) {
+ if (ext) {
+ inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0);
+ } else {
+ long int dec = mfspr(SPRN_DEC);
+ if (!(lpcr & LPCR_LD))
+ dec = (int) dec;
+ if (dec < 0)
+ inject_interrupt(vcpu,
+ BOOK3S_INTERRUPT_DECREMENTER, 0);
+ }
+ }
+
+ if (vcpu->arch.doorbell_request) {
+ mtspr(SPRN_DPDES, 1);
+ vcpu->arch.vcore->dpdes = 1;
+ smp_wmb();
+ vcpu->arch.doorbell_request = 0;
+ }
+}
+
+static void flush_guest_tlb(struct kvm *kvm)
+{
+ unsigned long rb, set;
+
+ rb = PPC_BIT(52); /* IS = 2 */
+ for (set = 0; set < kvm->arch.tlb_sets; ++set) {
+ /* R=0 PRS=0 RIC=0 */
+ asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
+ : : "r" (rb), "i" (0), "i" (0), "i" (0),
+ "r" (0) : "memory");
+ rb += PPC_BIT(51); /* increment set number */
+ }
+ asm volatile("ptesync": : :"memory");
+}
+
+void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu)
+{
+ if (cpumask_test_cpu(pcpu, &kvm->arch.need_tlb_flush)) {
+ flush_guest_tlb(kvm);
+
+ /* Clear the bit after the TLB flush */
+ cpumask_clear_cpu(pcpu, &kvm->arch.need_tlb_flush);
+ }
+}
+EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush);
diff --git a/arch/powerpc/kvm/book3s_hv_hmi.c b/arch/powerpc/kvm/book3s_hv_hmi.c
new file mode 100644
index 000000000..1ec50c696
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_hv_hmi.c
@@ -0,0 +1,50 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Hypervisor Maintenance Interrupt (HMI) handling.
+ *
+ * Copyright 2015 IBM Corporation
+ * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
+ */
+
+#undef DEBUG
+
+#include <linux/types.h>
+#include <linux/compiler.h>
+#include <asm/paca.h>
+#include <asm/hmi.h>
+#include <asm/processor.h>
+
+void wait_for_subcore_guest_exit(void)
+{
+ int i;
+
+ /*
+ * NULL bitmap pointer indicates that KVM module hasn't
+ * been loaded yet and hence no guests are running, or running
+ * on POWER9 or newer CPU.
+ *
+ * If no KVM is in use, no need to co-ordinate among threads
+ * as all of them will always be in host and no one is going
+ * to modify TB other than the opal hmi handler.
+ *
+ * POWER9 and newer don't need this synchronisation.
+ *
+ * Hence, just return from here.
+ */
+ if (!local_paca->sibling_subcore_state)
+ return;
+
+ for (i = 0; i < MAX_SUBCORE_PER_CORE; i++)
+ while (local_paca->sibling_subcore_state->in_guest[i])
+ cpu_relax();
+}
+
+void wait_for_tb_resync(void)
+{
+ if (!local_paca->sibling_subcore_state)
+ return;
+
+ while (test_bit(CORE_TB_RESYNC_REQ_BIT,
+ &local_paca->sibling_subcore_state->flags))
+ cpu_relax();
+}
diff --git a/arch/powerpc/kvm/book3s_hv_interrupts.S b/arch/powerpc/kvm/book3s_hv_interrupts.S
new file mode 100644
index 000000000..59d89e4b1
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_hv_interrupts.S
@@ -0,0 +1,156 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ *
+ * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
+ *
+ * Derived from book3s_interrupts.S, which is:
+ * Copyright SUSE Linux Products GmbH 2009
+ *
+ * Authors: Alexander Graf <agraf@suse.de>
+ */
+
+#include <asm/ppc_asm.h>
+#include <asm/kvm_asm.h>
+#include <asm/reg.h>
+#include <asm/page.h>
+#include <asm/asm-offsets.h>
+#include <asm/exception-64s.h>
+#include <asm/ppc-opcode.h>
+#include <asm/asm-compat.h>
+#include <asm/feature-fixups.h>
+
+/*****************************************************************************
+ * *
+ * Guest entry / exit code that is in kernel module memory (vmalloc) *
+ * *
+ ****************************************************************************/
+
+/* Registers:
+ * none
+ */
+_GLOBAL(__kvmppc_vcore_entry)
+
+ /* Write correct stack frame */
+ mflr r0
+ std r0,PPC_LR_STKOFF(r1)
+
+ /* Save host state to the stack */
+ stdu r1, -SWITCH_FRAME_SIZE(r1)
+
+ /* Save non-volatile registers (r14 - r31) and CR */
+ SAVE_NVGPRS(r1)
+ mfcr r3
+ std r3, _CCR(r1)
+
+ /* Save host DSCR */
+ mfspr r3, SPRN_DSCR
+ std r3, HSTATE_DSCR(r13)
+
+BEGIN_FTR_SECTION
+ /* Save host DABR */
+ mfspr r3, SPRN_DABR
+ std r3, HSTATE_DABR(r13)
+END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
+
+ /* Save host PMU registers */
+ bl kvmhv_save_host_pmu
+
+ /*
+ * Put whatever is in the decrementer into the
+ * hypervisor decrementer.
+ * Because of a hardware deviation in P8,
+ * we need to set LPCR[HDICE] before writing HDEC.
+ */
+ ld r5, HSTATE_KVM_VCORE(r13)
+ ld r6, VCORE_KVM(r5)
+ ld r9, KVM_HOST_LPCR(r6)
+ ori r8, r9, LPCR_HDICE
+ mtspr SPRN_LPCR, r8
+ isync
+ mfspr r8,SPRN_DEC
+ mftb r7
+ extsw r8,r8
+ mtspr SPRN_HDEC,r8
+ add r8,r8,r7
+ std r8,HSTATE_DECEXP(r13)
+
+ /* Jump to partition switch code */
+ bl kvmppc_hv_entry_trampoline
+ nop
+
+/*
+ * We return here in virtual mode after the guest exits
+ * with something that we can't handle in real mode.
+ * Interrupts are still hard-disabled.
+ */
+
+ /*
+ * Register usage at this point:
+ *
+ * R1 = host R1
+ * R2 = host R2
+ * R3 = trap number on this thread
+ * R12 = exit handler id
+ * R13 = PACA
+ */
+
+ /* Restore non-volatile host registers (r14 - r31) and CR */
+ REST_NVGPRS(r1)
+ ld r4, _CCR(r1)
+ mtcr r4
+
+ addi r1, r1, SWITCH_FRAME_SIZE
+ ld r0, PPC_LR_STKOFF(r1)
+ mtlr r0
+ blr
+
+/*
+ * void kvmhv_save_host_pmu(void)
+ */
+kvmhv_save_host_pmu:
+BEGIN_FTR_SECTION
+ /* Work around P8 PMAE bug */
+ li r3, -1
+ clrrdi r3, r3, 10
+ mfspr r8, SPRN_MMCR2
+ mtspr SPRN_MMCR2, r3 /* freeze all counters using MMCR2 */
+ isync
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+ li r3, 1
+ sldi r3, r3, 31 /* MMCR0_FC (freeze counters) bit */
+ mfspr r7, SPRN_MMCR0 /* save MMCR0 */
+ mtspr SPRN_MMCR0, r3 /* freeze all counters, disable interrupts */
+ mfspr r6, SPRN_MMCRA
+ /* Clear MMCRA in order to disable SDAR updates */
+ li r5, 0
+ mtspr SPRN_MMCRA, r5
+ isync
+ lbz r5, PACA_PMCINUSE(r13) /* is the host using the PMU? */
+ cmpwi r5, 0
+ beq 31f /* skip if not */
+ mfspr r5, SPRN_MMCR1
+ mfspr r9, SPRN_SIAR
+ mfspr r10, SPRN_SDAR
+ std r7, HSTATE_MMCR0(r13)
+ std r5, HSTATE_MMCR1(r13)
+ std r6, HSTATE_MMCRA(r13)
+ std r9, HSTATE_SIAR(r13)
+ std r10, HSTATE_SDAR(r13)
+BEGIN_FTR_SECTION
+ mfspr r9, SPRN_SIER
+ std r8, HSTATE_MMCR2(r13)
+ std r9, HSTATE_SIER(r13)
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+ mfspr r3, SPRN_PMC1
+ mfspr r5, SPRN_PMC2
+ mfspr r6, SPRN_PMC3
+ mfspr r7, SPRN_PMC4
+ mfspr r8, SPRN_PMC5
+ mfspr r9, SPRN_PMC6
+ stw r3, HSTATE_PMC1(r13)
+ stw r5, HSTATE_PMC2(r13)
+ stw r6, HSTATE_PMC3(r13)
+ stw r7, HSTATE_PMC4(r13)
+ stw r8, HSTATE_PMC5(r13)
+ stw r9, HSTATE_PMC6(r13)
+31: blr
diff --git a/arch/powerpc/kvm/book3s_hv_nested.c b/arch/powerpc/kvm/book3s_hv_nested.c
new file mode 100644
index 000000000..5a64a1341
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_hv_nested.c
@@ -0,0 +1,1675 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright IBM Corporation, 2018
+ * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com>
+ * Paul Mackerras <paulus@ozlabs.org>
+ *
+ * Description: KVM functions specific to running nested KVM-HV guests
+ * on Book3S processors (specifically POWER9 and later).
+ */
+
+#include <linux/kernel.h>
+#include <linux/kvm_host.h>
+#include <linux/llist.h>
+#include <linux/pgtable.h>
+
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+#include <asm/mmu.h>
+#include <asm/pgalloc.h>
+#include <asm/pte-walk.h>
+#include <asm/reg.h>
+#include <asm/plpar_wrappers.h>
+#include <asm/firmware.h>
+
+static struct patb_entry *pseries_partition_tb;
+
+static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp);
+static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free);
+
+void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr)
+{
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+
+ hr->pcr = vc->pcr | PCR_MASK;
+ hr->dpdes = vc->dpdes;
+ hr->hfscr = vcpu->arch.hfscr;
+ hr->tb_offset = vc->tb_offset;
+ hr->dawr0 = vcpu->arch.dawr0;
+ hr->dawrx0 = vcpu->arch.dawrx0;
+ hr->ciabr = vcpu->arch.ciabr;
+ hr->purr = vcpu->arch.purr;
+ hr->spurr = vcpu->arch.spurr;
+ hr->ic = vcpu->arch.ic;
+ hr->vtb = vc->vtb;
+ hr->srr0 = vcpu->arch.shregs.srr0;
+ hr->srr1 = vcpu->arch.shregs.srr1;
+ hr->sprg[0] = vcpu->arch.shregs.sprg0;
+ hr->sprg[1] = vcpu->arch.shregs.sprg1;
+ hr->sprg[2] = vcpu->arch.shregs.sprg2;
+ hr->sprg[3] = vcpu->arch.shregs.sprg3;
+ hr->pidr = vcpu->arch.pid;
+ hr->cfar = vcpu->arch.cfar;
+ hr->ppr = vcpu->arch.ppr;
+ hr->dawr1 = vcpu->arch.dawr1;
+ hr->dawrx1 = vcpu->arch.dawrx1;
+}
+
+/* Use noinline_for_stack due to https://bugs.llvm.org/show_bug.cgi?id=49610 */
+static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs)
+{
+ unsigned long *addr = (unsigned long *) regs;
+
+ for (; addr < ((unsigned long *) (regs + 1)); addr++)
+ *addr = swab64(*addr);
+}
+
+static void byteswap_hv_regs(struct hv_guest_state *hr)
+{
+ hr->version = swab64(hr->version);
+ hr->lpid = swab32(hr->lpid);
+ hr->vcpu_token = swab32(hr->vcpu_token);
+ hr->lpcr = swab64(hr->lpcr);
+ hr->pcr = swab64(hr->pcr) | PCR_MASK;
+ hr->amor = swab64(hr->amor);
+ hr->dpdes = swab64(hr->dpdes);
+ hr->hfscr = swab64(hr->hfscr);
+ hr->tb_offset = swab64(hr->tb_offset);
+ hr->dawr0 = swab64(hr->dawr0);
+ hr->dawrx0 = swab64(hr->dawrx0);
+ hr->ciabr = swab64(hr->ciabr);
+ hr->hdec_expiry = swab64(hr->hdec_expiry);
+ hr->purr = swab64(hr->purr);
+ hr->spurr = swab64(hr->spurr);
+ hr->ic = swab64(hr->ic);
+ hr->vtb = swab64(hr->vtb);
+ hr->hdar = swab64(hr->hdar);
+ hr->hdsisr = swab64(hr->hdsisr);
+ hr->heir = swab64(hr->heir);
+ hr->asdr = swab64(hr->asdr);
+ hr->srr0 = swab64(hr->srr0);
+ hr->srr1 = swab64(hr->srr1);
+ hr->sprg[0] = swab64(hr->sprg[0]);
+ hr->sprg[1] = swab64(hr->sprg[1]);
+ hr->sprg[2] = swab64(hr->sprg[2]);
+ hr->sprg[3] = swab64(hr->sprg[3]);
+ hr->pidr = swab64(hr->pidr);
+ hr->cfar = swab64(hr->cfar);
+ hr->ppr = swab64(hr->ppr);
+ hr->dawr1 = swab64(hr->dawr1);
+ hr->dawrx1 = swab64(hr->dawrx1);
+}
+
+static void save_hv_return_state(struct kvm_vcpu *vcpu,
+ struct hv_guest_state *hr)
+{
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+
+ hr->dpdes = vc->dpdes;
+ hr->purr = vcpu->arch.purr;
+ hr->spurr = vcpu->arch.spurr;
+ hr->ic = vcpu->arch.ic;
+ hr->vtb = vc->vtb;
+ hr->srr0 = vcpu->arch.shregs.srr0;
+ hr->srr1 = vcpu->arch.shregs.srr1;
+ hr->sprg[0] = vcpu->arch.shregs.sprg0;
+ hr->sprg[1] = vcpu->arch.shregs.sprg1;
+ hr->sprg[2] = vcpu->arch.shregs.sprg2;
+ hr->sprg[3] = vcpu->arch.shregs.sprg3;
+ hr->pidr = vcpu->arch.pid;
+ hr->cfar = vcpu->arch.cfar;
+ hr->ppr = vcpu->arch.ppr;
+ switch (vcpu->arch.trap) {
+ case BOOK3S_INTERRUPT_H_DATA_STORAGE:
+ hr->hdar = vcpu->arch.fault_dar;
+ hr->hdsisr = vcpu->arch.fault_dsisr;
+ hr->asdr = vcpu->arch.fault_gpa;
+ break;
+ case BOOK3S_INTERRUPT_H_INST_STORAGE:
+ hr->asdr = vcpu->arch.fault_gpa;
+ break;
+ case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
+ hr->hfscr = ((~HFSCR_INTR_CAUSE & hr->hfscr) |
+ (HFSCR_INTR_CAUSE & vcpu->arch.hfscr));
+ break;
+ case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
+ hr->heir = vcpu->arch.emul_inst;
+ break;
+ }
+}
+
+static void restore_hv_regs(struct kvm_vcpu *vcpu, const struct hv_guest_state *hr)
+{
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+
+ vc->pcr = hr->pcr | PCR_MASK;
+ vc->dpdes = hr->dpdes;
+ vcpu->arch.hfscr = hr->hfscr;
+ vcpu->arch.dawr0 = hr->dawr0;
+ vcpu->arch.dawrx0 = hr->dawrx0;
+ vcpu->arch.ciabr = hr->ciabr;
+ vcpu->arch.purr = hr->purr;
+ vcpu->arch.spurr = hr->spurr;
+ vcpu->arch.ic = hr->ic;
+ vc->vtb = hr->vtb;
+ vcpu->arch.shregs.srr0 = hr->srr0;
+ vcpu->arch.shregs.srr1 = hr->srr1;
+ vcpu->arch.shregs.sprg0 = hr->sprg[0];
+ vcpu->arch.shregs.sprg1 = hr->sprg[1];
+ vcpu->arch.shregs.sprg2 = hr->sprg[2];
+ vcpu->arch.shregs.sprg3 = hr->sprg[3];
+ vcpu->arch.pid = hr->pidr;
+ vcpu->arch.cfar = hr->cfar;
+ vcpu->arch.ppr = hr->ppr;
+ vcpu->arch.dawr1 = hr->dawr1;
+ vcpu->arch.dawrx1 = hr->dawrx1;
+}
+
+void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu,
+ struct hv_guest_state *hr)
+{
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+
+ vc->dpdes = hr->dpdes;
+ vcpu->arch.hfscr = hr->hfscr;
+ vcpu->arch.purr = hr->purr;
+ vcpu->arch.spurr = hr->spurr;
+ vcpu->arch.ic = hr->ic;
+ vc->vtb = hr->vtb;
+ vcpu->arch.fault_dar = hr->hdar;
+ vcpu->arch.fault_dsisr = hr->hdsisr;
+ vcpu->arch.fault_gpa = hr->asdr;
+ vcpu->arch.emul_inst = hr->heir;
+ vcpu->arch.shregs.srr0 = hr->srr0;
+ vcpu->arch.shregs.srr1 = hr->srr1;
+ vcpu->arch.shregs.sprg0 = hr->sprg[0];
+ vcpu->arch.shregs.sprg1 = hr->sprg[1];
+ vcpu->arch.shregs.sprg2 = hr->sprg[2];
+ vcpu->arch.shregs.sprg3 = hr->sprg[3];
+ vcpu->arch.pid = hr->pidr;
+ vcpu->arch.cfar = hr->cfar;
+ vcpu->arch.ppr = hr->ppr;
+}
+
+static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr)
+{
+ /* No need to reflect the page fault to L1, we've handled it */
+ vcpu->arch.trap = 0;
+
+ /*
+ * Since the L2 gprs have already been written back into L1 memory when
+ * we complete the mmio, store the L1 memory location of the L2 gpr
+ * being loaded into by the mmio so that the loaded value can be
+ * written there in kvmppc_complete_mmio_load()
+ */
+ if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR)
+ && (vcpu->mmio_is_write == 0)) {
+ vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr +
+ offsetof(struct pt_regs,
+ gpr[vcpu->arch.io_gpr]);
+ vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR;
+ }
+}
+
+static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu,
+ struct hv_guest_state *l2_hv,
+ struct pt_regs *l2_regs,
+ u64 hv_ptr, u64 regs_ptr)
+{
+ int size;
+
+ if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version,
+ sizeof(l2_hv->version)))
+ return -1;
+
+ if (kvmppc_need_byteswap(vcpu))
+ l2_hv->version = swab64(l2_hv->version);
+
+ size = hv_guest_state_size(l2_hv->version);
+ if (size < 0)
+ return -1;
+
+ return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) ||
+ kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs,
+ sizeof(struct pt_regs));
+}
+
+static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu,
+ struct hv_guest_state *l2_hv,
+ struct pt_regs *l2_regs,
+ u64 hv_ptr, u64 regs_ptr)
+{
+ int size;
+
+ size = hv_guest_state_size(l2_hv->version);
+ if (size < 0)
+ return -1;
+
+ return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) ||
+ kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs,
+ sizeof(struct pt_regs));
+}
+
+static void load_l2_hv_regs(struct kvm_vcpu *vcpu,
+ const struct hv_guest_state *l2_hv,
+ const struct hv_guest_state *l1_hv, u64 *lpcr)
+{
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+ u64 mask;
+
+ restore_hv_regs(vcpu, l2_hv);
+
+ /*
+ * Don't let L1 change LPCR bits for the L2 except these:
+ */
+ mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD | LPCR_MER;
+
+ /*
+ * Additional filtering is required depending on hardware
+ * and configuration.
+ */
+ *lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm,
+ (vc->lpcr & ~mask) | (*lpcr & mask));
+
+ /*
+ * Don't let L1 enable features for L2 which we don't allow for L1,
+ * but preserve the interrupt cause field.
+ */
+ vcpu->arch.hfscr = l2_hv->hfscr & (HFSCR_INTR_CAUSE | vcpu->arch.hfscr_permitted);
+
+ /* Don't let data address watchpoint match in hypervisor state */
+ vcpu->arch.dawrx0 = l2_hv->dawrx0 & ~DAWRX_HYP;
+ vcpu->arch.dawrx1 = l2_hv->dawrx1 & ~DAWRX_HYP;
+
+ /* Don't let completed instruction address breakpt match in HV state */
+ if ((l2_hv->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
+ vcpu->arch.ciabr = l2_hv->ciabr & ~CIABR_PRIV;
+}
+
+long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
+{
+ long int err, r;
+ struct kvm_nested_guest *l2;
+ struct pt_regs l2_regs, saved_l1_regs;
+ struct hv_guest_state l2_hv = {0}, saved_l1_hv;
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+ u64 hv_ptr, regs_ptr;
+ u64 hdec_exp, lpcr;
+ s64 delta_purr, delta_spurr, delta_ic, delta_vtb;
+
+ if (vcpu->kvm->arch.l1_ptcr == 0)
+ return H_NOT_AVAILABLE;
+
+ if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
+ return H_BAD_MODE;
+
+ /* copy parameters in */
+ hv_ptr = kvmppc_get_gpr(vcpu, 4);
+ regs_ptr = kvmppc_get_gpr(vcpu, 5);
+ kvm_vcpu_srcu_read_lock(vcpu);
+ err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
+ hv_ptr, regs_ptr);
+ kvm_vcpu_srcu_read_unlock(vcpu);
+ if (err)
+ return H_PARAMETER;
+
+ if (kvmppc_need_byteswap(vcpu))
+ byteswap_hv_regs(&l2_hv);
+ if (l2_hv.version > HV_GUEST_STATE_VERSION)
+ return H_P2;
+
+ if (kvmppc_need_byteswap(vcpu))
+ byteswap_pt_regs(&l2_regs);
+ if (l2_hv.vcpu_token >= NR_CPUS)
+ return H_PARAMETER;
+
+ /*
+ * L1 must have set up a suspended state to enter the L2 in a
+ * transactional state, and only in that case. These have to be
+ * filtered out here to prevent causing a TM Bad Thing in the
+ * host HRFID. We could synthesize a TM Bad Thing back to the L1
+ * here but there doesn't seem like much point.
+ */
+ if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) {
+ if (!MSR_TM_ACTIVE(l2_regs.msr))
+ return H_BAD_MODE;
+ } else {
+ if (l2_regs.msr & MSR_TS_MASK)
+ return H_BAD_MODE;
+ if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK))
+ return H_BAD_MODE;
+ }
+
+ /* translate lpid */
+ l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true);
+ if (!l2)
+ return H_PARAMETER;
+ if (!l2->l1_gr_to_hr) {
+ mutex_lock(&l2->tlb_lock);
+ kvmhv_update_ptbl_cache(l2);
+ mutex_unlock(&l2->tlb_lock);
+ }
+
+ /* save l1 values of things */
+ vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
+ saved_l1_regs = vcpu->arch.regs;
+ kvmhv_save_hv_regs(vcpu, &saved_l1_hv);
+
+ /* convert TB values/offsets to host (L0) values */
+ hdec_exp = l2_hv.hdec_expiry - vc->tb_offset;
+ vc->tb_offset += l2_hv.tb_offset;
+ vcpu->arch.dec_expires += l2_hv.tb_offset;
+
+ /* set L1 state to L2 state */
+ vcpu->arch.nested = l2;
+ vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token;
+ vcpu->arch.nested_hfscr = l2_hv.hfscr;
+ vcpu->arch.regs = l2_regs;
+
+ /* Guest must always run with ME enabled, HV disabled. */
+ vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV;
+
+ lpcr = l2_hv.lpcr;
+ load_l2_hv_regs(vcpu, &l2_hv, &saved_l1_hv, &lpcr);
+
+ vcpu->arch.ret = RESUME_GUEST;
+ vcpu->arch.trap = 0;
+ do {
+ r = kvmhv_run_single_vcpu(vcpu, hdec_exp, lpcr);
+ } while (is_kvmppc_resume_guest(r));
+
+ /* save L2 state for return */
+ l2_regs = vcpu->arch.regs;
+ l2_regs.msr = vcpu->arch.shregs.msr;
+ delta_purr = vcpu->arch.purr - l2_hv.purr;
+ delta_spurr = vcpu->arch.spurr - l2_hv.spurr;
+ delta_ic = vcpu->arch.ic - l2_hv.ic;
+ delta_vtb = vc->vtb - l2_hv.vtb;
+ save_hv_return_state(vcpu, &l2_hv);
+
+ /* restore L1 state */
+ vcpu->arch.nested = NULL;
+ vcpu->arch.regs = saved_l1_regs;
+ vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK;
+ /* set L1 MSR TS field according to L2 transaction state */
+ if (l2_regs.msr & MSR_TS_MASK)
+ vcpu->arch.shregs.msr |= MSR_TS_S;
+ vc->tb_offset = saved_l1_hv.tb_offset;
+ /* XXX: is this always the same delta as saved_l1_hv.tb_offset? */
+ vcpu->arch.dec_expires -= l2_hv.tb_offset;
+ restore_hv_regs(vcpu, &saved_l1_hv);
+ vcpu->arch.purr += delta_purr;
+ vcpu->arch.spurr += delta_spurr;
+ vcpu->arch.ic += delta_ic;
+ vc->vtb += delta_vtb;
+
+ kvmhv_put_nested(l2);
+
+ /* copy l2_hv_state and regs back to guest */
+ if (kvmppc_need_byteswap(vcpu)) {
+ byteswap_hv_regs(&l2_hv);
+ byteswap_pt_regs(&l2_regs);
+ }
+ kvm_vcpu_srcu_read_lock(vcpu);
+ err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs,
+ hv_ptr, regs_ptr);
+ kvm_vcpu_srcu_read_unlock(vcpu);
+ if (err)
+ return H_AUTHORITY;
+
+ if (r == -EINTR)
+ return H_INTERRUPT;
+
+ if (vcpu->mmio_needed) {
+ kvmhv_nested_mmio_needed(vcpu, regs_ptr);
+ return H_TOO_HARD;
+ }
+
+ return vcpu->arch.trap;
+}
+
+long kvmhv_nested_init(void)
+{
+ long int ptb_order;
+ unsigned long ptcr;
+ long rc;
+
+ if (!kvmhv_on_pseries())
+ return 0;
+ if (!radix_enabled())
+ return -ENODEV;
+
+ /* Partition table entry is 1<<4 bytes in size, hence the 4. */
+ ptb_order = KVM_MAX_NESTED_GUESTS_SHIFT + 4;
+ /* Minimum partition table size is 1<<12 bytes */
+ if (ptb_order < 12)
+ ptb_order = 12;
+ pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order,
+ GFP_KERNEL);
+ if (!pseries_partition_tb) {
+ pr_err("kvm-hv: failed to allocated nested partition table\n");
+ return -ENOMEM;
+ }
+
+ ptcr = __pa(pseries_partition_tb) | (ptb_order - 12);
+ rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr);
+ if (rc != H_SUCCESS) {
+ pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n",
+ rc);
+ kfree(pseries_partition_tb);
+ pseries_partition_tb = NULL;
+ return -ENODEV;
+ }
+
+ return 0;
+}
+
+void kvmhv_nested_exit(void)
+{
+ /*
+ * N.B. the kvmhv_on_pseries() test is there because it enables
+ * the compiler to remove the call to plpar_hcall_norets()
+ * when CONFIG_PPC_PSERIES=n.
+ */
+ if (kvmhv_on_pseries() && pseries_partition_tb) {
+ plpar_hcall_norets(H_SET_PARTITION_TABLE, 0);
+ kfree(pseries_partition_tb);
+ pseries_partition_tb = NULL;
+ }
+}
+
+static void kvmhv_flush_lpid(unsigned int lpid)
+{
+ long rc;
+
+ if (!kvmhv_on_pseries()) {
+ radix__flush_all_lpid(lpid);
+ return;
+ }
+
+ if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE))
+ rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1),
+ lpid, TLBIEL_INVAL_SET_LPID);
+ else
+ rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
+ H_RPTI_TYPE_NESTED |
+ H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
+ H_RPTI_TYPE_PAT,
+ H_RPTI_PAGE_ALL, 0, -1UL);
+ if (rc)
+ pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc);
+}
+
+void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1)
+{
+ if (!kvmhv_on_pseries()) {
+ mmu_partition_table_set_entry(lpid, dw0, dw1, true);
+ return;
+ }
+
+ pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0);
+ pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1);
+ /* L0 will do the necessary barriers */
+ kvmhv_flush_lpid(lpid);
+}
+
+static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp)
+{
+ unsigned long dw0;
+
+ dw0 = PATB_HR | radix__get_tree_size() |
+ __pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE;
+ kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table);
+}
+
+/*
+ * Handle the H_SET_PARTITION_TABLE hcall.
+ * r4 = guest real address of partition table + log_2(size) - 12
+ * (formatted as for the PTCR).
+ */
+long kvmhv_set_partition_table(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ unsigned long ptcr = kvmppc_get_gpr(vcpu, 4);
+ int srcu_idx;
+ long ret = H_SUCCESS;
+
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+ /* Check partition size and base address. */
+ if ((ptcr & PRTS_MASK) + 12 - 4 > KVM_MAX_NESTED_GUESTS_SHIFT ||
+ !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT))
+ ret = H_PARAMETER;
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+ if (ret == H_SUCCESS)
+ kvm->arch.l1_ptcr = ptcr;
+
+ return ret;
+}
+
+/*
+ * Handle the H_COPY_TOFROM_GUEST hcall.
+ * r4 = L1 lpid of nested guest
+ * r5 = pid
+ * r6 = eaddr to access
+ * r7 = to buffer (L1 gpa)
+ * r8 = from buffer (L1 gpa)
+ * r9 = n bytes to copy
+ */
+long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu)
+{
+ struct kvm_nested_guest *gp;
+ int l1_lpid = kvmppc_get_gpr(vcpu, 4);
+ int pid = kvmppc_get_gpr(vcpu, 5);
+ gva_t eaddr = kvmppc_get_gpr(vcpu, 6);
+ gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7);
+ gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8);
+ void *buf;
+ unsigned long n = kvmppc_get_gpr(vcpu, 9);
+ bool is_load = !!gp_to;
+ long rc;
+
+ if (gp_to && gp_from) /* One must be NULL to determine the direction */
+ return H_PARAMETER;
+
+ if (eaddr & (0xFFFUL << 52))
+ return H_PARAMETER;
+
+ buf = kzalloc(n, GFP_KERNEL | __GFP_NOWARN);
+ if (!buf)
+ return H_NO_MEM;
+
+ gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false);
+ if (!gp) {
+ rc = H_PARAMETER;
+ goto out_free;
+ }
+
+ mutex_lock(&gp->tlb_lock);
+
+ if (is_load) {
+ /* Load from the nested guest into our buffer */
+ rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
+ eaddr, buf, NULL, n);
+ if (rc)
+ goto not_found;
+
+ /* Write what was loaded into our buffer back to the L1 guest */
+ kvm_vcpu_srcu_read_lock(vcpu);
+ rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n);
+ kvm_vcpu_srcu_read_unlock(vcpu);
+ if (rc)
+ goto not_found;
+ } else {
+ /* Load the data to be stored from the L1 guest into our buf */
+ kvm_vcpu_srcu_read_lock(vcpu);
+ rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n);
+ kvm_vcpu_srcu_read_unlock(vcpu);
+ if (rc)
+ goto not_found;
+
+ /* Store from our buffer into the nested guest */
+ rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid,
+ eaddr, NULL, buf, n);
+ if (rc)
+ goto not_found;
+ }
+
+out_unlock:
+ mutex_unlock(&gp->tlb_lock);
+ kvmhv_put_nested(gp);
+out_free:
+ kfree(buf);
+ return rc;
+not_found:
+ rc = H_NOT_FOUND;
+ goto out_unlock;
+}
+
+/*
+ * Reload the partition table entry for a guest.
+ * Caller must hold gp->tlb_lock.
+ */
+static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp)
+{
+ int ret;
+ struct patb_entry ptbl_entry;
+ unsigned long ptbl_addr;
+ struct kvm *kvm = gp->l1_host;
+
+ ret = -EFAULT;
+ ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4);
+ if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) {
+ int srcu_idx = srcu_read_lock(&kvm->srcu);
+ ret = kvm_read_guest(kvm, ptbl_addr,
+ &ptbl_entry, sizeof(ptbl_entry));
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+ }
+ if (ret) {
+ gp->l1_gr_to_hr = 0;
+ gp->process_table = 0;
+ } else {
+ gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0);
+ gp->process_table = be64_to_cpu(ptbl_entry.patb1);
+ }
+ kvmhv_set_nested_ptbl(gp);
+}
+
+void kvmhv_vm_nested_init(struct kvm *kvm)
+{
+ idr_init(&kvm->arch.kvm_nested_guest_idr);
+}
+
+static struct kvm_nested_guest *__find_nested(struct kvm *kvm, int lpid)
+{
+ return idr_find(&kvm->arch.kvm_nested_guest_idr, lpid);
+}
+
+static bool __prealloc_nested(struct kvm *kvm, int lpid)
+{
+ if (idr_alloc(&kvm->arch.kvm_nested_guest_idr,
+ NULL, lpid, lpid + 1, GFP_KERNEL) != lpid)
+ return false;
+ return true;
+}
+
+static void __add_nested(struct kvm *kvm, int lpid, struct kvm_nested_guest *gp)
+{
+ if (idr_replace(&kvm->arch.kvm_nested_guest_idr, gp, lpid))
+ WARN_ON(1);
+}
+
+static void __remove_nested(struct kvm *kvm, int lpid)
+{
+ idr_remove(&kvm->arch.kvm_nested_guest_idr, lpid);
+}
+
+static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
+{
+ struct kvm_nested_guest *gp;
+ long shadow_lpid;
+
+ gp = kzalloc(sizeof(*gp), GFP_KERNEL);
+ if (!gp)
+ return NULL;
+ gp->l1_host = kvm;
+ gp->l1_lpid = lpid;
+ mutex_init(&gp->tlb_lock);
+ gp->shadow_pgtable = pgd_alloc(kvm->mm);
+ if (!gp->shadow_pgtable)
+ goto out_free;
+ shadow_lpid = kvmppc_alloc_lpid();
+ if (shadow_lpid < 0)
+ goto out_free2;
+ gp->shadow_lpid = shadow_lpid;
+ gp->radix = 1;
+
+ memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu));
+
+ return gp;
+
+ out_free2:
+ pgd_free(kvm->mm, gp->shadow_pgtable);
+ out_free:
+ kfree(gp);
+ return NULL;
+}
+
+/*
+ * Free up any resources allocated for a nested guest.
+ */
+static void kvmhv_release_nested(struct kvm_nested_guest *gp)
+{
+ struct kvm *kvm = gp->l1_host;
+
+ if (gp->shadow_pgtable) {
+ /*
+ * No vcpu is using this struct and no call to
+ * kvmhv_get_nested can find this struct,
+ * so we don't need to hold kvm->mmu_lock.
+ */
+ kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
+ gp->shadow_lpid);
+ pgd_free(kvm->mm, gp->shadow_pgtable);
+ }
+ kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
+ kvmppc_free_lpid(gp->shadow_lpid);
+ kfree(gp);
+}
+
+static void kvmhv_remove_nested(struct kvm_nested_guest *gp)
+{
+ struct kvm *kvm = gp->l1_host;
+ int lpid = gp->l1_lpid;
+ long ref;
+
+ spin_lock(&kvm->mmu_lock);
+ if (gp == __find_nested(kvm, lpid)) {
+ __remove_nested(kvm, lpid);
+ --gp->refcnt;
+ }
+ ref = gp->refcnt;
+ spin_unlock(&kvm->mmu_lock);
+ if (ref == 0)
+ kvmhv_release_nested(gp);
+}
+
+/*
+ * Free up all nested resources allocated for this guest.
+ * This is called with no vcpus of the guest running, when
+ * switching the guest to HPT mode or when destroying the
+ * guest.
+ */
+void kvmhv_release_all_nested(struct kvm *kvm)
+{
+ int lpid;
+ struct kvm_nested_guest *gp;
+ struct kvm_nested_guest *freelist = NULL;
+ struct kvm_memory_slot *memslot;
+ int srcu_idx, bkt;
+
+ spin_lock(&kvm->mmu_lock);
+ idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
+ __remove_nested(kvm, lpid);
+ if (--gp->refcnt == 0) {
+ gp->next = freelist;
+ freelist = gp;
+ }
+ }
+ idr_destroy(&kvm->arch.kvm_nested_guest_idr);
+ /* idr is empty and may be reused at this point */
+ spin_unlock(&kvm->mmu_lock);
+ while ((gp = freelist) != NULL) {
+ freelist = gp->next;
+ kvmhv_release_nested(gp);
+ }
+
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+ kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm))
+ kvmhv_free_memslot_nest_rmap(memslot);
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+}
+
+/* caller must hold gp->tlb_lock */
+static void kvmhv_flush_nested(struct kvm_nested_guest *gp)
+{
+ struct kvm *kvm = gp->l1_host;
+
+ spin_lock(&kvm->mmu_lock);
+ kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid);
+ spin_unlock(&kvm->mmu_lock);
+ kvmhv_flush_lpid(gp->shadow_lpid);
+ kvmhv_update_ptbl_cache(gp);
+ if (gp->l1_gr_to_hr == 0)
+ kvmhv_remove_nested(gp);
+}
+
+struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
+ bool create)
+{
+ struct kvm_nested_guest *gp, *newgp;
+
+ if (l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4)))
+ return NULL;
+
+ spin_lock(&kvm->mmu_lock);
+ gp = __find_nested(kvm, l1_lpid);
+ if (gp)
+ ++gp->refcnt;
+ spin_unlock(&kvm->mmu_lock);
+
+ if (gp || !create)
+ return gp;
+
+ newgp = kvmhv_alloc_nested(kvm, l1_lpid);
+ if (!newgp)
+ return NULL;
+
+ if (!__prealloc_nested(kvm, l1_lpid)) {
+ kvmhv_release_nested(newgp);
+ return NULL;
+ }
+
+ spin_lock(&kvm->mmu_lock);
+ gp = __find_nested(kvm, l1_lpid);
+ if (!gp) {
+ __add_nested(kvm, l1_lpid, newgp);
+ ++newgp->refcnt;
+ gp = newgp;
+ newgp = NULL;
+ }
+ ++gp->refcnt;
+ spin_unlock(&kvm->mmu_lock);
+
+ if (newgp)
+ kvmhv_release_nested(newgp);
+
+ return gp;
+}
+
+void kvmhv_put_nested(struct kvm_nested_guest *gp)
+{
+ struct kvm *kvm = gp->l1_host;
+ long ref;
+
+ spin_lock(&kvm->mmu_lock);
+ ref = --gp->refcnt;
+ spin_unlock(&kvm->mmu_lock);
+ if (ref == 0)
+ kvmhv_release_nested(gp);
+}
+
+pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
+ unsigned long ea, unsigned *hshift)
+{
+ struct kvm_nested_guest *gp;
+ pte_t *pte;
+
+ gp = __find_nested(kvm, lpid);
+ if (!gp)
+ return NULL;
+
+ VM_WARN(!spin_is_locked(&kvm->mmu_lock),
+ "%s called with kvm mmu_lock not held \n", __func__);
+ pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift);
+
+ return pte;
+}
+
+static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2)
+{
+ return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK |
+ RMAP_NESTED_GPA_MASK));
+}
+
+void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
+ struct rmap_nested **n_rmap)
+{
+ struct llist_node *entry = ((struct llist_head *) rmapp)->first;
+ struct rmap_nested *cursor;
+ u64 rmap, new_rmap = (*n_rmap)->rmap;
+
+ /* Are there any existing entries? */
+ if (!(*rmapp)) {
+ /* No -> use the rmap as a single entry */
+ *rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY;
+ return;
+ }
+
+ /* Do any entries match what we're trying to insert? */
+ for_each_nest_rmap_safe(cursor, entry, &rmap) {
+ if (kvmhv_n_rmap_is_equal(rmap, new_rmap))
+ return;
+ }
+
+ /* Do we need to create a list or just add the new entry? */
+ rmap = *rmapp;
+ if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
+ *rmapp = 0UL;
+ llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp);
+ if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */
+ (*n_rmap)->list.next = (struct llist_node *) rmap;
+
+ /* Set NULL so not freed by caller */
+ *n_rmap = NULL;
+}
+
+static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap,
+ unsigned long clr, unsigned long set,
+ unsigned long hpa, unsigned long mask)
+{
+ unsigned long gpa;
+ unsigned int shift, lpid;
+ pte_t *ptep;
+
+ gpa = n_rmap & RMAP_NESTED_GPA_MASK;
+ lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
+
+ /* Find the pte */
+ ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
+ /*
+ * If the pte is present and the pfn is still the same, update the pte.
+ * If the pfn has changed then this is a stale rmap entry, the nested
+ * gpa actually points somewhere else now, and there is nothing to do.
+ * XXX A future optimisation would be to remove the rmap entry here.
+ */
+ if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) {
+ __radix_pte_update(ptep, clr, set);
+ kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
+ }
+}
+
+/*
+ * For a given list of rmap entries, update the rc bits in all ptes in shadow
+ * page tables for nested guests which are referenced by the rmap list.
+ */
+void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
+ unsigned long clr, unsigned long set,
+ unsigned long hpa, unsigned long nbytes)
+{
+ struct llist_node *entry = ((struct llist_head *) rmapp)->first;
+ struct rmap_nested *cursor;
+ unsigned long rmap, mask;
+
+ if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED))
+ return;
+
+ mask = PTE_RPN_MASK & ~(nbytes - 1);
+ hpa &= mask;
+
+ for_each_nest_rmap_safe(cursor, entry, &rmap)
+ kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask);
+}
+
+static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap,
+ unsigned long hpa, unsigned long mask)
+{
+ struct kvm_nested_guest *gp;
+ unsigned long gpa;
+ unsigned int shift, lpid;
+ pte_t *ptep;
+
+ gpa = n_rmap & RMAP_NESTED_GPA_MASK;
+ lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT;
+ gp = __find_nested(kvm, lpid);
+ if (!gp)
+ return;
+
+ /* Find and invalidate the pte */
+ ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
+ /* Don't spuriously invalidate ptes if the pfn has changed */
+ if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa))
+ kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
+}
+
+static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp,
+ unsigned long hpa, unsigned long mask)
+{
+ struct llist_node *entry = llist_del_all((struct llist_head *) rmapp);
+ struct rmap_nested *cursor;
+ unsigned long rmap;
+
+ for_each_nest_rmap_safe(cursor, entry, &rmap) {
+ kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask);
+ kfree(cursor);
+ }
+}
+
+/* called with kvm->mmu_lock held */
+void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
+ const struct kvm_memory_slot *memslot,
+ unsigned long gpa, unsigned long hpa,
+ unsigned long nbytes)
+{
+ unsigned long gfn, end_gfn;
+ unsigned long addr_mask;
+
+ if (!memslot)
+ return;
+ gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn;
+ end_gfn = gfn + (nbytes >> PAGE_SHIFT);
+
+ addr_mask = PTE_RPN_MASK & ~(nbytes - 1);
+ hpa &= addr_mask;
+
+ for (; gfn < end_gfn; gfn++) {
+ unsigned long *rmap = &memslot->arch.rmap[gfn];
+ kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask);
+ }
+}
+
+static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free)
+{
+ unsigned long page;
+
+ for (page = 0; page < free->npages; page++) {
+ unsigned long rmap, *rmapp = &free->arch.rmap[page];
+ struct rmap_nested *cursor;
+ struct llist_node *entry;
+
+ entry = llist_del_all((struct llist_head *) rmapp);
+ for_each_nest_rmap_safe(cursor, entry, &rmap)
+ kfree(cursor);
+ }
+}
+
+static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu,
+ struct kvm_nested_guest *gp,
+ long gpa, int *shift_ret)
+{
+ struct kvm *kvm = vcpu->kvm;
+ bool ret = false;
+ pte_t *ptep;
+ int shift;
+
+ spin_lock(&kvm->mmu_lock);
+ ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift);
+ if (!shift)
+ shift = PAGE_SHIFT;
+ if (ptep && pte_present(*ptep)) {
+ kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
+ ret = true;
+ }
+ spin_unlock(&kvm->mmu_lock);
+
+ if (shift_ret)
+ *shift_ret = shift;
+ return ret;
+}
+
+static inline int get_ric(unsigned int instr)
+{
+ return (instr >> 18) & 0x3;
+}
+
+static inline int get_prs(unsigned int instr)
+{
+ return (instr >> 17) & 0x1;
+}
+
+static inline int get_r(unsigned int instr)
+{
+ return (instr >> 16) & 0x1;
+}
+
+static inline int get_lpid(unsigned long r_val)
+{
+ return r_val & 0xffffffff;
+}
+
+static inline int get_is(unsigned long r_val)
+{
+ return (r_val >> 10) & 0x3;
+}
+
+static inline int get_ap(unsigned long r_val)
+{
+ return (r_val >> 5) & 0x7;
+}
+
+static inline long get_epn(unsigned long r_val)
+{
+ return r_val >> 12;
+}
+
+static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid,
+ int ap, long epn)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_nested_guest *gp;
+ long npages;
+ int shift, shadow_shift;
+ unsigned long addr;
+
+ shift = ap_to_shift(ap);
+ addr = epn << 12;
+ if (shift < 0)
+ /* Invalid ap encoding */
+ return -EINVAL;
+
+ addr &= ~((1UL << shift) - 1);
+ npages = 1UL << (shift - PAGE_SHIFT);
+
+ gp = kvmhv_get_nested(kvm, lpid, false);
+ if (!gp) /* No such guest -> nothing to do */
+ return 0;
+ mutex_lock(&gp->tlb_lock);
+
+ /* There may be more than one host page backing this single guest pte */
+ do {
+ kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift);
+
+ npages -= 1UL << (shadow_shift - PAGE_SHIFT);
+ addr += 1UL << shadow_shift;
+ } while (npages > 0);
+
+ mutex_unlock(&gp->tlb_lock);
+ kvmhv_put_nested(gp);
+ return 0;
+}
+
+static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu,
+ struct kvm_nested_guest *gp, int ric)
+{
+ struct kvm *kvm = vcpu->kvm;
+
+ mutex_lock(&gp->tlb_lock);
+ switch (ric) {
+ case 0:
+ /* Invalidate TLB */
+ spin_lock(&kvm->mmu_lock);
+ kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
+ gp->shadow_lpid);
+ kvmhv_flush_lpid(gp->shadow_lpid);
+ spin_unlock(&kvm->mmu_lock);
+ break;
+ case 1:
+ /*
+ * Invalidate PWC
+ * We don't cache this -> nothing to do
+ */
+ break;
+ case 2:
+ /* Invalidate TLB, PWC and caching of partition table entries */
+ kvmhv_flush_nested(gp);
+ break;
+ default:
+ break;
+ }
+ mutex_unlock(&gp->tlb_lock);
+}
+
+static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_nested_guest *gp;
+ int lpid;
+
+ spin_lock(&kvm->mmu_lock);
+ idr_for_each_entry(&kvm->arch.kvm_nested_guest_idr, gp, lpid) {
+ spin_unlock(&kvm->mmu_lock);
+ kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
+ spin_lock(&kvm->mmu_lock);
+ }
+ spin_unlock(&kvm->mmu_lock);
+}
+
+static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr,
+ unsigned long rsval, unsigned long rbval)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_nested_guest *gp;
+ int r, ric, prs, is, ap;
+ int lpid;
+ long epn;
+ int ret = 0;
+
+ ric = get_ric(instr);
+ prs = get_prs(instr);
+ r = get_r(instr);
+ lpid = get_lpid(rsval);
+ is = get_is(rbval);
+
+ /*
+ * These cases are invalid and are not handled:
+ * r != 1 -> Only radix supported
+ * prs == 1 -> Not HV privileged
+ * ric == 3 -> No cluster bombs for radix
+ * is == 1 -> Partition scoped translations not associated with pid
+ * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA
+ */
+ if ((!r) || (prs) || (ric == 3) || (is == 1) ||
+ ((!is) && (ric == 1 || ric == 2)))
+ return -EINVAL;
+
+ switch (is) {
+ case 0:
+ /*
+ * We know ric == 0
+ * Invalidate TLB for a given target address
+ */
+ epn = get_epn(rbval);
+ ap = get_ap(rbval);
+ ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn);
+ break;
+ case 2:
+ /* Invalidate matching LPID */
+ gp = kvmhv_get_nested(kvm, lpid, false);
+ if (gp) {
+ kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
+ kvmhv_put_nested(gp);
+ }
+ break;
+ case 3:
+ /* Invalidate ALL LPIDs */
+ kvmhv_emulate_tlbie_all_lpid(vcpu, ric);
+ break;
+ default:
+ ret = -EINVAL;
+ break;
+ }
+
+ return ret;
+}
+
+/*
+ * This handles the H_TLB_INVALIDATE hcall.
+ * Parameters are (r4) tlbie instruction code, (r5) rS contents,
+ * (r6) rB contents.
+ */
+long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu)
+{
+ int ret;
+
+ ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6));
+ if (ret)
+ return H_PARAMETER;
+ return H_SUCCESS;
+}
+
+static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu,
+ unsigned long lpid, unsigned long ric)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_nested_guest *gp;
+
+ gp = kvmhv_get_nested(kvm, lpid, false);
+ if (gp) {
+ kvmhv_emulate_tlbie_lpid(vcpu, gp, ric);
+ kvmhv_put_nested(gp);
+ }
+ return H_SUCCESS;
+}
+
+/*
+ * Number of pages above which we invalidate the entire LPID rather than
+ * flush individual pages.
+ */
+static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33;
+
+static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu,
+ unsigned long lpid,
+ unsigned long pg_sizes,
+ unsigned long start,
+ unsigned long end)
+{
+ int ret = H_P4;
+ unsigned long addr, nr_pages;
+ struct mmu_psize_def *def;
+ unsigned long psize, ap, page_size;
+ bool flush_lpid;
+
+ for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
+ def = &mmu_psize_defs[psize];
+ if (!(pg_sizes & def->h_rpt_pgsize))
+ continue;
+
+ nr_pages = (end - start) >> def->shift;
+ flush_lpid = nr_pages > tlb_range_flush_page_ceiling;
+ if (flush_lpid)
+ return do_tlb_invalidate_nested_all(vcpu, lpid,
+ RIC_FLUSH_TLB);
+ addr = start;
+ ap = mmu_get_ap(psize);
+ page_size = 1UL << def->shift;
+ do {
+ ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap,
+ get_epn(addr));
+ if (ret)
+ return H_P4;
+ addr += page_size;
+ } while (addr < end);
+ }
+ return ret;
+}
+
+/*
+ * Performs partition-scoped invalidations for nested guests
+ * as part of H_RPT_INVALIDATE hcall.
+ */
+long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid,
+ unsigned long type, unsigned long pg_sizes,
+ unsigned long start, unsigned long end)
+{
+ /*
+ * If L2 lpid isn't valid, we need to return H_PARAMETER.
+ *
+ * However, nested KVM issues a L2 lpid flush call when creating
+ * partition table entries for L2. This happens even before the
+ * corresponding shadow lpid is created in HV which happens in
+ * H_ENTER_NESTED call. Since we can't differentiate this case from
+ * the invalid case, we ignore such flush requests and return success.
+ */
+ if (!__find_nested(vcpu->kvm, lpid))
+ return H_SUCCESS;
+
+ /*
+ * A flush all request can be handled by a full lpid flush only.
+ */
+ if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL)
+ return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL);
+
+ /*
+ * We don't need to handle a PWC flush like process table here,
+ * because intermediate partition scoped table in nested guest doesn't
+ * really have PWC. Only level we have PWC is in L0 and for nested
+ * invalidate at L0 we always do kvm_flush_lpid() which does
+ * radix__flush_all_lpid(). For range invalidate at any level, we
+ * are not removing the higher level page tables and hence there is
+ * no PWC invalidate needed.
+ *
+ * if (type & H_RPTI_TYPE_PWC) {
+ * ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC);
+ * if (ret)
+ * return H_P4;
+ * }
+ */
+
+ if (start == 0 && end == -1)
+ return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB);
+
+ if (type & H_RPTI_TYPE_TLB)
+ return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes,
+ start, end);
+ return H_SUCCESS;
+}
+
+/* Used to convert a nested guest real address to a L1 guest real address */
+static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu,
+ struct kvm_nested_guest *gp,
+ unsigned long n_gpa, unsigned long dsisr,
+ struct kvmppc_pte *gpte_p)
+{
+ u64 fault_addr, flags = dsisr & DSISR_ISSTORE;
+ int ret;
+
+ ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr,
+ &fault_addr);
+
+ if (ret) {
+ /* We didn't find a pte */
+ if (ret == -EINVAL) {
+ /* Unsupported mmu config */
+ flags |= DSISR_UNSUPP_MMU;
+ } else if (ret == -ENOENT) {
+ /* No translation found */
+ flags |= DSISR_NOHPTE;
+ } else if (ret == -EFAULT) {
+ /* Couldn't access L1 real address */
+ flags |= DSISR_PRTABLE_FAULT;
+ vcpu->arch.fault_gpa = fault_addr;
+ } else {
+ /* Unknown error */
+ return ret;
+ }
+ goto forward_to_l1;
+ } else {
+ /* We found a pte -> check permissions */
+ if (dsisr & DSISR_ISSTORE) {
+ /* Can we write? */
+ if (!gpte_p->may_write) {
+ flags |= DSISR_PROTFAULT;
+ goto forward_to_l1;
+ }
+ } else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
+ /* Can we execute? */
+ if (!gpte_p->may_execute) {
+ flags |= SRR1_ISI_N_G_OR_CIP;
+ goto forward_to_l1;
+ }
+ } else {
+ /* Can we read? */
+ if (!gpte_p->may_read && !gpte_p->may_write) {
+ flags |= DSISR_PROTFAULT;
+ goto forward_to_l1;
+ }
+ }
+ }
+
+ return 0;
+
+forward_to_l1:
+ vcpu->arch.fault_dsisr = flags;
+ if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
+ vcpu->arch.shregs.msr &= SRR1_MSR_BITS;
+ vcpu->arch.shregs.msr |= flags;
+ }
+ return RESUME_HOST;
+}
+
+static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu,
+ struct kvm_nested_guest *gp,
+ unsigned long n_gpa,
+ struct kvmppc_pte gpte,
+ unsigned long dsisr)
+{
+ struct kvm *kvm = vcpu->kvm;
+ bool writing = !!(dsisr & DSISR_ISSTORE);
+ u64 pgflags;
+ long ret;
+
+ /* Are the rc bits set in the L1 partition scoped pte? */
+ pgflags = _PAGE_ACCESSED;
+ if (writing)
+ pgflags |= _PAGE_DIRTY;
+ if (pgflags & ~gpte.rc)
+ return RESUME_HOST;
+
+ spin_lock(&kvm->mmu_lock);
+ /* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */
+ ret = kvmppc_hv_handle_set_rc(kvm, false, writing,
+ gpte.raddr, kvm->arch.lpid);
+ if (!ret) {
+ ret = -EINVAL;
+ goto out_unlock;
+ }
+
+ /* Set the rc bit in the pte of the shadow_pgtable for the nest guest */
+ ret = kvmppc_hv_handle_set_rc(kvm, true, writing,
+ n_gpa, gp->l1_lpid);
+ if (!ret)
+ ret = -EINVAL;
+ else
+ ret = 0;
+
+out_unlock:
+ spin_unlock(&kvm->mmu_lock);
+ return ret;
+}
+
+static inline int kvmppc_radix_level_to_shift(int level)
+{
+ switch (level) {
+ case 2:
+ return PUD_SHIFT;
+ case 1:
+ return PMD_SHIFT;
+ default:
+ return PAGE_SHIFT;
+ }
+}
+
+static inline int kvmppc_radix_shift_to_level(int shift)
+{
+ if (shift == PUD_SHIFT)
+ return 2;
+ if (shift == PMD_SHIFT)
+ return 1;
+ if (shift == PAGE_SHIFT)
+ return 0;
+ WARN_ON_ONCE(1);
+ return 0;
+}
+
+/* called with gp->tlb_lock held */
+static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu,
+ struct kvm_nested_guest *gp)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_memory_slot *memslot;
+ struct rmap_nested *n_rmap;
+ struct kvmppc_pte gpte;
+ pte_t pte, *pte_p;
+ unsigned long mmu_seq;
+ unsigned long dsisr = vcpu->arch.fault_dsisr;
+ unsigned long ea = vcpu->arch.fault_dar;
+ unsigned long *rmapp;
+ unsigned long n_gpa, gpa, gfn, perm = 0UL;
+ unsigned int shift, l1_shift, level;
+ bool writing = !!(dsisr & DSISR_ISSTORE);
+ bool kvm_ro = false;
+ long int ret;
+
+ if (!gp->l1_gr_to_hr) {
+ kvmhv_update_ptbl_cache(gp);
+ if (!gp->l1_gr_to_hr)
+ return RESUME_HOST;
+ }
+
+ /* Convert the nested guest real address into a L1 guest real address */
+
+ n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL;
+ if (!(dsisr & DSISR_PRTABLE_FAULT))
+ n_gpa |= ea & 0xFFF;
+ ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte);
+
+ /*
+ * If the hardware found a translation but we don't now have a usable
+ * translation in the l1 partition-scoped tree, remove the shadow pte
+ * and let the guest retry.
+ */
+ if (ret == RESUME_HOST &&
+ (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G |
+ DSISR_BAD_COPYPASTE)))
+ goto inval;
+ if (ret)
+ return ret;
+
+ /* Failed to set the reference/change bits */
+ if (dsisr & DSISR_SET_RC) {
+ ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr);
+ if (ret == RESUME_HOST)
+ return ret;
+ if (ret)
+ goto inval;
+ dsisr &= ~DSISR_SET_RC;
+ if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
+ DSISR_PROTFAULT)))
+ return RESUME_GUEST;
+ }
+
+ /*
+ * We took an HISI or HDSI while we were running a nested guest which
+ * means we have no partition scoped translation for that. This means
+ * we need to insert a pte for the mapping into our shadow_pgtable.
+ */
+
+ l1_shift = gpte.page_shift;
+ if (l1_shift < PAGE_SHIFT) {
+ /* We don't support l1 using a page size smaller than our own */
+ pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n",
+ l1_shift, PAGE_SHIFT);
+ return -EINVAL;
+ }
+ gpa = gpte.raddr;
+ gfn = gpa >> PAGE_SHIFT;
+
+ /* 1. Get the corresponding host memslot */
+
+ memslot = gfn_to_memslot(kvm, gfn);
+ if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
+ if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) {
+ /* unusual error -> reflect to the guest as a DSI */
+ kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
+ return RESUME_GUEST;
+ }
+
+ /* passthrough of emulated MMIO case */
+ return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
+ }
+ if (memslot->flags & KVM_MEM_READONLY) {
+ if (writing) {
+ /* Give the guest a DSI */
+ kvmppc_core_queue_data_storage(vcpu, ea,
+ DSISR_ISSTORE | DSISR_PROTFAULT);
+ return RESUME_GUEST;
+ }
+ kvm_ro = true;
+ }
+
+ /* 2. Find the host pte for this L1 guest real address */
+
+ /* Used to check for invalidations in progress */
+ mmu_seq = kvm->mmu_invalidate_seq;
+ smp_rmb();
+
+ /* See if can find translation in our partition scoped tables for L1 */
+ pte = __pte(0);
+ spin_lock(&kvm->mmu_lock);
+ pte_p = find_kvm_secondary_pte(kvm, gpa, &shift);
+ if (!shift)
+ shift = PAGE_SHIFT;
+ if (pte_p)
+ pte = *pte_p;
+ spin_unlock(&kvm->mmu_lock);
+
+ if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) {
+ /* No suitable pte found -> try to insert a mapping */
+ ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot,
+ writing, kvm_ro, &pte, &level);
+ if (ret == -EAGAIN)
+ return RESUME_GUEST;
+ else if (ret)
+ return ret;
+ shift = kvmppc_radix_level_to_shift(level);
+ }
+ /* Align gfn to the start of the page */
+ gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT;
+
+ /* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */
+
+ /* The permissions is the combination of the host and l1 guest ptes */
+ perm |= gpte.may_read ? 0UL : _PAGE_READ;
+ perm |= gpte.may_write ? 0UL : _PAGE_WRITE;
+ perm |= gpte.may_execute ? 0UL : _PAGE_EXEC;
+ /* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */
+ perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED;
+ perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY;
+ pte = __pte(pte_val(pte) & ~perm);
+
+ /* What size pte can we insert? */
+ if (shift > l1_shift) {
+ u64 mask;
+ unsigned int actual_shift = PAGE_SHIFT;
+ if (PMD_SHIFT < l1_shift)
+ actual_shift = PMD_SHIFT;
+ mask = (1UL << shift) - (1UL << actual_shift);
+ pte = __pte(pte_val(pte) | (gpa & mask));
+ shift = actual_shift;
+ }
+ level = kvmppc_radix_shift_to_level(shift);
+ n_gpa &= ~((1UL << shift) - 1);
+
+ /* 4. Insert the pte into our shadow_pgtable */
+
+ n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL);
+ if (!n_rmap)
+ return RESUME_GUEST; /* Let the guest try again */
+ n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) |
+ (((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT);
+ rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
+ ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level,
+ mmu_seq, gp->shadow_lpid, rmapp, &n_rmap);
+ kfree(n_rmap);
+ if (ret == -EAGAIN)
+ ret = RESUME_GUEST; /* Let the guest try again */
+
+ return ret;
+
+ inval:
+ kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL);
+ return RESUME_GUEST;
+}
+
+long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu)
+{
+ struct kvm_nested_guest *gp = vcpu->arch.nested;
+ long int ret;
+
+ mutex_lock(&gp->tlb_lock);
+ ret = __kvmhv_nested_page_fault(vcpu, gp);
+ mutex_unlock(&gp->tlb_lock);
+ return ret;
+}
+
+int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid)
+{
+ int ret = lpid + 1;
+
+ spin_lock(&kvm->mmu_lock);
+ if (!idr_get_next(&kvm->arch.kvm_nested_guest_idr, &ret))
+ ret = -1;
+ spin_unlock(&kvm->mmu_lock);
+
+ return ret;
+}
diff --git a/arch/powerpc/kvm/book3s_hv_p9_entry.c b/arch/powerpc/kvm/book3s_hv_p9_entry.c
new file mode 100644
index 000000000..34f1db212
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_hv_p9_entry.c
@@ -0,0 +1,930 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#include <linux/kernel.h>
+#include <linux/kvm_host.h>
+#include <asm/asm-prototypes.h>
+#include <asm/dbell.h>
+#include <asm/ppc-opcode.h>
+
+#include "book3s_hv.h"
+
+static void load_spr_state(struct kvm_vcpu *vcpu,
+ struct p9_host_os_sprs *host_os_sprs)
+{
+ /* TAR is very fast */
+ mtspr(SPRN_TAR, vcpu->arch.tar);
+
+#ifdef CONFIG_ALTIVEC
+ if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
+ current->thread.vrsave != vcpu->arch.vrsave)
+ mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
+#endif
+
+ if (vcpu->arch.hfscr & HFSCR_EBB) {
+ if (current->thread.ebbhr != vcpu->arch.ebbhr)
+ mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
+ if (current->thread.ebbrr != vcpu->arch.ebbrr)
+ mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
+ if (current->thread.bescr != vcpu->arch.bescr)
+ mtspr(SPRN_BESCR, vcpu->arch.bescr);
+ }
+
+ if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
+ current->thread.tidr != vcpu->arch.tid)
+ mtspr(SPRN_TIDR, vcpu->arch.tid);
+ if (host_os_sprs->iamr != vcpu->arch.iamr)
+ mtspr(SPRN_IAMR, vcpu->arch.iamr);
+ if (host_os_sprs->amr != vcpu->arch.amr)
+ mtspr(SPRN_AMR, vcpu->arch.amr);
+ if (vcpu->arch.uamor != 0)
+ mtspr(SPRN_UAMOR, vcpu->arch.uamor);
+ if (current->thread.fscr != vcpu->arch.fscr)
+ mtspr(SPRN_FSCR, vcpu->arch.fscr);
+ if (current->thread.dscr != vcpu->arch.dscr)
+ mtspr(SPRN_DSCR, vcpu->arch.dscr);
+ if (vcpu->arch.pspb != 0)
+ mtspr(SPRN_PSPB, vcpu->arch.pspb);
+
+ /*
+ * DAR, DSISR, and for nested HV, SPRGs must be set with MSR[RI]
+ * clear (or hstate set appropriately to catch those registers
+ * being clobbered if we take a MCE or SRESET), so those are done
+ * later.
+ */
+
+ if (!(vcpu->arch.ctrl & 1))
+ mtspr(SPRN_CTRLT, 0);
+}
+
+static void store_spr_state(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.tar = mfspr(SPRN_TAR);
+
+#ifdef CONFIG_ALTIVEC
+ if (cpu_has_feature(CPU_FTR_ALTIVEC))
+ vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
+#endif
+
+ if (vcpu->arch.hfscr & HFSCR_EBB) {
+ vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
+ vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
+ vcpu->arch.bescr = mfspr(SPRN_BESCR);
+ }
+
+ if (cpu_has_feature(CPU_FTR_P9_TIDR))
+ vcpu->arch.tid = mfspr(SPRN_TIDR);
+ vcpu->arch.iamr = mfspr(SPRN_IAMR);
+ vcpu->arch.amr = mfspr(SPRN_AMR);
+ vcpu->arch.uamor = mfspr(SPRN_UAMOR);
+ vcpu->arch.fscr = mfspr(SPRN_FSCR);
+ vcpu->arch.dscr = mfspr(SPRN_DSCR);
+ vcpu->arch.pspb = mfspr(SPRN_PSPB);
+
+ vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
+}
+
+/* Returns true if current MSR and/or guest MSR may have changed */
+bool load_vcpu_state(struct kvm_vcpu *vcpu,
+ struct p9_host_os_sprs *host_os_sprs)
+{
+ bool ret = false;
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ if (cpu_has_feature(CPU_FTR_TM) ||
+ cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) {
+ unsigned long guest_msr = vcpu->arch.shregs.msr;
+ if (MSR_TM_ACTIVE(guest_msr)) {
+ kvmppc_restore_tm_hv(vcpu, guest_msr, true);
+ ret = true;
+ } else if (vcpu->arch.hfscr & HFSCR_TM) {
+ mtspr(SPRN_TEXASR, vcpu->arch.texasr);
+ mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
+ mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
+ }
+ }
+#endif
+
+ load_spr_state(vcpu, host_os_sprs);
+
+ load_fp_state(&vcpu->arch.fp);
+#ifdef CONFIG_ALTIVEC
+ load_vr_state(&vcpu->arch.vr);
+#endif
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(load_vcpu_state);
+
+void store_vcpu_state(struct kvm_vcpu *vcpu)
+{
+ store_spr_state(vcpu);
+
+ store_fp_state(&vcpu->arch.fp);
+#ifdef CONFIG_ALTIVEC
+ store_vr_state(&vcpu->arch.vr);
+#endif
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ if (cpu_has_feature(CPU_FTR_TM) ||
+ cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) {
+ unsigned long guest_msr = vcpu->arch.shregs.msr;
+ if (MSR_TM_ACTIVE(guest_msr)) {
+ kvmppc_save_tm_hv(vcpu, guest_msr, true);
+ } else if (vcpu->arch.hfscr & HFSCR_TM) {
+ vcpu->arch.texasr = mfspr(SPRN_TEXASR);
+ vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
+ vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
+
+ if (!vcpu->arch.nested) {
+ vcpu->arch.load_tm++; /* see load_ebb comment */
+ if (!vcpu->arch.load_tm)
+ vcpu->arch.hfscr &= ~HFSCR_TM;
+ }
+ }
+ }
+#endif
+}
+EXPORT_SYMBOL_GPL(store_vcpu_state);
+
+void save_p9_host_os_sprs(struct p9_host_os_sprs *host_os_sprs)
+{
+ host_os_sprs->iamr = mfspr(SPRN_IAMR);
+ host_os_sprs->amr = mfspr(SPRN_AMR);
+}
+EXPORT_SYMBOL_GPL(save_p9_host_os_sprs);
+
+/* vcpu guest regs must already be saved */
+void restore_p9_host_os_sprs(struct kvm_vcpu *vcpu,
+ struct p9_host_os_sprs *host_os_sprs)
+{
+ /*
+ * current->thread.xxx registers must all be restored to host
+ * values before a potential context switch, otherwise the context
+ * switch itself will overwrite current->thread.xxx with the values
+ * from the guest SPRs.
+ */
+
+ mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
+
+ if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
+ current->thread.tidr != vcpu->arch.tid)
+ mtspr(SPRN_TIDR, current->thread.tidr);
+ if (host_os_sprs->iamr != vcpu->arch.iamr)
+ mtspr(SPRN_IAMR, host_os_sprs->iamr);
+ if (vcpu->arch.uamor != 0)
+ mtspr(SPRN_UAMOR, 0);
+ if (host_os_sprs->amr != vcpu->arch.amr)
+ mtspr(SPRN_AMR, host_os_sprs->amr);
+ if (current->thread.fscr != vcpu->arch.fscr)
+ mtspr(SPRN_FSCR, current->thread.fscr);
+ if (current->thread.dscr != vcpu->arch.dscr)
+ mtspr(SPRN_DSCR, current->thread.dscr);
+ if (vcpu->arch.pspb != 0)
+ mtspr(SPRN_PSPB, 0);
+
+ /* Save guest CTRL register, set runlatch to 1 */
+ if (!(vcpu->arch.ctrl & 1))
+ mtspr(SPRN_CTRLT, 1);
+
+#ifdef CONFIG_ALTIVEC
+ if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
+ vcpu->arch.vrsave != current->thread.vrsave)
+ mtspr(SPRN_VRSAVE, current->thread.vrsave);
+#endif
+ if (vcpu->arch.hfscr & HFSCR_EBB) {
+ if (vcpu->arch.bescr != current->thread.bescr)
+ mtspr(SPRN_BESCR, current->thread.bescr);
+ if (vcpu->arch.ebbhr != current->thread.ebbhr)
+ mtspr(SPRN_EBBHR, current->thread.ebbhr);
+ if (vcpu->arch.ebbrr != current->thread.ebbrr)
+ mtspr(SPRN_EBBRR, current->thread.ebbrr);
+
+ if (!vcpu->arch.nested) {
+ /*
+ * This is like load_fp in context switching, turn off
+ * the facility after it wraps the u8 to try avoiding
+ * saving and restoring the registers each partition
+ * switch.
+ */
+ vcpu->arch.load_ebb++;
+ if (!vcpu->arch.load_ebb)
+ vcpu->arch.hfscr &= ~HFSCR_EBB;
+ }
+ }
+
+ if (vcpu->arch.tar != current->thread.tar)
+ mtspr(SPRN_TAR, current->thread.tar);
+}
+EXPORT_SYMBOL_GPL(restore_p9_host_os_sprs);
+
+#ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
+void accumulate_time(struct kvm_vcpu *vcpu, struct kvmhv_tb_accumulator *next)
+{
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+ struct kvmhv_tb_accumulator *curr;
+ u64 tb = mftb() - vc->tb_offset_applied;
+ u64 prev_tb;
+ u64 delta;
+ u64 seq;
+
+ curr = vcpu->arch.cur_activity;
+ vcpu->arch.cur_activity = next;
+ prev_tb = vcpu->arch.cur_tb_start;
+ vcpu->arch.cur_tb_start = tb;
+
+ if (!curr)
+ return;
+
+ delta = tb - prev_tb;
+
+ seq = curr->seqcount;
+ curr->seqcount = seq + 1;
+ smp_wmb();
+ curr->tb_total += delta;
+ if (seq == 0 || delta < curr->tb_min)
+ curr->tb_min = delta;
+ if (delta > curr->tb_max)
+ curr->tb_max = delta;
+ smp_wmb();
+ curr->seqcount = seq + 2;
+}
+EXPORT_SYMBOL_GPL(accumulate_time);
+#endif
+
+static inline u64 mfslbv(unsigned int idx)
+{
+ u64 slbev;
+
+ asm volatile("slbmfev %0,%1" : "=r" (slbev) : "r" (idx));
+
+ return slbev;
+}
+
+static inline u64 mfslbe(unsigned int idx)
+{
+ u64 slbee;
+
+ asm volatile("slbmfee %0,%1" : "=r" (slbee) : "r" (idx));
+
+ return slbee;
+}
+
+static inline void mtslb(u64 slbee, u64 slbev)
+{
+ asm volatile("slbmte %0,%1" :: "r" (slbev), "r" (slbee));
+}
+
+static inline void clear_slb_entry(unsigned int idx)
+{
+ mtslb(idx, 0);
+}
+
+static inline void slb_clear_invalidate_partition(void)
+{
+ clear_slb_entry(0);
+ asm volatile(PPC_SLBIA(6));
+}
+
+/*
+ * Malicious or buggy radix guests may have inserted SLB entries
+ * (only 0..3 because radix always runs with UPRT=1), so these must
+ * be cleared here to avoid side-channels. slbmte is used rather
+ * than slbia, as it won't clear cached translations.
+ */
+static void radix_clear_slb(void)
+{
+ int i;
+
+ for (i = 0; i < 4; i++)
+ clear_slb_entry(i);
+}
+
+static void switch_mmu_to_guest_radix(struct kvm *kvm, struct kvm_vcpu *vcpu, u64 lpcr)
+{
+ struct kvm_nested_guest *nested = vcpu->arch.nested;
+ u32 lpid;
+ u32 pid;
+
+ lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
+ pid = vcpu->arch.pid;
+
+ /*
+ * Prior memory accesses to host PID Q3 must be completed before we
+ * start switching, and stores must be drained to avoid not-my-LPAR
+ * logic (see switch_mmu_to_host).
+ */
+ asm volatile("hwsync" ::: "memory");
+ isync();
+ mtspr(SPRN_LPID, lpid);
+ mtspr(SPRN_LPCR, lpcr);
+ mtspr(SPRN_PID, pid);
+ /*
+ * isync not required here because we are HRFID'ing to guest before
+ * any guest context access, which is context synchronising.
+ */
+}
+
+static void switch_mmu_to_guest_hpt(struct kvm *kvm, struct kvm_vcpu *vcpu, u64 lpcr)
+{
+ u32 lpid;
+ u32 pid;
+ int i;
+
+ lpid = kvm->arch.lpid;
+ pid = vcpu->arch.pid;
+
+ /*
+ * See switch_mmu_to_guest_radix. ptesync should not be required here
+ * even if the host is in HPT mode because speculative accesses would
+ * not cause RC updates (we are in real mode).
+ */
+ asm volatile("hwsync" ::: "memory");
+ isync();
+ mtspr(SPRN_LPID, lpid);
+ mtspr(SPRN_LPCR, lpcr);
+ mtspr(SPRN_PID, pid);
+
+ for (i = 0; i < vcpu->arch.slb_max; i++)
+ mtslb(vcpu->arch.slb[i].orige, vcpu->arch.slb[i].origv);
+ /*
+ * isync not required here, see switch_mmu_to_guest_radix.
+ */
+}
+
+static void switch_mmu_to_host(struct kvm *kvm, u32 pid)
+{
+ u32 lpid = kvm->arch.host_lpid;
+ u64 lpcr = kvm->arch.host_lpcr;
+
+ /*
+ * The guest has exited, so guest MMU context is no longer being
+ * non-speculatively accessed, but a hwsync is needed before the
+ * mtLPIDR / mtPIDR switch, in order to ensure all stores are drained,
+ * so the not-my-LPAR tlbie logic does not overlook them.
+ */
+ asm volatile("hwsync" ::: "memory");
+ isync();
+ mtspr(SPRN_PID, pid);
+ mtspr(SPRN_LPID, lpid);
+ mtspr(SPRN_LPCR, lpcr);
+ /*
+ * isync is not required after the switch, because mtmsrd with L=0
+ * is performed after this switch, which is context synchronising.
+ */
+
+ if (!radix_enabled())
+ slb_restore_bolted_realmode();
+}
+
+static void save_clear_host_mmu(struct kvm *kvm)
+{
+ if (!radix_enabled()) {
+ /*
+ * Hash host could save and restore host SLB entries to
+ * reduce SLB fault overheads of VM exits, but for now the
+ * existing code clears all entries and restores just the
+ * bolted ones when switching back to host.
+ */
+ slb_clear_invalidate_partition();
+ }
+}
+
+static void save_clear_guest_mmu(struct kvm *kvm, struct kvm_vcpu *vcpu)
+{
+ if (kvm_is_radix(kvm)) {
+ radix_clear_slb();
+ } else {
+ int i;
+ int nr = 0;
+
+ /*
+ * This must run before switching to host (radix host can't
+ * access all SLBs).
+ */
+ for (i = 0; i < vcpu->arch.slb_nr; i++) {
+ u64 slbee, slbev;
+
+ slbee = mfslbe(i);
+ if (slbee & SLB_ESID_V) {
+ slbev = mfslbv(i);
+ vcpu->arch.slb[nr].orige = slbee | i;
+ vcpu->arch.slb[nr].origv = slbev;
+ nr++;
+ }
+ }
+ vcpu->arch.slb_max = nr;
+ slb_clear_invalidate_partition();
+ }
+}
+
+static void flush_guest_tlb(struct kvm *kvm)
+{
+ unsigned long rb, set;
+
+ rb = PPC_BIT(52); /* IS = 2 */
+ if (kvm_is_radix(kvm)) {
+ /* R=1 PRS=1 RIC=2 */
+ asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
+ : : "r" (rb), "i" (1), "i" (1), "i" (2),
+ "r" (0) : "memory");
+ for (set = 1; set < kvm->arch.tlb_sets; ++set) {
+ rb += PPC_BIT(51); /* increment set number */
+ /* R=1 PRS=1 RIC=0 */
+ asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
+ : : "r" (rb), "i" (1), "i" (1), "i" (0),
+ "r" (0) : "memory");
+ }
+ asm volatile("ptesync": : :"memory");
+ // POWER9 congruence-class TLBIEL leaves ERAT. Flush it now.
+ asm volatile(PPC_RADIX_INVALIDATE_ERAT_GUEST : : :"memory");
+ } else {
+ for (set = 0; set < kvm->arch.tlb_sets; ++set) {
+ /* R=0 PRS=0 RIC=0 */
+ asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
+ : : "r" (rb), "i" (0), "i" (0), "i" (0),
+ "r" (0) : "memory");
+ rb += PPC_BIT(51); /* increment set number */
+ }
+ asm volatile("ptesync": : :"memory");
+ // POWER9 congruence-class TLBIEL leaves ERAT. Flush it now.
+ asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT : : :"memory");
+ }
+}
+
+static void check_need_tlb_flush(struct kvm *kvm, int pcpu,
+ struct kvm_nested_guest *nested)
+{
+ cpumask_t *need_tlb_flush;
+ bool all_set = true;
+ int i;
+
+ if (nested)
+ need_tlb_flush = &nested->need_tlb_flush;
+ else
+ need_tlb_flush = &kvm->arch.need_tlb_flush;
+
+ if (likely(!cpumask_test_cpu(pcpu, need_tlb_flush)))
+ return;
+
+ /*
+ * Individual threads can come in here, but the TLB is shared between
+ * the 4 threads in a core, hence invalidating on one thread
+ * invalidates for all, so only invalidate the first time (if all bits
+ * were set. The others must still execute a ptesync.
+ *
+ * If a race occurs and two threads do the TLB flush, that is not a
+ * problem, just sub-optimal.
+ */
+ for (i = cpu_first_tlb_thread_sibling(pcpu);
+ i <= cpu_last_tlb_thread_sibling(pcpu);
+ i += cpu_tlb_thread_sibling_step()) {
+ if (!cpumask_test_cpu(i, need_tlb_flush)) {
+ all_set = false;
+ break;
+ }
+ }
+ if (all_set)
+ flush_guest_tlb(kvm);
+ else
+ asm volatile("ptesync" ::: "memory");
+
+ /* Clear the bit after the TLB flush */
+ cpumask_clear_cpu(pcpu, need_tlb_flush);
+}
+
+unsigned long kvmppc_msr_hard_disable_set_facilities(struct kvm_vcpu *vcpu, unsigned long msr)
+{
+ unsigned long msr_needed = 0;
+
+ msr &= ~MSR_EE;
+
+ /* MSR bits may have been cleared by context switch so must recheck */
+ if (IS_ENABLED(CONFIG_PPC_FPU))
+ msr_needed |= MSR_FP;
+ if (cpu_has_feature(CPU_FTR_ALTIVEC))
+ msr_needed |= MSR_VEC;
+ if (cpu_has_feature(CPU_FTR_VSX))
+ msr_needed |= MSR_VSX;
+ if ((cpu_has_feature(CPU_FTR_TM) ||
+ cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
+ (vcpu->arch.hfscr & HFSCR_TM))
+ msr_needed |= MSR_TM;
+
+ /*
+ * This could be combined with MSR[RI] clearing, but that expands
+ * the unrecoverable window. It would be better to cover unrecoverable
+ * with KVM bad interrupt handling rather than use MSR[RI] at all.
+ *
+ * Much more difficult and less worthwhile to combine with IR/DR
+ * disable.
+ */
+ if ((msr & msr_needed) != msr_needed) {
+ msr |= msr_needed;
+ __mtmsrd(msr, 0);
+ } else {
+ __hard_irq_disable();
+ }
+ local_paca->irq_happened |= PACA_IRQ_HARD_DIS;
+
+ return msr;
+}
+EXPORT_SYMBOL_GPL(kvmppc_msr_hard_disable_set_facilities);
+
+int kvmhv_vcpu_entry_p9(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
+{
+ struct p9_host_os_sprs host_os_sprs;
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_nested_guest *nested = vcpu->arch.nested;
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+ s64 hdec, dec;
+ u64 purr, spurr;
+ u64 *exsave;
+ int trap;
+ unsigned long msr;
+ unsigned long host_hfscr;
+ unsigned long host_ciabr;
+ unsigned long host_dawr0;
+ unsigned long host_dawrx0;
+ unsigned long host_psscr;
+ unsigned long host_hpsscr;
+ unsigned long host_pidr;
+ unsigned long host_dawr1;
+ unsigned long host_dawrx1;
+ unsigned long dpdes;
+
+ hdec = time_limit - *tb;
+ if (hdec < 0)
+ return BOOK3S_INTERRUPT_HV_DECREMENTER;
+
+ WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_HV);
+ WARN_ON_ONCE(!(vcpu->arch.shregs.msr & MSR_ME));
+
+ vcpu->arch.ceded = 0;
+
+ /* Save MSR for restore, with EE clear. */
+ msr = mfmsr() & ~MSR_EE;
+
+ host_hfscr = mfspr(SPRN_HFSCR);
+ host_ciabr = mfspr(SPRN_CIABR);
+ host_psscr = mfspr(SPRN_PSSCR_PR);
+ if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
+ host_hpsscr = mfspr(SPRN_PSSCR);
+ host_pidr = mfspr(SPRN_PID);
+
+ if (dawr_enabled()) {
+ host_dawr0 = mfspr(SPRN_DAWR0);
+ host_dawrx0 = mfspr(SPRN_DAWRX0);
+ if (cpu_has_feature(CPU_FTR_DAWR1)) {
+ host_dawr1 = mfspr(SPRN_DAWR1);
+ host_dawrx1 = mfspr(SPRN_DAWRX1);
+ }
+ }
+
+ local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
+ local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
+
+ save_p9_host_os_sprs(&host_os_sprs);
+
+ msr = kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
+ if (lazy_irq_pending()) {
+ trap = 0;
+ goto out;
+ }
+
+ if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
+ msr = mfmsr(); /* MSR may have been updated */
+
+ if (vc->tb_offset) {
+ u64 new_tb = *tb + vc->tb_offset;
+ mtspr(SPRN_TBU40, new_tb);
+ if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) {
+ new_tb += 0x1000000;
+ mtspr(SPRN_TBU40, new_tb);
+ }
+ *tb = new_tb;
+ vc->tb_offset_applied = vc->tb_offset;
+ }
+
+ mtspr(SPRN_VTB, vc->vtb);
+ mtspr(SPRN_PURR, vcpu->arch.purr);
+ mtspr(SPRN_SPURR, vcpu->arch.spurr);
+
+ if (vc->pcr)
+ mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
+ if (vcpu->arch.doorbell_request) {
+ vcpu->arch.doorbell_request = 0;
+ mtspr(SPRN_DPDES, 1);
+ }
+
+ if (dawr_enabled()) {
+ if (vcpu->arch.dawr0 != host_dawr0)
+ mtspr(SPRN_DAWR0, vcpu->arch.dawr0);
+ if (vcpu->arch.dawrx0 != host_dawrx0)
+ mtspr(SPRN_DAWRX0, vcpu->arch.dawrx0);
+ if (cpu_has_feature(CPU_FTR_DAWR1)) {
+ if (vcpu->arch.dawr1 != host_dawr1)
+ mtspr(SPRN_DAWR1, vcpu->arch.dawr1);
+ if (vcpu->arch.dawrx1 != host_dawrx1)
+ mtspr(SPRN_DAWRX1, vcpu->arch.dawrx1);
+ }
+ }
+ if (vcpu->arch.ciabr != host_ciabr)
+ mtspr(SPRN_CIABR, vcpu->arch.ciabr);
+
+
+ if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) {
+ mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
+ (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
+ } else {
+ if (vcpu->arch.psscr != host_psscr)
+ mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
+ }
+
+ mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
+
+ mtspr(SPRN_HSRR0, vcpu->arch.regs.nip);
+ mtspr(SPRN_HSRR1, (vcpu->arch.shregs.msr & ~MSR_HV) | MSR_ME);
+
+ /*
+ * On POWER9 DD2.1 and below, sometimes on a Hypervisor Data Storage
+ * Interrupt (HDSI) the HDSISR is not be updated at all.
+ *
+ * To work around this we put a canary value into the HDSISR before
+ * returning to a guest and then check for this canary when we take a
+ * HDSI. If we find the canary on a HDSI, we know the hardware didn't
+ * update the HDSISR. In this case we return to the guest to retake the
+ * HDSI which should correctly update the HDSISR the second time HDSI
+ * entry.
+ *
+ * The "radix prefetch bug" test can be used to test for this bug, as
+ * it also exists fo DD2.1 and below.
+ */
+ if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
+ mtspr(SPRN_HDSISR, HDSISR_CANARY);
+
+ mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
+ mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
+ mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
+ mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
+
+ /*
+ * It might be preferable to load_vcpu_state here, in order to get the
+ * GPR/FP register loads executing in parallel with the previous mtSPR
+ * instructions, but for now that can't be done because the TM handling
+ * in load_vcpu_state can change some SPRs and vcpu state (nip, msr).
+ * But TM could be split out if this would be a significant benefit.
+ */
+
+ /*
+ * MSR[RI] does not need to be cleared (and is not, for radix guests
+ * with no prefetch bug), because in_guest is set. If we take a SRESET
+ * or MCE with in_guest set but still in HV mode, then
+ * kvmppc_p9_bad_interrupt handles the interrupt, which effectively
+ * clears MSR[RI] and doesn't return.
+ */
+ WRITE_ONCE(local_paca->kvm_hstate.in_guest, KVM_GUEST_MODE_HV_P9);
+ barrier(); /* Open in_guest critical section */
+
+ /*
+ * Hash host, hash guest, or radix guest with prefetch bug, all have
+ * to disable the MMU before switching to guest MMU state.
+ */
+ if (!radix_enabled() || !kvm_is_radix(kvm) ||
+ cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
+ __mtmsrd(msr & ~(MSR_IR|MSR_DR|MSR_RI), 0);
+
+ save_clear_host_mmu(kvm);
+
+ if (kvm_is_radix(kvm))
+ switch_mmu_to_guest_radix(kvm, vcpu, lpcr);
+ else
+ switch_mmu_to_guest_hpt(kvm, vcpu, lpcr);
+
+ /* TLBIEL uses LPID=LPIDR, so run this after setting guest LPID */
+ check_need_tlb_flush(kvm, vc->pcpu, nested);
+
+ /*
+ * P9 suppresses the HDEC exception when LPCR[HDICE] = 0,
+ * so set guest LPCR (with HDICE) before writing HDEC.
+ */
+ mtspr(SPRN_HDEC, hdec);
+
+ mtspr(SPRN_DEC, vcpu->arch.dec_expires - *tb);
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+tm_return_to_guest:
+#endif
+ mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
+ mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
+ mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
+ mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
+
+ switch_pmu_to_guest(vcpu, &host_os_sprs);
+ accumulate_time(vcpu, &vcpu->arch.in_guest);
+
+ kvmppc_p9_enter_guest(vcpu);
+
+ accumulate_time(vcpu, &vcpu->arch.guest_exit);
+ switch_pmu_to_host(vcpu, &host_os_sprs);
+
+ /* XXX: Could get these from r11/12 and paca exsave instead */
+ vcpu->arch.shregs.srr0 = mfspr(SPRN_SRR0);
+ vcpu->arch.shregs.srr1 = mfspr(SPRN_SRR1);
+ vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
+ vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
+
+ /* 0x2 bit for HSRR is only used by PR and P7/8 HV paths, clear it */
+ trap = local_paca->kvm_hstate.scratch0 & ~0x2;
+
+ if (likely(trap > BOOK3S_INTERRUPT_MACHINE_CHECK))
+ exsave = local_paca->exgen;
+ else if (trap == BOOK3S_INTERRUPT_SYSTEM_RESET)
+ exsave = local_paca->exnmi;
+ else /* trap == 0x200 */
+ exsave = local_paca->exmc;
+
+ vcpu->arch.regs.gpr[1] = local_paca->kvm_hstate.scratch1;
+ vcpu->arch.regs.gpr[3] = local_paca->kvm_hstate.scratch2;
+
+ /*
+ * After reading machine check regs (DAR, DSISR, SRR0/1) and hstate
+ * scratch (which we need to move into exsave to make re-entrant vs
+ * SRESET/MCE), register state is protected from reentrancy. However
+ * timebase, MMU, among other state is still set to guest, so don't
+ * enable MSR[RI] here. It gets enabled at the end, after in_guest
+ * is cleared.
+ *
+ * It is possible an NMI could come in here, which is why it is
+ * important to save the above state early so it can be debugged.
+ */
+
+ vcpu->arch.regs.gpr[9] = exsave[EX_R9/sizeof(u64)];
+ vcpu->arch.regs.gpr[10] = exsave[EX_R10/sizeof(u64)];
+ vcpu->arch.regs.gpr[11] = exsave[EX_R11/sizeof(u64)];
+ vcpu->arch.regs.gpr[12] = exsave[EX_R12/sizeof(u64)];
+ vcpu->arch.regs.gpr[13] = exsave[EX_R13/sizeof(u64)];
+ vcpu->arch.ppr = exsave[EX_PPR/sizeof(u64)];
+ vcpu->arch.cfar = exsave[EX_CFAR/sizeof(u64)];
+ vcpu->arch.regs.ctr = exsave[EX_CTR/sizeof(u64)];
+
+ vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
+
+ if (unlikely(trap == BOOK3S_INTERRUPT_MACHINE_CHECK)) {
+ vcpu->arch.fault_dar = exsave[EX_DAR/sizeof(u64)];
+ vcpu->arch.fault_dsisr = exsave[EX_DSISR/sizeof(u64)];
+ kvmppc_realmode_machine_check(vcpu);
+
+ } else if (unlikely(trap == BOOK3S_INTERRUPT_HMI)) {
+ kvmppc_p9_realmode_hmi_handler(vcpu);
+
+ } else if (trap == BOOK3S_INTERRUPT_H_EMUL_ASSIST) {
+ vcpu->arch.emul_inst = mfspr(SPRN_HEIR);
+
+ } else if (trap == BOOK3S_INTERRUPT_H_DATA_STORAGE) {
+ vcpu->arch.fault_dar = exsave[EX_DAR/sizeof(u64)];
+ vcpu->arch.fault_dsisr = exsave[EX_DSISR/sizeof(u64)];
+ vcpu->arch.fault_gpa = mfspr(SPRN_ASDR);
+
+ } else if (trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
+ vcpu->arch.fault_gpa = mfspr(SPRN_ASDR);
+
+ } else if (trap == BOOK3S_INTERRUPT_H_FAC_UNAVAIL) {
+ vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ /*
+ * Softpatch interrupt for transactional memory emulation cases
+ * on POWER9 DD2.2. This is early in the guest exit path - we
+ * haven't saved registers or done a treclaim yet.
+ */
+ } else if (trap == BOOK3S_INTERRUPT_HV_SOFTPATCH) {
+ vcpu->arch.emul_inst = mfspr(SPRN_HEIR);
+
+ /*
+ * The cases we want to handle here are those where the guest
+ * is in real suspend mode and is trying to transition to
+ * transactional mode.
+ */
+ if (!local_paca->kvm_hstate.fake_suspend &&
+ (vcpu->arch.shregs.msr & MSR_TS_S)) {
+ if (kvmhv_p9_tm_emulation_early(vcpu)) {
+ /*
+ * Go straight back into the guest with the
+ * new NIP/MSR as set by TM emulation.
+ */
+ mtspr(SPRN_HSRR0, vcpu->arch.regs.nip);
+ mtspr(SPRN_HSRR1, vcpu->arch.shregs.msr);
+ goto tm_return_to_guest;
+ }
+ }
+#endif
+ }
+
+ /* Advance host PURR/SPURR by the amount used by guest */
+ purr = mfspr(SPRN_PURR);
+ spurr = mfspr(SPRN_SPURR);
+ local_paca->kvm_hstate.host_purr += purr - vcpu->arch.purr;
+ local_paca->kvm_hstate.host_spurr += spurr - vcpu->arch.spurr;
+ vcpu->arch.purr = purr;
+ vcpu->arch.spurr = spurr;
+
+ vcpu->arch.ic = mfspr(SPRN_IC);
+ vcpu->arch.pid = mfspr(SPRN_PID);
+ vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
+
+ vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
+ vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
+ vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
+ vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
+
+ dpdes = mfspr(SPRN_DPDES);
+ if (dpdes)
+ vcpu->arch.doorbell_request = 1;
+
+ vc->vtb = mfspr(SPRN_VTB);
+
+ dec = mfspr(SPRN_DEC);
+ if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
+ dec = (s32) dec;
+ *tb = mftb();
+ vcpu->arch.dec_expires = dec + *tb;
+
+ if (vc->tb_offset_applied) {
+ u64 new_tb = *tb - vc->tb_offset_applied;
+ mtspr(SPRN_TBU40, new_tb);
+ if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) {
+ new_tb += 0x1000000;
+ mtspr(SPRN_TBU40, new_tb);
+ }
+ *tb = new_tb;
+ vc->tb_offset_applied = 0;
+ }
+
+ save_clear_guest_mmu(kvm, vcpu);
+ switch_mmu_to_host(kvm, host_pidr);
+
+ /*
+ * Enable MSR here in order to have facilities enabled to save
+ * guest registers. This enables MMU (if we were in realmode), so
+ * only switch MMU on after the MMU is switched to host, to avoid
+ * the P9_RADIX_PREFETCH_BUG or hash guest context.
+ */
+ if (IS_ENABLED(CONFIG_PPC_TRANSACTIONAL_MEM) &&
+ vcpu->arch.shregs.msr & MSR_TS_MASK)
+ msr |= MSR_TS_S;
+ __mtmsrd(msr, 0);
+
+ store_vcpu_state(vcpu);
+
+ mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr);
+ mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr);
+
+ if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) {
+ /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
+ mtspr(SPRN_PSSCR, host_hpsscr |
+ (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
+ }
+
+ mtspr(SPRN_HFSCR, host_hfscr);
+ if (vcpu->arch.ciabr != host_ciabr)
+ mtspr(SPRN_CIABR, host_ciabr);
+
+ if (dawr_enabled()) {
+ if (vcpu->arch.dawr0 != host_dawr0)
+ mtspr(SPRN_DAWR0, host_dawr0);
+ if (vcpu->arch.dawrx0 != host_dawrx0)
+ mtspr(SPRN_DAWRX0, host_dawrx0);
+ if (cpu_has_feature(CPU_FTR_DAWR1)) {
+ if (vcpu->arch.dawr1 != host_dawr1)
+ mtspr(SPRN_DAWR1, host_dawr1);
+ if (vcpu->arch.dawrx1 != host_dawrx1)
+ mtspr(SPRN_DAWRX1, host_dawrx1);
+ }
+ }
+
+ if (dpdes)
+ mtspr(SPRN_DPDES, 0);
+ if (vc->pcr)
+ mtspr(SPRN_PCR, PCR_MASK);
+
+ /* HDEC must be at least as large as DEC, so decrementer_max fits */
+ mtspr(SPRN_HDEC, decrementer_max);
+
+ timer_rearm_host_dec(*tb);
+
+ restore_p9_host_os_sprs(vcpu, &host_os_sprs);
+
+ barrier(); /* Close in_guest critical section */
+ WRITE_ONCE(local_paca->kvm_hstate.in_guest, KVM_GUEST_MODE_NONE);
+ /* Interrupts are recoverable at this point */
+
+ /*
+ * cp_abort is required if the processor supports local copy-paste
+ * to clear the copy buffer that was under control of the guest.
+ */
+ if (cpu_has_feature(CPU_FTR_ARCH_31))
+ asm volatile(PPC_CP_ABORT);
+
+out:
+ return trap;
+}
+EXPORT_SYMBOL_GPL(kvmhv_vcpu_entry_p9);
diff --git a/arch/powerpc/kvm/book3s_hv_p9_perf.c b/arch/powerpc/kvm/book3s_hv_p9_perf.c
new file mode 100644
index 000000000..44d24cca3
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_hv_p9_perf.c
@@ -0,0 +1,219 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+#include <asm/kvm_ppc.h>
+#include <asm/pmc.h>
+
+#include "book3s_hv.h"
+
+static void freeze_pmu(unsigned long mmcr0, unsigned long mmcra)
+{
+ if (!(mmcr0 & MMCR0_FC))
+ goto do_freeze;
+ if (mmcra & MMCRA_SAMPLE_ENABLE)
+ goto do_freeze;
+ if (cpu_has_feature(CPU_FTR_ARCH_31)) {
+ if (!(mmcr0 & MMCR0_PMCCEXT))
+ goto do_freeze;
+ if (!(mmcra & MMCRA_BHRB_DISABLE))
+ goto do_freeze;
+ }
+ return;
+
+do_freeze:
+ mmcr0 = MMCR0_FC;
+ mmcra = 0;
+ if (cpu_has_feature(CPU_FTR_ARCH_31)) {
+ mmcr0 |= MMCR0_PMCCEXT;
+ mmcra = MMCRA_BHRB_DISABLE;
+ }
+
+ mtspr(SPRN_MMCR0, mmcr0);
+ mtspr(SPRN_MMCRA, mmcra);
+ isync();
+}
+
+void switch_pmu_to_guest(struct kvm_vcpu *vcpu,
+ struct p9_host_os_sprs *host_os_sprs)
+{
+ struct lppaca *lp;
+ int load_pmu = 1;
+
+ lp = vcpu->arch.vpa.pinned_addr;
+ if (lp)
+ load_pmu = lp->pmcregs_in_use;
+
+ /* Save host */
+ if (ppc_get_pmu_inuse()) {
+ /* POWER9, POWER10 do not implement HPMC or SPMC */
+
+ host_os_sprs->mmcr0 = mfspr(SPRN_MMCR0);
+ host_os_sprs->mmcra = mfspr(SPRN_MMCRA);
+
+ freeze_pmu(host_os_sprs->mmcr0, host_os_sprs->mmcra);
+
+ host_os_sprs->pmc1 = mfspr(SPRN_PMC1);
+ host_os_sprs->pmc2 = mfspr(SPRN_PMC2);
+ host_os_sprs->pmc3 = mfspr(SPRN_PMC3);
+ host_os_sprs->pmc4 = mfspr(SPRN_PMC4);
+ host_os_sprs->pmc5 = mfspr(SPRN_PMC5);
+ host_os_sprs->pmc6 = mfspr(SPRN_PMC6);
+ host_os_sprs->mmcr1 = mfspr(SPRN_MMCR1);
+ host_os_sprs->mmcr2 = mfspr(SPRN_MMCR2);
+ host_os_sprs->sdar = mfspr(SPRN_SDAR);
+ host_os_sprs->siar = mfspr(SPRN_SIAR);
+ host_os_sprs->sier1 = mfspr(SPRN_SIER);
+
+ if (cpu_has_feature(CPU_FTR_ARCH_31)) {
+ host_os_sprs->mmcr3 = mfspr(SPRN_MMCR3);
+ host_os_sprs->sier2 = mfspr(SPRN_SIER2);
+ host_os_sprs->sier3 = mfspr(SPRN_SIER3);
+ }
+ }
+
+#ifdef CONFIG_PPC_PSERIES
+ /* After saving PMU, before loading guest PMU, flip pmcregs_in_use */
+ if (kvmhv_on_pseries()) {
+ barrier();
+ get_lppaca()->pmcregs_in_use = load_pmu;
+ barrier();
+ }
+#endif
+
+ /*
+ * Load guest. If the VPA said the PMCs are not in use but the guest
+ * tried to access them anyway, HFSCR[PM] will be set by the HFAC
+ * fault so we can make forward progress.
+ */
+ if (load_pmu || (vcpu->arch.hfscr & HFSCR_PM)) {
+ mtspr(SPRN_PMC1, vcpu->arch.pmc[0]);
+ mtspr(SPRN_PMC2, vcpu->arch.pmc[1]);
+ mtspr(SPRN_PMC3, vcpu->arch.pmc[2]);
+ mtspr(SPRN_PMC4, vcpu->arch.pmc[3]);
+ mtspr(SPRN_PMC5, vcpu->arch.pmc[4]);
+ mtspr(SPRN_PMC6, vcpu->arch.pmc[5]);
+ mtspr(SPRN_MMCR1, vcpu->arch.mmcr[1]);
+ mtspr(SPRN_MMCR2, vcpu->arch.mmcr[2]);
+ mtspr(SPRN_SDAR, vcpu->arch.sdar);
+ mtspr(SPRN_SIAR, vcpu->arch.siar);
+ mtspr(SPRN_SIER, vcpu->arch.sier[0]);
+
+ if (cpu_has_feature(CPU_FTR_ARCH_31)) {
+ mtspr(SPRN_MMCR3, vcpu->arch.mmcr[3]);
+ mtspr(SPRN_SIER2, vcpu->arch.sier[1]);
+ mtspr(SPRN_SIER3, vcpu->arch.sier[2]);
+ }
+
+ /* Set MMCRA then MMCR0 last */
+ mtspr(SPRN_MMCRA, vcpu->arch.mmcra);
+ mtspr(SPRN_MMCR0, vcpu->arch.mmcr[0]);
+ /* No isync necessary because we're starting counters */
+
+ if (!vcpu->arch.nested &&
+ (vcpu->arch.hfscr_permitted & HFSCR_PM))
+ vcpu->arch.hfscr |= HFSCR_PM;
+ }
+}
+EXPORT_SYMBOL_GPL(switch_pmu_to_guest);
+
+void switch_pmu_to_host(struct kvm_vcpu *vcpu,
+ struct p9_host_os_sprs *host_os_sprs)
+{
+ struct lppaca *lp;
+ int save_pmu = 1;
+
+ lp = vcpu->arch.vpa.pinned_addr;
+ if (lp)
+ save_pmu = lp->pmcregs_in_use;
+ if (IS_ENABLED(CONFIG_KVM_BOOK3S_HV_NESTED_PMU_WORKAROUND)) {
+ /*
+ * Save pmu if this guest is capable of running nested guests.
+ * This is option is for old L1s that do not set their
+ * lppaca->pmcregs_in_use properly when entering their L2.
+ */
+ save_pmu |= nesting_enabled(vcpu->kvm);
+ }
+
+ if (save_pmu) {
+ vcpu->arch.mmcr[0] = mfspr(SPRN_MMCR0);
+ vcpu->arch.mmcra = mfspr(SPRN_MMCRA);
+
+ freeze_pmu(vcpu->arch.mmcr[0], vcpu->arch.mmcra);
+
+ vcpu->arch.pmc[0] = mfspr(SPRN_PMC1);
+ vcpu->arch.pmc[1] = mfspr(SPRN_PMC2);
+ vcpu->arch.pmc[2] = mfspr(SPRN_PMC3);
+ vcpu->arch.pmc[3] = mfspr(SPRN_PMC4);
+ vcpu->arch.pmc[4] = mfspr(SPRN_PMC5);
+ vcpu->arch.pmc[5] = mfspr(SPRN_PMC6);
+ vcpu->arch.mmcr[1] = mfspr(SPRN_MMCR1);
+ vcpu->arch.mmcr[2] = mfspr(SPRN_MMCR2);
+ vcpu->arch.sdar = mfspr(SPRN_SDAR);
+ vcpu->arch.siar = mfspr(SPRN_SIAR);
+ vcpu->arch.sier[0] = mfspr(SPRN_SIER);
+
+ if (cpu_has_feature(CPU_FTR_ARCH_31)) {
+ vcpu->arch.mmcr[3] = mfspr(SPRN_MMCR3);
+ vcpu->arch.sier[1] = mfspr(SPRN_SIER2);
+ vcpu->arch.sier[2] = mfspr(SPRN_SIER3);
+ }
+
+ } else if (vcpu->arch.hfscr & HFSCR_PM) {
+ /*
+ * The guest accessed PMC SPRs without specifying they should
+ * be preserved, or it cleared pmcregs_in_use after the last
+ * access. Just ensure they are frozen.
+ */
+ freeze_pmu(mfspr(SPRN_MMCR0), mfspr(SPRN_MMCRA));
+
+ /*
+ * Demand-fault PMU register access in the guest.
+ *
+ * This is used to grab the guest's VPA pmcregs_in_use value
+ * and reflect it into the host's VPA in the case of a nested
+ * hypervisor.
+ *
+ * It also avoids having to zero-out SPRs after each guest
+ * exit to avoid side-channels when.
+ *
+ * This is cleared here when we exit the guest, so later HFSCR
+ * interrupt handling can add it back to run the guest with
+ * PM enabled next time.
+ */
+ if (!vcpu->arch.nested)
+ vcpu->arch.hfscr &= ~HFSCR_PM;
+ } /* otherwise the PMU should still be frozen */
+
+#ifdef CONFIG_PPC_PSERIES
+ if (kvmhv_on_pseries()) {
+ barrier();
+ get_lppaca()->pmcregs_in_use = ppc_get_pmu_inuse();
+ barrier();
+ }
+#endif
+
+ if (ppc_get_pmu_inuse()) {
+ mtspr(SPRN_PMC1, host_os_sprs->pmc1);
+ mtspr(SPRN_PMC2, host_os_sprs->pmc2);
+ mtspr(SPRN_PMC3, host_os_sprs->pmc3);
+ mtspr(SPRN_PMC4, host_os_sprs->pmc4);
+ mtspr(SPRN_PMC5, host_os_sprs->pmc5);
+ mtspr(SPRN_PMC6, host_os_sprs->pmc6);
+ mtspr(SPRN_MMCR1, host_os_sprs->mmcr1);
+ mtspr(SPRN_MMCR2, host_os_sprs->mmcr2);
+ mtspr(SPRN_SDAR, host_os_sprs->sdar);
+ mtspr(SPRN_SIAR, host_os_sprs->siar);
+ mtspr(SPRN_SIER, host_os_sprs->sier1);
+
+ if (cpu_has_feature(CPU_FTR_ARCH_31)) {
+ mtspr(SPRN_MMCR3, host_os_sprs->mmcr3);
+ mtspr(SPRN_SIER2, host_os_sprs->sier2);
+ mtspr(SPRN_SIER3, host_os_sprs->sier3);
+ }
+
+ /* Set MMCRA then MMCR0 last */
+ mtspr(SPRN_MMCRA, host_os_sprs->mmcra);
+ mtspr(SPRN_MMCR0, host_os_sprs->mmcr0);
+ isync();
+ }
+}
+EXPORT_SYMBOL_GPL(switch_pmu_to_host);
diff --git a/arch/powerpc/kvm/book3s_hv_ras.c b/arch/powerpc/kvm/book3s_hv_ras.c
new file mode 100644
index 000000000..82be6d875
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_hv_ras.c
@@ -0,0 +1,377 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ *
+ * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
+ */
+
+#include <linux/types.h>
+#include <linux/string.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/kernel.h>
+#include <asm/lppaca.h>
+#include <asm/opal.h>
+#include <asm/mce.h>
+#include <asm/machdep.h>
+#include <asm/cputhreads.h>
+#include <asm/hmi.h>
+#include <asm/kvm_ppc.h>
+
+/* SRR1 bits for machine check on POWER7 */
+#define SRR1_MC_LDSTERR (1ul << (63-42))
+#define SRR1_MC_IFETCH_SH (63-45)
+#define SRR1_MC_IFETCH_MASK 0x7
+#define SRR1_MC_IFETCH_SLBPAR 2 /* SLB parity error */
+#define SRR1_MC_IFETCH_SLBMULTI 3 /* SLB multi-hit */
+#define SRR1_MC_IFETCH_SLBPARMULTI 4 /* SLB parity + multi-hit */
+#define SRR1_MC_IFETCH_TLBMULTI 5 /* I-TLB multi-hit */
+
+/* DSISR bits for machine check on POWER7 */
+#define DSISR_MC_DERAT_MULTI 0x800 /* D-ERAT multi-hit */
+#define DSISR_MC_TLB_MULTI 0x400 /* D-TLB multi-hit */
+#define DSISR_MC_SLB_PARITY 0x100 /* SLB parity error */
+#define DSISR_MC_SLB_MULTI 0x080 /* SLB multi-hit */
+#define DSISR_MC_SLB_PARMULTI 0x040 /* SLB parity + multi-hit */
+
+/* POWER7 SLB flush and reload */
+static void reload_slb(struct kvm_vcpu *vcpu)
+{
+ struct slb_shadow *slb;
+ unsigned long i, n;
+
+ /* First clear out SLB */
+ asm volatile("slbmte %0,%0; slbia" : : "r" (0));
+
+ /* Do they have an SLB shadow buffer registered? */
+ slb = vcpu->arch.slb_shadow.pinned_addr;
+ if (!slb)
+ return;
+
+ /* Sanity check */
+ n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
+ if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end)
+ return;
+
+ /* Load up the SLB from that */
+ for (i = 0; i < n; ++i) {
+ unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
+ unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
+
+ rb = (rb & ~0xFFFul) | i; /* insert entry number */
+ asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
+ }
+}
+
+/*
+ * On POWER7, see if we can handle a machine check that occurred inside
+ * the guest in real mode, without switching to the host partition.
+ */
+static long kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu)
+{
+ unsigned long srr1 = vcpu->arch.shregs.msr;
+ long handled = 1;
+
+ if (srr1 & SRR1_MC_LDSTERR) {
+ /* error on load/store */
+ unsigned long dsisr = vcpu->arch.shregs.dsisr;
+
+ if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
+ DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) {
+ /* flush and reload SLB; flushes D-ERAT too */
+ reload_slb(vcpu);
+ dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
+ DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI);
+ }
+ if (dsisr & DSISR_MC_TLB_MULTI) {
+ tlbiel_all_lpid(vcpu->kvm->arch.radix);
+ dsisr &= ~DSISR_MC_TLB_MULTI;
+ }
+ /* Any other errors we don't understand? */
+ if (dsisr & 0xffffffffUL)
+ handled = 0;
+ }
+
+ switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) {
+ case 0:
+ break;
+ case SRR1_MC_IFETCH_SLBPAR:
+ case SRR1_MC_IFETCH_SLBMULTI:
+ case SRR1_MC_IFETCH_SLBPARMULTI:
+ reload_slb(vcpu);
+ break;
+ case SRR1_MC_IFETCH_TLBMULTI:
+ tlbiel_all_lpid(vcpu->kvm->arch.radix);
+ break;
+ default:
+ handled = 0;
+ }
+
+ return handled;
+}
+
+void kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu)
+{
+ struct machine_check_event mce_evt;
+ long handled;
+
+ if (vcpu->kvm->arch.fwnmi_enabled) {
+ /* FWNMI guests handle their own recovery */
+ handled = 0;
+ } else {
+ handled = kvmppc_realmode_mc_power7(vcpu);
+ }
+
+ /*
+ * Now get the event and stash it in the vcpu struct so it can
+ * be handled by the primary thread in virtual mode. We can't
+ * call machine_check_queue_event() here if we are running on
+ * an offline secondary thread.
+ */
+ if (get_mce_event(&mce_evt, MCE_EVENT_RELEASE)) {
+ if (handled && mce_evt.version == MCE_V1)
+ mce_evt.disposition = MCE_DISPOSITION_RECOVERED;
+ } else {
+ memset(&mce_evt, 0, sizeof(mce_evt));
+ }
+
+ vcpu->arch.mce_evt = mce_evt;
+}
+
+
+long kvmppc_p9_realmode_hmi_handler(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+ long ret = 0;
+
+ /*
+ * Unapply and clear the offset first. That way, if the TB was not
+ * resynced then it will remain in host-offset, and if it was resynced
+ * then it is brought into host-offset. Then the tb offset is
+ * re-applied before continuing with the KVM exit.
+ *
+ * This way, we don't need to actually know whether not OPAL resynced
+ * the timebase or do any of the complicated dance that the P7/8
+ * path requires.
+ */
+ if (vc->tb_offset_applied) {
+ u64 new_tb = mftb() - vc->tb_offset_applied;
+ mtspr(SPRN_TBU40, new_tb);
+ if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) {
+ new_tb += 0x1000000;
+ mtspr(SPRN_TBU40, new_tb);
+ }
+ vc->tb_offset_applied = 0;
+ }
+
+ local_paca->hmi_irqs++;
+
+ if (hmi_handle_debugtrig(NULL) >= 0) {
+ ret = 1;
+ goto out;
+ }
+
+ if (ppc_md.hmi_exception_early)
+ ppc_md.hmi_exception_early(NULL);
+
+out:
+ if (vc->tb_offset) {
+ u64 new_tb = mftb() + vc->tb_offset;
+ mtspr(SPRN_TBU40, new_tb);
+ if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) {
+ new_tb += 0x1000000;
+ mtspr(SPRN_TBU40, new_tb);
+ }
+ vc->tb_offset_applied = vc->tb_offset;
+ }
+
+ return ret;
+}
+
+/*
+ * The following subcore HMI handling is all only for pre-POWER9 CPUs.
+ */
+
+/* Check if dynamic split is in force and return subcore size accordingly. */
+static inline int kvmppc_cur_subcore_size(void)
+{
+ if (local_paca->kvm_hstate.kvm_split_mode)
+ return local_paca->kvm_hstate.kvm_split_mode->subcore_size;
+
+ return threads_per_subcore;
+}
+
+void kvmppc_subcore_enter_guest(void)
+{
+ int thread_id, subcore_id;
+
+ thread_id = cpu_thread_in_core(local_paca->paca_index);
+ subcore_id = thread_id / kvmppc_cur_subcore_size();
+
+ local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
+}
+EXPORT_SYMBOL_GPL(kvmppc_subcore_enter_guest);
+
+void kvmppc_subcore_exit_guest(void)
+{
+ int thread_id, subcore_id;
+
+ thread_id = cpu_thread_in_core(local_paca->paca_index);
+ subcore_id = thread_id / kvmppc_cur_subcore_size();
+
+ local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
+}
+EXPORT_SYMBOL_GPL(kvmppc_subcore_exit_guest);
+
+static bool kvmppc_tb_resync_required(void)
+{
+ if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT,
+ &local_paca->sibling_subcore_state->flags))
+ return false;
+
+ return true;
+}
+
+static void kvmppc_tb_resync_done(void)
+{
+ clear_bit(CORE_TB_RESYNC_REQ_BIT,
+ &local_paca->sibling_subcore_state->flags);
+}
+
+/*
+ * kvmppc_realmode_hmi_handler() is called only by primary thread during
+ * guest exit path.
+ *
+ * There are multiple reasons why HMI could occur, one of them is
+ * Timebase (TB) error. If this HMI is due to TB error, then TB would
+ * have been in stopped state. The opal hmi handler Will fix it and
+ * restore the TB value with host timebase value. For HMI caused due
+ * to non-TB errors, opal hmi handler will not touch/restore TB register
+ * and hence there won't be any change in TB value.
+ *
+ * Since we are not sure about the cause of this HMI, we can't be sure
+ * about the content of TB register whether it holds guest or host timebase
+ * value. Hence the idea is to resync the TB on every HMI, so that we
+ * know about the exact state of the TB value. Resync TB call will
+ * restore TB to host timebase.
+ *
+ * Things to consider:
+ * - On TB error, HMI interrupt is reported on all the threads of the core
+ * that has encountered TB error irrespective of split-core mode.
+ * - The very first thread on the core that get chance to fix TB error
+ * would rsync the TB with local chipTOD value.
+ * - The resync TB is a core level action i.e. it will sync all the TBs
+ * in that core independent of split-core mode. This means if we trigger
+ * TB sync from a thread from one subcore, it would affect TB values of
+ * sibling subcores of the same core.
+ *
+ * All threads need to co-ordinate before making opal hmi handler.
+ * All threads will use sibling_subcore_state->in_guest[] (shared by all
+ * threads in the core) in paca which holds information about whether
+ * sibling subcores are in Guest mode or host mode. The in_guest[] array
+ * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset
+ * subcore status. Only primary threads from each subcore is responsible
+ * to set/unset its designated array element while entering/exiting the
+ * guset.
+ *
+ * After invoking opal hmi handler call, one of the thread (of entire core)
+ * will need to resync the TB. Bit 63 from subcore state bitmap flags
+ * (sibling_subcore_state->flags) will be used to co-ordinate between
+ * primary threads to decide who takes up the responsibility.
+ *
+ * This is what we do:
+ * - Primary thread from each subcore tries to set resync required bit[63]
+ * of paca->sibling_subcore_state->flags.
+ * - The first primary thread that is able to set the flag takes the
+ * responsibility of TB resync. (Let us call it as thread leader)
+ * - All other threads which are in host will call
+ * wait_for_subcore_guest_exit() and wait for in_guest[0-3] from
+ * paca->sibling_subcore_state to get cleared.
+ * - All the primary thread will clear its subcore status from subcore
+ * state in_guest[] array respectively.
+ * - Once all primary threads clear in_guest[0-3], all of them will invoke
+ * opal hmi handler.
+ * - Now all threads will wait for TB resync to complete by invoking
+ * wait_for_tb_resync() except the thread leader.
+ * - Thread leader will do a TB resync by invoking opal_resync_timebase()
+ * call and the it will clear the resync required bit.
+ * - All other threads will now come out of resync wait loop and proceed
+ * with individual execution.
+ * - On return of this function, primary thread will signal all
+ * secondary threads to proceed.
+ * - All secondary threads will eventually call opal hmi handler on
+ * their exit path.
+ *
+ * Returns 1 if the timebase offset should be applied, 0 if not.
+ */
+
+long kvmppc_realmode_hmi_handler(void)
+{
+ bool resync_req;
+
+ local_paca->hmi_irqs++;
+
+ if (hmi_handle_debugtrig(NULL) >= 0)
+ return 1;
+
+ /*
+ * By now primary thread has already completed guest->host
+ * partition switch but haven't signaled secondaries yet.
+ * All the secondary threads on this subcore is waiting
+ * for primary thread to signal them to go ahead.
+ *
+ * For threads from subcore which isn't in guest, they all will
+ * wait until all other subcores on this core exit the guest.
+ *
+ * Now set the resync required bit. If you are the first to
+ * set this bit then kvmppc_tb_resync_required() function will
+ * return true. For rest all other subcores
+ * kvmppc_tb_resync_required() will return false.
+ *
+ * If resync_req == true, then this thread is responsible to
+ * initiate TB resync after hmi handler has completed.
+ * All other threads on this core will wait until this thread
+ * clears the resync required bit flag.
+ */
+ resync_req = kvmppc_tb_resync_required();
+
+ /* Reset the subcore status to indicate it has exited guest */
+ kvmppc_subcore_exit_guest();
+
+ /*
+ * Wait for other subcores on this core to exit the guest.
+ * All the primary threads and threads from subcore that are
+ * not in guest will wait here until all subcores are out
+ * of guest context.
+ */
+ wait_for_subcore_guest_exit();
+
+ /*
+ * At this point we are sure that primary threads from each
+ * subcore on this core have completed guest->host partition
+ * switch. Now it is safe to call HMI handler.
+ */
+ if (ppc_md.hmi_exception_early)
+ ppc_md.hmi_exception_early(NULL);
+
+ /*
+ * Check if this thread is responsible to resync TB.
+ * All other threads will wait until this thread completes the
+ * TB resync.
+ */
+ if (resync_req) {
+ opal_resync_timebase();
+ /* Reset TB resync req bit */
+ kvmppc_tb_resync_done();
+ } else {
+ wait_for_tb_resync();
+ }
+
+ /*
+ * Reset tb_offset_applied so the guest exit code won't try
+ * to subtract the previous timebase offset from the timebase.
+ */
+ if (local_paca->kvm_hstate.kvm_vcore)
+ local_paca->kvm_hstate.kvm_vcore->tb_offset_applied = 0;
+
+ return 0;
+}
diff --git a/arch/powerpc/kvm/book3s_hv_rm_mmu.c b/arch/powerpc/kvm/book3s_hv_rm_mmu.c
new file mode 100644
index 000000000..5a05953ae
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_hv_rm_mmu.c
@@ -0,0 +1,1300 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ *
+ * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
+ */
+
+#include <linux/types.h>
+#include <linux/string.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/hugetlb.h>
+#include <linux/module.h>
+#include <linux/log2.h>
+#include <linux/sizes.h>
+
+#include <asm/trace.h>
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+#include <asm/book3s/64/mmu-hash.h>
+#include <asm/hvcall.h>
+#include <asm/synch.h>
+#include <asm/ppc-opcode.h>
+#include <asm/pte-walk.h>
+
+/* Translate address of a vmalloc'd thing to a linear map address */
+static void *real_vmalloc_addr(void *addr)
+{
+ return __va(ppc_find_vmap_phys((unsigned long)addr));
+}
+
+/* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
+static int global_invalidates(struct kvm *kvm)
+{
+ int global;
+ int cpu;
+
+ /*
+ * If there is only one vcore, and it's currently running,
+ * as indicated by local_paca->kvm_hstate.kvm_vcpu being set,
+ * we can use tlbiel as long as we mark all other physical
+ * cores as potentially having stale TLB entries for this lpid.
+ * Otherwise, don't use tlbiel.
+ */
+ if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu)
+ global = 0;
+ else
+ global = 1;
+
+ /* LPID has been switched to host if in virt mode so can't do local */
+ if (!global && (mfmsr() & (MSR_IR|MSR_DR)))
+ global = 1;
+
+ if (!global) {
+ /* any other core might now have stale TLB entries... */
+ smp_wmb();
+ cpumask_setall(&kvm->arch.need_tlb_flush);
+ cpu = local_paca->kvm_hstate.kvm_vcore->pcpu;
+ cpumask_clear_cpu(cpu, &kvm->arch.need_tlb_flush);
+ }
+
+ return global;
+}
+
+/*
+ * Add this HPTE into the chain for the real page.
+ * Must be called with the chain locked; it unlocks the chain.
+ */
+void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
+ unsigned long *rmap, long pte_index, int realmode)
+{
+ struct revmap_entry *head, *tail;
+ unsigned long i;
+
+ if (*rmap & KVMPPC_RMAP_PRESENT) {
+ i = *rmap & KVMPPC_RMAP_INDEX;
+ head = &kvm->arch.hpt.rev[i];
+ if (realmode)
+ head = real_vmalloc_addr(head);
+ tail = &kvm->arch.hpt.rev[head->back];
+ if (realmode)
+ tail = real_vmalloc_addr(tail);
+ rev->forw = i;
+ rev->back = head->back;
+ tail->forw = pte_index;
+ head->back = pte_index;
+ } else {
+ rev->forw = rev->back = pte_index;
+ *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
+ pte_index | KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_HPT;
+ }
+ unlock_rmap(rmap);
+}
+EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
+
+/* Update the dirty bitmap of a memslot */
+void kvmppc_update_dirty_map(const struct kvm_memory_slot *memslot,
+ unsigned long gfn, unsigned long psize)
+{
+ unsigned long npages;
+
+ if (!psize || !memslot->dirty_bitmap)
+ return;
+ npages = (psize + PAGE_SIZE - 1) / PAGE_SIZE;
+ gfn -= memslot->base_gfn;
+ set_dirty_bits_atomic(memslot->dirty_bitmap, gfn, npages);
+}
+EXPORT_SYMBOL_GPL(kvmppc_update_dirty_map);
+
+static void kvmppc_set_dirty_from_hpte(struct kvm *kvm,
+ unsigned long hpte_v, unsigned long hpte_gr)
+{
+ struct kvm_memory_slot *memslot;
+ unsigned long gfn;
+ unsigned long psize;
+
+ psize = kvmppc_actual_pgsz(hpte_v, hpte_gr);
+ gfn = hpte_rpn(hpte_gr, psize);
+ memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
+ if (memslot && memslot->dirty_bitmap)
+ kvmppc_update_dirty_map(memslot, gfn, psize);
+}
+
+/* Returns a pointer to the revmap entry for the page mapped by a HPTE */
+static unsigned long *revmap_for_hpte(struct kvm *kvm, unsigned long hpte_v,
+ unsigned long hpte_gr,
+ struct kvm_memory_slot **memslotp,
+ unsigned long *gfnp)
+{
+ struct kvm_memory_slot *memslot;
+ unsigned long *rmap;
+ unsigned long gfn;
+
+ gfn = hpte_rpn(hpte_gr, kvmppc_actual_pgsz(hpte_v, hpte_gr));
+ memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
+ if (memslotp)
+ *memslotp = memslot;
+ if (gfnp)
+ *gfnp = gfn;
+ if (!memslot)
+ return NULL;
+
+ rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
+ return rmap;
+}
+
+/* Remove this HPTE from the chain for a real page */
+static void remove_revmap_chain(struct kvm *kvm, long pte_index,
+ struct revmap_entry *rev,
+ unsigned long hpte_v, unsigned long hpte_r)
+{
+ struct revmap_entry *next, *prev;
+ unsigned long ptel, head;
+ unsigned long *rmap;
+ unsigned long rcbits;
+ struct kvm_memory_slot *memslot;
+ unsigned long gfn;
+
+ rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
+ ptel = rev->guest_rpte |= rcbits;
+ rmap = revmap_for_hpte(kvm, hpte_v, ptel, &memslot, &gfn);
+ if (!rmap)
+ return;
+ lock_rmap(rmap);
+
+ head = *rmap & KVMPPC_RMAP_INDEX;
+ next = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->forw]);
+ prev = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->back]);
+ next->back = rev->back;
+ prev->forw = rev->forw;
+ if (head == pte_index) {
+ head = rev->forw;
+ if (head == pte_index)
+ *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
+ else
+ *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
+ }
+ *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
+ if (rcbits & HPTE_R_C)
+ kvmppc_update_dirty_map(memslot, gfn,
+ kvmppc_actual_pgsz(hpte_v, hpte_r));
+ unlock_rmap(rmap);
+}
+
+long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
+ long pte_index, unsigned long pteh, unsigned long ptel,
+ pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
+{
+ unsigned long i, pa, gpa, gfn, psize;
+ unsigned long slot_fn, hva;
+ __be64 *hpte;
+ struct revmap_entry *rev;
+ unsigned long g_ptel;
+ struct kvm_memory_slot *memslot;
+ unsigned hpage_shift;
+ bool is_ci;
+ unsigned long *rmap;
+ pte_t *ptep;
+ unsigned int writing;
+ unsigned long mmu_seq;
+ unsigned long rcbits;
+
+ if (kvm_is_radix(kvm))
+ return H_FUNCTION;
+ /*
+ * The HPTE gets used by compute_tlbie_rb() to set TLBIE bits, so
+ * these functions should work together -- must ensure a guest can not
+ * cause problems with the TLBIE that KVM executes.
+ */
+ if ((pteh >> HPTE_V_SSIZE_SHIFT) & 0x2) {
+ /* B=0b1x is a reserved value, disallow it. */
+ return H_PARAMETER;
+ }
+ psize = kvmppc_actual_pgsz(pteh, ptel);
+ if (!psize)
+ return H_PARAMETER;
+ writing = hpte_is_writable(ptel);
+ pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
+ ptel &= ~HPTE_GR_RESERVED;
+ g_ptel = ptel;
+
+ /* used later to detect if we might have been invalidated */
+ mmu_seq = kvm->mmu_invalidate_seq;
+ smp_rmb();
+
+ /* Find the memslot (if any) for this address */
+ gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
+ gfn = gpa >> PAGE_SHIFT;
+ memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
+ pa = 0;
+ is_ci = false;
+ rmap = NULL;
+ if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
+ /* Emulated MMIO - mark this with key=31 */
+ pteh |= HPTE_V_ABSENT;
+ ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
+ goto do_insert;
+ }
+
+ /* Check if the requested page fits entirely in the memslot. */
+ if (!slot_is_aligned(memslot, psize))
+ return H_PARAMETER;
+ slot_fn = gfn - memslot->base_gfn;
+ rmap = &memslot->arch.rmap[slot_fn];
+
+ /* Translate to host virtual address */
+ hva = __gfn_to_hva_memslot(memslot, gfn);
+
+ arch_spin_lock(&kvm->mmu_lock.rlock.raw_lock);
+ ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &hpage_shift);
+ if (ptep) {
+ pte_t pte;
+ unsigned int host_pte_size;
+
+ if (hpage_shift)
+ host_pte_size = 1ul << hpage_shift;
+ else
+ host_pte_size = PAGE_SIZE;
+ /*
+ * We should always find the guest page size
+ * to <= host page size, if host is using hugepage
+ */
+ if (host_pte_size < psize) {
+ arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
+ return H_PARAMETER;
+ }
+ pte = kvmppc_read_update_linux_pte(ptep, writing);
+ if (pte_present(pte) && !pte_protnone(pte)) {
+ if (writing && !__pte_write(pte))
+ /* make the actual HPTE be read-only */
+ ptel = hpte_make_readonly(ptel);
+ is_ci = pte_ci(pte);
+ pa = pte_pfn(pte) << PAGE_SHIFT;
+ pa |= hva & (host_pte_size - 1);
+ pa |= gpa & ~PAGE_MASK;
+ }
+ }
+ arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
+
+ ptel &= HPTE_R_KEY | HPTE_R_PP0 | (psize-1);
+ ptel |= pa;
+
+ if (pa)
+ pteh |= HPTE_V_VALID;
+ else {
+ pteh |= HPTE_V_ABSENT;
+ ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
+ }
+
+ /*If we had host pte mapping then Check WIMG */
+ if (ptep && !hpte_cache_flags_ok(ptel, is_ci)) {
+ if (is_ci)
+ return H_PARAMETER;
+ /*
+ * Allow guest to map emulated device memory as
+ * uncacheable, but actually make it cacheable.
+ */
+ ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
+ ptel |= HPTE_R_M;
+ }
+
+ /* Find and lock the HPTEG slot to use */
+ do_insert:
+ if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
+ return H_PARAMETER;
+ if (likely((flags & H_EXACT) == 0)) {
+ pte_index &= ~7UL;
+ hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
+ for (i = 0; i < 8; ++i) {
+ if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 &&
+ try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
+ HPTE_V_ABSENT))
+ break;
+ hpte += 2;
+ }
+ if (i == 8) {
+ /*
+ * Since try_lock_hpte doesn't retry (not even stdcx.
+ * failures), it could be that there is a free slot
+ * but we transiently failed to lock it. Try again,
+ * actually locking each slot and checking it.
+ */
+ hpte -= 16;
+ for (i = 0; i < 8; ++i) {
+ u64 pte;
+ while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
+ cpu_relax();
+ pte = be64_to_cpu(hpte[0]);
+ if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT)))
+ break;
+ __unlock_hpte(hpte, pte);
+ hpte += 2;
+ }
+ if (i == 8)
+ return H_PTEG_FULL;
+ }
+ pte_index += i;
+ } else {
+ hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
+ if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
+ HPTE_V_ABSENT)) {
+ /* Lock the slot and check again */
+ u64 pte;
+
+ while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
+ cpu_relax();
+ pte = be64_to_cpu(hpte[0]);
+ if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
+ __unlock_hpte(hpte, pte);
+ return H_PTEG_FULL;
+ }
+ }
+ }
+
+ /* Save away the guest's idea of the second HPTE dword */
+ rev = &kvm->arch.hpt.rev[pte_index];
+ if (realmode)
+ rev = real_vmalloc_addr(rev);
+ if (rev) {
+ rev->guest_rpte = g_ptel;
+ note_hpte_modification(kvm, rev);
+ }
+
+ /* Link HPTE into reverse-map chain */
+ if (pteh & HPTE_V_VALID) {
+ if (realmode)
+ rmap = real_vmalloc_addr(rmap);
+ lock_rmap(rmap);
+ /* Check for pending invalidations under the rmap chain lock */
+ if (mmu_invalidate_retry(kvm, mmu_seq)) {
+ /* inval in progress, write a non-present HPTE */
+ pteh |= HPTE_V_ABSENT;
+ pteh &= ~HPTE_V_VALID;
+ ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
+ unlock_rmap(rmap);
+ } else {
+ kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
+ realmode);
+ /* Only set R/C in real HPTE if already set in *rmap */
+ rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
+ ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
+ }
+ }
+
+ /* Convert to new format on P9 */
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ ptel = hpte_old_to_new_r(pteh, ptel);
+ pteh = hpte_old_to_new_v(pteh);
+ }
+ hpte[1] = cpu_to_be64(ptel);
+
+ /* Write the first HPTE dword, unlocking the HPTE and making it valid */
+ eieio();
+ __unlock_hpte(hpte, pteh);
+ asm volatile("ptesync" : : : "memory");
+
+ *pte_idx_ret = pte_index;
+ return H_SUCCESS;
+}
+EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
+
+long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
+ long pte_index, unsigned long pteh, unsigned long ptel)
+{
+ return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
+ vcpu->arch.pgdir, true,
+ &vcpu->arch.regs.gpr[4]);
+}
+EXPORT_SYMBOL_GPL(kvmppc_h_enter);
+
+#ifdef __BIG_ENDIAN__
+#define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
+#else
+#define LOCK_TOKEN (*(u32 *)(&get_paca()->paca_index))
+#endif
+
+static inline int is_mmio_hpte(unsigned long v, unsigned long r)
+{
+ return ((v & HPTE_V_ABSENT) &&
+ (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
+ (HPTE_R_KEY_HI | HPTE_R_KEY_LO));
+}
+
+static inline void fixup_tlbie_lpid(unsigned long rb_value, unsigned long lpid)
+{
+
+ if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
+ /* Radix flush for a hash guest */
+
+ unsigned long rb,rs,prs,r,ric;
+
+ rb = PPC_BIT(52); /* IS = 2 */
+ rs = 0; /* lpid = 0 */
+ prs = 0; /* partition scoped */
+ r = 1; /* radix format */
+ ric = 0; /* RIC_FLSUH_TLB */
+
+ /*
+ * Need the extra ptesync to make sure we don't
+ * re-order the tlbie
+ */
+ asm volatile("ptesync": : :"memory");
+ asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
+ : : "r"(rb), "i"(r), "i"(prs),
+ "i"(ric), "r"(rs) : "memory");
+ }
+
+ if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
+ asm volatile("ptesync": : :"memory");
+ asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
+ "r" (rb_value), "r" (lpid));
+ }
+}
+
+static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
+ long npages, int global, bool need_sync)
+{
+ long i;
+
+ /*
+ * We use the POWER9 5-operand versions of tlbie and tlbiel here.
+ * Since we are using RIC=0 PRS=0 R=0, and P7/P8 tlbiel ignores
+ * the RS field, this is backwards-compatible with P7 and P8.
+ */
+ if (global) {
+ if (need_sync)
+ asm volatile("ptesync" : : : "memory");
+ for (i = 0; i < npages; ++i) {
+ asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
+ "r" (rbvalues[i]), "r" (kvm->arch.lpid));
+ }
+
+ fixup_tlbie_lpid(rbvalues[i - 1], kvm->arch.lpid);
+ asm volatile("eieio; tlbsync; ptesync" : : : "memory");
+ } else {
+ if (need_sync)
+ asm volatile("ptesync" : : : "memory");
+ for (i = 0; i < npages; ++i) {
+ asm volatile(PPC_TLBIEL(%0,%1,0,0,0) : :
+ "r" (rbvalues[i]), "r" (0));
+ }
+ asm volatile("ptesync" : : : "memory");
+ }
+}
+
+long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
+ unsigned long pte_index, unsigned long avpn,
+ unsigned long *hpret)
+{
+ __be64 *hpte;
+ unsigned long v, r, rb;
+ struct revmap_entry *rev;
+ u64 pte, orig_pte, pte_r;
+
+ if (kvm_is_radix(kvm))
+ return H_FUNCTION;
+ if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
+ return H_PARAMETER;
+ hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
+ while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
+ cpu_relax();
+ pte = orig_pte = be64_to_cpu(hpte[0]);
+ pte_r = be64_to_cpu(hpte[1]);
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ pte = hpte_new_to_old_v(pte, pte_r);
+ pte_r = hpte_new_to_old_r(pte_r);
+ }
+ if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
+ ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) ||
+ ((flags & H_ANDCOND) && (pte & avpn) != 0)) {
+ __unlock_hpte(hpte, orig_pte);
+ return H_NOT_FOUND;
+ }
+
+ rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
+ v = pte & ~HPTE_V_HVLOCK;
+ if (v & HPTE_V_VALID) {
+ hpte[0] &= ~cpu_to_be64(HPTE_V_VALID);
+ rb = compute_tlbie_rb(v, pte_r, pte_index);
+ do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
+ /*
+ * The reference (R) and change (C) bits in a HPT
+ * entry can be set by hardware at any time up until
+ * the HPTE is invalidated and the TLB invalidation
+ * sequence has completed. This means that when
+ * removing a HPTE, we need to re-read the HPTE after
+ * the invalidation sequence has completed in order to
+ * obtain reliable values of R and C.
+ */
+ remove_revmap_chain(kvm, pte_index, rev, v,
+ be64_to_cpu(hpte[1]));
+ }
+ r = rev->guest_rpte & ~HPTE_GR_RESERVED;
+ note_hpte_modification(kvm, rev);
+ unlock_hpte(hpte, 0);
+
+ if (is_mmio_hpte(v, pte_r))
+ atomic64_inc(&kvm->arch.mmio_update);
+
+ if (v & HPTE_V_ABSENT)
+ v = (v & ~HPTE_V_ABSENT) | HPTE_V_VALID;
+ hpret[0] = v;
+ hpret[1] = r;
+ return H_SUCCESS;
+}
+EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
+
+long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
+ unsigned long pte_index, unsigned long avpn)
+{
+ return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
+ &vcpu->arch.regs.gpr[4]);
+}
+EXPORT_SYMBOL_GPL(kvmppc_h_remove);
+
+long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ unsigned long *args = &vcpu->arch.regs.gpr[4];
+ __be64 *hp, *hptes[4];
+ unsigned long tlbrb[4];
+ long int i, j, k, n, found, indexes[4];
+ unsigned long flags, req, pte_index, rcbits;
+ int global;
+ long int ret = H_SUCCESS;
+ struct revmap_entry *rev, *revs[4];
+ u64 hp0, hp1;
+
+ if (kvm_is_radix(kvm))
+ return H_FUNCTION;
+ global = global_invalidates(kvm);
+ for (i = 0; i < 4 && ret == H_SUCCESS; ) {
+ n = 0;
+ for (; i < 4; ++i) {
+ j = i * 2;
+ pte_index = args[j];
+ flags = pte_index >> 56;
+ pte_index &= ((1ul << 56) - 1);
+ req = flags >> 6;
+ flags &= 3;
+ if (req == 3) { /* no more requests */
+ i = 4;
+ break;
+ }
+ if (req != 1 || flags == 3 ||
+ pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
+ /* parameter error */
+ args[j] = ((0xa0 | flags) << 56) + pte_index;
+ ret = H_PARAMETER;
+ break;
+ }
+ hp = (__be64 *) (kvm->arch.hpt.virt + (pte_index << 4));
+ /* to avoid deadlock, don't spin except for first */
+ if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
+ if (n)
+ break;
+ while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
+ cpu_relax();
+ }
+ found = 0;
+ hp0 = be64_to_cpu(hp[0]);
+ hp1 = be64_to_cpu(hp[1]);
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ hp0 = hpte_new_to_old_v(hp0, hp1);
+ hp1 = hpte_new_to_old_r(hp1);
+ }
+ if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) {
+ switch (flags & 3) {
+ case 0: /* absolute */
+ found = 1;
+ break;
+ case 1: /* andcond */
+ if (!(hp0 & args[j + 1]))
+ found = 1;
+ break;
+ case 2: /* AVPN */
+ if ((hp0 & ~0x7fUL) == args[j + 1])
+ found = 1;
+ break;
+ }
+ }
+ if (!found) {
+ hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
+ args[j] = ((0x90 | flags) << 56) + pte_index;
+ continue;
+ }
+
+ args[j] = ((0x80 | flags) << 56) + pte_index;
+ rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
+ note_hpte_modification(kvm, rev);
+
+ if (!(hp0 & HPTE_V_VALID)) {
+ /* insert R and C bits from PTE */
+ rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
+ args[j] |= rcbits << (56 - 5);
+ hp[0] = 0;
+ if (is_mmio_hpte(hp0, hp1))
+ atomic64_inc(&kvm->arch.mmio_update);
+ continue;
+ }
+
+ /* leave it locked */
+ hp[0] &= ~cpu_to_be64(HPTE_V_VALID);
+ tlbrb[n] = compute_tlbie_rb(hp0, hp1, pte_index);
+ indexes[n] = j;
+ hptes[n] = hp;
+ revs[n] = rev;
+ ++n;
+ }
+
+ if (!n)
+ break;
+
+ /* Now that we've collected a batch, do the tlbies */
+ do_tlbies(kvm, tlbrb, n, global, true);
+
+ /* Read PTE low words after tlbie to get final R/C values */
+ for (k = 0; k < n; ++k) {
+ j = indexes[k];
+ pte_index = args[j] & ((1ul << 56) - 1);
+ hp = hptes[k];
+ rev = revs[k];
+ remove_revmap_chain(kvm, pte_index, rev,
+ be64_to_cpu(hp[0]), be64_to_cpu(hp[1]));
+ rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
+ args[j] |= rcbits << (56 - 5);
+ __unlock_hpte(hp, 0);
+ }
+ }
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(kvmppc_h_bulk_remove);
+
+long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
+ unsigned long pte_index, unsigned long avpn)
+{
+ struct kvm *kvm = vcpu->kvm;
+ __be64 *hpte;
+ struct revmap_entry *rev;
+ unsigned long v, r, rb, mask, bits;
+ u64 pte_v, pte_r;
+
+ if (kvm_is_radix(kvm))
+ return H_FUNCTION;
+ if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
+ return H_PARAMETER;
+
+ hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
+ while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
+ cpu_relax();
+ v = pte_v = be64_to_cpu(hpte[0]);
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ v = hpte_new_to_old_v(v, be64_to_cpu(hpte[1]));
+ if ((v & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
+ ((flags & H_AVPN) && (v & ~0x7fUL) != avpn)) {
+ __unlock_hpte(hpte, pte_v);
+ return H_NOT_FOUND;
+ }
+
+ pte_r = be64_to_cpu(hpte[1]);
+ bits = (flags << 55) & HPTE_R_PP0;
+ bits |= (flags << 48) & HPTE_R_KEY_HI;
+ bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
+
+ /* Update guest view of 2nd HPTE dword */
+ mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
+ HPTE_R_KEY_HI | HPTE_R_KEY_LO;
+ rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
+ if (rev) {
+ r = (rev->guest_rpte & ~mask) | bits;
+ rev->guest_rpte = r;
+ note_hpte_modification(kvm, rev);
+ }
+
+ /* Update HPTE */
+ if (v & HPTE_V_VALID) {
+ /*
+ * If the page is valid, don't let it transition from
+ * readonly to writable. If it should be writable, we'll
+ * take a trap and let the page fault code sort it out.
+ */
+ r = (pte_r & ~mask) | bits;
+ if (hpte_is_writable(r) && !hpte_is_writable(pte_r))
+ r = hpte_make_readonly(r);
+ /* If the PTE is changing, invalidate it first */
+ if (r != pte_r) {
+ rb = compute_tlbie_rb(v, r, pte_index);
+ hpte[0] = cpu_to_be64((pte_v & ~HPTE_V_VALID) |
+ HPTE_V_ABSENT);
+ do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
+ /* Don't lose R/C bit updates done by hardware */
+ r |= be64_to_cpu(hpte[1]) & (HPTE_R_R | HPTE_R_C);
+ hpte[1] = cpu_to_be64(r);
+ }
+ }
+ unlock_hpte(hpte, pte_v & ~HPTE_V_HVLOCK);
+ asm volatile("ptesync" : : : "memory");
+ if (is_mmio_hpte(v, pte_r))
+ atomic64_inc(&kvm->arch.mmio_update);
+
+ return H_SUCCESS;
+}
+EXPORT_SYMBOL_GPL(kvmppc_h_protect);
+
+long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
+ unsigned long pte_index)
+{
+ struct kvm *kvm = vcpu->kvm;
+ __be64 *hpte;
+ unsigned long v, r;
+ int i, n = 1;
+ struct revmap_entry *rev = NULL;
+
+ if (kvm_is_radix(kvm))
+ return H_FUNCTION;
+ if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
+ return H_PARAMETER;
+ if (flags & H_READ_4) {
+ pte_index &= ~3;
+ n = 4;
+ }
+ rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
+ for (i = 0; i < n; ++i, ++pte_index) {
+ hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
+ v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
+ r = be64_to_cpu(hpte[1]);
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ v = hpte_new_to_old_v(v, r);
+ r = hpte_new_to_old_r(r);
+ }
+ if (v & HPTE_V_ABSENT) {
+ v &= ~HPTE_V_ABSENT;
+ v |= HPTE_V_VALID;
+ }
+ if (v & HPTE_V_VALID) {
+ r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
+ r &= ~HPTE_GR_RESERVED;
+ }
+ vcpu->arch.regs.gpr[4 + i * 2] = v;
+ vcpu->arch.regs.gpr[5 + i * 2] = r;
+ }
+ return H_SUCCESS;
+}
+EXPORT_SYMBOL_GPL(kvmppc_h_read);
+
+long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags,
+ unsigned long pte_index)
+{
+ struct kvm *kvm = vcpu->kvm;
+ __be64 *hpte;
+ unsigned long v, r, gr;
+ struct revmap_entry *rev;
+ unsigned long *rmap;
+ long ret = H_NOT_FOUND;
+
+ if (kvm_is_radix(kvm))
+ return H_FUNCTION;
+ if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
+ return H_PARAMETER;
+
+ rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
+ hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
+ while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
+ cpu_relax();
+ v = be64_to_cpu(hpte[0]);
+ r = be64_to_cpu(hpte[1]);
+ if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
+ goto out;
+
+ gr = rev->guest_rpte;
+ if (rev->guest_rpte & HPTE_R_R) {
+ rev->guest_rpte &= ~HPTE_R_R;
+ note_hpte_modification(kvm, rev);
+ }
+ if (v & HPTE_V_VALID) {
+ gr |= r & (HPTE_R_R | HPTE_R_C);
+ if (r & HPTE_R_R) {
+ kvmppc_clear_ref_hpte(kvm, hpte, pte_index);
+ rmap = revmap_for_hpte(kvm, v, gr, NULL, NULL);
+ if (rmap) {
+ lock_rmap(rmap);
+ *rmap |= KVMPPC_RMAP_REFERENCED;
+ unlock_rmap(rmap);
+ }
+ }
+ }
+ vcpu->arch.regs.gpr[4] = gr;
+ ret = H_SUCCESS;
+ out:
+ unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(kvmppc_h_clear_ref);
+
+long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags,
+ unsigned long pte_index)
+{
+ struct kvm *kvm = vcpu->kvm;
+ __be64 *hpte;
+ unsigned long v, r, gr;
+ struct revmap_entry *rev;
+ long ret = H_NOT_FOUND;
+
+ if (kvm_is_radix(kvm))
+ return H_FUNCTION;
+ if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
+ return H_PARAMETER;
+
+ rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
+ hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
+ while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
+ cpu_relax();
+ v = be64_to_cpu(hpte[0]);
+ r = be64_to_cpu(hpte[1]);
+ if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
+ goto out;
+
+ gr = rev->guest_rpte;
+ if (gr & HPTE_R_C) {
+ rev->guest_rpte &= ~HPTE_R_C;
+ note_hpte_modification(kvm, rev);
+ }
+ if (v & HPTE_V_VALID) {
+ /* need to make it temporarily absent so C is stable */
+ hpte[0] |= cpu_to_be64(HPTE_V_ABSENT);
+ kvmppc_invalidate_hpte(kvm, hpte, pte_index);
+ r = be64_to_cpu(hpte[1]);
+ gr |= r & (HPTE_R_R | HPTE_R_C);
+ if (r & HPTE_R_C) {
+ hpte[1] = cpu_to_be64(r & ~HPTE_R_C);
+ eieio();
+ kvmppc_set_dirty_from_hpte(kvm, v, gr);
+ }
+ }
+ vcpu->arch.regs.gpr[4] = gr;
+ ret = H_SUCCESS;
+ out:
+ unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(kvmppc_h_clear_mod);
+
+static int kvmppc_get_hpa(struct kvm_vcpu *vcpu, unsigned long mmu_seq,
+ unsigned long gpa, int writing, unsigned long *hpa,
+ struct kvm_memory_slot **memslot_p)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct kvm_memory_slot *memslot;
+ unsigned long gfn, hva, pa, psize = PAGE_SHIFT;
+ unsigned int shift;
+ pte_t *ptep, pte;
+
+ /* Find the memslot for this address */
+ gfn = gpa >> PAGE_SHIFT;
+ memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
+ if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
+ return H_PARAMETER;
+
+ /* Translate to host virtual address */
+ hva = __gfn_to_hva_memslot(memslot, gfn);
+
+ /* Try to find the host pte for that virtual address */
+ ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
+ if (!ptep)
+ return H_TOO_HARD;
+ pte = kvmppc_read_update_linux_pte(ptep, writing);
+ if (!pte_present(pte))
+ return H_TOO_HARD;
+
+ /* Convert to a physical address */
+ if (shift)
+ psize = 1UL << shift;
+ pa = pte_pfn(pte) << PAGE_SHIFT;
+ pa |= hva & (psize - 1);
+ pa |= gpa & ~PAGE_MASK;
+
+ if (hpa)
+ *hpa = pa;
+ if (memslot_p)
+ *memslot_p = memslot;
+
+ return H_SUCCESS;
+}
+
+static long kvmppc_do_h_page_init_zero(struct kvm_vcpu *vcpu,
+ unsigned long dest)
+{
+ struct kvm_memory_slot *memslot;
+ struct kvm *kvm = vcpu->kvm;
+ unsigned long pa, mmu_seq;
+ long ret = H_SUCCESS;
+ int i;
+
+ /* Used later to detect if we might have been invalidated */
+ mmu_seq = kvm->mmu_invalidate_seq;
+ smp_rmb();
+
+ arch_spin_lock(&kvm->mmu_lock.rlock.raw_lock);
+
+ ret = kvmppc_get_hpa(vcpu, mmu_seq, dest, 1, &pa, &memslot);
+ if (ret != H_SUCCESS)
+ goto out_unlock;
+
+ /* Zero the page */
+ for (i = 0; i < SZ_4K; i += L1_CACHE_BYTES, pa += L1_CACHE_BYTES)
+ dcbz((void *)pa);
+ kvmppc_update_dirty_map(memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
+
+out_unlock:
+ arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
+ return ret;
+}
+
+static long kvmppc_do_h_page_init_copy(struct kvm_vcpu *vcpu,
+ unsigned long dest, unsigned long src)
+{
+ unsigned long dest_pa, src_pa, mmu_seq;
+ struct kvm_memory_slot *dest_memslot;
+ struct kvm *kvm = vcpu->kvm;
+ long ret = H_SUCCESS;
+
+ /* Used later to detect if we might have been invalidated */
+ mmu_seq = kvm->mmu_invalidate_seq;
+ smp_rmb();
+
+ arch_spin_lock(&kvm->mmu_lock.rlock.raw_lock);
+ ret = kvmppc_get_hpa(vcpu, mmu_seq, dest, 1, &dest_pa, &dest_memslot);
+ if (ret != H_SUCCESS)
+ goto out_unlock;
+
+ ret = kvmppc_get_hpa(vcpu, mmu_seq, src, 0, &src_pa, NULL);
+ if (ret != H_SUCCESS)
+ goto out_unlock;
+
+ /* Copy the page */
+ memcpy((void *)dest_pa, (void *)src_pa, SZ_4K);
+
+ kvmppc_update_dirty_map(dest_memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
+
+out_unlock:
+ arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
+ return ret;
+}
+
+long kvmppc_rm_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
+ unsigned long dest, unsigned long src)
+{
+ struct kvm *kvm = vcpu->kvm;
+ u64 pg_mask = SZ_4K - 1; /* 4K page size */
+ long ret = H_SUCCESS;
+
+ /* Don't handle radix mode here, go up to the virtual mode handler */
+ if (kvm_is_radix(kvm))
+ return H_TOO_HARD;
+
+ /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
+ if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
+ H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
+ return H_PARAMETER;
+
+ /* dest (and src if copy_page flag set) must be page aligned */
+ if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
+ return H_PARAMETER;
+
+ /* zero and/or copy the page as determined by the flags */
+ if (flags & H_COPY_PAGE)
+ ret = kvmppc_do_h_page_init_copy(vcpu, dest, src);
+ else if (flags & H_ZERO_PAGE)
+ ret = kvmppc_do_h_page_init_zero(vcpu, dest);
+
+ /* We can ignore the other flags */
+
+ return ret;
+}
+
+void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep,
+ unsigned long pte_index)
+{
+ unsigned long rb;
+ u64 hp0, hp1;
+
+ hptep[0] &= ~cpu_to_be64(HPTE_V_VALID);
+ hp0 = be64_to_cpu(hptep[0]);
+ hp1 = be64_to_cpu(hptep[1]);
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ hp0 = hpte_new_to_old_v(hp0, hp1);
+ hp1 = hpte_new_to_old_r(hp1);
+ }
+ rb = compute_tlbie_rb(hp0, hp1, pte_index);
+ do_tlbies(kvm, &rb, 1, 1, true);
+}
+EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
+
+void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep,
+ unsigned long pte_index)
+{
+ unsigned long rb;
+ unsigned char rbyte;
+ u64 hp0, hp1;
+
+ hp0 = be64_to_cpu(hptep[0]);
+ hp1 = be64_to_cpu(hptep[1]);
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ hp0 = hpte_new_to_old_v(hp0, hp1);
+ hp1 = hpte_new_to_old_r(hp1);
+ }
+ rb = compute_tlbie_rb(hp0, hp1, pte_index);
+ rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8;
+ /* modify only the second-last byte, which contains the ref bit */
+ *((char *)hptep + 14) = rbyte;
+ do_tlbies(kvm, &rb, 1, 1, false);
+}
+EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
+
+static int slb_base_page_shift[4] = {
+ 24, /* 16M */
+ 16, /* 64k */
+ 34, /* 16G */
+ 20, /* 1M, unsupported */
+};
+
+static struct mmio_hpte_cache_entry *mmio_cache_search(struct kvm_vcpu *vcpu,
+ unsigned long eaddr, unsigned long slb_v, long mmio_update)
+{
+ struct mmio_hpte_cache_entry *entry = NULL;
+ unsigned int pshift;
+ unsigned int i;
+
+ for (i = 0; i < MMIO_HPTE_CACHE_SIZE; i++) {
+ entry = &vcpu->arch.mmio_cache.entry[i];
+ if (entry->mmio_update == mmio_update) {
+ pshift = entry->slb_base_pshift;
+ if ((entry->eaddr >> pshift) == (eaddr >> pshift) &&
+ entry->slb_v == slb_v)
+ return entry;
+ }
+ }
+ return NULL;
+}
+
+static struct mmio_hpte_cache_entry *
+ next_mmio_cache_entry(struct kvm_vcpu *vcpu)
+{
+ unsigned int index = vcpu->arch.mmio_cache.index;
+
+ vcpu->arch.mmio_cache.index++;
+ if (vcpu->arch.mmio_cache.index == MMIO_HPTE_CACHE_SIZE)
+ vcpu->arch.mmio_cache.index = 0;
+
+ return &vcpu->arch.mmio_cache.entry[index];
+}
+
+/* When called from virtmode, this func should be protected by
+ * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
+ * can trigger deadlock issue.
+ */
+long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
+ unsigned long valid)
+{
+ unsigned int i;
+ unsigned int pshift;
+ unsigned long somask;
+ unsigned long vsid, hash;
+ unsigned long avpn;
+ __be64 *hpte;
+ unsigned long mask, val;
+ unsigned long v, r, orig_v;
+
+ /* Get page shift, work out hash and AVPN etc. */
+ mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
+ val = 0;
+ pshift = 12;
+ if (slb_v & SLB_VSID_L) {
+ mask |= HPTE_V_LARGE;
+ val |= HPTE_V_LARGE;
+ pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
+ }
+ if (slb_v & SLB_VSID_B_1T) {
+ somask = (1UL << 40) - 1;
+ vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
+ vsid ^= vsid << 25;
+ } else {
+ somask = (1UL << 28) - 1;
+ vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
+ }
+ hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvmppc_hpt_mask(&kvm->arch.hpt);
+ avpn = slb_v & ~(somask >> 16); /* also includes B */
+ avpn |= (eaddr & somask) >> 16;
+
+ if (pshift >= 24)
+ avpn &= ~((1UL << (pshift - 16)) - 1);
+ else
+ avpn &= ~0x7fUL;
+ val |= avpn;
+
+ for (;;) {
+ hpte = (__be64 *)(kvm->arch.hpt.virt + (hash << 7));
+
+ for (i = 0; i < 16; i += 2) {
+ /* Read the PTE racily */
+ v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ v = hpte_new_to_old_v(v, be64_to_cpu(hpte[i+1]));
+
+ /* Check valid/absent, hash, segment size and AVPN */
+ if (!(v & valid) || (v & mask) != val)
+ continue;
+
+ /* Lock the PTE and read it under the lock */
+ while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
+ cpu_relax();
+ v = orig_v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
+ r = be64_to_cpu(hpte[i+1]);
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ v = hpte_new_to_old_v(v, r);
+ r = hpte_new_to_old_r(r);
+ }
+
+ /*
+ * Check the HPTE again, including base page size
+ */
+ if ((v & valid) && (v & mask) == val &&
+ kvmppc_hpte_base_page_shift(v, r) == pshift)
+ /* Return with the HPTE still locked */
+ return (hash << 3) + (i >> 1);
+
+ __unlock_hpte(&hpte[i], orig_v);
+ }
+
+ if (val & HPTE_V_SECONDARY)
+ break;
+ val |= HPTE_V_SECONDARY;
+ hash = hash ^ kvmppc_hpt_mask(&kvm->arch.hpt);
+ }
+ return -1;
+}
+EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
+
+/*
+ * Called in real mode to check whether an HPTE not found fault
+ * is due to accessing a paged-out page or an emulated MMIO page,
+ * or if a protection fault is due to accessing a page that the
+ * guest wanted read/write access to but which we made read-only.
+ * Returns a possibly modified status (DSISR) value if not
+ * (i.e. pass the interrupt to the guest),
+ * -1 to pass the fault up to host kernel mode code, -2 to do that
+ * and also load the instruction word (for MMIO emulation),
+ * or 0 if we should make the guest retry the access.
+ */
+long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
+ unsigned long slb_v, unsigned int status, bool data)
+{
+ struct kvm *kvm = vcpu->kvm;
+ long int index;
+ unsigned long v, r, gr, orig_v;
+ __be64 *hpte;
+ unsigned long valid;
+ struct revmap_entry *rev;
+ unsigned long pp, key;
+ struct mmio_hpte_cache_entry *cache_entry = NULL;
+ long mmio_update = 0;
+
+ /* For protection fault, expect to find a valid HPTE */
+ valid = HPTE_V_VALID;
+ if (status & DSISR_NOHPTE) {
+ valid |= HPTE_V_ABSENT;
+ mmio_update = atomic64_read(&kvm->arch.mmio_update);
+ cache_entry = mmio_cache_search(vcpu, addr, slb_v, mmio_update);
+ }
+ if (cache_entry) {
+ index = cache_entry->pte_index;
+ v = cache_entry->hpte_v;
+ r = cache_entry->hpte_r;
+ gr = cache_entry->rpte;
+ } else {
+ index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
+ if (index < 0) {
+ if (status & DSISR_NOHPTE)
+ return status; /* there really was no HPTE */
+ return 0; /* for prot fault, HPTE disappeared */
+ }
+ hpte = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
+ v = orig_v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
+ r = be64_to_cpu(hpte[1]);
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ v = hpte_new_to_old_v(v, r);
+ r = hpte_new_to_old_r(r);
+ }
+ rev = real_vmalloc_addr(&kvm->arch.hpt.rev[index]);
+ gr = rev->guest_rpte;
+
+ unlock_hpte(hpte, orig_v);
+ }
+
+ /* For not found, if the HPTE is valid by now, retry the instruction */
+ if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
+ return 0;
+
+ /* Check access permissions to the page */
+ pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
+ key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
+ status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */
+ if (!data) {
+ if (gr & (HPTE_R_N | HPTE_R_G))
+ return status | SRR1_ISI_N_G_OR_CIP;
+ if (!hpte_read_permission(pp, slb_v & key))
+ return status | SRR1_ISI_PROT;
+ } else if (status & DSISR_ISSTORE) {
+ /* check write permission */
+ if (!hpte_write_permission(pp, slb_v & key))
+ return status | DSISR_PROTFAULT;
+ } else {
+ if (!hpte_read_permission(pp, slb_v & key))
+ return status | DSISR_PROTFAULT;
+ }
+
+ /* Check storage key, if applicable */
+ if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
+ unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
+ if (status & DSISR_ISSTORE)
+ perm >>= 1;
+ if (perm & 1)
+ return status | DSISR_KEYFAULT;
+ }
+
+ /* Save HPTE info for virtual-mode handler */
+ vcpu->arch.pgfault_addr = addr;
+ vcpu->arch.pgfault_index = index;
+ vcpu->arch.pgfault_hpte[0] = v;
+ vcpu->arch.pgfault_hpte[1] = r;
+ vcpu->arch.pgfault_cache = cache_entry;
+
+ /* Check the storage key to see if it is possibly emulated MMIO */
+ if ((r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
+ (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) {
+ if (!cache_entry) {
+ unsigned int pshift = 12;
+ unsigned int pshift_index;
+
+ if (slb_v & SLB_VSID_L) {
+ pshift_index = ((slb_v & SLB_VSID_LP) >> 4);
+ pshift = slb_base_page_shift[pshift_index];
+ }
+ cache_entry = next_mmio_cache_entry(vcpu);
+ cache_entry->eaddr = addr;
+ cache_entry->slb_base_pshift = pshift;
+ cache_entry->pte_index = index;
+ cache_entry->hpte_v = v;
+ cache_entry->hpte_r = r;
+ cache_entry->rpte = gr;
+ cache_entry->slb_v = slb_v;
+ cache_entry->mmio_update = mmio_update;
+ }
+ if (data && (vcpu->arch.shregs.msr & MSR_IR))
+ return -2; /* MMIO emulation - load instr word */
+ }
+
+ return -1; /* send fault up to host kernel mode */
+}
+EXPORT_SYMBOL_GPL(kvmppc_hpte_hv_fault);
diff --git a/arch/powerpc/kvm/book3s_hv_rm_xics.c b/arch/powerpc/kvm/book3s_hv_rm_xics.c
new file mode 100644
index 000000000..e165bfa84
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_hv_rm_xics.c
@@ -0,0 +1,924 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright 2012 Michael Ellerman, IBM Corporation.
+ * Copyright 2012 Benjamin Herrenschmidt, IBM Corporation
+ */
+
+#include <linux/kernel.h>
+#include <linux/kvm_host.h>
+#include <linux/err.h>
+#include <linux/kernel_stat.h>
+#include <linux/pgtable.h>
+
+#include <asm/kvm_book3s.h>
+#include <asm/kvm_ppc.h>
+#include <asm/hvcall.h>
+#include <asm/xics.h>
+#include <asm/synch.h>
+#include <asm/cputhreads.h>
+#include <asm/ppc-opcode.h>
+#include <asm/pnv-pci.h>
+#include <asm/opal.h>
+#include <asm/smp.h>
+
+#include "book3s_xics.h"
+
+#define DEBUG_PASSUP
+
+int h_ipi_redirect = 1;
+EXPORT_SYMBOL(h_ipi_redirect);
+int kvm_irq_bypass = 1;
+EXPORT_SYMBOL(kvm_irq_bypass);
+
+static void icp_rm_deliver_irq(struct kvmppc_xics *xics, struct kvmppc_icp *icp,
+ u32 new_irq, bool check_resend);
+static int xics_opal_set_server(unsigned int hw_irq, int server_cpu);
+
+/* -- ICS routines -- */
+static void ics_rm_check_resend(struct kvmppc_xics *xics,
+ struct kvmppc_ics *ics, struct kvmppc_icp *icp)
+{
+ int i;
+
+ for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
+ struct ics_irq_state *state = &ics->irq_state[i];
+ if (state->resend)
+ icp_rm_deliver_irq(xics, icp, state->number, true);
+ }
+
+}
+
+/* -- ICP routines -- */
+
+#ifdef CONFIG_SMP
+static inline void icp_send_hcore_msg(int hcore, struct kvm_vcpu *vcpu)
+{
+ int hcpu;
+
+ hcpu = hcore << threads_shift;
+ kvmppc_host_rm_ops_hv->rm_core[hcore].rm_data = vcpu;
+ smp_muxed_ipi_set_message(hcpu, PPC_MSG_RM_HOST_ACTION);
+ kvmppc_set_host_ipi(hcpu);
+ smp_mb();
+ kvmhv_rm_send_ipi(hcpu);
+}
+#else
+static inline void icp_send_hcore_msg(int hcore, struct kvm_vcpu *vcpu) { }
+#endif
+
+/*
+ * We start the search from our current CPU Id in the core map
+ * and go in a circle until we get back to our ID looking for a
+ * core that is running in host context and that hasn't already
+ * been targeted for another rm_host_ops.
+ *
+ * In the future, could consider using a fairer algorithm (one
+ * that distributes the IPIs better)
+ *
+ * Returns -1, if no CPU could be found in the host
+ * Else, returns a CPU Id which has been reserved for use
+ */
+static inline int grab_next_hostcore(int start,
+ struct kvmppc_host_rm_core *rm_core, int max, int action)
+{
+ bool success;
+ int core;
+ union kvmppc_rm_state old, new;
+
+ for (core = start + 1; core < max; core++) {
+ old = new = READ_ONCE(rm_core[core].rm_state);
+
+ if (!old.in_host || old.rm_action)
+ continue;
+
+ /* Try to grab this host core if not taken already. */
+ new.rm_action = action;
+
+ success = cmpxchg64(&rm_core[core].rm_state.raw,
+ old.raw, new.raw) == old.raw;
+ if (success) {
+ /*
+ * Make sure that the store to the rm_action is made
+ * visible before we return to caller (and the
+ * subsequent store to rm_data) to synchronize with
+ * the IPI handler.
+ */
+ smp_wmb();
+ return core;
+ }
+ }
+
+ return -1;
+}
+
+static inline int find_available_hostcore(int action)
+{
+ int core;
+ int my_core = smp_processor_id() >> threads_shift;
+ struct kvmppc_host_rm_core *rm_core = kvmppc_host_rm_ops_hv->rm_core;
+
+ core = grab_next_hostcore(my_core, rm_core, cpu_nr_cores(), action);
+ if (core == -1)
+ core = grab_next_hostcore(core, rm_core, my_core, action);
+
+ return core;
+}
+
+static void icp_rm_set_vcpu_irq(struct kvm_vcpu *vcpu,
+ struct kvm_vcpu *this_vcpu)
+{
+ struct kvmppc_icp *this_icp = this_vcpu->arch.icp;
+ int cpu;
+ int hcore;
+
+ /* Mark the target VCPU as having an interrupt pending */
+ vcpu->stat.queue_intr++;
+ set_bit(BOOK3S_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions);
+
+ /* Kick self ? Just set MER and return */
+ if (vcpu == this_vcpu) {
+ mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_MER);
+ return;
+ }
+
+ /*
+ * Check if the core is loaded,
+ * if not, find an available host core to post to wake the VCPU,
+ * if we can't find one, set up state to eventually return too hard.
+ */
+ cpu = vcpu->arch.thread_cpu;
+ if (cpu < 0 || cpu >= nr_cpu_ids) {
+ hcore = -1;
+ if (kvmppc_host_rm_ops_hv && h_ipi_redirect)
+ hcore = find_available_hostcore(XICS_RM_KICK_VCPU);
+ if (hcore != -1) {
+ icp_send_hcore_msg(hcore, vcpu);
+ } else {
+ this_icp->rm_action |= XICS_RM_KICK_VCPU;
+ this_icp->rm_kick_target = vcpu;
+ }
+ return;
+ }
+
+ smp_mb();
+ kvmhv_rm_send_ipi(cpu);
+}
+
+static void icp_rm_clr_vcpu_irq(struct kvm_vcpu *vcpu)
+{
+ /* Note: Only called on self ! */
+ clear_bit(BOOK3S_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions);
+ mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_MER);
+}
+
+static inline bool icp_rm_try_update(struct kvmppc_icp *icp,
+ union kvmppc_icp_state old,
+ union kvmppc_icp_state new)
+{
+ struct kvm_vcpu *this_vcpu = local_paca->kvm_hstate.kvm_vcpu;
+ bool success;
+
+ /* Calculate new output value */
+ new.out_ee = (new.xisr && (new.pending_pri < new.cppr));
+
+ /* Attempt atomic update */
+ success = cmpxchg64(&icp->state.raw, old.raw, new.raw) == old.raw;
+ if (!success)
+ goto bail;
+
+ /*
+ * Check for output state update
+ *
+ * Note that this is racy since another processor could be updating
+ * the state already. This is why we never clear the interrupt output
+ * here, we only ever set it. The clear only happens prior to doing
+ * an update and only by the processor itself. Currently we do it
+ * in Accept (H_XIRR) and Up_Cppr (H_XPPR).
+ *
+ * We also do not try to figure out whether the EE state has changed,
+ * we unconditionally set it if the new state calls for it. The reason
+ * for that is that we opportunistically remove the pending interrupt
+ * flag when raising CPPR, so we need to set it back here if an
+ * interrupt is still pending.
+ */
+ if (new.out_ee)
+ icp_rm_set_vcpu_irq(icp->vcpu, this_vcpu);
+
+ /* Expose the state change for debug purposes */
+ this_vcpu->arch.icp->rm_dbgstate = new;
+ this_vcpu->arch.icp->rm_dbgtgt = icp->vcpu;
+
+ bail:
+ return success;
+}
+
+static inline int check_too_hard(struct kvmppc_xics *xics,
+ struct kvmppc_icp *icp)
+{
+ return (xics->real_mode_dbg || icp->rm_action) ? H_TOO_HARD : H_SUCCESS;
+}
+
+static void icp_rm_check_resend(struct kvmppc_xics *xics,
+ struct kvmppc_icp *icp)
+{
+ u32 icsid;
+
+ /* Order this load with the test for need_resend in the caller */
+ smp_rmb();
+ for_each_set_bit(icsid, icp->resend_map, xics->max_icsid + 1) {
+ struct kvmppc_ics *ics = xics->ics[icsid];
+
+ if (!test_and_clear_bit(icsid, icp->resend_map))
+ continue;
+ if (!ics)
+ continue;
+ ics_rm_check_resend(xics, ics, icp);
+ }
+}
+
+static bool icp_rm_try_to_deliver(struct kvmppc_icp *icp, u32 irq, u8 priority,
+ u32 *reject)
+{
+ union kvmppc_icp_state old_state, new_state;
+ bool success;
+
+ do {
+ old_state = new_state = READ_ONCE(icp->state);
+
+ *reject = 0;
+
+ /* See if we can deliver */
+ success = new_state.cppr > priority &&
+ new_state.mfrr > priority &&
+ new_state.pending_pri > priority;
+
+ /*
+ * If we can, check for a rejection and perform the
+ * delivery
+ */
+ if (success) {
+ *reject = new_state.xisr;
+ new_state.xisr = irq;
+ new_state.pending_pri = priority;
+ } else {
+ /*
+ * If we failed to deliver we set need_resend
+ * so a subsequent CPPR state change causes us
+ * to try a new delivery.
+ */
+ new_state.need_resend = true;
+ }
+
+ } while (!icp_rm_try_update(icp, old_state, new_state));
+
+ return success;
+}
+
+static void icp_rm_deliver_irq(struct kvmppc_xics *xics, struct kvmppc_icp *icp,
+ u32 new_irq, bool check_resend)
+{
+ struct ics_irq_state *state;
+ struct kvmppc_ics *ics;
+ u32 reject;
+ u16 src;
+
+ /*
+ * This is used both for initial delivery of an interrupt and
+ * for subsequent rejection.
+ *
+ * Rejection can be racy vs. resends. We have evaluated the
+ * rejection in an atomic ICP transaction which is now complete,
+ * so potentially the ICP can already accept the interrupt again.
+ *
+ * So we need to retry the delivery. Essentially the reject path
+ * boils down to a failed delivery. Always.
+ *
+ * Now the interrupt could also have moved to a different target,
+ * thus we may need to re-do the ICP lookup as well
+ */
+
+ again:
+ /* Get the ICS state and lock it */
+ ics = kvmppc_xics_find_ics(xics, new_irq, &src);
+ if (!ics) {
+ /* Unsafe increment, but this does not need to be accurate */
+ xics->err_noics++;
+ return;
+ }
+ state = &ics->irq_state[src];
+
+ /* Get a lock on the ICS */
+ arch_spin_lock(&ics->lock);
+
+ /* Get our server */
+ if (!icp || state->server != icp->server_num) {
+ icp = kvmppc_xics_find_server(xics->kvm, state->server);
+ if (!icp) {
+ /* Unsafe increment again*/
+ xics->err_noicp++;
+ goto out;
+ }
+ }
+
+ if (check_resend)
+ if (!state->resend)
+ goto out;
+
+ /* Clear the resend bit of that interrupt */
+ state->resend = 0;
+
+ /*
+ * If masked, bail out
+ *
+ * Note: PAPR doesn't mention anything about masked pending
+ * when doing a resend, only when doing a delivery.
+ *
+ * However that would have the effect of losing a masked
+ * interrupt that was rejected and isn't consistent with
+ * the whole masked_pending business which is about not
+ * losing interrupts that occur while masked.
+ *
+ * I don't differentiate normal deliveries and resends, this
+ * implementation will differ from PAPR and not lose such
+ * interrupts.
+ */
+ if (state->priority == MASKED) {
+ state->masked_pending = 1;
+ goto out;
+ }
+
+ /*
+ * Try the delivery, this will set the need_resend flag
+ * in the ICP as part of the atomic transaction if the
+ * delivery is not possible.
+ *
+ * Note that if successful, the new delivery might have itself
+ * rejected an interrupt that was "delivered" before we took the
+ * ics spin lock.
+ *
+ * In this case we do the whole sequence all over again for the
+ * new guy. We cannot assume that the rejected interrupt is less
+ * favored than the new one, and thus doesn't need to be delivered,
+ * because by the time we exit icp_rm_try_to_deliver() the target
+ * processor may well have already consumed & completed it, and thus
+ * the rejected interrupt might actually be already acceptable.
+ */
+ if (icp_rm_try_to_deliver(icp, new_irq, state->priority, &reject)) {
+ /*
+ * Delivery was successful, did we reject somebody else ?
+ */
+ if (reject && reject != XICS_IPI) {
+ arch_spin_unlock(&ics->lock);
+ icp->n_reject++;
+ new_irq = reject;
+ check_resend = 0;
+ goto again;
+ }
+ } else {
+ /*
+ * We failed to deliver the interrupt we need to set the
+ * resend map bit and mark the ICS state as needing a resend
+ */
+ state->resend = 1;
+
+ /*
+ * Make sure when checking resend, we don't miss the resend
+ * if resend_map bit is seen and cleared.
+ */
+ smp_wmb();
+ set_bit(ics->icsid, icp->resend_map);
+
+ /*
+ * If the need_resend flag got cleared in the ICP some time
+ * between icp_rm_try_to_deliver() atomic update and now, then
+ * we know it might have missed the resend_map bit. So we
+ * retry
+ */
+ smp_mb();
+ if (!icp->state.need_resend) {
+ state->resend = 0;
+ arch_spin_unlock(&ics->lock);
+ check_resend = 0;
+ goto again;
+ }
+ }
+ out:
+ arch_spin_unlock(&ics->lock);
+}
+
+static void icp_rm_down_cppr(struct kvmppc_xics *xics, struct kvmppc_icp *icp,
+ u8 new_cppr)
+{
+ union kvmppc_icp_state old_state, new_state;
+ bool resend;
+
+ /*
+ * This handles several related states in one operation:
+ *
+ * ICP State: Down_CPPR
+ *
+ * Load CPPR with new value and if the XISR is 0
+ * then check for resends:
+ *
+ * ICP State: Resend
+ *
+ * If MFRR is more favored than CPPR, check for IPIs
+ * and notify ICS of a potential resend. This is done
+ * asynchronously (when used in real mode, we will have
+ * to exit here).
+ *
+ * We do not handle the complete Check_IPI as documented
+ * here. In the PAPR, this state will be used for both
+ * Set_MFRR and Down_CPPR. However, we know that we aren't
+ * changing the MFRR state here so we don't need to handle
+ * the case of an MFRR causing a reject of a pending irq,
+ * this will have been handled when the MFRR was set in the
+ * first place.
+ *
+ * Thus we don't have to handle rejects, only resends.
+ *
+ * When implementing real mode for HV KVM, resend will lead to
+ * a H_TOO_HARD return and the whole transaction will be handled
+ * in virtual mode.
+ */
+ do {
+ old_state = new_state = READ_ONCE(icp->state);
+
+ /* Down_CPPR */
+ new_state.cppr = new_cppr;
+
+ /*
+ * Cut down Resend / Check_IPI / IPI
+ *
+ * The logic is that we cannot have a pending interrupt
+ * trumped by an IPI at this point (see above), so we
+ * know that either the pending interrupt is already an
+ * IPI (in which case we don't care to override it) or
+ * it's either more favored than us or non existent
+ */
+ if (new_state.mfrr < new_cppr &&
+ new_state.mfrr <= new_state.pending_pri) {
+ new_state.pending_pri = new_state.mfrr;
+ new_state.xisr = XICS_IPI;
+ }
+
+ /* Latch/clear resend bit */
+ resend = new_state.need_resend;
+ new_state.need_resend = 0;
+
+ } while (!icp_rm_try_update(icp, old_state, new_state));
+
+ /*
+ * Now handle resend checks. Those are asynchronous to the ICP
+ * state update in HW (ie bus transactions) so we can handle them
+ * separately here as well.
+ */
+ if (resend) {
+ icp->n_check_resend++;
+ icp_rm_check_resend(xics, icp);
+ }
+}
+
+unsigned long xics_rm_h_xirr_x(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.regs.gpr[5] = get_tb();
+ return xics_rm_h_xirr(vcpu);
+}
+
+unsigned long xics_rm_h_xirr(struct kvm_vcpu *vcpu)
+{
+ union kvmppc_icp_state old_state, new_state;
+ struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
+ struct kvmppc_icp *icp = vcpu->arch.icp;
+ u32 xirr;
+
+ if (!xics || !xics->real_mode)
+ return H_TOO_HARD;
+
+ /* First clear the interrupt */
+ icp_rm_clr_vcpu_irq(icp->vcpu);
+
+ /*
+ * ICP State: Accept_Interrupt
+ *
+ * Return the pending interrupt (if any) along with the
+ * current CPPR, then clear the XISR & set CPPR to the
+ * pending priority
+ */
+ do {
+ old_state = new_state = READ_ONCE(icp->state);
+
+ xirr = old_state.xisr | (((u32)old_state.cppr) << 24);
+ if (!old_state.xisr)
+ break;
+ new_state.cppr = new_state.pending_pri;
+ new_state.pending_pri = 0xff;
+ new_state.xisr = 0;
+
+ } while (!icp_rm_try_update(icp, old_state, new_state));
+
+ /* Return the result in GPR4 */
+ vcpu->arch.regs.gpr[4] = xirr;
+
+ return check_too_hard(xics, icp);
+}
+
+int xics_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
+ unsigned long mfrr)
+{
+ union kvmppc_icp_state old_state, new_state;
+ struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
+ struct kvmppc_icp *icp, *this_icp = vcpu->arch.icp;
+ u32 reject;
+ bool resend;
+ bool local;
+
+ if (!xics || !xics->real_mode)
+ return H_TOO_HARD;
+
+ local = this_icp->server_num == server;
+ if (local)
+ icp = this_icp;
+ else
+ icp = kvmppc_xics_find_server(vcpu->kvm, server);
+ if (!icp)
+ return H_PARAMETER;
+
+ /*
+ * ICP state: Set_MFRR
+ *
+ * If the CPPR is more favored than the new MFRR, then
+ * nothing needs to be done as there can be no XISR to
+ * reject.
+ *
+ * ICP state: Check_IPI
+ *
+ * If the CPPR is less favored, then we might be replacing
+ * an interrupt, and thus need to possibly reject it.
+ *
+ * ICP State: IPI
+ *
+ * Besides rejecting any pending interrupts, we also
+ * update XISR and pending_pri to mark IPI as pending.
+ *
+ * PAPR does not describe this state, but if the MFRR is being
+ * made less favored than its earlier value, there might be
+ * a previously-rejected interrupt needing to be resent.
+ * Ideally, we would want to resend only if
+ * prio(pending_interrupt) < mfrr &&
+ * prio(pending_interrupt) < cppr
+ * where pending interrupt is the one that was rejected. But
+ * we don't have that state, so we simply trigger a resend
+ * whenever the MFRR is made less favored.
+ */
+ do {
+ old_state = new_state = READ_ONCE(icp->state);
+
+ /* Set_MFRR */
+ new_state.mfrr = mfrr;
+
+ /* Check_IPI */
+ reject = 0;
+ resend = false;
+ if (mfrr < new_state.cppr) {
+ /* Reject a pending interrupt if not an IPI */
+ if (mfrr <= new_state.pending_pri) {
+ reject = new_state.xisr;
+ new_state.pending_pri = mfrr;
+ new_state.xisr = XICS_IPI;
+ }
+ }
+
+ if (mfrr > old_state.mfrr) {
+ resend = new_state.need_resend;
+ new_state.need_resend = 0;
+ }
+ } while (!icp_rm_try_update(icp, old_state, new_state));
+
+ /* Handle reject in real mode */
+ if (reject && reject != XICS_IPI) {
+ this_icp->n_reject++;
+ icp_rm_deliver_irq(xics, icp, reject, false);
+ }
+
+ /* Handle resends in real mode */
+ if (resend) {
+ this_icp->n_check_resend++;
+ icp_rm_check_resend(xics, icp);
+ }
+
+ return check_too_hard(xics, this_icp);
+}
+
+int xics_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
+{
+ union kvmppc_icp_state old_state, new_state;
+ struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
+ struct kvmppc_icp *icp = vcpu->arch.icp;
+ u32 reject;
+
+ if (!xics || !xics->real_mode)
+ return H_TOO_HARD;
+
+ /*
+ * ICP State: Set_CPPR
+ *
+ * We can safely compare the new value with the current
+ * value outside of the transaction as the CPPR is only
+ * ever changed by the processor on itself
+ */
+ if (cppr > icp->state.cppr) {
+ icp_rm_down_cppr(xics, icp, cppr);
+ goto bail;
+ } else if (cppr == icp->state.cppr)
+ return H_SUCCESS;
+
+ /*
+ * ICP State: Up_CPPR
+ *
+ * The processor is raising its priority, this can result
+ * in a rejection of a pending interrupt:
+ *
+ * ICP State: Reject_Current
+ *
+ * We can remove EE from the current processor, the update
+ * transaction will set it again if needed
+ */
+ icp_rm_clr_vcpu_irq(icp->vcpu);
+
+ do {
+ old_state = new_state = READ_ONCE(icp->state);
+
+ reject = 0;
+ new_state.cppr = cppr;
+
+ if (cppr <= new_state.pending_pri) {
+ reject = new_state.xisr;
+ new_state.xisr = 0;
+ new_state.pending_pri = 0xff;
+ }
+
+ } while (!icp_rm_try_update(icp, old_state, new_state));
+
+ /*
+ * Check for rejects. They are handled by doing a new delivery
+ * attempt (see comments in icp_rm_deliver_irq).
+ */
+ if (reject && reject != XICS_IPI) {
+ icp->n_reject++;
+ icp_rm_deliver_irq(xics, icp, reject, false);
+ }
+ bail:
+ return check_too_hard(xics, icp);
+}
+
+static int ics_rm_eoi(struct kvm_vcpu *vcpu, u32 irq)
+{
+ struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
+ struct kvmppc_icp *icp = vcpu->arch.icp;
+ struct kvmppc_ics *ics;
+ struct ics_irq_state *state;
+ u16 src;
+ u32 pq_old, pq_new;
+
+ /*
+ * ICS EOI handling: For LSI, if P bit is still set, we need to
+ * resend it.
+ *
+ * For MSI, we move Q bit into P (and clear Q). If it is set,
+ * resend it.
+ */
+
+ ics = kvmppc_xics_find_ics(xics, irq, &src);
+ if (!ics)
+ goto bail;
+
+ state = &ics->irq_state[src];
+
+ if (state->lsi)
+ pq_new = state->pq_state;
+ else
+ do {
+ pq_old = state->pq_state;
+ pq_new = pq_old >> 1;
+ } while (cmpxchg(&state->pq_state, pq_old, pq_new) != pq_old);
+
+ if (pq_new & PQ_PRESENTED)
+ icp_rm_deliver_irq(xics, NULL, irq, false);
+
+ if (!hlist_empty(&vcpu->kvm->irq_ack_notifier_list)) {
+ icp->rm_action |= XICS_RM_NOTIFY_EOI;
+ icp->rm_eoied_irq = irq;
+ }
+
+ /* Handle passthrough interrupts */
+ if (state->host_irq) {
+ ++vcpu->stat.pthru_all;
+ if (state->intr_cpu != -1) {
+ int pcpu = raw_smp_processor_id();
+
+ pcpu = cpu_first_thread_sibling(pcpu);
+ ++vcpu->stat.pthru_host;
+ if (state->intr_cpu != pcpu) {
+ ++vcpu->stat.pthru_bad_aff;
+ xics_opal_set_server(state->host_irq, pcpu);
+ }
+ state->intr_cpu = -1;
+ }
+ }
+
+ bail:
+ return check_too_hard(xics, icp);
+}
+
+int xics_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
+{
+ struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
+ struct kvmppc_icp *icp = vcpu->arch.icp;
+ u32 irq = xirr & 0x00ffffff;
+
+ if (!xics || !xics->real_mode)
+ return H_TOO_HARD;
+
+ /*
+ * ICP State: EOI
+ *
+ * Note: If EOI is incorrectly used by SW to lower the CPPR
+ * value (ie more favored), we do not check for rejection of
+ * a pending interrupt, this is a SW error and PAPR specifies
+ * that we don't have to deal with it.
+ *
+ * The sending of an EOI to the ICS is handled after the
+ * CPPR update
+ *
+ * ICP State: Down_CPPR which we handle
+ * in a separate function as it's shared with H_CPPR.
+ */
+ icp_rm_down_cppr(xics, icp, xirr >> 24);
+
+ /* IPIs have no EOI */
+ if (irq == XICS_IPI)
+ return check_too_hard(xics, icp);
+
+ return ics_rm_eoi(vcpu, irq);
+}
+
+static unsigned long eoi_rc;
+
+static void icp_eoi(struct irq_data *d, u32 hwirq, __be32 xirr, bool *again)
+{
+ void __iomem *xics_phys;
+ int64_t rc;
+
+ rc = pnv_opal_pci_msi_eoi(d);
+
+ if (rc)
+ eoi_rc = rc;
+
+ iosync();
+
+ /* EOI it */
+ xics_phys = local_paca->kvm_hstate.xics_phys;
+ if (xics_phys) {
+ __raw_rm_writel(xirr, xics_phys + XICS_XIRR);
+ } else {
+ rc = opal_int_eoi(be32_to_cpu(xirr));
+ *again = rc > 0;
+ }
+}
+
+static int xics_opal_set_server(unsigned int hw_irq, int server_cpu)
+{
+ unsigned int mangle_cpu = get_hard_smp_processor_id(server_cpu) << 2;
+
+ return opal_set_xive(hw_irq, mangle_cpu, DEFAULT_PRIORITY);
+}
+
+/*
+ * Increment a per-CPU 32-bit unsigned integer variable.
+ * Safe to call in real-mode. Handles vmalloc'ed addresses
+ *
+ * ToDo: Make this work for any integral type
+ */
+
+static inline void this_cpu_inc_rm(unsigned int __percpu *addr)
+{
+ unsigned long l;
+ unsigned int *raddr;
+ int cpu = smp_processor_id();
+
+ raddr = per_cpu_ptr(addr, cpu);
+ l = (unsigned long)raddr;
+
+ if (get_region_id(l) == VMALLOC_REGION_ID) {
+ l = vmalloc_to_phys(raddr);
+ raddr = (unsigned int *)l;
+ }
+ ++*raddr;
+}
+
+/*
+ * We don't try to update the flags in the irq_desc 'istate' field in
+ * here as would happen in the normal IRQ handling path for several reasons:
+ * - state flags represent internal IRQ state and are not expected to be
+ * updated outside the IRQ subsystem
+ * - more importantly, these are useful for edge triggered interrupts,
+ * IRQ probing, etc., but we are only handling MSI/MSIx interrupts here
+ * and these states shouldn't apply to us.
+ *
+ * However, we do update irq_stats - we somewhat duplicate the code in
+ * kstat_incr_irqs_this_cpu() for this since this function is defined
+ * in irq/internal.h which we don't want to include here.
+ * The only difference is that desc->kstat_irqs is an allocated per CPU
+ * variable and could have been vmalloc'ed, so we can't directly
+ * call __this_cpu_inc() on it. The kstat structure is a static
+ * per CPU variable and it should be accessible by real-mode KVM.
+ *
+ */
+static void kvmppc_rm_handle_irq_desc(struct irq_desc *desc)
+{
+ this_cpu_inc_rm(desc->kstat_irqs);
+ __this_cpu_inc(kstat.irqs_sum);
+}
+
+long kvmppc_deliver_irq_passthru(struct kvm_vcpu *vcpu,
+ __be32 xirr,
+ struct kvmppc_irq_map *irq_map,
+ struct kvmppc_passthru_irqmap *pimap,
+ bool *again)
+{
+ struct kvmppc_xics *xics;
+ struct kvmppc_icp *icp;
+ struct kvmppc_ics *ics;
+ struct ics_irq_state *state;
+ u32 irq;
+ u16 src;
+ u32 pq_old, pq_new;
+
+ irq = irq_map->v_hwirq;
+ xics = vcpu->kvm->arch.xics;
+ icp = vcpu->arch.icp;
+
+ kvmppc_rm_handle_irq_desc(irq_map->desc);
+
+ ics = kvmppc_xics_find_ics(xics, irq, &src);
+ if (!ics)
+ return 2;
+
+ state = &ics->irq_state[src];
+
+ /* only MSIs register bypass producers, so it must be MSI here */
+ do {
+ pq_old = state->pq_state;
+ pq_new = ((pq_old << 1) & 3) | PQ_PRESENTED;
+ } while (cmpxchg(&state->pq_state, pq_old, pq_new) != pq_old);
+
+ /* Test P=1, Q=0, this is the only case where we present */
+ if (pq_new == PQ_PRESENTED)
+ icp_rm_deliver_irq(xics, icp, irq, false);
+
+ /* EOI the interrupt */
+ icp_eoi(irq_desc_get_irq_data(irq_map->desc), irq_map->r_hwirq, xirr, again);
+
+ if (check_too_hard(xics, icp) == H_TOO_HARD)
+ return 2;
+ else
+ return -2;
+}
+
+/* --- Non-real mode XICS-related built-in routines --- */
+
+/*
+ * Host Operations poked by RM KVM
+ */
+static void rm_host_ipi_action(int action, void *data)
+{
+ switch (action) {
+ case XICS_RM_KICK_VCPU:
+ kvmppc_host_rm_ops_hv->vcpu_kick(data);
+ break;
+ default:
+ WARN(1, "Unexpected rm_action=%d data=%p\n", action, data);
+ break;
+ }
+
+}
+
+void kvmppc_xics_ipi_action(void)
+{
+ int core;
+ unsigned int cpu = smp_processor_id();
+ struct kvmppc_host_rm_core *rm_corep;
+
+ core = cpu >> threads_shift;
+ rm_corep = &kvmppc_host_rm_ops_hv->rm_core[core];
+
+ if (rm_corep->rm_data) {
+ rm_host_ipi_action(rm_corep->rm_state.rm_action,
+ rm_corep->rm_data);
+ /* Order these stores against the real mode KVM */
+ rm_corep->rm_data = NULL;
+ smp_wmb();
+ rm_corep->rm_state.rm_action = 0;
+ }
+}
diff --git a/arch/powerpc/kvm/book3s_hv_rmhandlers.S b/arch/powerpc/kvm/book3s_hv_rmhandlers.S
new file mode 100644
index 000000000..37f50861d
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_hv_rmhandlers.S
@@ -0,0 +1,3015 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ *
+ * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
+ *
+ * Derived from book3s_rmhandlers.S and other files, which are:
+ *
+ * Copyright SUSE Linux Products GmbH 2009
+ *
+ * Authors: Alexander Graf <agraf@suse.de>
+ */
+
+#include <asm/ppc_asm.h>
+#include <asm/code-patching-asm.h>
+#include <asm/kvm_asm.h>
+#include <asm/reg.h>
+#include <asm/mmu.h>
+#include <asm/page.h>
+#include <asm/ptrace.h>
+#include <asm/hvcall.h>
+#include <asm/asm-offsets.h>
+#include <asm/exception-64s.h>
+#include <asm/kvm_book3s_asm.h>
+#include <asm/book3s/64/mmu-hash.h>
+#include <asm/export.h>
+#include <asm/tm.h>
+#include <asm/opal.h>
+#include <asm/thread_info.h>
+#include <asm/asm-compat.h>
+#include <asm/feature-fixups.h>
+#include <asm/cpuidle.h>
+
+/* Values in HSTATE_NAPPING(r13) */
+#define NAPPING_CEDE 1
+#define NAPPING_NOVCPU 2
+#define NAPPING_UNSPLIT 3
+
+/* Stack frame offsets for kvmppc_hv_entry */
+#define SFS 160
+#define STACK_SLOT_TRAP (SFS-4)
+#define STACK_SLOT_TID (SFS-16)
+#define STACK_SLOT_PSSCR (SFS-24)
+#define STACK_SLOT_PID (SFS-32)
+#define STACK_SLOT_IAMR (SFS-40)
+#define STACK_SLOT_CIABR (SFS-48)
+#define STACK_SLOT_DAWR0 (SFS-56)
+#define STACK_SLOT_DAWRX0 (SFS-64)
+#define STACK_SLOT_HFSCR (SFS-72)
+#define STACK_SLOT_AMR (SFS-80)
+#define STACK_SLOT_UAMOR (SFS-88)
+#define STACK_SLOT_FSCR (SFS-96)
+
+/*
+ * Use the last LPID (all implemented LPID bits = 1) for partition switching.
+ * This is reserved in the LPID allocator. POWER7 only implements 0x3ff, but
+ * we write 0xfff into the LPID SPR anyway, which seems to work and just
+ * ignores the top bits.
+ */
+#define LPID_RSVD 0xfff
+
+/*
+ * Call kvmppc_hv_entry in real mode.
+ * Must be called with interrupts hard-disabled.
+ *
+ * Input Registers:
+ *
+ * LR = return address to continue at after eventually re-enabling MMU
+ */
+_GLOBAL_TOC(kvmppc_hv_entry_trampoline)
+ mflr r0
+ std r0, PPC_LR_STKOFF(r1)
+ stdu r1, -112(r1)
+ mfmsr r10
+ std r10, HSTATE_HOST_MSR(r13)
+ LOAD_REG_ADDR(r5, kvmppc_call_hv_entry)
+ li r0,MSR_RI
+ andc r0,r10,r0
+ li r6,MSR_IR | MSR_DR
+ andc r6,r10,r6
+ mtmsrd r0,1 /* clear RI in MSR */
+ mtsrr0 r5
+ mtsrr1 r6
+ RFI_TO_KERNEL
+
+kvmppc_call_hv_entry:
+ ld r4, HSTATE_KVM_VCPU(r13)
+ bl kvmppc_hv_entry
+
+ /* Back from guest - restore host state and return to caller */
+
+BEGIN_FTR_SECTION
+ /* Restore host DABR and DABRX */
+ ld r5,HSTATE_DABR(r13)
+ li r6,7
+ mtspr SPRN_DABR,r5
+ mtspr SPRN_DABRX,r6
+END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
+
+ /* Restore SPRG3 */
+ ld r3,PACA_SPRG_VDSO(r13)
+ mtspr SPRN_SPRG_VDSO_WRITE,r3
+
+ /* Reload the host's PMU registers */
+ bl kvmhv_load_host_pmu
+
+ /*
+ * Reload DEC. HDEC interrupts were disabled when
+ * we reloaded the host's LPCR value.
+ */
+ ld r3, HSTATE_DECEXP(r13)
+ mftb r4
+ subf r4, r4, r3
+ mtspr SPRN_DEC, r4
+
+ /* hwthread_req may have got set by cede or no vcpu, so clear it */
+ li r0, 0
+ stb r0, HSTATE_HWTHREAD_REQ(r13)
+
+ /*
+ * For external interrupts we need to call the Linux
+ * handler to process the interrupt. We do that by jumping
+ * to absolute address 0x500 for external interrupts.
+ * The [h]rfid at the end of the handler will return to
+ * the book3s_hv_interrupts.S code. For other interrupts
+ * we do the rfid to get back to the book3s_hv_interrupts.S
+ * code here.
+ */
+ ld r8, 112+PPC_LR_STKOFF(r1)
+ addi r1, r1, 112
+ ld r7, HSTATE_HOST_MSR(r13)
+
+ /* Return the trap number on this thread as the return value */
+ mr r3, r12
+
+ /* RFI into the highmem handler */
+ mfmsr r6
+ li r0, MSR_RI
+ andc r6, r6, r0
+ mtmsrd r6, 1 /* Clear RI in MSR */
+ mtsrr0 r8
+ mtsrr1 r7
+ RFI_TO_KERNEL
+
+kvmppc_primary_no_guest:
+ /* We handle this much like a ceded vcpu */
+ /* put the HDEC into the DEC, since HDEC interrupts don't wake us */
+ /* HDEC may be larger than DEC for arch >= v3.00, but since the */
+ /* HDEC value came from DEC in the first place, it will fit */
+ mfspr r3, SPRN_HDEC
+ mtspr SPRN_DEC, r3
+ /*
+ * Make sure the primary has finished the MMU switch.
+ * We should never get here on a secondary thread, but
+ * check it for robustness' sake.
+ */
+ ld r5, HSTATE_KVM_VCORE(r13)
+65: lbz r0, VCORE_IN_GUEST(r5)
+ cmpwi r0, 0
+ beq 65b
+ /* Set LPCR. */
+ ld r8,VCORE_LPCR(r5)
+ mtspr SPRN_LPCR,r8
+ isync
+ /* set our bit in napping_threads */
+ ld r5, HSTATE_KVM_VCORE(r13)
+ lbz r7, HSTATE_PTID(r13)
+ li r0, 1
+ sld r0, r0, r7
+ addi r6, r5, VCORE_NAPPING_THREADS
+1: lwarx r3, 0, r6
+ or r3, r3, r0
+ stwcx. r3, 0, r6
+ bne 1b
+ /* order napping_threads update vs testing entry_exit_map */
+ isync
+ li r12, 0
+ lwz r7, VCORE_ENTRY_EXIT(r5)
+ cmpwi r7, 0x100
+ bge kvm_novcpu_exit /* another thread already exiting */
+ li r3, NAPPING_NOVCPU
+ stb r3, HSTATE_NAPPING(r13)
+
+ li r3, 0 /* Don't wake on privileged (OS) doorbell */
+ b kvm_do_nap
+
+/*
+ * kvm_novcpu_wakeup
+ * Entered from kvm_start_guest if kvm_hstate.napping is set
+ * to NAPPING_NOVCPU
+ * r2 = kernel TOC
+ * r13 = paca
+ */
+kvm_novcpu_wakeup:
+ ld r1, HSTATE_HOST_R1(r13)
+ ld r5, HSTATE_KVM_VCORE(r13)
+ li r0, 0
+ stb r0, HSTATE_NAPPING(r13)
+
+ /* check the wake reason */
+ bl kvmppc_check_wake_reason
+
+ /*
+ * Restore volatile registers since we could have called
+ * a C routine in kvmppc_check_wake_reason.
+ * r5 = VCORE
+ */
+ ld r5, HSTATE_KVM_VCORE(r13)
+
+ /* see if any other thread is already exiting */
+ lwz r0, VCORE_ENTRY_EXIT(r5)
+ cmpwi r0, 0x100
+ bge kvm_novcpu_exit
+
+ /* clear our bit in napping_threads */
+ lbz r7, HSTATE_PTID(r13)
+ li r0, 1
+ sld r0, r0, r7
+ addi r6, r5, VCORE_NAPPING_THREADS
+4: lwarx r7, 0, r6
+ andc r7, r7, r0
+ stwcx. r7, 0, r6
+ bne 4b
+
+ /* See if the wake reason means we need to exit */
+ cmpdi r3, 0
+ bge kvm_novcpu_exit
+
+ /* See if our timeslice has expired (HDEC is negative) */
+ mfspr r0, SPRN_HDEC
+ extsw r0, r0
+ li r12, BOOK3S_INTERRUPT_HV_DECREMENTER
+ cmpdi r0, 0
+ blt kvm_novcpu_exit
+
+ /* Got an IPI but other vcpus aren't yet exiting, must be a latecomer */
+ ld r4, HSTATE_KVM_VCPU(r13)
+ cmpdi r4, 0
+ beq kvmppc_primary_no_guest
+
+#ifdef CONFIG_KVM_BOOK3S_HV_P8_TIMING
+ addi r3, r4, VCPU_TB_RMENTRY
+ bl kvmhv_start_timing
+#endif
+ b kvmppc_got_guest
+
+kvm_novcpu_exit:
+#ifdef CONFIG_KVM_BOOK3S_HV_P8_TIMING
+ ld r4, HSTATE_KVM_VCPU(r13)
+ cmpdi r4, 0
+ beq 13f
+ addi r3, r4, VCPU_TB_RMEXIT
+ bl kvmhv_accumulate_time
+#endif
+13: mr r3, r12
+ stw r12, STACK_SLOT_TRAP(r1)
+ bl kvmhv_commence_exit
+ nop
+ b kvmhv_switch_to_host
+
+/*
+ * We come in here when wakened from Linux offline idle code.
+ * Relocation is off
+ * r3 contains the SRR1 wakeup value, SRR1 is trashed.
+ */
+_GLOBAL(idle_kvm_start_guest)
+ mfcr r5
+ mflr r0
+ std r5, 8(r1) // Save CR in caller's frame
+ std r0, 16(r1) // Save LR in caller's frame
+ // Create frame on emergency stack
+ ld r4, PACAEMERGSP(r13)
+ stdu r1, -SWITCH_FRAME_SIZE(r4)
+ // Switch to new frame on emergency stack
+ mr r1, r4
+ std r3, 32(r1) // Save SRR1 wakeup value
+ SAVE_NVGPRS(r1)
+
+ /*
+ * Could avoid this and pass it through in r3. For now,
+ * code expects it to be in SRR1.
+ */
+ mtspr SPRN_SRR1,r3
+
+ li r0,0
+ stb r0,PACA_FTRACE_ENABLED(r13)
+
+ li r0,KVM_HWTHREAD_IN_KVM
+ stb r0,HSTATE_HWTHREAD_STATE(r13)
+
+ /* kvm cede / napping does not come through here */
+ lbz r0,HSTATE_NAPPING(r13)
+ twnei r0,0
+
+ b 1f
+
+kvm_unsplit_wakeup:
+ li r0, 0
+ stb r0, HSTATE_NAPPING(r13)
+
+1:
+
+ /*
+ * We weren't napping due to cede, so this must be a secondary
+ * thread being woken up to run a guest, or being woken up due
+ * to a stray IPI. (Or due to some machine check or hypervisor
+ * maintenance interrupt while the core is in KVM.)
+ */
+
+ /* Check the wake reason in SRR1 to see why we got here */
+ bl kvmppc_check_wake_reason
+ /*
+ * kvmppc_check_wake_reason could invoke a C routine, but we
+ * have no volatile registers to restore when we return.
+ */
+
+ cmpdi r3, 0
+ bge kvm_no_guest
+
+ /* get vcore pointer, NULL if we have nothing to run */
+ ld r5,HSTATE_KVM_VCORE(r13)
+ cmpdi r5,0
+ /* if we have no vcore to run, go back to sleep */
+ beq kvm_no_guest
+
+kvm_secondary_got_guest:
+
+ // About to go to guest, clear saved SRR1
+ li r0, 0
+ std r0, 32(r1)
+
+ /* Set HSTATE_DSCR(r13) to something sensible */
+ ld r6, PACA_DSCR_DEFAULT(r13)
+ std r6, HSTATE_DSCR(r13)
+
+ /* On thread 0 of a subcore, set HDEC to max */
+ lbz r4, HSTATE_PTID(r13)
+ cmpwi r4, 0
+ bne 63f
+ lis r6,0x7fff /* MAX_INT@h */
+ mtspr SPRN_HDEC, r6
+ /* and set per-LPAR registers, if doing dynamic micro-threading */
+ ld r6, HSTATE_SPLIT_MODE(r13)
+ cmpdi r6, 0
+ beq 63f
+ ld r0, KVM_SPLIT_RPR(r6)
+ mtspr SPRN_RPR, r0
+ ld r0, KVM_SPLIT_PMMAR(r6)
+ mtspr SPRN_PMMAR, r0
+ ld r0, KVM_SPLIT_LDBAR(r6)
+ mtspr SPRN_LDBAR, r0
+ isync
+63:
+ /* Order load of vcpu after load of vcore */
+ lwsync
+ ld r4, HSTATE_KVM_VCPU(r13)
+ bl kvmppc_hv_entry
+
+ /* Back from the guest, go back to nap */
+ /* Clear our vcpu and vcore pointers so we don't come back in early */
+ li r0, 0
+ std r0, HSTATE_KVM_VCPU(r13)
+ /*
+ * Once we clear HSTATE_KVM_VCORE(r13), the code in
+ * kvmppc_run_core() is going to assume that all our vcpu
+ * state is visible in memory. This lwsync makes sure
+ * that that is true.
+ */
+ lwsync
+ std r0, HSTATE_KVM_VCORE(r13)
+
+ /*
+ * All secondaries exiting guest will fall through this path.
+ * Before proceeding, just check for HMI interrupt and
+ * invoke opal hmi handler. By now we are sure that the
+ * primary thread on this core/subcore has already made partition
+ * switch/TB resync and we are good to call opal hmi handler.
+ */
+ cmpwi r12, BOOK3S_INTERRUPT_HMI
+ bne kvm_no_guest
+
+ li r3,0 /* NULL argument */
+ bl hmi_exception_realmode
+/*
+ * At this point we have finished executing in the guest.
+ * We need to wait for hwthread_req to become zero, since
+ * we may not turn on the MMU while hwthread_req is non-zero.
+ * While waiting we also need to check if we get given a vcpu to run.
+ */
+kvm_no_guest:
+ lbz r3, HSTATE_HWTHREAD_REQ(r13)
+ cmpwi r3, 0
+ bne 53f
+ HMT_MEDIUM
+ li r0, KVM_HWTHREAD_IN_KERNEL
+ stb r0, HSTATE_HWTHREAD_STATE(r13)
+ /* need to recheck hwthread_req after a barrier, to avoid race */
+ sync
+ lbz r3, HSTATE_HWTHREAD_REQ(r13)
+ cmpwi r3, 0
+ bne 54f
+
+ /*
+ * Jump to idle_return_gpr_loss, which returns to the
+ * idle_kvm_start_guest caller.
+ */
+ li r3, LPCR_PECE0
+ mfspr r4, SPRN_LPCR
+ rlwimi r4, r3, 0, LPCR_PECE0 | LPCR_PECE1
+ mtspr SPRN_LPCR, r4
+ // Return SRR1 wakeup value, or 0 if we went into the guest
+ ld r3, 32(r1)
+ REST_NVGPRS(r1)
+ ld r1, 0(r1) // Switch back to caller stack
+ ld r0, 16(r1) // Reload LR
+ ld r5, 8(r1) // Reload CR
+ mtlr r0
+ mtcr r5
+ blr
+
+53:
+ HMT_LOW
+ ld r5, HSTATE_KVM_VCORE(r13)
+ cmpdi r5, 0
+ bne 60f
+ ld r3, HSTATE_SPLIT_MODE(r13)
+ cmpdi r3, 0
+ beq kvm_no_guest
+ lbz r0, KVM_SPLIT_DO_NAP(r3)
+ cmpwi r0, 0
+ beq kvm_no_guest
+ HMT_MEDIUM
+ b kvm_unsplit_nap
+60: HMT_MEDIUM
+ b kvm_secondary_got_guest
+
+54: li r0, KVM_HWTHREAD_IN_KVM
+ stb r0, HSTATE_HWTHREAD_STATE(r13)
+ b kvm_no_guest
+
+/*
+ * Here the primary thread is trying to return the core to
+ * whole-core mode, so we need to nap.
+ */
+kvm_unsplit_nap:
+ /*
+ * When secondaries are napping in kvm_unsplit_nap() with
+ * hwthread_req = 1, HMI goes ignored even though subcores are
+ * already exited the guest. Hence HMI keeps waking up secondaries
+ * from nap in a loop and secondaries always go back to nap since
+ * no vcore is assigned to them. This makes impossible for primary
+ * thread to get hold of secondary threads resulting into a soft
+ * lockup in KVM path.
+ *
+ * Let us check if HMI is pending and handle it before we go to nap.
+ */
+ cmpwi r12, BOOK3S_INTERRUPT_HMI
+ bne 55f
+ li r3, 0 /* NULL argument */
+ bl hmi_exception_realmode
+55:
+ /*
+ * Ensure that secondary doesn't nap when it has
+ * its vcore pointer set.
+ */
+ sync /* matches smp_mb() before setting split_info.do_nap */
+ ld r0, HSTATE_KVM_VCORE(r13)
+ cmpdi r0, 0
+ bne kvm_no_guest
+ /* clear any pending message */
+BEGIN_FTR_SECTION
+ lis r6, (PPC_DBELL_SERVER << (63-36))@h
+ PPC_MSGCLR(6)
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+ /* Set kvm_split_mode.napped[tid] = 1 */
+ ld r3, HSTATE_SPLIT_MODE(r13)
+ li r0, 1
+ lhz r4, PACAPACAINDEX(r13)
+ clrldi r4, r4, 61 /* micro-threading => P8 => 8 threads/core */
+ addi r4, r4, KVM_SPLIT_NAPPED
+ stbx r0, r3, r4
+ /* Check the do_nap flag again after setting napped[] */
+ sync
+ lbz r0, KVM_SPLIT_DO_NAP(r3)
+ cmpwi r0, 0
+ beq 57f
+ li r3, NAPPING_UNSPLIT
+ stb r3, HSTATE_NAPPING(r13)
+ li r3, (LPCR_PECEDH | LPCR_PECE0) >> 4
+ mfspr r5, SPRN_LPCR
+ rlwimi r5, r3, 4, (LPCR_PECEDP | LPCR_PECEDH | LPCR_PECE0 | LPCR_PECE1)
+ b kvm_nap_sequence
+
+57: li r0, 0
+ stbx r0, r3, r4
+ b kvm_no_guest
+
+/******************************************************************************
+ * *
+ * Entry code *
+ * *
+ *****************************************************************************/
+
+.global kvmppc_hv_entry
+kvmppc_hv_entry:
+
+ /* Required state:
+ *
+ * R4 = vcpu pointer (or NULL)
+ * MSR = ~IR|DR
+ * R13 = PACA
+ * R1 = host R1
+ * R2 = TOC
+ * all other volatile GPRS = free
+ * Does not preserve non-volatile GPRs or CR fields
+ */
+ mflr r0
+ std r0, PPC_LR_STKOFF(r1)
+ stdu r1, -SFS(r1)
+
+ /* Save R1 in the PACA */
+ std r1, HSTATE_HOST_R1(r13)
+
+ li r6, KVM_GUEST_MODE_HOST_HV
+ stb r6, HSTATE_IN_GUEST(r13)
+
+#ifdef CONFIG_KVM_BOOK3S_HV_P8_TIMING
+ /* Store initial timestamp */
+ cmpdi r4, 0
+ beq 1f
+ addi r3, r4, VCPU_TB_RMENTRY
+ bl kvmhv_start_timing
+1:
+#endif
+
+ ld r5, HSTATE_KVM_VCORE(r13)
+ ld r9, VCORE_KVM(r5) /* pointer to struct kvm */
+
+ /*
+ * POWER7/POWER8 host -> guest partition switch code.
+ * We don't have to lock against concurrent tlbies,
+ * but we do have to coordinate across hardware threads.
+ */
+ /* Set bit in entry map iff exit map is zero. */
+ li r7, 1
+ lbz r6, HSTATE_PTID(r13)
+ sld r7, r7, r6
+ addi r8, r5, VCORE_ENTRY_EXIT
+21: lwarx r3, 0, r8
+ cmpwi r3, 0x100 /* any threads starting to exit? */
+ bge secondary_too_late /* if so we're too late to the party */
+ or r3, r3, r7
+ stwcx. r3, 0, r8
+ bne 21b
+
+ /* Primary thread switches to guest partition. */
+ cmpwi r6,0
+ bne 10f
+
+ lwz r7,KVM_LPID(r9)
+ ld r6,KVM_SDR1(r9)
+ li r0,LPID_RSVD /* switch to reserved LPID */
+ mtspr SPRN_LPID,r0
+ ptesync
+ mtspr SPRN_SDR1,r6 /* switch to partition page table */
+ mtspr SPRN_LPID,r7
+ isync
+
+ /* See if we need to flush the TLB. */
+ mr r3, r9 /* kvm pointer */
+ lhz r4, PACAPACAINDEX(r13) /* physical cpu number */
+ li r5, 0 /* nested vcpu pointer */
+ bl kvmppc_check_need_tlb_flush
+ nop
+ ld r5, HSTATE_KVM_VCORE(r13)
+
+ /* Add timebase offset onto timebase */
+22: ld r8,VCORE_TB_OFFSET(r5)
+ cmpdi r8,0
+ beq 37f
+ std r8, VCORE_TB_OFFSET_APPL(r5)
+ mftb r6 /* current host timebase */
+ add r8,r8,r6
+ mtspr SPRN_TBU40,r8 /* update upper 40 bits */
+ mftb r7 /* check if lower 24 bits overflowed */
+ clrldi r6,r6,40
+ clrldi r7,r7,40
+ cmpld r7,r6
+ bge 37f
+ addis r8,r8,0x100 /* if so, increment upper 40 bits */
+ mtspr SPRN_TBU40,r8
+
+ /* Load guest PCR value to select appropriate compat mode */
+37: ld r7, VCORE_PCR(r5)
+ LOAD_REG_IMMEDIATE(r6, PCR_MASK)
+ cmpld r7, r6
+ beq 38f
+ or r7, r7, r6
+ mtspr SPRN_PCR, r7
+38:
+
+BEGIN_FTR_SECTION
+ /* DPDES and VTB are shared between threads */
+ ld r8, VCORE_DPDES(r5)
+ ld r7, VCORE_VTB(r5)
+ mtspr SPRN_DPDES, r8
+ mtspr SPRN_VTB, r7
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+
+ /* Mark the subcore state as inside guest */
+ bl kvmppc_subcore_enter_guest
+ nop
+ ld r5, HSTATE_KVM_VCORE(r13)
+ ld r4, HSTATE_KVM_VCPU(r13)
+ li r0,1
+ stb r0,VCORE_IN_GUEST(r5) /* signal secondaries to continue */
+
+ /* Do we have a guest vcpu to run? */
+10: cmpdi r4, 0
+ beq kvmppc_primary_no_guest
+kvmppc_got_guest:
+ /* Increment yield count if they have a VPA */
+ ld r3, VCPU_VPA(r4)
+ cmpdi r3, 0
+ beq 25f
+ li r6, LPPACA_YIELDCOUNT
+ LWZX_BE r5, r3, r6
+ addi r5, r5, 1
+ STWX_BE r5, r3, r6
+ li r6, 1
+ stb r6, VCPU_VPA_DIRTY(r4)
+25:
+
+ /* Save purr/spurr */
+ mfspr r5,SPRN_PURR
+ mfspr r6,SPRN_SPURR
+ std r5,HSTATE_PURR(r13)
+ std r6,HSTATE_SPURR(r13)
+ ld r7,VCPU_PURR(r4)
+ ld r8,VCPU_SPURR(r4)
+ mtspr SPRN_PURR,r7
+ mtspr SPRN_SPURR,r8
+
+ /* Save host values of some registers */
+BEGIN_FTR_SECTION
+ mfspr r5, SPRN_CIABR
+ mfspr r6, SPRN_DAWR0
+ mfspr r7, SPRN_DAWRX0
+ mfspr r8, SPRN_IAMR
+ std r5, STACK_SLOT_CIABR(r1)
+ std r6, STACK_SLOT_DAWR0(r1)
+ std r7, STACK_SLOT_DAWRX0(r1)
+ std r8, STACK_SLOT_IAMR(r1)
+ mfspr r5, SPRN_FSCR
+ std r5, STACK_SLOT_FSCR(r1)
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+
+ mfspr r5, SPRN_AMR
+ std r5, STACK_SLOT_AMR(r1)
+ mfspr r6, SPRN_UAMOR
+ std r6, STACK_SLOT_UAMOR(r1)
+
+BEGIN_FTR_SECTION
+ /* Set partition DABR */
+ /* Do this before re-enabling PMU to avoid P7 DABR corruption bug */
+ lwz r5,VCPU_DABRX(r4)
+ ld r6,VCPU_DABR(r4)
+ mtspr SPRN_DABRX,r5
+ mtspr SPRN_DABR,r6
+ isync
+END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+BEGIN_FTR_SECTION
+ b 91f
+END_FTR_SECTION_IFCLR(CPU_FTR_TM)
+ /*
+ * NOTE THAT THIS TRASHES ALL NON-VOLATILE REGISTERS (but not CR)
+ */
+ mr r3, r4
+ ld r4, VCPU_MSR(r3)
+ li r5, 0 /* don't preserve non-vol regs */
+ bl kvmppc_restore_tm_hv
+ nop
+ ld r4, HSTATE_KVM_VCPU(r13)
+91:
+#endif
+
+ /* Load guest PMU registers; r4 = vcpu pointer here */
+ mr r3, r4
+ bl kvmhv_load_guest_pmu
+
+ /* Load up FP, VMX and VSX registers */
+ ld r4, HSTATE_KVM_VCPU(r13)
+ bl kvmppc_load_fp
+
+ ld r14, VCPU_GPR(R14)(r4)
+ ld r15, VCPU_GPR(R15)(r4)
+ ld r16, VCPU_GPR(R16)(r4)
+ ld r17, VCPU_GPR(R17)(r4)
+ ld r18, VCPU_GPR(R18)(r4)
+ ld r19, VCPU_GPR(R19)(r4)
+ ld r20, VCPU_GPR(R20)(r4)
+ ld r21, VCPU_GPR(R21)(r4)
+ ld r22, VCPU_GPR(R22)(r4)
+ ld r23, VCPU_GPR(R23)(r4)
+ ld r24, VCPU_GPR(R24)(r4)
+ ld r25, VCPU_GPR(R25)(r4)
+ ld r26, VCPU_GPR(R26)(r4)
+ ld r27, VCPU_GPR(R27)(r4)
+ ld r28, VCPU_GPR(R28)(r4)
+ ld r29, VCPU_GPR(R29)(r4)
+ ld r30, VCPU_GPR(R30)(r4)
+ ld r31, VCPU_GPR(R31)(r4)
+
+ /* Switch DSCR to guest value */
+ ld r5, VCPU_DSCR(r4)
+ mtspr SPRN_DSCR, r5
+
+BEGIN_FTR_SECTION
+ /* Skip next section on POWER7 */
+ b 8f
+END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
+ /* Load up POWER8-specific registers */
+ ld r5, VCPU_IAMR(r4)
+ lwz r6, VCPU_PSPB(r4)
+ ld r7, VCPU_FSCR(r4)
+ mtspr SPRN_IAMR, r5
+ mtspr SPRN_PSPB, r6
+ mtspr SPRN_FSCR, r7
+ /*
+ * Handle broken DAWR case by not writing it. This means we
+ * can still store the DAWR register for migration.
+ */
+ LOAD_REG_ADDR(r5, dawr_force_enable)
+ lbz r5, 0(r5)
+ cmpdi r5, 0
+ beq 1f
+ ld r5, VCPU_DAWR0(r4)
+ ld r6, VCPU_DAWRX0(r4)
+ mtspr SPRN_DAWR0, r5
+ mtspr SPRN_DAWRX0, r6
+1:
+ ld r7, VCPU_CIABR(r4)
+ ld r8, VCPU_TAR(r4)
+ mtspr SPRN_CIABR, r7
+ mtspr SPRN_TAR, r8
+ ld r5, VCPU_IC(r4)
+ ld r8, VCPU_EBBHR(r4)
+ mtspr SPRN_IC, r5
+ mtspr SPRN_EBBHR, r8
+ ld r5, VCPU_EBBRR(r4)
+ ld r6, VCPU_BESCR(r4)
+ lwz r7, VCPU_GUEST_PID(r4)
+ ld r8, VCPU_WORT(r4)
+ mtspr SPRN_EBBRR, r5
+ mtspr SPRN_BESCR, r6
+ mtspr SPRN_PID, r7
+ mtspr SPRN_WORT, r8
+ /* POWER8-only registers */
+ ld r5, VCPU_TCSCR(r4)
+ ld r6, VCPU_ACOP(r4)
+ ld r7, VCPU_CSIGR(r4)
+ ld r8, VCPU_TACR(r4)
+ mtspr SPRN_TCSCR, r5
+ mtspr SPRN_ACOP, r6
+ mtspr SPRN_CSIGR, r7
+ mtspr SPRN_TACR, r8
+ nop
+8:
+
+ ld r5, VCPU_SPRG0(r4)
+ ld r6, VCPU_SPRG1(r4)
+ ld r7, VCPU_SPRG2(r4)
+ ld r8, VCPU_SPRG3(r4)
+ mtspr SPRN_SPRG0, r5
+ mtspr SPRN_SPRG1, r6
+ mtspr SPRN_SPRG2, r7
+ mtspr SPRN_SPRG3, r8
+
+ /* Load up DAR and DSISR */
+ ld r5, VCPU_DAR(r4)
+ lwz r6, VCPU_DSISR(r4)
+ mtspr SPRN_DAR, r5
+ mtspr SPRN_DSISR, r6
+
+ /* Restore AMR and UAMOR, set AMOR to all 1s */
+ ld r5,VCPU_AMR(r4)
+ ld r6,VCPU_UAMOR(r4)
+ mtspr SPRN_AMR,r5
+ mtspr SPRN_UAMOR,r6
+
+ /* Restore state of CTRL run bit; the host currently has it set to 1 */
+ lwz r5,VCPU_CTRL(r4)
+ andi. r5,r5,1
+ bne 4f
+ li r6,0
+ mtspr SPRN_CTRLT,r6
+4:
+ /* Secondary threads wait for primary to have done partition switch */
+ ld r5, HSTATE_KVM_VCORE(r13)
+ lbz r6, HSTATE_PTID(r13)
+ cmpwi r6, 0
+ beq 21f
+ lbz r0, VCORE_IN_GUEST(r5)
+ cmpwi r0, 0
+ bne 21f
+ HMT_LOW
+20: lwz r3, VCORE_ENTRY_EXIT(r5)
+ cmpwi r3, 0x100
+ bge no_switch_exit
+ lbz r0, VCORE_IN_GUEST(r5)
+ cmpwi r0, 0
+ beq 20b
+ HMT_MEDIUM
+21:
+ /* Set LPCR. */
+ ld r8,VCORE_LPCR(r5)
+ mtspr SPRN_LPCR,r8
+ isync
+
+ /*
+ * Set the decrementer to the guest decrementer.
+ */
+ ld r8,VCPU_DEC_EXPIRES(r4)
+ mftb r7
+ subf r3,r7,r8
+ mtspr SPRN_DEC,r3
+
+ /* Check if HDEC expires soon */
+ mfspr r3, SPRN_HDEC
+ extsw r3, r3
+ cmpdi r3, 512 /* 1 microsecond */
+ blt hdec_soon
+
+ /* Clear out and reload the SLB */
+ li r6, 0
+ slbmte r6, r6
+ PPC_SLBIA(6)
+ ptesync
+
+ /* Load up guest SLB entries (N.B. slb_max will be 0 for radix) */
+ lwz r5,VCPU_SLB_MAX(r4)
+ cmpwi r5,0
+ beq 9f
+ mtctr r5
+ addi r6,r4,VCPU_SLB
+1: ld r8,VCPU_SLB_E(r6)
+ ld r9,VCPU_SLB_V(r6)
+ slbmte r9,r8
+ addi r6,r6,VCPU_SLB_SIZE
+ bdnz 1b
+9:
+
+deliver_guest_interrupt: /* r4 = vcpu, r13 = paca */
+ /* Check if we can deliver an external or decrementer interrupt now */
+ ld r0, VCPU_PENDING_EXC(r4)
+ cmpdi r0, 0
+ beq 71f
+ mr r3, r4
+ bl kvmppc_guest_entry_inject_int
+ ld r4, HSTATE_KVM_VCPU(r13)
+71:
+ ld r6, VCPU_SRR0(r4)
+ ld r7, VCPU_SRR1(r4)
+ mtspr SPRN_SRR0, r6
+ mtspr SPRN_SRR1, r7
+
+ ld r10, VCPU_PC(r4)
+ ld r11, VCPU_MSR(r4)
+ /* r11 = vcpu->arch.msr & ~MSR_HV */
+ rldicl r11, r11, 63 - MSR_HV_LG, 1
+ rotldi r11, r11, 1 + MSR_HV_LG
+ ori r11, r11, MSR_ME
+
+ ld r6, VCPU_CTR(r4)
+ ld r7, VCPU_XER(r4)
+ mtctr r6
+ mtxer r7
+
+/*
+ * Required state:
+ * R4 = vcpu
+ * R10: value for HSRR0
+ * R11: value for HSRR1
+ * R13 = PACA
+ */
+fast_guest_return:
+ li r0,0
+ stb r0,VCPU_CEDED(r4) /* cancel cede */
+ mtspr SPRN_HSRR0,r10
+ mtspr SPRN_HSRR1,r11
+
+ /* Activate guest mode, so faults get handled by KVM */
+ li r9, KVM_GUEST_MODE_GUEST_HV
+ stb r9, HSTATE_IN_GUEST(r13)
+
+#ifdef CONFIG_KVM_BOOK3S_HV_P8_TIMING
+ /* Accumulate timing */
+ addi r3, r4, VCPU_TB_GUEST
+ bl kvmhv_accumulate_time
+#endif
+
+ /* Enter guest */
+
+BEGIN_FTR_SECTION
+ ld r5, VCPU_CFAR(r4)
+ mtspr SPRN_CFAR, r5
+END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
+BEGIN_FTR_SECTION
+ ld r0, VCPU_PPR(r4)
+END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
+
+ ld r5, VCPU_LR(r4)
+ mtlr r5
+
+ ld r1, VCPU_GPR(R1)(r4)
+ ld r5, VCPU_GPR(R5)(r4)
+ ld r8, VCPU_GPR(R8)(r4)
+ ld r9, VCPU_GPR(R9)(r4)
+ ld r10, VCPU_GPR(R10)(r4)
+ ld r11, VCPU_GPR(R11)(r4)
+ ld r12, VCPU_GPR(R12)(r4)
+ ld r13, VCPU_GPR(R13)(r4)
+
+BEGIN_FTR_SECTION
+ mtspr SPRN_PPR, r0
+END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
+
+ ld r6, VCPU_GPR(R6)(r4)
+ ld r7, VCPU_GPR(R7)(r4)
+
+ ld r0, VCPU_CR(r4)
+ mtcr r0
+
+ ld r0, VCPU_GPR(R0)(r4)
+ ld r2, VCPU_GPR(R2)(r4)
+ ld r3, VCPU_GPR(R3)(r4)
+ ld r4, VCPU_GPR(R4)(r4)
+ HRFI_TO_GUEST
+ b .
+
+secondary_too_late:
+ li r12, 0
+ stw r12, STACK_SLOT_TRAP(r1)
+ cmpdi r4, 0
+ beq 11f
+ stw r12, VCPU_TRAP(r4)
+#ifdef CONFIG_KVM_BOOK3S_HV_P8_TIMING
+ addi r3, r4, VCPU_TB_RMEXIT
+ bl kvmhv_accumulate_time
+#endif
+11: b kvmhv_switch_to_host
+
+no_switch_exit:
+ HMT_MEDIUM
+ li r12, 0
+ b 12f
+hdec_soon:
+ li r12, BOOK3S_INTERRUPT_HV_DECREMENTER
+12: stw r12, VCPU_TRAP(r4)
+ mr r9, r4
+#ifdef CONFIG_KVM_BOOK3S_HV_P8_TIMING
+ addi r3, r4, VCPU_TB_RMEXIT
+ bl kvmhv_accumulate_time
+#endif
+ b guest_bypass
+
+/******************************************************************************
+ * *
+ * Exit code *
+ * *
+ *****************************************************************************/
+
+/*
+ * We come here from the first-level interrupt handlers.
+ */
+ .globl kvmppc_interrupt_hv
+kvmppc_interrupt_hv:
+ /*
+ * Register contents:
+ * R9 = HSTATE_IN_GUEST
+ * R12 = (guest CR << 32) | interrupt vector
+ * R13 = PACA
+ * guest R12 saved in shadow VCPU SCRATCH0
+ * guest R13 saved in SPRN_SCRATCH0
+ * guest R9 saved in HSTATE_SCRATCH2
+ */
+ /* We're now back in the host but in guest MMU context */
+ cmpwi r9,KVM_GUEST_MODE_HOST_HV
+ beq kvmppc_bad_host_intr
+ li r9, KVM_GUEST_MODE_HOST_HV
+ stb r9, HSTATE_IN_GUEST(r13)
+
+ ld r9, HSTATE_KVM_VCPU(r13)
+
+ /* Save registers */
+
+ std r0, VCPU_GPR(R0)(r9)
+ std r1, VCPU_GPR(R1)(r9)
+ std r2, VCPU_GPR(R2)(r9)
+ std r3, VCPU_GPR(R3)(r9)
+ std r4, VCPU_GPR(R4)(r9)
+ std r5, VCPU_GPR(R5)(r9)
+ std r6, VCPU_GPR(R6)(r9)
+ std r7, VCPU_GPR(R7)(r9)
+ std r8, VCPU_GPR(R8)(r9)
+ ld r0, HSTATE_SCRATCH2(r13)
+ std r0, VCPU_GPR(R9)(r9)
+ std r10, VCPU_GPR(R10)(r9)
+ std r11, VCPU_GPR(R11)(r9)
+ ld r3, HSTATE_SCRATCH0(r13)
+ std r3, VCPU_GPR(R12)(r9)
+ /* CR is in the high half of r12 */
+ srdi r4, r12, 32
+ std r4, VCPU_CR(r9)
+BEGIN_FTR_SECTION
+ ld r3, HSTATE_CFAR(r13)
+ std r3, VCPU_CFAR(r9)
+END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
+BEGIN_FTR_SECTION
+ ld r4, HSTATE_PPR(r13)
+ std r4, VCPU_PPR(r9)
+END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
+
+ /* Restore R1/R2 so we can handle faults */
+ ld r1, HSTATE_HOST_R1(r13)
+ LOAD_PACA_TOC()
+
+ mfspr r10, SPRN_SRR0
+ mfspr r11, SPRN_SRR1
+ std r10, VCPU_SRR0(r9)
+ std r11, VCPU_SRR1(r9)
+ /* trap is in the low half of r12, clear CR from the high half */
+ clrldi r12, r12, 32
+ andi. r0, r12, 2 /* need to read HSRR0/1? */
+ beq 1f
+ mfspr r10, SPRN_HSRR0
+ mfspr r11, SPRN_HSRR1
+ clrrdi r12, r12, 2
+1: std r10, VCPU_PC(r9)
+ std r11, VCPU_MSR(r9)
+
+ GET_SCRATCH0(r3)
+ mflr r4
+ std r3, VCPU_GPR(R13)(r9)
+ std r4, VCPU_LR(r9)
+
+ stw r12,VCPU_TRAP(r9)
+
+ /*
+ * Now that we have saved away SRR0/1 and HSRR0/1,
+ * interrupts are recoverable in principle, so set MSR_RI.
+ * This becomes important for relocation-on interrupts from
+ * the guest, which we can get in radix mode on POWER9.
+ */
+ li r0, MSR_RI
+ mtmsrd r0, 1
+
+#ifdef CONFIG_KVM_BOOK3S_HV_P8_TIMING
+ addi r3, r9, VCPU_TB_RMINTR
+ mr r4, r9
+ bl kvmhv_accumulate_time
+ ld r5, VCPU_GPR(R5)(r9)
+ ld r6, VCPU_GPR(R6)(r9)
+ ld r7, VCPU_GPR(R7)(r9)
+ ld r8, VCPU_GPR(R8)(r9)
+#endif
+
+ /* Save HEIR (HV emulation assist reg) in emul_inst
+ if this is an HEI (HV emulation interrupt, e40) */
+ li r3,KVM_INST_FETCH_FAILED
+ stw r3,VCPU_LAST_INST(r9)
+ cmpwi r12,BOOK3S_INTERRUPT_H_EMUL_ASSIST
+ bne 11f
+ mfspr r3,SPRN_HEIR
+11: stw r3,VCPU_HEIR(r9)
+
+ /* these are volatile across C function calls */
+ mfctr r3
+ mfxer r4
+ std r3, VCPU_CTR(r9)
+ std r4, VCPU_XER(r9)
+
+ /* Save more register state */
+ mfdar r3
+ mfdsisr r4
+ std r3, VCPU_DAR(r9)
+ stw r4, VCPU_DSISR(r9)
+
+ /* If this is a page table miss then see if it's theirs or ours */
+ cmpwi r12, BOOK3S_INTERRUPT_H_DATA_STORAGE
+ beq kvmppc_hdsi
+ std r3, VCPU_FAULT_DAR(r9)
+ stw r4, VCPU_FAULT_DSISR(r9)
+ cmpwi r12, BOOK3S_INTERRUPT_H_INST_STORAGE
+ beq kvmppc_hisi
+
+ /* See if this is a leftover HDEC interrupt */
+ cmpwi r12,BOOK3S_INTERRUPT_HV_DECREMENTER
+ bne 2f
+ mfspr r3,SPRN_HDEC
+ extsw r3, r3
+ cmpdi r3,0
+ mr r4,r9
+ bge fast_guest_return
+2:
+ /* See if this is an hcall we can handle in real mode */
+ cmpwi r12,BOOK3S_INTERRUPT_SYSCALL
+ beq hcall_try_real_mode
+
+ /* Hypervisor doorbell - exit only if host IPI flag set */
+ cmpwi r12, BOOK3S_INTERRUPT_H_DOORBELL
+ bne 3f
+ lbz r0, HSTATE_HOST_IPI(r13)
+ cmpwi r0, 0
+ beq maybe_reenter_guest
+ b guest_exit_cont
+3:
+ /* If it's a hypervisor facility unavailable interrupt, save HFSCR */
+ cmpwi r12, BOOK3S_INTERRUPT_H_FAC_UNAVAIL
+ bne 14f
+ mfspr r3, SPRN_HFSCR
+ std r3, VCPU_HFSCR(r9)
+ b guest_exit_cont
+14:
+ /* External interrupt ? */
+ cmpwi r12, BOOK3S_INTERRUPT_EXTERNAL
+ beq kvmppc_guest_external
+ /* See if it is a machine check */
+ cmpwi r12, BOOK3S_INTERRUPT_MACHINE_CHECK
+ beq machine_check_realmode
+ /* Or a hypervisor maintenance interrupt */
+ cmpwi r12, BOOK3S_INTERRUPT_HMI
+ beq hmi_realmode
+
+guest_exit_cont: /* r9 = vcpu, r12 = trap, r13 = paca */
+
+#ifdef CONFIG_KVM_BOOK3S_HV_P8_TIMING
+ addi r3, r9, VCPU_TB_RMEXIT
+ mr r4, r9
+ bl kvmhv_accumulate_time
+#endif
+
+ /*
+ * Possibly flush the link stack here, before we do a blr in
+ * kvmhv_switch_to_host.
+ */
+1: nop
+ patch_site 1b patch__call_kvm_flush_link_stack
+
+ /* For hash guest, read the guest SLB and save it away */
+ li r5, 0
+ lwz r0,VCPU_SLB_NR(r9) /* number of entries in SLB */
+ mtctr r0
+ li r6,0
+ addi r7,r9,VCPU_SLB
+1: slbmfee r8,r6
+ andis. r0,r8,SLB_ESID_V@h
+ beq 2f
+ add r8,r8,r6 /* put index in */
+ slbmfev r3,r6
+ std r8,VCPU_SLB_E(r7)
+ std r3,VCPU_SLB_V(r7)
+ addi r7,r7,VCPU_SLB_SIZE
+ addi r5,r5,1
+2: addi r6,r6,1
+ bdnz 1b
+ /* Finally clear out the SLB */
+ li r0,0
+ slbmte r0,r0
+ PPC_SLBIA(6)
+ ptesync
+ stw r5,VCPU_SLB_MAX(r9)
+
+ /* load host SLB entries */
+ ld r8,PACA_SLBSHADOWPTR(r13)
+
+ .rept SLB_NUM_BOLTED
+ li r3, SLBSHADOW_SAVEAREA
+ LDX_BE r5, r8, r3
+ addi r3, r3, 8
+ LDX_BE r6, r8, r3
+ andis. r7,r5,SLB_ESID_V@h
+ beq 1f
+ slbmte r6,r5
+1: addi r8,r8,16
+ .endr
+
+guest_bypass:
+ stw r12, STACK_SLOT_TRAP(r1)
+
+ /* Save DEC */
+ /* Do this before kvmhv_commence_exit so we know TB is guest TB */
+ ld r3, HSTATE_KVM_VCORE(r13)
+ mfspr r5,SPRN_DEC
+ mftb r6
+ extsw r5,r5
+16: add r5,r5,r6
+ std r5,VCPU_DEC_EXPIRES(r9)
+
+ /* Increment exit count, poke other threads to exit */
+ mr r3, r12
+ bl kvmhv_commence_exit
+ nop
+ ld r9, HSTATE_KVM_VCPU(r13)
+
+ /* Stop others sending VCPU interrupts to this physical CPU */
+ li r0, -1
+ stw r0, VCPU_CPU(r9)
+ stw r0, VCPU_THREAD_CPU(r9)
+
+ /* Save guest CTRL register, set runlatch to 1 if it was clear */
+ mfspr r6,SPRN_CTRLF
+ stw r6,VCPU_CTRL(r9)
+ andi. r0,r6,1
+ bne 4f
+ li r6,1
+ mtspr SPRN_CTRLT,r6
+4:
+ /*
+ * Save the guest PURR/SPURR
+ */
+ mfspr r5,SPRN_PURR
+ mfspr r6,SPRN_SPURR
+ ld r7,VCPU_PURR(r9)
+ ld r8,VCPU_SPURR(r9)
+ std r5,VCPU_PURR(r9)
+ std r6,VCPU_SPURR(r9)
+ subf r5,r7,r5
+ subf r6,r8,r6
+
+ /*
+ * Restore host PURR/SPURR and add guest times
+ * so that the time in the guest gets accounted.
+ */
+ ld r3,HSTATE_PURR(r13)
+ ld r4,HSTATE_SPURR(r13)
+ add r3,r3,r5
+ add r4,r4,r6
+ mtspr SPRN_PURR,r3
+ mtspr SPRN_SPURR,r4
+
+BEGIN_FTR_SECTION
+ b 8f
+END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
+ /* Save POWER8-specific registers */
+ mfspr r5, SPRN_IAMR
+ mfspr r6, SPRN_PSPB
+ mfspr r7, SPRN_FSCR
+ std r5, VCPU_IAMR(r9)
+ stw r6, VCPU_PSPB(r9)
+ std r7, VCPU_FSCR(r9)
+ mfspr r5, SPRN_IC
+ mfspr r7, SPRN_TAR
+ std r5, VCPU_IC(r9)
+ std r7, VCPU_TAR(r9)
+ mfspr r8, SPRN_EBBHR
+ std r8, VCPU_EBBHR(r9)
+ mfspr r5, SPRN_EBBRR
+ mfspr r6, SPRN_BESCR
+ mfspr r7, SPRN_PID
+ mfspr r8, SPRN_WORT
+ std r5, VCPU_EBBRR(r9)
+ std r6, VCPU_BESCR(r9)
+ stw r7, VCPU_GUEST_PID(r9)
+ std r8, VCPU_WORT(r9)
+ mfspr r5, SPRN_TCSCR
+ mfspr r6, SPRN_ACOP
+ mfspr r7, SPRN_CSIGR
+ mfspr r8, SPRN_TACR
+ std r5, VCPU_TCSCR(r9)
+ std r6, VCPU_ACOP(r9)
+ std r7, VCPU_CSIGR(r9)
+ std r8, VCPU_TACR(r9)
+BEGIN_FTR_SECTION
+ ld r5, STACK_SLOT_FSCR(r1)
+ mtspr SPRN_FSCR, r5
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+ /*
+ * Restore various registers to 0, where non-zero values
+ * set by the guest could disrupt the host.
+ */
+ li r0, 0
+ mtspr SPRN_PSPB, r0
+ mtspr SPRN_WORT, r0
+ mtspr SPRN_TCSCR, r0
+ /* Set MMCRS to 1<<31 to freeze and disable the SPMC counters */
+ li r0, 1
+ sldi r0, r0, 31
+ mtspr SPRN_MMCRS, r0
+
+ /* Save and restore AMR, IAMR and UAMOR before turning on the MMU */
+ ld r8, STACK_SLOT_IAMR(r1)
+ mtspr SPRN_IAMR, r8
+
+8: /* Power7 jumps back in here */
+ mfspr r5,SPRN_AMR
+ mfspr r6,SPRN_UAMOR
+ std r5,VCPU_AMR(r9)
+ std r6,VCPU_UAMOR(r9)
+ ld r5,STACK_SLOT_AMR(r1)
+ ld r6,STACK_SLOT_UAMOR(r1)
+ mtspr SPRN_AMR, r5
+ mtspr SPRN_UAMOR, r6
+
+ /* Switch DSCR back to host value */
+ mfspr r8, SPRN_DSCR
+ ld r7, HSTATE_DSCR(r13)
+ std r8, VCPU_DSCR(r9)
+ mtspr SPRN_DSCR, r7
+
+ /* Save non-volatile GPRs */
+ std r14, VCPU_GPR(R14)(r9)
+ std r15, VCPU_GPR(R15)(r9)
+ std r16, VCPU_GPR(R16)(r9)
+ std r17, VCPU_GPR(R17)(r9)
+ std r18, VCPU_GPR(R18)(r9)
+ std r19, VCPU_GPR(R19)(r9)
+ std r20, VCPU_GPR(R20)(r9)
+ std r21, VCPU_GPR(R21)(r9)
+ std r22, VCPU_GPR(R22)(r9)
+ std r23, VCPU_GPR(R23)(r9)
+ std r24, VCPU_GPR(R24)(r9)
+ std r25, VCPU_GPR(R25)(r9)
+ std r26, VCPU_GPR(R26)(r9)
+ std r27, VCPU_GPR(R27)(r9)
+ std r28, VCPU_GPR(R28)(r9)
+ std r29, VCPU_GPR(R29)(r9)
+ std r30, VCPU_GPR(R30)(r9)
+ std r31, VCPU_GPR(R31)(r9)
+
+ /* Save SPRGs */
+ mfspr r3, SPRN_SPRG0
+ mfspr r4, SPRN_SPRG1
+ mfspr r5, SPRN_SPRG2
+ mfspr r6, SPRN_SPRG3
+ std r3, VCPU_SPRG0(r9)
+ std r4, VCPU_SPRG1(r9)
+ std r5, VCPU_SPRG2(r9)
+ std r6, VCPU_SPRG3(r9)
+
+ /* save FP state */
+ mr r3, r9
+ bl kvmppc_save_fp
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+BEGIN_FTR_SECTION
+ b 91f
+END_FTR_SECTION_IFCLR(CPU_FTR_TM)
+ /*
+ * NOTE THAT THIS TRASHES ALL NON-VOLATILE REGISTERS (but not CR)
+ */
+ mr r3, r9
+ ld r4, VCPU_MSR(r3)
+ li r5, 0 /* don't preserve non-vol regs */
+ bl kvmppc_save_tm_hv
+ nop
+ ld r9, HSTATE_KVM_VCPU(r13)
+91:
+#endif
+
+ /* Increment yield count if they have a VPA */
+ ld r8, VCPU_VPA(r9) /* do they have a VPA? */
+ cmpdi r8, 0
+ beq 25f
+ li r4, LPPACA_YIELDCOUNT
+ LWZX_BE r3, r8, r4
+ addi r3, r3, 1
+ STWX_BE r3, r8, r4
+ li r3, 1
+ stb r3, VCPU_VPA_DIRTY(r9)
+25:
+ /* Save PMU registers if requested */
+ /* r8 and cr0.eq are live here */
+ mr r3, r9
+ li r4, 1
+ beq 21f /* if no VPA, save PMU stuff anyway */
+ lbz r4, LPPACA_PMCINUSE(r8)
+21: bl kvmhv_save_guest_pmu
+ ld r9, HSTATE_KVM_VCPU(r13)
+
+ /* Restore host values of some registers */
+BEGIN_FTR_SECTION
+ ld r5, STACK_SLOT_CIABR(r1)
+ ld r6, STACK_SLOT_DAWR0(r1)
+ ld r7, STACK_SLOT_DAWRX0(r1)
+ mtspr SPRN_CIABR, r5
+ /*
+ * If the DAWR doesn't work, it's ok to write these here as
+ * this value should always be zero
+ */
+ mtspr SPRN_DAWR0, r6
+ mtspr SPRN_DAWRX0, r7
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+
+ /*
+ * POWER7/POWER8 guest -> host partition switch code.
+ * We don't have to lock against tlbies but we do
+ * have to coordinate the hardware threads.
+ * Here STACK_SLOT_TRAP(r1) contains the trap number.
+ */
+kvmhv_switch_to_host:
+ /* Secondary threads wait for primary to do partition switch */
+ ld r5,HSTATE_KVM_VCORE(r13)
+ ld r4,VCORE_KVM(r5) /* pointer to struct kvm */
+ lbz r3,HSTATE_PTID(r13)
+ cmpwi r3,0
+ beq 15f
+ HMT_LOW
+13: lbz r3,VCORE_IN_GUEST(r5)
+ cmpwi r3,0
+ bne 13b
+ HMT_MEDIUM
+ b 16f
+
+ /* Primary thread waits for all the secondaries to exit guest */
+15: lwz r3,VCORE_ENTRY_EXIT(r5)
+ rlwinm r0,r3,32-8,0xff
+ clrldi r3,r3,56
+ cmpw r3,r0
+ bne 15b
+ isync
+
+ /* Did we actually switch to the guest at all? */
+ lbz r6, VCORE_IN_GUEST(r5)
+ cmpwi r6, 0
+ beq 19f
+
+ /* Primary thread switches back to host partition */
+ lwz r7,KVM_HOST_LPID(r4)
+ ld r6,KVM_HOST_SDR1(r4)
+ li r8,LPID_RSVD /* switch to reserved LPID */
+ mtspr SPRN_LPID,r8
+ ptesync
+ mtspr SPRN_SDR1,r6 /* switch to host page table */
+ mtspr SPRN_LPID,r7
+ isync
+
+BEGIN_FTR_SECTION
+ /* DPDES and VTB are shared between threads */
+ mfspr r7, SPRN_DPDES
+ mfspr r8, SPRN_VTB
+ std r7, VCORE_DPDES(r5)
+ std r8, VCORE_VTB(r5)
+ /* clear DPDES so we don't get guest doorbells in the host */
+ li r8, 0
+ mtspr SPRN_DPDES, r8
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+
+ /* Subtract timebase offset from timebase */
+ ld r8, VCORE_TB_OFFSET_APPL(r5)
+ cmpdi r8,0
+ beq 17f
+ li r0, 0
+ std r0, VCORE_TB_OFFSET_APPL(r5)
+ mftb r6 /* current guest timebase */
+ subf r8,r8,r6
+ mtspr SPRN_TBU40,r8 /* update upper 40 bits */
+ mftb r7 /* check if lower 24 bits overflowed */
+ clrldi r6,r6,40
+ clrldi r7,r7,40
+ cmpld r7,r6
+ bge 17f
+ addis r8,r8,0x100 /* if so, increment upper 40 bits */
+ mtspr SPRN_TBU40,r8
+
+17:
+ /*
+ * If this is an HMI, we called kvmppc_realmode_hmi_handler
+ * above, which may or may not have already called
+ * kvmppc_subcore_exit_guest. Fortunately, all that
+ * kvmppc_subcore_exit_guest does is clear a flag, so calling
+ * it again here is benign even if kvmppc_realmode_hmi_handler
+ * has already called it.
+ */
+ bl kvmppc_subcore_exit_guest
+ nop
+30: ld r5,HSTATE_KVM_VCORE(r13)
+ ld r4,VCORE_KVM(r5) /* pointer to struct kvm */
+
+ /* Reset PCR */
+ ld r0, VCORE_PCR(r5)
+ LOAD_REG_IMMEDIATE(r6, PCR_MASK)
+ cmpld r0, r6
+ beq 18f
+ mtspr SPRN_PCR, r6
+18:
+ /* Signal secondary CPUs to continue */
+ li r0, 0
+ stb r0,VCORE_IN_GUEST(r5)
+19: lis r8,0x7fff /* MAX_INT@h */
+ mtspr SPRN_HDEC,r8
+
+16: ld r8,KVM_HOST_LPCR(r4)
+ mtspr SPRN_LPCR,r8
+ isync
+
+#ifdef CONFIG_KVM_BOOK3S_HV_P8_TIMING
+ /* Finish timing, if we have a vcpu */
+ ld r4, HSTATE_KVM_VCPU(r13)
+ cmpdi r4, 0
+ li r3, 0
+ beq 2f
+ bl kvmhv_accumulate_time
+2:
+#endif
+ /* Unset guest mode */
+ li r0, KVM_GUEST_MODE_NONE
+ stb r0, HSTATE_IN_GUEST(r13)
+
+ lwz r12, STACK_SLOT_TRAP(r1) /* return trap # in r12 */
+ ld r0, SFS+PPC_LR_STKOFF(r1)
+ addi r1, r1, SFS
+ mtlr r0
+ blr
+
+.balign 32
+.global kvm_flush_link_stack
+kvm_flush_link_stack:
+ /* Save LR into r0 */
+ mflr r0
+
+ /* Flush the link stack. On Power8 it's up to 32 entries in size. */
+ .rept 32
+ bl .+4
+ .endr
+
+ /* And on Power9 it's up to 64. */
+BEGIN_FTR_SECTION
+ .rept 32
+ bl .+4
+ .endr
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_300)
+
+ /* Restore LR */
+ mtlr r0
+ blr
+
+kvmppc_guest_external:
+ /* External interrupt, first check for host_ipi. If this is
+ * set, we know the host wants us out so let's do it now
+ */
+ bl kvmppc_read_intr
+
+ /*
+ * Restore the active volatile registers after returning from
+ * a C function.
+ */
+ ld r9, HSTATE_KVM_VCPU(r13)
+ li r12, BOOK3S_INTERRUPT_EXTERNAL
+
+ /*
+ * kvmppc_read_intr return codes:
+ *
+ * Exit to host (r3 > 0)
+ * 1 An interrupt is pending that needs to be handled by the host
+ * Exit guest and return to host by branching to guest_exit_cont
+ *
+ * 2 Passthrough that needs completion in the host
+ * Exit guest and return to host by branching to guest_exit_cont
+ * However, we also set r12 to BOOK3S_INTERRUPT_HV_RM_HARD
+ * to indicate to the host to complete handling the interrupt
+ *
+ * Before returning to guest, we check if any CPU is heading out
+ * to the host and if so, we head out also. If no CPUs are heading
+ * check return values <= 0.
+ *
+ * Return to guest (r3 <= 0)
+ * 0 No external interrupt is pending
+ * -1 A guest wakeup IPI (which has now been cleared)
+ * In either case, we return to guest to deliver any pending
+ * guest interrupts.
+ *
+ * -2 A PCI passthrough external interrupt was handled
+ * (interrupt was delivered directly to guest)
+ * Return to guest to deliver any pending guest interrupts.
+ */
+
+ cmpdi r3, 1
+ ble 1f
+
+ /* Return code = 2 */
+ li r12, BOOK3S_INTERRUPT_HV_RM_HARD
+ stw r12, VCPU_TRAP(r9)
+ b guest_exit_cont
+
+1: /* Return code <= 1 */
+ cmpdi r3, 0
+ bgt guest_exit_cont
+
+ /* Return code <= 0 */
+maybe_reenter_guest:
+ ld r5, HSTATE_KVM_VCORE(r13)
+ lwz r0, VCORE_ENTRY_EXIT(r5)
+ cmpwi r0, 0x100
+ mr r4, r9
+ blt deliver_guest_interrupt
+ b guest_exit_cont
+
+/*
+ * Check whether an HDSI is an HPTE not found fault or something else.
+ * If it is an HPTE not found fault that is due to the guest accessing
+ * a page that they have mapped but which we have paged out, then
+ * we continue on with the guest exit path. In all other cases,
+ * reflect the HDSI to the guest as a DSI.
+ */
+kvmppc_hdsi:
+ mfspr r4, SPRN_HDAR
+ mfspr r6, SPRN_HDSISR
+ /* HPTE not found fault or protection fault? */
+ andis. r0, r6, (DSISR_NOHPTE | DSISR_PROTFAULT)@h
+ beq 1f /* if not, send it to the guest */
+ andi. r0, r11, MSR_DR /* data relocation enabled? */
+ beq 3f
+ clrrdi r0, r4, 28
+ PPC_SLBFEE_DOT(R5, R0) /* if so, look up SLB */
+ li r0, BOOK3S_INTERRUPT_DATA_SEGMENT
+ bne 7f /* if no SLB entry found */
+4: std r4, VCPU_FAULT_DAR(r9)
+ stw r6, VCPU_FAULT_DSISR(r9)
+
+ /* Search the hash table. */
+ mr r3, r9 /* vcpu pointer */
+ li r7, 1 /* data fault */
+ bl kvmppc_hpte_hv_fault
+ ld r9, HSTATE_KVM_VCPU(r13)
+ ld r10, VCPU_PC(r9)
+ ld r11, VCPU_MSR(r9)
+ li r12, BOOK3S_INTERRUPT_H_DATA_STORAGE
+ cmpdi r3, 0 /* retry the instruction */
+ beq 6f
+ cmpdi r3, -1 /* handle in kernel mode */
+ beq guest_exit_cont
+ cmpdi r3, -2 /* MMIO emulation; need instr word */
+ beq 2f
+
+ /* Synthesize a DSI (or DSegI) for the guest */
+ ld r4, VCPU_FAULT_DAR(r9)
+ mr r6, r3
+1: li r0, BOOK3S_INTERRUPT_DATA_STORAGE
+ mtspr SPRN_DSISR, r6
+7: mtspr SPRN_DAR, r4
+ mtspr SPRN_SRR0, r10
+ mtspr SPRN_SRR1, r11
+ mr r10, r0
+ bl kvmppc_msr_interrupt
+fast_interrupt_c_return:
+6: ld r7, VCPU_CTR(r9)
+ ld r8, VCPU_XER(r9)
+ mtctr r7
+ mtxer r8
+ mr r4, r9
+ b fast_guest_return
+
+3: ld r5, VCPU_KVM(r9) /* not relocated, use VRMA */
+ ld r5, KVM_VRMA_SLB_V(r5)
+ b 4b
+
+ /* If this is for emulated MMIO, load the instruction word */
+2: li r8, KVM_INST_FETCH_FAILED /* In case lwz faults */
+
+ /* Set guest mode to 'jump over instruction' so if lwz faults
+ * we'll just continue at the next IP. */
+ li r0, KVM_GUEST_MODE_SKIP
+ stb r0, HSTATE_IN_GUEST(r13)
+
+ /* Do the access with MSR:DR enabled */
+ mfmsr r3
+ ori r4, r3, MSR_DR /* Enable paging for data */
+ mtmsrd r4
+ lwz r8, 0(r10)
+ mtmsrd r3
+
+ /* Store the result */
+ stw r8, VCPU_LAST_INST(r9)
+
+ /* Unset guest mode. */
+ li r0, KVM_GUEST_MODE_HOST_HV
+ stb r0, HSTATE_IN_GUEST(r13)
+ b guest_exit_cont
+
+/*
+ * Similarly for an HISI, reflect it to the guest as an ISI unless
+ * it is an HPTE not found fault for a page that we have paged out.
+ */
+kvmppc_hisi:
+ andis. r0, r11, SRR1_ISI_NOPT@h
+ beq 1f
+ andi. r0, r11, MSR_IR /* instruction relocation enabled? */
+ beq 3f
+ clrrdi r0, r10, 28
+ PPC_SLBFEE_DOT(R5, R0) /* if so, look up SLB */
+ li r0, BOOK3S_INTERRUPT_INST_SEGMENT
+ bne 7f /* if no SLB entry found */
+4:
+ /* Search the hash table. */
+ mr r3, r9 /* vcpu pointer */
+ mr r4, r10
+ mr r6, r11
+ li r7, 0 /* instruction fault */
+ bl kvmppc_hpte_hv_fault
+ ld r9, HSTATE_KVM_VCPU(r13)
+ ld r10, VCPU_PC(r9)
+ ld r11, VCPU_MSR(r9)
+ li r12, BOOK3S_INTERRUPT_H_INST_STORAGE
+ cmpdi r3, 0 /* retry the instruction */
+ beq fast_interrupt_c_return
+ cmpdi r3, -1 /* handle in kernel mode */
+ beq guest_exit_cont
+
+ /* Synthesize an ISI (or ISegI) for the guest */
+ mr r11, r3
+1: li r0, BOOK3S_INTERRUPT_INST_STORAGE
+7: mtspr SPRN_SRR0, r10
+ mtspr SPRN_SRR1, r11
+ mr r10, r0
+ bl kvmppc_msr_interrupt
+ b fast_interrupt_c_return
+
+3: ld r6, VCPU_KVM(r9) /* not relocated, use VRMA */
+ ld r5, KVM_VRMA_SLB_V(r6)
+ b 4b
+
+/*
+ * Try to handle an hcall in real mode.
+ * Returns to the guest if we handle it, or continues on up to
+ * the kernel if we can't (i.e. if we don't have a handler for
+ * it, or if the handler returns H_TOO_HARD).
+ *
+ * r5 - r8 contain hcall args,
+ * r9 = vcpu, r10 = pc, r11 = msr, r12 = trap, r13 = paca
+ */
+hcall_try_real_mode:
+ ld r3,VCPU_GPR(R3)(r9)
+ andi. r0,r11,MSR_PR
+ /* sc 1 from userspace - reflect to guest syscall */
+ bne sc_1_fast_return
+ clrrdi r3,r3,2
+ cmpldi r3,hcall_real_table_end - hcall_real_table
+ bge guest_exit_cont
+ /* See if this hcall is enabled for in-kernel handling */
+ ld r4, VCPU_KVM(r9)
+ srdi r0, r3, 8 /* r0 = (r3 / 4) >> 6 */
+ sldi r0, r0, 3 /* index into kvm->arch.enabled_hcalls[] */
+ add r4, r4, r0
+ ld r0, KVM_ENABLED_HCALLS(r4)
+ rlwinm r4, r3, 32-2, 0x3f /* r4 = (r3 / 4) & 0x3f */
+ srd r0, r0, r4
+ andi. r0, r0, 1
+ beq guest_exit_cont
+ /* Get pointer to handler, if any, and call it */
+ LOAD_REG_ADDR(r4, hcall_real_table)
+ lwax r3,r3,r4
+ cmpwi r3,0
+ beq guest_exit_cont
+ add r12,r3,r4
+ mtctr r12
+ mr r3,r9 /* get vcpu pointer */
+ ld r4,VCPU_GPR(R4)(r9)
+ bctrl
+ cmpdi r3,H_TOO_HARD
+ beq hcall_real_fallback
+ ld r4,HSTATE_KVM_VCPU(r13)
+ std r3,VCPU_GPR(R3)(r4)
+ ld r10,VCPU_PC(r4)
+ ld r11,VCPU_MSR(r4)
+ b fast_guest_return
+
+sc_1_fast_return:
+ mtspr SPRN_SRR0,r10
+ mtspr SPRN_SRR1,r11
+ li r10, BOOK3S_INTERRUPT_SYSCALL
+ bl kvmppc_msr_interrupt
+ mr r4,r9
+ b fast_guest_return
+
+ /* We've attempted a real mode hcall, but it's punted it back
+ * to userspace. We need to restore some clobbered volatiles
+ * before resuming the pass-it-to-qemu path */
+hcall_real_fallback:
+ li r12,BOOK3S_INTERRUPT_SYSCALL
+ ld r9, HSTATE_KVM_VCPU(r13)
+
+ b guest_exit_cont
+
+ .globl hcall_real_table
+hcall_real_table:
+ .long 0 /* 0 - unused */
+ .long DOTSYM(kvmppc_h_remove) - hcall_real_table
+ .long DOTSYM(kvmppc_h_enter) - hcall_real_table
+ .long DOTSYM(kvmppc_h_read) - hcall_real_table
+ .long DOTSYM(kvmppc_h_clear_mod) - hcall_real_table
+ .long DOTSYM(kvmppc_h_clear_ref) - hcall_real_table
+ .long DOTSYM(kvmppc_h_protect) - hcall_real_table
+ .long 0 /* 0x1c */
+ .long 0 /* 0x20 */
+ .long 0 /* 0x24 - H_SET_SPRG0 */
+ .long DOTSYM(kvmppc_h_set_dabr) - hcall_real_table
+ .long DOTSYM(kvmppc_rm_h_page_init) - hcall_real_table
+ .long 0 /* 0x30 */
+ .long 0 /* 0x34 */
+ .long 0 /* 0x38 */
+ .long 0 /* 0x3c */
+ .long 0 /* 0x40 */
+ .long 0 /* 0x44 */
+ .long 0 /* 0x48 */
+ .long 0 /* 0x4c */
+ .long 0 /* 0x50 */
+ .long 0 /* 0x54 */
+ .long 0 /* 0x58 */
+ .long 0 /* 0x5c */
+ .long 0 /* 0x60 */
+#ifdef CONFIG_KVM_XICS
+ .long DOTSYM(xics_rm_h_eoi) - hcall_real_table
+ .long DOTSYM(xics_rm_h_cppr) - hcall_real_table
+ .long DOTSYM(xics_rm_h_ipi) - hcall_real_table
+ .long 0 /* 0x70 - H_IPOLL */
+ .long DOTSYM(xics_rm_h_xirr) - hcall_real_table
+#else
+ .long 0 /* 0x64 - H_EOI */
+ .long 0 /* 0x68 - H_CPPR */
+ .long 0 /* 0x6c - H_IPI */
+ .long 0 /* 0x70 - H_IPOLL */
+ .long 0 /* 0x74 - H_XIRR */
+#endif
+ .long 0 /* 0x78 */
+ .long 0 /* 0x7c */
+ .long 0 /* 0x80 */
+ .long 0 /* 0x84 */
+ .long 0 /* 0x88 */
+ .long 0 /* 0x8c */
+ .long 0 /* 0x90 */
+ .long 0 /* 0x94 */
+ .long 0 /* 0x98 */
+ .long 0 /* 0x9c */
+ .long 0 /* 0xa0 */
+ .long 0 /* 0xa4 */
+ .long 0 /* 0xa8 */
+ .long 0 /* 0xac */
+ .long 0 /* 0xb0 */
+ .long 0 /* 0xb4 */
+ .long 0 /* 0xb8 */
+ .long 0 /* 0xbc */
+ .long 0 /* 0xc0 */
+ .long 0 /* 0xc4 */
+ .long 0 /* 0xc8 */
+ .long 0 /* 0xcc */
+ .long 0 /* 0xd0 */
+ .long 0 /* 0xd4 */
+ .long 0 /* 0xd8 */
+ .long 0 /* 0xdc */
+ .long DOTSYM(kvmppc_h_cede) - hcall_real_table
+ .long DOTSYM(kvmppc_rm_h_confer) - hcall_real_table
+ .long 0 /* 0xe8 */
+ .long 0 /* 0xec */
+ .long 0 /* 0xf0 */
+ .long 0 /* 0xf4 */
+ .long 0 /* 0xf8 */
+ .long 0 /* 0xfc */
+ .long 0 /* 0x100 */
+ .long 0 /* 0x104 */
+ .long 0 /* 0x108 */
+ .long 0 /* 0x10c */
+ .long 0 /* 0x110 */
+ .long 0 /* 0x114 */
+ .long 0 /* 0x118 */
+ .long 0 /* 0x11c */
+ .long 0 /* 0x120 */
+ .long DOTSYM(kvmppc_h_bulk_remove) - hcall_real_table
+ .long 0 /* 0x128 */
+ .long 0 /* 0x12c */
+ .long 0 /* 0x130 */
+ .long DOTSYM(kvmppc_h_set_xdabr) - hcall_real_table
+ .long 0 /* 0x138 */
+ .long 0 /* 0x13c */
+ .long 0 /* 0x140 */
+ .long 0 /* 0x144 */
+ .long 0 /* 0x148 */
+ .long 0 /* 0x14c */
+ .long 0 /* 0x150 */
+ .long 0 /* 0x154 */
+ .long 0 /* 0x158 */
+ .long 0 /* 0x15c */
+ .long 0 /* 0x160 */
+ .long 0 /* 0x164 */
+ .long 0 /* 0x168 */
+ .long 0 /* 0x16c */
+ .long 0 /* 0x170 */
+ .long 0 /* 0x174 */
+ .long 0 /* 0x178 */
+ .long 0 /* 0x17c */
+ .long 0 /* 0x180 */
+ .long 0 /* 0x184 */
+ .long 0 /* 0x188 */
+ .long 0 /* 0x18c */
+ .long 0 /* 0x190 */
+ .long 0 /* 0x194 */
+ .long 0 /* 0x198 */
+ .long 0 /* 0x19c */
+ .long 0 /* 0x1a0 */
+ .long 0 /* 0x1a4 */
+ .long 0 /* 0x1a8 */
+ .long 0 /* 0x1ac */
+ .long 0 /* 0x1b0 */
+ .long 0 /* 0x1b4 */
+ .long 0 /* 0x1b8 */
+ .long 0 /* 0x1bc */
+ .long 0 /* 0x1c0 */
+ .long 0 /* 0x1c4 */
+ .long 0 /* 0x1c8 */
+ .long 0 /* 0x1cc */
+ .long 0 /* 0x1d0 */
+ .long 0 /* 0x1d4 */
+ .long 0 /* 0x1d8 */
+ .long 0 /* 0x1dc */
+ .long 0 /* 0x1e0 */
+ .long 0 /* 0x1e4 */
+ .long 0 /* 0x1e8 */
+ .long 0 /* 0x1ec */
+ .long 0 /* 0x1f0 */
+ .long 0 /* 0x1f4 */
+ .long 0 /* 0x1f8 */
+ .long 0 /* 0x1fc */
+ .long 0 /* 0x200 */
+ .long 0 /* 0x204 */
+ .long 0 /* 0x208 */
+ .long 0 /* 0x20c */
+ .long 0 /* 0x210 */
+ .long 0 /* 0x214 */
+ .long 0 /* 0x218 */
+ .long 0 /* 0x21c */
+ .long 0 /* 0x220 */
+ .long 0 /* 0x224 */
+ .long 0 /* 0x228 */
+ .long 0 /* 0x22c */
+ .long 0 /* 0x230 */
+ .long 0 /* 0x234 */
+ .long 0 /* 0x238 */
+ .long 0 /* 0x23c */
+ .long 0 /* 0x240 */
+ .long 0 /* 0x244 */
+ .long 0 /* 0x248 */
+ .long 0 /* 0x24c */
+ .long 0 /* 0x250 */
+ .long 0 /* 0x254 */
+ .long 0 /* 0x258 */
+ .long 0 /* 0x25c */
+ .long 0 /* 0x260 */
+ .long 0 /* 0x264 */
+ .long 0 /* 0x268 */
+ .long 0 /* 0x26c */
+ .long 0 /* 0x270 */
+ .long 0 /* 0x274 */
+ .long 0 /* 0x278 */
+ .long 0 /* 0x27c */
+ .long 0 /* 0x280 */
+ .long 0 /* 0x284 */
+ .long 0 /* 0x288 */
+ .long 0 /* 0x28c */
+ .long 0 /* 0x290 */
+ .long 0 /* 0x294 */
+ .long 0 /* 0x298 */
+ .long 0 /* 0x29c */
+ .long 0 /* 0x2a0 */
+ .long 0 /* 0x2a4 */
+ .long 0 /* 0x2a8 */
+ .long 0 /* 0x2ac */
+ .long 0 /* 0x2b0 */
+ .long 0 /* 0x2b4 */
+ .long 0 /* 0x2b8 */
+ .long 0 /* 0x2bc */
+ .long 0 /* 0x2c0 */
+ .long 0 /* 0x2c4 */
+ .long 0 /* 0x2c8 */
+ .long 0 /* 0x2cc */
+ .long 0 /* 0x2d0 */
+ .long 0 /* 0x2d4 */
+ .long 0 /* 0x2d8 */
+ .long 0 /* 0x2dc */
+ .long 0 /* 0x2e0 */
+ .long 0 /* 0x2e4 */
+ .long 0 /* 0x2e8 */
+ .long 0 /* 0x2ec */
+ .long 0 /* 0x2f0 */
+ .long 0 /* 0x2f4 */
+ .long 0 /* 0x2f8 */
+#ifdef CONFIG_KVM_XICS
+ .long DOTSYM(xics_rm_h_xirr_x) - hcall_real_table
+#else
+ .long 0 /* 0x2fc - H_XIRR_X*/
+#endif
+ .long DOTSYM(kvmppc_rm_h_random) - hcall_real_table
+ .globl hcall_real_table_end
+hcall_real_table_end:
+
+_GLOBAL_TOC(kvmppc_h_set_xdabr)
+EXPORT_SYMBOL_GPL(kvmppc_h_set_xdabr)
+ andi. r0, r5, DABRX_USER | DABRX_KERNEL
+ beq 6f
+ li r0, DABRX_USER | DABRX_KERNEL | DABRX_BTI
+ andc. r0, r5, r0
+ beq 3f
+6: li r3, H_PARAMETER
+ blr
+
+_GLOBAL_TOC(kvmppc_h_set_dabr)
+EXPORT_SYMBOL_GPL(kvmppc_h_set_dabr)
+ li r5, DABRX_USER | DABRX_KERNEL
+3:
+BEGIN_FTR_SECTION
+ b 2f
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+ std r4,VCPU_DABR(r3)
+ stw r5, VCPU_DABRX(r3)
+ mtspr SPRN_DABRX, r5
+ /* Work around P7 bug where DABR can get corrupted on mtspr */
+1: mtspr SPRN_DABR,r4
+ mfspr r5, SPRN_DABR
+ cmpd r4, r5
+ bne 1b
+ isync
+ li r3,0
+ blr
+
+2:
+ LOAD_REG_ADDR(r11, dawr_force_enable)
+ lbz r11, 0(r11)
+ cmpdi r11, 0
+ bne 3f
+ li r3, H_HARDWARE
+ blr
+3:
+ /* Emulate H_SET_DABR/X on P8 for the sake of compat mode guests */
+ rlwimi r5, r4, 5, DAWRX_DR | DAWRX_DW
+ rlwimi r5, r4, 2, DAWRX_WT
+ clrrdi r4, r4, 3
+ std r4, VCPU_DAWR0(r3)
+ std r5, VCPU_DAWRX0(r3)
+ /*
+ * If came in through the real mode hcall handler then it is necessary
+ * to write the registers since the return path won't. Otherwise it is
+ * sufficient to store then in the vcpu struct as they will be loaded
+ * next time the vcpu is run.
+ */
+ mfmsr r6
+ andi. r6, r6, MSR_DR /* in real mode? */
+ bne 4f
+ mtspr SPRN_DAWR0, r4
+ mtspr SPRN_DAWRX0, r5
+4: li r3, 0
+ blr
+
+_GLOBAL(kvmppc_h_cede) /* r3 = vcpu pointer, r11 = msr, r13 = paca */
+ ori r11,r11,MSR_EE
+ std r11,VCPU_MSR(r3)
+ li r0,1
+ stb r0,VCPU_CEDED(r3)
+ sync /* order setting ceded vs. testing prodded */
+ lbz r5,VCPU_PRODDED(r3)
+ cmpwi r5,0
+ bne kvm_cede_prodded
+ li r12,0 /* set trap to 0 to say hcall is handled */
+ stw r12,VCPU_TRAP(r3)
+ li r0,H_SUCCESS
+ std r0,VCPU_GPR(R3)(r3)
+
+ /*
+ * Set our bit in the bitmask of napping threads unless all the
+ * other threads are already napping, in which case we send this
+ * up to the host.
+ */
+ ld r5,HSTATE_KVM_VCORE(r13)
+ lbz r6,HSTATE_PTID(r13)
+ lwz r8,VCORE_ENTRY_EXIT(r5)
+ clrldi r8,r8,56
+ li r0,1
+ sld r0,r0,r6
+ addi r6,r5,VCORE_NAPPING_THREADS
+31: lwarx r4,0,r6
+ or r4,r4,r0
+ cmpw r4,r8
+ beq kvm_cede_exit
+ stwcx. r4,0,r6
+ bne 31b
+ /* order napping_threads update vs testing entry_exit_map */
+ isync
+ li r0,NAPPING_CEDE
+ stb r0,HSTATE_NAPPING(r13)
+ lwz r7,VCORE_ENTRY_EXIT(r5)
+ cmpwi r7,0x100
+ bge 33f /* another thread already exiting */
+
+/*
+ * Although not specifically required by the architecture, POWER7
+ * preserves the following registers in nap mode, even if an SMT mode
+ * switch occurs: SLB entries, PURR, SPURR, AMOR, UAMOR, AMR, SPRG0-3,
+ * DAR, DSISR, DABR, DABRX, DSCR, PMCx, MMCRx, SIAR, SDAR.
+ */
+ /* Save non-volatile GPRs */
+ std r14, VCPU_GPR(R14)(r3)
+ std r15, VCPU_GPR(R15)(r3)
+ std r16, VCPU_GPR(R16)(r3)
+ std r17, VCPU_GPR(R17)(r3)
+ std r18, VCPU_GPR(R18)(r3)
+ std r19, VCPU_GPR(R19)(r3)
+ std r20, VCPU_GPR(R20)(r3)
+ std r21, VCPU_GPR(R21)(r3)
+ std r22, VCPU_GPR(R22)(r3)
+ std r23, VCPU_GPR(R23)(r3)
+ std r24, VCPU_GPR(R24)(r3)
+ std r25, VCPU_GPR(R25)(r3)
+ std r26, VCPU_GPR(R26)(r3)
+ std r27, VCPU_GPR(R27)(r3)
+ std r28, VCPU_GPR(R28)(r3)
+ std r29, VCPU_GPR(R29)(r3)
+ std r30, VCPU_GPR(R30)(r3)
+ std r31, VCPU_GPR(R31)(r3)
+
+ /* save FP state */
+ bl kvmppc_save_fp
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+BEGIN_FTR_SECTION
+ b 91f
+END_FTR_SECTION_IFCLR(CPU_FTR_TM)
+ /*
+ * NOTE THAT THIS TRASHES ALL NON-VOLATILE REGISTERS (but not CR)
+ */
+ ld r3, HSTATE_KVM_VCPU(r13)
+ ld r4, VCPU_MSR(r3)
+ li r5, 0 /* don't preserve non-vol regs */
+ bl kvmppc_save_tm_hv
+ nop
+91:
+#endif
+
+ /*
+ * Set DEC to the smaller of DEC and HDEC, so that we wake
+ * no later than the end of our timeslice (HDEC interrupts
+ * don't wake us from nap).
+ */
+ mfspr r3, SPRN_DEC
+ mfspr r4, SPRN_HDEC
+ mftb r5
+ extsw r3, r3
+ extsw r4, r4
+ cmpd r3, r4
+ ble 67f
+ mtspr SPRN_DEC, r4
+67:
+ /* save expiry time of guest decrementer */
+ add r3, r3, r5
+ ld r4, HSTATE_KVM_VCPU(r13)
+ std r3, VCPU_DEC_EXPIRES(r4)
+
+#ifdef CONFIG_KVM_BOOK3S_HV_P8_TIMING
+ ld r4, HSTATE_KVM_VCPU(r13)
+ addi r3, r4, VCPU_TB_CEDE
+ bl kvmhv_accumulate_time
+#endif
+
+ lis r3, LPCR_PECEDP@h /* Do wake on privileged doorbell */
+
+ /* Go back to host stack */
+ ld r1, HSTATE_HOST_R1(r13)
+
+ /*
+ * Take a nap until a decrementer or external or doobell interrupt
+ * occurs, with PECE1 and PECE0 set in LPCR.
+ * On POWER8, set PECEDH, and if we are ceding, also set PECEDP.
+ * Also clear the runlatch bit before napping.
+ */
+kvm_do_nap:
+ li r0,0
+ mtspr SPRN_CTRLT, r0
+
+ li r0,1
+ stb r0,HSTATE_HWTHREAD_REQ(r13)
+ mfspr r5,SPRN_LPCR
+ ori r5,r5,LPCR_PECE0 | LPCR_PECE1
+BEGIN_FTR_SECTION
+ ori r5, r5, LPCR_PECEDH
+ rlwimi r5, r3, 0, LPCR_PECEDP
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+
+kvm_nap_sequence: /* desired LPCR value in r5 */
+ li r3, PNV_THREAD_NAP
+ mtspr SPRN_LPCR,r5
+ isync
+
+ bl isa206_idle_insn_mayloss
+
+ li r0,1
+ mtspr SPRN_CTRLT, r0
+
+ mtspr SPRN_SRR1, r3
+
+ li r0, 0
+ stb r0, PACA_FTRACE_ENABLED(r13)
+
+ li r0, KVM_HWTHREAD_IN_KVM
+ stb r0, HSTATE_HWTHREAD_STATE(r13)
+
+ lbz r0, HSTATE_NAPPING(r13)
+ cmpwi r0, NAPPING_CEDE
+ beq kvm_end_cede
+ cmpwi r0, NAPPING_NOVCPU
+ beq kvm_novcpu_wakeup
+ cmpwi r0, NAPPING_UNSPLIT
+ beq kvm_unsplit_wakeup
+ twi 31,0,0 /* Nap state must not be zero */
+
+33: mr r4, r3
+ li r3, 0
+ li r12, 0
+ b 34f
+
+kvm_end_cede:
+ /* Woken by external or decrementer interrupt */
+
+ /* get vcpu pointer */
+ ld r4, HSTATE_KVM_VCPU(r13)
+
+#ifdef CONFIG_KVM_BOOK3S_HV_P8_TIMING
+ addi r3, r4, VCPU_TB_RMINTR
+ bl kvmhv_accumulate_time
+#endif
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+BEGIN_FTR_SECTION
+ b 91f
+END_FTR_SECTION_IFCLR(CPU_FTR_TM)
+ /*
+ * NOTE THAT THIS TRASHES ALL NON-VOLATILE REGISTERS (but not CR)
+ */
+ mr r3, r4
+ ld r4, VCPU_MSR(r3)
+ li r5, 0 /* don't preserve non-vol regs */
+ bl kvmppc_restore_tm_hv
+ nop
+ ld r4, HSTATE_KVM_VCPU(r13)
+91:
+#endif
+
+ /* load up FP state */
+ bl kvmppc_load_fp
+
+ /* Restore guest decrementer */
+ ld r3, VCPU_DEC_EXPIRES(r4)
+ mftb r7
+ subf r3, r7, r3
+ mtspr SPRN_DEC, r3
+
+ /* Load NV GPRS */
+ ld r14, VCPU_GPR(R14)(r4)
+ ld r15, VCPU_GPR(R15)(r4)
+ ld r16, VCPU_GPR(R16)(r4)
+ ld r17, VCPU_GPR(R17)(r4)
+ ld r18, VCPU_GPR(R18)(r4)
+ ld r19, VCPU_GPR(R19)(r4)
+ ld r20, VCPU_GPR(R20)(r4)
+ ld r21, VCPU_GPR(R21)(r4)
+ ld r22, VCPU_GPR(R22)(r4)
+ ld r23, VCPU_GPR(R23)(r4)
+ ld r24, VCPU_GPR(R24)(r4)
+ ld r25, VCPU_GPR(R25)(r4)
+ ld r26, VCPU_GPR(R26)(r4)
+ ld r27, VCPU_GPR(R27)(r4)
+ ld r28, VCPU_GPR(R28)(r4)
+ ld r29, VCPU_GPR(R29)(r4)
+ ld r30, VCPU_GPR(R30)(r4)
+ ld r31, VCPU_GPR(R31)(r4)
+
+ /* Check the wake reason in SRR1 to see why we got here */
+ bl kvmppc_check_wake_reason
+
+ /*
+ * Restore volatile registers since we could have called a
+ * C routine in kvmppc_check_wake_reason
+ * r4 = VCPU
+ * r3 tells us whether we need to return to host or not
+ * WARNING: it gets checked further down:
+ * should not modify r3 until this check is done.
+ */
+ ld r4, HSTATE_KVM_VCPU(r13)
+
+ /* clear our bit in vcore->napping_threads */
+34: ld r5,HSTATE_KVM_VCORE(r13)
+ lbz r7,HSTATE_PTID(r13)
+ li r0,1
+ sld r0,r0,r7
+ addi r6,r5,VCORE_NAPPING_THREADS
+32: lwarx r7,0,r6
+ andc r7,r7,r0
+ stwcx. r7,0,r6
+ bne 32b
+ li r0,0
+ stb r0,HSTATE_NAPPING(r13)
+
+ /* See if the wake reason saved in r3 means we need to exit */
+ stw r12, VCPU_TRAP(r4)
+ mr r9, r4
+ cmpdi r3, 0
+ bgt guest_exit_cont
+ b maybe_reenter_guest
+
+ /* cede when already previously prodded case */
+kvm_cede_prodded:
+ li r0,0
+ stb r0,VCPU_PRODDED(r3)
+ sync /* order testing prodded vs. clearing ceded */
+ stb r0,VCPU_CEDED(r3)
+ li r3,H_SUCCESS
+ blr
+
+ /* we've ceded but we want to give control to the host */
+kvm_cede_exit:
+ ld r9, HSTATE_KVM_VCPU(r13)
+ b guest_exit_cont
+
+ /* Try to do machine check recovery in real mode */
+machine_check_realmode:
+ mr r3, r9 /* get vcpu pointer */
+ bl kvmppc_realmode_machine_check
+ nop
+ /* all machine checks go to virtual mode for further handling */
+ ld r9, HSTATE_KVM_VCPU(r13)
+ li r12, BOOK3S_INTERRUPT_MACHINE_CHECK
+ b guest_exit_cont
+
+/*
+ * Call C code to handle a HMI in real mode.
+ * Only the primary thread does the call, secondary threads are handled
+ * by calling hmi_exception_realmode() after kvmppc_hv_entry returns.
+ * r9 points to the vcpu on entry
+ */
+hmi_realmode:
+ lbz r0, HSTATE_PTID(r13)
+ cmpwi r0, 0
+ bne guest_exit_cont
+ bl kvmppc_realmode_hmi_handler
+ ld r9, HSTATE_KVM_VCPU(r13)
+ li r12, BOOK3S_INTERRUPT_HMI
+ b guest_exit_cont
+
+/*
+ * Check the reason we woke from nap, and take appropriate action.
+ * Returns (in r3):
+ * 0 if nothing needs to be done
+ * 1 if something happened that needs to be handled by the host
+ * -1 if there was a guest wakeup (IPI or msgsnd)
+ * -2 if we handled a PCI passthrough interrupt (returned by
+ * kvmppc_read_intr only)
+ *
+ * Also sets r12 to the interrupt vector for any interrupt that needs
+ * to be handled now by the host (0x500 for external interrupt), or zero.
+ * Modifies all volatile registers (since it may call a C function).
+ * This routine calls kvmppc_read_intr, a C function, if an external
+ * interrupt is pending.
+ */
+kvmppc_check_wake_reason:
+ mfspr r6, SPRN_SRR1
+BEGIN_FTR_SECTION
+ rlwinm r6, r6, 45-31, 0xf /* extract wake reason field (P8) */
+FTR_SECTION_ELSE
+ rlwinm r6, r6, 45-31, 0xe /* P7 wake reason field is 3 bits */
+ALT_FTR_SECTION_END_IFSET(CPU_FTR_ARCH_207S)
+ cmpwi r6, 8 /* was it an external interrupt? */
+ beq 7f /* if so, see what it was */
+ li r3, 0
+ li r12, 0
+ cmpwi r6, 6 /* was it the decrementer? */
+ beq 0f
+BEGIN_FTR_SECTION
+ cmpwi r6, 5 /* privileged doorbell? */
+ beq 0f
+ cmpwi r6, 3 /* hypervisor doorbell? */
+ beq 3f
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+ cmpwi r6, 0xa /* Hypervisor maintenance ? */
+ beq 4f
+ li r3, 1 /* anything else, return 1 */
+0: blr
+
+ /* hypervisor doorbell */
+3: li r12, BOOK3S_INTERRUPT_H_DOORBELL
+
+ /*
+ * Clear the doorbell as we will invoke the handler
+ * explicitly in the guest exit path.
+ */
+ lis r6, (PPC_DBELL_SERVER << (63-36))@h
+ PPC_MSGCLR(6)
+ /* see if it's a host IPI */
+ li r3, 1
+ lbz r0, HSTATE_HOST_IPI(r13)
+ cmpwi r0, 0
+ bnelr
+ /* if not, return -1 */
+ li r3, -1
+ blr
+
+ /* Woken up due to Hypervisor maintenance interrupt */
+4: li r12, BOOK3S_INTERRUPT_HMI
+ li r3, 1
+ blr
+
+ /* external interrupt - create a stack frame so we can call C */
+7: mflr r0
+ std r0, PPC_LR_STKOFF(r1)
+ stdu r1, -PPC_MIN_STKFRM(r1)
+ bl kvmppc_read_intr
+ nop
+ li r12, BOOK3S_INTERRUPT_EXTERNAL
+ cmpdi r3, 1
+ ble 1f
+
+ /*
+ * Return code of 2 means PCI passthrough interrupt, but
+ * we need to return back to host to complete handling the
+ * interrupt. Trap reason is expected in r12 by guest
+ * exit code.
+ */
+ li r12, BOOK3S_INTERRUPT_HV_RM_HARD
+1:
+ ld r0, PPC_MIN_STKFRM+PPC_LR_STKOFF(r1)
+ addi r1, r1, PPC_MIN_STKFRM
+ mtlr r0
+ blr
+
+/*
+ * Save away FP, VMX and VSX registers.
+ * r3 = vcpu pointer
+ * N.B. r30 and r31 are volatile across this function,
+ * thus it is not callable from C.
+ */
+kvmppc_save_fp:
+ mflr r30
+ mr r31,r3
+ mfmsr r5
+ ori r8,r5,MSR_FP
+#ifdef CONFIG_ALTIVEC
+BEGIN_FTR_SECTION
+ oris r8,r8,MSR_VEC@h
+END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
+#endif
+#ifdef CONFIG_VSX
+BEGIN_FTR_SECTION
+ oris r8,r8,MSR_VSX@h
+END_FTR_SECTION_IFSET(CPU_FTR_VSX)
+#endif
+ mtmsrd r8
+ addi r3,r3,VCPU_FPRS
+ bl store_fp_state
+#ifdef CONFIG_ALTIVEC
+BEGIN_FTR_SECTION
+ addi r3,r31,VCPU_VRS
+ bl store_vr_state
+END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
+#endif
+ mfspr r6,SPRN_VRSAVE
+ stw r6,VCPU_VRSAVE(r31)
+ mtlr r30
+ blr
+
+/*
+ * Load up FP, VMX and VSX registers
+ * r4 = vcpu pointer
+ * N.B. r30 and r31 are volatile across this function,
+ * thus it is not callable from C.
+ */
+kvmppc_load_fp:
+ mflr r30
+ mr r31,r4
+ mfmsr r9
+ ori r8,r9,MSR_FP
+#ifdef CONFIG_ALTIVEC
+BEGIN_FTR_SECTION
+ oris r8,r8,MSR_VEC@h
+END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
+#endif
+#ifdef CONFIG_VSX
+BEGIN_FTR_SECTION
+ oris r8,r8,MSR_VSX@h
+END_FTR_SECTION_IFSET(CPU_FTR_VSX)
+#endif
+ mtmsrd r8
+ addi r3,r4,VCPU_FPRS
+ bl load_fp_state
+#ifdef CONFIG_ALTIVEC
+BEGIN_FTR_SECTION
+ addi r3,r31,VCPU_VRS
+ bl load_vr_state
+END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
+#endif
+ lwz r7,VCPU_VRSAVE(r31)
+ mtspr SPRN_VRSAVE,r7
+ mtlr r30
+ mr r4,r31
+ blr
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+/*
+ * Save transactional state and TM-related registers.
+ * Called with r3 pointing to the vcpu struct and r4 containing
+ * the guest MSR value.
+ * r5 is non-zero iff non-volatile register state needs to be maintained.
+ * If r5 == 0, this can modify all checkpointed registers, but
+ * restores r1 and r2 before exit.
+ */
+_GLOBAL_TOC(kvmppc_save_tm_hv)
+EXPORT_SYMBOL_GPL(kvmppc_save_tm_hv)
+ /* See if we need to handle fake suspend mode */
+BEGIN_FTR_SECTION
+ b __kvmppc_save_tm
+END_FTR_SECTION_IFCLR(CPU_FTR_P9_TM_HV_ASSIST)
+
+ lbz r0, HSTATE_FAKE_SUSPEND(r13) /* Were we fake suspended? */
+ cmpwi r0, 0
+ beq __kvmppc_save_tm
+
+ /* The following code handles the fake_suspend = 1 case */
+ mflr r0
+ std r0, PPC_LR_STKOFF(r1)
+ stdu r1, -TM_FRAME_SIZE(r1)
+
+ /* Turn on TM. */
+ mfmsr r8
+ li r0, 1
+ rldimi r8, r0, MSR_TM_LG, 63-MSR_TM_LG
+ mtmsrd r8
+
+ rldicl. r8, r8, 64 - MSR_TS_S_LG, 62 /* Did we actually hrfid? */
+ beq 4f
+BEGIN_FTR_SECTION
+ bl pnv_power9_force_smt4_catch
+END_FTR_SECTION_IFSET(CPU_FTR_P9_TM_XER_SO_BUG)
+ nop
+
+ /*
+ * It's possible that treclaim. may modify registers, if we have lost
+ * track of fake-suspend state in the guest due to it using rfscv.
+ * Save and restore registers in case this occurs.
+ */
+ mfspr r3, SPRN_DSCR
+ mfspr r4, SPRN_XER
+ mfspr r5, SPRN_AMR
+ /* SPRN_TAR would need to be saved here if the kernel ever used it */
+ mfcr r12
+ SAVE_NVGPRS(r1)
+ SAVE_GPR(2, r1)
+ SAVE_GPR(3, r1)
+ SAVE_GPR(4, r1)
+ SAVE_GPR(5, r1)
+ stw r12, 8(r1)
+ std r1, HSTATE_HOST_R1(r13)
+
+ /* We have to treclaim here because that's the only way to do S->N */
+ li r3, TM_CAUSE_KVM_RESCHED
+ TRECLAIM(R3)
+
+ GET_PACA(r13)
+ ld r1, HSTATE_HOST_R1(r13)
+ REST_GPR(2, r1)
+ REST_GPR(3, r1)
+ REST_GPR(4, r1)
+ REST_GPR(5, r1)
+ lwz r12, 8(r1)
+ REST_NVGPRS(r1)
+ mtspr SPRN_DSCR, r3
+ mtspr SPRN_XER, r4
+ mtspr SPRN_AMR, r5
+ mtcr r12
+ HMT_MEDIUM
+
+ /*
+ * We were in fake suspend, so we are not going to save the
+ * register state as the guest checkpointed state (since
+ * we already have it), therefore we can now use any volatile GPR.
+ * In fact treclaim in fake suspend state doesn't modify
+ * any registers.
+ */
+
+BEGIN_FTR_SECTION
+ bl pnv_power9_force_smt4_release
+END_FTR_SECTION_IFSET(CPU_FTR_P9_TM_XER_SO_BUG)
+ nop
+
+4:
+ mfspr r3, SPRN_PSSCR
+ /* PSSCR_FAKE_SUSPEND is a write-only bit, but clear it anyway */
+ li r0, PSSCR_FAKE_SUSPEND
+ andc r3, r3, r0
+ mtspr SPRN_PSSCR, r3
+
+ /* Don't save TEXASR, use value from last exit in real suspend state */
+ ld r9, HSTATE_KVM_VCPU(r13)
+ mfspr r5, SPRN_TFHAR
+ mfspr r6, SPRN_TFIAR
+ std r5, VCPU_TFHAR(r9)
+ std r6, VCPU_TFIAR(r9)
+
+ addi r1, r1, TM_FRAME_SIZE
+ ld r0, PPC_LR_STKOFF(r1)
+ mtlr r0
+ blr
+
+/*
+ * Restore transactional state and TM-related registers.
+ * Called with r3 pointing to the vcpu struct
+ * and r4 containing the guest MSR value.
+ * r5 is non-zero iff non-volatile register state needs to be maintained.
+ * This potentially modifies all checkpointed registers.
+ * It restores r1 and r2 from the PACA.
+ */
+_GLOBAL_TOC(kvmppc_restore_tm_hv)
+EXPORT_SYMBOL_GPL(kvmppc_restore_tm_hv)
+ /*
+ * If we are doing TM emulation for the guest on a POWER9 DD2,
+ * then we don't actually do a trechkpt -- we either set up
+ * fake-suspend mode, or emulate a TM rollback.
+ */
+BEGIN_FTR_SECTION
+ b __kvmppc_restore_tm
+END_FTR_SECTION_IFCLR(CPU_FTR_P9_TM_HV_ASSIST)
+ mflr r0
+ std r0, PPC_LR_STKOFF(r1)
+
+ li r0, 0
+ stb r0, HSTATE_FAKE_SUSPEND(r13)
+
+ /* Turn on TM so we can restore TM SPRs */
+ mfmsr r5
+ li r0, 1
+ rldimi r5, r0, MSR_TM_LG, 63-MSR_TM_LG
+ mtmsrd r5
+
+ /*
+ * The user may change these outside of a transaction, so they must
+ * always be context switched.
+ */
+ ld r5, VCPU_TFHAR(r3)
+ ld r6, VCPU_TFIAR(r3)
+ ld r7, VCPU_TEXASR(r3)
+ mtspr SPRN_TFHAR, r5
+ mtspr SPRN_TFIAR, r6
+ mtspr SPRN_TEXASR, r7
+
+ rldicl. r5, r4, 64 - MSR_TS_S_LG, 62
+ beqlr /* TM not active in guest */
+
+ /* Make sure the failure summary is set */
+ oris r7, r7, (TEXASR_FS)@h
+ mtspr SPRN_TEXASR, r7
+
+ cmpwi r5, 1 /* check for suspended state */
+ bgt 10f
+ stb r5, HSTATE_FAKE_SUSPEND(r13)
+ b 9f /* and return */
+10: stdu r1, -PPC_MIN_STKFRM(r1)
+ /* guest is in transactional state, so simulate rollback */
+ bl kvmhv_emulate_tm_rollback
+ nop
+ addi r1, r1, PPC_MIN_STKFRM
+9: ld r0, PPC_LR_STKOFF(r1)
+ mtlr r0
+ blr
+#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
+
+/*
+ * We come here if we get any exception or interrupt while we are
+ * executing host real mode code while in guest MMU context.
+ * r12 is (CR << 32) | vector
+ * r13 points to our PACA
+ * r12 is saved in HSTATE_SCRATCH0(r13)
+ * r9 is saved in HSTATE_SCRATCH2(r13)
+ * r13 is saved in HSPRG1
+ * cfar is saved in HSTATE_CFAR(r13)
+ * ppr is saved in HSTATE_PPR(r13)
+ */
+kvmppc_bad_host_intr:
+ /*
+ * Switch to the emergency stack, but start half-way down in
+ * case we were already on it.
+ */
+ mr r9, r1
+ std r1, PACAR1(r13)
+ ld r1, PACAEMERGSP(r13)
+ subi r1, r1, THREAD_SIZE/2 + INT_FRAME_SIZE
+ std r9, 0(r1)
+ std r0, GPR0(r1)
+ std r9, GPR1(r1)
+ std r2, GPR2(r1)
+ SAVE_GPRS(3, 8, r1)
+ srdi r0, r12, 32
+ clrldi r12, r12, 32
+ std r0, _CCR(r1)
+ std r12, _TRAP(r1)
+ andi. r0, r12, 2
+ beq 1f
+ mfspr r3, SPRN_HSRR0
+ mfspr r4, SPRN_HSRR1
+ mfspr r5, SPRN_HDAR
+ mfspr r6, SPRN_HDSISR
+ b 2f
+1: mfspr r3, SPRN_SRR0
+ mfspr r4, SPRN_SRR1
+ mfspr r5, SPRN_DAR
+ mfspr r6, SPRN_DSISR
+2: std r3, _NIP(r1)
+ std r4, _MSR(r1)
+ std r5, _DAR(r1)
+ std r6, _DSISR(r1)
+ ld r9, HSTATE_SCRATCH2(r13)
+ ld r12, HSTATE_SCRATCH0(r13)
+ GET_SCRATCH0(r0)
+ SAVE_GPRS(9, 12, r1)
+ std r0, GPR13(r1)
+ SAVE_NVGPRS(r1)
+ ld r5, HSTATE_CFAR(r13)
+ std r5, ORIG_GPR3(r1)
+ mflr r3
+ mfctr r4
+ mfxer r5
+ lbz r6, PACAIRQSOFTMASK(r13)
+ std r3, _LINK(r1)
+ std r4, _CTR(r1)
+ std r5, _XER(r1)
+ std r6, SOFTE(r1)
+ LOAD_PACA_TOC()
+ LOAD_REG_IMMEDIATE(3, STACK_FRAME_REGS_MARKER)
+ std r3, STACK_FRAME_OVERHEAD-16(r1)
+
+ /*
+ * XXX On POWER7 and POWER8, we just spin here since we don't
+ * know what the other threads are doing (and we don't want to
+ * coordinate with them) - but at least we now have register state
+ * in memory that we might be able to look at from another CPU.
+ */
+ b .
+
+/*
+ * This mimics the MSR transition on IRQ delivery. The new guest MSR is taken
+ * from VCPU_INTR_MSR and is modified based on the required TM state changes.
+ * r11 has the guest MSR value (in/out)
+ * r9 has a vcpu pointer (in)
+ * r0 is used as a scratch register
+ */
+kvmppc_msr_interrupt:
+ rldicl r0, r11, 64 - MSR_TS_S_LG, 62
+ cmpwi r0, 2 /* Check if we are in transactional state.. */
+ ld r11, VCPU_INTR_MSR(r9)
+ bne 1f
+ /* ... if transactional, change to suspended */
+ li r0, 1
+1: rldimi r11, r0, MSR_TS_S_LG, 63 - MSR_TS_T_LG
+ blr
+
+/*
+ * void kvmhv_load_guest_pmu(struct kvm_vcpu *vcpu)
+ *
+ * Load up guest PMU state. R3 points to the vcpu struct.
+ */
+kvmhv_load_guest_pmu:
+ mr r4, r3
+ mflr r0
+ li r3, 1
+ sldi r3, r3, 31 /* MMCR0_FC (freeze counters) bit */
+ mtspr SPRN_MMCR0, r3 /* freeze all counters, disable ints */
+ isync
+BEGIN_FTR_SECTION
+ ld r3, VCPU_MMCR(r4)
+ andi. r5, r3, MMCR0_PMAO_SYNC | MMCR0_PMAO
+ cmpwi r5, MMCR0_PMAO
+ beql kvmppc_fix_pmao
+END_FTR_SECTION_IFSET(CPU_FTR_PMAO_BUG)
+ lwz r3, VCPU_PMC(r4) /* always load up guest PMU registers */
+ lwz r5, VCPU_PMC + 4(r4) /* to prevent information leak */
+ lwz r6, VCPU_PMC + 8(r4)
+ lwz r7, VCPU_PMC + 12(r4)
+ lwz r8, VCPU_PMC + 16(r4)
+ lwz r9, VCPU_PMC + 20(r4)
+ mtspr SPRN_PMC1, r3
+ mtspr SPRN_PMC2, r5
+ mtspr SPRN_PMC3, r6
+ mtspr SPRN_PMC4, r7
+ mtspr SPRN_PMC5, r8
+ mtspr SPRN_PMC6, r9
+ ld r3, VCPU_MMCR(r4)
+ ld r5, VCPU_MMCR + 8(r4)
+ ld r6, VCPU_MMCRA(r4)
+ ld r7, VCPU_SIAR(r4)
+ ld r8, VCPU_SDAR(r4)
+ mtspr SPRN_MMCR1, r5
+ mtspr SPRN_MMCRA, r6
+ mtspr SPRN_SIAR, r7
+ mtspr SPRN_SDAR, r8
+BEGIN_FTR_SECTION
+ ld r5, VCPU_MMCR + 16(r4)
+ ld r6, VCPU_SIER(r4)
+ mtspr SPRN_MMCR2, r5
+ mtspr SPRN_SIER, r6
+ lwz r7, VCPU_PMC + 24(r4)
+ lwz r8, VCPU_PMC + 28(r4)
+ ld r9, VCPU_MMCRS(r4)
+ mtspr SPRN_SPMC1, r7
+ mtspr SPRN_SPMC2, r8
+ mtspr SPRN_MMCRS, r9
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+ mtspr SPRN_MMCR0, r3
+ isync
+ mtlr r0
+ blr
+
+/*
+ * void kvmhv_load_host_pmu(void)
+ *
+ * Reload host PMU state saved in the PACA by kvmhv_save_host_pmu.
+ */
+kvmhv_load_host_pmu:
+ mflr r0
+ lbz r4, PACA_PMCINUSE(r13) /* is the host using the PMU? */
+ cmpwi r4, 0
+ beq 23f /* skip if not */
+BEGIN_FTR_SECTION
+ ld r3, HSTATE_MMCR0(r13)
+ andi. r4, r3, MMCR0_PMAO_SYNC | MMCR0_PMAO
+ cmpwi r4, MMCR0_PMAO
+ beql kvmppc_fix_pmao
+END_FTR_SECTION_IFSET(CPU_FTR_PMAO_BUG)
+ lwz r3, HSTATE_PMC1(r13)
+ lwz r4, HSTATE_PMC2(r13)
+ lwz r5, HSTATE_PMC3(r13)
+ lwz r6, HSTATE_PMC4(r13)
+ lwz r8, HSTATE_PMC5(r13)
+ lwz r9, HSTATE_PMC6(r13)
+ mtspr SPRN_PMC1, r3
+ mtspr SPRN_PMC2, r4
+ mtspr SPRN_PMC3, r5
+ mtspr SPRN_PMC4, r6
+ mtspr SPRN_PMC5, r8
+ mtspr SPRN_PMC6, r9
+ ld r3, HSTATE_MMCR0(r13)
+ ld r4, HSTATE_MMCR1(r13)
+ ld r5, HSTATE_MMCRA(r13)
+ ld r6, HSTATE_SIAR(r13)
+ ld r7, HSTATE_SDAR(r13)
+ mtspr SPRN_MMCR1, r4
+ mtspr SPRN_MMCRA, r5
+ mtspr SPRN_SIAR, r6
+ mtspr SPRN_SDAR, r7
+BEGIN_FTR_SECTION
+ ld r8, HSTATE_MMCR2(r13)
+ ld r9, HSTATE_SIER(r13)
+ mtspr SPRN_MMCR2, r8
+ mtspr SPRN_SIER, r9
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+ mtspr SPRN_MMCR0, r3
+ isync
+ mtlr r0
+23: blr
+
+/*
+ * void kvmhv_save_guest_pmu(struct kvm_vcpu *vcpu, bool pmu_in_use)
+ *
+ * Save guest PMU state into the vcpu struct.
+ * r3 = vcpu, r4 = full save flag (PMU in use flag set in VPA)
+ */
+kvmhv_save_guest_pmu:
+ mr r9, r3
+ mr r8, r4
+BEGIN_FTR_SECTION
+ /*
+ * POWER8 seems to have a hardware bug where setting
+ * MMCR0[PMAE] along with MMCR0[PMC1CE] and/or MMCR0[PMCjCE]
+ * when some counters are already negative doesn't seem
+ * to cause a performance monitor alert (and hence interrupt).
+ * The effect of this is that when saving the PMU state,
+ * if there is no PMU alert pending when we read MMCR0
+ * before freezing the counters, but one becomes pending
+ * before we read the counters, we lose it.
+ * To work around this, we need a way to freeze the counters
+ * before reading MMCR0. Normally, freezing the counters
+ * is done by writing MMCR0 (to set MMCR0[FC]) which
+ * unavoidably writes MMCR0[PMA0] as well. On POWER8,
+ * we can also freeze the counters using MMCR2, by writing
+ * 1s to all the counter freeze condition bits (there are
+ * 9 bits each for 6 counters).
+ */
+ li r3, -1 /* set all freeze bits */
+ clrrdi r3, r3, 10
+ mfspr r10, SPRN_MMCR2
+ mtspr SPRN_MMCR2, r3
+ isync
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+ li r3, 1
+ sldi r3, r3, 31 /* MMCR0_FC (freeze counters) bit */
+ mfspr r4, SPRN_MMCR0 /* save MMCR0 */
+ mtspr SPRN_MMCR0, r3 /* freeze all counters, disable ints */
+ mfspr r6, SPRN_MMCRA
+ /* Clear MMCRA in order to disable SDAR updates */
+ li r7, 0
+ mtspr SPRN_MMCRA, r7
+ isync
+ cmpwi r8, 0 /* did they ask for PMU stuff to be saved? */
+ bne 21f
+ std r3, VCPU_MMCR(r9) /* if not, set saved MMCR0 to FC */
+ b 22f
+21: mfspr r5, SPRN_MMCR1
+ mfspr r7, SPRN_SIAR
+ mfspr r8, SPRN_SDAR
+ std r4, VCPU_MMCR(r9)
+ std r5, VCPU_MMCR + 8(r9)
+ std r6, VCPU_MMCRA(r9)
+BEGIN_FTR_SECTION
+ std r10, VCPU_MMCR + 16(r9)
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+ std r7, VCPU_SIAR(r9)
+ std r8, VCPU_SDAR(r9)
+ mfspr r3, SPRN_PMC1
+ mfspr r4, SPRN_PMC2
+ mfspr r5, SPRN_PMC3
+ mfspr r6, SPRN_PMC4
+ mfspr r7, SPRN_PMC5
+ mfspr r8, SPRN_PMC6
+ stw r3, VCPU_PMC(r9)
+ stw r4, VCPU_PMC + 4(r9)
+ stw r5, VCPU_PMC + 8(r9)
+ stw r6, VCPU_PMC + 12(r9)
+ stw r7, VCPU_PMC + 16(r9)
+ stw r8, VCPU_PMC + 20(r9)
+BEGIN_FTR_SECTION
+ mfspr r5, SPRN_SIER
+ std r5, VCPU_SIER(r9)
+ mfspr r6, SPRN_SPMC1
+ mfspr r7, SPRN_SPMC2
+ mfspr r8, SPRN_MMCRS
+ stw r6, VCPU_PMC + 24(r9)
+ stw r7, VCPU_PMC + 28(r9)
+ std r8, VCPU_MMCRS(r9)
+ lis r4, 0x8000
+ mtspr SPRN_MMCRS, r4
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+22: blr
+
+/*
+ * This works around a hardware bug on POWER8E processors, where
+ * writing a 1 to the MMCR0[PMAO] bit doesn't generate a
+ * performance monitor interrupt. Instead, when we need to have
+ * an interrupt pending, we have to arrange for a counter to overflow.
+ */
+kvmppc_fix_pmao:
+ li r3, 0
+ mtspr SPRN_MMCR2, r3
+ lis r3, (MMCR0_PMXE | MMCR0_FCECE)@h
+ ori r3, r3, MMCR0_PMCjCE | MMCR0_C56RUN
+ mtspr SPRN_MMCR0, r3
+ lis r3, 0x7fff
+ ori r3, r3, 0xffff
+ mtspr SPRN_PMC6, r3
+ isync
+ blr
+
+#ifdef CONFIG_KVM_BOOK3S_HV_P8_TIMING
+/*
+ * Start timing an activity
+ * r3 = pointer to time accumulation struct, r4 = vcpu
+ */
+kvmhv_start_timing:
+ ld r5, HSTATE_KVM_VCORE(r13)
+ ld r6, VCORE_TB_OFFSET_APPL(r5)
+ mftb r5
+ subf r5, r6, r5 /* subtract current timebase offset */
+ std r3, VCPU_CUR_ACTIVITY(r4)
+ std r5, VCPU_ACTIVITY_START(r4)
+ blr
+
+/*
+ * Accumulate time to one activity and start another.
+ * r3 = pointer to new time accumulation struct, r4 = vcpu
+ */
+kvmhv_accumulate_time:
+ ld r5, HSTATE_KVM_VCORE(r13)
+ ld r8, VCORE_TB_OFFSET_APPL(r5)
+ ld r5, VCPU_CUR_ACTIVITY(r4)
+ ld r6, VCPU_ACTIVITY_START(r4)
+ std r3, VCPU_CUR_ACTIVITY(r4)
+ mftb r7
+ subf r7, r8, r7 /* subtract current timebase offset */
+ std r7, VCPU_ACTIVITY_START(r4)
+ cmpdi r5, 0
+ beqlr
+ subf r3, r6, r7
+ ld r8, TAS_SEQCOUNT(r5)
+ cmpdi r8, 0
+ addi r8, r8, 1
+ std r8, TAS_SEQCOUNT(r5)
+ lwsync
+ ld r7, TAS_TOTAL(r5)
+ add r7, r7, r3
+ std r7, TAS_TOTAL(r5)
+ ld r6, TAS_MIN(r5)
+ ld r7, TAS_MAX(r5)
+ beq 3f
+ cmpd r3, r6
+ bge 1f
+3: std r3, TAS_MIN(r5)
+1: cmpd r3, r7
+ ble 2f
+ std r3, TAS_MAX(r5)
+2: lwsync
+ addi r8, r8, 1
+ std r8, TAS_SEQCOUNT(r5)
+ blr
+#endif
diff --git a/arch/powerpc/kvm/book3s_hv_tm.c b/arch/powerpc/kvm/book3s_hv_tm.c
new file mode 100644
index 000000000..866cadd70
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_hv_tm.c
@@ -0,0 +1,248 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright 2017 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/kvm_host.h>
+
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+#include <asm/kvm_book3s_64.h>
+#include <asm/reg.h>
+#include <asm/ppc-opcode.h>
+
+static void emulate_tx_failure(struct kvm_vcpu *vcpu, u64 failure_cause)
+{
+ u64 texasr, tfiar;
+ u64 msr = vcpu->arch.shregs.msr;
+
+ tfiar = vcpu->arch.regs.nip & ~0x3ull;
+ texasr = (failure_cause << 56) | TEXASR_ABORT | TEXASR_FS | TEXASR_EXACT;
+ if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr))
+ texasr |= TEXASR_SUSP;
+ if (msr & MSR_PR) {
+ texasr |= TEXASR_PR;
+ tfiar |= 1;
+ }
+ vcpu->arch.tfiar = tfiar;
+ /* Preserve ROT and TL fields of existing TEXASR */
+ vcpu->arch.texasr = (vcpu->arch.texasr & 0x3ffffff) | texasr;
+}
+
+/*
+ * This gets called on a softpatch interrupt on POWER9 DD2.2 processors.
+ * We expect to find a TM-related instruction to be emulated. The
+ * instruction image is in vcpu->arch.emul_inst. If the guest was in
+ * TM suspended or transactional state, the checkpointed state has been
+ * reclaimed and is in the vcpu struct. The CPU is in virtual mode in
+ * host context.
+ */
+int kvmhv_p9_tm_emulation(struct kvm_vcpu *vcpu)
+{
+ u32 instr = vcpu->arch.emul_inst;
+ u64 msr = vcpu->arch.shregs.msr;
+ u64 newmsr, bescr;
+ int ra, rs;
+
+ /*
+ * The TM softpatch interrupt sets NIP to the instruction following
+ * the faulting instruction, which is not executed. Rewind nip to the
+ * faulting instruction so it looks like a normal synchronous
+ * interrupt, then update nip in the places where the instruction is
+ * emulated.
+ */
+ vcpu->arch.regs.nip -= 4;
+
+ /*
+ * rfid, rfebb, and mtmsrd encode bit 31 = 0 since it's a reserved bit
+ * in these instructions, so masking bit 31 out doesn't change these
+ * instructions. For treclaim., tsr., and trechkpt. instructions if bit
+ * 31 = 0 then they are per ISA invalid forms, however P9 UM, in section
+ * 4.6.10 Book II Invalid Forms, informs specifically that ignoring bit
+ * 31 is an acceptable way to handle these invalid forms that have
+ * bit 31 = 0. Moreover, for emulation purposes both forms (w/ and wo/
+ * bit 31 set) can generate a softpatch interrupt. Hence both forms
+ * are handled below for these instructions so they behave the same way.
+ */
+ switch (instr & PO_XOP_OPCODE_MASK) {
+ case PPC_INST_RFID:
+ /* XXX do we need to check for PR=0 here? */
+ newmsr = vcpu->arch.shregs.srr1;
+ /* should only get here for Sx -> T1 transition */
+ WARN_ON_ONCE(!(MSR_TM_SUSPENDED(msr) &&
+ MSR_TM_TRANSACTIONAL(newmsr) &&
+ (newmsr & MSR_TM)));
+ newmsr = sanitize_msr(newmsr);
+ vcpu->arch.shregs.msr = newmsr;
+ vcpu->arch.cfar = vcpu->arch.regs.nip;
+ vcpu->arch.regs.nip = vcpu->arch.shregs.srr0;
+ return RESUME_GUEST;
+
+ case PPC_INST_RFEBB:
+ if ((msr & MSR_PR) && (vcpu->arch.vcore->pcr & PCR_ARCH_206)) {
+ /* generate an illegal instruction interrupt */
+ kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
+ return RESUME_GUEST;
+ }
+ /* check EBB facility is available */
+ if (!(vcpu->arch.hfscr & HFSCR_EBB)) {
+ vcpu->arch.hfscr &= ~HFSCR_INTR_CAUSE;
+ vcpu->arch.hfscr |= (u64)FSCR_EBB_LG << 56;
+ vcpu->arch.trap = BOOK3S_INTERRUPT_H_FAC_UNAVAIL;
+ return -1; /* rerun host interrupt handler */
+ }
+ if ((msr & MSR_PR) && !(vcpu->arch.fscr & FSCR_EBB)) {
+ /* generate a facility unavailable interrupt */
+ vcpu->arch.fscr &= ~FSCR_INTR_CAUSE;
+ vcpu->arch.fscr |= (u64)FSCR_EBB_LG << 56;
+ kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
+ return RESUME_GUEST;
+ }
+ bescr = vcpu->arch.bescr;
+ /* expect to see a S->T transition requested */
+ WARN_ON_ONCE(!(MSR_TM_SUSPENDED(msr) &&
+ ((bescr >> 30) & 3) == 2));
+ bescr &= ~BESCR_GE;
+ if (instr & (1 << 11))
+ bescr |= BESCR_GE;
+ vcpu->arch.bescr = bescr;
+ msr = (msr & ~MSR_TS_MASK) | MSR_TS_T;
+ vcpu->arch.shregs.msr = msr;
+ vcpu->arch.cfar = vcpu->arch.regs.nip;
+ vcpu->arch.regs.nip = vcpu->arch.ebbrr;
+ return RESUME_GUEST;
+
+ case PPC_INST_MTMSRD:
+ /* XXX do we need to check for PR=0 here? */
+ rs = (instr >> 21) & 0x1f;
+ newmsr = kvmppc_get_gpr(vcpu, rs);
+ /* check this is a Sx -> T1 transition */
+ WARN_ON_ONCE(!(MSR_TM_SUSPENDED(msr) &&
+ MSR_TM_TRANSACTIONAL(newmsr) &&
+ (newmsr & MSR_TM)));
+ /* mtmsrd doesn't change LE */
+ newmsr = (newmsr & ~MSR_LE) | (msr & MSR_LE);
+ newmsr = sanitize_msr(newmsr);
+ vcpu->arch.shregs.msr = newmsr;
+ vcpu->arch.regs.nip += 4;
+ return RESUME_GUEST;
+
+ /* ignore bit 31, see comment above */
+ case (PPC_INST_TSR & PO_XOP_OPCODE_MASK):
+ /* check for PR=1 and arch 2.06 bit set in PCR */
+ if ((msr & MSR_PR) && (vcpu->arch.vcore->pcr & PCR_ARCH_206)) {
+ /* generate an illegal instruction interrupt */
+ kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
+ return RESUME_GUEST;
+ }
+ /* check for TM disabled in the HFSCR or MSR */
+ if (!(vcpu->arch.hfscr & HFSCR_TM)) {
+ vcpu->arch.hfscr &= ~HFSCR_INTR_CAUSE;
+ vcpu->arch.hfscr |= (u64)FSCR_TM_LG << 56;
+ vcpu->arch.trap = BOOK3S_INTERRUPT_H_FAC_UNAVAIL;
+ return -1; /* rerun host interrupt handler */
+ }
+ if (!(msr & MSR_TM)) {
+ /* generate a facility unavailable interrupt */
+ vcpu->arch.fscr &= ~FSCR_INTR_CAUSE;
+ vcpu->arch.fscr |= (u64)FSCR_TM_LG << 56;
+ kvmppc_book3s_queue_irqprio(vcpu,
+ BOOK3S_INTERRUPT_FAC_UNAVAIL);
+ return RESUME_GUEST;
+ }
+ /* Set CR0 to indicate previous transactional state */
+ vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & 0x0fffffff) |
+ (((msr & MSR_TS_MASK) >> MSR_TS_S_LG) << 29);
+ /* L=1 => tresume, L=0 => tsuspend */
+ if (instr & (1 << 21)) {
+ if (MSR_TM_SUSPENDED(msr))
+ msr = (msr & ~MSR_TS_MASK) | MSR_TS_T;
+ } else {
+ if (MSR_TM_TRANSACTIONAL(msr))
+ msr = (msr & ~MSR_TS_MASK) | MSR_TS_S;
+ }
+ vcpu->arch.shregs.msr = msr;
+ vcpu->arch.regs.nip += 4;
+ return RESUME_GUEST;
+
+ /* ignore bit 31, see comment above */
+ case (PPC_INST_TRECLAIM & PO_XOP_OPCODE_MASK):
+ /* check for TM disabled in the HFSCR or MSR */
+ if (!(vcpu->arch.hfscr & HFSCR_TM)) {
+ vcpu->arch.hfscr &= ~HFSCR_INTR_CAUSE;
+ vcpu->arch.hfscr |= (u64)FSCR_TM_LG << 56;
+ vcpu->arch.trap = BOOK3S_INTERRUPT_H_FAC_UNAVAIL;
+ return -1; /* rerun host interrupt handler */
+ }
+ if (!(msr & MSR_TM)) {
+ /* generate a facility unavailable interrupt */
+ vcpu->arch.fscr &= ~FSCR_INTR_CAUSE;
+ vcpu->arch.fscr |= (u64)FSCR_TM_LG << 56;
+ kvmppc_book3s_queue_irqprio(vcpu,
+ BOOK3S_INTERRUPT_FAC_UNAVAIL);
+ return RESUME_GUEST;
+ }
+ /* If no transaction active, generate TM bad thing */
+ if (!MSR_TM_ACTIVE(msr)) {
+ kvmppc_core_queue_program(vcpu, SRR1_PROGTM);
+ return RESUME_GUEST;
+ }
+ /* If failure was not previously recorded, recompute TEXASR */
+ if (!(vcpu->arch.orig_texasr & TEXASR_FS)) {
+ ra = (instr >> 16) & 0x1f;
+ if (ra)
+ ra = kvmppc_get_gpr(vcpu, ra) & 0xff;
+ emulate_tx_failure(vcpu, ra);
+ }
+
+ copy_from_checkpoint(vcpu);
+
+ /* Set CR0 to indicate previous transactional state */
+ vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & 0x0fffffff) |
+ (((msr & MSR_TS_MASK) >> MSR_TS_S_LG) << 29);
+ vcpu->arch.shregs.msr &= ~MSR_TS_MASK;
+ vcpu->arch.regs.nip += 4;
+ return RESUME_GUEST;
+
+ /* ignore bit 31, see comment above */
+ case (PPC_INST_TRECHKPT & PO_XOP_OPCODE_MASK):
+ /* XXX do we need to check for PR=0 here? */
+ /* check for TM disabled in the HFSCR or MSR */
+ if (!(vcpu->arch.hfscr & HFSCR_TM)) {
+ vcpu->arch.hfscr &= ~HFSCR_INTR_CAUSE;
+ vcpu->arch.hfscr |= (u64)FSCR_TM_LG << 56;
+ vcpu->arch.trap = BOOK3S_INTERRUPT_H_FAC_UNAVAIL;
+ return -1; /* rerun host interrupt handler */
+ }
+ if (!(msr & MSR_TM)) {
+ /* generate a facility unavailable interrupt */
+ vcpu->arch.fscr &= ~FSCR_INTR_CAUSE;
+ vcpu->arch.fscr |= (u64)FSCR_TM_LG << 56;
+ kvmppc_book3s_queue_irqprio(vcpu,
+ BOOK3S_INTERRUPT_FAC_UNAVAIL);
+ return RESUME_GUEST;
+ }
+ /* If transaction active or TEXASR[FS] = 0, bad thing */
+ if (MSR_TM_ACTIVE(msr) || !(vcpu->arch.texasr & TEXASR_FS)) {
+ kvmppc_core_queue_program(vcpu, SRR1_PROGTM);
+ return RESUME_GUEST;
+ }
+
+ copy_to_checkpoint(vcpu);
+
+ /* Set CR0 to indicate previous transactional state */
+ vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & 0x0fffffff) |
+ (((msr & MSR_TS_MASK) >> MSR_TS_S_LG) << 29);
+ vcpu->arch.shregs.msr = msr | MSR_TS_S;
+ vcpu->arch.regs.nip += 4;
+ return RESUME_GUEST;
+ }
+
+ /* What should we do here? We didn't recognize the instruction */
+ kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
+ pr_warn_ratelimited("Unrecognized TM-related instruction %#x for emulation", instr);
+
+ return RESUME_GUEST;
+}
diff --git a/arch/powerpc/kvm/book3s_hv_tm_builtin.c b/arch/powerpc/kvm/book3s_hv_tm_builtin.c
new file mode 100644
index 000000000..fad931f22
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_hv_tm_builtin.c
@@ -0,0 +1,119 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright 2017 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
+ */
+
+#include <linux/kvm_host.h>
+
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+#include <asm/kvm_book3s_64.h>
+#include <asm/reg.h>
+#include <asm/ppc-opcode.h>
+
+/*
+ * This handles the cases where the guest is in real suspend mode
+ * and we want to get back to the guest without dooming the transaction.
+ * The caller has checked that the guest is in real-suspend mode
+ * (MSR[TS] = S and the fake-suspend flag is not set).
+ */
+int kvmhv_p9_tm_emulation_early(struct kvm_vcpu *vcpu)
+{
+ u32 instr = vcpu->arch.emul_inst;
+ u64 newmsr, msr, bescr;
+ int rs;
+
+ /*
+ * rfid, rfebb, and mtmsrd encode bit 31 = 0 since it's a reserved bit
+ * in these instructions, so masking bit 31 out doesn't change these
+ * instructions. For the tsr. instruction if bit 31 = 0 then it is per
+ * ISA an invalid form, however P9 UM, in section 4.6.10 Book II Invalid
+ * Forms, informs specifically that ignoring bit 31 is an acceptable way
+ * to handle TM-related invalid forms that have bit 31 = 0. Moreover,
+ * for emulation purposes both forms (w/ and wo/ bit 31 set) can
+ * generate a softpatch interrupt. Hence both forms are handled below
+ * for tsr. to make them behave the same way.
+ */
+ switch (instr & PO_XOP_OPCODE_MASK) {
+ case PPC_INST_RFID:
+ /* XXX do we need to check for PR=0 here? */
+ newmsr = vcpu->arch.shregs.srr1;
+ /* should only get here for Sx -> T1 transition */
+ if (!(MSR_TM_TRANSACTIONAL(newmsr) && (newmsr & MSR_TM)))
+ return 0;
+ newmsr = sanitize_msr(newmsr);
+ vcpu->arch.shregs.msr = newmsr;
+ vcpu->arch.cfar = vcpu->arch.regs.nip - 4;
+ vcpu->arch.regs.nip = vcpu->arch.shregs.srr0;
+ return 1;
+
+ case PPC_INST_RFEBB:
+ /* check for PR=1 and arch 2.06 bit set in PCR */
+ msr = vcpu->arch.shregs.msr;
+ if ((msr & MSR_PR) && (vcpu->arch.vcore->pcr & PCR_ARCH_206))
+ return 0;
+ /* check EBB facility is available */
+ if (!(vcpu->arch.hfscr & HFSCR_EBB) ||
+ ((msr & MSR_PR) && !(mfspr(SPRN_FSCR) & FSCR_EBB)))
+ return 0;
+ bescr = mfspr(SPRN_BESCR);
+ /* expect to see a S->T transition requested */
+ if (((bescr >> 30) & 3) != 2)
+ return 0;
+ bescr &= ~BESCR_GE;
+ if (instr & (1 << 11))
+ bescr |= BESCR_GE;
+ mtspr(SPRN_BESCR, bescr);
+ msr = (msr & ~MSR_TS_MASK) | MSR_TS_T;
+ vcpu->arch.shregs.msr = msr;
+ vcpu->arch.cfar = vcpu->arch.regs.nip - 4;
+ vcpu->arch.regs.nip = mfspr(SPRN_EBBRR);
+ return 1;
+
+ case PPC_INST_MTMSRD:
+ /* XXX do we need to check for PR=0 here? */
+ rs = (instr >> 21) & 0x1f;
+ newmsr = kvmppc_get_gpr(vcpu, rs);
+ msr = vcpu->arch.shregs.msr;
+ /* check this is a Sx -> T1 transition */
+ if (!(MSR_TM_TRANSACTIONAL(newmsr) && (newmsr & MSR_TM)))
+ return 0;
+ /* mtmsrd doesn't change LE */
+ newmsr = (newmsr & ~MSR_LE) | (msr & MSR_LE);
+ newmsr = sanitize_msr(newmsr);
+ vcpu->arch.shregs.msr = newmsr;
+ return 1;
+
+ /* ignore bit 31, see comment above */
+ case (PPC_INST_TSR & PO_XOP_OPCODE_MASK):
+ /* we know the MSR has the TS field = S (0b01) here */
+ msr = vcpu->arch.shregs.msr;
+ /* check for PR=1 and arch 2.06 bit set in PCR */
+ if ((msr & MSR_PR) && (vcpu->arch.vcore->pcr & PCR_ARCH_206))
+ return 0;
+ /* check for TM disabled in the HFSCR or MSR */
+ if (!(vcpu->arch.hfscr & HFSCR_TM) || !(msr & MSR_TM))
+ return 0;
+ /* L=1 => tresume => set TS to T (0b10) */
+ if (instr & (1 << 21))
+ vcpu->arch.shregs.msr = (msr & ~MSR_TS_MASK) | MSR_TS_T;
+ /* Set CR0 to 0b0010 */
+ vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & 0x0fffffff) |
+ 0x20000000;
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * This is called when we are returning to a guest in TM transactional
+ * state. We roll the guest state back to the checkpointed state.
+ */
+void kvmhv_emulate_tm_rollback(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.shregs.msr &= ~MSR_TS_MASK; /* go to N state */
+ vcpu->arch.regs.nip = vcpu->arch.tfhar;
+ copy_from_checkpoint(vcpu);
+ vcpu->arch.regs.ccr = (vcpu->arch.regs.ccr & 0x0fffffff) | 0xa0000000;
+}
diff --git a/arch/powerpc/kvm/book3s_hv_uvmem.c b/arch/powerpc/kvm/book3s_hv_uvmem.c
new file mode 100644
index 000000000..e2f11f9c3
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_hv_uvmem.c
@@ -0,0 +1,1219 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Secure pages management: Migration of pages between normal and secure
+ * memory of KVM guests.
+ *
+ * Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com>
+ */
+
+/*
+ * A pseries guest can be run as secure guest on Ultravisor-enabled
+ * POWER platforms. On such platforms, this driver will be used to manage
+ * the movement of guest pages between the normal memory managed by
+ * hypervisor (HV) and secure memory managed by Ultravisor (UV).
+ *
+ * The page-in or page-out requests from UV will come to HV as hcalls and
+ * HV will call back into UV via ultracalls to satisfy these page requests.
+ *
+ * Private ZONE_DEVICE memory equal to the amount of secure memory
+ * available in the platform for running secure guests is hotplugged.
+ * Whenever a page belonging to the guest becomes secure, a page from this
+ * private device memory is used to represent and track that secure page
+ * on the HV side. Some pages (like virtio buffers, VPA pages etc) are
+ * shared between UV and HV. However such pages aren't represented by
+ * device private memory and mappings to shared memory exist in both
+ * UV and HV page tables.
+ */
+
+/*
+ * Notes on locking
+ *
+ * kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent
+ * page-in and page-out requests for the same GPA. Concurrent accesses
+ * can either come via UV (guest vCPUs requesting for same page)
+ * or when HV and guest simultaneously access the same page.
+ * This mutex serializes the migration of page from HV(normal) to
+ * UV(secure) and vice versa. So the serialization points are around
+ * migrate_vma routines and page-in/out routines.
+ *
+ * Per-guest mutex comes with a cost though. Mainly it serializes the
+ * fault path as page-out can occur when HV faults on accessing secure
+ * guest pages. Currently UV issues page-in requests for all the guest
+ * PFNs one at a time during early boot (UV_ESM uvcall), so this is
+ * not a cause for concern. Also currently the number of page-outs caused
+ * by HV touching secure pages is very very low. If an when UV supports
+ * overcommitting, then we might see concurrent guest driven page-outs.
+ *
+ * Locking order
+ *
+ * 1. kvm->srcu - Protects KVM memslots
+ * 2. kvm->mm->mmap_lock - find_vma, migrate_vma_pages and helpers, ksm_madvise
+ * 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting
+ * as sync-points for page-in/out
+ */
+
+/*
+ * Notes on page size
+ *
+ * Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN
+ * and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks
+ * secure GPAs at 64K page size and maintains one device PFN for each
+ * 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued
+ * for 64K page at a time.
+ *
+ * HV faulting on secure pages: When HV touches any secure page, it
+ * faults and issues a UV_PAGE_OUT request with 64K page size. Currently
+ * UV splits and remaps the 2MB page if necessary and copies out the
+ * required 64K page contents.
+ *
+ * Shared pages: Whenever guest shares a secure page, UV will split and
+ * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size.
+ *
+ * HV invalidating a page: When a regular page belonging to secure
+ * guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K
+ * page size. Using 64K page size is correct here because any non-secure
+ * page will essentially be of 64K page size. Splitting by UV during sharing
+ * and page-out ensures this.
+ *
+ * Page fault handling: When HV handles page fault of a page belonging
+ * to secure guest, it sends that to UV with a 64K UV_PAGE_IN request.
+ * Using 64K size is correct here too as UV would have split the 2MB page
+ * into 64k mappings and would have done page-outs earlier.
+ *
+ * In summary, the current secure pages handling code in HV assumes
+ * 64K page size and in fact fails any page-in/page-out requests of
+ * non-64K size upfront. If and when UV starts supporting multiple
+ * page-sizes, we need to break this assumption.
+ */
+
+#include <linux/pagemap.h>
+#include <linux/migrate.h>
+#include <linux/kvm_host.h>
+#include <linux/ksm.h>
+#include <linux/of.h>
+#include <linux/memremap.h>
+#include <asm/ultravisor.h>
+#include <asm/mman.h>
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s_uvmem.h>
+
+static struct dev_pagemap kvmppc_uvmem_pgmap;
+static unsigned long *kvmppc_uvmem_bitmap;
+static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock);
+
+/*
+ * States of a GFN
+ * ---------------
+ * The GFN can be in one of the following states.
+ *
+ * (a) Secure - The GFN is secure. The GFN is associated with
+ * a Secure VM, the contents of the GFN is not accessible
+ * to the Hypervisor. This GFN can be backed by a secure-PFN,
+ * or can be backed by a normal-PFN with contents encrypted.
+ * The former is true when the GFN is paged-in into the
+ * ultravisor. The latter is true when the GFN is paged-out
+ * of the ultravisor.
+ *
+ * (b) Shared - The GFN is shared. The GFN is associated with a
+ * a secure VM. The contents of the GFN is accessible to
+ * Hypervisor. This GFN is backed by a normal-PFN and its
+ * content is un-encrypted.
+ *
+ * (c) Normal - The GFN is a normal. The GFN is associated with
+ * a normal VM. The contents of the GFN is accessible to
+ * the Hypervisor. Its content is never encrypted.
+ *
+ * States of a VM.
+ * ---------------
+ *
+ * Normal VM: A VM whose contents are always accessible to
+ * the hypervisor. All its GFNs are normal-GFNs.
+ *
+ * Secure VM: A VM whose contents are not accessible to the
+ * hypervisor without the VM's consent. Its GFNs are
+ * either Shared-GFN or Secure-GFNs.
+ *
+ * Transient VM: A Normal VM that is transitioning to secure VM.
+ * The transition starts on successful return of
+ * H_SVM_INIT_START, and ends on successful return
+ * of H_SVM_INIT_DONE. This transient VM, can have GFNs
+ * in any of the three states; i.e Secure-GFN, Shared-GFN,
+ * and Normal-GFN. The VM never executes in this state
+ * in supervisor-mode.
+ *
+ * Memory slot State.
+ * -----------------------------
+ * The state of a memory slot mirrors the state of the
+ * VM the memory slot is associated with.
+ *
+ * VM State transition.
+ * --------------------
+ *
+ * A VM always starts in Normal Mode.
+ *
+ * H_SVM_INIT_START moves the VM into transient state. During this
+ * time the Ultravisor may request some of its GFNs to be shared or
+ * secured. So its GFNs can be in one of the three GFN states.
+ *
+ * H_SVM_INIT_DONE moves the VM entirely from transient state to
+ * secure-state. At this point any left-over normal-GFNs are
+ * transitioned to Secure-GFN.
+ *
+ * H_SVM_INIT_ABORT moves the transient VM back to normal VM.
+ * All its GFNs are moved to Normal-GFNs.
+ *
+ * UV_TERMINATE transitions the secure-VM back to normal-VM. All
+ * the secure-GFN and shared-GFNs are tranistioned to normal-GFN
+ * Note: The contents of the normal-GFN is undefined at this point.
+ *
+ * GFN state implementation:
+ * -------------------------
+ *
+ * Secure GFN is associated with a secure-PFN; also called uvmem_pfn,
+ * when the GFN is paged-in. Its pfn[] has KVMPPC_GFN_UVMEM_PFN flag
+ * set, and contains the value of the secure-PFN.
+ * It is associated with a normal-PFN; also called mem_pfn, when
+ * the GFN is pagedout. Its pfn[] has KVMPPC_GFN_MEM_PFN flag set.
+ * The value of the normal-PFN is not tracked.
+ *
+ * Shared GFN is associated with a normal-PFN. Its pfn[] has
+ * KVMPPC_UVMEM_SHARED_PFN flag set. The value of the normal-PFN
+ * is not tracked.
+ *
+ * Normal GFN is associated with normal-PFN. Its pfn[] has
+ * no flag set. The value of the normal-PFN is not tracked.
+ *
+ * Life cycle of a GFN
+ * --------------------
+ *
+ * --------------------------------------------------------------
+ * | | Share | Unshare | SVM |H_SVM_INIT_DONE|
+ * | |operation |operation | abort/ | |
+ * | | | | terminate | |
+ * -------------------------------------------------------------
+ * | | | | | |
+ * | Secure | Shared | Secure |Normal |Secure |
+ * | | | | | |
+ * | Shared | Shared | Secure |Normal |Shared |
+ * | | | | | |
+ * | Normal | Shared | Secure |Normal |Secure |
+ * --------------------------------------------------------------
+ *
+ * Life cycle of a VM
+ * --------------------
+ *
+ * --------------------------------------------------------------------
+ * | | start | H_SVM_ |H_SVM_ |H_SVM_ |UV_SVM_ |
+ * | | VM |INIT_START|INIT_DONE|INIT_ABORT |TERMINATE |
+ * | | | | | | |
+ * --------- ----------------------------------------------------------
+ * | | | | | | |
+ * | Normal | Normal | Transient|Error |Error |Normal |
+ * | | | | | | |
+ * | Secure | Error | Error |Error |Error |Normal |
+ * | | | | | | |
+ * |Transient| N/A | Error |Secure |Normal |Normal |
+ * --------------------------------------------------------------------
+ */
+
+#define KVMPPC_GFN_UVMEM_PFN (1UL << 63)
+#define KVMPPC_GFN_MEM_PFN (1UL << 62)
+#define KVMPPC_GFN_SHARED (1UL << 61)
+#define KVMPPC_GFN_SECURE (KVMPPC_GFN_UVMEM_PFN | KVMPPC_GFN_MEM_PFN)
+#define KVMPPC_GFN_FLAG_MASK (KVMPPC_GFN_SECURE | KVMPPC_GFN_SHARED)
+#define KVMPPC_GFN_PFN_MASK (~KVMPPC_GFN_FLAG_MASK)
+
+struct kvmppc_uvmem_slot {
+ struct list_head list;
+ unsigned long nr_pfns;
+ unsigned long base_pfn;
+ unsigned long *pfns;
+};
+struct kvmppc_uvmem_page_pvt {
+ struct kvm *kvm;
+ unsigned long gpa;
+ bool skip_page_out;
+ bool remove_gfn;
+};
+
+bool kvmppc_uvmem_available(void)
+{
+ /*
+ * If kvmppc_uvmem_bitmap != NULL, then there is an ultravisor
+ * and our data structures have been initialized successfully.
+ */
+ return !!kvmppc_uvmem_bitmap;
+}
+
+int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot)
+{
+ struct kvmppc_uvmem_slot *p;
+
+ p = kzalloc(sizeof(*p), GFP_KERNEL);
+ if (!p)
+ return -ENOMEM;
+ p->pfns = vcalloc(slot->npages, sizeof(*p->pfns));
+ if (!p->pfns) {
+ kfree(p);
+ return -ENOMEM;
+ }
+ p->nr_pfns = slot->npages;
+ p->base_pfn = slot->base_gfn;
+
+ mutex_lock(&kvm->arch.uvmem_lock);
+ list_add(&p->list, &kvm->arch.uvmem_pfns);
+ mutex_unlock(&kvm->arch.uvmem_lock);
+
+ return 0;
+}
+
+/*
+ * All device PFNs are already released by the time we come here.
+ */
+void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot)
+{
+ struct kvmppc_uvmem_slot *p, *next;
+
+ mutex_lock(&kvm->arch.uvmem_lock);
+ list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) {
+ if (p->base_pfn == slot->base_gfn) {
+ vfree(p->pfns);
+ list_del(&p->list);
+ kfree(p);
+ break;
+ }
+ }
+ mutex_unlock(&kvm->arch.uvmem_lock);
+}
+
+static void kvmppc_mark_gfn(unsigned long gfn, struct kvm *kvm,
+ unsigned long flag, unsigned long uvmem_pfn)
+{
+ struct kvmppc_uvmem_slot *p;
+
+ list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
+ if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
+ unsigned long index = gfn - p->base_pfn;
+
+ if (flag == KVMPPC_GFN_UVMEM_PFN)
+ p->pfns[index] = uvmem_pfn | flag;
+ else
+ p->pfns[index] = flag;
+ return;
+ }
+ }
+}
+
+/* mark the GFN as secure-GFN associated with @uvmem pfn device-PFN. */
+static void kvmppc_gfn_secure_uvmem_pfn(unsigned long gfn,
+ unsigned long uvmem_pfn, struct kvm *kvm)
+{
+ kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_UVMEM_PFN, uvmem_pfn);
+}
+
+/* mark the GFN as secure-GFN associated with a memory-PFN. */
+static void kvmppc_gfn_secure_mem_pfn(unsigned long gfn, struct kvm *kvm)
+{
+ kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_MEM_PFN, 0);
+}
+
+/* mark the GFN as a shared GFN. */
+static void kvmppc_gfn_shared(unsigned long gfn, struct kvm *kvm)
+{
+ kvmppc_mark_gfn(gfn, kvm, KVMPPC_GFN_SHARED, 0);
+}
+
+/* mark the GFN as a non-existent GFN. */
+static void kvmppc_gfn_remove(unsigned long gfn, struct kvm *kvm)
+{
+ kvmppc_mark_gfn(gfn, kvm, 0, 0);
+}
+
+/* return true, if the GFN is a secure-GFN backed by a secure-PFN */
+static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm,
+ unsigned long *uvmem_pfn)
+{
+ struct kvmppc_uvmem_slot *p;
+
+ list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
+ if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
+ unsigned long index = gfn - p->base_pfn;
+
+ if (p->pfns[index] & KVMPPC_GFN_UVMEM_PFN) {
+ if (uvmem_pfn)
+ *uvmem_pfn = p->pfns[index] &
+ KVMPPC_GFN_PFN_MASK;
+ return true;
+ } else
+ return false;
+ }
+ }
+ return false;
+}
+
+/*
+ * starting from *gfn search for the next available GFN that is not yet
+ * transitioned to a secure GFN. return the value of that GFN in *gfn. If a
+ * GFN is found, return true, else return false
+ *
+ * Must be called with kvm->arch.uvmem_lock held.
+ */
+static bool kvmppc_next_nontransitioned_gfn(const struct kvm_memory_slot *memslot,
+ struct kvm *kvm, unsigned long *gfn)
+{
+ struct kvmppc_uvmem_slot *p = NULL, *iter;
+ bool ret = false;
+ unsigned long i;
+
+ list_for_each_entry(iter, &kvm->arch.uvmem_pfns, list)
+ if (*gfn >= iter->base_pfn && *gfn < iter->base_pfn + iter->nr_pfns) {
+ p = iter;
+ break;
+ }
+ if (!p)
+ return ret;
+ /*
+ * The code below assumes, one to one correspondence between
+ * kvmppc_uvmem_slot and memslot.
+ */
+ for (i = *gfn; i < p->base_pfn + p->nr_pfns; i++) {
+ unsigned long index = i - p->base_pfn;
+
+ if (!(p->pfns[index] & KVMPPC_GFN_FLAG_MASK)) {
+ *gfn = i;
+ ret = true;
+ break;
+ }
+ }
+ return ret;
+}
+
+static int kvmppc_memslot_page_merge(struct kvm *kvm,
+ const struct kvm_memory_slot *memslot, bool merge)
+{
+ unsigned long gfn = memslot->base_gfn;
+ unsigned long end, start = gfn_to_hva(kvm, gfn);
+ int ret = 0;
+ struct vm_area_struct *vma;
+ int merge_flag = (merge) ? MADV_MERGEABLE : MADV_UNMERGEABLE;
+
+ if (kvm_is_error_hva(start))
+ return H_STATE;
+
+ end = start + (memslot->npages << PAGE_SHIFT);
+
+ mmap_write_lock(kvm->mm);
+ do {
+ vma = find_vma_intersection(kvm->mm, start, end);
+ if (!vma) {
+ ret = H_STATE;
+ break;
+ }
+ ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
+ merge_flag, &vma->vm_flags);
+ if (ret) {
+ ret = H_STATE;
+ break;
+ }
+ start = vma->vm_end;
+ } while (end > vma->vm_end);
+
+ mmap_write_unlock(kvm->mm);
+ return ret;
+}
+
+static void __kvmppc_uvmem_memslot_delete(struct kvm *kvm,
+ const struct kvm_memory_slot *memslot)
+{
+ uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
+ kvmppc_uvmem_slot_free(kvm, memslot);
+ kvmppc_memslot_page_merge(kvm, memslot, true);
+}
+
+static int __kvmppc_uvmem_memslot_create(struct kvm *kvm,
+ const struct kvm_memory_slot *memslot)
+{
+ int ret = H_PARAMETER;
+
+ if (kvmppc_memslot_page_merge(kvm, memslot, false))
+ return ret;
+
+ if (kvmppc_uvmem_slot_init(kvm, memslot))
+ goto out1;
+
+ ret = uv_register_mem_slot(kvm->arch.lpid,
+ memslot->base_gfn << PAGE_SHIFT,
+ memslot->npages * PAGE_SIZE,
+ 0, memslot->id);
+ if (ret < 0) {
+ ret = H_PARAMETER;
+ goto out;
+ }
+ return 0;
+out:
+ kvmppc_uvmem_slot_free(kvm, memslot);
+out1:
+ kvmppc_memslot_page_merge(kvm, memslot, true);
+ return ret;
+}
+
+unsigned long kvmppc_h_svm_init_start(struct kvm *kvm)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot, *m;
+ int ret = H_SUCCESS;
+ int srcu_idx, bkt;
+
+ kvm->arch.secure_guest = KVMPPC_SECURE_INIT_START;
+
+ if (!kvmppc_uvmem_bitmap)
+ return H_UNSUPPORTED;
+
+ /* Only radix guests can be secure guests */
+ if (!kvm_is_radix(kvm))
+ return H_UNSUPPORTED;
+
+ /* NAK the transition to secure if not enabled */
+ if (!kvm->arch.svm_enabled)
+ return H_AUTHORITY;
+
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+
+ /* register the memslot */
+ slots = kvm_memslots(kvm);
+ kvm_for_each_memslot(memslot, bkt, slots) {
+ ret = __kvmppc_uvmem_memslot_create(kvm, memslot);
+ if (ret)
+ break;
+ }
+
+ if (ret) {
+ slots = kvm_memslots(kvm);
+ kvm_for_each_memslot(m, bkt, slots) {
+ if (m == memslot)
+ break;
+ __kvmppc_uvmem_memslot_delete(kvm, memslot);
+ }
+ }
+
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+ return ret;
+}
+
+/*
+ * Provision a new page on HV side and copy over the contents
+ * from secure memory using UV_PAGE_OUT uvcall.
+ * Caller must held kvm->arch.uvmem_lock.
+ */
+static int __kvmppc_svm_page_out(struct vm_area_struct *vma,
+ unsigned long start,
+ unsigned long end, unsigned long page_shift,
+ struct kvm *kvm, unsigned long gpa, struct page *fault_page)
+{
+ unsigned long src_pfn, dst_pfn = 0;
+ struct migrate_vma mig = { 0 };
+ struct page *dpage, *spage;
+ struct kvmppc_uvmem_page_pvt *pvt;
+ unsigned long pfn;
+ int ret = U_SUCCESS;
+
+ memset(&mig, 0, sizeof(mig));
+ mig.vma = vma;
+ mig.start = start;
+ mig.end = end;
+ mig.src = &src_pfn;
+ mig.dst = &dst_pfn;
+ mig.pgmap_owner = &kvmppc_uvmem_pgmap;
+ mig.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
+ mig.fault_page = fault_page;
+
+ /* The requested page is already paged-out, nothing to do */
+ if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL))
+ return ret;
+
+ ret = migrate_vma_setup(&mig);
+ if (ret)
+ return -1;
+
+ spage = migrate_pfn_to_page(*mig.src);
+ if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE))
+ goto out_finalize;
+
+ if (!is_zone_device_page(spage))
+ goto out_finalize;
+
+ dpage = alloc_page_vma(GFP_HIGHUSER, vma, start);
+ if (!dpage) {
+ ret = -1;
+ goto out_finalize;
+ }
+
+ lock_page(dpage);
+ pvt = spage->zone_device_data;
+ pfn = page_to_pfn(dpage);
+
+ /*
+ * This function is used in two cases:
+ * - When HV touches a secure page, for which we do UV_PAGE_OUT
+ * - When a secure page is converted to shared page, we *get*
+ * the page to essentially unmap the device page. In this
+ * case we skip page-out.
+ */
+ if (!pvt->skip_page_out)
+ ret = uv_page_out(kvm->arch.lpid, pfn << page_shift,
+ gpa, 0, page_shift);
+
+ if (ret == U_SUCCESS)
+ *mig.dst = migrate_pfn(pfn);
+ else {
+ unlock_page(dpage);
+ __free_page(dpage);
+ goto out_finalize;
+ }
+
+ migrate_vma_pages(&mig);
+
+out_finalize:
+ migrate_vma_finalize(&mig);
+ return ret;
+}
+
+static inline int kvmppc_svm_page_out(struct vm_area_struct *vma,
+ unsigned long start, unsigned long end,
+ unsigned long page_shift,
+ struct kvm *kvm, unsigned long gpa,
+ struct page *fault_page)
+{
+ int ret;
+
+ mutex_lock(&kvm->arch.uvmem_lock);
+ ret = __kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa,
+ fault_page);
+ mutex_unlock(&kvm->arch.uvmem_lock);
+
+ return ret;
+}
+
+/*
+ * Drop device pages that we maintain for the secure guest
+ *
+ * We first mark the pages to be skipped from UV_PAGE_OUT when there
+ * is HV side fault on these pages. Next we *get* these pages, forcing
+ * fault on them, do fault time migration to replace the device PTEs in
+ * QEMU page table with normal PTEs from newly allocated pages.
+ */
+void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *slot,
+ struct kvm *kvm, bool skip_page_out)
+{
+ int i;
+ struct kvmppc_uvmem_page_pvt *pvt;
+ struct page *uvmem_page;
+ struct vm_area_struct *vma = NULL;
+ unsigned long uvmem_pfn, gfn;
+ unsigned long addr;
+
+ mmap_read_lock(kvm->mm);
+
+ addr = slot->userspace_addr;
+
+ gfn = slot->base_gfn;
+ for (i = slot->npages; i; --i, ++gfn, addr += PAGE_SIZE) {
+
+ /* Fetch the VMA if addr is not in the latest fetched one */
+ if (!vma || addr >= vma->vm_end) {
+ vma = vma_lookup(kvm->mm, addr);
+ if (!vma) {
+ pr_err("Can't find VMA for gfn:0x%lx\n", gfn);
+ break;
+ }
+ }
+
+ mutex_lock(&kvm->arch.uvmem_lock);
+
+ if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
+ uvmem_page = pfn_to_page(uvmem_pfn);
+ pvt = uvmem_page->zone_device_data;
+ pvt->skip_page_out = skip_page_out;
+ pvt->remove_gfn = true;
+
+ if (__kvmppc_svm_page_out(vma, addr, addr + PAGE_SIZE,
+ PAGE_SHIFT, kvm, pvt->gpa, NULL))
+ pr_err("Can't page out gpa:0x%lx addr:0x%lx\n",
+ pvt->gpa, addr);
+ } else {
+ /* Remove the shared flag if any */
+ kvmppc_gfn_remove(gfn, kvm);
+ }
+
+ mutex_unlock(&kvm->arch.uvmem_lock);
+ }
+
+ mmap_read_unlock(kvm->mm);
+}
+
+unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm)
+{
+ int srcu_idx, bkt;
+ struct kvm_memory_slot *memslot;
+
+ /*
+ * Expect to be called only after INIT_START and before INIT_DONE.
+ * If INIT_DONE was completed, use normal VM termination sequence.
+ */
+ if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
+ return H_UNSUPPORTED;
+
+ if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
+ return H_STATE;
+
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+
+ kvm_for_each_memslot(memslot, bkt, kvm_memslots(kvm))
+ kvmppc_uvmem_drop_pages(memslot, kvm, false);
+
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+
+ kvm->arch.secure_guest = 0;
+ uv_svm_terminate(kvm->arch.lpid);
+
+ return H_PARAMETER;
+}
+
+/*
+ * Get a free device PFN from the pool
+ *
+ * Called when a normal page is moved to secure memory (UV_PAGE_IN). Device
+ * PFN will be used to keep track of the secure page on HV side.
+ *
+ * Called with kvm->arch.uvmem_lock held
+ */
+static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm)
+{
+ struct page *dpage = NULL;
+ unsigned long bit, uvmem_pfn;
+ struct kvmppc_uvmem_page_pvt *pvt;
+ unsigned long pfn_last, pfn_first;
+
+ pfn_first = kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT;
+ pfn_last = pfn_first +
+ (range_len(&kvmppc_uvmem_pgmap.range) >> PAGE_SHIFT);
+
+ spin_lock(&kvmppc_uvmem_bitmap_lock);
+ bit = find_first_zero_bit(kvmppc_uvmem_bitmap,
+ pfn_last - pfn_first);
+ if (bit >= (pfn_last - pfn_first))
+ goto out;
+ bitmap_set(kvmppc_uvmem_bitmap, bit, 1);
+ spin_unlock(&kvmppc_uvmem_bitmap_lock);
+
+ pvt = kzalloc(sizeof(*pvt), GFP_KERNEL);
+ if (!pvt)
+ goto out_clear;
+
+ uvmem_pfn = bit + pfn_first;
+ kvmppc_gfn_secure_uvmem_pfn(gpa >> PAGE_SHIFT, uvmem_pfn, kvm);
+
+ pvt->gpa = gpa;
+ pvt->kvm = kvm;
+
+ dpage = pfn_to_page(uvmem_pfn);
+ dpage->zone_device_data = pvt;
+ zone_device_page_init(dpage);
+ return dpage;
+out_clear:
+ spin_lock(&kvmppc_uvmem_bitmap_lock);
+ bitmap_clear(kvmppc_uvmem_bitmap, bit, 1);
+out:
+ spin_unlock(&kvmppc_uvmem_bitmap_lock);
+ return NULL;
+}
+
+/*
+ * Alloc a PFN from private device memory pool. If @pagein is true,
+ * copy page from normal memory to secure memory using UV_PAGE_IN uvcall.
+ */
+static int kvmppc_svm_page_in(struct vm_area_struct *vma,
+ unsigned long start,
+ unsigned long end, unsigned long gpa, struct kvm *kvm,
+ unsigned long page_shift,
+ bool pagein)
+{
+ unsigned long src_pfn, dst_pfn = 0;
+ struct migrate_vma mig = { 0 };
+ struct page *spage;
+ unsigned long pfn;
+ struct page *dpage;
+ int ret = 0;
+
+ memset(&mig, 0, sizeof(mig));
+ mig.vma = vma;
+ mig.start = start;
+ mig.end = end;
+ mig.src = &src_pfn;
+ mig.dst = &dst_pfn;
+ mig.flags = MIGRATE_VMA_SELECT_SYSTEM;
+
+ ret = migrate_vma_setup(&mig);
+ if (ret)
+ return ret;
+
+ if (!(*mig.src & MIGRATE_PFN_MIGRATE)) {
+ ret = -1;
+ goto out_finalize;
+ }
+
+ dpage = kvmppc_uvmem_get_page(gpa, kvm);
+ if (!dpage) {
+ ret = -1;
+ goto out_finalize;
+ }
+
+ if (pagein) {
+ pfn = *mig.src >> MIGRATE_PFN_SHIFT;
+ spage = migrate_pfn_to_page(*mig.src);
+ if (spage) {
+ ret = uv_page_in(kvm->arch.lpid, pfn << page_shift,
+ gpa, 0, page_shift);
+ if (ret)
+ goto out_finalize;
+ }
+ }
+
+ *mig.dst = migrate_pfn(page_to_pfn(dpage));
+ migrate_vma_pages(&mig);
+out_finalize:
+ migrate_vma_finalize(&mig);
+ return ret;
+}
+
+static int kvmppc_uv_migrate_mem_slot(struct kvm *kvm,
+ const struct kvm_memory_slot *memslot)
+{
+ unsigned long gfn = memslot->base_gfn;
+ struct vm_area_struct *vma;
+ unsigned long start, end;
+ int ret = 0;
+
+ mmap_read_lock(kvm->mm);
+ mutex_lock(&kvm->arch.uvmem_lock);
+ while (kvmppc_next_nontransitioned_gfn(memslot, kvm, &gfn)) {
+ ret = H_STATE;
+ start = gfn_to_hva(kvm, gfn);
+ if (kvm_is_error_hva(start))
+ break;
+
+ end = start + (1UL << PAGE_SHIFT);
+ vma = find_vma_intersection(kvm->mm, start, end);
+ if (!vma || vma->vm_start > start || vma->vm_end < end)
+ break;
+
+ ret = kvmppc_svm_page_in(vma, start, end,
+ (gfn << PAGE_SHIFT), kvm, PAGE_SHIFT, false);
+ if (ret) {
+ ret = H_STATE;
+ break;
+ }
+
+ /* relinquish the cpu if needed */
+ cond_resched();
+ }
+ mutex_unlock(&kvm->arch.uvmem_lock);
+ mmap_read_unlock(kvm->mm);
+ return ret;
+}
+
+unsigned long kvmppc_h_svm_init_done(struct kvm *kvm)
+{
+ struct kvm_memslots *slots;
+ struct kvm_memory_slot *memslot;
+ int srcu_idx, bkt;
+ long ret = H_SUCCESS;
+
+ if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
+ return H_UNSUPPORTED;
+
+ /* migrate any unmoved normal pfn to device pfns*/
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+ slots = kvm_memslots(kvm);
+ kvm_for_each_memslot(memslot, bkt, slots) {
+ ret = kvmppc_uv_migrate_mem_slot(kvm, memslot);
+ if (ret) {
+ /*
+ * The pages will remain transitioned.
+ * Its the callers responsibility to
+ * terminate the VM, which will undo
+ * all state of the VM. Till then
+ * this VM is in a erroneous state.
+ * Its KVMPPC_SECURE_INIT_DONE will
+ * remain unset.
+ */
+ ret = H_STATE;
+ goto out;
+ }
+ }
+
+ kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE;
+ pr_info("LPID %d went secure\n", kvm->arch.lpid);
+
+out:
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+ return ret;
+}
+
+/*
+ * Shares the page with HV, thus making it a normal page.
+ *
+ * - If the page is already secure, then provision a new page and share
+ * - If the page is a normal page, share the existing page
+ *
+ * In the former case, uses dev_pagemap_ops.migrate_to_ram handler
+ * to unmap the device page from QEMU's page tables.
+ */
+static unsigned long kvmppc_share_page(struct kvm *kvm, unsigned long gpa,
+ unsigned long page_shift)
+{
+
+ int ret = H_PARAMETER;
+ struct page *uvmem_page;
+ struct kvmppc_uvmem_page_pvt *pvt;
+ unsigned long pfn;
+ unsigned long gfn = gpa >> page_shift;
+ int srcu_idx;
+ unsigned long uvmem_pfn;
+
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+ mutex_lock(&kvm->arch.uvmem_lock);
+ if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
+ uvmem_page = pfn_to_page(uvmem_pfn);
+ pvt = uvmem_page->zone_device_data;
+ pvt->skip_page_out = true;
+ /*
+ * do not drop the GFN. It is a valid GFN
+ * that is transitioned to a shared GFN.
+ */
+ pvt->remove_gfn = false;
+ }
+
+retry:
+ mutex_unlock(&kvm->arch.uvmem_lock);
+ pfn = gfn_to_pfn(kvm, gfn);
+ if (is_error_noslot_pfn(pfn))
+ goto out;
+
+ mutex_lock(&kvm->arch.uvmem_lock);
+ if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
+ uvmem_page = pfn_to_page(uvmem_pfn);
+ pvt = uvmem_page->zone_device_data;
+ pvt->skip_page_out = true;
+ pvt->remove_gfn = false; /* it continues to be a valid GFN */
+ kvm_release_pfn_clean(pfn);
+ goto retry;
+ }
+
+ if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0,
+ page_shift)) {
+ kvmppc_gfn_shared(gfn, kvm);
+ ret = H_SUCCESS;
+ }
+ kvm_release_pfn_clean(pfn);
+ mutex_unlock(&kvm->arch.uvmem_lock);
+out:
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+ return ret;
+}
+
+/*
+ * H_SVM_PAGE_IN: Move page from normal memory to secure memory.
+ *
+ * H_PAGE_IN_SHARED flag makes the page shared which means that the same
+ * memory in is visible from both UV and HV.
+ */
+unsigned long kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
+ unsigned long flags,
+ unsigned long page_shift)
+{
+ unsigned long start, end;
+ struct vm_area_struct *vma;
+ int srcu_idx;
+ unsigned long gfn = gpa >> page_shift;
+ int ret;
+
+ if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
+ return H_UNSUPPORTED;
+
+ if (page_shift != PAGE_SHIFT)
+ return H_P3;
+
+ if (flags & ~H_PAGE_IN_SHARED)
+ return H_P2;
+
+ if (flags & H_PAGE_IN_SHARED)
+ return kvmppc_share_page(kvm, gpa, page_shift);
+
+ ret = H_PARAMETER;
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+ mmap_read_lock(kvm->mm);
+
+ start = gfn_to_hva(kvm, gfn);
+ if (kvm_is_error_hva(start))
+ goto out;
+
+ mutex_lock(&kvm->arch.uvmem_lock);
+ /* Fail the page-in request of an already paged-in page */
+ if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
+ goto out_unlock;
+
+ end = start + (1UL << page_shift);
+ vma = find_vma_intersection(kvm->mm, start, end);
+ if (!vma || vma->vm_start > start || vma->vm_end < end)
+ goto out_unlock;
+
+ if (kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift,
+ true))
+ goto out_unlock;
+
+ ret = H_SUCCESS;
+
+out_unlock:
+ mutex_unlock(&kvm->arch.uvmem_lock);
+out:
+ mmap_read_unlock(kvm->mm);
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+ return ret;
+}
+
+
+/*
+ * Fault handler callback that gets called when HV touches any page that
+ * has been moved to secure memory, we ask UV to give back the page by
+ * issuing UV_PAGE_OUT uvcall.
+ *
+ * This eventually results in dropping of device PFN and the newly
+ * provisioned page/PFN gets populated in QEMU page tables.
+ */
+static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf)
+{
+ struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data;
+
+ if (kvmppc_svm_page_out(vmf->vma, vmf->address,
+ vmf->address + PAGE_SIZE, PAGE_SHIFT,
+ pvt->kvm, pvt->gpa, vmf->page))
+ return VM_FAULT_SIGBUS;
+ else
+ return 0;
+}
+
+/*
+ * Release the device PFN back to the pool
+ *
+ * Gets called when secure GFN tranistions from a secure-PFN
+ * to a normal PFN during H_SVM_PAGE_OUT.
+ * Gets called with kvm->arch.uvmem_lock held.
+ */
+static void kvmppc_uvmem_page_free(struct page *page)
+{
+ unsigned long pfn = page_to_pfn(page) -
+ (kvmppc_uvmem_pgmap.range.start >> PAGE_SHIFT);
+ struct kvmppc_uvmem_page_pvt *pvt;
+
+ spin_lock(&kvmppc_uvmem_bitmap_lock);
+ bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1);
+ spin_unlock(&kvmppc_uvmem_bitmap_lock);
+
+ pvt = page->zone_device_data;
+ page->zone_device_data = NULL;
+ if (pvt->remove_gfn)
+ kvmppc_gfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
+ else
+ kvmppc_gfn_secure_mem_pfn(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
+ kfree(pvt);
+}
+
+static const struct dev_pagemap_ops kvmppc_uvmem_ops = {
+ .page_free = kvmppc_uvmem_page_free,
+ .migrate_to_ram = kvmppc_uvmem_migrate_to_ram,
+};
+
+/*
+ * H_SVM_PAGE_OUT: Move page from secure memory to normal memory.
+ */
+unsigned long
+kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa,
+ unsigned long flags, unsigned long page_shift)
+{
+ unsigned long gfn = gpa >> page_shift;
+ unsigned long start, end;
+ struct vm_area_struct *vma;
+ int srcu_idx;
+ int ret;
+
+ if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
+ return H_UNSUPPORTED;
+
+ if (page_shift != PAGE_SHIFT)
+ return H_P3;
+
+ if (flags)
+ return H_P2;
+
+ ret = H_PARAMETER;
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+ mmap_read_lock(kvm->mm);
+ start = gfn_to_hva(kvm, gfn);
+ if (kvm_is_error_hva(start))
+ goto out;
+
+ end = start + (1UL << page_shift);
+ vma = find_vma_intersection(kvm->mm, start, end);
+ if (!vma || vma->vm_start > start || vma->vm_end < end)
+ goto out;
+
+ if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa, NULL))
+ ret = H_SUCCESS;
+out:
+ mmap_read_unlock(kvm->mm);
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+ return ret;
+}
+
+int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn)
+{
+ unsigned long pfn;
+ int ret = U_SUCCESS;
+
+ pfn = gfn_to_pfn(kvm, gfn);
+ if (is_error_noslot_pfn(pfn))
+ return -EFAULT;
+
+ mutex_lock(&kvm->arch.uvmem_lock);
+ if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
+ goto out;
+
+ ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT,
+ 0, PAGE_SHIFT);
+out:
+ kvm_release_pfn_clean(pfn);
+ mutex_unlock(&kvm->arch.uvmem_lock);
+ return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT;
+}
+
+int kvmppc_uvmem_memslot_create(struct kvm *kvm, const struct kvm_memory_slot *new)
+{
+ int ret = __kvmppc_uvmem_memslot_create(kvm, new);
+
+ if (!ret)
+ ret = kvmppc_uv_migrate_mem_slot(kvm, new);
+
+ return ret;
+}
+
+void kvmppc_uvmem_memslot_delete(struct kvm *kvm, const struct kvm_memory_slot *old)
+{
+ __kvmppc_uvmem_memslot_delete(kvm, old);
+}
+
+static u64 kvmppc_get_secmem_size(void)
+{
+ struct device_node *np;
+ int i, len;
+ const __be32 *prop;
+ u64 size = 0;
+
+ /*
+ * First try the new ibm,secure-memory nodes which supersede the
+ * secure-memory-ranges property.
+ * If we found some, no need to read the deprecated ones.
+ */
+ for_each_compatible_node(np, NULL, "ibm,secure-memory") {
+ prop = of_get_property(np, "reg", &len);
+ if (!prop)
+ continue;
+ size += of_read_number(prop + 2, 2);
+ }
+ if (size)
+ return size;
+
+ np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware");
+ if (!np)
+ goto out;
+
+ prop = of_get_property(np, "secure-memory-ranges", &len);
+ if (!prop)
+ goto out_put;
+
+ for (i = 0; i < len / (sizeof(*prop) * 4); i++)
+ size += of_read_number(prop + (i * 4) + 2, 2);
+
+out_put:
+ of_node_put(np);
+out:
+ return size;
+}
+
+int kvmppc_uvmem_init(void)
+{
+ int ret = 0;
+ unsigned long size;
+ struct resource *res;
+ void *addr;
+ unsigned long pfn_last, pfn_first;
+
+ size = kvmppc_get_secmem_size();
+ if (!size) {
+ /*
+ * Don't fail the initialization of kvm-hv module if
+ * the platform doesn't export ibm,uv-firmware node.
+ * Let normal guests run on such PEF-disabled platform.
+ */
+ pr_info("KVMPPC-UVMEM: No support for secure guests\n");
+ goto out;
+ }
+
+ res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem");
+ if (IS_ERR(res)) {
+ ret = PTR_ERR(res);
+ goto out;
+ }
+
+ kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE;
+ kvmppc_uvmem_pgmap.range.start = res->start;
+ kvmppc_uvmem_pgmap.range.end = res->end;
+ kvmppc_uvmem_pgmap.nr_range = 1;
+ kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops;
+ /* just one global instance: */
+ kvmppc_uvmem_pgmap.owner = &kvmppc_uvmem_pgmap;
+ addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE);
+ if (IS_ERR(addr)) {
+ ret = PTR_ERR(addr);
+ goto out_free_region;
+ }
+
+ pfn_first = res->start >> PAGE_SHIFT;
+ pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT);
+ kvmppc_uvmem_bitmap = kcalloc(BITS_TO_LONGS(pfn_last - pfn_first),
+ sizeof(unsigned long), GFP_KERNEL);
+ if (!kvmppc_uvmem_bitmap) {
+ ret = -ENOMEM;
+ goto out_unmap;
+ }
+
+ pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size);
+ return ret;
+out_unmap:
+ memunmap_pages(&kvmppc_uvmem_pgmap);
+out_free_region:
+ release_mem_region(res->start, size);
+out:
+ return ret;
+}
+
+void kvmppc_uvmem_free(void)
+{
+ if (!kvmppc_uvmem_bitmap)
+ return;
+
+ memunmap_pages(&kvmppc_uvmem_pgmap);
+ release_mem_region(kvmppc_uvmem_pgmap.range.start,
+ range_len(&kvmppc_uvmem_pgmap.range));
+ kfree(kvmppc_uvmem_bitmap);
+}
diff --git a/arch/powerpc/kvm/book3s_interrupts.S b/arch/powerpc/kvm/book3s_interrupts.S
new file mode 100644
index 000000000..f4bec2fc5
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_interrupts.S
@@ -0,0 +1,239 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ *
+ * Copyright SUSE Linux Products GmbH 2009
+ *
+ * Authors: Alexander Graf <agraf@suse.de>
+ */
+
+#include <asm/ppc_asm.h>
+#include <asm/kvm_asm.h>
+#include <asm/reg.h>
+#include <asm/page.h>
+#include <asm/asm-offsets.h>
+#include <asm/exception-64s.h>
+#include <asm/asm-compat.h>
+
+#if defined(CONFIG_PPC_BOOK3S_64)
+#ifdef CONFIG_PPC64_ELF_ABI_V2
+#define FUNC(name) name
+#else
+#define FUNC(name) GLUE(.,name)
+#endif
+#define GET_SHADOW_VCPU(reg) addi reg, r13, PACA_SVCPU
+
+#elif defined(CONFIG_PPC_BOOK3S_32)
+#define FUNC(name) name
+#define GET_SHADOW_VCPU(reg) lwz reg, (THREAD + THREAD_KVM_SVCPU)(r2)
+
+#endif /* CONFIG_PPC_BOOK3S_64 */
+
+#define VCPU_LOAD_NVGPRS(vcpu) \
+ PPC_LL r14, VCPU_GPR(R14)(vcpu); \
+ PPC_LL r15, VCPU_GPR(R15)(vcpu); \
+ PPC_LL r16, VCPU_GPR(R16)(vcpu); \
+ PPC_LL r17, VCPU_GPR(R17)(vcpu); \
+ PPC_LL r18, VCPU_GPR(R18)(vcpu); \
+ PPC_LL r19, VCPU_GPR(R19)(vcpu); \
+ PPC_LL r20, VCPU_GPR(R20)(vcpu); \
+ PPC_LL r21, VCPU_GPR(R21)(vcpu); \
+ PPC_LL r22, VCPU_GPR(R22)(vcpu); \
+ PPC_LL r23, VCPU_GPR(R23)(vcpu); \
+ PPC_LL r24, VCPU_GPR(R24)(vcpu); \
+ PPC_LL r25, VCPU_GPR(R25)(vcpu); \
+ PPC_LL r26, VCPU_GPR(R26)(vcpu); \
+ PPC_LL r27, VCPU_GPR(R27)(vcpu); \
+ PPC_LL r28, VCPU_GPR(R28)(vcpu); \
+ PPC_LL r29, VCPU_GPR(R29)(vcpu); \
+ PPC_LL r30, VCPU_GPR(R30)(vcpu); \
+ PPC_LL r31, VCPU_GPR(R31)(vcpu); \
+
+/*****************************************************************************
+ * *
+ * Guest entry / exit code that is in kernel module memory (highmem) *
+ * *
+ ****************************************************************************/
+
+/* Registers:
+ * r3: vcpu pointer
+ */
+_GLOBAL(__kvmppc_vcpu_run)
+
+kvm_start_entry:
+ /* Write correct stack frame */
+ mflr r0
+ PPC_STL r0,PPC_LR_STKOFF(r1)
+
+ /* Save host state to the stack */
+ PPC_STLU r1, -SWITCH_FRAME_SIZE(r1)
+
+ /* Save r3 (vcpu) */
+ SAVE_GPR(3, r1)
+
+ /* Save non-volatile registers (r14 - r31) */
+ SAVE_NVGPRS(r1)
+
+ /* Save CR */
+ mfcr r14
+ stw r14, _CCR(r1)
+
+ /* Save LR */
+ PPC_STL r0, _LINK(r1)
+
+ /* Load non-volatile guest state from the vcpu */
+ VCPU_LOAD_NVGPRS(r3)
+
+kvm_start_lightweight:
+ /* Copy registers into shadow vcpu so we can access them in real mode */
+ bl FUNC(kvmppc_copy_to_svcpu)
+ nop
+ REST_GPR(3, r1)
+
+#ifdef CONFIG_PPC_BOOK3S_64
+ /* Get the dcbz32 flag */
+ PPC_LL r0, VCPU_HFLAGS(r3)
+ rldicl r0, r0, 0, 63 /* r3 &= 1 */
+ stb r0, HSTATE_RESTORE_HID5(r13)
+
+ /* Load up guest SPRG3 value, since it's user readable */
+ lbz r4, VCPU_SHAREDBE(r3)
+ cmpwi r4, 0
+ ld r5, VCPU_SHARED(r3)
+ beq sprg3_little_endian
+sprg3_big_endian:
+#ifdef __BIG_ENDIAN__
+ ld r4, VCPU_SHARED_SPRG3(r5)
+#else
+ addi r5, r5, VCPU_SHARED_SPRG3
+ ldbrx r4, 0, r5
+#endif
+ b after_sprg3_load
+sprg3_little_endian:
+#ifdef __LITTLE_ENDIAN__
+ ld r4, VCPU_SHARED_SPRG3(r5)
+#else
+ addi r5, r5, VCPU_SHARED_SPRG3
+ ldbrx r4, 0, r5
+#endif
+
+after_sprg3_load:
+ mtspr SPRN_SPRG3, r4
+#endif /* CONFIG_PPC_BOOK3S_64 */
+
+ PPC_LL r4, VCPU_SHADOW_MSR(r3) /* get shadow_msr */
+
+ /* Jump to segment patching handler and into our guest */
+ bl FUNC(kvmppc_entry_trampoline)
+ nop
+
+/*
+ * This is the handler in module memory. It gets jumped at from the
+ * lowmem trampoline code, so it's basically the guest exit code.
+ *
+ */
+
+ /*
+ * Register usage at this point:
+ *
+ * R1 = host R1
+ * R2 = host R2
+ * R12 = exit handler id
+ * R13 = PACA
+ * SVCPU.* = guest *
+ * MSR.EE = 1
+ *
+ */
+
+ PPC_LL r3, GPR3(r1) /* vcpu pointer */
+
+ /*
+ * kvmppc_copy_from_svcpu can clobber volatile registers, save
+ * the exit handler id to the vcpu and restore it from there later.
+ */
+ stw r12, VCPU_TRAP(r3)
+
+ /* Transfer reg values from shadow vcpu back to vcpu struct */
+
+ bl FUNC(kvmppc_copy_from_svcpu)
+ nop
+
+#ifdef CONFIG_PPC_BOOK3S_64
+ /*
+ * Reload kernel SPRG3 value.
+ * No need to save guest value as usermode can't modify SPRG3.
+ */
+ ld r3, PACA_SPRG_VDSO(r13)
+ mtspr SPRN_SPRG_VDSO_WRITE, r3
+#endif /* CONFIG_PPC_BOOK3S_64 */
+
+ /* R7 = vcpu */
+ PPC_LL r7, GPR3(r1)
+
+ PPC_STL r14, VCPU_GPR(R14)(r7)
+ PPC_STL r15, VCPU_GPR(R15)(r7)
+ PPC_STL r16, VCPU_GPR(R16)(r7)
+ PPC_STL r17, VCPU_GPR(R17)(r7)
+ PPC_STL r18, VCPU_GPR(R18)(r7)
+ PPC_STL r19, VCPU_GPR(R19)(r7)
+ PPC_STL r20, VCPU_GPR(R20)(r7)
+ PPC_STL r21, VCPU_GPR(R21)(r7)
+ PPC_STL r22, VCPU_GPR(R22)(r7)
+ PPC_STL r23, VCPU_GPR(R23)(r7)
+ PPC_STL r24, VCPU_GPR(R24)(r7)
+ PPC_STL r25, VCPU_GPR(R25)(r7)
+ PPC_STL r26, VCPU_GPR(R26)(r7)
+ PPC_STL r27, VCPU_GPR(R27)(r7)
+ PPC_STL r28, VCPU_GPR(R28)(r7)
+ PPC_STL r29, VCPU_GPR(R29)(r7)
+ PPC_STL r30, VCPU_GPR(R30)(r7)
+ PPC_STL r31, VCPU_GPR(R31)(r7)
+
+ /* Pass the exit number as 2nd argument to kvmppc_handle_exit */
+ lwz r4, VCPU_TRAP(r7)
+
+ /* Restore r3 (vcpu) */
+ REST_GPR(3, r1)
+ bl FUNC(kvmppc_handle_exit_pr)
+
+ /* If RESUME_GUEST, get back in the loop */
+ cmpwi r3, RESUME_GUEST
+ beq kvm_loop_lightweight
+
+ cmpwi r3, RESUME_GUEST_NV
+ beq kvm_loop_heavyweight
+
+kvm_exit_loop:
+
+ PPC_LL r4, _LINK(r1)
+ mtlr r4
+
+ lwz r14, _CCR(r1)
+ mtcr r14
+
+ /* Restore non-volatile host registers (r14 - r31) */
+ REST_NVGPRS(r1)
+
+ addi r1, r1, SWITCH_FRAME_SIZE
+ blr
+
+kvm_loop_heavyweight:
+
+ PPC_LL r4, _LINK(r1)
+ PPC_STL r4, (PPC_LR_STKOFF + SWITCH_FRAME_SIZE)(r1)
+
+ /* Load vcpu */
+ REST_GPR(3, r1)
+
+ /* Load non-volatile guest state from the vcpu */
+ VCPU_LOAD_NVGPRS(r3)
+
+ /* Jump back into the beginning of this function */
+ b kvm_start_lightweight
+
+kvm_loop_lightweight:
+
+ /* We'll need the vcpu pointer */
+ REST_GPR(3, r1)
+
+ /* Jump back into the beginning of this function */
+ b kvm_start_lightweight
diff --git a/arch/powerpc/kvm/book3s_mmu_hpte.c b/arch/powerpc/kvm/book3s_mmu_hpte.c
new file mode 100644
index 000000000..ce79ac33e
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_mmu_hpte.c
@@ -0,0 +1,386 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2010 SUSE Linux Products GmbH. All rights reserved.
+ *
+ * Authors:
+ * Alexander Graf <agraf@suse.de>
+ */
+
+#include <linux/kvm_host.h>
+#include <linux/hash.h>
+#include <linux/slab.h>
+#include <linux/rculist.h>
+
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+#include <asm/machdep.h>
+#include <asm/mmu_context.h>
+#include <asm/hw_irq.h>
+
+#include "trace_pr.h"
+
+#define PTE_SIZE 12
+
+static struct kmem_cache *hpte_cache;
+
+static inline u64 kvmppc_mmu_hash_pte(u64 eaddr)
+{
+ return hash_64(eaddr >> PTE_SIZE, HPTEG_HASH_BITS_PTE);
+}
+
+static inline u64 kvmppc_mmu_hash_pte_long(u64 eaddr)
+{
+ return hash_64((eaddr & 0x0ffff000) >> PTE_SIZE,
+ HPTEG_HASH_BITS_PTE_LONG);
+}
+
+static inline u64 kvmppc_mmu_hash_vpte(u64 vpage)
+{
+ return hash_64(vpage & 0xfffffffffULL, HPTEG_HASH_BITS_VPTE);
+}
+
+static inline u64 kvmppc_mmu_hash_vpte_long(u64 vpage)
+{
+ return hash_64((vpage & 0xffffff000ULL) >> 12,
+ HPTEG_HASH_BITS_VPTE_LONG);
+}
+
+#ifdef CONFIG_PPC_BOOK3S_64
+static inline u64 kvmppc_mmu_hash_vpte_64k(u64 vpage)
+{
+ return hash_64((vpage & 0xffffffff0ULL) >> 4,
+ HPTEG_HASH_BITS_VPTE_64K);
+}
+#endif
+
+void kvmppc_mmu_hpte_cache_map(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
+{
+ u64 index;
+ struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
+
+ trace_kvm_book3s_mmu_map(pte);
+
+ spin_lock(&vcpu3s->mmu_lock);
+
+ /* Add to ePTE list */
+ index = kvmppc_mmu_hash_pte(pte->pte.eaddr);
+ hlist_add_head_rcu(&pte->list_pte, &vcpu3s->hpte_hash_pte[index]);
+
+ /* Add to ePTE_long list */
+ index = kvmppc_mmu_hash_pte_long(pte->pte.eaddr);
+ hlist_add_head_rcu(&pte->list_pte_long,
+ &vcpu3s->hpte_hash_pte_long[index]);
+
+ /* Add to vPTE list */
+ index = kvmppc_mmu_hash_vpte(pte->pte.vpage);
+ hlist_add_head_rcu(&pte->list_vpte, &vcpu3s->hpte_hash_vpte[index]);
+
+ /* Add to vPTE_long list */
+ index = kvmppc_mmu_hash_vpte_long(pte->pte.vpage);
+ hlist_add_head_rcu(&pte->list_vpte_long,
+ &vcpu3s->hpte_hash_vpte_long[index]);
+
+#ifdef CONFIG_PPC_BOOK3S_64
+ /* Add to vPTE_64k list */
+ index = kvmppc_mmu_hash_vpte_64k(pte->pte.vpage);
+ hlist_add_head_rcu(&pte->list_vpte_64k,
+ &vcpu3s->hpte_hash_vpte_64k[index]);
+#endif
+
+ vcpu3s->hpte_cache_count++;
+
+ spin_unlock(&vcpu3s->mmu_lock);
+}
+
+static void free_pte_rcu(struct rcu_head *head)
+{
+ struct hpte_cache *pte = container_of(head, struct hpte_cache, rcu_head);
+ kmem_cache_free(hpte_cache, pte);
+}
+
+static void invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
+{
+ struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
+
+ trace_kvm_book3s_mmu_invalidate(pte);
+
+ /* Different for 32 and 64 bit */
+ kvmppc_mmu_invalidate_pte(vcpu, pte);
+
+ spin_lock(&vcpu3s->mmu_lock);
+
+ /* pte already invalidated in between? */
+ if (hlist_unhashed(&pte->list_pte)) {
+ spin_unlock(&vcpu3s->mmu_lock);
+ return;
+ }
+
+ hlist_del_init_rcu(&pte->list_pte);
+ hlist_del_init_rcu(&pte->list_pte_long);
+ hlist_del_init_rcu(&pte->list_vpte);
+ hlist_del_init_rcu(&pte->list_vpte_long);
+#ifdef CONFIG_PPC_BOOK3S_64
+ hlist_del_init_rcu(&pte->list_vpte_64k);
+#endif
+ vcpu3s->hpte_cache_count--;
+
+ spin_unlock(&vcpu3s->mmu_lock);
+
+ call_rcu(&pte->rcu_head, free_pte_rcu);
+}
+
+static void kvmppc_mmu_pte_flush_all(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
+ struct hpte_cache *pte;
+ int i;
+
+ rcu_read_lock();
+
+ for (i = 0; i < HPTEG_HASH_NUM_VPTE_LONG; i++) {
+ struct hlist_head *list = &vcpu3s->hpte_hash_vpte_long[i];
+
+ hlist_for_each_entry_rcu(pte, list, list_vpte_long)
+ invalidate_pte(vcpu, pte);
+ }
+
+ rcu_read_unlock();
+}
+
+static void kvmppc_mmu_pte_flush_page(struct kvm_vcpu *vcpu, ulong guest_ea)
+{
+ struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
+ struct hlist_head *list;
+ struct hpte_cache *pte;
+
+ /* Find the list of entries in the map */
+ list = &vcpu3s->hpte_hash_pte[kvmppc_mmu_hash_pte(guest_ea)];
+
+ rcu_read_lock();
+
+ /* Check the list for matching entries and invalidate */
+ hlist_for_each_entry_rcu(pte, list, list_pte)
+ if ((pte->pte.eaddr & ~0xfffUL) == guest_ea)
+ invalidate_pte(vcpu, pte);
+
+ rcu_read_unlock();
+}
+
+static void kvmppc_mmu_pte_flush_long(struct kvm_vcpu *vcpu, ulong guest_ea)
+{
+ struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
+ struct hlist_head *list;
+ struct hpte_cache *pte;
+
+ /* Find the list of entries in the map */
+ list = &vcpu3s->hpte_hash_pte_long[
+ kvmppc_mmu_hash_pte_long(guest_ea)];
+
+ rcu_read_lock();
+
+ /* Check the list for matching entries and invalidate */
+ hlist_for_each_entry_rcu(pte, list, list_pte_long)
+ if ((pte->pte.eaddr & 0x0ffff000UL) == guest_ea)
+ invalidate_pte(vcpu, pte);
+
+ rcu_read_unlock();
+}
+
+void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, ulong guest_ea, ulong ea_mask)
+{
+ trace_kvm_book3s_mmu_flush("", vcpu, guest_ea, ea_mask);
+ guest_ea &= ea_mask;
+
+ switch (ea_mask) {
+ case ~0xfffUL:
+ kvmppc_mmu_pte_flush_page(vcpu, guest_ea);
+ break;
+ case 0x0ffff000:
+ kvmppc_mmu_pte_flush_long(vcpu, guest_ea);
+ break;
+ case 0:
+ /* Doing a complete flush -> start from scratch */
+ kvmppc_mmu_pte_flush_all(vcpu);
+ break;
+ default:
+ WARN_ON(1);
+ break;
+ }
+}
+
+/* Flush with mask 0xfffffffff */
+static void kvmppc_mmu_pte_vflush_short(struct kvm_vcpu *vcpu, u64 guest_vp)
+{
+ struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
+ struct hlist_head *list;
+ struct hpte_cache *pte;
+ u64 vp_mask = 0xfffffffffULL;
+
+ list = &vcpu3s->hpte_hash_vpte[kvmppc_mmu_hash_vpte(guest_vp)];
+
+ rcu_read_lock();
+
+ /* Check the list for matching entries and invalidate */
+ hlist_for_each_entry_rcu(pte, list, list_vpte)
+ if ((pte->pte.vpage & vp_mask) == guest_vp)
+ invalidate_pte(vcpu, pte);
+
+ rcu_read_unlock();
+}
+
+#ifdef CONFIG_PPC_BOOK3S_64
+/* Flush with mask 0xffffffff0 */
+static void kvmppc_mmu_pte_vflush_64k(struct kvm_vcpu *vcpu, u64 guest_vp)
+{
+ struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
+ struct hlist_head *list;
+ struct hpte_cache *pte;
+ u64 vp_mask = 0xffffffff0ULL;
+
+ list = &vcpu3s->hpte_hash_vpte_64k[
+ kvmppc_mmu_hash_vpte_64k(guest_vp)];
+
+ rcu_read_lock();
+
+ /* Check the list for matching entries and invalidate */
+ hlist_for_each_entry_rcu(pte, list, list_vpte_64k)
+ if ((pte->pte.vpage & vp_mask) == guest_vp)
+ invalidate_pte(vcpu, pte);
+
+ rcu_read_unlock();
+}
+#endif
+
+/* Flush with mask 0xffffff000 */
+static void kvmppc_mmu_pte_vflush_long(struct kvm_vcpu *vcpu, u64 guest_vp)
+{
+ struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
+ struct hlist_head *list;
+ struct hpte_cache *pte;
+ u64 vp_mask = 0xffffff000ULL;
+
+ list = &vcpu3s->hpte_hash_vpte_long[
+ kvmppc_mmu_hash_vpte_long(guest_vp)];
+
+ rcu_read_lock();
+
+ /* Check the list for matching entries and invalidate */
+ hlist_for_each_entry_rcu(pte, list, list_vpte_long)
+ if ((pte->pte.vpage & vp_mask) == guest_vp)
+ invalidate_pte(vcpu, pte);
+
+ rcu_read_unlock();
+}
+
+void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 guest_vp, u64 vp_mask)
+{
+ trace_kvm_book3s_mmu_flush("v", vcpu, guest_vp, vp_mask);
+ guest_vp &= vp_mask;
+
+ switch(vp_mask) {
+ case 0xfffffffffULL:
+ kvmppc_mmu_pte_vflush_short(vcpu, guest_vp);
+ break;
+#ifdef CONFIG_PPC_BOOK3S_64
+ case 0xffffffff0ULL:
+ kvmppc_mmu_pte_vflush_64k(vcpu, guest_vp);
+ break;
+#endif
+ case 0xffffff000ULL:
+ kvmppc_mmu_pte_vflush_long(vcpu, guest_vp);
+ break;
+ default:
+ WARN_ON(1);
+ return;
+ }
+}
+
+void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
+{
+ struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
+ struct hpte_cache *pte;
+ int i;
+
+ trace_kvm_book3s_mmu_flush("p", vcpu, pa_start, pa_end);
+
+ rcu_read_lock();
+
+ for (i = 0; i < HPTEG_HASH_NUM_VPTE_LONG; i++) {
+ struct hlist_head *list = &vcpu3s->hpte_hash_vpte_long[i];
+
+ hlist_for_each_entry_rcu(pte, list, list_vpte_long)
+ if ((pte->pte.raddr >= pa_start) &&
+ (pte->pte.raddr < pa_end))
+ invalidate_pte(vcpu, pte);
+ }
+
+ rcu_read_unlock();
+}
+
+struct hpte_cache *kvmppc_mmu_hpte_cache_next(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
+ struct hpte_cache *pte;
+
+ if (vcpu3s->hpte_cache_count == HPTEG_CACHE_NUM)
+ kvmppc_mmu_pte_flush_all(vcpu);
+
+ pte = kmem_cache_zalloc(hpte_cache, GFP_KERNEL);
+
+ return pte;
+}
+
+void kvmppc_mmu_hpte_cache_free(struct hpte_cache *pte)
+{
+ kmem_cache_free(hpte_cache, pte);
+}
+
+void kvmppc_mmu_hpte_destroy(struct kvm_vcpu *vcpu)
+{
+ kvmppc_mmu_pte_flush(vcpu, 0, 0);
+}
+
+static void kvmppc_mmu_hpte_init_hash(struct hlist_head *hash_list, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ INIT_HLIST_HEAD(&hash_list[i]);
+}
+
+int kvmppc_mmu_hpte_init(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
+
+ /* init hpte lookup hashes */
+ kvmppc_mmu_hpte_init_hash(vcpu3s->hpte_hash_pte,
+ ARRAY_SIZE(vcpu3s->hpte_hash_pte));
+ kvmppc_mmu_hpte_init_hash(vcpu3s->hpte_hash_pte_long,
+ ARRAY_SIZE(vcpu3s->hpte_hash_pte_long));
+ kvmppc_mmu_hpte_init_hash(vcpu3s->hpte_hash_vpte,
+ ARRAY_SIZE(vcpu3s->hpte_hash_vpte));
+ kvmppc_mmu_hpte_init_hash(vcpu3s->hpte_hash_vpte_long,
+ ARRAY_SIZE(vcpu3s->hpte_hash_vpte_long));
+#ifdef CONFIG_PPC_BOOK3S_64
+ kvmppc_mmu_hpte_init_hash(vcpu3s->hpte_hash_vpte_64k,
+ ARRAY_SIZE(vcpu3s->hpte_hash_vpte_64k));
+#endif
+
+ spin_lock_init(&vcpu3s->mmu_lock);
+
+ return 0;
+}
+
+int kvmppc_mmu_hpte_sysinit(void)
+{
+ /* init hpte slab cache */
+ hpte_cache = kmem_cache_create("kvm-spt", sizeof(struct hpte_cache),
+ sizeof(struct hpte_cache), 0, NULL);
+
+ return 0;
+}
+
+void kvmppc_mmu_hpte_sysexit(void)
+{
+ kmem_cache_destroy(hpte_cache);
+}
diff --git a/arch/powerpc/kvm/book3s_paired_singles.c b/arch/powerpc/kvm/book3s_paired_singles.c
new file mode 100644
index 000000000..a11436720
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_paired_singles.c
@@ -0,0 +1,1261 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ *
+ * Copyright Novell Inc 2010
+ *
+ * Authors: Alexander Graf <agraf@suse.de>
+ */
+
+#include <asm/kvm.h>
+#include <asm/kvm_ppc.h>
+#include <asm/disassemble.h>
+#include <asm/kvm_book3s.h>
+#include <asm/kvm_fpu.h>
+#include <asm/reg.h>
+#include <asm/cacheflush.h>
+#include <asm/switch_to.h>
+#include <linux/vmalloc.h>
+
+/* #define DEBUG */
+
+#ifdef DEBUG
+#define dprintk printk
+#else
+#define dprintk(...) do { } while(0);
+#endif
+
+#define OP_LFS 48
+#define OP_LFSU 49
+#define OP_LFD 50
+#define OP_LFDU 51
+#define OP_STFS 52
+#define OP_STFSU 53
+#define OP_STFD 54
+#define OP_STFDU 55
+#define OP_PSQ_L 56
+#define OP_PSQ_LU 57
+#define OP_PSQ_ST 60
+#define OP_PSQ_STU 61
+
+#define OP_31_LFSX 535
+#define OP_31_LFSUX 567
+#define OP_31_LFDX 599
+#define OP_31_LFDUX 631
+#define OP_31_STFSX 663
+#define OP_31_STFSUX 695
+#define OP_31_STFX 727
+#define OP_31_STFUX 759
+#define OP_31_LWIZX 887
+#define OP_31_STFIWX 983
+
+#define OP_59_FADDS 21
+#define OP_59_FSUBS 20
+#define OP_59_FSQRTS 22
+#define OP_59_FDIVS 18
+#define OP_59_FRES 24
+#define OP_59_FMULS 25
+#define OP_59_FRSQRTES 26
+#define OP_59_FMSUBS 28
+#define OP_59_FMADDS 29
+#define OP_59_FNMSUBS 30
+#define OP_59_FNMADDS 31
+
+#define OP_63_FCMPU 0
+#define OP_63_FCPSGN 8
+#define OP_63_FRSP 12
+#define OP_63_FCTIW 14
+#define OP_63_FCTIWZ 15
+#define OP_63_FDIV 18
+#define OP_63_FADD 21
+#define OP_63_FSQRT 22
+#define OP_63_FSEL 23
+#define OP_63_FRE 24
+#define OP_63_FMUL 25
+#define OP_63_FRSQRTE 26
+#define OP_63_FMSUB 28
+#define OP_63_FMADD 29
+#define OP_63_FNMSUB 30
+#define OP_63_FNMADD 31
+#define OP_63_FCMPO 32
+#define OP_63_MTFSB1 38 // XXX
+#define OP_63_FSUB 20
+#define OP_63_FNEG 40
+#define OP_63_MCRFS 64
+#define OP_63_MTFSB0 70
+#define OP_63_FMR 72
+#define OP_63_MTFSFI 134
+#define OP_63_FABS 264
+#define OP_63_MFFS 583
+#define OP_63_MTFSF 711
+
+#define OP_4X_PS_CMPU0 0
+#define OP_4X_PSQ_LX 6
+#define OP_4XW_PSQ_STX 7
+#define OP_4A_PS_SUM0 10
+#define OP_4A_PS_SUM1 11
+#define OP_4A_PS_MULS0 12
+#define OP_4A_PS_MULS1 13
+#define OP_4A_PS_MADDS0 14
+#define OP_4A_PS_MADDS1 15
+#define OP_4A_PS_DIV 18
+#define OP_4A_PS_SUB 20
+#define OP_4A_PS_ADD 21
+#define OP_4A_PS_SEL 23
+#define OP_4A_PS_RES 24
+#define OP_4A_PS_MUL 25
+#define OP_4A_PS_RSQRTE 26
+#define OP_4A_PS_MSUB 28
+#define OP_4A_PS_MADD 29
+#define OP_4A_PS_NMSUB 30
+#define OP_4A_PS_NMADD 31
+#define OP_4X_PS_CMPO0 32
+#define OP_4X_PSQ_LUX 38
+#define OP_4XW_PSQ_STUX 39
+#define OP_4X_PS_NEG 40
+#define OP_4X_PS_CMPU1 64
+#define OP_4X_PS_MR 72
+#define OP_4X_PS_CMPO1 96
+#define OP_4X_PS_NABS 136
+#define OP_4X_PS_ABS 264
+#define OP_4X_PS_MERGE00 528
+#define OP_4X_PS_MERGE01 560
+#define OP_4X_PS_MERGE10 592
+#define OP_4X_PS_MERGE11 624
+
+#define SCALAR_NONE 0
+#define SCALAR_HIGH (1 << 0)
+#define SCALAR_LOW (1 << 1)
+#define SCALAR_NO_PS0 (1 << 2)
+#define SCALAR_NO_PS1 (1 << 3)
+
+#define GQR_ST_TYPE_MASK 0x00000007
+#define GQR_ST_TYPE_SHIFT 0
+#define GQR_ST_SCALE_MASK 0x00003f00
+#define GQR_ST_SCALE_SHIFT 8
+#define GQR_LD_TYPE_MASK 0x00070000
+#define GQR_LD_TYPE_SHIFT 16
+#define GQR_LD_SCALE_MASK 0x3f000000
+#define GQR_LD_SCALE_SHIFT 24
+
+#define GQR_QUANTIZE_FLOAT 0
+#define GQR_QUANTIZE_U8 4
+#define GQR_QUANTIZE_U16 5
+#define GQR_QUANTIZE_S8 6
+#define GQR_QUANTIZE_S16 7
+
+#define FPU_LS_SINGLE 0
+#define FPU_LS_DOUBLE 1
+#define FPU_LS_SINGLE_LOW 2
+
+static inline void kvmppc_sync_qpr(struct kvm_vcpu *vcpu, int rt)
+{
+ kvm_cvt_df(&VCPU_FPR(vcpu, rt), &vcpu->arch.qpr[rt]);
+}
+
+static void kvmppc_inject_pf(struct kvm_vcpu *vcpu, ulong eaddr, bool is_store)
+{
+ u32 dsisr;
+ u64 msr = kvmppc_get_msr(vcpu);
+
+ msr = kvmppc_set_field(msr, 33, 36, 0);
+ msr = kvmppc_set_field(msr, 42, 47, 0);
+ kvmppc_set_msr(vcpu, msr);
+ kvmppc_set_dar(vcpu, eaddr);
+ /* Page Fault */
+ dsisr = kvmppc_set_field(0, 33, 33, 1);
+ if (is_store)
+ dsisr = kvmppc_set_field(dsisr, 38, 38, 1);
+ kvmppc_set_dsisr(vcpu, dsisr);
+ kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE);
+}
+
+static int kvmppc_emulate_fpr_load(struct kvm_vcpu *vcpu,
+ int rs, ulong addr, int ls_type)
+{
+ int emulated = EMULATE_FAIL;
+ int r;
+ char tmp[8];
+ int len = sizeof(u32);
+
+ if (ls_type == FPU_LS_DOUBLE)
+ len = sizeof(u64);
+
+ /* read from memory */
+ r = kvmppc_ld(vcpu, &addr, len, tmp, true);
+ vcpu->arch.paddr_accessed = addr;
+
+ if (r < 0) {
+ kvmppc_inject_pf(vcpu, addr, false);
+ goto done_load;
+ } else if (r == EMULATE_DO_MMIO) {
+ emulated = kvmppc_handle_load(vcpu, KVM_MMIO_REG_FPR | rs,
+ len, 1);
+ goto done_load;
+ }
+
+ emulated = EMULATE_DONE;
+
+ /* put in registers */
+ switch (ls_type) {
+ case FPU_LS_SINGLE:
+ kvm_cvt_fd((u32*)tmp, &VCPU_FPR(vcpu, rs));
+ vcpu->arch.qpr[rs] = *((u32*)tmp);
+ break;
+ case FPU_LS_DOUBLE:
+ VCPU_FPR(vcpu, rs) = *((u64*)tmp);
+ break;
+ }
+
+ dprintk(KERN_INFO "KVM: FPR_LD [0x%llx] at 0x%lx (%d)\n", *(u64*)tmp,
+ addr, len);
+
+done_load:
+ return emulated;
+}
+
+static int kvmppc_emulate_fpr_store(struct kvm_vcpu *vcpu,
+ int rs, ulong addr, int ls_type)
+{
+ int emulated = EMULATE_FAIL;
+ int r;
+ char tmp[8];
+ u64 val;
+ int len;
+
+ switch (ls_type) {
+ case FPU_LS_SINGLE:
+ kvm_cvt_df(&VCPU_FPR(vcpu, rs), (u32*)tmp);
+ val = *((u32*)tmp);
+ len = sizeof(u32);
+ break;
+ case FPU_LS_SINGLE_LOW:
+ *((u32*)tmp) = VCPU_FPR(vcpu, rs);
+ val = VCPU_FPR(vcpu, rs) & 0xffffffff;
+ len = sizeof(u32);
+ break;
+ case FPU_LS_DOUBLE:
+ *((u64*)tmp) = VCPU_FPR(vcpu, rs);
+ val = VCPU_FPR(vcpu, rs);
+ len = sizeof(u64);
+ break;
+ default:
+ val = 0;
+ len = 0;
+ }
+
+ r = kvmppc_st(vcpu, &addr, len, tmp, true);
+ vcpu->arch.paddr_accessed = addr;
+ if (r < 0) {
+ kvmppc_inject_pf(vcpu, addr, true);
+ } else if (r == EMULATE_DO_MMIO) {
+ emulated = kvmppc_handle_store(vcpu, val, len, 1);
+ } else {
+ emulated = EMULATE_DONE;
+ }
+
+ dprintk(KERN_INFO "KVM: FPR_ST [0x%llx] at 0x%lx (%d)\n",
+ val, addr, len);
+
+ return emulated;
+}
+
+static int kvmppc_emulate_psq_load(struct kvm_vcpu *vcpu,
+ int rs, ulong addr, bool w, int i)
+{
+ int emulated = EMULATE_FAIL;
+ int r;
+ float one = 1.0;
+ u32 tmp[2];
+
+ /* read from memory */
+ if (w) {
+ r = kvmppc_ld(vcpu, &addr, sizeof(u32), tmp, true);
+ memcpy(&tmp[1], &one, sizeof(u32));
+ } else {
+ r = kvmppc_ld(vcpu, &addr, sizeof(u32) * 2, tmp, true);
+ }
+ vcpu->arch.paddr_accessed = addr;
+ if (r < 0) {
+ kvmppc_inject_pf(vcpu, addr, false);
+ goto done_load;
+ } else if ((r == EMULATE_DO_MMIO) && w) {
+ emulated = kvmppc_handle_load(vcpu, KVM_MMIO_REG_FPR | rs,
+ 4, 1);
+ vcpu->arch.qpr[rs] = tmp[1];
+ goto done_load;
+ } else if (r == EMULATE_DO_MMIO) {
+ emulated = kvmppc_handle_load(vcpu, KVM_MMIO_REG_FQPR | rs,
+ 8, 1);
+ goto done_load;
+ }
+
+ emulated = EMULATE_DONE;
+
+ /* put in registers */
+ kvm_cvt_fd(&tmp[0], &VCPU_FPR(vcpu, rs));
+ vcpu->arch.qpr[rs] = tmp[1];
+
+ dprintk(KERN_INFO "KVM: PSQ_LD [0x%x, 0x%x] at 0x%lx (%d)\n", tmp[0],
+ tmp[1], addr, w ? 4 : 8);
+
+done_load:
+ return emulated;
+}
+
+static int kvmppc_emulate_psq_store(struct kvm_vcpu *vcpu,
+ int rs, ulong addr, bool w, int i)
+{
+ int emulated = EMULATE_FAIL;
+ int r;
+ u32 tmp[2];
+ int len = w ? sizeof(u32) : sizeof(u64);
+
+ kvm_cvt_df(&VCPU_FPR(vcpu, rs), &tmp[0]);
+ tmp[1] = vcpu->arch.qpr[rs];
+
+ r = kvmppc_st(vcpu, &addr, len, tmp, true);
+ vcpu->arch.paddr_accessed = addr;
+ if (r < 0) {
+ kvmppc_inject_pf(vcpu, addr, true);
+ } else if ((r == EMULATE_DO_MMIO) && w) {
+ emulated = kvmppc_handle_store(vcpu, tmp[0], 4, 1);
+ } else if (r == EMULATE_DO_MMIO) {
+ u64 val = ((u64)tmp[0] << 32) | tmp[1];
+ emulated = kvmppc_handle_store(vcpu, val, 8, 1);
+ } else {
+ emulated = EMULATE_DONE;
+ }
+
+ dprintk(KERN_INFO "KVM: PSQ_ST [0x%x, 0x%x] at 0x%lx (%d)\n",
+ tmp[0], tmp[1], addr, len);
+
+ return emulated;
+}
+
+/*
+ * Cuts out inst bits with ordering according to spec.
+ * That means the leftmost bit is zero. All given bits are included.
+ */
+static inline u32 inst_get_field(u32 inst, int msb, int lsb)
+{
+ return kvmppc_get_field(inst, msb + 32, lsb + 32);
+}
+
+static bool kvmppc_inst_is_paired_single(struct kvm_vcpu *vcpu, u32 inst)
+{
+ if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
+ return false;
+
+ switch (get_op(inst)) {
+ case OP_PSQ_L:
+ case OP_PSQ_LU:
+ case OP_PSQ_ST:
+ case OP_PSQ_STU:
+ case OP_LFS:
+ case OP_LFSU:
+ case OP_LFD:
+ case OP_LFDU:
+ case OP_STFS:
+ case OP_STFSU:
+ case OP_STFD:
+ case OP_STFDU:
+ return true;
+ case 4:
+ /* X form */
+ switch (inst_get_field(inst, 21, 30)) {
+ case OP_4X_PS_CMPU0:
+ case OP_4X_PSQ_LX:
+ case OP_4X_PS_CMPO0:
+ case OP_4X_PSQ_LUX:
+ case OP_4X_PS_NEG:
+ case OP_4X_PS_CMPU1:
+ case OP_4X_PS_MR:
+ case OP_4X_PS_CMPO1:
+ case OP_4X_PS_NABS:
+ case OP_4X_PS_ABS:
+ case OP_4X_PS_MERGE00:
+ case OP_4X_PS_MERGE01:
+ case OP_4X_PS_MERGE10:
+ case OP_4X_PS_MERGE11:
+ return true;
+ }
+ /* XW form */
+ switch (inst_get_field(inst, 25, 30)) {
+ case OP_4XW_PSQ_STX:
+ case OP_4XW_PSQ_STUX:
+ return true;
+ }
+ /* A form */
+ switch (inst_get_field(inst, 26, 30)) {
+ case OP_4A_PS_SUM1:
+ case OP_4A_PS_SUM0:
+ case OP_4A_PS_MULS0:
+ case OP_4A_PS_MULS1:
+ case OP_4A_PS_MADDS0:
+ case OP_4A_PS_MADDS1:
+ case OP_4A_PS_DIV:
+ case OP_4A_PS_SUB:
+ case OP_4A_PS_ADD:
+ case OP_4A_PS_SEL:
+ case OP_4A_PS_RES:
+ case OP_4A_PS_MUL:
+ case OP_4A_PS_RSQRTE:
+ case OP_4A_PS_MSUB:
+ case OP_4A_PS_MADD:
+ case OP_4A_PS_NMSUB:
+ case OP_4A_PS_NMADD:
+ return true;
+ }
+ break;
+ case 59:
+ switch (inst_get_field(inst, 21, 30)) {
+ case OP_59_FADDS:
+ case OP_59_FSUBS:
+ case OP_59_FDIVS:
+ case OP_59_FRES:
+ case OP_59_FRSQRTES:
+ return true;
+ }
+ switch (inst_get_field(inst, 26, 30)) {
+ case OP_59_FMULS:
+ case OP_59_FMSUBS:
+ case OP_59_FMADDS:
+ case OP_59_FNMSUBS:
+ case OP_59_FNMADDS:
+ return true;
+ }
+ break;
+ case 63:
+ switch (inst_get_field(inst, 21, 30)) {
+ case OP_63_MTFSB0:
+ case OP_63_MTFSB1:
+ case OP_63_MTFSF:
+ case OP_63_MTFSFI:
+ case OP_63_MCRFS:
+ case OP_63_MFFS:
+ case OP_63_FCMPU:
+ case OP_63_FCMPO:
+ case OP_63_FNEG:
+ case OP_63_FMR:
+ case OP_63_FABS:
+ case OP_63_FRSP:
+ case OP_63_FDIV:
+ case OP_63_FADD:
+ case OP_63_FSUB:
+ case OP_63_FCTIW:
+ case OP_63_FCTIWZ:
+ case OP_63_FRSQRTE:
+ case OP_63_FCPSGN:
+ return true;
+ }
+ switch (inst_get_field(inst, 26, 30)) {
+ case OP_63_FMUL:
+ case OP_63_FSEL:
+ case OP_63_FMSUB:
+ case OP_63_FMADD:
+ case OP_63_FNMSUB:
+ case OP_63_FNMADD:
+ return true;
+ }
+ break;
+ case 31:
+ switch (inst_get_field(inst, 21, 30)) {
+ case OP_31_LFSX:
+ case OP_31_LFSUX:
+ case OP_31_LFDX:
+ case OP_31_LFDUX:
+ case OP_31_STFSX:
+ case OP_31_STFSUX:
+ case OP_31_STFX:
+ case OP_31_STFUX:
+ case OP_31_STFIWX:
+ return true;
+ }
+ break;
+ }
+
+ return false;
+}
+
+static int get_d_signext(u32 inst)
+{
+ int d = inst & 0x8ff;
+
+ if (d & 0x800)
+ return -(d & 0x7ff);
+
+ return (d & 0x7ff);
+}
+
+static int kvmppc_ps_three_in(struct kvm_vcpu *vcpu, bool rc,
+ int reg_out, int reg_in1, int reg_in2,
+ int reg_in3, int scalar,
+ void (*func)(u64 *fpscr,
+ u32 *dst, u32 *src1,
+ u32 *src2, u32 *src3))
+{
+ u32 *qpr = vcpu->arch.qpr;
+ u32 ps0_out;
+ u32 ps0_in1, ps0_in2, ps0_in3;
+ u32 ps1_in1, ps1_in2, ps1_in3;
+
+ /* RC */
+ WARN_ON(rc);
+
+ /* PS0 */
+ kvm_cvt_df(&VCPU_FPR(vcpu, reg_in1), &ps0_in1);
+ kvm_cvt_df(&VCPU_FPR(vcpu, reg_in2), &ps0_in2);
+ kvm_cvt_df(&VCPU_FPR(vcpu, reg_in3), &ps0_in3);
+
+ if (scalar & SCALAR_LOW)
+ ps0_in2 = qpr[reg_in2];
+
+ func(&vcpu->arch.fp.fpscr, &ps0_out, &ps0_in1, &ps0_in2, &ps0_in3);
+
+ dprintk(KERN_INFO "PS3 ps0 -> f(0x%x, 0x%x, 0x%x) = 0x%x\n",
+ ps0_in1, ps0_in2, ps0_in3, ps0_out);
+
+ if (!(scalar & SCALAR_NO_PS0))
+ kvm_cvt_fd(&ps0_out, &VCPU_FPR(vcpu, reg_out));
+
+ /* PS1 */
+ ps1_in1 = qpr[reg_in1];
+ ps1_in2 = qpr[reg_in2];
+ ps1_in3 = qpr[reg_in3];
+
+ if (scalar & SCALAR_HIGH)
+ ps1_in2 = ps0_in2;
+
+ if (!(scalar & SCALAR_NO_PS1))
+ func(&vcpu->arch.fp.fpscr, &qpr[reg_out], &ps1_in1, &ps1_in2, &ps1_in3);
+
+ dprintk(KERN_INFO "PS3 ps1 -> f(0x%x, 0x%x, 0x%x) = 0x%x\n",
+ ps1_in1, ps1_in2, ps1_in3, qpr[reg_out]);
+
+ return EMULATE_DONE;
+}
+
+static int kvmppc_ps_two_in(struct kvm_vcpu *vcpu, bool rc,
+ int reg_out, int reg_in1, int reg_in2,
+ int scalar,
+ void (*func)(u64 *fpscr,
+ u32 *dst, u32 *src1,
+ u32 *src2))
+{
+ u32 *qpr = vcpu->arch.qpr;
+ u32 ps0_out;
+ u32 ps0_in1, ps0_in2;
+ u32 ps1_out;
+ u32 ps1_in1, ps1_in2;
+
+ /* RC */
+ WARN_ON(rc);
+
+ /* PS0 */
+ kvm_cvt_df(&VCPU_FPR(vcpu, reg_in1), &ps0_in1);
+
+ if (scalar & SCALAR_LOW)
+ ps0_in2 = qpr[reg_in2];
+ else
+ kvm_cvt_df(&VCPU_FPR(vcpu, reg_in2), &ps0_in2);
+
+ func(&vcpu->arch.fp.fpscr, &ps0_out, &ps0_in1, &ps0_in2);
+
+ if (!(scalar & SCALAR_NO_PS0)) {
+ dprintk(KERN_INFO "PS2 ps0 -> f(0x%x, 0x%x) = 0x%x\n",
+ ps0_in1, ps0_in2, ps0_out);
+
+ kvm_cvt_fd(&ps0_out, &VCPU_FPR(vcpu, reg_out));
+ }
+
+ /* PS1 */
+ ps1_in1 = qpr[reg_in1];
+ ps1_in2 = qpr[reg_in2];
+
+ if (scalar & SCALAR_HIGH)
+ ps1_in2 = ps0_in2;
+
+ func(&vcpu->arch.fp.fpscr, &ps1_out, &ps1_in1, &ps1_in2);
+
+ if (!(scalar & SCALAR_NO_PS1)) {
+ qpr[reg_out] = ps1_out;
+
+ dprintk(KERN_INFO "PS2 ps1 -> f(0x%x, 0x%x) = 0x%x\n",
+ ps1_in1, ps1_in2, qpr[reg_out]);
+ }
+
+ return EMULATE_DONE;
+}
+
+static int kvmppc_ps_one_in(struct kvm_vcpu *vcpu, bool rc,
+ int reg_out, int reg_in,
+ void (*func)(u64 *t,
+ u32 *dst, u32 *src1))
+{
+ u32 *qpr = vcpu->arch.qpr;
+ u32 ps0_out, ps0_in;
+ u32 ps1_in;
+
+ /* RC */
+ WARN_ON(rc);
+
+ /* PS0 */
+ kvm_cvt_df(&VCPU_FPR(vcpu, reg_in), &ps0_in);
+ func(&vcpu->arch.fp.fpscr, &ps0_out, &ps0_in);
+
+ dprintk(KERN_INFO "PS1 ps0 -> f(0x%x) = 0x%x\n",
+ ps0_in, ps0_out);
+
+ kvm_cvt_fd(&ps0_out, &VCPU_FPR(vcpu, reg_out));
+
+ /* PS1 */
+ ps1_in = qpr[reg_in];
+ func(&vcpu->arch.fp.fpscr, &qpr[reg_out], &ps1_in);
+
+ dprintk(KERN_INFO "PS1 ps1 -> f(0x%x) = 0x%x\n",
+ ps1_in, qpr[reg_out]);
+
+ return EMULATE_DONE;
+}
+
+int kvmppc_emulate_paired_single(struct kvm_vcpu *vcpu)
+{
+ u32 inst;
+ enum emulation_result emulated = EMULATE_DONE;
+ int ax_rd, ax_ra, ax_rb, ax_rc;
+ short full_d;
+ u64 *fpr_d, *fpr_a, *fpr_b, *fpr_c;
+
+ bool rcomp;
+ u32 cr;
+#ifdef DEBUG
+ int i;
+#endif
+
+ emulated = kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst);
+ if (emulated != EMULATE_DONE)
+ return emulated;
+
+ ax_rd = inst_get_field(inst, 6, 10);
+ ax_ra = inst_get_field(inst, 11, 15);
+ ax_rb = inst_get_field(inst, 16, 20);
+ ax_rc = inst_get_field(inst, 21, 25);
+ full_d = inst_get_field(inst, 16, 31);
+
+ fpr_d = &VCPU_FPR(vcpu, ax_rd);
+ fpr_a = &VCPU_FPR(vcpu, ax_ra);
+ fpr_b = &VCPU_FPR(vcpu, ax_rb);
+ fpr_c = &VCPU_FPR(vcpu, ax_rc);
+
+ rcomp = (inst & 1) ? true : false;
+ cr = kvmppc_get_cr(vcpu);
+
+ if (!kvmppc_inst_is_paired_single(vcpu, inst))
+ return EMULATE_FAIL;
+
+ if (!(kvmppc_get_msr(vcpu) & MSR_FP)) {
+ kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL);
+ return EMULATE_AGAIN;
+ }
+
+ kvmppc_giveup_ext(vcpu, MSR_FP);
+ preempt_disable();
+ enable_kernel_fp();
+ /* Do we need to clear FE0 / FE1 here? Don't think so. */
+
+#ifdef DEBUG
+ for (i = 0; i < ARRAY_SIZE(vcpu->arch.fp.fpr); i++) {
+ u32 f;
+ kvm_cvt_df(&VCPU_FPR(vcpu, i), &f);
+ dprintk(KERN_INFO "FPR[%d] = 0x%x / 0x%llx QPR[%d] = 0x%x\n",
+ i, f, VCPU_FPR(vcpu, i), i, vcpu->arch.qpr[i]);
+ }
+#endif
+
+ switch (get_op(inst)) {
+ case OP_PSQ_L:
+ {
+ ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
+ bool w = inst_get_field(inst, 16, 16) ? true : false;
+ int i = inst_get_field(inst, 17, 19);
+
+ addr += get_d_signext(inst);
+ emulated = kvmppc_emulate_psq_load(vcpu, ax_rd, addr, w, i);
+ break;
+ }
+ case OP_PSQ_LU:
+ {
+ ulong addr = kvmppc_get_gpr(vcpu, ax_ra);
+ bool w = inst_get_field(inst, 16, 16) ? true : false;
+ int i = inst_get_field(inst, 17, 19);
+
+ addr += get_d_signext(inst);
+ emulated = kvmppc_emulate_psq_load(vcpu, ax_rd, addr, w, i);
+
+ if (emulated == EMULATE_DONE)
+ kvmppc_set_gpr(vcpu, ax_ra, addr);
+ break;
+ }
+ case OP_PSQ_ST:
+ {
+ ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
+ bool w = inst_get_field(inst, 16, 16) ? true : false;
+ int i = inst_get_field(inst, 17, 19);
+
+ addr += get_d_signext(inst);
+ emulated = kvmppc_emulate_psq_store(vcpu, ax_rd, addr, w, i);
+ break;
+ }
+ case OP_PSQ_STU:
+ {
+ ulong addr = kvmppc_get_gpr(vcpu, ax_ra);
+ bool w = inst_get_field(inst, 16, 16) ? true : false;
+ int i = inst_get_field(inst, 17, 19);
+
+ addr += get_d_signext(inst);
+ emulated = kvmppc_emulate_psq_store(vcpu, ax_rd, addr, w, i);
+
+ if (emulated == EMULATE_DONE)
+ kvmppc_set_gpr(vcpu, ax_ra, addr);
+ break;
+ }
+ case 4:
+ /* X form */
+ switch (inst_get_field(inst, 21, 30)) {
+ case OP_4X_PS_CMPU0:
+ /* XXX */
+ emulated = EMULATE_FAIL;
+ break;
+ case OP_4X_PSQ_LX:
+ {
+ ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
+ bool w = inst_get_field(inst, 21, 21) ? true : false;
+ int i = inst_get_field(inst, 22, 24);
+
+ addr += kvmppc_get_gpr(vcpu, ax_rb);
+ emulated = kvmppc_emulate_psq_load(vcpu, ax_rd, addr, w, i);
+ break;
+ }
+ case OP_4X_PS_CMPO0:
+ /* XXX */
+ emulated = EMULATE_FAIL;
+ break;
+ case OP_4X_PSQ_LUX:
+ {
+ ulong addr = kvmppc_get_gpr(vcpu, ax_ra);
+ bool w = inst_get_field(inst, 21, 21) ? true : false;
+ int i = inst_get_field(inst, 22, 24);
+
+ addr += kvmppc_get_gpr(vcpu, ax_rb);
+ emulated = kvmppc_emulate_psq_load(vcpu, ax_rd, addr, w, i);
+
+ if (emulated == EMULATE_DONE)
+ kvmppc_set_gpr(vcpu, ax_ra, addr);
+ break;
+ }
+ case OP_4X_PS_NEG:
+ VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rb);
+ VCPU_FPR(vcpu, ax_rd) ^= 0x8000000000000000ULL;
+ vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
+ vcpu->arch.qpr[ax_rd] ^= 0x80000000;
+ break;
+ case OP_4X_PS_CMPU1:
+ /* XXX */
+ emulated = EMULATE_FAIL;
+ break;
+ case OP_4X_PS_MR:
+ WARN_ON(rcomp);
+ VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rb);
+ vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
+ break;
+ case OP_4X_PS_CMPO1:
+ /* XXX */
+ emulated = EMULATE_FAIL;
+ break;
+ case OP_4X_PS_NABS:
+ WARN_ON(rcomp);
+ VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rb);
+ VCPU_FPR(vcpu, ax_rd) |= 0x8000000000000000ULL;
+ vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
+ vcpu->arch.qpr[ax_rd] |= 0x80000000;
+ break;
+ case OP_4X_PS_ABS:
+ WARN_ON(rcomp);
+ VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rb);
+ VCPU_FPR(vcpu, ax_rd) &= ~0x8000000000000000ULL;
+ vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
+ vcpu->arch.qpr[ax_rd] &= ~0x80000000;
+ break;
+ case OP_4X_PS_MERGE00:
+ WARN_ON(rcomp);
+ VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_ra);
+ /* vcpu->arch.qpr[ax_rd] = VCPU_FPR(vcpu, ax_rb); */
+ kvm_cvt_df(&VCPU_FPR(vcpu, ax_rb),
+ &vcpu->arch.qpr[ax_rd]);
+ break;
+ case OP_4X_PS_MERGE01:
+ WARN_ON(rcomp);
+ VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_ra);
+ vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
+ break;
+ case OP_4X_PS_MERGE10:
+ WARN_ON(rcomp);
+ /* VCPU_FPR(vcpu, ax_rd) = vcpu->arch.qpr[ax_ra]; */
+ kvm_cvt_fd(&vcpu->arch.qpr[ax_ra],
+ &VCPU_FPR(vcpu, ax_rd));
+ /* vcpu->arch.qpr[ax_rd] = VCPU_FPR(vcpu, ax_rb); */
+ kvm_cvt_df(&VCPU_FPR(vcpu, ax_rb),
+ &vcpu->arch.qpr[ax_rd]);
+ break;
+ case OP_4X_PS_MERGE11:
+ WARN_ON(rcomp);
+ /* VCPU_FPR(vcpu, ax_rd) = vcpu->arch.qpr[ax_ra]; */
+ kvm_cvt_fd(&vcpu->arch.qpr[ax_ra],
+ &VCPU_FPR(vcpu, ax_rd));
+ vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
+ break;
+ }
+ /* XW form */
+ switch (inst_get_field(inst, 25, 30)) {
+ case OP_4XW_PSQ_STX:
+ {
+ ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
+ bool w = inst_get_field(inst, 21, 21) ? true : false;
+ int i = inst_get_field(inst, 22, 24);
+
+ addr += kvmppc_get_gpr(vcpu, ax_rb);
+ emulated = kvmppc_emulate_psq_store(vcpu, ax_rd, addr, w, i);
+ break;
+ }
+ case OP_4XW_PSQ_STUX:
+ {
+ ulong addr = kvmppc_get_gpr(vcpu, ax_ra);
+ bool w = inst_get_field(inst, 21, 21) ? true : false;
+ int i = inst_get_field(inst, 22, 24);
+
+ addr += kvmppc_get_gpr(vcpu, ax_rb);
+ emulated = kvmppc_emulate_psq_store(vcpu, ax_rd, addr, w, i);
+
+ if (emulated == EMULATE_DONE)
+ kvmppc_set_gpr(vcpu, ax_ra, addr);
+ break;
+ }
+ }
+ /* A form */
+ switch (inst_get_field(inst, 26, 30)) {
+ case OP_4A_PS_SUM1:
+ emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
+ ax_rb, ax_ra, SCALAR_NO_PS0 | SCALAR_HIGH, fps_fadds);
+ VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rc);
+ break;
+ case OP_4A_PS_SUM0:
+ emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
+ ax_ra, ax_rb, SCALAR_NO_PS1 | SCALAR_LOW, fps_fadds);
+ vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rc];
+ break;
+ case OP_4A_PS_MULS0:
+ emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
+ ax_ra, ax_rc, SCALAR_HIGH, fps_fmuls);
+ break;
+ case OP_4A_PS_MULS1:
+ emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
+ ax_ra, ax_rc, SCALAR_LOW, fps_fmuls);
+ break;
+ case OP_4A_PS_MADDS0:
+ emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
+ ax_ra, ax_rc, ax_rb, SCALAR_HIGH, fps_fmadds);
+ break;
+ case OP_4A_PS_MADDS1:
+ emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
+ ax_ra, ax_rc, ax_rb, SCALAR_LOW, fps_fmadds);
+ break;
+ case OP_4A_PS_DIV:
+ emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
+ ax_ra, ax_rb, SCALAR_NONE, fps_fdivs);
+ break;
+ case OP_4A_PS_SUB:
+ emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
+ ax_ra, ax_rb, SCALAR_NONE, fps_fsubs);
+ break;
+ case OP_4A_PS_ADD:
+ emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
+ ax_ra, ax_rb, SCALAR_NONE, fps_fadds);
+ break;
+ case OP_4A_PS_SEL:
+ emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
+ ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fsel);
+ break;
+ case OP_4A_PS_RES:
+ emulated = kvmppc_ps_one_in(vcpu, rcomp, ax_rd,
+ ax_rb, fps_fres);
+ break;
+ case OP_4A_PS_MUL:
+ emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
+ ax_ra, ax_rc, SCALAR_NONE, fps_fmuls);
+ break;
+ case OP_4A_PS_RSQRTE:
+ emulated = kvmppc_ps_one_in(vcpu, rcomp, ax_rd,
+ ax_rb, fps_frsqrte);
+ break;
+ case OP_4A_PS_MSUB:
+ emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
+ ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fmsubs);
+ break;
+ case OP_4A_PS_MADD:
+ emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
+ ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fmadds);
+ break;
+ case OP_4A_PS_NMSUB:
+ emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
+ ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fnmsubs);
+ break;
+ case OP_4A_PS_NMADD:
+ emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
+ ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fnmadds);
+ break;
+ }
+ break;
+
+ /* Real FPU operations */
+
+ case OP_LFS:
+ {
+ ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) + full_d;
+
+ emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd, addr,
+ FPU_LS_SINGLE);
+ break;
+ }
+ case OP_LFSU:
+ {
+ ulong addr = kvmppc_get_gpr(vcpu, ax_ra) + full_d;
+
+ emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd, addr,
+ FPU_LS_SINGLE);
+
+ if (emulated == EMULATE_DONE)
+ kvmppc_set_gpr(vcpu, ax_ra, addr);
+ break;
+ }
+ case OP_LFD:
+ {
+ ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) + full_d;
+
+ emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd, addr,
+ FPU_LS_DOUBLE);
+ break;
+ }
+ case OP_LFDU:
+ {
+ ulong addr = kvmppc_get_gpr(vcpu, ax_ra) + full_d;
+
+ emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd, addr,
+ FPU_LS_DOUBLE);
+
+ if (emulated == EMULATE_DONE)
+ kvmppc_set_gpr(vcpu, ax_ra, addr);
+ break;
+ }
+ case OP_STFS:
+ {
+ ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) + full_d;
+
+ emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd, addr,
+ FPU_LS_SINGLE);
+ break;
+ }
+ case OP_STFSU:
+ {
+ ulong addr = kvmppc_get_gpr(vcpu, ax_ra) + full_d;
+
+ emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd, addr,
+ FPU_LS_SINGLE);
+
+ if (emulated == EMULATE_DONE)
+ kvmppc_set_gpr(vcpu, ax_ra, addr);
+ break;
+ }
+ case OP_STFD:
+ {
+ ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) + full_d;
+
+ emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd, addr,
+ FPU_LS_DOUBLE);
+ break;
+ }
+ case OP_STFDU:
+ {
+ ulong addr = kvmppc_get_gpr(vcpu, ax_ra) + full_d;
+
+ emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd, addr,
+ FPU_LS_DOUBLE);
+
+ if (emulated == EMULATE_DONE)
+ kvmppc_set_gpr(vcpu, ax_ra, addr);
+ break;
+ }
+ case 31:
+ switch (inst_get_field(inst, 21, 30)) {
+ case OP_31_LFSX:
+ {
+ ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
+
+ addr += kvmppc_get_gpr(vcpu, ax_rb);
+ emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd,
+ addr, FPU_LS_SINGLE);
+ break;
+ }
+ case OP_31_LFSUX:
+ {
+ ulong addr = kvmppc_get_gpr(vcpu, ax_ra) +
+ kvmppc_get_gpr(vcpu, ax_rb);
+
+ emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd,
+ addr, FPU_LS_SINGLE);
+
+ if (emulated == EMULATE_DONE)
+ kvmppc_set_gpr(vcpu, ax_ra, addr);
+ break;
+ }
+ case OP_31_LFDX:
+ {
+ ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) +
+ kvmppc_get_gpr(vcpu, ax_rb);
+
+ emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd,
+ addr, FPU_LS_DOUBLE);
+ break;
+ }
+ case OP_31_LFDUX:
+ {
+ ulong addr = kvmppc_get_gpr(vcpu, ax_ra) +
+ kvmppc_get_gpr(vcpu, ax_rb);
+
+ emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd,
+ addr, FPU_LS_DOUBLE);
+
+ if (emulated == EMULATE_DONE)
+ kvmppc_set_gpr(vcpu, ax_ra, addr);
+ break;
+ }
+ case OP_31_STFSX:
+ {
+ ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) +
+ kvmppc_get_gpr(vcpu, ax_rb);
+
+ emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd,
+ addr, FPU_LS_SINGLE);
+ break;
+ }
+ case OP_31_STFSUX:
+ {
+ ulong addr = kvmppc_get_gpr(vcpu, ax_ra) +
+ kvmppc_get_gpr(vcpu, ax_rb);
+
+ emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd,
+ addr, FPU_LS_SINGLE);
+
+ if (emulated == EMULATE_DONE)
+ kvmppc_set_gpr(vcpu, ax_ra, addr);
+ break;
+ }
+ case OP_31_STFX:
+ {
+ ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) +
+ kvmppc_get_gpr(vcpu, ax_rb);
+
+ emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd,
+ addr, FPU_LS_DOUBLE);
+ break;
+ }
+ case OP_31_STFUX:
+ {
+ ulong addr = kvmppc_get_gpr(vcpu, ax_ra) +
+ kvmppc_get_gpr(vcpu, ax_rb);
+
+ emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd,
+ addr, FPU_LS_DOUBLE);
+
+ if (emulated == EMULATE_DONE)
+ kvmppc_set_gpr(vcpu, ax_ra, addr);
+ break;
+ }
+ case OP_31_STFIWX:
+ {
+ ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) +
+ kvmppc_get_gpr(vcpu, ax_rb);
+
+ emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd,
+ addr,
+ FPU_LS_SINGLE_LOW);
+ break;
+ }
+ break;
+ }
+ break;
+ case 59:
+ switch (inst_get_field(inst, 21, 30)) {
+ case OP_59_FADDS:
+ fpd_fadds(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
+ kvmppc_sync_qpr(vcpu, ax_rd);
+ break;
+ case OP_59_FSUBS:
+ fpd_fsubs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
+ kvmppc_sync_qpr(vcpu, ax_rd);
+ break;
+ case OP_59_FDIVS:
+ fpd_fdivs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
+ kvmppc_sync_qpr(vcpu, ax_rd);
+ break;
+ case OP_59_FRES:
+ fpd_fres(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
+ kvmppc_sync_qpr(vcpu, ax_rd);
+ break;
+ case OP_59_FRSQRTES:
+ fpd_frsqrtes(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
+ kvmppc_sync_qpr(vcpu, ax_rd);
+ break;
+ }
+ switch (inst_get_field(inst, 26, 30)) {
+ case OP_59_FMULS:
+ fpd_fmuls(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c);
+ kvmppc_sync_qpr(vcpu, ax_rd);
+ break;
+ case OP_59_FMSUBS:
+ fpd_fmsubs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
+ kvmppc_sync_qpr(vcpu, ax_rd);
+ break;
+ case OP_59_FMADDS:
+ fpd_fmadds(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
+ kvmppc_sync_qpr(vcpu, ax_rd);
+ break;
+ case OP_59_FNMSUBS:
+ fpd_fnmsubs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
+ kvmppc_sync_qpr(vcpu, ax_rd);
+ break;
+ case OP_59_FNMADDS:
+ fpd_fnmadds(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
+ kvmppc_sync_qpr(vcpu, ax_rd);
+ break;
+ }
+ break;
+ case 63:
+ switch (inst_get_field(inst, 21, 30)) {
+ case OP_63_MTFSB0:
+ case OP_63_MTFSB1:
+ case OP_63_MCRFS:
+ case OP_63_MTFSFI:
+ /* XXX need to implement */
+ break;
+ case OP_63_MFFS:
+ /* XXX missing CR */
+ *fpr_d = vcpu->arch.fp.fpscr;
+ break;
+ case OP_63_MTFSF:
+ /* XXX missing fm bits */
+ /* XXX missing CR */
+ vcpu->arch.fp.fpscr = *fpr_b;
+ break;
+ case OP_63_FCMPU:
+ {
+ u32 tmp_cr;
+ u32 cr0_mask = 0xf0000000;
+ u32 cr_shift = inst_get_field(inst, 6, 8) * 4;
+
+ fpd_fcmpu(&vcpu->arch.fp.fpscr, &tmp_cr, fpr_a, fpr_b);
+ cr &= ~(cr0_mask >> cr_shift);
+ cr |= (cr & cr0_mask) >> cr_shift;
+ break;
+ }
+ case OP_63_FCMPO:
+ {
+ u32 tmp_cr;
+ u32 cr0_mask = 0xf0000000;
+ u32 cr_shift = inst_get_field(inst, 6, 8) * 4;
+
+ fpd_fcmpo(&vcpu->arch.fp.fpscr, &tmp_cr, fpr_a, fpr_b);
+ cr &= ~(cr0_mask >> cr_shift);
+ cr |= (cr & cr0_mask) >> cr_shift;
+ break;
+ }
+ case OP_63_FNEG:
+ fpd_fneg(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
+ break;
+ case OP_63_FMR:
+ *fpr_d = *fpr_b;
+ break;
+ case OP_63_FABS:
+ fpd_fabs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
+ break;
+ case OP_63_FCPSGN:
+ fpd_fcpsgn(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
+ break;
+ case OP_63_FDIV:
+ fpd_fdiv(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
+ break;
+ case OP_63_FADD:
+ fpd_fadd(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
+ break;
+ case OP_63_FSUB:
+ fpd_fsub(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
+ break;
+ case OP_63_FCTIW:
+ fpd_fctiw(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
+ break;
+ case OP_63_FCTIWZ:
+ fpd_fctiwz(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
+ break;
+ case OP_63_FRSP:
+ fpd_frsp(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
+ kvmppc_sync_qpr(vcpu, ax_rd);
+ break;
+ case OP_63_FRSQRTE:
+ {
+ double one = 1.0f;
+
+ /* fD = sqrt(fB) */
+ fpd_fsqrt(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
+ /* fD = 1.0f / fD */
+ fpd_fdiv(&vcpu->arch.fp.fpscr, &cr, fpr_d, (u64*)&one, fpr_d);
+ break;
+ }
+ }
+ switch (inst_get_field(inst, 26, 30)) {
+ case OP_63_FMUL:
+ fpd_fmul(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c);
+ break;
+ case OP_63_FSEL:
+ fpd_fsel(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
+ break;
+ case OP_63_FMSUB:
+ fpd_fmsub(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
+ break;
+ case OP_63_FMADD:
+ fpd_fmadd(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
+ break;
+ case OP_63_FNMSUB:
+ fpd_fnmsub(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
+ break;
+ case OP_63_FNMADD:
+ fpd_fnmadd(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
+ break;
+ }
+ break;
+ }
+
+#ifdef DEBUG
+ for (i = 0; i < ARRAY_SIZE(vcpu->arch.fp.fpr); i++) {
+ u32 f;
+ kvm_cvt_df(&VCPU_FPR(vcpu, i), &f);
+ dprintk(KERN_INFO "FPR[%d] = 0x%x\n", i, f);
+ }
+#endif
+
+ if (rcomp)
+ kvmppc_set_cr(vcpu, cr);
+
+ disable_kernel_fp();
+ preempt_enable();
+
+ return emulated;
+}
diff --git a/arch/powerpc/kvm/book3s_pr.c b/arch/powerpc/kvm/book3s_pr.c
new file mode 100644
index 000000000..9fc4dd8f6
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_pr.c
@@ -0,0 +1,2121 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
+ *
+ * Authors:
+ * Alexander Graf <agraf@suse.de>
+ * Kevin Wolf <mail@kevin-wolf.de>
+ * Paul Mackerras <paulus@samba.org>
+ *
+ * Description:
+ * Functions relating to running KVM on Book 3S processors where
+ * we don't have access to hypervisor mode, and we run the guest
+ * in problem state (user mode).
+ *
+ * This file is derived from arch/powerpc/kvm/44x.c,
+ * by Hollis Blanchard <hollisb@us.ibm.com>.
+ */
+
+#include <linux/kvm_host.h>
+#include <linux/export.h>
+#include <linux/err.h>
+#include <linux/slab.h>
+
+#include <asm/reg.h>
+#include <asm/cputable.h>
+#include <asm/cacheflush.h>
+#include <linux/uaccess.h>
+#include <asm/interrupt.h>
+#include <asm/io.h>
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+#include <asm/mmu_context.h>
+#include <asm/switch_to.h>
+#include <asm/firmware.h>
+#include <asm/setup.h>
+#include <linux/gfp.h>
+#include <linux/sched.h>
+#include <linux/vmalloc.h>
+#include <linux/highmem.h>
+#include <linux/module.h>
+#include <linux/miscdevice.h>
+#include <asm/asm-prototypes.h>
+#include <asm/tm.h>
+
+#include "book3s.h"
+
+#define CREATE_TRACE_POINTS
+#include "trace_pr.h"
+
+/* #define EXIT_DEBUG */
+/* #define DEBUG_EXT */
+
+static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
+ ulong msr);
+#ifdef CONFIG_PPC_BOOK3S_64
+static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
+#endif
+
+/* Some compatibility defines */
+#ifdef CONFIG_PPC_BOOK3S_32
+#define MSR_USER32 MSR_USER
+#define MSR_USER64 MSR_USER
+#define HW_PAGE_SIZE PAGE_SIZE
+#define HPTE_R_M _PAGE_COHERENT
+#endif
+
+static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
+{
+ ulong msr = kvmppc_get_msr(vcpu);
+ return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
+}
+
+static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
+{
+ ulong msr = kvmppc_get_msr(vcpu);
+ ulong pc = kvmppc_get_pc(vcpu);
+
+ /* We are in DR only split real mode */
+ if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
+ return;
+
+ /* We have not fixed up the guest already */
+ if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
+ return;
+
+ /* The code is in fixupable address space */
+ if (pc & SPLIT_HACK_MASK)
+ return;
+
+ vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
+ kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
+}
+
+static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) {
+ ulong pc = kvmppc_get_pc(vcpu);
+ ulong lr = kvmppc_get_lr(vcpu);
+ if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
+ kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK);
+ if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)
+ kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK);
+ vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK;
+ }
+}
+
+static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
+{
+ unsigned long msr, pc, new_msr, new_pc;
+
+ kvmppc_unfixup_split_real(vcpu);
+
+ msr = kvmppc_get_msr(vcpu);
+ pc = kvmppc_get_pc(vcpu);
+ new_msr = vcpu->arch.intr_msr;
+ new_pc = to_book3s(vcpu)->hior + vec;
+
+#ifdef CONFIG_PPC_BOOK3S_64
+ /* If transactional, change to suspend mode on IRQ delivery */
+ if (MSR_TM_TRANSACTIONAL(msr))
+ new_msr |= MSR_TS_S;
+ else
+ new_msr |= msr & MSR_TS_MASK;
+#endif
+
+ kvmppc_set_srr0(vcpu, pc);
+ kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
+ kvmppc_set_pc(vcpu, new_pc);
+ kvmppc_set_msr(vcpu, new_msr);
+}
+
+static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
+{
+#ifdef CONFIG_PPC_BOOK3S_64
+ struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
+ memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
+ svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
+ svcpu->in_use = 0;
+ svcpu_put(svcpu);
+
+ /* Disable AIL if supported */
+ if (cpu_has_feature(CPU_FTR_HVMODE)) {
+ if (cpu_has_feature(CPU_FTR_ARCH_207S))
+ mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
+ if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
+ mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) & ~FSCR_SCV);
+ }
+#endif
+
+ vcpu->cpu = smp_processor_id();
+#ifdef CONFIG_PPC_BOOK3S_32
+ current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
+#endif
+
+ if (kvmppc_is_split_real(vcpu))
+ kvmppc_fixup_split_real(vcpu);
+
+ kvmppc_restore_tm_pr(vcpu);
+}
+
+static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
+{
+#ifdef CONFIG_PPC_BOOK3S_64
+ struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
+ if (svcpu->in_use) {
+ kvmppc_copy_from_svcpu(vcpu);
+ }
+ memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
+ to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
+ svcpu_put(svcpu);
+
+ /* Enable AIL if supported */
+ if (cpu_has_feature(CPU_FTR_HVMODE)) {
+ if (cpu_has_feature(CPU_FTR_ARCH_207S))
+ mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
+ if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV))
+ mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) | FSCR_SCV);
+ }
+#endif
+
+ if (kvmppc_is_split_real(vcpu))
+ kvmppc_unfixup_split_real(vcpu);
+
+ kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
+ kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
+ kvmppc_save_tm_pr(vcpu);
+
+ vcpu->cpu = -1;
+}
+
+/* Copy data needed by real-mode code from vcpu to shadow vcpu */
+void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
+
+ svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
+ svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
+ svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
+ svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
+ svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
+ svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
+ svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
+ svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
+ svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
+ svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
+ svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
+ svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
+ svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
+ svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
+ svcpu->cr = vcpu->arch.regs.ccr;
+ svcpu->xer = vcpu->arch.regs.xer;
+ svcpu->ctr = vcpu->arch.regs.ctr;
+ svcpu->lr = vcpu->arch.regs.link;
+ svcpu->pc = vcpu->arch.regs.nip;
+#ifdef CONFIG_PPC_BOOK3S_64
+ svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
+#endif
+ /*
+ * Now also save the current time base value. We use this
+ * to find the guest purr and spurr value.
+ */
+ vcpu->arch.entry_tb = get_tb();
+ vcpu->arch.entry_vtb = get_vtb();
+ if (cpu_has_feature(CPU_FTR_ARCH_207S))
+ vcpu->arch.entry_ic = mfspr(SPRN_IC);
+ svcpu->in_use = true;
+
+ svcpu_put(svcpu);
+}
+
+static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
+{
+ ulong guest_msr = kvmppc_get_msr(vcpu);
+ ulong smsr = guest_msr;
+
+ /* Guest MSR values */
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
+ MSR_TM | MSR_TS_MASK;
+#else
+ smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
+#endif
+ /* Process MSR values */
+ smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
+ /* External providers the guest reserved */
+ smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
+ /* 64-bit Process MSR values */
+#ifdef CONFIG_PPC_BOOK3S_64
+ smsr |= MSR_HV;
+#endif
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ /*
+ * in guest privileged state, we want to fail all TM transactions.
+ * So disable MSR TM bit so that all tbegin. will be able to be
+ * trapped into host.
+ */
+ if (!(guest_msr & MSR_PR))
+ smsr &= ~MSR_TM;
+#endif
+ vcpu->arch.shadow_msr = smsr;
+}
+
+/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
+void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ ulong old_msr;
+#endif
+
+ /*
+ * Maybe we were already preempted and synced the svcpu from
+ * our preempt notifiers. Don't bother touching this svcpu then.
+ */
+ if (!svcpu->in_use)
+ goto out;
+
+ vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
+ vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
+ vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
+ vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
+ vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
+ vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
+ vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
+ vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
+ vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
+ vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
+ vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
+ vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
+ vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
+ vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
+ vcpu->arch.regs.ccr = svcpu->cr;
+ vcpu->arch.regs.xer = svcpu->xer;
+ vcpu->arch.regs.ctr = svcpu->ctr;
+ vcpu->arch.regs.link = svcpu->lr;
+ vcpu->arch.regs.nip = svcpu->pc;
+ vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
+ vcpu->arch.fault_dar = svcpu->fault_dar;
+ vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
+ vcpu->arch.last_inst = svcpu->last_inst;
+#ifdef CONFIG_PPC_BOOK3S_64
+ vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
+#endif
+ /*
+ * Update purr and spurr using time base on exit.
+ */
+ vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
+ vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
+ to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
+ if (cpu_has_feature(CPU_FTR_ARCH_207S))
+ vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ /*
+ * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
+ * notifying host:
+ * modified by unprivileged instructions like "tbegin"/"tend"/
+ * "tresume"/"tsuspend" in PR KVM guest.
+ *
+ * It is necessary to sync here to calculate a correct shadow_msr.
+ *
+ * privileged guest's tbegin will be failed at present. So we
+ * only take care of problem state guest.
+ */
+ old_msr = kvmppc_get_msr(vcpu);
+ if (unlikely((old_msr & MSR_PR) &&
+ (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
+ (old_msr & (MSR_TS_MASK)))) {
+ old_msr &= ~(MSR_TS_MASK);
+ old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
+ kvmppc_set_msr_fast(vcpu, old_msr);
+ kvmppc_recalc_shadow_msr(vcpu);
+ }
+#endif
+
+ svcpu->in_use = false;
+
+out:
+ svcpu_put(svcpu);
+}
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
+{
+ tm_enable();
+ vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
+ vcpu->arch.texasr = mfspr(SPRN_TEXASR);
+ vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
+ tm_disable();
+}
+
+void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
+{
+ tm_enable();
+ mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
+ mtspr(SPRN_TEXASR, vcpu->arch.texasr);
+ mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
+ tm_disable();
+}
+
+/* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
+ * hardware.
+ */
+static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
+{
+ ulong exit_nr;
+ ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
+ (MSR_FP | MSR_VEC | MSR_VSX);
+
+ if (!ext_diff)
+ return;
+
+ if (ext_diff == MSR_FP)
+ exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
+ else if (ext_diff == MSR_VEC)
+ exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
+ else
+ exit_nr = BOOK3S_INTERRUPT_VSX;
+
+ kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
+}
+
+void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
+{
+ if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
+ kvmppc_save_tm_sprs(vcpu);
+ return;
+ }
+
+ kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
+ kvmppc_giveup_ext(vcpu, MSR_VSX);
+
+ preempt_disable();
+ _kvmppc_save_tm_pr(vcpu, mfmsr());
+ preempt_enable();
+}
+
+void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
+{
+ if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
+ kvmppc_restore_tm_sprs(vcpu);
+ if (kvmppc_get_msr(vcpu) & MSR_TM) {
+ kvmppc_handle_lost_math_exts(vcpu);
+ if (vcpu->arch.fscr & FSCR_TAR)
+ kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
+ }
+ return;
+ }
+
+ preempt_disable();
+ _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
+ preempt_enable();
+
+ if (kvmppc_get_msr(vcpu) & MSR_TM) {
+ kvmppc_handle_lost_math_exts(vcpu);
+ if (vcpu->arch.fscr & FSCR_TAR)
+ kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
+ }
+}
+#endif
+
+static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
+{
+ int r = 1; /* Indicate we want to get back into the guest */
+
+ /* We misuse TLB_FLUSH to indicate that we want to clear
+ all shadow cache entries */
+ if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
+ kvmppc_mmu_pte_flush(vcpu, 0, 0);
+
+ return r;
+}
+
+/************* MMU Notifiers *************/
+static bool do_kvm_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ unsigned long i;
+ struct kvm_vcpu *vcpu;
+
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ kvmppc_mmu_pte_pflush(vcpu, range->start << PAGE_SHIFT,
+ range->end << PAGE_SHIFT);
+
+ return false;
+}
+
+static bool kvm_unmap_gfn_range_pr(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ return do_kvm_unmap_gfn(kvm, range);
+}
+
+static bool kvm_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ /* XXX could be more clever ;) */
+ return false;
+}
+
+static bool kvm_test_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ /* XXX could be more clever ;) */
+ return false;
+}
+
+static bool kvm_set_spte_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ /* The page will get remapped properly on its next fault */
+ return do_kvm_unmap_gfn(kvm, range);
+}
+
+/*****************************************/
+
+static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
+{
+ ulong old_msr;
+
+ /* For PAPR guest, make sure MSR reflects guest mode */
+ if (vcpu->arch.papr_enabled)
+ msr = (msr & ~MSR_HV) | MSR_ME;
+
+#ifdef EXIT_DEBUG
+ printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
+#endif
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ /* We should never target guest MSR to TS=10 && PR=0,
+ * since we always fail transaction for guest privilege
+ * state.
+ */
+ if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
+ kvmppc_emulate_tabort(vcpu,
+ TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
+#endif
+
+ old_msr = kvmppc_get_msr(vcpu);
+ msr &= to_book3s(vcpu)->msr_mask;
+ kvmppc_set_msr_fast(vcpu, msr);
+ kvmppc_recalc_shadow_msr(vcpu);
+
+ if (msr & MSR_POW) {
+ if (!vcpu->arch.pending_exceptions) {
+ kvm_vcpu_halt(vcpu);
+ vcpu->stat.generic.halt_wakeup++;
+
+ /* Unset POW bit after we woke up */
+ msr &= ~MSR_POW;
+ kvmppc_set_msr_fast(vcpu, msr);
+ }
+ }
+
+ if (kvmppc_is_split_real(vcpu))
+ kvmppc_fixup_split_real(vcpu);
+ else
+ kvmppc_unfixup_split_real(vcpu);
+
+ if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
+ (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
+ kvmppc_mmu_flush_segments(vcpu);
+ kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
+
+ /* Preload magic page segment when in kernel mode */
+ if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
+ struct kvm_vcpu_arch *a = &vcpu->arch;
+
+ if (msr & MSR_DR)
+ kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
+ else
+ kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
+ }
+ }
+
+ /*
+ * When switching from 32 to 64-bit, we may have a stale 32-bit
+ * magic page around, we need to flush it. Typically 32-bit magic
+ * page will be instantiated when calling into RTAS. Note: We
+ * assume that such transition only happens while in kernel mode,
+ * ie, we never transition from user 32-bit to kernel 64-bit with
+ * a 32-bit magic page around.
+ */
+ if (vcpu->arch.magic_page_pa &&
+ !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
+ /* going from RTAS to normal kernel code */
+ kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
+ ~0xFFFUL);
+ }
+
+ /* Preload FPU if it's enabled */
+ if (kvmppc_get_msr(vcpu) & MSR_FP)
+ kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ if (kvmppc_get_msr(vcpu) & MSR_TM)
+ kvmppc_handle_lost_math_exts(vcpu);
+#endif
+}
+
+static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
+{
+ u32 host_pvr;
+
+ vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
+ vcpu->arch.pvr = pvr;
+#ifdef CONFIG_PPC_BOOK3S_64
+ if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
+ kvmppc_mmu_book3s_64_init(vcpu);
+ if (!to_book3s(vcpu)->hior_explicit)
+ to_book3s(vcpu)->hior = 0xfff00000;
+ to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
+ vcpu->arch.cpu_type = KVM_CPU_3S_64;
+ } else
+#endif
+ {
+ kvmppc_mmu_book3s_32_init(vcpu);
+ if (!to_book3s(vcpu)->hior_explicit)
+ to_book3s(vcpu)->hior = 0;
+ to_book3s(vcpu)->msr_mask = 0xffffffffULL;
+ vcpu->arch.cpu_type = KVM_CPU_3S_32;
+ }
+
+ kvmppc_sanity_check(vcpu);
+
+ /* If we are in hypervisor level on 970, we can tell the CPU to
+ * treat DCBZ as 32 bytes store */
+ vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
+ if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
+ !strcmp(cur_cpu_spec->platform, "ppc970"))
+ vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
+
+ /* Cell performs badly if MSR_FEx are set. So let's hope nobody
+ really needs them in a VM on Cell and force disable them. */
+ if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
+ to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
+
+ /*
+ * If they're asking for POWER6 or later, set the flag
+ * indicating that we can do multiple large page sizes
+ * and 1TB segments.
+ * Also set the flag that indicates that tlbie has the large
+ * page bit in the RB operand instead of the instruction.
+ */
+ switch (PVR_VER(pvr)) {
+ case PVR_POWER6:
+ case PVR_POWER7:
+ case PVR_POWER7p:
+ case PVR_POWER8:
+ case PVR_POWER8E:
+ case PVR_POWER8NVL:
+ case PVR_POWER9:
+ vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
+ BOOK3S_HFLAG_NEW_TLBIE;
+ break;
+ }
+
+#ifdef CONFIG_PPC_BOOK3S_32
+ /* 32 bit Book3S always has 32 byte dcbz */
+ vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
+#endif
+
+ /* On some CPUs we can execute paired single operations natively */
+ asm ( "mfpvr %0" : "=r"(host_pvr));
+ switch (host_pvr) {
+ case 0x00080200: /* lonestar 2.0 */
+ case 0x00088202: /* lonestar 2.2 */
+ case 0x70000100: /* gekko 1.0 */
+ case 0x00080100: /* gekko 2.0 */
+ case 0x00083203: /* gekko 2.3a */
+ case 0x00083213: /* gekko 2.3b */
+ case 0x00083204: /* gekko 2.4 */
+ case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
+ case 0x00087200: /* broadway */
+ vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
+ /* Enable HID2.PSE - in case we need it later */
+ mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
+ }
+}
+
+/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
+ * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
+ * emulate 32 bytes dcbz length.
+ *
+ * The Book3s_64 inventors also realized this case and implemented a special bit
+ * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
+ *
+ * My approach here is to patch the dcbz instruction on executing pages.
+ */
+static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
+{
+ struct page *hpage;
+ u64 hpage_offset;
+ u32 *page;
+ int i;
+
+ hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
+ if (is_error_page(hpage))
+ return;
+
+ hpage_offset = pte->raddr & ~PAGE_MASK;
+ hpage_offset &= ~0xFFFULL;
+ hpage_offset /= 4;
+
+ get_page(hpage);
+ page = kmap_atomic(hpage);
+
+ /* patch dcbz into reserved instruction, so we trap */
+ for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
+ if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
+ page[i] &= cpu_to_be32(0xfffffff7);
+
+ kunmap_atomic(page);
+ put_page(hpage);
+}
+
+static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
+{
+ ulong mp_pa = vcpu->arch.magic_page_pa;
+
+ if (!(kvmppc_get_msr(vcpu) & MSR_SF))
+ mp_pa = (uint32_t)mp_pa;
+
+ gpa &= ~0xFFFULL;
+ if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
+ return true;
+ }
+
+ return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
+}
+
+static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu,
+ ulong eaddr, int vec)
+{
+ bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
+ bool iswrite = false;
+ int r = RESUME_GUEST;
+ int relocated;
+ int page_found = 0;
+ struct kvmppc_pte pte = { 0 };
+ bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
+ bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
+ u64 vsid;
+
+ relocated = data ? dr : ir;
+ if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
+ iswrite = true;
+
+ /* Resolve real address if translation turned on */
+ if (relocated) {
+ page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
+ } else {
+ pte.may_execute = true;
+ pte.may_read = true;
+ pte.may_write = true;
+ pte.raddr = eaddr & KVM_PAM;
+ pte.eaddr = eaddr;
+ pte.vpage = eaddr >> 12;
+ pte.page_size = MMU_PAGE_64K;
+ pte.wimg = HPTE_R_M;
+ }
+
+ switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
+ case 0:
+ pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
+ break;
+ case MSR_DR:
+ if (!data &&
+ (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
+ ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
+ pte.raddr &= ~SPLIT_HACK_MASK;
+ fallthrough;
+ case MSR_IR:
+ vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
+
+ if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
+ pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
+ else
+ pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
+ pte.vpage |= vsid;
+
+ if (vsid == -1)
+ page_found = -EINVAL;
+ break;
+ }
+
+ if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
+ (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
+ /*
+ * If we do the dcbz hack, we have to NX on every execution,
+ * so we can patch the executing code. This renders our guest
+ * NX-less.
+ */
+ pte.may_execute = !data;
+ }
+
+ if (page_found == -ENOENT || page_found == -EPERM) {
+ /* Page not found in guest PTE entries, or protection fault */
+ u64 flags;
+
+ if (page_found == -EPERM)
+ flags = DSISR_PROTFAULT;
+ else
+ flags = DSISR_NOHPTE;
+ if (data) {
+ flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE;
+ kvmppc_core_queue_data_storage(vcpu, eaddr, flags);
+ } else {
+ kvmppc_core_queue_inst_storage(vcpu, flags);
+ }
+ } else if (page_found == -EINVAL) {
+ /* Page not found in guest SLB */
+ kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
+ kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
+ } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
+ if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
+ /*
+ * There is already a host HPTE there, presumably
+ * a read-only one for a page the guest thinks
+ * is writable, so get rid of it first.
+ */
+ kvmppc_mmu_unmap_page(vcpu, &pte);
+ }
+ /* The guest's PTE is not mapped yet. Map on the host */
+ if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
+ /* Exit KVM if mapping failed */
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ return RESUME_HOST;
+ }
+ if (data)
+ vcpu->stat.sp_storage++;
+ else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
+ (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
+ kvmppc_patch_dcbz(vcpu, &pte);
+ } else {
+ /* MMIO */
+ vcpu->stat.mmio_exits++;
+ vcpu->arch.paddr_accessed = pte.raddr;
+ vcpu->arch.vaddr_accessed = pte.eaddr;
+ r = kvmppc_emulate_mmio(vcpu);
+ if ( r == RESUME_HOST_NV )
+ r = RESUME_HOST;
+ }
+
+ return r;
+}
+
+/* Give up external provider (FPU, Altivec, VSX) */
+void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
+{
+ struct thread_struct *t = &current->thread;
+
+ /*
+ * VSX instructions can access FP and vector registers, so if
+ * we are giving up VSX, make sure we give up FP and VMX as well.
+ */
+ if (msr & MSR_VSX)
+ msr |= MSR_FP | MSR_VEC;
+
+ msr &= vcpu->arch.guest_owned_ext;
+ if (!msr)
+ return;
+
+#ifdef DEBUG_EXT
+ printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
+#endif
+
+ if (msr & MSR_FP) {
+ /*
+ * Note that on CPUs with VSX, giveup_fpu stores
+ * both the traditional FP registers and the added VSX
+ * registers into thread.fp_state.fpr[].
+ */
+ if (t->regs->msr & MSR_FP)
+ giveup_fpu(current);
+ t->fp_save_area = NULL;
+ }
+
+#ifdef CONFIG_ALTIVEC
+ if (msr & MSR_VEC) {
+ if (current->thread.regs->msr & MSR_VEC)
+ giveup_altivec(current);
+ t->vr_save_area = NULL;
+ }
+#endif
+
+ vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
+ kvmppc_recalc_shadow_msr(vcpu);
+}
+
+/* Give up facility (TAR / EBB / DSCR) */
+void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
+{
+#ifdef CONFIG_PPC_BOOK3S_64
+ if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
+ /* Facility not available to the guest, ignore giveup request*/
+ return;
+ }
+
+ switch (fac) {
+ case FSCR_TAR_LG:
+ vcpu->arch.tar = mfspr(SPRN_TAR);
+ mtspr(SPRN_TAR, current->thread.tar);
+ vcpu->arch.shadow_fscr &= ~FSCR_TAR;
+ break;
+ }
+#endif
+}
+
+/* Handle external providers (FPU, Altivec, VSX) */
+static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
+ ulong msr)
+{
+ struct thread_struct *t = &current->thread;
+
+ /* When we have paired singles, we emulate in software */
+ if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
+ return RESUME_GUEST;
+
+ if (!(kvmppc_get_msr(vcpu) & msr)) {
+ kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
+ return RESUME_GUEST;
+ }
+
+ if (msr == MSR_VSX) {
+ /* No VSX? Give an illegal instruction interrupt */
+#ifdef CONFIG_VSX
+ if (!cpu_has_feature(CPU_FTR_VSX))
+#endif
+ {
+ kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
+ return RESUME_GUEST;
+ }
+
+ /*
+ * We have to load up all the FP and VMX registers before
+ * we can let the guest use VSX instructions.
+ */
+ msr = MSR_FP | MSR_VEC | MSR_VSX;
+ }
+
+ /* See if we already own all the ext(s) needed */
+ msr &= ~vcpu->arch.guest_owned_ext;
+ if (!msr)
+ return RESUME_GUEST;
+
+#ifdef DEBUG_EXT
+ printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
+#endif
+
+ if (msr & MSR_FP) {
+ preempt_disable();
+ enable_kernel_fp();
+ load_fp_state(&vcpu->arch.fp);
+ disable_kernel_fp();
+ t->fp_save_area = &vcpu->arch.fp;
+ preempt_enable();
+ }
+
+ if (msr & MSR_VEC) {
+#ifdef CONFIG_ALTIVEC
+ preempt_disable();
+ enable_kernel_altivec();
+ load_vr_state(&vcpu->arch.vr);
+ disable_kernel_altivec();
+ t->vr_save_area = &vcpu->arch.vr;
+ preempt_enable();
+#endif
+ }
+
+ t->regs->msr |= msr;
+ vcpu->arch.guest_owned_ext |= msr;
+ kvmppc_recalc_shadow_msr(vcpu);
+
+ return RESUME_GUEST;
+}
+
+/*
+ * Kernel code using FP or VMX could have flushed guest state to
+ * the thread_struct; if so, get it back now.
+ */
+static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
+{
+ unsigned long lost_ext;
+
+ lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
+ if (!lost_ext)
+ return;
+
+ if (lost_ext & MSR_FP) {
+ preempt_disable();
+ enable_kernel_fp();
+ load_fp_state(&vcpu->arch.fp);
+ disable_kernel_fp();
+ preempt_enable();
+ }
+#ifdef CONFIG_ALTIVEC
+ if (lost_ext & MSR_VEC) {
+ preempt_disable();
+ enable_kernel_altivec();
+ load_vr_state(&vcpu->arch.vr);
+ disable_kernel_altivec();
+ preempt_enable();
+ }
+#endif
+ current->thread.regs->msr |= lost_ext;
+}
+
+#ifdef CONFIG_PPC_BOOK3S_64
+
+void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
+{
+ /* Inject the Interrupt Cause field and trigger a guest interrupt */
+ vcpu->arch.fscr &= ~(0xffULL << 56);
+ vcpu->arch.fscr |= (fac << 56);
+ kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
+}
+
+static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
+{
+ enum emulation_result er = EMULATE_FAIL;
+
+ if (!(kvmppc_get_msr(vcpu) & MSR_PR))
+ er = kvmppc_emulate_instruction(vcpu);
+
+ if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
+ /* Couldn't emulate, trigger interrupt in guest */
+ kvmppc_trigger_fac_interrupt(vcpu, fac);
+ }
+}
+
+/* Enable facilities (TAR, EBB, DSCR) for the guest */
+static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
+{
+ bool guest_fac_enabled;
+ BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
+
+ /*
+ * Not every facility is enabled by FSCR bits, check whether the
+ * guest has this facility enabled at all.
+ */
+ switch (fac) {
+ case FSCR_TAR_LG:
+ case FSCR_EBB_LG:
+ guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
+ break;
+ case FSCR_TM_LG:
+ guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
+ break;
+ default:
+ guest_fac_enabled = false;
+ break;
+ }
+
+ if (!guest_fac_enabled) {
+ /* Facility not enabled by the guest */
+ kvmppc_trigger_fac_interrupt(vcpu, fac);
+ return RESUME_GUEST;
+ }
+
+ switch (fac) {
+ case FSCR_TAR_LG:
+ /* TAR switching isn't lazy in Linux yet */
+ current->thread.tar = mfspr(SPRN_TAR);
+ mtspr(SPRN_TAR, vcpu->arch.tar);
+ vcpu->arch.shadow_fscr |= FSCR_TAR;
+ break;
+ default:
+ kvmppc_emulate_fac(vcpu, fac);
+ break;
+ }
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ /* Since we disabled MSR_TM at privilege state, the mfspr instruction
+ * for TM spr can trigger TM fac unavailable. In this case, the
+ * emulation is handled by kvmppc_emulate_fac(), which invokes
+ * kvmppc_emulate_mfspr() finally. But note the mfspr can include
+ * RT for NV registers. So it need to restore those NV reg to reflect
+ * the update.
+ */
+ if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
+ return RESUME_GUEST_NV;
+#endif
+
+ return RESUME_GUEST;
+}
+
+void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
+{
+ if (fscr & FSCR_SCV)
+ fscr &= ~FSCR_SCV; /* SCV must not be enabled */
+ if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
+ /* TAR got dropped, drop it in shadow too */
+ kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
+ } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
+ vcpu->arch.fscr = fscr;
+ kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
+ return;
+ }
+
+ vcpu->arch.fscr = fscr;
+}
+#endif
+
+static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
+ u64 msr = kvmppc_get_msr(vcpu);
+
+ kvmppc_set_msr(vcpu, msr | MSR_SE);
+ }
+}
+
+static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
+ u64 msr = kvmppc_get_msr(vcpu);
+
+ kvmppc_set_msr(vcpu, msr & ~MSR_SE);
+ }
+}
+
+static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr)
+{
+ enum emulation_result er;
+ ulong flags;
+ u32 last_inst;
+ int emul, r;
+
+ /*
+ * shadow_srr1 only contains valid flags if we came here via a program
+ * exception. The other exceptions (emulation assist, FP unavailable,
+ * etc.) do not provide flags in SRR1, so use an illegal-instruction
+ * exception when injecting a program interrupt into the guest.
+ */
+ if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
+ flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
+ else
+ flags = SRR1_PROGILL;
+
+ emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
+ if (emul != EMULATE_DONE)
+ return RESUME_GUEST;
+
+ if (kvmppc_get_msr(vcpu) & MSR_PR) {
+#ifdef EXIT_DEBUG
+ pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
+ kvmppc_get_pc(vcpu), last_inst);
+#endif
+ if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
+ kvmppc_core_queue_program(vcpu, flags);
+ return RESUME_GUEST;
+ }
+ }
+
+ vcpu->stat.emulated_inst_exits++;
+ er = kvmppc_emulate_instruction(vcpu);
+ switch (er) {
+ case EMULATE_DONE:
+ r = RESUME_GUEST_NV;
+ break;
+ case EMULATE_AGAIN:
+ r = RESUME_GUEST;
+ break;
+ case EMULATE_FAIL:
+ pr_crit("%s: emulation at %lx failed (%08x)\n",
+ __func__, kvmppc_get_pc(vcpu), last_inst);
+ kvmppc_core_queue_program(vcpu, flags);
+ r = RESUME_GUEST;
+ break;
+ case EMULATE_DO_MMIO:
+ vcpu->run->exit_reason = KVM_EXIT_MMIO;
+ r = RESUME_HOST_NV;
+ break;
+ case EMULATE_EXIT_USER:
+ r = RESUME_HOST_NV;
+ break;
+ default:
+ BUG();
+ }
+
+ return r;
+}
+
+int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr)
+{
+ struct kvm_run *run = vcpu->run;
+ int r = RESUME_HOST;
+ int s;
+
+ vcpu->stat.sum_exits++;
+
+ run->exit_reason = KVM_EXIT_UNKNOWN;
+ run->ready_for_interrupt_injection = 1;
+
+ /* We get here with MSR.EE=1 */
+
+ trace_kvm_exit(exit_nr, vcpu);
+ guest_exit();
+
+ switch (exit_nr) {
+ case BOOK3S_INTERRUPT_INST_STORAGE:
+ {
+ ulong shadow_srr1 = vcpu->arch.shadow_srr1;
+ vcpu->stat.pf_instruc++;
+
+ if (kvmppc_is_split_real(vcpu))
+ kvmppc_fixup_split_real(vcpu);
+
+#ifdef CONFIG_PPC_BOOK3S_32
+ /* We set segments as unused segments when invalidating them. So
+ * treat the respective fault as segment fault. */
+ {
+ struct kvmppc_book3s_shadow_vcpu *svcpu;
+ u32 sr;
+
+ svcpu = svcpu_get(vcpu);
+ sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
+ svcpu_put(svcpu);
+ if (sr == SR_INVALID) {
+ kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
+ r = RESUME_GUEST;
+ break;
+ }
+ }
+#endif
+
+ /* only care about PTEG not found errors, but leave NX alone */
+ if (shadow_srr1 & 0x40000000) {
+ int idx = srcu_read_lock(&vcpu->kvm->srcu);
+ r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr);
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ vcpu->stat.sp_instruc++;
+ } else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
+ (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
+ /*
+ * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
+ * so we can't use the NX bit inside the guest. Let's cross our fingers,
+ * that no guest that needs the dcbz hack does NX.
+ */
+ kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
+ r = RESUME_GUEST;
+ } else {
+ kvmppc_core_queue_inst_storage(vcpu,
+ shadow_srr1 & 0x58000000);
+ r = RESUME_GUEST;
+ }
+ break;
+ }
+ case BOOK3S_INTERRUPT_DATA_STORAGE:
+ {
+ ulong dar = kvmppc_get_fault_dar(vcpu);
+ u32 fault_dsisr = vcpu->arch.fault_dsisr;
+ vcpu->stat.pf_storage++;
+
+#ifdef CONFIG_PPC_BOOK3S_32
+ /* We set segments as unused segments when invalidating them. So
+ * treat the respective fault as segment fault. */
+ {
+ struct kvmppc_book3s_shadow_vcpu *svcpu;
+ u32 sr;
+
+ svcpu = svcpu_get(vcpu);
+ sr = svcpu->sr[dar >> SID_SHIFT];
+ svcpu_put(svcpu);
+ if (sr == SR_INVALID) {
+ kvmppc_mmu_map_segment(vcpu, dar);
+ r = RESUME_GUEST;
+ break;
+ }
+ }
+#endif
+
+ /*
+ * We need to handle missing shadow PTEs, and
+ * protection faults due to us mapping a page read-only
+ * when the guest thinks it is writable.
+ */
+ if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
+ int idx = srcu_read_lock(&vcpu->kvm->srcu);
+ r = kvmppc_handle_pagefault(vcpu, dar, exit_nr);
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ } else {
+ kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr);
+ r = RESUME_GUEST;
+ }
+ break;
+ }
+ case BOOK3S_INTERRUPT_DATA_SEGMENT:
+ if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
+ kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
+ kvmppc_book3s_queue_irqprio(vcpu,
+ BOOK3S_INTERRUPT_DATA_SEGMENT);
+ }
+ r = RESUME_GUEST;
+ break;
+ case BOOK3S_INTERRUPT_INST_SEGMENT:
+ if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
+ kvmppc_book3s_queue_irqprio(vcpu,
+ BOOK3S_INTERRUPT_INST_SEGMENT);
+ }
+ r = RESUME_GUEST;
+ break;
+ /* We're good on these - the host merely wanted to get our attention */
+ case BOOK3S_INTERRUPT_DECREMENTER:
+ case BOOK3S_INTERRUPT_HV_DECREMENTER:
+ case BOOK3S_INTERRUPT_DOORBELL:
+ case BOOK3S_INTERRUPT_H_DOORBELL:
+ vcpu->stat.dec_exits++;
+ r = RESUME_GUEST;
+ break;
+ case BOOK3S_INTERRUPT_EXTERNAL:
+ case BOOK3S_INTERRUPT_EXTERNAL_HV:
+ case BOOK3S_INTERRUPT_H_VIRT:
+ vcpu->stat.ext_intr_exits++;
+ r = RESUME_GUEST;
+ break;
+ case BOOK3S_INTERRUPT_HMI:
+ case BOOK3S_INTERRUPT_PERFMON:
+ case BOOK3S_INTERRUPT_SYSTEM_RESET:
+ r = RESUME_GUEST;
+ break;
+ case BOOK3S_INTERRUPT_PROGRAM:
+ case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
+ r = kvmppc_exit_pr_progint(vcpu, exit_nr);
+ break;
+ case BOOK3S_INTERRUPT_SYSCALL:
+ {
+ u32 last_sc;
+ int emul;
+
+ /* Get last sc for papr */
+ if (vcpu->arch.papr_enabled) {
+ /* The sc instruction points SRR0 to the next inst */
+ emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
+ if (emul != EMULATE_DONE) {
+ kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
+ r = RESUME_GUEST;
+ break;
+ }
+ }
+
+ if (vcpu->arch.papr_enabled &&
+ (last_sc == 0x44000022) &&
+ !(kvmppc_get_msr(vcpu) & MSR_PR)) {
+ /* SC 1 papr hypercalls */
+ ulong cmd = kvmppc_get_gpr(vcpu, 3);
+ int i;
+
+#ifdef CONFIG_PPC_BOOK3S_64
+ if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
+ r = RESUME_GUEST;
+ break;
+ }
+#endif
+
+ run->papr_hcall.nr = cmd;
+ for (i = 0; i < 9; ++i) {
+ ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
+ run->papr_hcall.args[i] = gpr;
+ }
+ run->exit_reason = KVM_EXIT_PAPR_HCALL;
+ vcpu->arch.hcall_needed = 1;
+ r = RESUME_HOST;
+ } else if (vcpu->arch.osi_enabled &&
+ (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
+ (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
+ /* MOL hypercalls */
+ u64 *gprs = run->osi.gprs;
+ int i;
+
+ run->exit_reason = KVM_EXIT_OSI;
+ for (i = 0; i < 32; i++)
+ gprs[i] = kvmppc_get_gpr(vcpu, i);
+ vcpu->arch.osi_needed = 1;
+ r = RESUME_HOST_NV;
+ } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
+ (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
+ /* KVM PV hypercalls */
+ kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
+ r = RESUME_GUEST;
+ } else {
+ /* Guest syscalls */
+ vcpu->stat.syscall_exits++;
+ kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
+ r = RESUME_GUEST;
+ }
+ break;
+ }
+ case BOOK3S_INTERRUPT_FP_UNAVAIL:
+ case BOOK3S_INTERRUPT_ALTIVEC:
+ case BOOK3S_INTERRUPT_VSX:
+ {
+ int ext_msr = 0;
+ int emul;
+ u32 last_inst;
+
+ if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
+ /* Do paired single instruction emulation */
+ emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
+ &last_inst);
+ if (emul == EMULATE_DONE)
+ r = kvmppc_exit_pr_progint(vcpu, exit_nr);
+ else
+ r = RESUME_GUEST;
+
+ break;
+ }
+
+ /* Enable external provider */
+ switch (exit_nr) {
+ case BOOK3S_INTERRUPT_FP_UNAVAIL:
+ ext_msr = MSR_FP;
+ break;
+
+ case BOOK3S_INTERRUPT_ALTIVEC:
+ ext_msr = MSR_VEC;
+ break;
+
+ case BOOK3S_INTERRUPT_VSX:
+ ext_msr = MSR_VSX;
+ break;
+ }
+
+ r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
+ break;
+ }
+ case BOOK3S_INTERRUPT_ALIGNMENT:
+ {
+ u32 last_inst;
+ int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
+
+ if (emul == EMULATE_DONE) {
+ u32 dsisr;
+ u64 dar;
+
+ dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
+ dar = kvmppc_alignment_dar(vcpu, last_inst);
+
+ kvmppc_set_dsisr(vcpu, dsisr);
+ kvmppc_set_dar(vcpu, dar);
+
+ kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
+ }
+ r = RESUME_GUEST;
+ break;
+ }
+#ifdef CONFIG_PPC_BOOK3S_64
+ case BOOK3S_INTERRUPT_FAC_UNAVAIL:
+ r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
+ break;
+#endif
+ case BOOK3S_INTERRUPT_MACHINE_CHECK:
+ kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
+ r = RESUME_GUEST;
+ break;
+ case BOOK3S_INTERRUPT_TRACE:
+ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
+ run->exit_reason = KVM_EXIT_DEBUG;
+ r = RESUME_HOST;
+ } else {
+ kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
+ r = RESUME_GUEST;
+ }
+ break;
+ default:
+ {
+ ulong shadow_srr1 = vcpu->arch.shadow_srr1;
+ /* Ugh - bork here! What did we get? */
+ printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
+ exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
+ r = RESUME_HOST;
+ BUG();
+ break;
+ }
+ }
+
+ if (!(r & RESUME_HOST)) {
+ /* To avoid clobbering exit_reason, only check for signals if
+ * we aren't already exiting to userspace for some other
+ * reason. */
+
+ /*
+ * Interrupts could be timers for the guest which we have to
+ * inject again, so let's postpone them until we're in the guest
+ * and if we really did time things so badly, then we just exit
+ * again due to a host external interrupt.
+ */
+ s = kvmppc_prepare_to_enter(vcpu);
+ if (s <= 0)
+ r = s;
+ else {
+ /* interrupts now hard-disabled */
+ kvmppc_fix_ee_before_entry();
+ }
+
+ kvmppc_handle_lost_ext(vcpu);
+ }
+
+ trace_kvm_book3s_reenter(r, vcpu);
+
+ return r;
+}
+
+static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
+ int i;
+
+ sregs->pvr = vcpu->arch.pvr;
+
+ sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
+ if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
+ for (i = 0; i < 64; i++) {
+ sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
+ sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
+ }
+ } else {
+ for (i = 0; i < 16; i++)
+ sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
+
+ for (i = 0; i < 8; i++) {
+ sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
+ sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
+ }
+ }
+
+ return 0;
+}
+
+static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
+ int i;
+
+ kvmppc_set_pvr_pr(vcpu, sregs->pvr);
+
+ vcpu3s->sdr1 = sregs->u.s.sdr1;
+#ifdef CONFIG_PPC_BOOK3S_64
+ if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
+ /* Flush all SLB entries */
+ vcpu->arch.mmu.slbmte(vcpu, 0, 0);
+ vcpu->arch.mmu.slbia(vcpu);
+
+ for (i = 0; i < 64; i++) {
+ u64 rb = sregs->u.s.ppc64.slb[i].slbe;
+ u64 rs = sregs->u.s.ppc64.slb[i].slbv;
+
+ if (rb & SLB_ESID_V)
+ vcpu->arch.mmu.slbmte(vcpu, rs, rb);
+ }
+ } else
+#endif
+ {
+ for (i = 0; i < 16; i++) {
+ vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
+ }
+ for (i = 0; i < 8; i++) {
+ kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
+ (u32)sregs->u.s.ppc32.ibat[i]);
+ kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
+ (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
+ kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
+ (u32)sregs->u.s.ppc32.dbat[i]);
+ kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
+ (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
+ }
+ }
+
+ /* Flush the MMU after messing with the segments */
+ kvmppc_mmu_pte_flush(vcpu, 0, 0);
+
+ return 0;
+}
+
+static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
+ union kvmppc_one_reg *val)
+{
+ int r = 0;
+
+ switch (id) {
+ case KVM_REG_PPC_DEBUG_INST:
+ *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
+ break;
+ case KVM_REG_PPC_HIOR:
+ *val = get_reg_val(id, to_book3s(vcpu)->hior);
+ break;
+ case KVM_REG_PPC_VTB:
+ *val = get_reg_val(id, to_book3s(vcpu)->vtb);
+ break;
+ case KVM_REG_PPC_LPCR:
+ case KVM_REG_PPC_LPCR_64:
+ /*
+ * We are only interested in the LPCR_ILE bit
+ */
+ if (vcpu->arch.intr_msr & MSR_LE)
+ *val = get_reg_val(id, LPCR_ILE);
+ else
+ *val = get_reg_val(id, 0);
+ break;
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ case KVM_REG_PPC_TFHAR:
+ *val = get_reg_val(id, vcpu->arch.tfhar);
+ break;
+ case KVM_REG_PPC_TFIAR:
+ *val = get_reg_val(id, vcpu->arch.tfiar);
+ break;
+ case KVM_REG_PPC_TEXASR:
+ *val = get_reg_val(id, vcpu->arch.texasr);
+ break;
+ case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
+ *val = get_reg_val(id,
+ vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
+ break;
+ case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
+ {
+ int i, j;
+
+ i = id - KVM_REG_PPC_TM_VSR0;
+ if (i < 32)
+ for (j = 0; j < TS_FPRWIDTH; j++)
+ val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
+ else {
+ if (cpu_has_feature(CPU_FTR_ALTIVEC))
+ val->vval = vcpu->arch.vr_tm.vr[i-32];
+ else
+ r = -ENXIO;
+ }
+ break;
+ }
+ case KVM_REG_PPC_TM_CR:
+ *val = get_reg_val(id, vcpu->arch.cr_tm);
+ break;
+ case KVM_REG_PPC_TM_XER:
+ *val = get_reg_val(id, vcpu->arch.xer_tm);
+ break;
+ case KVM_REG_PPC_TM_LR:
+ *val = get_reg_val(id, vcpu->arch.lr_tm);
+ break;
+ case KVM_REG_PPC_TM_CTR:
+ *val = get_reg_val(id, vcpu->arch.ctr_tm);
+ break;
+ case KVM_REG_PPC_TM_FPSCR:
+ *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
+ break;
+ case KVM_REG_PPC_TM_AMR:
+ *val = get_reg_val(id, vcpu->arch.amr_tm);
+ break;
+ case KVM_REG_PPC_TM_PPR:
+ *val = get_reg_val(id, vcpu->arch.ppr_tm);
+ break;
+ case KVM_REG_PPC_TM_VRSAVE:
+ *val = get_reg_val(id, vcpu->arch.vrsave_tm);
+ break;
+ case KVM_REG_PPC_TM_VSCR:
+ if (cpu_has_feature(CPU_FTR_ALTIVEC))
+ *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
+ else
+ r = -ENXIO;
+ break;
+ case KVM_REG_PPC_TM_DSCR:
+ *val = get_reg_val(id, vcpu->arch.dscr_tm);
+ break;
+ case KVM_REG_PPC_TM_TAR:
+ *val = get_reg_val(id, vcpu->arch.tar_tm);
+ break;
+#endif
+ default:
+ r = -EINVAL;
+ break;
+ }
+
+ return r;
+}
+
+static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
+{
+ if (new_lpcr & LPCR_ILE)
+ vcpu->arch.intr_msr |= MSR_LE;
+ else
+ vcpu->arch.intr_msr &= ~MSR_LE;
+}
+
+static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
+ union kvmppc_one_reg *val)
+{
+ int r = 0;
+
+ switch (id) {
+ case KVM_REG_PPC_HIOR:
+ to_book3s(vcpu)->hior = set_reg_val(id, *val);
+ to_book3s(vcpu)->hior_explicit = true;
+ break;
+ case KVM_REG_PPC_VTB:
+ to_book3s(vcpu)->vtb = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_LPCR:
+ case KVM_REG_PPC_LPCR_64:
+ kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
+ break;
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ case KVM_REG_PPC_TFHAR:
+ vcpu->arch.tfhar = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TFIAR:
+ vcpu->arch.tfiar = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TEXASR:
+ vcpu->arch.texasr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
+ vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
+ set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
+ {
+ int i, j;
+
+ i = id - KVM_REG_PPC_TM_VSR0;
+ if (i < 32)
+ for (j = 0; j < TS_FPRWIDTH; j++)
+ vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
+ else
+ if (cpu_has_feature(CPU_FTR_ALTIVEC))
+ vcpu->arch.vr_tm.vr[i-32] = val->vval;
+ else
+ r = -ENXIO;
+ break;
+ }
+ case KVM_REG_PPC_TM_CR:
+ vcpu->arch.cr_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_XER:
+ vcpu->arch.xer_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_LR:
+ vcpu->arch.lr_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_CTR:
+ vcpu->arch.ctr_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_FPSCR:
+ vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_AMR:
+ vcpu->arch.amr_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_PPR:
+ vcpu->arch.ppr_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_VRSAVE:
+ vcpu->arch.vrsave_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_VSCR:
+ if (cpu_has_feature(CPU_FTR_ALTIVEC))
+ vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
+ else
+ r = -ENXIO;
+ break;
+ case KVM_REG_PPC_TM_DSCR:
+ vcpu->arch.dscr_tm = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_TM_TAR:
+ vcpu->arch.tar_tm = set_reg_val(id, *val);
+ break;
+#endif
+ default:
+ r = -EINVAL;
+ break;
+ }
+
+ return r;
+}
+
+static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcpu_book3s *vcpu_book3s;
+ unsigned long p;
+ int err;
+
+ err = -ENOMEM;
+
+ vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
+ if (!vcpu_book3s)
+ goto out;
+ vcpu->arch.book3s = vcpu_book3s;
+
+#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
+ vcpu->arch.shadow_vcpu =
+ kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
+ if (!vcpu->arch.shadow_vcpu)
+ goto free_vcpu3s;
+#endif
+
+ p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
+ if (!p)
+ goto free_shadow_vcpu;
+ vcpu->arch.shared = (void *)p;
+#ifdef CONFIG_PPC_BOOK3S_64
+ /* Always start the shared struct in native endian mode */
+#ifdef __BIG_ENDIAN__
+ vcpu->arch.shared_big_endian = true;
+#else
+ vcpu->arch.shared_big_endian = false;
+#endif
+
+ /*
+ * Default to the same as the host if we're on sufficiently
+ * recent machine that we have 1TB segments;
+ * otherwise default to PPC970FX.
+ */
+ vcpu->arch.pvr = 0x3C0301;
+ if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
+ vcpu->arch.pvr = mfspr(SPRN_PVR);
+ vcpu->arch.intr_msr = MSR_SF;
+#else
+ /* default to book3s_32 (750) */
+ vcpu->arch.pvr = 0x84202;
+ vcpu->arch.intr_msr = 0;
+#endif
+ kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
+ vcpu->arch.slb_nr = 64;
+
+ vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
+
+ err = kvmppc_mmu_init_pr(vcpu);
+ if (err < 0)
+ goto free_shared_page;
+
+ return 0;
+
+free_shared_page:
+ free_page((unsigned long)vcpu->arch.shared);
+free_shadow_vcpu:
+#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
+ kfree(vcpu->arch.shadow_vcpu);
+free_vcpu3s:
+#endif
+ vfree(vcpu_book3s);
+out:
+ return err;
+}
+
+static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
+
+ kvmppc_mmu_destroy_pr(vcpu);
+ free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
+#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
+ kfree(vcpu->arch.shadow_vcpu);
+#endif
+ vfree(vcpu_book3s);
+}
+
+static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu)
+{
+ int ret;
+
+ /* Check if we can run the vcpu at all */
+ if (!vcpu->arch.sane) {
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ ret = -EINVAL;
+ goto out;
+ }
+
+ kvmppc_setup_debug(vcpu);
+
+ /*
+ * Interrupts could be timers for the guest which we have to inject
+ * again, so let's postpone them until we're in the guest and if we
+ * really did time things so badly, then we just exit again due to
+ * a host external interrupt.
+ */
+ ret = kvmppc_prepare_to_enter(vcpu);
+ if (ret <= 0)
+ goto out;
+ /* interrupts now hard-disabled */
+
+ /* Save FPU, Altivec and VSX state */
+ giveup_all(current);
+
+ /* Preload FPU if it's enabled */
+ if (kvmppc_get_msr(vcpu) & MSR_FP)
+ kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
+
+ kvmppc_fix_ee_before_entry();
+
+ ret = __kvmppc_vcpu_run(vcpu);
+
+ kvmppc_clear_debug(vcpu);
+
+ /* No need for guest_exit. It's done in handle_exit.
+ We also get here with interrupts enabled. */
+
+ /* Make sure we save the guest FPU/Altivec/VSX state */
+ kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
+
+ /* Make sure we save the guest TAR/EBB/DSCR state */
+ kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
+
+ srr_regs_clobbered();
+out:
+ vcpu->mode = OUTSIDE_GUEST_MODE;
+ return ret;
+}
+
+/*
+ * Get (and clear) the dirty memory log for a memory slot.
+ */
+static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
+ struct kvm_dirty_log *log)
+{
+ struct kvm_memory_slot *memslot;
+ struct kvm_vcpu *vcpu;
+ ulong ga, ga_end;
+ int is_dirty = 0;
+ int r;
+ unsigned long n;
+
+ mutex_lock(&kvm->slots_lock);
+
+ r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
+ if (r)
+ goto out;
+
+ /* If nothing is dirty, don't bother messing with page tables. */
+ if (is_dirty) {
+ ga = memslot->base_gfn << PAGE_SHIFT;
+ ga_end = ga + (memslot->npages << PAGE_SHIFT);
+
+ kvm_for_each_vcpu(n, vcpu, kvm)
+ kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
+
+ n = kvm_dirty_bitmap_bytes(memslot);
+ memset(memslot->dirty_bitmap, 0, n);
+ }
+
+ r = 0;
+out:
+ mutex_unlock(&kvm->slots_lock);
+ return r;
+}
+
+static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
+ struct kvm_memory_slot *memslot)
+{
+ return;
+}
+
+static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
+ const struct kvm_memory_slot *old,
+ struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ return 0;
+}
+
+static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
+ struct kvm_memory_slot *old,
+ const struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ return;
+}
+
+static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot)
+{
+ return;
+}
+
+#ifdef CONFIG_PPC64
+static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
+ struct kvm_ppc_smmu_info *info)
+{
+ long int i;
+ struct kvm_vcpu *vcpu;
+
+ info->flags = 0;
+
+ /* SLB is always 64 entries */
+ info->slb_size = 64;
+
+ /* Standard 4k base page size segment */
+ info->sps[0].page_shift = 12;
+ info->sps[0].slb_enc = 0;
+ info->sps[0].enc[0].page_shift = 12;
+ info->sps[0].enc[0].pte_enc = 0;
+
+ /*
+ * 64k large page size.
+ * We only want to put this in if the CPUs we're emulating
+ * support it, but unfortunately we don't have a vcpu easily
+ * to hand here to test. Just pick the first vcpu, and if
+ * that doesn't exist yet, report the minimum capability,
+ * i.e., no 64k pages.
+ * 1T segment support goes along with 64k pages.
+ */
+ i = 1;
+ vcpu = kvm_get_vcpu(kvm, 0);
+ if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
+ info->flags = KVM_PPC_1T_SEGMENTS;
+ info->sps[i].page_shift = 16;
+ info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
+ info->sps[i].enc[0].page_shift = 16;
+ info->sps[i].enc[0].pte_enc = 1;
+ ++i;
+ }
+
+ /* Standard 16M large page size segment */
+ info->sps[i].page_shift = 24;
+ info->sps[i].slb_enc = SLB_VSID_L;
+ info->sps[i].enc[0].page_shift = 24;
+ info->sps[i].enc[0].pte_enc = 0;
+
+ return 0;
+}
+
+static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
+{
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ return -ENODEV;
+ /* Require flags and process table base and size to all be zero. */
+ if (cfg->flags || cfg->process_table)
+ return -EINVAL;
+ return 0;
+}
+
+#else
+static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
+ struct kvm_ppc_smmu_info *info)
+{
+ /* We should not get called */
+ BUG();
+ return 0;
+}
+#endif /* CONFIG_PPC64 */
+
+static unsigned int kvm_global_user_count = 0;
+static DEFINE_SPINLOCK(kvm_global_user_count_lock);
+
+static int kvmppc_core_init_vm_pr(struct kvm *kvm)
+{
+ mutex_init(&kvm->arch.hpt_mutex);
+
+#ifdef CONFIG_PPC_BOOK3S_64
+ /* Start out with the default set of hcalls enabled */
+ kvmppc_pr_init_default_hcalls(kvm);
+#endif
+
+ if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
+ spin_lock(&kvm_global_user_count_lock);
+ if (++kvm_global_user_count == 1)
+ pseries_disable_reloc_on_exc();
+ spin_unlock(&kvm_global_user_count_lock);
+ }
+ return 0;
+}
+
+static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
+{
+#ifdef CONFIG_PPC64
+ WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
+#endif
+
+ if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
+ spin_lock(&kvm_global_user_count_lock);
+ BUG_ON(kvm_global_user_count == 0);
+ if (--kvm_global_user_count == 0)
+ pseries_enable_reloc_on_exc();
+ spin_unlock(&kvm_global_user_count_lock);
+ }
+}
+
+static int kvmppc_core_check_processor_compat_pr(void)
+{
+ /*
+ * PR KVM can work on POWER9 inside a guest partition
+ * running in HPT mode. It can't work if we are using
+ * radix translation (because radix provides no way for
+ * a process to have unique translations in quadrant 3).
+ */
+ if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
+ return -EIO;
+ return 0;
+}
+
+static long kvm_arch_vm_ioctl_pr(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ return -ENOTTY;
+}
+
+static struct kvmppc_ops kvm_ops_pr = {
+ .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
+ .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
+ .get_one_reg = kvmppc_get_one_reg_pr,
+ .set_one_reg = kvmppc_set_one_reg_pr,
+ .vcpu_load = kvmppc_core_vcpu_load_pr,
+ .vcpu_put = kvmppc_core_vcpu_put_pr,
+ .inject_interrupt = kvmppc_inject_interrupt_pr,
+ .set_msr = kvmppc_set_msr_pr,
+ .vcpu_run = kvmppc_vcpu_run_pr,
+ .vcpu_create = kvmppc_core_vcpu_create_pr,
+ .vcpu_free = kvmppc_core_vcpu_free_pr,
+ .check_requests = kvmppc_core_check_requests_pr,
+ .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
+ .flush_memslot = kvmppc_core_flush_memslot_pr,
+ .prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
+ .commit_memory_region = kvmppc_core_commit_memory_region_pr,
+ .unmap_gfn_range = kvm_unmap_gfn_range_pr,
+ .age_gfn = kvm_age_gfn_pr,
+ .test_age_gfn = kvm_test_age_gfn_pr,
+ .set_spte_gfn = kvm_set_spte_gfn_pr,
+ .free_memslot = kvmppc_core_free_memslot_pr,
+ .init_vm = kvmppc_core_init_vm_pr,
+ .destroy_vm = kvmppc_core_destroy_vm_pr,
+ .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
+ .emulate_op = kvmppc_core_emulate_op_pr,
+ .emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
+ .emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
+ .fast_vcpu_kick = kvm_vcpu_kick,
+ .arch_vm_ioctl = kvm_arch_vm_ioctl_pr,
+#ifdef CONFIG_PPC_BOOK3S_64
+ .hcall_implemented = kvmppc_hcall_impl_pr,
+ .configure_mmu = kvm_configure_mmu_pr,
+#endif
+ .giveup_ext = kvmppc_giveup_ext,
+};
+
+
+int kvmppc_book3s_init_pr(void)
+{
+ int r;
+
+ r = kvmppc_core_check_processor_compat_pr();
+ if (r < 0)
+ return r;
+
+ kvm_ops_pr.owner = THIS_MODULE;
+ kvmppc_pr_ops = &kvm_ops_pr;
+
+ r = kvmppc_mmu_hpte_sysinit();
+ return r;
+}
+
+void kvmppc_book3s_exit_pr(void)
+{
+ kvmppc_pr_ops = NULL;
+ kvmppc_mmu_hpte_sysexit();
+}
+
+/*
+ * We only support separate modules for book3s 64
+ */
+#ifdef CONFIG_PPC_BOOK3S_64
+
+module_init(kvmppc_book3s_init_pr);
+module_exit(kvmppc_book3s_exit_pr);
+
+MODULE_LICENSE("GPL");
+MODULE_ALIAS_MISCDEV(KVM_MINOR);
+MODULE_ALIAS("devname:kvm");
+#endif
diff --git a/arch/powerpc/kvm/book3s_pr_papr.c b/arch/powerpc/kvm/book3s_pr_papr.c
new file mode 100644
index 000000000..b2c89e850
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_pr_papr.c
@@ -0,0 +1,496 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2011. Freescale Inc. All rights reserved.
+ *
+ * Authors:
+ * Alexander Graf <agraf@suse.de>
+ * Paul Mackerras <paulus@samba.org>
+ *
+ * Description:
+ *
+ * Hypercall handling for running PAPR guests in PR KVM on Book 3S
+ * processors.
+ */
+
+#include <linux/anon_inodes.h>
+
+#include <linux/uaccess.h>
+#include <asm/kvm_ppc.h>
+#include <asm/kvm_book3s.h>
+
+#define HPTE_SIZE 16 /* bytes per HPT entry */
+
+static unsigned long get_pteg_addr(struct kvm_vcpu *vcpu, long pte_index)
+{
+ struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
+ unsigned long pteg_addr;
+
+ pte_index <<= 4;
+ pte_index &= ((1 << ((vcpu_book3s->sdr1 & 0x1f) + 11)) - 1) << 7 | 0x70;
+ pteg_addr = vcpu_book3s->sdr1 & 0xfffffffffffc0000ULL;
+ pteg_addr |= pte_index;
+
+ return pteg_addr;
+}
+
+static int kvmppc_h_pr_enter(struct kvm_vcpu *vcpu)
+{
+ long flags = kvmppc_get_gpr(vcpu, 4);
+ long pte_index = kvmppc_get_gpr(vcpu, 5);
+ __be64 pteg[2 * 8];
+ __be64 *hpte;
+ unsigned long pteg_addr, i;
+ long int ret;
+
+ i = pte_index & 7;
+ pte_index &= ~7UL;
+ pteg_addr = get_pteg_addr(vcpu, pte_index);
+
+ mutex_lock(&vcpu->kvm->arch.hpt_mutex);
+ ret = H_FUNCTION;
+ if (copy_from_user(pteg, (void __user *)pteg_addr, sizeof(pteg)))
+ goto done;
+ hpte = pteg;
+
+ ret = H_PTEG_FULL;
+ if (likely((flags & H_EXACT) == 0)) {
+ for (i = 0; ; ++i) {
+ if (i == 8)
+ goto done;
+ if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0)
+ break;
+ hpte += 2;
+ }
+ } else {
+ hpte += i * 2;
+ if (*hpte & HPTE_V_VALID)
+ goto done;
+ }
+
+ hpte[0] = cpu_to_be64(kvmppc_get_gpr(vcpu, 6));
+ hpte[1] = cpu_to_be64(kvmppc_get_gpr(vcpu, 7));
+ pteg_addr += i * HPTE_SIZE;
+ ret = H_FUNCTION;
+ if (copy_to_user((void __user *)pteg_addr, hpte, HPTE_SIZE))
+ goto done;
+ kvmppc_set_gpr(vcpu, 4, pte_index | i);
+ ret = H_SUCCESS;
+
+ done:
+ mutex_unlock(&vcpu->kvm->arch.hpt_mutex);
+ kvmppc_set_gpr(vcpu, 3, ret);
+
+ return EMULATE_DONE;
+}
+
+static int kvmppc_h_pr_remove(struct kvm_vcpu *vcpu)
+{
+ unsigned long flags= kvmppc_get_gpr(vcpu, 4);
+ unsigned long pte_index = kvmppc_get_gpr(vcpu, 5);
+ unsigned long avpn = kvmppc_get_gpr(vcpu, 6);
+ unsigned long v = 0, pteg, rb;
+ unsigned long pte[2];
+ long int ret;
+
+ pteg = get_pteg_addr(vcpu, pte_index);
+ mutex_lock(&vcpu->kvm->arch.hpt_mutex);
+ ret = H_FUNCTION;
+ if (copy_from_user(pte, (void __user *)pteg, sizeof(pte)))
+ goto done;
+ pte[0] = be64_to_cpu((__force __be64)pte[0]);
+ pte[1] = be64_to_cpu((__force __be64)pte[1]);
+
+ ret = H_NOT_FOUND;
+ if ((pte[0] & HPTE_V_VALID) == 0 ||
+ ((flags & H_AVPN) && (pte[0] & ~0x7fUL) != avpn) ||
+ ((flags & H_ANDCOND) && (pte[0] & avpn) != 0))
+ goto done;
+
+ ret = H_FUNCTION;
+ if (copy_to_user((void __user *)pteg, &v, sizeof(v)))
+ goto done;
+
+ rb = compute_tlbie_rb(pte[0], pte[1], pte_index);
+ vcpu->arch.mmu.tlbie(vcpu, rb, rb & 1 ? true : false);
+
+ ret = H_SUCCESS;
+ kvmppc_set_gpr(vcpu, 4, pte[0]);
+ kvmppc_set_gpr(vcpu, 5, pte[1]);
+
+ done:
+ mutex_unlock(&vcpu->kvm->arch.hpt_mutex);
+ kvmppc_set_gpr(vcpu, 3, ret);
+
+ return EMULATE_DONE;
+}
+
+/* Request defs for kvmppc_h_pr_bulk_remove() */
+#define H_BULK_REMOVE_TYPE 0xc000000000000000ULL
+#define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL
+#define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL
+#define H_BULK_REMOVE_END 0xc000000000000000ULL
+#define H_BULK_REMOVE_CODE 0x3000000000000000ULL
+#define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL
+#define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL
+#define H_BULK_REMOVE_PARM 0x2000000000000000ULL
+#define H_BULK_REMOVE_HW 0x3000000000000000ULL
+#define H_BULK_REMOVE_RC 0x0c00000000000000ULL
+#define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL
+#define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL
+#define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL
+#define H_BULK_REMOVE_AVPN 0x0200000000000000ULL
+#define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL
+#define H_BULK_REMOVE_MAX_BATCH 4
+
+static int kvmppc_h_pr_bulk_remove(struct kvm_vcpu *vcpu)
+{
+ int i;
+ int paramnr = 4;
+ int ret = H_SUCCESS;
+
+ mutex_lock(&vcpu->kvm->arch.hpt_mutex);
+ for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
+ unsigned long tsh = kvmppc_get_gpr(vcpu, paramnr+(2*i));
+ unsigned long tsl = kvmppc_get_gpr(vcpu, paramnr+(2*i)+1);
+ unsigned long pteg, rb, flags;
+ unsigned long pte[2];
+ unsigned long v = 0;
+
+ if ((tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
+ break; /* Exit success */
+ } else if ((tsh & H_BULK_REMOVE_TYPE) !=
+ H_BULK_REMOVE_REQUEST) {
+ ret = H_PARAMETER;
+ break; /* Exit fail */
+ }
+
+ tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
+ tsh |= H_BULK_REMOVE_RESPONSE;
+
+ if ((tsh & H_BULK_REMOVE_ANDCOND) &&
+ (tsh & H_BULK_REMOVE_AVPN)) {
+ tsh |= H_BULK_REMOVE_PARM;
+ kvmppc_set_gpr(vcpu, paramnr+(2*i), tsh);
+ ret = H_PARAMETER;
+ break; /* Exit fail */
+ }
+
+ pteg = get_pteg_addr(vcpu, tsh & H_BULK_REMOVE_PTEX);
+ if (copy_from_user(pte, (void __user *)pteg, sizeof(pte))) {
+ ret = H_FUNCTION;
+ break;
+ }
+ pte[0] = be64_to_cpu((__force __be64)pte[0]);
+ pte[1] = be64_to_cpu((__force __be64)pte[1]);
+
+ /* tsl = AVPN */
+ flags = (tsh & H_BULK_REMOVE_FLAGS) >> 26;
+
+ if ((pte[0] & HPTE_V_VALID) == 0 ||
+ ((flags & H_AVPN) && (pte[0] & ~0x7fUL) != tsl) ||
+ ((flags & H_ANDCOND) && (pte[0] & tsl) != 0)) {
+ tsh |= H_BULK_REMOVE_NOT_FOUND;
+ } else {
+ /* Splat the pteg in (userland) hpt */
+ if (copy_to_user((void __user *)pteg, &v, sizeof(v))) {
+ ret = H_FUNCTION;
+ break;
+ }
+
+ rb = compute_tlbie_rb(pte[0], pte[1],
+ tsh & H_BULK_REMOVE_PTEX);
+ vcpu->arch.mmu.tlbie(vcpu, rb, rb & 1 ? true : false);
+ tsh |= H_BULK_REMOVE_SUCCESS;
+ tsh |= (pte[1] & (HPTE_R_C | HPTE_R_R)) << 43;
+ }
+ kvmppc_set_gpr(vcpu, paramnr+(2*i), tsh);
+ }
+ mutex_unlock(&vcpu->kvm->arch.hpt_mutex);
+ kvmppc_set_gpr(vcpu, 3, ret);
+
+ return EMULATE_DONE;
+}
+
+static int kvmppc_h_pr_protect(struct kvm_vcpu *vcpu)
+{
+ unsigned long flags = kvmppc_get_gpr(vcpu, 4);
+ unsigned long pte_index = kvmppc_get_gpr(vcpu, 5);
+ unsigned long avpn = kvmppc_get_gpr(vcpu, 6);
+ unsigned long rb, pteg, r, v;
+ unsigned long pte[2];
+ long int ret;
+
+ pteg = get_pteg_addr(vcpu, pte_index);
+ mutex_lock(&vcpu->kvm->arch.hpt_mutex);
+ ret = H_FUNCTION;
+ if (copy_from_user(pte, (void __user *)pteg, sizeof(pte)))
+ goto done;
+ pte[0] = be64_to_cpu((__force __be64)pte[0]);
+ pte[1] = be64_to_cpu((__force __be64)pte[1]);
+
+ ret = H_NOT_FOUND;
+ if ((pte[0] & HPTE_V_VALID) == 0 ||
+ ((flags & H_AVPN) && (pte[0] & ~0x7fUL) != avpn))
+ goto done;
+
+ v = pte[0];
+ r = pte[1];
+ r &= ~(HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_HI |
+ HPTE_R_KEY_LO);
+ r |= (flags << 55) & HPTE_R_PP0;
+ r |= (flags << 48) & HPTE_R_KEY_HI;
+ r |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
+
+ pte[1] = r;
+
+ rb = compute_tlbie_rb(v, r, pte_index);
+ vcpu->arch.mmu.tlbie(vcpu, rb, rb & 1 ? true : false);
+ pte[0] = (__force u64)cpu_to_be64(pte[0]);
+ pte[1] = (__force u64)cpu_to_be64(pte[1]);
+ ret = H_FUNCTION;
+ if (copy_to_user((void __user *)pteg, pte, sizeof(pte)))
+ goto done;
+ ret = H_SUCCESS;
+
+ done:
+ mutex_unlock(&vcpu->kvm->arch.hpt_mutex);
+ kvmppc_set_gpr(vcpu, 3, ret);
+
+ return EMULATE_DONE;
+}
+
+static int kvmppc_h_pr_logical_ci_load(struct kvm_vcpu *vcpu)
+{
+ long rc;
+
+ rc = kvmppc_h_logical_ci_load(vcpu);
+ if (rc == H_TOO_HARD)
+ return EMULATE_FAIL;
+ kvmppc_set_gpr(vcpu, 3, rc);
+ return EMULATE_DONE;
+}
+
+static int kvmppc_h_pr_logical_ci_store(struct kvm_vcpu *vcpu)
+{
+ long rc;
+
+ rc = kvmppc_h_logical_ci_store(vcpu);
+ if (rc == H_TOO_HARD)
+ return EMULATE_FAIL;
+ kvmppc_set_gpr(vcpu, 3, rc);
+ return EMULATE_DONE;
+}
+
+static int kvmppc_h_pr_set_mode(struct kvm_vcpu *vcpu)
+{
+ unsigned long mflags = kvmppc_get_gpr(vcpu, 4);
+ unsigned long resource = kvmppc_get_gpr(vcpu, 5);
+
+ if (resource == H_SET_MODE_RESOURCE_ADDR_TRANS_MODE) {
+ /* KVM PR does not provide AIL!=0 to guests */
+ if (mflags == 0)
+ kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
+ else
+ kvmppc_set_gpr(vcpu, 3, H_UNSUPPORTED_FLAG_START - 63);
+ return EMULATE_DONE;
+ }
+ return EMULATE_FAIL;
+}
+
+#ifdef CONFIG_SPAPR_TCE_IOMMU
+static int kvmppc_h_pr_put_tce(struct kvm_vcpu *vcpu)
+{
+ unsigned long liobn = kvmppc_get_gpr(vcpu, 4);
+ unsigned long ioba = kvmppc_get_gpr(vcpu, 5);
+ unsigned long tce = kvmppc_get_gpr(vcpu, 6);
+ long rc;
+
+ rc = kvmppc_h_put_tce(vcpu, liobn, ioba, tce);
+ if (rc == H_TOO_HARD)
+ return EMULATE_FAIL;
+ kvmppc_set_gpr(vcpu, 3, rc);
+ return EMULATE_DONE;
+}
+
+static int kvmppc_h_pr_put_tce_indirect(struct kvm_vcpu *vcpu)
+{
+ unsigned long liobn = kvmppc_get_gpr(vcpu, 4);
+ unsigned long ioba = kvmppc_get_gpr(vcpu, 5);
+ unsigned long tce = kvmppc_get_gpr(vcpu, 6);
+ unsigned long npages = kvmppc_get_gpr(vcpu, 7);
+ long rc;
+
+ rc = kvmppc_h_put_tce_indirect(vcpu, liobn, ioba,
+ tce, npages);
+ if (rc == H_TOO_HARD)
+ return EMULATE_FAIL;
+ kvmppc_set_gpr(vcpu, 3, rc);
+ return EMULATE_DONE;
+}
+
+static int kvmppc_h_pr_stuff_tce(struct kvm_vcpu *vcpu)
+{
+ unsigned long liobn = kvmppc_get_gpr(vcpu, 4);
+ unsigned long ioba = kvmppc_get_gpr(vcpu, 5);
+ unsigned long tce_value = kvmppc_get_gpr(vcpu, 6);
+ unsigned long npages = kvmppc_get_gpr(vcpu, 7);
+ long rc;
+
+ rc = kvmppc_h_stuff_tce(vcpu, liobn, ioba, tce_value, npages);
+ if (rc == H_TOO_HARD)
+ return EMULATE_FAIL;
+ kvmppc_set_gpr(vcpu, 3, rc);
+ return EMULATE_DONE;
+}
+
+#else /* CONFIG_SPAPR_TCE_IOMMU */
+static int kvmppc_h_pr_put_tce(struct kvm_vcpu *vcpu)
+{
+ return EMULATE_FAIL;
+}
+
+static int kvmppc_h_pr_put_tce_indirect(struct kvm_vcpu *vcpu)
+{
+ return EMULATE_FAIL;
+}
+
+static int kvmppc_h_pr_stuff_tce(struct kvm_vcpu *vcpu)
+{
+ return EMULATE_FAIL;
+}
+#endif /* CONFIG_SPAPR_TCE_IOMMU */
+
+static int kvmppc_h_pr_xics_hcall(struct kvm_vcpu *vcpu, u32 cmd)
+{
+ long rc = kvmppc_xics_hcall(vcpu, cmd);
+ kvmppc_set_gpr(vcpu, 3, rc);
+ return EMULATE_DONE;
+}
+
+int kvmppc_h_pr(struct kvm_vcpu *vcpu, unsigned long cmd)
+{
+ int rc, idx;
+
+ if (cmd <= MAX_HCALL_OPCODE &&
+ !test_bit(cmd/4, vcpu->kvm->arch.enabled_hcalls))
+ return EMULATE_FAIL;
+
+ switch (cmd) {
+ case H_ENTER:
+ return kvmppc_h_pr_enter(vcpu);
+ case H_REMOVE:
+ return kvmppc_h_pr_remove(vcpu);
+ case H_PROTECT:
+ return kvmppc_h_pr_protect(vcpu);
+ case H_BULK_REMOVE:
+ return kvmppc_h_pr_bulk_remove(vcpu);
+ case H_PUT_TCE:
+ return kvmppc_h_pr_put_tce(vcpu);
+ case H_PUT_TCE_INDIRECT:
+ return kvmppc_h_pr_put_tce_indirect(vcpu);
+ case H_STUFF_TCE:
+ return kvmppc_h_pr_stuff_tce(vcpu);
+ case H_CEDE:
+ kvmppc_set_msr_fast(vcpu, kvmppc_get_msr(vcpu) | MSR_EE);
+ kvm_vcpu_halt(vcpu);
+ vcpu->stat.generic.halt_wakeup++;
+ return EMULATE_DONE;
+ case H_LOGICAL_CI_LOAD:
+ return kvmppc_h_pr_logical_ci_load(vcpu);
+ case H_LOGICAL_CI_STORE:
+ return kvmppc_h_pr_logical_ci_store(vcpu);
+ case H_SET_MODE:
+ return kvmppc_h_pr_set_mode(vcpu);
+ case H_XIRR:
+ case H_CPPR:
+ case H_EOI:
+ case H_IPI:
+ case H_IPOLL:
+ case H_XIRR_X:
+ if (kvmppc_xics_enabled(vcpu))
+ return kvmppc_h_pr_xics_hcall(vcpu, cmd);
+ break;
+ case H_RTAS:
+ if (list_empty(&vcpu->kvm->arch.rtas_tokens))
+ break;
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+ rc = kvmppc_rtas_hcall(vcpu);
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ if (rc)
+ break;
+ kvmppc_set_gpr(vcpu, 3, 0);
+ return EMULATE_DONE;
+ }
+
+ return EMULATE_FAIL;
+}
+
+int kvmppc_hcall_impl_pr(unsigned long cmd)
+{
+ switch (cmd) {
+ case H_ENTER:
+ case H_REMOVE:
+ case H_PROTECT:
+ case H_BULK_REMOVE:
+#ifdef CONFIG_SPAPR_TCE_IOMMU
+ case H_GET_TCE:
+ case H_PUT_TCE:
+ case H_PUT_TCE_INDIRECT:
+ case H_STUFF_TCE:
+#endif
+ case H_CEDE:
+ case H_LOGICAL_CI_LOAD:
+ case H_LOGICAL_CI_STORE:
+ case H_SET_MODE:
+#ifdef CONFIG_KVM_XICS
+ case H_XIRR:
+ case H_CPPR:
+ case H_EOI:
+ case H_IPI:
+ case H_IPOLL:
+ case H_XIRR_X:
+#endif
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ * List of hcall numbers to enable by default.
+ * For compatibility with old userspace, we enable by default
+ * all hcalls that were implemented before the hcall-enabling
+ * facility was added. Note this list should not include H_RTAS.
+ */
+static unsigned int default_hcall_list[] = {
+ H_ENTER,
+ H_REMOVE,
+ H_PROTECT,
+ H_BULK_REMOVE,
+#ifdef CONFIG_SPAPR_TCE_IOMMU
+ H_GET_TCE,
+ H_PUT_TCE,
+#endif
+ H_CEDE,
+ H_SET_MODE,
+#ifdef CONFIG_KVM_XICS
+ H_XIRR,
+ H_CPPR,
+ H_EOI,
+ H_IPI,
+ H_IPOLL,
+ H_XIRR_X,
+#endif
+ 0
+};
+
+void kvmppc_pr_init_default_hcalls(struct kvm *kvm)
+{
+ int i;
+ unsigned int hcall;
+
+ for (i = 0; default_hcall_list[i]; ++i) {
+ hcall = default_hcall_list[i];
+ WARN_ON(!kvmppc_hcall_impl_pr(hcall));
+ __set_bit(hcall / 4, kvm->arch.enabled_hcalls);
+ }
+}
diff --git a/arch/powerpc/kvm/book3s_rmhandlers.S b/arch/powerpc/kvm/book3s_rmhandlers.S
new file mode 100644
index 000000000..03886ca24
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_rmhandlers.S
@@ -0,0 +1,162 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ *
+ * Copyright SUSE Linux Products GmbH 2009
+ *
+ * Authors: Alexander Graf <agraf@suse.de>
+ */
+
+#include <asm/ppc_asm.h>
+#include <asm/kvm_asm.h>
+#include <asm/reg.h>
+#include <asm/mmu.h>
+#include <asm/page.h>
+#include <asm/asm-offsets.h>
+#include <asm/asm-compat.h>
+
+#ifdef CONFIG_PPC_BOOK3S_64
+#include <asm/exception-64s.h>
+#endif
+
+/*****************************************************************************
+ * *
+ * Real Mode handlers that need to be in low physical memory *
+ * *
+ ****************************************************************************/
+
+#if defined(CONFIG_PPC_BOOK3S_64)
+
+#ifdef CONFIG_PPC64_ELF_ABI_V2
+#define FUNC(name) name
+#else
+#define FUNC(name) GLUE(.,name)
+#endif
+
+#elif defined(CONFIG_PPC_BOOK3S_32)
+
+#define FUNC(name) name
+
+#define RFI_TO_KERNEL rfi
+#define RFI_TO_GUEST rfi
+
+.macro INTERRUPT_TRAMPOLINE intno
+
+.global kvmppc_trampoline_\intno
+kvmppc_trampoline_\intno:
+
+ mtspr SPRN_SPRG_SCRATCH0, r13 /* Save r13 */
+
+ /*
+ * First thing to do is to find out if we're coming
+ * from a KVM guest or a Linux process.
+ *
+ * To distinguish, we check a magic byte in the PACA/current
+ */
+ mfspr r13, SPRN_SPRG_THREAD
+ lwz r13, THREAD_KVM_SVCPU(r13)
+ /* PPC32 can have a NULL pointer - let's check for that */
+ mtspr SPRN_SPRG_SCRATCH1, r12 /* Save r12 */
+ mfcr r12
+ cmpwi r13, 0
+ bne 1f
+2: mtcr r12
+ mfspr r12, SPRN_SPRG_SCRATCH1
+ mfspr r13, SPRN_SPRG_SCRATCH0 /* r13 = original r13 */
+ b kvmppc_resume_\intno /* Get back original handler */
+
+1: tophys(r13, r13)
+ stw r12, HSTATE_SCRATCH1(r13)
+ mfspr r12, SPRN_SPRG_SCRATCH1
+ stw r12, HSTATE_SCRATCH0(r13)
+ lbz r12, HSTATE_IN_GUEST(r13)
+ cmpwi r12, KVM_GUEST_MODE_NONE
+ bne ..kvmppc_handler_hasmagic_\intno
+ /* No KVM guest? Then jump back to the Linux handler! */
+ lwz r12, HSTATE_SCRATCH1(r13)
+ b 2b
+
+ /* Now we know we're handling a KVM guest */
+..kvmppc_handler_hasmagic_\intno:
+
+ /* Should we just skip the faulting instruction? */
+ cmpwi r12, KVM_GUEST_MODE_SKIP
+ beq kvmppc_handler_skip_ins
+
+ /* Let's store which interrupt we're handling */
+ li r12, \intno
+
+ /* Jump into the SLB exit code that goes to the highmem handler */
+ b kvmppc_handler_trampoline_exit
+
+.endm
+
+INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_SYSTEM_RESET
+INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_MACHINE_CHECK
+INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_DATA_STORAGE
+INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_INST_STORAGE
+INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_EXTERNAL
+INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_ALIGNMENT
+INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_PROGRAM
+INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_FP_UNAVAIL
+INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_DECREMENTER
+INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_SYSCALL
+INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_TRACE
+INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_PERFMON
+INTERRUPT_TRAMPOLINE BOOK3S_INTERRUPT_ALTIVEC
+
+/*
+ * Bring us back to the faulting code, but skip the
+ * faulting instruction.
+ *
+ * This is a generic exit path from the interrupt
+ * trampolines above.
+ *
+ * Input Registers:
+ *
+ * R12 = free
+ * R13 = Shadow VCPU (PACA)
+ * HSTATE.SCRATCH0 = guest R12
+ * HSTATE.SCRATCH1 = guest CR
+ * SPRG_SCRATCH0 = guest R13
+ *
+ */
+kvmppc_handler_skip_ins:
+
+ /* Patch the IP to the next instruction */
+ mfsrr0 r12
+ addi r12, r12, 4
+ mtsrr0 r12
+
+ /* Clean up all state */
+ lwz r12, HSTATE_SCRATCH1(r13)
+ mtcr r12
+ PPC_LL r12, HSTATE_SCRATCH0(r13)
+ GET_SCRATCH0(r13)
+
+ /* And get back into the code */
+ RFI_TO_KERNEL
+#endif
+
+/*
+ * Call kvmppc_handler_trampoline_enter in real mode
+ *
+ * On entry, r4 contains the guest shadow MSR
+ * MSR.EE has to be 0 when calling this function
+ */
+_GLOBAL_TOC(kvmppc_entry_trampoline)
+ mfmsr r5
+ LOAD_REG_ADDR(r7, kvmppc_handler_trampoline_enter)
+ toreal(r7)
+
+ li r6, MSR_IR | MSR_DR
+ andc r6, r5, r6 /* Clear DR and IR in MSR value */
+ /*
+ * Set EE in HOST_MSR so that it's enabled when we get into our
+ * C exit handler function.
+ */
+ ori r5, r5, MSR_EE
+ mtsrr0 r7
+ mtsrr1 r6
+ RFI_TO_KERNEL
+
+#include "book3s_segment.S"
diff --git a/arch/powerpc/kvm/book3s_rtas.c b/arch/powerpc/kvm/book3s_rtas.c
new file mode 100644
index 000000000..6808bda0d
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_rtas.c
@@ -0,0 +1,307 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright 2012 Michael Ellerman, IBM Corporation.
+ */
+
+#include <linux/kernel.h>
+#include <linux/kvm_host.h>
+#include <linux/kvm.h>
+#include <linux/err.h>
+
+#include <linux/uaccess.h>
+#include <asm/kvm_book3s.h>
+#include <asm/kvm_ppc.h>
+#include <asm/hvcall.h>
+#include <asm/rtas.h>
+#include <asm/xive.h>
+
+#ifdef CONFIG_KVM_XICS
+static void kvm_rtas_set_xive(struct kvm_vcpu *vcpu, struct rtas_args *args)
+{
+ u32 irq, server, priority;
+ int rc;
+
+ if (be32_to_cpu(args->nargs) != 3 || be32_to_cpu(args->nret) != 1) {
+ rc = -3;
+ goto out;
+ }
+
+ irq = be32_to_cpu(args->args[0]);
+ server = be32_to_cpu(args->args[1]);
+ priority = be32_to_cpu(args->args[2]);
+
+ if (xics_on_xive())
+ rc = kvmppc_xive_set_xive(vcpu->kvm, irq, server, priority);
+ else
+ rc = kvmppc_xics_set_xive(vcpu->kvm, irq, server, priority);
+ if (rc)
+ rc = -3;
+out:
+ args->rets[0] = cpu_to_be32(rc);
+}
+
+static void kvm_rtas_get_xive(struct kvm_vcpu *vcpu, struct rtas_args *args)
+{
+ u32 irq, server, priority;
+ int rc;
+
+ if (be32_to_cpu(args->nargs) != 1 || be32_to_cpu(args->nret) != 3) {
+ rc = -3;
+ goto out;
+ }
+
+ irq = be32_to_cpu(args->args[0]);
+
+ server = priority = 0;
+ if (xics_on_xive())
+ rc = kvmppc_xive_get_xive(vcpu->kvm, irq, &server, &priority);
+ else
+ rc = kvmppc_xics_get_xive(vcpu->kvm, irq, &server, &priority);
+ if (rc) {
+ rc = -3;
+ goto out;
+ }
+
+ args->rets[1] = cpu_to_be32(server);
+ args->rets[2] = cpu_to_be32(priority);
+out:
+ args->rets[0] = cpu_to_be32(rc);
+}
+
+static void kvm_rtas_int_off(struct kvm_vcpu *vcpu, struct rtas_args *args)
+{
+ u32 irq;
+ int rc;
+
+ if (be32_to_cpu(args->nargs) != 1 || be32_to_cpu(args->nret) != 1) {
+ rc = -3;
+ goto out;
+ }
+
+ irq = be32_to_cpu(args->args[0]);
+
+ if (xics_on_xive())
+ rc = kvmppc_xive_int_off(vcpu->kvm, irq);
+ else
+ rc = kvmppc_xics_int_off(vcpu->kvm, irq);
+ if (rc)
+ rc = -3;
+out:
+ args->rets[0] = cpu_to_be32(rc);
+}
+
+static void kvm_rtas_int_on(struct kvm_vcpu *vcpu, struct rtas_args *args)
+{
+ u32 irq;
+ int rc;
+
+ if (be32_to_cpu(args->nargs) != 1 || be32_to_cpu(args->nret) != 1) {
+ rc = -3;
+ goto out;
+ }
+
+ irq = be32_to_cpu(args->args[0]);
+
+ if (xics_on_xive())
+ rc = kvmppc_xive_int_on(vcpu->kvm, irq);
+ else
+ rc = kvmppc_xics_int_on(vcpu->kvm, irq);
+ if (rc)
+ rc = -3;
+out:
+ args->rets[0] = cpu_to_be32(rc);
+}
+#endif /* CONFIG_KVM_XICS */
+
+struct rtas_handler {
+ void (*handler)(struct kvm_vcpu *vcpu, struct rtas_args *args);
+ char *name;
+};
+
+static struct rtas_handler rtas_handlers[] = {
+#ifdef CONFIG_KVM_XICS
+ { .name = "ibm,set-xive", .handler = kvm_rtas_set_xive },
+ { .name = "ibm,get-xive", .handler = kvm_rtas_get_xive },
+ { .name = "ibm,int-off", .handler = kvm_rtas_int_off },
+ { .name = "ibm,int-on", .handler = kvm_rtas_int_on },
+#endif
+};
+
+struct rtas_token_definition {
+ struct list_head list;
+ struct rtas_handler *handler;
+ u64 token;
+};
+
+static int rtas_name_matches(char *s1, char *s2)
+{
+ struct kvm_rtas_token_args args;
+ return !strncmp(s1, s2, sizeof(args.name));
+}
+
+static int rtas_token_undefine(struct kvm *kvm, char *name)
+{
+ struct rtas_token_definition *d, *tmp;
+
+ lockdep_assert_held(&kvm->arch.rtas_token_lock);
+
+ list_for_each_entry_safe(d, tmp, &kvm->arch.rtas_tokens, list) {
+ if (rtas_name_matches(d->handler->name, name)) {
+ list_del(&d->list);
+ kfree(d);
+ return 0;
+ }
+ }
+
+ /* It's not an error to undefine an undefined token */
+ return 0;
+}
+
+static int rtas_token_define(struct kvm *kvm, char *name, u64 token)
+{
+ struct rtas_token_definition *d;
+ struct rtas_handler *h = NULL;
+ bool found;
+ int i;
+
+ lockdep_assert_held(&kvm->arch.rtas_token_lock);
+
+ list_for_each_entry(d, &kvm->arch.rtas_tokens, list) {
+ if (d->token == token)
+ return -EEXIST;
+ }
+
+ found = false;
+ for (i = 0; i < ARRAY_SIZE(rtas_handlers); i++) {
+ h = &rtas_handlers[i];
+ if (rtas_name_matches(h->name, name)) {
+ found = true;
+ break;
+ }
+ }
+
+ if (!found)
+ return -ENOENT;
+
+ d = kzalloc(sizeof(*d), GFP_KERNEL);
+ if (!d)
+ return -ENOMEM;
+
+ d->handler = h;
+ d->token = token;
+
+ list_add_tail(&d->list, &kvm->arch.rtas_tokens);
+
+ return 0;
+}
+
+int kvm_vm_ioctl_rtas_define_token(struct kvm *kvm, void __user *argp)
+{
+ struct kvm_rtas_token_args args;
+ int rc;
+
+ if (copy_from_user(&args, argp, sizeof(args)))
+ return -EFAULT;
+
+ mutex_lock(&kvm->arch.rtas_token_lock);
+
+ if (args.token)
+ rc = rtas_token_define(kvm, args.name, args.token);
+ else
+ rc = rtas_token_undefine(kvm, args.name);
+
+ mutex_unlock(&kvm->arch.rtas_token_lock);
+
+ return rc;
+}
+
+int kvmppc_rtas_hcall(struct kvm_vcpu *vcpu)
+{
+ struct rtas_token_definition *d;
+ struct rtas_args args;
+ rtas_arg_t *orig_rets;
+ gpa_t args_phys;
+ int rc;
+
+ /*
+ * r4 contains the guest physical address of the RTAS args
+ * Mask off the top 4 bits since this is a guest real address
+ */
+ args_phys = kvmppc_get_gpr(vcpu, 4) & KVM_PAM;
+
+ kvm_vcpu_srcu_read_lock(vcpu);
+ rc = kvm_read_guest(vcpu->kvm, args_phys, &args, sizeof(args));
+ kvm_vcpu_srcu_read_unlock(vcpu);
+ if (rc)
+ goto fail;
+
+ /*
+ * args->rets is a pointer into args->args. Now that we've
+ * copied args we need to fix it up to point into our copy,
+ * not the guest args. We also need to save the original
+ * value so we can restore it on the way out.
+ */
+ orig_rets = args.rets;
+ if (be32_to_cpu(args.nargs) >= ARRAY_SIZE(args.args)) {
+ /*
+ * Don't overflow our args array: ensure there is room for
+ * at least rets[0] (even if the call specifies 0 nret).
+ *
+ * Each handler must then check for the correct nargs and nret
+ * values, but they may always return failure in rets[0].
+ */
+ rc = -EINVAL;
+ goto fail;
+ }
+ args.rets = &args.args[be32_to_cpu(args.nargs)];
+
+ mutex_lock(&vcpu->kvm->arch.rtas_token_lock);
+
+ rc = -ENOENT;
+ list_for_each_entry(d, &vcpu->kvm->arch.rtas_tokens, list) {
+ if (d->token == be32_to_cpu(args.token)) {
+ d->handler->handler(vcpu, &args);
+ rc = 0;
+ break;
+ }
+ }
+
+ mutex_unlock(&vcpu->kvm->arch.rtas_token_lock);
+
+ if (rc == 0) {
+ args.rets = orig_rets;
+ rc = kvm_write_guest(vcpu->kvm, args_phys, &args, sizeof(args));
+ if (rc)
+ goto fail;
+ }
+
+ return rc;
+
+fail:
+ /*
+ * We only get here if the guest has called RTAS with a bogus
+ * args pointer or nargs/nret values that would overflow the
+ * array. That means we can't get to the args, and so we can't
+ * fail the RTAS call. So fail right out to userspace, which
+ * should kill the guest.
+ *
+ * SLOF should actually pass the hcall return value from the
+ * rtas handler call in r3, so enter_rtas could be modified to
+ * return a failure indication in r3 and we could return such
+ * errors to the guest rather than failing to host userspace.
+ * However old guests that don't test for failure could then
+ * continue silently after errors, so for now we won't do this.
+ */
+ return rc;
+}
+EXPORT_SYMBOL_GPL(kvmppc_rtas_hcall);
+
+void kvmppc_rtas_tokens_free(struct kvm *kvm)
+{
+ struct rtas_token_definition *d, *tmp;
+
+ list_for_each_entry_safe(d, tmp, &kvm->arch.rtas_tokens, list) {
+ list_del(&d->list);
+ kfree(d);
+ }
+}
diff --git a/arch/powerpc/kvm/book3s_segment.S b/arch/powerpc/kvm/book3s_segment.S
new file mode 100644
index 000000000..202046a83
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_segment.S
@@ -0,0 +1,412 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ *
+ * Copyright SUSE Linux Products GmbH 2010
+ *
+ * Authors: Alexander Graf <agraf@suse.de>
+ */
+
+/* Real mode helpers */
+
+#include <asm/asm-compat.h>
+#include <asm/feature-fixups.h>
+
+#if defined(CONFIG_PPC_BOOK3S_64)
+
+#define GET_SHADOW_VCPU(reg) \
+ mr reg, r13
+
+#elif defined(CONFIG_PPC_BOOK3S_32)
+
+#define GET_SHADOW_VCPU(reg) \
+ tophys(reg, r2); \
+ lwz reg, (THREAD + THREAD_KVM_SVCPU)(reg); \
+ tophys(reg, reg)
+
+#endif
+
+/* Disable for nested KVM */
+#define USE_QUICK_LAST_INST
+
+
+/* Get helper functions for subarch specific functionality */
+
+#if defined(CONFIG_PPC_BOOK3S_64)
+#include "book3s_64_slb.S"
+#elif defined(CONFIG_PPC_BOOK3S_32)
+#include "book3s_32_sr.S"
+#endif
+
+/******************************************************************************
+ * *
+ * Entry code *
+ * *
+ *****************************************************************************/
+
+.global kvmppc_handler_trampoline_enter
+kvmppc_handler_trampoline_enter:
+
+ /* Required state:
+ *
+ * MSR = ~IR|DR
+ * R1 = host R1
+ * R2 = host R2
+ * R4 = guest shadow MSR
+ * R5 = normal host MSR
+ * R6 = current host MSR (EE, IR, DR off)
+ * LR = highmem guest exit code
+ * all other volatile GPRS = free
+ * SVCPU[CR] = guest CR
+ * SVCPU[XER] = guest XER
+ * SVCPU[CTR] = guest CTR
+ * SVCPU[LR] = guest LR
+ */
+
+ /* r3 = shadow vcpu */
+ GET_SHADOW_VCPU(r3)
+
+ /* Save guest exit handler address and MSR */
+ mflr r0
+ PPC_STL r0, HSTATE_VMHANDLER(r3)
+ PPC_STL r5, HSTATE_HOST_MSR(r3)
+
+ /* Save R1/R2 in the PACA (64-bit) or shadow_vcpu (32-bit) */
+ PPC_STL r1, HSTATE_HOST_R1(r3)
+ PPC_STL r2, HSTATE_HOST_R2(r3)
+
+ /* Activate guest mode, so faults get handled by KVM */
+ li r11, KVM_GUEST_MODE_GUEST
+ stb r11, HSTATE_IN_GUEST(r3)
+
+ /* Switch to guest segment. This is subarch specific. */
+ LOAD_GUEST_SEGMENTS
+
+#ifdef CONFIG_PPC_BOOK3S_64
+BEGIN_FTR_SECTION
+ /* Save host FSCR */
+ mfspr r8, SPRN_FSCR
+ std r8, HSTATE_HOST_FSCR(r13)
+ /* Set FSCR during guest execution */
+ ld r9, SVCPU_SHADOW_FSCR(r13)
+ mtspr SPRN_FSCR, r9
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+
+ /* Some guests may need to have dcbz set to 32 byte length.
+ *
+ * Usually we ensure that by patching the guest's instructions
+ * to trap on dcbz and emulate it in the hypervisor.
+ *
+ * If we can, we should tell the CPU to use 32 byte dcbz though,
+ * because that's a lot faster.
+ */
+ lbz r0, HSTATE_RESTORE_HID5(r3)
+ cmpwi r0, 0
+ beq no_dcbz32_on
+
+ mfspr r0,SPRN_HID5
+ ori r0, r0, 0x80 /* XXX HID5_dcbz32 = 0x80 */
+ mtspr SPRN_HID5,r0
+no_dcbz32_on:
+
+#endif /* CONFIG_PPC_BOOK3S_64 */
+
+ /* Enter guest */
+
+ PPC_LL r8, SVCPU_CTR(r3)
+ PPC_LL r9, SVCPU_LR(r3)
+ lwz r10, SVCPU_CR(r3)
+ PPC_LL r11, SVCPU_XER(r3)
+
+ mtctr r8
+ mtlr r9
+ mtcr r10
+ mtxer r11
+
+ /* Move SRR0 and SRR1 into the respective regs */
+ PPC_LL r9, SVCPU_PC(r3)
+ /* First clear RI in our current MSR value */
+ li r0, MSR_RI
+ andc r6, r6, r0
+
+ PPC_LL r0, SVCPU_R0(r3)
+ PPC_LL r1, SVCPU_R1(r3)
+ PPC_LL r2, SVCPU_R2(r3)
+ PPC_LL r5, SVCPU_R5(r3)
+ PPC_LL r7, SVCPU_R7(r3)
+ PPC_LL r8, SVCPU_R8(r3)
+ PPC_LL r10, SVCPU_R10(r3)
+ PPC_LL r11, SVCPU_R11(r3)
+ PPC_LL r12, SVCPU_R12(r3)
+ PPC_LL r13, SVCPU_R13(r3)
+
+ MTMSR_EERI(r6)
+ mtsrr0 r9
+ mtsrr1 r4
+
+ PPC_LL r4, SVCPU_R4(r3)
+ PPC_LL r6, SVCPU_R6(r3)
+ PPC_LL r9, SVCPU_R9(r3)
+ PPC_LL r3, (SVCPU_R3)(r3)
+
+ RFI_TO_GUEST
+kvmppc_handler_trampoline_enter_end:
+
+
+
+/******************************************************************************
+ * *
+ * Exit code *
+ * *
+ *****************************************************************************/
+
+.global kvmppc_interrupt_pr
+kvmppc_interrupt_pr:
+ /* 64-bit entry. Register usage at this point:
+ *
+ * SPRG_SCRATCH0 = guest R13
+ * R9 = HSTATE_IN_GUEST
+ * R12 = (guest CR << 32) | exit handler id
+ * R13 = PACA
+ * HSTATE.SCRATCH0 = guest R12
+ * HSTATE.SCRATCH2 = guest R9
+ */
+#ifdef CONFIG_PPC64
+ /* Match 32-bit entry */
+ ld r9,HSTATE_SCRATCH2(r13)
+ rotldi r12, r12, 32 /* Flip R12 halves for stw */
+ stw r12, HSTATE_SCRATCH1(r13) /* CR is now in the low half */
+ srdi r12, r12, 32 /* shift trap into low half */
+#endif
+
+.global kvmppc_handler_trampoline_exit
+kvmppc_handler_trampoline_exit:
+ /* Register usage at this point:
+ *
+ * SPRG_SCRATCH0 = guest R13
+ * R12 = exit handler id
+ * R13 = shadow vcpu (32-bit) or PACA (64-bit)
+ * HSTATE.SCRATCH0 = guest R12
+ * HSTATE.SCRATCH1 = guest CR
+ */
+
+ /* Save registers */
+
+ PPC_STL r0, SVCPU_R0(r13)
+ PPC_STL r1, SVCPU_R1(r13)
+ PPC_STL r2, SVCPU_R2(r13)
+ PPC_STL r3, SVCPU_R3(r13)
+ PPC_STL r4, SVCPU_R4(r13)
+ PPC_STL r5, SVCPU_R5(r13)
+ PPC_STL r6, SVCPU_R6(r13)
+ PPC_STL r7, SVCPU_R7(r13)
+ PPC_STL r8, SVCPU_R8(r13)
+ PPC_STL r9, SVCPU_R9(r13)
+ PPC_STL r10, SVCPU_R10(r13)
+ PPC_STL r11, SVCPU_R11(r13)
+
+ /* Restore R1/R2 so we can handle faults */
+ PPC_LL r1, HSTATE_HOST_R1(r13)
+ PPC_LL r2, HSTATE_HOST_R2(r13)
+
+ /* Save guest PC and MSR */
+#ifdef CONFIG_PPC64
+BEGIN_FTR_SECTION
+ andi. r0, r12, 0x2
+ cmpwi cr1, r0, 0
+ beq 1f
+ mfspr r3,SPRN_HSRR0
+ mfspr r4,SPRN_HSRR1
+ andi. r12,r12,0x3ffd
+ b 2f
+END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
+#endif
+1: mfsrr0 r3
+ mfsrr1 r4
+2:
+ PPC_STL r3, SVCPU_PC(r13)
+ PPC_STL r4, SVCPU_SHADOW_SRR1(r13)
+
+ /* Get scratch'ed off registers */
+ GET_SCRATCH0(r9)
+ PPC_LL r8, HSTATE_SCRATCH0(r13)
+ lwz r7, HSTATE_SCRATCH1(r13)
+
+ PPC_STL r9, SVCPU_R13(r13)
+ PPC_STL r8, SVCPU_R12(r13)
+ stw r7, SVCPU_CR(r13)
+
+ /* Save more register state */
+
+ mfxer r5
+ mfdar r6
+ mfdsisr r7
+ mfctr r8
+ mflr r9
+
+ PPC_STL r5, SVCPU_XER(r13)
+ PPC_STL r6, SVCPU_FAULT_DAR(r13)
+ stw r7, SVCPU_FAULT_DSISR(r13)
+ PPC_STL r8, SVCPU_CTR(r13)
+ PPC_STL r9, SVCPU_LR(r13)
+
+ /*
+ * In order for us to easily get the last instruction,
+ * we got the #vmexit at, we exploit the fact that the
+ * virtual layout is still the same here, so we can just
+ * ld from the guest's PC address
+ */
+
+ /* We only load the last instruction when it's safe */
+ cmpwi r12, BOOK3S_INTERRUPT_DATA_STORAGE
+ beq ld_last_inst
+ cmpwi r12, BOOK3S_INTERRUPT_PROGRAM
+ beq ld_last_inst
+ cmpwi r12, BOOK3S_INTERRUPT_SYSCALL
+ beq ld_last_prev_inst
+ cmpwi r12, BOOK3S_INTERRUPT_ALIGNMENT
+ beq- ld_last_inst
+#ifdef CONFIG_PPC64
+BEGIN_FTR_SECTION
+ cmpwi r12, BOOK3S_INTERRUPT_H_EMUL_ASSIST
+ beq- ld_last_inst
+END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
+BEGIN_FTR_SECTION
+ cmpwi r12, BOOK3S_INTERRUPT_FAC_UNAVAIL
+ beq- ld_last_inst
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+#endif
+
+ b no_ld_last_inst
+
+ld_last_prev_inst:
+ addi r3, r3, -4
+
+ld_last_inst:
+ /* Save off the guest instruction we're at */
+
+ /* In case lwz faults */
+ li r0, KVM_INST_FETCH_FAILED
+
+#ifdef USE_QUICK_LAST_INST
+
+ /* Set guest mode to 'jump over instruction' so if lwz faults
+ * we'll just continue at the next IP. */
+ li r9, KVM_GUEST_MODE_SKIP
+ stb r9, HSTATE_IN_GUEST(r13)
+
+ /* 1) enable paging for data */
+ mfmsr r9
+ ori r11, r9, MSR_DR /* Enable paging for data */
+ mtmsr r11
+ sync
+ /* 2) fetch the instruction */
+ lwz r0, 0(r3)
+ /* 3) disable paging again */
+ mtmsr r9
+ sync
+
+#endif
+ stw r0, SVCPU_LAST_INST(r13)
+
+no_ld_last_inst:
+
+ /* Unset guest mode */
+ li r9, KVM_GUEST_MODE_NONE
+ stb r9, HSTATE_IN_GUEST(r13)
+
+ /* Switch back to host MMU */
+ LOAD_HOST_SEGMENTS
+
+#ifdef CONFIG_PPC_BOOK3S_64
+
+ lbz r5, HSTATE_RESTORE_HID5(r13)
+ cmpwi r5, 0
+ beq no_dcbz32_off
+
+ li r4, 0
+ mfspr r5,SPRN_HID5
+ rldimi r5,r4,6,56
+ mtspr SPRN_HID5,r5
+
+no_dcbz32_off:
+
+BEGIN_FTR_SECTION
+ /* Save guest FSCR on a FAC_UNAVAIL interrupt */
+ cmpwi r12, BOOK3S_INTERRUPT_FAC_UNAVAIL
+ bne+ no_fscr_save
+ mfspr r7, SPRN_FSCR
+ std r7, SVCPU_SHADOW_FSCR(r13)
+no_fscr_save:
+ /* Restore host FSCR */
+ ld r8, HSTATE_HOST_FSCR(r13)
+ mtspr SPRN_FSCR, r8
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
+
+#endif /* CONFIG_PPC_BOOK3S_64 */
+
+ /*
+ * For some interrupts, we need to call the real Linux
+ * handler, so it can do work for us. This has to happen
+ * as if the interrupt arrived from the kernel though,
+ * so let's fake it here where most state is restored.
+ *
+ * Having set up SRR0/1 with the address where we want
+ * to continue with relocation on (potentially in module
+ * space), we either just go straight there with rfi[d],
+ * or we jump to an interrupt handler if there is an
+ * interrupt to be handled first. In the latter case,
+ * the rfi[d] at the end of the interrupt handler will
+ * get us back to where we want to continue.
+ */
+
+ /* Register usage at this point:
+ *
+ * R1 = host R1
+ * R2 = host R2
+ * R10 = raw exit handler id
+ * R12 = exit handler id
+ * R13 = shadow vcpu (32-bit) or PACA (64-bit)
+ * SVCPU.* = guest *
+ *
+ */
+
+ PPC_LL r6, HSTATE_HOST_MSR(r13)
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ /*
+ * We don't want to change MSR[TS] bits via rfi here.
+ * The actual TM handling logic will be in host with
+ * recovered DR/IR bits after HSTATE_VMHANDLER.
+ * And MSR_TM can be enabled in HOST_MSR so rfid may
+ * not suppress this change and can lead to exception.
+ * Manually set MSR to prevent TS state change here.
+ */
+ mfmsr r7
+ rldicl r7, r7, 64 - MSR_TS_S_LG, 62
+ rldimi r6, r7, MSR_TS_S_LG, 63 - MSR_TS_T_LG
+#endif
+ PPC_LL r8, HSTATE_VMHANDLER(r13)
+
+#ifdef CONFIG_PPC64
+BEGIN_FTR_SECTION
+ beq cr1, 1f
+ mtspr SPRN_HSRR1, r6
+ mtspr SPRN_HSRR0, r8
+END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
+#endif
+1: /* Restore host msr -> SRR1 */
+ mtsrr1 r6
+ /* Load highmem handler address */
+ mtsrr0 r8
+
+ /* RFI into the highmem handler, or jump to interrupt handler */
+ cmpwi r12, BOOK3S_INTERRUPT_EXTERNAL
+ beqa BOOK3S_INTERRUPT_EXTERNAL
+ cmpwi r12, BOOK3S_INTERRUPT_DECREMENTER
+ beqa BOOK3S_INTERRUPT_DECREMENTER
+ cmpwi r12, BOOK3S_INTERRUPT_PERFMON
+ beqa BOOK3S_INTERRUPT_PERFMON
+ cmpwi r12, BOOK3S_INTERRUPT_DOORBELL
+ beqa BOOK3S_INTERRUPT_DOORBELL
+
+ RFI_TO_KERNEL
+kvmppc_handler_trampoline_exit_end:
diff --git a/arch/powerpc/kvm/book3s_xics.c b/arch/powerpc/kvm/book3s_xics.c
new file mode 100644
index 000000000..589a8f257
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_xics.c
@@ -0,0 +1,1507 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright 2012 Michael Ellerman, IBM Corporation.
+ * Copyright 2012 Benjamin Herrenschmidt, IBM Corporation.
+ */
+
+#include <linux/kernel.h>
+#include <linux/kvm_host.h>
+#include <linux/err.h>
+#include <linux/gfp.h>
+#include <linux/anon_inodes.h>
+#include <linux/spinlock.h>
+#include <linux/debugfs.h>
+#include <linux/uaccess.h>
+
+#include <asm/kvm_book3s.h>
+#include <asm/kvm_ppc.h>
+#include <asm/hvcall.h>
+#include <asm/xics.h>
+#include <asm/time.h>
+
+#include <linux/seq_file.h>
+
+#include "book3s_xics.h"
+
+#if 1
+#define XICS_DBG(fmt...) do { } while (0)
+#else
+#define XICS_DBG(fmt...) trace_printk(fmt)
+#endif
+
+#define ENABLE_REALMODE true
+#define DEBUG_REALMODE false
+
+/*
+ * LOCKING
+ * =======
+ *
+ * Each ICS has a spin lock protecting the information about the IRQ
+ * sources and avoiding simultaneous deliveries of the same interrupt.
+ *
+ * ICP operations are done via a single compare & swap transaction
+ * (most ICP state fits in the union kvmppc_icp_state)
+ */
+
+/*
+ * TODO
+ * ====
+ *
+ * - To speed up resends, keep a bitmap of "resend" set bits in the
+ * ICS
+ *
+ * - Speed up server# -> ICP lookup (array ? hash table ?)
+ *
+ * - Make ICS lockless as well, or at least a per-interrupt lock or hashed
+ * locks array to improve scalability
+ */
+
+/* -- ICS routines -- */
+
+static void icp_deliver_irq(struct kvmppc_xics *xics, struct kvmppc_icp *icp,
+ u32 new_irq, bool check_resend);
+
+/*
+ * Return value ideally indicates how the interrupt was handled, but no
+ * callers look at it (given that we don't implement KVM_IRQ_LINE_STATUS),
+ * so just return 0.
+ */
+static int ics_deliver_irq(struct kvmppc_xics *xics, u32 irq, u32 level)
+{
+ struct ics_irq_state *state;
+ struct kvmppc_ics *ics;
+ u16 src;
+ u32 pq_old, pq_new;
+
+ XICS_DBG("ics deliver %#x (level: %d)\n", irq, level);
+
+ ics = kvmppc_xics_find_ics(xics, irq, &src);
+ if (!ics) {
+ XICS_DBG("ics_deliver_irq: IRQ 0x%06x not found !\n", irq);
+ return -EINVAL;
+ }
+ state = &ics->irq_state[src];
+ if (!state->exists)
+ return -EINVAL;
+
+ if (level == KVM_INTERRUPT_SET_LEVEL || level == KVM_INTERRUPT_SET)
+ level = 1;
+ else if (level == KVM_INTERRUPT_UNSET)
+ level = 0;
+ /*
+ * Take other values the same as 1, consistent with original code.
+ * maybe WARN here?
+ */
+
+ if (!state->lsi && level == 0) /* noop for MSI */
+ return 0;
+
+ do {
+ pq_old = state->pq_state;
+ if (state->lsi) {
+ if (level) {
+ if (pq_old & PQ_PRESENTED)
+ /* Setting already set LSI ... */
+ return 0;
+
+ pq_new = PQ_PRESENTED;
+ } else
+ pq_new = 0;
+ } else
+ pq_new = ((pq_old << 1) & 3) | PQ_PRESENTED;
+ } while (cmpxchg(&state->pq_state, pq_old, pq_new) != pq_old);
+
+ /* Test P=1, Q=0, this is the only case where we present */
+ if (pq_new == PQ_PRESENTED)
+ icp_deliver_irq(xics, NULL, irq, false);
+
+ /* Record which CPU this arrived on for passed-through interrupts */
+ if (state->host_irq)
+ state->intr_cpu = raw_smp_processor_id();
+
+ return 0;
+}
+
+static void ics_check_resend(struct kvmppc_xics *xics, struct kvmppc_ics *ics,
+ struct kvmppc_icp *icp)
+{
+ int i;
+
+ for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
+ struct ics_irq_state *state = &ics->irq_state[i];
+ if (state->resend) {
+ XICS_DBG("resend %#x prio %#x\n", state->number,
+ state->priority);
+ icp_deliver_irq(xics, icp, state->number, true);
+ }
+ }
+}
+
+static bool write_xive(struct kvmppc_xics *xics, struct kvmppc_ics *ics,
+ struct ics_irq_state *state,
+ u32 server, u32 priority, u32 saved_priority)
+{
+ bool deliver;
+ unsigned long flags;
+
+ local_irq_save(flags);
+ arch_spin_lock(&ics->lock);
+
+ state->server = server;
+ state->priority = priority;
+ state->saved_priority = saved_priority;
+ deliver = false;
+ if ((state->masked_pending || state->resend) && priority != MASKED) {
+ state->masked_pending = 0;
+ state->resend = 0;
+ deliver = true;
+ }
+
+ arch_spin_unlock(&ics->lock);
+ local_irq_restore(flags);
+
+ return deliver;
+}
+
+int kvmppc_xics_set_xive(struct kvm *kvm, u32 irq, u32 server, u32 priority)
+{
+ struct kvmppc_xics *xics = kvm->arch.xics;
+ struct kvmppc_icp *icp;
+ struct kvmppc_ics *ics;
+ struct ics_irq_state *state;
+ u16 src;
+
+ if (!xics)
+ return -ENODEV;
+
+ ics = kvmppc_xics_find_ics(xics, irq, &src);
+ if (!ics)
+ return -EINVAL;
+ state = &ics->irq_state[src];
+
+ icp = kvmppc_xics_find_server(kvm, server);
+ if (!icp)
+ return -EINVAL;
+
+ XICS_DBG("set_xive %#x server %#x prio %#x MP:%d RS:%d\n",
+ irq, server, priority,
+ state->masked_pending, state->resend);
+
+ if (write_xive(xics, ics, state, server, priority, priority))
+ icp_deliver_irq(xics, icp, irq, false);
+
+ return 0;
+}
+
+int kvmppc_xics_get_xive(struct kvm *kvm, u32 irq, u32 *server, u32 *priority)
+{
+ struct kvmppc_xics *xics = kvm->arch.xics;
+ struct kvmppc_ics *ics;
+ struct ics_irq_state *state;
+ u16 src;
+ unsigned long flags;
+
+ if (!xics)
+ return -ENODEV;
+
+ ics = kvmppc_xics_find_ics(xics, irq, &src);
+ if (!ics)
+ return -EINVAL;
+ state = &ics->irq_state[src];
+
+ local_irq_save(flags);
+ arch_spin_lock(&ics->lock);
+ *server = state->server;
+ *priority = state->priority;
+ arch_spin_unlock(&ics->lock);
+ local_irq_restore(flags);
+
+ return 0;
+}
+
+int kvmppc_xics_int_on(struct kvm *kvm, u32 irq)
+{
+ struct kvmppc_xics *xics = kvm->arch.xics;
+ struct kvmppc_icp *icp;
+ struct kvmppc_ics *ics;
+ struct ics_irq_state *state;
+ u16 src;
+
+ if (!xics)
+ return -ENODEV;
+
+ ics = kvmppc_xics_find_ics(xics, irq, &src);
+ if (!ics)
+ return -EINVAL;
+ state = &ics->irq_state[src];
+
+ icp = kvmppc_xics_find_server(kvm, state->server);
+ if (!icp)
+ return -EINVAL;
+
+ if (write_xive(xics, ics, state, state->server, state->saved_priority,
+ state->saved_priority))
+ icp_deliver_irq(xics, icp, irq, false);
+
+ return 0;
+}
+
+int kvmppc_xics_int_off(struct kvm *kvm, u32 irq)
+{
+ struct kvmppc_xics *xics = kvm->arch.xics;
+ struct kvmppc_ics *ics;
+ struct ics_irq_state *state;
+ u16 src;
+
+ if (!xics)
+ return -ENODEV;
+
+ ics = kvmppc_xics_find_ics(xics, irq, &src);
+ if (!ics)
+ return -EINVAL;
+ state = &ics->irq_state[src];
+
+ write_xive(xics, ics, state, state->server, MASKED, state->priority);
+
+ return 0;
+}
+
+/* -- ICP routines, including hcalls -- */
+
+static inline bool icp_try_update(struct kvmppc_icp *icp,
+ union kvmppc_icp_state old,
+ union kvmppc_icp_state new,
+ bool change_self)
+{
+ bool success;
+
+ /* Calculate new output value */
+ new.out_ee = (new.xisr && (new.pending_pri < new.cppr));
+
+ /* Attempt atomic update */
+ success = cmpxchg64(&icp->state.raw, old.raw, new.raw) == old.raw;
+ if (!success)
+ goto bail;
+
+ XICS_DBG("UPD [%04lx] - C:%02x M:%02x PP: %02x PI:%06x R:%d O:%d\n",
+ icp->server_num,
+ old.cppr, old.mfrr, old.pending_pri, old.xisr,
+ old.need_resend, old.out_ee);
+ XICS_DBG("UPD - C:%02x M:%02x PP: %02x PI:%06x R:%d O:%d\n",
+ new.cppr, new.mfrr, new.pending_pri, new.xisr,
+ new.need_resend, new.out_ee);
+ /*
+ * Check for output state update
+ *
+ * Note that this is racy since another processor could be updating
+ * the state already. This is why we never clear the interrupt output
+ * here, we only ever set it. The clear only happens prior to doing
+ * an update and only by the processor itself. Currently we do it
+ * in Accept (H_XIRR) and Up_Cppr (H_XPPR).
+ *
+ * We also do not try to figure out whether the EE state has changed,
+ * we unconditionally set it if the new state calls for it. The reason
+ * for that is that we opportunistically remove the pending interrupt
+ * flag when raising CPPR, so we need to set it back here if an
+ * interrupt is still pending.
+ */
+ if (new.out_ee) {
+ kvmppc_book3s_queue_irqprio(icp->vcpu,
+ BOOK3S_INTERRUPT_EXTERNAL);
+ if (!change_self)
+ kvmppc_fast_vcpu_kick(icp->vcpu);
+ }
+ bail:
+ return success;
+}
+
+static void icp_check_resend(struct kvmppc_xics *xics,
+ struct kvmppc_icp *icp)
+{
+ u32 icsid;
+
+ /* Order this load with the test for need_resend in the caller */
+ smp_rmb();
+ for_each_set_bit(icsid, icp->resend_map, xics->max_icsid + 1) {
+ struct kvmppc_ics *ics = xics->ics[icsid];
+
+ if (!test_and_clear_bit(icsid, icp->resend_map))
+ continue;
+ if (!ics)
+ continue;
+ ics_check_resend(xics, ics, icp);
+ }
+}
+
+static bool icp_try_to_deliver(struct kvmppc_icp *icp, u32 irq, u8 priority,
+ u32 *reject)
+{
+ union kvmppc_icp_state old_state, new_state;
+ bool success;
+
+ XICS_DBG("try deliver %#x(P:%#x) to server %#lx\n", irq, priority,
+ icp->server_num);
+
+ do {
+ old_state = new_state = READ_ONCE(icp->state);
+
+ *reject = 0;
+
+ /* See if we can deliver */
+ success = new_state.cppr > priority &&
+ new_state.mfrr > priority &&
+ new_state.pending_pri > priority;
+
+ /*
+ * If we can, check for a rejection and perform the
+ * delivery
+ */
+ if (success) {
+ *reject = new_state.xisr;
+ new_state.xisr = irq;
+ new_state.pending_pri = priority;
+ } else {
+ /*
+ * If we failed to deliver we set need_resend
+ * so a subsequent CPPR state change causes us
+ * to try a new delivery.
+ */
+ new_state.need_resend = true;
+ }
+
+ } while (!icp_try_update(icp, old_state, new_state, false));
+
+ return success;
+}
+
+static void icp_deliver_irq(struct kvmppc_xics *xics, struct kvmppc_icp *icp,
+ u32 new_irq, bool check_resend)
+{
+ struct ics_irq_state *state;
+ struct kvmppc_ics *ics;
+ u32 reject;
+ u16 src;
+ unsigned long flags;
+
+ /*
+ * This is used both for initial delivery of an interrupt and
+ * for subsequent rejection.
+ *
+ * Rejection can be racy vs. resends. We have evaluated the
+ * rejection in an atomic ICP transaction which is now complete,
+ * so potentially the ICP can already accept the interrupt again.
+ *
+ * So we need to retry the delivery. Essentially the reject path
+ * boils down to a failed delivery. Always.
+ *
+ * Now the interrupt could also have moved to a different target,
+ * thus we may need to re-do the ICP lookup as well
+ */
+
+ again:
+ /* Get the ICS state and lock it */
+ ics = kvmppc_xics_find_ics(xics, new_irq, &src);
+ if (!ics) {
+ XICS_DBG("icp_deliver_irq: IRQ 0x%06x not found !\n", new_irq);
+ return;
+ }
+ state = &ics->irq_state[src];
+
+ /* Get a lock on the ICS */
+ local_irq_save(flags);
+ arch_spin_lock(&ics->lock);
+
+ /* Get our server */
+ if (!icp || state->server != icp->server_num) {
+ icp = kvmppc_xics_find_server(xics->kvm, state->server);
+ if (!icp) {
+ pr_warn("icp_deliver_irq: IRQ 0x%06x server 0x%x not found !\n",
+ new_irq, state->server);
+ goto out;
+ }
+ }
+
+ if (check_resend)
+ if (!state->resend)
+ goto out;
+
+ /* Clear the resend bit of that interrupt */
+ state->resend = 0;
+
+ /*
+ * If masked, bail out
+ *
+ * Note: PAPR doesn't mention anything about masked pending
+ * when doing a resend, only when doing a delivery.
+ *
+ * However that would have the effect of losing a masked
+ * interrupt that was rejected and isn't consistent with
+ * the whole masked_pending business which is about not
+ * losing interrupts that occur while masked.
+ *
+ * I don't differentiate normal deliveries and resends, this
+ * implementation will differ from PAPR and not lose such
+ * interrupts.
+ */
+ if (state->priority == MASKED) {
+ XICS_DBG("irq %#x masked pending\n", new_irq);
+ state->masked_pending = 1;
+ goto out;
+ }
+
+ /*
+ * Try the delivery, this will set the need_resend flag
+ * in the ICP as part of the atomic transaction if the
+ * delivery is not possible.
+ *
+ * Note that if successful, the new delivery might have itself
+ * rejected an interrupt that was "delivered" before we took the
+ * ics spin lock.
+ *
+ * In this case we do the whole sequence all over again for the
+ * new guy. We cannot assume that the rejected interrupt is less
+ * favored than the new one, and thus doesn't need to be delivered,
+ * because by the time we exit icp_try_to_deliver() the target
+ * processor may well have already consumed & completed it, and thus
+ * the rejected interrupt might actually be already acceptable.
+ */
+ if (icp_try_to_deliver(icp, new_irq, state->priority, &reject)) {
+ /*
+ * Delivery was successful, did we reject somebody else ?
+ */
+ if (reject && reject != XICS_IPI) {
+ arch_spin_unlock(&ics->lock);
+ local_irq_restore(flags);
+ new_irq = reject;
+ check_resend = false;
+ goto again;
+ }
+ } else {
+ /*
+ * We failed to deliver the interrupt we need to set the
+ * resend map bit and mark the ICS state as needing a resend
+ */
+ state->resend = 1;
+
+ /*
+ * Make sure when checking resend, we don't miss the resend
+ * if resend_map bit is seen and cleared.
+ */
+ smp_wmb();
+ set_bit(ics->icsid, icp->resend_map);
+
+ /*
+ * If the need_resend flag got cleared in the ICP some time
+ * between icp_try_to_deliver() atomic update and now, then
+ * we know it might have missed the resend_map bit. So we
+ * retry
+ */
+ smp_mb();
+ if (!icp->state.need_resend) {
+ state->resend = 0;
+ arch_spin_unlock(&ics->lock);
+ local_irq_restore(flags);
+ check_resend = false;
+ goto again;
+ }
+ }
+ out:
+ arch_spin_unlock(&ics->lock);
+ local_irq_restore(flags);
+}
+
+static void icp_down_cppr(struct kvmppc_xics *xics, struct kvmppc_icp *icp,
+ u8 new_cppr)
+{
+ union kvmppc_icp_state old_state, new_state;
+ bool resend;
+
+ /*
+ * This handles several related states in one operation:
+ *
+ * ICP State: Down_CPPR
+ *
+ * Load CPPR with new value and if the XISR is 0
+ * then check for resends:
+ *
+ * ICP State: Resend
+ *
+ * If MFRR is more favored than CPPR, check for IPIs
+ * and notify ICS of a potential resend. This is done
+ * asynchronously (when used in real mode, we will have
+ * to exit here).
+ *
+ * We do not handle the complete Check_IPI as documented
+ * here. In the PAPR, this state will be used for both
+ * Set_MFRR and Down_CPPR. However, we know that we aren't
+ * changing the MFRR state here so we don't need to handle
+ * the case of an MFRR causing a reject of a pending irq,
+ * this will have been handled when the MFRR was set in the
+ * first place.
+ *
+ * Thus we don't have to handle rejects, only resends.
+ *
+ * When implementing real mode for HV KVM, resend will lead to
+ * a H_TOO_HARD return and the whole transaction will be handled
+ * in virtual mode.
+ */
+ do {
+ old_state = new_state = READ_ONCE(icp->state);
+
+ /* Down_CPPR */
+ new_state.cppr = new_cppr;
+
+ /*
+ * Cut down Resend / Check_IPI / IPI
+ *
+ * The logic is that we cannot have a pending interrupt
+ * trumped by an IPI at this point (see above), so we
+ * know that either the pending interrupt is already an
+ * IPI (in which case we don't care to override it) or
+ * it's either more favored than us or non existent
+ */
+ if (new_state.mfrr < new_cppr &&
+ new_state.mfrr <= new_state.pending_pri) {
+ WARN_ON(new_state.xisr != XICS_IPI &&
+ new_state.xisr != 0);
+ new_state.pending_pri = new_state.mfrr;
+ new_state.xisr = XICS_IPI;
+ }
+
+ /* Latch/clear resend bit */
+ resend = new_state.need_resend;
+ new_state.need_resend = 0;
+
+ } while (!icp_try_update(icp, old_state, new_state, true));
+
+ /*
+ * Now handle resend checks. Those are asynchronous to the ICP
+ * state update in HW (ie bus transactions) so we can handle them
+ * separately here too
+ */
+ if (resend)
+ icp_check_resend(xics, icp);
+}
+
+static noinline unsigned long kvmppc_h_xirr(struct kvm_vcpu *vcpu)
+{
+ union kvmppc_icp_state old_state, new_state;
+ struct kvmppc_icp *icp = vcpu->arch.icp;
+ u32 xirr;
+
+ /* First, remove EE from the processor */
+ kvmppc_book3s_dequeue_irqprio(icp->vcpu, BOOK3S_INTERRUPT_EXTERNAL);
+
+ /*
+ * ICP State: Accept_Interrupt
+ *
+ * Return the pending interrupt (if any) along with the
+ * current CPPR, then clear the XISR & set CPPR to the
+ * pending priority
+ */
+ do {
+ old_state = new_state = READ_ONCE(icp->state);
+
+ xirr = old_state.xisr | (((u32)old_state.cppr) << 24);
+ if (!old_state.xisr)
+ break;
+ new_state.cppr = new_state.pending_pri;
+ new_state.pending_pri = 0xff;
+ new_state.xisr = 0;
+
+ } while (!icp_try_update(icp, old_state, new_state, true));
+
+ XICS_DBG("h_xirr vcpu %d xirr %#x\n", vcpu->vcpu_id, xirr);
+
+ return xirr;
+}
+
+static noinline int kvmppc_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
+ unsigned long mfrr)
+{
+ union kvmppc_icp_state old_state, new_state;
+ struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
+ struct kvmppc_icp *icp;
+ u32 reject;
+ bool resend;
+ bool local;
+
+ XICS_DBG("h_ipi vcpu %d to server %lu mfrr %#lx\n",
+ vcpu->vcpu_id, server, mfrr);
+
+ icp = vcpu->arch.icp;
+ local = icp->server_num == server;
+ if (!local) {
+ icp = kvmppc_xics_find_server(vcpu->kvm, server);
+ if (!icp)
+ return H_PARAMETER;
+ }
+
+ /*
+ * ICP state: Set_MFRR
+ *
+ * If the CPPR is more favored than the new MFRR, then
+ * nothing needs to be rejected as there can be no XISR to
+ * reject. If the MFRR is being made less favored then
+ * there might be a previously-rejected interrupt needing
+ * to be resent.
+ *
+ * ICP state: Check_IPI
+ *
+ * If the CPPR is less favored, then we might be replacing
+ * an interrupt, and thus need to possibly reject it.
+ *
+ * ICP State: IPI
+ *
+ * Besides rejecting any pending interrupts, we also
+ * update XISR and pending_pri to mark IPI as pending.
+ *
+ * PAPR does not describe this state, but if the MFRR is being
+ * made less favored than its earlier value, there might be
+ * a previously-rejected interrupt needing to be resent.
+ * Ideally, we would want to resend only if
+ * prio(pending_interrupt) < mfrr &&
+ * prio(pending_interrupt) < cppr
+ * where pending interrupt is the one that was rejected. But
+ * we don't have that state, so we simply trigger a resend
+ * whenever the MFRR is made less favored.
+ */
+ do {
+ old_state = new_state = READ_ONCE(icp->state);
+
+ /* Set_MFRR */
+ new_state.mfrr = mfrr;
+
+ /* Check_IPI */
+ reject = 0;
+ resend = false;
+ if (mfrr < new_state.cppr) {
+ /* Reject a pending interrupt if not an IPI */
+ if (mfrr <= new_state.pending_pri) {
+ reject = new_state.xisr;
+ new_state.pending_pri = mfrr;
+ new_state.xisr = XICS_IPI;
+ }
+ }
+
+ if (mfrr > old_state.mfrr) {
+ resend = new_state.need_resend;
+ new_state.need_resend = 0;
+ }
+ } while (!icp_try_update(icp, old_state, new_state, local));
+
+ /* Handle reject */
+ if (reject && reject != XICS_IPI)
+ icp_deliver_irq(xics, icp, reject, false);
+
+ /* Handle resend */
+ if (resend)
+ icp_check_resend(xics, icp);
+
+ return H_SUCCESS;
+}
+
+static int kvmppc_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server)
+{
+ union kvmppc_icp_state state;
+ struct kvmppc_icp *icp;
+
+ icp = vcpu->arch.icp;
+ if (icp->server_num != server) {
+ icp = kvmppc_xics_find_server(vcpu->kvm, server);
+ if (!icp)
+ return H_PARAMETER;
+ }
+ state = READ_ONCE(icp->state);
+ kvmppc_set_gpr(vcpu, 4, ((u32)state.cppr << 24) | state.xisr);
+ kvmppc_set_gpr(vcpu, 5, state.mfrr);
+ return H_SUCCESS;
+}
+
+static noinline void kvmppc_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
+{
+ union kvmppc_icp_state old_state, new_state;
+ struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
+ struct kvmppc_icp *icp = vcpu->arch.icp;
+ u32 reject;
+
+ XICS_DBG("h_cppr vcpu %d cppr %#lx\n", vcpu->vcpu_id, cppr);
+
+ /*
+ * ICP State: Set_CPPR
+ *
+ * We can safely compare the new value with the current
+ * value outside of the transaction as the CPPR is only
+ * ever changed by the processor on itself
+ */
+ if (cppr > icp->state.cppr)
+ icp_down_cppr(xics, icp, cppr);
+ else if (cppr == icp->state.cppr)
+ return;
+
+ /*
+ * ICP State: Up_CPPR
+ *
+ * The processor is raising its priority, this can result
+ * in a rejection of a pending interrupt:
+ *
+ * ICP State: Reject_Current
+ *
+ * We can remove EE from the current processor, the update
+ * transaction will set it again if needed
+ */
+ kvmppc_book3s_dequeue_irqprio(icp->vcpu, BOOK3S_INTERRUPT_EXTERNAL);
+
+ do {
+ old_state = new_state = READ_ONCE(icp->state);
+
+ reject = 0;
+ new_state.cppr = cppr;
+
+ if (cppr <= new_state.pending_pri) {
+ reject = new_state.xisr;
+ new_state.xisr = 0;
+ new_state.pending_pri = 0xff;
+ }
+
+ } while (!icp_try_update(icp, old_state, new_state, true));
+
+ /*
+ * Check for rejects. They are handled by doing a new delivery
+ * attempt (see comments in icp_deliver_irq).
+ */
+ if (reject && reject != XICS_IPI)
+ icp_deliver_irq(xics, icp, reject, false);
+}
+
+static int ics_eoi(struct kvm_vcpu *vcpu, u32 irq)
+{
+ struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
+ struct kvmppc_icp *icp = vcpu->arch.icp;
+ struct kvmppc_ics *ics;
+ struct ics_irq_state *state;
+ u16 src;
+ u32 pq_old, pq_new;
+
+ /*
+ * ICS EOI handling: For LSI, if P bit is still set, we need to
+ * resend it.
+ *
+ * For MSI, we move Q bit into P (and clear Q). If it is set,
+ * resend it.
+ */
+
+ ics = kvmppc_xics_find_ics(xics, irq, &src);
+ if (!ics) {
+ XICS_DBG("ios_eoi: IRQ 0x%06x not found !\n", irq);
+ return H_PARAMETER;
+ }
+ state = &ics->irq_state[src];
+
+ if (state->lsi)
+ pq_new = state->pq_state;
+ else
+ do {
+ pq_old = state->pq_state;
+ pq_new = pq_old >> 1;
+ } while (cmpxchg(&state->pq_state, pq_old, pq_new) != pq_old);
+
+ if (pq_new & PQ_PRESENTED)
+ icp_deliver_irq(xics, icp, irq, false);
+
+ kvm_notify_acked_irq(vcpu->kvm, 0, irq);
+
+ return H_SUCCESS;
+}
+
+static noinline int kvmppc_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
+{
+ struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
+ struct kvmppc_icp *icp = vcpu->arch.icp;
+ u32 irq = xirr & 0x00ffffff;
+
+ XICS_DBG("h_eoi vcpu %d eoi %#lx\n", vcpu->vcpu_id, xirr);
+
+ /*
+ * ICP State: EOI
+ *
+ * Note: If EOI is incorrectly used by SW to lower the CPPR
+ * value (ie more favored), we do not check for rejection of
+ * a pending interrupt, this is a SW error and PAPR specifies
+ * that we don't have to deal with it.
+ *
+ * The sending of an EOI to the ICS is handled after the
+ * CPPR update
+ *
+ * ICP State: Down_CPPR which we handle
+ * in a separate function as it's shared with H_CPPR.
+ */
+ icp_down_cppr(xics, icp, xirr >> 24);
+
+ /* IPIs have no EOI */
+ if (irq == XICS_IPI)
+ return H_SUCCESS;
+
+ return ics_eoi(vcpu, irq);
+}
+
+int kvmppc_xics_rm_complete(struct kvm_vcpu *vcpu, u32 hcall)
+{
+ struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
+ struct kvmppc_icp *icp = vcpu->arch.icp;
+
+ XICS_DBG("XICS_RM: H_%x completing, act: %x state: %lx tgt: %p\n",
+ hcall, icp->rm_action, icp->rm_dbgstate.raw, icp->rm_dbgtgt);
+
+ if (icp->rm_action & XICS_RM_KICK_VCPU) {
+ icp->n_rm_kick_vcpu++;
+ kvmppc_fast_vcpu_kick(icp->rm_kick_target);
+ }
+ if (icp->rm_action & XICS_RM_CHECK_RESEND) {
+ icp->n_rm_check_resend++;
+ icp_check_resend(xics, icp->rm_resend_icp);
+ }
+ if (icp->rm_action & XICS_RM_NOTIFY_EOI) {
+ icp->n_rm_notify_eoi++;
+ kvm_notify_acked_irq(vcpu->kvm, 0, icp->rm_eoied_irq);
+ }
+
+ icp->rm_action = 0;
+
+ return H_SUCCESS;
+}
+EXPORT_SYMBOL_GPL(kvmppc_xics_rm_complete);
+
+int kvmppc_xics_hcall(struct kvm_vcpu *vcpu, u32 req)
+{
+ struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
+ unsigned long res;
+ int rc = H_SUCCESS;
+
+ /* Check if we have an ICP */
+ if (!xics || !vcpu->arch.icp)
+ return H_HARDWARE;
+
+ /* These requests don't have real-mode implementations at present */
+ switch (req) {
+ case H_XIRR_X:
+ res = kvmppc_h_xirr(vcpu);
+ kvmppc_set_gpr(vcpu, 4, res);
+ kvmppc_set_gpr(vcpu, 5, get_tb());
+ return rc;
+ case H_IPOLL:
+ rc = kvmppc_h_ipoll(vcpu, kvmppc_get_gpr(vcpu, 4));
+ return rc;
+ }
+
+ /* Check for real mode returning too hard */
+ if (xics->real_mode && is_kvmppc_hv_enabled(vcpu->kvm))
+ return kvmppc_xics_rm_complete(vcpu, req);
+
+ switch (req) {
+ case H_XIRR:
+ res = kvmppc_h_xirr(vcpu);
+ kvmppc_set_gpr(vcpu, 4, res);
+ break;
+ case H_CPPR:
+ kvmppc_h_cppr(vcpu, kvmppc_get_gpr(vcpu, 4));
+ break;
+ case H_EOI:
+ rc = kvmppc_h_eoi(vcpu, kvmppc_get_gpr(vcpu, 4));
+ break;
+ case H_IPI:
+ rc = kvmppc_h_ipi(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5));
+ break;
+ }
+
+ return rc;
+}
+EXPORT_SYMBOL_GPL(kvmppc_xics_hcall);
+
+
+/* -- Initialisation code etc. -- */
+
+static void xics_debugfs_irqmap(struct seq_file *m,
+ struct kvmppc_passthru_irqmap *pimap)
+{
+ int i;
+
+ if (!pimap)
+ return;
+ seq_printf(m, "========\nPIRQ mappings: %d maps\n===========\n",
+ pimap->n_mapped);
+ for (i = 0; i < pimap->n_mapped; i++) {
+ seq_printf(m, "r_hwirq=%x, v_hwirq=%x\n",
+ pimap->mapped[i].r_hwirq, pimap->mapped[i].v_hwirq);
+ }
+}
+
+static int xics_debug_show(struct seq_file *m, void *private)
+{
+ struct kvmppc_xics *xics = m->private;
+ struct kvm *kvm = xics->kvm;
+ struct kvm_vcpu *vcpu;
+ int icsid;
+ unsigned long flags, i;
+ unsigned long t_rm_kick_vcpu, t_rm_check_resend;
+ unsigned long t_rm_notify_eoi;
+ unsigned long t_reject, t_check_resend;
+
+ if (!kvm)
+ return 0;
+
+ t_rm_kick_vcpu = 0;
+ t_rm_notify_eoi = 0;
+ t_rm_check_resend = 0;
+ t_check_resend = 0;
+ t_reject = 0;
+
+ xics_debugfs_irqmap(m, kvm->arch.pimap);
+
+ seq_printf(m, "=========\nICP state\n=========\n");
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ struct kvmppc_icp *icp = vcpu->arch.icp;
+ union kvmppc_icp_state state;
+
+ if (!icp)
+ continue;
+
+ state.raw = READ_ONCE(icp->state.raw);
+ seq_printf(m, "cpu server %#lx XIRR:%#x PPRI:%#x CPPR:%#x MFRR:%#x OUT:%d NR:%d\n",
+ icp->server_num, state.xisr,
+ state.pending_pri, state.cppr, state.mfrr,
+ state.out_ee, state.need_resend);
+ t_rm_kick_vcpu += icp->n_rm_kick_vcpu;
+ t_rm_notify_eoi += icp->n_rm_notify_eoi;
+ t_rm_check_resend += icp->n_rm_check_resend;
+ t_check_resend += icp->n_check_resend;
+ t_reject += icp->n_reject;
+ }
+
+ seq_printf(m, "ICP Guest->Host totals: kick_vcpu=%lu check_resend=%lu notify_eoi=%lu\n",
+ t_rm_kick_vcpu, t_rm_check_resend,
+ t_rm_notify_eoi);
+ seq_printf(m, "ICP Real Mode totals: check_resend=%lu resend=%lu\n",
+ t_check_resend, t_reject);
+ for (icsid = 0; icsid <= KVMPPC_XICS_MAX_ICS_ID; icsid++) {
+ struct kvmppc_ics *ics = xics->ics[icsid];
+
+ if (!ics)
+ continue;
+
+ seq_printf(m, "=========\nICS state for ICS 0x%x\n=========\n",
+ icsid);
+
+ local_irq_save(flags);
+ arch_spin_lock(&ics->lock);
+
+ for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
+ struct ics_irq_state *irq = &ics->irq_state[i];
+
+ seq_printf(m, "irq 0x%06x: server %#x prio %#x save prio %#x pq_state %d resend %d masked pending %d\n",
+ irq->number, irq->server, irq->priority,
+ irq->saved_priority, irq->pq_state,
+ irq->resend, irq->masked_pending);
+
+ }
+ arch_spin_unlock(&ics->lock);
+ local_irq_restore(flags);
+ }
+ return 0;
+}
+
+DEFINE_SHOW_ATTRIBUTE(xics_debug);
+
+static void xics_debugfs_init(struct kvmppc_xics *xics)
+{
+ xics->dentry = debugfs_create_file("xics", 0444, xics->kvm->debugfs_dentry,
+ xics, &xics_debug_fops);
+
+ pr_debug("%s: created\n", __func__);
+}
+
+static struct kvmppc_ics *kvmppc_xics_create_ics(struct kvm *kvm,
+ struct kvmppc_xics *xics, int irq)
+{
+ struct kvmppc_ics *ics;
+ int i, icsid;
+
+ icsid = irq >> KVMPPC_XICS_ICS_SHIFT;
+
+ mutex_lock(&kvm->lock);
+
+ /* ICS already exists - somebody else got here first */
+ if (xics->ics[icsid])
+ goto out;
+
+ /* Create the ICS */
+ ics = kzalloc(sizeof(struct kvmppc_ics), GFP_KERNEL);
+ if (!ics)
+ goto out;
+
+ ics->icsid = icsid;
+
+ for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
+ ics->irq_state[i].number = (icsid << KVMPPC_XICS_ICS_SHIFT) | i;
+ ics->irq_state[i].priority = MASKED;
+ ics->irq_state[i].saved_priority = MASKED;
+ }
+ smp_wmb();
+ xics->ics[icsid] = ics;
+
+ if (icsid > xics->max_icsid)
+ xics->max_icsid = icsid;
+
+ out:
+ mutex_unlock(&kvm->lock);
+ return xics->ics[icsid];
+}
+
+static int kvmppc_xics_create_icp(struct kvm_vcpu *vcpu, unsigned long server_num)
+{
+ struct kvmppc_icp *icp;
+
+ if (!vcpu->kvm->arch.xics)
+ return -ENODEV;
+
+ if (kvmppc_xics_find_server(vcpu->kvm, server_num))
+ return -EEXIST;
+
+ icp = kzalloc(sizeof(struct kvmppc_icp), GFP_KERNEL);
+ if (!icp)
+ return -ENOMEM;
+
+ icp->vcpu = vcpu;
+ icp->server_num = server_num;
+ icp->state.mfrr = MASKED;
+ icp->state.pending_pri = MASKED;
+ vcpu->arch.icp = icp;
+
+ XICS_DBG("created server for vcpu %d\n", vcpu->vcpu_id);
+
+ return 0;
+}
+
+u64 kvmppc_xics_get_icp(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_icp *icp = vcpu->arch.icp;
+ union kvmppc_icp_state state;
+
+ if (!icp)
+ return 0;
+ state = icp->state;
+ return ((u64)state.cppr << KVM_REG_PPC_ICP_CPPR_SHIFT) |
+ ((u64)state.xisr << KVM_REG_PPC_ICP_XISR_SHIFT) |
+ ((u64)state.mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT) |
+ ((u64)state.pending_pri << KVM_REG_PPC_ICP_PPRI_SHIFT);
+}
+
+int kvmppc_xics_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
+{
+ struct kvmppc_icp *icp = vcpu->arch.icp;
+ struct kvmppc_xics *xics = vcpu->kvm->arch.xics;
+ union kvmppc_icp_state old_state, new_state;
+ struct kvmppc_ics *ics;
+ u8 cppr, mfrr, pending_pri;
+ u32 xisr;
+ u16 src;
+ bool resend;
+
+ if (!icp || !xics)
+ return -ENOENT;
+
+ cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
+ xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
+ KVM_REG_PPC_ICP_XISR_MASK;
+ mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
+ pending_pri = icpval >> KVM_REG_PPC_ICP_PPRI_SHIFT;
+
+ /* Require the new state to be internally consistent */
+ if (xisr == 0) {
+ if (pending_pri != 0xff)
+ return -EINVAL;
+ } else if (xisr == XICS_IPI) {
+ if (pending_pri != mfrr || pending_pri >= cppr)
+ return -EINVAL;
+ } else {
+ if (pending_pri >= mfrr || pending_pri >= cppr)
+ return -EINVAL;
+ ics = kvmppc_xics_find_ics(xics, xisr, &src);
+ if (!ics)
+ return -EINVAL;
+ }
+
+ new_state.raw = 0;
+ new_state.cppr = cppr;
+ new_state.xisr = xisr;
+ new_state.mfrr = mfrr;
+ new_state.pending_pri = pending_pri;
+
+ /*
+ * Deassert the CPU interrupt request.
+ * icp_try_update will reassert it if necessary.
+ */
+ kvmppc_book3s_dequeue_irqprio(icp->vcpu, BOOK3S_INTERRUPT_EXTERNAL);
+
+ /*
+ * Note that if we displace an interrupt from old_state.xisr,
+ * we don't mark it as rejected. We expect userspace to set
+ * the state of the interrupt sources to be consistent with
+ * the ICP states (either before or afterwards, which doesn't
+ * matter). We do handle resends due to CPPR becoming less
+ * favoured because that is necessary to end up with a
+ * consistent state in the situation where userspace restores
+ * the ICS states before the ICP states.
+ */
+ do {
+ old_state = READ_ONCE(icp->state);
+
+ if (new_state.mfrr <= old_state.mfrr) {
+ resend = false;
+ new_state.need_resend = old_state.need_resend;
+ } else {
+ resend = old_state.need_resend;
+ new_state.need_resend = 0;
+ }
+ } while (!icp_try_update(icp, old_state, new_state, false));
+
+ if (resend)
+ icp_check_resend(xics, icp);
+
+ return 0;
+}
+
+static int xics_get_source(struct kvmppc_xics *xics, long irq, u64 addr)
+{
+ int ret;
+ struct kvmppc_ics *ics;
+ struct ics_irq_state *irqp;
+ u64 __user *ubufp = (u64 __user *) addr;
+ u16 idx;
+ u64 val, prio;
+ unsigned long flags;
+
+ ics = kvmppc_xics_find_ics(xics, irq, &idx);
+ if (!ics)
+ return -ENOENT;
+
+ irqp = &ics->irq_state[idx];
+ local_irq_save(flags);
+ arch_spin_lock(&ics->lock);
+ ret = -ENOENT;
+ if (irqp->exists) {
+ val = irqp->server;
+ prio = irqp->priority;
+ if (prio == MASKED) {
+ val |= KVM_XICS_MASKED;
+ prio = irqp->saved_priority;
+ }
+ val |= prio << KVM_XICS_PRIORITY_SHIFT;
+ if (irqp->lsi) {
+ val |= KVM_XICS_LEVEL_SENSITIVE;
+ if (irqp->pq_state & PQ_PRESENTED)
+ val |= KVM_XICS_PENDING;
+ } else if (irqp->masked_pending || irqp->resend)
+ val |= KVM_XICS_PENDING;
+
+ if (irqp->pq_state & PQ_PRESENTED)
+ val |= KVM_XICS_PRESENTED;
+
+ if (irqp->pq_state & PQ_QUEUED)
+ val |= KVM_XICS_QUEUED;
+
+ ret = 0;
+ }
+ arch_spin_unlock(&ics->lock);
+ local_irq_restore(flags);
+
+ if (!ret && put_user(val, ubufp))
+ ret = -EFAULT;
+
+ return ret;
+}
+
+static int xics_set_source(struct kvmppc_xics *xics, long irq, u64 addr)
+{
+ struct kvmppc_ics *ics;
+ struct ics_irq_state *irqp;
+ u64 __user *ubufp = (u64 __user *) addr;
+ u16 idx;
+ u64 val;
+ u8 prio;
+ u32 server;
+ unsigned long flags;
+
+ if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
+ return -ENOENT;
+
+ ics = kvmppc_xics_find_ics(xics, irq, &idx);
+ if (!ics) {
+ ics = kvmppc_xics_create_ics(xics->kvm, xics, irq);
+ if (!ics)
+ return -ENOMEM;
+ }
+ irqp = &ics->irq_state[idx];
+ if (get_user(val, ubufp))
+ return -EFAULT;
+
+ server = val & KVM_XICS_DESTINATION_MASK;
+ prio = val >> KVM_XICS_PRIORITY_SHIFT;
+ if (prio != MASKED &&
+ kvmppc_xics_find_server(xics->kvm, server) == NULL)
+ return -EINVAL;
+
+ local_irq_save(flags);
+ arch_spin_lock(&ics->lock);
+ irqp->server = server;
+ irqp->saved_priority = prio;
+ if (val & KVM_XICS_MASKED)
+ prio = MASKED;
+ irqp->priority = prio;
+ irqp->resend = 0;
+ irqp->masked_pending = 0;
+ irqp->lsi = 0;
+ irqp->pq_state = 0;
+ if (val & KVM_XICS_LEVEL_SENSITIVE)
+ irqp->lsi = 1;
+ /* If PENDING, set P in case P is not saved because of old code */
+ if (val & KVM_XICS_PRESENTED || val & KVM_XICS_PENDING)
+ irqp->pq_state |= PQ_PRESENTED;
+ if (val & KVM_XICS_QUEUED)
+ irqp->pq_state |= PQ_QUEUED;
+ irqp->exists = 1;
+ arch_spin_unlock(&ics->lock);
+ local_irq_restore(flags);
+
+ if (val & KVM_XICS_PENDING)
+ icp_deliver_irq(xics, NULL, irqp->number, false);
+
+ return 0;
+}
+
+int kvmppc_xics_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
+ bool line_status)
+{
+ struct kvmppc_xics *xics = kvm->arch.xics;
+
+ if (!xics)
+ return -ENODEV;
+ return ics_deliver_irq(xics, irq, level);
+}
+
+static int xics_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
+{
+ struct kvmppc_xics *xics = dev->private;
+
+ switch (attr->group) {
+ case KVM_DEV_XICS_GRP_SOURCES:
+ return xics_set_source(xics, attr->attr, attr->addr);
+ }
+ return -ENXIO;
+}
+
+static int xics_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
+{
+ struct kvmppc_xics *xics = dev->private;
+
+ switch (attr->group) {
+ case KVM_DEV_XICS_GRP_SOURCES:
+ return xics_get_source(xics, attr->attr, attr->addr);
+ }
+ return -ENXIO;
+}
+
+static int xics_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
+{
+ switch (attr->group) {
+ case KVM_DEV_XICS_GRP_SOURCES:
+ if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
+ attr->attr < KVMPPC_XICS_NR_IRQS)
+ return 0;
+ break;
+ }
+ return -ENXIO;
+}
+
+/*
+ * Called when device fd is closed. kvm->lock is held.
+ */
+static void kvmppc_xics_release(struct kvm_device *dev)
+{
+ struct kvmppc_xics *xics = dev->private;
+ unsigned long i;
+ struct kvm *kvm = xics->kvm;
+ struct kvm_vcpu *vcpu;
+
+ pr_devel("Releasing xics device\n");
+
+ /*
+ * Since this is the device release function, we know that
+ * userspace does not have any open fd referring to the
+ * device. Therefore there can not be any of the device
+ * attribute set/get functions being executed concurrently,
+ * and similarly, the connect_vcpu and set/clr_mapped
+ * functions also cannot be being executed.
+ */
+
+ debugfs_remove(xics->dentry);
+
+ /*
+ * We should clean up the vCPU interrupt presenters first.
+ */
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ /*
+ * Take vcpu->mutex to ensure that no one_reg get/set ioctl
+ * (i.e. kvmppc_xics_[gs]et_icp) can be done concurrently.
+ * Holding the vcpu->mutex also means that execution is
+ * excluded for the vcpu until the ICP was freed. When the vcpu
+ * can execute again, vcpu->arch.icp and vcpu->arch.irq_type
+ * have been cleared and the vcpu will not be going into the
+ * XICS code anymore.
+ */
+ mutex_lock(&vcpu->mutex);
+ kvmppc_xics_free_icp(vcpu);
+ mutex_unlock(&vcpu->mutex);
+ }
+
+ if (kvm)
+ kvm->arch.xics = NULL;
+
+ for (i = 0; i <= xics->max_icsid; i++) {
+ kfree(xics->ics[i]);
+ xics->ics[i] = NULL;
+ }
+ /*
+ * A reference of the kvmppc_xics pointer is now kept under
+ * the xics_device pointer of the machine for reuse. It is
+ * freed when the VM is destroyed for now until we fix all the
+ * execution paths.
+ */
+ kfree(dev);
+}
+
+static struct kvmppc_xics *kvmppc_xics_get_device(struct kvm *kvm)
+{
+ struct kvmppc_xics **kvm_xics_device = &kvm->arch.xics_device;
+ struct kvmppc_xics *xics = *kvm_xics_device;
+
+ if (!xics) {
+ xics = kzalloc(sizeof(*xics), GFP_KERNEL);
+ *kvm_xics_device = xics;
+ } else {
+ memset(xics, 0, sizeof(*xics));
+ }
+
+ return xics;
+}
+
+static int kvmppc_xics_create(struct kvm_device *dev, u32 type)
+{
+ struct kvmppc_xics *xics;
+ struct kvm *kvm = dev->kvm;
+
+ pr_devel("Creating xics for partition\n");
+
+ /* Already there ? */
+ if (kvm->arch.xics)
+ return -EEXIST;
+
+ xics = kvmppc_xics_get_device(kvm);
+ if (!xics)
+ return -ENOMEM;
+
+ dev->private = xics;
+ xics->dev = dev;
+ xics->kvm = kvm;
+ kvm->arch.xics = xics;
+
+#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+ if (cpu_has_feature(CPU_FTR_ARCH_206) &&
+ cpu_has_feature(CPU_FTR_HVMODE)) {
+ /* Enable real mode support */
+ xics->real_mode = ENABLE_REALMODE;
+ xics->real_mode_dbg = DEBUG_REALMODE;
+ }
+#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
+
+ return 0;
+}
+
+static void kvmppc_xics_init(struct kvm_device *dev)
+{
+ struct kvmppc_xics *xics = dev->private;
+
+ xics_debugfs_init(xics);
+}
+
+struct kvm_device_ops kvm_xics_ops = {
+ .name = "kvm-xics",
+ .create = kvmppc_xics_create,
+ .init = kvmppc_xics_init,
+ .release = kvmppc_xics_release,
+ .set_attr = xics_set_attr,
+ .get_attr = xics_get_attr,
+ .has_attr = xics_has_attr,
+};
+
+int kvmppc_xics_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu,
+ u32 xcpu)
+{
+ struct kvmppc_xics *xics = dev->private;
+ int r = -EBUSY;
+
+ if (dev->ops != &kvm_xics_ops)
+ return -EPERM;
+ if (xics->kvm != vcpu->kvm)
+ return -EPERM;
+ if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT)
+ return -EBUSY;
+
+ r = kvmppc_xics_create_icp(vcpu, xcpu);
+ if (!r)
+ vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
+
+ return r;
+}
+
+void kvmppc_xics_free_icp(struct kvm_vcpu *vcpu)
+{
+ if (!vcpu->arch.icp)
+ return;
+ kfree(vcpu->arch.icp);
+ vcpu->arch.icp = NULL;
+ vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT;
+}
+
+void kvmppc_xics_set_mapped(struct kvm *kvm, unsigned long irq,
+ unsigned long host_irq)
+{
+ struct kvmppc_xics *xics = kvm->arch.xics;
+ struct kvmppc_ics *ics;
+ u16 idx;
+
+ ics = kvmppc_xics_find_ics(xics, irq, &idx);
+ if (!ics)
+ return;
+
+ ics->irq_state[idx].host_irq = host_irq;
+ ics->irq_state[idx].intr_cpu = -1;
+}
+EXPORT_SYMBOL_GPL(kvmppc_xics_set_mapped);
+
+void kvmppc_xics_clr_mapped(struct kvm *kvm, unsigned long irq,
+ unsigned long host_irq)
+{
+ struct kvmppc_xics *xics = kvm->arch.xics;
+ struct kvmppc_ics *ics;
+ u16 idx;
+
+ ics = kvmppc_xics_find_ics(xics, irq, &idx);
+ if (!ics)
+ return;
+
+ ics->irq_state[idx].host_irq = 0;
+}
+EXPORT_SYMBOL_GPL(kvmppc_xics_clr_mapped);
diff --git a/arch/powerpc/kvm/book3s_xics.h b/arch/powerpc/kvm/book3s_xics.h
new file mode 100644
index 000000000..08fb0843f
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_xics.h
@@ -0,0 +1,153 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright 2012 Michael Ellerman, IBM Corporation.
+ * Copyright 2012 Benjamin Herrenschmidt, IBM Corporation
+ */
+
+#ifndef _KVM_PPC_BOOK3S_XICS_H
+#define _KVM_PPC_BOOK3S_XICS_H
+
+#ifdef CONFIG_KVM_XICS
+/*
+ * We use a two-level tree to store interrupt source information.
+ * There are up to 1024 ICS nodes, each of which can represent
+ * 1024 sources.
+ */
+#define KVMPPC_XICS_MAX_ICS_ID 1023
+#define KVMPPC_XICS_ICS_SHIFT 10
+#define KVMPPC_XICS_IRQ_PER_ICS (1 << KVMPPC_XICS_ICS_SHIFT)
+#define KVMPPC_XICS_SRC_MASK (KVMPPC_XICS_IRQ_PER_ICS - 1)
+
+/*
+ * Interrupt source numbers below this are reserved, for example
+ * 0 is "no interrupt", and 2 is used for IPIs.
+ */
+#define KVMPPC_XICS_FIRST_IRQ 16
+#define KVMPPC_XICS_NR_IRQS ((KVMPPC_XICS_MAX_ICS_ID + 1) * \
+ KVMPPC_XICS_IRQ_PER_ICS)
+
+/* Priority value to use for disabling an interrupt */
+#define MASKED 0xff
+
+#define PQ_PRESENTED 1
+#define PQ_QUEUED 2
+
+/* State for one irq source */
+struct ics_irq_state {
+ u32 number;
+ u32 server;
+ u32 pq_state;
+ u8 priority;
+ u8 saved_priority;
+ u8 resend;
+ u8 masked_pending;
+ u8 lsi; /* level-sensitive interrupt */
+ u8 exists;
+ int intr_cpu;
+ u32 host_irq;
+};
+
+/* Atomic ICP state, updated with a single compare & swap */
+union kvmppc_icp_state {
+ unsigned long raw;
+ struct {
+ u8 out_ee:1;
+ u8 need_resend:1;
+ u8 cppr;
+ u8 mfrr;
+ u8 pending_pri;
+ u32 xisr;
+ };
+};
+
+/* One bit per ICS */
+#define ICP_RESEND_MAP_SIZE (KVMPPC_XICS_MAX_ICS_ID / BITS_PER_LONG + 1)
+
+struct kvmppc_icp {
+ struct kvm_vcpu *vcpu;
+ unsigned long server_num;
+ union kvmppc_icp_state state;
+ unsigned long resend_map[ICP_RESEND_MAP_SIZE];
+
+ /* Real mode might find something too hard, here's the action
+ * it might request from virtual mode
+ */
+#define XICS_RM_KICK_VCPU 0x1
+#define XICS_RM_CHECK_RESEND 0x2
+#define XICS_RM_NOTIFY_EOI 0x8
+ u32 rm_action;
+ struct kvm_vcpu *rm_kick_target;
+ struct kvmppc_icp *rm_resend_icp;
+ u32 rm_reject;
+ u32 rm_eoied_irq;
+
+ /* Counters for each reason we exited real mode */
+ unsigned long n_rm_kick_vcpu;
+ unsigned long n_rm_check_resend;
+ unsigned long n_rm_notify_eoi;
+ /* Counters for handling ICP processing in real mode */
+ unsigned long n_check_resend;
+ unsigned long n_reject;
+
+ /* Debug stuff for real mode */
+ union kvmppc_icp_state rm_dbgstate;
+ struct kvm_vcpu *rm_dbgtgt;
+};
+
+struct kvmppc_ics {
+ arch_spinlock_t lock;
+ u16 icsid;
+ struct ics_irq_state irq_state[KVMPPC_XICS_IRQ_PER_ICS];
+};
+
+struct kvmppc_xics {
+ struct kvm *kvm;
+ struct kvm_device *dev;
+ struct dentry *dentry;
+ u32 max_icsid;
+ bool real_mode;
+ bool real_mode_dbg;
+ u32 err_noics;
+ u32 err_noicp;
+ struct kvmppc_ics *ics[KVMPPC_XICS_MAX_ICS_ID + 1];
+};
+
+static inline struct kvmppc_icp *kvmppc_xics_find_server(struct kvm *kvm,
+ u32 nr)
+{
+ struct kvm_vcpu *vcpu = NULL;
+ unsigned long i;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (vcpu->arch.icp && nr == vcpu->arch.icp->server_num)
+ return vcpu->arch.icp;
+ }
+ return NULL;
+}
+
+static inline struct kvmppc_ics *kvmppc_xics_find_ics(struct kvmppc_xics *xics,
+ u32 irq, u16 *source)
+{
+ u32 icsid = irq >> KVMPPC_XICS_ICS_SHIFT;
+ u16 src = irq & KVMPPC_XICS_SRC_MASK;
+ struct kvmppc_ics *ics;
+
+ if (source)
+ *source = src;
+ if (icsid > KVMPPC_XICS_MAX_ICS_ID)
+ return NULL;
+ ics = xics->ics[icsid];
+ if (!ics)
+ return NULL;
+ return ics;
+}
+
+extern unsigned long xics_rm_h_xirr(struct kvm_vcpu *vcpu);
+extern unsigned long xics_rm_h_xirr_x(struct kvm_vcpu *vcpu);
+extern int xics_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
+ unsigned long mfrr);
+extern int xics_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr);
+extern int xics_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr);
+
+#endif /* CONFIG_KVM_XICS */
+#endif /* _KVM_PPC_BOOK3S_XICS_H */
diff --git a/arch/powerpc/kvm/book3s_xive.c b/arch/powerpc/kvm/book3s_xive.c
new file mode 100644
index 000000000..4ca23644f
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_xive.c
@@ -0,0 +1,2984 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
+ */
+
+#define pr_fmt(fmt) "xive-kvm: " fmt
+
+#include <linux/kernel.h>
+#include <linux/kvm_host.h>
+#include <linux/err.h>
+#include <linux/gfp.h>
+#include <linux/spinlock.h>
+#include <linux/delay.h>
+#include <linux/percpu.h>
+#include <linux/cpumask.h>
+#include <linux/uaccess.h>
+#include <linux/irqdomain.h>
+#include <asm/kvm_book3s.h>
+#include <asm/kvm_ppc.h>
+#include <asm/hvcall.h>
+#include <asm/xics.h>
+#include <asm/xive.h>
+#include <asm/xive-regs.h>
+#include <asm/debug.h>
+#include <asm/time.h>
+#include <asm/opal.h>
+
+#include <linux/debugfs.h>
+#include <linux/seq_file.h>
+
+#include "book3s_xive.h"
+
+#define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio))
+#define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio))
+
+/* Dummy interrupt used when taking interrupts out of a queue in H_CPPR */
+#define XICS_DUMMY 1
+
+static void xive_vm_ack_pending(struct kvmppc_xive_vcpu *xc)
+{
+ u8 cppr;
+ u16 ack;
+
+ /*
+ * Ensure any previous store to CPPR is ordered vs.
+ * the subsequent loads from PIPR or ACK.
+ */
+ eieio();
+
+ /* Perform the acknowledge OS to register cycle. */
+ ack = be16_to_cpu(__raw_readw(xive_tima + TM_SPC_ACK_OS_REG));
+
+ /* Synchronize subsequent queue accesses */
+ mb();
+
+ /* XXX Check grouping level */
+
+ /* Anything ? */
+ if (!((ack >> 8) & TM_QW1_NSR_EO))
+ return;
+
+ /* Grab CPPR of the most favored pending interrupt */
+ cppr = ack & 0xff;
+ if (cppr < 8)
+ xc->pending |= 1 << cppr;
+
+ /* Check consistency */
+ if (cppr >= xc->hw_cppr)
+ pr_warn("KVM-XIVE: CPU %d odd ack CPPR, got %d at %d\n",
+ smp_processor_id(), cppr, xc->hw_cppr);
+
+ /*
+ * Update our image of the HW CPPR. We don't yet modify
+ * xc->cppr, this will be done as we scan for interrupts
+ * in the queues.
+ */
+ xc->hw_cppr = cppr;
+}
+
+static u8 xive_vm_esb_load(struct xive_irq_data *xd, u32 offset)
+{
+ u64 val;
+
+ if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
+ offset |= XIVE_ESB_LD_ST_MO;
+
+ val = __raw_readq(__x_eoi_page(xd) + offset);
+#ifdef __LITTLE_ENDIAN__
+ val >>= 64-8;
+#endif
+ return (u8)val;
+}
+
+
+static void xive_vm_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
+{
+ /* If the XIVE supports the new "store EOI facility, use it */
+ if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
+ __raw_writeq(0, __x_eoi_page(xd) + XIVE_ESB_STORE_EOI);
+ else if (xd->flags & XIVE_IRQ_FLAG_LSI) {
+ /*
+ * For LSIs the HW EOI cycle is used rather than PQ bits,
+ * as they are automatically re-triggred in HW when still
+ * pending.
+ */
+ __raw_readq(__x_eoi_page(xd) + XIVE_ESB_LOAD_EOI);
+ } else {
+ uint64_t eoi_val;
+
+ /*
+ * Otherwise for EOI, we use the special MMIO that does
+ * a clear of both P and Q and returns the old Q,
+ * except for LSIs where we use the "EOI cycle" special
+ * load.
+ *
+ * This allows us to then do a re-trigger if Q was set
+ * rather than synthetizing an interrupt in software
+ */
+ eoi_val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_00);
+
+ /* Re-trigger if needed */
+ if ((eoi_val & 1) && __x_trig_page(xd))
+ __raw_writeq(0, __x_trig_page(xd));
+ }
+}
+
+enum {
+ scan_fetch,
+ scan_poll,
+ scan_eoi,
+};
+
+static u32 xive_vm_scan_interrupts(struct kvmppc_xive_vcpu *xc,
+ u8 pending, int scan_type)
+{
+ u32 hirq = 0;
+ u8 prio = 0xff;
+
+ /* Find highest pending priority */
+ while ((xc->mfrr != 0xff || pending != 0) && hirq == 0) {
+ struct xive_q *q;
+ u32 idx, toggle;
+ __be32 *qpage;
+
+ /*
+ * If pending is 0 this will return 0xff which is what
+ * we want
+ */
+ prio = ffs(pending) - 1;
+
+ /* Don't scan past the guest cppr */
+ if (prio >= xc->cppr || prio > 7) {
+ if (xc->mfrr < xc->cppr) {
+ prio = xc->mfrr;
+ hirq = XICS_IPI;
+ }
+ break;
+ }
+
+ /* Grab queue and pointers */
+ q = &xc->queues[prio];
+ idx = q->idx;
+ toggle = q->toggle;
+
+ /*
+ * Snapshot the queue page. The test further down for EOI
+ * must use the same "copy" that was used by __xive_read_eq
+ * since qpage can be set concurrently and we don't want
+ * to miss an EOI.
+ */
+ qpage = READ_ONCE(q->qpage);
+
+skip_ipi:
+ /*
+ * Try to fetch from the queue. Will return 0 for a
+ * non-queueing priority (ie, qpage = 0).
+ */
+ hirq = __xive_read_eq(qpage, q->msk, &idx, &toggle);
+
+ /*
+ * If this was a signal for an MFFR change done by
+ * H_IPI we skip it. Additionally, if we were fetching
+ * we EOI it now, thus re-enabling reception of a new
+ * such signal.
+ *
+ * We also need to do that if prio is 0 and we had no
+ * page for the queue. In this case, we have non-queued
+ * IPI that needs to be EOId.
+ *
+ * This is safe because if we have another pending MFRR
+ * change that wasn't observed above, the Q bit will have
+ * been set and another occurrence of the IPI will trigger.
+ */
+ if (hirq == XICS_IPI || (prio == 0 && !qpage)) {
+ if (scan_type == scan_fetch) {
+ xive_vm_source_eoi(xc->vp_ipi,
+ &xc->vp_ipi_data);
+ q->idx = idx;
+ q->toggle = toggle;
+ }
+ /* Loop back on same queue with updated idx/toggle */
+ WARN_ON(hirq && hirq != XICS_IPI);
+ if (hirq)
+ goto skip_ipi;
+ }
+
+ /* If it's the dummy interrupt, continue searching */
+ if (hirq == XICS_DUMMY)
+ goto skip_ipi;
+
+ /* Clear the pending bit if the queue is now empty */
+ if (!hirq) {
+ pending &= ~(1 << prio);
+
+ /*
+ * Check if the queue count needs adjusting due to
+ * interrupts being moved away.
+ */
+ if (atomic_read(&q->pending_count)) {
+ int p = atomic_xchg(&q->pending_count, 0);
+
+ if (p) {
+ WARN_ON(p > atomic_read(&q->count));
+ atomic_sub(p, &q->count);
+ }
+ }
+ }
+
+ /*
+ * If the most favoured prio we found pending is less
+ * favored (or equal) than a pending IPI, we return
+ * the IPI instead.
+ */
+ if (prio >= xc->mfrr && xc->mfrr < xc->cppr) {
+ prio = xc->mfrr;
+ hirq = XICS_IPI;
+ break;
+ }
+
+ /* If fetching, update queue pointers */
+ if (scan_type == scan_fetch) {
+ q->idx = idx;
+ q->toggle = toggle;
+ }
+ }
+
+ /* If we are just taking a "peek", do nothing else */
+ if (scan_type == scan_poll)
+ return hirq;
+
+ /* Update the pending bits */
+ xc->pending = pending;
+
+ /*
+ * If this is an EOI that's it, no CPPR adjustment done here,
+ * all we needed was cleanup the stale pending bits and check
+ * if there's anything left.
+ */
+ if (scan_type == scan_eoi)
+ return hirq;
+
+ /*
+ * If we found an interrupt, adjust what the guest CPPR should
+ * be as if we had just fetched that interrupt from HW.
+ *
+ * Note: This can only make xc->cppr smaller as the previous
+ * loop will only exit with hirq != 0 if prio is lower than
+ * the current xc->cppr. Thus we don't need to re-check xc->mfrr
+ * for pending IPIs.
+ */
+ if (hirq)
+ xc->cppr = prio;
+ /*
+ * If it was an IPI the HW CPPR might have been lowered too much
+ * as the HW interrupt we use for IPIs is routed to priority 0.
+ *
+ * We re-sync it here.
+ */
+ if (xc->cppr != xc->hw_cppr) {
+ xc->hw_cppr = xc->cppr;
+ __raw_writeb(xc->cppr, xive_tima + TM_QW1_OS + TM_CPPR);
+ }
+
+ return hirq;
+}
+
+static unsigned long xive_vm_h_xirr(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+ u8 old_cppr;
+ u32 hirq;
+
+ pr_devel("H_XIRR\n");
+
+ xc->stat_vm_h_xirr++;
+
+ /* First collect pending bits from HW */
+ xive_vm_ack_pending(xc);
+
+ pr_devel(" new pending=0x%02x hw_cppr=%d cppr=%d\n",
+ xc->pending, xc->hw_cppr, xc->cppr);
+
+ /* Grab previous CPPR and reverse map it */
+ old_cppr = xive_prio_to_guest(xc->cppr);
+
+ /* Scan for actual interrupts */
+ hirq = xive_vm_scan_interrupts(xc, xc->pending, scan_fetch);
+
+ pr_devel(" got hirq=0x%x hw_cppr=%d cppr=%d\n",
+ hirq, xc->hw_cppr, xc->cppr);
+
+ /* That should never hit */
+ if (hirq & 0xff000000)
+ pr_warn("XIVE: Weird guest interrupt number 0x%08x\n", hirq);
+
+ /*
+ * XXX We could check if the interrupt is masked here and
+ * filter it. If we chose to do so, we would need to do:
+ *
+ * if (masked) {
+ * lock();
+ * if (masked) {
+ * old_Q = true;
+ * hirq = 0;
+ * }
+ * unlock();
+ * }
+ */
+
+ /* Return interrupt and old CPPR in GPR4 */
+ vcpu->arch.regs.gpr[4] = hirq | (old_cppr << 24);
+
+ return H_SUCCESS;
+}
+
+static unsigned long xive_vm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server)
+{
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+ u8 pending = xc->pending;
+ u32 hirq;
+
+ pr_devel("H_IPOLL(server=%ld)\n", server);
+
+ xc->stat_vm_h_ipoll++;
+
+ /* Grab the target VCPU if not the current one */
+ if (xc->server_num != server) {
+ vcpu = kvmppc_xive_find_server(vcpu->kvm, server);
+ if (!vcpu)
+ return H_PARAMETER;
+ xc = vcpu->arch.xive_vcpu;
+
+ /* Scan all priorities */
+ pending = 0xff;
+ } else {
+ /* Grab pending interrupt if any */
+ __be64 qw1 = __raw_readq(xive_tima + TM_QW1_OS);
+ u8 pipr = be64_to_cpu(qw1) & 0xff;
+
+ if (pipr < 8)
+ pending |= 1 << pipr;
+ }
+
+ hirq = xive_vm_scan_interrupts(xc, pending, scan_poll);
+
+ /* Return interrupt and old CPPR in GPR4 */
+ vcpu->arch.regs.gpr[4] = hirq | (xc->cppr << 24);
+
+ return H_SUCCESS;
+}
+
+static void xive_vm_push_pending_to_hw(struct kvmppc_xive_vcpu *xc)
+{
+ u8 pending, prio;
+
+ pending = xc->pending;
+ if (xc->mfrr != 0xff) {
+ if (xc->mfrr < 8)
+ pending |= 1 << xc->mfrr;
+ else
+ pending |= 0x80;
+ }
+ if (!pending)
+ return;
+ prio = ffs(pending) - 1;
+
+ __raw_writeb(prio, xive_tima + TM_SPC_SET_OS_PENDING);
+}
+
+static void xive_vm_scan_for_rerouted_irqs(struct kvmppc_xive *xive,
+ struct kvmppc_xive_vcpu *xc)
+{
+ unsigned int prio;
+
+ /* For each priority that is now masked */
+ for (prio = xc->cppr; prio < KVMPPC_XIVE_Q_COUNT; prio++) {
+ struct xive_q *q = &xc->queues[prio];
+ struct kvmppc_xive_irq_state *state;
+ struct kvmppc_xive_src_block *sb;
+ u32 idx, toggle, entry, irq, hw_num;
+ struct xive_irq_data *xd;
+ __be32 *qpage;
+ u16 src;
+
+ idx = q->idx;
+ toggle = q->toggle;
+ qpage = READ_ONCE(q->qpage);
+ if (!qpage)
+ continue;
+
+ /* For each interrupt in the queue */
+ for (;;) {
+ entry = be32_to_cpup(qpage + idx);
+
+ /* No more ? */
+ if ((entry >> 31) == toggle)
+ break;
+ irq = entry & 0x7fffffff;
+
+ /* Skip dummies and IPIs */
+ if (irq == XICS_DUMMY || irq == XICS_IPI)
+ goto next;
+ sb = kvmppc_xive_find_source(xive, irq, &src);
+ if (!sb)
+ goto next;
+ state = &sb->irq_state[src];
+
+ /* Has it been rerouted ? */
+ if (xc->server_num == state->act_server)
+ goto next;
+
+ /*
+ * Allright, it *has* been re-routed, kill it from
+ * the queue.
+ */
+ qpage[idx] = cpu_to_be32((entry & 0x80000000) | XICS_DUMMY);
+
+ /* Find the HW interrupt */
+ kvmppc_xive_select_irq(state, &hw_num, &xd);
+
+ /* If it's not an LSI, set PQ to 11 the EOI will force a resend */
+ if (!(xd->flags & XIVE_IRQ_FLAG_LSI))
+ xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
+
+ /* EOI the source */
+ xive_vm_source_eoi(hw_num, xd);
+
+next:
+ idx = (idx + 1) & q->msk;
+ if (idx == 0)
+ toggle ^= 1;
+ }
+ }
+}
+
+static int xive_vm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
+{
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+ struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
+ u8 old_cppr;
+
+ pr_devel("H_CPPR(cppr=%ld)\n", cppr);
+
+ xc->stat_vm_h_cppr++;
+
+ /* Map CPPR */
+ cppr = xive_prio_from_guest(cppr);
+
+ /* Remember old and update SW state */
+ old_cppr = xc->cppr;
+ xc->cppr = cppr;
+
+ /*
+ * Order the above update of xc->cppr with the subsequent
+ * read of xc->mfrr inside push_pending_to_hw()
+ */
+ smp_mb();
+
+ if (cppr > old_cppr) {
+ /*
+ * We are masking less, we need to look for pending things
+ * to deliver and set VP pending bits accordingly to trigger
+ * a new interrupt otherwise we might miss MFRR changes for
+ * which we have optimized out sending an IPI signal.
+ */
+ xive_vm_push_pending_to_hw(xc);
+ } else {
+ /*
+ * We are masking more, we need to check the queue for any
+ * interrupt that has been routed to another CPU, take
+ * it out (replace it with the dummy) and retrigger it.
+ *
+ * This is necessary since those interrupts may otherwise
+ * never be processed, at least not until this CPU restores
+ * its CPPR.
+ *
+ * This is in theory racy vs. HW adding new interrupts to
+ * the queue. In practice this works because the interesting
+ * cases are when the guest has done a set_xive() to move the
+ * interrupt away, which flushes the xive, followed by the
+ * target CPU doing a H_CPPR. So any new interrupt coming into
+ * the queue must still be routed to us and isn't a source
+ * of concern.
+ */
+ xive_vm_scan_for_rerouted_irqs(xive, xc);
+ }
+
+ /* Apply new CPPR */
+ xc->hw_cppr = cppr;
+ __raw_writeb(cppr, xive_tima + TM_QW1_OS + TM_CPPR);
+
+ return H_SUCCESS;
+}
+
+static int xive_vm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
+{
+ struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
+ struct kvmppc_xive_src_block *sb;
+ struct kvmppc_xive_irq_state *state;
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+ struct xive_irq_data *xd;
+ u8 new_cppr = xirr >> 24;
+ u32 irq = xirr & 0x00ffffff, hw_num;
+ u16 src;
+ int rc = 0;
+
+ pr_devel("H_EOI(xirr=%08lx)\n", xirr);
+
+ xc->stat_vm_h_eoi++;
+
+ xc->cppr = xive_prio_from_guest(new_cppr);
+
+ /*
+ * IPIs are synthetized from MFRR and thus don't need
+ * any special EOI handling. The underlying interrupt
+ * used to signal MFRR changes is EOId when fetched from
+ * the queue.
+ */
+ if (irq == XICS_IPI || irq == 0) {
+ /*
+ * This barrier orders the setting of xc->cppr vs.
+ * subsquent test of xc->mfrr done inside
+ * scan_interrupts and push_pending_to_hw
+ */
+ smp_mb();
+ goto bail;
+ }
+
+ /* Find interrupt source */
+ sb = kvmppc_xive_find_source(xive, irq, &src);
+ if (!sb) {
+ pr_devel(" source not found !\n");
+ rc = H_PARAMETER;
+ /* Same as above */
+ smp_mb();
+ goto bail;
+ }
+ state = &sb->irq_state[src];
+ kvmppc_xive_select_irq(state, &hw_num, &xd);
+
+ state->in_eoi = true;
+
+ /*
+ * This barrier orders both setting of in_eoi above vs,
+ * subsequent test of guest_priority, and the setting
+ * of xc->cppr vs. subsquent test of xc->mfrr done inside
+ * scan_interrupts and push_pending_to_hw
+ */
+ smp_mb();
+
+again:
+ if (state->guest_priority == MASKED) {
+ arch_spin_lock(&sb->lock);
+ if (state->guest_priority != MASKED) {
+ arch_spin_unlock(&sb->lock);
+ goto again;
+ }
+ pr_devel(" EOI on saved P...\n");
+
+ /* Clear old_p, that will cause unmask to perform an EOI */
+ state->old_p = false;
+
+ arch_spin_unlock(&sb->lock);
+ } else {
+ pr_devel(" EOI on source...\n");
+
+ /* Perform EOI on the source */
+ xive_vm_source_eoi(hw_num, xd);
+
+ /* If it's an emulated LSI, check level and resend */
+ if (state->lsi && state->asserted)
+ __raw_writeq(0, __x_trig_page(xd));
+
+ }
+
+ /*
+ * This barrier orders the above guest_priority check
+ * and spin_lock/unlock with clearing in_eoi below.
+ *
+ * It also has to be a full mb() as it must ensure
+ * the MMIOs done in source_eoi() are completed before
+ * state->in_eoi is visible.
+ */
+ mb();
+ state->in_eoi = false;
+bail:
+
+ /* Re-evaluate pending IRQs and update HW */
+ xive_vm_scan_interrupts(xc, xc->pending, scan_eoi);
+ xive_vm_push_pending_to_hw(xc);
+ pr_devel(" after scan pending=%02x\n", xc->pending);
+
+ /* Apply new CPPR */
+ xc->hw_cppr = xc->cppr;
+ __raw_writeb(xc->cppr, xive_tima + TM_QW1_OS + TM_CPPR);
+
+ return rc;
+}
+
+static int xive_vm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
+ unsigned long mfrr)
+{
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+
+ pr_devel("H_IPI(server=%08lx,mfrr=%ld)\n", server, mfrr);
+
+ xc->stat_vm_h_ipi++;
+
+ /* Find target */
+ vcpu = kvmppc_xive_find_server(vcpu->kvm, server);
+ if (!vcpu)
+ return H_PARAMETER;
+ xc = vcpu->arch.xive_vcpu;
+
+ /* Locklessly write over MFRR */
+ xc->mfrr = mfrr;
+
+ /*
+ * The load of xc->cppr below and the subsequent MMIO store
+ * to the IPI must happen after the above mfrr update is
+ * globally visible so that:
+ *
+ * - Synchronize with another CPU doing an H_EOI or a H_CPPR
+ * updating xc->cppr then reading xc->mfrr.
+ *
+ * - The target of the IPI sees the xc->mfrr update
+ */
+ mb();
+
+ /* Shoot the IPI if most favored than target cppr */
+ if (mfrr < xc->cppr)
+ __raw_writeq(0, __x_trig_page(&xc->vp_ipi_data));
+
+ return H_SUCCESS;
+}
+
+/*
+ * We leave a gap of a couple of interrupts in the queue to
+ * account for the IPI and additional safety guard.
+ */
+#define XIVE_Q_GAP 2
+
+static bool kvmppc_xive_vcpu_has_save_restore(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+
+ /* Check enablement at VP level */
+ return xc->vp_cam & TM_QW1W2_HO;
+}
+
+bool kvmppc_xive_check_save_restore(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+ struct kvmppc_xive *xive = xc->xive;
+
+ if (xive->flags & KVMPPC_XIVE_FLAG_SAVE_RESTORE)
+ return kvmppc_xive_vcpu_has_save_restore(vcpu);
+
+ return true;
+}
+
+/*
+ * Push a vcpu's context to the XIVE on guest entry.
+ * This assumes we are in virtual mode (MMU on)
+ */
+void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu)
+{
+ void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
+ u64 pq;
+
+ /*
+ * Nothing to do if the platform doesn't have a XIVE
+ * or this vCPU doesn't have its own XIVE context
+ * (e.g. because it's not using an in-kernel interrupt controller).
+ */
+ if (!tima || !vcpu->arch.xive_cam_word)
+ return;
+
+ eieio();
+ if (!kvmppc_xive_vcpu_has_save_restore(vcpu))
+ __raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS);
+ __raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2);
+ vcpu->arch.xive_pushed = 1;
+ eieio();
+
+ /*
+ * We clear the irq_pending flag. There is a small chance of a
+ * race vs. the escalation interrupt happening on another
+ * processor setting it again, but the only consequence is to
+ * cause a spurious wakeup on the next H_CEDE, which is not an
+ * issue.
+ */
+ vcpu->arch.irq_pending = 0;
+
+ /*
+ * In single escalation mode, if the escalation interrupt is
+ * on, we mask it.
+ */
+ if (vcpu->arch.xive_esc_on) {
+ pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
+ XIVE_ESB_SET_PQ_01));
+ mb();
+
+ /*
+ * We have a possible subtle race here: The escalation
+ * interrupt might have fired and be on its way to the
+ * host queue while we mask it, and if we unmask it
+ * early enough (re-cede right away), there is a
+ * theoretical possibility that it fires again, thus
+ * landing in the target queue more than once which is
+ * a big no-no.
+ *
+ * Fortunately, solving this is rather easy. If the
+ * above load setting PQ to 01 returns a previous
+ * value where P is set, then we know the escalation
+ * interrupt is somewhere on its way to the host. In
+ * that case we simply don't clear the xive_esc_on
+ * flag below. It will be eventually cleared by the
+ * handler for the escalation interrupt.
+ *
+ * Then, when doing a cede, we check that flag again
+ * before re-enabling the escalation interrupt, and if
+ * set, we abort the cede.
+ */
+ if (!(pq & XIVE_ESB_VAL_P))
+ /* Now P is 0, we can clear the flag */
+ vcpu->arch.xive_esc_on = 0;
+ }
+}
+EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu);
+
+/*
+ * Pull a vcpu's context from the XIVE on guest exit.
+ * This assumes we are in virtual mode (MMU on)
+ */
+void kvmppc_xive_pull_vcpu(struct kvm_vcpu *vcpu)
+{
+ void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
+
+ if (!vcpu->arch.xive_pushed)
+ return;
+
+ /*
+ * Should not have been pushed if there is no tima
+ */
+ if (WARN_ON(!tima))
+ return;
+
+ eieio();
+ /* First load to pull the context, we ignore the value */
+ __raw_readl(tima + TM_SPC_PULL_OS_CTX);
+ /* Second load to recover the context state (Words 0 and 1) */
+ if (!kvmppc_xive_vcpu_has_save_restore(vcpu))
+ vcpu->arch.xive_saved_state.w01 = __raw_readq(tima + TM_QW1_OS);
+
+ /* Fixup some of the state for the next load */
+ vcpu->arch.xive_saved_state.lsmfb = 0;
+ vcpu->arch.xive_saved_state.ack = 0xff;
+ vcpu->arch.xive_pushed = 0;
+ eieio();
+}
+EXPORT_SYMBOL_GPL(kvmppc_xive_pull_vcpu);
+
+bool kvmppc_xive_rearm_escalation(struct kvm_vcpu *vcpu)
+{
+ void __iomem *esc_vaddr = (void __iomem *)vcpu->arch.xive_esc_vaddr;
+ bool ret = true;
+
+ if (!esc_vaddr)
+ return ret;
+
+ /* we are using XIVE with single escalation */
+
+ if (vcpu->arch.xive_esc_on) {
+ /*
+ * If we still have a pending escalation, abort the cede,
+ * and we must set PQ to 10 rather than 00 so that we don't
+ * potentially end up with two entries for the escalation
+ * interrupt in the XIVE interrupt queue. In that case
+ * we also don't want to set xive_esc_on to 1 here in
+ * case we race with xive_esc_irq().
+ */
+ ret = false;
+ /*
+ * The escalation interrupts are special as we don't EOI them.
+ * There is no need to use the load-after-store ordering offset
+ * to set PQ to 10 as we won't use StoreEOI.
+ */
+ __raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_10);
+ } else {
+ vcpu->arch.xive_esc_on = true;
+ mb();
+ __raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_00);
+ }
+ mb();
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(kvmppc_xive_rearm_escalation);
+
+/*
+ * This is a simple trigger for a generic XIVE IRQ. This must
+ * only be called for interrupts that support a trigger page
+ */
+static bool xive_irq_trigger(struct xive_irq_data *xd)
+{
+ /* This should be only for MSIs */
+ if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
+ return false;
+
+ /* Those interrupts should always have a trigger page */
+ if (WARN_ON(!xd->trig_mmio))
+ return false;
+
+ out_be64(xd->trig_mmio, 0);
+
+ return true;
+}
+
+static irqreturn_t xive_esc_irq(int irq, void *data)
+{
+ struct kvm_vcpu *vcpu = data;
+
+ vcpu->arch.irq_pending = 1;
+ smp_mb();
+ if (vcpu->arch.ceded || vcpu->arch.nested)
+ kvmppc_fast_vcpu_kick(vcpu);
+
+ /* Since we have the no-EOI flag, the interrupt is effectively
+ * disabled now. Clearing xive_esc_on means we won't bother
+ * doing so on the next entry.
+ *
+ * This also allows the entry code to know that if a PQ combination
+ * of 10 is observed while xive_esc_on is true, it means the queue
+ * contains an unprocessed escalation interrupt. We don't make use of
+ * that knowledge today but might (see comment in book3s_hv_rmhandler.S)
+ */
+ vcpu->arch.xive_esc_on = false;
+
+ /* This orders xive_esc_on = false vs. subsequent stale_p = true */
+ smp_wmb(); /* goes with smp_mb() in cleanup_single_escalation */
+
+ return IRQ_HANDLED;
+}
+
+int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio,
+ bool single_escalation)
+{
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+ struct xive_q *q = &xc->queues[prio];
+ char *name = NULL;
+ int rc;
+
+ /* Already there ? */
+ if (xc->esc_virq[prio])
+ return 0;
+
+ /* Hook up the escalation interrupt */
+ xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
+ if (!xc->esc_virq[prio]) {
+ pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
+ prio, xc->server_num);
+ return -EIO;
+ }
+
+ if (single_escalation)
+ name = kasprintf(GFP_KERNEL, "kvm-%d-%d",
+ vcpu->kvm->arch.lpid, xc->server_num);
+ else
+ name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
+ vcpu->kvm->arch.lpid, xc->server_num, prio);
+ if (!name) {
+ pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
+ prio, xc->server_num);
+ rc = -ENOMEM;
+ goto error;
+ }
+
+ pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);
+
+ rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
+ IRQF_NO_THREAD, name, vcpu);
+ if (rc) {
+ pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
+ prio, xc->server_num);
+ goto error;
+ }
+ xc->esc_virq_names[prio] = name;
+
+ /* In single escalation mode, we grab the ESB MMIO of the
+ * interrupt and mask it. Also populate the VCPU v/raddr
+ * of the ESB page for use by asm entry/exit code. Finally
+ * set the XIVE_IRQ_FLAG_NO_EOI flag which will prevent the
+ * core code from performing an EOI on the escalation
+ * interrupt, thus leaving it effectively masked after
+ * it fires once.
+ */
+ if (single_escalation) {
+ struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]);
+ struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
+
+ xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
+ vcpu->arch.xive_esc_raddr = xd->eoi_page;
+ vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
+ xd->flags |= XIVE_IRQ_FLAG_NO_EOI;
+ }
+
+ return 0;
+error:
+ irq_dispose_mapping(xc->esc_virq[prio]);
+ xc->esc_virq[prio] = 0;
+ kfree(name);
+ return rc;
+}
+
+static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
+{
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+ struct kvmppc_xive *xive = xc->xive;
+ struct xive_q *q = &xc->queues[prio];
+ void *qpage;
+ int rc;
+
+ if (WARN_ON(q->qpage))
+ return 0;
+
+ /* Allocate the queue and retrieve infos on current node for now */
+ qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
+ if (!qpage) {
+ pr_err("Failed to allocate queue %d for VCPU %d\n",
+ prio, xc->server_num);
+ return -ENOMEM;
+ }
+ memset(qpage, 0, 1 << xive->q_order);
+
+ /*
+ * Reconfigure the queue. This will set q->qpage only once the
+ * queue is fully configured. This is a requirement for prio 0
+ * as we will stop doing EOIs for every IPI as soon as we observe
+ * qpage being non-NULL, and instead will only EOI when we receive
+ * corresponding queue 0 entries
+ */
+ rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
+ xive->q_order, true);
+ if (rc)
+ pr_err("Failed to configure queue %d for VCPU %d\n",
+ prio, xc->server_num);
+ return rc;
+}
+
+/* Called with xive->lock held */
+static int xive_check_provisioning(struct kvm *kvm, u8 prio)
+{
+ struct kvmppc_xive *xive = kvm->arch.xive;
+ struct kvm_vcpu *vcpu;
+ unsigned long i;
+ int rc;
+
+ lockdep_assert_held(&xive->lock);
+
+ /* Already provisioned ? */
+ if (xive->qmap & (1 << prio))
+ return 0;
+
+ pr_devel("Provisioning prio... %d\n", prio);
+
+ /* Provision each VCPU and enable escalations if needed */
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (!vcpu->arch.xive_vcpu)
+ continue;
+ rc = xive_provision_queue(vcpu, prio);
+ if (rc == 0 && !kvmppc_xive_has_single_escalation(xive))
+ kvmppc_xive_attach_escalation(vcpu, prio,
+ kvmppc_xive_has_single_escalation(xive));
+ if (rc)
+ return rc;
+ }
+
+ /* Order previous stores and mark it as provisioned */
+ mb();
+ xive->qmap |= (1 << prio);
+ return 0;
+}
+
+static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
+{
+ struct kvm_vcpu *vcpu;
+ struct kvmppc_xive_vcpu *xc;
+ struct xive_q *q;
+
+ /* Locate target server */
+ vcpu = kvmppc_xive_find_server(kvm, server);
+ if (!vcpu) {
+ pr_warn("%s: Can't find server %d\n", __func__, server);
+ return;
+ }
+ xc = vcpu->arch.xive_vcpu;
+ if (WARN_ON(!xc))
+ return;
+
+ q = &xc->queues[prio];
+ atomic_inc(&q->pending_count);
+}
+
+static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
+{
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+ struct xive_q *q;
+ u32 max;
+
+ if (WARN_ON(!xc))
+ return -ENXIO;
+ if (!xc->valid)
+ return -ENXIO;
+
+ q = &xc->queues[prio];
+ if (WARN_ON(!q->qpage))
+ return -ENXIO;
+
+ /* Calculate max number of interrupts in that queue. */
+ max = (q->msk + 1) - XIVE_Q_GAP;
+ return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
+}
+
+int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
+{
+ struct kvm_vcpu *vcpu;
+ unsigned long i;
+ int rc;
+
+ /* Locate target server */
+ vcpu = kvmppc_xive_find_server(kvm, *server);
+ if (!vcpu) {
+ pr_devel("Can't find server %d\n", *server);
+ return -EINVAL;
+ }
+
+ pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
+
+ /* Try pick it */
+ rc = xive_try_pick_queue(vcpu, prio);
+ if (rc == 0)
+ return rc;
+
+ pr_devel(" .. failed, looking up candidate...\n");
+
+ /* Failed, pick another VCPU */
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (!vcpu->arch.xive_vcpu)
+ continue;
+ rc = xive_try_pick_queue(vcpu, prio);
+ if (rc == 0) {
+ *server = vcpu->arch.xive_vcpu->server_num;
+ pr_devel(" found on 0x%x/%d\n", *server, prio);
+ return rc;
+ }
+ }
+ pr_devel(" no available target !\n");
+
+ /* No available target ! */
+ return -EBUSY;
+}
+
+static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
+ struct kvmppc_xive_src_block *sb,
+ struct kvmppc_xive_irq_state *state)
+{
+ struct xive_irq_data *xd;
+ u32 hw_num;
+ u8 old_prio;
+ u64 val;
+
+ /*
+ * Take the lock, set masked, try again if racing
+ * with H_EOI
+ */
+ for (;;) {
+ arch_spin_lock(&sb->lock);
+ old_prio = state->guest_priority;
+ state->guest_priority = MASKED;
+ mb();
+ if (!state->in_eoi)
+ break;
+ state->guest_priority = old_prio;
+ arch_spin_unlock(&sb->lock);
+ }
+
+ /* No change ? Bail */
+ if (old_prio == MASKED)
+ return old_prio;
+
+ /* Get the right irq */
+ kvmppc_xive_select_irq(state, &hw_num, &xd);
+
+ /* Set PQ to 10, return old P and old Q and remember them */
+ val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
+ state->old_p = !!(val & 2);
+ state->old_q = !!(val & 1);
+
+ /*
+ * Synchronize hardware to sensure the queues are updated when
+ * masking
+ */
+ xive_native_sync_source(hw_num);
+
+ return old_prio;
+}
+
+static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
+ struct kvmppc_xive_irq_state *state)
+{
+ /*
+ * Take the lock try again if racing with H_EOI
+ */
+ for (;;) {
+ arch_spin_lock(&sb->lock);
+ if (!state->in_eoi)
+ break;
+ arch_spin_unlock(&sb->lock);
+ }
+}
+
+static void xive_finish_unmask(struct kvmppc_xive *xive,
+ struct kvmppc_xive_src_block *sb,
+ struct kvmppc_xive_irq_state *state,
+ u8 prio)
+{
+ struct xive_irq_data *xd;
+ u32 hw_num;
+
+ /* If we aren't changing a thing, move on */
+ if (state->guest_priority != MASKED)
+ goto bail;
+
+ /* Get the right irq */
+ kvmppc_xive_select_irq(state, &hw_num, &xd);
+
+ /* Old Q set, set PQ to 11 */
+ if (state->old_q)
+ xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
+
+ /*
+ * If not old P, then perform an "effective" EOI,
+ * on the source. This will handle the cases where
+ * FW EOI is needed.
+ */
+ if (!state->old_p)
+ xive_vm_source_eoi(hw_num, xd);
+
+ /* Synchronize ordering and mark unmasked */
+ mb();
+bail:
+ state->guest_priority = prio;
+}
+
+/*
+ * Target an interrupt to a given server/prio, this will fallback
+ * to another server if necessary and perform the HW targetting
+ * updates as needed
+ *
+ * NOTE: Must be called with the state lock held
+ */
+static int xive_target_interrupt(struct kvm *kvm,
+ struct kvmppc_xive_irq_state *state,
+ u32 server, u8 prio)
+{
+ struct kvmppc_xive *xive = kvm->arch.xive;
+ u32 hw_num;
+ int rc;
+
+ /*
+ * This will return a tentative server and actual
+ * priority. The count for that new target will have
+ * already been incremented.
+ */
+ rc = kvmppc_xive_select_target(kvm, &server, prio);
+
+ /*
+ * We failed to find a target ? Not much we can do
+ * at least until we support the GIQ.
+ */
+ if (rc)
+ return rc;
+
+ /*
+ * Increment the old queue pending count if there
+ * was one so that the old queue count gets adjusted later
+ * when observed to be empty.
+ */
+ if (state->act_priority != MASKED)
+ xive_inc_q_pending(kvm,
+ state->act_server,
+ state->act_priority);
+ /*
+ * Update state and HW
+ */
+ state->act_priority = prio;
+ state->act_server = server;
+
+ /* Get the right irq */
+ kvmppc_xive_select_irq(state, &hw_num, NULL);
+
+ return xive_native_configure_irq(hw_num,
+ kvmppc_xive_vp(xive, server),
+ prio, state->number);
+}
+
+/*
+ * Targetting rules: In order to avoid losing track of
+ * pending interrupts across mask and unmask, which would
+ * allow queue overflows, we implement the following rules:
+ *
+ * - Unless it was never enabled (or we run out of capacity)
+ * an interrupt is always targetted at a valid server/queue
+ * pair even when "masked" by the guest. This pair tends to
+ * be the last one used but it can be changed under some
+ * circumstances. That allows us to separate targetting
+ * from masking, we only handle accounting during (re)targetting,
+ * this also allows us to let an interrupt drain into its target
+ * queue after masking, avoiding complex schemes to remove
+ * interrupts out of remote processor queues.
+ *
+ * - When masking, we set PQ to 10 and save the previous value
+ * of P and Q.
+ *
+ * - When unmasking, if saved Q was set, we set PQ to 11
+ * otherwise we leave PQ to the HW state which will be either
+ * 10 if nothing happened or 11 if the interrupt fired while
+ * masked. Effectively we are OR'ing the previous Q into the
+ * HW Q.
+ *
+ * Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
+ * which will unmask the interrupt and shoot a new one if Q was
+ * set.
+ *
+ * Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
+ * effectively meaning an H_EOI from the guest is still expected
+ * for that interrupt).
+ *
+ * - If H_EOI occurs while masked, we clear the saved P.
+ *
+ * - When changing target, we account on the new target and
+ * increment a separate "pending" counter on the old one.
+ * This pending counter will be used to decrement the old
+ * target's count when its queue has been observed empty.
+ */
+
+int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
+ u32 priority)
+{
+ struct kvmppc_xive *xive = kvm->arch.xive;
+ struct kvmppc_xive_src_block *sb;
+ struct kvmppc_xive_irq_state *state;
+ u8 new_act_prio;
+ int rc = 0;
+ u16 idx;
+
+ if (!xive)
+ return -ENODEV;
+
+ pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
+ irq, server, priority);
+
+ /* First, check provisioning of queues */
+ if (priority != MASKED) {
+ mutex_lock(&xive->lock);
+ rc = xive_check_provisioning(xive->kvm,
+ xive_prio_from_guest(priority));
+ mutex_unlock(&xive->lock);
+ }
+ if (rc) {
+ pr_devel(" provisioning failure %d !\n", rc);
+ return rc;
+ }
+
+ sb = kvmppc_xive_find_source(xive, irq, &idx);
+ if (!sb)
+ return -EINVAL;
+ state = &sb->irq_state[idx];
+
+ /*
+ * We first handle masking/unmasking since the locking
+ * might need to be retried due to EOIs, we'll handle
+ * targetting changes later. These functions will return
+ * with the SB lock held.
+ *
+ * xive_lock_and_mask() will also set state->guest_priority
+ * but won't otherwise change other fields of the state.
+ *
+ * xive_lock_for_unmask will not actually unmask, this will
+ * be done later by xive_finish_unmask() once the targetting
+ * has been done, so we don't try to unmask an interrupt
+ * that hasn't yet been targetted.
+ */
+ if (priority == MASKED)
+ xive_lock_and_mask(xive, sb, state);
+ else
+ xive_lock_for_unmask(sb, state);
+
+
+ /*
+ * Then we handle targetting.
+ *
+ * First calculate a new "actual priority"
+ */
+ new_act_prio = state->act_priority;
+ if (priority != MASKED)
+ new_act_prio = xive_prio_from_guest(priority);
+
+ pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
+ new_act_prio, state->act_server, state->act_priority);
+
+ /*
+ * Then check if we actually need to change anything,
+ *
+ * The condition for re-targetting the interrupt is that
+ * we have a valid new priority (new_act_prio is not 0xff)
+ * and either the server or the priority changed.
+ *
+ * Note: If act_priority was ff and the new priority is
+ * also ff, we don't do anything and leave the interrupt
+ * untargetted. An attempt of doing an int_on on an
+ * untargetted interrupt will fail. If that is a problem
+ * we could initialize interrupts with valid default
+ */
+
+ if (new_act_prio != MASKED &&
+ (state->act_server != server ||
+ state->act_priority != new_act_prio))
+ rc = xive_target_interrupt(kvm, state, server, new_act_prio);
+
+ /*
+ * Perform the final unmasking of the interrupt source
+ * if necessary
+ */
+ if (priority != MASKED)
+ xive_finish_unmask(xive, sb, state, priority);
+
+ /*
+ * Finally Update saved_priority to match. Only int_on/off
+ * set this field to a different value.
+ */
+ state->saved_priority = priority;
+
+ arch_spin_unlock(&sb->lock);
+ return rc;
+}
+
+int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
+ u32 *priority)
+{
+ struct kvmppc_xive *xive = kvm->arch.xive;
+ struct kvmppc_xive_src_block *sb;
+ struct kvmppc_xive_irq_state *state;
+ u16 idx;
+
+ if (!xive)
+ return -ENODEV;
+
+ sb = kvmppc_xive_find_source(xive, irq, &idx);
+ if (!sb)
+ return -EINVAL;
+ state = &sb->irq_state[idx];
+ arch_spin_lock(&sb->lock);
+ *server = state->act_server;
+ *priority = state->guest_priority;
+ arch_spin_unlock(&sb->lock);
+
+ return 0;
+}
+
+int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
+{
+ struct kvmppc_xive *xive = kvm->arch.xive;
+ struct kvmppc_xive_src_block *sb;
+ struct kvmppc_xive_irq_state *state;
+ u16 idx;
+
+ if (!xive)
+ return -ENODEV;
+
+ sb = kvmppc_xive_find_source(xive, irq, &idx);
+ if (!sb)
+ return -EINVAL;
+ state = &sb->irq_state[idx];
+
+ pr_devel("int_on(irq=0x%x)\n", irq);
+
+ /*
+ * Check if interrupt was not targetted
+ */
+ if (state->act_priority == MASKED) {
+ pr_devel("int_on on untargetted interrupt\n");
+ return -EINVAL;
+ }
+
+ /* If saved_priority is 0xff, do nothing */
+ if (state->saved_priority == MASKED)
+ return 0;
+
+ /*
+ * Lock and unmask it.
+ */
+ xive_lock_for_unmask(sb, state);
+ xive_finish_unmask(xive, sb, state, state->saved_priority);
+ arch_spin_unlock(&sb->lock);
+
+ return 0;
+}
+
+int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
+{
+ struct kvmppc_xive *xive = kvm->arch.xive;
+ struct kvmppc_xive_src_block *sb;
+ struct kvmppc_xive_irq_state *state;
+ u16 idx;
+
+ if (!xive)
+ return -ENODEV;
+
+ sb = kvmppc_xive_find_source(xive, irq, &idx);
+ if (!sb)
+ return -EINVAL;
+ state = &sb->irq_state[idx];
+
+ pr_devel("int_off(irq=0x%x)\n", irq);
+
+ /*
+ * Lock and mask
+ */
+ state->saved_priority = xive_lock_and_mask(xive, sb, state);
+ arch_spin_unlock(&sb->lock);
+
+ return 0;
+}
+
+static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
+{
+ struct kvmppc_xive_src_block *sb;
+ struct kvmppc_xive_irq_state *state;
+ u16 idx;
+
+ sb = kvmppc_xive_find_source(xive, irq, &idx);
+ if (!sb)
+ return false;
+ state = &sb->irq_state[idx];
+ if (!state->valid)
+ return false;
+
+ /*
+ * Trigger the IPI. This assumes we never restore a pass-through
+ * interrupt which should be safe enough
+ */
+ xive_irq_trigger(&state->ipi_data);
+
+ return true;
+}
+
+u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+
+ if (!xc)
+ return 0;
+
+ /* Return the per-cpu state for state saving/migration */
+ return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
+ (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
+ (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
+}
+
+int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
+{
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+ struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
+ u8 cppr, mfrr;
+ u32 xisr;
+
+ if (!xc || !xive)
+ return -ENOENT;
+
+ /* Grab individual state fields. We don't use pending_pri */
+ cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
+ xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
+ KVM_REG_PPC_ICP_XISR_MASK;
+ mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
+
+ pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
+ xc->server_num, cppr, mfrr, xisr);
+
+ /*
+ * We can't update the state of a "pushed" VCPU, but that
+ * shouldn't happen because the vcpu->mutex makes running a
+ * vcpu mutually exclusive with doing one_reg get/set on it.
+ */
+ if (WARN_ON(vcpu->arch.xive_pushed))
+ return -EIO;
+
+ /* Update VCPU HW saved state */
+ vcpu->arch.xive_saved_state.cppr = cppr;
+ xc->hw_cppr = xc->cppr = cppr;
+
+ /*
+ * Update MFRR state. If it's not 0xff, we mark the VCPU as
+ * having a pending MFRR change, which will re-evaluate the
+ * target. The VCPU will thus potentially get a spurious
+ * interrupt but that's not a big deal.
+ */
+ xc->mfrr = mfrr;
+ if (mfrr < cppr)
+ xive_irq_trigger(&xc->vp_ipi_data);
+
+ /*
+ * Now saved XIRR is "interesting". It means there's something in
+ * the legacy "1 element" queue... for an IPI we simply ignore it,
+ * as the MFRR restore will handle that. For anything else we need
+ * to force a resend of the source.
+ * However the source may not have been setup yet. If that's the
+ * case, we keep that info and increment a counter in the xive to
+ * tell subsequent xive_set_source() to go look.
+ */
+ if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
+ xc->delayed_irq = xisr;
+ xive->delayed_irqs++;
+ pr_devel(" xisr restore delayed\n");
+ }
+
+ return 0;
+}
+
+int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
+ unsigned long host_irq)
+{
+ struct kvmppc_xive *xive = kvm->arch.xive;
+ struct kvmppc_xive_src_block *sb;
+ struct kvmppc_xive_irq_state *state;
+ struct irq_data *host_data =
+ irq_domain_get_irq_data(irq_get_default_host(), host_irq);
+ unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
+ u16 idx;
+ u8 prio;
+ int rc;
+
+ if (!xive)
+ return -ENODEV;
+
+ pr_debug("%s: GIRQ 0x%lx host IRQ %ld XIVE HW IRQ 0x%x\n",
+ __func__, guest_irq, host_irq, hw_irq);
+
+ sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
+ if (!sb)
+ return -EINVAL;
+ state = &sb->irq_state[idx];
+
+ /*
+ * Mark the passed-through interrupt as going to a VCPU,
+ * this will prevent further EOIs and similar operations
+ * from the XIVE code. It will also mask the interrupt
+ * to either PQ=10 or 11 state, the latter if the interrupt
+ * is pending. This will allow us to unmask or retrigger it
+ * after routing it to the guest with a simple EOI.
+ *
+ * The "state" argument is a "token", all it needs is to be
+ * non-NULL to switch to passed-through or NULL for the
+ * other way around. We may not yet have an actual VCPU
+ * target here and we don't really care.
+ */
+ rc = irq_set_vcpu_affinity(host_irq, state);
+ if (rc) {
+ pr_err("Failed to set VCPU affinity for host IRQ %ld\n", host_irq);
+ return rc;
+ }
+
+ /*
+ * Mask and read state of IPI. We need to know if its P bit
+ * is set as that means it's potentially already using a
+ * queue entry in the target
+ */
+ prio = xive_lock_and_mask(xive, sb, state);
+ pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
+ state->old_p, state->old_q);
+
+ /* Turn the IPI hard off */
+ xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
+
+ /*
+ * Reset ESB guest mapping. Needed when ESB pages are exposed
+ * to the guest in XIVE native mode
+ */
+ if (xive->ops && xive->ops->reset_mapped)
+ xive->ops->reset_mapped(kvm, guest_irq);
+
+ /* Grab info about irq */
+ state->pt_number = hw_irq;
+ state->pt_data = irq_data_get_irq_handler_data(host_data);
+
+ /*
+ * Configure the IRQ to match the existing configuration of
+ * the IPI if it was already targetted. Otherwise this will
+ * mask the interrupt in a lossy way (act_priority is 0xff)
+ * which is fine for a never started interrupt.
+ */
+ xive_native_configure_irq(hw_irq,
+ kvmppc_xive_vp(xive, state->act_server),
+ state->act_priority, state->number);
+
+ /*
+ * We do an EOI to enable the interrupt (and retrigger if needed)
+ * if the guest has the interrupt unmasked and the P bit was *not*
+ * set in the IPI. If it was set, we know a slot may still be in
+ * use in the target queue thus we have to wait for a guest
+ * originated EOI
+ */
+ if (prio != MASKED && !state->old_p)
+ xive_vm_source_eoi(hw_irq, state->pt_data);
+
+ /* Clear old_p/old_q as they are no longer relevant */
+ state->old_p = state->old_q = false;
+
+ /* Restore guest prio (unlocks EOI) */
+ mb();
+ state->guest_priority = prio;
+ arch_spin_unlock(&sb->lock);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
+
+int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
+ unsigned long host_irq)
+{
+ struct kvmppc_xive *xive = kvm->arch.xive;
+ struct kvmppc_xive_src_block *sb;
+ struct kvmppc_xive_irq_state *state;
+ u16 idx;
+ u8 prio;
+ int rc;
+
+ if (!xive)
+ return -ENODEV;
+
+ pr_debug("%s: GIRQ 0x%lx host IRQ %ld\n", __func__, guest_irq, host_irq);
+
+ sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
+ if (!sb)
+ return -EINVAL;
+ state = &sb->irq_state[idx];
+
+ /*
+ * Mask and read state of IRQ. We need to know if its P bit
+ * is set as that means it's potentially already using a
+ * queue entry in the target
+ */
+ prio = xive_lock_and_mask(xive, sb, state);
+ pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
+ state->old_p, state->old_q);
+
+ /*
+ * If old_p is set, the interrupt is pending, we switch it to
+ * PQ=11. This will force a resend in the host so the interrupt
+ * isn't lost to whatever host driver may pick it up
+ */
+ if (state->old_p)
+ xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
+
+ /* Release the passed-through interrupt to the host */
+ rc = irq_set_vcpu_affinity(host_irq, NULL);
+ if (rc) {
+ pr_err("Failed to clr VCPU affinity for host IRQ %ld\n", host_irq);
+ return rc;
+ }
+
+ /* Forget about the IRQ */
+ state->pt_number = 0;
+ state->pt_data = NULL;
+
+ /*
+ * Reset ESB guest mapping. Needed when ESB pages are exposed
+ * to the guest in XIVE native mode
+ */
+ if (xive->ops && xive->ops->reset_mapped) {
+ xive->ops->reset_mapped(kvm, guest_irq);
+ }
+
+ /* Reconfigure the IPI */
+ xive_native_configure_irq(state->ipi_number,
+ kvmppc_xive_vp(xive, state->act_server),
+ state->act_priority, state->number);
+
+ /*
+ * If old_p is set (we have a queue entry potentially
+ * occupied) or the interrupt is masked, we set the IPI
+ * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
+ */
+ if (prio == MASKED || state->old_p)
+ xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
+ else
+ xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
+
+ /* Restore guest prio (unlocks EOI) */
+ mb();
+ state->guest_priority = prio;
+ arch_spin_unlock(&sb->lock);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
+
+void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+ struct kvm *kvm = vcpu->kvm;
+ struct kvmppc_xive *xive = kvm->arch.xive;
+ int i, j;
+
+ for (i = 0; i <= xive->max_sbid; i++) {
+ struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
+
+ if (!sb)
+ continue;
+ for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
+ struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
+
+ if (!state->valid)
+ continue;
+ if (state->act_priority == MASKED)
+ continue;
+ if (state->act_server != xc->server_num)
+ continue;
+
+ /* Clean it up */
+ arch_spin_lock(&sb->lock);
+ state->act_priority = MASKED;
+ xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
+ xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
+ if (state->pt_number) {
+ xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
+ xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
+ }
+ arch_spin_unlock(&sb->lock);
+ }
+ }
+
+ /* Disable vcpu's escalation interrupt */
+ if (vcpu->arch.xive_esc_on) {
+ __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
+ XIVE_ESB_SET_PQ_01));
+ vcpu->arch.xive_esc_on = false;
+ }
+
+ /*
+ * Clear pointers to escalation interrupt ESB.
+ * This is safe because the vcpu->mutex is held, preventing
+ * any other CPU from concurrently executing a KVM_RUN ioctl.
+ */
+ vcpu->arch.xive_esc_vaddr = 0;
+ vcpu->arch.xive_esc_raddr = 0;
+}
+
+/*
+ * In single escalation mode, the escalation interrupt is marked so
+ * that EOI doesn't re-enable it, but just sets the stale_p flag to
+ * indicate that the P bit has already been dealt with. However, the
+ * assembly code that enters the guest sets PQ to 00 without clearing
+ * stale_p (because it has no easy way to address it). Hence we have
+ * to adjust stale_p before shutting down the interrupt.
+ */
+void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu,
+ struct kvmppc_xive_vcpu *xc, int irq)
+{
+ struct irq_data *d = irq_get_irq_data(irq);
+ struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
+
+ /*
+ * This slightly odd sequence gives the right result
+ * (i.e. stale_p set if xive_esc_on is false) even if
+ * we race with xive_esc_irq() and xive_irq_eoi().
+ */
+ xd->stale_p = false;
+ smp_mb(); /* paired with smb_wmb in xive_esc_irq */
+ if (!vcpu->arch.xive_esc_on)
+ xd->stale_p = true;
+}
+
+void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+ struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
+ int i;
+
+ if (!kvmppc_xics_enabled(vcpu))
+ return;
+
+ if (!xc)
+ return;
+
+ pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
+
+ /* Ensure no interrupt is still routed to that VP */
+ xc->valid = false;
+ kvmppc_xive_disable_vcpu_interrupts(vcpu);
+
+ /* Mask the VP IPI */
+ xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
+
+ /* Free escalations */
+ for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
+ if (xc->esc_virq[i]) {
+ if (kvmppc_xive_has_single_escalation(xc->xive))
+ xive_cleanup_single_escalation(vcpu, xc,
+ xc->esc_virq[i]);
+ free_irq(xc->esc_virq[i], vcpu);
+ irq_dispose_mapping(xc->esc_virq[i]);
+ kfree(xc->esc_virq_names[i]);
+ }
+ }
+
+ /* Disable the VP */
+ xive_native_disable_vp(xc->vp_id);
+
+ /* Clear the cam word so guest entry won't try to push context */
+ vcpu->arch.xive_cam_word = 0;
+
+ /* Free the queues */
+ for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
+ struct xive_q *q = &xc->queues[i];
+
+ xive_native_disable_queue(xc->vp_id, q, i);
+ if (q->qpage) {
+ free_pages((unsigned long)q->qpage,
+ xive->q_page_order);
+ q->qpage = NULL;
+ }
+ }
+
+ /* Free the IPI */
+ if (xc->vp_ipi) {
+ xive_cleanup_irq_data(&xc->vp_ipi_data);
+ xive_native_free_irq(xc->vp_ipi);
+ }
+ /* Free the VP */
+ kfree(xc);
+
+ /* Cleanup the vcpu */
+ vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT;
+ vcpu->arch.xive_vcpu = NULL;
+}
+
+static bool kvmppc_xive_vcpu_id_valid(struct kvmppc_xive *xive, u32 cpu)
+{
+ /* We have a block of xive->nr_servers VPs. We just need to check
+ * packed vCPU ids are below that.
+ */
+ return kvmppc_pack_vcpu_id(xive->kvm, cpu) < xive->nr_servers;
+}
+
+int kvmppc_xive_compute_vp_id(struct kvmppc_xive *xive, u32 cpu, u32 *vp)
+{
+ u32 vp_id;
+
+ if (!kvmppc_xive_vcpu_id_valid(xive, cpu)) {
+ pr_devel("Out of bounds !\n");
+ return -EINVAL;
+ }
+
+ if (xive->vp_base == XIVE_INVALID_VP) {
+ xive->vp_base = xive_native_alloc_vp_block(xive->nr_servers);
+ pr_devel("VP_Base=%x nr_servers=%d\n", xive->vp_base, xive->nr_servers);
+
+ if (xive->vp_base == XIVE_INVALID_VP)
+ return -ENOSPC;
+ }
+
+ vp_id = kvmppc_xive_vp(xive, cpu);
+ if (kvmppc_xive_vp_in_use(xive->kvm, vp_id)) {
+ pr_devel("Duplicate !\n");
+ return -EEXIST;
+ }
+
+ *vp = vp_id;
+
+ return 0;
+}
+
+int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
+ struct kvm_vcpu *vcpu, u32 cpu)
+{
+ struct kvmppc_xive *xive = dev->private;
+ struct kvmppc_xive_vcpu *xc;
+ int i, r = -EBUSY;
+ u32 vp_id;
+
+ pr_devel("connect_vcpu(cpu=%d)\n", cpu);
+
+ if (dev->ops != &kvm_xive_ops) {
+ pr_devel("Wrong ops !\n");
+ return -EPERM;
+ }
+ if (xive->kvm != vcpu->kvm)
+ return -EPERM;
+ if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT)
+ return -EBUSY;
+
+ /* We need to synchronize with queue provisioning */
+ mutex_lock(&xive->lock);
+
+ r = kvmppc_xive_compute_vp_id(xive, cpu, &vp_id);
+ if (r)
+ goto bail;
+
+ xc = kzalloc(sizeof(*xc), GFP_KERNEL);
+ if (!xc) {
+ r = -ENOMEM;
+ goto bail;
+ }
+
+ vcpu->arch.xive_vcpu = xc;
+ xc->xive = xive;
+ xc->vcpu = vcpu;
+ xc->server_num = cpu;
+ xc->vp_id = vp_id;
+ xc->mfrr = 0xff;
+ xc->valid = true;
+
+ r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
+ if (r)
+ goto bail;
+
+ if (!kvmppc_xive_check_save_restore(vcpu)) {
+ pr_err("inconsistent save-restore setup for VCPU %d\n", cpu);
+ r = -EIO;
+ goto bail;
+ }
+
+ /* Configure VCPU fields for use by assembly push/pull */
+ vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
+ vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
+
+ /* Allocate IPI */
+ xc->vp_ipi = xive_native_alloc_irq();
+ if (!xc->vp_ipi) {
+ pr_err("Failed to allocate xive irq for VCPU IPI\n");
+ r = -EIO;
+ goto bail;
+ }
+ pr_devel(" IPI=0x%x\n", xc->vp_ipi);
+
+ r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
+ if (r)
+ goto bail;
+
+ /*
+ * Enable the VP first as the single escalation mode will
+ * affect escalation interrupts numbering
+ */
+ r = xive_native_enable_vp(xc->vp_id, kvmppc_xive_has_single_escalation(xive));
+ if (r) {
+ pr_err("Failed to enable VP in OPAL, err %d\n", r);
+ goto bail;
+ }
+
+ /*
+ * Initialize queues. Initially we set them all for no queueing
+ * and we enable escalation for queue 0 only which we'll use for
+ * our mfrr change notifications. If the VCPU is hot-plugged, we
+ * do handle provisioning however based on the existing "map"
+ * of enabled queues.
+ */
+ for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
+ struct xive_q *q = &xc->queues[i];
+
+ /* Single escalation, no queue 7 */
+ if (i == 7 && kvmppc_xive_has_single_escalation(xive))
+ break;
+
+ /* Is queue already enabled ? Provision it */
+ if (xive->qmap & (1 << i)) {
+ r = xive_provision_queue(vcpu, i);
+ if (r == 0 && !kvmppc_xive_has_single_escalation(xive))
+ kvmppc_xive_attach_escalation(
+ vcpu, i, kvmppc_xive_has_single_escalation(xive));
+ if (r)
+ goto bail;
+ } else {
+ r = xive_native_configure_queue(xc->vp_id,
+ q, i, NULL, 0, true);
+ if (r) {
+ pr_err("Failed to configure queue %d for VCPU %d\n",
+ i, cpu);
+ goto bail;
+ }
+ }
+ }
+
+ /* If not done above, attach priority 0 escalation */
+ r = kvmppc_xive_attach_escalation(vcpu, 0, kvmppc_xive_has_single_escalation(xive));
+ if (r)
+ goto bail;
+
+ /* Route the IPI */
+ r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
+ if (!r)
+ xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
+
+bail:
+ mutex_unlock(&xive->lock);
+ if (r) {
+ kvmppc_xive_cleanup_vcpu(vcpu);
+ return r;
+ }
+
+ vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
+ return 0;
+}
+
+/*
+ * Scanning of queues before/after migration save
+ */
+static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
+{
+ struct kvmppc_xive_src_block *sb;
+ struct kvmppc_xive_irq_state *state;
+ u16 idx;
+
+ sb = kvmppc_xive_find_source(xive, irq, &idx);
+ if (!sb)
+ return;
+
+ state = &sb->irq_state[idx];
+
+ /* Some sanity checking */
+ if (!state->valid) {
+ pr_err("invalid irq 0x%x in cpu queue!\n", irq);
+ return;
+ }
+
+ /*
+ * If the interrupt is in a queue it should have P set.
+ * We warn so that gets reported. A backtrace isn't useful
+ * so no need to use a WARN_ON.
+ */
+ if (!state->saved_p)
+ pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
+
+ /* Set flag */
+ state->in_queue = true;
+}
+
+static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
+ struct kvmppc_xive_src_block *sb,
+ u32 irq)
+{
+ struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
+
+ if (!state->valid)
+ return;
+
+ /* Mask and save state, this will also sync HW queues */
+ state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
+
+ /* Transfer P and Q */
+ state->saved_p = state->old_p;
+ state->saved_q = state->old_q;
+
+ /* Unlock */
+ arch_spin_unlock(&sb->lock);
+}
+
+static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
+ struct kvmppc_xive_src_block *sb,
+ u32 irq)
+{
+ struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
+
+ if (!state->valid)
+ return;
+
+ /*
+ * Lock / exclude EOI (not technically necessary if the
+ * guest isn't running concurrently. If this becomes a
+ * performance issue we can probably remove the lock.
+ */
+ xive_lock_for_unmask(sb, state);
+
+ /* Restore mask/prio if it wasn't masked */
+ if (state->saved_scan_prio != MASKED)
+ xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
+
+ /* Unlock */
+ arch_spin_unlock(&sb->lock);
+}
+
+static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
+{
+ u32 idx = q->idx;
+ u32 toggle = q->toggle;
+ u32 irq;
+
+ do {
+ irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
+ if (irq > XICS_IPI)
+ xive_pre_save_set_queued(xive, irq);
+ } while(irq);
+}
+
+static void xive_pre_save_scan(struct kvmppc_xive *xive)
+{
+ struct kvm_vcpu *vcpu = NULL;
+ unsigned long i;
+ int j;
+
+ /*
+ * See comment in xive_get_source() about how this
+ * work. Collect a stable state for all interrupts
+ */
+ for (i = 0; i <= xive->max_sbid; i++) {
+ struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
+ if (!sb)
+ continue;
+ for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
+ xive_pre_save_mask_irq(xive, sb, j);
+ }
+
+ /* Then scan the queues and update the "in_queue" flag */
+ kvm_for_each_vcpu(i, vcpu, xive->kvm) {
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+ if (!xc)
+ continue;
+ for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
+ if (xc->queues[j].qpage)
+ xive_pre_save_queue(xive, &xc->queues[j]);
+ }
+ }
+
+ /* Finally restore interrupt states */
+ for (i = 0; i <= xive->max_sbid; i++) {
+ struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
+ if (!sb)
+ continue;
+ for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
+ xive_pre_save_unmask_irq(xive, sb, j);
+ }
+}
+
+static void xive_post_save_scan(struct kvmppc_xive *xive)
+{
+ u32 i, j;
+
+ /* Clear all the in_queue flags */
+ for (i = 0; i <= xive->max_sbid; i++) {
+ struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
+ if (!sb)
+ continue;
+ for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
+ sb->irq_state[j].in_queue = false;
+ }
+
+ /* Next get_source() will do a new scan */
+ xive->saved_src_count = 0;
+}
+
+/*
+ * This returns the source configuration and state to user space.
+ */
+static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
+{
+ struct kvmppc_xive_src_block *sb;
+ struct kvmppc_xive_irq_state *state;
+ u64 __user *ubufp = (u64 __user *) addr;
+ u64 val, prio;
+ u16 idx;
+
+ sb = kvmppc_xive_find_source(xive, irq, &idx);
+ if (!sb)
+ return -ENOENT;
+
+ state = &sb->irq_state[idx];
+
+ if (!state->valid)
+ return -ENOENT;
+
+ pr_devel("get_source(%ld)...\n", irq);
+
+ /*
+ * So to properly save the state into something that looks like a
+ * XICS migration stream we cannot treat interrupts individually.
+ *
+ * We need, instead, mask them all (& save their previous PQ state)
+ * to get a stable state in the HW, then sync them to ensure that
+ * any interrupt that had already fired hits its queue, and finally
+ * scan all the queues to collect which interrupts are still present
+ * in the queues, so we can set the "pending" flag on them and
+ * they can be resent on restore.
+ *
+ * So we do it all when the "first" interrupt gets saved, all the
+ * state is collected at that point, the rest of xive_get_source()
+ * will merely collect and convert that state to the expected
+ * userspace bit mask.
+ */
+ if (xive->saved_src_count == 0)
+ xive_pre_save_scan(xive);
+ xive->saved_src_count++;
+
+ /* Convert saved state into something compatible with xics */
+ val = state->act_server;
+ prio = state->saved_scan_prio;
+
+ if (prio == MASKED) {
+ val |= KVM_XICS_MASKED;
+ prio = state->saved_priority;
+ }
+ val |= prio << KVM_XICS_PRIORITY_SHIFT;
+ if (state->lsi) {
+ val |= KVM_XICS_LEVEL_SENSITIVE;
+ if (state->saved_p)
+ val |= KVM_XICS_PENDING;
+ } else {
+ if (state->saved_p)
+ val |= KVM_XICS_PRESENTED;
+
+ if (state->saved_q)
+ val |= KVM_XICS_QUEUED;
+
+ /*
+ * We mark it pending (which will attempt a re-delivery)
+ * if we are in a queue *or* we were masked and had
+ * Q set which is equivalent to the XICS "masked pending"
+ * state
+ */
+ if (state->in_queue || (prio == MASKED && state->saved_q))
+ val |= KVM_XICS_PENDING;
+ }
+
+ /*
+ * If that was the last interrupt saved, reset the
+ * in_queue flags
+ */
+ if (xive->saved_src_count == xive->src_count)
+ xive_post_save_scan(xive);
+
+ /* Copy the result to userspace */
+ if (put_user(val, ubufp))
+ return -EFAULT;
+
+ return 0;
+}
+
+struct kvmppc_xive_src_block *kvmppc_xive_create_src_block(
+ struct kvmppc_xive *xive, int irq)
+{
+ struct kvmppc_xive_src_block *sb;
+ int i, bid;
+
+ bid = irq >> KVMPPC_XICS_ICS_SHIFT;
+
+ mutex_lock(&xive->lock);
+
+ /* block already exists - somebody else got here first */
+ if (xive->src_blocks[bid])
+ goto out;
+
+ /* Create the ICS */
+ sb = kzalloc(sizeof(*sb), GFP_KERNEL);
+ if (!sb)
+ goto out;
+
+ sb->id = bid;
+
+ for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
+ sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
+ sb->irq_state[i].eisn = 0;
+ sb->irq_state[i].guest_priority = MASKED;
+ sb->irq_state[i].saved_priority = MASKED;
+ sb->irq_state[i].act_priority = MASKED;
+ }
+ smp_wmb();
+ xive->src_blocks[bid] = sb;
+
+ if (bid > xive->max_sbid)
+ xive->max_sbid = bid;
+
+out:
+ mutex_unlock(&xive->lock);
+ return xive->src_blocks[bid];
+}
+
+static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
+{
+ struct kvm *kvm = xive->kvm;
+ struct kvm_vcpu *vcpu = NULL;
+ unsigned long i;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+
+ if (!xc)
+ continue;
+
+ if (xc->delayed_irq == irq) {
+ xc->delayed_irq = 0;
+ xive->delayed_irqs--;
+ return true;
+ }
+ }
+ return false;
+}
+
+static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
+{
+ struct kvmppc_xive_src_block *sb;
+ struct kvmppc_xive_irq_state *state;
+ u64 __user *ubufp = (u64 __user *) addr;
+ u16 idx;
+ u64 val;
+ u8 act_prio, guest_prio;
+ u32 server;
+ int rc = 0;
+
+ if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
+ return -ENOENT;
+
+ pr_devel("set_source(irq=0x%lx)\n", irq);
+
+ /* Find the source */
+ sb = kvmppc_xive_find_source(xive, irq, &idx);
+ if (!sb) {
+ pr_devel("No source, creating source block...\n");
+ sb = kvmppc_xive_create_src_block(xive, irq);
+ if (!sb) {
+ pr_devel("Failed to create block...\n");
+ return -ENOMEM;
+ }
+ }
+ state = &sb->irq_state[idx];
+
+ /* Read user passed data */
+ if (get_user(val, ubufp)) {
+ pr_devel("fault getting user info !\n");
+ return -EFAULT;
+ }
+
+ server = val & KVM_XICS_DESTINATION_MASK;
+ guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
+
+ pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n",
+ val, server, guest_prio);
+
+ /*
+ * If the source doesn't already have an IPI, allocate
+ * one and get the corresponding data
+ */
+ if (!state->ipi_number) {
+ state->ipi_number = xive_native_alloc_irq();
+ if (state->ipi_number == 0) {
+ pr_devel("Failed to allocate IPI !\n");
+ return -ENOMEM;
+ }
+ xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
+ pr_devel(" src_ipi=0x%x\n", state->ipi_number);
+ }
+
+ /*
+ * We use lock_and_mask() to set us in the right masked
+ * state. We will override that state from the saved state
+ * further down, but this will handle the cases of interrupts
+ * that need FW masking. We set the initial guest_priority to
+ * 0 before calling it to ensure it actually performs the masking.
+ */
+ state->guest_priority = 0;
+ xive_lock_and_mask(xive, sb, state);
+
+ /*
+ * Now, we select a target if we have one. If we don't we
+ * leave the interrupt untargetted. It means that an interrupt
+ * can become "untargetted" accross migration if it was masked
+ * by set_xive() but there is little we can do about it.
+ */
+
+ /* First convert prio and mark interrupt as untargetted */
+ act_prio = xive_prio_from_guest(guest_prio);
+ state->act_priority = MASKED;
+
+ /*
+ * We need to drop the lock due to the mutex below. Hopefully
+ * nothing is touching that interrupt yet since it hasn't been
+ * advertized to a running guest yet
+ */
+ arch_spin_unlock(&sb->lock);
+
+ /* If we have a priority target the interrupt */
+ if (act_prio != MASKED) {
+ /* First, check provisioning of queues */
+ mutex_lock(&xive->lock);
+ rc = xive_check_provisioning(xive->kvm, act_prio);
+ mutex_unlock(&xive->lock);
+
+ /* Target interrupt */
+ if (rc == 0)
+ rc = xive_target_interrupt(xive->kvm, state,
+ server, act_prio);
+ /*
+ * If provisioning or targetting failed, leave it
+ * alone and masked. It will remain disabled until
+ * the guest re-targets it.
+ */
+ }
+
+ /*
+ * Find out if this was a delayed irq stashed in an ICP,
+ * in which case, treat it as pending
+ */
+ if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
+ val |= KVM_XICS_PENDING;
+ pr_devel(" Found delayed ! forcing PENDING !\n");
+ }
+
+ /* Cleanup the SW state */
+ state->old_p = false;
+ state->old_q = false;
+ state->lsi = false;
+ state->asserted = false;
+
+ /* Restore LSI state */
+ if (val & KVM_XICS_LEVEL_SENSITIVE) {
+ state->lsi = true;
+ if (val & KVM_XICS_PENDING)
+ state->asserted = true;
+ pr_devel(" LSI ! Asserted=%d\n", state->asserted);
+ }
+
+ /*
+ * Restore P and Q. If the interrupt was pending, we
+ * force Q and !P, which will trigger a resend.
+ *
+ * That means that a guest that had both an interrupt
+ * pending (queued) and Q set will restore with only
+ * one instance of that interrupt instead of 2, but that
+ * is perfectly fine as coalescing interrupts that haven't
+ * been presented yet is always allowed.
+ */
+ if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
+ state->old_p = true;
+ if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
+ state->old_q = true;
+
+ pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q);
+
+ /*
+ * If the interrupt was unmasked, update guest priority and
+ * perform the appropriate state transition and do a
+ * re-trigger if necessary.
+ */
+ if (val & KVM_XICS_MASKED) {
+ pr_devel(" masked, saving prio\n");
+ state->guest_priority = MASKED;
+ state->saved_priority = guest_prio;
+ } else {
+ pr_devel(" unmasked, restoring to prio %d\n", guest_prio);
+ xive_finish_unmask(xive, sb, state, guest_prio);
+ state->saved_priority = guest_prio;
+ }
+
+ /* Increment the number of valid sources and mark this one valid */
+ if (!state->valid)
+ xive->src_count++;
+ state->valid = true;
+
+ return 0;
+}
+
+int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
+ bool line_status)
+{
+ struct kvmppc_xive *xive = kvm->arch.xive;
+ struct kvmppc_xive_src_block *sb;
+ struct kvmppc_xive_irq_state *state;
+ u16 idx;
+
+ if (!xive)
+ return -ENODEV;
+
+ sb = kvmppc_xive_find_source(xive, irq, &idx);
+ if (!sb)
+ return -EINVAL;
+
+ /* Perform locklessly .... (we need to do some RCUisms here...) */
+ state = &sb->irq_state[idx];
+ if (!state->valid)
+ return -EINVAL;
+
+ /* We don't allow a trigger on a passed-through interrupt */
+ if (state->pt_number)
+ return -EINVAL;
+
+ if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
+ state->asserted = true;
+ else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
+ state->asserted = false;
+ return 0;
+ }
+
+ /* Trigger the IPI */
+ xive_irq_trigger(&state->ipi_data);
+
+ return 0;
+}
+
+int kvmppc_xive_set_nr_servers(struct kvmppc_xive *xive, u64 addr)
+{
+ u32 __user *ubufp = (u32 __user *) addr;
+ u32 nr_servers;
+ int rc = 0;
+
+ if (get_user(nr_servers, ubufp))
+ return -EFAULT;
+
+ pr_devel("%s nr_servers=%u\n", __func__, nr_servers);
+
+ if (!nr_servers || nr_servers > KVM_MAX_VCPU_IDS)
+ return -EINVAL;
+
+ mutex_lock(&xive->lock);
+ if (xive->vp_base != XIVE_INVALID_VP)
+ /* The VP block is allocated once and freed when the device
+ * is released. Better not allow to change its size since its
+ * used by connect_vcpu to validate vCPU ids are valid (eg,
+ * setting it back to a higher value could allow connect_vcpu
+ * to come up with a VP id that goes beyond the VP block, which
+ * is likely to cause a crash in OPAL).
+ */
+ rc = -EBUSY;
+ else if (nr_servers > KVM_MAX_VCPUS)
+ /* We don't need more servers. Higher vCPU ids get packed
+ * down below KVM_MAX_VCPUS by kvmppc_pack_vcpu_id().
+ */
+ xive->nr_servers = KVM_MAX_VCPUS;
+ else
+ xive->nr_servers = nr_servers;
+
+ mutex_unlock(&xive->lock);
+
+ return rc;
+}
+
+static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
+{
+ struct kvmppc_xive *xive = dev->private;
+
+ /* We honor the existing XICS ioctl */
+ switch (attr->group) {
+ case KVM_DEV_XICS_GRP_SOURCES:
+ return xive_set_source(xive, attr->attr, attr->addr);
+ case KVM_DEV_XICS_GRP_CTRL:
+ switch (attr->attr) {
+ case KVM_DEV_XICS_NR_SERVERS:
+ return kvmppc_xive_set_nr_servers(xive, attr->addr);
+ }
+ }
+ return -ENXIO;
+}
+
+static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
+{
+ struct kvmppc_xive *xive = dev->private;
+
+ /* We honor the existing XICS ioctl */
+ switch (attr->group) {
+ case KVM_DEV_XICS_GRP_SOURCES:
+ return xive_get_source(xive, attr->attr, attr->addr);
+ }
+ return -ENXIO;
+}
+
+static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
+{
+ /* We honor the same limits as XICS, at least for now */
+ switch (attr->group) {
+ case KVM_DEV_XICS_GRP_SOURCES:
+ if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
+ attr->attr < KVMPPC_XICS_NR_IRQS)
+ return 0;
+ break;
+ case KVM_DEV_XICS_GRP_CTRL:
+ switch (attr->attr) {
+ case KVM_DEV_XICS_NR_SERVERS:
+ return 0;
+ }
+ }
+ return -ENXIO;
+}
+
+static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
+{
+ xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
+ xive_native_configure_irq(hw_num, 0, MASKED, 0);
+}
+
+void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
+{
+ int i;
+
+ for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
+ struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
+
+ if (!state->valid)
+ continue;
+
+ kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
+ xive_cleanup_irq_data(&state->ipi_data);
+ xive_native_free_irq(state->ipi_number);
+
+ /* Pass-through, cleanup too but keep IRQ hw data */
+ if (state->pt_number)
+ kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
+
+ state->valid = false;
+ }
+}
+
+/*
+ * Called when device fd is closed. kvm->lock is held.
+ */
+static void kvmppc_xive_release(struct kvm_device *dev)
+{
+ struct kvmppc_xive *xive = dev->private;
+ struct kvm *kvm = xive->kvm;
+ struct kvm_vcpu *vcpu;
+ unsigned long i;
+
+ pr_devel("Releasing xive device\n");
+
+ /*
+ * Since this is the device release function, we know that
+ * userspace does not have any open fd referring to the
+ * device. Therefore there can not be any of the device
+ * attribute set/get functions being executed concurrently,
+ * and similarly, the connect_vcpu and set/clr_mapped
+ * functions also cannot be being executed.
+ */
+
+ debugfs_remove(xive->dentry);
+
+ /*
+ * We should clean up the vCPU interrupt presenters first.
+ */
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ /*
+ * Take vcpu->mutex to ensure that no one_reg get/set ioctl
+ * (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently.
+ * Holding the vcpu->mutex also means that the vcpu cannot
+ * be executing the KVM_RUN ioctl, and therefore it cannot
+ * be executing the XIVE push or pull code or accessing
+ * the XIVE MMIO regions.
+ */
+ mutex_lock(&vcpu->mutex);
+ kvmppc_xive_cleanup_vcpu(vcpu);
+ mutex_unlock(&vcpu->mutex);
+ }
+
+ /*
+ * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type
+ * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe
+ * against xive code getting called during vcpu execution or
+ * set/get one_reg operations.
+ */
+ kvm->arch.xive = NULL;
+
+ /* Mask and free interrupts */
+ for (i = 0; i <= xive->max_sbid; i++) {
+ if (xive->src_blocks[i])
+ kvmppc_xive_free_sources(xive->src_blocks[i]);
+ kfree(xive->src_blocks[i]);
+ xive->src_blocks[i] = NULL;
+ }
+
+ if (xive->vp_base != XIVE_INVALID_VP)
+ xive_native_free_vp_block(xive->vp_base);
+
+ /*
+ * A reference of the kvmppc_xive pointer is now kept under
+ * the xive_devices struct of the machine for reuse. It is
+ * freed when the VM is destroyed for now until we fix all the
+ * execution paths.
+ */
+
+ kfree(dev);
+}
+
+/*
+ * When the guest chooses the interrupt mode (XICS legacy or XIVE
+ * native), the VM will switch of KVM device. The previous device will
+ * be "released" before the new one is created.
+ *
+ * Until we are sure all execution paths are well protected, provide a
+ * fail safe (transitional) method for device destruction, in which
+ * the XIVE device pointer is recycled and not directly freed.
+ */
+struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type)
+{
+ struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ?
+ &kvm->arch.xive_devices.native :
+ &kvm->arch.xive_devices.xics_on_xive;
+ struct kvmppc_xive *xive = *kvm_xive_device;
+
+ if (!xive) {
+ xive = kzalloc(sizeof(*xive), GFP_KERNEL);
+ *kvm_xive_device = xive;
+ } else {
+ memset(xive, 0, sizeof(*xive));
+ }
+
+ return xive;
+}
+
+/*
+ * Create a XICS device with XIVE backend. kvm->lock is held.
+ */
+static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
+{
+ struct kvmppc_xive *xive;
+ struct kvm *kvm = dev->kvm;
+
+ pr_devel("Creating xive for partition\n");
+
+ /* Already there ? */
+ if (kvm->arch.xive)
+ return -EEXIST;
+
+ xive = kvmppc_xive_get_device(kvm, type);
+ if (!xive)
+ return -ENOMEM;
+
+ dev->private = xive;
+ xive->dev = dev;
+ xive->kvm = kvm;
+ mutex_init(&xive->lock);
+
+ /* We use the default queue size set by the host */
+ xive->q_order = xive_native_default_eq_shift();
+ if (xive->q_order < PAGE_SHIFT)
+ xive->q_page_order = 0;
+ else
+ xive->q_page_order = xive->q_order - PAGE_SHIFT;
+
+ /* VP allocation is delayed to the first call to connect_vcpu */
+ xive->vp_base = XIVE_INVALID_VP;
+ /* KVM_MAX_VCPUS limits the number of VMs to roughly 64 per sockets
+ * on a POWER9 system.
+ */
+ xive->nr_servers = KVM_MAX_VCPUS;
+
+ if (xive_native_has_single_escalation())
+ xive->flags |= KVMPPC_XIVE_FLAG_SINGLE_ESCALATION;
+
+ if (xive_native_has_save_restore())
+ xive->flags |= KVMPPC_XIVE_FLAG_SAVE_RESTORE;
+
+ kvm->arch.xive = xive;
+ return 0;
+}
+
+int kvmppc_xive_xics_hcall(struct kvm_vcpu *vcpu, u32 req)
+{
+ struct kvmppc_vcore *vc = vcpu->arch.vcore;
+
+ /* The VM should have configured XICS mode before doing XICS hcalls. */
+ if (!kvmppc_xics_enabled(vcpu))
+ return H_TOO_HARD;
+
+ switch (req) {
+ case H_XIRR:
+ return xive_vm_h_xirr(vcpu);
+ case H_CPPR:
+ return xive_vm_h_cppr(vcpu, kvmppc_get_gpr(vcpu, 4));
+ case H_EOI:
+ return xive_vm_h_eoi(vcpu, kvmppc_get_gpr(vcpu, 4));
+ case H_IPI:
+ return xive_vm_h_ipi(vcpu, kvmppc_get_gpr(vcpu, 4),
+ kvmppc_get_gpr(vcpu, 5));
+ case H_IPOLL:
+ return xive_vm_h_ipoll(vcpu, kvmppc_get_gpr(vcpu, 4));
+ case H_XIRR_X:
+ xive_vm_h_xirr(vcpu);
+ kvmppc_set_gpr(vcpu, 5, get_tb() + vc->tb_offset);
+ return H_SUCCESS;
+ }
+
+ return H_UNSUPPORTED;
+}
+EXPORT_SYMBOL_GPL(kvmppc_xive_xics_hcall);
+
+int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+ unsigned int i;
+
+ for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
+ struct xive_q *q = &xc->queues[i];
+ u32 i0, i1, idx;
+
+ if (!q->qpage && !xc->esc_virq[i])
+ continue;
+
+ if (q->qpage) {
+ seq_printf(m, " q[%d]: ", i);
+ idx = q->idx;
+ i0 = be32_to_cpup(q->qpage + idx);
+ idx = (idx + 1) & q->msk;
+ i1 = be32_to_cpup(q->qpage + idx);
+ seq_printf(m, "T=%d %08x %08x...\n", q->toggle,
+ i0, i1);
+ }
+ if (xc->esc_virq[i]) {
+ struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]);
+ struct xive_irq_data *xd =
+ irq_data_get_irq_handler_data(d);
+ u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
+
+ seq_printf(m, " ESC %d %c%c EOI @%llx",
+ xc->esc_virq[i],
+ (pq & XIVE_ESB_VAL_P) ? 'P' : '-',
+ (pq & XIVE_ESB_VAL_Q) ? 'Q' : '-',
+ xd->eoi_page);
+ seq_puts(m, "\n");
+ }
+ }
+ return 0;
+}
+
+void kvmppc_xive_debug_show_sources(struct seq_file *m,
+ struct kvmppc_xive_src_block *sb)
+{
+ int i;
+
+ seq_puts(m, " LISN HW/CHIP TYPE PQ EISN CPU/PRIO\n");
+ for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
+ struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
+ struct xive_irq_data *xd;
+ u64 pq;
+ u32 hw_num;
+
+ if (!state->valid)
+ continue;
+
+ kvmppc_xive_select_irq(state, &hw_num, &xd);
+
+ pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
+
+ seq_printf(m, "%08x %08x/%02x", state->number, hw_num,
+ xd->src_chip);
+ if (state->lsi)
+ seq_printf(m, " %cLSI", state->asserted ? '^' : ' ');
+ else
+ seq_puts(m, " MSI");
+
+ seq_printf(m, " %s %c%c %08x % 4d/%d",
+ state->ipi_number == hw_num ? "IPI" : " PT",
+ pq & XIVE_ESB_VAL_P ? 'P' : '-',
+ pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
+ state->eisn, state->act_server,
+ state->act_priority);
+
+ seq_puts(m, "\n");
+ }
+}
+
+static int xive_debug_show(struct seq_file *m, void *private)
+{
+ struct kvmppc_xive *xive = m->private;
+ struct kvm *kvm = xive->kvm;
+ struct kvm_vcpu *vcpu;
+ u64 t_rm_h_xirr = 0;
+ u64 t_rm_h_ipoll = 0;
+ u64 t_rm_h_cppr = 0;
+ u64 t_rm_h_eoi = 0;
+ u64 t_rm_h_ipi = 0;
+ u64 t_vm_h_xirr = 0;
+ u64 t_vm_h_ipoll = 0;
+ u64 t_vm_h_cppr = 0;
+ u64 t_vm_h_eoi = 0;
+ u64 t_vm_h_ipi = 0;
+ unsigned long i;
+
+ if (!kvm)
+ return 0;
+
+ seq_puts(m, "=========\nVCPU state\n=========\n");
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+
+ if (!xc)
+ continue;
+
+ seq_printf(m, "VCPU %d: VP:%#x/%02x\n"
+ " CPPR:%#x HWCPPR:%#x MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
+ xc->server_num, xc->vp_id, xc->vp_chip_id,
+ xc->cppr, xc->hw_cppr,
+ xc->mfrr, xc->pending,
+ xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
+
+ kvmppc_xive_debug_show_queues(m, vcpu);
+
+ t_rm_h_xirr += xc->stat_rm_h_xirr;
+ t_rm_h_ipoll += xc->stat_rm_h_ipoll;
+ t_rm_h_cppr += xc->stat_rm_h_cppr;
+ t_rm_h_eoi += xc->stat_rm_h_eoi;
+ t_rm_h_ipi += xc->stat_rm_h_ipi;
+ t_vm_h_xirr += xc->stat_vm_h_xirr;
+ t_vm_h_ipoll += xc->stat_vm_h_ipoll;
+ t_vm_h_cppr += xc->stat_vm_h_cppr;
+ t_vm_h_eoi += xc->stat_vm_h_eoi;
+ t_vm_h_ipi += xc->stat_vm_h_ipi;
+ }
+
+ seq_puts(m, "Hcalls totals\n");
+ seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
+ seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
+ seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
+ seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
+ seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
+
+ seq_puts(m, "=========\nSources\n=========\n");
+
+ for (i = 0; i <= xive->max_sbid; i++) {
+ struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
+
+ if (sb) {
+ arch_spin_lock(&sb->lock);
+ kvmppc_xive_debug_show_sources(m, sb);
+ arch_spin_unlock(&sb->lock);
+ }
+ }
+
+ return 0;
+}
+
+DEFINE_SHOW_ATTRIBUTE(xive_debug);
+
+static void xive_debugfs_init(struct kvmppc_xive *xive)
+{
+ xive->dentry = debugfs_create_file("xive", S_IRUGO, xive->kvm->debugfs_dentry,
+ xive, &xive_debug_fops);
+
+ pr_debug("%s: created\n", __func__);
+}
+
+static void kvmppc_xive_init(struct kvm_device *dev)
+{
+ struct kvmppc_xive *xive = dev->private;
+
+ /* Register some debug interfaces */
+ xive_debugfs_init(xive);
+}
+
+struct kvm_device_ops kvm_xive_ops = {
+ .name = "kvm-xive",
+ .create = kvmppc_xive_create,
+ .init = kvmppc_xive_init,
+ .release = kvmppc_xive_release,
+ .set_attr = xive_set_attr,
+ .get_attr = xive_get_attr,
+ .has_attr = xive_has_attr,
+};
diff --git a/arch/powerpc/kvm/book3s_xive.h b/arch/powerpc/kvm/book3s_xive.h
new file mode 100644
index 000000000..1e48f72e8
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_xive.h
@@ -0,0 +1,314 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation
+ */
+
+#ifndef _KVM_PPC_BOOK3S_XIVE_H
+#define _KVM_PPC_BOOK3S_XIVE_H
+
+#ifdef CONFIG_KVM_XICS
+#include "book3s_xics.h"
+
+/*
+ * The XIVE Interrupt source numbers are within the range 0 to
+ * KVMPPC_XICS_NR_IRQS.
+ */
+#define KVMPPC_XIVE_FIRST_IRQ 0
+#define KVMPPC_XIVE_NR_IRQS KVMPPC_XICS_NR_IRQS
+
+/*
+ * State for one guest irq source.
+ *
+ * For each guest source we allocate a HW interrupt in the XIVE
+ * which we use for all SW triggers. It will be unused for
+ * pass-through but it's easier to keep around as the same
+ * guest interrupt can alternatively be emulated or pass-through
+ * if a physical device is hot unplugged and replaced with an
+ * emulated one.
+ *
+ * This state structure is very similar to the XICS one with
+ * additional XIVE specific tracking.
+ */
+struct kvmppc_xive_irq_state {
+ bool valid; /* Interrupt entry is valid */
+
+ u32 number; /* Guest IRQ number */
+ u32 ipi_number; /* XIVE IPI HW number */
+ struct xive_irq_data ipi_data; /* XIVE IPI associated data */
+ u32 pt_number; /* XIVE Pass-through number if any */
+ struct xive_irq_data *pt_data; /* XIVE Pass-through associated data */
+
+ /* Targetting as set by guest */
+ u8 guest_priority; /* Guest set priority */
+ u8 saved_priority; /* Saved priority when masking */
+
+ /* Actual targetting */
+ u32 act_server; /* Actual server */
+ u8 act_priority; /* Actual priority */
+
+ /* Various state bits */
+ bool in_eoi; /* Synchronize with H_EOI */
+ bool old_p; /* P bit state when masking */
+ bool old_q; /* Q bit state when masking */
+ bool lsi; /* level-sensitive interrupt */
+ bool asserted; /* Only for emulated LSI: current state */
+
+ /* Saved for migration state */
+ bool in_queue;
+ bool saved_p;
+ bool saved_q;
+ u8 saved_scan_prio;
+
+ /* Xive native */
+ u32 eisn; /* Guest Effective IRQ number */
+};
+
+/* Select the "right" interrupt (IPI vs. passthrough) */
+static inline void kvmppc_xive_select_irq(struct kvmppc_xive_irq_state *state,
+ u32 *out_hw_irq,
+ struct xive_irq_data **out_xd)
+{
+ if (state->pt_number) {
+ if (out_hw_irq)
+ *out_hw_irq = state->pt_number;
+ if (out_xd)
+ *out_xd = state->pt_data;
+ } else {
+ if (out_hw_irq)
+ *out_hw_irq = state->ipi_number;
+ if (out_xd)
+ *out_xd = &state->ipi_data;
+ }
+}
+
+/*
+ * This corresponds to an "ICS" in XICS terminology, we use it
+ * as a mean to break up source information into multiple structures.
+ */
+struct kvmppc_xive_src_block {
+ arch_spinlock_t lock;
+ u16 id;
+ struct kvmppc_xive_irq_state irq_state[KVMPPC_XICS_IRQ_PER_ICS];
+};
+
+struct kvmppc_xive;
+
+struct kvmppc_xive_ops {
+ int (*reset_mapped)(struct kvm *kvm, unsigned long guest_irq);
+};
+
+#define KVMPPC_XIVE_FLAG_SINGLE_ESCALATION 0x1
+#define KVMPPC_XIVE_FLAG_SAVE_RESTORE 0x2
+
+struct kvmppc_xive {
+ struct kvm *kvm;
+ struct kvm_device *dev;
+ struct dentry *dentry;
+
+ /* VP block associated with the VM */
+ u32 vp_base;
+
+ /* Blocks of sources */
+ struct kvmppc_xive_src_block *src_blocks[KVMPPC_XICS_MAX_ICS_ID + 1];
+ u32 max_sbid;
+
+ /*
+ * For state save, we lazily scan the queues on the first interrupt
+ * being migrated. We don't have a clean way to reset that flags
+ * so we keep track of the number of valid sources and how many of
+ * them were migrated so we can reset when all of them have been
+ * processed.
+ */
+ u32 src_count;
+ u32 saved_src_count;
+
+ /*
+ * Some irqs are delayed on restore until the source is created,
+ * keep track here of how many of them
+ */
+ u32 delayed_irqs;
+
+ /* Which queues (priorities) are in use by the guest */
+ u8 qmap;
+
+ /* Queue orders */
+ u32 q_order;
+ u32 q_page_order;
+
+ /* Flags */
+ u8 flags;
+
+ /* Number of entries in the VP block */
+ u32 nr_servers;
+
+ struct kvmppc_xive_ops *ops;
+ struct address_space *mapping;
+ struct mutex mapping_lock;
+ struct mutex lock;
+};
+
+#define KVMPPC_XIVE_Q_COUNT 8
+
+struct kvmppc_xive_vcpu {
+ struct kvmppc_xive *xive;
+ struct kvm_vcpu *vcpu;
+ bool valid;
+
+ /* Server number. This is the HW CPU ID from a guest perspective */
+ u32 server_num;
+
+ /*
+ * HW VP corresponding to this VCPU. This is the base of the VP
+ * block plus the server number.
+ */
+ u32 vp_id;
+ u32 vp_chip_id;
+ u32 vp_cam;
+
+ /* IPI used for sending ... IPIs */
+ u32 vp_ipi;
+ struct xive_irq_data vp_ipi_data;
+
+ /* Local emulation state */
+ uint8_t cppr; /* guest CPPR */
+ uint8_t hw_cppr;/* Hardware CPPR */
+ uint8_t mfrr;
+ uint8_t pending;
+
+ /* Each VP has 8 queues though we only provision some */
+ struct xive_q queues[KVMPPC_XIVE_Q_COUNT];
+ u32 esc_virq[KVMPPC_XIVE_Q_COUNT];
+ char *esc_virq_names[KVMPPC_XIVE_Q_COUNT];
+
+ /* Stash a delayed irq on restore from migration (see set_icp) */
+ u32 delayed_irq;
+
+ /* Stats */
+ u64 stat_rm_h_xirr;
+ u64 stat_rm_h_ipoll;
+ u64 stat_rm_h_cppr;
+ u64 stat_rm_h_eoi;
+ u64 stat_rm_h_ipi;
+ u64 stat_vm_h_xirr;
+ u64 stat_vm_h_ipoll;
+ u64 stat_vm_h_cppr;
+ u64 stat_vm_h_eoi;
+ u64 stat_vm_h_ipi;
+};
+
+static inline struct kvm_vcpu *kvmppc_xive_find_server(struct kvm *kvm, u32 nr)
+{
+ struct kvm_vcpu *vcpu = NULL;
+ unsigned long i;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (vcpu->arch.xive_vcpu && nr == vcpu->arch.xive_vcpu->server_num)
+ return vcpu;
+ }
+ return NULL;
+}
+
+static inline struct kvmppc_xive_src_block *kvmppc_xive_find_source(struct kvmppc_xive *xive,
+ u32 irq, u16 *source)
+{
+ u32 bid = irq >> KVMPPC_XICS_ICS_SHIFT;
+ u16 src = irq & KVMPPC_XICS_SRC_MASK;
+
+ if (source)
+ *source = src;
+ if (bid > KVMPPC_XICS_MAX_ICS_ID)
+ return NULL;
+ return xive->src_blocks[bid];
+}
+
+/*
+ * When the XIVE resources are allocated at the HW level, the VP
+ * structures describing the vCPUs of a guest are distributed among
+ * the chips to optimize the PowerBUS usage. For best performance, the
+ * guest vCPUs can be pinned to match the VP structure distribution.
+ *
+ * Currently, the VP identifiers are deduced from the vCPU id using
+ * the kvmppc_pack_vcpu_id() routine which is not incorrect but not
+ * optimal either. It VSMT is used, the result is not continuous and
+ * the constraints on HW resources described above can not be met.
+ */
+static inline u32 kvmppc_xive_vp(struct kvmppc_xive *xive, u32 server)
+{
+ return xive->vp_base + kvmppc_pack_vcpu_id(xive->kvm, server);
+}
+
+static inline bool kvmppc_xive_vp_in_use(struct kvm *kvm, u32 vp_id)
+{
+ struct kvm_vcpu *vcpu = NULL;
+ unsigned long i;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (vcpu->arch.xive_vcpu && vp_id == vcpu->arch.xive_vcpu->vp_id)
+ return true;
+ }
+ return false;
+}
+
+/*
+ * Mapping between guest priorities and host priorities
+ * is as follow.
+ *
+ * Guest request for 0...6 are honored. Guest request for anything
+ * higher results in a priority of 6 being applied.
+ *
+ * Similar mapping is done for CPPR values
+ */
+static inline u8 xive_prio_from_guest(u8 prio)
+{
+ if (prio == 0xff || prio < 6)
+ return prio;
+ return 6;
+}
+
+static inline u8 xive_prio_to_guest(u8 prio)
+{
+ return prio;
+}
+
+static inline u32 __xive_read_eq(__be32 *qpage, u32 msk, u32 *idx, u32 *toggle)
+{
+ u32 cur;
+
+ if (!qpage)
+ return 0;
+ cur = be32_to_cpup(qpage + *idx);
+ if ((cur >> 31) == *toggle)
+ return 0;
+ *idx = (*idx + 1) & msk;
+ if (*idx == 0)
+ (*toggle) ^= 1;
+ return cur & 0x7fffffff;
+}
+
+/*
+ * Common Xive routines for XICS-over-XIVE and XIVE native
+ */
+void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu);
+int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu);
+void kvmppc_xive_debug_show_sources(struct seq_file *m,
+ struct kvmppc_xive_src_block *sb);
+struct kvmppc_xive_src_block *kvmppc_xive_create_src_block(
+ struct kvmppc_xive *xive, int irq);
+void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb);
+int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio);
+int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio,
+ bool single_escalation);
+struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type);
+void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu,
+ struct kvmppc_xive_vcpu *xc, int irq);
+int kvmppc_xive_compute_vp_id(struct kvmppc_xive *xive, u32 cpu, u32 *vp);
+int kvmppc_xive_set_nr_servers(struct kvmppc_xive *xive, u64 addr);
+bool kvmppc_xive_check_save_restore(struct kvm_vcpu *vcpu);
+
+static inline bool kvmppc_xive_has_single_escalation(struct kvmppc_xive *xive)
+{
+ return xive->flags & KVMPPC_XIVE_FLAG_SINGLE_ESCALATION;
+}
+
+#endif /* CONFIG_KVM_XICS */
+#endif /* _KVM_PPC_BOOK3S_XICS_H */
diff --git a/arch/powerpc/kvm/book3s_xive_native.c b/arch/powerpc/kvm/book3s_xive_native.c
new file mode 100644
index 000000000..5271c33fe
--- /dev/null
+++ b/arch/powerpc/kvm/book3s_xive_native.c
@@ -0,0 +1,1285 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2017-2019, IBM Corporation.
+ */
+
+#define pr_fmt(fmt) "xive-kvm: " fmt
+
+#include <linux/kernel.h>
+#include <linux/kvm_host.h>
+#include <linux/err.h>
+#include <linux/gfp.h>
+#include <linux/spinlock.h>
+#include <linux/delay.h>
+#include <linux/file.h>
+#include <linux/irqdomain.h>
+#include <asm/uaccess.h>
+#include <asm/kvm_book3s.h>
+#include <asm/kvm_ppc.h>
+#include <asm/hvcall.h>
+#include <asm/xive.h>
+#include <asm/xive-regs.h>
+#include <asm/debug.h>
+#include <asm/opal.h>
+
+#include <linux/debugfs.h>
+#include <linux/seq_file.h>
+
+#include "book3s_xive.h"
+
+static u8 xive_vm_esb_load(struct xive_irq_data *xd, u32 offset)
+{
+ u64 val;
+
+ /*
+ * The KVM XIVE native device does not use the XIVE_ESB_SET_PQ_10
+ * load operation, so there is no need to enforce load-after-store
+ * ordering.
+ */
+
+ val = in_be64(xd->eoi_mmio + offset);
+ return (u8)val;
+}
+
+static void kvmppc_xive_native_cleanup_queue(struct kvm_vcpu *vcpu, int prio)
+{
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+ struct xive_q *q = &xc->queues[prio];
+
+ xive_native_disable_queue(xc->vp_id, q, prio);
+ if (q->qpage) {
+ put_page(virt_to_page(q->qpage));
+ q->qpage = NULL;
+ }
+}
+
+static int kvmppc_xive_native_configure_queue(u32 vp_id, struct xive_q *q,
+ u8 prio, __be32 *qpage,
+ u32 order, bool can_escalate)
+{
+ int rc;
+ __be32 *qpage_prev = q->qpage;
+
+ rc = xive_native_configure_queue(vp_id, q, prio, qpage, order,
+ can_escalate);
+ if (rc)
+ return rc;
+
+ if (qpage_prev)
+ put_page(virt_to_page(qpage_prev));
+
+ return rc;
+}
+
+void kvmppc_xive_native_cleanup_vcpu(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+ int i;
+
+ if (!kvmppc_xive_enabled(vcpu))
+ return;
+
+ if (!xc)
+ return;
+
+ pr_devel("native_cleanup_vcpu(cpu=%d)\n", xc->server_num);
+
+ /* Ensure no interrupt is still routed to that VP */
+ xc->valid = false;
+ kvmppc_xive_disable_vcpu_interrupts(vcpu);
+
+ /* Free escalations */
+ for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
+ /* Free the escalation irq */
+ if (xc->esc_virq[i]) {
+ if (kvmppc_xive_has_single_escalation(xc->xive))
+ xive_cleanup_single_escalation(vcpu, xc,
+ xc->esc_virq[i]);
+ free_irq(xc->esc_virq[i], vcpu);
+ irq_dispose_mapping(xc->esc_virq[i]);
+ kfree(xc->esc_virq_names[i]);
+ xc->esc_virq[i] = 0;
+ }
+ }
+
+ /* Disable the VP */
+ xive_native_disable_vp(xc->vp_id);
+
+ /* Clear the cam word so guest entry won't try to push context */
+ vcpu->arch.xive_cam_word = 0;
+
+ /* Free the queues */
+ for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
+ kvmppc_xive_native_cleanup_queue(vcpu, i);
+ }
+
+ /* Free the VP */
+ kfree(xc);
+
+ /* Cleanup the vcpu */
+ vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT;
+ vcpu->arch.xive_vcpu = NULL;
+}
+
+int kvmppc_xive_native_connect_vcpu(struct kvm_device *dev,
+ struct kvm_vcpu *vcpu, u32 server_num)
+{
+ struct kvmppc_xive *xive = dev->private;
+ struct kvmppc_xive_vcpu *xc = NULL;
+ int rc;
+ u32 vp_id;
+
+ pr_devel("native_connect_vcpu(server=%d)\n", server_num);
+
+ if (dev->ops != &kvm_xive_native_ops) {
+ pr_devel("Wrong ops !\n");
+ return -EPERM;
+ }
+ if (xive->kvm != vcpu->kvm)
+ return -EPERM;
+ if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT)
+ return -EBUSY;
+
+ mutex_lock(&xive->lock);
+
+ rc = kvmppc_xive_compute_vp_id(xive, server_num, &vp_id);
+ if (rc)
+ goto bail;
+
+ xc = kzalloc(sizeof(*xc), GFP_KERNEL);
+ if (!xc) {
+ rc = -ENOMEM;
+ goto bail;
+ }
+
+ vcpu->arch.xive_vcpu = xc;
+ xc->xive = xive;
+ xc->vcpu = vcpu;
+ xc->server_num = server_num;
+
+ xc->vp_id = vp_id;
+ xc->valid = true;
+ vcpu->arch.irq_type = KVMPPC_IRQ_XIVE;
+
+ rc = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
+ if (rc) {
+ pr_err("Failed to get VP info from OPAL: %d\n", rc);
+ goto bail;
+ }
+
+ if (!kvmppc_xive_check_save_restore(vcpu)) {
+ pr_err("inconsistent save-restore setup for VCPU %d\n", server_num);
+ rc = -EIO;
+ goto bail;
+ }
+
+ /*
+ * Enable the VP first as the single escalation mode will
+ * affect escalation interrupts numbering
+ */
+ rc = xive_native_enable_vp(xc->vp_id, kvmppc_xive_has_single_escalation(xive));
+ if (rc) {
+ pr_err("Failed to enable VP in OPAL: %d\n", rc);
+ goto bail;
+ }
+
+ /* Configure VCPU fields for use by assembly push/pull */
+ vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
+ vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
+
+ /* TODO: reset all queues to a clean state ? */
+bail:
+ mutex_unlock(&xive->lock);
+ if (rc)
+ kvmppc_xive_native_cleanup_vcpu(vcpu);
+
+ return rc;
+}
+
+/*
+ * Device passthrough support
+ */
+static int kvmppc_xive_native_reset_mapped(struct kvm *kvm, unsigned long irq)
+{
+ struct kvmppc_xive *xive = kvm->arch.xive;
+ pgoff_t esb_pgoff = KVM_XIVE_ESB_PAGE_OFFSET + irq * 2;
+
+ if (irq >= KVMPPC_XIVE_NR_IRQS)
+ return -EINVAL;
+
+ /*
+ * Clear the ESB pages of the IRQ number being mapped (or
+ * unmapped) into the guest and let the VM fault handler
+ * repopulate with the appropriate ESB pages (device or IC)
+ */
+ pr_debug("clearing esb pages for girq 0x%lx\n", irq);
+ mutex_lock(&xive->mapping_lock);
+ if (xive->mapping)
+ unmap_mapping_range(xive->mapping,
+ esb_pgoff << PAGE_SHIFT,
+ 2ull << PAGE_SHIFT, 1);
+ mutex_unlock(&xive->mapping_lock);
+ return 0;
+}
+
+static struct kvmppc_xive_ops kvmppc_xive_native_ops = {
+ .reset_mapped = kvmppc_xive_native_reset_mapped,
+};
+
+static vm_fault_t xive_native_esb_fault(struct vm_fault *vmf)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ struct kvm_device *dev = vma->vm_file->private_data;
+ struct kvmppc_xive *xive = dev->private;
+ struct kvmppc_xive_src_block *sb;
+ struct kvmppc_xive_irq_state *state;
+ struct xive_irq_data *xd;
+ u32 hw_num;
+ u16 src;
+ u64 page;
+ unsigned long irq;
+ u64 page_offset;
+
+ /*
+ * Linux/KVM uses a two pages ESB setting, one for trigger and
+ * one for EOI
+ */
+ page_offset = vmf->pgoff - vma->vm_pgoff;
+ irq = page_offset / 2;
+
+ sb = kvmppc_xive_find_source(xive, irq, &src);
+ if (!sb) {
+ pr_devel("%s: source %lx not found !\n", __func__, irq);
+ return VM_FAULT_SIGBUS;
+ }
+
+ state = &sb->irq_state[src];
+
+ /* Some sanity checking */
+ if (!state->valid) {
+ pr_devel("%s: source %lx invalid !\n", __func__, irq);
+ return VM_FAULT_SIGBUS;
+ }
+
+ kvmppc_xive_select_irq(state, &hw_num, &xd);
+
+ arch_spin_lock(&sb->lock);
+
+ /*
+ * first/even page is for trigger
+ * second/odd page is for EOI and management.
+ */
+ page = page_offset % 2 ? xd->eoi_page : xd->trig_page;
+ arch_spin_unlock(&sb->lock);
+
+ if (WARN_ON(!page)) {
+ pr_err("%s: accessing invalid ESB page for source %lx !\n",
+ __func__, irq);
+ return VM_FAULT_SIGBUS;
+ }
+
+ vmf_insert_pfn(vma, vmf->address, page >> PAGE_SHIFT);
+ return VM_FAULT_NOPAGE;
+}
+
+static const struct vm_operations_struct xive_native_esb_vmops = {
+ .fault = xive_native_esb_fault,
+};
+
+static vm_fault_t xive_native_tima_fault(struct vm_fault *vmf)
+{
+ struct vm_area_struct *vma = vmf->vma;
+
+ switch (vmf->pgoff - vma->vm_pgoff) {
+ case 0: /* HW - forbid access */
+ case 1: /* HV - forbid access */
+ return VM_FAULT_SIGBUS;
+ case 2: /* OS */
+ vmf_insert_pfn(vma, vmf->address, xive_tima_os >> PAGE_SHIFT);
+ return VM_FAULT_NOPAGE;
+ case 3: /* USER - TODO */
+ default:
+ return VM_FAULT_SIGBUS;
+ }
+}
+
+static const struct vm_operations_struct xive_native_tima_vmops = {
+ .fault = xive_native_tima_fault,
+};
+
+static int kvmppc_xive_native_mmap(struct kvm_device *dev,
+ struct vm_area_struct *vma)
+{
+ struct kvmppc_xive *xive = dev->private;
+
+ /* We only allow mappings at fixed offset for now */
+ if (vma->vm_pgoff == KVM_XIVE_TIMA_PAGE_OFFSET) {
+ if (vma_pages(vma) > 4)
+ return -EINVAL;
+ vma->vm_ops = &xive_native_tima_vmops;
+ } else if (vma->vm_pgoff == KVM_XIVE_ESB_PAGE_OFFSET) {
+ if (vma_pages(vma) > KVMPPC_XIVE_NR_IRQS * 2)
+ return -EINVAL;
+ vma->vm_ops = &xive_native_esb_vmops;
+ } else {
+ return -EINVAL;
+ }
+
+ vma->vm_flags |= VM_IO | VM_PFNMAP;
+ vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
+
+ /*
+ * Grab the KVM device file address_space to be able to clear
+ * the ESB pages mapping when a device is passed-through into
+ * the guest.
+ */
+ xive->mapping = vma->vm_file->f_mapping;
+ return 0;
+}
+
+static int kvmppc_xive_native_set_source(struct kvmppc_xive *xive, long irq,
+ u64 addr)
+{
+ struct kvmppc_xive_src_block *sb;
+ struct kvmppc_xive_irq_state *state;
+ u64 __user *ubufp = (u64 __user *) addr;
+ u64 val;
+ u16 idx;
+ int rc;
+
+ pr_devel("%s irq=0x%lx\n", __func__, irq);
+
+ if (irq < KVMPPC_XIVE_FIRST_IRQ || irq >= KVMPPC_XIVE_NR_IRQS)
+ return -E2BIG;
+
+ sb = kvmppc_xive_find_source(xive, irq, &idx);
+ if (!sb) {
+ pr_debug("No source, creating source block...\n");
+ sb = kvmppc_xive_create_src_block(xive, irq);
+ if (!sb) {
+ pr_err("Failed to create block...\n");
+ return -ENOMEM;
+ }
+ }
+ state = &sb->irq_state[idx];
+
+ if (get_user(val, ubufp)) {
+ pr_err("fault getting user info !\n");
+ return -EFAULT;
+ }
+
+ arch_spin_lock(&sb->lock);
+
+ /*
+ * If the source doesn't already have an IPI, allocate
+ * one and get the corresponding data
+ */
+ if (!state->ipi_number) {
+ state->ipi_number = xive_native_alloc_irq();
+ if (state->ipi_number == 0) {
+ pr_err("Failed to allocate IRQ !\n");
+ rc = -ENXIO;
+ goto unlock;
+ }
+ xive_native_populate_irq_data(state->ipi_number,
+ &state->ipi_data);
+ pr_debug("%s allocated hw_irq=0x%x for irq=0x%lx\n", __func__,
+ state->ipi_number, irq);
+ }
+
+ /* Restore LSI state */
+ if (val & KVM_XIVE_LEVEL_SENSITIVE) {
+ state->lsi = true;
+ if (val & KVM_XIVE_LEVEL_ASSERTED)
+ state->asserted = true;
+ pr_devel(" LSI ! Asserted=%d\n", state->asserted);
+ }
+
+ /* Mask IRQ to start with */
+ state->act_server = 0;
+ state->act_priority = MASKED;
+ xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
+ xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
+
+ /* Increment the number of valid sources and mark this one valid */
+ if (!state->valid)
+ xive->src_count++;
+ state->valid = true;
+
+ rc = 0;
+
+unlock:
+ arch_spin_unlock(&sb->lock);
+
+ return rc;
+}
+
+static int kvmppc_xive_native_update_source_config(struct kvmppc_xive *xive,
+ struct kvmppc_xive_src_block *sb,
+ struct kvmppc_xive_irq_state *state,
+ u32 server, u8 priority, bool masked,
+ u32 eisn)
+{
+ struct kvm *kvm = xive->kvm;
+ u32 hw_num;
+ int rc = 0;
+
+ arch_spin_lock(&sb->lock);
+
+ if (state->act_server == server && state->act_priority == priority &&
+ state->eisn == eisn)
+ goto unlock;
+
+ pr_devel("new_act_prio=%d new_act_server=%d mask=%d act_server=%d act_prio=%d\n",
+ priority, server, masked, state->act_server,
+ state->act_priority);
+
+ kvmppc_xive_select_irq(state, &hw_num, NULL);
+
+ if (priority != MASKED && !masked) {
+ rc = kvmppc_xive_select_target(kvm, &server, priority);
+ if (rc)
+ goto unlock;
+
+ state->act_priority = priority;
+ state->act_server = server;
+ state->eisn = eisn;
+
+ rc = xive_native_configure_irq(hw_num,
+ kvmppc_xive_vp(xive, server),
+ priority, eisn);
+ } else {
+ state->act_priority = MASKED;
+ state->act_server = 0;
+ state->eisn = 0;
+
+ rc = xive_native_configure_irq(hw_num, 0, MASKED, 0);
+ }
+
+unlock:
+ arch_spin_unlock(&sb->lock);
+ return rc;
+}
+
+static int kvmppc_xive_native_set_source_config(struct kvmppc_xive *xive,
+ long irq, u64 addr)
+{
+ struct kvmppc_xive_src_block *sb;
+ struct kvmppc_xive_irq_state *state;
+ u64 __user *ubufp = (u64 __user *) addr;
+ u16 src;
+ u64 kvm_cfg;
+ u32 server;
+ u8 priority;
+ bool masked;
+ u32 eisn;
+
+ sb = kvmppc_xive_find_source(xive, irq, &src);
+ if (!sb)
+ return -ENOENT;
+
+ state = &sb->irq_state[src];
+
+ if (!state->valid)
+ return -EINVAL;
+
+ if (get_user(kvm_cfg, ubufp))
+ return -EFAULT;
+
+ pr_devel("%s irq=0x%lx cfg=%016llx\n", __func__, irq, kvm_cfg);
+
+ priority = (kvm_cfg & KVM_XIVE_SOURCE_PRIORITY_MASK) >>
+ KVM_XIVE_SOURCE_PRIORITY_SHIFT;
+ server = (kvm_cfg & KVM_XIVE_SOURCE_SERVER_MASK) >>
+ KVM_XIVE_SOURCE_SERVER_SHIFT;
+ masked = (kvm_cfg & KVM_XIVE_SOURCE_MASKED_MASK) >>
+ KVM_XIVE_SOURCE_MASKED_SHIFT;
+ eisn = (kvm_cfg & KVM_XIVE_SOURCE_EISN_MASK) >>
+ KVM_XIVE_SOURCE_EISN_SHIFT;
+
+ if (priority != xive_prio_from_guest(priority)) {
+ pr_err("invalid priority for queue %d for VCPU %d\n",
+ priority, server);
+ return -EINVAL;
+ }
+
+ return kvmppc_xive_native_update_source_config(xive, sb, state, server,
+ priority, masked, eisn);
+}
+
+static int kvmppc_xive_native_sync_source(struct kvmppc_xive *xive,
+ long irq, u64 addr)
+{
+ struct kvmppc_xive_src_block *sb;
+ struct kvmppc_xive_irq_state *state;
+ struct xive_irq_data *xd;
+ u32 hw_num;
+ u16 src;
+ int rc = 0;
+
+ pr_devel("%s irq=0x%lx", __func__, irq);
+
+ sb = kvmppc_xive_find_source(xive, irq, &src);
+ if (!sb)
+ return -ENOENT;
+
+ state = &sb->irq_state[src];
+
+ rc = -EINVAL;
+
+ arch_spin_lock(&sb->lock);
+
+ if (state->valid) {
+ kvmppc_xive_select_irq(state, &hw_num, &xd);
+ xive_native_sync_source(hw_num);
+ rc = 0;
+ }
+
+ arch_spin_unlock(&sb->lock);
+ return rc;
+}
+
+static int xive_native_validate_queue_size(u32 qshift)
+{
+ /*
+ * We only support 64K pages for the moment. This is also
+ * advertised in the DT property "ibm,xive-eq-sizes"
+ */
+ switch (qshift) {
+ case 0: /* EQ reset */
+ case 16:
+ return 0;
+ case 12:
+ case 21:
+ case 24:
+ default:
+ return -EINVAL;
+ }
+}
+
+static int kvmppc_xive_native_set_queue_config(struct kvmppc_xive *xive,
+ long eq_idx, u64 addr)
+{
+ struct kvm *kvm = xive->kvm;
+ struct kvm_vcpu *vcpu;
+ struct kvmppc_xive_vcpu *xc;
+ void __user *ubufp = (void __user *) addr;
+ u32 server;
+ u8 priority;
+ struct kvm_ppc_xive_eq kvm_eq;
+ int rc;
+ __be32 *qaddr = 0;
+ struct page *page;
+ struct xive_q *q;
+ gfn_t gfn;
+ unsigned long page_size;
+ int srcu_idx;
+
+ /*
+ * Demangle priority/server tuple from the EQ identifier
+ */
+ priority = (eq_idx & KVM_XIVE_EQ_PRIORITY_MASK) >>
+ KVM_XIVE_EQ_PRIORITY_SHIFT;
+ server = (eq_idx & KVM_XIVE_EQ_SERVER_MASK) >>
+ KVM_XIVE_EQ_SERVER_SHIFT;
+
+ if (copy_from_user(&kvm_eq, ubufp, sizeof(kvm_eq)))
+ return -EFAULT;
+
+ vcpu = kvmppc_xive_find_server(kvm, server);
+ if (!vcpu) {
+ pr_err("Can't find server %d\n", server);
+ return -ENOENT;
+ }
+ xc = vcpu->arch.xive_vcpu;
+
+ if (priority != xive_prio_from_guest(priority)) {
+ pr_err("Trying to restore invalid queue %d for VCPU %d\n",
+ priority, server);
+ return -EINVAL;
+ }
+ q = &xc->queues[priority];
+
+ pr_devel("%s VCPU %d priority %d fl:%x shift:%d addr:%llx g:%d idx:%d\n",
+ __func__, server, priority, kvm_eq.flags,
+ kvm_eq.qshift, kvm_eq.qaddr, kvm_eq.qtoggle, kvm_eq.qindex);
+
+ /* reset queue and disable queueing */
+ if (!kvm_eq.qshift) {
+ q->guest_qaddr = 0;
+ q->guest_qshift = 0;
+
+ rc = kvmppc_xive_native_configure_queue(xc->vp_id, q, priority,
+ NULL, 0, true);
+ if (rc) {
+ pr_err("Failed to reset queue %d for VCPU %d: %d\n",
+ priority, xc->server_num, rc);
+ return rc;
+ }
+
+ return 0;
+ }
+
+ /*
+ * sPAPR specifies a "Unconditional Notify (n) flag" for the
+ * H_INT_SET_QUEUE_CONFIG hcall which forces notification
+ * without using the coalescing mechanisms provided by the
+ * XIVE END ESBs. This is required on KVM as notification
+ * using the END ESBs is not supported.
+ */
+ if (kvm_eq.flags != KVM_XIVE_EQ_ALWAYS_NOTIFY) {
+ pr_err("invalid flags %d\n", kvm_eq.flags);
+ return -EINVAL;
+ }
+
+ rc = xive_native_validate_queue_size(kvm_eq.qshift);
+ if (rc) {
+ pr_err("invalid queue size %d\n", kvm_eq.qshift);
+ return rc;
+ }
+
+ if (kvm_eq.qaddr & ((1ull << kvm_eq.qshift) - 1)) {
+ pr_err("queue page is not aligned %llx/%llx\n", kvm_eq.qaddr,
+ 1ull << kvm_eq.qshift);
+ return -EINVAL;
+ }
+
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+ gfn = gpa_to_gfn(kvm_eq.qaddr);
+
+ page_size = kvm_host_page_size(vcpu, gfn);
+ if (1ull << kvm_eq.qshift > page_size) {
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+ pr_warn("Incompatible host page size %lx!\n", page_size);
+ return -EINVAL;
+ }
+
+ page = gfn_to_page(kvm, gfn);
+ if (is_error_page(page)) {
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+ pr_err("Couldn't get queue page %llx!\n", kvm_eq.qaddr);
+ return -EINVAL;
+ }
+
+ qaddr = page_to_virt(page) + (kvm_eq.qaddr & ~PAGE_MASK);
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+
+ /*
+ * Backup the queue page guest address to the mark EQ page
+ * dirty for migration.
+ */
+ q->guest_qaddr = kvm_eq.qaddr;
+ q->guest_qshift = kvm_eq.qshift;
+
+ /*
+ * Unconditional Notification is forced by default at the
+ * OPAL level because the use of END ESBs is not supported by
+ * Linux.
+ */
+ rc = kvmppc_xive_native_configure_queue(xc->vp_id, q, priority,
+ (__be32 *) qaddr, kvm_eq.qshift, true);
+ if (rc) {
+ pr_err("Failed to configure queue %d for VCPU %d: %d\n",
+ priority, xc->server_num, rc);
+ put_page(page);
+ return rc;
+ }
+
+ /*
+ * Only restore the queue state when needed. When doing the
+ * H_INT_SET_SOURCE_CONFIG hcall, it should not.
+ */
+ if (kvm_eq.qtoggle != 1 || kvm_eq.qindex != 0) {
+ rc = xive_native_set_queue_state(xc->vp_id, priority,
+ kvm_eq.qtoggle,
+ kvm_eq.qindex);
+ if (rc)
+ goto error;
+ }
+
+ rc = kvmppc_xive_attach_escalation(vcpu, priority,
+ kvmppc_xive_has_single_escalation(xive));
+error:
+ if (rc)
+ kvmppc_xive_native_cleanup_queue(vcpu, priority);
+ return rc;
+}
+
+static int kvmppc_xive_native_get_queue_config(struct kvmppc_xive *xive,
+ long eq_idx, u64 addr)
+{
+ struct kvm *kvm = xive->kvm;
+ struct kvm_vcpu *vcpu;
+ struct kvmppc_xive_vcpu *xc;
+ struct xive_q *q;
+ void __user *ubufp = (u64 __user *) addr;
+ u32 server;
+ u8 priority;
+ struct kvm_ppc_xive_eq kvm_eq;
+ u64 qaddr;
+ u64 qshift;
+ u64 qeoi_page;
+ u32 escalate_irq;
+ u64 qflags;
+ int rc;
+
+ /*
+ * Demangle priority/server tuple from the EQ identifier
+ */
+ priority = (eq_idx & KVM_XIVE_EQ_PRIORITY_MASK) >>
+ KVM_XIVE_EQ_PRIORITY_SHIFT;
+ server = (eq_idx & KVM_XIVE_EQ_SERVER_MASK) >>
+ KVM_XIVE_EQ_SERVER_SHIFT;
+
+ vcpu = kvmppc_xive_find_server(kvm, server);
+ if (!vcpu) {
+ pr_err("Can't find server %d\n", server);
+ return -ENOENT;
+ }
+ xc = vcpu->arch.xive_vcpu;
+
+ if (priority != xive_prio_from_guest(priority)) {
+ pr_err("invalid priority for queue %d for VCPU %d\n",
+ priority, server);
+ return -EINVAL;
+ }
+ q = &xc->queues[priority];
+
+ memset(&kvm_eq, 0, sizeof(kvm_eq));
+
+ if (!q->qpage)
+ return 0;
+
+ rc = xive_native_get_queue_info(xc->vp_id, priority, &qaddr, &qshift,
+ &qeoi_page, &escalate_irq, &qflags);
+ if (rc)
+ return rc;
+
+ kvm_eq.flags = 0;
+ if (qflags & OPAL_XIVE_EQ_ALWAYS_NOTIFY)
+ kvm_eq.flags |= KVM_XIVE_EQ_ALWAYS_NOTIFY;
+
+ kvm_eq.qshift = q->guest_qshift;
+ kvm_eq.qaddr = q->guest_qaddr;
+
+ rc = xive_native_get_queue_state(xc->vp_id, priority, &kvm_eq.qtoggle,
+ &kvm_eq.qindex);
+ if (rc)
+ return rc;
+
+ pr_devel("%s VCPU %d priority %d fl:%x shift:%d addr:%llx g:%d idx:%d\n",
+ __func__, server, priority, kvm_eq.flags,
+ kvm_eq.qshift, kvm_eq.qaddr, kvm_eq.qtoggle, kvm_eq.qindex);
+
+ if (copy_to_user(ubufp, &kvm_eq, sizeof(kvm_eq)))
+ return -EFAULT;
+
+ return 0;
+}
+
+static void kvmppc_xive_reset_sources(struct kvmppc_xive_src_block *sb)
+{
+ int i;
+
+ for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
+ struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
+
+ if (!state->valid)
+ continue;
+
+ if (state->act_priority == MASKED)
+ continue;
+
+ state->eisn = 0;
+ state->act_server = 0;
+ state->act_priority = MASKED;
+ xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
+ xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
+ if (state->pt_number) {
+ xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
+ xive_native_configure_irq(state->pt_number,
+ 0, MASKED, 0);
+ }
+ }
+}
+
+static int kvmppc_xive_reset(struct kvmppc_xive *xive)
+{
+ struct kvm *kvm = xive->kvm;
+ struct kvm_vcpu *vcpu;
+ unsigned long i;
+
+ pr_devel("%s\n", __func__);
+
+ mutex_lock(&xive->lock);
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+ unsigned int prio;
+
+ if (!xc)
+ continue;
+
+ kvmppc_xive_disable_vcpu_interrupts(vcpu);
+
+ for (prio = 0; prio < KVMPPC_XIVE_Q_COUNT; prio++) {
+
+ /* Single escalation, no queue 7 */
+ if (prio == 7 && kvmppc_xive_has_single_escalation(xive))
+ break;
+
+ if (xc->esc_virq[prio]) {
+ free_irq(xc->esc_virq[prio], vcpu);
+ irq_dispose_mapping(xc->esc_virq[prio]);
+ kfree(xc->esc_virq_names[prio]);
+ xc->esc_virq[prio] = 0;
+ }
+
+ kvmppc_xive_native_cleanup_queue(vcpu, prio);
+ }
+ }
+
+ for (i = 0; i <= xive->max_sbid; i++) {
+ struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
+
+ if (sb) {
+ arch_spin_lock(&sb->lock);
+ kvmppc_xive_reset_sources(sb);
+ arch_spin_unlock(&sb->lock);
+ }
+ }
+
+ mutex_unlock(&xive->lock);
+
+ return 0;
+}
+
+static void kvmppc_xive_native_sync_sources(struct kvmppc_xive_src_block *sb)
+{
+ int j;
+
+ for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
+ struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
+ struct xive_irq_data *xd;
+ u32 hw_num;
+
+ if (!state->valid)
+ continue;
+
+ /*
+ * The struct kvmppc_xive_irq_state reflects the state
+ * of the EAS configuration and not the state of the
+ * source. The source is masked setting the PQ bits to
+ * '-Q', which is what is being done before calling
+ * the KVM_DEV_XIVE_EQ_SYNC control.
+ *
+ * If a source EAS is configured, OPAL syncs the XIVE
+ * IC of the source and the XIVE IC of the previous
+ * target if any.
+ *
+ * So it should be fine ignoring MASKED sources as
+ * they have been synced already.
+ */
+ if (state->act_priority == MASKED)
+ continue;
+
+ kvmppc_xive_select_irq(state, &hw_num, &xd);
+ xive_native_sync_source(hw_num);
+ xive_native_sync_queue(hw_num);
+ }
+}
+
+static int kvmppc_xive_native_vcpu_eq_sync(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+ unsigned int prio;
+ int srcu_idx;
+
+ if (!xc)
+ return -ENOENT;
+
+ for (prio = 0; prio < KVMPPC_XIVE_Q_COUNT; prio++) {
+ struct xive_q *q = &xc->queues[prio];
+
+ if (!q->qpage)
+ continue;
+
+ /* Mark EQ page dirty for migration */
+ srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+ mark_page_dirty(vcpu->kvm, gpa_to_gfn(q->guest_qaddr));
+ srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
+ }
+ return 0;
+}
+
+static int kvmppc_xive_native_eq_sync(struct kvmppc_xive *xive)
+{
+ struct kvm *kvm = xive->kvm;
+ struct kvm_vcpu *vcpu;
+ unsigned long i;
+
+ pr_devel("%s\n", __func__);
+
+ mutex_lock(&xive->lock);
+ for (i = 0; i <= xive->max_sbid; i++) {
+ struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
+
+ if (sb) {
+ arch_spin_lock(&sb->lock);
+ kvmppc_xive_native_sync_sources(sb);
+ arch_spin_unlock(&sb->lock);
+ }
+ }
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ kvmppc_xive_native_vcpu_eq_sync(vcpu);
+ }
+ mutex_unlock(&xive->lock);
+
+ return 0;
+}
+
+static int kvmppc_xive_native_set_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ struct kvmppc_xive *xive = dev->private;
+
+ switch (attr->group) {
+ case KVM_DEV_XIVE_GRP_CTRL:
+ switch (attr->attr) {
+ case KVM_DEV_XIVE_RESET:
+ return kvmppc_xive_reset(xive);
+ case KVM_DEV_XIVE_EQ_SYNC:
+ return kvmppc_xive_native_eq_sync(xive);
+ case KVM_DEV_XIVE_NR_SERVERS:
+ return kvmppc_xive_set_nr_servers(xive, attr->addr);
+ }
+ break;
+ case KVM_DEV_XIVE_GRP_SOURCE:
+ return kvmppc_xive_native_set_source(xive, attr->attr,
+ attr->addr);
+ case KVM_DEV_XIVE_GRP_SOURCE_CONFIG:
+ return kvmppc_xive_native_set_source_config(xive, attr->attr,
+ attr->addr);
+ case KVM_DEV_XIVE_GRP_EQ_CONFIG:
+ return kvmppc_xive_native_set_queue_config(xive, attr->attr,
+ attr->addr);
+ case KVM_DEV_XIVE_GRP_SOURCE_SYNC:
+ return kvmppc_xive_native_sync_source(xive, attr->attr,
+ attr->addr);
+ }
+ return -ENXIO;
+}
+
+static int kvmppc_xive_native_get_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ struct kvmppc_xive *xive = dev->private;
+
+ switch (attr->group) {
+ case KVM_DEV_XIVE_GRP_EQ_CONFIG:
+ return kvmppc_xive_native_get_queue_config(xive, attr->attr,
+ attr->addr);
+ }
+ return -ENXIO;
+}
+
+static int kvmppc_xive_native_has_attr(struct kvm_device *dev,
+ struct kvm_device_attr *attr)
+{
+ switch (attr->group) {
+ case KVM_DEV_XIVE_GRP_CTRL:
+ switch (attr->attr) {
+ case KVM_DEV_XIVE_RESET:
+ case KVM_DEV_XIVE_EQ_SYNC:
+ case KVM_DEV_XIVE_NR_SERVERS:
+ return 0;
+ }
+ break;
+ case KVM_DEV_XIVE_GRP_SOURCE:
+ case KVM_DEV_XIVE_GRP_SOURCE_CONFIG:
+ case KVM_DEV_XIVE_GRP_SOURCE_SYNC:
+ if (attr->attr >= KVMPPC_XIVE_FIRST_IRQ &&
+ attr->attr < KVMPPC_XIVE_NR_IRQS)
+ return 0;
+ break;
+ case KVM_DEV_XIVE_GRP_EQ_CONFIG:
+ return 0;
+ }
+ return -ENXIO;
+}
+
+/*
+ * Called when device fd is closed. kvm->lock is held.
+ */
+static void kvmppc_xive_native_release(struct kvm_device *dev)
+{
+ struct kvmppc_xive *xive = dev->private;
+ struct kvm *kvm = xive->kvm;
+ struct kvm_vcpu *vcpu;
+ unsigned long i;
+
+ pr_devel("Releasing xive native device\n");
+
+ /*
+ * Clear the KVM device file address_space which is used to
+ * unmap the ESB pages when a device is passed-through.
+ */
+ mutex_lock(&xive->mapping_lock);
+ xive->mapping = NULL;
+ mutex_unlock(&xive->mapping_lock);
+
+ /*
+ * Since this is the device release function, we know that
+ * userspace does not have any open fd or mmap referring to
+ * the device. Therefore there can not be any of the
+ * device attribute set/get, mmap, or page fault functions
+ * being executed concurrently, and similarly, the
+ * connect_vcpu and set/clr_mapped functions also cannot
+ * be being executed.
+ */
+
+ debugfs_remove(xive->dentry);
+
+ /*
+ * We should clean up the vCPU interrupt presenters first.
+ */
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ /*
+ * Take vcpu->mutex to ensure that no one_reg get/set ioctl
+ * (i.e. kvmppc_xive_native_[gs]et_vp) can be being done.
+ * Holding the vcpu->mutex also means that the vcpu cannot
+ * be executing the KVM_RUN ioctl, and therefore it cannot
+ * be executing the XIVE push or pull code or accessing
+ * the XIVE MMIO regions.
+ */
+ mutex_lock(&vcpu->mutex);
+ kvmppc_xive_native_cleanup_vcpu(vcpu);
+ mutex_unlock(&vcpu->mutex);
+ }
+
+ /*
+ * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type
+ * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe
+ * against xive code getting called during vcpu execution or
+ * set/get one_reg operations.
+ */
+ kvm->arch.xive = NULL;
+
+ for (i = 0; i <= xive->max_sbid; i++) {
+ if (xive->src_blocks[i])
+ kvmppc_xive_free_sources(xive->src_blocks[i]);
+ kfree(xive->src_blocks[i]);
+ xive->src_blocks[i] = NULL;
+ }
+
+ if (xive->vp_base != XIVE_INVALID_VP)
+ xive_native_free_vp_block(xive->vp_base);
+
+ /*
+ * A reference of the kvmppc_xive pointer is now kept under
+ * the xive_devices struct of the machine for reuse. It is
+ * freed when the VM is destroyed for now until we fix all the
+ * execution paths.
+ */
+
+ kfree(dev);
+}
+
+/*
+ * Create a XIVE device. kvm->lock is held.
+ */
+static int kvmppc_xive_native_create(struct kvm_device *dev, u32 type)
+{
+ struct kvmppc_xive *xive;
+ struct kvm *kvm = dev->kvm;
+
+ pr_devel("Creating xive native device\n");
+
+ if (kvm->arch.xive)
+ return -EEXIST;
+
+ xive = kvmppc_xive_get_device(kvm, type);
+ if (!xive)
+ return -ENOMEM;
+
+ dev->private = xive;
+ xive->dev = dev;
+ xive->kvm = kvm;
+ mutex_init(&xive->mapping_lock);
+ mutex_init(&xive->lock);
+
+ /* VP allocation is delayed to the first call to connect_vcpu */
+ xive->vp_base = XIVE_INVALID_VP;
+ /* KVM_MAX_VCPUS limits the number of VMs to roughly 64 per sockets
+ * on a POWER9 system.
+ */
+ xive->nr_servers = KVM_MAX_VCPUS;
+
+ if (xive_native_has_single_escalation())
+ xive->flags |= KVMPPC_XIVE_FLAG_SINGLE_ESCALATION;
+
+ if (xive_native_has_save_restore())
+ xive->flags |= KVMPPC_XIVE_FLAG_SAVE_RESTORE;
+
+ xive->ops = &kvmppc_xive_native_ops;
+
+ kvm->arch.xive = xive;
+ return 0;
+}
+
+/*
+ * Interrupt Pending Buffer (IPB) offset
+ */
+#define TM_IPB_SHIFT 40
+#define TM_IPB_MASK (((u64) 0xFF) << TM_IPB_SHIFT)
+
+int kvmppc_xive_native_get_vp(struct kvm_vcpu *vcpu, union kvmppc_one_reg *val)
+{
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+ u64 opal_state;
+ int rc;
+
+ if (!kvmppc_xive_enabled(vcpu))
+ return -EPERM;
+
+ if (!xc)
+ return -ENOENT;
+
+ /* Thread context registers. We only care about IPB and CPPR */
+ val->xive_timaval[0] = vcpu->arch.xive_saved_state.w01;
+
+ /* Get the VP state from OPAL */
+ rc = xive_native_get_vp_state(xc->vp_id, &opal_state);
+ if (rc)
+ return rc;
+
+ /*
+ * Capture the backup of IPB register in the NVT structure and
+ * merge it in our KVM VP state.
+ */
+ val->xive_timaval[0] |= cpu_to_be64(opal_state & TM_IPB_MASK);
+
+ pr_devel("%s NSR=%02x CPPR=%02x IBP=%02x PIPR=%02x w01=%016llx w2=%08x opal=%016llx\n",
+ __func__,
+ vcpu->arch.xive_saved_state.nsr,
+ vcpu->arch.xive_saved_state.cppr,
+ vcpu->arch.xive_saved_state.ipb,
+ vcpu->arch.xive_saved_state.pipr,
+ vcpu->arch.xive_saved_state.w01,
+ (u32) vcpu->arch.xive_cam_word, opal_state);
+
+ return 0;
+}
+
+int kvmppc_xive_native_set_vp(struct kvm_vcpu *vcpu, union kvmppc_one_reg *val)
+{
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+ struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
+
+ pr_devel("%s w01=%016llx vp=%016llx\n", __func__,
+ val->xive_timaval[0], val->xive_timaval[1]);
+
+ if (!kvmppc_xive_enabled(vcpu))
+ return -EPERM;
+
+ if (!xc || !xive)
+ return -ENOENT;
+
+ /* We can't update the state of a "pushed" VCPU */
+ if (WARN_ON(vcpu->arch.xive_pushed))
+ return -EBUSY;
+
+ /*
+ * Restore the thread context registers. IPB and CPPR should
+ * be the only ones that matter.
+ */
+ vcpu->arch.xive_saved_state.w01 = val->xive_timaval[0];
+
+ /*
+ * There is no need to restore the XIVE internal state (IPB
+ * stored in the NVT) as the IPB register was merged in KVM VP
+ * state when captured.
+ */
+ return 0;
+}
+
+bool kvmppc_xive_native_supported(void)
+{
+ return xive_native_has_queue_state_support();
+}
+
+static int xive_native_debug_show(struct seq_file *m, void *private)
+{
+ struct kvmppc_xive *xive = m->private;
+ struct kvm *kvm = xive->kvm;
+ struct kvm_vcpu *vcpu;
+ unsigned long i;
+
+ if (!kvm)
+ return 0;
+
+ seq_puts(m, "=========\nVCPU state\n=========\n");
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
+
+ if (!xc)
+ continue;
+
+ seq_printf(m, "VCPU %d: VP=%#x/%02x\n"
+ " NSR=%02x CPPR=%02x IBP=%02x PIPR=%02x w01=%016llx w2=%08x\n",
+ xc->server_num, xc->vp_id, xc->vp_chip_id,
+ vcpu->arch.xive_saved_state.nsr,
+ vcpu->arch.xive_saved_state.cppr,
+ vcpu->arch.xive_saved_state.ipb,
+ vcpu->arch.xive_saved_state.pipr,
+ be64_to_cpu(vcpu->arch.xive_saved_state.w01),
+ be32_to_cpu(vcpu->arch.xive_cam_word));
+
+ kvmppc_xive_debug_show_queues(m, vcpu);
+ }
+
+ seq_puts(m, "=========\nSources\n=========\n");
+
+ for (i = 0; i <= xive->max_sbid; i++) {
+ struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
+
+ if (sb) {
+ arch_spin_lock(&sb->lock);
+ kvmppc_xive_debug_show_sources(m, sb);
+ arch_spin_unlock(&sb->lock);
+ }
+ }
+
+ return 0;
+}
+
+DEFINE_SHOW_ATTRIBUTE(xive_native_debug);
+
+static void xive_native_debugfs_init(struct kvmppc_xive *xive)
+{
+ xive->dentry = debugfs_create_file("xive", 0444, xive->kvm->debugfs_dentry,
+ xive, &xive_native_debug_fops);
+
+ pr_debug("%s: created\n", __func__);
+}
+
+static void kvmppc_xive_native_init(struct kvm_device *dev)
+{
+ struct kvmppc_xive *xive = dev->private;
+
+ /* Register some debug interfaces */
+ xive_native_debugfs_init(xive);
+}
+
+struct kvm_device_ops kvm_xive_native_ops = {
+ .name = "kvm-xive-native",
+ .create = kvmppc_xive_native_create,
+ .init = kvmppc_xive_native_init,
+ .release = kvmppc_xive_native_release,
+ .set_attr = kvmppc_xive_native_set_attr,
+ .get_attr = kvmppc_xive_native_get_attr,
+ .has_attr = kvmppc_xive_native_has_attr,
+ .mmap = kvmppc_xive_native_mmap,
+};
diff --git a/arch/powerpc/kvm/booke.c b/arch/powerpc/kvm/booke.c
new file mode 100644
index 000000000..7b4920e9f
--- /dev/null
+++ b/arch/powerpc/kvm/booke.c
@@ -0,0 +1,2232 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ *
+ * Copyright IBM Corp. 2007
+ * Copyright 2010-2011 Freescale Semiconductor, Inc.
+ *
+ * Authors: Hollis Blanchard <hollisb@us.ibm.com>
+ * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
+ * Scott Wood <scottwood@freescale.com>
+ * Varun Sethi <varun.sethi@freescale.com>
+ */
+
+#include <linux/errno.h>
+#include <linux/err.h>
+#include <linux/kvm_host.h>
+#include <linux/gfp.h>
+#include <linux/module.h>
+#include <linux/vmalloc.h>
+#include <linux/fs.h>
+
+#include <asm/cputable.h>
+#include <linux/uaccess.h>
+#include <asm/interrupt.h>
+#include <asm/kvm_ppc.h>
+#include <asm/cacheflush.h>
+#include <asm/dbell.h>
+#include <asm/hw_irq.h>
+#include <asm/irq.h>
+#include <asm/time.h>
+
+#include "timing.h"
+#include "booke.h"
+
+#define CREATE_TRACE_POINTS
+#include "trace_booke.h"
+
+unsigned long kvmppc_booke_handlers;
+
+const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
+ KVM_GENERIC_VM_STATS(),
+ STATS_DESC_ICOUNTER(VM, num_2M_pages),
+ STATS_DESC_ICOUNTER(VM, num_1G_pages)
+};
+
+const struct kvm_stats_header kvm_vm_stats_header = {
+ .name_size = KVM_STATS_NAME_SIZE,
+ .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
+ .id_offset = sizeof(struct kvm_stats_header),
+ .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
+ .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
+ sizeof(kvm_vm_stats_desc),
+};
+
+const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
+ KVM_GENERIC_VCPU_STATS(),
+ STATS_DESC_COUNTER(VCPU, sum_exits),
+ STATS_DESC_COUNTER(VCPU, mmio_exits),
+ STATS_DESC_COUNTER(VCPU, signal_exits),
+ STATS_DESC_COUNTER(VCPU, light_exits),
+ STATS_DESC_COUNTER(VCPU, itlb_real_miss_exits),
+ STATS_DESC_COUNTER(VCPU, itlb_virt_miss_exits),
+ STATS_DESC_COUNTER(VCPU, dtlb_real_miss_exits),
+ STATS_DESC_COUNTER(VCPU, dtlb_virt_miss_exits),
+ STATS_DESC_COUNTER(VCPU, syscall_exits),
+ STATS_DESC_COUNTER(VCPU, isi_exits),
+ STATS_DESC_COUNTER(VCPU, dsi_exits),
+ STATS_DESC_COUNTER(VCPU, emulated_inst_exits),
+ STATS_DESC_COUNTER(VCPU, dec_exits),
+ STATS_DESC_COUNTER(VCPU, ext_intr_exits),
+ STATS_DESC_COUNTER(VCPU, halt_successful_wait),
+ STATS_DESC_COUNTER(VCPU, dbell_exits),
+ STATS_DESC_COUNTER(VCPU, gdbell_exits),
+ STATS_DESC_COUNTER(VCPU, ld),
+ STATS_DESC_COUNTER(VCPU, st),
+ STATS_DESC_COUNTER(VCPU, pthru_all),
+ STATS_DESC_COUNTER(VCPU, pthru_host),
+ STATS_DESC_COUNTER(VCPU, pthru_bad_aff)
+};
+
+const struct kvm_stats_header kvm_vcpu_stats_header = {
+ .name_size = KVM_STATS_NAME_SIZE,
+ .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
+ .id_offset = sizeof(struct kvm_stats_header),
+ .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
+ .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
+ sizeof(kvm_vcpu_stats_desc),
+};
+
+/* TODO: use vcpu_printf() */
+void kvmppc_dump_vcpu(struct kvm_vcpu *vcpu)
+{
+ int i;
+
+ printk("pc: %08lx msr: %08llx\n", vcpu->arch.regs.nip,
+ vcpu->arch.shared->msr);
+ printk("lr: %08lx ctr: %08lx\n", vcpu->arch.regs.link,
+ vcpu->arch.regs.ctr);
+ printk("srr0: %08llx srr1: %08llx\n", vcpu->arch.shared->srr0,
+ vcpu->arch.shared->srr1);
+
+ printk("exceptions: %08lx\n", vcpu->arch.pending_exceptions);
+
+ for (i = 0; i < 32; i += 4) {
+ printk("gpr%02d: %08lx %08lx %08lx %08lx\n", i,
+ kvmppc_get_gpr(vcpu, i),
+ kvmppc_get_gpr(vcpu, i+1),
+ kvmppc_get_gpr(vcpu, i+2),
+ kvmppc_get_gpr(vcpu, i+3));
+ }
+}
+
+#ifdef CONFIG_SPE
+void kvmppc_vcpu_disable_spe(struct kvm_vcpu *vcpu)
+{
+ preempt_disable();
+ enable_kernel_spe();
+ kvmppc_save_guest_spe(vcpu);
+ disable_kernel_spe();
+ vcpu->arch.shadow_msr &= ~MSR_SPE;
+ preempt_enable();
+}
+
+static void kvmppc_vcpu_enable_spe(struct kvm_vcpu *vcpu)
+{
+ preempt_disable();
+ enable_kernel_spe();
+ kvmppc_load_guest_spe(vcpu);
+ disable_kernel_spe();
+ vcpu->arch.shadow_msr |= MSR_SPE;
+ preempt_enable();
+}
+
+static void kvmppc_vcpu_sync_spe(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->arch.shared->msr & MSR_SPE) {
+ if (!(vcpu->arch.shadow_msr & MSR_SPE))
+ kvmppc_vcpu_enable_spe(vcpu);
+ } else if (vcpu->arch.shadow_msr & MSR_SPE) {
+ kvmppc_vcpu_disable_spe(vcpu);
+ }
+}
+#else
+static void kvmppc_vcpu_sync_spe(struct kvm_vcpu *vcpu)
+{
+}
+#endif
+
+/*
+ * Load up guest vcpu FP state if it's needed.
+ * It also set the MSR_FP in thread so that host know
+ * we're holding FPU, and then host can help to save
+ * guest vcpu FP state if other threads require to use FPU.
+ * This simulates an FP unavailable fault.
+ *
+ * It requires to be called with preemption disabled.
+ */
+static inline void kvmppc_load_guest_fp(struct kvm_vcpu *vcpu)
+{
+#ifdef CONFIG_PPC_FPU
+ if (!(current->thread.regs->msr & MSR_FP)) {
+ enable_kernel_fp();
+ load_fp_state(&vcpu->arch.fp);
+ disable_kernel_fp();
+ current->thread.fp_save_area = &vcpu->arch.fp;
+ current->thread.regs->msr |= MSR_FP;
+ }
+#endif
+}
+
+/*
+ * Save guest vcpu FP state into thread.
+ * It requires to be called with preemption disabled.
+ */
+static inline void kvmppc_save_guest_fp(struct kvm_vcpu *vcpu)
+{
+#ifdef CONFIG_PPC_FPU
+ if (current->thread.regs->msr & MSR_FP)
+ giveup_fpu(current);
+ current->thread.fp_save_area = NULL;
+#endif
+}
+
+static void kvmppc_vcpu_sync_fpu(struct kvm_vcpu *vcpu)
+{
+#if defined(CONFIG_PPC_FPU) && !defined(CONFIG_KVM_BOOKE_HV)
+ /* We always treat the FP bit as enabled from the host
+ perspective, so only need to adjust the shadow MSR */
+ vcpu->arch.shadow_msr &= ~MSR_FP;
+ vcpu->arch.shadow_msr |= vcpu->arch.shared->msr & MSR_FP;
+#endif
+}
+
+/*
+ * Simulate AltiVec unavailable fault to load guest state
+ * from thread to AltiVec unit.
+ * It requires to be called with preemption disabled.
+ */
+static inline void kvmppc_load_guest_altivec(struct kvm_vcpu *vcpu)
+{
+#ifdef CONFIG_ALTIVEC
+ if (cpu_has_feature(CPU_FTR_ALTIVEC)) {
+ if (!(current->thread.regs->msr & MSR_VEC)) {
+ enable_kernel_altivec();
+ load_vr_state(&vcpu->arch.vr);
+ disable_kernel_altivec();
+ current->thread.vr_save_area = &vcpu->arch.vr;
+ current->thread.regs->msr |= MSR_VEC;
+ }
+ }
+#endif
+}
+
+/*
+ * Save guest vcpu AltiVec state into thread.
+ * It requires to be called with preemption disabled.
+ */
+static inline void kvmppc_save_guest_altivec(struct kvm_vcpu *vcpu)
+{
+#ifdef CONFIG_ALTIVEC
+ if (cpu_has_feature(CPU_FTR_ALTIVEC)) {
+ if (current->thread.regs->msr & MSR_VEC)
+ giveup_altivec(current);
+ current->thread.vr_save_area = NULL;
+ }
+#endif
+}
+
+static void kvmppc_vcpu_sync_debug(struct kvm_vcpu *vcpu)
+{
+ /* Synchronize guest's desire to get debug interrupts into shadow MSR */
+#ifndef CONFIG_KVM_BOOKE_HV
+ vcpu->arch.shadow_msr &= ~MSR_DE;
+ vcpu->arch.shadow_msr |= vcpu->arch.shared->msr & MSR_DE;
+#endif
+
+ /* Force enable debug interrupts when user space wants to debug */
+ if (vcpu->guest_debug) {
+#ifdef CONFIG_KVM_BOOKE_HV
+ /*
+ * Since there is no shadow MSR, sync MSR_DE into the guest
+ * visible MSR.
+ */
+ vcpu->arch.shared->msr |= MSR_DE;
+#else
+ vcpu->arch.shadow_msr |= MSR_DE;
+ vcpu->arch.shared->msr &= ~MSR_DE;
+#endif
+ }
+}
+
+/*
+ * Helper function for "full" MSR writes. No need to call this if only
+ * EE/CE/ME/DE/RI are changing.
+ */
+void kvmppc_set_msr(struct kvm_vcpu *vcpu, u32 new_msr)
+{
+ u32 old_msr = vcpu->arch.shared->msr;
+
+#ifdef CONFIG_KVM_BOOKE_HV
+ new_msr |= MSR_GS;
+#endif
+
+ vcpu->arch.shared->msr = new_msr;
+
+ kvmppc_mmu_msr_notify(vcpu, old_msr);
+ kvmppc_vcpu_sync_spe(vcpu);
+ kvmppc_vcpu_sync_fpu(vcpu);
+ kvmppc_vcpu_sync_debug(vcpu);
+}
+
+static void kvmppc_booke_queue_irqprio(struct kvm_vcpu *vcpu,
+ unsigned int priority)
+{
+ trace_kvm_booke_queue_irqprio(vcpu, priority);
+ set_bit(priority, &vcpu->arch.pending_exceptions);
+}
+
+void kvmppc_core_queue_dtlb_miss(struct kvm_vcpu *vcpu,
+ ulong dear_flags, ulong esr_flags)
+{
+ vcpu->arch.queued_dear = dear_flags;
+ vcpu->arch.queued_esr = esr_flags;
+ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DTLB_MISS);
+}
+
+void kvmppc_core_queue_data_storage(struct kvm_vcpu *vcpu,
+ ulong dear_flags, ulong esr_flags)
+{
+ vcpu->arch.queued_dear = dear_flags;
+ vcpu->arch.queued_esr = esr_flags;
+ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DATA_STORAGE);
+}
+
+void kvmppc_core_queue_itlb_miss(struct kvm_vcpu *vcpu)
+{
+ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ITLB_MISS);
+}
+
+void kvmppc_core_queue_inst_storage(struct kvm_vcpu *vcpu, ulong esr_flags)
+{
+ vcpu->arch.queued_esr = esr_flags;
+ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_INST_STORAGE);
+}
+
+static void kvmppc_core_queue_alignment(struct kvm_vcpu *vcpu, ulong dear_flags,
+ ulong esr_flags)
+{
+ vcpu->arch.queued_dear = dear_flags;
+ vcpu->arch.queued_esr = esr_flags;
+ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ALIGNMENT);
+}
+
+void kvmppc_core_queue_program(struct kvm_vcpu *vcpu, ulong esr_flags)
+{
+ vcpu->arch.queued_esr = esr_flags;
+ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_PROGRAM);
+}
+
+void kvmppc_core_queue_fpunavail(struct kvm_vcpu *vcpu)
+{
+ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_FP_UNAVAIL);
+}
+
+#ifdef CONFIG_ALTIVEC
+void kvmppc_core_queue_vec_unavail(struct kvm_vcpu *vcpu)
+{
+ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ALTIVEC_UNAVAIL);
+}
+#endif
+
+void kvmppc_core_queue_dec(struct kvm_vcpu *vcpu)
+{
+ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DECREMENTER);
+}
+
+int kvmppc_core_pending_dec(struct kvm_vcpu *vcpu)
+{
+ return test_bit(BOOKE_IRQPRIO_DECREMENTER, &vcpu->arch.pending_exceptions);
+}
+
+void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu)
+{
+ clear_bit(BOOKE_IRQPRIO_DECREMENTER, &vcpu->arch.pending_exceptions);
+}
+
+void kvmppc_core_queue_external(struct kvm_vcpu *vcpu,
+ struct kvm_interrupt *irq)
+{
+ unsigned int prio = BOOKE_IRQPRIO_EXTERNAL;
+
+ if (irq->irq == KVM_INTERRUPT_SET_LEVEL)
+ prio = BOOKE_IRQPRIO_EXTERNAL_LEVEL;
+
+ kvmppc_booke_queue_irqprio(vcpu, prio);
+}
+
+void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu)
+{
+ clear_bit(BOOKE_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions);
+ clear_bit(BOOKE_IRQPRIO_EXTERNAL_LEVEL, &vcpu->arch.pending_exceptions);
+}
+
+static void kvmppc_core_queue_watchdog(struct kvm_vcpu *vcpu)
+{
+ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_WATCHDOG);
+}
+
+static void kvmppc_core_dequeue_watchdog(struct kvm_vcpu *vcpu)
+{
+ clear_bit(BOOKE_IRQPRIO_WATCHDOG, &vcpu->arch.pending_exceptions);
+}
+
+void kvmppc_core_queue_debug(struct kvm_vcpu *vcpu)
+{
+ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DEBUG);
+}
+
+void kvmppc_core_dequeue_debug(struct kvm_vcpu *vcpu)
+{
+ clear_bit(BOOKE_IRQPRIO_DEBUG, &vcpu->arch.pending_exceptions);
+}
+
+static void set_guest_srr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
+{
+ kvmppc_set_srr0(vcpu, srr0);
+ kvmppc_set_srr1(vcpu, srr1);
+}
+
+static void set_guest_csrr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
+{
+ vcpu->arch.csrr0 = srr0;
+ vcpu->arch.csrr1 = srr1;
+}
+
+static void set_guest_dsrr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
+{
+ if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) {
+ vcpu->arch.dsrr0 = srr0;
+ vcpu->arch.dsrr1 = srr1;
+ } else {
+ set_guest_csrr(vcpu, srr0, srr1);
+ }
+}
+
+static void set_guest_mcsrr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
+{
+ vcpu->arch.mcsrr0 = srr0;
+ vcpu->arch.mcsrr1 = srr1;
+}
+
+/* Deliver the interrupt of the corresponding priority, if possible. */
+static int kvmppc_booke_irqprio_deliver(struct kvm_vcpu *vcpu,
+ unsigned int priority)
+{
+ int allowed = 0;
+ ulong msr_mask = 0;
+ bool update_esr = false, update_dear = false, update_epr = false;
+ ulong crit_raw = vcpu->arch.shared->critical;
+ ulong crit_r1 = kvmppc_get_gpr(vcpu, 1);
+ bool crit;
+ bool keep_irq = false;
+ enum int_class int_class;
+ ulong new_msr = vcpu->arch.shared->msr;
+
+ /* Truncate crit indicators in 32 bit mode */
+ if (!(vcpu->arch.shared->msr & MSR_SF)) {
+ crit_raw &= 0xffffffff;
+ crit_r1 &= 0xffffffff;
+ }
+
+ /* Critical section when crit == r1 */
+ crit = (crit_raw == crit_r1);
+ /* ... and we're in supervisor mode */
+ crit = crit && !(vcpu->arch.shared->msr & MSR_PR);
+
+ if (priority == BOOKE_IRQPRIO_EXTERNAL_LEVEL) {
+ priority = BOOKE_IRQPRIO_EXTERNAL;
+ keep_irq = true;
+ }
+
+ if ((priority == BOOKE_IRQPRIO_EXTERNAL) && vcpu->arch.epr_flags)
+ update_epr = true;
+
+ switch (priority) {
+ case BOOKE_IRQPRIO_DTLB_MISS:
+ case BOOKE_IRQPRIO_DATA_STORAGE:
+ case BOOKE_IRQPRIO_ALIGNMENT:
+ update_dear = true;
+ fallthrough;
+ case BOOKE_IRQPRIO_INST_STORAGE:
+ case BOOKE_IRQPRIO_PROGRAM:
+ update_esr = true;
+ fallthrough;
+ case BOOKE_IRQPRIO_ITLB_MISS:
+ case BOOKE_IRQPRIO_SYSCALL:
+ case BOOKE_IRQPRIO_FP_UNAVAIL:
+#ifdef CONFIG_SPE_POSSIBLE
+ case BOOKE_IRQPRIO_SPE_UNAVAIL:
+ case BOOKE_IRQPRIO_SPE_FP_DATA:
+ case BOOKE_IRQPRIO_SPE_FP_ROUND:
+#endif
+#ifdef CONFIG_ALTIVEC
+ case BOOKE_IRQPRIO_ALTIVEC_UNAVAIL:
+ case BOOKE_IRQPRIO_ALTIVEC_ASSIST:
+#endif
+ case BOOKE_IRQPRIO_AP_UNAVAIL:
+ allowed = 1;
+ msr_mask = MSR_CE | MSR_ME | MSR_DE;
+ int_class = INT_CLASS_NONCRIT;
+ break;
+ case BOOKE_IRQPRIO_WATCHDOG:
+ case BOOKE_IRQPRIO_CRITICAL:
+ case BOOKE_IRQPRIO_DBELL_CRIT:
+ allowed = vcpu->arch.shared->msr & MSR_CE;
+ allowed = allowed && !crit;
+ msr_mask = MSR_ME;
+ int_class = INT_CLASS_CRIT;
+ break;
+ case BOOKE_IRQPRIO_MACHINE_CHECK:
+ allowed = vcpu->arch.shared->msr & MSR_ME;
+ allowed = allowed && !crit;
+ int_class = INT_CLASS_MC;
+ break;
+ case BOOKE_IRQPRIO_DECREMENTER:
+ case BOOKE_IRQPRIO_FIT:
+ keep_irq = true;
+ fallthrough;
+ case BOOKE_IRQPRIO_EXTERNAL:
+ case BOOKE_IRQPRIO_DBELL:
+ allowed = vcpu->arch.shared->msr & MSR_EE;
+ allowed = allowed && !crit;
+ msr_mask = MSR_CE | MSR_ME | MSR_DE;
+ int_class = INT_CLASS_NONCRIT;
+ break;
+ case BOOKE_IRQPRIO_DEBUG:
+ allowed = vcpu->arch.shared->msr & MSR_DE;
+ allowed = allowed && !crit;
+ msr_mask = MSR_ME;
+ if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
+ int_class = INT_CLASS_DBG;
+ else
+ int_class = INT_CLASS_CRIT;
+
+ break;
+ }
+
+ if (allowed) {
+ switch (int_class) {
+ case INT_CLASS_NONCRIT:
+ set_guest_srr(vcpu, vcpu->arch.regs.nip,
+ vcpu->arch.shared->msr);
+ break;
+ case INT_CLASS_CRIT:
+ set_guest_csrr(vcpu, vcpu->arch.regs.nip,
+ vcpu->arch.shared->msr);
+ break;
+ case INT_CLASS_DBG:
+ set_guest_dsrr(vcpu, vcpu->arch.regs.nip,
+ vcpu->arch.shared->msr);
+ break;
+ case INT_CLASS_MC:
+ set_guest_mcsrr(vcpu, vcpu->arch.regs.nip,
+ vcpu->arch.shared->msr);
+ break;
+ }
+
+ vcpu->arch.regs.nip = vcpu->arch.ivpr |
+ vcpu->arch.ivor[priority];
+ if (update_esr)
+ kvmppc_set_esr(vcpu, vcpu->arch.queued_esr);
+ if (update_dear)
+ kvmppc_set_dar(vcpu, vcpu->arch.queued_dear);
+ if (update_epr) {
+ if (vcpu->arch.epr_flags & KVMPPC_EPR_USER)
+ kvm_make_request(KVM_REQ_EPR_EXIT, vcpu);
+ else if (vcpu->arch.epr_flags & KVMPPC_EPR_KERNEL) {
+ BUG_ON(vcpu->arch.irq_type != KVMPPC_IRQ_MPIC);
+ kvmppc_mpic_set_epr(vcpu);
+ }
+ }
+
+ new_msr &= msr_mask;
+#if defined(CONFIG_64BIT)
+ if (vcpu->arch.epcr & SPRN_EPCR_ICM)
+ new_msr |= MSR_CM;
+#endif
+ kvmppc_set_msr(vcpu, new_msr);
+
+ if (!keep_irq)
+ clear_bit(priority, &vcpu->arch.pending_exceptions);
+ }
+
+#ifdef CONFIG_KVM_BOOKE_HV
+ /*
+ * If an interrupt is pending but masked, raise a guest doorbell
+ * so that we are notified when the guest enables the relevant
+ * MSR bit.
+ */
+ if (vcpu->arch.pending_exceptions & BOOKE_IRQMASK_EE)
+ kvmppc_set_pending_interrupt(vcpu, INT_CLASS_NONCRIT);
+ if (vcpu->arch.pending_exceptions & BOOKE_IRQMASK_CE)
+ kvmppc_set_pending_interrupt(vcpu, INT_CLASS_CRIT);
+ if (vcpu->arch.pending_exceptions & BOOKE_IRQPRIO_MACHINE_CHECK)
+ kvmppc_set_pending_interrupt(vcpu, INT_CLASS_MC);
+#endif
+
+ return allowed;
+}
+
+/*
+ * Return the number of jiffies until the next timeout. If the timeout is
+ * longer than the NEXT_TIMER_MAX_DELTA, then return NEXT_TIMER_MAX_DELTA
+ * because the larger value can break the timer APIs.
+ */
+static unsigned long watchdog_next_timeout(struct kvm_vcpu *vcpu)
+{
+ u64 tb, wdt_tb, wdt_ticks = 0;
+ u64 nr_jiffies = 0;
+ u32 period = TCR_GET_WP(vcpu->arch.tcr);
+
+ wdt_tb = 1ULL << (63 - period);
+ tb = get_tb();
+ /*
+ * The watchdog timeout will hapeen when TB bit corresponding
+ * to watchdog will toggle from 0 to 1.
+ */
+ if (tb & wdt_tb)
+ wdt_ticks = wdt_tb;
+
+ wdt_ticks += wdt_tb - (tb & (wdt_tb - 1));
+
+ /* Convert timebase ticks to jiffies */
+ nr_jiffies = wdt_ticks;
+
+ if (do_div(nr_jiffies, tb_ticks_per_jiffy))
+ nr_jiffies++;
+
+ return min_t(unsigned long long, nr_jiffies, NEXT_TIMER_MAX_DELTA);
+}
+
+static void arm_next_watchdog(struct kvm_vcpu *vcpu)
+{
+ unsigned long nr_jiffies;
+ unsigned long flags;
+
+ /*
+ * If TSR_ENW and TSR_WIS are not set then no need to exit to
+ * userspace, so clear the KVM_REQ_WATCHDOG request.
+ */
+ if ((vcpu->arch.tsr & (TSR_ENW | TSR_WIS)) != (TSR_ENW | TSR_WIS))
+ kvm_clear_request(KVM_REQ_WATCHDOG, vcpu);
+
+ spin_lock_irqsave(&vcpu->arch.wdt_lock, flags);
+ nr_jiffies = watchdog_next_timeout(vcpu);
+ /*
+ * If the number of jiffies of watchdog timer >= NEXT_TIMER_MAX_DELTA
+ * then do not run the watchdog timer as this can break timer APIs.
+ */
+ if (nr_jiffies < NEXT_TIMER_MAX_DELTA)
+ mod_timer(&vcpu->arch.wdt_timer, jiffies + nr_jiffies);
+ else
+ del_timer(&vcpu->arch.wdt_timer);
+ spin_unlock_irqrestore(&vcpu->arch.wdt_lock, flags);
+}
+
+void kvmppc_watchdog_func(struct timer_list *t)
+{
+ struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.wdt_timer);
+ u32 tsr, new_tsr;
+ int final;
+
+ do {
+ new_tsr = tsr = vcpu->arch.tsr;
+ final = 0;
+
+ /* Time out event */
+ if (tsr & TSR_ENW) {
+ if (tsr & TSR_WIS)
+ final = 1;
+ else
+ new_tsr = tsr | TSR_WIS;
+ } else {
+ new_tsr = tsr | TSR_ENW;
+ }
+ } while (cmpxchg(&vcpu->arch.tsr, tsr, new_tsr) != tsr);
+
+ if (new_tsr & TSR_WIS) {
+ smp_wmb();
+ kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
+ kvm_vcpu_kick(vcpu);
+ }
+
+ /*
+ * If this is final watchdog expiry and some action is required
+ * then exit to userspace.
+ */
+ if (final && (vcpu->arch.tcr & TCR_WRC_MASK) &&
+ vcpu->arch.watchdog_enabled) {
+ smp_wmb();
+ kvm_make_request(KVM_REQ_WATCHDOG, vcpu);
+ kvm_vcpu_kick(vcpu);
+ }
+
+ /*
+ * Stop running the watchdog timer after final expiration to
+ * prevent the host from being flooded with timers if the
+ * guest sets a short period.
+ * Timers will resume when TSR/TCR is updated next time.
+ */
+ if (!final)
+ arm_next_watchdog(vcpu);
+}
+
+static void update_timer_ints(struct kvm_vcpu *vcpu)
+{
+ if ((vcpu->arch.tcr & TCR_DIE) && (vcpu->arch.tsr & TSR_DIS))
+ kvmppc_core_queue_dec(vcpu);
+ else
+ kvmppc_core_dequeue_dec(vcpu);
+
+ if ((vcpu->arch.tcr & TCR_WIE) && (vcpu->arch.tsr & TSR_WIS))
+ kvmppc_core_queue_watchdog(vcpu);
+ else
+ kvmppc_core_dequeue_watchdog(vcpu);
+}
+
+static void kvmppc_core_check_exceptions(struct kvm_vcpu *vcpu)
+{
+ unsigned long *pending = &vcpu->arch.pending_exceptions;
+ unsigned int priority;
+
+ priority = __ffs(*pending);
+ while (priority < BOOKE_IRQPRIO_MAX) {
+ if (kvmppc_booke_irqprio_deliver(vcpu, priority))
+ break;
+
+ priority = find_next_bit(pending,
+ BITS_PER_BYTE * sizeof(*pending),
+ priority + 1);
+ }
+
+ /* Tell the guest about our interrupt status */
+ vcpu->arch.shared->int_pending = !!*pending;
+}
+
+/* Check pending exceptions and deliver one, if possible. */
+int kvmppc_core_prepare_to_enter(struct kvm_vcpu *vcpu)
+{
+ int r = 0;
+ WARN_ON_ONCE(!irqs_disabled());
+
+ kvmppc_core_check_exceptions(vcpu);
+
+ if (kvm_request_pending(vcpu)) {
+ /* Exception delivery raised request; start over */
+ return 1;
+ }
+
+ if (vcpu->arch.shared->msr & MSR_WE) {
+ local_irq_enable();
+ kvm_vcpu_halt(vcpu);
+ hard_irq_disable();
+
+ kvmppc_set_exit_type(vcpu, EMULATED_MTMSRWE_EXITS);
+ r = 1;
+ }
+
+ return r;
+}
+
+int kvmppc_core_check_requests(struct kvm_vcpu *vcpu)
+{
+ int r = 1; /* Indicate we want to get back into the guest */
+
+ if (kvm_check_request(KVM_REQ_PENDING_TIMER, vcpu))
+ update_timer_ints(vcpu);
+#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
+ if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
+ kvmppc_core_flush_tlb(vcpu);
+#endif
+
+ if (kvm_check_request(KVM_REQ_WATCHDOG, vcpu)) {
+ vcpu->run->exit_reason = KVM_EXIT_WATCHDOG;
+ r = 0;
+ }
+
+ if (kvm_check_request(KVM_REQ_EPR_EXIT, vcpu)) {
+ vcpu->run->epr.epr = 0;
+ vcpu->arch.epr_needed = true;
+ vcpu->run->exit_reason = KVM_EXIT_EPR;
+ r = 0;
+ }
+
+ return r;
+}
+
+int kvmppc_vcpu_run(struct kvm_vcpu *vcpu)
+{
+ int ret, s;
+ struct debug_reg debug;
+
+ if (!vcpu->arch.sane) {
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ return -EINVAL;
+ }
+
+ s = kvmppc_prepare_to_enter(vcpu);
+ if (s <= 0) {
+ ret = s;
+ goto out;
+ }
+ /* interrupts now hard-disabled */
+
+#ifdef CONFIG_PPC_FPU
+ /* Save userspace FPU state in stack */
+ enable_kernel_fp();
+
+ /*
+ * Since we can't trap on MSR_FP in GS-mode, we consider the guest
+ * as always using the FPU.
+ */
+ kvmppc_load_guest_fp(vcpu);
+#endif
+
+#ifdef CONFIG_ALTIVEC
+ /* Save userspace AltiVec state in stack */
+ if (cpu_has_feature(CPU_FTR_ALTIVEC))
+ enable_kernel_altivec();
+ /*
+ * Since we can't trap on MSR_VEC in GS-mode, we consider the guest
+ * as always using the AltiVec.
+ */
+ kvmppc_load_guest_altivec(vcpu);
+#endif
+
+ /* Switch to guest debug context */
+ debug = vcpu->arch.dbg_reg;
+ switch_booke_debug_regs(&debug);
+ debug = current->thread.debug;
+ current->thread.debug = vcpu->arch.dbg_reg;
+
+ vcpu->arch.pgdir = vcpu->kvm->mm->pgd;
+ kvmppc_fix_ee_before_entry();
+
+ ret = __kvmppc_vcpu_run(vcpu);
+
+ /* No need for guest_exit. It's done in handle_exit.
+ We also get here with interrupts enabled. */
+
+ /* Switch back to user space debug context */
+ switch_booke_debug_regs(&debug);
+ current->thread.debug = debug;
+
+#ifdef CONFIG_PPC_FPU
+ kvmppc_save_guest_fp(vcpu);
+#endif
+
+#ifdef CONFIG_ALTIVEC
+ kvmppc_save_guest_altivec(vcpu);
+#endif
+
+out:
+ vcpu->mode = OUTSIDE_GUEST_MODE;
+ return ret;
+}
+
+static int emulation_exit(struct kvm_vcpu *vcpu)
+{
+ enum emulation_result er;
+
+ er = kvmppc_emulate_instruction(vcpu);
+ switch (er) {
+ case EMULATE_DONE:
+ /* don't overwrite subtypes, just account kvm_stats */
+ kvmppc_account_exit_stat(vcpu, EMULATED_INST_EXITS);
+ /* Future optimization: only reload non-volatiles if
+ * they were actually modified by emulation. */
+ return RESUME_GUEST_NV;
+
+ case EMULATE_AGAIN:
+ return RESUME_GUEST;
+
+ case EMULATE_FAIL:
+ printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
+ __func__, vcpu->arch.regs.nip, vcpu->arch.last_inst);
+ /* For debugging, encode the failing instruction and
+ * report it to userspace. */
+ vcpu->run->hw.hardware_exit_reason = ~0ULL << 32;
+ vcpu->run->hw.hardware_exit_reason |= vcpu->arch.last_inst;
+ kvmppc_core_queue_program(vcpu, ESR_PIL);
+ return RESUME_HOST;
+
+ case EMULATE_EXIT_USER:
+ return RESUME_HOST;
+
+ default:
+ BUG();
+ }
+}
+
+static int kvmppc_handle_debug(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+ struct debug_reg *dbg_reg = &(vcpu->arch.dbg_reg);
+ u32 dbsr = vcpu->arch.dbsr;
+
+ if (vcpu->guest_debug == 0) {
+ /*
+ * Debug resources belong to Guest.
+ * Imprecise debug event is not injected
+ */
+ if (dbsr & DBSR_IDE) {
+ dbsr &= ~DBSR_IDE;
+ if (!dbsr)
+ return RESUME_GUEST;
+ }
+
+ if (dbsr && (vcpu->arch.shared->msr & MSR_DE) &&
+ (vcpu->arch.dbg_reg.dbcr0 & DBCR0_IDM))
+ kvmppc_core_queue_debug(vcpu);
+
+ /* Inject a program interrupt if trap debug is not allowed */
+ if ((dbsr & DBSR_TIE) && !(vcpu->arch.shared->msr & MSR_DE))
+ kvmppc_core_queue_program(vcpu, ESR_PTR);
+
+ return RESUME_GUEST;
+ }
+
+ /*
+ * Debug resource owned by userspace.
+ * Clear guest dbsr (vcpu->arch.dbsr)
+ */
+ vcpu->arch.dbsr = 0;
+ run->debug.arch.status = 0;
+ run->debug.arch.address = vcpu->arch.regs.nip;
+
+ if (dbsr & (DBSR_IAC1 | DBSR_IAC2 | DBSR_IAC3 | DBSR_IAC4)) {
+ run->debug.arch.status |= KVMPPC_DEBUG_BREAKPOINT;
+ } else {
+ if (dbsr & (DBSR_DAC1W | DBSR_DAC2W))
+ run->debug.arch.status |= KVMPPC_DEBUG_WATCH_WRITE;
+ else if (dbsr & (DBSR_DAC1R | DBSR_DAC2R))
+ run->debug.arch.status |= KVMPPC_DEBUG_WATCH_READ;
+ if (dbsr & (DBSR_DAC1R | DBSR_DAC1W))
+ run->debug.arch.address = dbg_reg->dac1;
+ else if (dbsr & (DBSR_DAC2R | DBSR_DAC2W))
+ run->debug.arch.address = dbg_reg->dac2;
+ }
+
+ return RESUME_HOST;
+}
+
+static void kvmppc_fill_pt_regs(struct pt_regs *regs)
+{
+ ulong r1, ip, msr, lr;
+
+ asm("mr %0, 1" : "=r"(r1));
+ asm("mflr %0" : "=r"(lr));
+ asm("mfmsr %0" : "=r"(msr));
+ asm("bl 1f; 1: mflr %0" : "=r"(ip));
+
+ memset(regs, 0, sizeof(*regs));
+ regs->gpr[1] = r1;
+ regs->nip = ip;
+ regs->msr = msr;
+ regs->link = lr;
+}
+
+/*
+ * For interrupts needed to be handled by host interrupt handlers,
+ * corresponding host handler are called from here in similar way
+ * (but not exact) as they are called from low level handler
+ * (such as from arch/powerpc/kernel/head_fsl_booke.S).
+ */
+static void kvmppc_restart_interrupt(struct kvm_vcpu *vcpu,
+ unsigned int exit_nr)
+{
+ struct pt_regs regs;
+
+ switch (exit_nr) {
+ case BOOKE_INTERRUPT_EXTERNAL:
+ kvmppc_fill_pt_regs(&regs);
+ do_IRQ(&regs);
+ break;
+ case BOOKE_INTERRUPT_DECREMENTER:
+ kvmppc_fill_pt_regs(&regs);
+ timer_interrupt(&regs);
+ break;
+#if defined(CONFIG_PPC_DOORBELL)
+ case BOOKE_INTERRUPT_DOORBELL:
+ kvmppc_fill_pt_regs(&regs);
+ doorbell_exception(&regs);
+ break;
+#endif
+ case BOOKE_INTERRUPT_MACHINE_CHECK:
+ /* FIXME */
+ break;
+ case BOOKE_INTERRUPT_PERFORMANCE_MONITOR:
+ kvmppc_fill_pt_regs(&regs);
+ performance_monitor_exception(&regs);
+ break;
+ case BOOKE_INTERRUPT_WATCHDOG:
+ kvmppc_fill_pt_regs(&regs);
+#ifdef CONFIG_BOOKE_WDT
+ WatchdogException(&regs);
+#else
+ unknown_exception(&regs);
+#endif
+ break;
+ case BOOKE_INTERRUPT_CRITICAL:
+ kvmppc_fill_pt_regs(&regs);
+ unknown_exception(&regs);
+ break;
+ case BOOKE_INTERRUPT_DEBUG:
+ /* Save DBSR before preemption is enabled */
+ vcpu->arch.dbsr = mfspr(SPRN_DBSR);
+ kvmppc_clear_dbsr();
+ break;
+ }
+}
+
+static int kvmppc_resume_inst_load(struct kvm_vcpu *vcpu,
+ enum emulation_result emulated, u32 last_inst)
+{
+ switch (emulated) {
+ case EMULATE_AGAIN:
+ return RESUME_GUEST;
+
+ case EMULATE_FAIL:
+ pr_debug("%s: load instruction from guest address %lx failed\n",
+ __func__, vcpu->arch.regs.nip);
+ /* For debugging, encode the failing instruction and
+ * report it to userspace. */
+ vcpu->run->hw.hardware_exit_reason = ~0ULL << 32;
+ vcpu->run->hw.hardware_exit_reason |= last_inst;
+ kvmppc_core_queue_program(vcpu, ESR_PIL);
+ return RESUME_HOST;
+
+ default:
+ BUG();
+ }
+}
+
+/**
+ * kvmppc_handle_exit
+ *
+ * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
+ */
+int kvmppc_handle_exit(struct kvm_vcpu *vcpu, unsigned int exit_nr)
+{
+ struct kvm_run *run = vcpu->run;
+ int r = RESUME_HOST;
+ int s;
+ int idx;
+ u32 last_inst = KVM_INST_FETCH_FAILED;
+ enum emulation_result emulated = EMULATE_DONE;
+
+ /* update before a new last_exit_type is rewritten */
+ kvmppc_update_timing_stats(vcpu);
+
+ /* restart interrupts if they were meant for the host */
+ kvmppc_restart_interrupt(vcpu, exit_nr);
+
+ /*
+ * get last instruction before being preempted
+ * TODO: for e6500 check also BOOKE_INTERRUPT_LRAT_ERROR & ESR_DATA
+ */
+ switch (exit_nr) {
+ case BOOKE_INTERRUPT_DATA_STORAGE:
+ case BOOKE_INTERRUPT_DTLB_MISS:
+ case BOOKE_INTERRUPT_HV_PRIV:
+ emulated = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
+ break;
+ case BOOKE_INTERRUPT_PROGRAM:
+ /* SW breakpoints arrive as illegal instructions on HV */
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
+ emulated = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
+ break;
+ default:
+ break;
+ }
+
+ trace_kvm_exit(exit_nr, vcpu);
+
+ context_tracking_guest_exit();
+ if (!vtime_accounting_enabled_this_cpu()) {
+ local_irq_enable();
+ /*
+ * Service IRQs here before vtime_account_guest_exit() so any
+ * ticks that occurred while running the guest are accounted to
+ * the guest. If vtime accounting is enabled, accounting uses
+ * TB rather than ticks, so it can be done without enabling
+ * interrupts here, which has the problem that it accounts
+ * interrupt processing overhead to the host.
+ */
+ local_irq_disable();
+ }
+ vtime_account_guest_exit();
+
+ local_irq_enable();
+
+ run->exit_reason = KVM_EXIT_UNKNOWN;
+ run->ready_for_interrupt_injection = 1;
+
+ if (emulated != EMULATE_DONE) {
+ r = kvmppc_resume_inst_load(vcpu, emulated, last_inst);
+ goto out;
+ }
+
+ switch (exit_nr) {
+ case BOOKE_INTERRUPT_MACHINE_CHECK:
+ printk("MACHINE CHECK: %lx\n", mfspr(SPRN_MCSR));
+ kvmppc_dump_vcpu(vcpu);
+ /* For debugging, send invalid exit reason to user space */
+ run->hw.hardware_exit_reason = ~1ULL << 32;
+ run->hw.hardware_exit_reason |= mfspr(SPRN_MCSR);
+ r = RESUME_HOST;
+ break;
+
+ case BOOKE_INTERRUPT_EXTERNAL:
+ kvmppc_account_exit(vcpu, EXT_INTR_EXITS);
+ r = RESUME_GUEST;
+ break;
+
+ case BOOKE_INTERRUPT_DECREMENTER:
+ kvmppc_account_exit(vcpu, DEC_EXITS);
+ r = RESUME_GUEST;
+ break;
+
+ case BOOKE_INTERRUPT_WATCHDOG:
+ r = RESUME_GUEST;
+ break;
+
+ case BOOKE_INTERRUPT_DOORBELL:
+ kvmppc_account_exit(vcpu, DBELL_EXITS);
+ r = RESUME_GUEST;
+ break;
+
+ case BOOKE_INTERRUPT_GUEST_DBELL_CRIT:
+ kvmppc_account_exit(vcpu, GDBELL_EXITS);
+
+ /*
+ * We are here because there is a pending guest interrupt
+ * which could not be delivered as MSR_CE or MSR_ME was not
+ * set. Once we break from here we will retry delivery.
+ */
+ r = RESUME_GUEST;
+ break;
+
+ case BOOKE_INTERRUPT_GUEST_DBELL:
+ kvmppc_account_exit(vcpu, GDBELL_EXITS);
+
+ /*
+ * We are here because there is a pending guest interrupt
+ * which could not be delivered as MSR_EE was not set. Once
+ * we break from here we will retry delivery.
+ */
+ r = RESUME_GUEST;
+ break;
+
+ case BOOKE_INTERRUPT_PERFORMANCE_MONITOR:
+ r = RESUME_GUEST;
+ break;
+
+ case BOOKE_INTERRUPT_HV_PRIV:
+ r = emulation_exit(vcpu);
+ break;
+
+ case BOOKE_INTERRUPT_PROGRAM:
+ if ((vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) &&
+ (last_inst == KVMPPC_INST_SW_BREAKPOINT)) {
+ /*
+ * We are here because of an SW breakpoint instr,
+ * so lets return to host to handle.
+ */
+ r = kvmppc_handle_debug(vcpu);
+ run->exit_reason = KVM_EXIT_DEBUG;
+ kvmppc_account_exit(vcpu, DEBUG_EXITS);
+ break;
+ }
+
+ if (vcpu->arch.shared->msr & (MSR_PR | MSR_GS)) {
+ /*
+ * Program traps generated by user-level software must
+ * be handled by the guest kernel.
+ *
+ * In GS mode, hypervisor privileged instructions trap
+ * on BOOKE_INTERRUPT_HV_PRIV, not here, so these are
+ * actual program interrupts, handled by the guest.
+ */
+ kvmppc_core_queue_program(vcpu, vcpu->arch.fault_esr);
+ r = RESUME_GUEST;
+ kvmppc_account_exit(vcpu, USR_PR_INST);
+ break;
+ }
+
+ r = emulation_exit(vcpu);
+ break;
+
+ case BOOKE_INTERRUPT_FP_UNAVAIL:
+ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_FP_UNAVAIL);
+ kvmppc_account_exit(vcpu, FP_UNAVAIL);
+ r = RESUME_GUEST;
+ break;
+
+#ifdef CONFIG_SPE
+ case BOOKE_INTERRUPT_SPE_UNAVAIL: {
+ if (vcpu->arch.shared->msr & MSR_SPE)
+ kvmppc_vcpu_enable_spe(vcpu);
+ else
+ kvmppc_booke_queue_irqprio(vcpu,
+ BOOKE_IRQPRIO_SPE_UNAVAIL);
+ r = RESUME_GUEST;
+ break;
+ }
+
+ case BOOKE_INTERRUPT_SPE_FP_DATA:
+ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SPE_FP_DATA);
+ r = RESUME_GUEST;
+ break;
+
+ case BOOKE_INTERRUPT_SPE_FP_ROUND:
+ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SPE_FP_ROUND);
+ r = RESUME_GUEST;
+ break;
+#elif defined(CONFIG_SPE_POSSIBLE)
+ case BOOKE_INTERRUPT_SPE_UNAVAIL:
+ /*
+ * Guest wants SPE, but host kernel doesn't support it. Send
+ * an "unimplemented operation" program check to the guest.
+ */
+ kvmppc_core_queue_program(vcpu, ESR_PUO | ESR_SPV);
+ r = RESUME_GUEST;
+ break;
+
+ /*
+ * These really should never happen without CONFIG_SPE,
+ * as we should never enable the real MSR[SPE] in the guest.
+ */
+ case BOOKE_INTERRUPT_SPE_FP_DATA:
+ case BOOKE_INTERRUPT_SPE_FP_ROUND:
+ printk(KERN_CRIT "%s: unexpected SPE interrupt %u at %08lx\n",
+ __func__, exit_nr, vcpu->arch.regs.nip);
+ run->hw.hardware_exit_reason = exit_nr;
+ r = RESUME_HOST;
+ break;
+#endif /* CONFIG_SPE_POSSIBLE */
+
+/*
+ * On cores with Vector category, KVM is loaded only if CONFIG_ALTIVEC,
+ * see kvmppc_core_check_processor_compat().
+ */
+#ifdef CONFIG_ALTIVEC
+ case BOOKE_INTERRUPT_ALTIVEC_UNAVAIL:
+ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ALTIVEC_UNAVAIL);
+ r = RESUME_GUEST;
+ break;
+
+ case BOOKE_INTERRUPT_ALTIVEC_ASSIST:
+ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ALTIVEC_ASSIST);
+ r = RESUME_GUEST;
+ break;
+#endif
+
+ case BOOKE_INTERRUPT_DATA_STORAGE:
+ kvmppc_core_queue_data_storage(vcpu, vcpu->arch.fault_dear,
+ vcpu->arch.fault_esr);
+ kvmppc_account_exit(vcpu, DSI_EXITS);
+ r = RESUME_GUEST;
+ break;
+
+ case BOOKE_INTERRUPT_INST_STORAGE:
+ kvmppc_core_queue_inst_storage(vcpu, vcpu->arch.fault_esr);
+ kvmppc_account_exit(vcpu, ISI_EXITS);
+ r = RESUME_GUEST;
+ break;
+
+ case BOOKE_INTERRUPT_ALIGNMENT:
+ kvmppc_core_queue_alignment(vcpu, vcpu->arch.fault_dear,
+ vcpu->arch.fault_esr);
+ r = RESUME_GUEST;
+ break;
+
+#ifdef CONFIG_KVM_BOOKE_HV
+ case BOOKE_INTERRUPT_HV_SYSCALL:
+ if (!(vcpu->arch.shared->msr & MSR_PR)) {
+ kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
+ } else {
+ /*
+ * hcall from guest userspace -- send privileged
+ * instruction program check.
+ */
+ kvmppc_core_queue_program(vcpu, ESR_PPR);
+ }
+
+ r = RESUME_GUEST;
+ break;
+#else
+ case BOOKE_INTERRUPT_SYSCALL:
+ if (!(vcpu->arch.shared->msr & MSR_PR) &&
+ (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
+ /* KVM PV hypercalls */
+ kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
+ r = RESUME_GUEST;
+ } else {
+ /* Guest syscalls */
+ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SYSCALL);
+ }
+ kvmppc_account_exit(vcpu, SYSCALL_EXITS);
+ r = RESUME_GUEST;
+ break;
+#endif
+
+ case BOOKE_INTERRUPT_DTLB_MISS: {
+ unsigned long eaddr = vcpu->arch.fault_dear;
+ int gtlb_index;
+ gpa_t gpaddr;
+ gfn_t gfn;
+
+#ifdef CONFIG_KVM_E500V2
+ if (!(vcpu->arch.shared->msr & MSR_PR) &&
+ (eaddr & PAGE_MASK) == vcpu->arch.magic_page_ea) {
+ kvmppc_map_magic(vcpu);
+ kvmppc_account_exit(vcpu, DTLB_VIRT_MISS_EXITS);
+ r = RESUME_GUEST;
+
+ break;
+ }
+#endif
+
+ /* Check the guest TLB. */
+ gtlb_index = kvmppc_mmu_dtlb_index(vcpu, eaddr);
+ if (gtlb_index < 0) {
+ /* The guest didn't have a mapping for it. */
+ kvmppc_core_queue_dtlb_miss(vcpu,
+ vcpu->arch.fault_dear,
+ vcpu->arch.fault_esr);
+ kvmppc_mmu_dtlb_miss(vcpu);
+ kvmppc_account_exit(vcpu, DTLB_REAL_MISS_EXITS);
+ r = RESUME_GUEST;
+ break;
+ }
+
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+
+ gpaddr = kvmppc_mmu_xlate(vcpu, gtlb_index, eaddr);
+ gfn = gpaddr >> PAGE_SHIFT;
+
+ if (kvm_is_visible_gfn(vcpu->kvm, gfn)) {
+ /* The guest TLB had a mapping, but the shadow TLB
+ * didn't, and it is RAM. This could be because:
+ * a) the entry is mapping the host kernel, or
+ * b) the guest used a large mapping which we're faking
+ * Either way, we need to satisfy the fault without
+ * invoking the guest. */
+ kvmppc_mmu_map(vcpu, eaddr, gpaddr, gtlb_index);
+ kvmppc_account_exit(vcpu, DTLB_VIRT_MISS_EXITS);
+ r = RESUME_GUEST;
+ } else {
+ /* Guest has mapped and accessed a page which is not
+ * actually RAM. */
+ vcpu->arch.paddr_accessed = gpaddr;
+ vcpu->arch.vaddr_accessed = eaddr;
+ r = kvmppc_emulate_mmio(vcpu);
+ kvmppc_account_exit(vcpu, MMIO_EXITS);
+ }
+
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ break;
+ }
+
+ case BOOKE_INTERRUPT_ITLB_MISS: {
+ unsigned long eaddr = vcpu->arch.regs.nip;
+ gpa_t gpaddr;
+ gfn_t gfn;
+ int gtlb_index;
+
+ r = RESUME_GUEST;
+
+ /* Check the guest TLB. */
+ gtlb_index = kvmppc_mmu_itlb_index(vcpu, eaddr);
+ if (gtlb_index < 0) {
+ /* The guest didn't have a mapping for it. */
+ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ITLB_MISS);
+ kvmppc_mmu_itlb_miss(vcpu);
+ kvmppc_account_exit(vcpu, ITLB_REAL_MISS_EXITS);
+ break;
+ }
+
+ kvmppc_account_exit(vcpu, ITLB_VIRT_MISS_EXITS);
+
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+
+ gpaddr = kvmppc_mmu_xlate(vcpu, gtlb_index, eaddr);
+ gfn = gpaddr >> PAGE_SHIFT;
+
+ if (kvm_is_visible_gfn(vcpu->kvm, gfn)) {
+ /* The guest TLB had a mapping, but the shadow TLB
+ * didn't. This could be because:
+ * a) the entry is mapping the host kernel, or
+ * b) the guest used a large mapping which we're faking
+ * Either way, we need to satisfy the fault without
+ * invoking the guest. */
+ kvmppc_mmu_map(vcpu, eaddr, gpaddr, gtlb_index);
+ } else {
+ /* Guest mapped and leaped at non-RAM! */
+ kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_MACHINE_CHECK);
+ }
+
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+ break;
+ }
+
+ case BOOKE_INTERRUPT_DEBUG: {
+ r = kvmppc_handle_debug(vcpu);
+ if (r == RESUME_HOST)
+ run->exit_reason = KVM_EXIT_DEBUG;
+ kvmppc_account_exit(vcpu, DEBUG_EXITS);
+ break;
+ }
+
+ default:
+ printk(KERN_EMERG "exit_nr %d\n", exit_nr);
+ BUG();
+ }
+
+out:
+ /*
+ * To avoid clobbering exit_reason, only check for signals if we
+ * aren't already exiting to userspace for some other reason.
+ */
+ if (!(r & RESUME_HOST)) {
+ s = kvmppc_prepare_to_enter(vcpu);
+ if (s <= 0)
+ r = (s << 2) | RESUME_HOST | (r & RESUME_FLAG_NV);
+ else {
+ /* interrupts now hard-disabled */
+ kvmppc_fix_ee_before_entry();
+ kvmppc_load_guest_fp(vcpu);
+ kvmppc_load_guest_altivec(vcpu);
+ }
+ }
+
+ return r;
+}
+
+static void kvmppc_set_tsr(struct kvm_vcpu *vcpu, u32 new_tsr)
+{
+ u32 old_tsr = vcpu->arch.tsr;
+
+ vcpu->arch.tsr = new_tsr;
+
+ if ((old_tsr ^ vcpu->arch.tsr) & (TSR_ENW | TSR_WIS))
+ arm_next_watchdog(vcpu);
+
+ update_timer_ints(vcpu);
+}
+
+int kvmppc_subarch_vcpu_init(struct kvm_vcpu *vcpu)
+{
+ /* setup watchdog timer once */
+ spin_lock_init(&vcpu->arch.wdt_lock);
+ timer_setup(&vcpu->arch.wdt_timer, kvmppc_watchdog_func, 0);
+
+ /*
+ * Clear DBSR.MRR to avoid guest debug interrupt as
+ * this is of host interest
+ */
+ mtspr(SPRN_DBSR, DBSR_MRR);
+ return 0;
+}
+
+void kvmppc_subarch_vcpu_uninit(struct kvm_vcpu *vcpu)
+{
+ del_timer_sync(&vcpu->arch.wdt_timer);
+}
+
+int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
+{
+ int i;
+
+ vcpu_load(vcpu);
+
+ regs->pc = vcpu->arch.regs.nip;
+ regs->cr = kvmppc_get_cr(vcpu);
+ regs->ctr = vcpu->arch.regs.ctr;
+ regs->lr = vcpu->arch.regs.link;
+ regs->xer = kvmppc_get_xer(vcpu);
+ regs->msr = vcpu->arch.shared->msr;
+ regs->srr0 = kvmppc_get_srr0(vcpu);
+ regs->srr1 = kvmppc_get_srr1(vcpu);
+ regs->pid = vcpu->arch.pid;
+ regs->sprg0 = kvmppc_get_sprg0(vcpu);
+ regs->sprg1 = kvmppc_get_sprg1(vcpu);
+ regs->sprg2 = kvmppc_get_sprg2(vcpu);
+ regs->sprg3 = kvmppc_get_sprg3(vcpu);
+ regs->sprg4 = kvmppc_get_sprg4(vcpu);
+ regs->sprg5 = kvmppc_get_sprg5(vcpu);
+ regs->sprg6 = kvmppc_get_sprg6(vcpu);
+ regs->sprg7 = kvmppc_get_sprg7(vcpu);
+
+ for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
+ regs->gpr[i] = kvmppc_get_gpr(vcpu, i);
+
+ vcpu_put(vcpu);
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
+{
+ int i;
+
+ vcpu_load(vcpu);
+
+ vcpu->arch.regs.nip = regs->pc;
+ kvmppc_set_cr(vcpu, regs->cr);
+ vcpu->arch.regs.ctr = regs->ctr;
+ vcpu->arch.regs.link = regs->lr;
+ kvmppc_set_xer(vcpu, regs->xer);
+ kvmppc_set_msr(vcpu, regs->msr);
+ kvmppc_set_srr0(vcpu, regs->srr0);
+ kvmppc_set_srr1(vcpu, regs->srr1);
+ kvmppc_set_pid(vcpu, regs->pid);
+ kvmppc_set_sprg0(vcpu, regs->sprg0);
+ kvmppc_set_sprg1(vcpu, regs->sprg1);
+ kvmppc_set_sprg2(vcpu, regs->sprg2);
+ kvmppc_set_sprg3(vcpu, regs->sprg3);
+ kvmppc_set_sprg4(vcpu, regs->sprg4);
+ kvmppc_set_sprg5(vcpu, regs->sprg5);
+ kvmppc_set_sprg6(vcpu, regs->sprg6);
+ kvmppc_set_sprg7(vcpu, regs->sprg7);
+
+ for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
+ kvmppc_set_gpr(vcpu, i, regs->gpr[i]);
+
+ vcpu_put(vcpu);
+ return 0;
+}
+
+static void get_sregs_base(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ u64 tb = get_tb();
+
+ sregs->u.e.features |= KVM_SREGS_E_BASE;
+
+ sregs->u.e.csrr0 = vcpu->arch.csrr0;
+ sregs->u.e.csrr1 = vcpu->arch.csrr1;
+ sregs->u.e.mcsr = vcpu->arch.mcsr;
+ sregs->u.e.esr = kvmppc_get_esr(vcpu);
+ sregs->u.e.dear = kvmppc_get_dar(vcpu);
+ sregs->u.e.tsr = vcpu->arch.tsr;
+ sregs->u.e.tcr = vcpu->arch.tcr;
+ sregs->u.e.dec = kvmppc_get_dec(vcpu, tb);
+ sregs->u.e.tb = tb;
+ sregs->u.e.vrsave = vcpu->arch.vrsave;
+}
+
+static int set_sregs_base(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ if (!(sregs->u.e.features & KVM_SREGS_E_BASE))
+ return 0;
+
+ vcpu->arch.csrr0 = sregs->u.e.csrr0;
+ vcpu->arch.csrr1 = sregs->u.e.csrr1;
+ vcpu->arch.mcsr = sregs->u.e.mcsr;
+ kvmppc_set_esr(vcpu, sregs->u.e.esr);
+ kvmppc_set_dar(vcpu, sregs->u.e.dear);
+ vcpu->arch.vrsave = sregs->u.e.vrsave;
+ kvmppc_set_tcr(vcpu, sregs->u.e.tcr);
+
+ if (sregs->u.e.update_special & KVM_SREGS_E_UPDATE_DEC) {
+ vcpu->arch.dec = sregs->u.e.dec;
+ kvmppc_emulate_dec(vcpu);
+ }
+
+ if (sregs->u.e.update_special & KVM_SREGS_E_UPDATE_TSR)
+ kvmppc_set_tsr(vcpu, sregs->u.e.tsr);
+
+ return 0;
+}
+
+static void get_sregs_arch206(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ sregs->u.e.features |= KVM_SREGS_E_ARCH206;
+
+ sregs->u.e.pir = vcpu->vcpu_id;
+ sregs->u.e.mcsrr0 = vcpu->arch.mcsrr0;
+ sregs->u.e.mcsrr1 = vcpu->arch.mcsrr1;
+ sregs->u.e.decar = vcpu->arch.decar;
+ sregs->u.e.ivpr = vcpu->arch.ivpr;
+}
+
+static int set_sregs_arch206(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ if (!(sregs->u.e.features & KVM_SREGS_E_ARCH206))
+ return 0;
+
+ if (sregs->u.e.pir != vcpu->vcpu_id)
+ return -EINVAL;
+
+ vcpu->arch.mcsrr0 = sregs->u.e.mcsrr0;
+ vcpu->arch.mcsrr1 = sregs->u.e.mcsrr1;
+ vcpu->arch.decar = sregs->u.e.decar;
+ vcpu->arch.ivpr = sregs->u.e.ivpr;
+
+ return 0;
+}
+
+int kvmppc_get_sregs_ivor(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
+{
+ sregs->u.e.features |= KVM_SREGS_E_IVOR;
+
+ sregs->u.e.ivor_low[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_CRITICAL];
+ sregs->u.e.ivor_low[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_MACHINE_CHECK];
+ sregs->u.e.ivor_low[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_DATA_STORAGE];
+ sregs->u.e.ivor_low[3] = vcpu->arch.ivor[BOOKE_IRQPRIO_INST_STORAGE];
+ sregs->u.e.ivor_low[4] = vcpu->arch.ivor[BOOKE_IRQPRIO_EXTERNAL];
+ sregs->u.e.ivor_low[5] = vcpu->arch.ivor[BOOKE_IRQPRIO_ALIGNMENT];
+ sregs->u.e.ivor_low[6] = vcpu->arch.ivor[BOOKE_IRQPRIO_PROGRAM];
+ sregs->u.e.ivor_low[7] = vcpu->arch.ivor[BOOKE_IRQPRIO_FP_UNAVAIL];
+ sregs->u.e.ivor_low[8] = vcpu->arch.ivor[BOOKE_IRQPRIO_SYSCALL];
+ sregs->u.e.ivor_low[9] = vcpu->arch.ivor[BOOKE_IRQPRIO_AP_UNAVAIL];
+ sregs->u.e.ivor_low[10] = vcpu->arch.ivor[BOOKE_IRQPRIO_DECREMENTER];
+ sregs->u.e.ivor_low[11] = vcpu->arch.ivor[BOOKE_IRQPRIO_FIT];
+ sregs->u.e.ivor_low[12] = vcpu->arch.ivor[BOOKE_IRQPRIO_WATCHDOG];
+ sregs->u.e.ivor_low[13] = vcpu->arch.ivor[BOOKE_IRQPRIO_DTLB_MISS];
+ sregs->u.e.ivor_low[14] = vcpu->arch.ivor[BOOKE_IRQPRIO_ITLB_MISS];
+ sregs->u.e.ivor_low[15] = vcpu->arch.ivor[BOOKE_IRQPRIO_DEBUG];
+ return 0;
+}
+
+int kvmppc_set_sregs_ivor(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
+{
+ if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
+ return 0;
+
+ vcpu->arch.ivor[BOOKE_IRQPRIO_CRITICAL] = sregs->u.e.ivor_low[0];
+ vcpu->arch.ivor[BOOKE_IRQPRIO_MACHINE_CHECK] = sregs->u.e.ivor_low[1];
+ vcpu->arch.ivor[BOOKE_IRQPRIO_DATA_STORAGE] = sregs->u.e.ivor_low[2];
+ vcpu->arch.ivor[BOOKE_IRQPRIO_INST_STORAGE] = sregs->u.e.ivor_low[3];
+ vcpu->arch.ivor[BOOKE_IRQPRIO_EXTERNAL] = sregs->u.e.ivor_low[4];
+ vcpu->arch.ivor[BOOKE_IRQPRIO_ALIGNMENT] = sregs->u.e.ivor_low[5];
+ vcpu->arch.ivor[BOOKE_IRQPRIO_PROGRAM] = sregs->u.e.ivor_low[6];
+ vcpu->arch.ivor[BOOKE_IRQPRIO_FP_UNAVAIL] = sregs->u.e.ivor_low[7];
+ vcpu->arch.ivor[BOOKE_IRQPRIO_SYSCALL] = sregs->u.e.ivor_low[8];
+ vcpu->arch.ivor[BOOKE_IRQPRIO_AP_UNAVAIL] = sregs->u.e.ivor_low[9];
+ vcpu->arch.ivor[BOOKE_IRQPRIO_DECREMENTER] = sregs->u.e.ivor_low[10];
+ vcpu->arch.ivor[BOOKE_IRQPRIO_FIT] = sregs->u.e.ivor_low[11];
+ vcpu->arch.ivor[BOOKE_IRQPRIO_WATCHDOG] = sregs->u.e.ivor_low[12];
+ vcpu->arch.ivor[BOOKE_IRQPRIO_DTLB_MISS] = sregs->u.e.ivor_low[13];
+ vcpu->arch.ivor[BOOKE_IRQPRIO_ITLB_MISS] = sregs->u.e.ivor_low[14];
+ vcpu->arch.ivor[BOOKE_IRQPRIO_DEBUG] = sregs->u.e.ivor_low[15];
+
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ int ret;
+
+ vcpu_load(vcpu);
+
+ sregs->pvr = vcpu->arch.pvr;
+
+ get_sregs_base(vcpu, sregs);
+ get_sregs_arch206(vcpu, sregs);
+ ret = vcpu->kvm->arch.kvm_ops->get_sregs(vcpu, sregs);
+
+ vcpu_put(vcpu);
+ return ret;
+}
+
+int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ int ret = -EINVAL;
+
+ vcpu_load(vcpu);
+ if (vcpu->arch.pvr != sregs->pvr)
+ goto out;
+
+ ret = set_sregs_base(vcpu, sregs);
+ if (ret < 0)
+ goto out;
+
+ ret = set_sregs_arch206(vcpu, sregs);
+ if (ret < 0)
+ goto out;
+
+ ret = vcpu->kvm->arch.kvm_ops->set_sregs(vcpu, sregs);
+
+out:
+ vcpu_put(vcpu);
+ return ret;
+}
+
+int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id,
+ union kvmppc_one_reg *val)
+{
+ int r = 0;
+
+ switch (id) {
+ case KVM_REG_PPC_IAC1:
+ *val = get_reg_val(id, vcpu->arch.dbg_reg.iac1);
+ break;
+ case KVM_REG_PPC_IAC2:
+ *val = get_reg_val(id, vcpu->arch.dbg_reg.iac2);
+ break;
+#if CONFIG_PPC_ADV_DEBUG_IACS > 2
+ case KVM_REG_PPC_IAC3:
+ *val = get_reg_val(id, vcpu->arch.dbg_reg.iac3);
+ break;
+ case KVM_REG_PPC_IAC4:
+ *val = get_reg_val(id, vcpu->arch.dbg_reg.iac4);
+ break;
+#endif
+ case KVM_REG_PPC_DAC1:
+ *val = get_reg_val(id, vcpu->arch.dbg_reg.dac1);
+ break;
+ case KVM_REG_PPC_DAC2:
+ *val = get_reg_val(id, vcpu->arch.dbg_reg.dac2);
+ break;
+ case KVM_REG_PPC_EPR: {
+ u32 epr = kvmppc_get_epr(vcpu);
+ *val = get_reg_val(id, epr);
+ break;
+ }
+#if defined(CONFIG_64BIT)
+ case KVM_REG_PPC_EPCR:
+ *val = get_reg_val(id, vcpu->arch.epcr);
+ break;
+#endif
+ case KVM_REG_PPC_TCR:
+ *val = get_reg_val(id, vcpu->arch.tcr);
+ break;
+ case KVM_REG_PPC_TSR:
+ *val = get_reg_val(id, vcpu->arch.tsr);
+ break;
+ case KVM_REG_PPC_DEBUG_INST:
+ *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
+ break;
+ case KVM_REG_PPC_VRSAVE:
+ *val = get_reg_val(id, vcpu->arch.vrsave);
+ break;
+ default:
+ r = vcpu->kvm->arch.kvm_ops->get_one_reg(vcpu, id, val);
+ break;
+ }
+
+ return r;
+}
+
+int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id,
+ union kvmppc_one_reg *val)
+{
+ int r = 0;
+
+ switch (id) {
+ case KVM_REG_PPC_IAC1:
+ vcpu->arch.dbg_reg.iac1 = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_IAC2:
+ vcpu->arch.dbg_reg.iac2 = set_reg_val(id, *val);
+ break;
+#if CONFIG_PPC_ADV_DEBUG_IACS > 2
+ case KVM_REG_PPC_IAC3:
+ vcpu->arch.dbg_reg.iac3 = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_IAC4:
+ vcpu->arch.dbg_reg.iac4 = set_reg_val(id, *val);
+ break;
+#endif
+ case KVM_REG_PPC_DAC1:
+ vcpu->arch.dbg_reg.dac1 = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_DAC2:
+ vcpu->arch.dbg_reg.dac2 = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_EPR: {
+ u32 new_epr = set_reg_val(id, *val);
+ kvmppc_set_epr(vcpu, new_epr);
+ break;
+ }
+#if defined(CONFIG_64BIT)
+ case KVM_REG_PPC_EPCR: {
+ u32 new_epcr = set_reg_val(id, *val);
+ kvmppc_set_epcr(vcpu, new_epcr);
+ break;
+ }
+#endif
+ case KVM_REG_PPC_OR_TSR: {
+ u32 tsr_bits = set_reg_val(id, *val);
+ kvmppc_set_tsr_bits(vcpu, tsr_bits);
+ break;
+ }
+ case KVM_REG_PPC_CLEAR_TSR: {
+ u32 tsr_bits = set_reg_val(id, *val);
+ kvmppc_clr_tsr_bits(vcpu, tsr_bits);
+ break;
+ }
+ case KVM_REG_PPC_TSR: {
+ u32 tsr = set_reg_val(id, *val);
+ kvmppc_set_tsr(vcpu, tsr);
+ break;
+ }
+ case KVM_REG_PPC_TCR: {
+ u32 tcr = set_reg_val(id, *val);
+ kvmppc_set_tcr(vcpu, tcr);
+ break;
+ }
+ case KVM_REG_PPC_VRSAVE:
+ vcpu->arch.vrsave = set_reg_val(id, *val);
+ break;
+ default:
+ r = vcpu->kvm->arch.kvm_ops->set_one_reg(vcpu, id, val);
+ break;
+ }
+
+ return r;
+}
+
+int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
+{
+ return -EOPNOTSUPP;
+}
+
+int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
+{
+ return -EOPNOTSUPP;
+}
+
+int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
+ struct kvm_translation *tr)
+{
+ int r;
+
+ vcpu_load(vcpu);
+ r = kvmppc_core_vcpu_translate(vcpu, tr);
+ vcpu_put(vcpu);
+ return r;
+}
+
+void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
+{
+
+}
+
+int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
+{
+ return -EOPNOTSUPP;
+}
+
+void kvmppc_core_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
+{
+}
+
+int kvmppc_core_prepare_memory_region(struct kvm *kvm,
+ const struct kvm_memory_slot *old,
+ struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ return 0;
+}
+
+void kvmppc_core_commit_memory_region(struct kvm *kvm,
+ struct kvm_memory_slot *old,
+ const struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+}
+
+void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
+{
+}
+
+void kvmppc_set_epcr(struct kvm_vcpu *vcpu, u32 new_epcr)
+{
+#if defined(CONFIG_64BIT)
+ vcpu->arch.epcr = new_epcr;
+#ifdef CONFIG_KVM_BOOKE_HV
+ vcpu->arch.shadow_epcr &= ~SPRN_EPCR_GICM;
+ if (vcpu->arch.epcr & SPRN_EPCR_ICM)
+ vcpu->arch.shadow_epcr |= SPRN_EPCR_GICM;
+#endif
+#endif
+}
+
+void kvmppc_set_tcr(struct kvm_vcpu *vcpu, u32 new_tcr)
+{
+ vcpu->arch.tcr = new_tcr;
+ arm_next_watchdog(vcpu);
+ update_timer_ints(vcpu);
+}
+
+void kvmppc_set_tsr_bits(struct kvm_vcpu *vcpu, u32 tsr_bits)
+{
+ set_bits(tsr_bits, &vcpu->arch.tsr);
+ smp_wmb();
+ kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
+ kvm_vcpu_kick(vcpu);
+}
+
+void kvmppc_clr_tsr_bits(struct kvm_vcpu *vcpu, u32 tsr_bits)
+{
+ clear_bits(tsr_bits, &vcpu->arch.tsr);
+
+ /*
+ * We may have stopped the watchdog due to
+ * being stuck on final expiration.
+ */
+ if (tsr_bits & (TSR_ENW | TSR_WIS))
+ arm_next_watchdog(vcpu);
+
+ update_timer_ints(vcpu);
+}
+
+void kvmppc_decrementer_func(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->arch.tcr & TCR_ARE) {
+ vcpu->arch.dec = vcpu->arch.decar;
+ kvmppc_emulate_dec(vcpu);
+ }
+
+ kvmppc_set_tsr_bits(vcpu, TSR_DIS);
+}
+
+static int kvmppc_booke_add_breakpoint(struct debug_reg *dbg_reg,
+ uint64_t addr, int index)
+{
+ switch (index) {
+ case 0:
+ dbg_reg->dbcr0 |= DBCR0_IAC1;
+ dbg_reg->iac1 = addr;
+ break;
+ case 1:
+ dbg_reg->dbcr0 |= DBCR0_IAC2;
+ dbg_reg->iac2 = addr;
+ break;
+#if CONFIG_PPC_ADV_DEBUG_IACS > 2
+ case 2:
+ dbg_reg->dbcr0 |= DBCR0_IAC3;
+ dbg_reg->iac3 = addr;
+ break;
+ case 3:
+ dbg_reg->dbcr0 |= DBCR0_IAC4;
+ dbg_reg->iac4 = addr;
+ break;
+#endif
+ default:
+ return -EINVAL;
+ }
+
+ dbg_reg->dbcr0 |= DBCR0_IDM;
+ return 0;
+}
+
+static int kvmppc_booke_add_watchpoint(struct debug_reg *dbg_reg, uint64_t addr,
+ int type, int index)
+{
+ switch (index) {
+ case 0:
+ if (type & KVMPPC_DEBUG_WATCH_READ)
+ dbg_reg->dbcr0 |= DBCR0_DAC1R;
+ if (type & KVMPPC_DEBUG_WATCH_WRITE)
+ dbg_reg->dbcr0 |= DBCR0_DAC1W;
+ dbg_reg->dac1 = addr;
+ break;
+ case 1:
+ if (type & KVMPPC_DEBUG_WATCH_READ)
+ dbg_reg->dbcr0 |= DBCR0_DAC2R;
+ if (type & KVMPPC_DEBUG_WATCH_WRITE)
+ dbg_reg->dbcr0 |= DBCR0_DAC2W;
+ dbg_reg->dac2 = addr;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ dbg_reg->dbcr0 |= DBCR0_IDM;
+ return 0;
+}
+void kvm_guest_protect_msr(struct kvm_vcpu *vcpu, ulong prot_bitmap, bool set)
+{
+ /* XXX: Add similar MSR protection for BookE-PR */
+#ifdef CONFIG_KVM_BOOKE_HV
+ BUG_ON(prot_bitmap & ~(MSRP_UCLEP | MSRP_DEP | MSRP_PMMP));
+ if (set) {
+ if (prot_bitmap & MSR_UCLE)
+ vcpu->arch.shadow_msrp |= MSRP_UCLEP;
+ if (prot_bitmap & MSR_DE)
+ vcpu->arch.shadow_msrp |= MSRP_DEP;
+ if (prot_bitmap & MSR_PMM)
+ vcpu->arch.shadow_msrp |= MSRP_PMMP;
+ } else {
+ if (prot_bitmap & MSR_UCLE)
+ vcpu->arch.shadow_msrp &= ~MSRP_UCLEP;
+ if (prot_bitmap & MSR_DE)
+ vcpu->arch.shadow_msrp &= ~MSRP_DEP;
+ if (prot_bitmap & MSR_PMM)
+ vcpu->arch.shadow_msrp &= ~MSRP_PMMP;
+ }
+#endif
+}
+
+int kvmppc_xlate(struct kvm_vcpu *vcpu, ulong eaddr, enum xlate_instdata xlid,
+ enum xlate_readwrite xlrw, struct kvmppc_pte *pte)
+{
+ int gtlb_index;
+ gpa_t gpaddr;
+
+#ifdef CONFIG_KVM_E500V2
+ if (!(vcpu->arch.shared->msr & MSR_PR) &&
+ (eaddr & PAGE_MASK) == vcpu->arch.magic_page_ea) {
+ pte->eaddr = eaddr;
+ pte->raddr = (vcpu->arch.magic_page_pa & PAGE_MASK) |
+ (eaddr & ~PAGE_MASK);
+ pte->vpage = eaddr >> PAGE_SHIFT;
+ pte->may_read = true;
+ pte->may_write = true;
+ pte->may_execute = true;
+
+ return 0;
+ }
+#endif
+
+ /* Check the guest TLB. */
+ switch (xlid) {
+ case XLATE_INST:
+ gtlb_index = kvmppc_mmu_itlb_index(vcpu, eaddr);
+ break;
+ case XLATE_DATA:
+ gtlb_index = kvmppc_mmu_dtlb_index(vcpu, eaddr);
+ break;
+ default:
+ BUG();
+ }
+
+ /* Do we have a TLB entry at all? */
+ if (gtlb_index < 0)
+ return -ENOENT;
+
+ gpaddr = kvmppc_mmu_xlate(vcpu, gtlb_index, eaddr);
+
+ pte->eaddr = eaddr;
+ pte->raddr = (gpaddr & PAGE_MASK) | (eaddr & ~PAGE_MASK);
+ pte->vpage = eaddr >> PAGE_SHIFT;
+
+ /* XXX read permissions from the guest TLB */
+ pte->may_read = true;
+ pte->may_write = true;
+ pte->may_execute = true;
+
+ return 0;
+}
+
+int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
+ struct kvm_guest_debug *dbg)
+{
+ struct debug_reg *dbg_reg;
+ int n, b = 0, w = 0;
+ int ret = 0;
+
+ vcpu_load(vcpu);
+
+ if (!(dbg->control & KVM_GUESTDBG_ENABLE)) {
+ vcpu->arch.dbg_reg.dbcr0 = 0;
+ vcpu->guest_debug = 0;
+ kvm_guest_protect_msr(vcpu, MSR_DE, false);
+ goto out;
+ }
+
+ kvm_guest_protect_msr(vcpu, MSR_DE, true);
+ vcpu->guest_debug = dbg->control;
+ vcpu->arch.dbg_reg.dbcr0 = 0;
+
+ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
+ vcpu->arch.dbg_reg.dbcr0 |= DBCR0_IDM | DBCR0_IC;
+
+ /* Code below handles only HW breakpoints */
+ dbg_reg = &(vcpu->arch.dbg_reg);
+
+#ifdef CONFIG_KVM_BOOKE_HV
+ /*
+ * On BookE-HV (e500mc) the guest is always executed with MSR.GS=1
+ * DBCR1 and DBCR2 are set to trigger debug events when MSR.PR is 0
+ */
+ dbg_reg->dbcr1 = 0;
+ dbg_reg->dbcr2 = 0;
+#else
+ /*
+ * On BookE-PR (e500v2) the guest is always executed with MSR.PR=1
+ * We set DBCR1 and DBCR2 to only trigger debug events when MSR.PR
+ * is set.
+ */
+ dbg_reg->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | DBCR1_IAC3US |
+ DBCR1_IAC4US;
+ dbg_reg->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
+#endif
+
+ if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
+ goto out;
+
+ ret = -EINVAL;
+ for (n = 0; n < (KVMPPC_BOOKE_IAC_NUM + KVMPPC_BOOKE_DAC_NUM); n++) {
+ uint64_t addr = dbg->arch.bp[n].addr;
+ uint32_t type = dbg->arch.bp[n].type;
+
+ if (type == KVMPPC_DEBUG_NONE)
+ continue;
+
+ if (type & ~(KVMPPC_DEBUG_WATCH_READ |
+ KVMPPC_DEBUG_WATCH_WRITE |
+ KVMPPC_DEBUG_BREAKPOINT))
+ goto out;
+
+ if (type & KVMPPC_DEBUG_BREAKPOINT) {
+ /* Setting H/W breakpoint */
+ if (kvmppc_booke_add_breakpoint(dbg_reg, addr, b++))
+ goto out;
+ } else {
+ /* Setting H/W watchpoint */
+ if (kvmppc_booke_add_watchpoint(dbg_reg, addr,
+ type, w++))
+ goto out;
+ }
+ }
+
+ ret = 0;
+out:
+ vcpu_put(vcpu);
+ return ret;
+}
+
+void kvmppc_booke_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+ vcpu->cpu = smp_processor_id();
+ current->thread.kvm_vcpu = vcpu;
+}
+
+void kvmppc_booke_vcpu_put(struct kvm_vcpu *vcpu)
+{
+ current->thread.kvm_vcpu = NULL;
+ vcpu->cpu = -1;
+
+ /* Clear pending debug event in DBSR */
+ kvmppc_clear_dbsr();
+}
+
+int kvmppc_core_init_vm(struct kvm *kvm)
+{
+ return kvm->arch.kvm_ops->init_vm(kvm);
+}
+
+int kvmppc_core_vcpu_create(struct kvm_vcpu *vcpu)
+{
+ int i;
+ int r;
+
+ r = vcpu->kvm->arch.kvm_ops->vcpu_create(vcpu);
+ if (r)
+ return r;
+
+ /* Initial guest state: 16MB mapping 0 -> 0, PC = 0, MSR = 0, R1 = 16MB */
+ vcpu->arch.regs.nip = 0;
+ vcpu->arch.shared->pir = vcpu->vcpu_id;
+ kvmppc_set_gpr(vcpu, 1, (16<<20) - 8); /* -8 for the callee-save LR slot */
+ kvmppc_set_msr(vcpu, 0);
+
+#ifndef CONFIG_KVM_BOOKE_HV
+ vcpu->arch.shadow_msr = MSR_USER | MSR_IS | MSR_DS;
+ vcpu->arch.shadow_pid = 1;
+ vcpu->arch.shared->msr = 0;
+#endif
+
+ /* Eye-catching numbers so we know if the guest takes an interrupt
+ * before it's programmed its own IVPR/IVORs. */
+ vcpu->arch.ivpr = 0x55550000;
+ for (i = 0; i < BOOKE_IRQPRIO_MAX; i++)
+ vcpu->arch.ivor[i] = 0x7700 | i * 4;
+
+ kvmppc_init_timing_stats(vcpu);
+
+ r = kvmppc_core_vcpu_setup(vcpu);
+ if (r)
+ vcpu->kvm->arch.kvm_ops->vcpu_free(vcpu);
+ kvmppc_sanity_check(vcpu);
+ return r;
+}
+
+void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
+{
+ vcpu->kvm->arch.kvm_ops->vcpu_free(vcpu);
+}
+
+void kvmppc_core_destroy_vm(struct kvm *kvm)
+{
+ kvm->arch.kvm_ops->destroy_vm(kvm);
+}
+
+void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+ vcpu->kvm->arch.kvm_ops->vcpu_load(vcpu, cpu);
+}
+
+void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
+{
+ vcpu->kvm->arch.kvm_ops->vcpu_put(vcpu);
+}
+
+int __init kvmppc_booke_init(void)
+{
+#ifndef CONFIG_KVM_BOOKE_HV
+ unsigned long ivor[16];
+ unsigned long *handler = kvmppc_booke_handler_addr;
+ unsigned long max_ivor = 0;
+ unsigned long handler_len;
+ int i;
+
+ /* We install our own exception handlers by hijacking IVPR. IVPR must
+ * be 16-bit aligned, so we need a 64KB allocation. */
+ kvmppc_booke_handlers = __get_free_pages(GFP_KERNEL | __GFP_ZERO,
+ VCPU_SIZE_ORDER);
+ if (!kvmppc_booke_handlers)
+ return -ENOMEM;
+
+ /* XXX make sure our handlers are smaller than Linux's */
+
+ /* Copy our interrupt handlers to match host IVORs. That way we don't
+ * have to swap the IVORs on every guest/host transition. */
+ ivor[0] = mfspr(SPRN_IVOR0);
+ ivor[1] = mfspr(SPRN_IVOR1);
+ ivor[2] = mfspr(SPRN_IVOR2);
+ ivor[3] = mfspr(SPRN_IVOR3);
+ ivor[4] = mfspr(SPRN_IVOR4);
+ ivor[5] = mfspr(SPRN_IVOR5);
+ ivor[6] = mfspr(SPRN_IVOR6);
+ ivor[7] = mfspr(SPRN_IVOR7);
+ ivor[8] = mfspr(SPRN_IVOR8);
+ ivor[9] = mfspr(SPRN_IVOR9);
+ ivor[10] = mfspr(SPRN_IVOR10);
+ ivor[11] = mfspr(SPRN_IVOR11);
+ ivor[12] = mfspr(SPRN_IVOR12);
+ ivor[13] = mfspr(SPRN_IVOR13);
+ ivor[14] = mfspr(SPRN_IVOR14);
+ ivor[15] = mfspr(SPRN_IVOR15);
+
+ for (i = 0; i < 16; i++) {
+ if (ivor[i] > max_ivor)
+ max_ivor = i;
+
+ handler_len = handler[i + 1] - handler[i];
+ memcpy((void *)kvmppc_booke_handlers + ivor[i],
+ (void *)handler[i], handler_len);
+ }
+
+ handler_len = handler[max_ivor + 1] - handler[max_ivor];
+ flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
+ ivor[max_ivor] + handler_len);
+#endif /* !BOOKE_HV */
+ return 0;
+}
+
+void __exit kvmppc_booke_exit(void)
+{
+ free_pages(kvmppc_booke_handlers, VCPU_SIZE_ORDER);
+ kvm_exit();
+}
diff --git a/arch/powerpc/kvm/booke.h b/arch/powerpc/kvm/booke.h
new file mode 100644
index 000000000..be9da96d9
--- /dev/null
+++ b/arch/powerpc/kvm/booke.h
@@ -0,0 +1,112 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ *
+ * Copyright IBM Corp. 2008
+ *
+ * Authors: Hollis Blanchard <hollisb@us.ibm.com>
+ */
+
+#ifndef __KVM_BOOKE_H__
+#define __KVM_BOOKE_H__
+
+#include <linux/types.h>
+#include <linux/kvm_host.h>
+#include <asm/kvm_ppc.h>
+#include <asm/switch_to.h>
+#include "timing.h"
+
+/* interrupt priortity ordering */
+#define BOOKE_IRQPRIO_DATA_STORAGE 0
+#define BOOKE_IRQPRIO_INST_STORAGE 1
+#define BOOKE_IRQPRIO_ALIGNMENT 2
+#define BOOKE_IRQPRIO_PROGRAM 3
+#define BOOKE_IRQPRIO_FP_UNAVAIL 4
+#ifdef CONFIG_SPE_POSSIBLE
+#define BOOKE_IRQPRIO_SPE_UNAVAIL 5
+#define BOOKE_IRQPRIO_SPE_FP_DATA 6
+#define BOOKE_IRQPRIO_SPE_FP_ROUND 7
+#endif
+#ifdef CONFIG_PPC_E500MC
+#define BOOKE_IRQPRIO_ALTIVEC_UNAVAIL 5
+#define BOOKE_IRQPRIO_ALTIVEC_ASSIST 6
+#endif
+#define BOOKE_IRQPRIO_SYSCALL 8
+#define BOOKE_IRQPRIO_AP_UNAVAIL 9
+#define BOOKE_IRQPRIO_DTLB_MISS 10
+#define BOOKE_IRQPRIO_ITLB_MISS 11
+#define BOOKE_IRQPRIO_MACHINE_CHECK 12
+#define BOOKE_IRQPRIO_DEBUG 13
+#define BOOKE_IRQPRIO_CRITICAL 14
+#define BOOKE_IRQPRIO_WATCHDOG 15
+#define BOOKE_IRQPRIO_EXTERNAL 16
+#define BOOKE_IRQPRIO_FIT 17
+#define BOOKE_IRQPRIO_DECREMENTER 18
+#define BOOKE_IRQPRIO_PERFORMANCE_MONITOR 19
+/* Internal pseudo-irqprio for level triggered externals */
+#define BOOKE_IRQPRIO_EXTERNAL_LEVEL 20
+#define BOOKE_IRQPRIO_DBELL 21
+#define BOOKE_IRQPRIO_DBELL_CRIT 22
+#define BOOKE_IRQPRIO_MAX 23
+
+#define BOOKE_IRQMASK_EE ((1 << BOOKE_IRQPRIO_EXTERNAL_LEVEL) | \
+ (1 << BOOKE_IRQPRIO_PERFORMANCE_MONITOR) | \
+ (1 << BOOKE_IRQPRIO_DBELL) | \
+ (1 << BOOKE_IRQPRIO_DECREMENTER) | \
+ (1 << BOOKE_IRQPRIO_FIT) | \
+ (1 << BOOKE_IRQPRIO_EXTERNAL))
+
+#define BOOKE_IRQMASK_CE ((1 << BOOKE_IRQPRIO_DBELL_CRIT) | \
+ (1 << BOOKE_IRQPRIO_WATCHDOG) | \
+ (1 << BOOKE_IRQPRIO_CRITICAL))
+
+extern unsigned long kvmppc_booke_handlers;
+extern unsigned long kvmppc_booke_handler_addr[];
+
+void kvmppc_set_msr(struct kvm_vcpu *vcpu, u32 new_msr);
+void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr);
+
+void kvmppc_set_epcr(struct kvm_vcpu *vcpu, u32 new_epcr);
+void kvmppc_set_tcr(struct kvm_vcpu *vcpu, u32 new_tcr);
+void kvmppc_set_tsr_bits(struct kvm_vcpu *vcpu, u32 tsr_bits);
+void kvmppc_clr_tsr_bits(struct kvm_vcpu *vcpu, u32 tsr_bits);
+
+int kvmppc_booke_emulate_op(struct kvm_vcpu *vcpu,
+ unsigned int inst, int *advance);
+int kvmppc_booke_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val);
+int kvmppc_booke_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val);
+
+/* low-level asm code to transfer guest state */
+void kvmppc_load_guest_spe(struct kvm_vcpu *vcpu);
+void kvmppc_save_guest_spe(struct kvm_vcpu *vcpu);
+
+/* high-level function, manages flags, host state */
+void kvmppc_vcpu_disable_spe(struct kvm_vcpu *vcpu);
+
+void kvmppc_booke_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
+void kvmppc_booke_vcpu_put(struct kvm_vcpu *vcpu);
+
+enum int_class {
+ INT_CLASS_NONCRIT,
+ INT_CLASS_CRIT,
+ INT_CLASS_MC,
+ INT_CLASS_DBG,
+};
+
+void kvmppc_set_pending_interrupt(struct kvm_vcpu *vcpu, enum int_class type);
+
+extern int kvmppc_core_emulate_op_e500(struct kvm_vcpu *vcpu,
+ unsigned int inst, int *advance);
+extern int kvmppc_core_emulate_mtspr_e500(struct kvm_vcpu *vcpu, int sprn,
+ ulong spr_val);
+extern int kvmppc_core_emulate_mfspr_e500(struct kvm_vcpu *vcpu, int sprn,
+ ulong *spr_val);
+extern int kvmppc_core_emulate_mtspr_e500(struct kvm_vcpu *vcpu, int sprn,
+ ulong spr_val);
+extern int kvmppc_core_emulate_mfspr_e500(struct kvm_vcpu *vcpu, int sprn,
+ ulong *spr_val);
+
+static inline void kvmppc_clear_dbsr(void)
+{
+ mtspr(SPRN_DBSR, mfspr(SPRN_DBSR));
+}
+#endif /* __KVM_BOOKE_H__ */
diff --git a/arch/powerpc/kvm/booke_emulate.c b/arch/powerpc/kvm/booke_emulate.c
new file mode 100644
index 000000000..d8d38aca7
--- /dev/null
+++ b/arch/powerpc/kvm/booke_emulate.c
@@ -0,0 +1,511 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ *
+ * Copyright IBM Corp. 2008
+ * Copyright 2011 Freescale Semiconductor, Inc.
+ *
+ * Authors: Hollis Blanchard <hollisb@us.ibm.com>
+ */
+
+#include <linux/kvm_host.h>
+#include <asm/disassemble.h>
+
+#include "booke.h"
+
+#define OP_19_XOP_RFI 50
+#define OP_19_XOP_RFCI 51
+#define OP_19_XOP_RFDI 39
+
+#define OP_31_XOP_MFMSR 83
+#define OP_31_XOP_WRTEE 131
+#define OP_31_XOP_MTMSR 146
+#define OP_31_XOP_WRTEEI 163
+
+static void kvmppc_emul_rfi(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.regs.nip = vcpu->arch.shared->srr0;
+ kvmppc_set_msr(vcpu, vcpu->arch.shared->srr1);
+}
+
+static void kvmppc_emul_rfdi(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.regs.nip = vcpu->arch.dsrr0;
+ kvmppc_set_msr(vcpu, vcpu->arch.dsrr1);
+}
+
+static void kvmppc_emul_rfci(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.regs.nip = vcpu->arch.csrr0;
+ kvmppc_set_msr(vcpu, vcpu->arch.csrr1);
+}
+
+int kvmppc_booke_emulate_op(struct kvm_vcpu *vcpu,
+ unsigned int inst, int *advance)
+{
+ int emulated = EMULATE_DONE;
+ int rs = get_rs(inst);
+ int rt = get_rt(inst);
+
+ switch (get_op(inst)) {
+ case 19:
+ switch (get_xop(inst)) {
+ case OP_19_XOP_RFI:
+ kvmppc_emul_rfi(vcpu);
+ kvmppc_set_exit_type(vcpu, EMULATED_RFI_EXITS);
+ *advance = 0;
+ break;
+
+ case OP_19_XOP_RFCI:
+ kvmppc_emul_rfci(vcpu);
+ kvmppc_set_exit_type(vcpu, EMULATED_RFCI_EXITS);
+ *advance = 0;
+ break;
+
+ case OP_19_XOP_RFDI:
+ kvmppc_emul_rfdi(vcpu);
+ kvmppc_set_exit_type(vcpu, EMULATED_RFDI_EXITS);
+ *advance = 0;
+ break;
+
+ default:
+ emulated = EMULATE_FAIL;
+ break;
+ }
+ break;
+
+ case 31:
+ switch (get_xop(inst)) {
+
+ case OP_31_XOP_MFMSR:
+ kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->msr);
+ kvmppc_set_exit_type(vcpu, EMULATED_MFMSR_EXITS);
+ break;
+
+ case OP_31_XOP_MTMSR:
+ kvmppc_set_exit_type(vcpu, EMULATED_MTMSR_EXITS);
+ kvmppc_set_msr(vcpu, kvmppc_get_gpr(vcpu, rs));
+ break;
+
+ case OP_31_XOP_WRTEE:
+ vcpu->arch.shared->msr = (vcpu->arch.shared->msr & ~MSR_EE)
+ | (kvmppc_get_gpr(vcpu, rs) & MSR_EE);
+ kvmppc_set_exit_type(vcpu, EMULATED_WRTEE_EXITS);
+ break;
+
+ case OP_31_XOP_WRTEEI:
+ vcpu->arch.shared->msr = (vcpu->arch.shared->msr & ~MSR_EE)
+ | (inst & MSR_EE);
+ kvmppc_set_exit_type(vcpu, EMULATED_WRTEE_EXITS);
+ break;
+
+ default:
+ emulated = EMULATE_FAIL;
+ }
+
+ break;
+
+ default:
+ emulated = EMULATE_FAIL;
+ }
+
+ return emulated;
+}
+
+/*
+ * NOTE: some of these registers are not emulated on BOOKE_HV (GS-mode).
+ * Their backing store is in real registers, and these functions
+ * will return the wrong result if called for them in another context
+ * (such as debugging).
+ */
+int kvmppc_booke_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
+{
+ int emulated = EMULATE_DONE;
+ bool debug_inst = false;
+
+ switch (sprn) {
+ case SPRN_DEAR:
+ vcpu->arch.shared->dar = spr_val;
+ break;
+ case SPRN_ESR:
+ vcpu->arch.shared->esr = spr_val;
+ break;
+ case SPRN_CSRR0:
+ vcpu->arch.csrr0 = spr_val;
+ break;
+ case SPRN_CSRR1:
+ vcpu->arch.csrr1 = spr_val;
+ break;
+ case SPRN_DSRR0:
+ vcpu->arch.dsrr0 = spr_val;
+ break;
+ case SPRN_DSRR1:
+ vcpu->arch.dsrr1 = spr_val;
+ break;
+ case SPRN_IAC1:
+ /*
+ * If userspace is debugging guest then guest
+ * can not access debug registers.
+ */
+ if (vcpu->guest_debug)
+ break;
+
+ debug_inst = true;
+ vcpu->arch.dbg_reg.iac1 = spr_val;
+ break;
+ case SPRN_IAC2:
+ /*
+ * If userspace is debugging guest then guest
+ * can not access debug registers.
+ */
+ if (vcpu->guest_debug)
+ break;
+
+ debug_inst = true;
+ vcpu->arch.dbg_reg.iac2 = spr_val;
+ break;
+#if CONFIG_PPC_ADV_DEBUG_IACS > 2
+ case SPRN_IAC3:
+ /*
+ * If userspace is debugging guest then guest
+ * can not access debug registers.
+ */
+ if (vcpu->guest_debug)
+ break;
+
+ debug_inst = true;
+ vcpu->arch.dbg_reg.iac3 = spr_val;
+ break;
+ case SPRN_IAC4:
+ /*
+ * If userspace is debugging guest then guest
+ * can not access debug registers.
+ */
+ if (vcpu->guest_debug)
+ break;
+
+ debug_inst = true;
+ vcpu->arch.dbg_reg.iac4 = spr_val;
+ break;
+#endif
+ case SPRN_DAC1:
+ /*
+ * If userspace is debugging guest then guest
+ * can not access debug registers.
+ */
+ if (vcpu->guest_debug)
+ break;
+
+ debug_inst = true;
+ vcpu->arch.dbg_reg.dac1 = spr_val;
+ break;
+ case SPRN_DAC2:
+ /*
+ * If userspace is debugging guest then guest
+ * can not access debug registers.
+ */
+ if (vcpu->guest_debug)
+ break;
+
+ debug_inst = true;
+ vcpu->arch.dbg_reg.dac2 = spr_val;
+ break;
+ case SPRN_DBCR0:
+ /*
+ * If userspace is debugging guest then guest
+ * can not access debug registers.
+ */
+ if (vcpu->guest_debug)
+ break;
+
+ debug_inst = true;
+ spr_val &= (DBCR0_IDM | DBCR0_IC | DBCR0_BT | DBCR0_TIE |
+ DBCR0_IAC1 | DBCR0_IAC2 | DBCR0_IAC3 | DBCR0_IAC4 |
+ DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W);
+
+ vcpu->arch.dbg_reg.dbcr0 = spr_val;
+ break;
+ case SPRN_DBCR1:
+ /*
+ * If userspace is debugging guest then guest
+ * can not access debug registers.
+ */
+ if (vcpu->guest_debug)
+ break;
+
+ debug_inst = true;
+ vcpu->arch.dbg_reg.dbcr1 = spr_val;
+ break;
+ case SPRN_DBCR2:
+ /*
+ * If userspace is debugging guest then guest
+ * can not access debug registers.
+ */
+ if (vcpu->guest_debug)
+ break;
+
+ debug_inst = true;
+ vcpu->arch.dbg_reg.dbcr2 = spr_val;
+ break;
+ case SPRN_DBSR:
+ /*
+ * If userspace is debugging guest then guest
+ * can not access debug registers.
+ */
+ if (vcpu->guest_debug)
+ break;
+
+ vcpu->arch.dbsr &= ~spr_val;
+ if (!(vcpu->arch.dbsr & ~DBSR_IDE))
+ kvmppc_core_dequeue_debug(vcpu);
+ break;
+ case SPRN_TSR:
+ kvmppc_clr_tsr_bits(vcpu, spr_val);
+ break;
+ case SPRN_TCR:
+ /*
+ * WRC is a 2-bit field that is supposed to preserve its
+ * value once written to non-zero.
+ */
+ if (vcpu->arch.tcr & TCR_WRC_MASK) {
+ spr_val &= ~TCR_WRC_MASK;
+ spr_val |= vcpu->arch.tcr & TCR_WRC_MASK;
+ }
+ kvmppc_set_tcr(vcpu, spr_val);
+ break;
+
+ case SPRN_DECAR:
+ vcpu->arch.decar = spr_val;
+ break;
+ /*
+ * Note: SPRG4-7 are user-readable.
+ * These values are loaded into the real SPRGs when resuming the
+ * guest (PR-mode only).
+ */
+ case SPRN_SPRG4:
+ kvmppc_set_sprg4(vcpu, spr_val);
+ break;
+ case SPRN_SPRG5:
+ kvmppc_set_sprg5(vcpu, spr_val);
+ break;
+ case SPRN_SPRG6:
+ kvmppc_set_sprg6(vcpu, spr_val);
+ break;
+ case SPRN_SPRG7:
+ kvmppc_set_sprg7(vcpu, spr_val);
+ break;
+
+ case SPRN_IVPR:
+ vcpu->arch.ivpr = spr_val;
+#ifdef CONFIG_KVM_BOOKE_HV
+ mtspr(SPRN_GIVPR, spr_val);
+#endif
+ break;
+ case SPRN_IVOR0:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_CRITICAL] = spr_val;
+ break;
+ case SPRN_IVOR1:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_MACHINE_CHECK] = spr_val;
+ break;
+ case SPRN_IVOR2:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_DATA_STORAGE] = spr_val;
+#ifdef CONFIG_KVM_BOOKE_HV
+ mtspr(SPRN_GIVOR2, spr_val);
+#endif
+ break;
+ case SPRN_IVOR3:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_INST_STORAGE] = spr_val;
+ break;
+ case SPRN_IVOR4:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_EXTERNAL] = spr_val;
+ break;
+ case SPRN_IVOR5:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_ALIGNMENT] = spr_val;
+ break;
+ case SPRN_IVOR6:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_PROGRAM] = spr_val;
+ break;
+ case SPRN_IVOR7:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_FP_UNAVAIL] = spr_val;
+ break;
+ case SPRN_IVOR8:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_SYSCALL] = spr_val;
+#ifdef CONFIG_KVM_BOOKE_HV
+ mtspr(SPRN_GIVOR8, spr_val);
+#endif
+ break;
+ case SPRN_IVOR9:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_AP_UNAVAIL] = spr_val;
+ break;
+ case SPRN_IVOR10:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_DECREMENTER] = spr_val;
+ break;
+ case SPRN_IVOR11:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_FIT] = spr_val;
+ break;
+ case SPRN_IVOR12:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_WATCHDOG] = spr_val;
+ break;
+ case SPRN_IVOR13:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_DTLB_MISS] = spr_val;
+ break;
+ case SPRN_IVOR14:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_ITLB_MISS] = spr_val;
+ break;
+ case SPRN_IVOR15:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_DEBUG] = spr_val;
+ break;
+ case SPRN_MCSR:
+ vcpu->arch.mcsr &= ~spr_val;
+ break;
+#if defined(CONFIG_64BIT)
+ case SPRN_EPCR:
+ kvmppc_set_epcr(vcpu, spr_val);
+#ifdef CONFIG_KVM_BOOKE_HV
+ mtspr(SPRN_EPCR, vcpu->arch.shadow_epcr);
+#endif
+ break;
+#endif
+ default:
+ emulated = EMULATE_FAIL;
+ }
+
+ if (debug_inst) {
+ current->thread.debug = vcpu->arch.dbg_reg;
+ switch_booke_debug_regs(&vcpu->arch.dbg_reg);
+ }
+ return emulated;
+}
+
+int kvmppc_booke_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
+{
+ int emulated = EMULATE_DONE;
+
+ switch (sprn) {
+ case SPRN_IVPR:
+ *spr_val = vcpu->arch.ivpr;
+ break;
+ case SPRN_DEAR:
+ *spr_val = vcpu->arch.shared->dar;
+ break;
+ case SPRN_ESR:
+ *spr_val = vcpu->arch.shared->esr;
+ break;
+ case SPRN_EPR:
+ *spr_val = vcpu->arch.epr;
+ break;
+ case SPRN_CSRR0:
+ *spr_val = vcpu->arch.csrr0;
+ break;
+ case SPRN_CSRR1:
+ *spr_val = vcpu->arch.csrr1;
+ break;
+ case SPRN_DSRR0:
+ *spr_val = vcpu->arch.dsrr0;
+ break;
+ case SPRN_DSRR1:
+ *spr_val = vcpu->arch.dsrr1;
+ break;
+ case SPRN_IAC1:
+ *spr_val = vcpu->arch.dbg_reg.iac1;
+ break;
+ case SPRN_IAC2:
+ *spr_val = vcpu->arch.dbg_reg.iac2;
+ break;
+#if CONFIG_PPC_ADV_DEBUG_IACS > 2
+ case SPRN_IAC3:
+ *spr_val = vcpu->arch.dbg_reg.iac3;
+ break;
+ case SPRN_IAC4:
+ *spr_val = vcpu->arch.dbg_reg.iac4;
+ break;
+#endif
+ case SPRN_DAC1:
+ *spr_val = vcpu->arch.dbg_reg.dac1;
+ break;
+ case SPRN_DAC2:
+ *spr_val = vcpu->arch.dbg_reg.dac2;
+ break;
+ case SPRN_DBCR0:
+ *spr_val = vcpu->arch.dbg_reg.dbcr0;
+ if (vcpu->guest_debug)
+ *spr_val = *spr_val | DBCR0_EDM;
+ break;
+ case SPRN_DBCR1:
+ *spr_val = vcpu->arch.dbg_reg.dbcr1;
+ break;
+ case SPRN_DBCR2:
+ *spr_val = vcpu->arch.dbg_reg.dbcr2;
+ break;
+ case SPRN_DBSR:
+ *spr_val = vcpu->arch.dbsr;
+ break;
+ case SPRN_TSR:
+ *spr_val = vcpu->arch.tsr;
+ break;
+ case SPRN_TCR:
+ *spr_val = vcpu->arch.tcr;
+ break;
+
+ case SPRN_IVOR0:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_CRITICAL];
+ break;
+ case SPRN_IVOR1:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_MACHINE_CHECK];
+ break;
+ case SPRN_IVOR2:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_DATA_STORAGE];
+ break;
+ case SPRN_IVOR3:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_INST_STORAGE];
+ break;
+ case SPRN_IVOR4:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_EXTERNAL];
+ break;
+ case SPRN_IVOR5:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_ALIGNMENT];
+ break;
+ case SPRN_IVOR6:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_PROGRAM];
+ break;
+ case SPRN_IVOR7:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_FP_UNAVAIL];
+ break;
+ case SPRN_IVOR8:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_SYSCALL];
+ break;
+ case SPRN_IVOR9:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_AP_UNAVAIL];
+ break;
+ case SPRN_IVOR10:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_DECREMENTER];
+ break;
+ case SPRN_IVOR11:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_FIT];
+ break;
+ case SPRN_IVOR12:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_WATCHDOG];
+ break;
+ case SPRN_IVOR13:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_DTLB_MISS];
+ break;
+ case SPRN_IVOR14:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_ITLB_MISS];
+ break;
+ case SPRN_IVOR15:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_DEBUG];
+ break;
+ case SPRN_MCSR:
+ *spr_val = vcpu->arch.mcsr;
+ break;
+#if defined(CONFIG_64BIT)
+ case SPRN_EPCR:
+ *spr_val = vcpu->arch.epcr;
+ break;
+#endif
+
+ default:
+ emulated = EMULATE_FAIL;
+ }
+
+ return emulated;
+}
diff --git a/arch/powerpc/kvm/booke_interrupts.S b/arch/powerpc/kvm/booke_interrupts.S
new file mode 100644
index 000000000..205545d82
--- /dev/null
+++ b/arch/powerpc/kvm/booke_interrupts.S
@@ -0,0 +1,535 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ *
+ * Copyright IBM Corp. 2007
+ * Copyright 2011 Freescale Semiconductor, Inc.
+ *
+ * Authors: Hollis Blanchard <hollisb@us.ibm.com>
+ */
+
+#include <asm/ppc_asm.h>
+#include <asm/kvm_asm.h>
+#include <asm/reg.h>
+#include <asm/page.h>
+#include <asm/asm-offsets.h>
+
+/* The host stack layout: */
+#define HOST_R1 0 /* Implied by stwu. */
+#define HOST_CALLEE_LR 4
+#define HOST_RUN 8
+/* r2 is special: it holds 'current', and it made nonvolatile in the
+ * kernel with the -ffixed-r2 gcc option. */
+#define HOST_R2 12
+#define HOST_CR 16
+#define HOST_NV_GPRS 20
+#define __HOST_NV_GPR(n) (HOST_NV_GPRS + ((n - 14) * 4))
+#define HOST_NV_GPR(n) __HOST_NV_GPR(__REG_##n)
+#define HOST_MIN_STACK_SIZE (HOST_NV_GPR(R31) + 4)
+#define HOST_STACK_SIZE (((HOST_MIN_STACK_SIZE + 15) / 16) * 16) /* Align. */
+#define HOST_STACK_LR (HOST_STACK_SIZE + 4) /* In caller stack frame. */
+
+#define NEED_INST_MASK ((1<<BOOKE_INTERRUPT_PROGRAM) | \
+ (1<<BOOKE_INTERRUPT_DTLB_MISS) | \
+ (1<<BOOKE_INTERRUPT_DEBUG))
+
+#define NEED_DEAR_MASK ((1<<BOOKE_INTERRUPT_DATA_STORAGE) | \
+ (1<<BOOKE_INTERRUPT_DTLB_MISS) | \
+ (1<<BOOKE_INTERRUPT_ALIGNMENT))
+
+#define NEED_ESR_MASK ((1<<BOOKE_INTERRUPT_DATA_STORAGE) | \
+ (1<<BOOKE_INTERRUPT_INST_STORAGE) | \
+ (1<<BOOKE_INTERRUPT_PROGRAM) | \
+ (1<<BOOKE_INTERRUPT_DTLB_MISS) | \
+ (1<<BOOKE_INTERRUPT_ALIGNMENT))
+
+.macro __KVM_HANDLER ivor_nr scratch srr0
+ /* Get pointer to vcpu and record exit number. */
+ mtspr \scratch , r4
+ mfspr r4, SPRN_SPRG_THREAD
+ lwz r4, THREAD_KVM_VCPU(r4)
+ stw r3, VCPU_GPR(R3)(r4)
+ stw r5, VCPU_GPR(R5)(r4)
+ stw r6, VCPU_GPR(R6)(r4)
+ mfspr r3, \scratch
+ mfctr r5
+ stw r3, VCPU_GPR(R4)(r4)
+ stw r5, VCPU_CTR(r4)
+ mfspr r3, \srr0
+ lis r6, kvmppc_resume_host@h
+ stw r3, VCPU_PC(r4)
+ li r5, \ivor_nr
+ ori r6, r6, kvmppc_resume_host@l
+ mtctr r6
+ bctr
+.endm
+
+.macro KVM_HANDLER ivor_nr scratch srr0
+_GLOBAL(kvmppc_handler_\ivor_nr)
+ __KVM_HANDLER \ivor_nr \scratch \srr0
+.endm
+
+.macro KVM_DBG_HANDLER ivor_nr scratch srr0
+_GLOBAL(kvmppc_handler_\ivor_nr)
+ mtspr \scratch, r4
+ mfspr r4, SPRN_SPRG_THREAD
+ lwz r4, THREAD_KVM_VCPU(r4)
+ stw r3, VCPU_CRIT_SAVE(r4)
+ mfcr r3
+ mfspr r4, SPRN_CSRR1
+ andi. r4, r4, MSR_PR
+ bne 1f
+ /* debug interrupt happened in enter/exit path */
+ mfspr r4, SPRN_CSRR1
+ rlwinm r4, r4, 0, ~MSR_DE
+ mtspr SPRN_CSRR1, r4
+ lis r4, 0xffff
+ ori r4, r4, 0xffff
+ mtspr SPRN_DBSR, r4
+ mfspr r4, SPRN_SPRG_THREAD
+ lwz r4, THREAD_KVM_VCPU(r4)
+ mtcr r3
+ lwz r3, VCPU_CRIT_SAVE(r4)
+ mfspr r4, \scratch
+ rfci
+1: /* debug interrupt happened in guest */
+ mtcr r3
+ mfspr r4, SPRN_SPRG_THREAD
+ lwz r4, THREAD_KVM_VCPU(r4)
+ lwz r3, VCPU_CRIT_SAVE(r4)
+ mfspr r4, \scratch
+ __KVM_HANDLER \ivor_nr \scratch \srr0
+.endm
+
+.macro KVM_HANDLER_ADDR ivor_nr
+ .long kvmppc_handler_\ivor_nr
+.endm
+
+.macro KVM_HANDLER_END
+ .long kvmppc_handlers_end
+.endm
+
+_GLOBAL(kvmppc_handlers_start)
+KVM_HANDLER BOOKE_INTERRUPT_CRITICAL SPRN_SPRG_RSCRATCH_CRIT SPRN_CSRR0
+KVM_HANDLER BOOKE_INTERRUPT_MACHINE_CHECK SPRN_SPRG_RSCRATCH_MC SPRN_MCSRR0
+KVM_HANDLER BOOKE_INTERRUPT_DATA_STORAGE SPRN_SPRG_RSCRATCH0 SPRN_SRR0
+KVM_HANDLER BOOKE_INTERRUPT_INST_STORAGE SPRN_SPRG_RSCRATCH0 SPRN_SRR0
+KVM_HANDLER BOOKE_INTERRUPT_EXTERNAL SPRN_SPRG_RSCRATCH0 SPRN_SRR0
+KVM_HANDLER BOOKE_INTERRUPT_ALIGNMENT SPRN_SPRG_RSCRATCH0 SPRN_SRR0
+KVM_HANDLER BOOKE_INTERRUPT_PROGRAM SPRN_SPRG_RSCRATCH0 SPRN_SRR0
+KVM_HANDLER BOOKE_INTERRUPT_FP_UNAVAIL SPRN_SPRG_RSCRATCH0 SPRN_SRR0
+KVM_HANDLER BOOKE_INTERRUPT_SYSCALL SPRN_SPRG_RSCRATCH0 SPRN_SRR0
+KVM_HANDLER BOOKE_INTERRUPT_AP_UNAVAIL SPRN_SPRG_RSCRATCH0 SPRN_SRR0
+KVM_HANDLER BOOKE_INTERRUPT_DECREMENTER SPRN_SPRG_RSCRATCH0 SPRN_SRR0
+KVM_HANDLER BOOKE_INTERRUPT_FIT SPRN_SPRG_RSCRATCH0 SPRN_SRR0
+KVM_HANDLER BOOKE_INTERRUPT_WATCHDOG SPRN_SPRG_RSCRATCH_CRIT SPRN_CSRR0
+KVM_HANDLER BOOKE_INTERRUPT_DTLB_MISS SPRN_SPRG_RSCRATCH0 SPRN_SRR0
+KVM_HANDLER BOOKE_INTERRUPT_ITLB_MISS SPRN_SPRG_RSCRATCH0 SPRN_SRR0
+KVM_DBG_HANDLER BOOKE_INTERRUPT_DEBUG SPRN_SPRG_RSCRATCH_CRIT SPRN_CSRR0
+KVM_HANDLER BOOKE_INTERRUPT_SPE_UNAVAIL SPRN_SPRG_RSCRATCH0 SPRN_SRR0
+KVM_HANDLER BOOKE_INTERRUPT_SPE_FP_DATA SPRN_SPRG_RSCRATCH0 SPRN_SRR0
+KVM_HANDLER BOOKE_INTERRUPT_SPE_FP_ROUND SPRN_SPRG_RSCRATCH0 SPRN_SRR0
+_GLOBAL(kvmppc_handlers_end)
+
+/* Registers:
+ * SPRG_SCRATCH0: guest r4
+ * r4: vcpu pointer
+ * r5: KVM exit number
+ */
+_GLOBAL(kvmppc_resume_host)
+ mfcr r3
+ stw r3, VCPU_CR(r4)
+ stw r7, VCPU_GPR(R7)(r4)
+ stw r8, VCPU_GPR(R8)(r4)
+ stw r9, VCPU_GPR(R9)(r4)
+
+ li r6, 1
+ slw r6, r6, r5
+
+#ifdef CONFIG_KVM_EXIT_TIMING
+ /* save exit time */
+1:
+ mfspr r7, SPRN_TBRU
+ mfspr r8, SPRN_TBRL
+ mfspr r9, SPRN_TBRU
+ cmpw r9, r7
+ bne 1b
+ stw r8, VCPU_TIMING_EXIT_TBL(r4)
+ stw r9, VCPU_TIMING_EXIT_TBU(r4)
+#endif
+
+ /* Save the faulting instruction and all GPRs for emulation. */
+ andi. r7, r6, NEED_INST_MASK
+ beq ..skip_inst_copy
+ mfspr r9, SPRN_SRR0
+ mfmsr r8
+ ori r7, r8, MSR_DS
+ mtmsr r7
+ isync
+ lwz r9, 0(r9)
+ mtmsr r8
+ isync
+ stw r9, VCPU_LAST_INST(r4)
+
+ stw r15, VCPU_GPR(R15)(r4)
+ stw r16, VCPU_GPR(R16)(r4)
+ stw r17, VCPU_GPR(R17)(r4)
+ stw r18, VCPU_GPR(R18)(r4)
+ stw r19, VCPU_GPR(R19)(r4)
+ stw r20, VCPU_GPR(R20)(r4)
+ stw r21, VCPU_GPR(R21)(r4)
+ stw r22, VCPU_GPR(R22)(r4)
+ stw r23, VCPU_GPR(R23)(r4)
+ stw r24, VCPU_GPR(R24)(r4)
+ stw r25, VCPU_GPR(R25)(r4)
+ stw r26, VCPU_GPR(R26)(r4)
+ stw r27, VCPU_GPR(R27)(r4)
+ stw r28, VCPU_GPR(R28)(r4)
+ stw r29, VCPU_GPR(R29)(r4)
+ stw r30, VCPU_GPR(R30)(r4)
+ stw r31, VCPU_GPR(R31)(r4)
+..skip_inst_copy:
+
+ /* Also grab DEAR and ESR before the host can clobber them. */
+
+ andi. r7, r6, NEED_DEAR_MASK
+ beq ..skip_dear
+ mfspr r9, SPRN_DEAR
+ stw r9, VCPU_FAULT_DEAR(r4)
+..skip_dear:
+
+ andi. r7, r6, NEED_ESR_MASK
+ beq ..skip_esr
+ mfspr r9, SPRN_ESR
+ stw r9, VCPU_FAULT_ESR(r4)
+..skip_esr:
+
+ /* Save remaining volatile guest register state to vcpu. */
+ stw r0, VCPU_GPR(R0)(r4)
+ stw r1, VCPU_GPR(R1)(r4)
+ stw r2, VCPU_GPR(R2)(r4)
+ stw r10, VCPU_GPR(R10)(r4)
+ stw r11, VCPU_GPR(R11)(r4)
+ stw r12, VCPU_GPR(R12)(r4)
+ stw r13, VCPU_GPR(R13)(r4)
+ stw r14, VCPU_GPR(R14)(r4) /* We need a NV GPR below. */
+ mflr r3
+ stw r3, VCPU_LR(r4)
+ mfxer r3
+ stw r3, VCPU_XER(r4)
+
+ /* Restore host stack pointer and PID before IVPR, since the host
+ * exception handlers use them. */
+ lwz r1, VCPU_HOST_STACK(r4)
+ lwz r3, VCPU_HOST_PID(r4)
+ mtspr SPRN_PID, r3
+
+#ifdef CONFIG_PPC_85xx
+ /* we cheat and know that Linux doesn't use PID1 which is always 0 */
+ lis r3, 0
+ mtspr SPRN_PID1, r3
+#endif
+
+ /* Restore host IVPR before re-enabling interrupts. We cheat and know
+ * that Linux IVPR is always 0xc0000000. */
+ lis r3, 0xc000
+ mtspr SPRN_IVPR, r3
+
+ /* Switch to kernel stack and jump to handler. */
+ LOAD_REG_ADDR(r3, kvmppc_handle_exit)
+ mtctr r3
+ mr r3, r4
+ lwz r2, HOST_R2(r1)
+ mr r14, r4 /* Save vcpu pointer. */
+
+ bctrl /* kvmppc_handle_exit() */
+
+ /* Restore vcpu pointer and the nonvolatiles we used. */
+ mr r4, r14
+ lwz r14, VCPU_GPR(R14)(r4)
+
+ /* Sometimes instruction emulation must restore complete GPR state. */
+ andi. r5, r3, RESUME_FLAG_NV
+ beq ..skip_nv_load
+ lwz r15, VCPU_GPR(R15)(r4)
+ lwz r16, VCPU_GPR(R16)(r4)
+ lwz r17, VCPU_GPR(R17)(r4)
+ lwz r18, VCPU_GPR(R18)(r4)
+ lwz r19, VCPU_GPR(R19)(r4)
+ lwz r20, VCPU_GPR(R20)(r4)
+ lwz r21, VCPU_GPR(R21)(r4)
+ lwz r22, VCPU_GPR(R22)(r4)
+ lwz r23, VCPU_GPR(R23)(r4)
+ lwz r24, VCPU_GPR(R24)(r4)
+ lwz r25, VCPU_GPR(R25)(r4)
+ lwz r26, VCPU_GPR(R26)(r4)
+ lwz r27, VCPU_GPR(R27)(r4)
+ lwz r28, VCPU_GPR(R28)(r4)
+ lwz r29, VCPU_GPR(R29)(r4)
+ lwz r30, VCPU_GPR(R30)(r4)
+ lwz r31, VCPU_GPR(R31)(r4)
+..skip_nv_load:
+
+ /* Should we return to the guest? */
+ andi. r5, r3, RESUME_FLAG_HOST
+ beq lightweight_exit
+
+ srawi r3, r3, 2 /* Shift -ERR back down. */
+
+heavyweight_exit:
+ /* Not returning to guest. */
+
+#ifdef CONFIG_SPE
+ /* save guest SPEFSCR and load host SPEFSCR */
+ mfspr r9, SPRN_SPEFSCR
+ stw r9, VCPU_SPEFSCR(r4)
+ lwz r9, VCPU_HOST_SPEFSCR(r4)
+ mtspr SPRN_SPEFSCR, r9
+#endif
+
+ /* We already saved guest volatile register state; now save the
+ * non-volatiles. */
+ stw r15, VCPU_GPR(R15)(r4)
+ stw r16, VCPU_GPR(R16)(r4)
+ stw r17, VCPU_GPR(R17)(r4)
+ stw r18, VCPU_GPR(R18)(r4)
+ stw r19, VCPU_GPR(R19)(r4)
+ stw r20, VCPU_GPR(R20)(r4)
+ stw r21, VCPU_GPR(R21)(r4)
+ stw r22, VCPU_GPR(R22)(r4)
+ stw r23, VCPU_GPR(R23)(r4)
+ stw r24, VCPU_GPR(R24)(r4)
+ stw r25, VCPU_GPR(R25)(r4)
+ stw r26, VCPU_GPR(R26)(r4)
+ stw r27, VCPU_GPR(R27)(r4)
+ stw r28, VCPU_GPR(R28)(r4)
+ stw r29, VCPU_GPR(R29)(r4)
+ stw r30, VCPU_GPR(R30)(r4)
+ stw r31, VCPU_GPR(R31)(r4)
+
+ /* Load host non-volatile register state from host stack. */
+ lwz r14, HOST_NV_GPR(R14)(r1)
+ lwz r15, HOST_NV_GPR(R15)(r1)
+ lwz r16, HOST_NV_GPR(R16)(r1)
+ lwz r17, HOST_NV_GPR(R17)(r1)
+ lwz r18, HOST_NV_GPR(R18)(r1)
+ lwz r19, HOST_NV_GPR(R19)(r1)
+ lwz r20, HOST_NV_GPR(R20)(r1)
+ lwz r21, HOST_NV_GPR(R21)(r1)
+ lwz r22, HOST_NV_GPR(R22)(r1)
+ lwz r23, HOST_NV_GPR(R23)(r1)
+ lwz r24, HOST_NV_GPR(R24)(r1)
+ lwz r25, HOST_NV_GPR(R25)(r1)
+ lwz r26, HOST_NV_GPR(R26)(r1)
+ lwz r27, HOST_NV_GPR(R27)(r1)
+ lwz r28, HOST_NV_GPR(R28)(r1)
+ lwz r29, HOST_NV_GPR(R29)(r1)
+ lwz r30, HOST_NV_GPR(R30)(r1)
+ lwz r31, HOST_NV_GPR(R31)(r1)
+
+ /* Return to kvm_vcpu_run(). */
+ lwz r4, HOST_STACK_LR(r1)
+ lwz r5, HOST_CR(r1)
+ addi r1, r1, HOST_STACK_SIZE
+ mtlr r4
+ mtcr r5
+ /* r3 still contains the return code from kvmppc_handle_exit(). */
+ blr
+
+
+/* Registers:
+ * r3: vcpu pointer
+ */
+_GLOBAL(__kvmppc_vcpu_run)
+ stwu r1, -HOST_STACK_SIZE(r1)
+ stw r1, VCPU_HOST_STACK(r3) /* Save stack pointer to vcpu. */
+
+ /* Save host state to stack. */
+ mr r4, r3
+ mflr r3
+ stw r3, HOST_STACK_LR(r1)
+ mfcr r5
+ stw r5, HOST_CR(r1)
+
+ /* Save host non-volatile register state to stack. */
+ stw r14, HOST_NV_GPR(R14)(r1)
+ stw r15, HOST_NV_GPR(R15)(r1)
+ stw r16, HOST_NV_GPR(R16)(r1)
+ stw r17, HOST_NV_GPR(R17)(r1)
+ stw r18, HOST_NV_GPR(R18)(r1)
+ stw r19, HOST_NV_GPR(R19)(r1)
+ stw r20, HOST_NV_GPR(R20)(r1)
+ stw r21, HOST_NV_GPR(R21)(r1)
+ stw r22, HOST_NV_GPR(R22)(r1)
+ stw r23, HOST_NV_GPR(R23)(r1)
+ stw r24, HOST_NV_GPR(R24)(r1)
+ stw r25, HOST_NV_GPR(R25)(r1)
+ stw r26, HOST_NV_GPR(R26)(r1)
+ stw r27, HOST_NV_GPR(R27)(r1)
+ stw r28, HOST_NV_GPR(R28)(r1)
+ stw r29, HOST_NV_GPR(R29)(r1)
+ stw r30, HOST_NV_GPR(R30)(r1)
+ stw r31, HOST_NV_GPR(R31)(r1)
+
+ /* Load guest non-volatiles. */
+ lwz r14, VCPU_GPR(R14)(r4)
+ lwz r15, VCPU_GPR(R15)(r4)
+ lwz r16, VCPU_GPR(R16)(r4)
+ lwz r17, VCPU_GPR(R17)(r4)
+ lwz r18, VCPU_GPR(R18)(r4)
+ lwz r19, VCPU_GPR(R19)(r4)
+ lwz r20, VCPU_GPR(R20)(r4)
+ lwz r21, VCPU_GPR(R21)(r4)
+ lwz r22, VCPU_GPR(R22)(r4)
+ lwz r23, VCPU_GPR(R23)(r4)
+ lwz r24, VCPU_GPR(R24)(r4)
+ lwz r25, VCPU_GPR(R25)(r4)
+ lwz r26, VCPU_GPR(R26)(r4)
+ lwz r27, VCPU_GPR(R27)(r4)
+ lwz r28, VCPU_GPR(R28)(r4)
+ lwz r29, VCPU_GPR(R29)(r4)
+ lwz r30, VCPU_GPR(R30)(r4)
+ lwz r31, VCPU_GPR(R31)(r4)
+
+#ifdef CONFIG_SPE
+ /* save host SPEFSCR and load guest SPEFSCR */
+ mfspr r3, SPRN_SPEFSCR
+ stw r3, VCPU_HOST_SPEFSCR(r4)
+ lwz r3, VCPU_SPEFSCR(r4)
+ mtspr SPRN_SPEFSCR, r3
+#endif
+
+lightweight_exit:
+ stw r2, HOST_R2(r1)
+
+ mfspr r3, SPRN_PID
+ stw r3, VCPU_HOST_PID(r4)
+ lwz r3, VCPU_SHADOW_PID(r4)
+ mtspr SPRN_PID, r3
+
+#ifdef CONFIG_PPC_85xx
+ lwz r3, VCPU_SHADOW_PID1(r4)
+ mtspr SPRN_PID1, r3
+#endif
+
+ /* Load some guest volatiles. */
+ lwz r0, VCPU_GPR(R0)(r4)
+ lwz r2, VCPU_GPR(R2)(r4)
+ lwz r9, VCPU_GPR(R9)(r4)
+ lwz r10, VCPU_GPR(R10)(r4)
+ lwz r11, VCPU_GPR(R11)(r4)
+ lwz r12, VCPU_GPR(R12)(r4)
+ lwz r13, VCPU_GPR(R13)(r4)
+ lwz r3, VCPU_LR(r4)
+ mtlr r3
+ lwz r3, VCPU_XER(r4)
+ mtxer r3
+
+ /* Switch the IVPR. XXX If we take a TLB miss after this we're screwed,
+ * so how do we make sure vcpu won't fault? */
+ lis r8, kvmppc_booke_handlers@ha
+ lwz r8, kvmppc_booke_handlers@l(r8)
+ mtspr SPRN_IVPR, r8
+
+ lwz r5, VCPU_SHARED(r4)
+
+ /* Can't switch the stack pointer until after IVPR is switched,
+ * because host interrupt handlers would get confused. */
+ lwz r1, VCPU_GPR(R1)(r4)
+
+ /*
+ * Host interrupt handlers may have clobbered these
+ * guest-readable SPRGs, or the guest kernel may have
+ * written directly to the shared area, so we
+ * need to reload them here with the guest's values.
+ */
+ PPC_LD(r3, VCPU_SHARED_SPRG4, r5)
+ mtspr SPRN_SPRG4W, r3
+ PPC_LD(r3, VCPU_SHARED_SPRG5, r5)
+ mtspr SPRN_SPRG5W, r3
+ PPC_LD(r3, VCPU_SHARED_SPRG6, r5)
+ mtspr SPRN_SPRG6W, r3
+ PPC_LD(r3, VCPU_SHARED_SPRG7, r5)
+ mtspr SPRN_SPRG7W, r3
+
+#ifdef CONFIG_KVM_EXIT_TIMING
+ /* save enter time */
+1:
+ mfspr r6, SPRN_TBRU
+ mfspr r7, SPRN_TBRL
+ mfspr r8, SPRN_TBRU
+ cmpw r8, r6
+ bne 1b
+ stw r7, VCPU_TIMING_LAST_ENTER_TBL(r4)
+ stw r8, VCPU_TIMING_LAST_ENTER_TBU(r4)
+#endif
+
+ /* Finish loading guest volatiles and jump to guest. */
+ lwz r3, VCPU_CTR(r4)
+ lwz r5, VCPU_CR(r4)
+ lwz r6, VCPU_PC(r4)
+ lwz r7, VCPU_SHADOW_MSR(r4)
+ mtctr r3
+ mtcr r5
+ mtsrr0 r6
+ mtsrr1 r7
+ lwz r5, VCPU_GPR(R5)(r4)
+ lwz r6, VCPU_GPR(R6)(r4)
+ lwz r7, VCPU_GPR(R7)(r4)
+ lwz r8, VCPU_GPR(R8)(r4)
+
+ /* Clear any debug events which occurred since we disabled MSR[DE].
+ * XXX This gives us a 3-instruction window in which a breakpoint
+ * intended for guest context could fire in the host instead. */
+ lis r3, 0xffff
+ ori r3, r3, 0xffff
+ mtspr SPRN_DBSR, r3
+
+ lwz r3, VCPU_GPR(R3)(r4)
+ lwz r4, VCPU_GPR(R4)(r4)
+ rfi
+
+ .data
+ .align 4
+ .globl kvmppc_booke_handler_addr
+kvmppc_booke_handler_addr:
+KVM_HANDLER_ADDR BOOKE_INTERRUPT_CRITICAL
+KVM_HANDLER_ADDR BOOKE_INTERRUPT_MACHINE_CHECK
+KVM_HANDLER_ADDR BOOKE_INTERRUPT_DATA_STORAGE
+KVM_HANDLER_ADDR BOOKE_INTERRUPT_INST_STORAGE
+KVM_HANDLER_ADDR BOOKE_INTERRUPT_EXTERNAL
+KVM_HANDLER_ADDR BOOKE_INTERRUPT_ALIGNMENT
+KVM_HANDLER_ADDR BOOKE_INTERRUPT_PROGRAM
+KVM_HANDLER_ADDR BOOKE_INTERRUPT_FP_UNAVAIL
+KVM_HANDLER_ADDR BOOKE_INTERRUPT_SYSCALL
+KVM_HANDLER_ADDR BOOKE_INTERRUPT_AP_UNAVAIL
+KVM_HANDLER_ADDR BOOKE_INTERRUPT_DECREMENTER
+KVM_HANDLER_ADDR BOOKE_INTERRUPT_FIT
+KVM_HANDLER_ADDR BOOKE_INTERRUPT_WATCHDOG
+KVM_HANDLER_ADDR BOOKE_INTERRUPT_DTLB_MISS
+KVM_HANDLER_ADDR BOOKE_INTERRUPT_ITLB_MISS
+KVM_HANDLER_ADDR BOOKE_INTERRUPT_DEBUG
+KVM_HANDLER_ADDR BOOKE_INTERRUPT_SPE_UNAVAIL
+KVM_HANDLER_ADDR BOOKE_INTERRUPT_SPE_FP_DATA
+KVM_HANDLER_ADDR BOOKE_INTERRUPT_SPE_FP_ROUND
+KVM_HANDLER_END /*Always keep this in end*/
+
+#ifdef CONFIG_SPE
+_GLOBAL(kvmppc_save_guest_spe)
+ cmpi 0,r3,0
+ beqlr-
+ SAVE_32EVRS(0, r4, r3, VCPU_EVR)
+ evxor evr6, evr6, evr6
+ evmwumiaa evr6, evr6, evr6
+ li r4,VCPU_ACC
+ evstddx evr6, r4, r3 /* save acc */
+ blr
+
+_GLOBAL(kvmppc_load_guest_spe)
+ cmpi 0,r3,0
+ beqlr-
+ li r4,VCPU_ACC
+ evlddx evr6,r4,r3
+ evmra evr6,evr6 /* load acc */
+ REST_32EVRS(0, r4, r3, VCPU_EVR)
+ blr
+#endif
diff --git a/arch/powerpc/kvm/bookehv_interrupts.S b/arch/powerpc/kvm/bookehv_interrupts.S
new file mode 100644
index 000000000..8262c14fc
--- /dev/null
+++ b/arch/powerpc/kvm/bookehv_interrupts.S
@@ -0,0 +1,682 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ *
+ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
+ *
+ * Author: Varun Sethi <varun.sethi@freescale.com>
+ * Author: Scott Wood <scotwood@freescale.com>
+ * Author: Mihai Caraman <mihai.caraman@freescale.com>
+ *
+ * This file is derived from arch/powerpc/kvm/booke_interrupts.S
+ */
+
+#include <asm/ppc_asm.h>
+#include <asm/kvm_asm.h>
+#include <asm/reg.h>
+#include <asm/page.h>
+#include <asm/asm-compat.h>
+#include <asm/asm-offsets.h>
+#include <asm/bitsperlong.h>
+
+#ifdef CONFIG_64BIT
+#include <asm/exception-64e.h>
+#include <asm/hw_irq.h>
+#include <asm/irqflags.h>
+#else
+#include "../kernel/head_booke.h" /* for THREAD_NORMSAVE() */
+#endif
+
+#define LONGBYTES (BITS_PER_LONG / 8)
+
+#define VCPU_GUEST_SPRG(n) (VCPU_GUEST_SPRGS + (n * LONGBYTES))
+
+/* The host stack layout: */
+#define HOST_R1 0 /* Implied by stwu. */
+#define HOST_CALLEE_LR PPC_LR_STKOFF
+#define HOST_RUN (HOST_CALLEE_LR + LONGBYTES)
+/*
+ * r2 is special: it holds 'current', and it made nonvolatile in the
+ * kernel with the -ffixed-r2 gcc option.
+ */
+#define HOST_R2 (HOST_RUN + LONGBYTES)
+#define HOST_CR (HOST_R2 + LONGBYTES)
+#define HOST_NV_GPRS (HOST_CR + LONGBYTES)
+#define __HOST_NV_GPR(n) (HOST_NV_GPRS + ((n - 14) * LONGBYTES))
+#define HOST_NV_GPR(n) __HOST_NV_GPR(__REG_##n)
+#define HOST_MIN_STACK_SIZE (HOST_NV_GPR(R31) + LONGBYTES)
+#define HOST_STACK_SIZE ((HOST_MIN_STACK_SIZE + 15) & ~15) /* Align. */
+/* LR in caller stack frame. */
+#define HOST_STACK_LR (HOST_STACK_SIZE + PPC_LR_STKOFF)
+
+#define NEED_EMU 0x00000001 /* emulation -- save nv regs */
+#define NEED_DEAR 0x00000002 /* save faulting DEAR */
+#define NEED_ESR 0x00000004 /* save faulting ESR */
+
+/*
+ * On entry:
+ * r4 = vcpu, r5 = srr0, r6 = srr1
+ * saved in vcpu: cr, ctr, r3-r13
+ */
+.macro kvm_handler_common intno, srr0, flags
+ /* Restore host stack pointer */
+ PPC_STL r1, VCPU_GPR(R1)(r4)
+ PPC_STL r2, VCPU_GPR(R2)(r4)
+ PPC_LL r1, VCPU_HOST_STACK(r4)
+ PPC_LL r2, HOST_R2(r1)
+
+START_BTB_FLUSH_SECTION
+ BTB_FLUSH(r10)
+END_BTB_FLUSH_SECTION
+
+ mfspr r10, SPRN_PID
+ lwz r8, VCPU_HOST_PID(r4)
+ PPC_LL r11, VCPU_SHARED(r4)
+ PPC_STL r14, VCPU_GPR(R14)(r4) /* We need a non-volatile GPR. */
+ li r14, \intno
+
+ stw r10, VCPU_GUEST_PID(r4)
+ mtspr SPRN_PID, r8
+
+#ifdef CONFIG_KVM_EXIT_TIMING
+ /* save exit time */
+1: mfspr r7, SPRN_TBRU
+ mfspr r8, SPRN_TBRL
+ mfspr r9, SPRN_TBRU
+ cmpw r9, r7
+ stw r8, VCPU_TIMING_EXIT_TBL(r4)
+ bne- 1b
+ stw r9, VCPU_TIMING_EXIT_TBU(r4)
+#endif
+
+ oris r8, r6, MSR_CE@h
+ PPC_STD(r6, VCPU_SHARED_MSR, r11)
+ ori r8, r8, MSR_ME | MSR_RI
+ PPC_STL r5, VCPU_PC(r4)
+
+ /*
+ * Make sure CE/ME/RI are set (if appropriate for exception type)
+ * whether or not the guest had it set. Since mfmsr/mtmsr are
+ * somewhat expensive, skip in the common case where the guest
+ * had all these bits set (and thus they're still set if
+ * appropriate for the exception type).
+ */
+ cmpw r6, r8
+ beq 1f
+ mfmsr r7
+ .if \srr0 != SPRN_MCSRR0 && \srr0 != SPRN_CSRR0
+ oris r7, r7, MSR_CE@h
+ .endif
+ .if \srr0 != SPRN_MCSRR0
+ ori r7, r7, MSR_ME | MSR_RI
+ .endif
+ mtmsr r7
+1:
+
+ .if \flags & NEED_EMU
+ PPC_STL r15, VCPU_GPR(R15)(r4)
+ PPC_STL r16, VCPU_GPR(R16)(r4)
+ PPC_STL r17, VCPU_GPR(R17)(r4)
+ PPC_STL r18, VCPU_GPR(R18)(r4)
+ PPC_STL r19, VCPU_GPR(R19)(r4)
+ PPC_STL r20, VCPU_GPR(R20)(r4)
+ PPC_STL r21, VCPU_GPR(R21)(r4)
+ PPC_STL r22, VCPU_GPR(R22)(r4)
+ PPC_STL r23, VCPU_GPR(R23)(r4)
+ PPC_STL r24, VCPU_GPR(R24)(r4)
+ PPC_STL r25, VCPU_GPR(R25)(r4)
+ PPC_STL r26, VCPU_GPR(R26)(r4)
+ PPC_STL r27, VCPU_GPR(R27)(r4)
+ PPC_STL r28, VCPU_GPR(R28)(r4)
+ PPC_STL r29, VCPU_GPR(R29)(r4)
+ PPC_STL r30, VCPU_GPR(R30)(r4)
+ PPC_STL r31, VCPU_GPR(R31)(r4)
+
+ /*
+ * We don't use external PID support. lwepx faults would need to be
+ * handled by KVM and this implies aditional code in DO_KVM (for
+ * DTB_MISS, DSI and LRAT) to check ESR[EPID] and EPLC[EGS] which
+ * is too intrusive for the host. Get last instuction in
+ * kvmppc_get_last_inst().
+ */
+ li r9, KVM_INST_FETCH_FAILED
+ stw r9, VCPU_LAST_INST(r4)
+ .endif
+
+ .if \flags & NEED_ESR
+ mfspr r8, SPRN_ESR
+ PPC_STL r8, VCPU_FAULT_ESR(r4)
+ .endif
+
+ .if \flags & NEED_DEAR
+ mfspr r9, SPRN_DEAR
+ PPC_STL r9, VCPU_FAULT_DEAR(r4)
+ .endif
+
+ b kvmppc_resume_host
+.endm
+
+#ifdef CONFIG_64BIT
+/* Exception types */
+#define EX_GEN 1
+#define EX_GDBELL 2
+#define EX_DBG 3
+#define EX_MC 4
+#define EX_CRIT 5
+#define EX_TLB 6
+
+/*
+ * For input register values, see arch/powerpc/include/asm/kvm_booke_hv_asm.h
+ */
+.macro kvm_handler intno type scratch, paca_ex, ex_r10, ex_r11, srr0, srr1, flags
+ _GLOBAL(kvmppc_handler_\intno\()_\srr1)
+ mr r11, r4
+ /*
+ * Get vcpu from Paca: paca->__current.thread->kvm_vcpu
+ */
+ PPC_LL r4, PACACURRENT(r13)
+ PPC_LL r4, (THREAD + THREAD_KVM_VCPU)(r4)
+ PPC_STL r10, VCPU_CR(r4)
+ PPC_STL r11, VCPU_GPR(R4)(r4)
+ PPC_STL r5, VCPU_GPR(R5)(r4)
+ PPC_STL r6, VCPU_GPR(R6)(r4)
+ PPC_STL r8, VCPU_GPR(R8)(r4)
+ PPC_STL r9, VCPU_GPR(R9)(r4)
+ .if \type == EX_TLB
+ PPC_LL r5, EX_TLB_R13(r12)
+ PPC_LL r6, EX_TLB_R10(r12)
+ PPC_LL r8, EX_TLB_R11(r12)
+ mfspr r12, \scratch
+ .else
+ mfspr r5, \scratch
+ PPC_LL r6, (\paca_ex + \ex_r10)(r13)
+ PPC_LL r8, (\paca_ex + \ex_r11)(r13)
+ .endif
+ PPC_STL r5, VCPU_GPR(R13)(r4)
+ PPC_STL r3, VCPU_GPR(R3)(r4)
+ PPC_STL r7, VCPU_GPR(R7)(r4)
+ PPC_STL r12, VCPU_GPR(R12)(r4)
+ PPC_STL r6, VCPU_GPR(R10)(r4)
+ PPC_STL r8, VCPU_GPR(R11)(r4)
+ mfctr r5
+ PPC_STL r5, VCPU_CTR(r4)
+ mfspr r5, \srr0
+ mfspr r6, \srr1
+ kvm_handler_common \intno, \srr0, \flags
+.endm
+
+#define EX_PARAMS(type) \
+ EX_##type, \
+ SPRN_SPRG_##type##_SCRATCH, \
+ PACA_EX##type, \
+ EX_R10, \
+ EX_R11
+
+#define EX_PARAMS_TLB \
+ EX_TLB, \
+ SPRN_SPRG_GEN_SCRATCH, \
+ PACA_EXTLB, \
+ EX_TLB_R10, \
+ EX_TLB_R11
+
+kvm_handler BOOKE_INTERRUPT_CRITICAL, EX_PARAMS(CRIT), \
+ SPRN_CSRR0, SPRN_CSRR1, 0
+kvm_handler BOOKE_INTERRUPT_MACHINE_CHECK, EX_PARAMS(MC), \
+ SPRN_MCSRR0, SPRN_MCSRR1, 0
+kvm_handler BOOKE_INTERRUPT_DATA_STORAGE, EX_PARAMS(GEN), \
+ SPRN_SRR0, SPRN_SRR1,(NEED_EMU | NEED_DEAR | NEED_ESR)
+kvm_handler BOOKE_INTERRUPT_INST_STORAGE, EX_PARAMS(GEN), \
+ SPRN_SRR0, SPRN_SRR1, NEED_ESR
+kvm_handler BOOKE_INTERRUPT_EXTERNAL, EX_PARAMS(GEN), \
+ SPRN_SRR0, SPRN_SRR1, 0
+kvm_handler BOOKE_INTERRUPT_ALIGNMENT, EX_PARAMS(GEN), \
+ SPRN_SRR0, SPRN_SRR1,(NEED_DEAR | NEED_ESR)
+kvm_handler BOOKE_INTERRUPT_PROGRAM, EX_PARAMS(GEN), \
+ SPRN_SRR0, SPRN_SRR1, (NEED_ESR | NEED_EMU)
+kvm_handler BOOKE_INTERRUPT_FP_UNAVAIL, EX_PARAMS(GEN), \
+ SPRN_SRR0, SPRN_SRR1, 0
+kvm_handler BOOKE_INTERRUPT_AP_UNAVAIL, EX_PARAMS(GEN), \
+ SPRN_SRR0, SPRN_SRR1, 0
+kvm_handler BOOKE_INTERRUPT_DECREMENTER, EX_PARAMS(GEN), \
+ SPRN_SRR0, SPRN_SRR1, 0
+kvm_handler BOOKE_INTERRUPT_FIT, EX_PARAMS(GEN), \
+ SPRN_SRR0, SPRN_SRR1, 0
+kvm_handler BOOKE_INTERRUPT_WATCHDOG, EX_PARAMS(CRIT),\
+ SPRN_CSRR0, SPRN_CSRR1, 0
+/*
+ * Only bolted TLB miss exception handlers are supported for now
+ */
+kvm_handler BOOKE_INTERRUPT_DTLB_MISS, EX_PARAMS_TLB, \
+ SPRN_SRR0, SPRN_SRR1, (NEED_EMU | NEED_DEAR | NEED_ESR)
+kvm_handler BOOKE_INTERRUPT_ITLB_MISS, EX_PARAMS_TLB, \
+ SPRN_SRR0, SPRN_SRR1, 0
+kvm_handler BOOKE_INTERRUPT_ALTIVEC_UNAVAIL, EX_PARAMS(GEN), \
+ SPRN_SRR0, SPRN_SRR1, 0
+kvm_handler BOOKE_INTERRUPT_ALTIVEC_ASSIST, EX_PARAMS(GEN), \
+ SPRN_SRR0, SPRN_SRR1, 0
+kvm_handler BOOKE_INTERRUPT_PERFORMANCE_MONITOR, EX_PARAMS(GEN), \
+ SPRN_SRR0, SPRN_SRR1, 0
+kvm_handler BOOKE_INTERRUPT_DOORBELL, EX_PARAMS(GEN), \
+ SPRN_SRR0, SPRN_SRR1, 0
+kvm_handler BOOKE_INTERRUPT_DOORBELL_CRITICAL, EX_PARAMS(CRIT), \
+ SPRN_CSRR0, SPRN_CSRR1, 0
+kvm_handler BOOKE_INTERRUPT_HV_PRIV, EX_PARAMS(GEN), \
+ SPRN_SRR0, SPRN_SRR1, NEED_EMU
+kvm_handler BOOKE_INTERRUPT_HV_SYSCALL, EX_PARAMS(GEN), \
+ SPRN_SRR0, SPRN_SRR1, 0
+kvm_handler BOOKE_INTERRUPT_GUEST_DBELL, EX_PARAMS(GDBELL), \
+ SPRN_GSRR0, SPRN_GSRR1, 0
+kvm_handler BOOKE_INTERRUPT_GUEST_DBELL_CRIT, EX_PARAMS(CRIT), \
+ SPRN_CSRR0, SPRN_CSRR1, 0
+kvm_handler BOOKE_INTERRUPT_DEBUG, EX_PARAMS(DBG), \
+ SPRN_DSRR0, SPRN_DSRR1, 0
+kvm_handler BOOKE_INTERRUPT_DEBUG, EX_PARAMS(CRIT), \
+ SPRN_CSRR0, SPRN_CSRR1, 0
+kvm_handler BOOKE_INTERRUPT_LRAT_ERROR, EX_PARAMS(GEN), \
+ SPRN_SRR0, SPRN_SRR1, (NEED_EMU | NEED_DEAR | NEED_ESR)
+#else
+/*
+ * For input register values, see arch/powerpc/include/asm/kvm_booke_hv_asm.h
+ */
+.macro kvm_handler intno srr0, srr1, flags
+_GLOBAL(kvmppc_handler_\intno\()_\srr1)
+ PPC_LL r11, THREAD_KVM_VCPU(r10)
+ PPC_STL r3, VCPU_GPR(R3)(r11)
+ mfspr r3, SPRN_SPRG_RSCRATCH0
+ PPC_STL r4, VCPU_GPR(R4)(r11)
+ PPC_LL r4, THREAD_NORMSAVE(0)(r10)
+ PPC_STL r5, VCPU_GPR(R5)(r11)
+ PPC_STL r13, VCPU_CR(r11)
+ mfspr r5, \srr0
+ PPC_STL r3, VCPU_GPR(R10)(r11)
+ PPC_LL r3, THREAD_NORMSAVE(2)(r10)
+ PPC_STL r6, VCPU_GPR(R6)(r11)
+ PPC_STL r4, VCPU_GPR(R11)(r11)
+ mfspr r6, \srr1
+ PPC_STL r7, VCPU_GPR(R7)(r11)
+ PPC_STL r8, VCPU_GPR(R8)(r11)
+ PPC_STL r9, VCPU_GPR(R9)(r11)
+ PPC_STL r3, VCPU_GPR(R13)(r11)
+ mfctr r7
+ PPC_STL r12, VCPU_GPR(R12)(r11)
+ PPC_STL r7, VCPU_CTR(r11)
+ mr r4, r11
+ kvm_handler_common \intno, \srr0, \flags
+.endm
+
+.macro kvm_lvl_handler intno scratch srr0, srr1, flags
+_GLOBAL(kvmppc_handler_\intno\()_\srr1)
+ mfspr r10, SPRN_SPRG_THREAD
+ PPC_LL r11, THREAD_KVM_VCPU(r10)
+ PPC_STL r3, VCPU_GPR(R3)(r11)
+ mfspr r3, \scratch
+ PPC_STL r4, VCPU_GPR(R4)(r11)
+ PPC_LL r4, GPR9(r8)
+ PPC_STL r5, VCPU_GPR(R5)(r11)
+ PPC_STL r9, VCPU_CR(r11)
+ mfspr r5, \srr0
+ PPC_STL r3, VCPU_GPR(R8)(r11)
+ PPC_LL r3, GPR10(r8)
+ PPC_STL r6, VCPU_GPR(R6)(r11)
+ PPC_STL r4, VCPU_GPR(R9)(r11)
+ mfspr r6, \srr1
+ PPC_LL r4, GPR11(r8)
+ PPC_STL r7, VCPU_GPR(R7)(r11)
+ PPC_STL r3, VCPU_GPR(R10)(r11)
+ mfctr r7
+ PPC_STL r12, VCPU_GPR(R12)(r11)
+ PPC_STL r13, VCPU_GPR(R13)(r11)
+ PPC_STL r4, VCPU_GPR(R11)(r11)
+ PPC_STL r7, VCPU_CTR(r11)
+ mr r4, r11
+ kvm_handler_common \intno, \srr0, \flags
+.endm
+
+kvm_lvl_handler BOOKE_INTERRUPT_CRITICAL, \
+ SPRN_SPRG_RSCRATCH_CRIT, SPRN_CSRR0, SPRN_CSRR1, 0
+kvm_lvl_handler BOOKE_INTERRUPT_MACHINE_CHECK, \
+ SPRN_SPRG_RSCRATCH_MC, SPRN_MCSRR0, SPRN_MCSRR1, 0
+kvm_handler BOOKE_INTERRUPT_DATA_STORAGE, \
+ SPRN_SRR0, SPRN_SRR1, (NEED_EMU | NEED_DEAR | NEED_ESR)
+kvm_handler BOOKE_INTERRUPT_INST_STORAGE, SPRN_SRR0, SPRN_SRR1, NEED_ESR
+kvm_handler BOOKE_INTERRUPT_EXTERNAL, SPRN_SRR0, SPRN_SRR1, 0
+kvm_handler BOOKE_INTERRUPT_ALIGNMENT, \
+ SPRN_SRR0, SPRN_SRR1, (NEED_DEAR | NEED_ESR)
+kvm_handler BOOKE_INTERRUPT_PROGRAM, SPRN_SRR0, SPRN_SRR1, (NEED_ESR | NEED_EMU)
+kvm_handler BOOKE_INTERRUPT_FP_UNAVAIL, SPRN_SRR0, SPRN_SRR1, 0
+kvm_handler BOOKE_INTERRUPT_SYSCALL, SPRN_SRR0, SPRN_SRR1, 0
+kvm_handler BOOKE_INTERRUPT_AP_UNAVAIL, SPRN_SRR0, SPRN_SRR1, 0
+kvm_handler BOOKE_INTERRUPT_DECREMENTER, SPRN_SRR0, SPRN_SRR1, 0
+kvm_handler BOOKE_INTERRUPT_FIT, SPRN_SRR0, SPRN_SRR1, 0
+kvm_lvl_handler BOOKE_INTERRUPT_WATCHDOG, \
+ SPRN_SPRG_RSCRATCH_CRIT, SPRN_CSRR0, SPRN_CSRR1, 0
+kvm_handler BOOKE_INTERRUPT_DTLB_MISS, \
+ SPRN_SRR0, SPRN_SRR1, (NEED_EMU | NEED_DEAR | NEED_ESR)
+kvm_handler BOOKE_INTERRUPT_ITLB_MISS, SPRN_SRR0, SPRN_SRR1, 0
+kvm_handler BOOKE_INTERRUPT_PERFORMANCE_MONITOR, SPRN_SRR0, SPRN_SRR1, 0
+kvm_handler BOOKE_INTERRUPT_DOORBELL, SPRN_SRR0, SPRN_SRR1, 0
+kvm_lvl_handler BOOKE_INTERRUPT_DOORBELL_CRITICAL, \
+ SPRN_SPRG_RSCRATCH_CRIT, SPRN_CSRR0, SPRN_CSRR1, 0
+kvm_handler BOOKE_INTERRUPT_HV_PRIV, SPRN_SRR0, SPRN_SRR1, NEED_EMU
+kvm_handler BOOKE_INTERRUPT_HV_SYSCALL, SPRN_SRR0, SPRN_SRR1, 0
+kvm_handler BOOKE_INTERRUPT_GUEST_DBELL, SPRN_GSRR0, SPRN_GSRR1, 0
+kvm_lvl_handler BOOKE_INTERRUPT_GUEST_DBELL_CRIT, \
+ SPRN_SPRG_RSCRATCH_CRIT, SPRN_CSRR0, SPRN_CSRR1, 0
+kvm_lvl_handler BOOKE_INTERRUPT_DEBUG, \
+ SPRN_SPRG_RSCRATCH_CRIT, SPRN_CSRR0, SPRN_CSRR1, 0
+kvm_lvl_handler BOOKE_INTERRUPT_DEBUG, \
+ SPRN_SPRG_RSCRATCH_DBG, SPRN_DSRR0, SPRN_DSRR1, 0
+#endif
+
+/* Registers:
+ * SPRG_SCRATCH0: guest r10
+ * r4: vcpu pointer
+ * r11: vcpu->arch.shared
+ * r14: KVM exit number
+ */
+_GLOBAL(kvmppc_resume_host)
+ /* Save remaining volatile guest register state to vcpu. */
+ mfspr r3, SPRN_VRSAVE
+ PPC_STL r0, VCPU_GPR(R0)(r4)
+ mflr r5
+ mfspr r6, SPRN_SPRG4
+ PPC_STL r5, VCPU_LR(r4)
+ mfspr r7, SPRN_SPRG5
+ stw r3, VCPU_VRSAVE(r4)
+#ifdef CONFIG_64BIT
+ PPC_LL r3, PACA_SPRG_VDSO(r13)
+#endif
+ mfspr r5, SPRN_SPRG9
+ PPC_STD(r6, VCPU_SHARED_SPRG4, r11)
+ mfspr r8, SPRN_SPRG6
+ PPC_STD(r7, VCPU_SHARED_SPRG5, r11)
+ mfspr r9, SPRN_SPRG7
+#ifdef CONFIG_64BIT
+ mtspr SPRN_SPRG_VDSO_WRITE, r3
+#endif
+ PPC_STD(r5, VCPU_SPRG9, r4)
+ PPC_STD(r8, VCPU_SHARED_SPRG6, r11)
+ mfxer r3
+ PPC_STD(r9, VCPU_SHARED_SPRG7, r11)
+
+ /* save guest MAS registers and restore host mas4 & mas6 */
+ mfspr r5, SPRN_MAS0
+ PPC_STL r3, VCPU_XER(r4)
+ mfspr r6, SPRN_MAS1
+ stw r5, VCPU_SHARED_MAS0(r11)
+ mfspr r7, SPRN_MAS2
+ stw r6, VCPU_SHARED_MAS1(r11)
+ PPC_STD(r7, VCPU_SHARED_MAS2, r11)
+ mfspr r5, SPRN_MAS3
+ mfspr r6, SPRN_MAS4
+ stw r5, VCPU_SHARED_MAS7_3+4(r11)
+ mfspr r7, SPRN_MAS6
+ stw r6, VCPU_SHARED_MAS4(r11)
+ mfspr r5, SPRN_MAS7
+ lwz r6, VCPU_HOST_MAS4(r4)
+ stw r7, VCPU_SHARED_MAS6(r11)
+ lwz r8, VCPU_HOST_MAS6(r4)
+ mtspr SPRN_MAS4, r6
+ stw r5, VCPU_SHARED_MAS7_3+0(r11)
+ mtspr SPRN_MAS6, r8
+ /* Enable MAS register updates via exception */
+ mfspr r3, SPRN_EPCR
+ rlwinm r3, r3, 0, ~SPRN_EPCR_DMIUH
+ mtspr SPRN_EPCR, r3
+ isync
+
+#ifdef CONFIG_64BIT
+ /*
+ * We enter with interrupts disabled in hardware, but
+ * we need to call RECONCILE_IRQ_STATE to ensure
+ * that the software state is kept in sync.
+ */
+ RECONCILE_IRQ_STATE(r3,r5)
+#endif
+
+ /* Switch to kernel stack and jump to handler. */
+ mr r3, r4
+ mr r5, r14 /* intno */
+ mr r14, r4 /* Save vcpu pointer. */
+ mr r4, r5
+ bl kvmppc_handle_exit
+
+ /* Restore vcpu pointer and the nonvolatiles we used. */
+ mr r4, r14
+ PPC_LL r14, VCPU_GPR(R14)(r4)
+
+ andi. r5, r3, RESUME_FLAG_NV
+ beq skip_nv_load
+ PPC_LL r15, VCPU_GPR(R15)(r4)
+ PPC_LL r16, VCPU_GPR(R16)(r4)
+ PPC_LL r17, VCPU_GPR(R17)(r4)
+ PPC_LL r18, VCPU_GPR(R18)(r4)
+ PPC_LL r19, VCPU_GPR(R19)(r4)
+ PPC_LL r20, VCPU_GPR(R20)(r4)
+ PPC_LL r21, VCPU_GPR(R21)(r4)
+ PPC_LL r22, VCPU_GPR(R22)(r4)
+ PPC_LL r23, VCPU_GPR(R23)(r4)
+ PPC_LL r24, VCPU_GPR(R24)(r4)
+ PPC_LL r25, VCPU_GPR(R25)(r4)
+ PPC_LL r26, VCPU_GPR(R26)(r4)
+ PPC_LL r27, VCPU_GPR(R27)(r4)
+ PPC_LL r28, VCPU_GPR(R28)(r4)
+ PPC_LL r29, VCPU_GPR(R29)(r4)
+ PPC_LL r30, VCPU_GPR(R30)(r4)
+ PPC_LL r31, VCPU_GPR(R31)(r4)
+skip_nv_load:
+ /* Should we return to the guest? */
+ andi. r5, r3, RESUME_FLAG_HOST
+ beq lightweight_exit
+
+ srawi r3, r3, 2 /* Shift -ERR back down. */
+
+heavyweight_exit:
+ /* Not returning to guest. */
+ PPC_LL r5, HOST_STACK_LR(r1)
+ lwz r6, HOST_CR(r1)
+
+ /*
+ * We already saved guest volatile register state; now save the
+ * non-volatiles.
+ */
+
+ PPC_STL r15, VCPU_GPR(R15)(r4)
+ PPC_STL r16, VCPU_GPR(R16)(r4)
+ PPC_STL r17, VCPU_GPR(R17)(r4)
+ PPC_STL r18, VCPU_GPR(R18)(r4)
+ PPC_STL r19, VCPU_GPR(R19)(r4)
+ PPC_STL r20, VCPU_GPR(R20)(r4)
+ PPC_STL r21, VCPU_GPR(R21)(r4)
+ PPC_STL r22, VCPU_GPR(R22)(r4)
+ PPC_STL r23, VCPU_GPR(R23)(r4)
+ PPC_STL r24, VCPU_GPR(R24)(r4)
+ PPC_STL r25, VCPU_GPR(R25)(r4)
+ PPC_STL r26, VCPU_GPR(R26)(r4)
+ PPC_STL r27, VCPU_GPR(R27)(r4)
+ PPC_STL r28, VCPU_GPR(R28)(r4)
+ PPC_STL r29, VCPU_GPR(R29)(r4)
+ PPC_STL r30, VCPU_GPR(R30)(r4)
+ PPC_STL r31, VCPU_GPR(R31)(r4)
+
+ /* Load host non-volatile register state from host stack. */
+ PPC_LL r14, HOST_NV_GPR(R14)(r1)
+ PPC_LL r15, HOST_NV_GPR(R15)(r1)
+ PPC_LL r16, HOST_NV_GPR(R16)(r1)
+ PPC_LL r17, HOST_NV_GPR(R17)(r1)
+ PPC_LL r18, HOST_NV_GPR(R18)(r1)
+ PPC_LL r19, HOST_NV_GPR(R19)(r1)
+ PPC_LL r20, HOST_NV_GPR(R20)(r1)
+ PPC_LL r21, HOST_NV_GPR(R21)(r1)
+ PPC_LL r22, HOST_NV_GPR(R22)(r1)
+ PPC_LL r23, HOST_NV_GPR(R23)(r1)
+ PPC_LL r24, HOST_NV_GPR(R24)(r1)
+ PPC_LL r25, HOST_NV_GPR(R25)(r1)
+ PPC_LL r26, HOST_NV_GPR(R26)(r1)
+ PPC_LL r27, HOST_NV_GPR(R27)(r1)
+ PPC_LL r28, HOST_NV_GPR(R28)(r1)
+ PPC_LL r29, HOST_NV_GPR(R29)(r1)
+ PPC_LL r30, HOST_NV_GPR(R30)(r1)
+ PPC_LL r31, HOST_NV_GPR(R31)(r1)
+
+ /* Return to kvm_vcpu_run(). */
+ mtlr r5
+ mtcr r6
+ addi r1, r1, HOST_STACK_SIZE
+ /* r3 still contains the return code from kvmppc_handle_exit(). */
+ blr
+
+/* Registers:
+ * r3: vcpu pointer
+ */
+_GLOBAL(__kvmppc_vcpu_run)
+ stwu r1, -HOST_STACK_SIZE(r1)
+ PPC_STL r1, VCPU_HOST_STACK(r3) /* Save stack pointer to vcpu. */
+
+ /* Save host state to stack. */
+ mr r4, r3
+ mflr r3
+ mfcr r5
+ PPC_STL r3, HOST_STACK_LR(r1)
+
+ stw r5, HOST_CR(r1)
+
+ /* Save host non-volatile register state to stack. */
+ PPC_STL r14, HOST_NV_GPR(R14)(r1)
+ PPC_STL r15, HOST_NV_GPR(R15)(r1)
+ PPC_STL r16, HOST_NV_GPR(R16)(r1)
+ PPC_STL r17, HOST_NV_GPR(R17)(r1)
+ PPC_STL r18, HOST_NV_GPR(R18)(r1)
+ PPC_STL r19, HOST_NV_GPR(R19)(r1)
+ PPC_STL r20, HOST_NV_GPR(R20)(r1)
+ PPC_STL r21, HOST_NV_GPR(R21)(r1)
+ PPC_STL r22, HOST_NV_GPR(R22)(r1)
+ PPC_STL r23, HOST_NV_GPR(R23)(r1)
+ PPC_STL r24, HOST_NV_GPR(R24)(r1)
+ PPC_STL r25, HOST_NV_GPR(R25)(r1)
+ PPC_STL r26, HOST_NV_GPR(R26)(r1)
+ PPC_STL r27, HOST_NV_GPR(R27)(r1)
+ PPC_STL r28, HOST_NV_GPR(R28)(r1)
+ PPC_STL r29, HOST_NV_GPR(R29)(r1)
+ PPC_STL r30, HOST_NV_GPR(R30)(r1)
+ PPC_STL r31, HOST_NV_GPR(R31)(r1)
+
+ /* Load guest non-volatiles. */
+ PPC_LL r14, VCPU_GPR(R14)(r4)
+ PPC_LL r15, VCPU_GPR(R15)(r4)
+ PPC_LL r16, VCPU_GPR(R16)(r4)
+ PPC_LL r17, VCPU_GPR(R17)(r4)
+ PPC_LL r18, VCPU_GPR(R18)(r4)
+ PPC_LL r19, VCPU_GPR(R19)(r4)
+ PPC_LL r20, VCPU_GPR(R20)(r4)
+ PPC_LL r21, VCPU_GPR(R21)(r4)
+ PPC_LL r22, VCPU_GPR(R22)(r4)
+ PPC_LL r23, VCPU_GPR(R23)(r4)
+ PPC_LL r24, VCPU_GPR(R24)(r4)
+ PPC_LL r25, VCPU_GPR(R25)(r4)
+ PPC_LL r26, VCPU_GPR(R26)(r4)
+ PPC_LL r27, VCPU_GPR(R27)(r4)
+ PPC_LL r28, VCPU_GPR(R28)(r4)
+ PPC_LL r29, VCPU_GPR(R29)(r4)
+ PPC_LL r30, VCPU_GPR(R30)(r4)
+ PPC_LL r31, VCPU_GPR(R31)(r4)
+
+
+lightweight_exit:
+ PPC_STL r2, HOST_R2(r1)
+
+ mfspr r3, SPRN_PID
+ stw r3, VCPU_HOST_PID(r4)
+ lwz r3, VCPU_GUEST_PID(r4)
+ mtspr SPRN_PID, r3
+
+ PPC_LL r11, VCPU_SHARED(r4)
+ /* Disable MAS register updates via exception */
+ mfspr r3, SPRN_EPCR
+ oris r3, r3, SPRN_EPCR_DMIUH@h
+ mtspr SPRN_EPCR, r3
+ isync
+ /* Save host mas4 and mas6 and load guest MAS registers */
+ mfspr r3, SPRN_MAS4
+ stw r3, VCPU_HOST_MAS4(r4)
+ mfspr r3, SPRN_MAS6
+ stw r3, VCPU_HOST_MAS6(r4)
+ lwz r3, VCPU_SHARED_MAS0(r11)
+ lwz r5, VCPU_SHARED_MAS1(r11)
+ PPC_LD(r6, VCPU_SHARED_MAS2, r11)
+ lwz r7, VCPU_SHARED_MAS7_3+4(r11)
+ lwz r8, VCPU_SHARED_MAS4(r11)
+ mtspr SPRN_MAS0, r3
+ mtspr SPRN_MAS1, r5
+ mtspr SPRN_MAS2, r6
+ mtspr SPRN_MAS3, r7
+ mtspr SPRN_MAS4, r8
+ lwz r3, VCPU_SHARED_MAS6(r11)
+ lwz r5, VCPU_SHARED_MAS7_3+0(r11)
+ mtspr SPRN_MAS6, r3
+ mtspr SPRN_MAS7, r5
+
+ /*
+ * Host interrupt handlers may have clobbered these guest-readable
+ * SPRGs, so we need to reload them here with the guest's values.
+ */
+ lwz r3, VCPU_VRSAVE(r4)
+ PPC_LD(r5, VCPU_SHARED_SPRG4, r11)
+ mtspr SPRN_VRSAVE, r3
+ PPC_LD(r6, VCPU_SHARED_SPRG5, r11)
+ mtspr SPRN_SPRG4W, r5
+ PPC_LD(r7, VCPU_SHARED_SPRG6, r11)
+ mtspr SPRN_SPRG5W, r6
+ PPC_LD(r8, VCPU_SHARED_SPRG7, r11)
+ mtspr SPRN_SPRG6W, r7
+ PPC_LD(r5, VCPU_SPRG9, r4)
+ mtspr SPRN_SPRG7W, r8
+ mtspr SPRN_SPRG9, r5
+
+ /* Load some guest volatiles. */
+ PPC_LL r3, VCPU_LR(r4)
+ PPC_LL r5, VCPU_XER(r4)
+ PPC_LL r6, VCPU_CTR(r4)
+ PPC_LL r7, VCPU_CR(r4)
+ PPC_LL r8, VCPU_PC(r4)
+ PPC_LD(r9, VCPU_SHARED_MSR, r11)
+ PPC_LL r0, VCPU_GPR(R0)(r4)
+ PPC_LL r1, VCPU_GPR(R1)(r4)
+ PPC_LL r2, VCPU_GPR(R2)(r4)
+ PPC_LL r10, VCPU_GPR(R10)(r4)
+ PPC_LL r11, VCPU_GPR(R11)(r4)
+ PPC_LL r12, VCPU_GPR(R12)(r4)
+ PPC_LL r13, VCPU_GPR(R13)(r4)
+ mtlr r3
+ mtxer r5
+ mtctr r6
+ mtsrr0 r8
+ mtsrr1 r9
+
+#ifdef CONFIG_KVM_EXIT_TIMING
+ /* save enter time */
+1:
+ mfspr r6, SPRN_TBRU
+ mfspr r9, SPRN_TBRL
+ mfspr r8, SPRN_TBRU
+ cmpw r8, r6
+ stw r9, VCPU_TIMING_LAST_ENTER_TBL(r4)
+ bne 1b
+ stw r8, VCPU_TIMING_LAST_ENTER_TBU(r4)
+#endif
+
+ /*
+ * Don't execute any instruction which can change CR after
+ * below instruction.
+ */
+ mtcr r7
+
+ /* Finish loading guest volatiles and jump to guest. */
+ PPC_LL r5, VCPU_GPR(R5)(r4)
+ PPC_LL r6, VCPU_GPR(R6)(r4)
+ PPC_LL r7, VCPU_GPR(R7)(r4)
+ PPC_LL r8, VCPU_GPR(R8)(r4)
+ PPC_LL r9, VCPU_GPR(R9)(r4)
+
+ PPC_LL r3, VCPU_GPR(R3)(r4)
+ PPC_LL r4, VCPU_GPR(R4)(r4)
+ rfi
diff --git a/arch/powerpc/kvm/e500.c b/arch/powerpc/kvm/e500.c
new file mode 100644
index 000000000..c8b2b4478
--- /dev/null
+++ b/arch/powerpc/kvm/e500.c
@@ -0,0 +1,553 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
+ *
+ * Author: Yu Liu, <yu.liu@freescale.com>
+ *
+ * Description:
+ * This file is derived from arch/powerpc/kvm/44x.c,
+ * by Hollis Blanchard <hollisb@us.ibm.com>.
+ */
+
+#include <linux/kvm_host.h>
+#include <linux/slab.h>
+#include <linux/err.h>
+#include <linux/export.h>
+#include <linux/module.h>
+#include <linux/miscdevice.h>
+
+#include <asm/reg.h>
+#include <asm/cputable.h>
+#include <asm/kvm_ppc.h>
+
+#include "../mm/mmu_decl.h"
+#include "booke.h"
+#include "e500.h"
+
+struct id {
+ unsigned long val;
+ struct id **pentry;
+};
+
+#define NUM_TIDS 256
+
+/*
+ * This table provide mappings from:
+ * (guestAS,guestTID,guestPR) --> ID of physical cpu
+ * guestAS [0..1]
+ * guestTID [0..255]
+ * guestPR [0..1]
+ * ID [1..255]
+ * Each vcpu keeps one vcpu_id_table.
+ */
+struct vcpu_id_table {
+ struct id id[2][NUM_TIDS][2];
+};
+
+/*
+ * This table provide reversed mappings of vcpu_id_table:
+ * ID --> address of vcpu_id_table item.
+ * Each physical core has one pcpu_id_table.
+ */
+struct pcpu_id_table {
+ struct id *entry[NUM_TIDS];
+};
+
+static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
+
+/* This variable keeps last used shadow ID on local core.
+ * The valid range of shadow ID is [1..255] */
+static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
+
+/*
+ * Allocate a free shadow id and setup a valid sid mapping in given entry.
+ * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
+ *
+ * The caller must have preemption disabled, and keep it that way until
+ * it has finished with the returned shadow id (either written into the
+ * TLB or arch.shadow_pid, or discarded).
+ */
+static inline int local_sid_setup_one(struct id *entry)
+{
+ unsigned long sid;
+ int ret = -1;
+
+ sid = __this_cpu_inc_return(pcpu_last_used_sid);
+ if (sid < NUM_TIDS) {
+ __this_cpu_write(pcpu_sids.entry[sid], entry);
+ entry->val = sid;
+ entry->pentry = this_cpu_ptr(&pcpu_sids.entry[sid]);
+ ret = sid;
+ }
+
+ /*
+ * If sid == NUM_TIDS, we've run out of sids. We return -1, and
+ * the caller will invalidate everything and start over.
+ *
+ * sid > NUM_TIDS indicates a race, which we disable preemption to
+ * avoid.
+ */
+ WARN_ON(sid > NUM_TIDS);
+
+ return ret;
+}
+
+/*
+ * Check if given entry contain a valid shadow id mapping.
+ * An ID mapping is considered valid only if
+ * both vcpu and pcpu know this mapping.
+ *
+ * The caller must have preemption disabled, and keep it that way until
+ * it has finished with the returned shadow id (either written into the
+ * TLB or arch.shadow_pid, or discarded).
+ */
+static inline int local_sid_lookup(struct id *entry)
+{
+ if (entry && entry->val != 0 &&
+ __this_cpu_read(pcpu_sids.entry[entry->val]) == entry &&
+ entry->pentry == this_cpu_ptr(&pcpu_sids.entry[entry->val]))
+ return entry->val;
+ return -1;
+}
+
+/* Invalidate all id mappings on local core -- call with preempt disabled */
+static inline void local_sid_destroy_all(void)
+{
+ __this_cpu_write(pcpu_last_used_sid, 0);
+ memset(this_cpu_ptr(&pcpu_sids), 0, sizeof(pcpu_sids));
+}
+
+static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+ vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
+ return vcpu_e500->idt;
+}
+
+static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+ kfree(vcpu_e500->idt);
+ vcpu_e500->idt = NULL;
+}
+
+/* Map guest pid to shadow.
+ * We use PID to keep shadow of current guest non-zero PID,
+ * and use PID1 to keep shadow of guest zero PID.
+ * So that guest tlbe with TID=0 can be accessed at any time */
+static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+ preempt_disable();
+ vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
+ get_cur_as(&vcpu_e500->vcpu),
+ get_cur_pid(&vcpu_e500->vcpu),
+ get_cur_pr(&vcpu_e500->vcpu), 1);
+ vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
+ get_cur_as(&vcpu_e500->vcpu), 0,
+ get_cur_pr(&vcpu_e500->vcpu), 1);
+ preempt_enable();
+}
+
+/* Invalidate all mappings on vcpu */
+static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+ memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
+
+ /* Update shadow pid when mappings are changed */
+ kvmppc_e500_recalc_shadow_pid(vcpu_e500);
+}
+
+/* Invalidate one ID mapping on vcpu */
+static inline void kvmppc_e500_id_table_reset_one(
+ struct kvmppc_vcpu_e500 *vcpu_e500,
+ int as, int pid, int pr)
+{
+ struct vcpu_id_table *idt = vcpu_e500->idt;
+
+ BUG_ON(as >= 2);
+ BUG_ON(pid >= NUM_TIDS);
+ BUG_ON(pr >= 2);
+
+ idt->id[as][pid][pr].val = 0;
+ idt->id[as][pid][pr].pentry = NULL;
+
+ /* Update shadow pid when mappings are changed */
+ kvmppc_e500_recalc_shadow_pid(vcpu_e500);
+}
+
+/*
+ * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
+ * This function first lookup if a valid mapping exists,
+ * if not, then creates a new one.
+ *
+ * The caller must have preemption disabled, and keep it that way until
+ * it has finished with the returned shadow id (either written into the
+ * TLB or arch.shadow_pid, or discarded).
+ */
+unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
+ unsigned int as, unsigned int gid,
+ unsigned int pr, int avoid_recursion)
+{
+ struct vcpu_id_table *idt = vcpu_e500->idt;
+ int sid;
+
+ BUG_ON(as >= 2);
+ BUG_ON(gid >= NUM_TIDS);
+ BUG_ON(pr >= 2);
+
+ sid = local_sid_lookup(&idt->id[as][gid][pr]);
+
+ while (sid <= 0) {
+ /* No mapping yet */
+ sid = local_sid_setup_one(&idt->id[as][gid][pr]);
+ if (sid <= 0) {
+ _tlbil_all();
+ local_sid_destroy_all();
+ }
+
+ /* Update shadow pid when mappings are changed */
+ if (!avoid_recursion)
+ kvmppc_e500_recalc_shadow_pid(vcpu_e500);
+ }
+
+ return sid;
+}
+
+unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
+ struct kvm_book3e_206_tlb_entry *gtlbe)
+{
+ return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe),
+ get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0);
+}
+
+void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+
+ if (vcpu->arch.pid != pid) {
+ vcpu_e500->pid[0] = vcpu->arch.pid = pid;
+ kvmppc_e500_recalc_shadow_pid(vcpu_e500);
+ }
+}
+
+/* gtlbe must not be mapped by more than one host tlbe */
+void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
+ struct kvm_book3e_206_tlb_entry *gtlbe)
+{
+ struct vcpu_id_table *idt = vcpu_e500->idt;
+ unsigned int pr, tid, ts;
+ int pid;
+ u32 val, eaddr;
+ unsigned long flags;
+
+ ts = get_tlb_ts(gtlbe);
+ tid = get_tlb_tid(gtlbe);
+
+ preempt_disable();
+
+ /* One guest ID may be mapped to two shadow IDs */
+ for (pr = 0; pr < 2; pr++) {
+ /*
+ * The shadow PID can have a valid mapping on at most one
+ * host CPU. In the common case, it will be valid on this
+ * CPU, in which case we do a local invalidation of the
+ * specific address.
+ *
+ * If the shadow PID is not valid on the current host CPU,
+ * we invalidate the entire shadow PID.
+ */
+ pid = local_sid_lookup(&idt->id[ts][tid][pr]);
+ if (pid <= 0) {
+ kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
+ continue;
+ }
+
+ /*
+ * The guest is invalidating a 4K entry which is in a PID
+ * that has a valid shadow mapping on this host CPU. We
+ * search host TLB to invalidate it's shadow TLB entry,
+ * similar to __tlbil_va except that we need to look in AS1.
+ */
+ val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
+ eaddr = get_tlb_eaddr(gtlbe);
+
+ local_irq_save(flags);
+
+ mtspr(SPRN_MAS6, val);
+ asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
+ val = mfspr(SPRN_MAS1);
+ if (val & MAS1_VALID) {
+ mtspr(SPRN_MAS1, val & ~MAS1_VALID);
+ asm volatile("tlbwe");
+ }
+
+ local_irq_restore(flags);
+ }
+
+ preempt_enable();
+}
+
+void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+ kvmppc_e500_id_table_reset_all(vcpu_e500);
+}
+
+void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
+{
+ /* Recalc shadow pid since MSR changes */
+ kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
+}
+
+static void kvmppc_core_vcpu_load_e500(struct kvm_vcpu *vcpu, int cpu)
+{
+ kvmppc_booke_vcpu_load(vcpu, cpu);
+
+ /* Shadow PID may be expired on local core */
+ kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
+}
+
+static void kvmppc_core_vcpu_put_e500(struct kvm_vcpu *vcpu)
+{
+#ifdef CONFIG_SPE
+ if (vcpu->arch.shadow_msr & MSR_SPE)
+ kvmppc_vcpu_disable_spe(vcpu);
+#endif
+
+ kvmppc_booke_vcpu_put(vcpu);
+}
+
+int kvmppc_core_check_processor_compat(void)
+{
+ int r;
+
+ if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0)
+ r = 0;
+ else
+ r = -ENOTSUPP;
+
+ return r;
+}
+
+static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+ struct kvm_book3e_206_tlb_entry *tlbe;
+
+ /* Insert large initial mapping for guest. */
+ tlbe = get_entry(vcpu_e500, 1, 0);
+ tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
+ tlbe->mas2 = 0;
+ tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
+
+ /* 4K map for serial output. Used by kernel wrapper. */
+ tlbe = get_entry(vcpu_e500, 1, 1);
+ tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
+ tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
+ tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
+}
+
+int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+
+ kvmppc_e500_tlb_setup(vcpu_e500);
+
+ /* Registers init */
+ vcpu->arch.pvr = mfspr(SPRN_PVR);
+ vcpu_e500->svr = mfspr(SPRN_SVR);
+
+ vcpu->arch.cpu_type = KVM_CPU_E500V2;
+
+ return 0;
+}
+
+static int kvmppc_core_get_sregs_e500(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+
+ sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE |
+ KVM_SREGS_E_PM;
+ sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;
+
+ sregs->u.e.impl.fsl.features = 0;
+ sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
+ sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
+ sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
+
+ sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
+ sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
+ sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
+ sregs->u.e.ivor_high[3] =
+ vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
+
+ kvmppc_get_sregs_ivor(vcpu, sregs);
+ kvmppc_get_sregs_e500_tlb(vcpu, sregs);
+ return 0;
+}
+
+static int kvmppc_core_set_sregs_e500(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+ int ret;
+
+ if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
+ vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
+ vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
+ vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
+ }
+
+ ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
+ if (ret < 0)
+ return ret;
+
+ if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
+ return 0;
+
+ if (sregs->u.e.features & KVM_SREGS_E_SPE) {
+ vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] =
+ sregs->u.e.ivor_high[0];
+ vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] =
+ sregs->u.e.ivor_high[1];
+ vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] =
+ sregs->u.e.ivor_high[2];
+ }
+
+ if (sregs->u.e.features & KVM_SREGS_E_PM) {
+ vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
+ sregs->u.e.ivor_high[3];
+ }
+
+ return kvmppc_set_sregs_ivor(vcpu, sregs);
+}
+
+static int kvmppc_get_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
+ union kvmppc_one_reg *val)
+{
+ int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
+ return r;
+}
+
+static int kvmppc_set_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
+ union kvmppc_one_reg *val)
+{
+ int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
+ return r;
+}
+
+static int kvmppc_core_vcpu_create_e500(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500;
+ int err;
+
+ BUILD_BUG_ON(offsetof(struct kvmppc_vcpu_e500, vcpu) != 0);
+ vcpu_e500 = to_e500(vcpu);
+
+ if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL)
+ return -ENOMEM;
+
+ err = kvmppc_e500_tlb_init(vcpu_e500);
+ if (err)
+ goto uninit_id;
+
+ vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
+ if (!vcpu->arch.shared) {
+ err = -ENOMEM;
+ goto uninit_tlb;
+ }
+
+ return 0;
+
+uninit_tlb:
+ kvmppc_e500_tlb_uninit(vcpu_e500);
+uninit_id:
+ kvmppc_e500_id_table_free(vcpu_e500);
+ return err;
+}
+
+static void kvmppc_core_vcpu_free_e500(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+
+ free_page((unsigned long)vcpu->arch.shared);
+ kvmppc_e500_tlb_uninit(vcpu_e500);
+ kvmppc_e500_id_table_free(vcpu_e500);
+}
+
+static int kvmppc_core_init_vm_e500(struct kvm *kvm)
+{
+ return 0;
+}
+
+static void kvmppc_core_destroy_vm_e500(struct kvm *kvm)
+{
+}
+
+static struct kvmppc_ops kvm_ops_e500 = {
+ .get_sregs = kvmppc_core_get_sregs_e500,
+ .set_sregs = kvmppc_core_set_sregs_e500,
+ .get_one_reg = kvmppc_get_one_reg_e500,
+ .set_one_reg = kvmppc_set_one_reg_e500,
+ .vcpu_load = kvmppc_core_vcpu_load_e500,
+ .vcpu_put = kvmppc_core_vcpu_put_e500,
+ .vcpu_create = kvmppc_core_vcpu_create_e500,
+ .vcpu_free = kvmppc_core_vcpu_free_e500,
+ .init_vm = kvmppc_core_init_vm_e500,
+ .destroy_vm = kvmppc_core_destroy_vm_e500,
+ .emulate_op = kvmppc_core_emulate_op_e500,
+ .emulate_mtspr = kvmppc_core_emulate_mtspr_e500,
+ .emulate_mfspr = kvmppc_core_emulate_mfspr_e500,
+ .create_vcpu_debugfs = kvmppc_create_vcpu_debugfs_e500,
+};
+
+static int __init kvmppc_e500_init(void)
+{
+ int r, i;
+ unsigned long ivor[3];
+ /* Process remaining handlers above the generic first 16 */
+ unsigned long *handler = &kvmppc_booke_handler_addr[16];
+ unsigned long handler_len;
+ unsigned long max_ivor = 0;
+
+ r = kvmppc_core_check_processor_compat();
+ if (r)
+ goto err_out;
+
+ r = kvmppc_booke_init();
+ if (r)
+ goto err_out;
+
+ /* copy extra E500 exception handlers */
+ ivor[0] = mfspr(SPRN_IVOR32);
+ ivor[1] = mfspr(SPRN_IVOR33);
+ ivor[2] = mfspr(SPRN_IVOR34);
+ for (i = 0; i < 3; i++) {
+ if (ivor[i] > ivor[max_ivor])
+ max_ivor = i;
+
+ handler_len = handler[i + 1] - handler[i];
+ memcpy((void *)kvmppc_booke_handlers + ivor[i],
+ (void *)handler[i], handler_len);
+ }
+ handler_len = handler[max_ivor + 1] - handler[max_ivor];
+ flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
+ ivor[max_ivor] + handler_len);
+
+ r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
+ if (r)
+ goto err_out;
+ kvm_ops_e500.owner = THIS_MODULE;
+ kvmppc_pr_ops = &kvm_ops_e500;
+
+err_out:
+ return r;
+}
+
+static void __exit kvmppc_e500_exit(void)
+{
+ kvmppc_pr_ops = NULL;
+ kvmppc_booke_exit();
+}
+
+module_init(kvmppc_e500_init);
+module_exit(kvmppc_e500_exit);
+MODULE_ALIAS_MISCDEV(KVM_MINOR);
+MODULE_ALIAS("devname:kvm");
diff --git a/arch/powerpc/kvm/e500.h b/arch/powerpc/kvm/e500.h
new file mode 100644
index 000000000..6d0d329cb
--- /dev/null
+++ b/arch/powerpc/kvm/e500.h
@@ -0,0 +1,339 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
+ *
+ * Author: Yu Liu <yu.liu@freescale.com>
+ * Scott Wood <scottwood@freescale.com>
+ * Ashish Kalra <ashish.kalra@freescale.com>
+ * Varun Sethi <varun.sethi@freescale.com>
+ *
+ * Description:
+ * This file is based on arch/powerpc/kvm/44x_tlb.h and
+ * arch/powerpc/include/asm/kvm_44x.h by Hollis Blanchard <hollisb@us.ibm.com>,
+ * Copyright IBM Corp. 2007-2008
+ */
+
+#ifndef KVM_E500_H
+#define KVM_E500_H
+
+#include <linux/kvm_host.h>
+#include <asm/nohash/mmu-e500.h>
+#include <asm/tlb.h>
+#include <asm/cputhreads.h>
+
+enum vcpu_ftr {
+ VCPU_FTR_MMU_V2
+};
+
+#define E500_PID_NUM 3
+#define E500_TLB_NUM 2
+
+/* entry is mapped somewhere in host TLB */
+#define E500_TLB_VALID (1 << 31)
+/* TLB1 entry is mapped by host TLB1, tracked by bitmaps */
+#define E500_TLB_BITMAP (1 << 30)
+/* TLB1 entry is mapped by host TLB0 */
+#define E500_TLB_TLB0 (1 << 29)
+/* bits [6-5] MAS2_X1 and MAS2_X0 and [4-0] bits for WIMGE */
+#define E500_TLB_MAS2_ATTR (0x7f)
+
+struct tlbe_ref {
+ kvm_pfn_t pfn; /* valid only for TLB0, except briefly */
+ unsigned int flags; /* E500_TLB_* */
+};
+
+struct tlbe_priv {
+ struct tlbe_ref ref;
+};
+
+#ifdef CONFIG_KVM_E500V2
+struct vcpu_id_table;
+#endif
+
+struct kvmppc_e500_tlb_params {
+ int entries, ways, sets;
+};
+
+struct kvmppc_vcpu_e500 {
+ struct kvm_vcpu vcpu;
+
+ /* Unmodified copy of the guest's TLB -- shared with host userspace. */
+ struct kvm_book3e_206_tlb_entry *gtlb_arch;
+
+ /* Starting entry number in gtlb_arch[] */
+ int gtlb_offset[E500_TLB_NUM];
+
+ /* KVM internal information associated with each guest TLB entry */
+ struct tlbe_priv *gtlb_priv[E500_TLB_NUM];
+
+ struct kvmppc_e500_tlb_params gtlb_params[E500_TLB_NUM];
+
+ unsigned int gtlb_nv[E500_TLB_NUM];
+
+ unsigned int host_tlb1_nv;
+
+ u32 svr;
+ u32 l1csr0;
+ u32 l1csr1;
+ u32 hid0;
+ u32 hid1;
+ u64 mcar;
+
+ struct page **shared_tlb_pages;
+ int num_shared_tlb_pages;
+
+ u64 *g2h_tlb1_map;
+ unsigned int *h2g_tlb1_rmap;
+
+ /* Minimum and maximum address mapped my TLB1 */
+ unsigned long tlb1_min_eaddr;
+ unsigned long tlb1_max_eaddr;
+
+#ifdef CONFIG_KVM_E500V2
+ u32 pid[E500_PID_NUM];
+
+ /* vcpu id table */
+ struct vcpu_id_table *idt;
+#endif
+};
+
+static inline struct kvmppc_vcpu_e500 *to_e500(struct kvm_vcpu *vcpu)
+{
+ return container_of(vcpu, struct kvmppc_vcpu_e500, vcpu);
+}
+
+
+/* This geometry is the legacy default -- can be overridden by userspace */
+#define KVM_E500_TLB0_WAY_SIZE 128
+#define KVM_E500_TLB0_WAY_NUM 2
+
+#define KVM_E500_TLB0_SIZE (KVM_E500_TLB0_WAY_SIZE * KVM_E500_TLB0_WAY_NUM)
+#define KVM_E500_TLB1_SIZE 16
+
+#define index_of(tlbsel, esel) (((tlbsel) << 16) | ((esel) & 0xFFFF))
+#define tlbsel_of(index) ((index) >> 16)
+#define esel_of(index) ((index) & 0xFFFF)
+
+#define E500_TLB_USER_PERM_MASK (MAS3_UX|MAS3_UR|MAS3_UW)
+#define E500_TLB_SUPER_PERM_MASK (MAS3_SX|MAS3_SR|MAS3_SW)
+#define MAS2_ATTRIB_MASK \
+ (MAS2_X0 | MAS2_X1 | MAS2_E | MAS2_G)
+#define MAS3_ATTRIB_MASK \
+ (MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3 \
+ | E500_TLB_USER_PERM_MASK | E500_TLB_SUPER_PERM_MASK)
+
+int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500,
+ ulong value);
+int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu);
+int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu);
+int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, gva_t ea);
+int kvmppc_e500_emul_tlbilx(struct kvm_vcpu *vcpu, int type, gva_t ea);
+int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, gva_t ea);
+int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500);
+void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500);
+
+void kvmppc_get_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs);
+int kvmppc_set_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs);
+
+int kvmppc_get_one_reg_e500_tlb(struct kvm_vcpu *vcpu, u64 id,
+ union kvmppc_one_reg *val);
+int kvmppc_set_one_reg_e500_tlb(struct kvm_vcpu *vcpu, u64 id,
+ union kvmppc_one_reg *val);
+
+#ifdef CONFIG_KVM_E500V2
+unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
+ unsigned int as, unsigned int gid,
+ unsigned int pr, int avoid_recursion);
+#endif
+
+/* TLB helper functions */
+static inline unsigned int
+get_tlb_size(const struct kvm_book3e_206_tlb_entry *tlbe)
+{
+ return (tlbe->mas1 >> 7) & 0x1f;
+}
+
+static inline gva_t get_tlb_eaddr(const struct kvm_book3e_206_tlb_entry *tlbe)
+{
+ return tlbe->mas2 & MAS2_EPN;
+}
+
+static inline u64 get_tlb_bytes(const struct kvm_book3e_206_tlb_entry *tlbe)
+{
+ unsigned int pgsize = get_tlb_size(tlbe);
+ return 1ULL << 10 << pgsize;
+}
+
+static inline gva_t get_tlb_end(const struct kvm_book3e_206_tlb_entry *tlbe)
+{
+ u64 bytes = get_tlb_bytes(tlbe);
+ return get_tlb_eaddr(tlbe) + bytes - 1;
+}
+
+static inline u64 get_tlb_raddr(const struct kvm_book3e_206_tlb_entry *tlbe)
+{
+ return tlbe->mas7_3 & ~0xfffULL;
+}
+
+static inline unsigned int
+get_tlb_tid(const struct kvm_book3e_206_tlb_entry *tlbe)
+{
+ return (tlbe->mas1 >> 16) & 0xff;
+}
+
+static inline unsigned int
+get_tlb_ts(const struct kvm_book3e_206_tlb_entry *tlbe)
+{
+ return (tlbe->mas1 >> 12) & 0x1;
+}
+
+static inline unsigned int
+get_tlb_v(const struct kvm_book3e_206_tlb_entry *tlbe)
+{
+ return (tlbe->mas1 >> 31) & 0x1;
+}
+
+static inline unsigned int
+get_tlb_iprot(const struct kvm_book3e_206_tlb_entry *tlbe)
+{
+ return (tlbe->mas1 >> 30) & 0x1;
+}
+
+static inline unsigned int
+get_tlb_tsize(const struct kvm_book3e_206_tlb_entry *tlbe)
+{
+ return (tlbe->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
+}
+
+static inline unsigned int get_cur_pid(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.pid & 0xff;
+}
+
+static inline unsigned int get_cur_as(struct kvm_vcpu *vcpu)
+{
+ return !!(vcpu->arch.shared->msr & (MSR_IS | MSR_DS));
+}
+
+static inline unsigned int get_cur_pr(struct kvm_vcpu *vcpu)
+{
+ return !!(vcpu->arch.shared->msr & MSR_PR);
+}
+
+static inline unsigned int get_cur_spid(const struct kvm_vcpu *vcpu)
+{
+ return (vcpu->arch.shared->mas6 >> 16) & 0xff;
+}
+
+static inline unsigned int get_cur_sas(const struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.shared->mas6 & 0x1;
+}
+
+static inline unsigned int get_tlb_tlbsel(const struct kvm_vcpu *vcpu)
+{
+ /*
+ * Manual says that tlbsel has 2 bits wide.
+ * Since we only have two TLBs, only lower bit is used.
+ */
+ return (vcpu->arch.shared->mas0 >> 28) & 0x1;
+}
+
+static inline unsigned int get_tlb_nv_bit(const struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.shared->mas0 & 0xfff;
+}
+
+static inline unsigned int get_tlb_esel_bit(const struct kvm_vcpu *vcpu)
+{
+ return (vcpu->arch.shared->mas0 >> 16) & 0xfff;
+}
+
+static inline int tlbe_is_host_safe(const struct kvm_vcpu *vcpu,
+ const struct kvm_book3e_206_tlb_entry *tlbe)
+{
+ gpa_t gpa;
+
+ if (!get_tlb_v(tlbe))
+ return 0;
+
+#ifndef CONFIG_KVM_BOOKE_HV
+ /* Does it match current guest AS? */
+ /* XXX what about IS != DS? */
+ if (get_tlb_ts(tlbe) != !!(vcpu->arch.shared->msr & MSR_IS))
+ return 0;
+#endif
+
+ gpa = get_tlb_raddr(tlbe);
+ if (!gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT))
+ /* Mapping is not for RAM. */
+ return 0;
+
+ return 1;
+}
+
+static inline struct kvm_book3e_206_tlb_entry *get_entry(
+ struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, int entry)
+{
+ int offset = vcpu_e500->gtlb_offset[tlbsel];
+ return &vcpu_e500->gtlb_arch[offset + entry];
+}
+
+void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
+ struct kvm_book3e_206_tlb_entry *gtlbe);
+void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500);
+
+#ifdef CONFIG_KVM_BOOKE_HV
+#define kvmppc_e500_get_tlb_stid(vcpu, gtlbe) get_tlb_tid(gtlbe)
+#define get_tlbmiss_tid(vcpu) get_cur_pid(vcpu)
+#define get_tlb_sts(gtlbe) (gtlbe->mas1 & MAS1_TS)
+
+/*
+ * These functions should be called with preemption disabled
+ * and the returned value is valid only in that context
+ */
+static inline int get_thread_specific_lpid(int vm_lpid)
+{
+ int vcpu_lpid = vm_lpid;
+
+ if (threads_per_core == 2)
+ vcpu_lpid |= smp_processor_id() & 1;
+
+ return vcpu_lpid;
+}
+
+static inline int get_lpid(struct kvm_vcpu *vcpu)
+{
+ return get_thread_specific_lpid(vcpu->kvm->arch.lpid);
+}
+#else
+unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
+ struct kvm_book3e_206_tlb_entry *gtlbe);
+
+static inline unsigned int get_tlbmiss_tid(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+ unsigned int tidseld = (vcpu->arch.shared->mas4 >> 16) & 0xf;
+
+ return vcpu_e500->pid[tidseld];
+}
+
+/* Force TS=1 for all guest mappings. */
+#define get_tlb_sts(gtlbe) (MAS1_TS)
+#endif /* !BOOKE_HV */
+
+static inline bool has_feature(const struct kvm_vcpu *vcpu,
+ enum vcpu_ftr ftr)
+{
+ bool has_ftr;
+ switch (ftr) {
+ case VCPU_FTR_MMU_V2:
+ has_ftr = ((vcpu->arch.mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V2);
+ break;
+ default:
+ return false;
+ }
+ return has_ftr;
+}
+
+#endif /* KVM_E500_H */
diff --git a/arch/powerpc/kvm/e500_emulate.c b/arch/powerpc/kvm/e500_emulate.c
new file mode 100644
index 000000000..051102d50
--- /dev/null
+++ b/arch/powerpc/kvm/e500_emulate.c
@@ -0,0 +1,452 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
+ *
+ * Author: Yu Liu, <yu.liu@freescale.com>
+ *
+ * Description:
+ * This file is derived from arch/powerpc/kvm/44x_emulate.c,
+ * by Hollis Blanchard <hollisb@us.ibm.com>.
+ */
+
+#include <asm/kvm_ppc.h>
+#include <asm/disassemble.h>
+#include <asm/dbell.h>
+#include <asm/reg_booke.h>
+
+#include "booke.h"
+#include "e500.h"
+
+#define XOP_DCBTLS 166
+#define XOP_MSGSND 206
+#define XOP_MSGCLR 238
+#define XOP_MFTMR 366
+#define XOP_TLBIVAX 786
+#define XOP_TLBSX 914
+#define XOP_TLBRE 946
+#define XOP_TLBWE 978
+#define XOP_TLBILX 18
+#define XOP_EHPRIV 270
+
+#ifdef CONFIG_KVM_E500MC
+static int dbell2prio(ulong param)
+{
+ int msg = param & PPC_DBELL_TYPE_MASK;
+ int prio = -1;
+
+ switch (msg) {
+ case PPC_DBELL_TYPE(PPC_DBELL):
+ prio = BOOKE_IRQPRIO_DBELL;
+ break;
+ case PPC_DBELL_TYPE(PPC_DBELL_CRIT):
+ prio = BOOKE_IRQPRIO_DBELL_CRIT;
+ break;
+ default:
+ break;
+ }
+
+ return prio;
+}
+
+static int kvmppc_e500_emul_msgclr(struct kvm_vcpu *vcpu, int rb)
+{
+ ulong param = vcpu->arch.regs.gpr[rb];
+ int prio = dbell2prio(param);
+
+ if (prio < 0)
+ return EMULATE_FAIL;
+
+ clear_bit(prio, &vcpu->arch.pending_exceptions);
+ return EMULATE_DONE;
+}
+
+static int kvmppc_e500_emul_msgsnd(struct kvm_vcpu *vcpu, int rb)
+{
+ ulong param = vcpu->arch.regs.gpr[rb];
+ int prio = dbell2prio(rb);
+ int pir = param & PPC_DBELL_PIR_MASK;
+ unsigned long i;
+ struct kvm_vcpu *cvcpu;
+
+ if (prio < 0)
+ return EMULATE_FAIL;
+
+ kvm_for_each_vcpu(i, cvcpu, vcpu->kvm) {
+ int cpir = cvcpu->arch.shared->pir;
+ if ((param & PPC_DBELL_MSG_BRDCAST) || (cpir == pir)) {
+ set_bit(prio, &cvcpu->arch.pending_exceptions);
+ kvm_vcpu_kick(cvcpu);
+ }
+ }
+
+ return EMULATE_DONE;
+}
+#endif
+
+static int kvmppc_e500_emul_ehpriv(struct kvm_vcpu *vcpu,
+ unsigned int inst, int *advance)
+{
+ int emulated = EMULATE_DONE;
+
+ switch (get_oc(inst)) {
+ case EHPRIV_OC_DEBUG:
+ vcpu->run->exit_reason = KVM_EXIT_DEBUG;
+ vcpu->run->debug.arch.address = vcpu->arch.regs.nip;
+ vcpu->run->debug.arch.status = 0;
+ kvmppc_account_exit(vcpu, DEBUG_EXITS);
+ emulated = EMULATE_EXIT_USER;
+ *advance = 0;
+ break;
+ default:
+ emulated = EMULATE_FAIL;
+ }
+ return emulated;
+}
+
+static int kvmppc_e500_emul_dcbtls(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+
+ /* Always fail to lock the cache */
+ vcpu_e500->l1csr0 |= L1CSR0_CUL;
+ return EMULATE_DONE;
+}
+
+static int kvmppc_e500_emul_mftmr(struct kvm_vcpu *vcpu, unsigned int inst,
+ int rt)
+{
+ /* Expose one thread per vcpu */
+ if (get_tmrn(inst) == TMRN_TMCFG0) {
+ kvmppc_set_gpr(vcpu, rt,
+ 1 | (1 << TMRN_TMCFG0_NATHRD_SHIFT));
+ return EMULATE_DONE;
+ }
+
+ return EMULATE_FAIL;
+}
+
+int kvmppc_core_emulate_op_e500(struct kvm_vcpu *vcpu,
+ unsigned int inst, int *advance)
+{
+ int emulated = EMULATE_DONE;
+ int ra = get_ra(inst);
+ int rb = get_rb(inst);
+ int rt = get_rt(inst);
+ gva_t ea;
+
+ switch (get_op(inst)) {
+ case 31:
+ switch (get_xop(inst)) {
+
+ case XOP_DCBTLS:
+ emulated = kvmppc_e500_emul_dcbtls(vcpu);
+ break;
+
+#ifdef CONFIG_KVM_E500MC
+ case XOP_MSGSND:
+ emulated = kvmppc_e500_emul_msgsnd(vcpu, rb);
+ break;
+
+ case XOP_MSGCLR:
+ emulated = kvmppc_e500_emul_msgclr(vcpu, rb);
+ break;
+#endif
+
+ case XOP_TLBRE:
+ emulated = kvmppc_e500_emul_tlbre(vcpu);
+ break;
+
+ case XOP_TLBWE:
+ emulated = kvmppc_e500_emul_tlbwe(vcpu);
+ break;
+
+ case XOP_TLBSX:
+ ea = kvmppc_get_ea_indexed(vcpu, ra, rb);
+ emulated = kvmppc_e500_emul_tlbsx(vcpu, ea);
+ break;
+
+ case XOP_TLBILX: {
+ int type = rt & 0x3;
+ ea = kvmppc_get_ea_indexed(vcpu, ra, rb);
+ emulated = kvmppc_e500_emul_tlbilx(vcpu, type, ea);
+ break;
+ }
+
+ case XOP_TLBIVAX:
+ ea = kvmppc_get_ea_indexed(vcpu, ra, rb);
+ emulated = kvmppc_e500_emul_tlbivax(vcpu, ea);
+ break;
+
+ case XOP_MFTMR:
+ emulated = kvmppc_e500_emul_mftmr(vcpu, inst, rt);
+ break;
+
+ case XOP_EHPRIV:
+ emulated = kvmppc_e500_emul_ehpriv(vcpu, inst, advance);
+ break;
+
+ default:
+ emulated = EMULATE_FAIL;
+ }
+
+ break;
+
+ default:
+ emulated = EMULATE_FAIL;
+ }
+
+ if (emulated == EMULATE_FAIL)
+ emulated = kvmppc_booke_emulate_op(vcpu, inst, advance);
+
+ return emulated;
+}
+
+int kvmppc_core_emulate_mtspr_e500(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+ int emulated = EMULATE_DONE;
+
+ switch (sprn) {
+#ifndef CONFIG_KVM_BOOKE_HV
+ case SPRN_PID:
+ kvmppc_set_pid(vcpu, spr_val);
+ break;
+ case SPRN_PID1:
+ if (spr_val != 0)
+ return EMULATE_FAIL;
+ vcpu_e500->pid[1] = spr_val;
+ break;
+ case SPRN_PID2:
+ if (spr_val != 0)
+ return EMULATE_FAIL;
+ vcpu_e500->pid[2] = spr_val;
+ break;
+ case SPRN_MAS0:
+ vcpu->arch.shared->mas0 = spr_val;
+ break;
+ case SPRN_MAS1:
+ vcpu->arch.shared->mas1 = spr_val;
+ break;
+ case SPRN_MAS2:
+ vcpu->arch.shared->mas2 = spr_val;
+ break;
+ case SPRN_MAS3:
+ vcpu->arch.shared->mas7_3 &= ~(u64)0xffffffff;
+ vcpu->arch.shared->mas7_3 |= spr_val;
+ break;
+ case SPRN_MAS4:
+ vcpu->arch.shared->mas4 = spr_val;
+ break;
+ case SPRN_MAS6:
+ vcpu->arch.shared->mas6 = spr_val;
+ break;
+ case SPRN_MAS7:
+ vcpu->arch.shared->mas7_3 &= (u64)0xffffffff;
+ vcpu->arch.shared->mas7_3 |= (u64)spr_val << 32;
+ break;
+#endif
+ case SPRN_L1CSR0:
+ vcpu_e500->l1csr0 = spr_val;
+ vcpu_e500->l1csr0 &= ~(L1CSR0_DCFI | L1CSR0_CLFC);
+ break;
+ case SPRN_L1CSR1:
+ vcpu_e500->l1csr1 = spr_val;
+ vcpu_e500->l1csr1 &= ~(L1CSR1_ICFI | L1CSR1_ICLFR);
+ break;
+ case SPRN_HID0:
+ vcpu_e500->hid0 = spr_val;
+ break;
+ case SPRN_HID1:
+ vcpu_e500->hid1 = spr_val;
+ break;
+
+ case SPRN_MMUCSR0:
+ emulated = kvmppc_e500_emul_mt_mmucsr0(vcpu_e500,
+ spr_val);
+ break;
+
+ case SPRN_PWRMGTCR0:
+ /*
+ * Guest relies on host power management configurations
+ * Treat the request as a general store
+ */
+ vcpu->arch.pwrmgtcr0 = spr_val;
+ break;
+
+ case SPRN_BUCSR:
+ /*
+ * If we are here, it means that we have already flushed the
+ * branch predictor, so just return to guest.
+ */
+ break;
+
+ /* extra exceptions */
+#ifdef CONFIG_SPE_POSSIBLE
+ case SPRN_IVOR32:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] = spr_val;
+ break;
+ case SPRN_IVOR33:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] = spr_val;
+ break;
+ case SPRN_IVOR34:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] = spr_val;
+ break;
+#endif
+#ifdef CONFIG_ALTIVEC
+ case SPRN_IVOR32:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_ALTIVEC_UNAVAIL] = spr_val;
+ break;
+ case SPRN_IVOR33:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_ALTIVEC_ASSIST] = spr_val;
+ break;
+#endif
+ case SPRN_IVOR35:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] = spr_val;
+ break;
+#ifdef CONFIG_KVM_BOOKE_HV
+ case SPRN_IVOR36:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_DBELL] = spr_val;
+ break;
+ case SPRN_IVOR37:
+ vcpu->arch.ivor[BOOKE_IRQPRIO_DBELL_CRIT] = spr_val;
+ break;
+#endif
+ default:
+ emulated = kvmppc_booke_emulate_mtspr(vcpu, sprn, spr_val);
+ }
+
+ return emulated;
+}
+
+int kvmppc_core_emulate_mfspr_e500(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+ int emulated = EMULATE_DONE;
+
+ switch (sprn) {
+#ifndef CONFIG_KVM_BOOKE_HV
+ case SPRN_PID:
+ *spr_val = vcpu_e500->pid[0];
+ break;
+ case SPRN_PID1:
+ *spr_val = vcpu_e500->pid[1];
+ break;
+ case SPRN_PID2:
+ *spr_val = vcpu_e500->pid[2];
+ break;
+ case SPRN_MAS0:
+ *spr_val = vcpu->arch.shared->mas0;
+ break;
+ case SPRN_MAS1:
+ *spr_val = vcpu->arch.shared->mas1;
+ break;
+ case SPRN_MAS2:
+ *spr_val = vcpu->arch.shared->mas2;
+ break;
+ case SPRN_MAS3:
+ *spr_val = (u32)vcpu->arch.shared->mas7_3;
+ break;
+ case SPRN_MAS4:
+ *spr_val = vcpu->arch.shared->mas4;
+ break;
+ case SPRN_MAS6:
+ *spr_val = vcpu->arch.shared->mas6;
+ break;
+ case SPRN_MAS7:
+ *spr_val = vcpu->arch.shared->mas7_3 >> 32;
+ break;
+#endif
+ case SPRN_DECAR:
+ *spr_val = vcpu->arch.decar;
+ break;
+ case SPRN_TLB0CFG:
+ *spr_val = vcpu->arch.tlbcfg[0];
+ break;
+ case SPRN_TLB1CFG:
+ *spr_val = vcpu->arch.tlbcfg[1];
+ break;
+ case SPRN_TLB0PS:
+ if (!has_feature(vcpu, VCPU_FTR_MMU_V2))
+ return EMULATE_FAIL;
+ *spr_val = vcpu->arch.tlbps[0];
+ break;
+ case SPRN_TLB1PS:
+ if (!has_feature(vcpu, VCPU_FTR_MMU_V2))
+ return EMULATE_FAIL;
+ *spr_val = vcpu->arch.tlbps[1];
+ break;
+ case SPRN_L1CSR0:
+ *spr_val = vcpu_e500->l1csr0;
+ break;
+ case SPRN_L1CSR1:
+ *spr_val = vcpu_e500->l1csr1;
+ break;
+ case SPRN_HID0:
+ *spr_val = vcpu_e500->hid0;
+ break;
+ case SPRN_HID1:
+ *spr_val = vcpu_e500->hid1;
+ break;
+ case SPRN_SVR:
+ *spr_val = vcpu_e500->svr;
+ break;
+
+ case SPRN_MMUCSR0:
+ *spr_val = 0;
+ break;
+
+ case SPRN_MMUCFG:
+ *spr_val = vcpu->arch.mmucfg;
+ break;
+ case SPRN_EPTCFG:
+ if (!has_feature(vcpu, VCPU_FTR_MMU_V2))
+ return EMULATE_FAIL;
+ /*
+ * Legacy Linux guests access EPTCFG register even if the E.PT
+ * category is disabled in the VM. Give them a chance to live.
+ */
+ *spr_val = vcpu->arch.eptcfg;
+ break;
+
+ case SPRN_PWRMGTCR0:
+ *spr_val = vcpu->arch.pwrmgtcr0;
+ break;
+
+ /* extra exceptions */
+#ifdef CONFIG_SPE_POSSIBLE
+ case SPRN_IVOR32:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
+ break;
+ case SPRN_IVOR33:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
+ break;
+ case SPRN_IVOR34:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
+ break;
+#endif
+#ifdef CONFIG_ALTIVEC
+ case SPRN_IVOR32:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_ALTIVEC_UNAVAIL];
+ break;
+ case SPRN_IVOR33:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_ALTIVEC_ASSIST];
+ break;
+#endif
+ case SPRN_IVOR35:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
+ break;
+#ifdef CONFIG_KVM_BOOKE_HV
+ case SPRN_IVOR36:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_DBELL];
+ break;
+ case SPRN_IVOR37:
+ *spr_val = vcpu->arch.ivor[BOOKE_IRQPRIO_DBELL_CRIT];
+ break;
+#endif
+ default:
+ emulated = kvmppc_booke_emulate_mfspr(vcpu, sprn, spr_val);
+ }
+
+ return emulated;
+}
+
diff --git a/arch/powerpc/kvm/e500_mmu.c b/arch/powerpc/kvm/e500_mmu.c
new file mode 100644
index 000000000..e131fbecd
--- /dev/null
+++ b/arch/powerpc/kvm/e500_mmu.c
@@ -0,0 +1,956 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
+ *
+ * Author: Yu Liu, yu.liu@freescale.com
+ * Scott Wood, scottwood@freescale.com
+ * Ashish Kalra, ashish.kalra@freescale.com
+ * Varun Sethi, varun.sethi@freescale.com
+ * Alexander Graf, agraf@suse.de
+ *
+ * Description:
+ * This file is based on arch/powerpc/kvm/44x_tlb.c,
+ * by Hollis Blanchard <hollisb@us.ibm.com>.
+ */
+
+#include <linux/kernel.h>
+#include <linux/types.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/highmem.h>
+#include <linux/log2.h>
+#include <linux/uaccess.h>
+#include <linux/sched.h>
+#include <linux/rwsem.h>
+#include <linux/vmalloc.h>
+#include <linux/hugetlb.h>
+#include <asm/kvm_ppc.h>
+
+#include "e500.h"
+#include "trace_booke.h"
+#include "timing.h"
+#include "e500_mmu_host.h"
+
+static inline unsigned int gtlb0_get_next_victim(
+ struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+ unsigned int victim;
+
+ victim = vcpu_e500->gtlb_nv[0]++;
+ if (unlikely(vcpu_e500->gtlb_nv[0] >= vcpu_e500->gtlb_params[0].ways))
+ vcpu_e500->gtlb_nv[0] = 0;
+
+ return victim;
+}
+
+static int tlb0_set_base(gva_t addr, int sets, int ways)
+{
+ int set_base;
+
+ set_base = (addr >> PAGE_SHIFT) & (sets - 1);
+ set_base *= ways;
+
+ return set_base;
+}
+
+static int gtlb0_set_base(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t addr)
+{
+ return tlb0_set_base(addr, vcpu_e500->gtlb_params[0].sets,
+ vcpu_e500->gtlb_params[0].ways);
+}
+
+static unsigned int get_tlb_esel(struct kvm_vcpu *vcpu, int tlbsel)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+ int esel = get_tlb_esel_bit(vcpu);
+
+ if (tlbsel == 0) {
+ esel &= vcpu_e500->gtlb_params[0].ways - 1;
+ esel += gtlb0_set_base(vcpu_e500, vcpu->arch.shared->mas2);
+ } else {
+ esel &= vcpu_e500->gtlb_params[tlbsel].entries - 1;
+ }
+
+ return esel;
+}
+
+/* Search the guest TLB for a matching entry. */
+static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500,
+ gva_t eaddr, int tlbsel, unsigned int pid, int as)
+{
+ int size = vcpu_e500->gtlb_params[tlbsel].entries;
+ unsigned int set_base, offset;
+ int i;
+
+ if (tlbsel == 0) {
+ set_base = gtlb0_set_base(vcpu_e500, eaddr);
+ size = vcpu_e500->gtlb_params[0].ways;
+ } else {
+ if (eaddr < vcpu_e500->tlb1_min_eaddr ||
+ eaddr > vcpu_e500->tlb1_max_eaddr)
+ return -1;
+ set_base = 0;
+ }
+
+ offset = vcpu_e500->gtlb_offset[tlbsel];
+
+ for (i = 0; i < size; i++) {
+ struct kvm_book3e_206_tlb_entry *tlbe =
+ &vcpu_e500->gtlb_arch[offset + set_base + i];
+ unsigned int tid;
+
+ if (eaddr < get_tlb_eaddr(tlbe))
+ continue;
+
+ if (eaddr > get_tlb_end(tlbe))
+ continue;
+
+ tid = get_tlb_tid(tlbe);
+ if (tid && (tid != pid))
+ continue;
+
+ if (!get_tlb_v(tlbe))
+ continue;
+
+ if (get_tlb_ts(tlbe) != as && as != -1)
+ continue;
+
+ return set_base + i;
+ }
+
+ return -1;
+}
+
+static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
+ gva_t eaddr, int as)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+ unsigned int victim, tsized;
+ int tlbsel;
+
+ /* since we only have two TLBs, only lower bit is used. */
+ tlbsel = (vcpu->arch.shared->mas4 >> 28) & 0x1;
+ victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
+ tsized = (vcpu->arch.shared->mas4 >> 7) & 0x1f;
+
+ vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
+ | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
+ vcpu->arch.shared->mas1 = MAS1_VALID | (as ? MAS1_TS : 0)
+ | MAS1_TID(get_tlbmiss_tid(vcpu))
+ | MAS1_TSIZE(tsized);
+ vcpu->arch.shared->mas2 = (eaddr & MAS2_EPN)
+ | (vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK);
+ vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
+ vcpu->arch.shared->mas6 = (vcpu->arch.shared->mas6 & MAS6_SPID1)
+ | (get_cur_pid(vcpu) << 16)
+ | (as ? MAS6_SAS : 0);
+}
+
+static void kvmppc_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+ int size = vcpu_e500->gtlb_params[1].entries;
+ unsigned int offset;
+ gva_t eaddr;
+ int i;
+
+ vcpu_e500->tlb1_min_eaddr = ~0UL;
+ vcpu_e500->tlb1_max_eaddr = 0;
+ offset = vcpu_e500->gtlb_offset[1];
+
+ for (i = 0; i < size; i++) {
+ struct kvm_book3e_206_tlb_entry *tlbe =
+ &vcpu_e500->gtlb_arch[offset + i];
+
+ if (!get_tlb_v(tlbe))
+ continue;
+
+ eaddr = get_tlb_eaddr(tlbe);
+ vcpu_e500->tlb1_min_eaddr =
+ min(vcpu_e500->tlb1_min_eaddr, eaddr);
+
+ eaddr = get_tlb_end(tlbe);
+ vcpu_e500->tlb1_max_eaddr =
+ max(vcpu_e500->tlb1_max_eaddr, eaddr);
+ }
+}
+
+static int kvmppc_need_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500,
+ struct kvm_book3e_206_tlb_entry *gtlbe)
+{
+ unsigned long start, end, size;
+
+ size = get_tlb_bytes(gtlbe);
+ start = get_tlb_eaddr(gtlbe) & ~(size - 1);
+ end = start + size - 1;
+
+ return vcpu_e500->tlb1_min_eaddr == start ||
+ vcpu_e500->tlb1_max_eaddr == end;
+}
+
+/* This function is supposed to be called for a adding a new valid tlb entry */
+static void kvmppc_set_tlb1map_range(struct kvm_vcpu *vcpu,
+ struct kvm_book3e_206_tlb_entry *gtlbe)
+{
+ unsigned long start, end, size;
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+
+ if (!get_tlb_v(gtlbe))
+ return;
+
+ size = get_tlb_bytes(gtlbe);
+ start = get_tlb_eaddr(gtlbe) & ~(size - 1);
+ end = start + size - 1;
+
+ vcpu_e500->tlb1_min_eaddr = min(vcpu_e500->tlb1_min_eaddr, start);
+ vcpu_e500->tlb1_max_eaddr = max(vcpu_e500->tlb1_max_eaddr, end);
+}
+
+static inline int kvmppc_e500_gtlbe_invalidate(
+ struct kvmppc_vcpu_e500 *vcpu_e500,
+ int tlbsel, int esel)
+{
+ struct kvm_book3e_206_tlb_entry *gtlbe =
+ get_entry(vcpu_e500, tlbsel, esel);
+
+ if (unlikely(get_tlb_iprot(gtlbe)))
+ return -1;
+
+ if (tlbsel == 1 && kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
+ kvmppc_recalc_tlb1map_range(vcpu_e500);
+
+ gtlbe->mas1 = 0;
+
+ return 0;
+}
+
+int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value)
+{
+ int esel;
+
+ if (value & MMUCSR0_TLB0FI)
+ for (esel = 0; esel < vcpu_e500->gtlb_params[0].entries; esel++)
+ kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel);
+ if (value & MMUCSR0_TLB1FI)
+ for (esel = 0; esel < vcpu_e500->gtlb_params[1].entries; esel++)
+ kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel);
+
+ /* Invalidate all host shadow mappings */
+ kvmppc_core_flush_tlb(&vcpu_e500->vcpu);
+
+ return EMULATE_DONE;
+}
+
+int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, gva_t ea)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+ unsigned int ia;
+ int esel, tlbsel;
+
+ ia = (ea >> 2) & 0x1;
+
+ /* since we only have two TLBs, only lower bit is used. */
+ tlbsel = (ea >> 3) & 0x1;
+
+ if (ia) {
+ /* invalidate all entries */
+ for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries;
+ esel++)
+ kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
+ } else {
+ ea &= 0xfffff000;
+ esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel,
+ get_cur_pid(vcpu), -1);
+ if (esel >= 0)
+ kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
+ }
+
+ /* Invalidate all host shadow mappings */
+ kvmppc_core_flush_tlb(&vcpu_e500->vcpu);
+
+ return EMULATE_DONE;
+}
+
+static void tlbilx_all(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
+ int pid, int type)
+{
+ struct kvm_book3e_206_tlb_entry *tlbe;
+ int tid, esel;
+
+ /* invalidate all entries */
+ for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries; esel++) {
+ tlbe = get_entry(vcpu_e500, tlbsel, esel);
+ tid = get_tlb_tid(tlbe);
+ if (type == 0 || tid == pid) {
+ inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
+ kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
+ }
+ }
+}
+
+static void tlbilx_one(struct kvmppc_vcpu_e500 *vcpu_e500, int pid,
+ gva_t ea)
+{
+ int tlbsel, esel;
+
+ for (tlbsel = 0; tlbsel < 2; tlbsel++) {
+ esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, -1);
+ if (esel >= 0) {
+ inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
+ kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
+ break;
+ }
+ }
+}
+
+int kvmppc_e500_emul_tlbilx(struct kvm_vcpu *vcpu, int type, gva_t ea)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+ int pid = get_cur_spid(vcpu);
+
+ if (type == 0 || type == 1) {
+ tlbilx_all(vcpu_e500, 0, pid, type);
+ tlbilx_all(vcpu_e500, 1, pid, type);
+ } else if (type == 3) {
+ tlbilx_one(vcpu_e500, pid, ea);
+ }
+
+ return EMULATE_DONE;
+}
+
+int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+ int tlbsel, esel;
+ struct kvm_book3e_206_tlb_entry *gtlbe;
+
+ tlbsel = get_tlb_tlbsel(vcpu);
+ esel = get_tlb_esel(vcpu, tlbsel);
+
+ gtlbe = get_entry(vcpu_e500, tlbsel, esel);
+ vcpu->arch.shared->mas0 &= ~MAS0_NV(~0);
+ vcpu->arch.shared->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
+ vcpu->arch.shared->mas1 = gtlbe->mas1;
+ vcpu->arch.shared->mas2 = gtlbe->mas2;
+ vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
+
+ return EMULATE_DONE;
+}
+
+int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, gva_t ea)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+ int as = !!get_cur_sas(vcpu);
+ unsigned int pid = get_cur_spid(vcpu);
+ int esel, tlbsel;
+ struct kvm_book3e_206_tlb_entry *gtlbe = NULL;
+
+ for (tlbsel = 0; tlbsel < 2; tlbsel++) {
+ esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as);
+ if (esel >= 0) {
+ gtlbe = get_entry(vcpu_e500, tlbsel, esel);
+ break;
+ }
+ }
+
+ if (gtlbe) {
+ esel &= vcpu_e500->gtlb_params[tlbsel].ways - 1;
+
+ vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel)
+ | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
+ vcpu->arch.shared->mas1 = gtlbe->mas1;
+ vcpu->arch.shared->mas2 = gtlbe->mas2;
+ vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
+ } else {
+ int victim;
+
+ /* since we only have two TLBs, only lower bit is used. */
+ tlbsel = vcpu->arch.shared->mas4 >> 28 & 0x1;
+ victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
+
+ vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel)
+ | MAS0_ESEL(victim)
+ | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
+ vcpu->arch.shared->mas1 =
+ (vcpu->arch.shared->mas6 & MAS6_SPID0)
+ | ((vcpu->arch.shared->mas6 & MAS6_SAS) ? MAS1_TS : 0)
+ | (vcpu->arch.shared->mas4 & MAS4_TSIZED(~0));
+ vcpu->arch.shared->mas2 &= MAS2_EPN;
+ vcpu->arch.shared->mas2 |= vcpu->arch.shared->mas4 &
+ MAS2_ATTRIB_MASK;
+ vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 |
+ MAS3_U2 | MAS3_U3;
+ }
+
+ kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
+ return EMULATE_DONE;
+}
+
+int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+ struct kvm_book3e_206_tlb_entry *gtlbe;
+ int tlbsel, esel;
+ int recal = 0;
+ int idx;
+
+ tlbsel = get_tlb_tlbsel(vcpu);
+ esel = get_tlb_esel(vcpu, tlbsel);
+
+ gtlbe = get_entry(vcpu_e500, tlbsel, esel);
+
+ if (get_tlb_v(gtlbe)) {
+ inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
+ if ((tlbsel == 1) &&
+ kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
+ recal = 1;
+ }
+
+ gtlbe->mas1 = vcpu->arch.shared->mas1;
+ gtlbe->mas2 = vcpu->arch.shared->mas2;
+ if (!(vcpu->arch.shared->msr & MSR_CM))
+ gtlbe->mas2 &= 0xffffffffUL;
+ gtlbe->mas7_3 = vcpu->arch.shared->mas7_3;
+
+ trace_kvm_booke206_gtlb_write(vcpu->arch.shared->mas0, gtlbe->mas1,
+ gtlbe->mas2, gtlbe->mas7_3);
+
+ if (tlbsel == 1) {
+ /*
+ * If a valid tlb1 entry is overwritten then recalculate the
+ * min/max TLB1 map address range otherwise no need to look
+ * in tlb1 array.
+ */
+ if (recal)
+ kvmppc_recalc_tlb1map_range(vcpu_e500);
+ else
+ kvmppc_set_tlb1map_range(vcpu, gtlbe);
+ }
+
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+
+ /* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */
+ if (tlbe_is_host_safe(vcpu, gtlbe)) {
+ u64 eaddr = get_tlb_eaddr(gtlbe);
+ u64 raddr = get_tlb_raddr(gtlbe);
+
+ if (tlbsel == 0) {
+ gtlbe->mas1 &= ~MAS1_TSIZE(~0);
+ gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K);
+ }
+
+ /* Premap the faulting page */
+ kvmppc_mmu_map(vcpu, eaddr, raddr, index_of(tlbsel, esel));
+ }
+
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+
+ kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
+ return EMULATE_DONE;
+}
+
+static int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu,
+ gva_t eaddr, unsigned int pid, int as)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+ int esel, tlbsel;
+
+ for (tlbsel = 0; tlbsel < 2; tlbsel++) {
+ esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as);
+ if (esel >= 0)
+ return index_of(tlbsel, esel);
+ }
+
+ return -1;
+}
+
+/* 'linear_address' is actually an encoding of AS|PID|EADDR . */
+int kvmppc_core_vcpu_translate(struct kvm_vcpu *vcpu,
+ struct kvm_translation *tr)
+{
+ int index;
+ gva_t eaddr;
+ u8 pid;
+ u8 as;
+
+ eaddr = tr->linear_address;
+ pid = (tr->linear_address >> 32) & 0xff;
+ as = (tr->linear_address >> 40) & 0x1;
+
+ index = kvmppc_e500_tlb_search(vcpu, eaddr, pid, as);
+ if (index < 0) {
+ tr->valid = 0;
+ return 0;
+ }
+
+ tr->physical_address = kvmppc_mmu_xlate(vcpu, index, eaddr);
+ /* XXX what does "writeable" and "usermode" even mean? */
+ tr->valid = 1;
+
+ return 0;
+}
+
+
+int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
+{
+ unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
+
+ return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
+}
+
+int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
+{
+ unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
+
+ return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
+}
+
+void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
+{
+ unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
+
+ kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.regs.nip, as);
+}
+
+void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
+{
+ unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
+
+ kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as);
+}
+
+gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index,
+ gva_t eaddr)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+ struct kvm_book3e_206_tlb_entry *gtlbe;
+ u64 pgmask;
+
+ gtlbe = get_entry(vcpu_e500, tlbsel_of(index), esel_of(index));
+ pgmask = get_tlb_bytes(gtlbe) - 1;
+
+ return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
+}
+
+/*****************************************/
+
+static void free_gtlb(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+ int i;
+
+ kvmppc_core_flush_tlb(&vcpu_e500->vcpu);
+ kfree(vcpu_e500->g2h_tlb1_map);
+ kfree(vcpu_e500->gtlb_priv[0]);
+ kfree(vcpu_e500->gtlb_priv[1]);
+
+ if (vcpu_e500->shared_tlb_pages) {
+ vfree((void *)(round_down((uintptr_t)vcpu_e500->gtlb_arch,
+ PAGE_SIZE)));
+
+ for (i = 0; i < vcpu_e500->num_shared_tlb_pages; i++) {
+ set_page_dirty_lock(vcpu_e500->shared_tlb_pages[i]);
+ put_page(vcpu_e500->shared_tlb_pages[i]);
+ }
+
+ vcpu_e500->num_shared_tlb_pages = 0;
+
+ kfree(vcpu_e500->shared_tlb_pages);
+ vcpu_e500->shared_tlb_pages = NULL;
+ } else {
+ kfree(vcpu_e500->gtlb_arch);
+ }
+
+ vcpu_e500->gtlb_arch = NULL;
+}
+
+void kvmppc_get_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
+{
+ sregs->u.e.mas0 = vcpu->arch.shared->mas0;
+ sregs->u.e.mas1 = vcpu->arch.shared->mas1;
+ sregs->u.e.mas2 = vcpu->arch.shared->mas2;
+ sregs->u.e.mas7_3 = vcpu->arch.shared->mas7_3;
+ sregs->u.e.mas4 = vcpu->arch.shared->mas4;
+ sregs->u.e.mas6 = vcpu->arch.shared->mas6;
+
+ sregs->u.e.mmucfg = vcpu->arch.mmucfg;
+ sregs->u.e.tlbcfg[0] = vcpu->arch.tlbcfg[0];
+ sregs->u.e.tlbcfg[1] = vcpu->arch.tlbcfg[1];
+ sregs->u.e.tlbcfg[2] = 0;
+ sregs->u.e.tlbcfg[3] = 0;
+}
+
+int kvmppc_set_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
+{
+ if (sregs->u.e.features & KVM_SREGS_E_ARCH206_MMU) {
+ vcpu->arch.shared->mas0 = sregs->u.e.mas0;
+ vcpu->arch.shared->mas1 = sregs->u.e.mas1;
+ vcpu->arch.shared->mas2 = sregs->u.e.mas2;
+ vcpu->arch.shared->mas7_3 = sregs->u.e.mas7_3;
+ vcpu->arch.shared->mas4 = sregs->u.e.mas4;
+ vcpu->arch.shared->mas6 = sregs->u.e.mas6;
+ }
+
+ return 0;
+}
+
+int kvmppc_get_one_reg_e500_tlb(struct kvm_vcpu *vcpu, u64 id,
+ union kvmppc_one_reg *val)
+{
+ int r = 0;
+ long int i;
+
+ switch (id) {
+ case KVM_REG_PPC_MAS0:
+ *val = get_reg_val(id, vcpu->arch.shared->mas0);
+ break;
+ case KVM_REG_PPC_MAS1:
+ *val = get_reg_val(id, vcpu->arch.shared->mas1);
+ break;
+ case KVM_REG_PPC_MAS2:
+ *val = get_reg_val(id, vcpu->arch.shared->mas2);
+ break;
+ case KVM_REG_PPC_MAS7_3:
+ *val = get_reg_val(id, vcpu->arch.shared->mas7_3);
+ break;
+ case KVM_REG_PPC_MAS4:
+ *val = get_reg_val(id, vcpu->arch.shared->mas4);
+ break;
+ case KVM_REG_PPC_MAS6:
+ *val = get_reg_val(id, vcpu->arch.shared->mas6);
+ break;
+ case KVM_REG_PPC_MMUCFG:
+ *val = get_reg_val(id, vcpu->arch.mmucfg);
+ break;
+ case KVM_REG_PPC_EPTCFG:
+ *val = get_reg_val(id, vcpu->arch.eptcfg);
+ break;
+ case KVM_REG_PPC_TLB0CFG:
+ case KVM_REG_PPC_TLB1CFG:
+ case KVM_REG_PPC_TLB2CFG:
+ case KVM_REG_PPC_TLB3CFG:
+ i = id - KVM_REG_PPC_TLB0CFG;
+ *val = get_reg_val(id, vcpu->arch.tlbcfg[i]);
+ break;
+ case KVM_REG_PPC_TLB0PS:
+ case KVM_REG_PPC_TLB1PS:
+ case KVM_REG_PPC_TLB2PS:
+ case KVM_REG_PPC_TLB3PS:
+ i = id - KVM_REG_PPC_TLB0PS;
+ *val = get_reg_val(id, vcpu->arch.tlbps[i]);
+ break;
+ default:
+ r = -EINVAL;
+ break;
+ }
+
+ return r;
+}
+
+int kvmppc_set_one_reg_e500_tlb(struct kvm_vcpu *vcpu, u64 id,
+ union kvmppc_one_reg *val)
+{
+ int r = 0;
+ long int i;
+
+ switch (id) {
+ case KVM_REG_PPC_MAS0:
+ vcpu->arch.shared->mas0 = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_MAS1:
+ vcpu->arch.shared->mas1 = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_MAS2:
+ vcpu->arch.shared->mas2 = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_MAS7_3:
+ vcpu->arch.shared->mas7_3 = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_MAS4:
+ vcpu->arch.shared->mas4 = set_reg_val(id, *val);
+ break;
+ case KVM_REG_PPC_MAS6:
+ vcpu->arch.shared->mas6 = set_reg_val(id, *val);
+ break;
+ /* Only allow MMU registers to be set to the config supported by KVM */
+ case KVM_REG_PPC_MMUCFG: {
+ u32 reg = set_reg_val(id, *val);
+ if (reg != vcpu->arch.mmucfg)
+ r = -EINVAL;
+ break;
+ }
+ case KVM_REG_PPC_EPTCFG: {
+ u32 reg = set_reg_val(id, *val);
+ if (reg != vcpu->arch.eptcfg)
+ r = -EINVAL;
+ break;
+ }
+ case KVM_REG_PPC_TLB0CFG:
+ case KVM_REG_PPC_TLB1CFG:
+ case KVM_REG_PPC_TLB2CFG:
+ case KVM_REG_PPC_TLB3CFG: {
+ /* MMU geometry (N_ENTRY/ASSOC) can be set only using SW_TLB */
+ u32 reg = set_reg_val(id, *val);
+ i = id - KVM_REG_PPC_TLB0CFG;
+ if (reg != vcpu->arch.tlbcfg[i])
+ r = -EINVAL;
+ break;
+ }
+ case KVM_REG_PPC_TLB0PS:
+ case KVM_REG_PPC_TLB1PS:
+ case KVM_REG_PPC_TLB2PS:
+ case KVM_REG_PPC_TLB3PS: {
+ u32 reg = set_reg_val(id, *val);
+ i = id - KVM_REG_PPC_TLB0PS;
+ if (reg != vcpu->arch.tlbps[i])
+ r = -EINVAL;
+ break;
+ }
+ default:
+ r = -EINVAL;
+ break;
+ }
+
+ return r;
+}
+
+static int vcpu_mmu_geometry_update(struct kvm_vcpu *vcpu,
+ struct kvm_book3e_206_tlb_params *params)
+{
+ vcpu->arch.tlbcfg[0] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
+ if (params->tlb_sizes[0] <= 2048)
+ vcpu->arch.tlbcfg[0] |= params->tlb_sizes[0];
+ vcpu->arch.tlbcfg[0] |= params->tlb_ways[0] << TLBnCFG_ASSOC_SHIFT;
+
+ vcpu->arch.tlbcfg[1] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
+ vcpu->arch.tlbcfg[1] |= params->tlb_sizes[1];
+ vcpu->arch.tlbcfg[1] |= params->tlb_ways[1] << TLBnCFG_ASSOC_SHIFT;
+ return 0;
+}
+
+int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu,
+ struct kvm_config_tlb *cfg)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+ struct kvm_book3e_206_tlb_params params;
+ char *virt;
+ struct page **pages;
+ struct tlbe_priv *privs[2] = {};
+ u64 *g2h_bitmap;
+ size_t array_len;
+ u32 sets;
+ int num_pages, ret, i;
+
+ if (cfg->mmu_type != KVM_MMU_FSL_BOOKE_NOHV)
+ return -EINVAL;
+
+ if (copy_from_user(&params, (void __user *)(uintptr_t)cfg->params,
+ sizeof(params)))
+ return -EFAULT;
+
+ if (params.tlb_sizes[1] > 64)
+ return -EINVAL;
+ if (params.tlb_ways[1] != params.tlb_sizes[1])
+ return -EINVAL;
+ if (params.tlb_sizes[2] != 0 || params.tlb_sizes[3] != 0)
+ return -EINVAL;
+ if (params.tlb_ways[2] != 0 || params.tlb_ways[3] != 0)
+ return -EINVAL;
+
+ if (!is_power_of_2(params.tlb_ways[0]))
+ return -EINVAL;
+
+ sets = params.tlb_sizes[0] >> ilog2(params.tlb_ways[0]);
+ if (!is_power_of_2(sets))
+ return -EINVAL;
+
+ array_len = params.tlb_sizes[0] + params.tlb_sizes[1];
+ array_len *= sizeof(struct kvm_book3e_206_tlb_entry);
+
+ if (cfg->array_len < array_len)
+ return -EINVAL;
+
+ num_pages = DIV_ROUND_UP(cfg->array + array_len - 1, PAGE_SIZE) -
+ cfg->array / PAGE_SIZE;
+ pages = kmalloc_array(num_pages, sizeof(*pages), GFP_KERNEL);
+ if (!pages)
+ return -ENOMEM;
+
+ ret = get_user_pages_fast(cfg->array, num_pages, FOLL_WRITE, pages);
+ if (ret < 0)
+ goto free_pages;
+
+ if (ret != num_pages) {
+ num_pages = ret;
+ ret = -EFAULT;
+ goto put_pages;
+ }
+
+ virt = vmap(pages, num_pages, VM_MAP, PAGE_KERNEL);
+ if (!virt) {
+ ret = -ENOMEM;
+ goto put_pages;
+ }
+
+ privs[0] = kcalloc(params.tlb_sizes[0], sizeof(*privs[0]), GFP_KERNEL);
+ if (!privs[0]) {
+ ret = -ENOMEM;
+ goto put_pages;
+ }
+
+ privs[1] = kcalloc(params.tlb_sizes[1], sizeof(*privs[1]), GFP_KERNEL);
+ if (!privs[1]) {
+ ret = -ENOMEM;
+ goto free_privs_first;
+ }
+
+ g2h_bitmap = kcalloc(params.tlb_sizes[1],
+ sizeof(*g2h_bitmap),
+ GFP_KERNEL);
+ if (!g2h_bitmap) {
+ ret = -ENOMEM;
+ goto free_privs_second;
+ }
+
+ free_gtlb(vcpu_e500);
+
+ vcpu_e500->gtlb_priv[0] = privs[0];
+ vcpu_e500->gtlb_priv[1] = privs[1];
+ vcpu_e500->g2h_tlb1_map = g2h_bitmap;
+
+ vcpu_e500->gtlb_arch = (struct kvm_book3e_206_tlb_entry *)
+ (virt + (cfg->array & (PAGE_SIZE - 1)));
+
+ vcpu_e500->gtlb_params[0].entries = params.tlb_sizes[0];
+ vcpu_e500->gtlb_params[1].entries = params.tlb_sizes[1];
+
+ vcpu_e500->gtlb_offset[0] = 0;
+ vcpu_e500->gtlb_offset[1] = params.tlb_sizes[0];
+
+ /* Update vcpu's MMU geometry based on SW_TLB input */
+ vcpu_mmu_geometry_update(vcpu, &params);
+
+ vcpu_e500->shared_tlb_pages = pages;
+ vcpu_e500->num_shared_tlb_pages = num_pages;
+
+ vcpu_e500->gtlb_params[0].ways = params.tlb_ways[0];
+ vcpu_e500->gtlb_params[0].sets = sets;
+
+ vcpu_e500->gtlb_params[1].ways = params.tlb_sizes[1];
+ vcpu_e500->gtlb_params[1].sets = 1;
+
+ kvmppc_recalc_tlb1map_range(vcpu_e500);
+ return 0;
+ free_privs_second:
+ kfree(privs[1]);
+ free_privs_first:
+ kfree(privs[0]);
+ put_pages:
+ for (i = 0; i < num_pages; i++)
+ put_page(pages[i]);
+ free_pages:
+ kfree(pages);
+ return ret;
+}
+
+int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu,
+ struct kvm_dirty_tlb *dirty)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+ kvmppc_recalc_tlb1map_range(vcpu_e500);
+ kvmppc_core_flush_tlb(vcpu);
+ return 0;
+}
+
+/* Vcpu's MMU default configuration */
+static int vcpu_mmu_init(struct kvm_vcpu *vcpu,
+ struct kvmppc_e500_tlb_params *params)
+{
+ /* Initialize RASIZE, PIDSIZE, NTLBS and MAVN fields with host values*/
+ vcpu->arch.mmucfg = mfspr(SPRN_MMUCFG) & ~MMUCFG_LPIDSIZE;
+
+ /* Initialize TLBnCFG fields with host values and SW_TLB geometry*/
+ vcpu->arch.tlbcfg[0] = mfspr(SPRN_TLB0CFG) &
+ ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
+ vcpu->arch.tlbcfg[0] |= params[0].entries;
+ vcpu->arch.tlbcfg[0] |= params[0].ways << TLBnCFG_ASSOC_SHIFT;
+
+ vcpu->arch.tlbcfg[1] = mfspr(SPRN_TLB1CFG) &
+ ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
+ vcpu->arch.tlbcfg[1] |= params[1].entries;
+ vcpu->arch.tlbcfg[1] |= params[1].ways << TLBnCFG_ASSOC_SHIFT;
+
+ if (has_feature(vcpu, VCPU_FTR_MMU_V2)) {
+ vcpu->arch.tlbps[0] = mfspr(SPRN_TLB0PS);
+ vcpu->arch.tlbps[1] = mfspr(SPRN_TLB1PS);
+
+ vcpu->arch.mmucfg &= ~MMUCFG_LRAT;
+
+ /* Guest mmu emulation currently doesn't handle E.PT */
+ vcpu->arch.eptcfg = 0;
+ vcpu->arch.tlbcfg[0] &= ~TLBnCFG_PT;
+ vcpu->arch.tlbcfg[1] &= ~TLBnCFG_IND;
+ }
+
+ return 0;
+}
+
+int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+ struct kvm_vcpu *vcpu = &vcpu_e500->vcpu;
+
+ if (e500_mmu_host_init(vcpu_e500))
+ goto free_vcpu;
+
+ vcpu_e500->gtlb_params[0].entries = KVM_E500_TLB0_SIZE;
+ vcpu_e500->gtlb_params[1].entries = KVM_E500_TLB1_SIZE;
+
+ vcpu_e500->gtlb_params[0].ways = KVM_E500_TLB0_WAY_NUM;
+ vcpu_e500->gtlb_params[0].sets =
+ KVM_E500_TLB0_SIZE / KVM_E500_TLB0_WAY_NUM;
+
+ vcpu_e500->gtlb_params[1].ways = KVM_E500_TLB1_SIZE;
+ vcpu_e500->gtlb_params[1].sets = 1;
+
+ vcpu_e500->gtlb_arch = kmalloc_array(KVM_E500_TLB0_SIZE +
+ KVM_E500_TLB1_SIZE,
+ sizeof(*vcpu_e500->gtlb_arch),
+ GFP_KERNEL);
+ if (!vcpu_e500->gtlb_arch)
+ return -ENOMEM;
+
+ vcpu_e500->gtlb_offset[0] = 0;
+ vcpu_e500->gtlb_offset[1] = KVM_E500_TLB0_SIZE;
+
+ vcpu_e500->gtlb_priv[0] = kcalloc(vcpu_e500->gtlb_params[0].entries,
+ sizeof(struct tlbe_ref),
+ GFP_KERNEL);
+ if (!vcpu_e500->gtlb_priv[0])
+ goto free_vcpu;
+
+ vcpu_e500->gtlb_priv[1] = kcalloc(vcpu_e500->gtlb_params[1].entries,
+ sizeof(struct tlbe_ref),
+ GFP_KERNEL);
+ if (!vcpu_e500->gtlb_priv[1])
+ goto free_vcpu;
+
+ vcpu_e500->g2h_tlb1_map = kcalloc(vcpu_e500->gtlb_params[1].entries,
+ sizeof(*vcpu_e500->g2h_tlb1_map),
+ GFP_KERNEL);
+ if (!vcpu_e500->g2h_tlb1_map)
+ goto free_vcpu;
+
+ vcpu_mmu_init(vcpu, vcpu_e500->gtlb_params);
+
+ kvmppc_recalc_tlb1map_range(vcpu_e500);
+ return 0;
+ free_vcpu:
+ free_gtlb(vcpu_e500);
+ return -1;
+}
+
+void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+ free_gtlb(vcpu_e500);
+ e500_mmu_host_uninit(vcpu_e500);
+}
diff --git a/arch/powerpc/kvm/e500_mmu_host.c b/arch/powerpc/kvm/e500_mmu_host.c
new file mode 100644
index 000000000..05668e964
--- /dev/null
+++ b/arch/powerpc/kvm/e500_mmu_host.c
@@ -0,0 +1,803 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
+ *
+ * Author: Yu Liu, yu.liu@freescale.com
+ * Scott Wood, scottwood@freescale.com
+ * Ashish Kalra, ashish.kalra@freescale.com
+ * Varun Sethi, varun.sethi@freescale.com
+ * Alexander Graf, agraf@suse.de
+ *
+ * Description:
+ * This file is based on arch/powerpc/kvm/44x_tlb.c,
+ * by Hollis Blanchard <hollisb@us.ibm.com>.
+ */
+
+#include <linux/kernel.h>
+#include <linux/types.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/kvm.h>
+#include <linux/kvm_host.h>
+#include <linux/highmem.h>
+#include <linux/log2.h>
+#include <linux/uaccess.h>
+#include <linux/sched/mm.h>
+#include <linux/rwsem.h>
+#include <linux/vmalloc.h>
+#include <linux/hugetlb.h>
+#include <asm/kvm_ppc.h>
+#include <asm/pte-walk.h>
+
+#include "e500.h"
+#include "timing.h"
+#include "e500_mmu_host.h"
+
+#include "trace_booke.h"
+
+#define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
+
+static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
+
+static inline unsigned int tlb1_max_shadow_size(void)
+{
+ /* reserve one entry for magic page */
+ return host_tlb_params[1].entries - tlbcam_index - 1;
+}
+
+static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
+{
+ /* Mask off reserved bits. */
+ mas3 &= MAS3_ATTRIB_MASK;
+
+#ifndef CONFIG_KVM_BOOKE_HV
+ if (!usermode) {
+ /* Guest is in supervisor mode,
+ * so we need to translate guest
+ * supervisor permissions into user permissions. */
+ mas3 &= ~E500_TLB_USER_PERM_MASK;
+ mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
+ }
+ mas3 |= E500_TLB_SUPER_PERM_MASK;
+#endif
+ return mas3;
+}
+
+/*
+ * writing shadow tlb entry to host TLB
+ */
+static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
+ uint32_t mas0,
+ uint32_t lpid)
+{
+ unsigned long flags;
+
+ local_irq_save(flags);
+ mtspr(SPRN_MAS0, mas0);
+ mtspr(SPRN_MAS1, stlbe->mas1);
+ mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
+ mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
+ mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
+#ifdef CONFIG_KVM_BOOKE_HV
+ mtspr(SPRN_MAS8, MAS8_TGS | get_thread_specific_lpid(lpid));
+#endif
+ asm volatile("isync; tlbwe" : : : "memory");
+
+#ifdef CONFIG_KVM_BOOKE_HV
+ /* Must clear mas8 for other host tlbwe's */
+ mtspr(SPRN_MAS8, 0);
+ isync();
+#endif
+ local_irq_restore(flags);
+
+ trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
+ stlbe->mas2, stlbe->mas7_3);
+}
+
+/*
+ * Acquire a mas0 with victim hint, as if we just took a TLB miss.
+ *
+ * We don't care about the address we're searching for, other than that it's
+ * in the right set and is not present in the TLB. Using a zero PID and a
+ * userspace address means we don't have to set and then restore MAS5, or
+ * calculate a proper MAS6 value.
+ */
+static u32 get_host_mas0(unsigned long eaddr)
+{
+ unsigned long flags;
+ u32 mas0;
+ u32 mas4;
+
+ local_irq_save(flags);
+ mtspr(SPRN_MAS6, 0);
+ mas4 = mfspr(SPRN_MAS4);
+ mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK);
+ asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
+ mas0 = mfspr(SPRN_MAS0);
+ mtspr(SPRN_MAS4, mas4);
+ local_irq_restore(flags);
+
+ return mas0;
+}
+
+/* sesel is for tlb1 only */
+static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
+ int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
+{
+ u32 mas0;
+
+ if (tlbsel == 0) {
+ mas0 = get_host_mas0(stlbe->mas2);
+ __write_host_tlbe(stlbe, mas0, vcpu_e500->vcpu.kvm->arch.lpid);
+ } else {
+ __write_host_tlbe(stlbe,
+ MAS0_TLBSEL(1) |
+ MAS0_ESEL(to_htlb1_esel(sesel)),
+ vcpu_e500->vcpu.kvm->arch.lpid);
+ }
+}
+
+/* sesel is for tlb1 only */
+static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
+ struct kvm_book3e_206_tlb_entry *gtlbe,
+ struct kvm_book3e_206_tlb_entry *stlbe,
+ int stlbsel, int sesel)
+{
+ int stid;
+
+ preempt_disable();
+ stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
+
+ stlbe->mas1 |= MAS1_TID(stid);
+ write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
+ preempt_enable();
+}
+
+#ifdef CONFIG_KVM_E500V2
+/* XXX should be a hook in the gva2hpa translation */
+void kvmppc_map_magic(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+ struct kvm_book3e_206_tlb_entry magic;
+ ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
+ unsigned int stid;
+ kvm_pfn_t pfn;
+
+ pfn = (kvm_pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
+ get_page(pfn_to_page(pfn));
+
+ preempt_disable();
+ stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
+
+ magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
+ MAS1_TSIZE(BOOK3E_PAGESZ_4K);
+ magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
+ magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
+ MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
+ magic.mas8 = 0;
+
+ __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index), 0);
+ preempt_enable();
+}
+#endif
+
+void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
+ int esel)
+{
+ struct kvm_book3e_206_tlb_entry *gtlbe =
+ get_entry(vcpu_e500, tlbsel, esel);
+ struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
+
+ /* Don't bother with unmapped entries */
+ if (!(ref->flags & E500_TLB_VALID)) {
+ WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0),
+ "%s: flags %x\n", __func__, ref->flags);
+ WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]);
+ }
+
+ if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
+ u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
+ int hw_tlb_indx;
+ unsigned long flags;
+
+ local_irq_save(flags);
+ while (tmp) {
+ hw_tlb_indx = __ilog2_u64(tmp & -tmp);
+ mtspr(SPRN_MAS0,
+ MAS0_TLBSEL(1) |
+ MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
+ mtspr(SPRN_MAS1, 0);
+ asm volatile("tlbwe");
+ vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
+ tmp &= tmp - 1;
+ }
+ mb();
+ vcpu_e500->g2h_tlb1_map[esel] = 0;
+ ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
+ local_irq_restore(flags);
+ }
+
+ if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) {
+ /*
+ * TLB1 entry is backed by 4k pages. This should happen
+ * rarely and is not worth optimizing. Invalidate everything.
+ */
+ kvmppc_e500_tlbil_all(vcpu_e500);
+ ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID);
+ }
+
+ /*
+ * If TLB entry is still valid then it's a TLB0 entry, and thus
+ * backed by at most one host tlbe per shadow pid
+ */
+ if (ref->flags & E500_TLB_VALID)
+ kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
+
+ /* Mark the TLB as not backed by the host anymore */
+ ref->flags = 0;
+}
+
+static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
+{
+ return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
+}
+
+static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
+ struct kvm_book3e_206_tlb_entry *gtlbe,
+ kvm_pfn_t pfn, unsigned int wimg)
+{
+ ref->pfn = pfn;
+ ref->flags = E500_TLB_VALID;
+
+ /* Use guest supplied MAS2_G and MAS2_E */
+ ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg;
+
+ /* Mark the page accessed */
+ kvm_set_pfn_accessed(pfn);
+
+ if (tlbe_is_writable(gtlbe))
+ kvm_set_pfn_dirty(pfn);
+}
+
+static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
+{
+ if (ref->flags & E500_TLB_VALID) {
+ /* FIXME: don't log bogus pfn for TLB1 */
+ trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
+ ref->flags = 0;
+ }
+}
+
+static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+ if (vcpu_e500->g2h_tlb1_map)
+ memset(vcpu_e500->g2h_tlb1_map, 0,
+ sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
+ if (vcpu_e500->h2g_tlb1_rmap)
+ memset(vcpu_e500->h2g_tlb1_rmap, 0,
+ sizeof(unsigned int) * host_tlb_params[1].entries);
+}
+
+static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+ int tlbsel;
+ int i;
+
+ for (tlbsel = 0; tlbsel <= 1; tlbsel++) {
+ for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
+ struct tlbe_ref *ref =
+ &vcpu_e500->gtlb_priv[tlbsel][i].ref;
+ kvmppc_e500_ref_release(ref);
+ }
+ }
+}
+
+void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+ kvmppc_e500_tlbil_all(vcpu_e500);
+ clear_tlb_privs(vcpu_e500);
+ clear_tlb1_bitmap(vcpu_e500);
+}
+
+/* TID must be supplied by the caller */
+static void kvmppc_e500_setup_stlbe(
+ struct kvm_vcpu *vcpu,
+ struct kvm_book3e_206_tlb_entry *gtlbe,
+ int tsize, struct tlbe_ref *ref, u64 gvaddr,
+ struct kvm_book3e_206_tlb_entry *stlbe)
+{
+ kvm_pfn_t pfn = ref->pfn;
+ u32 pr = vcpu->arch.shared->msr & MSR_PR;
+
+ BUG_ON(!(ref->flags & E500_TLB_VALID));
+
+ /* Force IPROT=0 for all guest mappings. */
+ stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
+ stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR);
+ stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
+ e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
+}
+
+static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
+ u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
+ int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
+ struct tlbe_ref *ref)
+{
+ struct kvm_memory_slot *slot;
+ unsigned long pfn = 0; /* silence GCC warning */
+ unsigned long hva;
+ int pfnmap = 0;
+ int tsize = BOOK3E_PAGESZ_4K;
+ int ret = 0;
+ unsigned long mmu_seq;
+ struct kvm *kvm = vcpu_e500->vcpu.kvm;
+ unsigned long tsize_pages = 0;
+ pte_t *ptep;
+ unsigned int wimg = 0;
+ pgd_t *pgdir;
+ unsigned long flags;
+
+ /* used to check for invalidations in progress */
+ mmu_seq = kvm->mmu_invalidate_seq;
+ smp_rmb();
+
+ /*
+ * Translate guest physical to true physical, acquiring
+ * a page reference if it is normal, non-reserved memory.
+ *
+ * gfn_to_memslot() must succeed because otherwise we wouldn't
+ * have gotten this far. Eventually we should just pass the slot
+ * pointer through from the first lookup.
+ */
+ slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
+ hva = gfn_to_hva_memslot(slot, gfn);
+
+ if (tlbsel == 1) {
+ struct vm_area_struct *vma;
+ mmap_read_lock(kvm->mm);
+
+ vma = find_vma(kvm->mm, hva);
+ if (vma && hva >= vma->vm_start &&
+ (vma->vm_flags & VM_PFNMAP)) {
+ /*
+ * This VMA is a physically contiguous region (e.g.
+ * /dev/mem) that bypasses normal Linux page
+ * management. Find the overlap between the
+ * vma and the memslot.
+ */
+
+ unsigned long start, end;
+ unsigned long slot_start, slot_end;
+
+ pfnmap = 1;
+
+ start = vma->vm_pgoff;
+ end = start +
+ vma_pages(vma);
+
+ pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
+
+ slot_start = pfn - (gfn - slot->base_gfn);
+ slot_end = slot_start + slot->npages;
+
+ if (start < slot_start)
+ start = slot_start;
+ if (end > slot_end)
+ end = slot_end;
+
+ tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
+ MAS1_TSIZE_SHIFT;
+
+ /*
+ * e500 doesn't implement the lowest tsize bit,
+ * or 1K pages.
+ */
+ tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
+
+ /*
+ * Now find the largest tsize (up to what the guest
+ * requested) that will cover gfn, stay within the
+ * range, and for which gfn and pfn are mutually
+ * aligned.
+ */
+
+ for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
+ unsigned long gfn_start, gfn_end;
+ tsize_pages = 1UL << (tsize - 2);
+
+ gfn_start = gfn & ~(tsize_pages - 1);
+ gfn_end = gfn_start + tsize_pages;
+
+ if (gfn_start + pfn - gfn < start)
+ continue;
+ if (gfn_end + pfn - gfn > end)
+ continue;
+ if ((gfn & (tsize_pages - 1)) !=
+ (pfn & (tsize_pages - 1)))
+ continue;
+
+ gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
+ pfn &= ~(tsize_pages - 1);
+ break;
+ }
+ } else if (vma && hva >= vma->vm_start &&
+ is_vm_hugetlb_page(vma)) {
+ unsigned long psize = vma_kernel_pagesize(vma);
+
+ tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
+ MAS1_TSIZE_SHIFT;
+
+ /*
+ * Take the largest page size that satisfies both host
+ * and guest mapping
+ */
+ tsize = min(__ilog2(psize) - 10, tsize);
+
+ /*
+ * e500 doesn't implement the lowest tsize bit,
+ * or 1K pages.
+ */
+ tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
+ }
+
+ mmap_read_unlock(kvm->mm);
+ }
+
+ if (likely(!pfnmap)) {
+ tsize_pages = 1UL << (tsize + 10 - PAGE_SHIFT);
+ pfn = gfn_to_pfn_memslot(slot, gfn);
+ if (is_error_noslot_pfn(pfn)) {
+ if (printk_ratelimit())
+ pr_err("%s: real page not found for gfn %lx\n",
+ __func__, (long)gfn);
+ return -EINVAL;
+ }
+
+ /* Align guest and physical address to page map boundaries */
+ pfn &= ~(tsize_pages - 1);
+ gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
+ }
+
+ spin_lock(&kvm->mmu_lock);
+ if (mmu_invalidate_retry(kvm, mmu_seq)) {
+ ret = -EAGAIN;
+ goto out;
+ }
+
+
+ pgdir = vcpu_e500->vcpu.arch.pgdir;
+ /*
+ * We are just looking at the wimg bits, so we don't
+ * care much about the trans splitting bit.
+ * We are holding kvm->mmu_lock so a notifier invalidate
+ * can't run hence pfn won't change.
+ */
+ local_irq_save(flags);
+ ptep = find_linux_pte(pgdir, hva, NULL, NULL);
+ if (ptep) {
+ pte_t pte = READ_ONCE(*ptep);
+
+ if (pte_present(pte)) {
+ wimg = (pte_val(pte) >> PTE_WIMGE_SHIFT) &
+ MAS2_WIMGE_MASK;
+ local_irq_restore(flags);
+ } else {
+ local_irq_restore(flags);
+ pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n",
+ __func__, (long)gfn, pfn);
+ ret = -EINVAL;
+ goto out;
+ }
+ }
+ kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg);
+
+ kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
+ ref, gvaddr, stlbe);
+
+ /* Clear i-cache for new pages */
+ kvmppc_mmu_flush_icache(pfn);
+
+out:
+ spin_unlock(&kvm->mmu_lock);
+
+ /* Drop refcount on page, so that mmu notifiers can clear it */
+ kvm_release_pfn_clean(pfn);
+
+ return ret;
+}
+
+/* XXX only map the one-one case, for now use TLB0 */
+static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
+ struct kvm_book3e_206_tlb_entry *stlbe)
+{
+ struct kvm_book3e_206_tlb_entry *gtlbe;
+ struct tlbe_ref *ref;
+ int stlbsel = 0;
+ int sesel = 0;
+ int r;
+
+ gtlbe = get_entry(vcpu_e500, 0, esel);
+ ref = &vcpu_e500->gtlb_priv[0][esel].ref;
+
+ r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
+ get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
+ gtlbe, 0, stlbe, ref);
+ if (r)
+ return r;
+
+ write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
+
+ return 0;
+}
+
+static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500,
+ struct tlbe_ref *ref,
+ int esel)
+{
+ unsigned int sesel = vcpu_e500->host_tlb1_nv++;
+
+ if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
+ vcpu_e500->host_tlb1_nv = 0;
+
+ if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
+ unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1;
+ vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
+ }
+
+ vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
+ vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
+ vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1;
+ WARN_ON(!(ref->flags & E500_TLB_VALID));
+
+ return sesel;
+}
+
+/* Caller must ensure that the specified guest TLB entry is safe to insert into
+ * the shadow TLB. */
+/* For both one-one and one-to-many */
+static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
+ u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
+ struct kvm_book3e_206_tlb_entry *stlbe, int esel)
+{
+ struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref;
+ int sesel;
+ int r;
+
+ r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
+ ref);
+ if (r)
+ return r;
+
+ /* Use TLB0 when we can only map a page with 4k */
+ if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) {
+ vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0;
+ write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0);
+ return 0;
+ }
+
+ /* Otherwise map into TLB1 */
+ sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel);
+ write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel);
+
+ return 0;
+}
+
+void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
+ unsigned int index)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+ struct tlbe_priv *priv;
+ struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
+ int tlbsel = tlbsel_of(index);
+ int esel = esel_of(index);
+
+ gtlbe = get_entry(vcpu_e500, tlbsel, esel);
+
+ switch (tlbsel) {
+ case 0:
+ priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
+
+ /* Triggers after clear_tlb_privs or on initial mapping */
+ if (!(priv->ref.flags & E500_TLB_VALID)) {
+ kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
+ } else {
+ kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
+ &priv->ref, eaddr, &stlbe);
+ write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
+ }
+ break;
+
+ case 1: {
+ gfn_t gfn = gpaddr >> PAGE_SHIFT;
+ kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
+ esel);
+ break;
+ }
+
+ default:
+ BUG();
+ break;
+ }
+}
+
+#ifdef CONFIG_KVM_BOOKE_HV
+int kvmppc_load_last_inst(struct kvm_vcpu *vcpu,
+ enum instruction_fetch_type type, u32 *instr)
+{
+ gva_t geaddr;
+ hpa_t addr;
+ hfn_t pfn;
+ hva_t eaddr;
+ u32 mas1, mas2, mas3;
+ u64 mas7_mas3;
+ struct page *page;
+ unsigned int addr_space, psize_shift;
+ bool pr;
+ unsigned long flags;
+
+ /* Search TLB for guest pc to get the real address */
+ geaddr = kvmppc_get_pc(vcpu);
+
+ addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG;
+
+ local_irq_save(flags);
+ mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space);
+ mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(vcpu));
+ asm volatile("tlbsx 0, %[geaddr]\n" : :
+ [geaddr] "r" (geaddr));
+ mtspr(SPRN_MAS5, 0);
+ mtspr(SPRN_MAS8, 0);
+ mas1 = mfspr(SPRN_MAS1);
+ mas2 = mfspr(SPRN_MAS2);
+ mas3 = mfspr(SPRN_MAS3);
+#ifdef CONFIG_64BIT
+ mas7_mas3 = mfspr(SPRN_MAS7_MAS3);
+#else
+ mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3;
+#endif
+ local_irq_restore(flags);
+
+ /*
+ * If the TLB entry for guest pc was evicted, return to the guest.
+ * There are high chances to find a valid TLB entry next time.
+ */
+ if (!(mas1 & MAS1_VALID))
+ return EMULATE_AGAIN;
+
+ /*
+ * Another thread may rewrite the TLB entry in parallel, don't
+ * execute from the address if the execute permission is not set
+ */
+ pr = vcpu->arch.shared->msr & MSR_PR;
+ if (unlikely((pr && !(mas3 & MAS3_UX)) ||
+ (!pr && !(mas3 & MAS3_SX)))) {
+ pr_err_ratelimited(
+ "%s: Instruction emulation from guest address %08lx without execute permission\n",
+ __func__, geaddr);
+ return EMULATE_AGAIN;
+ }
+
+ /*
+ * The real address will be mapped by a cacheable, memory coherent,
+ * write-back page. Check for mismatches when LRAT is used.
+ */
+ if (has_feature(vcpu, VCPU_FTR_MMU_V2) &&
+ unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) {
+ pr_err_ratelimited(
+ "%s: Instruction emulation from guest address %08lx mismatches storage attributes\n",
+ __func__, geaddr);
+ return EMULATE_AGAIN;
+ }
+
+ /* Get pfn */
+ psize_shift = MAS1_GET_TSIZE(mas1) + 10;
+ addr = (mas7_mas3 & (~0ULL << psize_shift)) |
+ (geaddr & ((1ULL << psize_shift) - 1ULL));
+ pfn = addr >> PAGE_SHIFT;
+
+ /* Guard against emulation from devices area */
+ if (unlikely(!page_is_ram(pfn))) {
+ pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n",
+ __func__, addr);
+ return EMULATE_AGAIN;
+ }
+
+ /* Map a page and get guest's instruction */
+ page = pfn_to_page(pfn);
+ eaddr = (unsigned long)kmap_atomic(page);
+ *instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK));
+ kunmap_atomic((u32 *)eaddr);
+
+ return EMULATE_DONE;
+}
+#else
+int kvmppc_load_last_inst(struct kvm_vcpu *vcpu,
+ enum instruction_fetch_type type, u32 *instr)
+{
+ return EMULATE_AGAIN;
+}
+#endif
+
+/************* MMU Notifiers *************/
+
+static bool kvm_e500_mmu_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ /*
+ * Flush all shadow tlb entries everywhere. This is slow, but
+ * we are 100% sure that we catch the to be unmapped page
+ */
+ return true;
+}
+
+bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ return kvm_e500_mmu_unmap_gfn(kvm, range);
+}
+
+bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ /* XXX could be more clever ;) */
+ return false;
+}
+
+bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ /* XXX could be more clever ;) */
+ return false;
+}
+
+bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
+{
+ /* The page will get remapped properly on its next fault */
+ return kvm_e500_mmu_unmap_gfn(kvm, range);
+}
+
+/*****************************************/
+
+int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+ host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
+ host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
+
+ /*
+ * This should never happen on real e500 hardware, but is
+ * architecturally possible -- e.g. in some weird nested
+ * virtualization case.
+ */
+ if (host_tlb_params[0].entries == 0 ||
+ host_tlb_params[1].entries == 0) {
+ pr_err("%s: need to know host tlb size\n", __func__);
+ return -ENODEV;
+ }
+
+ host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
+ TLBnCFG_ASSOC_SHIFT;
+ host_tlb_params[1].ways = host_tlb_params[1].entries;
+
+ if (!is_power_of_2(host_tlb_params[0].entries) ||
+ !is_power_of_2(host_tlb_params[0].ways) ||
+ host_tlb_params[0].entries < host_tlb_params[0].ways ||
+ host_tlb_params[0].ways == 0) {
+ pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
+ __func__, host_tlb_params[0].entries,
+ host_tlb_params[0].ways);
+ return -ENODEV;
+ }
+
+ host_tlb_params[0].sets =
+ host_tlb_params[0].entries / host_tlb_params[0].ways;
+ host_tlb_params[1].sets = 1;
+ vcpu_e500->h2g_tlb1_rmap = kcalloc(host_tlb_params[1].entries,
+ sizeof(*vcpu_e500->h2g_tlb1_rmap),
+ GFP_KERNEL);
+ if (!vcpu_e500->h2g_tlb1_rmap)
+ return -EINVAL;
+
+ return 0;
+}
+
+void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+ kfree(vcpu_e500->h2g_tlb1_rmap);
+}
diff --git a/arch/powerpc/kvm/e500_mmu_host.h b/arch/powerpc/kvm/e500_mmu_host.h
new file mode 100644
index 000000000..d8178cc86
--- /dev/null
+++ b/arch/powerpc/kvm/e500_mmu_host.h
@@ -0,0 +1,15 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
+ */
+
+#ifndef KVM_E500_MMU_HOST_H
+#define KVM_E500_MMU_HOST_H
+
+void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
+ int esel);
+
+int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500);
+void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500);
+
+#endif /* KVM_E500_MMU_HOST_H */
diff --git a/arch/powerpc/kvm/e500mc.c b/arch/powerpc/kvm/e500mc.c
new file mode 100644
index 000000000..57e0ad6a2
--- /dev/null
+++ b/arch/powerpc/kvm/e500mc.c
@@ -0,0 +1,422 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2010,2012 Freescale Semiconductor, Inc. All rights reserved.
+ *
+ * Author: Varun Sethi, <varun.sethi@freescale.com>
+ *
+ * Description:
+ * This file is derived from arch/powerpc/kvm/e500.c,
+ * by Yu Liu <yu.liu@freescale.com>.
+ */
+
+#include <linux/kvm_host.h>
+#include <linux/slab.h>
+#include <linux/err.h>
+#include <linux/export.h>
+#include <linux/miscdevice.h>
+#include <linux/module.h>
+
+#include <asm/reg.h>
+#include <asm/cputable.h>
+#include <asm/kvm_ppc.h>
+#include <asm/dbell.h>
+
+#include "booke.h"
+#include "e500.h"
+
+void kvmppc_set_pending_interrupt(struct kvm_vcpu *vcpu, enum int_class type)
+{
+ enum ppc_dbell dbell_type;
+ unsigned long tag;
+
+ switch (type) {
+ case INT_CLASS_NONCRIT:
+ dbell_type = PPC_G_DBELL;
+ break;
+ case INT_CLASS_CRIT:
+ dbell_type = PPC_G_DBELL_CRIT;
+ break;
+ case INT_CLASS_MC:
+ dbell_type = PPC_G_DBELL_MC;
+ break;
+ default:
+ WARN_ONCE(1, "%s: unknown int type %d\n", __func__, type);
+ return;
+ }
+
+ preempt_disable();
+ tag = PPC_DBELL_LPID(get_lpid(vcpu)) | vcpu->vcpu_id;
+ mb();
+ ppc_msgsnd(dbell_type, 0, tag);
+ preempt_enable();
+}
+
+/* gtlbe must not be mapped by more than one host tlb entry */
+void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
+ struct kvm_book3e_206_tlb_entry *gtlbe)
+{
+ unsigned int tid, ts;
+ gva_t eaddr;
+ u32 val;
+ unsigned long flags;
+
+ ts = get_tlb_ts(gtlbe);
+ tid = get_tlb_tid(gtlbe);
+
+ /* We search the host TLB to invalidate its shadow TLB entry */
+ val = (tid << 16) | ts;
+ eaddr = get_tlb_eaddr(gtlbe);
+
+ local_irq_save(flags);
+
+ mtspr(SPRN_MAS6, val);
+ mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(&vcpu_e500->vcpu));
+
+ asm volatile("tlbsx 0, %[eaddr]\n" : : [eaddr] "r" (eaddr));
+ val = mfspr(SPRN_MAS1);
+ if (val & MAS1_VALID) {
+ mtspr(SPRN_MAS1, val & ~MAS1_VALID);
+ asm volatile("tlbwe");
+ }
+ mtspr(SPRN_MAS5, 0);
+ /* NOTE: tlbsx also updates mas8, so clear it for host tlbwe */
+ mtspr(SPRN_MAS8, 0);
+ isync();
+
+ local_irq_restore(flags);
+}
+
+void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+ unsigned long flags;
+
+ local_irq_save(flags);
+ mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(&vcpu_e500->vcpu));
+ asm volatile("tlbilxlpid");
+ mtspr(SPRN_MAS5, 0);
+ local_irq_restore(flags);
+}
+
+void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
+{
+ vcpu->arch.pid = pid;
+}
+
+void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
+{
+}
+
+/* We use two lpids per VM */
+static DEFINE_PER_CPU(struct kvm_vcpu *[KVMPPC_NR_LPIDS], last_vcpu_of_lpid);
+
+static void kvmppc_core_vcpu_load_e500mc(struct kvm_vcpu *vcpu, int cpu)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+
+ kvmppc_booke_vcpu_load(vcpu, cpu);
+
+ mtspr(SPRN_LPID, get_lpid(vcpu));
+ mtspr(SPRN_EPCR, vcpu->arch.shadow_epcr);
+ mtspr(SPRN_GPIR, vcpu->vcpu_id);
+ mtspr(SPRN_MSRP, vcpu->arch.shadow_msrp);
+ vcpu->arch.eplc = EPC_EGS | (get_lpid(vcpu) << EPC_ELPID_SHIFT);
+ vcpu->arch.epsc = vcpu->arch.eplc;
+ mtspr(SPRN_EPLC, vcpu->arch.eplc);
+ mtspr(SPRN_EPSC, vcpu->arch.epsc);
+
+ mtspr(SPRN_GIVPR, vcpu->arch.ivpr);
+ mtspr(SPRN_GIVOR2, vcpu->arch.ivor[BOOKE_IRQPRIO_DATA_STORAGE]);
+ mtspr(SPRN_GIVOR8, vcpu->arch.ivor[BOOKE_IRQPRIO_SYSCALL]);
+ mtspr(SPRN_GSPRG0, (unsigned long)vcpu->arch.shared->sprg0);
+ mtspr(SPRN_GSPRG1, (unsigned long)vcpu->arch.shared->sprg1);
+ mtspr(SPRN_GSPRG2, (unsigned long)vcpu->arch.shared->sprg2);
+ mtspr(SPRN_GSPRG3, (unsigned long)vcpu->arch.shared->sprg3);
+
+ mtspr(SPRN_GSRR0, vcpu->arch.shared->srr0);
+ mtspr(SPRN_GSRR1, vcpu->arch.shared->srr1);
+
+ mtspr(SPRN_GEPR, vcpu->arch.epr);
+ mtspr(SPRN_GDEAR, vcpu->arch.shared->dar);
+ mtspr(SPRN_GESR, vcpu->arch.shared->esr);
+
+ if (vcpu->arch.oldpir != mfspr(SPRN_PIR) ||
+ __this_cpu_read(last_vcpu_of_lpid[get_lpid(vcpu)]) != vcpu) {
+ kvmppc_e500_tlbil_all(vcpu_e500);
+ __this_cpu_write(last_vcpu_of_lpid[get_lpid(vcpu)], vcpu);
+ }
+}
+
+static void kvmppc_core_vcpu_put_e500mc(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.eplc = mfspr(SPRN_EPLC);
+ vcpu->arch.epsc = mfspr(SPRN_EPSC);
+
+ vcpu->arch.shared->sprg0 = mfspr(SPRN_GSPRG0);
+ vcpu->arch.shared->sprg1 = mfspr(SPRN_GSPRG1);
+ vcpu->arch.shared->sprg2 = mfspr(SPRN_GSPRG2);
+ vcpu->arch.shared->sprg3 = mfspr(SPRN_GSPRG3);
+
+ vcpu->arch.shared->srr0 = mfspr(SPRN_GSRR0);
+ vcpu->arch.shared->srr1 = mfspr(SPRN_GSRR1);
+
+ vcpu->arch.epr = mfspr(SPRN_GEPR);
+ vcpu->arch.shared->dar = mfspr(SPRN_GDEAR);
+ vcpu->arch.shared->esr = mfspr(SPRN_GESR);
+
+ vcpu->arch.oldpir = mfspr(SPRN_PIR);
+
+ kvmppc_booke_vcpu_put(vcpu);
+}
+
+int kvmppc_core_check_processor_compat(void)
+{
+ int r;
+
+ if (strcmp(cur_cpu_spec->cpu_name, "e500mc") == 0)
+ r = 0;
+ else if (strcmp(cur_cpu_spec->cpu_name, "e5500") == 0)
+ r = 0;
+#ifdef CONFIG_ALTIVEC
+ /*
+ * Since guests have the privilege to enable AltiVec, we need AltiVec
+ * support in the host to save/restore their context.
+ * Don't use CPU_FTR_ALTIVEC to identify cores with AltiVec unit
+ * because it's cleared in the absence of CONFIG_ALTIVEC!
+ */
+ else if (strcmp(cur_cpu_spec->cpu_name, "e6500") == 0)
+ r = 0;
+#endif
+ else
+ r = -ENOTSUPP;
+
+ return r;
+}
+
+int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+
+ vcpu->arch.shadow_epcr = SPRN_EPCR_DSIGS | SPRN_EPCR_DGTMI | \
+ SPRN_EPCR_DUVD;
+#ifdef CONFIG_64BIT
+ vcpu->arch.shadow_epcr |= SPRN_EPCR_ICM;
+#endif
+ vcpu->arch.shadow_msrp = MSRP_UCLEP | MSRP_PMMP;
+
+ vcpu->arch.pvr = mfspr(SPRN_PVR);
+ vcpu_e500->svr = mfspr(SPRN_SVR);
+
+ vcpu->arch.cpu_type = KVM_CPU_E500MC;
+
+ return 0;
+}
+
+static int kvmppc_core_get_sregs_e500mc(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+
+ sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_PM |
+ KVM_SREGS_E_PC;
+ sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;
+
+ sregs->u.e.impl.fsl.features = 0;
+ sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
+ sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
+ sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
+
+ kvmppc_get_sregs_e500_tlb(vcpu, sregs);
+
+ sregs->u.e.ivor_high[3] =
+ vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
+ sregs->u.e.ivor_high[4] = vcpu->arch.ivor[BOOKE_IRQPRIO_DBELL];
+ sregs->u.e.ivor_high[5] = vcpu->arch.ivor[BOOKE_IRQPRIO_DBELL_CRIT];
+
+ return kvmppc_get_sregs_ivor(vcpu, sregs);
+}
+
+static int kvmppc_core_set_sregs_e500mc(struct kvm_vcpu *vcpu,
+ struct kvm_sregs *sregs)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+ int ret;
+
+ if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
+ vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
+ vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
+ vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
+ }
+
+ ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
+ if (ret < 0)
+ return ret;
+
+ if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
+ return 0;
+
+ if (sregs->u.e.features & KVM_SREGS_E_PM) {
+ vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
+ sregs->u.e.ivor_high[3];
+ }
+
+ if (sregs->u.e.features & KVM_SREGS_E_PC) {
+ vcpu->arch.ivor[BOOKE_IRQPRIO_DBELL] =
+ sregs->u.e.ivor_high[4];
+ vcpu->arch.ivor[BOOKE_IRQPRIO_DBELL_CRIT] =
+ sregs->u.e.ivor_high[5];
+ }
+
+ return kvmppc_set_sregs_ivor(vcpu, sregs);
+}
+
+static int kvmppc_get_one_reg_e500mc(struct kvm_vcpu *vcpu, u64 id,
+ union kvmppc_one_reg *val)
+{
+ int r = 0;
+
+ switch (id) {
+ case KVM_REG_PPC_SPRG9:
+ *val = get_reg_val(id, vcpu->arch.sprg9);
+ break;
+ default:
+ r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
+ }
+
+ return r;
+}
+
+static int kvmppc_set_one_reg_e500mc(struct kvm_vcpu *vcpu, u64 id,
+ union kvmppc_one_reg *val)
+{
+ int r = 0;
+
+ switch (id) {
+ case KVM_REG_PPC_SPRG9:
+ vcpu->arch.sprg9 = set_reg_val(id, *val);
+ break;
+ default:
+ r = kvmppc_set_one_reg_e500_tlb(vcpu, id, val);
+ }
+
+ return r;
+}
+
+static int kvmppc_core_vcpu_create_e500mc(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500;
+ int err;
+
+ BUILD_BUG_ON(offsetof(struct kvmppc_vcpu_e500, vcpu) != 0);
+ vcpu_e500 = to_e500(vcpu);
+
+ /* Invalid PIR value -- this LPID doesn't have valid state on any cpu */
+ vcpu->arch.oldpir = 0xffffffff;
+
+ err = kvmppc_e500_tlb_init(vcpu_e500);
+ if (err)
+ return err;
+
+ vcpu->arch.shared = (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
+ if (!vcpu->arch.shared) {
+ err = -ENOMEM;
+ goto uninit_tlb;
+ }
+
+ return 0;
+
+uninit_tlb:
+ kvmppc_e500_tlb_uninit(vcpu_e500);
+ return err;
+}
+
+static void kvmppc_core_vcpu_free_e500mc(struct kvm_vcpu *vcpu)
+{
+ struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+
+ free_page((unsigned long)vcpu->arch.shared);
+ kvmppc_e500_tlb_uninit(vcpu_e500);
+}
+
+static int kvmppc_core_init_vm_e500mc(struct kvm *kvm)
+{
+ int lpid;
+
+ lpid = kvmppc_alloc_lpid();
+ if (lpid < 0)
+ return lpid;
+
+ /*
+ * Use two lpids per VM on cores with two threads like e6500. Use
+ * even numbers to speedup vcpu lpid computation with consecutive lpids
+ * per VM. vm1 will use lpids 2 and 3, vm2 lpids 4 and 5, and so on.
+ */
+ if (threads_per_core == 2)
+ lpid <<= 1;
+
+ kvm->arch.lpid = lpid;
+ return 0;
+}
+
+static void kvmppc_core_destroy_vm_e500mc(struct kvm *kvm)
+{
+ int lpid = kvm->arch.lpid;
+
+ if (threads_per_core == 2)
+ lpid >>= 1;
+
+ kvmppc_free_lpid(lpid);
+}
+
+static struct kvmppc_ops kvm_ops_e500mc = {
+ .get_sregs = kvmppc_core_get_sregs_e500mc,
+ .set_sregs = kvmppc_core_set_sregs_e500mc,
+ .get_one_reg = kvmppc_get_one_reg_e500mc,
+ .set_one_reg = kvmppc_set_one_reg_e500mc,
+ .vcpu_load = kvmppc_core_vcpu_load_e500mc,
+ .vcpu_put = kvmppc_core_vcpu_put_e500mc,
+ .vcpu_create = kvmppc_core_vcpu_create_e500mc,
+ .vcpu_free = kvmppc_core_vcpu_free_e500mc,
+ .init_vm = kvmppc_core_init_vm_e500mc,
+ .destroy_vm = kvmppc_core_destroy_vm_e500mc,
+ .emulate_op = kvmppc_core_emulate_op_e500,
+ .emulate_mtspr = kvmppc_core_emulate_mtspr_e500,
+ .emulate_mfspr = kvmppc_core_emulate_mfspr_e500,
+ .create_vcpu_debugfs = kvmppc_create_vcpu_debugfs_e500,
+};
+
+static int __init kvmppc_e500mc_init(void)
+{
+ int r;
+
+ r = kvmppc_booke_init();
+ if (r)
+ goto err_out;
+
+ /*
+ * Use two lpids per VM on dual threaded processors like e6500
+ * to workarround the lack of tlb write conditional instruction.
+ * Expose half the number of available hardware lpids to the lpid
+ * allocator.
+ */
+ kvmppc_init_lpid(KVMPPC_NR_LPIDS/threads_per_core);
+
+ r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
+ if (r)
+ goto err_out;
+ kvm_ops_e500mc.owner = THIS_MODULE;
+ kvmppc_pr_ops = &kvm_ops_e500mc;
+
+err_out:
+ return r;
+}
+
+static void __exit kvmppc_e500mc_exit(void)
+{
+ kvmppc_pr_ops = NULL;
+ kvmppc_booke_exit();
+}
+
+module_init(kvmppc_e500mc_init);
+module_exit(kvmppc_e500mc_exit);
+MODULE_ALIAS_MISCDEV(KVM_MINOR);
+MODULE_ALIAS("devname:kvm");
diff --git a/arch/powerpc/kvm/emulate.c b/arch/powerpc/kvm/emulate.c
new file mode 100644
index 000000000..ee1147c98
--- /dev/null
+++ b/arch/powerpc/kvm/emulate.c
@@ -0,0 +1,307 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ *
+ * Copyright IBM Corp. 2007
+ * Copyright 2011 Freescale Semiconductor, Inc.
+ *
+ * Authors: Hollis Blanchard <hollisb@us.ibm.com>
+ */
+
+#include <linux/jiffies.h>
+#include <linux/hrtimer.h>
+#include <linux/types.h>
+#include <linux/string.h>
+#include <linux/kvm_host.h>
+#include <linux/clockchips.h>
+
+#include <asm/reg.h>
+#include <asm/time.h>
+#include <asm/byteorder.h>
+#include <asm/kvm_ppc.h>
+#include <asm/disassemble.h>
+#include <asm/ppc-opcode.h>
+#include "timing.h"
+#include "trace.h"
+
+void kvmppc_emulate_dec(struct kvm_vcpu *vcpu)
+{
+ unsigned long dec_nsec;
+ unsigned long long dec_time;
+
+ pr_debug("mtDEC: %lx\n", vcpu->arch.dec);
+ hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
+
+#ifdef CONFIG_PPC_BOOK3S
+ /* mtdec lowers the interrupt line when positive. */
+ kvmppc_core_dequeue_dec(vcpu);
+#endif
+
+#ifdef CONFIG_BOOKE
+ /* On BOOKE, DEC = 0 is as good as decrementer not enabled */
+ if (vcpu->arch.dec == 0)
+ return;
+#endif
+
+ /*
+ * The decrementer ticks at the same rate as the timebase, so
+ * that's how we convert the guest DEC value to the number of
+ * host ticks.
+ */
+
+ dec_time = vcpu->arch.dec;
+ /*
+ * Guest timebase ticks at the same frequency as host timebase.
+ * So use the host timebase calculations for decrementer emulation.
+ */
+ dec_time = tb_to_ns(dec_time);
+ dec_nsec = do_div(dec_time, NSEC_PER_SEC);
+ hrtimer_start(&vcpu->arch.dec_timer,
+ ktime_set(dec_time, dec_nsec), HRTIMER_MODE_REL);
+ vcpu->arch.dec_jiffies = get_tb();
+}
+
+u32 kvmppc_get_dec(struct kvm_vcpu *vcpu, u64 tb)
+{
+ u64 jd = tb - vcpu->arch.dec_jiffies;
+
+#ifdef CONFIG_BOOKE
+ if (vcpu->arch.dec < jd)
+ return 0;
+#endif
+
+ return vcpu->arch.dec - jd;
+}
+
+static int kvmppc_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
+{
+ enum emulation_result emulated = EMULATE_DONE;
+ ulong spr_val = kvmppc_get_gpr(vcpu, rs);
+
+ switch (sprn) {
+ case SPRN_SRR0:
+ kvmppc_set_srr0(vcpu, spr_val);
+ break;
+ case SPRN_SRR1:
+ kvmppc_set_srr1(vcpu, spr_val);
+ break;
+
+ /* XXX We need to context-switch the timebase for
+ * watchdog and FIT. */
+ case SPRN_TBWL: break;
+ case SPRN_TBWU: break;
+
+ case SPRN_DEC:
+ vcpu->arch.dec = (u32) spr_val;
+ kvmppc_emulate_dec(vcpu);
+ break;
+
+ case SPRN_SPRG0:
+ kvmppc_set_sprg0(vcpu, spr_val);
+ break;
+ case SPRN_SPRG1:
+ kvmppc_set_sprg1(vcpu, spr_val);
+ break;
+ case SPRN_SPRG2:
+ kvmppc_set_sprg2(vcpu, spr_val);
+ break;
+ case SPRN_SPRG3:
+ kvmppc_set_sprg3(vcpu, spr_val);
+ break;
+
+ /* PIR can legally be written, but we ignore it */
+ case SPRN_PIR: break;
+
+ default:
+ emulated = vcpu->kvm->arch.kvm_ops->emulate_mtspr(vcpu, sprn,
+ spr_val);
+ if (emulated == EMULATE_FAIL)
+ printk(KERN_INFO "mtspr: unknown spr "
+ "0x%x\n", sprn);
+ break;
+ }
+
+ kvmppc_set_exit_type(vcpu, EMULATED_MTSPR_EXITS);
+
+ return emulated;
+}
+
+static int kvmppc_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
+{
+ enum emulation_result emulated = EMULATE_DONE;
+ ulong spr_val = 0;
+
+ switch (sprn) {
+ case SPRN_SRR0:
+ spr_val = kvmppc_get_srr0(vcpu);
+ break;
+ case SPRN_SRR1:
+ spr_val = kvmppc_get_srr1(vcpu);
+ break;
+ case SPRN_PVR:
+ spr_val = vcpu->arch.pvr;
+ break;
+ case SPRN_PIR:
+ spr_val = vcpu->vcpu_id;
+ break;
+
+ /* Note: mftb and TBRL/TBWL are user-accessible, so
+ * the guest can always access the real TB anyways.
+ * In fact, we probably will never see these traps. */
+ case SPRN_TBWL:
+ spr_val = get_tb() >> 32;
+ break;
+ case SPRN_TBWU:
+ spr_val = get_tb();
+ break;
+
+ case SPRN_SPRG0:
+ spr_val = kvmppc_get_sprg0(vcpu);
+ break;
+ case SPRN_SPRG1:
+ spr_val = kvmppc_get_sprg1(vcpu);
+ break;
+ case SPRN_SPRG2:
+ spr_val = kvmppc_get_sprg2(vcpu);
+ break;
+ case SPRN_SPRG3:
+ spr_val = kvmppc_get_sprg3(vcpu);
+ break;
+ /* Note: SPRG4-7 are user-readable, so we don't get
+ * a trap. */
+
+ case SPRN_DEC:
+ spr_val = kvmppc_get_dec(vcpu, get_tb());
+ break;
+ default:
+ emulated = vcpu->kvm->arch.kvm_ops->emulate_mfspr(vcpu, sprn,
+ &spr_val);
+ if (unlikely(emulated == EMULATE_FAIL)) {
+ printk(KERN_INFO "mfspr: unknown spr "
+ "0x%x\n", sprn);
+ }
+ break;
+ }
+
+ if (emulated == EMULATE_DONE)
+ kvmppc_set_gpr(vcpu, rt, spr_val);
+ kvmppc_set_exit_type(vcpu, EMULATED_MFSPR_EXITS);
+
+ return emulated;
+}
+
+/* XXX Should probably auto-generate instruction decoding for a particular core
+ * from opcode tables in the future. */
+int kvmppc_emulate_instruction(struct kvm_vcpu *vcpu)
+{
+ u32 inst;
+ int rs, rt, sprn;
+ enum emulation_result emulated;
+ int advance = 1;
+
+ /* this default type might be overwritten by subcategories */
+ kvmppc_set_exit_type(vcpu, EMULATED_INST_EXITS);
+
+ emulated = kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst);
+ if (emulated != EMULATE_DONE)
+ return emulated;
+
+ pr_debug("Emulating opcode %d / %d\n", get_op(inst), get_xop(inst));
+
+ rs = get_rs(inst);
+ rt = get_rt(inst);
+ sprn = get_sprn(inst);
+
+ switch (get_op(inst)) {
+ case OP_TRAP:
+#ifdef CONFIG_PPC_BOOK3S
+ case OP_TRAP_64:
+ kvmppc_core_queue_program(vcpu, SRR1_PROGTRAP);
+#else
+ kvmppc_core_queue_program(vcpu,
+ vcpu->arch.shared->esr | ESR_PTR);
+#endif
+ advance = 0;
+ break;
+
+ case 31:
+ switch (get_xop(inst)) {
+
+ case OP_31_XOP_TRAP:
+#ifdef CONFIG_64BIT
+ case OP_31_XOP_TRAP_64:
+#endif
+#ifdef CONFIG_PPC_BOOK3S
+ kvmppc_core_queue_program(vcpu, SRR1_PROGTRAP);
+#else
+ kvmppc_core_queue_program(vcpu,
+ vcpu->arch.shared->esr | ESR_PTR);
+#endif
+ advance = 0;
+ break;
+
+ case OP_31_XOP_MFSPR:
+ emulated = kvmppc_emulate_mfspr(vcpu, sprn, rt);
+ if (emulated == EMULATE_AGAIN) {
+ emulated = EMULATE_DONE;
+ advance = 0;
+ }
+ break;
+
+ case OP_31_XOP_MTSPR:
+ emulated = kvmppc_emulate_mtspr(vcpu, sprn, rs);
+ if (emulated == EMULATE_AGAIN) {
+ emulated = EMULATE_DONE;
+ advance = 0;
+ }
+ break;
+
+ case OP_31_XOP_TLBSYNC:
+ break;
+
+ default:
+ /* Attempt core-specific emulation below. */
+ emulated = EMULATE_FAIL;
+ }
+ break;
+
+ case 0:
+ /*
+ * Instruction with primary opcode 0. Based on PowerISA
+ * these are illegal instructions.
+ */
+ if (inst == KVMPPC_INST_SW_BREAKPOINT) {
+ vcpu->run->exit_reason = KVM_EXIT_DEBUG;
+ vcpu->run->debug.arch.status = 0;
+ vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
+ emulated = EMULATE_EXIT_USER;
+ advance = 0;
+ } else
+ emulated = EMULATE_FAIL;
+
+ break;
+
+ default:
+ emulated = EMULATE_FAIL;
+ }
+
+ if (emulated == EMULATE_FAIL) {
+ emulated = vcpu->kvm->arch.kvm_ops->emulate_op(vcpu, inst,
+ &advance);
+ if (emulated == EMULATE_AGAIN) {
+ advance = 0;
+ } else if (emulated == EMULATE_FAIL) {
+ advance = 0;
+ printk(KERN_ERR "Couldn't emulate instruction 0x%08x "
+ "(op %d xop %d)\n", inst, get_op(inst), get_xop(inst));
+ }
+ }
+
+ trace_kvm_ppc_instr(inst, kvmppc_get_pc(vcpu), emulated);
+
+ /* Advance past emulated instruction. */
+ if (advance)
+ kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
+
+ return emulated;
+}
+EXPORT_SYMBOL_GPL(kvmppc_emulate_instruction);
diff --git a/arch/powerpc/kvm/emulate_loadstore.c b/arch/powerpc/kvm/emulate_loadstore.c
new file mode 100644
index 000000000..cfc9114b8
--- /dev/null
+++ b/arch/powerpc/kvm/emulate_loadstore.c
@@ -0,0 +1,366 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ *
+ * Copyright IBM Corp. 2007
+ * Copyright 2011 Freescale Semiconductor, Inc.
+ *
+ * Authors: Hollis Blanchard <hollisb@us.ibm.com>
+ */
+
+#include <linux/jiffies.h>
+#include <linux/hrtimer.h>
+#include <linux/types.h>
+#include <linux/string.h>
+#include <linux/kvm_host.h>
+#include <linux/clockchips.h>
+
+#include <asm/reg.h>
+#include <asm/time.h>
+#include <asm/byteorder.h>
+#include <asm/kvm_ppc.h>
+#include <asm/disassemble.h>
+#include <asm/ppc-opcode.h>
+#include <asm/sstep.h>
+#include "timing.h"
+#include "trace.h"
+
+#ifdef CONFIG_PPC_FPU
+static bool kvmppc_check_fp_disabled(struct kvm_vcpu *vcpu)
+{
+ if (!(kvmppc_get_msr(vcpu) & MSR_FP)) {
+ kvmppc_core_queue_fpunavail(vcpu);
+ return true;
+ }
+
+ return false;
+}
+#endif /* CONFIG_PPC_FPU */
+
+#ifdef CONFIG_VSX
+static bool kvmppc_check_vsx_disabled(struct kvm_vcpu *vcpu)
+{
+ if (!(kvmppc_get_msr(vcpu) & MSR_VSX)) {
+ kvmppc_core_queue_vsx_unavail(vcpu);
+ return true;
+ }
+
+ return false;
+}
+#endif /* CONFIG_VSX */
+
+#ifdef CONFIG_ALTIVEC
+static bool kvmppc_check_altivec_disabled(struct kvm_vcpu *vcpu)
+{
+ if (!(kvmppc_get_msr(vcpu) & MSR_VEC)) {
+ kvmppc_core_queue_vec_unavail(vcpu);
+ return true;
+ }
+
+ return false;
+}
+#endif /* CONFIG_ALTIVEC */
+
+/*
+ * XXX to do:
+ * lfiwax, lfiwzx
+ * vector loads and stores
+ *
+ * Instructions that trap when used on cache-inhibited mappings
+ * are not emulated here: multiple and string instructions,
+ * lq/stq, and the load-reserve/store-conditional instructions.
+ */
+int kvmppc_emulate_loadstore(struct kvm_vcpu *vcpu)
+{
+ u32 inst;
+ enum emulation_result emulated = EMULATE_FAIL;
+ struct instruction_op op;
+
+ /* this default type might be overwritten by subcategories */
+ kvmppc_set_exit_type(vcpu, EMULATED_INST_EXITS);
+
+ emulated = kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst);
+ if (emulated != EMULATE_DONE)
+ return emulated;
+
+ vcpu->arch.mmio_vsx_copy_nums = 0;
+ vcpu->arch.mmio_vsx_offset = 0;
+ vcpu->arch.mmio_copy_type = KVMPPC_VSX_COPY_NONE;
+ vcpu->arch.mmio_sp64_extend = 0;
+ vcpu->arch.mmio_sign_extend = 0;
+ vcpu->arch.mmio_vmx_copy_nums = 0;
+ vcpu->arch.mmio_vmx_offset = 0;
+ vcpu->arch.mmio_host_swabbed = 0;
+
+ emulated = EMULATE_FAIL;
+ vcpu->arch.regs.msr = vcpu->arch.shared->msr;
+ if (analyse_instr(&op, &vcpu->arch.regs, ppc_inst(inst)) == 0) {
+ int type = op.type & INSTR_TYPE_MASK;
+ int size = GETSIZE(op.type);
+
+ vcpu->mmio_is_write = OP_IS_STORE(type);
+
+ switch (type) {
+ case LOAD: {
+ int instr_byte_swap = op.type & BYTEREV;
+
+ if (op.type & SIGNEXT)
+ emulated = kvmppc_handle_loads(vcpu,
+ op.reg, size, !instr_byte_swap);
+ else
+ emulated = kvmppc_handle_load(vcpu,
+ op.reg, size, !instr_byte_swap);
+
+ if ((op.type & UPDATE) && (emulated != EMULATE_FAIL))
+ kvmppc_set_gpr(vcpu, op.update_reg, op.ea);
+
+ break;
+ }
+#ifdef CONFIG_PPC_FPU
+ case LOAD_FP:
+ if (kvmppc_check_fp_disabled(vcpu))
+ return EMULATE_DONE;
+
+ if (op.type & FPCONV)
+ vcpu->arch.mmio_sp64_extend = 1;
+
+ if (op.type & SIGNEXT)
+ emulated = kvmppc_handle_loads(vcpu,
+ KVM_MMIO_REG_FPR|op.reg, size, 1);
+ else
+ emulated = kvmppc_handle_load(vcpu,
+ KVM_MMIO_REG_FPR|op.reg, size, 1);
+
+ if ((op.type & UPDATE) && (emulated != EMULATE_FAIL))
+ kvmppc_set_gpr(vcpu, op.update_reg, op.ea);
+
+ break;
+#endif
+#ifdef CONFIG_ALTIVEC
+ case LOAD_VMX:
+ if (kvmppc_check_altivec_disabled(vcpu))
+ return EMULATE_DONE;
+
+ /* Hardware enforces alignment of VMX accesses */
+ vcpu->arch.vaddr_accessed &= ~((unsigned long)size - 1);
+ vcpu->arch.paddr_accessed &= ~((unsigned long)size - 1);
+
+ if (size == 16) { /* lvx */
+ vcpu->arch.mmio_copy_type =
+ KVMPPC_VMX_COPY_DWORD;
+ } else if (size == 4) { /* lvewx */
+ vcpu->arch.mmio_copy_type =
+ KVMPPC_VMX_COPY_WORD;
+ } else if (size == 2) { /* lvehx */
+ vcpu->arch.mmio_copy_type =
+ KVMPPC_VMX_COPY_HWORD;
+ } else if (size == 1) { /* lvebx */
+ vcpu->arch.mmio_copy_type =
+ KVMPPC_VMX_COPY_BYTE;
+ } else
+ break;
+
+ vcpu->arch.mmio_vmx_offset =
+ (vcpu->arch.vaddr_accessed & 0xf)/size;
+
+ if (size == 16) {
+ vcpu->arch.mmio_vmx_copy_nums = 2;
+ emulated = kvmppc_handle_vmx_load(vcpu,
+ KVM_MMIO_REG_VMX|op.reg,
+ 8, 1);
+ } else {
+ vcpu->arch.mmio_vmx_copy_nums = 1;
+ emulated = kvmppc_handle_vmx_load(vcpu,
+ KVM_MMIO_REG_VMX|op.reg,
+ size, 1);
+ }
+ break;
+#endif
+#ifdef CONFIG_VSX
+ case LOAD_VSX: {
+ int io_size_each;
+
+ if (op.vsx_flags & VSX_CHECK_VEC) {
+ if (kvmppc_check_altivec_disabled(vcpu))
+ return EMULATE_DONE;
+ } else {
+ if (kvmppc_check_vsx_disabled(vcpu))
+ return EMULATE_DONE;
+ }
+
+ if (op.vsx_flags & VSX_FPCONV)
+ vcpu->arch.mmio_sp64_extend = 1;
+
+ if (op.element_size == 8) {
+ if (op.vsx_flags & VSX_SPLAT)
+ vcpu->arch.mmio_copy_type =
+ KVMPPC_VSX_COPY_DWORD_LOAD_DUMP;
+ else
+ vcpu->arch.mmio_copy_type =
+ KVMPPC_VSX_COPY_DWORD;
+ } else if (op.element_size == 4) {
+ if (op.vsx_flags & VSX_SPLAT)
+ vcpu->arch.mmio_copy_type =
+ KVMPPC_VSX_COPY_WORD_LOAD_DUMP;
+ else
+ vcpu->arch.mmio_copy_type =
+ KVMPPC_VSX_COPY_WORD;
+ } else
+ break;
+
+ if (size < op.element_size) {
+ /* precision convert case: lxsspx, etc */
+ vcpu->arch.mmio_vsx_copy_nums = 1;
+ io_size_each = size;
+ } else { /* lxvw4x, lxvd2x, etc */
+ vcpu->arch.mmio_vsx_copy_nums =
+ size/op.element_size;
+ io_size_each = op.element_size;
+ }
+
+ emulated = kvmppc_handle_vsx_load(vcpu,
+ KVM_MMIO_REG_VSX|op.reg, io_size_each,
+ 1, op.type & SIGNEXT);
+ break;
+ }
+#endif
+ case STORE:
+ /* if need byte reverse, op.val has been reversed by
+ * analyse_instr().
+ */
+ emulated = kvmppc_handle_store(vcpu, op.val, size, 1);
+
+ if ((op.type & UPDATE) && (emulated != EMULATE_FAIL))
+ kvmppc_set_gpr(vcpu, op.update_reg, op.ea);
+
+ break;
+#ifdef CONFIG_PPC_FPU
+ case STORE_FP:
+ if (kvmppc_check_fp_disabled(vcpu))
+ return EMULATE_DONE;
+
+ /* The FP registers need to be flushed so that
+ * kvmppc_handle_store() can read actual FP vals
+ * from vcpu->arch.
+ */
+ if (vcpu->kvm->arch.kvm_ops->giveup_ext)
+ vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu,
+ MSR_FP);
+
+ if (op.type & FPCONV)
+ vcpu->arch.mmio_sp64_extend = 1;
+
+ emulated = kvmppc_handle_store(vcpu,
+ VCPU_FPR(vcpu, op.reg), size, 1);
+
+ if ((op.type & UPDATE) && (emulated != EMULATE_FAIL))
+ kvmppc_set_gpr(vcpu, op.update_reg, op.ea);
+
+ break;
+#endif
+#ifdef CONFIG_ALTIVEC
+ case STORE_VMX:
+ if (kvmppc_check_altivec_disabled(vcpu))
+ return EMULATE_DONE;
+
+ /* Hardware enforces alignment of VMX accesses. */
+ vcpu->arch.vaddr_accessed &= ~((unsigned long)size - 1);
+ vcpu->arch.paddr_accessed &= ~((unsigned long)size - 1);
+
+ if (vcpu->kvm->arch.kvm_ops->giveup_ext)
+ vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu,
+ MSR_VEC);
+ if (size == 16) { /* stvx */
+ vcpu->arch.mmio_copy_type =
+ KVMPPC_VMX_COPY_DWORD;
+ } else if (size == 4) { /* stvewx */
+ vcpu->arch.mmio_copy_type =
+ KVMPPC_VMX_COPY_WORD;
+ } else if (size == 2) { /* stvehx */
+ vcpu->arch.mmio_copy_type =
+ KVMPPC_VMX_COPY_HWORD;
+ } else if (size == 1) { /* stvebx */
+ vcpu->arch.mmio_copy_type =
+ KVMPPC_VMX_COPY_BYTE;
+ } else
+ break;
+
+ vcpu->arch.mmio_vmx_offset =
+ (vcpu->arch.vaddr_accessed & 0xf)/size;
+
+ if (size == 16) {
+ vcpu->arch.mmio_vmx_copy_nums = 2;
+ emulated = kvmppc_handle_vmx_store(vcpu,
+ op.reg, 8, 1);
+ } else {
+ vcpu->arch.mmio_vmx_copy_nums = 1;
+ emulated = kvmppc_handle_vmx_store(vcpu,
+ op.reg, size, 1);
+ }
+
+ break;
+#endif
+#ifdef CONFIG_VSX
+ case STORE_VSX: {
+ int io_size_each;
+
+ if (op.vsx_flags & VSX_CHECK_VEC) {
+ if (kvmppc_check_altivec_disabled(vcpu))
+ return EMULATE_DONE;
+ } else {
+ if (kvmppc_check_vsx_disabled(vcpu))
+ return EMULATE_DONE;
+ }
+
+ if (vcpu->kvm->arch.kvm_ops->giveup_ext)
+ vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu,
+ MSR_VSX);
+
+ if (op.vsx_flags & VSX_FPCONV)
+ vcpu->arch.mmio_sp64_extend = 1;
+
+ if (op.element_size == 8)
+ vcpu->arch.mmio_copy_type =
+ KVMPPC_VSX_COPY_DWORD;
+ else if (op.element_size == 4)
+ vcpu->arch.mmio_copy_type =
+ KVMPPC_VSX_COPY_WORD;
+ else
+ break;
+
+ if (size < op.element_size) {
+ /* precise conversion case, like stxsspx */
+ vcpu->arch.mmio_vsx_copy_nums = 1;
+ io_size_each = size;
+ } else { /* stxvw4x, stxvd2x, etc */
+ vcpu->arch.mmio_vsx_copy_nums =
+ size/op.element_size;
+ io_size_each = op.element_size;
+ }
+
+ emulated = kvmppc_handle_vsx_store(vcpu,
+ op.reg, io_size_each, 1);
+ break;
+ }
+#endif
+ case CACHEOP:
+ /* Do nothing. The guest is performing dcbi because
+ * hardware DMA is not snooped by the dcache, but
+ * emulated DMA either goes through the dcache as
+ * normal writes, or the host kernel has handled dcache
+ * coherence.
+ */
+ emulated = EMULATE_DONE;
+ break;
+ default:
+ break;
+ }
+ }
+
+ trace_kvm_ppc_instr(inst, kvmppc_get_pc(vcpu), emulated);
+
+ /* Advance past emulated instruction. */
+ if (emulated != EMULATE_FAIL)
+ kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
+
+ return emulated;
+}
diff --git a/arch/powerpc/kvm/fpu.S b/arch/powerpc/kvm/fpu.S
new file mode 100644
index 000000000..315c94946
--- /dev/null
+++ b/arch/powerpc/kvm/fpu.S
@@ -0,0 +1,278 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * FPU helper code to use FPU operations from inside the kernel
+ *
+ * Copyright (C) 2010 Alexander Graf (agraf@suse.de)
+ */
+
+#include <linux/pgtable.h>
+#include <asm/reg.h>
+#include <asm/page.h>
+#include <asm/mmu.h>
+#include <asm/cputable.h>
+#include <asm/cache.h>
+#include <asm/thread_info.h>
+#include <asm/ppc_asm.h>
+#include <asm/asm-offsets.h>
+
+/* Instructions operating on single parameters */
+
+/*
+ * Single operation with one input operand
+ *
+ * R3 = (double*)&fpscr
+ * R4 = (short*)&result
+ * R5 = (short*)&param1
+ */
+#define FPS_ONE_IN(name) \
+_GLOBAL(fps_ ## name); \
+ lfd 0,0(r3); /* load up fpscr value */ \
+ MTFSF_L(0); \
+ lfs 0,0(r5); \
+ \
+ name 0,0; \
+ \
+ stfs 0,0(r4); \
+ mffs 0; \
+ stfd 0,0(r3); /* save new fpscr value */ \
+ blr
+
+/*
+ * Single operation with two input operands
+ *
+ * R3 = (double*)&fpscr
+ * R4 = (short*)&result
+ * R5 = (short*)&param1
+ * R6 = (short*)&param2
+ */
+#define FPS_TWO_IN(name) \
+_GLOBAL(fps_ ## name); \
+ lfd 0,0(r3); /* load up fpscr value */ \
+ MTFSF_L(0); \
+ lfs 0,0(r5); \
+ lfs 1,0(r6); \
+ \
+ name 0,0,1; \
+ \
+ stfs 0,0(r4); \
+ mffs 0; \
+ stfd 0,0(r3); /* save new fpscr value */ \
+ blr
+
+/*
+ * Single operation with three input operands
+ *
+ * R3 = (double*)&fpscr
+ * R4 = (short*)&result
+ * R5 = (short*)&param1
+ * R6 = (short*)&param2
+ * R7 = (short*)&param3
+ */
+#define FPS_THREE_IN(name) \
+_GLOBAL(fps_ ## name); \
+ lfd 0,0(r3); /* load up fpscr value */ \
+ MTFSF_L(0); \
+ lfs 0,0(r5); \
+ lfs 1,0(r6); \
+ lfs 2,0(r7); \
+ \
+ name 0,0,1,2; \
+ \
+ stfs 0,0(r4); \
+ mffs 0; \
+ stfd 0,0(r3); /* save new fpscr value */ \
+ blr
+
+FPS_ONE_IN(fres)
+FPS_ONE_IN(frsqrte)
+FPS_ONE_IN(fsqrts)
+FPS_TWO_IN(fadds)
+FPS_TWO_IN(fdivs)
+FPS_TWO_IN(fmuls)
+FPS_TWO_IN(fsubs)
+FPS_THREE_IN(fmadds)
+FPS_THREE_IN(fmsubs)
+FPS_THREE_IN(fnmadds)
+FPS_THREE_IN(fnmsubs)
+FPS_THREE_IN(fsel)
+
+
+/* Instructions operating on double parameters */
+
+/*
+ * Beginning of double instruction processing
+ *
+ * R3 = (double*)&fpscr
+ * R4 = (u32*)&cr
+ * R5 = (double*)&result
+ * R6 = (double*)&param1
+ * R7 = (double*)&param2 [load_two]
+ * R8 = (double*)&param3 [load_three]
+ * LR = instruction call function
+ */
+fpd_load_three:
+ lfd 2,0(r8) /* load param3 */
+fpd_load_two:
+ lfd 1,0(r7) /* load param2 */
+fpd_load_one:
+ lfd 0,0(r6) /* load param1 */
+fpd_load_none:
+ lfd 3,0(r3) /* load up fpscr value */
+ MTFSF_L(3)
+ lwz r6, 0(r4) /* load cr */
+ mtcr r6
+ blr
+
+/*
+ * End of double instruction processing
+ *
+ * R3 = (double*)&fpscr
+ * R4 = (u32*)&cr
+ * R5 = (double*)&result
+ * LR = caller of instruction call function
+ */
+fpd_return:
+ mfcr r6
+ stfd 0,0(r5) /* save result */
+ mffs 0
+ stfd 0,0(r3) /* save new fpscr value */
+ stw r6,0(r4) /* save new cr value */
+ blr
+
+/*
+ * Double operation with no input operand
+ *
+ * R3 = (double*)&fpscr
+ * R4 = (u32*)&cr
+ * R5 = (double*)&result
+ */
+#define FPD_NONE_IN(name) \
+_GLOBAL(fpd_ ## name); \
+ mflr r12; \
+ bl fpd_load_none; \
+ mtlr r12; \
+ \
+ name. 0; /* call instruction */ \
+ b fpd_return
+
+/*
+ * Double operation with one input operand
+ *
+ * R3 = (double*)&fpscr
+ * R4 = (u32*)&cr
+ * R5 = (double*)&result
+ * R6 = (double*)&param1
+ */
+#define FPD_ONE_IN(name) \
+_GLOBAL(fpd_ ## name); \
+ mflr r12; \
+ bl fpd_load_one; \
+ mtlr r12; \
+ \
+ name. 0,0; /* call instruction */ \
+ b fpd_return
+
+/*
+ * Double operation with two input operands
+ *
+ * R3 = (double*)&fpscr
+ * R4 = (u32*)&cr
+ * R5 = (double*)&result
+ * R6 = (double*)&param1
+ * R7 = (double*)&param2
+ * R8 = (double*)&param3
+ */
+#define FPD_TWO_IN(name) \
+_GLOBAL(fpd_ ## name); \
+ mflr r12; \
+ bl fpd_load_two; \
+ mtlr r12; \
+ \
+ name. 0,0,1; /* call instruction */ \
+ b fpd_return
+
+/*
+ * CR Double operation with two input operands
+ *
+ * R3 = (double*)&fpscr
+ * R4 = (u32*)&cr
+ * R5 = (double*)&param1
+ * R6 = (double*)&param2
+ * R7 = (double*)&param3
+ */
+#define FPD_TWO_IN_CR(name) \
+_GLOBAL(fpd_ ## name); \
+ lfd 1,0(r6); /* load param2 */ \
+ lfd 0,0(r5); /* load param1 */ \
+ lfd 3,0(r3); /* load up fpscr value */ \
+ MTFSF_L(3); \
+ lwz r6, 0(r4); /* load cr */ \
+ mtcr r6; \
+ \
+ name 0,0,1; /* call instruction */ \
+ mfcr r6; \
+ mffs 0; \
+ stfd 0,0(r3); /* save new fpscr value */ \
+ stw r6,0(r4); /* save new cr value */ \
+ blr
+
+/*
+ * Double operation with three input operands
+ *
+ * R3 = (double*)&fpscr
+ * R4 = (u32*)&cr
+ * R5 = (double*)&result
+ * R6 = (double*)&param1
+ * R7 = (double*)&param2
+ * R8 = (double*)&param3
+ */
+#define FPD_THREE_IN(name) \
+_GLOBAL(fpd_ ## name); \
+ mflr r12; \
+ bl fpd_load_three; \
+ mtlr r12; \
+ \
+ name. 0,0,1,2; /* call instruction */ \
+ b fpd_return
+
+FPD_ONE_IN(fsqrts)
+FPD_ONE_IN(frsqrtes)
+FPD_ONE_IN(fres)
+FPD_ONE_IN(frsp)
+FPD_ONE_IN(fctiw)
+FPD_ONE_IN(fctiwz)
+FPD_ONE_IN(fsqrt)
+FPD_ONE_IN(fre)
+FPD_ONE_IN(frsqrte)
+FPD_ONE_IN(fneg)
+FPD_ONE_IN(fabs)
+FPD_TWO_IN(fadds)
+FPD_TWO_IN(fsubs)
+FPD_TWO_IN(fdivs)
+FPD_TWO_IN(fmuls)
+FPD_TWO_IN_CR(fcmpu)
+FPD_TWO_IN(fcpsgn)
+FPD_TWO_IN(fdiv)
+FPD_TWO_IN(fadd)
+FPD_TWO_IN(fmul)
+FPD_TWO_IN_CR(fcmpo)
+FPD_TWO_IN(fsub)
+FPD_THREE_IN(fmsubs)
+FPD_THREE_IN(fmadds)
+FPD_THREE_IN(fnmsubs)
+FPD_THREE_IN(fnmadds)
+FPD_THREE_IN(fsel)
+FPD_THREE_IN(fmsub)
+FPD_THREE_IN(fmadd)
+FPD_THREE_IN(fnmsub)
+FPD_THREE_IN(fnmadd)
+
+_GLOBAL(kvm_cvt_fd)
+ lfs 0,0(r3)
+ stfd 0,0(r4)
+ blr
+
+_GLOBAL(kvm_cvt_df)
+ lfd 0,0(r3)
+ stfs 0,0(r4)
+ blr
diff --git a/arch/powerpc/kvm/irq.h b/arch/powerpc/kvm/irq.h
new file mode 100644
index 000000000..e6463f866
--- /dev/null
+++ b/arch/powerpc/kvm/irq.h
@@ -0,0 +1,22 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __IRQ_H
+#define __IRQ_H
+
+#include <linux/kvm_host.h>
+
+static inline int irqchip_in_kernel(struct kvm *kvm)
+{
+ int ret = 0;
+
+#ifdef CONFIG_KVM_MPIC
+ ret = ret || (kvm->arch.mpic != NULL);
+#endif
+#ifdef CONFIG_KVM_XICS
+ ret = ret || (kvm->arch.xics != NULL);
+ ret = ret || (kvm->arch.xive != NULL);
+#endif
+ smp_rmb();
+ return ret;
+}
+
+#endif
diff --git a/arch/powerpc/kvm/mpic.c b/arch/powerpc/kvm/mpic.c
new file mode 100644
index 000000000..23e9c2bd9
--- /dev/null
+++ b/arch/powerpc/kvm/mpic.c
@@ -0,0 +1,1852 @@
+/*
+ * OpenPIC emulation
+ *
+ * Copyright (c) 2004 Jocelyn Mayer
+ * 2011 Alexander Graf
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include <linux/slab.h>
+#include <linux/mutex.h>
+#include <linux/kvm_host.h>
+#include <linux/errno.h>
+#include <linux/fs.h>
+#include <linux/anon_inodes.h>
+#include <linux/uaccess.h>
+#include <asm/mpic.h>
+#include <asm/kvm_para.h>
+#include <asm/kvm_ppc.h>
+#include <kvm/iodev.h>
+
+#define MAX_CPU 32
+#define MAX_SRC 256
+#define MAX_TMR 4
+#define MAX_IPI 4
+#define MAX_MSI 8
+#define MAX_IRQ (MAX_SRC + MAX_IPI + MAX_TMR)
+#define VID 0x03 /* MPIC version ID */
+
+/* OpenPIC capability flags */
+#define OPENPIC_FLAG_IDR_CRIT (1 << 0)
+#define OPENPIC_FLAG_ILR (2 << 0)
+
+/* OpenPIC address map */
+#define OPENPIC_REG_SIZE 0x40000
+#define OPENPIC_GLB_REG_START 0x0
+#define OPENPIC_GLB_REG_SIZE 0x10F0
+#define OPENPIC_TMR_REG_START 0x10F0
+#define OPENPIC_TMR_REG_SIZE 0x220
+#define OPENPIC_MSI_REG_START 0x1600
+#define OPENPIC_MSI_REG_SIZE 0x200
+#define OPENPIC_SUMMARY_REG_START 0x3800
+#define OPENPIC_SUMMARY_REG_SIZE 0x800
+#define OPENPIC_SRC_REG_START 0x10000
+#define OPENPIC_SRC_REG_SIZE (MAX_SRC * 0x20)
+#define OPENPIC_CPU_REG_START 0x20000
+#define OPENPIC_CPU_REG_SIZE (0x100 + ((MAX_CPU - 1) * 0x1000))
+
+struct fsl_mpic_info {
+ int max_ext;
+};
+
+static struct fsl_mpic_info fsl_mpic_20 = {
+ .max_ext = 12,
+};
+
+static struct fsl_mpic_info fsl_mpic_42 = {
+ .max_ext = 12,
+};
+
+#define FRR_NIRQ_SHIFT 16
+#define FRR_NCPU_SHIFT 8
+#define FRR_VID_SHIFT 0
+
+#define VID_REVISION_1_2 2
+#define VID_REVISION_1_3 3
+
+#define VIR_GENERIC 0x00000000 /* Generic Vendor ID */
+
+#define GCR_RESET 0x80000000
+#define GCR_MODE_PASS 0x00000000
+#define GCR_MODE_MIXED 0x20000000
+#define GCR_MODE_PROXY 0x60000000
+
+#define TBCR_CI 0x80000000 /* count inhibit */
+#define TCCR_TOG 0x80000000 /* toggles when decrement to zero */
+
+#define IDR_EP_SHIFT 31
+#define IDR_EP_MASK (1 << IDR_EP_SHIFT)
+#define IDR_CI0_SHIFT 30
+#define IDR_CI1_SHIFT 29
+#define IDR_P1_SHIFT 1
+#define IDR_P0_SHIFT 0
+
+#define ILR_INTTGT_MASK 0x000000ff
+#define ILR_INTTGT_INT 0x00
+#define ILR_INTTGT_CINT 0x01 /* critical */
+#define ILR_INTTGT_MCP 0x02 /* machine check */
+#define NUM_OUTPUTS 3
+
+#define MSIIR_OFFSET 0x140
+#define MSIIR_SRS_SHIFT 29
+#define MSIIR_SRS_MASK (0x7 << MSIIR_SRS_SHIFT)
+#define MSIIR_IBS_SHIFT 24
+#define MSIIR_IBS_MASK (0x1f << MSIIR_IBS_SHIFT)
+
+static int get_current_cpu(void)
+{
+#if defined(CONFIG_KVM) && defined(CONFIG_BOOKE)
+ struct kvm_vcpu *vcpu = current->thread.kvm_vcpu;
+ return vcpu ? vcpu->arch.irq_cpu_id : -1;
+#else
+ /* XXX */
+ return -1;
+#endif
+}
+
+static int openpic_cpu_write_internal(void *opaque, gpa_t addr,
+ u32 val, int idx);
+static int openpic_cpu_read_internal(void *opaque, gpa_t addr,
+ u32 *ptr, int idx);
+static inline void write_IRQreg_idr(struct openpic *opp, int n_IRQ,
+ uint32_t val);
+
+enum irq_type {
+ IRQ_TYPE_NORMAL = 0,
+ IRQ_TYPE_FSLINT, /* FSL internal interrupt -- level only */
+ IRQ_TYPE_FSLSPECIAL, /* FSL timer/IPI interrupt, edge, no polarity */
+};
+
+struct irq_queue {
+ /* Round up to the nearest 64 IRQs so that the queue length
+ * won't change when moving between 32 and 64 bit hosts.
+ */
+ unsigned long queue[BITS_TO_LONGS((MAX_IRQ + 63) & ~63)];
+ int next;
+ int priority;
+};
+
+struct irq_source {
+ uint32_t ivpr; /* IRQ vector/priority register */
+ uint32_t idr; /* IRQ destination register */
+ uint32_t destmask; /* bitmap of CPU destinations */
+ int last_cpu;
+ int output; /* IRQ level, e.g. ILR_INTTGT_INT */
+ int pending; /* TRUE if IRQ is pending */
+ enum irq_type type;
+ bool level:1; /* level-triggered */
+ bool nomask:1; /* critical interrupts ignore mask on some FSL MPICs */
+};
+
+#define IVPR_MASK_SHIFT 31
+#define IVPR_MASK_MASK (1 << IVPR_MASK_SHIFT)
+#define IVPR_ACTIVITY_SHIFT 30
+#define IVPR_ACTIVITY_MASK (1 << IVPR_ACTIVITY_SHIFT)
+#define IVPR_MODE_SHIFT 29
+#define IVPR_MODE_MASK (1 << IVPR_MODE_SHIFT)
+#define IVPR_POLARITY_SHIFT 23
+#define IVPR_POLARITY_MASK (1 << IVPR_POLARITY_SHIFT)
+#define IVPR_SENSE_SHIFT 22
+#define IVPR_SENSE_MASK (1 << IVPR_SENSE_SHIFT)
+
+#define IVPR_PRIORITY_MASK (0xF << 16)
+#define IVPR_PRIORITY(_ivprr_) ((int)(((_ivprr_) & IVPR_PRIORITY_MASK) >> 16))
+#define IVPR_VECTOR(opp, _ivprr_) ((_ivprr_) & (opp)->vector_mask)
+
+/* IDR[EP/CI] are only for FSL MPIC prior to v4.0 */
+#define IDR_EP 0x80000000 /* external pin */
+#define IDR_CI 0x40000000 /* critical interrupt */
+
+struct irq_dest {
+ struct kvm_vcpu *vcpu;
+
+ int32_t ctpr; /* CPU current task priority */
+ struct irq_queue raised;
+ struct irq_queue servicing;
+
+ /* Count of IRQ sources asserting on non-INT outputs */
+ uint32_t outputs_active[NUM_OUTPUTS];
+};
+
+#define MAX_MMIO_REGIONS 10
+
+struct openpic {
+ struct kvm *kvm;
+ struct kvm_device *dev;
+ struct kvm_io_device mmio;
+ const struct mem_reg *mmio_regions[MAX_MMIO_REGIONS];
+ int num_mmio_regions;
+
+ gpa_t reg_base;
+ spinlock_t lock;
+
+ /* Behavior control */
+ struct fsl_mpic_info *fsl;
+ uint32_t model;
+ uint32_t flags;
+ uint32_t nb_irqs;
+ uint32_t vid;
+ uint32_t vir; /* Vendor identification register */
+ uint32_t vector_mask;
+ uint32_t tfrr_reset;
+ uint32_t ivpr_reset;
+ uint32_t idr_reset;
+ uint32_t brr1;
+ uint32_t mpic_mode_mask;
+
+ /* Global registers */
+ uint32_t frr; /* Feature reporting register */
+ uint32_t gcr; /* Global configuration register */
+ uint32_t pir; /* Processor initialization register */
+ uint32_t spve; /* Spurious vector register */
+ uint32_t tfrr; /* Timer frequency reporting register */
+ /* Source registers */
+ struct irq_source src[MAX_IRQ];
+ /* Local registers per output pin */
+ struct irq_dest dst[MAX_CPU];
+ uint32_t nb_cpus;
+ /* Timer registers */
+ struct {
+ uint32_t tccr; /* Global timer current count register */
+ uint32_t tbcr; /* Global timer base count register */
+ } timers[MAX_TMR];
+ /* Shared MSI registers */
+ struct {
+ uint32_t msir; /* Shared Message Signaled Interrupt Register */
+ } msi[MAX_MSI];
+ uint32_t max_irq;
+ uint32_t irq_ipi0;
+ uint32_t irq_tim0;
+ uint32_t irq_msi;
+};
+
+
+static void mpic_irq_raise(struct openpic *opp, struct irq_dest *dst,
+ int output)
+{
+ struct kvm_interrupt irq = {
+ .irq = KVM_INTERRUPT_SET_LEVEL,
+ };
+
+ if (!dst->vcpu) {
+ pr_debug("%s: destination cpu %d does not exist\n",
+ __func__, (int)(dst - &opp->dst[0]));
+ return;
+ }
+
+ pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->arch.irq_cpu_id,
+ output);
+
+ if (output != ILR_INTTGT_INT) /* TODO */
+ return;
+
+ kvm_vcpu_ioctl_interrupt(dst->vcpu, &irq);
+}
+
+static void mpic_irq_lower(struct openpic *opp, struct irq_dest *dst,
+ int output)
+{
+ if (!dst->vcpu) {
+ pr_debug("%s: destination cpu %d does not exist\n",
+ __func__, (int)(dst - &opp->dst[0]));
+ return;
+ }
+
+ pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->arch.irq_cpu_id,
+ output);
+
+ if (output != ILR_INTTGT_INT) /* TODO */
+ return;
+
+ kvmppc_core_dequeue_external(dst->vcpu);
+}
+
+static inline void IRQ_setbit(struct irq_queue *q, int n_IRQ)
+{
+ set_bit(n_IRQ, q->queue);
+}
+
+static inline void IRQ_resetbit(struct irq_queue *q, int n_IRQ)
+{
+ clear_bit(n_IRQ, q->queue);
+}
+
+static void IRQ_check(struct openpic *opp, struct irq_queue *q)
+{
+ int irq = -1;
+ int next = -1;
+ int priority = -1;
+
+ for (;;) {
+ irq = find_next_bit(q->queue, opp->max_irq, irq + 1);
+ if (irq == opp->max_irq)
+ break;
+
+ pr_debug("IRQ_check: irq %d set ivpr_pr=%d pr=%d\n",
+ irq, IVPR_PRIORITY(opp->src[irq].ivpr), priority);
+
+ if (IVPR_PRIORITY(opp->src[irq].ivpr) > priority) {
+ next = irq;
+ priority = IVPR_PRIORITY(opp->src[irq].ivpr);
+ }
+ }
+
+ q->next = next;
+ q->priority = priority;
+}
+
+static int IRQ_get_next(struct openpic *opp, struct irq_queue *q)
+{
+ /* XXX: optimize */
+ IRQ_check(opp, q);
+
+ return q->next;
+}
+
+static void IRQ_local_pipe(struct openpic *opp, int n_CPU, int n_IRQ,
+ bool active, bool was_active)
+{
+ struct irq_dest *dst;
+ struct irq_source *src;
+ int priority;
+
+ dst = &opp->dst[n_CPU];
+ src = &opp->src[n_IRQ];
+
+ pr_debug("%s: IRQ %d active %d was %d\n",
+ __func__, n_IRQ, active, was_active);
+
+ if (src->output != ILR_INTTGT_INT) {
+ pr_debug("%s: output %d irq %d active %d was %d count %d\n",
+ __func__, src->output, n_IRQ, active, was_active,
+ dst->outputs_active[src->output]);
+
+ /* On Freescale MPIC, critical interrupts ignore priority,
+ * IACK, EOI, etc. Before MPIC v4.1 they also ignore
+ * masking.
+ */
+ if (active) {
+ if (!was_active &&
+ dst->outputs_active[src->output]++ == 0) {
+ pr_debug("%s: Raise OpenPIC output %d cpu %d irq %d\n",
+ __func__, src->output, n_CPU, n_IRQ);
+ mpic_irq_raise(opp, dst, src->output);
+ }
+ } else {
+ if (was_active &&
+ --dst->outputs_active[src->output] == 0) {
+ pr_debug("%s: Lower OpenPIC output %d cpu %d irq %d\n",
+ __func__, src->output, n_CPU, n_IRQ);
+ mpic_irq_lower(opp, dst, src->output);
+ }
+ }
+
+ return;
+ }
+
+ priority = IVPR_PRIORITY(src->ivpr);
+
+ /* Even if the interrupt doesn't have enough priority,
+ * it is still raised, in case ctpr is lowered later.
+ */
+ if (active)
+ IRQ_setbit(&dst->raised, n_IRQ);
+ else
+ IRQ_resetbit(&dst->raised, n_IRQ);
+
+ IRQ_check(opp, &dst->raised);
+
+ if (active && priority <= dst->ctpr) {
+ pr_debug("%s: IRQ %d priority %d too low for ctpr %d on CPU %d\n",
+ __func__, n_IRQ, priority, dst->ctpr, n_CPU);
+ active = 0;
+ }
+
+ if (active) {
+ if (IRQ_get_next(opp, &dst->servicing) >= 0 &&
+ priority <= dst->servicing.priority) {
+ pr_debug("%s: IRQ %d is hidden by servicing IRQ %d on CPU %d\n",
+ __func__, n_IRQ, dst->servicing.next, n_CPU);
+ } else {
+ pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d/%d\n",
+ __func__, n_CPU, n_IRQ, dst->raised.next);
+ mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
+ }
+ } else {
+ IRQ_get_next(opp, &dst->servicing);
+ if (dst->raised.priority > dst->ctpr &&
+ dst->raised.priority > dst->servicing.priority) {
+ pr_debug("%s: IRQ %d inactive, IRQ %d prio %d above %d/%d, CPU %d\n",
+ __func__, n_IRQ, dst->raised.next,
+ dst->raised.priority, dst->ctpr,
+ dst->servicing.priority, n_CPU);
+ /* IRQ line stays asserted */
+ } else {
+ pr_debug("%s: IRQ %d inactive, current prio %d/%d, CPU %d\n",
+ __func__, n_IRQ, dst->ctpr,
+ dst->servicing.priority, n_CPU);
+ mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
+ }
+ }
+}
+
+/* update pic state because registers for n_IRQ have changed value */
+static void openpic_update_irq(struct openpic *opp, int n_IRQ)
+{
+ struct irq_source *src;
+ bool active, was_active;
+ int i;
+
+ src = &opp->src[n_IRQ];
+ active = src->pending;
+
+ if ((src->ivpr & IVPR_MASK_MASK) && !src->nomask) {
+ /* Interrupt source is disabled */
+ pr_debug("%s: IRQ %d is disabled\n", __func__, n_IRQ);
+ active = false;
+ }
+
+ was_active = !!(src->ivpr & IVPR_ACTIVITY_MASK);
+
+ /*
+ * We don't have a similar check for already-active because
+ * ctpr may have changed and we need to withdraw the interrupt.
+ */
+ if (!active && !was_active) {
+ pr_debug("%s: IRQ %d is already inactive\n", __func__, n_IRQ);
+ return;
+ }
+
+ if (active)
+ src->ivpr |= IVPR_ACTIVITY_MASK;
+ else
+ src->ivpr &= ~IVPR_ACTIVITY_MASK;
+
+ if (src->destmask == 0) {
+ /* No target */
+ pr_debug("%s: IRQ %d has no target\n", __func__, n_IRQ);
+ return;
+ }
+
+ if (src->destmask == (1 << src->last_cpu)) {
+ /* Only one CPU is allowed to receive this IRQ */
+ IRQ_local_pipe(opp, src->last_cpu, n_IRQ, active, was_active);
+ } else if (!(src->ivpr & IVPR_MODE_MASK)) {
+ /* Directed delivery mode */
+ for (i = 0; i < opp->nb_cpus; i++) {
+ if (src->destmask & (1 << i)) {
+ IRQ_local_pipe(opp, i, n_IRQ, active,
+ was_active);
+ }
+ }
+ } else {
+ /* Distributed delivery mode */
+ for (i = src->last_cpu + 1; i != src->last_cpu; i++) {
+ if (i == opp->nb_cpus)
+ i = 0;
+
+ if (src->destmask & (1 << i)) {
+ IRQ_local_pipe(opp, i, n_IRQ, active,
+ was_active);
+ src->last_cpu = i;
+ break;
+ }
+ }
+ }
+}
+
+static void openpic_set_irq(void *opaque, int n_IRQ, int level)
+{
+ struct openpic *opp = opaque;
+ struct irq_source *src;
+
+ if (n_IRQ >= MAX_IRQ) {
+ WARN_ONCE(1, "%s: IRQ %d out of range\n", __func__, n_IRQ);
+ return;
+ }
+
+ src = &opp->src[n_IRQ];
+ pr_debug("openpic: set irq %d = %d ivpr=0x%08x\n",
+ n_IRQ, level, src->ivpr);
+ if (src->level) {
+ /* level-sensitive irq */
+ src->pending = level;
+ openpic_update_irq(opp, n_IRQ);
+ } else {
+ /* edge-sensitive irq */
+ if (level) {
+ src->pending = 1;
+ openpic_update_irq(opp, n_IRQ);
+ }
+
+ if (src->output != ILR_INTTGT_INT) {
+ /* Edge-triggered interrupts shouldn't be used
+ * with non-INT delivery, but just in case,
+ * try to make it do something sane rather than
+ * cause an interrupt storm. This is close to
+ * what you'd probably see happen in real hardware.
+ */
+ src->pending = 0;
+ openpic_update_irq(opp, n_IRQ);
+ }
+ }
+}
+
+static void openpic_reset(struct openpic *opp)
+{
+ int i;
+
+ opp->gcr = GCR_RESET;
+ /* Initialise controller registers */
+ opp->frr = ((opp->nb_irqs - 1) << FRR_NIRQ_SHIFT) |
+ (opp->vid << FRR_VID_SHIFT);
+
+ opp->pir = 0;
+ opp->spve = -1 & opp->vector_mask;
+ opp->tfrr = opp->tfrr_reset;
+ /* Initialise IRQ sources */
+ for (i = 0; i < opp->max_irq; i++) {
+ opp->src[i].ivpr = opp->ivpr_reset;
+
+ switch (opp->src[i].type) {
+ case IRQ_TYPE_NORMAL:
+ opp->src[i].level =
+ !!(opp->ivpr_reset & IVPR_SENSE_MASK);
+ break;
+
+ case IRQ_TYPE_FSLINT:
+ opp->src[i].ivpr |= IVPR_POLARITY_MASK;
+ break;
+
+ case IRQ_TYPE_FSLSPECIAL:
+ break;
+ }
+
+ write_IRQreg_idr(opp, i, opp->idr_reset);
+ }
+ /* Initialise IRQ destinations */
+ for (i = 0; i < MAX_CPU; i++) {
+ opp->dst[i].ctpr = 15;
+ memset(&opp->dst[i].raised, 0, sizeof(struct irq_queue));
+ opp->dst[i].raised.next = -1;
+ memset(&opp->dst[i].servicing, 0, sizeof(struct irq_queue));
+ opp->dst[i].servicing.next = -1;
+ }
+ /* Initialise timers */
+ for (i = 0; i < MAX_TMR; i++) {
+ opp->timers[i].tccr = 0;
+ opp->timers[i].tbcr = TBCR_CI;
+ }
+ /* Go out of RESET state */
+ opp->gcr = 0;
+}
+
+static inline uint32_t read_IRQreg_idr(struct openpic *opp, int n_IRQ)
+{
+ return opp->src[n_IRQ].idr;
+}
+
+static inline uint32_t read_IRQreg_ilr(struct openpic *opp, int n_IRQ)
+{
+ if (opp->flags & OPENPIC_FLAG_ILR)
+ return opp->src[n_IRQ].output;
+
+ return 0xffffffff;
+}
+
+static inline uint32_t read_IRQreg_ivpr(struct openpic *opp, int n_IRQ)
+{
+ return opp->src[n_IRQ].ivpr;
+}
+
+static inline void write_IRQreg_idr(struct openpic *opp, int n_IRQ,
+ uint32_t val)
+{
+ struct irq_source *src = &opp->src[n_IRQ];
+ uint32_t normal_mask = (1UL << opp->nb_cpus) - 1;
+ uint32_t crit_mask = 0;
+ uint32_t mask = normal_mask;
+ int crit_shift = IDR_EP_SHIFT - opp->nb_cpus;
+ int i;
+
+ if (opp->flags & OPENPIC_FLAG_IDR_CRIT) {
+ crit_mask = mask << crit_shift;
+ mask |= crit_mask | IDR_EP;
+ }
+
+ src->idr = val & mask;
+ pr_debug("Set IDR %d to 0x%08x\n", n_IRQ, src->idr);
+
+ if (opp->flags & OPENPIC_FLAG_IDR_CRIT) {
+ if (src->idr & crit_mask) {
+ if (src->idr & normal_mask) {
+ pr_debug("%s: IRQ configured for multiple output types, using critical\n",
+ __func__);
+ }
+
+ src->output = ILR_INTTGT_CINT;
+ src->nomask = true;
+ src->destmask = 0;
+
+ for (i = 0; i < opp->nb_cpus; i++) {
+ int n_ci = IDR_CI0_SHIFT - i;
+
+ if (src->idr & (1UL << n_ci))
+ src->destmask |= 1UL << i;
+ }
+ } else {
+ src->output = ILR_INTTGT_INT;
+ src->nomask = false;
+ src->destmask = src->idr & normal_mask;
+ }
+ } else {
+ src->destmask = src->idr;
+ }
+}
+
+static inline void write_IRQreg_ilr(struct openpic *opp, int n_IRQ,
+ uint32_t val)
+{
+ if (opp->flags & OPENPIC_FLAG_ILR) {
+ struct irq_source *src = &opp->src[n_IRQ];
+
+ src->output = val & ILR_INTTGT_MASK;
+ pr_debug("Set ILR %d to 0x%08x, output %d\n", n_IRQ, src->idr,
+ src->output);
+
+ /* TODO: on MPIC v4.0 only, set nomask for non-INT */
+ }
+}
+
+static inline void write_IRQreg_ivpr(struct openpic *opp, int n_IRQ,
+ uint32_t val)
+{
+ uint32_t mask;
+
+ /* NOTE when implementing newer FSL MPIC models: starting with v4.0,
+ * the polarity bit is read-only on internal interrupts.
+ */
+ mask = IVPR_MASK_MASK | IVPR_PRIORITY_MASK | IVPR_SENSE_MASK |
+ IVPR_POLARITY_MASK | opp->vector_mask;
+
+ /* ACTIVITY bit is read-only */
+ opp->src[n_IRQ].ivpr =
+ (opp->src[n_IRQ].ivpr & IVPR_ACTIVITY_MASK) | (val & mask);
+
+ /* For FSL internal interrupts, The sense bit is reserved and zero,
+ * and the interrupt is always level-triggered. Timers and IPIs
+ * have no sense or polarity bits, and are edge-triggered.
+ */
+ switch (opp->src[n_IRQ].type) {
+ case IRQ_TYPE_NORMAL:
+ opp->src[n_IRQ].level =
+ !!(opp->src[n_IRQ].ivpr & IVPR_SENSE_MASK);
+ break;
+
+ case IRQ_TYPE_FSLINT:
+ opp->src[n_IRQ].ivpr &= ~IVPR_SENSE_MASK;
+ break;
+
+ case IRQ_TYPE_FSLSPECIAL:
+ opp->src[n_IRQ].ivpr &= ~(IVPR_POLARITY_MASK | IVPR_SENSE_MASK);
+ break;
+ }
+
+ openpic_update_irq(opp, n_IRQ);
+ pr_debug("Set IVPR %d to 0x%08x -> 0x%08x\n", n_IRQ, val,
+ opp->src[n_IRQ].ivpr);
+}
+
+static void openpic_gcr_write(struct openpic *opp, uint64_t val)
+{
+ if (val & GCR_RESET) {
+ openpic_reset(opp);
+ return;
+ }
+
+ opp->gcr &= ~opp->mpic_mode_mask;
+ opp->gcr |= val & opp->mpic_mode_mask;
+}
+
+static int openpic_gbl_write(void *opaque, gpa_t addr, u32 val)
+{
+ struct openpic *opp = opaque;
+ int err = 0;
+
+ pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
+ if (addr & 0xF)
+ return 0;
+
+ switch (addr) {
+ case 0x00: /* Block Revision Register1 (BRR1) is Readonly */
+ break;
+ case 0x40:
+ case 0x50:
+ case 0x60:
+ case 0x70:
+ case 0x80:
+ case 0x90:
+ case 0xA0:
+ case 0xB0:
+ err = openpic_cpu_write_internal(opp, addr, val,
+ get_current_cpu());
+ break;
+ case 0x1000: /* FRR */
+ break;
+ case 0x1020: /* GCR */
+ openpic_gcr_write(opp, val);
+ break;
+ case 0x1080: /* VIR */
+ break;
+ case 0x1090: /* PIR */
+ /*
+ * This register is used to reset a CPU core --
+ * let userspace handle it.
+ */
+ err = -ENXIO;
+ break;
+ case 0x10A0: /* IPI_IVPR */
+ case 0x10B0:
+ case 0x10C0:
+ case 0x10D0: {
+ int idx;
+ idx = (addr - 0x10A0) >> 4;
+ write_IRQreg_ivpr(opp, opp->irq_ipi0 + idx, val);
+ break;
+ }
+ case 0x10E0: /* SPVE */
+ opp->spve = val & opp->vector_mask;
+ break;
+ default:
+ break;
+ }
+
+ return err;
+}
+
+static int openpic_gbl_read(void *opaque, gpa_t addr, u32 *ptr)
+{
+ struct openpic *opp = opaque;
+ u32 retval;
+ int err = 0;
+
+ pr_debug("%s: addr %#llx\n", __func__, addr);
+ retval = 0xFFFFFFFF;
+ if (addr & 0xF)
+ goto out;
+
+ switch (addr) {
+ case 0x1000: /* FRR */
+ retval = opp->frr;
+ retval |= (opp->nb_cpus - 1) << FRR_NCPU_SHIFT;
+ break;
+ case 0x1020: /* GCR */
+ retval = opp->gcr;
+ break;
+ case 0x1080: /* VIR */
+ retval = opp->vir;
+ break;
+ case 0x1090: /* PIR */
+ retval = 0x00000000;
+ break;
+ case 0x00: /* Block Revision Register1 (BRR1) */
+ retval = opp->brr1;
+ break;
+ case 0x40:
+ case 0x50:
+ case 0x60:
+ case 0x70:
+ case 0x80:
+ case 0x90:
+ case 0xA0:
+ case 0xB0:
+ err = openpic_cpu_read_internal(opp, addr,
+ &retval, get_current_cpu());
+ break;
+ case 0x10A0: /* IPI_IVPR */
+ case 0x10B0:
+ case 0x10C0:
+ case 0x10D0:
+ {
+ int idx;
+ idx = (addr - 0x10A0) >> 4;
+ retval = read_IRQreg_ivpr(opp, opp->irq_ipi0 + idx);
+ }
+ break;
+ case 0x10E0: /* SPVE */
+ retval = opp->spve;
+ break;
+ default:
+ break;
+ }
+
+out:
+ pr_debug("%s: => 0x%08x\n", __func__, retval);
+ *ptr = retval;
+ return err;
+}
+
+static int openpic_tmr_write(void *opaque, gpa_t addr, u32 val)
+{
+ struct openpic *opp = opaque;
+ int idx;
+
+ addr += 0x10f0;
+
+ pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
+ if (addr & 0xF)
+ return 0;
+
+ if (addr == 0x10f0) {
+ /* TFRR */
+ opp->tfrr = val;
+ return 0;
+ }
+
+ idx = (addr >> 6) & 0x3;
+ addr = addr & 0x30;
+
+ switch (addr & 0x30) {
+ case 0x00: /* TCCR */
+ break;
+ case 0x10: /* TBCR */
+ if ((opp->timers[idx].tccr & TCCR_TOG) != 0 &&
+ (val & TBCR_CI) == 0 &&
+ (opp->timers[idx].tbcr & TBCR_CI) != 0)
+ opp->timers[idx].tccr &= ~TCCR_TOG;
+
+ opp->timers[idx].tbcr = val;
+ break;
+ case 0x20: /* TVPR */
+ write_IRQreg_ivpr(opp, opp->irq_tim0 + idx, val);
+ break;
+ case 0x30: /* TDR */
+ write_IRQreg_idr(opp, opp->irq_tim0 + idx, val);
+ break;
+ }
+
+ return 0;
+}
+
+static int openpic_tmr_read(void *opaque, gpa_t addr, u32 *ptr)
+{
+ struct openpic *opp = opaque;
+ uint32_t retval = -1;
+ int idx;
+
+ pr_debug("%s: addr %#llx\n", __func__, addr);
+ if (addr & 0xF)
+ goto out;
+
+ idx = (addr >> 6) & 0x3;
+ if (addr == 0x0) {
+ /* TFRR */
+ retval = opp->tfrr;
+ goto out;
+ }
+
+ switch (addr & 0x30) {
+ case 0x00: /* TCCR */
+ retval = opp->timers[idx].tccr;
+ break;
+ case 0x10: /* TBCR */
+ retval = opp->timers[idx].tbcr;
+ break;
+ case 0x20: /* TIPV */
+ retval = read_IRQreg_ivpr(opp, opp->irq_tim0 + idx);
+ break;
+ case 0x30: /* TIDE (TIDR) */
+ retval = read_IRQreg_idr(opp, opp->irq_tim0 + idx);
+ break;
+ }
+
+out:
+ pr_debug("%s: => 0x%08x\n", __func__, retval);
+ *ptr = retval;
+ return 0;
+}
+
+static int openpic_src_write(void *opaque, gpa_t addr, u32 val)
+{
+ struct openpic *opp = opaque;
+ int idx;
+
+ pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
+
+ addr = addr & 0xffff;
+ idx = addr >> 5;
+
+ switch (addr & 0x1f) {
+ case 0x00:
+ write_IRQreg_ivpr(opp, idx, val);
+ break;
+ case 0x10:
+ write_IRQreg_idr(opp, idx, val);
+ break;
+ case 0x18:
+ write_IRQreg_ilr(opp, idx, val);
+ break;
+ }
+
+ return 0;
+}
+
+static int openpic_src_read(void *opaque, gpa_t addr, u32 *ptr)
+{
+ struct openpic *opp = opaque;
+ uint32_t retval;
+ int idx;
+
+ pr_debug("%s: addr %#llx\n", __func__, addr);
+ retval = 0xFFFFFFFF;
+
+ addr = addr & 0xffff;
+ idx = addr >> 5;
+
+ switch (addr & 0x1f) {
+ case 0x00:
+ retval = read_IRQreg_ivpr(opp, idx);
+ break;
+ case 0x10:
+ retval = read_IRQreg_idr(opp, idx);
+ break;
+ case 0x18:
+ retval = read_IRQreg_ilr(opp, idx);
+ break;
+ }
+
+ pr_debug("%s: => 0x%08x\n", __func__, retval);
+ *ptr = retval;
+ return 0;
+}
+
+static int openpic_msi_write(void *opaque, gpa_t addr, u32 val)
+{
+ struct openpic *opp = opaque;
+ int idx = opp->irq_msi;
+ int srs, ibs;
+
+ pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val);
+ if (addr & 0xF)
+ return 0;
+
+ switch (addr) {
+ case MSIIR_OFFSET:
+ srs = val >> MSIIR_SRS_SHIFT;
+ idx += srs;
+ ibs = (val & MSIIR_IBS_MASK) >> MSIIR_IBS_SHIFT;
+ opp->msi[srs].msir |= 1 << ibs;
+ openpic_set_irq(opp, idx, 1);
+ break;
+ default:
+ /* most registers are read-only, thus ignored */
+ break;
+ }
+
+ return 0;
+}
+
+static int openpic_msi_read(void *opaque, gpa_t addr, u32 *ptr)
+{
+ struct openpic *opp = opaque;
+ uint32_t r = 0;
+ int i, srs;
+
+ pr_debug("%s: addr %#llx\n", __func__, addr);
+ if (addr & 0xF)
+ return -ENXIO;
+
+ srs = addr >> 4;
+
+ switch (addr) {
+ case 0x00:
+ case 0x10:
+ case 0x20:
+ case 0x30:
+ case 0x40:
+ case 0x50:
+ case 0x60:
+ case 0x70: /* MSIRs */
+ r = opp->msi[srs].msir;
+ /* Clear on read */
+ opp->msi[srs].msir = 0;
+ openpic_set_irq(opp, opp->irq_msi + srs, 0);
+ break;
+ case 0x120: /* MSISR */
+ for (i = 0; i < MAX_MSI; i++)
+ r |= (opp->msi[i].msir ? 1 : 0) << i;
+ break;
+ }
+
+ pr_debug("%s: => 0x%08x\n", __func__, r);
+ *ptr = r;
+ return 0;
+}
+
+static int openpic_summary_read(void *opaque, gpa_t addr, u32 *ptr)
+{
+ uint32_t r = 0;
+
+ pr_debug("%s: addr %#llx\n", __func__, addr);
+
+ /* TODO: EISR/EIMR */
+
+ *ptr = r;
+ return 0;
+}
+
+static int openpic_summary_write(void *opaque, gpa_t addr, u32 val)
+{
+ pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val);
+
+ /* TODO: EISR/EIMR */
+ return 0;
+}
+
+static int openpic_cpu_write_internal(void *opaque, gpa_t addr,
+ u32 val, int idx)
+{
+ struct openpic *opp = opaque;
+ struct irq_source *src;
+ struct irq_dest *dst;
+ int s_IRQ, n_IRQ;
+
+ pr_debug("%s: cpu %d addr %#llx <= 0x%08x\n", __func__, idx,
+ addr, val);
+
+ if (idx < 0)
+ return 0;
+
+ if (addr & 0xF)
+ return 0;
+
+ dst = &opp->dst[idx];
+ addr &= 0xFF0;
+ switch (addr) {
+ case 0x40: /* IPIDR */
+ case 0x50:
+ case 0x60:
+ case 0x70:
+ idx = (addr - 0x40) >> 4;
+ /* we use IDE as mask which CPUs to deliver the IPI to still. */
+ opp->src[opp->irq_ipi0 + idx].destmask |= val;
+ openpic_set_irq(opp, opp->irq_ipi0 + idx, 1);
+ openpic_set_irq(opp, opp->irq_ipi0 + idx, 0);
+ break;
+ case 0x80: /* CTPR */
+ dst->ctpr = val & 0x0000000F;
+
+ pr_debug("%s: set CPU %d ctpr to %d, raised %d servicing %d\n",
+ __func__, idx, dst->ctpr, dst->raised.priority,
+ dst->servicing.priority);
+
+ if (dst->raised.priority <= dst->ctpr) {
+ pr_debug("%s: Lower OpenPIC INT output cpu %d due to ctpr\n",
+ __func__, idx);
+ mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
+ } else if (dst->raised.priority > dst->servicing.priority) {
+ pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d\n",
+ __func__, idx, dst->raised.next);
+ mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
+ }
+
+ break;
+ case 0x90: /* WHOAMI */
+ /* Read-only register */
+ break;
+ case 0xA0: /* IACK */
+ /* Read-only register */
+ break;
+ case 0xB0: { /* EOI */
+ int notify_eoi;
+
+ pr_debug("EOI\n");
+ s_IRQ = IRQ_get_next(opp, &dst->servicing);
+
+ if (s_IRQ < 0) {
+ pr_debug("%s: EOI with no interrupt in service\n",
+ __func__);
+ break;
+ }
+
+ IRQ_resetbit(&dst->servicing, s_IRQ);
+ /* Notify listeners that the IRQ is over */
+ notify_eoi = s_IRQ;
+ /* Set up next servicing IRQ */
+ s_IRQ = IRQ_get_next(opp, &dst->servicing);
+ /* Check queued interrupts. */
+ n_IRQ = IRQ_get_next(opp, &dst->raised);
+ src = &opp->src[n_IRQ];
+ if (n_IRQ != -1 &&
+ (s_IRQ == -1 ||
+ IVPR_PRIORITY(src->ivpr) > dst->servicing.priority)) {
+ pr_debug("Raise OpenPIC INT output cpu %d irq %d\n",
+ idx, n_IRQ);
+ mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
+ }
+
+ spin_unlock(&opp->lock);
+ kvm_notify_acked_irq(opp->kvm, 0, notify_eoi);
+ spin_lock(&opp->lock);
+
+ break;
+ }
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+static int openpic_cpu_write(void *opaque, gpa_t addr, u32 val)
+{
+ struct openpic *opp = opaque;
+
+ return openpic_cpu_write_internal(opp, addr, val,
+ (addr & 0x1f000) >> 12);
+}
+
+static uint32_t openpic_iack(struct openpic *opp, struct irq_dest *dst,
+ int cpu)
+{
+ struct irq_source *src;
+ int retval, irq;
+
+ pr_debug("Lower OpenPIC INT output\n");
+ mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
+
+ irq = IRQ_get_next(opp, &dst->raised);
+ pr_debug("IACK: irq=%d\n", irq);
+
+ if (irq == -1)
+ /* No more interrupt pending */
+ return opp->spve;
+
+ src = &opp->src[irq];
+ if (!(src->ivpr & IVPR_ACTIVITY_MASK) ||
+ !(IVPR_PRIORITY(src->ivpr) > dst->ctpr)) {
+ pr_err("%s: bad raised IRQ %d ctpr %d ivpr 0x%08x\n",
+ __func__, irq, dst->ctpr, src->ivpr);
+ openpic_update_irq(opp, irq);
+ retval = opp->spve;
+ } else {
+ /* IRQ enter servicing state */
+ IRQ_setbit(&dst->servicing, irq);
+ retval = IVPR_VECTOR(opp, src->ivpr);
+ }
+
+ if (!src->level) {
+ /* edge-sensitive IRQ */
+ src->ivpr &= ~IVPR_ACTIVITY_MASK;
+ src->pending = 0;
+ IRQ_resetbit(&dst->raised, irq);
+ }
+
+ if ((irq >= opp->irq_ipi0) && (irq < (opp->irq_ipi0 + MAX_IPI))) {
+ src->destmask &= ~(1 << cpu);
+ if (src->destmask && !src->level) {
+ /* trigger on CPUs that didn't know about it yet */
+ openpic_set_irq(opp, irq, 1);
+ openpic_set_irq(opp, irq, 0);
+ /* if all CPUs knew about it, set active bit again */
+ src->ivpr |= IVPR_ACTIVITY_MASK;
+ }
+ }
+
+ return retval;
+}
+
+void kvmppc_mpic_set_epr(struct kvm_vcpu *vcpu)
+{
+ struct openpic *opp = vcpu->arch.mpic;
+ int cpu = vcpu->arch.irq_cpu_id;
+ unsigned long flags;
+
+ spin_lock_irqsave(&opp->lock, flags);
+
+ if ((opp->gcr & opp->mpic_mode_mask) == GCR_MODE_PROXY)
+ kvmppc_set_epr(vcpu, openpic_iack(opp, &opp->dst[cpu], cpu));
+
+ spin_unlock_irqrestore(&opp->lock, flags);
+}
+
+static int openpic_cpu_read_internal(void *opaque, gpa_t addr,
+ u32 *ptr, int idx)
+{
+ struct openpic *opp = opaque;
+ struct irq_dest *dst;
+ uint32_t retval;
+
+ pr_debug("%s: cpu %d addr %#llx\n", __func__, idx, addr);
+ retval = 0xFFFFFFFF;
+
+ if (idx < 0)
+ goto out;
+
+ if (addr & 0xF)
+ goto out;
+
+ dst = &opp->dst[idx];
+ addr &= 0xFF0;
+ switch (addr) {
+ case 0x80: /* CTPR */
+ retval = dst->ctpr;
+ break;
+ case 0x90: /* WHOAMI */
+ retval = idx;
+ break;
+ case 0xA0: /* IACK */
+ retval = openpic_iack(opp, dst, idx);
+ break;
+ case 0xB0: /* EOI */
+ retval = 0;
+ break;
+ default:
+ break;
+ }
+ pr_debug("%s: => 0x%08x\n", __func__, retval);
+
+out:
+ *ptr = retval;
+ return 0;
+}
+
+static int openpic_cpu_read(void *opaque, gpa_t addr, u32 *ptr)
+{
+ struct openpic *opp = opaque;
+
+ return openpic_cpu_read_internal(opp, addr, ptr,
+ (addr & 0x1f000) >> 12);
+}
+
+struct mem_reg {
+ int (*read)(void *opaque, gpa_t addr, u32 *ptr);
+ int (*write)(void *opaque, gpa_t addr, u32 val);
+ gpa_t start_addr;
+ int size;
+};
+
+static const struct mem_reg openpic_gbl_mmio = {
+ .write = openpic_gbl_write,
+ .read = openpic_gbl_read,
+ .start_addr = OPENPIC_GLB_REG_START,
+ .size = OPENPIC_GLB_REG_SIZE,
+};
+
+static const struct mem_reg openpic_tmr_mmio = {
+ .write = openpic_tmr_write,
+ .read = openpic_tmr_read,
+ .start_addr = OPENPIC_TMR_REG_START,
+ .size = OPENPIC_TMR_REG_SIZE,
+};
+
+static const struct mem_reg openpic_cpu_mmio = {
+ .write = openpic_cpu_write,
+ .read = openpic_cpu_read,
+ .start_addr = OPENPIC_CPU_REG_START,
+ .size = OPENPIC_CPU_REG_SIZE,
+};
+
+static const struct mem_reg openpic_src_mmio = {
+ .write = openpic_src_write,
+ .read = openpic_src_read,
+ .start_addr = OPENPIC_SRC_REG_START,
+ .size = OPENPIC_SRC_REG_SIZE,
+};
+
+static const struct mem_reg openpic_msi_mmio = {
+ .read = openpic_msi_read,
+ .write = openpic_msi_write,
+ .start_addr = OPENPIC_MSI_REG_START,
+ .size = OPENPIC_MSI_REG_SIZE,
+};
+
+static const struct mem_reg openpic_summary_mmio = {
+ .read = openpic_summary_read,
+ .write = openpic_summary_write,
+ .start_addr = OPENPIC_SUMMARY_REG_START,
+ .size = OPENPIC_SUMMARY_REG_SIZE,
+};
+
+static void add_mmio_region(struct openpic *opp, const struct mem_reg *mr)
+{
+ if (opp->num_mmio_regions >= MAX_MMIO_REGIONS) {
+ WARN(1, "kvm mpic: too many mmio regions\n");
+ return;
+ }
+
+ opp->mmio_regions[opp->num_mmio_regions++] = mr;
+}
+
+static void fsl_common_init(struct openpic *opp)
+{
+ int i;
+ int virq = MAX_SRC;
+
+ add_mmio_region(opp, &openpic_msi_mmio);
+ add_mmio_region(opp, &openpic_summary_mmio);
+
+ opp->vid = VID_REVISION_1_2;
+ opp->vir = VIR_GENERIC;
+ opp->vector_mask = 0xFFFF;
+ opp->tfrr_reset = 0;
+ opp->ivpr_reset = IVPR_MASK_MASK;
+ opp->idr_reset = 1 << 0;
+ opp->max_irq = MAX_IRQ;
+
+ opp->irq_ipi0 = virq;
+ virq += MAX_IPI;
+ opp->irq_tim0 = virq;
+ virq += MAX_TMR;
+
+ BUG_ON(virq > MAX_IRQ);
+
+ opp->irq_msi = 224;
+
+ for (i = 0; i < opp->fsl->max_ext; i++)
+ opp->src[i].level = false;
+
+ /* Internal interrupts, including message and MSI */
+ for (i = 16; i < MAX_SRC; i++) {
+ opp->src[i].type = IRQ_TYPE_FSLINT;
+ opp->src[i].level = true;
+ }
+
+ /* timers and IPIs */
+ for (i = MAX_SRC; i < virq; i++) {
+ opp->src[i].type = IRQ_TYPE_FSLSPECIAL;
+ opp->src[i].level = false;
+ }
+}
+
+static int kvm_mpic_read_internal(struct openpic *opp, gpa_t addr, u32 *ptr)
+{
+ int i;
+
+ for (i = 0; i < opp->num_mmio_regions; i++) {
+ const struct mem_reg *mr = opp->mmio_regions[i];
+
+ if (mr->start_addr > addr || addr >= mr->start_addr + mr->size)
+ continue;
+
+ return mr->read(opp, addr - mr->start_addr, ptr);
+ }
+
+ return -ENXIO;
+}
+
+static int kvm_mpic_write_internal(struct openpic *opp, gpa_t addr, u32 val)
+{
+ int i;
+
+ for (i = 0; i < opp->num_mmio_regions; i++) {
+ const struct mem_reg *mr = opp->mmio_regions[i];
+
+ if (mr->start_addr > addr || addr >= mr->start_addr + mr->size)
+ continue;
+
+ return mr->write(opp, addr - mr->start_addr, val);
+ }
+
+ return -ENXIO;
+}
+
+static int kvm_mpic_read(struct kvm_vcpu *vcpu,
+ struct kvm_io_device *this,
+ gpa_t addr, int len, void *ptr)
+{
+ struct openpic *opp = container_of(this, struct openpic, mmio);
+ int ret;
+ union {
+ u32 val;
+ u8 bytes[4];
+ } u;
+
+ if (addr & (len - 1)) {
+ pr_debug("%s: bad alignment %llx/%d\n",
+ __func__, addr, len);
+ return -EINVAL;
+ }
+
+ spin_lock_irq(&opp->lock);
+ ret = kvm_mpic_read_internal(opp, addr - opp->reg_base, &u.val);
+ spin_unlock_irq(&opp->lock);
+
+ /*
+ * Technically only 32-bit accesses are allowed, but be nice to
+ * people dumping registers a byte at a time -- it works in real
+ * hardware (reads only, not writes).
+ */
+ if (len == 4) {
+ *(u32 *)ptr = u.val;
+ pr_debug("%s: addr %llx ret %d len 4 val %x\n",
+ __func__, addr, ret, u.val);
+ } else if (len == 1) {
+ *(u8 *)ptr = u.bytes[addr & 3];
+ pr_debug("%s: addr %llx ret %d len 1 val %x\n",
+ __func__, addr, ret, u.bytes[addr & 3]);
+ } else {
+ pr_debug("%s: bad length %d\n", __func__, len);
+ return -EINVAL;
+ }
+
+ return ret;
+}
+
+static int kvm_mpic_write(struct kvm_vcpu *vcpu,
+ struct kvm_io_device *this,
+ gpa_t addr, int len, const void *ptr)
+{
+ struct openpic *opp = container_of(this, struct openpic, mmio);
+ int ret;
+
+ if (len != 4) {
+ pr_debug("%s: bad length %d\n", __func__, len);
+ return -EOPNOTSUPP;
+ }
+ if (addr & 3) {
+ pr_debug("%s: bad alignment %llx/%d\n", __func__, addr, len);
+ return -EOPNOTSUPP;
+ }
+
+ spin_lock_irq(&opp->lock);
+ ret = kvm_mpic_write_internal(opp, addr - opp->reg_base,
+ *(const u32 *)ptr);
+ spin_unlock_irq(&opp->lock);
+
+ pr_debug("%s: addr %llx ret %d val %x\n",
+ __func__, addr, ret, *(const u32 *)ptr);
+
+ return ret;
+}
+
+static const struct kvm_io_device_ops mpic_mmio_ops = {
+ .read = kvm_mpic_read,
+ .write = kvm_mpic_write,
+};
+
+static void map_mmio(struct openpic *opp)
+{
+ kvm_iodevice_init(&opp->mmio, &mpic_mmio_ops);
+
+ kvm_io_bus_register_dev(opp->kvm, KVM_MMIO_BUS,
+ opp->reg_base, OPENPIC_REG_SIZE,
+ &opp->mmio);
+}
+
+static void unmap_mmio(struct openpic *opp)
+{
+ kvm_io_bus_unregister_dev(opp->kvm, KVM_MMIO_BUS, &opp->mmio);
+}
+
+static int set_base_addr(struct openpic *opp, struct kvm_device_attr *attr)
+{
+ u64 base;
+
+ if (copy_from_user(&base, (u64 __user *)(long)attr->addr, sizeof(u64)))
+ return -EFAULT;
+
+ if (base & 0x3ffff) {
+ pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx not aligned\n",
+ __func__, base);
+ return -EINVAL;
+ }
+
+ if (base == opp->reg_base)
+ return 0;
+
+ mutex_lock(&opp->kvm->slots_lock);
+
+ unmap_mmio(opp);
+ opp->reg_base = base;
+
+ pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx\n",
+ __func__, base);
+
+ if (base == 0)
+ goto out;
+
+ map_mmio(opp);
+
+out:
+ mutex_unlock(&opp->kvm->slots_lock);
+ return 0;
+}
+
+#define ATTR_SET 0
+#define ATTR_GET 1
+
+static int access_reg(struct openpic *opp, gpa_t addr, u32 *val, int type)
+{
+ int ret;
+
+ if (addr & 3)
+ return -ENXIO;
+
+ spin_lock_irq(&opp->lock);
+
+ if (type == ATTR_SET)
+ ret = kvm_mpic_write_internal(opp, addr, *val);
+ else
+ ret = kvm_mpic_read_internal(opp, addr, val);
+
+ spin_unlock_irq(&opp->lock);
+
+ pr_debug("%s: type %d addr %llx val %x\n", __func__, type, addr, *val);
+
+ return ret;
+}
+
+static int mpic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
+{
+ struct openpic *opp = dev->private;
+ u32 attr32;
+
+ switch (attr->group) {
+ case KVM_DEV_MPIC_GRP_MISC:
+ switch (attr->attr) {
+ case KVM_DEV_MPIC_BASE_ADDR:
+ return set_base_addr(opp, attr);
+ }
+
+ break;
+
+ case KVM_DEV_MPIC_GRP_REGISTER:
+ if (get_user(attr32, (u32 __user *)(long)attr->addr))
+ return -EFAULT;
+
+ return access_reg(opp, attr->attr, &attr32, ATTR_SET);
+
+ case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
+ if (attr->attr > MAX_SRC)
+ return -EINVAL;
+
+ if (get_user(attr32, (u32 __user *)(long)attr->addr))
+ return -EFAULT;
+
+ if (attr32 != 0 && attr32 != 1)
+ return -EINVAL;
+
+ spin_lock_irq(&opp->lock);
+ openpic_set_irq(opp, attr->attr, attr32);
+ spin_unlock_irq(&opp->lock);
+ return 0;
+ }
+
+ return -ENXIO;
+}
+
+static int mpic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
+{
+ struct openpic *opp = dev->private;
+ u64 attr64;
+ u32 attr32;
+ int ret;
+
+ switch (attr->group) {
+ case KVM_DEV_MPIC_GRP_MISC:
+ switch (attr->attr) {
+ case KVM_DEV_MPIC_BASE_ADDR:
+ mutex_lock(&opp->kvm->slots_lock);
+ attr64 = opp->reg_base;
+ mutex_unlock(&opp->kvm->slots_lock);
+
+ if (copy_to_user((u64 __user *)(long)attr->addr,
+ &attr64, sizeof(u64)))
+ return -EFAULT;
+
+ return 0;
+ }
+
+ break;
+
+ case KVM_DEV_MPIC_GRP_REGISTER:
+ ret = access_reg(opp, attr->attr, &attr32, ATTR_GET);
+ if (ret)
+ return ret;
+
+ if (put_user(attr32, (u32 __user *)(long)attr->addr))
+ return -EFAULT;
+
+ return 0;
+
+ case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
+ if (attr->attr > MAX_SRC)
+ return -EINVAL;
+
+ spin_lock_irq(&opp->lock);
+ attr32 = opp->src[attr->attr].pending;
+ spin_unlock_irq(&opp->lock);
+
+ if (put_user(attr32, (u32 __user *)(long)attr->addr))
+ return -EFAULT;
+
+ return 0;
+ }
+
+ return -ENXIO;
+}
+
+static int mpic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
+{
+ switch (attr->group) {
+ case KVM_DEV_MPIC_GRP_MISC:
+ switch (attr->attr) {
+ case KVM_DEV_MPIC_BASE_ADDR:
+ return 0;
+ }
+
+ break;
+
+ case KVM_DEV_MPIC_GRP_REGISTER:
+ return 0;
+
+ case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
+ if (attr->attr > MAX_SRC)
+ break;
+
+ return 0;
+ }
+
+ return -ENXIO;
+}
+
+static void mpic_destroy(struct kvm_device *dev)
+{
+ struct openpic *opp = dev->private;
+
+ dev->kvm->arch.mpic = NULL;
+ kfree(opp);
+ kfree(dev);
+}
+
+static int mpic_set_default_irq_routing(struct openpic *opp)
+{
+ struct kvm_irq_routing_entry *routing;
+
+ /* Create a nop default map, so that dereferencing it still works */
+ routing = kzalloc((sizeof(*routing)), GFP_KERNEL);
+ if (!routing)
+ return -ENOMEM;
+
+ kvm_set_irq_routing(opp->kvm, routing, 0, 0);
+
+ kfree(routing);
+ return 0;
+}
+
+static int mpic_create(struct kvm_device *dev, u32 type)
+{
+ struct openpic *opp;
+ int ret;
+
+ /* We only support one MPIC at a time for now */
+ if (dev->kvm->arch.mpic)
+ return -EINVAL;
+
+ opp = kzalloc(sizeof(struct openpic), GFP_KERNEL);
+ if (!opp)
+ return -ENOMEM;
+
+ dev->private = opp;
+ opp->kvm = dev->kvm;
+ opp->dev = dev;
+ opp->model = type;
+ spin_lock_init(&opp->lock);
+
+ add_mmio_region(opp, &openpic_gbl_mmio);
+ add_mmio_region(opp, &openpic_tmr_mmio);
+ add_mmio_region(opp, &openpic_src_mmio);
+ add_mmio_region(opp, &openpic_cpu_mmio);
+
+ switch (opp->model) {
+ case KVM_DEV_TYPE_FSL_MPIC_20:
+ opp->fsl = &fsl_mpic_20;
+ opp->brr1 = 0x00400200;
+ opp->flags |= OPENPIC_FLAG_IDR_CRIT;
+ opp->nb_irqs = 80;
+ opp->mpic_mode_mask = GCR_MODE_MIXED;
+
+ fsl_common_init(opp);
+
+ break;
+
+ case KVM_DEV_TYPE_FSL_MPIC_42:
+ opp->fsl = &fsl_mpic_42;
+ opp->brr1 = 0x00400402;
+ opp->flags |= OPENPIC_FLAG_ILR;
+ opp->nb_irqs = 196;
+ opp->mpic_mode_mask = GCR_MODE_PROXY;
+
+ fsl_common_init(opp);
+
+ break;
+
+ default:
+ ret = -ENODEV;
+ goto err;
+ }
+
+ ret = mpic_set_default_irq_routing(opp);
+ if (ret)
+ goto err;
+
+ openpic_reset(opp);
+
+ smp_wmb();
+ dev->kvm->arch.mpic = opp;
+
+ return 0;
+
+err:
+ kfree(opp);
+ return ret;
+}
+
+struct kvm_device_ops kvm_mpic_ops = {
+ .name = "kvm-mpic",
+ .create = mpic_create,
+ .destroy = mpic_destroy,
+ .set_attr = mpic_set_attr,
+ .get_attr = mpic_get_attr,
+ .has_attr = mpic_has_attr,
+};
+
+int kvmppc_mpic_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu,
+ u32 cpu)
+{
+ struct openpic *opp = dev->private;
+ int ret = 0;
+
+ if (dev->ops != &kvm_mpic_ops)
+ return -EPERM;
+ if (opp->kvm != vcpu->kvm)
+ return -EPERM;
+ if (cpu < 0 || cpu >= MAX_CPU)
+ return -EPERM;
+
+ spin_lock_irq(&opp->lock);
+
+ if (opp->dst[cpu].vcpu) {
+ ret = -EEXIST;
+ goto out;
+ }
+ if (vcpu->arch.irq_type) {
+ ret = -EBUSY;
+ goto out;
+ }
+
+ opp->dst[cpu].vcpu = vcpu;
+ opp->nb_cpus = max(opp->nb_cpus, cpu + 1);
+
+ vcpu->arch.mpic = opp;
+ vcpu->arch.irq_cpu_id = cpu;
+ vcpu->arch.irq_type = KVMPPC_IRQ_MPIC;
+
+ /* This might need to be changed if GCR gets extended */
+ if (opp->mpic_mode_mask == GCR_MODE_PROXY)
+ vcpu->arch.epr_flags |= KVMPPC_EPR_KERNEL;
+
+out:
+ spin_unlock_irq(&opp->lock);
+ return ret;
+}
+
+/*
+ * This should only happen immediately before the mpic is destroyed,
+ * so we shouldn't need to worry about anything still trying to
+ * access the vcpu pointer.
+ */
+void kvmppc_mpic_disconnect_vcpu(struct openpic *opp, struct kvm_vcpu *vcpu)
+{
+ BUG_ON(!opp->dst[vcpu->arch.irq_cpu_id].vcpu);
+
+ opp->dst[vcpu->arch.irq_cpu_id].vcpu = NULL;
+}
+
+/*
+ * Return value:
+ * < 0 Interrupt was ignored (masked or not delivered for other reasons)
+ * = 0 Interrupt was coalesced (previous irq is still pending)
+ * > 0 Number of CPUs interrupt was delivered to
+ */
+static int mpic_set_irq(struct kvm_kernel_irq_routing_entry *e,
+ struct kvm *kvm, int irq_source_id, int level,
+ bool line_status)
+{
+ u32 irq = e->irqchip.pin;
+ struct openpic *opp = kvm->arch.mpic;
+ unsigned long flags;
+
+ spin_lock_irqsave(&opp->lock, flags);
+ openpic_set_irq(opp, irq, level);
+ spin_unlock_irqrestore(&opp->lock, flags);
+
+ /* All code paths we care about don't check for the return value */
+ return 0;
+}
+
+int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
+ struct kvm *kvm, int irq_source_id, int level, bool line_status)
+{
+ struct openpic *opp = kvm->arch.mpic;
+ unsigned long flags;
+
+ spin_lock_irqsave(&opp->lock, flags);
+
+ /*
+ * XXX We ignore the target address for now, as we only support
+ * a single MSI bank.
+ */
+ openpic_msi_write(kvm->arch.mpic, MSIIR_OFFSET, e->msi.data);
+ spin_unlock_irqrestore(&opp->lock, flags);
+
+ /* All code paths we care about don't check for the return value */
+ return 0;
+}
+
+int kvm_set_routing_entry(struct kvm *kvm,
+ struct kvm_kernel_irq_routing_entry *e,
+ const struct kvm_irq_routing_entry *ue)
+{
+ int r = -EINVAL;
+
+ switch (ue->type) {
+ case KVM_IRQ_ROUTING_IRQCHIP:
+ e->set = mpic_set_irq;
+ e->irqchip.irqchip = ue->u.irqchip.irqchip;
+ e->irqchip.pin = ue->u.irqchip.pin;
+ if (e->irqchip.pin >= KVM_IRQCHIP_NUM_PINS)
+ goto out;
+ break;
+ case KVM_IRQ_ROUTING_MSI:
+ e->set = kvm_set_msi;
+ e->msi.address_lo = ue->u.msi.address_lo;
+ e->msi.address_hi = ue->u.msi.address_hi;
+ e->msi.data = ue->u.msi.data;
+ break;
+ default:
+ goto out;
+ }
+
+ r = 0;
+out:
+ return r;
+}
diff --git a/arch/powerpc/kvm/powerpc.c b/arch/powerpc/kvm/powerpc.c
new file mode 100644
index 000000000..b850b0efa
--- /dev/null
+++ b/arch/powerpc/kvm/powerpc.c
@@ -0,0 +1,2551 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ *
+ * Copyright IBM Corp. 2007
+ *
+ * Authors: Hollis Blanchard <hollisb@us.ibm.com>
+ * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
+ */
+
+#include <linux/errno.h>
+#include <linux/err.h>
+#include <linux/kvm_host.h>
+#include <linux/vmalloc.h>
+#include <linux/hrtimer.h>
+#include <linux/sched/signal.h>
+#include <linux/fs.h>
+#include <linux/slab.h>
+#include <linux/file.h>
+#include <linux/module.h>
+#include <linux/irqbypass.h>
+#include <linux/kvm_irqfd.h>
+#include <linux/of.h>
+#include <asm/cputable.h>
+#include <linux/uaccess.h>
+#include <asm/kvm_ppc.h>
+#include <asm/cputhreads.h>
+#include <asm/irqflags.h>
+#include <asm/iommu.h>
+#include <asm/switch_to.h>
+#include <asm/xive.h>
+#ifdef CONFIG_PPC_PSERIES
+#include <asm/hvcall.h>
+#include <asm/plpar_wrappers.h>
+#endif
+#include <asm/ultravisor.h>
+#include <asm/setup.h>
+
+#include "timing.h"
+#include "irq.h"
+#include "../mm/mmu_decl.h"
+
+#define CREATE_TRACE_POINTS
+#include "trace.h"
+
+struct kvmppc_ops *kvmppc_hv_ops;
+EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
+struct kvmppc_ops *kvmppc_pr_ops;
+EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
+
+
+int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
+{
+ return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
+}
+
+bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
+{
+ return kvm_arch_vcpu_runnable(vcpu);
+}
+
+bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
+{
+ return false;
+}
+
+int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
+{
+ return 1;
+}
+
+/*
+ * Common checks before entering the guest world. Call with interrupts
+ * disabled.
+ *
+ * returns:
+ *
+ * == 1 if we're ready to go into guest state
+ * <= 0 if we need to go back to the host with return value
+ */
+int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
+{
+ int r;
+
+ WARN_ON(irqs_disabled());
+ hard_irq_disable();
+
+ while (true) {
+ if (need_resched()) {
+ local_irq_enable();
+ cond_resched();
+ hard_irq_disable();
+ continue;
+ }
+
+ if (signal_pending(current)) {
+ kvmppc_account_exit(vcpu, SIGNAL_EXITS);
+ vcpu->run->exit_reason = KVM_EXIT_INTR;
+ r = -EINTR;
+ break;
+ }
+
+ vcpu->mode = IN_GUEST_MODE;
+
+ /*
+ * Reading vcpu->requests must happen after setting vcpu->mode,
+ * so we don't miss a request because the requester sees
+ * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
+ * before next entering the guest (and thus doesn't IPI).
+ * This also orders the write to mode from any reads
+ * to the page tables done while the VCPU is running.
+ * Please see the comment in kvm_flush_remote_tlbs.
+ */
+ smp_mb();
+
+ if (kvm_request_pending(vcpu)) {
+ /* Make sure we process requests preemptable */
+ local_irq_enable();
+ trace_kvm_check_requests(vcpu);
+ r = kvmppc_core_check_requests(vcpu);
+ hard_irq_disable();
+ if (r > 0)
+ continue;
+ break;
+ }
+
+ if (kvmppc_core_prepare_to_enter(vcpu)) {
+ /* interrupts got enabled in between, so we
+ are back at square 1 */
+ continue;
+ }
+
+ guest_enter_irqoff();
+ return 1;
+ }
+
+ /* return to host */
+ local_irq_enable();
+ return r;
+}
+EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
+
+#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
+static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
+{
+ struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
+ int i;
+
+ shared->sprg0 = swab64(shared->sprg0);
+ shared->sprg1 = swab64(shared->sprg1);
+ shared->sprg2 = swab64(shared->sprg2);
+ shared->sprg3 = swab64(shared->sprg3);
+ shared->srr0 = swab64(shared->srr0);
+ shared->srr1 = swab64(shared->srr1);
+ shared->dar = swab64(shared->dar);
+ shared->msr = swab64(shared->msr);
+ shared->dsisr = swab32(shared->dsisr);
+ shared->int_pending = swab32(shared->int_pending);
+ for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
+ shared->sr[i] = swab32(shared->sr[i]);
+}
+#endif
+
+int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
+{
+ int nr = kvmppc_get_gpr(vcpu, 11);
+ int r;
+ unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
+ unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
+ unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
+ unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
+ unsigned long r2 = 0;
+
+ if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
+ /* 32 bit mode */
+ param1 &= 0xffffffff;
+ param2 &= 0xffffffff;
+ param3 &= 0xffffffff;
+ param4 &= 0xffffffff;
+ }
+
+ switch (nr) {
+ case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
+ {
+#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
+ /* Book3S can be little endian, find it out here */
+ int shared_big_endian = true;
+ if (vcpu->arch.intr_msr & MSR_LE)
+ shared_big_endian = false;
+ if (shared_big_endian != vcpu->arch.shared_big_endian)
+ kvmppc_swab_shared(vcpu);
+ vcpu->arch.shared_big_endian = shared_big_endian;
+#endif
+
+ if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
+ /*
+ * Older versions of the Linux magic page code had
+ * a bug where they would map their trampoline code
+ * NX. If that's the case, remove !PR NX capability.
+ */
+ vcpu->arch.disable_kernel_nx = true;
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+ }
+
+ vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
+ vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
+
+#ifdef CONFIG_PPC_64K_PAGES
+ /*
+ * Make sure our 4k magic page is in the same window of a 64k
+ * page within the guest and within the host's page.
+ */
+ if ((vcpu->arch.magic_page_pa & 0xf000) !=
+ ((ulong)vcpu->arch.shared & 0xf000)) {
+ void *old_shared = vcpu->arch.shared;
+ ulong shared = (ulong)vcpu->arch.shared;
+ void *new_shared;
+
+ shared &= PAGE_MASK;
+ shared |= vcpu->arch.magic_page_pa & 0xf000;
+ new_shared = (void*)shared;
+ memcpy(new_shared, old_shared, 0x1000);
+ vcpu->arch.shared = new_shared;
+ }
+#endif
+
+ r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
+
+ r = EV_SUCCESS;
+ break;
+ }
+ case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
+ r = EV_SUCCESS;
+#if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
+ r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
+#endif
+
+ /* Second return value is in r4 */
+ break;
+ case EV_HCALL_TOKEN(EV_IDLE):
+ r = EV_SUCCESS;
+ kvm_vcpu_halt(vcpu);
+ break;
+ default:
+ r = EV_UNIMPLEMENTED;
+ break;
+ }
+
+ kvmppc_set_gpr(vcpu, 4, r2);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
+
+int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
+{
+ int r = false;
+
+ /* We have to know what CPU to virtualize */
+ if (!vcpu->arch.pvr)
+ goto out;
+
+ /* PAPR only works with book3s_64 */
+ if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
+ goto out;
+
+ /* HV KVM can only do PAPR mode for now */
+ if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
+ goto out;
+
+#ifdef CONFIG_KVM_BOOKE_HV
+ if (!cpu_has_feature(CPU_FTR_EMB_HV))
+ goto out;
+#endif
+
+ r = true;
+
+out:
+ vcpu->arch.sane = r;
+ return r ? 0 : -EINVAL;
+}
+EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
+
+int kvmppc_emulate_mmio(struct kvm_vcpu *vcpu)
+{
+ enum emulation_result er;
+ int r;
+
+ er = kvmppc_emulate_loadstore(vcpu);
+ switch (er) {
+ case EMULATE_DONE:
+ /* Future optimization: only reload non-volatiles if they were
+ * actually modified. */
+ r = RESUME_GUEST_NV;
+ break;
+ case EMULATE_AGAIN:
+ r = RESUME_GUEST;
+ break;
+ case EMULATE_DO_MMIO:
+ vcpu->run->exit_reason = KVM_EXIT_MMIO;
+ /* We must reload nonvolatiles because "update" load/store
+ * instructions modify register state. */
+ /* Future optimization: only reload non-volatiles if they were
+ * actually modified. */
+ r = RESUME_HOST_NV;
+ break;
+ case EMULATE_FAIL:
+ {
+ u32 last_inst;
+
+ kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
+ kvm_debug_ratelimited("Guest access to device memory using unsupported instruction (opcode: %#08x)\n",
+ last_inst);
+
+ /*
+ * Injecting a Data Storage here is a bit more
+ * accurate since the instruction that caused the
+ * access could still be a valid one.
+ */
+ if (!IS_ENABLED(CONFIG_BOOKE)) {
+ ulong dsisr = DSISR_BADACCESS;
+
+ if (vcpu->mmio_is_write)
+ dsisr |= DSISR_ISSTORE;
+
+ kvmppc_core_queue_data_storage(vcpu, vcpu->arch.vaddr_accessed, dsisr);
+ } else {
+ /*
+ * BookE does not send a SIGBUS on a bad
+ * fault, so use a Program interrupt instead
+ * to avoid a fault loop.
+ */
+ kvmppc_core_queue_program(vcpu, 0);
+ }
+
+ r = RESUME_GUEST;
+ break;
+ }
+ default:
+ WARN_ON(1);
+ r = RESUME_GUEST;
+ }
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
+
+int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
+ bool data)
+{
+ ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
+ struct kvmppc_pte pte;
+ int r = -EINVAL;
+
+ vcpu->stat.st++;
+
+ if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
+ r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
+ size);
+
+ if ((!r) || (r == -EAGAIN))
+ return r;
+
+ r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
+ XLATE_WRITE, &pte);
+ if (r < 0)
+ return r;
+
+ *eaddr = pte.raddr;
+
+ if (!pte.may_write)
+ return -EPERM;
+
+ /* Magic page override */
+ if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
+ ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
+ !(kvmppc_get_msr(vcpu) & MSR_PR)) {
+ void *magic = vcpu->arch.shared;
+ magic += pte.eaddr & 0xfff;
+ memcpy(magic, ptr, size);
+ return EMULATE_DONE;
+ }
+
+ if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
+ return EMULATE_DO_MMIO;
+
+ return EMULATE_DONE;
+}
+EXPORT_SYMBOL_GPL(kvmppc_st);
+
+int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
+ bool data)
+{
+ ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
+ struct kvmppc_pte pte;
+ int rc = -EINVAL;
+
+ vcpu->stat.ld++;
+
+ if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
+ rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
+ size);
+
+ if ((!rc) || (rc == -EAGAIN))
+ return rc;
+
+ rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
+ XLATE_READ, &pte);
+ if (rc)
+ return rc;
+
+ *eaddr = pte.raddr;
+
+ if (!pte.may_read)
+ return -EPERM;
+
+ if (!data && !pte.may_execute)
+ return -ENOEXEC;
+
+ /* Magic page override */
+ if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
+ ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
+ !(kvmppc_get_msr(vcpu) & MSR_PR)) {
+ void *magic = vcpu->arch.shared;
+ magic += pte.eaddr & 0xfff;
+ memcpy(ptr, magic, size);
+ return EMULATE_DONE;
+ }
+
+ kvm_vcpu_srcu_read_lock(vcpu);
+ rc = kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size);
+ kvm_vcpu_srcu_read_unlock(vcpu);
+ if (rc)
+ return EMULATE_DO_MMIO;
+
+ return EMULATE_DONE;
+}
+EXPORT_SYMBOL_GPL(kvmppc_ld);
+
+int kvm_arch_hardware_enable(void)
+{
+ return 0;
+}
+
+int kvm_arch_hardware_setup(void *opaque)
+{
+ return 0;
+}
+
+int kvm_arch_check_processor_compat(void *opaque)
+{
+ return kvmppc_core_check_processor_compat();
+}
+
+int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
+{
+ struct kvmppc_ops *kvm_ops = NULL;
+ int r;
+
+ /*
+ * if we have both HV and PR enabled, default is HV
+ */
+ if (type == 0) {
+ if (kvmppc_hv_ops)
+ kvm_ops = kvmppc_hv_ops;
+ else
+ kvm_ops = kvmppc_pr_ops;
+ if (!kvm_ops)
+ goto err_out;
+ } else if (type == KVM_VM_PPC_HV) {
+ if (!kvmppc_hv_ops)
+ goto err_out;
+ kvm_ops = kvmppc_hv_ops;
+ } else if (type == KVM_VM_PPC_PR) {
+ if (!kvmppc_pr_ops)
+ goto err_out;
+ kvm_ops = kvmppc_pr_ops;
+ } else
+ goto err_out;
+
+ if (!try_module_get(kvm_ops->owner))
+ return -ENOENT;
+
+ kvm->arch.kvm_ops = kvm_ops;
+ r = kvmppc_core_init_vm(kvm);
+ if (r)
+ module_put(kvm_ops->owner);
+ return r;
+err_out:
+ return -EINVAL;
+}
+
+void kvm_arch_destroy_vm(struct kvm *kvm)
+{
+#ifdef CONFIG_KVM_XICS
+ /*
+ * We call kick_all_cpus_sync() to ensure that all
+ * CPUs have executed any pending IPIs before we
+ * continue and free VCPUs structures below.
+ */
+ if (is_kvmppc_hv_enabled(kvm))
+ kick_all_cpus_sync();
+#endif
+
+ kvm_destroy_vcpus(kvm);
+
+ mutex_lock(&kvm->lock);
+
+ kvmppc_core_destroy_vm(kvm);
+
+ mutex_unlock(&kvm->lock);
+
+ /* drop the module reference */
+ module_put(kvm->arch.kvm_ops->owner);
+}
+
+int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
+{
+ int r;
+ /* Assume we're using HV mode when the HV module is loaded */
+ int hv_enabled = kvmppc_hv_ops ? 1 : 0;
+
+ if (kvm) {
+ /*
+ * Hooray - we know which VM type we're running on. Depend on
+ * that rather than the guess above.
+ */
+ hv_enabled = is_kvmppc_hv_enabled(kvm);
+ }
+
+ switch (ext) {
+#ifdef CONFIG_BOOKE
+ case KVM_CAP_PPC_BOOKE_SREGS:
+ case KVM_CAP_PPC_BOOKE_WATCHDOG:
+ case KVM_CAP_PPC_EPR:
+#else
+ case KVM_CAP_PPC_SEGSTATE:
+ case KVM_CAP_PPC_HIOR:
+ case KVM_CAP_PPC_PAPR:
+#endif
+ case KVM_CAP_PPC_UNSET_IRQ:
+ case KVM_CAP_PPC_IRQ_LEVEL:
+ case KVM_CAP_ENABLE_CAP:
+ case KVM_CAP_ONE_REG:
+ case KVM_CAP_IOEVENTFD:
+ case KVM_CAP_DEVICE_CTRL:
+ case KVM_CAP_IMMEDIATE_EXIT:
+ case KVM_CAP_SET_GUEST_DEBUG:
+ r = 1;
+ break;
+ case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
+ case KVM_CAP_PPC_PAIRED_SINGLES:
+ case KVM_CAP_PPC_OSI:
+ case KVM_CAP_PPC_GET_PVINFO:
+#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
+ case KVM_CAP_SW_TLB:
+#endif
+ /* We support this only for PR */
+ r = !hv_enabled;
+ break;
+#ifdef CONFIG_KVM_MPIC
+ case KVM_CAP_IRQ_MPIC:
+ r = 1;
+ break;
+#endif
+
+#ifdef CONFIG_PPC_BOOK3S_64
+ case KVM_CAP_SPAPR_TCE:
+ case KVM_CAP_SPAPR_TCE_64:
+ r = 1;
+ break;
+ case KVM_CAP_SPAPR_TCE_VFIO:
+ r = !!cpu_has_feature(CPU_FTR_HVMODE);
+ break;
+ case KVM_CAP_PPC_RTAS:
+ case KVM_CAP_PPC_FIXUP_HCALL:
+ case KVM_CAP_PPC_ENABLE_HCALL:
+#ifdef CONFIG_KVM_XICS
+ case KVM_CAP_IRQ_XICS:
+#endif
+ case KVM_CAP_PPC_GET_CPU_CHAR:
+ r = 1;
+ break;
+#ifdef CONFIG_KVM_XIVE
+ case KVM_CAP_PPC_IRQ_XIVE:
+ /*
+ * We need XIVE to be enabled on the platform (implies
+ * a POWER9 processor) and the PowerNV platform, as
+ * nested is not yet supported.
+ */
+ r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
+ kvmppc_xive_native_supported();
+ break;
+#endif
+
+ case KVM_CAP_PPC_ALLOC_HTAB:
+ r = hv_enabled;
+ break;
+#endif /* CONFIG_PPC_BOOK3S_64 */
+#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+ case KVM_CAP_PPC_SMT:
+ r = 0;
+ if (kvm) {
+ if (kvm->arch.emul_smt_mode > 1)
+ r = kvm->arch.emul_smt_mode;
+ else
+ r = kvm->arch.smt_mode;
+ } else if (hv_enabled) {
+ if (cpu_has_feature(CPU_FTR_ARCH_300))
+ r = 1;
+ else
+ r = threads_per_subcore;
+ }
+ break;
+ case KVM_CAP_PPC_SMT_POSSIBLE:
+ r = 1;
+ if (hv_enabled) {
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ r = ((threads_per_subcore << 1) - 1);
+ else
+ /* P9 can emulate dbells, so allow any mode */
+ r = 8 | 4 | 2 | 1;
+ }
+ break;
+ case KVM_CAP_PPC_RMA:
+ r = 0;
+ break;
+ case KVM_CAP_PPC_HWRNG:
+ r = kvmppc_hwrng_present();
+ break;
+ case KVM_CAP_PPC_MMU_RADIX:
+ r = !!(hv_enabled && radix_enabled());
+ break;
+ case KVM_CAP_PPC_MMU_HASH_V3:
+ r = !!(hv_enabled && kvmppc_hv_ops->hash_v3_possible &&
+ kvmppc_hv_ops->hash_v3_possible());
+ break;
+ case KVM_CAP_PPC_NESTED_HV:
+ r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
+ !kvmppc_hv_ops->enable_nested(NULL));
+ break;
+#endif
+ case KVM_CAP_SYNC_MMU:
+#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+ r = hv_enabled;
+#elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
+ r = 1;
+#else
+ r = 0;
+#endif
+ break;
+#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+ case KVM_CAP_PPC_HTAB_FD:
+ r = hv_enabled;
+ break;
+#endif
+ case KVM_CAP_NR_VCPUS:
+ /*
+ * Recommending a number of CPUs is somewhat arbitrary; we
+ * return the number of present CPUs for -HV (since a host
+ * will have secondary threads "offline"), and for other KVM
+ * implementations just count online CPUs.
+ */
+ if (hv_enabled)
+ r = min_t(unsigned int, num_present_cpus(), KVM_MAX_VCPUS);
+ else
+ r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
+ break;
+ case KVM_CAP_MAX_VCPUS:
+ r = KVM_MAX_VCPUS;
+ break;
+ case KVM_CAP_MAX_VCPU_ID:
+ r = KVM_MAX_VCPU_IDS;
+ break;
+#ifdef CONFIG_PPC_BOOK3S_64
+ case KVM_CAP_PPC_GET_SMMU_INFO:
+ r = 1;
+ break;
+ case KVM_CAP_SPAPR_MULTITCE:
+ r = 1;
+ break;
+ case KVM_CAP_SPAPR_RESIZE_HPT:
+ r = !!hv_enabled;
+ break;
+#endif
+#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+ case KVM_CAP_PPC_FWNMI:
+ r = hv_enabled;
+ break;
+#endif
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+ case KVM_CAP_PPC_HTM:
+ r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
+ (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
+ break;
+#endif
+#if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
+ case KVM_CAP_PPC_SECURE_GUEST:
+ r = hv_enabled && kvmppc_hv_ops->enable_svm &&
+ !kvmppc_hv_ops->enable_svm(NULL);
+ break;
+ case KVM_CAP_PPC_DAWR1:
+ r = !!(hv_enabled && kvmppc_hv_ops->enable_dawr1 &&
+ !kvmppc_hv_ops->enable_dawr1(NULL));
+ break;
+ case KVM_CAP_PPC_RPT_INVALIDATE:
+ r = 1;
+ break;
+#endif
+ case KVM_CAP_PPC_AIL_MODE_3:
+ r = 0;
+ /*
+ * KVM PR, POWER7, and some POWER9s don't support AIL=3 mode.
+ * The POWER9s can support it if the guest runs in hash mode,
+ * but QEMU doesn't necessarily query the capability in time.
+ */
+ if (hv_enabled) {
+ if (kvmhv_on_pseries()) {
+ if (pseries_reloc_on_exception())
+ r = 1;
+ } else if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
+ !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
+ r = 1;
+ }
+ }
+ break;
+ default:
+ r = 0;
+ break;
+ }
+ return r;
+
+}
+
+long kvm_arch_dev_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ return -EINVAL;
+}
+
+void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
+{
+ kvmppc_core_free_memslot(kvm, slot);
+}
+
+int kvm_arch_prepare_memory_region(struct kvm *kvm,
+ const struct kvm_memory_slot *old,
+ struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ return kvmppc_core_prepare_memory_region(kvm, old, new, change);
+}
+
+void kvm_arch_commit_memory_region(struct kvm *kvm,
+ struct kvm_memory_slot *old,
+ const struct kvm_memory_slot *new,
+ enum kvm_mr_change change)
+{
+ kvmppc_core_commit_memory_region(kvm, old, new, change);
+}
+
+void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
+ struct kvm_memory_slot *slot)
+{
+ kvmppc_core_flush_memslot(kvm, slot);
+}
+
+int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
+{
+ return 0;
+}
+
+static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
+{
+ struct kvm_vcpu *vcpu;
+
+ vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
+ kvmppc_decrementer_func(vcpu);
+
+ return HRTIMER_NORESTART;
+}
+
+int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
+{
+ int err;
+
+ hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
+ vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
+
+#ifdef CONFIG_KVM_EXIT_TIMING
+ mutex_init(&vcpu->arch.exit_timing_lock);
+#endif
+ err = kvmppc_subarch_vcpu_init(vcpu);
+ if (err)
+ return err;
+
+ err = kvmppc_core_vcpu_create(vcpu);
+ if (err)
+ goto out_vcpu_uninit;
+
+ rcuwait_init(&vcpu->arch.wait);
+ vcpu->arch.waitp = &vcpu->arch.wait;
+ return 0;
+
+out_vcpu_uninit:
+ kvmppc_subarch_vcpu_uninit(vcpu);
+ return err;
+}
+
+void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
+{
+}
+
+void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
+{
+ /* Make sure we're not using the vcpu anymore */
+ hrtimer_cancel(&vcpu->arch.dec_timer);
+
+ switch (vcpu->arch.irq_type) {
+ case KVMPPC_IRQ_MPIC:
+ kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
+ break;
+ case KVMPPC_IRQ_XICS:
+ if (xics_on_xive())
+ kvmppc_xive_cleanup_vcpu(vcpu);
+ else
+ kvmppc_xics_free_icp(vcpu);
+ break;
+ case KVMPPC_IRQ_XIVE:
+ kvmppc_xive_native_cleanup_vcpu(vcpu);
+ break;
+ }
+
+ kvmppc_core_vcpu_free(vcpu);
+
+ kvmppc_subarch_vcpu_uninit(vcpu);
+}
+
+int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
+{
+ return kvmppc_core_pending_dec(vcpu);
+}
+
+void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+#ifdef CONFIG_BOOKE
+ /*
+ * vrsave (formerly usprg0) isn't used by Linux, but may
+ * be used by the guest.
+ *
+ * On non-booke this is associated with Altivec and
+ * is handled by code in book3s.c.
+ */
+ mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
+#endif
+ kvmppc_core_vcpu_load(vcpu, cpu);
+}
+
+void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
+{
+ kvmppc_core_vcpu_put(vcpu);
+#ifdef CONFIG_BOOKE
+ vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
+#endif
+}
+
+/*
+ * irq_bypass_add_producer and irq_bypass_del_producer are only
+ * useful if the architecture supports PCI passthrough.
+ * irq_bypass_stop and irq_bypass_start are not needed and so
+ * kvm_ops are not defined for them.
+ */
+bool kvm_arch_has_irq_bypass(void)
+{
+ return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
+ (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
+}
+
+int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
+ struct irq_bypass_producer *prod)
+{
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+ struct kvm *kvm = irqfd->kvm;
+
+ if (kvm->arch.kvm_ops->irq_bypass_add_producer)
+ return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
+
+ return 0;
+}
+
+void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
+ struct irq_bypass_producer *prod)
+{
+ struct kvm_kernel_irqfd *irqfd =
+ container_of(cons, struct kvm_kernel_irqfd, consumer);
+ struct kvm *kvm = irqfd->kvm;
+
+ if (kvm->arch.kvm_ops->irq_bypass_del_producer)
+ kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
+}
+
+#ifdef CONFIG_VSX
+static inline int kvmppc_get_vsr_dword_offset(int index)
+{
+ int offset;
+
+ if ((index != 0) && (index != 1))
+ return -1;
+
+#ifdef __BIG_ENDIAN
+ offset = index;
+#else
+ offset = 1 - index;
+#endif
+
+ return offset;
+}
+
+static inline int kvmppc_get_vsr_word_offset(int index)
+{
+ int offset;
+
+ if ((index > 3) || (index < 0))
+ return -1;
+
+#ifdef __BIG_ENDIAN
+ offset = index;
+#else
+ offset = 3 - index;
+#endif
+ return offset;
+}
+
+static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
+ u64 gpr)
+{
+ union kvmppc_one_reg val;
+ int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
+ int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
+
+ if (offset == -1)
+ return;
+
+ if (index >= 32) {
+ val.vval = VCPU_VSX_VR(vcpu, index - 32);
+ val.vsxval[offset] = gpr;
+ VCPU_VSX_VR(vcpu, index - 32) = val.vval;
+ } else {
+ VCPU_VSX_FPR(vcpu, index, offset) = gpr;
+ }
+}
+
+static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
+ u64 gpr)
+{
+ union kvmppc_one_reg val;
+ int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
+
+ if (index >= 32) {
+ val.vval = VCPU_VSX_VR(vcpu, index - 32);
+ val.vsxval[0] = gpr;
+ val.vsxval[1] = gpr;
+ VCPU_VSX_VR(vcpu, index - 32) = val.vval;
+ } else {
+ VCPU_VSX_FPR(vcpu, index, 0) = gpr;
+ VCPU_VSX_FPR(vcpu, index, 1) = gpr;
+ }
+}
+
+static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
+ u32 gpr)
+{
+ union kvmppc_one_reg val;
+ int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
+
+ if (index >= 32) {
+ val.vsx32val[0] = gpr;
+ val.vsx32val[1] = gpr;
+ val.vsx32val[2] = gpr;
+ val.vsx32val[3] = gpr;
+ VCPU_VSX_VR(vcpu, index - 32) = val.vval;
+ } else {
+ val.vsx32val[0] = gpr;
+ val.vsx32val[1] = gpr;
+ VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
+ VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
+ }
+}
+
+static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
+ u32 gpr32)
+{
+ union kvmppc_one_reg val;
+ int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
+ int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
+ int dword_offset, word_offset;
+
+ if (offset == -1)
+ return;
+
+ if (index >= 32) {
+ val.vval = VCPU_VSX_VR(vcpu, index - 32);
+ val.vsx32val[offset] = gpr32;
+ VCPU_VSX_VR(vcpu, index - 32) = val.vval;
+ } else {
+ dword_offset = offset / 2;
+ word_offset = offset % 2;
+ val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
+ val.vsx32val[word_offset] = gpr32;
+ VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
+ }
+}
+#endif /* CONFIG_VSX */
+
+#ifdef CONFIG_ALTIVEC
+static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
+ int index, int element_size)
+{
+ int offset;
+ int elts = sizeof(vector128)/element_size;
+
+ if ((index < 0) || (index >= elts))
+ return -1;
+
+ if (kvmppc_need_byteswap(vcpu))
+ offset = elts - index - 1;
+ else
+ offset = index;
+
+ return offset;
+}
+
+static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
+ int index)
+{
+ return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
+}
+
+static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
+ int index)
+{
+ return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
+}
+
+static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
+ int index)
+{
+ return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
+}
+
+static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
+ int index)
+{
+ return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
+}
+
+
+static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
+ u64 gpr)
+{
+ union kvmppc_one_reg val;
+ int offset = kvmppc_get_vmx_dword_offset(vcpu,
+ vcpu->arch.mmio_vmx_offset);
+ int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
+
+ if (offset == -1)
+ return;
+
+ val.vval = VCPU_VSX_VR(vcpu, index);
+ val.vsxval[offset] = gpr;
+ VCPU_VSX_VR(vcpu, index) = val.vval;
+}
+
+static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
+ u32 gpr32)
+{
+ union kvmppc_one_reg val;
+ int offset = kvmppc_get_vmx_word_offset(vcpu,
+ vcpu->arch.mmio_vmx_offset);
+ int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
+
+ if (offset == -1)
+ return;
+
+ val.vval = VCPU_VSX_VR(vcpu, index);
+ val.vsx32val[offset] = gpr32;
+ VCPU_VSX_VR(vcpu, index) = val.vval;
+}
+
+static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
+ u16 gpr16)
+{
+ union kvmppc_one_reg val;
+ int offset = kvmppc_get_vmx_hword_offset(vcpu,
+ vcpu->arch.mmio_vmx_offset);
+ int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
+
+ if (offset == -1)
+ return;
+
+ val.vval = VCPU_VSX_VR(vcpu, index);
+ val.vsx16val[offset] = gpr16;
+ VCPU_VSX_VR(vcpu, index) = val.vval;
+}
+
+static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
+ u8 gpr8)
+{
+ union kvmppc_one_reg val;
+ int offset = kvmppc_get_vmx_byte_offset(vcpu,
+ vcpu->arch.mmio_vmx_offset);
+ int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
+
+ if (offset == -1)
+ return;
+
+ val.vval = VCPU_VSX_VR(vcpu, index);
+ val.vsx8val[offset] = gpr8;
+ VCPU_VSX_VR(vcpu, index) = val.vval;
+}
+#endif /* CONFIG_ALTIVEC */
+
+#ifdef CONFIG_PPC_FPU
+static inline u64 sp_to_dp(u32 fprs)
+{
+ u64 fprd;
+
+ preempt_disable();
+ enable_kernel_fp();
+ asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m<>" (fprd) : "m<>" (fprs)
+ : "fr0");
+ preempt_enable();
+ return fprd;
+}
+
+static inline u32 dp_to_sp(u64 fprd)
+{
+ u32 fprs;
+
+ preempt_disable();
+ enable_kernel_fp();
+ asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m<>" (fprs) : "m<>" (fprd)
+ : "fr0");
+ preempt_enable();
+ return fprs;
+}
+
+#else
+#define sp_to_dp(x) (x)
+#define dp_to_sp(x) (x)
+#endif /* CONFIG_PPC_FPU */
+
+static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+ u64 gpr;
+
+ if (run->mmio.len > sizeof(gpr))
+ return;
+
+ if (!vcpu->arch.mmio_host_swabbed) {
+ switch (run->mmio.len) {
+ case 8: gpr = *(u64 *)run->mmio.data; break;
+ case 4: gpr = *(u32 *)run->mmio.data; break;
+ case 2: gpr = *(u16 *)run->mmio.data; break;
+ case 1: gpr = *(u8 *)run->mmio.data; break;
+ }
+ } else {
+ switch (run->mmio.len) {
+ case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
+ case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
+ case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
+ case 1: gpr = *(u8 *)run->mmio.data; break;
+ }
+ }
+
+ /* conversion between single and double precision */
+ if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
+ gpr = sp_to_dp(gpr);
+
+ if (vcpu->arch.mmio_sign_extend) {
+ switch (run->mmio.len) {
+#ifdef CONFIG_PPC64
+ case 4:
+ gpr = (s64)(s32)gpr;
+ break;
+#endif
+ case 2:
+ gpr = (s64)(s16)gpr;
+ break;
+ case 1:
+ gpr = (s64)(s8)gpr;
+ break;
+ }
+ }
+
+ switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
+ case KVM_MMIO_REG_GPR:
+ kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
+ break;
+ case KVM_MMIO_REG_FPR:
+ if (vcpu->kvm->arch.kvm_ops->giveup_ext)
+ vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
+
+ VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
+ break;
+#ifdef CONFIG_PPC_BOOK3S
+ case KVM_MMIO_REG_QPR:
+ vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
+ break;
+ case KVM_MMIO_REG_FQPR:
+ VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
+ vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
+ break;
+#endif
+#ifdef CONFIG_VSX
+ case KVM_MMIO_REG_VSX:
+ if (vcpu->kvm->arch.kvm_ops->giveup_ext)
+ vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
+
+ if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
+ kvmppc_set_vsr_dword(vcpu, gpr);
+ else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
+ kvmppc_set_vsr_word(vcpu, gpr);
+ else if (vcpu->arch.mmio_copy_type ==
+ KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
+ kvmppc_set_vsr_dword_dump(vcpu, gpr);
+ else if (vcpu->arch.mmio_copy_type ==
+ KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
+ kvmppc_set_vsr_word_dump(vcpu, gpr);
+ break;
+#endif
+#ifdef CONFIG_ALTIVEC
+ case KVM_MMIO_REG_VMX:
+ if (vcpu->kvm->arch.kvm_ops->giveup_ext)
+ vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
+
+ if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
+ kvmppc_set_vmx_dword(vcpu, gpr);
+ else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
+ kvmppc_set_vmx_word(vcpu, gpr);
+ else if (vcpu->arch.mmio_copy_type ==
+ KVMPPC_VMX_COPY_HWORD)
+ kvmppc_set_vmx_hword(vcpu, gpr);
+ else if (vcpu->arch.mmio_copy_type ==
+ KVMPPC_VMX_COPY_BYTE)
+ kvmppc_set_vmx_byte(vcpu, gpr);
+ break;
+#endif
+#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+ case KVM_MMIO_REG_NESTED_GPR:
+ if (kvmppc_need_byteswap(vcpu))
+ gpr = swab64(gpr);
+ kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
+ sizeof(gpr));
+ break;
+#endif
+ default:
+ BUG();
+ }
+}
+
+static int __kvmppc_handle_load(struct kvm_vcpu *vcpu,
+ unsigned int rt, unsigned int bytes,
+ int is_default_endian, int sign_extend)
+{
+ struct kvm_run *run = vcpu->run;
+ int idx, ret;
+ bool host_swabbed;
+
+ /* Pity C doesn't have a logical XOR operator */
+ if (kvmppc_need_byteswap(vcpu)) {
+ host_swabbed = is_default_endian;
+ } else {
+ host_swabbed = !is_default_endian;
+ }
+
+ if (bytes > sizeof(run->mmio.data))
+ return EMULATE_FAIL;
+
+ run->mmio.phys_addr = vcpu->arch.paddr_accessed;
+ run->mmio.len = bytes;
+ run->mmio.is_write = 0;
+
+ vcpu->arch.io_gpr = rt;
+ vcpu->arch.mmio_host_swabbed = host_swabbed;
+ vcpu->mmio_needed = 1;
+ vcpu->mmio_is_write = 0;
+ vcpu->arch.mmio_sign_extend = sign_extend;
+
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+
+ ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
+ bytes, &run->mmio.data);
+
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+
+ if (!ret) {
+ kvmppc_complete_mmio_load(vcpu);
+ vcpu->mmio_needed = 0;
+ return EMULATE_DONE;
+ }
+
+ return EMULATE_DO_MMIO;
+}
+
+int kvmppc_handle_load(struct kvm_vcpu *vcpu,
+ unsigned int rt, unsigned int bytes,
+ int is_default_endian)
+{
+ return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 0);
+}
+EXPORT_SYMBOL_GPL(kvmppc_handle_load);
+
+/* Same as above, but sign extends */
+int kvmppc_handle_loads(struct kvm_vcpu *vcpu,
+ unsigned int rt, unsigned int bytes,
+ int is_default_endian)
+{
+ return __kvmppc_handle_load(vcpu, rt, bytes, is_default_endian, 1);
+}
+
+#ifdef CONFIG_VSX
+int kvmppc_handle_vsx_load(struct kvm_vcpu *vcpu,
+ unsigned int rt, unsigned int bytes,
+ int is_default_endian, int mmio_sign_extend)
+{
+ enum emulation_result emulated = EMULATE_DONE;
+
+ /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
+ if (vcpu->arch.mmio_vsx_copy_nums > 4)
+ return EMULATE_FAIL;
+
+ while (vcpu->arch.mmio_vsx_copy_nums) {
+ emulated = __kvmppc_handle_load(vcpu, rt, bytes,
+ is_default_endian, mmio_sign_extend);
+
+ if (emulated != EMULATE_DONE)
+ break;
+
+ vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
+
+ vcpu->arch.mmio_vsx_copy_nums--;
+ vcpu->arch.mmio_vsx_offset++;
+ }
+ return emulated;
+}
+#endif /* CONFIG_VSX */
+
+int kvmppc_handle_store(struct kvm_vcpu *vcpu,
+ u64 val, unsigned int bytes, int is_default_endian)
+{
+ struct kvm_run *run = vcpu->run;
+ void *data = run->mmio.data;
+ int idx, ret;
+ bool host_swabbed;
+
+ /* Pity C doesn't have a logical XOR operator */
+ if (kvmppc_need_byteswap(vcpu)) {
+ host_swabbed = is_default_endian;
+ } else {
+ host_swabbed = !is_default_endian;
+ }
+
+ if (bytes > sizeof(run->mmio.data))
+ return EMULATE_FAIL;
+
+ run->mmio.phys_addr = vcpu->arch.paddr_accessed;
+ run->mmio.len = bytes;
+ run->mmio.is_write = 1;
+ vcpu->mmio_needed = 1;
+ vcpu->mmio_is_write = 1;
+
+ if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
+ val = dp_to_sp(val);
+
+ /* Store the value at the lowest bytes in 'data'. */
+ if (!host_swabbed) {
+ switch (bytes) {
+ case 8: *(u64 *)data = val; break;
+ case 4: *(u32 *)data = val; break;
+ case 2: *(u16 *)data = val; break;
+ case 1: *(u8 *)data = val; break;
+ }
+ } else {
+ switch (bytes) {
+ case 8: *(u64 *)data = swab64(val); break;
+ case 4: *(u32 *)data = swab32(val); break;
+ case 2: *(u16 *)data = swab16(val); break;
+ case 1: *(u8 *)data = val; break;
+ }
+ }
+
+ idx = srcu_read_lock(&vcpu->kvm->srcu);
+
+ ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
+ bytes, &run->mmio.data);
+
+ srcu_read_unlock(&vcpu->kvm->srcu, idx);
+
+ if (!ret) {
+ vcpu->mmio_needed = 0;
+ return EMULATE_DONE;
+ }
+
+ return EMULATE_DO_MMIO;
+}
+EXPORT_SYMBOL_GPL(kvmppc_handle_store);
+
+#ifdef CONFIG_VSX
+static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
+{
+ u32 dword_offset, word_offset;
+ union kvmppc_one_reg reg;
+ int vsx_offset = 0;
+ int copy_type = vcpu->arch.mmio_copy_type;
+ int result = 0;
+
+ switch (copy_type) {
+ case KVMPPC_VSX_COPY_DWORD:
+ vsx_offset =
+ kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
+
+ if (vsx_offset == -1) {
+ result = -1;
+ break;
+ }
+
+ if (rs < 32) {
+ *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
+ } else {
+ reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
+ *val = reg.vsxval[vsx_offset];
+ }
+ break;
+
+ case KVMPPC_VSX_COPY_WORD:
+ vsx_offset =
+ kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
+
+ if (vsx_offset == -1) {
+ result = -1;
+ break;
+ }
+
+ if (rs < 32) {
+ dword_offset = vsx_offset / 2;
+ word_offset = vsx_offset % 2;
+ reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
+ *val = reg.vsx32val[word_offset];
+ } else {
+ reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
+ *val = reg.vsx32val[vsx_offset];
+ }
+ break;
+
+ default:
+ result = -1;
+ break;
+ }
+
+ return result;
+}
+
+int kvmppc_handle_vsx_store(struct kvm_vcpu *vcpu,
+ int rs, unsigned int bytes, int is_default_endian)
+{
+ u64 val;
+ enum emulation_result emulated = EMULATE_DONE;
+
+ vcpu->arch.io_gpr = rs;
+
+ /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
+ if (vcpu->arch.mmio_vsx_copy_nums > 4)
+ return EMULATE_FAIL;
+
+ while (vcpu->arch.mmio_vsx_copy_nums) {
+ if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
+ return EMULATE_FAIL;
+
+ emulated = kvmppc_handle_store(vcpu,
+ val, bytes, is_default_endian);
+
+ if (emulated != EMULATE_DONE)
+ break;
+
+ vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
+
+ vcpu->arch.mmio_vsx_copy_nums--;
+ vcpu->arch.mmio_vsx_offset++;
+ }
+
+ return emulated;
+}
+
+static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+ enum emulation_result emulated = EMULATE_FAIL;
+ int r;
+
+ vcpu->arch.paddr_accessed += run->mmio.len;
+
+ if (!vcpu->mmio_is_write) {
+ emulated = kvmppc_handle_vsx_load(vcpu, vcpu->arch.io_gpr,
+ run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
+ } else {
+ emulated = kvmppc_handle_vsx_store(vcpu,
+ vcpu->arch.io_gpr, run->mmio.len, 1);
+ }
+
+ switch (emulated) {
+ case EMULATE_DO_MMIO:
+ run->exit_reason = KVM_EXIT_MMIO;
+ r = RESUME_HOST;
+ break;
+ case EMULATE_FAIL:
+ pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
+ run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
+ r = RESUME_HOST;
+ break;
+ default:
+ r = RESUME_GUEST;
+ break;
+ }
+ return r;
+}
+#endif /* CONFIG_VSX */
+
+#ifdef CONFIG_ALTIVEC
+int kvmppc_handle_vmx_load(struct kvm_vcpu *vcpu,
+ unsigned int rt, unsigned int bytes, int is_default_endian)
+{
+ enum emulation_result emulated = EMULATE_DONE;
+
+ if (vcpu->arch.mmio_vmx_copy_nums > 2)
+ return EMULATE_FAIL;
+
+ while (vcpu->arch.mmio_vmx_copy_nums) {
+ emulated = __kvmppc_handle_load(vcpu, rt, bytes,
+ is_default_endian, 0);
+
+ if (emulated != EMULATE_DONE)
+ break;
+
+ vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
+ vcpu->arch.mmio_vmx_copy_nums--;
+ vcpu->arch.mmio_vmx_offset++;
+ }
+
+ return emulated;
+}
+
+static int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
+{
+ union kvmppc_one_reg reg;
+ int vmx_offset = 0;
+ int result = 0;
+
+ vmx_offset =
+ kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
+
+ if (vmx_offset == -1)
+ return -1;
+
+ reg.vval = VCPU_VSX_VR(vcpu, index);
+ *val = reg.vsxval[vmx_offset];
+
+ return result;
+}
+
+static int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
+{
+ union kvmppc_one_reg reg;
+ int vmx_offset = 0;
+ int result = 0;
+
+ vmx_offset =
+ kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
+
+ if (vmx_offset == -1)
+ return -1;
+
+ reg.vval = VCPU_VSX_VR(vcpu, index);
+ *val = reg.vsx32val[vmx_offset];
+
+ return result;
+}
+
+static int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
+{
+ union kvmppc_one_reg reg;
+ int vmx_offset = 0;
+ int result = 0;
+
+ vmx_offset =
+ kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
+
+ if (vmx_offset == -1)
+ return -1;
+
+ reg.vval = VCPU_VSX_VR(vcpu, index);
+ *val = reg.vsx16val[vmx_offset];
+
+ return result;
+}
+
+static int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
+{
+ union kvmppc_one_reg reg;
+ int vmx_offset = 0;
+ int result = 0;
+
+ vmx_offset =
+ kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
+
+ if (vmx_offset == -1)
+ return -1;
+
+ reg.vval = VCPU_VSX_VR(vcpu, index);
+ *val = reg.vsx8val[vmx_offset];
+
+ return result;
+}
+
+int kvmppc_handle_vmx_store(struct kvm_vcpu *vcpu,
+ unsigned int rs, unsigned int bytes, int is_default_endian)
+{
+ u64 val = 0;
+ unsigned int index = rs & KVM_MMIO_REG_MASK;
+ enum emulation_result emulated = EMULATE_DONE;
+
+ if (vcpu->arch.mmio_vmx_copy_nums > 2)
+ return EMULATE_FAIL;
+
+ vcpu->arch.io_gpr = rs;
+
+ while (vcpu->arch.mmio_vmx_copy_nums) {
+ switch (vcpu->arch.mmio_copy_type) {
+ case KVMPPC_VMX_COPY_DWORD:
+ if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
+ return EMULATE_FAIL;
+
+ break;
+ case KVMPPC_VMX_COPY_WORD:
+ if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
+ return EMULATE_FAIL;
+ break;
+ case KVMPPC_VMX_COPY_HWORD:
+ if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
+ return EMULATE_FAIL;
+ break;
+ case KVMPPC_VMX_COPY_BYTE:
+ if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
+ return EMULATE_FAIL;
+ break;
+ default:
+ return EMULATE_FAIL;
+ }
+
+ emulated = kvmppc_handle_store(vcpu, val, bytes,
+ is_default_endian);
+ if (emulated != EMULATE_DONE)
+ break;
+
+ vcpu->arch.paddr_accessed += vcpu->run->mmio.len;
+ vcpu->arch.mmio_vmx_copy_nums--;
+ vcpu->arch.mmio_vmx_offset++;
+ }
+
+ return emulated;
+}
+
+static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+ enum emulation_result emulated = EMULATE_FAIL;
+ int r;
+
+ vcpu->arch.paddr_accessed += run->mmio.len;
+
+ if (!vcpu->mmio_is_write) {
+ emulated = kvmppc_handle_vmx_load(vcpu,
+ vcpu->arch.io_gpr, run->mmio.len, 1);
+ } else {
+ emulated = kvmppc_handle_vmx_store(vcpu,
+ vcpu->arch.io_gpr, run->mmio.len, 1);
+ }
+
+ switch (emulated) {
+ case EMULATE_DO_MMIO:
+ run->exit_reason = KVM_EXIT_MMIO;
+ r = RESUME_HOST;
+ break;
+ case EMULATE_FAIL:
+ pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
+ run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
+ r = RESUME_HOST;
+ break;
+ default:
+ r = RESUME_GUEST;
+ break;
+ }
+ return r;
+}
+#endif /* CONFIG_ALTIVEC */
+
+int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
+{
+ int r = 0;
+ union kvmppc_one_reg val;
+ int size;
+
+ size = one_reg_size(reg->id);
+ if (size > sizeof(val))
+ return -EINVAL;
+
+ r = kvmppc_get_one_reg(vcpu, reg->id, &val);
+ if (r == -EINVAL) {
+ r = 0;
+ switch (reg->id) {
+#ifdef CONFIG_ALTIVEC
+ case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
+ if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
+ r = -ENXIO;
+ break;
+ }
+ val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
+ break;
+ case KVM_REG_PPC_VSCR:
+ if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
+ r = -ENXIO;
+ break;
+ }
+ val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
+ break;
+ case KVM_REG_PPC_VRSAVE:
+ val = get_reg_val(reg->id, vcpu->arch.vrsave);
+ break;
+#endif /* CONFIG_ALTIVEC */
+ default:
+ r = -EINVAL;
+ break;
+ }
+ }
+
+ if (r)
+ return r;
+
+ if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
+ r = -EFAULT;
+
+ return r;
+}
+
+int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
+{
+ int r;
+ union kvmppc_one_reg val;
+ int size;
+
+ size = one_reg_size(reg->id);
+ if (size > sizeof(val))
+ return -EINVAL;
+
+ if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
+ return -EFAULT;
+
+ r = kvmppc_set_one_reg(vcpu, reg->id, &val);
+ if (r == -EINVAL) {
+ r = 0;
+ switch (reg->id) {
+#ifdef CONFIG_ALTIVEC
+ case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
+ if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
+ r = -ENXIO;
+ break;
+ }
+ vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
+ break;
+ case KVM_REG_PPC_VSCR:
+ if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
+ r = -ENXIO;
+ break;
+ }
+ vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
+ break;
+ case KVM_REG_PPC_VRSAVE:
+ if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
+ r = -ENXIO;
+ break;
+ }
+ vcpu->arch.vrsave = set_reg_val(reg->id, val);
+ break;
+#endif /* CONFIG_ALTIVEC */
+ default:
+ r = -EINVAL;
+ break;
+ }
+ }
+
+ return r;
+}
+
+int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+ int r;
+
+ vcpu_load(vcpu);
+
+ if (vcpu->mmio_needed) {
+ vcpu->mmio_needed = 0;
+ if (!vcpu->mmio_is_write)
+ kvmppc_complete_mmio_load(vcpu);
+#ifdef CONFIG_VSX
+ if (vcpu->arch.mmio_vsx_copy_nums > 0) {
+ vcpu->arch.mmio_vsx_copy_nums--;
+ vcpu->arch.mmio_vsx_offset++;
+ }
+
+ if (vcpu->arch.mmio_vsx_copy_nums > 0) {
+ r = kvmppc_emulate_mmio_vsx_loadstore(vcpu);
+ if (r == RESUME_HOST) {
+ vcpu->mmio_needed = 1;
+ goto out;
+ }
+ }
+#endif
+#ifdef CONFIG_ALTIVEC
+ if (vcpu->arch.mmio_vmx_copy_nums > 0) {
+ vcpu->arch.mmio_vmx_copy_nums--;
+ vcpu->arch.mmio_vmx_offset++;
+ }
+
+ if (vcpu->arch.mmio_vmx_copy_nums > 0) {
+ r = kvmppc_emulate_mmio_vmx_loadstore(vcpu);
+ if (r == RESUME_HOST) {
+ vcpu->mmio_needed = 1;
+ goto out;
+ }
+ }
+#endif
+ } else if (vcpu->arch.osi_needed) {
+ u64 *gprs = run->osi.gprs;
+ int i;
+
+ for (i = 0; i < 32; i++)
+ kvmppc_set_gpr(vcpu, i, gprs[i]);
+ vcpu->arch.osi_needed = 0;
+ } else if (vcpu->arch.hcall_needed) {
+ int i;
+
+ kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
+ for (i = 0; i < 9; ++i)
+ kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
+ vcpu->arch.hcall_needed = 0;
+#ifdef CONFIG_BOOKE
+ } else if (vcpu->arch.epr_needed) {
+ kvmppc_set_epr(vcpu, run->epr.epr);
+ vcpu->arch.epr_needed = 0;
+#endif
+ }
+
+ kvm_sigset_activate(vcpu);
+
+ if (run->immediate_exit)
+ r = -EINTR;
+ else
+ r = kvmppc_vcpu_run(vcpu);
+
+ kvm_sigset_deactivate(vcpu);
+
+#ifdef CONFIG_ALTIVEC
+out:
+#endif
+
+ /*
+ * We're already returning to userspace, don't pass the
+ * RESUME_HOST flags along.
+ */
+ if (r > 0)
+ r = 0;
+
+ vcpu_put(vcpu);
+ return r;
+}
+
+int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
+{
+ if (irq->irq == KVM_INTERRUPT_UNSET) {
+ kvmppc_core_dequeue_external(vcpu);
+ return 0;
+ }
+
+ kvmppc_core_queue_external(vcpu, irq);
+
+ kvm_vcpu_kick(vcpu);
+
+ return 0;
+}
+
+static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
+ struct kvm_enable_cap *cap)
+{
+ int r;
+
+ if (cap->flags)
+ return -EINVAL;
+
+ switch (cap->cap) {
+ case KVM_CAP_PPC_OSI:
+ r = 0;
+ vcpu->arch.osi_enabled = true;
+ break;
+ case KVM_CAP_PPC_PAPR:
+ r = 0;
+ vcpu->arch.papr_enabled = true;
+ break;
+ case KVM_CAP_PPC_EPR:
+ r = 0;
+ if (cap->args[0])
+ vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
+ else
+ vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
+ break;
+#ifdef CONFIG_BOOKE
+ case KVM_CAP_PPC_BOOKE_WATCHDOG:
+ r = 0;
+ vcpu->arch.watchdog_enabled = true;
+ break;
+#endif
+#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
+ case KVM_CAP_SW_TLB: {
+ struct kvm_config_tlb cfg;
+ void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
+
+ r = -EFAULT;
+ if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
+ break;
+
+ r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
+ break;
+ }
+#endif
+#ifdef CONFIG_KVM_MPIC
+ case KVM_CAP_IRQ_MPIC: {
+ struct fd f;
+ struct kvm_device *dev;
+
+ r = -EBADF;
+ f = fdget(cap->args[0]);
+ if (!f.file)
+ break;
+
+ r = -EPERM;
+ dev = kvm_device_from_filp(f.file);
+ if (dev)
+ r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
+
+ fdput(f);
+ break;
+ }
+#endif
+#ifdef CONFIG_KVM_XICS
+ case KVM_CAP_IRQ_XICS: {
+ struct fd f;
+ struct kvm_device *dev;
+
+ r = -EBADF;
+ f = fdget(cap->args[0]);
+ if (!f.file)
+ break;
+
+ r = -EPERM;
+ dev = kvm_device_from_filp(f.file);
+ if (dev) {
+ if (xics_on_xive())
+ r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
+ else
+ r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
+ }
+
+ fdput(f);
+ break;
+ }
+#endif /* CONFIG_KVM_XICS */
+#ifdef CONFIG_KVM_XIVE
+ case KVM_CAP_PPC_IRQ_XIVE: {
+ struct fd f;
+ struct kvm_device *dev;
+
+ r = -EBADF;
+ f = fdget(cap->args[0]);
+ if (!f.file)
+ break;
+
+ r = -ENXIO;
+ if (!xive_enabled())
+ break;
+
+ r = -EPERM;
+ dev = kvm_device_from_filp(f.file);
+ if (dev)
+ r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
+ cap->args[1]);
+
+ fdput(f);
+ break;
+ }
+#endif /* CONFIG_KVM_XIVE */
+#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+ case KVM_CAP_PPC_FWNMI:
+ r = -EINVAL;
+ if (!is_kvmppc_hv_enabled(vcpu->kvm))
+ break;
+ r = 0;
+ vcpu->kvm->arch.fwnmi_enabled = true;
+ break;
+#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
+ default:
+ r = -EINVAL;
+ break;
+ }
+
+ if (!r)
+ r = kvmppc_sanity_check(vcpu);
+
+ return r;
+}
+
+bool kvm_arch_intc_initialized(struct kvm *kvm)
+{
+#ifdef CONFIG_KVM_MPIC
+ if (kvm->arch.mpic)
+ return true;
+#endif
+#ifdef CONFIG_KVM_XICS
+ if (kvm->arch.xics || kvm->arch.xive)
+ return true;
+#endif
+ return false;
+}
+
+int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
+ struct kvm_mp_state *mp_state)
+{
+ return -EINVAL;
+}
+
+int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
+ struct kvm_mp_state *mp_state)
+{
+ return -EINVAL;
+}
+
+long kvm_arch_vcpu_async_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ struct kvm_vcpu *vcpu = filp->private_data;
+ void __user *argp = (void __user *)arg;
+
+ if (ioctl == KVM_INTERRUPT) {
+ struct kvm_interrupt irq;
+ if (copy_from_user(&irq, argp, sizeof(irq)))
+ return -EFAULT;
+ return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
+ }
+ return -ENOIOCTLCMD;
+}
+
+long kvm_arch_vcpu_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ struct kvm_vcpu *vcpu = filp->private_data;
+ void __user *argp = (void __user *)arg;
+ long r;
+
+ switch (ioctl) {
+ case KVM_ENABLE_CAP:
+ {
+ struct kvm_enable_cap cap;
+ r = -EFAULT;
+ if (copy_from_user(&cap, argp, sizeof(cap)))
+ goto out;
+ vcpu_load(vcpu);
+ r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
+ vcpu_put(vcpu);
+ break;
+ }
+
+ case KVM_SET_ONE_REG:
+ case KVM_GET_ONE_REG:
+ {
+ struct kvm_one_reg reg;
+ r = -EFAULT;
+ if (copy_from_user(&reg, argp, sizeof(reg)))
+ goto out;
+ if (ioctl == KVM_SET_ONE_REG)
+ r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
+ else
+ r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
+ break;
+ }
+
+#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
+ case KVM_DIRTY_TLB: {
+ struct kvm_dirty_tlb dirty;
+ r = -EFAULT;
+ if (copy_from_user(&dirty, argp, sizeof(dirty)))
+ goto out;
+ vcpu_load(vcpu);
+ r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
+ vcpu_put(vcpu);
+ break;
+ }
+#endif
+ default:
+ r = -EINVAL;
+ }
+
+out:
+ return r;
+}
+
+vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
+{
+ return VM_FAULT_SIGBUS;
+}
+
+static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
+{
+ u32 inst_nop = 0x60000000;
+#ifdef CONFIG_KVM_BOOKE_HV
+ u32 inst_sc1 = 0x44000022;
+ pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
+ pvinfo->hcall[1] = cpu_to_be32(inst_nop);
+ pvinfo->hcall[2] = cpu_to_be32(inst_nop);
+ pvinfo->hcall[3] = cpu_to_be32(inst_nop);
+#else
+ u32 inst_lis = 0x3c000000;
+ u32 inst_ori = 0x60000000;
+ u32 inst_sc = 0x44000002;
+ u32 inst_imm_mask = 0xffff;
+
+ /*
+ * The hypercall to get into KVM from within guest context is as
+ * follows:
+ *
+ * lis r0, r0, KVM_SC_MAGIC_R0@h
+ * ori r0, KVM_SC_MAGIC_R0@l
+ * sc
+ * nop
+ */
+ pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
+ pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
+ pvinfo->hcall[2] = cpu_to_be32(inst_sc);
+ pvinfo->hcall[3] = cpu_to_be32(inst_nop);
+#endif
+
+ pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
+
+ return 0;
+}
+
+int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
+ bool line_status)
+{
+ if (!irqchip_in_kernel(kvm))
+ return -ENXIO;
+
+ irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
+ irq_event->irq, irq_event->level,
+ line_status);
+ return 0;
+}
+
+
+int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
+ struct kvm_enable_cap *cap)
+{
+ int r;
+
+ if (cap->flags)
+ return -EINVAL;
+
+ switch (cap->cap) {
+#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
+ case KVM_CAP_PPC_ENABLE_HCALL: {
+ unsigned long hcall = cap->args[0];
+
+ r = -EINVAL;
+ if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
+ cap->args[1] > 1)
+ break;
+ if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
+ break;
+ if (cap->args[1])
+ set_bit(hcall / 4, kvm->arch.enabled_hcalls);
+ else
+ clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
+ r = 0;
+ break;
+ }
+ case KVM_CAP_PPC_SMT: {
+ unsigned long mode = cap->args[0];
+ unsigned long flags = cap->args[1];
+
+ r = -EINVAL;
+ if (kvm->arch.kvm_ops->set_smt_mode)
+ r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
+ break;
+ }
+
+ case KVM_CAP_PPC_NESTED_HV:
+ r = -EINVAL;
+ if (!is_kvmppc_hv_enabled(kvm) ||
+ !kvm->arch.kvm_ops->enable_nested)
+ break;
+ r = kvm->arch.kvm_ops->enable_nested(kvm);
+ break;
+#endif
+#if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
+ case KVM_CAP_PPC_SECURE_GUEST:
+ r = -EINVAL;
+ if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
+ break;
+ r = kvm->arch.kvm_ops->enable_svm(kvm);
+ break;
+ case KVM_CAP_PPC_DAWR1:
+ r = -EINVAL;
+ if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_dawr1)
+ break;
+ r = kvm->arch.kvm_ops->enable_dawr1(kvm);
+ break;
+#endif
+ default:
+ r = -EINVAL;
+ break;
+ }
+
+ return r;
+}
+
+#ifdef CONFIG_PPC_BOOK3S_64
+/*
+ * These functions check whether the underlying hardware is safe
+ * against attacks based on observing the effects of speculatively
+ * executed instructions, and whether it supplies instructions for
+ * use in workarounds. The information comes from firmware, either
+ * via the device tree on powernv platforms or from an hcall on
+ * pseries platforms.
+ */
+#ifdef CONFIG_PPC_PSERIES
+static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
+{
+ struct h_cpu_char_result c;
+ unsigned long rc;
+
+ if (!machine_is(pseries))
+ return -ENOTTY;
+
+ rc = plpar_get_cpu_characteristics(&c);
+ if (rc == H_SUCCESS) {
+ cp->character = c.character;
+ cp->behaviour = c.behaviour;
+ cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
+ KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
+ KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
+ KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
+ KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
+ KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
+ KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
+ KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
+ KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
+ cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
+ KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
+ KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
+ KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
+ }
+ return 0;
+}
+#else
+static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
+{
+ return -ENOTTY;
+}
+#endif
+
+static inline bool have_fw_feat(struct device_node *fw_features,
+ const char *state, const char *name)
+{
+ struct device_node *np;
+ bool r = false;
+
+ np = of_get_child_by_name(fw_features, name);
+ if (np) {
+ r = of_property_read_bool(np, state);
+ of_node_put(np);
+ }
+ return r;
+}
+
+static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
+{
+ struct device_node *np, *fw_features;
+ int r;
+
+ memset(cp, 0, sizeof(*cp));
+ r = pseries_get_cpu_char(cp);
+ if (r != -ENOTTY)
+ return r;
+
+ np = of_find_node_by_name(NULL, "ibm,opal");
+ if (np) {
+ fw_features = of_get_child_by_name(np, "fw-features");
+ of_node_put(np);
+ if (!fw_features)
+ return 0;
+ if (have_fw_feat(fw_features, "enabled",
+ "inst-spec-barrier-ori31,31,0"))
+ cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
+ if (have_fw_feat(fw_features, "enabled",
+ "fw-bcctrl-serialized"))
+ cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
+ if (have_fw_feat(fw_features, "enabled",
+ "inst-l1d-flush-ori30,30,0"))
+ cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
+ if (have_fw_feat(fw_features, "enabled",
+ "inst-l1d-flush-trig2"))
+ cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
+ if (have_fw_feat(fw_features, "enabled",
+ "fw-l1d-thread-split"))
+ cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
+ if (have_fw_feat(fw_features, "enabled",
+ "fw-count-cache-disabled"))
+ cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
+ if (have_fw_feat(fw_features, "enabled",
+ "fw-count-cache-flush-bcctr2,0,0"))
+ cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
+ cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
+ KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
+ KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
+ KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
+ KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
+ KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
+ KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
+
+ if (have_fw_feat(fw_features, "enabled",
+ "speculation-policy-favor-security"))
+ cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
+ if (!have_fw_feat(fw_features, "disabled",
+ "needs-l1d-flush-msr-pr-0-to-1"))
+ cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
+ if (!have_fw_feat(fw_features, "disabled",
+ "needs-spec-barrier-for-bound-checks"))
+ cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
+ if (have_fw_feat(fw_features, "enabled",
+ "needs-count-cache-flush-on-context-switch"))
+ cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
+ cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
+ KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
+ KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
+ KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
+
+ of_node_put(fw_features);
+ }
+
+ return 0;
+}
+#endif
+
+long kvm_arch_vm_ioctl(struct file *filp,
+ unsigned int ioctl, unsigned long arg)
+{
+ struct kvm *kvm __maybe_unused = filp->private_data;
+ void __user *argp = (void __user *)arg;
+ long r;
+
+ switch (ioctl) {
+ case KVM_PPC_GET_PVINFO: {
+ struct kvm_ppc_pvinfo pvinfo;
+ memset(&pvinfo, 0, sizeof(pvinfo));
+ r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
+ if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
+ r = -EFAULT;
+ goto out;
+ }
+
+ break;
+ }
+#ifdef CONFIG_SPAPR_TCE_IOMMU
+ case KVM_CREATE_SPAPR_TCE_64: {
+ struct kvm_create_spapr_tce_64 create_tce_64;
+
+ r = -EFAULT;
+ if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
+ goto out;
+ if (create_tce_64.flags) {
+ r = -EINVAL;
+ goto out;
+ }
+ r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
+ goto out;
+ }
+ case KVM_CREATE_SPAPR_TCE: {
+ struct kvm_create_spapr_tce create_tce;
+ struct kvm_create_spapr_tce_64 create_tce_64;
+
+ r = -EFAULT;
+ if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
+ goto out;
+
+ create_tce_64.liobn = create_tce.liobn;
+ create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
+ create_tce_64.offset = 0;
+ create_tce_64.size = create_tce.window_size >>
+ IOMMU_PAGE_SHIFT_4K;
+ create_tce_64.flags = 0;
+ r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
+ goto out;
+ }
+#endif
+#ifdef CONFIG_PPC_BOOK3S_64
+ case KVM_PPC_GET_SMMU_INFO: {
+ struct kvm_ppc_smmu_info info;
+ struct kvm *kvm = filp->private_data;
+
+ memset(&info, 0, sizeof(info));
+ r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
+ if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
+ r = -EFAULT;
+ break;
+ }
+ case KVM_PPC_RTAS_DEFINE_TOKEN: {
+ struct kvm *kvm = filp->private_data;
+
+ r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
+ break;
+ }
+ case KVM_PPC_CONFIGURE_V3_MMU: {
+ struct kvm *kvm = filp->private_data;
+ struct kvm_ppc_mmuv3_cfg cfg;
+
+ r = -EINVAL;
+ if (!kvm->arch.kvm_ops->configure_mmu)
+ goto out;
+ r = -EFAULT;
+ if (copy_from_user(&cfg, argp, sizeof(cfg)))
+ goto out;
+ r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
+ break;
+ }
+ case KVM_PPC_GET_RMMU_INFO: {
+ struct kvm *kvm = filp->private_data;
+ struct kvm_ppc_rmmu_info info;
+
+ r = -EINVAL;
+ if (!kvm->arch.kvm_ops->get_rmmu_info)
+ goto out;
+ r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
+ if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
+ r = -EFAULT;
+ break;
+ }
+ case KVM_PPC_GET_CPU_CHAR: {
+ struct kvm_ppc_cpu_char cpuchar;
+
+ r = kvmppc_get_cpu_char(&cpuchar);
+ if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
+ r = -EFAULT;
+ break;
+ }
+ case KVM_PPC_SVM_OFF: {
+ struct kvm *kvm = filp->private_data;
+
+ r = 0;
+ if (!kvm->arch.kvm_ops->svm_off)
+ goto out;
+
+ r = kvm->arch.kvm_ops->svm_off(kvm);
+ break;
+ }
+ default: {
+ struct kvm *kvm = filp->private_data;
+ r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
+ }
+#else /* CONFIG_PPC_BOOK3S_64 */
+ default:
+ r = -ENOTTY;
+#endif
+ }
+out:
+ return r;
+}
+
+static DEFINE_IDA(lpid_inuse);
+static unsigned long nr_lpids;
+
+long kvmppc_alloc_lpid(void)
+{
+ int lpid;
+
+ /* The host LPID must always be 0 (allocation starts at 1) */
+ lpid = ida_alloc_range(&lpid_inuse, 1, nr_lpids - 1, GFP_KERNEL);
+ if (lpid < 0) {
+ if (lpid == -ENOMEM)
+ pr_err("%s: Out of memory\n", __func__);
+ else
+ pr_err("%s: No LPIDs free\n", __func__);
+ return -ENOMEM;
+ }
+
+ return lpid;
+}
+EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
+
+void kvmppc_free_lpid(long lpid)
+{
+ ida_free(&lpid_inuse, lpid);
+}
+EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
+
+/* nr_lpids_param includes the host LPID */
+void kvmppc_init_lpid(unsigned long nr_lpids_param)
+{
+ nr_lpids = nr_lpids_param;
+}
+EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
+
+int kvm_arch_init(void *opaque)
+{
+ return 0;
+}
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
+
+void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
+{
+ if (vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs)
+ vcpu->kvm->arch.kvm_ops->create_vcpu_debugfs(vcpu, debugfs_dentry);
+}
+
+int kvm_arch_create_vm_debugfs(struct kvm *kvm)
+{
+ if (kvm->arch.kvm_ops->create_vm_debugfs)
+ kvm->arch.kvm_ops->create_vm_debugfs(kvm);
+ return 0;
+}
diff --git a/arch/powerpc/kvm/timing.c b/arch/powerpc/kvm/timing.c
new file mode 100644
index 000000000..25071331f
--- /dev/null
+++ b/arch/powerpc/kvm/timing.c
@@ -0,0 +1,213 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ *
+ * Copyright IBM Corp. 2008
+ *
+ * Authors: Hollis Blanchard <hollisb@us.ibm.com>
+ * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
+ */
+
+#include <linux/kvm_host.h>
+#include <linux/fs.h>
+#include <linux/seq_file.h>
+#include <linux/debugfs.h>
+#include <linux/uaccess.h>
+#include <linux/module.h>
+
+#include <asm/time.h>
+#include <asm-generic/div64.h>
+
+#include "timing.h"
+
+void kvmppc_init_timing_stats(struct kvm_vcpu *vcpu)
+{
+ int i;
+
+ /* Take a lock to avoid concurrent updates */
+ mutex_lock(&vcpu->arch.exit_timing_lock);
+
+ vcpu->arch.last_exit_type = 0xDEAD;
+ for (i = 0; i < __NUMBER_OF_KVM_EXIT_TYPES; i++) {
+ vcpu->arch.timing_count_type[i] = 0;
+ vcpu->arch.timing_max_duration[i] = 0;
+ vcpu->arch.timing_min_duration[i] = 0xFFFFFFFF;
+ vcpu->arch.timing_sum_duration[i] = 0;
+ vcpu->arch.timing_sum_quad_duration[i] = 0;
+ }
+ vcpu->arch.timing_last_exit = 0;
+ vcpu->arch.timing_exit.tv64 = 0;
+ vcpu->arch.timing_last_enter.tv64 = 0;
+
+ mutex_unlock(&vcpu->arch.exit_timing_lock);
+}
+
+static void add_exit_timing(struct kvm_vcpu *vcpu, u64 duration, int type)
+{
+ u64 old;
+
+ mutex_lock(&vcpu->arch.exit_timing_lock);
+
+ vcpu->arch.timing_count_type[type]++;
+
+ /* sum */
+ old = vcpu->arch.timing_sum_duration[type];
+ vcpu->arch.timing_sum_duration[type] += duration;
+ if (unlikely(old > vcpu->arch.timing_sum_duration[type])) {
+ printk(KERN_ERR"%s - wrap adding sum of durations"
+ " old %lld new %lld type %d exit # of type %d\n",
+ __func__, old, vcpu->arch.timing_sum_duration[type],
+ type, vcpu->arch.timing_count_type[type]);
+ }
+
+ /* square sum */
+ old = vcpu->arch.timing_sum_quad_duration[type];
+ vcpu->arch.timing_sum_quad_duration[type] += (duration*duration);
+ if (unlikely(old > vcpu->arch.timing_sum_quad_duration[type])) {
+ printk(KERN_ERR"%s - wrap adding sum of squared durations"
+ " old %lld new %lld type %d exit # of type %d\n",
+ __func__, old,
+ vcpu->arch.timing_sum_quad_duration[type],
+ type, vcpu->arch.timing_count_type[type]);
+ }
+
+ /* set min/max */
+ if (unlikely(duration < vcpu->arch.timing_min_duration[type]))
+ vcpu->arch.timing_min_duration[type] = duration;
+ if (unlikely(duration > vcpu->arch.timing_max_duration[type]))
+ vcpu->arch.timing_max_duration[type] = duration;
+
+ mutex_unlock(&vcpu->arch.exit_timing_lock);
+}
+
+void kvmppc_update_timing_stats(struct kvm_vcpu *vcpu)
+{
+ u64 exit = vcpu->arch.timing_last_exit;
+ u64 enter = vcpu->arch.timing_last_enter.tv64;
+
+ /* save exit time, used next exit when the reenter time is known */
+ vcpu->arch.timing_last_exit = vcpu->arch.timing_exit.tv64;
+
+ if (unlikely(vcpu->arch.last_exit_type == 0xDEAD || exit == 0))
+ return; /* skip incomplete cycle (e.g. after reset) */
+
+ /* update statistics for average and standard deviation */
+ add_exit_timing(vcpu, (enter - exit), vcpu->arch.last_exit_type);
+ /* enter -> timing_last_exit is time spent in guest - log this too */
+ add_exit_timing(vcpu, (vcpu->arch.timing_last_exit - enter),
+ TIMEINGUEST);
+}
+
+static const char *kvm_exit_names[__NUMBER_OF_KVM_EXIT_TYPES] = {
+ [MMIO_EXITS] = "MMIO",
+ [SIGNAL_EXITS] = "SIGNAL",
+ [ITLB_REAL_MISS_EXITS] = "ITLBREAL",
+ [ITLB_VIRT_MISS_EXITS] = "ITLBVIRT",
+ [DTLB_REAL_MISS_EXITS] = "DTLBREAL",
+ [DTLB_VIRT_MISS_EXITS] = "DTLBVIRT",
+ [SYSCALL_EXITS] = "SYSCALL",
+ [ISI_EXITS] = "ISI",
+ [DSI_EXITS] = "DSI",
+ [EMULATED_INST_EXITS] = "EMULINST",
+ [EMULATED_MTMSRWE_EXITS] = "EMUL_WAIT",
+ [EMULATED_WRTEE_EXITS] = "EMUL_WRTEE",
+ [EMULATED_MTSPR_EXITS] = "EMUL_MTSPR",
+ [EMULATED_MFSPR_EXITS] = "EMUL_MFSPR",
+ [EMULATED_MTMSR_EXITS] = "EMUL_MTMSR",
+ [EMULATED_MFMSR_EXITS] = "EMUL_MFMSR",
+ [EMULATED_TLBSX_EXITS] = "EMUL_TLBSX",
+ [EMULATED_TLBWE_EXITS] = "EMUL_TLBWE",
+ [EMULATED_RFI_EXITS] = "EMUL_RFI",
+ [DEC_EXITS] = "DEC",
+ [EXT_INTR_EXITS] = "EXTINT",
+ [HALT_WAKEUP] = "HALT",
+ [USR_PR_INST] = "USR_PR_INST",
+ [FP_UNAVAIL] = "FP_UNAVAIL",
+ [DEBUG_EXITS] = "DEBUG",
+ [TIMEINGUEST] = "TIMEINGUEST"
+};
+
+static int kvmppc_exit_timing_show(struct seq_file *m, void *private)
+{
+ struct kvm_vcpu *vcpu = m->private;
+ int i;
+ u64 min, max, sum, sum_quad;
+
+ seq_puts(m, "type count min max sum sum_squared\n");
+
+ for (i = 0; i < __NUMBER_OF_KVM_EXIT_TYPES; i++) {
+
+ min = vcpu->arch.timing_min_duration[i];
+ do_div(min, tb_ticks_per_usec);
+ max = vcpu->arch.timing_max_duration[i];
+ do_div(max, tb_ticks_per_usec);
+ sum = vcpu->arch.timing_sum_duration[i];
+ do_div(sum, tb_ticks_per_usec);
+ sum_quad = vcpu->arch.timing_sum_quad_duration[i];
+ do_div(sum_quad, tb_ticks_per_usec);
+
+ seq_printf(m, "%12s %10d %10lld %10lld %20lld %20lld\n",
+ kvm_exit_names[i],
+ vcpu->arch.timing_count_type[i],
+ min,
+ max,
+ sum,
+ sum_quad);
+
+ }
+ return 0;
+}
+
+/* Write 'c' to clear the timing statistics. */
+static ssize_t kvmppc_exit_timing_write(struct file *file,
+ const char __user *user_buf,
+ size_t count, loff_t *ppos)
+{
+ int err = -EINVAL;
+ char c;
+
+ if (count > 1) {
+ goto done;
+ }
+
+ if (get_user(c, user_buf)) {
+ err = -EFAULT;
+ goto done;
+ }
+
+ if (c == 'c') {
+ struct seq_file *seqf = file->private_data;
+ struct kvm_vcpu *vcpu = seqf->private;
+ /* Write does not affect our buffers previously generated with
+ * show. seq_file is locked here to prevent races of init with
+ * a show call */
+ mutex_lock(&seqf->lock);
+ kvmppc_init_timing_stats(vcpu);
+ mutex_unlock(&seqf->lock);
+ err = count;
+ }
+
+done:
+ return err;
+}
+
+static int kvmppc_exit_timing_open(struct inode *inode, struct file *file)
+{
+ return single_open(file, kvmppc_exit_timing_show, inode->i_private);
+}
+
+static const struct file_operations kvmppc_exit_timing_fops = {
+ .owner = THIS_MODULE,
+ .open = kvmppc_exit_timing_open,
+ .read = seq_read,
+ .write = kvmppc_exit_timing_write,
+ .llseek = seq_lseek,
+ .release = single_release,
+};
+
+int kvmppc_create_vcpu_debugfs_e500(struct kvm_vcpu *vcpu,
+ struct dentry *debugfs_dentry)
+{
+ debugfs_create_file("timing", 0666, debugfs_dentry,
+ vcpu, &kvmppc_exit_timing_fops);
+ return 0;
+}
diff --git a/arch/powerpc/kvm/timing.h b/arch/powerpc/kvm/timing.h
new file mode 100644
index 000000000..45817ab82
--- /dev/null
+++ b/arch/powerpc/kvm/timing.h
@@ -0,0 +1,99 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ *
+ * Copyright IBM Corp. 2008
+ *
+ * Authors: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
+ */
+
+#ifndef __POWERPC_KVM_EXITTIMING_H__
+#define __POWERPC_KVM_EXITTIMING_H__
+
+#include <linux/kvm_host.h>
+
+#ifdef CONFIG_KVM_EXIT_TIMING
+void kvmppc_init_timing_stats(struct kvm_vcpu *vcpu);
+void kvmppc_update_timing_stats(struct kvm_vcpu *vcpu);
+int kvmppc_create_vcpu_debugfs_e500(struct kvm_vcpu *vcpu,
+ struct dentry *debugfs_dentry);
+
+static inline void kvmppc_set_exit_type(struct kvm_vcpu *vcpu, int type)
+{
+ vcpu->arch.last_exit_type = type;
+}
+
+#else
+/* if exit timing is not configured there is no need to build the c file */
+static inline void kvmppc_init_timing_stats(struct kvm_vcpu *vcpu) {}
+static inline void kvmppc_update_timing_stats(struct kvm_vcpu *vcpu) {}
+static inline int kvmppc_create_vcpu_debugfs_e500(struct kvm_vcpu *vcpu,
+ struct dentry *debugfs_dentry)
+{
+ return 0;
+}
+static inline void kvmppc_set_exit_type(struct kvm_vcpu *vcpu, int type) {}
+#endif /* CONFIG_KVM_EXIT_TIMING */
+
+/* account the exit in kvm_stats */
+static inline void kvmppc_account_exit_stat(struct kvm_vcpu *vcpu, int type)
+{
+ /* type has to be known at build time for optimization */
+
+ /* The BUILD_BUG_ON below breaks in funny ways, commented out
+ * for now ... -BenH
+ BUILD_BUG_ON(!__builtin_constant_p(type));
+ */
+ switch (type) {
+ case EXT_INTR_EXITS:
+ vcpu->stat.ext_intr_exits++;
+ break;
+ case DEC_EXITS:
+ vcpu->stat.dec_exits++;
+ break;
+ case EMULATED_INST_EXITS:
+ vcpu->stat.emulated_inst_exits++;
+ break;
+ case DSI_EXITS:
+ vcpu->stat.dsi_exits++;
+ break;
+ case ISI_EXITS:
+ vcpu->stat.isi_exits++;
+ break;
+ case SYSCALL_EXITS:
+ vcpu->stat.syscall_exits++;
+ break;
+ case DTLB_REAL_MISS_EXITS:
+ vcpu->stat.dtlb_real_miss_exits++;
+ break;
+ case DTLB_VIRT_MISS_EXITS:
+ vcpu->stat.dtlb_virt_miss_exits++;
+ break;
+ case MMIO_EXITS:
+ vcpu->stat.mmio_exits++;
+ break;
+ case ITLB_REAL_MISS_EXITS:
+ vcpu->stat.itlb_real_miss_exits++;
+ break;
+ case ITLB_VIRT_MISS_EXITS:
+ vcpu->stat.itlb_virt_miss_exits++;
+ break;
+ case SIGNAL_EXITS:
+ vcpu->stat.signal_exits++;
+ break;
+ case DBELL_EXITS:
+ vcpu->stat.dbell_exits++;
+ break;
+ case GDBELL_EXITS:
+ vcpu->stat.gdbell_exits++;
+ break;
+ }
+}
+
+/* wrapper to set exit time and account for it in kvm_stats */
+static inline void kvmppc_account_exit(struct kvm_vcpu *vcpu, int type)
+{
+ kvmppc_set_exit_type(vcpu, type);
+ kvmppc_account_exit_stat(vcpu, type);
+}
+
+#endif /* __POWERPC_KVM_EXITTIMING_H__ */
diff --git a/arch/powerpc/kvm/tm.S b/arch/powerpc/kvm/tm.S
new file mode 100644
index 000000000..2158f61e3
--- /dev/null
+++ b/arch/powerpc/kvm/tm.S
@@ -0,0 +1,398 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ *
+ * Derived from book3s_hv_rmhandlers.S, which is:
+ *
+ * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
+ */
+
+#include <asm/reg.h>
+#include <asm/ppc_asm.h>
+#include <asm/asm-offsets.h>
+#include <asm/export.h>
+#include <asm/tm.h>
+#include <asm/cputable.h>
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+#define VCPU_GPRS_TM(reg) (((reg) * ULONG_SIZE) + VCPU_GPR_TM)
+
+/*
+ * Save transactional state and TM-related registers.
+ * Called with:
+ * - r3 pointing to the vcpu struct
+ * - r4 containing the MSR with current TS bits:
+ * (For HV KVM, it is VCPU_MSR ; For PR KVM, it is host MSR).
+ * - r5 containing a flag indicating that non-volatile registers
+ * must be preserved.
+ * If r5 == 0, this can modify all checkpointed registers, but
+ * restores r1, r2 before exit. If r5 != 0, this restores the
+ * MSR TM/FP/VEC/VSX bits to their state on entry.
+ */
+_GLOBAL(__kvmppc_save_tm)
+ mflr r0
+ std r0, PPC_LR_STKOFF(r1)
+ stdu r1, -SWITCH_FRAME_SIZE(r1)
+
+ mr r9, r3
+ cmpdi cr7, r5, 0
+
+ /* Turn on TM. */
+ mfmsr r8
+ mr r10, r8
+ li r0, 1
+ rldimi r8, r0, MSR_TM_LG, 63-MSR_TM_LG
+ ori r8, r8, MSR_FP
+ oris r8, r8, (MSR_VEC | MSR_VSX)@h
+ mtmsrd r8
+
+ rldicl. r4, r4, 64 - MSR_TS_S_LG, 62
+ beq 1f /* TM not active in guest. */
+
+ std r1, HSTATE_SCRATCH2(r13)
+ std r3, HSTATE_SCRATCH1(r13)
+
+ /* Save CR on the stack - even if r5 == 0 we need to get cr7 back. */
+ mfcr r6
+ SAVE_GPR(6, r1)
+
+ /* Save DSCR so we can restore it to avoid running with user value */
+ mfspr r7, SPRN_DSCR
+ SAVE_GPR(7, r1)
+
+ /*
+ * We are going to do treclaim., which will modify all checkpointed
+ * registers. Save the non-volatile registers on the stack if
+ * preservation of non-volatile state has been requested.
+ */
+ beq cr7, 3f
+ SAVE_NVGPRS(r1)
+
+ /* MSR[TS] will be 0 (non-transactional) once we do treclaim. */
+ li r0, 0
+ rldimi r10, r0, MSR_TS_S_LG, 63 - MSR_TS_T_LG
+ SAVE_GPR(10, r1) /* final MSR value */
+3:
+#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+BEGIN_FTR_SECTION
+ /* Emulation of the treclaim instruction needs TEXASR before treclaim */
+ mfspr r6, SPRN_TEXASR
+ std r6, VCPU_ORIG_TEXASR(r3)
+END_FTR_SECTION_IFSET(CPU_FTR_P9_TM_HV_ASSIST)
+#endif
+
+ /* Clear the MSR RI since r1, r13 are all going to be foobar. */
+ li r5, 0
+ mtmsrd r5, 1
+
+ li r3, TM_CAUSE_KVM_RESCHED
+
+ /* All GPRs are volatile at this point. */
+ TRECLAIM(R3)
+
+ /* Temporarily store r13 and r9 so we have some regs to play with */
+ SET_SCRATCH0(r13)
+ GET_PACA(r13)
+ std r9, PACATMSCRATCH(r13)
+ ld r9, HSTATE_SCRATCH1(r13)
+
+ /* Save away PPR soon so we don't run with user value. */
+ std r0, VCPU_GPRS_TM(0)(r9)
+ mfspr r0, SPRN_PPR
+ HMT_MEDIUM
+
+ /* Reload stack pointer. */
+ std r1, VCPU_GPRS_TM(1)(r9)
+ ld r1, HSTATE_SCRATCH2(r13)
+
+ /* Set MSR RI now we have r1 and r13 back. */
+ std r2, VCPU_GPRS_TM(2)(r9)
+ li r2, MSR_RI
+ mtmsrd r2, 1
+
+ /* Reload TOC pointer. */
+ LOAD_PACA_TOC()
+
+ /* Save all but r0-r2, r9 & r13 */
+ reg = 3
+ .rept 29
+ .if (reg != 9) && (reg != 13)
+ std reg, VCPU_GPRS_TM(reg)(r9)
+ .endif
+ reg = reg + 1
+ .endr
+ /* ... now save r13 */
+ GET_SCRATCH0(r4)
+ std r4, VCPU_GPRS_TM(13)(r9)
+ /* ... and save r9 */
+ ld r4, PACATMSCRATCH(r13)
+ std r4, VCPU_GPRS_TM(9)(r9)
+
+ /* Restore host DSCR and CR values, after saving guest values */
+ mfcr r6
+ mfspr r7, SPRN_DSCR
+ stw r6, VCPU_CR_TM(r9)
+ std r7, VCPU_DSCR_TM(r9)
+ REST_GPR(6, r1)
+ REST_GPR(7, r1)
+ mtcr r6
+ mtspr SPRN_DSCR, r7
+
+ /* Save away checkpointed SPRs. */
+ std r0, VCPU_PPR_TM(r9)
+ mflr r5
+ mfctr r7
+ mfspr r8, SPRN_AMR
+ mfspr r10, SPRN_TAR
+ mfxer r11
+ std r5, VCPU_LR_TM(r9)
+ std r7, VCPU_CTR_TM(r9)
+ std r8, VCPU_AMR_TM(r9)
+ std r10, VCPU_TAR_TM(r9)
+ std r11, VCPU_XER_TM(r9)
+
+ /* Save FP/VSX. */
+ addi r3, r9, VCPU_FPRS_TM
+ bl store_fp_state
+ addi r3, r9, VCPU_VRS_TM
+ bl store_vr_state
+ mfspr r6, SPRN_VRSAVE
+ stw r6, VCPU_VRSAVE_TM(r9)
+
+ /* Restore non-volatile registers if requested to */
+ beq cr7, 1f
+ REST_NVGPRS(r1)
+ REST_GPR(10, r1)
+1:
+ /*
+ * We need to save these SPRs after the treclaim so that the software
+ * error code is recorded correctly in the TEXASR. Also the user may
+ * change these outside of a transaction, so they must always be
+ * context switched.
+ */
+ mfspr r7, SPRN_TEXASR
+ std r7, VCPU_TEXASR(r9)
+ mfspr r5, SPRN_TFHAR
+ mfspr r6, SPRN_TFIAR
+ std r5, VCPU_TFHAR(r9)
+ std r6, VCPU_TFIAR(r9)
+
+ /* Restore MSR state if requested */
+ beq cr7, 2f
+ mtmsrd r10, 0
+2:
+ addi r1, r1, SWITCH_FRAME_SIZE
+ ld r0, PPC_LR_STKOFF(r1)
+ mtlr r0
+ blr
+
+/*
+ * _kvmppc_save_tm_pr() is a wrapper around __kvmppc_save_tm(), so that it can
+ * be invoked from C function by PR KVM only.
+ */
+_GLOBAL(_kvmppc_save_tm_pr)
+ mflr r0
+ std r0, PPC_LR_STKOFF(r1)
+ stdu r1, -PPC_MIN_STKFRM(r1)
+
+ mfspr r8, SPRN_TAR
+ std r8, PPC_MIN_STKFRM-8(r1)
+
+ li r5, 1 /* preserve non-volatile registers */
+ bl __kvmppc_save_tm
+
+ ld r8, PPC_MIN_STKFRM-8(r1)
+ mtspr SPRN_TAR, r8
+
+ addi r1, r1, PPC_MIN_STKFRM
+ ld r0, PPC_LR_STKOFF(r1)
+ mtlr r0
+ blr
+
+EXPORT_SYMBOL_GPL(_kvmppc_save_tm_pr);
+
+/*
+ * Restore transactional state and TM-related registers.
+ * Called with:
+ * - r3 pointing to the vcpu struct.
+ * - r4 is the guest MSR with desired TS bits:
+ * For HV KVM, it is VCPU_MSR
+ * For PR KVM, it is provided by caller
+ * - r5 containing a flag indicating that non-volatile registers
+ * must be preserved.
+ * If r5 == 0, this potentially modifies all checkpointed registers, but
+ * restores r1, r2 from the PACA before exit.
+ * If r5 != 0, this restores the MSR TM/FP/VEC/VSX bits to their state on entry.
+ */
+_GLOBAL(__kvmppc_restore_tm)
+ mflr r0
+ std r0, PPC_LR_STKOFF(r1)
+
+ cmpdi cr7, r5, 0
+
+ /* Turn on TM/FP/VSX/VMX so we can restore them. */
+ mfmsr r5
+ mr r10, r5
+ li r6, MSR_TM >> 32
+ sldi r6, r6, 32
+ or r5, r5, r6
+ ori r5, r5, MSR_FP
+ oris r5, r5, (MSR_VEC | MSR_VSX)@h
+ mtmsrd r5
+
+ /*
+ * The user may change these outside of a transaction, so they must
+ * always be context switched.
+ */
+ ld r5, VCPU_TFHAR(r3)
+ ld r6, VCPU_TFIAR(r3)
+ ld r7, VCPU_TEXASR(r3)
+ mtspr SPRN_TFHAR, r5
+ mtspr SPRN_TFIAR, r6
+ mtspr SPRN_TEXASR, r7
+
+ mr r5, r4
+ rldicl. r5, r5, 64 - MSR_TS_S_LG, 62
+ beq 9f /* TM not active in guest */
+
+ /* Make sure the failure summary is set, otherwise we'll program check
+ * when we trechkpt. It's possible that this might have been not set
+ * on a kvmppc_set_one_reg() call but we shouldn't let this crash the
+ * host.
+ */
+ oris r7, r7, (TEXASR_FS)@h
+ mtspr SPRN_TEXASR, r7
+
+ /*
+ * Make a stack frame and save non-volatile registers if requested.
+ */
+ stdu r1, -SWITCH_FRAME_SIZE(r1)
+ std r1, HSTATE_SCRATCH2(r13)
+
+ mfcr r6
+ mfspr r7, SPRN_DSCR
+ SAVE_GPR(2, r1)
+ SAVE_GPR(6, r1)
+ SAVE_GPR(7, r1)
+
+ beq cr7, 4f
+ SAVE_NVGPRS(r1)
+
+ /* MSR[TS] will be 1 (suspended) once we do trechkpt */
+ li r0, 1
+ rldimi r10, r0, MSR_TS_S_LG, 63 - MSR_TS_T_LG
+ SAVE_GPR(10, r1) /* final MSR value */
+4:
+ /*
+ * We need to load up the checkpointed state for the guest.
+ * We need to do this early as it will blow away any GPRs, VSRs and
+ * some SPRs.
+ */
+
+ mr r31, r3
+ addi r3, r31, VCPU_FPRS_TM
+ bl load_fp_state
+ addi r3, r31, VCPU_VRS_TM
+ bl load_vr_state
+ mr r3, r31
+ lwz r7, VCPU_VRSAVE_TM(r3)
+ mtspr SPRN_VRSAVE, r7
+
+ ld r5, VCPU_LR_TM(r3)
+ lwz r6, VCPU_CR_TM(r3)
+ ld r7, VCPU_CTR_TM(r3)
+ ld r8, VCPU_AMR_TM(r3)
+ ld r9, VCPU_TAR_TM(r3)
+ ld r10, VCPU_XER_TM(r3)
+ mtlr r5
+ mtcr r6
+ mtctr r7
+ mtspr SPRN_AMR, r8
+ mtspr SPRN_TAR, r9
+ mtxer r10
+
+ /*
+ * Load up PPR and DSCR values but don't put them in the actual SPRs
+ * till the last moment to avoid running with userspace PPR and DSCR for
+ * too long.
+ */
+ ld r29, VCPU_DSCR_TM(r3)
+ ld r30, VCPU_PPR_TM(r3)
+
+ /* Clear the MSR RI since r1, r13 are all going to be foobar. */
+ li r5, 0
+ mtmsrd r5, 1
+
+ /* Load GPRs r0-r28 */
+ reg = 0
+ .rept 29
+ ld reg, VCPU_GPRS_TM(reg)(r31)
+ reg = reg + 1
+ .endr
+
+ mtspr SPRN_DSCR, r29
+ mtspr SPRN_PPR, r30
+
+ /* Load final GPRs */
+ ld 29, VCPU_GPRS_TM(29)(r31)
+ ld 30, VCPU_GPRS_TM(30)(r31)
+ ld 31, VCPU_GPRS_TM(31)(r31)
+
+ /* TM checkpointed state is now setup. All GPRs are now volatile. */
+ TRECHKPT
+
+ /* Now let's get back the state we need. */
+ HMT_MEDIUM
+ GET_PACA(r13)
+ ld r1, HSTATE_SCRATCH2(r13)
+ REST_GPR(7, r1)
+ mtspr SPRN_DSCR, r7
+
+ /* Set the MSR RI since we have our registers back. */
+ li r5, MSR_RI
+ mtmsrd r5, 1
+
+ /* Restore TOC pointer and CR */
+ REST_GPR(2, r1)
+ REST_GPR(6, r1)
+ mtcr r6
+
+ /* Restore non-volatile registers if requested to. */
+ beq cr7, 5f
+ REST_GPR(10, r1)
+ REST_NVGPRS(r1)
+
+5: addi r1, r1, SWITCH_FRAME_SIZE
+ ld r0, PPC_LR_STKOFF(r1)
+ mtlr r0
+
+9: /* Restore MSR bits if requested */
+ beqlr cr7
+ mtmsrd r10, 0
+ blr
+
+/*
+ * _kvmppc_restore_tm_pr() is a wrapper around __kvmppc_restore_tm(), so that it
+ * can be invoked from C function by PR KVM only.
+ */
+_GLOBAL(_kvmppc_restore_tm_pr)
+ mflr r0
+ std r0, PPC_LR_STKOFF(r1)
+ stdu r1, -PPC_MIN_STKFRM(r1)
+
+ /* save TAR so that it can be recovered later */
+ mfspr r8, SPRN_TAR
+ std r8, PPC_MIN_STKFRM-8(r1)
+
+ li r5, 1
+ bl __kvmppc_restore_tm
+
+ ld r8, PPC_MIN_STKFRM-8(r1)
+ mtspr SPRN_TAR, r8
+
+ addi r1, r1, PPC_MIN_STKFRM
+ ld r0, PPC_LR_STKOFF(r1)
+ mtlr r0
+ blr
+
+EXPORT_SYMBOL_GPL(_kvmppc_restore_tm_pr);
+#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
diff --git a/arch/powerpc/kvm/trace.h b/arch/powerpc/kvm/trace.h
new file mode 100644
index 000000000..ea1d7c808
--- /dev/null
+++ b/arch/powerpc/kvm/trace.h
@@ -0,0 +1,127 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#if !defined(_TRACE_KVM_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_KVM_H
+
+#include <linux/tracepoint.h>
+
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM kvm
+
+/*
+ * Tracepoint for guest mode entry.
+ */
+TRACE_EVENT(kvm_ppc_instr,
+ TP_PROTO(unsigned int inst, unsigned long _pc, unsigned int emulate),
+ TP_ARGS(inst, _pc, emulate),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, inst )
+ __field( unsigned long, pc )
+ __field( unsigned int, emulate )
+ ),
+
+ TP_fast_assign(
+ __entry->inst = inst;
+ __entry->pc = _pc;
+ __entry->emulate = emulate;
+ ),
+
+ TP_printk("inst %u pc 0x%lx emulate %u\n",
+ __entry->inst, __entry->pc, __entry->emulate)
+);
+
+TRACE_EVENT(kvm_stlb_inval,
+ TP_PROTO(unsigned int stlb_index),
+ TP_ARGS(stlb_index),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, stlb_index )
+ ),
+
+ TP_fast_assign(
+ __entry->stlb_index = stlb_index;
+ ),
+
+ TP_printk("stlb_index %u", __entry->stlb_index)
+);
+
+TRACE_EVENT(kvm_stlb_write,
+ TP_PROTO(unsigned int victim, unsigned int tid, unsigned int word0,
+ unsigned int word1, unsigned int word2),
+ TP_ARGS(victim, tid, word0, word1, word2),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, victim )
+ __field( unsigned int, tid )
+ __field( unsigned int, word0 )
+ __field( unsigned int, word1 )
+ __field( unsigned int, word2 )
+ ),
+
+ TP_fast_assign(
+ __entry->victim = victim;
+ __entry->tid = tid;
+ __entry->word0 = word0;
+ __entry->word1 = word1;
+ __entry->word2 = word2;
+ ),
+
+ TP_printk("victim %u tid %u w0 %u w1 %u w2 %u",
+ __entry->victim, __entry->tid, __entry->word0,
+ __entry->word1, __entry->word2)
+);
+
+TRACE_EVENT(kvm_gtlb_write,
+ TP_PROTO(unsigned int gtlb_index, unsigned int tid, unsigned int word0,
+ unsigned int word1, unsigned int word2),
+ TP_ARGS(gtlb_index, tid, word0, word1, word2),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, gtlb_index )
+ __field( unsigned int, tid )
+ __field( unsigned int, word0 )
+ __field( unsigned int, word1 )
+ __field( unsigned int, word2 )
+ ),
+
+ TP_fast_assign(
+ __entry->gtlb_index = gtlb_index;
+ __entry->tid = tid;
+ __entry->word0 = word0;
+ __entry->word1 = word1;
+ __entry->word2 = word2;
+ ),
+
+ TP_printk("gtlb_index %u tid %u w0 %u w1 %u w2 %u",
+ __entry->gtlb_index, __entry->tid, __entry->word0,
+ __entry->word1, __entry->word2)
+);
+
+TRACE_EVENT(kvm_check_requests,
+ TP_PROTO(struct kvm_vcpu *vcpu),
+ TP_ARGS(vcpu),
+
+ TP_STRUCT__entry(
+ __field( __u32, cpu_nr )
+ __field( __u32, requests )
+ ),
+
+ TP_fast_assign(
+ __entry->cpu_nr = vcpu->vcpu_id;
+ __entry->requests = vcpu->requests;
+ ),
+
+ TP_printk("vcpu=%x requests=%x",
+ __entry->cpu_nr, __entry->requests)
+);
+
+#endif /* _TRACE_KVM_H */
+
+/* This part must be outside protection */
+#undef TRACE_INCLUDE_PATH
+#undef TRACE_INCLUDE_FILE
+
+#define TRACE_INCLUDE_PATH .
+#define TRACE_INCLUDE_FILE trace
+
+#include <trace/define_trace.h>
diff --git a/arch/powerpc/kvm/trace_book3s.h b/arch/powerpc/kvm/trace_book3s.h
new file mode 100644
index 000000000..372a82fa2
--- /dev/null
+++ b/arch/powerpc/kvm/trace_book3s.h
@@ -0,0 +1,32 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#if !defined(_TRACE_KVM_BOOK3S_H)
+#define _TRACE_KVM_BOOK3S_H
+
+/*
+ * Common defines used by the trace macros in trace_pr.h and trace_hv.h
+ */
+
+#define kvm_trace_symbol_exit \
+ {0x100, "SYSTEM_RESET"}, \
+ {0x200, "MACHINE_CHECK"}, \
+ {0x300, "DATA_STORAGE"}, \
+ {0x380, "DATA_SEGMENT"}, \
+ {0x400, "INST_STORAGE"}, \
+ {0x480, "INST_SEGMENT"}, \
+ {0x500, "EXTERNAL"}, \
+ {0x502, "EXTERNAL_HV"}, \
+ {0x600, "ALIGNMENT"}, \
+ {0x700, "PROGRAM"}, \
+ {0x800, "FP_UNAVAIL"}, \
+ {0x900, "DECREMENTER"}, \
+ {0x980, "HV_DECREMENTER"}, \
+ {0xc00, "SYSCALL"}, \
+ {0xd00, "TRACE"}, \
+ {0xe00, "H_DATA_STORAGE"}, \
+ {0xe20, "H_INST_STORAGE"}, \
+ {0xe40, "H_EMUL_ASSIST"}, \
+ {0xf00, "PERFMON"}, \
+ {0xf20, "ALTIVEC"}, \
+ {0xf40, "VSX"}
+
+#endif
diff --git a/arch/powerpc/kvm/trace_booke.h b/arch/powerpc/kvm/trace_booke.h
new file mode 100644
index 000000000..eff6e82db
--- /dev/null
+++ b/arch/powerpc/kvm/trace_booke.h
@@ -0,0 +1,211 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#if !defined(_TRACE_KVM_BOOKE_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_KVM_BOOKE_H
+
+#include <linux/tracepoint.h>
+
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM kvm_booke
+
+#define kvm_trace_symbol_exit \
+ {0, "CRITICAL"}, \
+ {1, "MACHINE_CHECK"}, \
+ {2, "DATA_STORAGE"}, \
+ {3, "INST_STORAGE"}, \
+ {4, "EXTERNAL"}, \
+ {5, "ALIGNMENT"}, \
+ {6, "PROGRAM"}, \
+ {7, "FP_UNAVAIL"}, \
+ {8, "SYSCALL"}, \
+ {9, "AP_UNAVAIL"}, \
+ {10, "DECREMENTER"}, \
+ {11, "FIT"}, \
+ {12, "WATCHDOG"}, \
+ {13, "DTLB_MISS"}, \
+ {14, "ITLB_MISS"}, \
+ {15, "DEBUG"}, \
+ {32, "SPE_UNAVAIL"}, \
+ {33, "SPE_FP_DATA"}, \
+ {34, "SPE_FP_ROUND"}, \
+ {35, "PERFORMANCE_MONITOR"}, \
+ {36, "DOORBELL"}, \
+ {37, "DOORBELL_CRITICAL"}, \
+ {38, "GUEST_DBELL"}, \
+ {39, "GUEST_DBELL_CRIT"}, \
+ {40, "HV_SYSCALL"}, \
+ {41, "HV_PRIV"}
+
+TRACE_EVENT(kvm_exit,
+ TP_PROTO(unsigned int exit_nr, struct kvm_vcpu *vcpu),
+ TP_ARGS(exit_nr, vcpu),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, exit_nr )
+ __field( unsigned long, pc )
+ __field( unsigned long, msr )
+ __field( unsigned long, dar )
+ __field( unsigned long, last_inst )
+ ),
+
+ TP_fast_assign(
+ __entry->exit_nr = exit_nr;
+ __entry->pc = kvmppc_get_pc(vcpu);
+ __entry->dar = kvmppc_get_fault_dar(vcpu);
+ __entry->msr = vcpu->arch.shared->msr;
+ __entry->last_inst = vcpu->arch.last_inst;
+ ),
+
+ TP_printk("exit=%s"
+ " | pc=0x%lx"
+ " | msr=0x%lx"
+ " | dar=0x%lx"
+ " | last_inst=0x%lx"
+ ,
+ __print_symbolic(__entry->exit_nr, kvm_trace_symbol_exit),
+ __entry->pc,
+ __entry->msr,
+ __entry->dar,
+ __entry->last_inst
+ )
+);
+
+TRACE_EVENT(kvm_booke206_stlb_write,
+ TP_PROTO(__u32 mas0, __u32 mas8, __u32 mas1, __u64 mas2, __u64 mas7_3),
+ TP_ARGS(mas0, mas8, mas1, mas2, mas7_3),
+
+ TP_STRUCT__entry(
+ __field( __u32, mas0 )
+ __field( __u32, mas8 )
+ __field( __u32, mas1 )
+ __field( __u64, mas2 )
+ __field( __u64, mas7_3 )
+ ),
+
+ TP_fast_assign(
+ __entry->mas0 = mas0;
+ __entry->mas8 = mas8;
+ __entry->mas1 = mas1;
+ __entry->mas2 = mas2;
+ __entry->mas7_3 = mas7_3;
+ ),
+
+ TP_printk("mas0=%x mas8=%x mas1=%x mas2=%llx mas7_3=%llx",
+ __entry->mas0, __entry->mas8, __entry->mas1,
+ __entry->mas2, __entry->mas7_3)
+);
+
+TRACE_EVENT(kvm_booke206_gtlb_write,
+ TP_PROTO(__u32 mas0, __u32 mas1, __u64 mas2, __u64 mas7_3),
+ TP_ARGS(mas0, mas1, mas2, mas7_3),
+
+ TP_STRUCT__entry(
+ __field( __u32, mas0 )
+ __field( __u32, mas1 )
+ __field( __u64, mas2 )
+ __field( __u64, mas7_3 )
+ ),
+
+ TP_fast_assign(
+ __entry->mas0 = mas0;
+ __entry->mas1 = mas1;
+ __entry->mas2 = mas2;
+ __entry->mas7_3 = mas7_3;
+ ),
+
+ TP_printk("mas0=%x mas1=%x mas2=%llx mas7_3=%llx",
+ __entry->mas0, __entry->mas1,
+ __entry->mas2, __entry->mas7_3)
+);
+
+TRACE_EVENT(kvm_booke206_ref_release,
+ TP_PROTO(__u64 pfn, __u32 flags),
+ TP_ARGS(pfn, flags),
+
+ TP_STRUCT__entry(
+ __field( __u64, pfn )
+ __field( __u32, flags )
+ ),
+
+ TP_fast_assign(
+ __entry->pfn = pfn;
+ __entry->flags = flags;
+ ),
+
+ TP_printk("pfn=%llx flags=%x",
+ __entry->pfn, __entry->flags)
+);
+
+#ifdef CONFIG_SPE_POSSIBLE
+#define kvm_trace_symbol_irqprio_spe \
+ {BOOKE_IRQPRIO_SPE_UNAVAIL, "SPE_UNAVAIL"}, \
+ {BOOKE_IRQPRIO_SPE_FP_DATA, "SPE_FP_DATA"}, \
+ {BOOKE_IRQPRIO_SPE_FP_ROUND, "SPE_FP_ROUND"},
+#else
+#define kvm_trace_symbol_irqprio_spe
+#endif
+
+#ifdef CONFIG_PPC_E500MC
+#define kvm_trace_symbol_irqprio_e500mc \
+ {BOOKE_IRQPRIO_ALTIVEC_UNAVAIL, "ALTIVEC_UNAVAIL"}, \
+ {BOOKE_IRQPRIO_ALTIVEC_ASSIST, "ALTIVEC_ASSIST"},
+#else
+#define kvm_trace_symbol_irqprio_e500mc
+#endif
+
+#define kvm_trace_symbol_irqprio \
+ kvm_trace_symbol_irqprio_spe \
+ kvm_trace_symbol_irqprio_e500mc \
+ {BOOKE_IRQPRIO_DATA_STORAGE, "DATA_STORAGE"}, \
+ {BOOKE_IRQPRIO_INST_STORAGE, "INST_STORAGE"}, \
+ {BOOKE_IRQPRIO_ALIGNMENT, "ALIGNMENT"}, \
+ {BOOKE_IRQPRIO_PROGRAM, "PROGRAM"}, \
+ {BOOKE_IRQPRIO_FP_UNAVAIL, "FP_UNAVAIL"}, \
+ {BOOKE_IRQPRIO_SYSCALL, "SYSCALL"}, \
+ {BOOKE_IRQPRIO_AP_UNAVAIL, "AP_UNAVAIL"}, \
+ {BOOKE_IRQPRIO_DTLB_MISS, "DTLB_MISS"}, \
+ {BOOKE_IRQPRIO_ITLB_MISS, "ITLB_MISS"}, \
+ {BOOKE_IRQPRIO_MACHINE_CHECK, "MACHINE_CHECK"}, \
+ {BOOKE_IRQPRIO_DEBUG, "DEBUG"}, \
+ {BOOKE_IRQPRIO_CRITICAL, "CRITICAL"}, \
+ {BOOKE_IRQPRIO_WATCHDOG, "WATCHDOG"}, \
+ {BOOKE_IRQPRIO_EXTERNAL, "EXTERNAL"}, \
+ {BOOKE_IRQPRIO_FIT, "FIT"}, \
+ {BOOKE_IRQPRIO_DECREMENTER, "DECREMENTER"}, \
+ {BOOKE_IRQPRIO_PERFORMANCE_MONITOR, "PERFORMANCE_MONITOR"}, \
+ {BOOKE_IRQPRIO_EXTERNAL_LEVEL, "EXTERNAL_LEVEL"}, \
+ {BOOKE_IRQPRIO_DBELL, "DBELL"}, \
+ {BOOKE_IRQPRIO_DBELL_CRIT, "DBELL_CRIT"} \
+
+TRACE_EVENT(kvm_booke_queue_irqprio,
+ TP_PROTO(struct kvm_vcpu *vcpu, unsigned int priority),
+ TP_ARGS(vcpu, priority),
+
+ TP_STRUCT__entry(
+ __field( __u32, cpu_nr )
+ __field( __u32, priority )
+ __field( unsigned long, pending )
+ ),
+
+ TP_fast_assign(
+ __entry->cpu_nr = vcpu->vcpu_id;
+ __entry->priority = priority;
+ __entry->pending = vcpu->arch.pending_exceptions;
+ ),
+
+ TP_printk("vcpu=%x prio=%s pending=%lx",
+ __entry->cpu_nr,
+ __print_symbolic(__entry->priority, kvm_trace_symbol_irqprio),
+ __entry->pending)
+);
+
+#endif
+
+/* This part must be outside protection */
+
+#undef TRACE_INCLUDE_PATH
+#undef TRACE_INCLUDE_FILE
+
+#define TRACE_INCLUDE_PATH .
+#define TRACE_INCLUDE_FILE trace_booke
+
+#include <trace/define_trace.h>
diff --git a/arch/powerpc/kvm/trace_hv.h b/arch/powerpc/kvm/trace_hv.h
new file mode 100644
index 000000000..8d57c8428
--- /dev/null
+++ b/arch/powerpc/kvm/trace_hv.h
@@ -0,0 +1,525 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#if !defined(_TRACE_KVM_HV_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_KVM_HV_H
+
+#include <linux/tracepoint.h>
+#include "trace_book3s.h"
+#include <asm/hvcall.h>
+#include <asm/kvm_asm.h>
+
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM kvm_hv
+
+#define kvm_trace_symbol_hcall \
+ {H_REMOVE, "H_REMOVE"}, \
+ {H_ENTER, "H_ENTER"}, \
+ {H_READ, "H_READ"}, \
+ {H_CLEAR_MOD, "H_CLEAR_MOD"}, \
+ {H_CLEAR_REF, "H_CLEAR_REF"}, \
+ {H_PROTECT, "H_PROTECT"}, \
+ {H_GET_TCE, "H_GET_TCE"}, \
+ {H_PUT_TCE, "H_PUT_TCE"}, \
+ {H_SET_SPRG0, "H_SET_SPRG0"}, \
+ {H_SET_DABR, "H_SET_DABR"}, \
+ {H_PAGE_INIT, "H_PAGE_INIT"}, \
+ {H_SET_ASR, "H_SET_ASR"}, \
+ {H_ASR_ON, "H_ASR_ON"}, \
+ {H_ASR_OFF, "H_ASR_OFF"}, \
+ {H_LOGICAL_CI_LOAD, "H_LOGICAL_CI_LOAD"}, \
+ {H_LOGICAL_CI_STORE, "H_LOGICAL_CI_STORE"}, \
+ {H_LOGICAL_CACHE_LOAD, "H_LOGICAL_CACHE_LOAD"}, \
+ {H_LOGICAL_CACHE_STORE, "H_LOGICAL_CACHE_STORE"}, \
+ {H_LOGICAL_ICBI, "H_LOGICAL_ICBI"}, \
+ {H_LOGICAL_DCBF, "H_LOGICAL_DCBF"}, \
+ {H_GET_TERM_CHAR, "H_GET_TERM_CHAR"}, \
+ {H_PUT_TERM_CHAR, "H_PUT_TERM_CHAR"}, \
+ {H_REAL_TO_LOGICAL, "H_REAL_TO_LOGICAL"}, \
+ {H_HYPERVISOR_DATA, "H_HYPERVISOR_DATA"}, \
+ {H_EOI, "H_EOI"}, \
+ {H_CPPR, "H_CPPR"}, \
+ {H_IPI, "H_IPI"}, \
+ {H_IPOLL, "H_IPOLL"}, \
+ {H_XIRR, "H_XIRR"}, \
+ {H_PERFMON, "H_PERFMON"}, \
+ {H_MIGRATE_DMA, "H_MIGRATE_DMA"}, \
+ {H_REGISTER_VPA, "H_REGISTER_VPA"}, \
+ {H_CEDE, "H_CEDE"}, \
+ {H_CONFER, "H_CONFER"}, \
+ {H_PROD, "H_PROD"}, \
+ {H_GET_PPP, "H_GET_PPP"}, \
+ {H_SET_PPP, "H_SET_PPP"}, \
+ {H_PURR, "H_PURR"}, \
+ {H_PIC, "H_PIC"}, \
+ {H_REG_CRQ, "H_REG_CRQ"}, \
+ {H_FREE_CRQ, "H_FREE_CRQ"}, \
+ {H_VIO_SIGNAL, "H_VIO_SIGNAL"}, \
+ {H_SEND_CRQ, "H_SEND_CRQ"}, \
+ {H_COPY_RDMA, "H_COPY_RDMA"}, \
+ {H_REGISTER_LOGICAL_LAN, "H_REGISTER_LOGICAL_LAN"}, \
+ {H_FREE_LOGICAL_LAN, "H_FREE_LOGICAL_LAN"}, \
+ {H_ADD_LOGICAL_LAN_BUFFER, "H_ADD_LOGICAL_LAN_BUFFER"}, \
+ {H_SEND_LOGICAL_LAN, "H_SEND_LOGICAL_LAN"}, \
+ {H_BULK_REMOVE, "H_BULK_REMOVE"}, \
+ {H_MULTICAST_CTRL, "H_MULTICAST_CTRL"}, \
+ {H_SET_XDABR, "H_SET_XDABR"}, \
+ {H_STUFF_TCE, "H_STUFF_TCE"}, \
+ {H_PUT_TCE_INDIRECT, "H_PUT_TCE_INDIRECT"}, \
+ {H_CHANGE_LOGICAL_LAN_MAC, "H_CHANGE_LOGICAL_LAN_MAC"}, \
+ {H_VTERM_PARTNER_INFO, "H_VTERM_PARTNER_INFO"}, \
+ {H_REGISTER_VTERM, "H_REGISTER_VTERM"}, \
+ {H_FREE_VTERM, "H_FREE_VTERM"}, \
+ {H_RESET_EVENTS, "H_RESET_EVENTS"}, \
+ {H_ALLOC_RESOURCE, "H_ALLOC_RESOURCE"}, \
+ {H_FREE_RESOURCE, "H_FREE_RESOURCE"}, \
+ {H_MODIFY_QP, "H_MODIFY_QP"}, \
+ {H_QUERY_QP, "H_QUERY_QP"}, \
+ {H_REREGISTER_PMR, "H_REREGISTER_PMR"}, \
+ {H_REGISTER_SMR, "H_REGISTER_SMR"}, \
+ {H_QUERY_MR, "H_QUERY_MR"}, \
+ {H_QUERY_MW, "H_QUERY_MW"}, \
+ {H_QUERY_HCA, "H_QUERY_HCA"}, \
+ {H_QUERY_PORT, "H_QUERY_PORT"}, \
+ {H_MODIFY_PORT, "H_MODIFY_PORT"}, \
+ {H_DEFINE_AQP1, "H_DEFINE_AQP1"}, \
+ {H_GET_TRACE_BUFFER, "H_GET_TRACE_BUFFER"}, \
+ {H_DEFINE_AQP0, "H_DEFINE_AQP0"}, \
+ {H_RESIZE_MR, "H_RESIZE_MR"}, \
+ {H_ATTACH_MCQP, "H_ATTACH_MCQP"}, \
+ {H_DETACH_MCQP, "H_DETACH_MCQP"}, \
+ {H_CREATE_RPT, "H_CREATE_RPT"}, \
+ {H_REMOVE_RPT, "H_REMOVE_RPT"}, \
+ {H_REGISTER_RPAGES, "H_REGISTER_RPAGES"}, \
+ {H_DISABLE_AND_GET, "H_DISABLE_AND_GET"}, \
+ {H_ERROR_DATA, "H_ERROR_DATA"}, \
+ {H_GET_HCA_INFO, "H_GET_HCA_INFO"}, \
+ {H_GET_PERF_COUNT, "H_GET_PERF_COUNT"}, \
+ {H_MANAGE_TRACE, "H_MANAGE_TRACE"}, \
+ {H_GET_CPU_CHARACTERISTICS, "H_GET_CPU_CHARACTERISTICS"}, \
+ {H_FREE_LOGICAL_LAN_BUFFER, "H_FREE_LOGICAL_LAN_BUFFER"}, \
+ {H_QUERY_INT_STATE, "H_QUERY_INT_STATE"}, \
+ {H_POLL_PENDING, "H_POLL_PENDING"}, \
+ {H_ILLAN_ATTRIBUTES, "H_ILLAN_ATTRIBUTES"}, \
+ {H_MODIFY_HEA_QP, "H_MODIFY_HEA_QP"}, \
+ {H_QUERY_HEA_QP, "H_QUERY_HEA_QP"}, \
+ {H_QUERY_HEA, "H_QUERY_HEA"}, \
+ {H_QUERY_HEA_PORT, "H_QUERY_HEA_PORT"}, \
+ {H_MODIFY_HEA_PORT, "H_MODIFY_HEA_PORT"}, \
+ {H_REG_BCMC, "H_REG_BCMC"}, \
+ {H_DEREG_BCMC, "H_DEREG_BCMC"}, \
+ {H_REGISTER_HEA_RPAGES, "H_REGISTER_HEA_RPAGES"}, \
+ {H_DISABLE_AND_GET_HEA, "H_DISABLE_AND_GET_HEA"}, \
+ {H_GET_HEA_INFO, "H_GET_HEA_INFO"}, \
+ {H_ALLOC_HEA_RESOURCE, "H_ALLOC_HEA_RESOURCE"}, \
+ {H_ADD_CONN, "H_ADD_CONN"}, \
+ {H_DEL_CONN, "H_DEL_CONN"}, \
+ {H_JOIN, "H_JOIN"}, \
+ {H_VASI_STATE, "H_VASI_STATE"}, \
+ {H_ENABLE_CRQ, "H_ENABLE_CRQ"}, \
+ {H_GET_EM_PARMS, "H_GET_EM_PARMS"}, \
+ {H_GET_ENERGY_SCALE_INFO, "H_GET_ENERGY_SCALE_INFO"}, \
+ {H_SET_MPP, "H_SET_MPP"}, \
+ {H_GET_MPP, "H_GET_MPP"}, \
+ {H_HOME_NODE_ASSOCIATIVITY, "H_HOME_NODE_ASSOCIATIVITY"}, \
+ {H_BEST_ENERGY, "H_BEST_ENERGY"}, \
+ {H_XIRR_X, "H_XIRR_X"}, \
+ {H_RANDOM, "H_RANDOM"}, \
+ {H_COP, "H_COP"}, \
+ {H_GET_MPP_X, "H_GET_MPP_X"}, \
+ {H_SET_MODE, "H_SET_MODE"}, \
+ {H_REGISTER_PROC_TBL, "H_REGISTER_PROC_TBL"}, \
+ {H_QUERY_VAS_CAPABILITIES, "H_QUERY_VAS_CAPABILITIES"}, \
+ {H_INT_GET_SOURCE_INFO, "H_INT_GET_SOURCE_INFO"}, \
+ {H_INT_SET_SOURCE_CONFIG, "H_INT_SET_SOURCE_CONFIG"}, \
+ {H_INT_GET_QUEUE_INFO, "H_INT_GET_QUEUE_INFO"}, \
+ {H_INT_SET_QUEUE_CONFIG, "H_INT_SET_QUEUE_CONFIG"}, \
+ {H_INT_ESB, "H_INT_ESB"}, \
+ {H_INT_RESET, "H_INT_RESET"}, \
+ {H_RPT_INVALIDATE, "H_RPT_INVALIDATE"}, \
+ {H_RTAS, "H_RTAS"}, \
+ {H_LOGICAL_MEMOP, "H_LOGICAL_MEMOP"}, \
+ {H_CAS, "H_CAS"}, \
+ {H_UPDATE_DT, "H_UPDATE_DT"}, \
+ {H_GET_PERF_COUNTER_INFO, "H_GET_PERF_COUNTER_INFO"}, \
+ {H_SET_PARTITION_TABLE, "H_SET_PARTITION_TABLE"}, \
+ {H_ENTER_NESTED, "H_ENTER_NESTED"}, \
+ {H_TLB_INVALIDATE, "H_TLB_INVALIDATE"}, \
+ {H_COPY_TOFROM_GUEST, "H_COPY_TOFROM_GUEST"}
+
+
+#define kvm_trace_symbol_kvmret \
+ {RESUME_GUEST, "RESUME_GUEST"}, \
+ {RESUME_GUEST_NV, "RESUME_GUEST_NV"}, \
+ {RESUME_HOST, "RESUME_HOST"}, \
+ {RESUME_HOST_NV, "RESUME_HOST_NV"}
+
+#define kvm_trace_symbol_hcall_rc \
+ {H_SUCCESS, "H_SUCCESS"}, \
+ {H_BUSY, "H_BUSY"}, \
+ {H_CLOSED, "H_CLOSED"}, \
+ {H_NOT_AVAILABLE, "H_NOT_AVAILABLE"}, \
+ {H_CONSTRAINED, "H_CONSTRAINED"}, \
+ {H_PARTIAL, "H_PARTIAL"}, \
+ {H_IN_PROGRESS, "H_IN_PROGRESS"}, \
+ {H_PAGE_REGISTERED, "H_PAGE_REGISTERED"}, \
+ {H_PARTIAL_STORE, "H_PARTIAL_STORE"}, \
+ {H_PENDING, "H_PENDING"}, \
+ {H_CONTINUE, "H_CONTINUE"}, \
+ {H_LONG_BUSY_START_RANGE, "H_LONG_BUSY_START_RANGE"}, \
+ {H_LONG_BUSY_ORDER_1_MSEC, "H_LONG_BUSY_ORDER_1_MSEC"}, \
+ {H_LONG_BUSY_ORDER_10_MSEC, "H_LONG_BUSY_ORDER_10_MSEC"}, \
+ {H_LONG_BUSY_ORDER_100_MSEC, "H_LONG_BUSY_ORDER_100_MSEC"}, \
+ {H_LONG_BUSY_ORDER_1_SEC, "H_LONG_BUSY_ORDER_1_SEC"}, \
+ {H_LONG_BUSY_ORDER_10_SEC, "H_LONG_BUSY_ORDER_10_SEC"}, \
+ {H_LONG_BUSY_ORDER_100_SEC, "H_LONG_BUSY_ORDER_100_SEC"}, \
+ {H_LONG_BUSY_END_RANGE, "H_LONG_BUSY_END_RANGE"}, \
+ {H_TOO_HARD, "H_TOO_HARD"}, \
+ {H_HARDWARE, "H_HARDWARE"}, \
+ {H_FUNCTION, "H_FUNCTION"}, \
+ {H_PRIVILEGE, "H_PRIVILEGE"}, \
+ {H_PARAMETER, "H_PARAMETER"}, \
+ {H_BAD_MODE, "H_BAD_MODE"}, \
+ {H_PTEG_FULL, "H_PTEG_FULL"}, \
+ {H_NOT_FOUND, "H_NOT_FOUND"}, \
+ {H_RESERVED_DABR, "H_RESERVED_DABR"}, \
+ {H_NO_MEM, "H_NO_MEM"}, \
+ {H_AUTHORITY, "H_AUTHORITY"}, \
+ {H_PERMISSION, "H_PERMISSION"}, \
+ {H_DROPPED, "H_DROPPED"}, \
+ {H_SOURCE_PARM, "H_SOURCE_PARM"}, \
+ {H_DEST_PARM, "H_DEST_PARM"}, \
+ {H_REMOTE_PARM, "H_REMOTE_PARM"}, \
+ {H_RESOURCE, "H_RESOURCE"}, \
+ {H_ADAPTER_PARM, "H_ADAPTER_PARM"}, \
+ {H_RH_PARM, "H_RH_PARM"}, \
+ {H_RCQ_PARM, "H_RCQ_PARM"}, \
+ {H_SCQ_PARM, "H_SCQ_PARM"}, \
+ {H_EQ_PARM, "H_EQ_PARM"}, \
+ {H_RT_PARM, "H_RT_PARM"}, \
+ {H_ST_PARM, "H_ST_PARM"}, \
+ {H_SIGT_PARM, "H_SIGT_PARM"}, \
+ {H_TOKEN_PARM, "H_TOKEN_PARM"}, \
+ {H_MLENGTH_PARM, "H_MLENGTH_PARM"}, \
+ {H_MEM_PARM, "H_MEM_PARM"}, \
+ {H_MEM_ACCESS_PARM, "H_MEM_ACCESS_PARM"}, \
+ {H_ATTR_PARM, "H_ATTR_PARM"}, \
+ {H_PORT_PARM, "H_PORT_PARM"}, \
+ {H_MCG_PARM, "H_MCG_PARM"}, \
+ {H_VL_PARM, "H_VL_PARM"}, \
+ {H_TSIZE_PARM, "H_TSIZE_PARM"}, \
+ {H_TRACE_PARM, "H_TRACE_PARM"}, \
+ {H_MASK_PARM, "H_MASK_PARM"}, \
+ {H_MCG_FULL, "H_MCG_FULL"}, \
+ {H_ALIAS_EXIST, "H_ALIAS_EXIST"}, \
+ {H_P_COUNTER, "H_P_COUNTER"}, \
+ {H_TABLE_FULL, "H_TABLE_FULL"}, \
+ {H_ALT_TABLE, "H_ALT_TABLE"}, \
+ {H_MR_CONDITION, "H_MR_CONDITION"}, \
+ {H_NOT_ENOUGH_RESOURCES, "H_NOT_ENOUGH_RESOURCES"}, \
+ {H_R_STATE, "H_R_STATE"}, \
+ {H_RESCINDED, "H_RESCINDED"}, \
+ {H_P2, "H_P2"}, \
+ {H_P3, "H_P3"}, \
+ {H_P4, "H_P4"}, \
+ {H_P5, "H_P5"}, \
+ {H_P6, "H_P6"}, \
+ {H_P7, "H_P7"}, \
+ {H_P8, "H_P8"}, \
+ {H_P9, "H_P9"}, \
+ {H_TOO_BIG, "H_TOO_BIG"}, \
+ {H_OVERLAP, "H_OVERLAP"}, \
+ {H_INTERRUPT, "H_INTERRUPT"}, \
+ {H_BAD_DATA, "H_BAD_DATA"}, \
+ {H_NOT_ACTIVE, "H_NOT_ACTIVE"}, \
+ {H_SG_LIST, "H_SG_LIST"}, \
+ {H_OP_MODE, "H_OP_MODE"}, \
+ {H_COP_HW, "H_COP_HW"}, \
+ {H_UNSUPPORTED_FLAG_START, "H_UNSUPPORTED_FLAG_START"}, \
+ {H_UNSUPPORTED_FLAG_END, "H_UNSUPPORTED_FLAG_END"}, \
+ {H_MULTI_THREADS_ACTIVE, "H_MULTI_THREADS_ACTIVE"}, \
+ {H_OUTSTANDING_COP_OPS, "H_OUTSTANDING_COP_OPS"}
+
+TRACE_EVENT(kvm_guest_enter,
+ TP_PROTO(struct kvm_vcpu *vcpu),
+ TP_ARGS(vcpu),
+
+ TP_STRUCT__entry(
+ __field(int, vcpu_id)
+ __field(unsigned long, pc)
+ __field(unsigned long, pending_exceptions)
+ __field(u8, ceded)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu->vcpu_id;
+ __entry->pc = kvmppc_get_pc(vcpu);
+ __entry->ceded = vcpu->arch.ceded;
+ __entry->pending_exceptions = vcpu->arch.pending_exceptions;
+ ),
+
+ TP_printk("VCPU %d: pc=0x%lx pexcp=0x%lx ceded=%d",
+ __entry->vcpu_id,
+ __entry->pc,
+ __entry->pending_exceptions, __entry->ceded)
+);
+
+TRACE_EVENT(kvm_guest_exit,
+ TP_PROTO(struct kvm_vcpu *vcpu),
+ TP_ARGS(vcpu),
+
+ TP_STRUCT__entry(
+ __field(int, vcpu_id)
+ __field(int, trap)
+ __field(unsigned long, pc)
+ __field(unsigned long, msr)
+ __field(u8, ceded)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu->vcpu_id;
+ __entry->trap = vcpu->arch.trap;
+ __entry->ceded = vcpu->arch.ceded;
+ __entry->pc = kvmppc_get_pc(vcpu);
+ __entry->msr = vcpu->arch.shregs.msr;
+ ),
+
+ TP_printk("VCPU %d: trap=%s pc=0x%lx msr=0x%lx, ceded=%d",
+ __entry->vcpu_id,
+ __print_symbolic(__entry->trap, kvm_trace_symbol_exit),
+ __entry->pc, __entry->msr, __entry->ceded
+ )
+);
+
+TRACE_EVENT(kvm_page_fault_enter,
+ TP_PROTO(struct kvm_vcpu *vcpu, unsigned long *hptep,
+ struct kvm_memory_slot *memslot, unsigned long ea,
+ unsigned long dsisr),
+
+ TP_ARGS(vcpu, hptep, memslot, ea, dsisr),
+
+ TP_STRUCT__entry(
+ __field(int, vcpu_id)
+ __field(unsigned long, hpte_v)
+ __field(unsigned long, hpte_r)
+ __field(unsigned long, gpte_r)
+ __field(unsigned long, ea)
+ __field(u64, base_gfn)
+ __field(u32, slot_flags)
+ __field(u32, dsisr)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu->vcpu_id;
+ __entry->hpte_v = hptep[0];
+ __entry->hpte_r = hptep[1];
+ __entry->gpte_r = hptep[2];
+ __entry->ea = ea;
+ __entry->dsisr = dsisr;
+ __entry->base_gfn = memslot ? memslot->base_gfn : -1UL;
+ __entry->slot_flags = memslot ? memslot->flags : 0;
+ ),
+
+ TP_printk("VCPU %d: hpte=0x%lx:0x%lx guest=0x%lx ea=0x%lx,%x slot=0x%llx,0x%x",
+ __entry->vcpu_id,
+ __entry->hpte_v, __entry->hpte_r, __entry->gpte_r,
+ __entry->ea, __entry->dsisr,
+ __entry->base_gfn, __entry->slot_flags)
+);
+
+TRACE_EVENT(kvm_page_fault_exit,
+ TP_PROTO(struct kvm_vcpu *vcpu, unsigned long *hptep, long ret),
+
+ TP_ARGS(vcpu, hptep, ret),
+
+ TP_STRUCT__entry(
+ __field(int, vcpu_id)
+ __field(unsigned long, hpte_v)
+ __field(unsigned long, hpte_r)
+ __field(long, ret)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu->vcpu_id;
+ __entry->hpte_v = hptep[0];
+ __entry->hpte_r = hptep[1];
+ __entry->ret = ret;
+ ),
+
+ TP_printk("VCPU %d: hpte=0x%lx:0x%lx ret=0x%lx",
+ __entry->vcpu_id,
+ __entry->hpte_v, __entry->hpte_r, __entry->ret)
+);
+
+TRACE_EVENT(kvm_hcall_enter,
+ TP_PROTO(struct kvm_vcpu *vcpu),
+
+ TP_ARGS(vcpu),
+
+ TP_STRUCT__entry(
+ __field(int, vcpu_id)
+ __field(unsigned long, req)
+ __field(unsigned long, gpr4)
+ __field(unsigned long, gpr5)
+ __field(unsigned long, gpr6)
+ __field(unsigned long, gpr7)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu->vcpu_id;
+ __entry->req = kvmppc_get_gpr(vcpu, 3);
+ __entry->gpr4 = kvmppc_get_gpr(vcpu, 4);
+ __entry->gpr5 = kvmppc_get_gpr(vcpu, 5);
+ __entry->gpr6 = kvmppc_get_gpr(vcpu, 6);
+ __entry->gpr7 = kvmppc_get_gpr(vcpu, 7);
+ ),
+
+ TP_printk("VCPU %d: hcall=%s GPR4-7=0x%lx,0x%lx,0x%lx,0x%lx",
+ __entry->vcpu_id,
+ __print_symbolic(__entry->req, kvm_trace_symbol_hcall),
+ __entry->gpr4, __entry->gpr5, __entry->gpr6, __entry->gpr7)
+);
+
+TRACE_EVENT(kvm_hcall_exit,
+ TP_PROTO(struct kvm_vcpu *vcpu, int ret),
+
+ TP_ARGS(vcpu, ret),
+
+ TP_STRUCT__entry(
+ __field(int, vcpu_id)
+ __field(unsigned long, ret)
+ __field(unsigned long, hcall_rc)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu->vcpu_id;
+ __entry->ret = ret;
+ __entry->hcall_rc = kvmppc_get_gpr(vcpu, 3);
+ ),
+
+ TP_printk("VCPU %d: ret=%s hcall_rc=%s",
+ __entry->vcpu_id,
+ __print_symbolic(__entry->ret, kvm_trace_symbol_kvmret),
+ __print_symbolic(__entry->ret & RESUME_FLAG_HOST ?
+ H_TOO_HARD : __entry->hcall_rc,
+ kvm_trace_symbol_hcall_rc))
+);
+
+TRACE_EVENT(kvmppc_run_core,
+ TP_PROTO(struct kvmppc_vcore *vc, int where),
+
+ TP_ARGS(vc, where),
+
+ TP_STRUCT__entry(
+ __field(int, n_runnable)
+ __field(int, runner_vcpu)
+ __field(int, where)
+ __field(pid_t, tgid)
+ ),
+
+ TP_fast_assign(
+ __entry->runner_vcpu = vc->runner->vcpu_id;
+ __entry->n_runnable = vc->n_runnable;
+ __entry->where = where;
+ __entry->tgid = current->tgid;
+ ),
+
+ TP_printk("%s runner_vcpu==%d runnable=%d tgid=%d",
+ __entry->where ? "Exit" : "Enter",
+ __entry->runner_vcpu, __entry->n_runnable, __entry->tgid)
+);
+
+TRACE_EVENT(kvmppc_vcore_blocked,
+ TP_PROTO(struct kvm_vcpu *vcpu, int where),
+
+ TP_ARGS(vcpu, where),
+
+ TP_STRUCT__entry(
+ __field(int, n_runnable)
+ __field(int, runner_vcpu)
+ __field(int, where)
+ __field(pid_t, tgid)
+ ),
+
+ TP_fast_assign(
+ __entry->runner_vcpu = vcpu->vcpu_id;
+ __entry->n_runnable = vcpu->arch.vcore->n_runnable;
+ __entry->where = where;
+ __entry->tgid = current->tgid;
+ ),
+
+ TP_printk("%s runner_vcpu=%d runnable=%d tgid=%d",
+ __entry->where ? "Exit" : "Enter",
+ __entry->runner_vcpu, __entry->n_runnable, __entry->tgid)
+);
+
+TRACE_EVENT(kvmppc_vcore_wakeup,
+ TP_PROTO(int do_sleep, __u64 ns),
+
+ TP_ARGS(do_sleep, ns),
+
+ TP_STRUCT__entry(
+ __field(__u64, ns)
+ __field(int, waited)
+ __field(pid_t, tgid)
+ ),
+
+ TP_fast_assign(
+ __entry->ns = ns;
+ __entry->waited = do_sleep;
+ __entry->tgid = current->tgid;
+ ),
+
+ TP_printk("%s time %llu ns, tgid=%d",
+ __entry->waited ? "wait" : "poll",
+ __entry->ns, __entry->tgid)
+);
+
+TRACE_EVENT(kvmppc_run_vcpu_enter,
+ TP_PROTO(struct kvm_vcpu *vcpu),
+
+ TP_ARGS(vcpu),
+
+ TP_STRUCT__entry(
+ __field(int, vcpu_id)
+ __field(pid_t, tgid)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu->vcpu_id;
+ __entry->tgid = current->tgid;
+ ),
+
+ TP_printk("VCPU %d: tgid=%d", __entry->vcpu_id, __entry->tgid)
+);
+
+TRACE_EVENT(kvmppc_run_vcpu_exit,
+ TP_PROTO(struct kvm_vcpu *vcpu),
+
+ TP_ARGS(vcpu),
+
+ TP_STRUCT__entry(
+ __field(int, vcpu_id)
+ __field(int, exit)
+ __field(int, ret)
+ ),
+
+ TP_fast_assign(
+ __entry->vcpu_id = vcpu->vcpu_id;
+ __entry->exit = vcpu->run->exit_reason;
+ __entry->ret = vcpu->arch.ret;
+ ),
+
+ TP_printk("VCPU %d: exit=%d, ret=%d",
+ __entry->vcpu_id, __entry->exit, __entry->ret)
+);
+
+#endif /* _TRACE_KVM_HV_H */
+
+/* This part must be outside protection */
+
+#undef TRACE_INCLUDE_PATH
+#undef TRACE_INCLUDE_FILE
+
+#define TRACE_INCLUDE_PATH .
+#define TRACE_INCLUDE_FILE trace_hv
+
+#include <trace/define_trace.h>
diff --git a/arch/powerpc/kvm/trace_pr.h b/arch/powerpc/kvm/trace_pr.h
new file mode 100644
index 000000000..46a46d328
--- /dev/null
+++ b/arch/powerpc/kvm/trace_pr.h
@@ -0,0 +1,265 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+
+#if !defined(_TRACE_KVM_PR_H) || defined(TRACE_HEADER_MULTI_READ)
+#define _TRACE_KVM_PR_H
+
+#include <linux/tracepoint.h>
+#include "trace_book3s.h"
+
+#undef TRACE_SYSTEM
+#define TRACE_SYSTEM kvm_pr
+
+TRACE_EVENT(kvm_book3s_reenter,
+ TP_PROTO(int r, struct kvm_vcpu *vcpu),
+ TP_ARGS(r, vcpu),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, r )
+ __field( unsigned long, pc )
+ ),
+
+ TP_fast_assign(
+ __entry->r = r;
+ __entry->pc = kvmppc_get_pc(vcpu);
+ ),
+
+ TP_printk("reentry r=%d | pc=0x%lx", __entry->r, __entry->pc)
+);
+
+#ifdef CONFIG_PPC_BOOK3S_64
+
+TRACE_EVENT(kvm_book3s_64_mmu_map,
+ TP_PROTO(int rflags, ulong hpteg, ulong va, kvm_pfn_t hpaddr,
+ struct kvmppc_pte *orig_pte),
+ TP_ARGS(rflags, hpteg, va, hpaddr, orig_pte),
+
+ TP_STRUCT__entry(
+ __field( unsigned char, flag_w )
+ __field( unsigned char, flag_x )
+ __field( unsigned long, eaddr )
+ __field( unsigned long, hpteg )
+ __field( unsigned long, va )
+ __field( unsigned long long, vpage )
+ __field( unsigned long, hpaddr )
+ ),
+
+ TP_fast_assign(
+ __entry->flag_w = ((rflags & HPTE_R_PP) == 3) ? '-' : 'w';
+ __entry->flag_x = (rflags & HPTE_R_N) ? '-' : 'x';
+ __entry->eaddr = orig_pte->eaddr;
+ __entry->hpteg = hpteg;
+ __entry->va = va;
+ __entry->vpage = orig_pte->vpage;
+ __entry->hpaddr = hpaddr;
+ ),
+
+ TP_printk("KVM: %c%c Map 0x%lx: [%lx] 0x%lx (0x%llx) -> %lx",
+ __entry->flag_w, __entry->flag_x, __entry->eaddr,
+ __entry->hpteg, __entry->va, __entry->vpage, __entry->hpaddr)
+);
+
+#endif /* CONFIG_PPC_BOOK3S_64 */
+
+TRACE_EVENT(kvm_book3s_mmu_map,
+ TP_PROTO(struct hpte_cache *pte),
+ TP_ARGS(pte),
+
+ TP_STRUCT__entry(
+ __field( u64, host_vpn )
+ __field( u64, pfn )
+ __field( ulong, eaddr )
+ __field( u64, vpage )
+ __field( ulong, raddr )
+ __field( int, flags )
+ ),
+
+ TP_fast_assign(
+ __entry->host_vpn = pte->host_vpn;
+ __entry->pfn = pte->pfn;
+ __entry->eaddr = pte->pte.eaddr;
+ __entry->vpage = pte->pte.vpage;
+ __entry->raddr = pte->pte.raddr;
+ __entry->flags = (pte->pte.may_read ? 0x4 : 0) |
+ (pte->pte.may_write ? 0x2 : 0) |
+ (pte->pte.may_execute ? 0x1 : 0);
+ ),
+
+ TP_printk("Map: hvpn=%llx pfn=%llx ea=%lx vp=%llx ra=%lx [%x]",
+ __entry->host_vpn, __entry->pfn, __entry->eaddr,
+ __entry->vpage, __entry->raddr, __entry->flags)
+);
+
+TRACE_EVENT(kvm_book3s_mmu_invalidate,
+ TP_PROTO(struct hpte_cache *pte),
+ TP_ARGS(pte),
+
+ TP_STRUCT__entry(
+ __field( u64, host_vpn )
+ __field( u64, pfn )
+ __field( ulong, eaddr )
+ __field( u64, vpage )
+ __field( ulong, raddr )
+ __field( int, flags )
+ ),
+
+ TP_fast_assign(
+ __entry->host_vpn = pte->host_vpn;
+ __entry->pfn = pte->pfn;
+ __entry->eaddr = pte->pte.eaddr;
+ __entry->vpage = pte->pte.vpage;
+ __entry->raddr = pte->pte.raddr;
+ __entry->flags = (pte->pte.may_read ? 0x4 : 0) |
+ (pte->pte.may_write ? 0x2 : 0) |
+ (pte->pte.may_execute ? 0x1 : 0);
+ ),
+
+ TP_printk("Flush: hva=%llx pfn=%llx ea=%lx vp=%llx ra=%lx [%x]",
+ __entry->host_vpn, __entry->pfn, __entry->eaddr,
+ __entry->vpage, __entry->raddr, __entry->flags)
+);
+
+TRACE_EVENT(kvm_book3s_mmu_flush,
+ TP_PROTO(const char *type, struct kvm_vcpu *vcpu, unsigned long long p1,
+ unsigned long long p2),
+ TP_ARGS(type, vcpu, p1, p2),
+
+ TP_STRUCT__entry(
+ __field( int, count )
+ __field( unsigned long long, p1 )
+ __field( unsigned long long, p2 )
+ __field( const char *, type )
+ ),
+
+ TP_fast_assign(
+ __entry->count = to_book3s(vcpu)->hpte_cache_count;
+ __entry->p1 = p1;
+ __entry->p2 = p2;
+ __entry->type = type;
+ ),
+
+ TP_printk("Flush %d %sPTEs: %llx - %llx",
+ __entry->count, __entry->type, __entry->p1, __entry->p2)
+);
+
+TRACE_EVENT(kvm_book3s_slb_found,
+ TP_PROTO(unsigned long long gvsid, unsigned long long hvsid),
+ TP_ARGS(gvsid, hvsid),
+
+ TP_STRUCT__entry(
+ __field( unsigned long long, gvsid )
+ __field( unsigned long long, hvsid )
+ ),
+
+ TP_fast_assign(
+ __entry->gvsid = gvsid;
+ __entry->hvsid = hvsid;
+ ),
+
+ TP_printk("%llx -> %llx", __entry->gvsid, __entry->hvsid)
+);
+
+TRACE_EVENT(kvm_book3s_slb_fail,
+ TP_PROTO(u16 sid_map_mask, unsigned long long gvsid),
+ TP_ARGS(sid_map_mask, gvsid),
+
+ TP_STRUCT__entry(
+ __field( unsigned short, sid_map_mask )
+ __field( unsigned long long, gvsid )
+ ),
+
+ TP_fast_assign(
+ __entry->sid_map_mask = sid_map_mask;
+ __entry->gvsid = gvsid;
+ ),
+
+ TP_printk("%x/%x: %llx", __entry->sid_map_mask,
+ SID_MAP_MASK - __entry->sid_map_mask, __entry->gvsid)
+);
+
+TRACE_EVENT(kvm_book3s_slb_map,
+ TP_PROTO(u16 sid_map_mask, unsigned long long gvsid,
+ unsigned long long hvsid),
+ TP_ARGS(sid_map_mask, gvsid, hvsid),
+
+ TP_STRUCT__entry(
+ __field( unsigned short, sid_map_mask )
+ __field( unsigned long long, guest_vsid )
+ __field( unsigned long long, host_vsid )
+ ),
+
+ TP_fast_assign(
+ __entry->sid_map_mask = sid_map_mask;
+ __entry->guest_vsid = gvsid;
+ __entry->host_vsid = hvsid;
+ ),
+
+ TP_printk("%x: %llx -> %llx", __entry->sid_map_mask,
+ __entry->guest_vsid, __entry->host_vsid)
+);
+
+TRACE_EVENT(kvm_book3s_slbmte,
+ TP_PROTO(u64 slb_vsid, u64 slb_esid),
+ TP_ARGS(slb_vsid, slb_esid),
+
+ TP_STRUCT__entry(
+ __field( u64, slb_vsid )
+ __field( u64, slb_esid )
+ ),
+
+ TP_fast_assign(
+ __entry->slb_vsid = slb_vsid;
+ __entry->slb_esid = slb_esid;
+ ),
+
+ TP_printk("%llx, %llx", __entry->slb_vsid, __entry->slb_esid)
+);
+
+TRACE_EVENT(kvm_exit,
+ TP_PROTO(unsigned int exit_nr, struct kvm_vcpu *vcpu),
+ TP_ARGS(exit_nr, vcpu),
+
+ TP_STRUCT__entry(
+ __field( unsigned int, exit_nr )
+ __field( unsigned long, pc )
+ __field( unsigned long, msr )
+ __field( unsigned long, dar )
+ __field( unsigned long, srr1 )
+ __field( unsigned long, last_inst )
+ ),
+
+ TP_fast_assign(
+ __entry->exit_nr = exit_nr;
+ __entry->pc = kvmppc_get_pc(vcpu);
+ __entry->dar = kvmppc_get_fault_dar(vcpu);
+ __entry->msr = kvmppc_get_msr(vcpu);
+ __entry->srr1 = vcpu->arch.shadow_srr1;
+ __entry->last_inst = vcpu->arch.last_inst;
+ ),
+
+ TP_printk("exit=%s"
+ " | pc=0x%lx"
+ " | msr=0x%lx"
+ " | dar=0x%lx"
+ " | srr1=0x%lx"
+ " | last_inst=0x%lx"
+ ,
+ __print_symbolic(__entry->exit_nr, kvm_trace_symbol_exit),
+ __entry->pc,
+ __entry->msr,
+ __entry->dar,
+ __entry->srr1,
+ __entry->last_inst
+ )
+);
+
+#endif /* _TRACE_KVM_H */
+
+/* This part must be outside protection */
+
+#undef TRACE_INCLUDE_PATH
+#undef TRACE_INCLUDE_FILE
+
+#define TRACE_INCLUDE_PATH .
+#define TRACE_INCLUDE_FILE trace_pr
+
+#include <trace/define_trace.h>