diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/gpu/drm/msm/NOTES | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/gpu/drm/msm/NOTES')
-rw-r--r-- | drivers/gpu/drm/msm/NOTES | 87 |
1 files changed, 87 insertions, 0 deletions
diff --git a/drivers/gpu/drm/msm/NOTES b/drivers/gpu/drm/msm/NOTES new file mode 100644 index 000000000..9c4255b98 --- /dev/null +++ b/drivers/gpu/drm/msm/NOTES @@ -0,0 +1,87 @@ +NOTES about msm drm/kms driver: + +In the current snapdragon SoC's, we have (at least) 3 different +display controller blocks at play: + + MDP3 - ?? seems to be what is on geeksphone peak device + + MDP4 - S3 (APQ8060, touchpad), S4-pro (APQ8064, nexus4 & ifc6410) + + MDP5 - snapdragon 800 + +(I don't have a completely clear picture on which display controller +maps to which part #) + +Plus a handful of blocks around them for HDMI/DSI/etc output. + +And on gpu side of things: + + zero, one, or two 2d cores (z180) + + and either a2xx or a3xx 3d core. + +But, HDMI/DSI/etc blocks seem like they can be shared across multiple +display controller blocks. And I for sure don't want to have to deal +with N different kms devices from xf86-video-freedreno. Plus, it +seems like we can do some clever tricks like use GPU to trigger +pageflip after rendering completes (ie. have the kms/crtc code build +up gpu cmdstream to update scanout and write FLUSH register after). + +So, the approach is one drm driver, with some modularity. Different +'struct msm_kms' implementations, depending on display controller. +And one or more 'struct msm_gpu' for the various different gpu sub- +modules. + +(Second part is not implemented yet. So far this is just basic KMS +driver, and not exposing any custom ioctls to userspace for now.) + +The kms module provides the plane, crtc, and encoder objects, and +loads whatever connectors are appropriate. + +For MDP4, the mapping is: + + plane -> PIPE{RGBn,VGn} \ + crtc -> OVLP{n} + DMA{P,S,E} (??) |-> MDP "device" + encoder -> DTV/LCDC/DSI (within MDP4) / + connector -> HDMI/DSI/etc --> other device(s) + +Since the irq's that drm core mostly cares about are vblank/framedone, +we'll let msm_mdp4_kms provide the irq install/uninstall/etc functions +and treat the MDP4 block's irq as "the" irq. Even though the connectors +may have their own irqs which they install themselves. For this reason +the display controller is the "master" device. + +For MDP5, the mapping is: + + plane -> PIPE{RGBn,VIGn} \ + crtc -> LM (layer mixer) |-> MDP "device" + encoder -> INTF / + connector -> HDMI/DSI/eDP/etc --> other device(s) + +Unlike MDP4, it appears we can get by with a single encoder, rather +than needing a different implementation for DTV, DSI, etc. (Ie. the +register interface is same, just different bases.) + +Also unlike MDP4, with MDP5 all the IRQs for other blocks (HDMI, DSI, +etc) are routed through MDP. + +And finally, MDP5 has this "Shared Memory Pool" (called "SMP"), from +which blocks need to be allocated to the active pipes based on fetch +stride. + +Each connector probably ends up being a separate device, just for the +logistics of finding/mapping io region, irq, etc. Idealy we would +have a better way than just stashing the platform device in a global +(ie. like DT super-node.. but I don't have any snapdragon hw yet that +is using DT). + +Note that so far I've not been able to get any docs on the hw, and it +seems that access to such docs would prevent me from working on the +freedreno gallium driver. So there may be some mistakes in register +names (I had to invent a few, since no sufficient hint was given in +the downstream android fbdev driver), bitfield sizes, etc. My current +state of understanding the registers is given in the envytools rnndb +files at: + + https://github.com/freedreno/envytools/tree/master/rnndb + (the mdp4/hdmi/dsi directories) + +These files are used both for a parser tool (in the same tree) to +parse logged register reads/writes (both from downstream android fbdev +driver, and this driver with register logging enabled), as well as to +generate the register level headers. |