diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /arch/powerpc/platforms/powernv/pci-sriov.c | |
parent | Initial commit. (diff) | |
download | linux-b8823030eac27fc7a3d149e3a443a0b68810a78f.tar.xz linux-b8823030eac27fc7a3d149e3a443a0b68810a78f.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/powerpc/platforms/powernv/pci-sriov.c')
-rw-r--r-- | arch/powerpc/platforms/powernv/pci-sriov.c | 760 |
1 files changed, 760 insertions, 0 deletions
diff --git a/arch/powerpc/platforms/powernv/pci-sriov.c b/arch/powerpc/platforms/powernv/pci-sriov.c new file mode 100644 index 000000000..59882da3e --- /dev/null +++ b/arch/powerpc/platforms/powernv/pci-sriov.c @@ -0,0 +1,760 @@ +// SPDX-License-Identifier: GPL-2.0-or-later + +#include <linux/kernel.h> +#include <linux/ioport.h> +#include <linux/bitmap.h> +#include <linux/pci.h> + +#include <asm/opal.h> + +#include "pci.h" + +/* + * The majority of the complexity in supporting SR-IOV on PowerNV comes from + * the need to put the MMIO space for each VF into a separate PE. Internally + * the PHB maps MMIO addresses to a specific PE using the "Memory BAR Table". + * The MBT historically only applied to the 64bit MMIO window of the PHB + * so it's common to see it referred to as the "M64BT". + * + * An MBT entry stores the mapped range as an <base>,<mask> pair. This forces + * the address range that we want to map to be power-of-two sized and aligned. + * For conventional PCI devices this isn't really an issue since PCI device BARs + * have the same requirement. + * + * For a SR-IOV BAR things are a little more awkward since size and alignment + * are not coupled. The alignment is set based on the per-VF BAR size, but + * the total BAR area is: number-of-vfs * per-vf-size. The number of VFs + * isn't necessarily a power of two, so neither is the total size. To fix that + * we need to finesse (read: hack) the Linux BAR allocator so that it will + * allocate the SR-IOV BARs in a way that lets us map them using the MBT. + * + * The changes to size and alignment that we need to do depend on the "mode" + * of MBT entry that we use. We only support SR-IOV on PHB3 (IODA2) and above, + * so as a baseline we can assume that we have the following BAR modes + * available: + * + * NB: $PE_COUNT is the number of PEs that the PHB supports. + * + * a) A segmented BAR that splits the mapped range into $PE_COUNT equally sized + * segments. The n'th segment is mapped to the n'th PE. + * b) An un-segmented BAR that maps the whole address range to a specific PE. + * + * + * We prefer to use mode a) since it only requires one MBT entry per SR-IOV BAR + * For comparison b) requires one entry per-VF per-BAR, or: + * (num-vfs * num-sriov-bars) in total. To use a) we need the size of each segment + * to equal the size of the per-VF BAR area. So: + * + * new_size = per-vf-size * number-of-PEs + * + * The alignment for the SR-IOV BAR also needs to be changed from per-vf-size + * to "new_size", calculated above. Implementing this is a convoluted process + * which requires several hooks in the PCI core: + * + * 1. In pcibios_device_add() we call pnv_pci_ioda_fixup_iov(). + * + * At this point the device has been probed and the device's BARs are sized, + * but no resource allocations have been done. The SR-IOV BARs are sized + * based on the maximum number of VFs supported by the device and we need + * to increase that to new_size. + * + * 2. Later, when Linux actually assigns resources it tries to make the resource + * allocations for each PCI bus as compact as possible. As a part of that it + * sorts the BARs on a bus by their required alignment, which is calculated + * using pci_resource_alignment(). + * + * For IOV resources this goes: + * pci_resource_alignment() + * pci_sriov_resource_alignment() + * pcibios_sriov_resource_alignment() + * pnv_pci_iov_resource_alignment() + * + * Our hook overrides the default alignment, equal to the per-vf-size, with + * new_size computed above. + * + * 3. When userspace enables VFs for a device: + * + * sriov_enable() + * pcibios_sriov_enable() + * pnv_pcibios_sriov_enable() + * + * This is where we actually allocate PE numbers for each VF and setup the + * MBT mapping for each SR-IOV BAR. In steps 1) and 2) we setup an "arena" + * where each MBT segment is equal in size to the VF BAR so we can shift + * around the actual SR-IOV BAR location within this arena. We need this + * ability because the PE space is shared by all devices on the same PHB. + * When using mode a) described above segment 0 in maps to PE#0 which might + * be already being used by another device on the PHB. + * + * As a result we need allocate a contigious range of PE numbers, then shift + * the address programmed into the SR-IOV BAR of the PF so that the address + * of VF0 matches up with the segment corresponding to the first allocated + * PE number. This is handled in pnv_pci_vf_resource_shift(). + * + * Once all that is done we return to the PCI core which then enables VFs, + * scans them and creates pci_devs for each. The init process for a VF is + * largely the same as a normal device, but the VF is inserted into the IODA + * PE that we allocated for it rather than the PE associated with the bus. + * + * 4. When userspace disables VFs we unwind the above in + * pnv_pcibios_sriov_disable(). Fortunately this is relatively simple since + * we don't need to validate anything, just tear down the mappings and + * move SR-IOV resource back to its "proper" location. + * + * That's how mode a) works. In theory mode b) (single PE mapping) is less work + * since we can map each individual VF with a separate BAR. However, there's a + * few limitations: + * + * 1) For IODA2 mode b) has a minimum alignment requirement of 32MB. This makes + * it only usable for devices with very large per-VF BARs. Such devices are + * similar to Big Foot. They definitely exist, but I've never seen one. + * + * 2) The number of MBT entries that we have is limited. PHB3 and PHB4 only + * 16 total and some are needed for. Most SR-IOV capable network cards can support + * more than 16 VFs on each port. + * + * We use b) when using a) would use more than 1/4 of the entire 64 bit MMIO + * window of the PHB. + * + * + * + * PHB4 (IODA3) added a few new features that would be useful for SR-IOV. It + * allowed the MBT to map 32bit MMIO space in addition to 64bit which allows + * us to support SR-IOV BARs in the 32bit MMIO window. This is useful since + * the Linux BAR allocation will place any BAR marked as non-prefetchable into + * the non-prefetchable bridge window, which is 32bit only. It also added two + * new modes: + * + * c) A segmented BAR similar to a), but each segment can be individually + * mapped to any PE. This is matches how the 32bit MMIO window worked on + * IODA1&2. + * + * d) A segmented BAR with 8, 64, or 128 segments. This works similarly to a), + * but with fewer segments and configurable base PE. + * + * i.e. The n'th segment maps to the (n + base)'th PE. + * + * The base PE is also required to be a multiple of the window size. + * + * Unfortunately, the OPAL API doesn't currently (as of skiboot v6.6) allow us + * to exploit any of the IODA3 features. + */ + +static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev) +{ + struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); + struct resource *res; + int i; + resource_size_t vf_bar_sz; + struct pnv_iov_data *iov; + int mul; + + iov = kzalloc(sizeof(*iov), GFP_KERNEL); + if (!iov) + goto disable_iov; + pdev->dev.archdata.iov_data = iov; + mul = phb->ioda.total_pe_num; + + for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { + res = &pdev->resource[i + PCI_IOV_RESOURCES]; + if (!res->flags || res->parent) + continue; + if (!pnv_pci_is_m64_flags(res->flags)) { + dev_warn(&pdev->dev, "Don't support SR-IOV with non M64 VF BAR%d: %pR. \n", + i, res); + goto disable_iov; + } + + vf_bar_sz = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES); + + /* + * Generally, one segmented M64 BAR maps one IOV BAR. However, + * if a VF BAR is too large we end up wasting a lot of space. + * If each VF needs more than 1/4 of the default m64 segment + * then each VF BAR should be mapped in single-PE mode to reduce + * the amount of space required. This does however limit the + * number of VFs we can support. + * + * The 1/4 limit is arbitrary and can be tweaked. + */ + if (vf_bar_sz > (phb->ioda.m64_segsize >> 2)) { + /* + * On PHB3, the minimum size alignment of M64 BAR in + * single mode is 32MB. If this VF BAR is smaller than + * 32MB, but still too large for a segmented window + * then we can't map it and need to disable SR-IOV for + * this device. + */ + if (vf_bar_sz < SZ_32M) { + pci_err(pdev, "VF BAR%d: %pR can't be mapped in single PE mode\n", + i, res); + goto disable_iov; + } + + iov->m64_single_mode[i] = true; + continue; + } + + /* + * This BAR can be mapped with one segmented window, so adjust + * te resource size to accommodate. + */ + pci_dbg(pdev, " Fixing VF BAR%d: %pR to\n", i, res); + res->end = res->start + vf_bar_sz * mul - 1; + pci_dbg(pdev, " %pR\n", res); + + pci_info(pdev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)", + i, res, mul); + + iov->need_shift = true; + } + + return; + +disable_iov: + /* Save ourselves some MMIO space by disabling the unusable BARs */ + for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { + res = &pdev->resource[i + PCI_IOV_RESOURCES]; + res->flags = 0; + res->end = res->start - 1; + } + + pdev->dev.archdata.iov_data = NULL; + kfree(iov); +} + +void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev) +{ + if (pdev->is_virtfn) { + struct pnv_ioda_pe *pe = pnv_ioda_get_pe(pdev); + + /* + * VF PEs are single-device PEs so their pdev pointer needs to + * be set. The pdev doesn't exist when the PE is allocated (in + * (pcibios_sriov_enable()) so we fix it up here. + */ + pe->pdev = pdev; + WARN_ON(!(pe->flags & PNV_IODA_PE_VF)); + } else if (pdev->is_physfn) { + /* + * For PFs adjust their allocated IOV resources to match what + * the PHB can support using it's M64 BAR table. + */ + pnv_pci_ioda_fixup_iov_resources(pdev); + } +} + +resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, + int resno) +{ + resource_size_t align = pci_iov_resource_size(pdev, resno); + struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); + struct pnv_iov_data *iov = pnv_iov_get(pdev); + + /* + * iov can be null if we have an SR-IOV device with IOV BAR that can't + * be placed in the m64 space (i.e. The BAR is 32bit or non-prefetch). + * In that case we don't allow VFs to be enabled since one of their + * BARs would not be placed in the correct PE. + */ + if (!iov) + return align; + + /* + * If we're using single mode then we can just use the native VF BAR + * alignment. We validated that it's possible to use a single PE + * window above when we did the fixup. + */ + if (iov->m64_single_mode[resno - PCI_IOV_RESOURCES]) + return align; + + /* + * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the + * SR-IOV. While from hardware perspective, the range mapped by M64 + * BAR should be size aligned. + * + * This function returns the total IOV BAR size if M64 BAR is in + * Shared PE mode or just VF BAR size if not. + * If the M64 BAR is in Single PE mode, return the VF BAR size or + * M64 segment size if IOV BAR size is less. + */ + return phb->ioda.total_pe_num * align; +} + +static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs) +{ + struct pnv_iov_data *iov; + struct pnv_phb *phb; + int window_id; + + phb = pci_bus_to_pnvhb(pdev->bus); + iov = pnv_iov_get(pdev); + + for_each_set_bit(window_id, iov->used_m64_bar_mask, MAX_M64_BARS) { + opal_pci_phb_mmio_enable(phb->opal_id, + OPAL_M64_WINDOW_TYPE, + window_id, + 0); + + clear_bit(window_id, &phb->ioda.m64_bar_alloc); + } + + return 0; +} + + +/* + * PHB3 and beyond support segmented windows. The window's address range + * is subdivided into phb->ioda.total_pe_num segments and there's a 1-1 + * mapping between PEs and segments. + */ +static int64_t pnv_ioda_map_m64_segmented(struct pnv_phb *phb, + int window_id, + resource_size_t start, + resource_size_t size) +{ + int64_t rc; + + rc = opal_pci_set_phb_mem_window(phb->opal_id, + OPAL_M64_WINDOW_TYPE, + window_id, + start, + 0, /* unused */ + size); + if (rc) + goto out; + + rc = opal_pci_phb_mmio_enable(phb->opal_id, + OPAL_M64_WINDOW_TYPE, + window_id, + OPAL_ENABLE_M64_SPLIT); +out: + if (rc) + pr_err("Failed to map M64 window #%d: %lld\n", window_id, rc); + + return rc; +} + +static int64_t pnv_ioda_map_m64_single(struct pnv_phb *phb, + int pe_num, + int window_id, + resource_size_t start, + resource_size_t size) +{ + int64_t rc; + + /* + * The API for setting up m64 mmio windows seems to have been designed + * with P7-IOC in mind. For that chip each M64 BAR (window) had a fixed + * split of 8 equally sized segments each of which could individually + * assigned to a PE. + * + * The problem with this is that the API doesn't have any way to + * communicate the number of segments we want on a BAR. This wasn't + * a problem for p7-ioc since you didn't have a choice, but the + * single PE windows added in PHB3 don't map cleanly to this API. + * + * As a result we've got this slightly awkward process where we + * call opal_pci_map_pe_mmio_window() to put the single in single + * PE mode, and set the PE for the window before setting the address + * bounds. We need to do it this way because the single PE windows + * for PHB3 have different alignment requirements on PHB3. + */ + rc = opal_pci_map_pe_mmio_window(phb->opal_id, + pe_num, + OPAL_M64_WINDOW_TYPE, + window_id, + 0); + if (rc) + goto out; + + /* + * NB: In single PE mode the window needs to be aligned to 32MB + */ + rc = opal_pci_set_phb_mem_window(phb->opal_id, + OPAL_M64_WINDOW_TYPE, + window_id, + start, + 0, /* ignored by FW, m64 is 1-1 */ + size); + if (rc) + goto out; + + /* + * Now actually enable it. We specified the BAR should be in "non-split" + * mode so FW will validate that the BAR is in single PE mode. + */ + rc = opal_pci_phb_mmio_enable(phb->opal_id, + OPAL_M64_WINDOW_TYPE, + window_id, + OPAL_ENABLE_M64_NON_SPLIT); +out: + if (rc) + pr_err("Error mapping single PE BAR\n"); + + return rc; +} + +static int pnv_pci_alloc_m64_bar(struct pnv_phb *phb, struct pnv_iov_data *iov) +{ + int win; + + do { + win = find_next_zero_bit(&phb->ioda.m64_bar_alloc, + phb->ioda.m64_bar_idx + 1, 0); + + if (win >= phb->ioda.m64_bar_idx + 1) + return -1; + } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc)); + + set_bit(win, iov->used_m64_bar_mask); + + return win; +} + +static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs) +{ + struct pnv_iov_data *iov; + struct pnv_phb *phb; + int win; + struct resource *res; + int i, j; + int64_t rc; + resource_size_t size, start; + int base_pe_num; + + phb = pci_bus_to_pnvhb(pdev->bus); + iov = pnv_iov_get(pdev); + + for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { + res = &pdev->resource[i + PCI_IOV_RESOURCES]; + if (!res->flags || !res->parent) + continue; + + /* don't need single mode? map everything in one go! */ + if (!iov->m64_single_mode[i]) { + win = pnv_pci_alloc_m64_bar(phb, iov); + if (win < 0) + goto m64_failed; + + size = resource_size(res); + start = res->start; + + rc = pnv_ioda_map_m64_segmented(phb, win, start, size); + if (rc) + goto m64_failed; + + continue; + } + + /* otherwise map each VF with single PE BARs */ + size = pci_iov_resource_size(pdev, PCI_IOV_RESOURCES + i); + base_pe_num = iov->vf_pe_arr[0].pe_number; + + for (j = 0; j < num_vfs; j++) { + win = pnv_pci_alloc_m64_bar(phb, iov); + if (win < 0) + goto m64_failed; + + start = res->start + size * j; + rc = pnv_ioda_map_m64_single(phb, win, + base_pe_num + j, + start, + size); + if (rc) + goto m64_failed; + } + } + return 0; + +m64_failed: + pnv_pci_vf_release_m64(pdev, num_vfs); + return -EBUSY; +} + +static void pnv_ioda_release_vf_PE(struct pci_dev *pdev) +{ + struct pnv_phb *phb; + struct pnv_ioda_pe *pe, *pe_n; + + phb = pci_bus_to_pnvhb(pdev->bus); + + if (!pdev->is_physfn) + return; + + /* FIXME: Use pnv_ioda_release_pe()? */ + list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) { + if (pe->parent_dev != pdev) + continue; + + pnv_pci_ioda2_release_pe_dma(pe); + + /* Remove from list */ + mutex_lock(&phb->ioda.pe_list_mutex); + list_del(&pe->list); + mutex_unlock(&phb->ioda.pe_list_mutex); + + pnv_ioda_deconfigure_pe(phb, pe); + + pnv_ioda_free_pe(pe); + } +} + +static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset) +{ + struct resource *res, res2; + struct pnv_iov_data *iov; + resource_size_t size; + u16 num_vfs; + int i; + + if (!dev->is_physfn) + return -EINVAL; + iov = pnv_iov_get(dev); + + /* + * "offset" is in VFs. The M64 windows are sized so that when they + * are segmented, each segment is the same size as the IOV BAR. + * Each segment is in a separate PE, and the high order bits of the + * address are the PE number. Therefore, each VF's BAR is in a + * separate PE, and changing the IOV BAR start address changes the + * range of PEs the VFs are in. + */ + num_vfs = iov->num_vfs; + for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { + res = &dev->resource[i + PCI_IOV_RESOURCES]; + if (!res->flags || !res->parent) + continue; + if (iov->m64_single_mode[i]) + continue; + + /* + * The actual IOV BAR range is determined by the start address + * and the actual size for num_vfs VFs BAR. This check is to + * make sure that after shifting, the range will not overlap + * with another device. + */ + size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); + res2.flags = res->flags; + res2.start = res->start + (size * offset); + res2.end = res2.start + (size * num_vfs) - 1; + + if (res2.end > res->end) { + dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n", + i, &res2, res, num_vfs, offset); + return -EBUSY; + } + } + + /* + * Since M64 BAR shares segments among all possible 256 PEs, + * we have to shift the beginning of PF IOV BAR to make it start from + * the segment which belongs to the PE number assigned to the first VF. + * This creates a "hole" in the /proc/iomem which could be used for + * allocating other resources so we reserve this area below and + * release when IOV is released. + */ + for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { + res = &dev->resource[i + PCI_IOV_RESOURCES]; + if (!res->flags || !res->parent) + continue; + if (iov->m64_single_mode[i]) + continue; + + size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); + res2 = *res; + res->start += size * offset; + + dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n", + i, &res2, res, (offset > 0) ? "En" : "Dis", + num_vfs, offset); + + if (offset < 0) { + devm_release_resource(&dev->dev, &iov->holes[i]); + memset(&iov->holes[i], 0, sizeof(iov->holes[i])); + } + + pci_update_resource(dev, i + PCI_IOV_RESOURCES); + + if (offset > 0) { + iov->holes[i].start = res2.start; + iov->holes[i].end = res2.start + size * offset - 1; + iov->holes[i].flags = IORESOURCE_BUS; + iov->holes[i].name = "pnv_iov_reserved"; + devm_request_resource(&dev->dev, res->parent, + &iov->holes[i]); + } + } + return 0; +} + +static void pnv_pci_sriov_disable(struct pci_dev *pdev) +{ + u16 num_vfs, base_pe; + struct pnv_iov_data *iov; + + iov = pnv_iov_get(pdev); + if (WARN_ON(!iov)) + return; + + num_vfs = iov->num_vfs; + base_pe = iov->vf_pe_arr[0].pe_number; + + /* Release VF PEs */ + pnv_ioda_release_vf_PE(pdev); + + /* Un-shift the IOV BARs if we need to */ + if (iov->need_shift) + pnv_pci_vf_resource_shift(pdev, -base_pe); + + /* Release M64 windows */ + pnv_pci_vf_release_m64(pdev, num_vfs); +} + +static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs) +{ + struct pnv_phb *phb; + struct pnv_ioda_pe *pe; + int pe_num; + u16 vf_index; + struct pnv_iov_data *iov; + struct pci_dn *pdn; + + if (!pdev->is_physfn) + return; + + phb = pci_bus_to_pnvhb(pdev->bus); + pdn = pci_get_pdn(pdev); + iov = pnv_iov_get(pdev); + + /* Reserve PE for each VF */ + for (vf_index = 0; vf_index < num_vfs; vf_index++) { + int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index); + int vf_bus = pci_iov_virtfn_bus(pdev, vf_index); + struct pci_dn *vf_pdn; + + pe = &iov->vf_pe_arr[vf_index]; + pe->phb = phb; + pe->flags = PNV_IODA_PE_VF; + pe->pbus = NULL; + pe->parent_dev = pdev; + pe->mve_number = -1; + pe->rid = (vf_bus << 8) | vf_devfn; + + pe_num = pe->pe_number; + pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n", + pci_domain_nr(pdev->bus), pdev->bus->number, + PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num); + + if (pnv_ioda_configure_pe(phb, pe)) { + /* XXX What do we do here ? */ + pnv_ioda_free_pe(pe); + pe->pdev = NULL; + continue; + } + + /* Put PE to the list */ + mutex_lock(&phb->ioda.pe_list_mutex); + list_add_tail(&pe->list, &phb->ioda.pe_list); + mutex_unlock(&phb->ioda.pe_list_mutex); + + /* associate this pe to it's pdn */ + list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) { + if (vf_pdn->busno == vf_bus && + vf_pdn->devfn == vf_devfn) { + vf_pdn->pe_number = pe_num; + break; + } + } + + pnv_pci_ioda2_setup_dma_pe(phb, pe); + } +} + +static int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs) +{ + struct pnv_ioda_pe *base_pe; + struct pnv_iov_data *iov; + struct pnv_phb *phb; + int ret; + u16 i; + + phb = pci_bus_to_pnvhb(pdev->bus); + iov = pnv_iov_get(pdev); + + /* + * There's a calls to IODA2 PE setup code littered throughout. We could + * probably fix that, but we'd still have problems due to the + * restriction inherent on IODA1 PHBs. + * + * NB: We class IODA3 as IODA2 since they're very similar. + */ + if (phb->type != PNV_PHB_IODA2) { + pci_err(pdev, "SR-IOV is not supported on this PHB\n"); + return -ENXIO; + } + + if (!iov) { + dev_info(&pdev->dev, "don't support this SRIOV device with non 64bit-prefetchable IOV BAR\n"); + return -ENOSPC; + } + + /* allocate a contiguous block of PEs for our VFs */ + base_pe = pnv_ioda_alloc_pe(phb, num_vfs); + if (!base_pe) { + pci_err(pdev, "Unable to allocate PEs for %d VFs\n", num_vfs); + return -EBUSY; + } + + iov->vf_pe_arr = base_pe; + iov->num_vfs = num_vfs; + + /* Assign M64 window accordingly */ + ret = pnv_pci_vf_assign_m64(pdev, num_vfs); + if (ret) { + dev_info(&pdev->dev, "Not enough M64 window resources\n"); + goto m64_failed; + } + + /* + * When using one M64 BAR to map one IOV BAR, we need to shift + * the IOV BAR according to the PE# allocated to the VFs. + * Otherwise, the PE# for the VF will conflict with others. + */ + if (iov->need_shift) { + ret = pnv_pci_vf_resource_shift(pdev, base_pe->pe_number); + if (ret) + goto shift_failed; + } + + /* Setup VF PEs */ + pnv_ioda_setup_vf_PE(pdev, num_vfs); + + return 0; + +shift_failed: + pnv_pci_vf_release_m64(pdev, num_vfs); + +m64_failed: + for (i = 0; i < num_vfs; i++) + pnv_ioda_free_pe(&iov->vf_pe_arr[i]); + + return ret; +} + +int pnv_pcibios_sriov_disable(struct pci_dev *pdev) +{ + pnv_pci_sriov_disable(pdev); + + /* Release PCI data */ + remove_sriov_vf_pdns(pdev); + return 0; +} + +int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) +{ + /* Allocate PCI data */ + add_sriov_vf_pdns(pdev); + + return pnv_pci_sriov_enable(pdev, num_vfs); +} |