summaryrefslogtreecommitdiffstats
path: root/drivers/md
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/md
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/md')
-rw-r--r--drivers/md/Kconfig661
-rw-r--r--drivers/md/Makefile114
-rw-r--r--drivers/md/bcache/Kconfig38
-rw-r--r--drivers/md/bcache/Makefile7
-rw-r--r--drivers/md/bcache/alloc.c736
-rw-r--r--drivers/md/bcache/bcache.h1049
-rw-r--r--drivers/md/bcache/bcache_ondisk.h446
-rw-r--r--drivers/md/bcache/bset.c1390
-rw-r--r--drivers/md/bcache/bset.h593
-rw-r--r--drivers/md/bcache/btree.c2800
-rw-r--r--drivers/md/bcache/btree.h417
-rw-r--r--drivers/md/bcache/closure.c207
-rw-r--r--drivers/md/bcache/closure.h378
-rw-r--r--drivers/md/bcache/debug.c263
-rw-r--r--drivers/md/bcache/debug.h35
-rw-r--r--drivers/md/bcache/extents.c630
-rw-r--r--drivers/md/bcache/extents.h15
-rw-r--r--drivers/md/bcache/features.c75
-rw-r--r--drivers/md/bcache/features.h113
-rw-r--r--drivers/md/bcache/io.c175
-rw-r--r--drivers/md/bcache/journal.c1000
-rw-r--r--drivers/md/bcache/journal.h188
-rw-r--r--drivers/md/bcache/movinggc.c252
-rw-r--r--drivers/md/bcache/request.c1345
-rw-r--r--drivers/md/bcache/request.h47
-rw-r--r--drivers/md/bcache/stats.c234
-rw-r--r--drivers/md/bcache/stats.h63
-rw-r--r--drivers/md/bcache/super.c2941
-rw-r--r--drivers/md/bcache/sysfs.c1204
-rw-r--r--drivers/md/bcache/sysfs.h142
-rw-r--r--drivers/md/bcache/trace.c53
-rw-r--r--drivers/md/bcache/util.c287
-rw-r--r--drivers/md/bcache/util.h562
-rw-r--r--drivers/md/bcache/writeback.c1100
-rw-r--r--drivers/md/bcache/writeback.h155
-rw-r--r--drivers/md/dm-audit.c84
-rw-r--r--drivers/md/dm-audit.h66
-rw-r--r--drivers/md/dm-bio-prison-v1.c458
-rw-r--r--drivers/md/dm-bio-prison-v1.h138
-rw-r--r--drivers/md/dm-bio-prison-v2.c364
-rw-r--r--drivers/md/dm-bio-prison-v2.h152
-rw-r--r--drivers/md/dm-bio-record.h56
-rw-r--r--drivers/md/dm-bufio.c2181
-rw-r--r--drivers/md/dm-builtin.c49
-rw-r--r--drivers/md/dm-cache-background-tracker.c257
-rw-r--r--drivers/md/dm-cache-background-tracker.h80
-rw-r--r--drivers/md/dm-cache-block-types.h54
-rw-r--r--drivers/md/dm-cache-metadata.c1860
-rw-r--r--drivers/md/dm-cache-metadata.h153
-rw-r--r--drivers/md/dm-cache-policy-internal.h163
-rw-r--r--drivers/md/dm-cache-policy-smq.c1953
-rw-r--r--drivers/md/dm-cache-policy.c173
-rw-r--r--drivers/md/dm-cache-policy.h186
-rw-r--r--drivers/md/dm-cache-target.c3454
-rw-r--r--drivers/md/dm-clone-metadata.c1028
-rw-r--r--drivers/md/dm-clone-metadata.h177
-rw-r--r--drivers/md/dm-clone-target.c2229
-rw-r--r--drivers/md/dm-core.h341
-rw-r--r--drivers/md/dm-crypt.c3678
-rw-r--r--drivers/md/dm-delay.c404
-rw-r--r--drivers/md/dm-dust.c594
-rw-r--r--drivers/md/dm-ebs-target.c475
-rw-r--r--drivers/md/dm-era-target.c1756
-rw-r--r--drivers/md/dm-exception-store.c290
-rw-r--r--drivers/md/dm-exception-store.h205
-rw-r--r--drivers/md/dm-flakey.c530
-rw-r--r--drivers/md/dm-ima.c749
-rw-r--r--drivers/md/dm-ima.h78
-rw-r--r--drivers/md/dm-init.c323
-rw-r--r--drivers/md/dm-integrity.c4671
-rw-r--r--drivers/md/dm-io-rewind.c166
-rw-r--r--drivers/md/dm-io-tracker.h81
-rw-r--r--drivers/md/dm-io.c544
-rw-r--r--drivers/md/dm-ioctl.c2271
-rw-r--r--drivers/md/dm-kcopyd.c988
-rw-r--r--drivers/md/dm-linear.c229
-rw-r--r--drivers/md/dm-log-userspace-base.c937
-rw-r--r--drivers/md/dm-log-userspace-transfer.c286
-rw-r--r--drivers/md/dm-log-userspace-transfer.h18
-rw-r--r--drivers/md/dm-log-writes.c960
-rw-r--r--drivers/md/dm-log.c896
-rw-r--r--drivers/md/dm-mpath.c2256
-rw-r--r--drivers/md/dm-mpath.h22
-rw-r--r--drivers/md/dm-path-selector.c140
-rw-r--r--drivers/md/dm-path-selector.h107
-rw-r--r--drivers/md/dm-ps-historical-service-time.c565
-rw-r--r--drivers/md/dm-ps-io-affinity.c274
-rw-r--r--drivers/md/dm-ps-queue-length.c286
-rw-r--r--drivers/md/dm-ps-round-robin.c240
-rw-r--r--drivers/md/dm-ps-service-time.c364
-rw-r--r--drivers/md/dm-raid.c4112
-rw-r--r--drivers/md/dm-raid1.c1511
-rw-r--r--drivers/md/dm-region-hash.c724
-rw-r--r--drivers/md/dm-rq.c596
-rw-r--r--drivers/md/dm-rq.h47
-rw-r--r--drivers/md/dm-snap-persistent.c972
-rw-r--r--drivers/md/dm-snap-transient.c155
-rw-r--r--drivers/md/dm-snap.c2866
-rw-r--r--drivers/md/dm-stats.c1249
-rw-r--r--drivers/md/dm-stats.h48
-rw-r--r--drivers/md/dm-stripe.c495
-rw-r--r--drivers/md/dm-switch.c592
-rw-r--r--drivers/md/dm-sysfs.c147
-rw-r--r--drivers/md/dm-table.c2163
-rw-r--r--drivers/md/dm-target.c175
-rw-r--r--drivers/md/dm-thin-metadata.c2154
-rw-r--r--drivers/md/dm-thin-metadata.h241
-rw-r--r--drivers/md/dm-thin.c4529
-rw-r--r--drivers/md/dm-uevent.c206
-rw-r--r--drivers/md/dm-uevent.h46
-rw-r--r--drivers/md/dm-unstripe.c211
-rw-r--r--drivers/md/dm-verity-fec.c823
-rw-r--r--drivers/md/dm-verity-fec.h153
-rw-r--r--drivers/md/dm-verity-loadpin.c86
-rw-r--r--drivers/md/dm-verity-target.c1530
-rw-r--r--drivers/md/dm-verity-verify-sig.c138
-rw-r--r--drivers/md/dm-verity-verify-sig.h60
-rw-r--r--drivers/md/dm-verity.h135
-rw-r--r--drivers/md/dm-writecache.c2775
-rw-r--r--drivers/md/dm-zero.c88
-rw-r--r--drivers/md/dm-zone.c648
-rw-r--r--drivers/md/dm-zoned-metadata.c3046
-rw-r--r--drivers/md/dm-zoned-reclaim.c640
-rw-r--r--drivers/md/dm-zoned-target.c1173
-rw-r--r--drivers/md/dm-zoned.h303
-rw-r--r--drivers/md/dm.c3397
-rw-r--r--drivers/md/dm.h227
-rw-r--r--drivers/md/md-autodetect.c282
-rw-r--r--drivers/md/md-bitmap.c2653
-rw-r--r--drivers/md/md-bitmap.h285
-rw-r--r--drivers/md/md-cluster.c1602
-rw-r--r--drivers/md/md-cluster.h36
-rw-r--r--drivers/md/md-faulty.c363
-rw-r--r--drivers/md/md-linear.c319
-rw-r--r--drivers/md/md-linear.h17
-rw-r--r--drivers/md/md-multipath.c470
-rw-r--r--drivers/md/md-multipath.h32
-rw-r--r--drivers/md/md.c10020
-rw-r--r--drivers/md/md.h838
-rw-r--r--drivers/md/persistent-data/Kconfig10
-rw-r--r--drivers/md/persistent-data/Makefile13
-rw-r--r--drivers/md/persistent-data/dm-array.c1011
-rw-r--r--drivers/md/persistent-data/dm-array.h219
-rw-r--r--drivers/md/persistent-data/dm-bitset.c317
-rw-r--r--drivers/md/persistent-data/dm-bitset.h205
-rw-r--r--drivers/md/persistent-data/dm-block-manager.c656
-rw-r--r--drivers/md/persistent-data/dm-block-manager.h135
-rw-r--r--drivers/md/persistent-data/dm-btree-internal.h160
-rw-r--r--drivers/md/persistent-data/dm-btree-remove.c759
-rw-r--r--drivers/md/persistent-data/dm-btree-spine.c264
-rw-r--r--drivers/md/persistent-data/dm-btree.c1625
-rw-r--r--drivers/md/persistent-data/dm-btree.h215
-rw-r--r--drivers/md/persistent-data/dm-persistent-data-internal.h19
-rw-r--r--drivers/md/persistent-data/dm-space-map-common.c1259
-rw-r--r--drivers/md/persistent-data/dm-space-map-common.h145
-rw-r--r--drivers/md/persistent-data/dm-space-map-disk.c280
-rw-r--r--drivers/md/persistent-data/dm-space-map-disk.h25
-rw-r--r--drivers/md/persistent-data/dm-space-map-metadata.c842
-rw-r--r--drivers/md/persistent-data/dm-space-map-metadata.h44
-rw-r--r--drivers/md/persistent-data/dm-space-map.h168
-rw-r--r--drivers/md/persistent-data/dm-transaction-manager.c519
-rw-r--r--drivers/md/persistent-data/dm-transaction-manager.h153
-rw-r--r--drivers/md/raid0.c846
-rw-r--r--drivers/md/raid0.h33
-rw-r--r--drivers/md/raid1-10.c153
-rw-r--r--drivers/md/raid1.c3407
-rw-r--r--drivers/md/raid1.h218
-rw-r--r--drivers/md/raid10.c5290
-rw-r--r--drivers/md/raid10.h184
-rw-r--r--drivers/md/raid5-cache.c3183
-rw-r--r--drivers/md/raid5-log.h151
-rw-r--r--drivers/md/raid5-ppl.c1532
-rw-r--r--drivers/md/raid5.c9177
-rw-r--r--drivers/md/raid5.h826
174 files changed, 150175 insertions, 0 deletions
diff --git a/drivers/md/Kconfig b/drivers/md/Kconfig
new file mode 100644
index 000000000..db0e97020
--- /dev/null
+++ b/drivers/md/Kconfig
@@ -0,0 +1,661 @@
+# SPDX-License-Identifier: GPL-2.0-only
+#
+# Block device driver configuration
+#
+
+menuconfig MD
+ bool "Multiple devices driver support (RAID and LVM)"
+ depends on BLOCK
+ select SRCU
+ help
+ Support multiple physical spindles through a single logical device.
+ Required for RAID and logical volume management.
+
+if MD
+
+config BLK_DEV_MD
+ tristate "RAID support"
+ select BLOCK_HOLDER_DEPRECATED if SYSFS
+ # BLOCK_LEGACY_AUTOLOAD requirement should be removed
+ # after relevant mdadm enhancements - to make "names=yes"
+ # the default - are widely available.
+ select BLOCK_LEGACY_AUTOLOAD
+ help
+ This driver lets you combine several hard disk partitions into one
+ logical block device. This can be used to simply append one
+ partition to another one or to combine several redundant hard disks
+ into a RAID1/4/5 device so as to provide protection against hard
+ disk failures. This is called "Software RAID" since the combining of
+ the partitions is done by the kernel. "Hardware RAID" means that the
+ combining is done by a dedicated controller; if you have such a
+ controller, you do not need to say Y here.
+
+ More information about Software RAID on Linux is contained in the
+ Software RAID mini-HOWTO, available from
+ <https://www.tldp.org/docs.html#howto>. There you will also learn
+ where to get the supporting user space utilities raidtools.
+
+ If unsure, say N.
+
+config MD_AUTODETECT
+ bool "Autodetect RAID arrays during kernel boot"
+ depends on BLK_DEV_MD=y
+ default y
+ help
+ If you say Y here, then the kernel will try to autodetect raid
+ arrays as part of its boot process.
+
+ If you don't use raid and say Y, this autodetection can cause
+ a several-second delay in the boot time due to various
+ synchronisation steps that are part of this step.
+
+ If unsure, say Y.
+
+config MD_LINEAR
+ tristate "Linear (append) mode (deprecated)"
+ depends on BLK_DEV_MD
+ help
+ If you say Y here, then your multiple devices driver will be able to
+ use the so-called linear mode, i.e. it will combine the hard disk
+ partitions by simply appending one to the other.
+
+ To compile this as a module, choose M here: the module
+ will be called linear.
+
+ If unsure, say Y.
+
+config MD_RAID0
+ tristate "RAID-0 (striping) mode"
+ depends on BLK_DEV_MD
+ help
+ If you say Y here, then your multiple devices driver will be able to
+ use the so-called raid0 mode, i.e. it will combine the hard disk
+ partitions into one logical device in such a fashion as to fill them
+ up evenly, one chunk here and one chunk there. This will increase
+ the throughput rate if the partitions reside on distinct disks.
+
+ Information about Software RAID on Linux is contained in the
+ Software-RAID mini-HOWTO, available from
+ <https://www.tldp.org/docs.html#howto>. There you will also
+ learn where to get the supporting user space utilities raidtools.
+
+ To compile this as a module, choose M here: the module
+ will be called raid0.
+
+ If unsure, say Y.
+
+config MD_RAID1
+ tristate "RAID-1 (mirroring) mode"
+ depends on BLK_DEV_MD
+ help
+ A RAID-1 set consists of several disk drives which are exact copies
+ of each other. In the event of a mirror failure, the RAID driver
+ will continue to use the operational mirrors in the set, providing
+ an error free MD (multiple device) to the higher levels of the
+ kernel. In a set with N drives, the available space is the capacity
+ of a single drive, and the set protects against a failure of (N - 1)
+ drives.
+
+ Information about Software RAID on Linux is contained in the
+ Software-RAID mini-HOWTO, available from
+ <https://www.tldp.org/docs.html#howto>. There you will also
+ learn where to get the supporting user space utilities raidtools.
+
+ If you want to use such a RAID-1 set, say Y. To compile this code
+ as a module, choose M here: the module will be called raid1.
+
+ If unsure, say Y.
+
+config MD_RAID10
+ tristate "RAID-10 (mirrored striping) mode"
+ depends on BLK_DEV_MD
+ help
+ RAID-10 provides a combination of striping (RAID-0) and
+ mirroring (RAID-1) with easier configuration and more flexible
+ layout.
+ Unlike RAID-0, but like RAID-1, RAID-10 requires all devices to
+ be the same size (or at least, only as much as the smallest device
+ will be used).
+ RAID-10 provides a variety of layouts that provide different levels
+ of redundancy and performance.
+
+ RAID-10 requires mdadm-1.7.0 or later, available at:
+
+ https://www.kernel.org/pub/linux/utils/raid/mdadm/
+
+ If unsure, say Y.
+
+config MD_RAID456
+ tristate "RAID-4/RAID-5/RAID-6 mode"
+ depends on BLK_DEV_MD
+ select RAID6_PQ
+ select LIBCRC32C
+ select ASYNC_MEMCPY
+ select ASYNC_XOR
+ select ASYNC_PQ
+ select ASYNC_RAID6_RECOV
+ help
+ A RAID-5 set of N drives with a capacity of C MB per drive provides
+ the capacity of C * (N - 1) MB, and protects against a failure
+ of a single drive. For a given sector (row) number, (N - 1) drives
+ contain data sectors, and one drive contains the parity protection.
+ For a RAID-4 set, the parity blocks are present on a single drive,
+ while a RAID-5 set distributes the parity across the drives in one
+ of the available parity distribution methods.
+
+ A RAID-6 set of N drives with a capacity of C MB per drive
+ provides the capacity of C * (N - 2) MB, and protects
+ against a failure of any two drives. For a given sector
+ (row) number, (N - 2) drives contain data sectors, and two
+ drives contains two independent redundancy syndromes. Like
+ RAID-5, RAID-6 distributes the syndromes across the drives
+ in one of the available parity distribution methods.
+
+ Information about Software RAID on Linux is contained in the
+ Software-RAID mini-HOWTO, available from
+ <https://www.tldp.org/docs.html#howto>. There you will also
+ learn where to get the supporting user space utilities raidtools.
+
+ If you want to use such a RAID-4/RAID-5/RAID-6 set, say Y. To
+ compile this code as a module, choose M here: the module
+ will be called raid456.
+
+ If unsure, say Y.
+
+config MD_MULTIPATH
+ tristate "Multipath I/O support (deprecated)"
+ depends on BLK_DEV_MD
+ help
+ MD_MULTIPATH provides a simple multi-path personality for use
+ the MD framework. It is not under active development. New
+ projects should consider using DM_MULTIPATH which has more
+ features and more testing.
+
+ If unsure, say N.
+
+config MD_FAULTY
+ tristate "Faulty test module for MD (deprecated)"
+ depends on BLK_DEV_MD
+ help
+ The "faulty" module allows for a block device that occasionally returns
+ read or write errors. It is useful for testing.
+
+ In unsure, say N.
+
+
+config MD_CLUSTER
+ tristate "Cluster Support for MD"
+ depends on BLK_DEV_MD
+ depends on DLM
+ default n
+ help
+ Clustering support for MD devices. This enables locking and
+ synchronization across multiple systems on the cluster, so all
+ nodes in the cluster can access the MD devices simultaneously.
+
+ This brings the redundancy (and uptime) of RAID levels across the
+ nodes of the cluster. Currently, it can work with raid1 and raid10
+ (limited support).
+
+ If unsure, say N.
+
+source "drivers/md/bcache/Kconfig"
+
+config BLK_DEV_DM_BUILTIN
+ bool
+
+config BLK_DEV_DM
+ tristate "Device mapper support"
+ select BLOCK_HOLDER_DEPRECATED if SYSFS
+ select BLK_DEV_DM_BUILTIN
+ select BLK_MQ_STACKING
+ depends on DAX || DAX=n
+ help
+ Device-mapper is a low level volume manager. It works by allowing
+ people to specify mappings for ranges of logical sectors. Various
+ mapping types are available, in addition people may write their own
+ modules containing custom mappings if they wish.
+
+ Higher level volume managers such as LVM2 use this driver.
+
+ To compile this as a module, choose M here: the module will be
+ called dm-mod.
+
+ If unsure, say N.
+
+config DM_DEBUG
+ bool "Device mapper debugging support"
+ depends on BLK_DEV_DM
+ help
+ Enable this for messages that may help debug device-mapper problems.
+
+ If unsure, say N.
+
+config DM_BUFIO
+ tristate
+ depends on BLK_DEV_DM
+ help
+ This interface allows you to do buffered I/O on a device and acts
+ as a cache, holding recently-read blocks in memory and performing
+ delayed writes.
+
+config DM_DEBUG_BLOCK_MANAGER_LOCKING
+ bool "Block manager locking"
+ depends on DM_BUFIO
+ help
+ Block manager locking can catch various metadata corruption issues.
+
+ If unsure, say N.
+
+config DM_DEBUG_BLOCK_STACK_TRACING
+ bool "Keep stack trace of persistent data block lock holders"
+ depends on STACKTRACE_SUPPORT && DM_DEBUG_BLOCK_MANAGER_LOCKING
+ select STACKTRACE
+ help
+ Enable this for messages that may help debug problems with the
+ block manager locking used by thin provisioning and caching.
+
+ If unsure, say N.
+
+config DM_BIO_PRISON
+ tristate
+ depends on BLK_DEV_DM
+ help
+ Some bio locking schemes used by other device-mapper targets
+ including thin provisioning.
+
+source "drivers/md/persistent-data/Kconfig"
+
+config DM_UNSTRIPED
+ tristate "Unstriped target"
+ depends on BLK_DEV_DM
+ help
+ Unstripes I/O so it is issued solely on a single drive in a HW
+ RAID0 or dm-striped target.
+
+config DM_CRYPT
+ tristate "Crypt target support"
+ depends on BLK_DEV_DM
+ depends on (ENCRYPTED_KEYS || ENCRYPTED_KEYS=n)
+ depends on (TRUSTED_KEYS || TRUSTED_KEYS=n)
+ select CRYPTO
+ select CRYPTO_CBC
+ select CRYPTO_ESSIV
+ help
+ This device-mapper target allows you to create a device that
+ transparently encrypts the data on it. You'll need to activate
+ the ciphers you're going to use in the cryptoapi configuration.
+
+ For further information on dm-crypt and userspace tools see:
+ <https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt>
+
+ To compile this code as a module, choose M here: the module will
+ be called dm-crypt.
+
+ If unsure, say N.
+
+config DM_SNAPSHOT
+ tristate "Snapshot target"
+ depends on BLK_DEV_DM
+ select DM_BUFIO
+ help
+ Allow volume managers to take writable snapshots of a device.
+
+config DM_THIN_PROVISIONING
+ tristate "Thin provisioning target"
+ depends on BLK_DEV_DM
+ select DM_PERSISTENT_DATA
+ select DM_BIO_PRISON
+ help
+ Provides thin provisioning and snapshots that share a data store.
+
+config DM_CACHE
+ tristate "Cache target (EXPERIMENTAL)"
+ depends on BLK_DEV_DM
+ default n
+ select DM_PERSISTENT_DATA
+ select DM_BIO_PRISON
+ help
+ dm-cache attempts to improve performance of a block device by
+ moving frequently used data to a smaller, higher performance
+ device. Different 'policy' plugins can be used to change the
+ algorithms used to select which blocks are promoted, demoted,
+ cleaned etc. It supports writeback and writethrough modes.
+
+config DM_CACHE_SMQ
+ tristate "Stochastic MQ Cache Policy (EXPERIMENTAL)"
+ depends on DM_CACHE
+ default y
+ help
+ A cache policy that uses a multiqueue ordered by recent hits
+ to select which blocks should be promoted and demoted.
+ This is meant to be a general purpose policy. It prioritises
+ reads over writes. This SMQ policy (vs MQ) offers the promise
+ of less memory utilization, improved performance and increased
+ adaptability in the face of changing workloads.
+
+config DM_WRITECACHE
+ tristate "Writecache target"
+ depends on BLK_DEV_DM
+ help
+ The writecache target caches writes on persistent memory or SSD.
+ It is intended for databases or other programs that need extremely
+ low commit latency.
+
+ The writecache target doesn't cache reads because reads are supposed
+ to be cached in standard RAM.
+
+config DM_EBS
+ tristate "Emulated block size target (EXPERIMENTAL)"
+ depends on BLK_DEV_DM && !HIGHMEM
+ select DM_BUFIO
+ help
+ dm-ebs emulates smaller logical block size on backing devices
+ with larger ones (e.g. 512 byte sectors on 4K native disks).
+
+config DM_ERA
+ tristate "Era target (EXPERIMENTAL)"
+ depends on BLK_DEV_DM
+ default n
+ select DM_PERSISTENT_DATA
+ select DM_BIO_PRISON
+ help
+ dm-era tracks which parts of a block device are written to
+ over time. Useful for maintaining cache coherency when using
+ vendor snapshots.
+
+config DM_CLONE
+ tristate "Clone target (EXPERIMENTAL)"
+ depends on BLK_DEV_DM
+ default n
+ select DM_PERSISTENT_DATA
+ help
+ dm-clone produces a one-to-one copy of an existing, read-only source
+ device into a writable destination device. The cloned device is
+ visible/mountable immediately and the copy of the source device to the
+ destination device happens in the background, in parallel with user
+ I/O.
+
+ If unsure, say N.
+
+config DM_MIRROR
+ tristate "Mirror target"
+ depends on BLK_DEV_DM
+ help
+ Allow volume managers to mirror logical volumes, also
+ needed for live data migration tools such as 'pvmove'.
+
+config DM_LOG_USERSPACE
+ tristate "Mirror userspace logging"
+ depends on DM_MIRROR && NET
+ select CONNECTOR
+ help
+ The userspace logging module provides a mechanism for
+ relaying the dm-dirty-log API to userspace. Log designs
+ which are more suited to userspace implementation (e.g.
+ shared storage logs) or experimental logs can be implemented
+ by leveraging this framework.
+
+config DM_RAID
+ tristate "RAID 1/4/5/6/10 target"
+ depends on BLK_DEV_DM
+ select MD_RAID0
+ select MD_RAID1
+ select MD_RAID10
+ select MD_RAID456
+ select BLK_DEV_MD
+ help
+ A dm target that supports RAID1, RAID10, RAID4, RAID5 and RAID6 mappings
+
+ A RAID-5 set of N drives with a capacity of C MB per drive provides
+ the capacity of C * (N - 1) MB, and protects against a failure
+ of a single drive. For a given sector (row) number, (N - 1) drives
+ contain data sectors, and one drive contains the parity protection.
+ For a RAID-4 set, the parity blocks are present on a single drive,
+ while a RAID-5 set distributes the parity across the drives in one
+ of the available parity distribution methods.
+
+ A RAID-6 set of N drives with a capacity of C MB per drive
+ provides the capacity of C * (N - 2) MB, and protects
+ against a failure of any two drives. For a given sector
+ (row) number, (N - 2) drives contain data sectors, and two
+ drives contains two independent redundancy syndromes. Like
+ RAID-5, RAID-6 distributes the syndromes across the drives
+ in one of the available parity distribution methods.
+
+config DM_ZERO
+ tristate "Zero target"
+ depends on BLK_DEV_DM
+ help
+ A target that discards writes, and returns all zeroes for
+ reads. Useful in some recovery situations.
+
+config DM_MULTIPATH
+ tristate "Multipath target"
+ depends on BLK_DEV_DM
+ # nasty syntax but means make DM_MULTIPATH independent
+ # of SCSI_DH if the latter isn't defined but if
+ # it is, DM_MULTIPATH must depend on it. We get a build
+ # error if SCSI_DH=m and DM_MULTIPATH=y
+ depends on !SCSI_DH || SCSI
+ help
+ Allow volume managers to support multipath hardware.
+
+config DM_MULTIPATH_QL
+ tristate "I/O Path Selector based on the number of in-flight I/Os"
+ depends on DM_MULTIPATH
+ help
+ This path selector is a dynamic load balancer which selects
+ the path with the least number of in-flight I/Os.
+
+ If unsure, say N.
+
+config DM_MULTIPATH_ST
+ tristate "I/O Path Selector based on the service time"
+ depends on DM_MULTIPATH
+ help
+ This path selector is a dynamic load balancer which selects
+ the path expected to complete the incoming I/O in the shortest
+ time.
+
+ If unsure, say N.
+
+config DM_MULTIPATH_HST
+ tristate "I/O Path Selector based on historical service time"
+ depends on DM_MULTIPATH
+ help
+ This path selector is a dynamic load balancer which selects
+ the path expected to complete the incoming I/O in the shortest
+ time by comparing estimated service time (based on historical
+ service time).
+
+ If unsure, say N.
+
+config DM_MULTIPATH_IOA
+ tristate "I/O Path Selector based on CPU submission"
+ depends on DM_MULTIPATH
+ help
+ This path selector selects the path based on the CPU the IO is
+ executed on and the CPU to path mapping setup at path addition time.
+
+ If unsure, say N.
+
+config DM_DELAY
+ tristate "I/O delaying target"
+ depends on BLK_DEV_DM
+ help
+ A target that delays reads and/or writes and can send
+ them to different devices. Useful for testing.
+
+ If unsure, say N.
+
+config DM_DUST
+ tristate "Bad sector simulation target"
+ depends on BLK_DEV_DM
+ help
+ A target that simulates bad sector behavior.
+ Useful for testing.
+
+ If unsure, say N.
+
+config DM_INIT
+ bool "DM \"dm-mod.create=\" parameter support"
+ depends on BLK_DEV_DM=y
+ help
+ Enable "dm-mod.create=" parameter to create mapped devices at init time.
+ This option is useful to allow mounting rootfs without requiring an
+ initramfs.
+ See Documentation/admin-guide/device-mapper/dm-init.rst for dm-mod.create="..."
+ format.
+
+ If unsure, say N.
+
+config DM_UEVENT
+ bool "DM uevents"
+ depends on BLK_DEV_DM
+ help
+ Generate udev events for DM events.
+
+config DM_FLAKEY
+ tristate "Flakey target"
+ depends on BLK_DEV_DM
+ help
+ A target that intermittently fails I/O for debugging purposes.
+
+config DM_VERITY
+ tristate "Verity target support"
+ depends on BLK_DEV_DM
+ select CRYPTO
+ select CRYPTO_HASH
+ select DM_BUFIO
+ help
+ This device-mapper target creates a read-only device that
+ transparently validates the data on one underlying device against
+ a pre-generated tree of cryptographic checksums stored on a second
+ device.
+
+ You'll need to activate the digests you're going to use in the
+ cryptoapi configuration.
+
+ To compile this code as a module, choose M here: the module will
+ be called dm-verity.
+
+ If unsure, say N.
+
+config DM_VERITY_VERIFY_ROOTHASH_SIG
+ def_bool n
+ bool "Verity data device root hash signature verification support"
+ depends on DM_VERITY
+ select SYSTEM_DATA_VERIFICATION
+ help
+ Add ability for dm-verity device to be validated if the
+ pre-generated tree of cryptographic checksums passed has a pkcs#7
+ signature file that can validate the roothash of the tree.
+
+ By default, rely on the builtin trusted keyring.
+
+ If unsure, say N.
+
+config DM_VERITY_VERIFY_ROOTHASH_SIG_SECONDARY_KEYRING
+ bool "Verity data device root hash signature verification with secondary keyring"
+ depends on DM_VERITY_VERIFY_ROOTHASH_SIG
+ depends on SECONDARY_TRUSTED_KEYRING
+ help
+ Rely on the secondary trusted keyring to verify dm-verity signatures.
+
+ If unsure, say N.
+
+config DM_VERITY_FEC
+ bool "Verity forward error correction support"
+ depends on DM_VERITY
+ select REED_SOLOMON
+ select REED_SOLOMON_DEC8
+ help
+ Add forward error correction support to dm-verity. This option
+ makes it possible to use pre-generated error correction data to
+ recover from corrupted blocks.
+
+ If unsure, say N.
+
+config DM_SWITCH
+ tristate "Switch target support (EXPERIMENTAL)"
+ depends on BLK_DEV_DM
+ help
+ This device-mapper target creates a device that supports an arbitrary
+ mapping of fixed-size regions of I/O across a fixed set of paths.
+ The path used for any specific region can be switched dynamically
+ by sending the target a message.
+
+ To compile this code as a module, choose M here: the module will
+ be called dm-switch.
+
+ If unsure, say N.
+
+config DM_LOG_WRITES
+ tristate "Log writes target support"
+ depends on BLK_DEV_DM
+ help
+ This device-mapper target takes two devices, one device to use
+ normally, one to log all write operations done to the first device.
+ This is for use by file system developers wishing to verify that
+ their fs is writing a consistent file system at all times by allowing
+ them to replay the log in a variety of ways and to check the
+ contents.
+
+ To compile this code as a module, choose M here: the module will
+ be called dm-log-writes.
+
+ If unsure, say N.
+
+config DM_INTEGRITY
+ tristate "Integrity target support"
+ depends on BLK_DEV_DM
+ select BLK_DEV_INTEGRITY
+ select DM_BUFIO
+ select CRYPTO
+ select CRYPTO_SKCIPHER
+ select ASYNC_XOR
+ select DM_AUDIT if AUDIT
+ help
+ This device-mapper target emulates a block device that has
+ additional per-sector tags that can be used for storing
+ integrity information.
+
+ This integrity target is used with the dm-crypt target to
+ provide authenticated disk encryption or it can be used
+ standalone.
+
+ To compile this code as a module, choose M here: the module will
+ be called dm-integrity.
+
+config DM_ZONED
+ tristate "Drive-managed zoned block device target support"
+ depends on BLK_DEV_DM
+ depends on BLK_DEV_ZONED
+ select CRC32
+ help
+ This device-mapper target takes a host-managed or host-aware zoned
+ block device and exposes most of its capacity as a regular block
+ device (drive-managed zoned block device) without any write
+ constraints. This is mainly intended for use with file systems that
+ do not natively support zoned block devices but still want to
+ benefit from the increased capacity offered by SMR disks. Other uses
+ by applications using raw block devices (for example object stores)
+ are also possible.
+
+ To compile this code as a module, choose M here: the module will
+ be called dm-zoned.
+
+ If unsure, say N.
+
+config DM_AUDIT
+ bool "DM audit events"
+ depends on BLK_DEV_DM
+ depends on AUDIT
+ help
+ Generate audit events for device-mapper.
+
+ Enables audit logging of several security relevant events in the
+ particular device-mapper targets, especially the integrity target.
+
+endif # MD
diff --git a/drivers/md/Makefile b/drivers/md/Makefile
new file mode 100644
index 000000000..84291e38d
--- /dev/null
+++ b/drivers/md/Makefile
@@ -0,0 +1,114 @@
+# SPDX-License-Identifier: GPL-2.0
+#
+# Makefile for the kernel software RAID and LVM drivers.
+#
+
+dm-mod-y += dm.o dm-table.o dm-target.o dm-linear.o dm-stripe.o \
+ dm-ioctl.o dm-io.o dm-kcopyd.o dm-sysfs.o dm-stats.o \
+ dm-rq.o dm-io-rewind.o
+dm-multipath-y += dm-path-selector.o dm-mpath.o
+dm-historical-service-time-y += dm-ps-historical-service-time.o
+dm-io-affinity-y += dm-ps-io-affinity.o
+dm-queue-length-y += dm-ps-queue-length.o
+dm-round-robin-y += dm-ps-round-robin.o
+dm-service-time-y += dm-ps-service-time.o
+dm-snapshot-y += dm-snap.o dm-exception-store.o dm-snap-transient.o \
+ dm-snap-persistent.o
+dm-mirror-y += dm-raid1.o
+dm-log-userspace-y += dm-log-userspace-base.o dm-log-userspace-transfer.o
+dm-bio-prison-y += dm-bio-prison-v1.o dm-bio-prison-v2.o
+dm-thin-pool-y += dm-thin.o dm-thin-metadata.o
+dm-cache-y += dm-cache-target.o dm-cache-metadata.o dm-cache-policy.o \
+ dm-cache-background-tracker.o
+dm-cache-smq-y += dm-cache-policy-smq.o
+dm-ebs-y += dm-ebs-target.o
+dm-era-y += dm-era-target.o
+dm-clone-y += dm-clone-target.o dm-clone-metadata.o
+dm-verity-y += dm-verity-target.o
+dm-zoned-y += dm-zoned-target.o dm-zoned-metadata.o dm-zoned-reclaim.o
+
+md-mod-y += md.o md-bitmap.o
+raid456-y += raid5.o raid5-cache.o raid5-ppl.o
+linear-y += md-linear.o
+multipath-y += md-multipath.o
+faulty-y += md-faulty.o
+
+# Note: link order is important. All raid personalities
+# and must come before md.o, as they each initialise
+# themselves, and md.o may use the personalities when it
+# auto-initialised.
+
+obj-$(CONFIG_MD_LINEAR) += linear.o
+obj-$(CONFIG_MD_RAID0) += raid0.o
+obj-$(CONFIG_MD_RAID1) += raid1.o
+obj-$(CONFIG_MD_RAID10) += raid10.o
+obj-$(CONFIG_MD_RAID456) += raid456.o
+obj-$(CONFIG_MD_MULTIPATH) += multipath.o
+obj-$(CONFIG_MD_FAULTY) += faulty.o
+obj-$(CONFIG_MD_CLUSTER) += md-cluster.o
+obj-$(CONFIG_BCACHE) += bcache/
+obj-$(CONFIG_BLK_DEV_MD) += md-mod.o
+ifeq ($(CONFIG_BLK_DEV_MD),y)
+obj-y += md-autodetect.o
+endif
+obj-$(CONFIG_BLK_DEV_DM) += dm-mod.o
+obj-$(CONFIG_BLK_DEV_DM_BUILTIN) += dm-builtin.o
+obj-$(CONFIG_DM_UNSTRIPED) += dm-unstripe.o
+obj-$(CONFIG_DM_BUFIO) += dm-bufio.o
+obj-$(CONFIG_DM_BIO_PRISON) += dm-bio-prison.o
+obj-$(CONFIG_DM_CRYPT) += dm-crypt.o
+obj-$(CONFIG_DM_DELAY) += dm-delay.o
+obj-$(CONFIG_DM_DUST) += dm-dust.o
+obj-$(CONFIG_DM_FLAKEY) += dm-flakey.o
+obj-$(CONFIG_DM_MULTIPATH) += dm-multipath.o dm-round-robin.o
+obj-$(CONFIG_DM_MULTIPATH_QL) += dm-queue-length.o
+obj-$(CONFIG_DM_MULTIPATH_ST) += dm-service-time.o
+obj-$(CONFIG_DM_MULTIPATH_HST) += dm-historical-service-time.o
+obj-$(CONFIG_DM_MULTIPATH_IOA) += dm-io-affinity.o
+obj-$(CONFIG_DM_SWITCH) += dm-switch.o
+obj-$(CONFIG_DM_SNAPSHOT) += dm-snapshot.o
+obj-$(CONFIG_DM_PERSISTENT_DATA) += persistent-data/
+obj-$(CONFIG_DM_MIRROR) += dm-mirror.o dm-log.o dm-region-hash.o
+obj-$(CONFIG_DM_LOG_USERSPACE) += dm-log-userspace.o
+obj-$(CONFIG_DM_ZERO) += dm-zero.o
+obj-$(CONFIG_DM_RAID) += dm-raid.o
+obj-$(CONFIG_DM_THIN_PROVISIONING) += dm-thin-pool.o
+obj-$(CONFIG_DM_VERITY) += dm-verity.o
+obj-$(CONFIG_DM_CACHE) += dm-cache.o
+obj-$(CONFIG_DM_CACHE_SMQ) += dm-cache-smq.o
+obj-$(CONFIG_DM_EBS) += dm-ebs.o
+obj-$(CONFIG_DM_ERA) += dm-era.o
+obj-$(CONFIG_DM_CLONE) += dm-clone.o
+obj-$(CONFIG_DM_LOG_WRITES) += dm-log-writes.o
+obj-$(CONFIG_DM_INTEGRITY) += dm-integrity.o
+obj-$(CONFIG_DM_ZONED) += dm-zoned.o
+obj-$(CONFIG_DM_WRITECACHE) += dm-writecache.o
+obj-$(CONFIG_SECURITY_LOADPIN_VERITY) += dm-verity-loadpin.o
+
+ifeq ($(CONFIG_DM_INIT),y)
+dm-mod-objs += dm-init.o
+endif
+
+ifeq ($(CONFIG_DM_UEVENT),y)
+dm-mod-objs += dm-uevent.o
+endif
+
+ifeq ($(CONFIG_BLK_DEV_ZONED),y)
+dm-mod-objs += dm-zone.o
+endif
+
+ifeq ($(CONFIG_IMA),y)
+dm-mod-objs += dm-ima.o
+endif
+
+ifeq ($(CONFIG_DM_VERITY_FEC),y)
+dm-verity-objs += dm-verity-fec.o
+endif
+
+ifeq ($(CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG),y)
+dm-verity-objs += dm-verity-verify-sig.o
+endif
+
+ifeq ($(CONFIG_DM_AUDIT),y)
+dm-mod-objs += dm-audit.o
+endif
diff --git a/drivers/md/bcache/Kconfig b/drivers/md/bcache/Kconfig
new file mode 100644
index 000000000..529c9d04e
--- /dev/null
+++ b/drivers/md/bcache/Kconfig
@@ -0,0 +1,38 @@
+# SPDX-License-Identifier: GPL-2.0-only
+
+config BCACHE
+ tristate "Block device as cache"
+ select BLOCK_HOLDER_DEPRECATED if SYSFS
+ select CRC64
+ help
+ Allows a block device to be used as cache for other devices; uses
+ a btree for indexing and the layout is optimized for SSDs.
+
+ See Documentation/admin-guide/bcache.rst for details.
+
+config BCACHE_DEBUG
+ bool "Bcache debugging"
+ depends on BCACHE
+ help
+ Don't select this option unless you're a developer
+
+ Enables extra debugging tools, allows expensive runtime checks to be
+ turned on.
+
+config BCACHE_CLOSURES_DEBUG
+ bool "Debug closures"
+ depends on BCACHE
+ select DEBUG_FS
+ help
+ Keeps all active closures in a linked list and provides a debugfs
+ interface to list them, which makes it possible to see asynchronous
+ operations that get stuck.
+
+config BCACHE_ASYNC_REGISTRATION
+ bool "Asynchronous device registration"
+ depends on BCACHE
+ help
+ Add a sysfs file /sys/fs/bcache/register_async. Writing registering
+ device path into this file will returns immediately and the real
+ registration work is handled in kernel work queue in asynchronous
+ way.
diff --git a/drivers/md/bcache/Makefile b/drivers/md/bcache/Makefile
new file mode 100644
index 000000000..5b87e5967
--- /dev/null
+++ b/drivers/md/bcache/Makefile
@@ -0,0 +1,7 @@
+# SPDX-License-Identifier: GPL-2.0
+
+obj-$(CONFIG_BCACHE) += bcache.o
+
+bcache-y := alloc.o bset.o btree.o closure.o debug.o extents.o\
+ io.o journal.o movinggc.o request.o stats.o super.o sysfs.o trace.o\
+ util.o writeback.o features.o
diff --git a/drivers/md/bcache/alloc.c b/drivers/md/bcache/alloc.c
new file mode 100644
index 000000000..ce13c272c
--- /dev/null
+++ b/drivers/md/bcache/alloc.c
@@ -0,0 +1,736 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Primary bucket allocation code
+ *
+ * Copyright 2012 Google, Inc.
+ *
+ * Allocation in bcache is done in terms of buckets:
+ *
+ * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
+ * btree pointers - they must match for the pointer to be considered valid.
+ *
+ * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
+ * bucket simply by incrementing its gen.
+ *
+ * The gens (along with the priorities; it's really the gens are important but
+ * the code is named as if it's the priorities) are written in an arbitrary list
+ * of buckets on disk, with a pointer to them in the journal header.
+ *
+ * When we invalidate a bucket, we have to write its new gen to disk and wait
+ * for that write to complete before we use it - otherwise after a crash we
+ * could have pointers that appeared to be good but pointed to data that had
+ * been overwritten.
+ *
+ * Since the gens and priorities are all stored contiguously on disk, we can
+ * batch this up: We fill up the free_inc list with freshly invalidated buckets,
+ * call prio_write(), and when prio_write() finishes we pull buckets off the
+ * free_inc list and optionally discard them.
+ *
+ * free_inc isn't the only freelist - if it was, we'd often to sleep while
+ * priorities and gens were being written before we could allocate. c->free is a
+ * smaller freelist, and buckets on that list are always ready to be used.
+ *
+ * If we've got discards enabled, that happens when a bucket moves from the
+ * free_inc list to the free list.
+ *
+ * There is another freelist, because sometimes we have buckets that we know
+ * have nothing pointing into them - these we can reuse without waiting for
+ * priorities to be rewritten. These come from freed btree nodes and buckets
+ * that garbage collection discovered no longer had valid keys pointing into
+ * them (because they were overwritten). That's the unused list - buckets on the
+ * unused list move to the free list, optionally being discarded in the process.
+ *
+ * It's also important to ensure that gens don't wrap around - with respect to
+ * either the oldest gen in the btree or the gen on disk. This is quite
+ * difficult to do in practice, but we explicitly guard against it anyways - if
+ * a bucket is in danger of wrapping around we simply skip invalidating it that
+ * time around, and we garbage collect or rewrite the priorities sooner than we
+ * would have otherwise.
+ *
+ * bch_bucket_alloc() allocates a single bucket from a specific cache.
+ *
+ * bch_bucket_alloc_set() allocates one bucket from different caches
+ * out of a cache set.
+ *
+ * free_some_buckets() drives all the processes described above. It's called
+ * from bch_bucket_alloc() and a few other places that need to make sure free
+ * buckets are ready.
+ *
+ * invalidate_buckets_(lru|fifo)() find buckets that are available to be
+ * invalidated, and then invalidate them and stick them on the free_inc list -
+ * in either lru or fifo order.
+ */
+
+#include "bcache.h"
+#include "btree.h"
+
+#include <linux/blkdev.h>
+#include <linux/kthread.h>
+#include <linux/random.h>
+#include <trace/events/bcache.h>
+
+#define MAX_OPEN_BUCKETS 128
+
+/* Bucket heap / gen */
+
+uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
+{
+ uint8_t ret = ++b->gen;
+
+ ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
+ WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
+
+ return ret;
+}
+
+void bch_rescale_priorities(struct cache_set *c, int sectors)
+{
+ struct cache *ca;
+ struct bucket *b;
+ unsigned long next = c->nbuckets * c->cache->sb.bucket_size / 1024;
+ int r;
+
+ atomic_sub(sectors, &c->rescale);
+
+ do {
+ r = atomic_read(&c->rescale);
+
+ if (r >= 0)
+ return;
+ } while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
+
+ mutex_lock(&c->bucket_lock);
+
+ c->min_prio = USHRT_MAX;
+
+ ca = c->cache;
+ for_each_bucket(b, ca)
+ if (b->prio &&
+ b->prio != BTREE_PRIO &&
+ !atomic_read(&b->pin)) {
+ b->prio--;
+ c->min_prio = min(c->min_prio, b->prio);
+ }
+
+ mutex_unlock(&c->bucket_lock);
+}
+
+/*
+ * Background allocation thread: scans for buckets to be invalidated,
+ * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
+ * then optionally issues discard commands to the newly free buckets, then puts
+ * them on the various freelists.
+ */
+
+static inline bool can_inc_bucket_gen(struct bucket *b)
+{
+ return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
+}
+
+bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
+{
+ BUG_ON(!ca->set->gc_mark_valid);
+
+ return (!GC_MARK(b) ||
+ GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
+ !atomic_read(&b->pin) &&
+ can_inc_bucket_gen(b);
+}
+
+void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
+{
+ lockdep_assert_held(&ca->set->bucket_lock);
+ BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
+
+ if (GC_SECTORS_USED(b))
+ trace_bcache_invalidate(ca, b - ca->buckets);
+
+ bch_inc_gen(ca, b);
+ b->prio = INITIAL_PRIO;
+ atomic_inc(&b->pin);
+}
+
+static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
+{
+ __bch_invalidate_one_bucket(ca, b);
+
+ fifo_push(&ca->free_inc, b - ca->buckets);
+}
+
+/*
+ * Determines what order we're going to reuse buckets, smallest bucket_prio()
+ * first: we also take into account the number of sectors of live data in that
+ * bucket, and in order for that multiply to make sense we have to scale bucket
+ *
+ * Thus, we scale the bucket priorities so that the bucket with the smallest
+ * prio is worth 1/8th of what INITIAL_PRIO is worth.
+ */
+
+#define bucket_prio(b) \
+({ \
+ unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \
+ \
+ (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \
+})
+
+#define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r))
+#define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r))
+
+static void invalidate_buckets_lru(struct cache *ca)
+{
+ struct bucket *b;
+ ssize_t i;
+
+ ca->heap.used = 0;
+
+ for_each_bucket(b, ca) {
+ if (!bch_can_invalidate_bucket(ca, b))
+ continue;
+
+ if (!heap_full(&ca->heap))
+ heap_add(&ca->heap, b, bucket_max_cmp);
+ else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
+ ca->heap.data[0] = b;
+ heap_sift(&ca->heap, 0, bucket_max_cmp);
+ }
+ }
+
+ for (i = ca->heap.used / 2 - 1; i >= 0; --i)
+ heap_sift(&ca->heap, i, bucket_min_cmp);
+
+ while (!fifo_full(&ca->free_inc)) {
+ if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
+ /*
+ * We don't want to be calling invalidate_buckets()
+ * multiple times when it can't do anything
+ */
+ ca->invalidate_needs_gc = 1;
+ wake_up_gc(ca->set);
+ return;
+ }
+
+ bch_invalidate_one_bucket(ca, b);
+ }
+}
+
+static void invalidate_buckets_fifo(struct cache *ca)
+{
+ struct bucket *b;
+ size_t checked = 0;
+
+ while (!fifo_full(&ca->free_inc)) {
+ if (ca->fifo_last_bucket < ca->sb.first_bucket ||
+ ca->fifo_last_bucket >= ca->sb.nbuckets)
+ ca->fifo_last_bucket = ca->sb.first_bucket;
+
+ b = ca->buckets + ca->fifo_last_bucket++;
+
+ if (bch_can_invalidate_bucket(ca, b))
+ bch_invalidate_one_bucket(ca, b);
+
+ if (++checked >= ca->sb.nbuckets) {
+ ca->invalidate_needs_gc = 1;
+ wake_up_gc(ca->set);
+ return;
+ }
+ }
+}
+
+static void invalidate_buckets_random(struct cache *ca)
+{
+ struct bucket *b;
+ size_t checked = 0;
+
+ while (!fifo_full(&ca->free_inc)) {
+ size_t n;
+
+ get_random_bytes(&n, sizeof(n));
+
+ n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
+ n += ca->sb.first_bucket;
+
+ b = ca->buckets + n;
+
+ if (bch_can_invalidate_bucket(ca, b))
+ bch_invalidate_one_bucket(ca, b);
+
+ if (++checked >= ca->sb.nbuckets / 2) {
+ ca->invalidate_needs_gc = 1;
+ wake_up_gc(ca->set);
+ return;
+ }
+ }
+}
+
+static void invalidate_buckets(struct cache *ca)
+{
+ BUG_ON(ca->invalidate_needs_gc);
+
+ switch (CACHE_REPLACEMENT(&ca->sb)) {
+ case CACHE_REPLACEMENT_LRU:
+ invalidate_buckets_lru(ca);
+ break;
+ case CACHE_REPLACEMENT_FIFO:
+ invalidate_buckets_fifo(ca);
+ break;
+ case CACHE_REPLACEMENT_RANDOM:
+ invalidate_buckets_random(ca);
+ break;
+ }
+}
+
+#define allocator_wait(ca, cond) \
+do { \
+ while (1) { \
+ set_current_state(TASK_INTERRUPTIBLE); \
+ if (cond) \
+ break; \
+ \
+ mutex_unlock(&(ca)->set->bucket_lock); \
+ if (kthread_should_stop() || \
+ test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) { \
+ set_current_state(TASK_RUNNING); \
+ goto out; \
+ } \
+ \
+ schedule(); \
+ mutex_lock(&(ca)->set->bucket_lock); \
+ } \
+ __set_current_state(TASK_RUNNING); \
+} while (0)
+
+static int bch_allocator_push(struct cache *ca, long bucket)
+{
+ unsigned int i;
+
+ /* Prios/gens are actually the most important reserve */
+ if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
+ return true;
+
+ for (i = 0; i < RESERVE_NR; i++)
+ if (fifo_push(&ca->free[i], bucket))
+ return true;
+
+ return false;
+}
+
+static int bch_allocator_thread(void *arg)
+{
+ struct cache *ca = arg;
+
+ mutex_lock(&ca->set->bucket_lock);
+
+ while (1) {
+ /*
+ * First, we pull buckets off of the unused and free_inc lists,
+ * possibly issue discards to them, then we add the bucket to
+ * the free list:
+ */
+ while (1) {
+ long bucket;
+
+ if (!fifo_pop(&ca->free_inc, bucket))
+ break;
+
+ if (ca->discard) {
+ mutex_unlock(&ca->set->bucket_lock);
+ blkdev_issue_discard(ca->bdev,
+ bucket_to_sector(ca->set, bucket),
+ ca->sb.bucket_size, GFP_KERNEL);
+ mutex_lock(&ca->set->bucket_lock);
+ }
+
+ allocator_wait(ca, bch_allocator_push(ca, bucket));
+ wake_up(&ca->set->btree_cache_wait);
+ wake_up(&ca->set->bucket_wait);
+ }
+
+ /*
+ * We've run out of free buckets, we need to find some buckets
+ * we can invalidate. First, invalidate them in memory and add
+ * them to the free_inc list:
+ */
+
+retry_invalidate:
+ allocator_wait(ca, ca->set->gc_mark_valid &&
+ !ca->invalidate_needs_gc);
+ invalidate_buckets(ca);
+
+ /*
+ * Now, we write their new gens to disk so we can start writing
+ * new stuff to them:
+ */
+ allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
+ if (CACHE_SYNC(&ca->sb)) {
+ /*
+ * This could deadlock if an allocation with a btree
+ * node locked ever blocked - having the btree node
+ * locked would block garbage collection, but here we're
+ * waiting on garbage collection before we invalidate
+ * and free anything.
+ *
+ * But this should be safe since the btree code always
+ * uses btree_check_reserve() before allocating now, and
+ * if it fails it blocks without btree nodes locked.
+ */
+ if (!fifo_full(&ca->free_inc))
+ goto retry_invalidate;
+
+ if (bch_prio_write(ca, false) < 0) {
+ ca->invalidate_needs_gc = 1;
+ wake_up_gc(ca->set);
+ }
+ }
+ }
+out:
+ wait_for_kthread_stop();
+ return 0;
+}
+
+/* Allocation */
+
+long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait)
+{
+ DEFINE_WAIT(w);
+ struct bucket *b;
+ long r;
+
+
+ /* No allocation if CACHE_SET_IO_DISABLE bit is set */
+ if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)))
+ return -1;
+
+ /* fastpath */
+ if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
+ fifo_pop(&ca->free[reserve], r))
+ goto out;
+
+ if (!wait) {
+ trace_bcache_alloc_fail(ca, reserve);
+ return -1;
+ }
+
+ do {
+ prepare_to_wait(&ca->set->bucket_wait, &w,
+ TASK_UNINTERRUPTIBLE);
+
+ mutex_unlock(&ca->set->bucket_lock);
+ schedule();
+ mutex_lock(&ca->set->bucket_lock);
+ } while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
+ !fifo_pop(&ca->free[reserve], r));
+
+ finish_wait(&ca->set->bucket_wait, &w);
+out:
+ if (ca->alloc_thread)
+ wake_up_process(ca->alloc_thread);
+
+ trace_bcache_alloc(ca, reserve);
+
+ if (expensive_debug_checks(ca->set)) {
+ size_t iter;
+ long i;
+ unsigned int j;
+
+ for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
+ BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
+
+ for (j = 0; j < RESERVE_NR; j++)
+ fifo_for_each(i, &ca->free[j], iter)
+ BUG_ON(i == r);
+ fifo_for_each(i, &ca->free_inc, iter)
+ BUG_ON(i == r);
+ }
+
+ b = ca->buckets + r;
+
+ BUG_ON(atomic_read(&b->pin) != 1);
+
+ SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
+
+ if (reserve <= RESERVE_PRIO) {
+ SET_GC_MARK(b, GC_MARK_METADATA);
+ SET_GC_MOVE(b, 0);
+ b->prio = BTREE_PRIO;
+ } else {
+ SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
+ SET_GC_MOVE(b, 0);
+ b->prio = INITIAL_PRIO;
+ }
+
+ if (ca->set->avail_nbuckets > 0) {
+ ca->set->avail_nbuckets--;
+ bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
+ }
+
+ return r;
+}
+
+void __bch_bucket_free(struct cache *ca, struct bucket *b)
+{
+ SET_GC_MARK(b, 0);
+ SET_GC_SECTORS_USED(b, 0);
+
+ if (ca->set->avail_nbuckets < ca->set->nbuckets) {
+ ca->set->avail_nbuckets++;
+ bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
+ }
+}
+
+void bch_bucket_free(struct cache_set *c, struct bkey *k)
+{
+ unsigned int i;
+
+ for (i = 0; i < KEY_PTRS(k); i++)
+ __bch_bucket_free(c->cache, PTR_BUCKET(c, k, i));
+}
+
+int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
+ struct bkey *k, bool wait)
+{
+ struct cache *ca;
+ long b;
+
+ /* No allocation if CACHE_SET_IO_DISABLE bit is set */
+ if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
+ return -1;
+
+ lockdep_assert_held(&c->bucket_lock);
+
+ bkey_init(k);
+
+ ca = c->cache;
+ b = bch_bucket_alloc(ca, reserve, wait);
+ if (b == -1)
+ goto err;
+
+ k->ptr[0] = MAKE_PTR(ca->buckets[b].gen,
+ bucket_to_sector(c, b),
+ ca->sb.nr_this_dev);
+
+ SET_KEY_PTRS(k, 1);
+
+ return 0;
+err:
+ bch_bucket_free(c, k);
+ bkey_put(c, k);
+ return -1;
+}
+
+int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
+ struct bkey *k, bool wait)
+{
+ int ret;
+
+ mutex_lock(&c->bucket_lock);
+ ret = __bch_bucket_alloc_set(c, reserve, k, wait);
+ mutex_unlock(&c->bucket_lock);
+ return ret;
+}
+
+/* Sector allocator */
+
+struct open_bucket {
+ struct list_head list;
+ unsigned int last_write_point;
+ unsigned int sectors_free;
+ BKEY_PADDED(key);
+};
+
+/*
+ * We keep multiple buckets open for writes, and try to segregate different
+ * write streams for better cache utilization: first we try to segregate flash
+ * only volume write streams from cached devices, secondly we look for a bucket
+ * where the last write to it was sequential with the current write, and
+ * failing that we look for a bucket that was last used by the same task.
+ *
+ * The ideas is if you've got multiple tasks pulling data into the cache at the
+ * same time, you'll get better cache utilization if you try to segregate their
+ * data and preserve locality.
+ *
+ * For example, dirty sectors of flash only volume is not reclaimable, if their
+ * dirty sectors mixed with dirty sectors of cached device, such buckets will
+ * be marked as dirty and won't be reclaimed, though the dirty data of cached
+ * device have been written back to backend device.
+ *
+ * And say you've starting Firefox at the same time you're copying a
+ * bunch of files. Firefox will likely end up being fairly hot and stay in the
+ * cache awhile, but the data you copied might not be; if you wrote all that
+ * data to the same buckets it'd get invalidated at the same time.
+ *
+ * Both of those tasks will be doing fairly random IO so we can't rely on
+ * detecting sequential IO to segregate their data, but going off of the task
+ * should be a sane heuristic.
+ */
+static struct open_bucket *pick_data_bucket(struct cache_set *c,
+ const struct bkey *search,
+ unsigned int write_point,
+ struct bkey *alloc)
+{
+ struct open_bucket *ret, *ret_task = NULL;
+
+ list_for_each_entry_reverse(ret, &c->data_buckets, list)
+ if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) !=
+ UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)]))
+ continue;
+ else if (!bkey_cmp(&ret->key, search))
+ goto found;
+ else if (ret->last_write_point == write_point)
+ ret_task = ret;
+
+ ret = ret_task ?: list_first_entry(&c->data_buckets,
+ struct open_bucket, list);
+found:
+ if (!ret->sectors_free && KEY_PTRS(alloc)) {
+ ret->sectors_free = c->cache->sb.bucket_size;
+ bkey_copy(&ret->key, alloc);
+ bkey_init(alloc);
+ }
+
+ if (!ret->sectors_free)
+ ret = NULL;
+
+ return ret;
+}
+
+/*
+ * Allocates some space in the cache to write to, and k to point to the newly
+ * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
+ * end of the newly allocated space).
+ *
+ * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
+ * sectors were actually allocated.
+ *
+ * If s->writeback is true, will not fail.
+ */
+bool bch_alloc_sectors(struct cache_set *c,
+ struct bkey *k,
+ unsigned int sectors,
+ unsigned int write_point,
+ unsigned int write_prio,
+ bool wait)
+{
+ struct open_bucket *b;
+ BKEY_PADDED(key) alloc;
+ unsigned int i;
+
+ /*
+ * We might have to allocate a new bucket, which we can't do with a
+ * spinlock held. So if we have to allocate, we drop the lock, allocate
+ * and then retry. KEY_PTRS() indicates whether alloc points to
+ * allocated bucket(s).
+ */
+
+ bkey_init(&alloc.key);
+ spin_lock(&c->data_bucket_lock);
+
+ while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
+ unsigned int watermark = write_prio
+ ? RESERVE_MOVINGGC
+ : RESERVE_NONE;
+
+ spin_unlock(&c->data_bucket_lock);
+
+ if (bch_bucket_alloc_set(c, watermark, &alloc.key, wait))
+ return false;
+
+ spin_lock(&c->data_bucket_lock);
+ }
+
+ /*
+ * If we had to allocate, we might race and not need to allocate the
+ * second time we call pick_data_bucket(). If we allocated a bucket but
+ * didn't use it, drop the refcount bch_bucket_alloc_set() took:
+ */
+ if (KEY_PTRS(&alloc.key))
+ bkey_put(c, &alloc.key);
+
+ for (i = 0; i < KEY_PTRS(&b->key); i++)
+ EBUG_ON(ptr_stale(c, &b->key, i));
+
+ /* Set up the pointer to the space we're allocating: */
+
+ for (i = 0; i < KEY_PTRS(&b->key); i++)
+ k->ptr[i] = b->key.ptr[i];
+
+ sectors = min(sectors, b->sectors_free);
+
+ SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
+ SET_KEY_SIZE(k, sectors);
+ SET_KEY_PTRS(k, KEY_PTRS(&b->key));
+
+ /*
+ * Move b to the end of the lru, and keep track of what this bucket was
+ * last used for:
+ */
+ list_move_tail(&b->list, &c->data_buckets);
+ bkey_copy_key(&b->key, k);
+ b->last_write_point = write_point;
+
+ b->sectors_free -= sectors;
+
+ for (i = 0; i < KEY_PTRS(&b->key); i++) {
+ SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
+
+ atomic_long_add(sectors,
+ &c->cache->sectors_written);
+ }
+
+ if (b->sectors_free < c->cache->sb.block_size)
+ b->sectors_free = 0;
+
+ /*
+ * k takes refcounts on the buckets it points to until it's inserted
+ * into the btree, but if we're done with this bucket we just transfer
+ * get_data_bucket()'s refcount.
+ */
+ if (b->sectors_free)
+ for (i = 0; i < KEY_PTRS(&b->key); i++)
+ atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
+
+ spin_unlock(&c->data_bucket_lock);
+ return true;
+}
+
+/* Init */
+
+void bch_open_buckets_free(struct cache_set *c)
+{
+ struct open_bucket *b;
+
+ while (!list_empty(&c->data_buckets)) {
+ b = list_first_entry(&c->data_buckets,
+ struct open_bucket, list);
+ list_del(&b->list);
+ kfree(b);
+ }
+}
+
+int bch_open_buckets_alloc(struct cache_set *c)
+{
+ int i;
+
+ spin_lock_init(&c->data_bucket_lock);
+
+ for (i = 0; i < MAX_OPEN_BUCKETS; i++) {
+ struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
+
+ if (!b)
+ return -ENOMEM;
+
+ list_add(&b->list, &c->data_buckets);
+ }
+
+ return 0;
+}
+
+int bch_cache_allocator_start(struct cache *ca)
+{
+ struct task_struct *k = kthread_run(bch_allocator_thread,
+ ca, "bcache_allocator");
+ if (IS_ERR(k))
+ return PTR_ERR(k);
+
+ ca->alloc_thread = k;
+ return 0;
+}
diff --git a/drivers/md/bcache/bcache.h b/drivers/md/bcache/bcache.h
new file mode 100644
index 000000000..e86fa736d
--- /dev/null
+++ b/drivers/md/bcache/bcache.h
@@ -0,0 +1,1049 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _BCACHE_H
+#define _BCACHE_H
+
+/*
+ * SOME HIGH LEVEL CODE DOCUMENTATION:
+ *
+ * Bcache mostly works with cache sets, cache devices, and backing devices.
+ *
+ * Support for multiple cache devices hasn't quite been finished off yet, but
+ * it's about 95% plumbed through. A cache set and its cache devices is sort of
+ * like a md raid array and its component devices. Most of the code doesn't care
+ * about individual cache devices, the main abstraction is the cache set.
+ *
+ * Multiple cache devices is intended to give us the ability to mirror dirty
+ * cached data and metadata, without mirroring clean cached data.
+ *
+ * Backing devices are different, in that they have a lifetime independent of a
+ * cache set. When you register a newly formatted backing device it'll come up
+ * in passthrough mode, and then you can attach and detach a backing device from
+ * a cache set at runtime - while it's mounted and in use. Detaching implicitly
+ * invalidates any cached data for that backing device.
+ *
+ * A cache set can have multiple (many) backing devices attached to it.
+ *
+ * There's also flash only volumes - this is the reason for the distinction
+ * between struct cached_dev and struct bcache_device. A flash only volume
+ * works much like a bcache device that has a backing device, except the
+ * "cached" data is always dirty. The end result is that we get thin
+ * provisioning with very little additional code.
+ *
+ * Flash only volumes work but they're not production ready because the moving
+ * garbage collector needs more work. More on that later.
+ *
+ * BUCKETS/ALLOCATION:
+ *
+ * Bcache is primarily designed for caching, which means that in normal
+ * operation all of our available space will be allocated. Thus, we need an
+ * efficient way of deleting things from the cache so we can write new things to
+ * it.
+ *
+ * To do this, we first divide the cache device up into buckets. A bucket is the
+ * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
+ * works efficiently.
+ *
+ * Each bucket has a 16 bit priority, and an 8 bit generation associated with
+ * it. The gens and priorities for all the buckets are stored contiguously and
+ * packed on disk (in a linked list of buckets - aside from the superblock, all
+ * of bcache's metadata is stored in buckets).
+ *
+ * The priority is used to implement an LRU. We reset a bucket's priority when
+ * we allocate it or on cache it, and every so often we decrement the priority
+ * of each bucket. It could be used to implement something more sophisticated,
+ * if anyone ever gets around to it.
+ *
+ * The generation is used for invalidating buckets. Each pointer also has an 8
+ * bit generation embedded in it; for a pointer to be considered valid, its gen
+ * must match the gen of the bucket it points into. Thus, to reuse a bucket all
+ * we have to do is increment its gen (and write its new gen to disk; we batch
+ * this up).
+ *
+ * Bcache is entirely COW - we never write twice to a bucket, even buckets that
+ * contain metadata (including btree nodes).
+ *
+ * THE BTREE:
+ *
+ * Bcache is in large part design around the btree.
+ *
+ * At a high level, the btree is just an index of key -> ptr tuples.
+ *
+ * Keys represent extents, and thus have a size field. Keys also have a variable
+ * number of pointers attached to them (potentially zero, which is handy for
+ * invalidating the cache).
+ *
+ * The key itself is an inode:offset pair. The inode number corresponds to a
+ * backing device or a flash only volume. The offset is the ending offset of the
+ * extent within the inode - not the starting offset; this makes lookups
+ * slightly more convenient.
+ *
+ * Pointers contain the cache device id, the offset on that device, and an 8 bit
+ * generation number. More on the gen later.
+ *
+ * Index lookups are not fully abstracted - cache lookups in particular are
+ * still somewhat mixed in with the btree code, but things are headed in that
+ * direction.
+ *
+ * Updates are fairly well abstracted, though. There are two different ways of
+ * updating the btree; insert and replace.
+ *
+ * BTREE_INSERT will just take a list of keys and insert them into the btree -
+ * overwriting (possibly only partially) any extents they overlap with. This is
+ * used to update the index after a write.
+ *
+ * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
+ * overwriting a key that matches another given key. This is used for inserting
+ * data into the cache after a cache miss, and for background writeback, and for
+ * the moving garbage collector.
+ *
+ * There is no "delete" operation; deleting things from the index is
+ * accomplished by either by invalidating pointers (by incrementing a bucket's
+ * gen) or by inserting a key with 0 pointers - which will overwrite anything
+ * previously present at that location in the index.
+ *
+ * This means that there are always stale/invalid keys in the btree. They're
+ * filtered out by the code that iterates through a btree node, and removed when
+ * a btree node is rewritten.
+ *
+ * BTREE NODES:
+ *
+ * Our unit of allocation is a bucket, and we can't arbitrarily allocate and
+ * free smaller than a bucket - so, that's how big our btree nodes are.
+ *
+ * (If buckets are really big we'll only use part of the bucket for a btree node
+ * - no less than 1/4th - but a bucket still contains no more than a single
+ * btree node. I'd actually like to change this, but for now we rely on the
+ * bucket's gen for deleting btree nodes when we rewrite/split a node.)
+ *
+ * Anyways, btree nodes are big - big enough to be inefficient with a textbook
+ * btree implementation.
+ *
+ * The way this is solved is that btree nodes are internally log structured; we
+ * can append new keys to an existing btree node without rewriting it. This
+ * means each set of keys we write is sorted, but the node is not.
+ *
+ * We maintain this log structure in memory - keeping 1Mb of keys sorted would
+ * be expensive, and we have to distinguish between the keys we have written and
+ * the keys we haven't. So to do a lookup in a btree node, we have to search
+ * each sorted set. But we do merge written sets together lazily, so the cost of
+ * these extra searches is quite low (normally most of the keys in a btree node
+ * will be in one big set, and then there'll be one or two sets that are much
+ * smaller).
+ *
+ * This log structure makes bcache's btree more of a hybrid between a
+ * conventional btree and a compacting data structure, with some of the
+ * advantages of both.
+ *
+ * GARBAGE COLLECTION:
+ *
+ * We can't just invalidate any bucket - it might contain dirty data or
+ * metadata. If it once contained dirty data, other writes might overwrite it
+ * later, leaving no valid pointers into that bucket in the index.
+ *
+ * Thus, the primary purpose of garbage collection is to find buckets to reuse.
+ * It also counts how much valid data it each bucket currently contains, so that
+ * allocation can reuse buckets sooner when they've been mostly overwritten.
+ *
+ * It also does some things that are really internal to the btree
+ * implementation. If a btree node contains pointers that are stale by more than
+ * some threshold, it rewrites the btree node to avoid the bucket's generation
+ * wrapping around. It also merges adjacent btree nodes if they're empty enough.
+ *
+ * THE JOURNAL:
+ *
+ * Bcache's journal is not necessary for consistency; we always strictly
+ * order metadata writes so that the btree and everything else is consistent on
+ * disk in the event of an unclean shutdown, and in fact bcache had writeback
+ * caching (with recovery from unclean shutdown) before journalling was
+ * implemented.
+ *
+ * Rather, the journal is purely a performance optimization; we can't complete a
+ * write until we've updated the index on disk, otherwise the cache would be
+ * inconsistent in the event of an unclean shutdown. This means that without the
+ * journal, on random write workloads we constantly have to update all the leaf
+ * nodes in the btree, and those writes will be mostly empty (appending at most
+ * a few keys each) - highly inefficient in terms of amount of metadata writes,
+ * and it puts more strain on the various btree resorting/compacting code.
+ *
+ * The journal is just a log of keys we've inserted; on startup we just reinsert
+ * all the keys in the open journal entries. That means that when we're updating
+ * a node in the btree, we can wait until a 4k block of keys fills up before
+ * writing them out.
+ *
+ * For simplicity, we only journal updates to leaf nodes; updates to parent
+ * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
+ * the complexity to deal with journalling them (in particular, journal replay)
+ * - updates to non leaf nodes just happen synchronously (see btree_split()).
+ */
+
+#define pr_fmt(fmt) "bcache: %s() " fmt, __func__
+
+#include <linux/bio.h>
+#include <linux/kobject.h>
+#include <linux/list.h>
+#include <linux/mutex.h>
+#include <linux/rbtree.h>
+#include <linux/rwsem.h>
+#include <linux/refcount.h>
+#include <linux/types.h>
+#include <linux/workqueue.h>
+#include <linux/kthread.h>
+
+#include "bcache_ondisk.h"
+#include "bset.h"
+#include "util.h"
+#include "closure.h"
+
+struct bucket {
+ atomic_t pin;
+ uint16_t prio;
+ uint8_t gen;
+ uint8_t last_gc; /* Most out of date gen in the btree */
+ uint16_t gc_mark; /* Bitfield used by GC. See below for field */
+};
+
+/*
+ * I'd use bitfields for these, but I don't trust the compiler not to screw me
+ * as multiple threads touch struct bucket without locking
+ */
+
+BITMASK(GC_MARK, struct bucket, gc_mark, 0, 2);
+#define GC_MARK_RECLAIMABLE 1
+#define GC_MARK_DIRTY 2
+#define GC_MARK_METADATA 3
+#define GC_SECTORS_USED_SIZE 13
+#define MAX_GC_SECTORS_USED (~(~0ULL << GC_SECTORS_USED_SIZE))
+BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, GC_SECTORS_USED_SIZE);
+BITMASK(GC_MOVE, struct bucket, gc_mark, 15, 1);
+
+#include "journal.h"
+#include "stats.h"
+struct search;
+struct btree;
+struct keybuf;
+
+struct keybuf_key {
+ struct rb_node node;
+ BKEY_PADDED(key);
+ void *private;
+};
+
+struct keybuf {
+ struct bkey last_scanned;
+ spinlock_t lock;
+
+ /*
+ * Beginning and end of range in rb tree - so that we can skip taking
+ * lock and checking the rb tree when we need to check for overlapping
+ * keys.
+ */
+ struct bkey start;
+ struct bkey end;
+
+ struct rb_root keys;
+
+#define KEYBUF_NR 500
+ DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
+};
+
+struct bcache_device {
+ struct closure cl;
+
+ struct kobject kobj;
+
+ struct cache_set *c;
+ unsigned int id;
+#define BCACHEDEVNAME_SIZE 12
+ char name[BCACHEDEVNAME_SIZE];
+
+ struct gendisk *disk;
+
+ unsigned long flags;
+#define BCACHE_DEV_CLOSING 0
+#define BCACHE_DEV_DETACHING 1
+#define BCACHE_DEV_UNLINK_DONE 2
+#define BCACHE_DEV_WB_RUNNING 3
+#define BCACHE_DEV_RATE_DW_RUNNING 4
+ int nr_stripes;
+#define BCH_MIN_STRIPE_SZ ((4 << 20) >> SECTOR_SHIFT)
+ unsigned int stripe_size;
+ atomic_t *stripe_sectors_dirty;
+ unsigned long *full_dirty_stripes;
+
+ struct bio_set bio_split;
+
+ unsigned int data_csum:1;
+
+ int (*cache_miss)(struct btree *b, struct search *s,
+ struct bio *bio, unsigned int sectors);
+ int (*ioctl)(struct bcache_device *d, fmode_t mode,
+ unsigned int cmd, unsigned long arg);
+};
+
+struct io {
+ /* Used to track sequential IO so it can be skipped */
+ struct hlist_node hash;
+ struct list_head lru;
+
+ unsigned long jiffies;
+ unsigned int sequential;
+ sector_t last;
+};
+
+enum stop_on_failure {
+ BCH_CACHED_DEV_STOP_AUTO = 0,
+ BCH_CACHED_DEV_STOP_ALWAYS,
+ BCH_CACHED_DEV_STOP_MODE_MAX,
+};
+
+struct cached_dev {
+ struct list_head list;
+ struct bcache_device disk;
+ struct block_device *bdev;
+
+ struct cache_sb sb;
+ struct cache_sb_disk *sb_disk;
+ struct bio sb_bio;
+ struct bio_vec sb_bv[1];
+ struct closure sb_write;
+ struct semaphore sb_write_mutex;
+
+ /* Refcount on the cache set. Always nonzero when we're caching. */
+ refcount_t count;
+ struct work_struct detach;
+
+ /*
+ * Device might not be running if it's dirty and the cache set hasn't
+ * showed up yet.
+ */
+ atomic_t running;
+
+ /*
+ * Writes take a shared lock from start to finish; scanning for dirty
+ * data to refill the rb tree requires an exclusive lock.
+ */
+ struct rw_semaphore writeback_lock;
+
+ /*
+ * Nonzero, and writeback has a refcount (d->count), iff there is dirty
+ * data in the cache. Protected by writeback_lock; must have an
+ * shared lock to set and exclusive lock to clear.
+ */
+ atomic_t has_dirty;
+
+#define BCH_CACHE_READA_ALL 0
+#define BCH_CACHE_READA_META_ONLY 1
+ unsigned int cache_readahead_policy;
+ struct bch_ratelimit writeback_rate;
+ struct delayed_work writeback_rate_update;
+
+ /* Limit number of writeback bios in flight */
+ struct semaphore in_flight;
+ struct task_struct *writeback_thread;
+ struct workqueue_struct *writeback_write_wq;
+
+ struct keybuf writeback_keys;
+
+ struct task_struct *status_update_thread;
+ /*
+ * Order the write-half of writeback operations strongly in dispatch
+ * order. (Maintain LBA order; don't allow reads completing out of
+ * order to re-order the writes...)
+ */
+ struct closure_waitlist writeback_ordering_wait;
+ atomic_t writeback_sequence_next;
+
+ /* For tracking sequential IO */
+#define RECENT_IO_BITS 7
+#define RECENT_IO (1 << RECENT_IO_BITS)
+ struct io io[RECENT_IO];
+ struct hlist_head io_hash[RECENT_IO + 1];
+ struct list_head io_lru;
+ spinlock_t io_lock;
+
+ struct cache_accounting accounting;
+
+ /* The rest of this all shows up in sysfs */
+ unsigned int sequential_cutoff;
+
+ unsigned int io_disable:1;
+ unsigned int verify:1;
+ unsigned int bypass_torture_test:1;
+
+ unsigned int partial_stripes_expensive:1;
+ unsigned int writeback_metadata:1;
+ unsigned int writeback_running:1;
+ unsigned int writeback_consider_fragment:1;
+ unsigned char writeback_percent;
+ unsigned int writeback_delay;
+
+ uint64_t writeback_rate_target;
+ int64_t writeback_rate_proportional;
+ int64_t writeback_rate_integral;
+ int64_t writeback_rate_integral_scaled;
+ int32_t writeback_rate_change;
+
+ unsigned int writeback_rate_update_seconds;
+ unsigned int writeback_rate_i_term_inverse;
+ unsigned int writeback_rate_p_term_inverse;
+ unsigned int writeback_rate_fp_term_low;
+ unsigned int writeback_rate_fp_term_mid;
+ unsigned int writeback_rate_fp_term_high;
+ unsigned int writeback_rate_minimum;
+
+ enum stop_on_failure stop_when_cache_set_failed;
+#define DEFAULT_CACHED_DEV_ERROR_LIMIT 64
+ atomic_t io_errors;
+ unsigned int error_limit;
+ unsigned int offline_seconds;
+
+ /*
+ * Retry to update writeback_rate if contention happens for
+ * down_read(dc->writeback_lock) in update_writeback_rate()
+ */
+#define BCH_WBRATE_UPDATE_MAX_SKIPS 15
+ unsigned int rate_update_retry;
+};
+
+enum alloc_reserve {
+ RESERVE_BTREE,
+ RESERVE_PRIO,
+ RESERVE_MOVINGGC,
+ RESERVE_NONE,
+ RESERVE_NR,
+};
+
+struct cache {
+ struct cache_set *set;
+ struct cache_sb sb;
+ struct cache_sb_disk *sb_disk;
+ struct bio sb_bio;
+ struct bio_vec sb_bv[1];
+
+ struct kobject kobj;
+ struct block_device *bdev;
+
+ struct task_struct *alloc_thread;
+
+ struct closure prio;
+ struct prio_set *disk_buckets;
+
+ /*
+ * When allocating new buckets, prio_write() gets first dibs - since we
+ * may not be allocate at all without writing priorities and gens.
+ * prio_last_buckets[] contains the last buckets we wrote priorities to
+ * (so gc can mark them as metadata), prio_buckets[] contains the
+ * buckets allocated for the next prio write.
+ */
+ uint64_t *prio_buckets;
+ uint64_t *prio_last_buckets;
+
+ /*
+ * free: Buckets that are ready to be used
+ *
+ * free_inc: Incoming buckets - these are buckets that currently have
+ * cached data in them, and we can't reuse them until after we write
+ * their new gen to disk. After prio_write() finishes writing the new
+ * gens/prios, they'll be moved to the free list (and possibly discarded
+ * in the process)
+ */
+ DECLARE_FIFO(long, free)[RESERVE_NR];
+ DECLARE_FIFO(long, free_inc);
+
+ size_t fifo_last_bucket;
+
+ /* Allocation stuff: */
+ struct bucket *buckets;
+
+ DECLARE_HEAP(struct bucket *, heap);
+
+ /*
+ * If nonzero, we know we aren't going to find any buckets to invalidate
+ * until a gc finishes - otherwise we could pointlessly burn a ton of
+ * cpu
+ */
+ unsigned int invalidate_needs_gc;
+
+ bool discard; /* Get rid of? */
+
+ struct journal_device journal;
+
+ /* The rest of this all shows up in sysfs */
+#define IO_ERROR_SHIFT 20
+ atomic_t io_errors;
+ atomic_t io_count;
+
+ atomic_long_t meta_sectors_written;
+ atomic_long_t btree_sectors_written;
+ atomic_long_t sectors_written;
+};
+
+struct gc_stat {
+ size_t nodes;
+ size_t nodes_pre;
+ size_t key_bytes;
+
+ size_t nkeys;
+ uint64_t data; /* sectors */
+ unsigned int in_use; /* percent */
+};
+
+/*
+ * Flag bits, for how the cache set is shutting down, and what phase it's at:
+ *
+ * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
+ * all the backing devices first (their cached data gets invalidated, and they
+ * won't automatically reattach).
+ *
+ * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
+ * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
+ * flushing dirty data).
+ *
+ * CACHE_SET_RUNNING means all cache devices have been registered and journal
+ * replay is complete.
+ *
+ * CACHE_SET_IO_DISABLE is set when bcache is stopping the whold cache set, all
+ * external and internal I/O should be denied when this flag is set.
+ *
+ */
+#define CACHE_SET_UNREGISTERING 0
+#define CACHE_SET_STOPPING 1
+#define CACHE_SET_RUNNING 2
+#define CACHE_SET_IO_DISABLE 3
+
+struct cache_set {
+ struct closure cl;
+
+ struct list_head list;
+ struct kobject kobj;
+ struct kobject internal;
+ struct dentry *debug;
+ struct cache_accounting accounting;
+
+ unsigned long flags;
+ atomic_t idle_counter;
+ atomic_t at_max_writeback_rate;
+
+ struct cache *cache;
+
+ struct bcache_device **devices;
+ unsigned int devices_max_used;
+ atomic_t attached_dev_nr;
+ struct list_head cached_devs;
+ uint64_t cached_dev_sectors;
+ atomic_long_t flash_dev_dirty_sectors;
+ struct closure caching;
+
+ struct closure sb_write;
+ struct semaphore sb_write_mutex;
+
+ mempool_t search;
+ mempool_t bio_meta;
+ struct bio_set bio_split;
+
+ /* For the btree cache */
+ struct shrinker shrink;
+
+ /* For the btree cache and anything allocation related */
+ struct mutex bucket_lock;
+
+ /* log2(bucket_size), in sectors */
+ unsigned short bucket_bits;
+
+ /* log2(block_size), in sectors */
+ unsigned short block_bits;
+
+ /*
+ * Default number of pages for a new btree node - may be less than a
+ * full bucket
+ */
+ unsigned int btree_pages;
+
+ /*
+ * Lists of struct btrees; lru is the list for structs that have memory
+ * allocated for actual btree node, freed is for structs that do not.
+ *
+ * We never free a struct btree, except on shutdown - we just put it on
+ * the btree_cache_freed list and reuse it later. This simplifies the
+ * code, and it doesn't cost us much memory as the memory usage is
+ * dominated by buffers that hold the actual btree node data and those
+ * can be freed - and the number of struct btrees allocated is
+ * effectively bounded.
+ *
+ * btree_cache_freeable effectively is a small cache - we use it because
+ * high order page allocations can be rather expensive, and it's quite
+ * common to delete and allocate btree nodes in quick succession. It
+ * should never grow past ~2-3 nodes in practice.
+ */
+ struct list_head btree_cache;
+ struct list_head btree_cache_freeable;
+ struct list_head btree_cache_freed;
+
+ /* Number of elements in btree_cache + btree_cache_freeable lists */
+ unsigned int btree_cache_used;
+
+ /*
+ * If we need to allocate memory for a new btree node and that
+ * allocation fails, we can cannibalize another node in the btree cache
+ * to satisfy the allocation - lock to guarantee only one thread does
+ * this at a time:
+ */
+ wait_queue_head_t btree_cache_wait;
+ struct task_struct *btree_cache_alloc_lock;
+ spinlock_t btree_cannibalize_lock;
+
+ /*
+ * When we free a btree node, we increment the gen of the bucket the
+ * node is in - but we can't rewrite the prios and gens until we
+ * finished whatever it is we were doing, otherwise after a crash the
+ * btree node would be freed but for say a split, we might not have the
+ * pointers to the new nodes inserted into the btree yet.
+ *
+ * This is a refcount that blocks prio_write() until the new keys are
+ * written.
+ */
+ atomic_t prio_blocked;
+ wait_queue_head_t bucket_wait;
+
+ /*
+ * For any bio we don't skip we subtract the number of sectors from
+ * rescale; when it hits 0 we rescale all the bucket priorities.
+ */
+ atomic_t rescale;
+ /*
+ * used for GC, identify if any front side I/Os is inflight
+ */
+ atomic_t search_inflight;
+ /*
+ * When we invalidate buckets, we use both the priority and the amount
+ * of good data to determine which buckets to reuse first - to weight
+ * those together consistently we keep track of the smallest nonzero
+ * priority of any bucket.
+ */
+ uint16_t min_prio;
+
+ /*
+ * max(gen - last_gc) for all buckets. When it gets too big we have to
+ * gc to keep gens from wrapping around.
+ */
+ uint8_t need_gc;
+ struct gc_stat gc_stats;
+ size_t nbuckets;
+ size_t avail_nbuckets;
+
+ struct task_struct *gc_thread;
+ /* Where in the btree gc currently is */
+ struct bkey gc_done;
+
+ /*
+ * For automatical garbage collection after writeback completed, this
+ * varialbe is used as bit fields,
+ * - 0000 0001b (BCH_ENABLE_AUTO_GC): enable gc after writeback
+ * - 0000 0010b (BCH_DO_AUTO_GC): do gc after writeback
+ * This is an optimization for following write request after writeback
+ * finished, but read hit rate dropped due to clean data on cache is
+ * discarded. Unless user explicitly sets it via sysfs, it won't be
+ * enabled.
+ */
+#define BCH_ENABLE_AUTO_GC 1
+#define BCH_DO_AUTO_GC 2
+ uint8_t gc_after_writeback;
+
+ /*
+ * The allocation code needs gc_mark in struct bucket to be correct, but
+ * it's not while a gc is in progress. Protected by bucket_lock.
+ */
+ int gc_mark_valid;
+
+ /* Counts how many sectors bio_insert has added to the cache */
+ atomic_t sectors_to_gc;
+ wait_queue_head_t gc_wait;
+
+ struct keybuf moving_gc_keys;
+ /* Number of moving GC bios in flight */
+ struct semaphore moving_in_flight;
+
+ struct workqueue_struct *moving_gc_wq;
+
+ struct btree *root;
+
+#ifdef CONFIG_BCACHE_DEBUG
+ struct btree *verify_data;
+ struct bset *verify_ondisk;
+ struct mutex verify_lock;
+#endif
+
+ uint8_t set_uuid[16];
+ unsigned int nr_uuids;
+ struct uuid_entry *uuids;
+ BKEY_PADDED(uuid_bucket);
+ struct closure uuid_write;
+ struct semaphore uuid_write_mutex;
+
+ /*
+ * A btree node on disk could have too many bsets for an iterator to fit
+ * on the stack - have to dynamically allocate them.
+ * bch_cache_set_alloc() will make sure the pool can allocate iterators
+ * equipped with enough room that can host
+ * (sb.bucket_size / sb.block_size)
+ * btree_iter_sets, which is more than static MAX_BSETS.
+ */
+ mempool_t fill_iter;
+
+ struct bset_sort_state sort;
+
+ /* List of buckets we're currently writing data to */
+ struct list_head data_buckets;
+ spinlock_t data_bucket_lock;
+
+ struct journal journal;
+
+#define CONGESTED_MAX 1024
+ unsigned int congested_last_us;
+ atomic_t congested;
+
+ /* The rest of this all shows up in sysfs */
+ unsigned int congested_read_threshold_us;
+ unsigned int congested_write_threshold_us;
+
+ struct time_stats btree_gc_time;
+ struct time_stats btree_split_time;
+ struct time_stats btree_read_time;
+
+ atomic_long_t cache_read_races;
+ atomic_long_t writeback_keys_done;
+ atomic_long_t writeback_keys_failed;
+
+ atomic_long_t reclaim;
+ atomic_long_t reclaimed_journal_buckets;
+ atomic_long_t flush_write;
+
+ enum {
+ ON_ERROR_UNREGISTER,
+ ON_ERROR_PANIC,
+ } on_error;
+#define DEFAULT_IO_ERROR_LIMIT 8
+ unsigned int error_limit;
+ unsigned int error_decay;
+
+ unsigned short journal_delay_ms;
+ bool expensive_debug_checks;
+ unsigned int verify:1;
+ unsigned int key_merging_disabled:1;
+ unsigned int gc_always_rewrite:1;
+ unsigned int shrinker_disabled:1;
+ unsigned int copy_gc_enabled:1;
+ unsigned int idle_max_writeback_rate_enabled:1;
+
+#define BUCKET_HASH_BITS 12
+ struct hlist_head bucket_hash[1 << BUCKET_HASH_BITS];
+};
+
+struct bbio {
+ unsigned int submit_time_us;
+ union {
+ struct bkey key;
+ uint64_t _pad[3];
+ /*
+ * We only need pad = 3 here because we only ever carry around a
+ * single pointer - i.e. the pointer we're doing io to/from.
+ */
+ };
+ struct bio bio;
+};
+
+#define BTREE_PRIO USHRT_MAX
+#define INITIAL_PRIO 32768U
+
+#define btree_bytes(c) ((c)->btree_pages * PAGE_SIZE)
+#define btree_blocks(b) \
+ ((unsigned int) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
+
+#define btree_default_blocks(c) \
+ ((unsigned int) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
+
+#define bucket_bytes(ca) ((ca)->sb.bucket_size << 9)
+#define block_bytes(ca) ((ca)->sb.block_size << 9)
+
+static inline unsigned int meta_bucket_pages(struct cache_sb *sb)
+{
+ unsigned int n, max_pages;
+
+ max_pages = min_t(unsigned int,
+ __rounddown_pow_of_two(USHRT_MAX) / PAGE_SECTORS,
+ MAX_ORDER_NR_PAGES);
+
+ n = sb->bucket_size / PAGE_SECTORS;
+ if (n > max_pages)
+ n = max_pages;
+
+ return n;
+}
+
+static inline unsigned int meta_bucket_bytes(struct cache_sb *sb)
+{
+ return meta_bucket_pages(sb) << PAGE_SHIFT;
+}
+
+#define prios_per_bucket(ca) \
+ ((meta_bucket_bytes(&(ca)->sb) - sizeof(struct prio_set)) / \
+ sizeof(struct bucket_disk))
+
+#define prio_buckets(ca) \
+ DIV_ROUND_UP((size_t) (ca)->sb.nbuckets, prios_per_bucket(ca))
+
+static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
+{
+ return s >> c->bucket_bits;
+}
+
+static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
+{
+ return ((sector_t) b) << c->bucket_bits;
+}
+
+static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
+{
+ return s & (c->cache->sb.bucket_size - 1);
+}
+
+static inline size_t PTR_BUCKET_NR(struct cache_set *c,
+ const struct bkey *k,
+ unsigned int ptr)
+{
+ return sector_to_bucket(c, PTR_OFFSET(k, ptr));
+}
+
+static inline struct bucket *PTR_BUCKET(struct cache_set *c,
+ const struct bkey *k,
+ unsigned int ptr)
+{
+ return c->cache->buckets + PTR_BUCKET_NR(c, k, ptr);
+}
+
+static inline uint8_t gen_after(uint8_t a, uint8_t b)
+{
+ uint8_t r = a - b;
+
+ return r > 128U ? 0 : r;
+}
+
+static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k,
+ unsigned int i)
+{
+ return gen_after(PTR_BUCKET(c, k, i)->gen, PTR_GEN(k, i));
+}
+
+static inline bool ptr_available(struct cache_set *c, const struct bkey *k,
+ unsigned int i)
+{
+ return (PTR_DEV(k, i) < MAX_CACHES_PER_SET) && c->cache;
+}
+
+/* Btree key macros */
+
+/*
+ * This is used for various on disk data structures - cache_sb, prio_set, bset,
+ * jset: The checksum is _always_ the first 8 bytes of these structs
+ */
+#define csum_set(i) \
+ bch_crc64(((void *) (i)) + sizeof(uint64_t), \
+ ((void *) bset_bkey_last(i)) - \
+ (((void *) (i)) + sizeof(uint64_t)))
+
+/* Error handling macros */
+
+#define btree_bug(b, ...) \
+do { \
+ if (bch_cache_set_error((b)->c, __VA_ARGS__)) \
+ dump_stack(); \
+} while (0)
+
+#define cache_bug(c, ...) \
+do { \
+ if (bch_cache_set_error(c, __VA_ARGS__)) \
+ dump_stack(); \
+} while (0)
+
+#define btree_bug_on(cond, b, ...) \
+do { \
+ if (cond) \
+ btree_bug(b, __VA_ARGS__); \
+} while (0)
+
+#define cache_bug_on(cond, c, ...) \
+do { \
+ if (cond) \
+ cache_bug(c, __VA_ARGS__); \
+} while (0)
+
+#define cache_set_err_on(cond, c, ...) \
+do { \
+ if (cond) \
+ bch_cache_set_error(c, __VA_ARGS__); \
+} while (0)
+
+/* Looping macros */
+
+#define for_each_bucket(b, ca) \
+ for (b = (ca)->buckets + (ca)->sb.first_bucket; \
+ b < (ca)->buckets + (ca)->sb.nbuckets; b++)
+
+static inline void cached_dev_put(struct cached_dev *dc)
+{
+ if (refcount_dec_and_test(&dc->count))
+ schedule_work(&dc->detach);
+}
+
+static inline bool cached_dev_get(struct cached_dev *dc)
+{
+ if (!refcount_inc_not_zero(&dc->count))
+ return false;
+
+ /* Paired with the mb in cached_dev_attach */
+ smp_mb__after_atomic();
+ return true;
+}
+
+/*
+ * bucket_gc_gen() returns the difference between the bucket's current gen and
+ * the oldest gen of any pointer into that bucket in the btree (last_gc).
+ */
+
+static inline uint8_t bucket_gc_gen(struct bucket *b)
+{
+ return b->gen - b->last_gc;
+}
+
+#define BUCKET_GC_GEN_MAX 96U
+
+#define kobj_attribute_write(n, fn) \
+ static struct kobj_attribute ksysfs_##n = __ATTR(n, 0200, NULL, fn)
+
+#define kobj_attribute_rw(n, show, store) \
+ static struct kobj_attribute ksysfs_##n = \
+ __ATTR(n, 0600, show, store)
+
+static inline void wake_up_allocators(struct cache_set *c)
+{
+ struct cache *ca = c->cache;
+
+ wake_up_process(ca->alloc_thread);
+}
+
+static inline void closure_bio_submit(struct cache_set *c,
+ struct bio *bio,
+ struct closure *cl)
+{
+ closure_get(cl);
+ if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) {
+ bio->bi_status = BLK_STS_IOERR;
+ bio_endio(bio);
+ return;
+ }
+ submit_bio_noacct(bio);
+}
+
+/*
+ * Prevent the kthread exits directly, and make sure when kthread_stop()
+ * is called to stop a kthread, it is still alive. If a kthread might be
+ * stopped by CACHE_SET_IO_DISABLE bit set, wait_for_kthread_stop() is
+ * necessary before the kthread returns.
+ */
+static inline void wait_for_kthread_stop(void)
+{
+ while (!kthread_should_stop()) {
+ set_current_state(TASK_INTERRUPTIBLE);
+ schedule();
+ }
+}
+
+/* Forward declarations */
+
+void bch_count_backing_io_errors(struct cached_dev *dc, struct bio *bio);
+void bch_count_io_errors(struct cache *ca, blk_status_t error,
+ int is_read, const char *m);
+void bch_bbio_count_io_errors(struct cache_set *c, struct bio *bio,
+ blk_status_t error, const char *m);
+void bch_bbio_endio(struct cache_set *c, struct bio *bio,
+ blk_status_t error, const char *m);
+void bch_bbio_free(struct bio *bio, struct cache_set *c);
+struct bio *bch_bbio_alloc(struct cache_set *c);
+
+void __bch_submit_bbio(struct bio *bio, struct cache_set *c);
+void bch_submit_bbio(struct bio *bio, struct cache_set *c,
+ struct bkey *k, unsigned int ptr);
+
+uint8_t bch_inc_gen(struct cache *ca, struct bucket *b);
+void bch_rescale_priorities(struct cache_set *c, int sectors);
+
+bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b);
+void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b);
+
+void __bch_bucket_free(struct cache *ca, struct bucket *b);
+void bch_bucket_free(struct cache_set *c, struct bkey *k);
+
+long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait);
+int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
+ struct bkey *k, bool wait);
+int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
+ struct bkey *k, bool wait);
+bool bch_alloc_sectors(struct cache_set *c, struct bkey *k,
+ unsigned int sectors, unsigned int write_point,
+ unsigned int write_prio, bool wait);
+bool bch_cached_dev_error(struct cached_dev *dc);
+
+__printf(2, 3)
+bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...);
+
+int bch_prio_write(struct cache *ca, bool wait);
+void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent);
+
+extern struct workqueue_struct *bcache_wq;
+extern struct workqueue_struct *bch_journal_wq;
+extern struct workqueue_struct *bch_flush_wq;
+extern struct mutex bch_register_lock;
+extern struct list_head bch_cache_sets;
+
+extern struct kobj_type bch_cached_dev_ktype;
+extern struct kobj_type bch_flash_dev_ktype;
+extern struct kobj_type bch_cache_set_ktype;
+extern struct kobj_type bch_cache_set_internal_ktype;
+extern struct kobj_type bch_cache_ktype;
+
+void bch_cached_dev_release(struct kobject *kobj);
+void bch_flash_dev_release(struct kobject *kobj);
+void bch_cache_set_release(struct kobject *kobj);
+void bch_cache_release(struct kobject *kobj);
+
+int bch_uuid_write(struct cache_set *c);
+void bcache_write_super(struct cache_set *c);
+
+int bch_flash_dev_create(struct cache_set *c, uint64_t size);
+
+int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
+ uint8_t *set_uuid);
+void bch_cached_dev_detach(struct cached_dev *dc);
+int bch_cached_dev_run(struct cached_dev *dc);
+void bcache_device_stop(struct bcache_device *d);
+
+void bch_cache_set_unregister(struct cache_set *c);
+void bch_cache_set_stop(struct cache_set *c);
+
+struct cache_set *bch_cache_set_alloc(struct cache_sb *sb);
+void bch_btree_cache_free(struct cache_set *c);
+int bch_btree_cache_alloc(struct cache_set *c);
+void bch_moving_init_cache_set(struct cache_set *c);
+int bch_open_buckets_alloc(struct cache_set *c);
+void bch_open_buckets_free(struct cache_set *c);
+
+int bch_cache_allocator_start(struct cache *ca);
+
+void bch_debug_exit(void);
+void bch_debug_init(void);
+void bch_request_exit(void);
+int bch_request_init(void);
+void bch_btree_exit(void);
+int bch_btree_init(void);
+
+#endif /* _BCACHE_H */
diff --git a/drivers/md/bcache/bcache_ondisk.h b/drivers/md/bcache/bcache_ondisk.h
new file mode 100644
index 000000000..f96034e0b
--- /dev/null
+++ b/drivers/md/bcache/bcache_ondisk.h
@@ -0,0 +1,446 @@
+/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
+#ifndef _LINUX_BCACHE_H
+#define _LINUX_BCACHE_H
+
+/*
+ * Bcache on disk data structures
+ */
+
+#include <linux/types.h>
+
+#define BITMASK(name, type, field, offset, size) \
+static inline __u64 name(const type *k) \
+{ return (k->field >> offset) & ~(~0ULL << size); } \
+ \
+static inline void SET_##name(type *k, __u64 v) \
+{ \
+ k->field &= ~(~(~0ULL << size) << offset); \
+ k->field |= (v & ~(~0ULL << size)) << offset; \
+}
+
+/* Btree keys - all units are in sectors */
+
+struct bkey {
+ __u64 high;
+ __u64 low;
+ __u64 ptr[];
+};
+
+#define KEY_FIELD(name, field, offset, size) \
+ BITMASK(name, struct bkey, field, offset, size)
+
+#define PTR_FIELD(name, offset, size) \
+static inline __u64 name(const struct bkey *k, unsigned int i) \
+{ return (k->ptr[i] >> offset) & ~(~0ULL << size); } \
+ \
+static inline void SET_##name(struct bkey *k, unsigned int i, __u64 v) \
+{ \
+ k->ptr[i] &= ~(~(~0ULL << size) << offset); \
+ k->ptr[i] |= (v & ~(~0ULL << size)) << offset; \
+}
+
+#define KEY_SIZE_BITS 16
+#define KEY_MAX_U64S 8
+
+KEY_FIELD(KEY_PTRS, high, 60, 3)
+KEY_FIELD(__PAD0, high, 58, 2)
+KEY_FIELD(KEY_CSUM, high, 56, 2)
+KEY_FIELD(__PAD1, high, 55, 1)
+KEY_FIELD(KEY_DIRTY, high, 36, 1)
+
+KEY_FIELD(KEY_SIZE, high, 20, KEY_SIZE_BITS)
+KEY_FIELD(KEY_INODE, high, 0, 20)
+
+/* Next time I change the on disk format, KEY_OFFSET() won't be 64 bits */
+
+static inline __u64 KEY_OFFSET(const struct bkey *k)
+{
+ return k->low;
+}
+
+static inline void SET_KEY_OFFSET(struct bkey *k, __u64 v)
+{
+ k->low = v;
+}
+
+/*
+ * The high bit being set is a relic from when we used it to do binary
+ * searches - it told you where a key started. It's not used anymore,
+ * and can probably be safely dropped.
+ */
+#define KEY(inode, offset, size) \
+((struct bkey) { \
+ .high = (1ULL << 63) | ((__u64) (size) << 20) | (inode), \
+ .low = (offset) \
+})
+
+#define ZERO_KEY KEY(0, 0, 0)
+
+#define MAX_KEY_INODE (~(~0 << 20))
+#define MAX_KEY_OFFSET (~0ULL >> 1)
+#define MAX_KEY KEY(MAX_KEY_INODE, MAX_KEY_OFFSET, 0)
+
+#define KEY_START(k) (KEY_OFFSET(k) - KEY_SIZE(k))
+#define START_KEY(k) KEY(KEY_INODE(k), KEY_START(k), 0)
+
+#define PTR_DEV_BITS 12
+
+PTR_FIELD(PTR_DEV, 51, PTR_DEV_BITS)
+PTR_FIELD(PTR_OFFSET, 8, 43)
+PTR_FIELD(PTR_GEN, 0, 8)
+
+#define PTR_CHECK_DEV ((1 << PTR_DEV_BITS) - 1)
+
+#define MAKE_PTR(gen, offset, dev) \
+ ((((__u64) dev) << 51) | ((__u64) offset) << 8 | gen)
+
+/* Bkey utility code */
+
+static inline unsigned long bkey_u64s(const struct bkey *k)
+{
+ return (sizeof(struct bkey) / sizeof(__u64)) + KEY_PTRS(k);
+}
+
+static inline unsigned long bkey_bytes(const struct bkey *k)
+{
+ return bkey_u64s(k) * sizeof(__u64);
+}
+
+#define bkey_copy(_dest, _src) unsafe_memcpy(_dest, _src, bkey_bytes(_src), \
+ /* bkey is always padded */)
+
+static inline void bkey_copy_key(struct bkey *dest, const struct bkey *src)
+{
+ SET_KEY_INODE(dest, KEY_INODE(src));
+ SET_KEY_OFFSET(dest, KEY_OFFSET(src));
+}
+
+static inline struct bkey *bkey_next(const struct bkey *k)
+{
+ __u64 *d = (void *) k;
+
+ return (struct bkey *) (d + bkey_u64s(k));
+}
+
+static inline struct bkey *bkey_idx(const struct bkey *k, unsigned int nr_keys)
+{
+ __u64 *d = (void *) k;
+
+ return (struct bkey *) (d + nr_keys);
+}
+/* Enough for a key with 6 pointers */
+#define BKEY_PAD 8
+
+#define BKEY_PADDED(key) \
+ union { struct bkey key; __u64 key ## _pad[BKEY_PAD]; }
+
+/* Superblock */
+
+/* Version 0: Cache device
+ * Version 1: Backing device
+ * Version 2: Seed pointer into btree node checksum
+ * Version 3: Cache device with new UUID format
+ * Version 4: Backing device with data offset
+ */
+#define BCACHE_SB_VERSION_CDEV 0
+#define BCACHE_SB_VERSION_BDEV 1
+#define BCACHE_SB_VERSION_CDEV_WITH_UUID 3
+#define BCACHE_SB_VERSION_BDEV_WITH_OFFSET 4
+#define BCACHE_SB_VERSION_CDEV_WITH_FEATURES 5
+#define BCACHE_SB_VERSION_BDEV_WITH_FEATURES 6
+#define BCACHE_SB_MAX_VERSION 6
+
+#define SB_SECTOR 8
+#define SB_OFFSET (SB_SECTOR << SECTOR_SHIFT)
+#define SB_SIZE 4096
+#define SB_LABEL_SIZE 32
+#define SB_JOURNAL_BUCKETS 256U
+/* SB_JOURNAL_BUCKETS must be divisible by BITS_PER_LONG */
+#define MAX_CACHES_PER_SET 8
+
+#define BDEV_DATA_START_DEFAULT 16 /* sectors */
+
+struct cache_sb_disk {
+ __le64 csum;
+ __le64 offset; /* sector where this sb was written */
+ __le64 version;
+
+ __u8 magic[16];
+
+ __u8 uuid[16];
+ union {
+ __u8 set_uuid[16];
+ __le64 set_magic;
+ };
+ __u8 label[SB_LABEL_SIZE];
+
+ __le64 flags;
+ __le64 seq;
+
+ __le64 feature_compat;
+ __le64 feature_incompat;
+ __le64 feature_ro_compat;
+
+ __le64 pad[5];
+
+ union {
+ struct {
+ /* Cache devices */
+ __le64 nbuckets; /* device size */
+
+ __le16 block_size; /* sectors */
+ __le16 bucket_size; /* sectors */
+
+ __le16 nr_in_set;
+ __le16 nr_this_dev;
+ };
+ struct {
+ /* Backing devices */
+ __le64 data_offset;
+
+ /*
+ * block_size from the cache device section is still used by
+ * backing devices, so don't add anything here until we fix
+ * things to not need it for backing devices anymore
+ */
+ };
+ };
+
+ __le32 last_mount; /* time overflow in y2106 */
+
+ __le16 first_bucket;
+ union {
+ __le16 njournal_buckets;
+ __le16 keys;
+ };
+ __le64 d[SB_JOURNAL_BUCKETS]; /* journal buckets */
+ __le16 obso_bucket_size_hi; /* obsoleted */
+};
+
+/*
+ * This is for in-memory bcache super block.
+ * NOTE: cache_sb is NOT exactly mapping to cache_sb_disk, the member
+ * size, ordering and even whole struct size may be different
+ * from cache_sb_disk.
+ */
+struct cache_sb {
+ __u64 offset; /* sector where this sb was written */
+ __u64 version;
+
+ __u8 magic[16];
+
+ __u8 uuid[16];
+ union {
+ __u8 set_uuid[16];
+ __u64 set_magic;
+ };
+ __u8 label[SB_LABEL_SIZE];
+
+ __u64 flags;
+ __u64 seq;
+
+ __u64 feature_compat;
+ __u64 feature_incompat;
+ __u64 feature_ro_compat;
+
+ union {
+ struct {
+ /* Cache devices */
+ __u64 nbuckets; /* device size */
+
+ __u16 block_size; /* sectors */
+ __u16 nr_in_set;
+ __u16 nr_this_dev;
+ __u32 bucket_size; /* sectors */
+ };
+ struct {
+ /* Backing devices */
+ __u64 data_offset;
+
+ /*
+ * block_size from the cache device section is still used by
+ * backing devices, so don't add anything here until we fix
+ * things to not need it for backing devices anymore
+ */
+ };
+ };
+
+ __u32 last_mount; /* time overflow in y2106 */
+
+ __u16 first_bucket;
+ union {
+ __u16 njournal_buckets;
+ __u16 keys;
+ };
+ __u64 d[SB_JOURNAL_BUCKETS]; /* journal buckets */
+};
+
+static inline _Bool SB_IS_BDEV(const struct cache_sb *sb)
+{
+ return sb->version == BCACHE_SB_VERSION_BDEV
+ || sb->version == BCACHE_SB_VERSION_BDEV_WITH_OFFSET
+ || sb->version == BCACHE_SB_VERSION_BDEV_WITH_FEATURES;
+}
+
+BITMASK(CACHE_SYNC, struct cache_sb, flags, 0, 1);
+BITMASK(CACHE_DISCARD, struct cache_sb, flags, 1, 1);
+BITMASK(CACHE_REPLACEMENT, struct cache_sb, flags, 2, 3);
+#define CACHE_REPLACEMENT_LRU 0U
+#define CACHE_REPLACEMENT_FIFO 1U
+#define CACHE_REPLACEMENT_RANDOM 2U
+
+BITMASK(BDEV_CACHE_MODE, struct cache_sb, flags, 0, 4);
+#define CACHE_MODE_WRITETHROUGH 0U
+#define CACHE_MODE_WRITEBACK 1U
+#define CACHE_MODE_WRITEAROUND 2U
+#define CACHE_MODE_NONE 3U
+BITMASK(BDEV_STATE, struct cache_sb, flags, 61, 2);
+#define BDEV_STATE_NONE 0U
+#define BDEV_STATE_CLEAN 1U
+#define BDEV_STATE_DIRTY 2U
+#define BDEV_STATE_STALE 3U
+
+/*
+ * Magic numbers
+ *
+ * The various other data structures have their own magic numbers, which are
+ * xored with the first part of the cache set's UUID
+ */
+
+#define JSET_MAGIC 0x245235c1a3625032ULL
+#define PSET_MAGIC 0x6750e15f87337f91ULL
+#define BSET_MAGIC 0x90135c78b99e07f5ULL
+
+static inline __u64 jset_magic(struct cache_sb *sb)
+{
+ return sb->set_magic ^ JSET_MAGIC;
+}
+
+static inline __u64 pset_magic(struct cache_sb *sb)
+{
+ return sb->set_magic ^ PSET_MAGIC;
+}
+
+static inline __u64 bset_magic(struct cache_sb *sb)
+{
+ return sb->set_magic ^ BSET_MAGIC;
+}
+
+/*
+ * Journal
+ *
+ * On disk format for a journal entry:
+ * seq is monotonically increasing; every journal entry has its own unique
+ * sequence number.
+ *
+ * last_seq is the oldest journal entry that still has keys the btree hasn't
+ * flushed to disk yet.
+ *
+ * version is for on disk format changes.
+ */
+
+#define BCACHE_JSET_VERSION_UUIDv1 1
+#define BCACHE_JSET_VERSION_UUID 1 /* Always latest UUID format */
+#define BCACHE_JSET_VERSION 1
+
+struct jset {
+ __u64 csum;
+ __u64 magic;
+ __u64 seq;
+ __u32 version;
+ __u32 keys;
+
+ __u64 last_seq;
+
+ BKEY_PADDED(uuid_bucket);
+ BKEY_PADDED(btree_root);
+ __u16 btree_level;
+ __u16 pad[3];
+
+ __u64 prio_bucket[MAX_CACHES_PER_SET];
+
+ union {
+ struct bkey start[0];
+ __u64 d[0];
+ };
+};
+
+/* Bucket prios/gens */
+
+struct prio_set {
+ __u64 csum;
+ __u64 magic;
+ __u64 seq;
+ __u32 version;
+ __u32 pad;
+
+ __u64 next_bucket;
+
+ struct bucket_disk {
+ __u16 prio;
+ __u8 gen;
+ } __attribute((packed)) data[];
+};
+
+/* UUIDS - per backing device/flash only volume metadata */
+
+struct uuid_entry {
+ union {
+ struct {
+ __u8 uuid[16];
+ __u8 label[32];
+ __u32 first_reg; /* time overflow in y2106 */
+ __u32 last_reg;
+ __u32 invalidated;
+
+ __u32 flags;
+ /* Size of flash only volumes */
+ __u64 sectors;
+ };
+
+ __u8 pad[128];
+ };
+};
+
+BITMASK(UUID_FLASH_ONLY, struct uuid_entry, flags, 0, 1);
+
+/* Btree nodes */
+
+/* Version 1: Seed pointer into btree node checksum
+ */
+#define BCACHE_BSET_CSUM 1
+#define BCACHE_BSET_VERSION 1
+
+/*
+ * Btree nodes
+ *
+ * On disk a btree node is a list/log of these; within each set the keys are
+ * sorted
+ */
+struct bset {
+ __u64 csum;
+ __u64 magic;
+ __u64 seq;
+ __u32 version;
+ __u32 keys;
+
+ union {
+ struct bkey start[0];
+ __u64 d[0];
+ };
+};
+
+/* OBSOLETE */
+
+/* UUIDS - per backing device/flash only volume metadata */
+
+struct uuid_entry_v0 {
+ __u8 uuid[16];
+ __u8 label[32];
+ __u32 first_reg;
+ __u32 last_reg;
+ __u32 invalidated;
+ __u32 pad;
+};
+
+#endif /* _LINUX_BCACHE_H */
diff --git a/drivers/md/bcache/bset.c b/drivers/md/bcache/bset.c
new file mode 100644
index 000000000..2bba4d6aa
--- /dev/null
+++ b/drivers/md/bcache/bset.c
@@ -0,0 +1,1390 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Code for working with individual keys, and sorted sets of keys with in a
+ * btree node
+ *
+ * Copyright 2012 Google, Inc.
+ */
+
+#define pr_fmt(fmt) "bcache: %s() " fmt, __func__
+
+#include "util.h"
+#include "bset.h"
+
+#include <linux/console.h>
+#include <linux/sched/clock.h>
+#include <linux/random.h>
+#include <linux/prefetch.h>
+
+#ifdef CONFIG_BCACHE_DEBUG
+
+void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set)
+{
+ struct bkey *k, *next;
+
+ for (k = i->start; k < bset_bkey_last(i); k = next) {
+ next = bkey_next(k);
+
+ pr_err("block %u key %u/%u: ", set,
+ (unsigned int) ((u64 *) k - i->d), i->keys);
+
+ if (b->ops->key_dump)
+ b->ops->key_dump(b, k);
+ else
+ pr_cont("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
+
+ if (next < bset_bkey_last(i) &&
+ bkey_cmp(k, b->ops->is_extents ?
+ &START_KEY(next) : next) > 0)
+ pr_err("Key skipped backwards\n");
+ }
+}
+
+void bch_dump_bucket(struct btree_keys *b)
+{
+ unsigned int i;
+
+ console_lock();
+ for (i = 0; i <= b->nsets; i++)
+ bch_dump_bset(b, b->set[i].data,
+ bset_sector_offset(b, b->set[i].data));
+ console_unlock();
+}
+
+int __bch_count_data(struct btree_keys *b)
+{
+ unsigned int ret = 0;
+ struct btree_iter iter;
+ struct bkey *k;
+
+ if (b->ops->is_extents)
+ for_each_key(b, k, &iter)
+ ret += KEY_SIZE(k);
+ return ret;
+}
+
+void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
+{
+ va_list args;
+ struct bkey *k, *p = NULL;
+ struct btree_iter iter;
+ const char *err;
+
+ for_each_key(b, k, &iter) {
+ if (b->ops->is_extents) {
+ err = "Keys out of order";
+ if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
+ goto bug;
+
+ if (bch_ptr_invalid(b, k))
+ continue;
+
+ err = "Overlapping keys";
+ if (p && bkey_cmp(p, &START_KEY(k)) > 0)
+ goto bug;
+ } else {
+ if (bch_ptr_bad(b, k))
+ continue;
+
+ err = "Duplicate keys";
+ if (p && !bkey_cmp(p, k))
+ goto bug;
+ }
+ p = k;
+ }
+#if 0
+ err = "Key larger than btree node key";
+ if (p && bkey_cmp(p, &b->key) > 0)
+ goto bug;
+#endif
+ return;
+bug:
+ bch_dump_bucket(b);
+
+ va_start(args, fmt);
+ vprintk(fmt, args);
+ va_end(args);
+
+ panic("bch_check_keys error: %s:\n", err);
+}
+
+static void bch_btree_iter_next_check(struct btree_iter *iter)
+{
+ struct bkey *k = iter->data->k, *next = bkey_next(k);
+
+ if (next < iter->data->end &&
+ bkey_cmp(k, iter->b->ops->is_extents ?
+ &START_KEY(next) : next) > 0) {
+ bch_dump_bucket(iter->b);
+ panic("Key skipped backwards\n");
+ }
+}
+
+#else
+
+static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
+
+#endif
+
+/* Keylists */
+
+int __bch_keylist_realloc(struct keylist *l, unsigned int u64s)
+{
+ size_t oldsize = bch_keylist_nkeys(l);
+ size_t newsize = oldsize + u64s;
+ uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
+ uint64_t *new_keys;
+
+ newsize = roundup_pow_of_two(newsize);
+
+ if (newsize <= KEYLIST_INLINE ||
+ roundup_pow_of_two(oldsize) == newsize)
+ return 0;
+
+ new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
+
+ if (!new_keys)
+ return -ENOMEM;
+
+ if (!old_keys)
+ memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
+
+ l->keys_p = new_keys;
+ l->top_p = new_keys + oldsize;
+
+ return 0;
+}
+
+/* Pop the top key of keylist by pointing l->top to its previous key */
+struct bkey *bch_keylist_pop(struct keylist *l)
+{
+ struct bkey *k = l->keys;
+
+ if (k == l->top)
+ return NULL;
+
+ while (bkey_next(k) != l->top)
+ k = bkey_next(k);
+
+ return l->top = k;
+}
+
+/* Pop the bottom key of keylist and update l->top_p */
+void bch_keylist_pop_front(struct keylist *l)
+{
+ l->top_p -= bkey_u64s(l->keys);
+
+ memmove(l->keys,
+ bkey_next(l->keys),
+ bch_keylist_bytes(l));
+}
+
+/* Key/pointer manipulation */
+
+void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
+ unsigned int i)
+{
+ BUG_ON(i > KEY_PTRS(src));
+
+ /* Only copy the header, key, and one pointer. */
+ memcpy(dest, src, 2 * sizeof(uint64_t));
+ dest->ptr[0] = src->ptr[i];
+ SET_KEY_PTRS(dest, 1);
+ /* We didn't copy the checksum so clear that bit. */
+ SET_KEY_CSUM(dest, 0);
+}
+
+bool __bch_cut_front(const struct bkey *where, struct bkey *k)
+{
+ unsigned int i, len = 0;
+
+ if (bkey_cmp(where, &START_KEY(k)) <= 0)
+ return false;
+
+ if (bkey_cmp(where, k) < 0)
+ len = KEY_OFFSET(k) - KEY_OFFSET(where);
+ else
+ bkey_copy_key(k, where);
+
+ for (i = 0; i < KEY_PTRS(k); i++)
+ SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
+
+ BUG_ON(len > KEY_SIZE(k));
+ SET_KEY_SIZE(k, len);
+ return true;
+}
+
+bool __bch_cut_back(const struct bkey *where, struct bkey *k)
+{
+ unsigned int len = 0;
+
+ if (bkey_cmp(where, k) >= 0)
+ return false;
+
+ BUG_ON(KEY_INODE(where) != KEY_INODE(k));
+
+ if (bkey_cmp(where, &START_KEY(k)) > 0)
+ len = KEY_OFFSET(where) - KEY_START(k);
+
+ bkey_copy_key(k, where);
+
+ BUG_ON(len > KEY_SIZE(k));
+ SET_KEY_SIZE(k, len);
+ return true;
+}
+
+/* Auxiliary search trees */
+
+/* 32 bits total: */
+#define BKEY_MID_BITS 3
+#define BKEY_EXPONENT_BITS 7
+#define BKEY_MANTISSA_BITS (32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
+#define BKEY_MANTISSA_MASK ((1 << BKEY_MANTISSA_BITS) - 1)
+
+struct bkey_float {
+ unsigned int exponent:BKEY_EXPONENT_BITS;
+ unsigned int m:BKEY_MID_BITS;
+ unsigned int mantissa:BKEY_MANTISSA_BITS;
+} __packed;
+
+/*
+ * BSET_CACHELINE was originally intended to match the hardware cacheline size -
+ * it used to be 64, but I realized the lookup code would touch slightly less
+ * memory if it was 128.
+ *
+ * It definites the number of bytes (in struct bset) per struct bkey_float in
+ * the auxiliar search tree - when we're done searching the bset_float tree we
+ * have this many bytes left that we do a linear search over.
+ *
+ * Since (after level 5) every level of the bset_tree is on a new cacheline,
+ * we're touching one fewer cacheline in the bset tree in exchange for one more
+ * cacheline in the linear search - but the linear search might stop before it
+ * gets to the second cacheline.
+ */
+
+#define BSET_CACHELINE 128
+
+/* Space required for the btree node keys */
+static inline size_t btree_keys_bytes(struct btree_keys *b)
+{
+ return PAGE_SIZE << b->page_order;
+}
+
+static inline size_t btree_keys_cachelines(struct btree_keys *b)
+{
+ return btree_keys_bytes(b) / BSET_CACHELINE;
+}
+
+/* Space required for the auxiliary search trees */
+static inline size_t bset_tree_bytes(struct btree_keys *b)
+{
+ return btree_keys_cachelines(b) * sizeof(struct bkey_float);
+}
+
+/* Space required for the prev pointers */
+static inline size_t bset_prev_bytes(struct btree_keys *b)
+{
+ return btree_keys_cachelines(b) * sizeof(uint8_t);
+}
+
+/* Memory allocation */
+
+void bch_btree_keys_free(struct btree_keys *b)
+{
+ struct bset_tree *t = b->set;
+
+ if (bset_prev_bytes(b) < PAGE_SIZE)
+ kfree(t->prev);
+ else
+ free_pages((unsigned long) t->prev,
+ get_order(bset_prev_bytes(b)));
+
+ if (bset_tree_bytes(b) < PAGE_SIZE)
+ kfree(t->tree);
+ else
+ free_pages((unsigned long) t->tree,
+ get_order(bset_tree_bytes(b)));
+
+ free_pages((unsigned long) t->data, b->page_order);
+
+ t->prev = NULL;
+ t->tree = NULL;
+ t->data = NULL;
+}
+
+int bch_btree_keys_alloc(struct btree_keys *b,
+ unsigned int page_order,
+ gfp_t gfp)
+{
+ struct bset_tree *t = b->set;
+
+ BUG_ON(t->data);
+
+ b->page_order = page_order;
+
+ t->data = (void *) __get_free_pages(__GFP_COMP|gfp, b->page_order);
+ if (!t->data)
+ goto err;
+
+ t->tree = bset_tree_bytes(b) < PAGE_SIZE
+ ? kmalloc(bset_tree_bytes(b), gfp)
+ : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
+ if (!t->tree)
+ goto err;
+
+ t->prev = bset_prev_bytes(b) < PAGE_SIZE
+ ? kmalloc(bset_prev_bytes(b), gfp)
+ : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
+ if (!t->prev)
+ goto err;
+
+ return 0;
+err:
+ bch_btree_keys_free(b);
+ return -ENOMEM;
+}
+
+void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
+ bool *expensive_debug_checks)
+{
+ b->ops = ops;
+ b->expensive_debug_checks = expensive_debug_checks;
+ b->nsets = 0;
+ b->last_set_unwritten = 0;
+
+ /*
+ * struct btree_keys in embedded in struct btree, and struct
+ * bset_tree is embedded into struct btree_keys. They are all
+ * initialized as 0 by kzalloc() in mca_bucket_alloc(), and
+ * b->set[0].data is allocated in bch_btree_keys_alloc(), so we
+ * don't have to initiate b->set[].size and b->set[].data here
+ * any more.
+ */
+}
+
+/* Binary tree stuff for auxiliary search trees */
+
+/*
+ * return array index next to j when does in-order traverse
+ * of a binary tree which is stored in a linear array
+ */
+static unsigned int inorder_next(unsigned int j, unsigned int size)
+{
+ if (j * 2 + 1 < size) {
+ j = j * 2 + 1;
+
+ while (j * 2 < size)
+ j *= 2;
+ } else
+ j >>= ffz(j) + 1;
+
+ return j;
+}
+
+/*
+ * return array index previous to j when does in-order traverse
+ * of a binary tree which is stored in a linear array
+ */
+static unsigned int inorder_prev(unsigned int j, unsigned int size)
+{
+ if (j * 2 < size) {
+ j = j * 2;
+
+ while (j * 2 + 1 < size)
+ j = j * 2 + 1;
+ } else
+ j >>= ffs(j);
+
+ return j;
+}
+
+/*
+ * I have no idea why this code works... and I'm the one who wrote it
+ *
+ * However, I do know what it does:
+ * Given a binary tree constructed in an array (i.e. how you normally implement
+ * a heap), it converts a node in the tree - referenced by array index - to the
+ * index it would have if you did an inorder traversal.
+ *
+ * Also tested for every j, size up to size somewhere around 6 million.
+ *
+ * The binary tree starts at array index 1, not 0
+ * extra is a function of size:
+ * extra = (size - rounddown_pow_of_two(size - 1)) << 1;
+ */
+static unsigned int __to_inorder(unsigned int j,
+ unsigned int size,
+ unsigned int extra)
+{
+ unsigned int b = fls(j);
+ unsigned int shift = fls(size - 1) - b;
+
+ j ^= 1U << (b - 1);
+ j <<= 1;
+ j |= 1;
+ j <<= shift;
+
+ if (j > extra)
+ j -= (j - extra) >> 1;
+
+ return j;
+}
+
+/*
+ * Return the cacheline index in bset_tree->data, where j is index
+ * from a linear array which stores the auxiliar binary tree
+ */
+static unsigned int to_inorder(unsigned int j, struct bset_tree *t)
+{
+ return __to_inorder(j, t->size, t->extra);
+}
+
+static unsigned int __inorder_to_tree(unsigned int j,
+ unsigned int size,
+ unsigned int extra)
+{
+ unsigned int shift;
+
+ if (j > extra)
+ j += j - extra;
+
+ shift = ffs(j);
+
+ j >>= shift;
+ j |= roundup_pow_of_two(size) >> shift;
+
+ return j;
+}
+
+/*
+ * Return an index from a linear array which stores the auxiliar binary
+ * tree, j is the cacheline index of t->data.
+ */
+static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t)
+{
+ return __inorder_to_tree(j, t->size, t->extra);
+}
+
+#if 0
+void inorder_test(void)
+{
+ unsigned long done = 0;
+ ktime_t start = ktime_get();
+
+ for (unsigned int size = 2;
+ size < 65536000;
+ size++) {
+ unsigned int extra =
+ (size - rounddown_pow_of_two(size - 1)) << 1;
+ unsigned int i = 1, j = rounddown_pow_of_two(size - 1);
+
+ if (!(size % 4096))
+ pr_notice("loop %u, %llu per us\n", size,
+ done / ktime_us_delta(ktime_get(), start));
+
+ while (1) {
+ if (__inorder_to_tree(i, size, extra) != j)
+ panic("size %10u j %10u i %10u", size, j, i);
+
+ if (__to_inorder(j, size, extra) != i)
+ panic("size %10u j %10u i %10u", size, j, i);
+
+ if (j == rounddown_pow_of_two(size) - 1)
+ break;
+
+ BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
+
+ j = inorder_next(j, size);
+ i++;
+ }
+
+ done += size - 1;
+ }
+}
+#endif
+
+/*
+ * Cacheline/offset <-> bkey pointer arithmetic:
+ *
+ * t->tree is a binary search tree in an array; each node corresponds to a key
+ * in one cacheline in t->set (BSET_CACHELINE bytes).
+ *
+ * This means we don't have to store the full index of the key that a node in
+ * the binary tree points to; to_inorder() gives us the cacheline, and then
+ * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
+ *
+ * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
+ * make this work.
+ *
+ * To construct the bfloat for an arbitrary key we need to know what the key
+ * immediately preceding it is: we have to check if the two keys differ in the
+ * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
+ * of the previous key so we can walk backwards to it from t->tree[j]'s key.
+ */
+
+static struct bkey *cacheline_to_bkey(struct bset_tree *t,
+ unsigned int cacheline,
+ unsigned int offset)
+{
+ return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
+}
+
+static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
+{
+ return ((void *) k - (void *) t->data) / BSET_CACHELINE;
+}
+
+static unsigned int bkey_to_cacheline_offset(struct bset_tree *t,
+ unsigned int cacheline,
+ struct bkey *k)
+{
+ return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
+}
+
+static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j)
+{
+ return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
+}
+
+static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j)
+{
+ return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
+}
+
+/*
+ * For the write set - the one we're currently inserting keys into - we don't
+ * maintain a full search tree, we just keep a simple lookup table in t->prev.
+ */
+static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline)
+{
+ return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
+}
+
+static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
+{
+ low >>= shift;
+ low |= (high << 1) << (63U - shift);
+ return low;
+}
+
+/*
+ * Calculate mantissa value for struct bkey_float.
+ * If most significant bit of f->exponent is not set, then
+ * - f->exponent >> 6 is 0
+ * - p[0] points to bkey->low
+ * - p[-1] borrows bits from KEY_INODE() of bkey->high
+ * if most isgnificant bits of f->exponent is set, then
+ * - f->exponent >> 6 is 1
+ * - p[0] points to bits from KEY_INODE() of bkey->high
+ * - p[-1] points to other bits from KEY_INODE() of
+ * bkey->high too.
+ * See make_bfloat() to check when most significant bit of f->exponent
+ * is set or not.
+ */
+static inline unsigned int bfloat_mantissa(const struct bkey *k,
+ struct bkey_float *f)
+{
+ const uint64_t *p = &k->low - (f->exponent >> 6);
+
+ return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
+}
+
+static void make_bfloat(struct bset_tree *t, unsigned int j)
+{
+ struct bkey_float *f = &t->tree[j];
+ struct bkey *m = tree_to_bkey(t, j);
+ struct bkey *p = tree_to_prev_bkey(t, j);
+
+ struct bkey *l = is_power_of_2(j)
+ ? t->data->start
+ : tree_to_prev_bkey(t, j >> ffs(j));
+
+ struct bkey *r = is_power_of_2(j + 1)
+ ? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
+ : tree_to_bkey(t, j >> (ffz(j) + 1));
+
+ BUG_ON(m < l || m > r);
+ BUG_ON(bkey_next(p) != m);
+
+ /*
+ * If l and r have different KEY_INODE values (different backing
+ * device), f->exponent records how many least significant bits
+ * are different in KEY_INODE values and sets most significant
+ * bits to 1 (by +64).
+ * If l and r have same KEY_INODE value, f->exponent records
+ * how many different bits in least significant bits of bkey->low.
+ * See bfloat_mantiss() how the most significant bit of
+ * f->exponent is used to calculate bfloat mantissa value.
+ */
+ if (KEY_INODE(l) != KEY_INODE(r))
+ f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
+ else
+ f->exponent = fls64(r->low ^ l->low);
+
+ f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
+
+ /*
+ * Setting f->exponent = 127 flags this node as failed, and causes the
+ * lookup code to fall back to comparing against the original key.
+ */
+
+ if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
+ f->mantissa = bfloat_mantissa(m, f) - 1;
+ else
+ f->exponent = 127;
+}
+
+static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
+{
+ if (t != b->set) {
+ unsigned int j = roundup(t[-1].size,
+ 64 / sizeof(struct bkey_float));
+
+ t->tree = t[-1].tree + j;
+ t->prev = t[-1].prev + j;
+ }
+
+ while (t < b->set + MAX_BSETS)
+ t++->size = 0;
+}
+
+static void bch_bset_build_unwritten_tree(struct btree_keys *b)
+{
+ struct bset_tree *t = bset_tree_last(b);
+
+ BUG_ON(b->last_set_unwritten);
+ b->last_set_unwritten = 1;
+
+ bset_alloc_tree(b, t);
+
+ if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
+ t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
+ t->size = 1;
+ }
+}
+
+void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
+{
+ if (i != b->set->data) {
+ b->set[++b->nsets].data = i;
+ i->seq = b->set->data->seq;
+ } else
+ get_random_bytes(&i->seq, sizeof(uint64_t));
+
+ i->magic = magic;
+ i->version = 0;
+ i->keys = 0;
+
+ bch_bset_build_unwritten_tree(b);
+}
+
+/*
+ * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to
+ * accelerate bkey search in a btree node (pointed by bset_tree->data in
+ * memory). After search in the auxiliar tree by calling bset_search_tree(),
+ * a struct bset_search_iter is returned which indicates range [l, r] from
+ * bset_tree->data where the searching bkey might be inside. Then a followed
+ * linear comparison does the exact search, see __bch_bset_search() for how
+ * the auxiliary tree is used.
+ */
+void bch_bset_build_written_tree(struct btree_keys *b)
+{
+ struct bset_tree *t = bset_tree_last(b);
+ struct bkey *prev = NULL, *k = t->data->start;
+ unsigned int j, cacheline = 1;
+
+ b->last_set_unwritten = 0;
+
+ bset_alloc_tree(b, t);
+
+ t->size = min_t(unsigned int,
+ bkey_to_cacheline(t, bset_bkey_last(t->data)),
+ b->set->tree + btree_keys_cachelines(b) - t->tree);
+
+ if (t->size < 2) {
+ t->size = 0;
+ return;
+ }
+
+ t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
+
+ /* First we figure out where the first key in each cacheline is */
+ for (j = inorder_next(0, t->size);
+ j;
+ j = inorder_next(j, t->size)) {
+ while (bkey_to_cacheline(t, k) < cacheline) {
+ prev = k;
+ k = bkey_next(k);
+ }
+
+ t->prev[j] = bkey_u64s(prev);
+ t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
+ }
+
+ while (bkey_next(k) != bset_bkey_last(t->data))
+ k = bkey_next(k);
+
+ t->end = *k;
+
+ /* Then we build the tree */
+ for (j = inorder_next(0, t->size);
+ j;
+ j = inorder_next(j, t->size))
+ make_bfloat(t, j);
+}
+
+/* Insert */
+
+void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
+{
+ struct bset_tree *t;
+ unsigned int inorder, j = 1;
+
+ for (t = b->set; t <= bset_tree_last(b); t++)
+ if (k < bset_bkey_last(t->data))
+ goto found_set;
+
+ BUG();
+found_set:
+ if (!t->size || !bset_written(b, t))
+ return;
+
+ inorder = bkey_to_cacheline(t, k);
+
+ if (k == t->data->start)
+ goto fix_left;
+
+ if (bkey_next(k) == bset_bkey_last(t->data)) {
+ t->end = *k;
+ goto fix_right;
+ }
+
+ j = inorder_to_tree(inorder, t);
+
+ if (j &&
+ j < t->size &&
+ k == tree_to_bkey(t, j))
+fix_left: do {
+ make_bfloat(t, j);
+ j = j * 2;
+ } while (j < t->size);
+
+ j = inorder_to_tree(inorder + 1, t);
+
+ if (j &&
+ j < t->size &&
+ k == tree_to_prev_bkey(t, j))
+fix_right: do {
+ make_bfloat(t, j);
+ j = j * 2 + 1;
+ } while (j < t->size);
+}
+
+static void bch_bset_fix_lookup_table(struct btree_keys *b,
+ struct bset_tree *t,
+ struct bkey *k)
+{
+ unsigned int shift = bkey_u64s(k);
+ unsigned int j = bkey_to_cacheline(t, k);
+
+ /* We're getting called from btree_split() or btree_gc, just bail out */
+ if (!t->size)
+ return;
+
+ /*
+ * k is the key we just inserted; we need to find the entry in the
+ * lookup table for the first key that is strictly greater than k:
+ * it's either k's cacheline or the next one
+ */
+ while (j < t->size &&
+ table_to_bkey(t, j) <= k)
+ j++;
+
+ /*
+ * Adjust all the lookup table entries, and find a new key for any that
+ * have gotten too big
+ */
+ for (; j < t->size; j++) {
+ t->prev[j] += shift;
+
+ if (t->prev[j] > 7) {
+ k = table_to_bkey(t, j - 1);
+
+ while (k < cacheline_to_bkey(t, j, 0))
+ k = bkey_next(k);
+
+ t->prev[j] = bkey_to_cacheline_offset(t, j, k);
+ }
+ }
+
+ if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
+ return;
+
+ /* Possibly add a new entry to the end of the lookup table */
+
+ for (k = table_to_bkey(t, t->size - 1);
+ k != bset_bkey_last(t->data);
+ k = bkey_next(k))
+ if (t->size == bkey_to_cacheline(t, k)) {
+ t->prev[t->size] =
+ bkey_to_cacheline_offset(t, t->size, k);
+ t->size++;
+ }
+}
+
+/*
+ * Tries to merge l and r: l should be lower than r
+ * Returns true if we were able to merge. If we did merge, l will be the merged
+ * key, r will be untouched.
+ */
+bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
+{
+ if (!b->ops->key_merge)
+ return false;
+
+ /*
+ * Generic header checks
+ * Assumes left and right are in order
+ * Left and right must be exactly aligned
+ */
+ if (!bch_bkey_equal_header(l, r) ||
+ bkey_cmp(l, &START_KEY(r)))
+ return false;
+
+ return b->ops->key_merge(b, l, r);
+}
+
+void bch_bset_insert(struct btree_keys *b, struct bkey *where,
+ struct bkey *insert)
+{
+ struct bset_tree *t = bset_tree_last(b);
+
+ BUG_ON(!b->last_set_unwritten);
+ BUG_ON(bset_byte_offset(b, t->data) +
+ __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
+ PAGE_SIZE << b->page_order);
+
+ memmove((uint64_t *) where + bkey_u64s(insert),
+ where,
+ (void *) bset_bkey_last(t->data) - (void *) where);
+
+ t->data->keys += bkey_u64s(insert);
+ bkey_copy(where, insert);
+ bch_bset_fix_lookup_table(b, t, where);
+}
+
+unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
+ struct bkey *replace_key)
+{
+ unsigned int status = BTREE_INSERT_STATUS_NO_INSERT;
+ struct bset *i = bset_tree_last(b)->data;
+ struct bkey *m, *prev = NULL;
+ struct btree_iter iter;
+ struct bkey preceding_key_on_stack = ZERO_KEY;
+ struct bkey *preceding_key_p = &preceding_key_on_stack;
+
+ BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
+
+ /*
+ * If k has preceding key, preceding_key_p will be set to address
+ * of k's preceding key; otherwise preceding_key_p will be set
+ * to NULL inside preceding_key().
+ */
+ if (b->ops->is_extents)
+ preceding_key(&START_KEY(k), &preceding_key_p);
+ else
+ preceding_key(k, &preceding_key_p);
+
+ m = bch_btree_iter_init(b, &iter, preceding_key_p);
+
+ if (b->ops->insert_fixup(b, k, &iter, replace_key))
+ return status;
+
+ status = BTREE_INSERT_STATUS_INSERT;
+
+ while (m != bset_bkey_last(i) &&
+ bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0) {
+ prev = m;
+ m = bkey_next(m);
+ }
+
+ /* prev is in the tree, if we merge we're done */
+ status = BTREE_INSERT_STATUS_BACK_MERGE;
+ if (prev &&
+ bch_bkey_try_merge(b, prev, k))
+ goto merged;
+#if 0
+ status = BTREE_INSERT_STATUS_OVERWROTE;
+ if (m != bset_bkey_last(i) &&
+ KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
+ goto copy;
+#endif
+ status = BTREE_INSERT_STATUS_FRONT_MERGE;
+ if (m != bset_bkey_last(i) &&
+ bch_bkey_try_merge(b, k, m))
+ goto copy;
+
+ bch_bset_insert(b, m, k);
+copy: bkey_copy(m, k);
+merged:
+ return status;
+}
+
+/* Lookup */
+
+struct bset_search_iter {
+ struct bkey *l, *r;
+};
+
+static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
+ const struct bkey *search)
+{
+ unsigned int li = 0, ri = t->size;
+
+ while (li + 1 != ri) {
+ unsigned int m = (li + ri) >> 1;
+
+ if (bkey_cmp(table_to_bkey(t, m), search) > 0)
+ ri = m;
+ else
+ li = m;
+ }
+
+ return (struct bset_search_iter) {
+ table_to_bkey(t, li),
+ ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
+ };
+}
+
+static struct bset_search_iter bset_search_tree(struct bset_tree *t,
+ const struct bkey *search)
+{
+ struct bkey *l, *r;
+ struct bkey_float *f;
+ unsigned int inorder, j, n = 1;
+
+ do {
+ unsigned int p = n << 4;
+
+ if (p < t->size)
+ prefetch(&t->tree[p]);
+
+ j = n;
+ f = &t->tree[j];
+
+ if (likely(f->exponent != 127)) {
+ if (f->mantissa >= bfloat_mantissa(search, f))
+ n = j * 2;
+ else
+ n = j * 2 + 1;
+ } else {
+ if (bkey_cmp(tree_to_bkey(t, j), search) > 0)
+ n = j * 2;
+ else
+ n = j * 2 + 1;
+ }
+ } while (n < t->size);
+
+ inorder = to_inorder(j, t);
+
+ /*
+ * n would have been the node we recursed to - the low bit tells us if
+ * we recursed left or recursed right.
+ */
+ if (n & 1) {
+ l = cacheline_to_bkey(t, inorder, f->m);
+
+ if (++inorder != t->size) {
+ f = &t->tree[inorder_next(j, t->size)];
+ r = cacheline_to_bkey(t, inorder, f->m);
+ } else
+ r = bset_bkey_last(t->data);
+ } else {
+ r = cacheline_to_bkey(t, inorder, f->m);
+
+ if (--inorder) {
+ f = &t->tree[inorder_prev(j, t->size)];
+ l = cacheline_to_bkey(t, inorder, f->m);
+ } else
+ l = t->data->start;
+ }
+
+ return (struct bset_search_iter) {l, r};
+}
+
+struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
+ const struct bkey *search)
+{
+ struct bset_search_iter i;
+
+ /*
+ * First, we search for a cacheline, then lastly we do a linear search
+ * within that cacheline.
+ *
+ * To search for the cacheline, there's three different possibilities:
+ * * The set is too small to have a search tree, so we just do a linear
+ * search over the whole set.
+ * * The set is the one we're currently inserting into; keeping a full
+ * auxiliary search tree up to date would be too expensive, so we
+ * use a much simpler lookup table to do a binary search -
+ * bset_search_write_set().
+ * * Or we use the auxiliary search tree we constructed earlier -
+ * bset_search_tree()
+ */
+
+ if (unlikely(!t->size)) {
+ i.l = t->data->start;
+ i.r = bset_bkey_last(t->data);
+ } else if (bset_written(b, t)) {
+ /*
+ * Each node in the auxiliary search tree covers a certain range
+ * of bits, and keys above and below the set it covers might
+ * differ outside those bits - so we have to special case the
+ * start and end - handle that here:
+ */
+
+ if (unlikely(bkey_cmp(search, &t->end) >= 0))
+ return bset_bkey_last(t->data);
+
+ if (unlikely(bkey_cmp(search, t->data->start) < 0))
+ return t->data->start;
+
+ i = bset_search_tree(t, search);
+ } else {
+ BUG_ON(!b->nsets &&
+ t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
+
+ i = bset_search_write_set(t, search);
+ }
+
+ if (btree_keys_expensive_checks(b)) {
+ BUG_ON(bset_written(b, t) &&
+ i.l != t->data->start &&
+ bkey_cmp(tree_to_prev_bkey(t,
+ inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
+ search) > 0);
+
+ BUG_ON(i.r != bset_bkey_last(t->data) &&
+ bkey_cmp(i.r, search) <= 0);
+ }
+
+ while (likely(i.l != i.r) &&
+ bkey_cmp(i.l, search) <= 0)
+ i.l = bkey_next(i.l);
+
+ return i.l;
+}
+
+/* Btree iterator */
+
+typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
+ struct btree_iter_set);
+
+static inline bool btree_iter_cmp(struct btree_iter_set l,
+ struct btree_iter_set r)
+{
+ return bkey_cmp(l.k, r.k) > 0;
+}
+
+static inline bool btree_iter_end(struct btree_iter *iter)
+{
+ return !iter->used;
+}
+
+void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
+ struct bkey *end)
+{
+ if (k != end)
+ BUG_ON(!heap_add(iter,
+ ((struct btree_iter_set) { k, end }),
+ btree_iter_cmp));
+}
+
+static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
+ struct btree_iter *iter,
+ struct bkey *search,
+ struct bset_tree *start)
+{
+ struct bkey *ret = NULL;
+
+ iter->size = ARRAY_SIZE(iter->data);
+ iter->used = 0;
+
+#ifdef CONFIG_BCACHE_DEBUG
+ iter->b = b;
+#endif
+
+ for (; start <= bset_tree_last(b); start++) {
+ ret = bch_bset_search(b, start, search);
+ bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
+ }
+
+ return ret;
+}
+
+struct bkey *bch_btree_iter_init(struct btree_keys *b,
+ struct btree_iter *iter,
+ struct bkey *search)
+{
+ return __bch_btree_iter_init(b, iter, search, b->set);
+}
+
+static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
+ btree_iter_cmp_fn *cmp)
+{
+ struct btree_iter_set b __maybe_unused;
+ struct bkey *ret = NULL;
+
+ if (!btree_iter_end(iter)) {
+ bch_btree_iter_next_check(iter);
+
+ ret = iter->data->k;
+ iter->data->k = bkey_next(iter->data->k);
+
+ if (iter->data->k > iter->data->end) {
+ WARN_ONCE(1, "bset was corrupt!\n");
+ iter->data->k = iter->data->end;
+ }
+
+ if (iter->data->k == iter->data->end)
+ heap_pop(iter, b, cmp);
+ else
+ heap_sift(iter, 0, cmp);
+ }
+
+ return ret;
+}
+
+struct bkey *bch_btree_iter_next(struct btree_iter *iter)
+{
+ return __bch_btree_iter_next(iter, btree_iter_cmp);
+
+}
+
+struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
+ struct btree_keys *b, ptr_filter_fn fn)
+{
+ struct bkey *ret;
+
+ do {
+ ret = bch_btree_iter_next(iter);
+ } while (ret && fn(b, ret));
+
+ return ret;
+}
+
+/* Mergesort */
+
+void bch_bset_sort_state_free(struct bset_sort_state *state)
+{
+ mempool_exit(&state->pool);
+}
+
+int bch_bset_sort_state_init(struct bset_sort_state *state,
+ unsigned int page_order)
+{
+ spin_lock_init(&state->time.lock);
+
+ state->page_order = page_order;
+ state->crit_factor = int_sqrt(1 << page_order);
+
+ return mempool_init_page_pool(&state->pool, 1, page_order);
+}
+
+static void btree_mergesort(struct btree_keys *b, struct bset *out,
+ struct btree_iter *iter,
+ bool fixup, bool remove_stale)
+{
+ int i;
+ struct bkey *k, *last = NULL;
+ BKEY_PADDED(k) tmp;
+ bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
+ ? bch_ptr_bad
+ : bch_ptr_invalid;
+
+ /* Heapify the iterator, using our comparison function */
+ for (i = iter->used / 2 - 1; i >= 0; --i)
+ heap_sift(iter, i, b->ops->sort_cmp);
+
+ while (!btree_iter_end(iter)) {
+ if (b->ops->sort_fixup && fixup)
+ k = b->ops->sort_fixup(iter, &tmp.k);
+ else
+ k = NULL;
+
+ if (!k)
+ k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
+
+ if (bad(b, k))
+ continue;
+
+ if (!last) {
+ last = out->start;
+ bkey_copy(last, k);
+ } else if (!bch_bkey_try_merge(b, last, k)) {
+ last = bkey_next(last);
+ bkey_copy(last, k);
+ }
+ }
+
+ out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
+
+ pr_debug("sorted %i keys\n", out->keys);
+}
+
+static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
+ unsigned int start, unsigned int order, bool fixup,
+ struct bset_sort_state *state)
+{
+ uint64_t start_time;
+ bool used_mempool = false;
+ struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
+ order);
+ if (!out) {
+ struct page *outp;
+
+ BUG_ON(order > state->page_order);
+
+ outp = mempool_alloc(&state->pool, GFP_NOIO);
+ out = page_address(outp);
+ used_mempool = true;
+ order = state->page_order;
+ }
+
+ start_time = local_clock();
+
+ btree_mergesort(b, out, iter, fixup, false);
+ b->nsets = start;
+
+ if (!start && order == b->page_order) {
+ /*
+ * Our temporary buffer is the same size as the btree node's
+ * buffer, we can just swap buffers instead of doing a big
+ * memcpy()
+ *
+ * Don't worry event 'out' is allocated from mempool, it can
+ * still be swapped here. Because state->pool is a page mempool
+ * created by mempool_init_page_pool(), which allocates
+ * pages by alloc_pages() indeed.
+ */
+
+ out->magic = b->set->data->magic;
+ out->seq = b->set->data->seq;
+ out->version = b->set->data->version;
+ swap(out, b->set->data);
+ } else {
+ b->set[start].data->keys = out->keys;
+ memcpy(b->set[start].data->start, out->start,
+ (void *) bset_bkey_last(out) - (void *) out->start);
+ }
+
+ if (used_mempool)
+ mempool_free(virt_to_page(out), &state->pool);
+ else
+ free_pages((unsigned long) out, order);
+
+ bch_bset_build_written_tree(b);
+
+ if (!start)
+ bch_time_stats_update(&state->time, start_time);
+}
+
+void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
+ struct bset_sort_state *state)
+{
+ size_t order = b->page_order, keys = 0;
+ struct btree_iter iter;
+ int oldsize = bch_count_data(b);
+
+ __bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
+
+ if (start) {
+ unsigned int i;
+
+ for (i = start; i <= b->nsets; i++)
+ keys += b->set[i].data->keys;
+
+ order = get_order(__set_bytes(b->set->data, keys));
+ }
+
+ __btree_sort(b, &iter, start, order, false, state);
+
+ EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
+}
+
+void bch_btree_sort_and_fix_extents(struct btree_keys *b,
+ struct btree_iter *iter,
+ struct bset_sort_state *state)
+{
+ __btree_sort(b, iter, 0, b->page_order, true, state);
+}
+
+void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
+ struct bset_sort_state *state)
+{
+ uint64_t start_time = local_clock();
+ struct btree_iter iter;
+
+ bch_btree_iter_init(b, &iter, NULL);
+
+ btree_mergesort(b, new->set->data, &iter, false, true);
+
+ bch_time_stats_update(&state->time, start_time);
+
+ new->set->size = 0; // XXX: why?
+}
+
+#define SORT_CRIT (4096 / sizeof(uint64_t))
+
+void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
+{
+ unsigned int crit = SORT_CRIT;
+ int i;
+
+ /* Don't sort if nothing to do */
+ if (!b->nsets)
+ goto out;
+
+ for (i = b->nsets - 1; i >= 0; --i) {
+ crit *= state->crit_factor;
+
+ if (b->set[i].data->keys < crit) {
+ bch_btree_sort_partial(b, i, state);
+ return;
+ }
+ }
+
+ /* Sort if we'd overflow */
+ if (b->nsets + 1 == MAX_BSETS) {
+ bch_btree_sort(b, state);
+ return;
+ }
+
+out:
+ bch_bset_build_written_tree(b);
+}
+
+void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
+{
+ unsigned int i;
+
+ for (i = 0; i <= b->nsets; i++) {
+ struct bset_tree *t = &b->set[i];
+ size_t bytes = t->data->keys * sizeof(uint64_t);
+ size_t j;
+
+ if (bset_written(b, t)) {
+ stats->sets_written++;
+ stats->bytes_written += bytes;
+
+ stats->floats += t->size - 1;
+
+ for (j = 1; j < t->size; j++)
+ if (t->tree[j].exponent == 127)
+ stats->failed++;
+ } else {
+ stats->sets_unwritten++;
+ stats->bytes_unwritten += bytes;
+ }
+ }
+}
diff --git a/drivers/md/bcache/bset.h b/drivers/md/bcache/bset.h
new file mode 100644
index 000000000..d795c8424
--- /dev/null
+++ b/drivers/md/bcache/bset.h
@@ -0,0 +1,593 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _BCACHE_BSET_H
+#define _BCACHE_BSET_H
+
+#include <linux/kernel.h>
+#include <linux/types.h>
+
+#include "bcache_ondisk.h"
+#include "util.h" /* for time_stats */
+
+/*
+ * BKEYS:
+ *
+ * A bkey contains a key, a size field, a variable number of pointers, and some
+ * ancillary flag bits.
+ *
+ * We use two different functions for validating bkeys, bch_ptr_invalid and
+ * bch_ptr_bad().
+ *
+ * bch_ptr_invalid() primarily filters out keys and pointers that would be
+ * invalid due to some sort of bug, whereas bch_ptr_bad() filters out keys and
+ * pointer that occur in normal practice but don't point to real data.
+ *
+ * The one exception to the rule that ptr_invalid() filters out invalid keys is
+ * that it also filters out keys of size 0 - these are keys that have been
+ * completely overwritten. It'd be safe to delete these in memory while leaving
+ * them on disk, just unnecessary work - so we filter them out when resorting
+ * instead.
+ *
+ * We can't filter out stale keys when we're resorting, because garbage
+ * collection needs to find them to ensure bucket gens don't wrap around -
+ * unless we're rewriting the btree node those stale keys still exist on disk.
+ *
+ * We also implement functions here for removing some number of sectors from the
+ * front or the back of a bkey - this is mainly used for fixing overlapping
+ * extents, by removing the overlapping sectors from the older key.
+ *
+ * BSETS:
+ *
+ * A bset is an array of bkeys laid out contiguously in memory in sorted order,
+ * along with a header. A btree node is made up of a number of these, written at
+ * different times.
+ *
+ * There could be many of them on disk, but we never allow there to be more than
+ * 4 in memory - we lazily resort as needed.
+ *
+ * We implement code here for creating and maintaining auxiliary search trees
+ * (described below) for searching an individial bset, and on top of that we
+ * implement a btree iterator.
+ *
+ * BTREE ITERATOR:
+ *
+ * Most of the code in bcache doesn't care about an individual bset - it needs
+ * to search entire btree nodes and iterate over them in sorted order.
+ *
+ * The btree iterator code serves both functions; it iterates through the keys
+ * in a btree node in sorted order, starting from either keys after a specific
+ * point (if you pass it a search key) or the start of the btree node.
+ *
+ * AUXILIARY SEARCH TREES:
+ *
+ * Since keys are variable length, we can't use a binary search on a bset - we
+ * wouldn't be able to find the start of the next key. But binary searches are
+ * slow anyways, due to terrible cache behaviour; bcache originally used binary
+ * searches and that code topped out at under 50k lookups/second.
+ *
+ * So we need to construct some sort of lookup table. Since we only insert keys
+ * into the last (unwritten) set, most of the keys within a given btree node are
+ * usually in sets that are mostly constant. We use two different types of
+ * lookup tables to take advantage of this.
+ *
+ * Both lookup tables share in common that they don't index every key in the
+ * set; they index one key every BSET_CACHELINE bytes, and then a linear search
+ * is used for the rest.
+ *
+ * For sets that have been written to disk and are no longer being inserted
+ * into, we construct a binary search tree in an array - traversing a binary
+ * search tree in an array gives excellent locality of reference and is very
+ * fast, since both children of any node are adjacent to each other in memory
+ * (and their grandchildren, and great grandchildren...) - this means
+ * prefetching can be used to great effect.
+ *
+ * It's quite useful performance wise to keep these nodes small - not just
+ * because they're more likely to be in L2, but also because we can prefetch
+ * more nodes on a single cacheline and thus prefetch more iterations in advance
+ * when traversing this tree.
+ *
+ * Nodes in the auxiliary search tree must contain both a key to compare against
+ * (we don't want to fetch the key from the set, that would defeat the purpose),
+ * and a pointer to the key. We use a few tricks to compress both of these.
+ *
+ * To compress the pointer, we take advantage of the fact that one node in the
+ * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have
+ * a function (to_inorder()) that takes the index of a node in a binary tree and
+ * returns what its index would be in an inorder traversal, so we only have to
+ * store the low bits of the offset.
+ *
+ * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To
+ * compress that, we take advantage of the fact that when we're traversing the
+ * search tree at every iteration we know that both our search key and the key
+ * we're looking for lie within some range - bounded by our previous
+ * comparisons. (We special case the start of a search so that this is true even
+ * at the root of the tree).
+ *
+ * So we know the key we're looking for is between a and b, and a and b don't
+ * differ higher than bit 50, we don't need to check anything higher than bit
+ * 50.
+ *
+ * We don't usually need the rest of the bits, either; we only need enough bits
+ * to partition the key range we're currently checking. Consider key n - the
+ * key our auxiliary search tree node corresponds to, and key p, the key
+ * immediately preceding n. The lowest bit we need to store in the auxiliary
+ * search tree is the highest bit that differs between n and p.
+ *
+ * Note that this could be bit 0 - we might sometimes need all 80 bits to do the
+ * comparison. But we'd really like our nodes in the auxiliary search tree to be
+ * of fixed size.
+ *
+ * The solution is to make them fixed size, and when we're constructing a node
+ * check if p and n differed in the bits we needed them to. If they don't we
+ * flag that node, and when doing lookups we fallback to comparing against the
+ * real key. As long as this doesn't happen to often (and it seems to reliably
+ * happen a bit less than 1% of the time), we win - even on failures, that key
+ * is then more likely to be in cache than if we were doing binary searches all
+ * the way, since we're touching so much less memory.
+ *
+ * The keys in the auxiliary search tree are stored in (software) floating
+ * point, with an exponent and a mantissa. The exponent needs to be big enough
+ * to address all the bits in the original key, but the number of bits in the
+ * mantissa is somewhat arbitrary; more bits just gets us fewer failures.
+ *
+ * We need 7 bits for the exponent and 3 bits for the key's offset (since keys
+ * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes.
+ * We need one node per 128 bytes in the btree node, which means the auxiliary
+ * search trees take up 3% as much memory as the btree itself.
+ *
+ * Constructing these auxiliary search trees is moderately expensive, and we
+ * don't want to be constantly rebuilding the search tree for the last set
+ * whenever we insert another key into it. For the unwritten set, we use a much
+ * simpler lookup table - it's just a flat array, so index i in the lookup table
+ * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing
+ * within each byte range works the same as with the auxiliary search trees.
+ *
+ * These are much easier to keep up to date when we insert a key - we do it
+ * somewhat lazily; when we shift a key up we usually just increment the pointer
+ * to it, only when it would overflow do we go to the trouble of finding the
+ * first key in that range of bytes again.
+ */
+
+struct btree_keys;
+struct btree_iter;
+struct btree_iter_set;
+struct bkey_float;
+
+#define MAX_BSETS 4U
+
+struct bset_tree {
+ /*
+ * We construct a binary tree in an array as if the array
+ * started at 1, so that things line up on the same cachelines
+ * better: see comments in bset.c at cacheline_to_bkey() for
+ * details
+ */
+
+ /* size of the binary tree and prev array */
+ unsigned int size;
+
+ /* function of size - precalculated for to_inorder() */
+ unsigned int extra;
+
+ /* copy of the last key in the set */
+ struct bkey end;
+ struct bkey_float *tree;
+
+ /*
+ * The nodes in the bset tree point to specific keys - this
+ * array holds the sizes of the previous key.
+ *
+ * Conceptually it's a member of struct bkey_float, but we want
+ * to keep bkey_float to 4 bytes and prev isn't used in the fast
+ * path.
+ */
+ uint8_t *prev;
+
+ /* The actual btree node, with pointers to each sorted set */
+ struct bset *data;
+};
+
+struct btree_keys_ops {
+ bool (*sort_cmp)(struct btree_iter_set l,
+ struct btree_iter_set r);
+ struct bkey *(*sort_fixup)(struct btree_iter *iter,
+ struct bkey *tmp);
+ bool (*insert_fixup)(struct btree_keys *b,
+ struct bkey *insert,
+ struct btree_iter *iter,
+ struct bkey *replace_key);
+ bool (*key_invalid)(struct btree_keys *bk,
+ const struct bkey *k);
+ bool (*key_bad)(struct btree_keys *bk,
+ const struct bkey *k);
+ bool (*key_merge)(struct btree_keys *bk,
+ struct bkey *l, struct bkey *r);
+ void (*key_to_text)(char *buf,
+ size_t size,
+ const struct bkey *k);
+ void (*key_dump)(struct btree_keys *keys,
+ const struct bkey *k);
+
+ /*
+ * Only used for deciding whether to use START_KEY(k) or just the key
+ * itself in a couple places
+ */
+ bool is_extents;
+};
+
+struct btree_keys {
+ const struct btree_keys_ops *ops;
+ uint8_t page_order;
+ uint8_t nsets;
+ unsigned int last_set_unwritten:1;
+ bool *expensive_debug_checks;
+
+ /*
+ * Sets of sorted keys - the real btree node - plus a binary search tree
+ *
+ * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point
+ * to the memory we have allocated for this btree node. Additionally,
+ * set[0]->data points to the entire btree node as it exists on disk.
+ */
+ struct bset_tree set[MAX_BSETS];
+};
+
+static inline struct bset_tree *bset_tree_last(struct btree_keys *b)
+{
+ return b->set + b->nsets;
+}
+
+static inline bool bset_written(struct btree_keys *b, struct bset_tree *t)
+{
+ return t <= b->set + b->nsets - b->last_set_unwritten;
+}
+
+static inline bool bkey_written(struct btree_keys *b, struct bkey *k)
+{
+ return !b->last_set_unwritten || k < b->set[b->nsets].data->start;
+}
+
+static inline unsigned int bset_byte_offset(struct btree_keys *b,
+ struct bset *i)
+{
+ return ((size_t) i) - ((size_t) b->set->data);
+}
+
+static inline unsigned int bset_sector_offset(struct btree_keys *b,
+ struct bset *i)
+{
+ return bset_byte_offset(b, i) >> 9;
+}
+
+#define __set_bytes(i, k) (sizeof(*(i)) + (k) * sizeof(uint64_t))
+#define set_bytes(i) __set_bytes(i, i->keys)
+
+#define __set_blocks(i, k, block_bytes) \
+ DIV_ROUND_UP(__set_bytes(i, k), block_bytes)
+#define set_blocks(i, block_bytes) \
+ __set_blocks(i, (i)->keys, block_bytes)
+
+static inline size_t bch_btree_keys_u64s_remaining(struct btree_keys *b)
+{
+ struct bset_tree *t = bset_tree_last(b);
+
+ BUG_ON((PAGE_SIZE << b->page_order) <
+ (bset_byte_offset(b, t->data) + set_bytes(t->data)));
+
+ if (!b->last_set_unwritten)
+ return 0;
+
+ return ((PAGE_SIZE << b->page_order) -
+ (bset_byte_offset(b, t->data) + set_bytes(t->data))) /
+ sizeof(u64);
+}
+
+static inline struct bset *bset_next_set(struct btree_keys *b,
+ unsigned int block_bytes)
+{
+ struct bset *i = bset_tree_last(b)->data;
+
+ return ((void *) i) + roundup(set_bytes(i), block_bytes);
+}
+
+void bch_btree_keys_free(struct btree_keys *b);
+int bch_btree_keys_alloc(struct btree_keys *b, unsigned int page_order,
+ gfp_t gfp);
+void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
+ bool *expensive_debug_checks);
+
+void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic);
+void bch_bset_build_written_tree(struct btree_keys *b);
+void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k);
+bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r);
+void bch_bset_insert(struct btree_keys *b, struct bkey *where,
+ struct bkey *insert);
+unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
+ struct bkey *replace_key);
+
+enum {
+ BTREE_INSERT_STATUS_NO_INSERT = 0,
+ BTREE_INSERT_STATUS_INSERT,
+ BTREE_INSERT_STATUS_BACK_MERGE,
+ BTREE_INSERT_STATUS_OVERWROTE,
+ BTREE_INSERT_STATUS_FRONT_MERGE,
+};
+
+/* Btree key iteration */
+
+struct btree_iter {
+ size_t size, used;
+#ifdef CONFIG_BCACHE_DEBUG
+ struct btree_keys *b;
+#endif
+ struct btree_iter_set {
+ struct bkey *k, *end;
+ } data[MAX_BSETS];
+};
+
+typedef bool (*ptr_filter_fn)(struct btree_keys *b, const struct bkey *k);
+
+struct bkey *bch_btree_iter_next(struct btree_iter *iter);
+struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
+ struct btree_keys *b,
+ ptr_filter_fn fn);
+
+void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
+ struct bkey *end);
+struct bkey *bch_btree_iter_init(struct btree_keys *b,
+ struct btree_iter *iter,
+ struct bkey *search);
+
+struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
+ const struct bkey *search);
+
+/*
+ * Returns the first key that is strictly greater than search
+ */
+static inline struct bkey *bch_bset_search(struct btree_keys *b,
+ struct bset_tree *t,
+ const struct bkey *search)
+{
+ return search ? __bch_bset_search(b, t, search) : t->data->start;
+}
+
+#define for_each_key_filter(b, k, iter, filter) \
+ for (bch_btree_iter_init((b), (iter), NULL); \
+ ((k) = bch_btree_iter_next_filter((iter), (b), filter));)
+
+#define for_each_key(b, k, iter) \
+ for (bch_btree_iter_init((b), (iter), NULL); \
+ ((k) = bch_btree_iter_next(iter));)
+
+/* Sorting */
+
+struct bset_sort_state {
+ mempool_t pool;
+
+ unsigned int page_order;
+ unsigned int crit_factor;
+
+ struct time_stats time;
+};
+
+void bch_bset_sort_state_free(struct bset_sort_state *state);
+int bch_bset_sort_state_init(struct bset_sort_state *state,
+ unsigned int page_order);
+void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state);
+void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
+ struct bset_sort_state *state);
+void bch_btree_sort_and_fix_extents(struct btree_keys *b,
+ struct btree_iter *iter,
+ struct bset_sort_state *state);
+void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
+ struct bset_sort_state *state);
+
+static inline void bch_btree_sort(struct btree_keys *b,
+ struct bset_sort_state *state)
+{
+ bch_btree_sort_partial(b, 0, state);
+}
+
+struct bset_stats {
+ size_t sets_written, sets_unwritten;
+ size_t bytes_written, bytes_unwritten;
+ size_t floats, failed;
+};
+
+void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *state);
+
+/* Bkey utility code */
+
+#define bset_bkey_last(i) bkey_idx((struct bkey *) (i)->d, \
+ (unsigned int)(i)->keys)
+
+static inline struct bkey *bset_bkey_idx(struct bset *i, unsigned int idx)
+{
+ return bkey_idx(i->start, idx);
+}
+
+static inline void bkey_init(struct bkey *k)
+{
+ *k = ZERO_KEY;
+}
+
+static __always_inline int64_t bkey_cmp(const struct bkey *l,
+ const struct bkey *r)
+{
+ return unlikely(KEY_INODE(l) != KEY_INODE(r))
+ ? (int64_t) KEY_INODE(l) - (int64_t) KEY_INODE(r)
+ : (int64_t) KEY_OFFSET(l) - (int64_t) KEY_OFFSET(r);
+}
+
+void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
+ unsigned int i);
+bool __bch_cut_front(const struct bkey *where, struct bkey *k);
+bool __bch_cut_back(const struct bkey *where, struct bkey *k);
+
+static inline bool bch_cut_front(const struct bkey *where, struct bkey *k)
+{
+ BUG_ON(bkey_cmp(where, k) > 0);
+ return __bch_cut_front(where, k);
+}
+
+static inline bool bch_cut_back(const struct bkey *where, struct bkey *k)
+{
+ BUG_ON(bkey_cmp(where, &START_KEY(k)) < 0);
+ return __bch_cut_back(where, k);
+}
+
+/*
+ * Pointer '*preceding_key_p' points to a memory object to store preceding
+ * key of k. If the preceding key does not exist, set '*preceding_key_p' to
+ * NULL. So the caller of preceding_key() needs to take care of memory
+ * which '*preceding_key_p' pointed to before calling preceding_key().
+ * Currently the only caller of preceding_key() is bch_btree_insert_key(),
+ * and it points to an on-stack variable, so the memory release is handled
+ * by stackframe itself.
+ */
+static inline void preceding_key(struct bkey *k, struct bkey **preceding_key_p)
+{
+ if (KEY_INODE(k) || KEY_OFFSET(k)) {
+ (**preceding_key_p) = KEY(KEY_INODE(k), KEY_OFFSET(k), 0);
+ if (!(*preceding_key_p)->low)
+ (*preceding_key_p)->high--;
+ (*preceding_key_p)->low--;
+ } else {
+ (*preceding_key_p) = NULL;
+ }
+}
+
+static inline bool bch_ptr_invalid(struct btree_keys *b, const struct bkey *k)
+{
+ return b->ops->key_invalid(b, k);
+}
+
+static inline bool bch_ptr_bad(struct btree_keys *b, const struct bkey *k)
+{
+ return b->ops->key_bad(b, k);
+}
+
+static inline void bch_bkey_to_text(struct btree_keys *b, char *buf,
+ size_t size, const struct bkey *k)
+{
+ return b->ops->key_to_text(buf, size, k);
+}
+
+static inline bool bch_bkey_equal_header(const struct bkey *l,
+ const struct bkey *r)
+{
+ return (KEY_DIRTY(l) == KEY_DIRTY(r) &&
+ KEY_PTRS(l) == KEY_PTRS(r) &&
+ KEY_CSUM(l) == KEY_CSUM(r));
+}
+
+/* Keylists */
+
+struct keylist {
+ union {
+ struct bkey *keys;
+ uint64_t *keys_p;
+ };
+ union {
+ struct bkey *top;
+ uint64_t *top_p;
+ };
+
+ /* Enough room for btree_split's keys without realloc */
+#define KEYLIST_INLINE 16
+ uint64_t inline_keys[KEYLIST_INLINE];
+};
+
+static inline void bch_keylist_init(struct keylist *l)
+{
+ l->top_p = l->keys_p = l->inline_keys;
+}
+
+static inline void bch_keylist_init_single(struct keylist *l, struct bkey *k)
+{
+ l->keys = k;
+ l->top = bkey_next(k);
+}
+
+static inline void bch_keylist_push(struct keylist *l)
+{
+ l->top = bkey_next(l->top);
+}
+
+static inline void bch_keylist_add(struct keylist *l, struct bkey *k)
+{
+ bkey_copy(l->top, k);
+ bch_keylist_push(l);
+}
+
+static inline bool bch_keylist_empty(struct keylist *l)
+{
+ return l->top == l->keys;
+}
+
+static inline void bch_keylist_reset(struct keylist *l)
+{
+ l->top = l->keys;
+}
+
+static inline void bch_keylist_free(struct keylist *l)
+{
+ if (l->keys_p != l->inline_keys)
+ kfree(l->keys_p);
+}
+
+static inline size_t bch_keylist_nkeys(struct keylist *l)
+{
+ return l->top_p - l->keys_p;
+}
+
+static inline size_t bch_keylist_bytes(struct keylist *l)
+{
+ return bch_keylist_nkeys(l) * sizeof(uint64_t);
+}
+
+struct bkey *bch_keylist_pop(struct keylist *l);
+void bch_keylist_pop_front(struct keylist *l);
+int __bch_keylist_realloc(struct keylist *l, unsigned int u64s);
+
+/* Debug stuff */
+
+#ifdef CONFIG_BCACHE_DEBUG
+
+int __bch_count_data(struct btree_keys *b);
+void __printf(2, 3) __bch_check_keys(struct btree_keys *b,
+ const char *fmt,
+ ...);
+void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set);
+void bch_dump_bucket(struct btree_keys *b);
+
+#else
+
+static inline int __bch_count_data(struct btree_keys *b) { return -1; }
+static inline void __printf(2, 3)
+ __bch_check_keys(struct btree_keys *b, const char *fmt, ...) {}
+static inline void bch_dump_bucket(struct btree_keys *b) {}
+void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set);
+
+#endif
+
+static inline bool btree_keys_expensive_checks(struct btree_keys *b)
+{
+#ifdef CONFIG_BCACHE_DEBUG
+ return *b->expensive_debug_checks;
+#else
+ return false;
+#endif
+}
+
+static inline int bch_count_data(struct btree_keys *b)
+{
+ return btree_keys_expensive_checks(b) ? __bch_count_data(b) : -1;
+}
+
+#define bch_check_keys(b, ...) \
+do { \
+ if (btree_keys_expensive_checks(b)) \
+ __bch_check_keys(b, __VA_ARGS__); \
+} while (0)
+
+#endif
diff --git a/drivers/md/bcache/btree.c b/drivers/md/bcache/btree.c
new file mode 100644
index 000000000..6a2f57ae0
--- /dev/null
+++ b/drivers/md/bcache/btree.c
@@ -0,0 +1,2800 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
+ *
+ * Uses a block device as cache for other block devices; optimized for SSDs.
+ * All allocation is done in buckets, which should match the erase block size
+ * of the device.
+ *
+ * Buckets containing cached data are kept on a heap sorted by priority;
+ * bucket priority is increased on cache hit, and periodically all the buckets
+ * on the heap have their priority scaled down. This currently is just used as
+ * an LRU but in the future should allow for more intelligent heuristics.
+ *
+ * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
+ * counter. Garbage collection is used to remove stale pointers.
+ *
+ * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
+ * as keys are inserted we only sort the pages that have not yet been written.
+ * When garbage collection is run, we resort the entire node.
+ *
+ * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
+ */
+
+#include "bcache.h"
+#include "btree.h"
+#include "debug.h"
+#include "extents.h"
+
+#include <linux/slab.h>
+#include <linux/bitops.h>
+#include <linux/hash.h>
+#include <linux/kthread.h>
+#include <linux/prefetch.h>
+#include <linux/random.h>
+#include <linux/rcupdate.h>
+#include <linux/sched/clock.h>
+#include <linux/rculist.h>
+#include <linux/delay.h>
+#include <trace/events/bcache.h>
+
+/*
+ * Todo:
+ * register_bcache: Return errors out to userspace correctly
+ *
+ * Writeback: don't undirty key until after a cache flush
+ *
+ * Create an iterator for key pointers
+ *
+ * On btree write error, mark bucket such that it won't be freed from the cache
+ *
+ * Journalling:
+ * Check for bad keys in replay
+ * Propagate barriers
+ * Refcount journal entries in journal_replay
+ *
+ * Garbage collection:
+ * Finish incremental gc
+ * Gc should free old UUIDs, data for invalid UUIDs
+ *
+ * Provide a way to list backing device UUIDs we have data cached for, and
+ * probably how long it's been since we've seen them, and a way to invalidate
+ * dirty data for devices that will never be attached again
+ *
+ * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
+ * that based on that and how much dirty data we have we can keep writeback
+ * from being starved
+ *
+ * Add a tracepoint or somesuch to watch for writeback starvation
+ *
+ * When btree depth > 1 and splitting an interior node, we have to make sure
+ * alloc_bucket() cannot fail. This should be true but is not completely
+ * obvious.
+ *
+ * Plugging?
+ *
+ * If data write is less than hard sector size of ssd, round up offset in open
+ * bucket to the next whole sector
+ *
+ * Superblock needs to be fleshed out for multiple cache devices
+ *
+ * Add a sysfs tunable for the number of writeback IOs in flight
+ *
+ * Add a sysfs tunable for the number of open data buckets
+ *
+ * IO tracking: Can we track when one process is doing io on behalf of another?
+ * IO tracking: Don't use just an average, weigh more recent stuff higher
+ *
+ * Test module load/unload
+ */
+
+#define MAX_NEED_GC 64
+#define MAX_SAVE_PRIO 72
+#define MAX_GC_TIMES 100
+#define MIN_GC_NODES 100
+#define GC_SLEEP_MS 100
+
+#define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
+
+#define PTR_HASH(c, k) \
+ (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
+
+static struct workqueue_struct *btree_io_wq;
+
+#define insert_lock(s, b) ((b)->level <= (s)->lock)
+
+
+static inline struct bset *write_block(struct btree *b)
+{
+ return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
+}
+
+static void bch_btree_init_next(struct btree *b)
+{
+ /* If not a leaf node, always sort */
+ if (b->level && b->keys.nsets)
+ bch_btree_sort(&b->keys, &b->c->sort);
+ else
+ bch_btree_sort_lazy(&b->keys, &b->c->sort);
+
+ if (b->written < btree_blocks(b))
+ bch_bset_init_next(&b->keys, write_block(b),
+ bset_magic(&b->c->cache->sb));
+
+}
+
+/* Btree key manipulation */
+
+void bkey_put(struct cache_set *c, struct bkey *k)
+{
+ unsigned int i;
+
+ for (i = 0; i < KEY_PTRS(k); i++)
+ if (ptr_available(c, k, i))
+ atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
+}
+
+/* Btree IO */
+
+static uint64_t btree_csum_set(struct btree *b, struct bset *i)
+{
+ uint64_t crc = b->key.ptr[0];
+ void *data = (void *) i + 8, *end = bset_bkey_last(i);
+
+ crc = crc64_be(crc, data, end - data);
+ return crc ^ 0xffffffffffffffffULL;
+}
+
+void bch_btree_node_read_done(struct btree *b)
+{
+ const char *err = "bad btree header";
+ struct bset *i = btree_bset_first(b);
+ struct btree_iter *iter;
+
+ /*
+ * c->fill_iter can allocate an iterator with more memory space
+ * than static MAX_BSETS.
+ * See the comment arount cache_set->fill_iter.
+ */
+ iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
+ iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
+ iter->used = 0;
+
+#ifdef CONFIG_BCACHE_DEBUG
+ iter->b = &b->keys;
+#endif
+
+ if (!i->seq)
+ goto err;
+
+ for (;
+ b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
+ i = write_block(b)) {
+ err = "unsupported bset version";
+ if (i->version > BCACHE_BSET_VERSION)
+ goto err;
+
+ err = "bad btree header";
+ if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
+ btree_blocks(b))
+ goto err;
+
+ err = "bad magic";
+ if (i->magic != bset_magic(&b->c->cache->sb))
+ goto err;
+
+ err = "bad checksum";
+ switch (i->version) {
+ case 0:
+ if (i->csum != csum_set(i))
+ goto err;
+ break;
+ case BCACHE_BSET_VERSION:
+ if (i->csum != btree_csum_set(b, i))
+ goto err;
+ break;
+ }
+
+ err = "empty set";
+ if (i != b->keys.set[0].data && !i->keys)
+ goto err;
+
+ bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
+
+ b->written += set_blocks(i, block_bytes(b->c->cache));
+ }
+
+ err = "corrupted btree";
+ for (i = write_block(b);
+ bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
+ i = ((void *) i) + block_bytes(b->c->cache))
+ if (i->seq == b->keys.set[0].data->seq)
+ goto err;
+
+ bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
+
+ i = b->keys.set[0].data;
+ err = "short btree key";
+ if (b->keys.set[0].size &&
+ bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
+ goto err;
+
+ if (b->written < btree_blocks(b))
+ bch_bset_init_next(&b->keys, write_block(b),
+ bset_magic(&b->c->cache->sb));
+out:
+ mempool_free(iter, &b->c->fill_iter);
+ return;
+err:
+ set_btree_node_io_error(b);
+ bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
+ err, PTR_BUCKET_NR(b->c, &b->key, 0),
+ bset_block_offset(b, i), i->keys);
+ goto out;
+}
+
+static void btree_node_read_endio(struct bio *bio)
+{
+ struct closure *cl = bio->bi_private;
+
+ closure_put(cl);
+}
+
+static void bch_btree_node_read(struct btree *b)
+{
+ uint64_t start_time = local_clock();
+ struct closure cl;
+ struct bio *bio;
+
+ trace_bcache_btree_read(b);
+
+ closure_init_stack(&cl);
+
+ bio = bch_bbio_alloc(b->c);
+ bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
+ bio->bi_end_io = btree_node_read_endio;
+ bio->bi_private = &cl;
+ bio->bi_opf = REQ_OP_READ | REQ_META;
+
+ bch_bio_map(bio, b->keys.set[0].data);
+
+ bch_submit_bbio(bio, b->c, &b->key, 0);
+ closure_sync(&cl);
+
+ if (bio->bi_status)
+ set_btree_node_io_error(b);
+
+ bch_bbio_free(bio, b->c);
+
+ if (btree_node_io_error(b))
+ goto err;
+
+ bch_btree_node_read_done(b);
+ bch_time_stats_update(&b->c->btree_read_time, start_time);
+
+ return;
+err:
+ bch_cache_set_error(b->c, "io error reading bucket %zu",
+ PTR_BUCKET_NR(b->c, &b->key, 0));
+}
+
+static void btree_complete_write(struct btree *b, struct btree_write *w)
+{
+ if (w->prio_blocked &&
+ !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
+ wake_up_allocators(b->c);
+
+ if (w->journal) {
+ atomic_dec_bug(w->journal);
+ __closure_wake_up(&b->c->journal.wait);
+ }
+
+ w->prio_blocked = 0;
+ w->journal = NULL;
+}
+
+static void btree_node_write_unlock(struct closure *cl)
+{
+ struct btree *b = container_of(cl, struct btree, io);
+
+ up(&b->io_mutex);
+}
+
+static void __btree_node_write_done(struct closure *cl)
+{
+ struct btree *b = container_of(cl, struct btree, io);
+ struct btree_write *w = btree_prev_write(b);
+
+ bch_bbio_free(b->bio, b->c);
+ b->bio = NULL;
+ btree_complete_write(b, w);
+
+ if (btree_node_dirty(b))
+ queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
+
+ closure_return_with_destructor(cl, btree_node_write_unlock);
+}
+
+static void btree_node_write_done(struct closure *cl)
+{
+ struct btree *b = container_of(cl, struct btree, io);
+
+ bio_free_pages(b->bio);
+ __btree_node_write_done(cl);
+}
+
+static void btree_node_write_endio(struct bio *bio)
+{
+ struct closure *cl = bio->bi_private;
+ struct btree *b = container_of(cl, struct btree, io);
+
+ if (bio->bi_status)
+ set_btree_node_io_error(b);
+
+ bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
+ closure_put(cl);
+}
+
+static void do_btree_node_write(struct btree *b)
+{
+ struct closure *cl = &b->io;
+ struct bset *i = btree_bset_last(b);
+ BKEY_PADDED(key) k;
+
+ i->version = BCACHE_BSET_VERSION;
+ i->csum = btree_csum_set(b, i);
+
+ BUG_ON(b->bio);
+ b->bio = bch_bbio_alloc(b->c);
+
+ b->bio->bi_end_io = btree_node_write_endio;
+ b->bio->bi_private = cl;
+ b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache));
+ b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
+ bch_bio_map(b->bio, i);
+
+ /*
+ * If we're appending to a leaf node, we don't technically need FUA -
+ * this write just needs to be persisted before the next journal write,
+ * which will be marked FLUSH|FUA.
+ *
+ * Similarly if we're writing a new btree root - the pointer is going to
+ * be in the next journal entry.
+ *
+ * But if we're writing a new btree node (that isn't a root) or
+ * appending to a non leaf btree node, we need either FUA or a flush
+ * when we write the parent with the new pointer. FUA is cheaper than a
+ * flush, and writes appending to leaf nodes aren't blocking anything so
+ * just make all btree node writes FUA to keep things sane.
+ */
+
+ bkey_copy(&k.key, &b->key);
+ SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
+ bset_sector_offset(&b->keys, i));
+
+ if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
+ struct bio_vec *bv;
+ void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
+ struct bvec_iter_all iter_all;
+
+ bio_for_each_segment_all(bv, b->bio, iter_all) {
+ memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
+ addr += PAGE_SIZE;
+ }
+
+ bch_submit_bbio(b->bio, b->c, &k.key, 0);
+
+ continue_at(cl, btree_node_write_done, NULL);
+ } else {
+ /*
+ * No problem for multipage bvec since the bio is
+ * just allocated
+ */
+ b->bio->bi_vcnt = 0;
+ bch_bio_map(b->bio, i);
+
+ bch_submit_bbio(b->bio, b->c, &k.key, 0);
+
+ closure_sync(cl);
+ continue_at_nobarrier(cl, __btree_node_write_done, NULL);
+ }
+}
+
+void __bch_btree_node_write(struct btree *b, struct closure *parent)
+{
+ struct bset *i = btree_bset_last(b);
+
+ lockdep_assert_held(&b->write_lock);
+
+ trace_bcache_btree_write(b);
+
+ BUG_ON(current->bio_list);
+ BUG_ON(b->written >= btree_blocks(b));
+ BUG_ON(b->written && !i->keys);
+ BUG_ON(btree_bset_first(b)->seq != i->seq);
+ bch_check_keys(&b->keys, "writing");
+
+ cancel_delayed_work(&b->work);
+
+ /* If caller isn't waiting for write, parent refcount is cache set */
+ down(&b->io_mutex);
+ closure_init(&b->io, parent ?: &b->c->cl);
+
+ clear_bit(BTREE_NODE_dirty, &b->flags);
+ change_bit(BTREE_NODE_write_idx, &b->flags);
+
+ do_btree_node_write(b);
+
+ atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
+ &b->c->cache->btree_sectors_written);
+
+ b->written += set_blocks(i, block_bytes(b->c->cache));
+}
+
+void bch_btree_node_write(struct btree *b, struct closure *parent)
+{
+ unsigned int nsets = b->keys.nsets;
+
+ lockdep_assert_held(&b->lock);
+
+ __bch_btree_node_write(b, parent);
+
+ /*
+ * do verify if there was more than one set initially (i.e. we did a
+ * sort) and we sorted down to a single set:
+ */
+ if (nsets && !b->keys.nsets)
+ bch_btree_verify(b);
+
+ bch_btree_init_next(b);
+}
+
+static void bch_btree_node_write_sync(struct btree *b)
+{
+ struct closure cl;
+
+ closure_init_stack(&cl);
+
+ mutex_lock(&b->write_lock);
+ bch_btree_node_write(b, &cl);
+ mutex_unlock(&b->write_lock);
+
+ closure_sync(&cl);
+}
+
+static void btree_node_write_work(struct work_struct *w)
+{
+ struct btree *b = container_of(to_delayed_work(w), struct btree, work);
+
+ mutex_lock(&b->write_lock);
+ if (btree_node_dirty(b))
+ __bch_btree_node_write(b, NULL);
+ mutex_unlock(&b->write_lock);
+}
+
+static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
+{
+ struct bset *i = btree_bset_last(b);
+ struct btree_write *w = btree_current_write(b);
+
+ lockdep_assert_held(&b->write_lock);
+
+ BUG_ON(!b->written);
+ BUG_ON(!i->keys);
+
+ if (!btree_node_dirty(b))
+ queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
+
+ set_btree_node_dirty(b);
+
+ /*
+ * w->journal is always the oldest journal pin of all bkeys
+ * in the leaf node, to make sure the oldest jset seq won't
+ * be increased before this btree node is flushed.
+ */
+ if (journal_ref) {
+ if (w->journal &&
+ journal_pin_cmp(b->c, w->journal, journal_ref)) {
+ atomic_dec_bug(w->journal);
+ w->journal = NULL;
+ }
+
+ if (!w->journal) {
+ w->journal = journal_ref;
+ atomic_inc(w->journal);
+ }
+ }
+
+ /* Force write if set is too big */
+ if (set_bytes(i) > PAGE_SIZE - 48 &&
+ !current->bio_list)
+ bch_btree_node_write(b, NULL);
+}
+
+/*
+ * Btree in memory cache - allocation/freeing
+ * mca -> memory cache
+ */
+
+#define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \
+ ? c->root->level : 1) * 8 + 16)
+#define mca_can_free(c) \
+ max_t(int, 0, c->btree_cache_used - mca_reserve(c))
+
+static void mca_data_free(struct btree *b)
+{
+ BUG_ON(b->io_mutex.count != 1);
+
+ bch_btree_keys_free(&b->keys);
+
+ b->c->btree_cache_used--;
+ list_move(&b->list, &b->c->btree_cache_freed);
+}
+
+static void mca_bucket_free(struct btree *b)
+{
+ BUG_ON(btree_node_dirty(b));
+
+ b->key.ptr[0] = 0;
+ hlist_del_init_rcu(&b->hash);
+ list_move(&b->list, &b->c->btree_cache_freeable);
+}
+
+static unsigned int btree_order(struct bkey *k)
+{
+ return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
+}
+
+static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
+{
+ if (!bch_btree_keys_alloc(&b->keys,
+ max_t(unsigned int,
+ ilog2(b->c->btree_pages),
+ btree_order(k)),
+ gfp)) {
+ b->c->btree_cache_used++;
+ list_move(&b->list, &b->c->btree_cache);
+ } else {
+ list_move(&b->list, &b->c->btree_cache_freed);
+ }
+}
+
+static struct btree *mca_bucket_alloc(struct cache_set *c,
+ struct bkey *k, gfp_t gfp)
+{
+ /*
+ * kzalloc() is necessary here for initialization,
+ * see code comments in bch_btree_keys_init().
+ */
+ struct btree *b = kzalloc(sizeof(struct btree), gfp);
+
+ if (!b)
+ return NULL;
+
+ init_rwsem(&b->lock);
+ lockdep_set_novalidate_class(&b->lock);
+ mutex_init(&b->write_lock);
+ lockdep_set_novalidate_class(&b->write_lock);
+ INIT_LIST_HEAD(&b->list);
+ INIT_DELAYED_WORK(&b->work, btree_node_write_work);
+ b->c = c;
+ sema_init(&b->io_mutex, 1);
+
+ mca_data_alloc(b, k, gfp);
+ return b;
+}
+
+static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
+{
+ struct closure cl;
+
+ closure_init_stack(&cl);
+ lockdep_assert_held(&b->c->bucket_lock);
+
+ if (!down_write_trylock(&b->lock))
+ return -ENOMEM;
+
+ BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
+
+ if (b->keys.page_order < min_order)
+ goto out_unlock;
+
+ if (!flush) {
+ if (btree_node_dirty(b))
+ goto out_unlock;
+
+ if (down_trylock(&b->io_mutex))
+ goto out_unlock;
+ up(&b->io_mutex);
+ }
+
+retry:
+ /*
+ * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
+ * __bch_btree_node_write(). To avoid an extra flush, acquire
+ * b->write_lock before checking BTREE_NODE_dirty bit.
+ */
+ mutex_lock(&b->write_lock);
+ /*
+ * If this btree node is selected in btree_flush_write() by journal
+ * code, delay and retry until the node is flushed by journal code
+ * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
+ */
+ if (btree_node_journal_flush(b)) {
+ pr_debug("bnode %p is flushing by journal, retry\n", b);
+ mutex_unlock(&b->write_lock);
+ udelay(1);
+ goto retry;
+ }
+
+ if (btree_node_dirty(b))
+ __bch_btree_node_write(b, &cl);
+ mutex_unlock(&b->write_lock);
+
+ closure_sync(&cl);
+
+ /* wait for any in flight btree write */
+ down(&b->io_mutex);
+ up(&b->io_mutex);
+
+ return 0;
+out_unlock:
+ rw_unlock(true, b);
+ return -ENOMEM;
+}
+
+static unsigned long bch_mca_scan(struct shrinker *shrink,
+ struct shrink_control *sc)
+{
+ struct cache_set *c = container_of(shrink, struct cache_set, shrink);
+ struct btree *b, *t;
+ unsigned long i, nr = sc->nr_to_scan;
+ unsigned long freed = 0;
+ unsigned int btree_cache_used;
+
+ if (c->shrinker_disabled)
+ return SHRINK_STOP;
+
+ if (c->btree_cache_alloc_lock)
+ return SHRINK_STOP;
+
+ /* Return -1 if we can't do anything right now */
+ if (sc->gfp_mask & __GFP_IO)
+ mutex_lock(&c->bucket_lock);
+ else if (!mutex_trylock(&c->bucket_lock))
+ return -1;
+
+ /*
+ * It's _really_ critical that we don't free too many btree nodes - we
+ * have to always leave ourselves a reserve. The reserve is how we
+ * guarantee that allocating memory for a new btree node can always
+ * succeed, so that inserting keys into the btree can always succeed and
+ * IO can always make forward progress:
+ */
+ nr /= c->btree_pages;
+ if (nr == 0)
+ nr = 1;
+ nr = min_t(unsigned long, nr, mca_can_free(c));
+
+ i = 0;
+ btree_cache_used = c->btree_cache_used;
+ list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
+ if (nr <= 0)
+ goto out;
+
+ if (!mca_reap(b, 0, false)) {
+ mca_data_free(b);
+ rw_unlock(true, b);
+ freed++;
+ }
+ nr--;
+ i++;
+ }
+
+ list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
+ if (nr <= 0 || i >= btree_cache_used)
+ goto out;
+
+ if (!mca_reap(b, 0, false)) {
+ mca_bucket_free(b);
+ mca_data_free(b);
+ rw_unlock(true, b);
+ freed++;
+ }
+
+ nr--;
+ i++;
+ }
+out:
+ mutex_unlock(&c->bucket_lock);
+ return freed * c->btree_pages;
+}
+
+static unsigned long bch_mca_count(struct shrinker *shrink,
+ struct shrink_control *sc)
+{
+ struct cache_set *c = container_of(shrink, struct cache_set, shrink);
+
+ if (c->shrinker_disabled)
+ return 0;
+
+ if (c->btree_cache_alloc_lock)
+ return 0;
+
+ return mca_can_free(c) * c->btree_pages;
+}
+
+void bch_btree_cache_free(struct cache_set *c)
+{
+ struct btree *b;
+ struct closure cl;
+
+ closure_init_stack(&cl);
+
+ if (c->shrink.list.next)
+ unregister_shrinker(&c->shrink);
+
+ mutex_lock(&c->bucket_lock);
+
+#ifdef CONFIG_BCACHE_DEBUG
+ if (c->verify_data)
+ list_move(&c->verify_data->list, &c->btree_cache);
+
+ free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
+#endif
+
+ list_splice(&c->btree_cache_freeable,
+ &c->btree_cache);
+
+ while (!list_empty(&c->btree_cache)) {
+ b = list_first_entry(&c->btree_cache, struct btree, list);
+
+ /*
+ * This function is called by cache_set_free(), no I/O
+ * request on cache now, it is unnecessary to acquire
+ * b->write_lock before clearing BTREE_NODE_dirty anymore.
+ */
+ if (btree_node_dirty(b)) {
+ btree_complete_write(b, btree_current_write(b));
+ clear_bit(BTREE_NODE_dirty, &b->flags);
+ }
+ mca_data_free(b);
+ }
+
+ while (!list_empty(&c->btree_cache_freed)) {
+ b = list_first_entry(&c->btree_cache_freed,
+ struct btree, list);
+ list_del(&b->list);
+ cancel_delayed_work_sync(&b->work);
+ kfree(b);
+ }
+
+ mutex_unlock(&c->bucket_lock);
+}
+
+int bch_btree_cache_alloc(struct cache_set *c)
+{
+ unsigned int i;
+
+ for (i = 0; i < mca_reserve(c); i++)
+ if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
+ return -ENOMEM;
+
+ list_splice_init(&c->btree_cache,
+ &c->btree_cache_freeable);
+
+#ifdef CONFIG_BCACHE_DEBUG
+ mutex_init(&c->verify_lock);
+
+ c->verify_ondisk = (void *)
+ __get_free_pages(GFP_KERNEL|__GFP_COMP,
+ ilog2(meta_bucket_pages(&c->cache->sb)));
+ if (!c->verify_ondisk) {
+ /*
+ * Don't worry about the mca_rereserve buckets
+ * allocated in previous for-loop, they will be
+ * handled properly in bch_cache_set_unregister().
+ */
+ return -ENOMEM;
+ }
+
+ c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
+
+ if (c->verify_data &&
+ c->verify_data->keys.set->data)
+ list_del_init(&c->verify_data->list);
+ else
+ c->verify_data = NULL;
+#endif
+
+ c->shrink.count_objects = bch_mca_count;
+ c->shrink.scan_objects = bch_mca_scan;
+ c->shrink.seeks = 4;
+ c->shrink.batch = c->btree_pages * 2;
+
+ if (register_shrinker(&c->shrink, "md-bcache:%pU", c->set_uuid))
+ pr_warn("bcache: %s: could not register shrinker\n",
+ __func__);
+
+ return 0;
+}
+
+/* Btree in memory cache - hash table */
+
+static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
+{
+ return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
+}
+
+static struct btree *mca_find(struct cache_set *c, struct bkey *k)
+{
+ struct btree *b;
+
+ rcu_read_lock();
+ hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
+ if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
+ goto out;
+ b = NULL;
+out:
+ rcu_read_unlock();
+ return b;
+}
+
+static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
+{
+ spin_lock(&c->btree_cannibalize_lock);
+ if (likely(c->btree_cache_alloc_lock == NULL)) {
+ c->btree_cache_alloc_lock = current;
+ } else if (c->btree_cache_alloc_lock != current) {
+ if (op)
+ prepare_to_wait(&c->btree_cache_wait, &op->wait,
+ TASK_UNINTERRUPTIBLE);
+ spin_unlock(&c->btree_cannibalize_lock);
+ return -EINTR;
+ }
+ spin_unlock(&c->btree_cannibalize_lock);
+
+ return 0;
+}
+
+static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
+ struct bkey *k)
+{
+ struct btree *b;
+
+ trace_bcache_btree_cache_cannibalize(c);
+
+ if (mca_cannibalize_lock(c, op))
+ return ERR_PTR(-EINTR);
+
+ list_for_each_entry_reverse(b, &c->btree_cache, list)
+ if (!mca_reap(b, btree_order(k), false))
+ return b;
+
+ list_for_each_entry_reverse(b, &c->btree_cache, list)
+ if (!mca_reap(b, btree_order(k), true))
+ return b;
+
+ WARN(1, "btree cache cannibalize failed\n");
+ return ERR_PTR(-ENOMEM);
+}
+
+/*
+ * We can only have one thread cannibalizing other cached btree nodes at a time,
+ * or we'll deadlock. We use an open coded mutex to ensure that, which a
+ * cannibalize_bucket() will take. This means every time we unlock the root of
+ * the btree, we need to release this lock if we have it held.
+ */
+void bch_cannibalize_unlock(struct cache_set *c)
+{
+ spin_lock(&c->btree_cannibalize_lock);
+ if (c->btree_cache_alloc_lock == current) {
+ c->btree_cache_alloc_lock = NULL;
+ wake_up(&c->btree_cache_wait);
+ }
+ spin_unlock(&c->btree_cannibalize_lock);
+}
+
+static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
+ struct bkey *k, int level)
+{
+ struct btree *b;
+
+ BUG_ON(current->bio_list);
+
+ lockdep_assert_held(&c->bucket_lock);
+
+ if (mca_find(c, k))
+ return NULL;
+
+ /* btree_free() doesn't free memory; it sticks the node on the end of
+ * the list. Check if there's any freed nodes there:
+ */
+ list_for_each_entry(b, &c->btree_cache_freeable, list)
+ if (!mca_reap(b, btree_order(k), false))
+ goto out;
+
+ /* We never free struct btree itself, just the memory that holds the on
+ * disk node. Check the freed list before allocating a new one:
+ */
+ list_for_each_entry(b, &c->btree_cache_freed, list)
+ if (!mca_reap(b, 0, false)) {
+ mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
+ if (!b->keys.set[0].data)
+ goto err;
+ else
+ goto out;
+ }
+
+ b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
+ if (!b)
+ goto err;
+
+ BUG_ON(!down_write_trylock(&b->lock));
+ if (!b->keys.set->data)
+ goto err;
+out:
+ BUG_ON(b->io_mutex.count != 1);
+
+ bkey_copy(&b->key, k);
+ list_move(&b->list, &c->btree_cache);
+ hlist_del_init_rcu(&b->hash);
+ hlist_add_head_rcu(&b->hash, mca_hash(c, k));
+
+ lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
+ b->parent = (void *) ~0UL;
+ b->flags = 0;
+ b->written = 0;
+ b->level = level;
+
+ if (!b->level)
+ bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
+ &b->c->expensive_debug_checks);
+ else
+ bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
+ &b->c->expensive_debug_checks);
+
+ return b;
+err:
+ if (b)
+ rw_unlock(true, b);
+
+ b = mca_cannibalize(c, op, k);
+ if (!IS_ERR(b))
+ goto out;
+
+ return b;
+}
+
+/*
+ * bch_btree_node_get - find a btree node in the cache and lock it, reading it
+ * in from disk if necessary.
+ *
+ * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
+ *
+ * The btree node will have either a read or a write lock held, depending on
+ * level and op->lock.
+ *
+ * Note: Only error code or btree pointer will be returned, it is unncessary
+ * for callers to check NULL pointer.
+ */
+struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
+ struct bkey *k, int level, bool write,
+ struct btree *parent)
+{
+ int i = 0;
+ struct btree *b;
+
+ BUG_ON(level < 0);
+retry:
+ b = mca_find(c, k);
+
+ if (!b) {
+ if (current->bio_list)
+ return ERR_PTR(-EAGAIN);
+
+ mutex_lock(&c->bucket_lock);
+ b = mca_alloc(c, op, k, level);
+ mutex_unlock(&c->bucket_lock);
+
+ if (!b)
+ goto retry;
+ if (IS_ERR(b))
+ return b;
+
+ bch_btree_node_read(b);
+
+ if (!write)
+ downgrade_write(&b->lock);
+ } else {
+ rw_lock(write, b, level);
+ if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
+ rw_unlock(write, b);
+ goto retry;
+ }
+ BUG_ON(b->level != level);
+ }
+
+ if (btree_node_io_error(b)) {
+ rw_unlock(write, b);
+ return ERR_PTR(-EIO);
+ }
+
+ BUG_ON(!b->written);
+
+ b->parent = parent;
+
+ for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
+ prefetch(b->keys.set[i].tree);
+ prefetch(b->keys.set[i].data);
+ }
+
+ for (; i <= b->keys.nsets; i++)
+ prefetch(b->keys.set[i].data);
+
+ return b;
+}
+
+static void btree_node_prefetch(struct btree *parent, struct bkey *k)
+{
+ struct btree *b;
+
+ mutex_lock(&parent->c->bucket_lock);
+ b = mca_alloc(parent->c, NULL, k, parent->level - 1);
+ mutex_unlock(&parent->c->bucket_lock);
+
+ if (!IS_ERR_OR_NULL(b)) {
+ b->parent = parent;
+ bch_btree_node_read(b);
+ rw_unlock(true, b);
+ }
+}
+
+/* Btree alloc */
+
+static void btree_node_free(struct btree *b)
+{
+ trace_bcache_btree_node_free(b);
+
+ BUG_ON(b == b->c->root);
+
+retry:
+ mutex_lock(&b->write_lock);
+ /*
+ * If the btree node is selected and flushing in btree_flush_write(),
+ * delay and retry until the BTREE_NODE_journal_flush bit cleared,
+ * then it is safe to free the btree node here. Otherwise this btree
+ * node will be in race condition.
+ */
+ if (btree_node_journal_flush(b)) {
+ mutex_unlock(&b->write_lock);
+ pr_debug("bnode %p journal_flush set, retry\n", b);
+ udelay(1);
+ goto retry;
+ }
+
+ if (btree_node_dirty(b)) {
+ btree_complete_write(b, btree_current_write(b));
+ clear_bit(BTREE_NODE_dirty, &b->flags);
+ }
+
+ mutex_unlock(&b->write_lock);
+
+ cancel_delayed_work(&b->work);
+
+ mutex_lock(&b->c->bucket_lock);
+ bch_bucket_free(b->c, &b->key);
+ mca_bucket_free(b);
+ mutex_unlock(&b->c->bucket_lock);
+}
+
+/*
+ * Only error code or btree pointer will be returned, it is unncessary for
+ * callers to check NULL pointer.
+ */
+struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
+ int level, bool wait,
+ struct btree *parent)
+{
+ BKEY_PADDED(key) k;
+ struct btree *b;
+
+ mutex_lock(&c->bucket_lock);
+retry:
+ /* return ERR_PTR(-EAGAIN) when it fails */
+ b = ERR_PTR(-EAGAIN);
+ if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
+ goto err;
+
+ bkey_put(c, &k.key);
+ SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
+
+ b = mca_alloc(c, op, &k.key, level);
+ if (IS_ERR(b))
+ goto err_free;
+
+ if (!b) {
+ cache_bug(c,
+ "Tried to allocate bucket that was in btree cache");
+ goto retry;
+ }
+
+ b->parent = parent;
+ bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb));
+
+ mutex_unlock(&c->bucket_lock);
+
+ trace_bcache_btree_node_alloc(b);
+ return b;
+err_free:
+ bch_bucket_free(c, &k.key);
+err:
+ mutex_unlock(&c->bucket_lock);
+
+ trace_bcache_btree_node_alloc_fail(c);
+ return b;
+}
+
+static struct btree *bch_btree_node_alloc(struct cache_set *c,
+ struct btree_op *op, int level,
+ struct btree *parent)
+{
+ return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
+}
+
+static struct btree *btree_node_alloc_replacement(struct btree *b,
+ struct btree_op *op)
+{
+ struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
+
+ if (!IS_ERR(n)) {
+ mutex_lock(&n->write_lock);
+ bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
+ bkey_copy_key(&n->key, &b->key);
+ mutex_unlock(&n->write_lock);
+ }
+
+ return n;
+}
+
+static void make_btree_freeing_key(struct btree *b, struct bkey *k)
+{
+ unsigned int i;
+
+ mutex_lock(&b->c->bucket_lock);
+
+ atomic_inc(&b->c->prio_blocked);
+
+ bkey_copy(k, &b->key);
+ bkey_copy_key(k, &ZERO_KEY);
+
+ for (i = 0; i < KEY_PTRS(k); i++)
+ SET_PTR_GEN(k, i,
+ bch_inc_gen(b->c->cache,
+ PTR_BUCKET(b->c, &b->key, i)));
+
+ mutex_unlock(&b->c->bucket_lock);
+}
+
+static int btree_check_reserve(struct btree *b, struct btree_op *op)
+{
+ struct cache_set *c = b->c;
+ struct cache *ca = c->cache;
+ unsigned int reserve = (c->root->level - b->level) * 2 + 1;
+
+ mutex_lock(&c->bucket_lock);
+
+ if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
+ if (op)
+ prepare_to_wait(&c->btree_cache_wait, &op->wait,
+ TASK_UNINTERRUPTIBLE);
+ mutex_unlock(&c->bucket_lock);
+ return -EINTR;
+ }
+
+ mutex_unlock(&c->bucket_lock);
+
+ return mca_cannibalize_lock(b->c, op);
+}
+
+/* Garbage collection */
+
+static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
+ struct bkey *k)
+{
+ uint8_t stale = 0;
+ unsigned int i;
+ struct bucket *g;
+
+ /*
+ * ptr_invalid() can't return true for the keys that mark btree nodes as
+ * freed, but since ptr_bad() returns true we'll never actually use them
+ * for anything and thus we don't want mark their pointers here
+ */
+ if (!bkey_cmp(k, &ZERO_KEY))
+ return stale;
+
+ for (i = 0; i < KEY_PTRS(k); i++) {
+ if (!ptr_available(c, k, i))
+ continue;
+
+ g = PTR_BUCKET(c, k, i);
+
+ if (gen_after(g->last_gc, PTR_GEN(k, i)))
+ g->last_gc = PTR_GEN(k, i);
+
+ if (ptr_stale(c, k, i)) {
+ stale = max(stale, ptr_stale(c, k, i));
+ continue;
+ }
+
+ cache_bug_on(GC_MARK(g) &&
+ (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
+ c, "inconsistent ptrs: mark = %llu, level = %i",
+ GC_MARK(g), level);
+
+ if (level)
+ SET_GC_MARK(g, GC_MARK_METADATA);
+ else if (KEY_DIRTY(k))
+ SET_GC_MARK(g, GC_MARK_DIRTY);
+ else if (!GC_MARK(g))
+ SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
+
+ /* guard against overflow */
+ SET_GC_SECTORS_USED(g, min_t(unsigned int,
+ GC_SECTORS_USED(g) + KEY_SIZE(k),
+ MAX_GC_SECTORS_USED));
+
+ BUG_ON(!GC_SECTORS_USED(g));
+ }
+
+ return stale;
+}
+
+#define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
+
+void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
+{
+ unsigned int i;
+
+ for (i = 0; i < KEY_PTRS(k); i++)
+ if (ptr_available(c, k, i) &&
+ !ptr_stale(c, k, i)) {
+ struct bucket *b = PTR_BUCKET(c, k, i);
+
+ b->gen = PTR_GEN(k, i);
+
+ if (level && bkey_cmp(k, &ZERO_KEY))
+ b->prio = BTREE_PRIO;
+ else if (!level && b->prio == BTREE_PRIO)
+ b->prio = INITIAL_PRIO;
+ }
+
+ __bch_btree_mark_key(c, level, k);
+}
+
+void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
+{
+ stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
+}
+
+static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
+{
+ uint8_t stale = 0;
+ unsigned int keys = 0, good_keys = 0;
+ struct bkey *k;
+ struct btree_iter iter;
+ struct bset_tree *t;
+
+ gc->nodes++;
+
+ for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
+ stale = max(stale, btree_mark_key(b, k));
+ keys++;
+
+ if (bch_ptr_bad(&b->keys, k))
+ continue;
+
+ gc->key_bytes += bkey_u64s(k);
+ gc->nkeys++;
+ good_keys++;
+
+ gc->data += KEY_SIZE(k);
+ }
+
+ for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
+ btree_bug_on(t->size &&
+ bset_written(&b->keys, t) &&
+ bkey_cmp(&b->key, &t->end) < 0,
+ b, "found short btree key in gc");
+
+ if (b->c->gc_always_rewrite)
+ return true;
+
+ if (stale > 10)
+ return true;
+
+ if ((keys - good_keys) * 2 > keys)
+ return true;
+
+ return false;
+}
+
+#define GC_MERGE_NODES 4U
+
+struct gc_merge_info {
+ struct btree *b;
+ unsigned int keys;
+};
+
+static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
+ struct keylist *insert_keys,
+ atomic_t *journal_ref,
+ struct bkey *replace_key);
+
+static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
+ struct gc_stat *gc, struct gc_merge_info *r)
+{
+ unsigned int i, nodes = 0, keys = 0, blocks;
+ struct btree *new_nodes[GC_MERGE_NODES];
+ struct keylist keylist;
+ struct closure cl;
+ struct bkey *k;
+
+ bch_keylist_init(&keylist);
+
+ if (btree_check_reserve(b, NULL))
+ return 0;
+
+ memset(new_nodes, 0, sizeof(new_nodes));
+ closure_init_stack(&cl);
+
+ while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
+ keys += r[nodes++].keys;
+
+ blocks = btree_default_blocks(b->c) * 2 / 3;
+
+ if (nodes < 2 ||
+ __set_blocks(b->keys.set[0].data, keys,
+ block_bytes(b->c->cache)) > blocks * (nodes - 1))
+ return 0;
+
+ for (i = 0; i < nodes; i++) {
+ new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
+ if (IS_ERR(new_nodes[i]))
+ goto out_nocoalesce;
+ }
+
+ /*
+ * We have to check the reserve here, after we've allocated our new
+ * nodes, to make sure the insert below will succeed - we also check
+ * before as an optimization to potentially avoid a bunch of expensive
+ * allocs/sorts
+ */
+ if (btree_check_reserve(b, NULL))
+ goto out_nocoalesce;
+
+ for (i = 0; i < nodes; i++)
+ mutex_lock(&new_nodes[i]->write_lock);
+
+ for (i = nodes - 1; i > 0; --i) {
+ struct bset *n1 = btree_bset_first(new_nodes[i]);
+ struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
+ struct bkey *k, *last = NULL;
+
+ keys = 0;
+
+ if (i > 1) {
+ for (k = n2->start;
+ k < bset_bkey_last(n2);
+ k = bkey_next(k)) {
+ if (__set_blocks(n1, n1->keys + keys +
+ bkey_u64s(k),
+ block_bytes(b->c->cache)) > blocks)
+ break;
+
+ last = k;
+ keys += bkey_u64s(k);
+ }
+ } else {
+ /*
+ * Last node we're not getting rid of - we're getting
+ * rid of the node at r[0]. Have to try and fit all of
+ * the remaining keys into this node; we can't ensure
+ * they will always fit due to rounding and variable
+ * length keys (shouldn't be possible in practice,
+ * though)
+ */
+ if (__set_blocks(n1, n1->keys + n2->keys,
+ block_bytes(b->c->cache)) >
+ btree_blocks(new_nodes[i]))
+ goto out_unlock_nocoalesce;
+
+ keys = n2->keys;
+ /* Take the key of the node we're getting rid of */
+ last = &r->b->key;
+ }
+
+ BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
+ btree_blocks(new_nodes[i]));
+
+ if (last)
+ bkey_copy_key(&new_nodes[i]->key, last);
+
+ memcpy(bset_bkey_last(n1),
+ n2->start,
+ (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
+
+ n1->keys += keys;
+ r[i].keys = n1->keys;
+
+ memmove(n2->start,
+ bset_bkey_idx(n2, keys),
+ (void *) bset_bkey_last(n2) -
+ (void *) bset_bkey_idx(n2, keys));
+
+ n2->keys -= keys;
+
+ if (__bch_keylist_realloc(&keylist,
+ bkey_u64s(&new_nodes[i]->key)))
+ goto out_unlock_nocoalesce;
+
+ bch_btree_node_write(new_nodes[i], &cl);
+ bch_keylist_add(&keylist, &new_nodes[i]->key);
+ }
+
+ for (i = 0; i < nodes; i++)
+ mutex_unlock(&new_nodes[i]->write_lock);
+
+ closure_sync(&cl);
+
+ /* We emptied out this node */
+ BUG_ON(btree_bset_first(new_nodes[0])->keys);
+ btree_node_free(new_nodes[0]);
+ rw_unlock(true, new_nodes[0]);
+ new_nodes[0] = NULL;
+
+ for (i = 0; i < nodes; i++) {
+ if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
+ goto out_nocoalesce;
+
+ make_btree_freeing_key(r[i].b, keylist.top);
+ bch_keylist_push(&keylist);
+ }
+
+ bch_btree_insert_node(b, op, &keylist, NULL, NULL);
+ BUG_ON(!bch_keylist_empty(&keylist));
+
+ for (i = 0; i < nodes; i++) {
+ btree_node_free(r[i].b);
+ rw_unlock(true, r[i].b);
+
+ r[i].b = new_nodes[i];
+ }
+
+ memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
+ r[nodes - 1].b = ERR_PTR(-EINTR);
+
+ trace_bcache_btree_gc_coalesce(nodes);
+ gc->nodes--;
+
+ bch_keylist_free(&keylist);
+
+ /* Invalidated our iterator */
+ return -EINTR;
+
+out_unlock_nocoalesce:
+ for (i = 0; i < nodes; i++)
+ mutex_unlock(&new_nodes[i]->write_lock);
+
+out_nocoalesce:
+ closure_sync(&cl);
+
+ while ((k = bch_keylist_pop(&keylist)))
+ if (!bkey_cmp(k, &ZERO_KEY))
+ atomic_dec(&b->c->prio_blocked);
+ bch_keylist_free(&keylist);
+
+ for (i = 0; i < nodes; i++)
+ if (!IS_ERR_OR_NULL(new_nodes[i])) {
+ btree_node_free(new_nodes[i]);
+ rw_unlock(true, new_nodes[i]);
+ }
+ return 0;
+}
+
+static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
+ struct btree *replace)
+{
+ struct keylist keys;
+ struct btree *n;
+
+ if (btree_check_reserve(b, NULL))
+ return 0;
+
+ n = btree_node_alloc_replacement(replace, NULL);
+ if (IS_ERR(n))
+ return 0;
+
+ /* recheck reserve after allocating replacement node */
+ if (btree_check_reserve(b, NULL)) {
+ btree_node_free(n);
+ rw_unlock(true, n);
+ return 0;
+ }
+
+ bch_btree_node_write_sync(n);
+
+ bch_keylist_init(&keys);
+ bch_keylist_add(&keys, &n->key);
+
+ make_btree_freeing_key(replace, keys.top);
+ bch_keylist_push(&keys);
+
+ bch_btree_insert_node(b, op, &keys, NULL, NULL);
+ BUG_ON(!bch_keylist_empty(&keys));
+
+ btree_node_free(replace);
+ rw_unlock(true, n);
+
+ /* Invalidated our iterator */
+ return -EINTR;
+}
+
+static unsigned int btree_gc_count_keys(struct btree *b)
+{
+ struct bkey *k;
+ struct btree_iter iter;
+ unsigned int ret = 0;
+
+ for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
+ ret += bkey_u64s(k);
+
+ return ret;
+}
+
+static size_t btree_gc_min_nodes(struct cache_set *c)
+{
+ size_t min_nodes;
+
+ /*
+ * Since incremental GC would stop 100ms when front
+ * side I/O comes, so when there are many btree nodes,
+ * if GC only processes constant (100) nodes each time,
+ * GC would last a long time, and the front side I/Os
+ * would run out of the buckets (since no new bucket
+ * can be allocated during GC), and be blocked again.
+ * So GC should not process constant nodes, but varied
+ * nodes according to the number of btree nodes, which
+ * realized by dividing GC into constant(100) times,
+ * so when there are many btree nodes, GC can process
+ * more nodes each time, otherwise, GC will process less
+ * nodes each time (but no less than MIN_GC_NODES)
+ */
+ min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
+ if (min_nodes < MIN_GC_NODES)
+ min_nodes = MIN_GC_NODES;
+
+ return min_nodes;
+}
+
+
+static int btree_gc_recurse(struct btree *b, struct btree_op *op,
+ struct closure *writes, struct gc_stat *gc)
+{
+ int ret = 0;
+ bool should_rewrite;
+ struct bkey *k;
+ struct btree_iter iter;
+ struct gc_merge_info r[GC_MERGE_NODES];
+ struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
+
+ bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
+
+ for (i = r; i < r + ARRAY_SIZE(r); i++)
+ i->b = ERR_PTR(-EINTR);
+
+ while (1) {
+ k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
+ if (k) {
+ r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
+ true, b);
+ if (IS_ERR(r->b)) {
+ ret = PTR_ERR(r->b);
+ break;
+ }
+
+ r->keys = btree_gc_count_keys(r->b);
+
+ ret = btree_gc_coalesce(b, op, gc, r);
+ if (ret)
+ break;
+ }
+
+ if (!last->b)
+ break;
+
+ if (!IS_ERR(last->b)) {
+ should_rewrite = btree_gc_mark_node(last->b, gc);
+ if (should_rewrite) {
+ ret = btree_gc_rewrite_node(b, op, last->b);
+ if (ret)
+ break;
+ }
+
+ if (last->b->level) {
+ ret = btree_gc_recurse(last->b, op, writes, gc);
+ if (ret)
+ break;
+ }
+
+ bkey_copy_key(&b->c->gc_done, &last->b->key);
+
+ /*
+ * Must flush leaf nodes before gc ends, since replace
+ * operations aren't journalled
+ */
+ mutex_lock(&last->b->write_lock);
+ if (btree_node_dirty(last->b))
+ bch_btree_node_write(last->b, writes);
+ mutex_unlock(&last->b->write_lock);
+ rw_unlock(true, last->b);
+ }
+
+ memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
+ r->b = NULL;
+
+ if (atomic_read(&b->c->search_inflight) &&
+ gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
+ gc->nodes_pre = gc->nodes;
+ ret = -EAGAIN;
+ break;
+ }
+
+ if (need_resched()) {
+ ret = -EAGAIN;
+ break;
+ }
+ }
+
+ for (i = r; i < r + ARRAY_SIZE(r); i++)
+ if (!IS_ERR_OR_NULL(i->b)) {
+ mutex_lock(&i->b->write_lock);
+ if (btree_node_dirty(i->b))
+ bch_btree_node_write(i->b, writes);
+ mutex_unlock(&i->b->write_lock);
+ rw_unlock(true, i->b);
+ }
+
+ return ret;
+}
+
+static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
+ struct closure *writes, struct gc_stat *gc)
+{
+ struct btree *n = NULL;
+ int ret = 0;
+ bool should_rewrite;
+
+ should_rewrite = btree_gc_mark_node(b, gc);
+ if (should_rewrite) {
+ n = btree_node_alloc_replacement(b, NULL);
+
+ if (!IS_ERR(n)) {
+ bch_btree_node_write_sync(n);
+
+ bch_btree_set_root(n);
+ btree_node_free(b);
+ rw_unlock(true, n);
+
+ return -EINTR;
+ }
+ }
+
+ __bch_btree_mark_key(b->c, b->level + 1, &b->key);
+
+ if (b->level) {
+ ret = btree_gc_recurse(b, op, writes, gc);
+ if (ret)
+ return ret;
+ }
+
+ bkey_copy_key(&b->c->gc_done, &b->key);
+
+ return ret;
+}
+
+static void btree_gc_start(struct cache_set *c)
+{
+ struct cache *ca;
+ struct bucket *b;
+
+ if (!c->gc_mark_valid)
+ return;
+
+ mutex_lock(&c->bucket_lock);
+
+ c->gc_mark_valid = 0;
+ c->gc_done = ZERO_KEY;
+
+ ca = c->cache;
+ for_each_bucket(b, ca) {
+ b->last_gc = b->gen;
+ if (!atomic_read(&b->pin)) {
+ SET_GC_MARK(b, 0);
+ SET_GC_SECTORS_USED(b, 0);
+ }
+ }
+
+ mutex_unlock(&c->bucket_lock);
+}
+
+static void bch_btree_gc_finish(struct cache_set *c)
+{
+ struct bucket *b;
+ struct cache *ca;
+ unsigned int i, j;
+ uint64_t *k;
+
+ mutex_lock(&c->bucket_lock);
+
+ set_gc_sectors(c);
+ c->gc_mark_valid = 1;
+ c->need_gc = 0;
+
+ for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
+ SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
+ GC_MARK_METADATA);
+
+ /* don't reclaim buckets to which writeback keys point */
+ rcu_read_lock();
+ for (i = 0; i < c->devices_max_used; i++) {
+ struct bcache_device *d = c->devices[i];
+ struct cached_dev *dc;
+ struct keybuf_key *w, *n;
+
+ if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
+ continue;
+ dc = container_of(d, struct cached_dev, disk);
+
+ spin_lock(&dc->writeback_keys.lock);
+ rbtree_postorder_for_each_entry_safe(w, n,
+ &dc->writeback_keys.keys, node)
+ for (j = 0; j < KEY_PTRS(&w->key); j++)
+ SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
+ GC_MARK_DIRTY);
+ spin_unlock(&dc->writeback_keys.lock);
+ }
+ rcu_read_unlock();
+
+ c->avail_nbuckets = 0;
+
+ ca = c->cache;
+ ca->invalidate_needs_gc = 0;
+
+ for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
+ SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
+
+ for (k = ca->prio_buckets;
+ k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
+ SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
+
+ for_each_bucket(b, ca) {
+ c->need_gc = max(c->need_gc, bucket_gc_gen(b));
+
+ if (atomic_read(&b->pin))
+ continue;
+
+ BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
+
+ if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
+ c->avail_nbuckets++;
+ }
+
+ mutex_unlock(&c->bucket_lock);
+}
+
+static void bch_btree_gc(struct cache_set *c)
+{
+ int ret;
+ struct gc_stat stats;
+ struct closure writes;
+ struct btree_op op;
+ uint64_t start_time = local_clock();
+
+ trace_bcache_gc_start(c);
+
+ memset(&stats, 0, sizeof(struct gc_stat));
+ closure_init_stack(&writes);
+ bch_btree_op_init(&op, SHRT_MAX);
+
+ btree_gc_start(c);
+
+ /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
+ do {
+ ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
+ closure_sync(&writes);
+ cond_resched();
+
+ if (ret == -EAGAIN)
+ schedule_timeout_interruptible(msecs_to_jiffies
+ (GC_SLEEP_MS));
+ else if (ret)
+ pr_warn("gc failed!\n");
+ } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
+
+ bch_btree_gc_finish(c);
+ wake_up_allocators(c);
+
+ bch_time_stats_update(&c->btree_gc_time, start_time);
+
+ stats.key_bytes *= sizeof(uint64_t);
+ stats.data <<= 9;
+ bch_update_bucket_in_use(c, &stats);
+ memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
+
+ trace_bcache_gc_end(c);
+
+ bch_moving_gc(c);
+}
+
+static bool gc_should_run(struct cache_set *c)
+{
+ struct cache *ca = c->cache;
+
+ if (ca->invalidate_needs_gc)
+ return true;
+
+ if (atomic_read(&c->sectors_to_gc) < 0)
+ return true;
+
+ return false;
+}
+
+static int bch_gc_thread(void *arg)
+{
+ struct cache_set *c = arg;
+
+ while (1) {
+ wait_event_interruptible(c->gc_wait,
+ kthread_should_stop() ||
+ test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
+ gc_should_run(c));
+
+ if (kthread_should_stop() ||
+ test_bit(CACHE_SET_IO_DISABLE, &c->flags))
+ break;
+
+ set_gc_sectors(c);
+ bch_btree_gc(c);
+ }
+
+ wait_for_kthread_stop();
+ return 0;
+}
+
+int bch_gc_thread_start(struct cache_set *c)
+{
+ c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
+ return PTR_ERR_OR_ZERO(c->gc_thread);
+}
+
+/* Initial partial gc */
+
+static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
+{
+ int ret = 0;
+ struct bkey *k, *p = NULL;
+ struct btree_iter iter;
+
+ for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
+ bch_initial_mark_key(b->c, b->level, k);
+
+ bch_initial_mark_key(b->c, b->level + 1, &b->key);
+
+ if (b->level) {
+ bch_btree_iter_init(&b->keys, &iter, NULL);
+
+ do {
+ k = bch_btree_iter_next_filter(&iter, &b->keys,
+ bch_ptr_bad);
+ if (k) {
+ btree_node_prefetch(b, k);
+ /*
+ * initiallize c->gc_stats.nodes
+ * for incremental GC
+ */
+ b->c->gc_stats.nodes++;
+ }
+
+ if (p)
+ ret = bcache_btree(check_recurse, p, b, op);
+
+ p = k;
+ } while (p && !ret);
+ }
+
+ return ret;
+}
+
+
+static int bch_btree_check_thread(void *arg)
+{
+ int ret;
+ struct btree_check_info *info = arg;
+ struct btree_check_state *check_state = info->state;
+ struct cache_set *c = check_state->c;
+ struct btree_iter iter;
+ struct bkey *k, *p;
+ int cur_idx, prev_idx, skip_nr;
+
+ k = p = NULL;
+ cur_idx = prev_idx = 0;
+ ret = 0;
+
+ /* root node keys are checked before thread created */
+ bch_btree_iter_init(&c->root->keys, &iter, NULL);
+ k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
+ BUG_ON(!k);
+
+ p = k;
+ while (k) {
+ /*
+ * Fetch a root node key index, skip the keys which
+ * should be fetched by other threads, then check the
+ * sub-tree indexed by the fetched key.
+ */
+ spin_lock(&check_state->idx_lock);
+ cur_idx = check_state->key_idx;
+ check_state->key_idx++;
+ spin_unlock(&check_state->idx_lock);
+
+ skip_nr = cur_idx - prev_idx;
+
+ while (skip_nr) {
+ k = bch_btree_iter_next_filter(&iter,
+ &c->root->keys,
+ bch_ptr_bad);
+ if (k)
+ p = k;
+ else {
+ /*
+ * No more keys to check in root node,
+ * current checking threads are enough,
+ * stop creating more.
+ */
+ atomic_set(&check_state->enough, 1);
+ /* Update check_state->enough earlier */
+ smp_mb__after_atomic();
+ goto out;
+ }
+ skip_nr--;
+ cond_resched();
+ }
+
+ if (p) {
+ struct btree_op op;
+
+ btree_node_prefetch(c->root, p);
+ c->gc_stats.nodes++;
+ bch_btree_op_init(&op, 0);
+ ret = bcache_btree(check_recurse, p, c->root, &op);
+ /*
+ * The op may be added to cache_set's btree_cache_wait
+ * in mca_cannibalize(), must ensure it is removed from
+ * the list and release btree_cache_alloc_lock before
+ * free op memory.
+ * Otherwise, the btree_cache_wait will be damaged.
+ */
+ bch_cannibalize_unlock(c);
+ finish_wait(&c->btree_cache_wait, &(&op)->wait);
+ if (ret)
+ goto out;
+ }
+ p = NULL;
+ prev_idx = cur_idx;
+ cond_resched();
+ }
+
+out:
+ info->result = ret;
+ /* update check_state->started among all CPUs */
+ smp_mb__before_atomic();
+ if (atomic_dec_and_test(&check_state->started))
+ wake_up(&check_state->wait);
+
+ return ret;
+}
+
+
+
+static int bch_btree_chkthread_nr(void)
+{
+ int n = num_online_cpus()/2;
+
+ if (n == 0)
+ n = 1;
+ else if (n > BCH_BTR_CHKTHREAD_MAX)
+ n = BCH_BTR_CHKTHREAD_MAX;
+
+ return n;
+}
+
+int bch_btree_check(struct cache_set *c)
+{
+ int ret = 0;
+ int i;
+ struct bkey *k = NULL;
+ struct btree_iter iter;
+ struct btree_check_state check_state;
+
+ /* check and mark root node keys */
+ for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
+ bch_initial_mark_key(c, c->root->level, k);
+
+ bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
+
+ if (c->root->level == 0)
+ return 0;
+
+ memset(&check_state, 0, sizeof(struct btree_check_state));
+ check_state.c = c;
+ check_state.total_threads = bch_btree_chkthread_nr();
+ check_state.key_idx = 0;
+ spin_lock_init(&check_state.idx_lock);
+ atomic_set(&check_state.started, 0);
+ atomic_set(&check_state.enough, 0);
+ init_waitqueue_head(&check_state.wait);
+
+ rw_lock(0, c->root, c->root->level);
+ /*
+ * Run multiple threads to check btree nodes in parallel,
+ * if check_state.enough is non-zero, it means current
+ * running check threads are enough, unncessary to create
+ * more.
+ */
+ for (i = 0; i < check_state.total_threads; i++) {
+ /* fetch latest check_state.enough earlier */
+ smp_mb__before_atomic();
+ if (atomic_read(&check_state.enough))
+ break;
+
+ check_state.infos[i].result = 0;
+ check_state.infos[i].state = &check_state;
+
+ check_state.infos[i].thread =
+ kthread_run(bch_btree_check_thread,
+ &check_state.infos[i],
+ "bch_btrchk[%d]", i);
+ if (IS_ERR(check_state.infos[i].thread)) {
+ pr_err("fails to run thread bch_btrchk[%d]\n", i);
+ for (--i; i >= 0; i--)
+ kthread_stop(check_state.infos[i].thread);
+ ret = -ENOMEM;
+ goto out;
+ }
+ atomic_inc(&check_state.started);
+ }
+
+ /*
+ * Must wait for all threads to stop.
+ */
+ wait_event(check_state.wait, atomic_read(&check_state.started) == 0);
+
+ for (i = 0; i < check_state.total_threads; i++) {
+ if (check_state.infos[i].result) {
+ ret = check_state.infos[i].result;
+ goto out;
+ }
+ }
+
+out:
+ rw_unlock(0, c->root);
+ return ret;
+}
+
+void bch_initial_gc_finish(struct cache_set *c)
+{
+ struct cache *ca = c->cache;
+ struct bucket *b;
+
+ bch_btree_gc_finish(c);
+
+ mutex_lock(&c->bucket_lock);
+
+ /*
+ * We need to put some unused buckets directly on the prio freelist in
+ * order to get the allocator thread started - it needs freed buckets in
+ * order to rewrite the prios and gens, and it needs to rewrite prios
+ * and gens in order to free buckets.
+ *
+ * This is only safe for buckets that have no live data in them, which
+ * there should always be some of.
+ */
+ for_each_bucket(b, ca) {
+ if (fifo_full(&ca->free[RESERVE_PRIO]) &&
+ fifo_full(&ca->free[RESERVE_BTREE]))
+ break;
+
+ if (bch_can_invalidate_bucket(ca, b) &&
+ !GC_MARK(b)) {
+ __bch_invalidate_one_bucket(ca, b);
+ if (!fifo_push(&ca->free[RESERVE_PRIO],
+ b - ca->buckets))
+ fifo_push(&ca->free[RESERVE_BTREE],
+ b - ca->buckets);
+ }
+ }
+
+ mutex_unlock(&c->bucket_lock);
+}
+
+/* Btree insertion */
+
+static bool btree_insert_key(struct btree *b, struct bkey *k,
+ struct bkey *replace_key)
+{
+ unsigned int status;
+
+ BUG_ON(bkey_cmp(k, &b->key) > 0);
+
+ status = bch_btree_insert_key(&b->keys, k, replace_key);
+ if (status != BTREE_INSERT_STATUS_NO_INSERT) {
+ bch_check_keys(&b->keys, "%u for %s", status,
+ replace_key ? "replace" : "insert");
+
+ trace_bcache_btree_insert_key(b, k, replace_key != NULL,
+ status);
+ return true;
+ } else
+ return false;
+}
+
+static size_t insert_u64s_remaining(struct btree *b)
+{
+ long ret = bch_btree_keys_u64s_remaining(&b->keys);
+
+ /*
+ * Might land in the middle of an existing extent and have to split it
+ */
+ if (b->keys.ops->is_extents)
+ ret -= KEY_MAX_U64S;
+
+ return max(ret, 0L);
+}
+
+static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
+ struct keylist *insert_keys,
+ struct bkey *replace_key)
+{
+ bool ret = false;
+ int oldsize = bch_count_data(&b->keys);
+
+ while (!bch_keylist_empty(insert_keys)) {
+ struct bkey *k = insert_keys->keys;
+
+ if (bkey_u64s(k) > insert_u64s_remaining(b))
+ break;
+
+ if (bkey_cmp(k, &b->key) <= 0) {
+ if (!b->level)
+ bkey_put(b->c, k);
+
+ ret |= btree_insert_key(b, k, replace_key);
+ bch_keylist_pop_front(insert_keys);
+ } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
+ BKEY_PADDED(key) temp;
+ bkey_copy(&temp.key, insert_keys->keys);
+
+ bch_cut_back(&b->key, &temp.key);
+ bch_cut_front(&b->key, insert_keys->keys);
+
+ ret |= btree_insert_key(b, &temp.key, replace_key);
+ break;
+ } else {
+ break;
+ }
+ }
+
+ if (!ret)
+ op->insert_collision = true;
+
+ BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
+
+ BUG_ON(bch_count_data(&b->keys) < oldsize);
+ return ret;
+}
+
+static int btree_split(struct btree *b, struct btree_op *op,
+ struct keylist *insert_keys,
+ struct bkey *replace_key)
+{
+ bool split;
+ struct btree *n1, *n2 = NULL, *n3 = NULL;
+ uint64_t start_time = local_clock();
+ struct closure cl;
+ struct keylist parent_keys;
+
+ closure_init_stack(&cl);
+ bch_keylist_init(&parent_keys);
+
+ if (btree_check_reserve(b, op)) {
+ if (!b->level)
+ return -EINTR;
+ else
+ WARN(1, "insufficient reserve for split\n");
+ }
+
+ n1 = btree_node_alloc_replacement(b, op);
+ if (IS_ERR(n1))
+ goto err;
+
+ split = set_blocks(btree_bset_first(n1),
+ block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
+
+ if (split) {
+ unsigned int keys = 0;
+
+ trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
+
+ n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
+ if (IS_ERR(n2))
+ goto err_free1;
+
+ if (!b->parent) {
+ n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
+ if (IS_ERR(n3))
+ goto err_free2;
+ }
+
+ mutex_lock(&n1->write_lock);
+ mutex_lock(&n2->write_lock);
+
+ bch_btree_insert_keys(n1, op, insert_keys, replace_key);
+
+ /*
+ * Has to be a linear search because we don't have an auxiliary
+ * search tree yet
+ */
+
+ while (keys < (btree_bset_first(n1)->keys * 3) / 5)
+ keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
+ keys));
+
+ bkey_copy_key(&n1->key,
+ bset_bkey_idx(btree_bset_first(n1), keys));
+ keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
+
+ btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
+ btree_bset_first(n1)->keys = keys;
+
+ memcpy(btree_bset_first(n2)->start,
+ bset_bkey_last(btree_bset_first(n1)),
+ btree_bset_first(n2)->keys * sizeof(uint64_t));
+
+ bkey_copy_key(&n2->key, &b->key);
+
+ bch_keylist_add(&parent_keys, &n2->key);
+ bch_btree_node_write(n2, &cl);
+ mutex_unlock(&n2->write_lock);
+ rw_unlock(true, n2);
+ } else {
+ trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
+
+ mutex_lock(&n1->write_lock);
+ bch_btree_insert_keys(n1, op, insert_keys, replace_key);
+ }
+
+ bch_keylist_add(&parent_keys, &n1->key);
+ bch_btree_node_write(n1, &cl);
+ mutex_unlock(&n1->write_lock);
+
+ if (n3) {
+ /* Depth increases, make a new root */
+ mutex_lock(&n3->write_lock);
+ bkey_copy_key(&n3->key, &MAX_KEY);
+ bch_btree_insert_keys(n3, op, &parent_keys, NULL);
+ bch_btree_node_write(n3, &cl);
+ mutex_unlock(&n3->write_lock);
+
+ closure_sync(&cl);
+ bch_btree_set_root(n3);
+ rw_unlock(true, n3);
+ } else if (!b->parent) {
+ /* Root filled up but didn't need to be split */
+ closure_sync(&cl);
+ bch_btree_set_root(n1);
+ } else {
+ /* Split a non root node */
+ closure_sync(&cl);
+ make_btree_freeing_key(b, parent_keys.top);
+ bch_keylist_push(&parent_keys);
+
+ bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
+ BUG_ON(!bch_keylist_empty(&parent_keys));
+ }
+
+ btree_node_free(b);
+ rw_unlock(true, n1);
+
+ bch_time_stats_update(&b->c->btree_split_time, start_time);
+
+ return 0;
+err_free2:
+ bkey_put(b->c, &n2->key);
+ btree_node_free(n2);
+ rw_unlock(true, n2);
+err_free1:
+ bkey_put(b->c, &n1->key);
+ btree_node_free(n1);
+ rw_unlock(true, n1);
+err:
+ WARN(1, "bcache: btree split failed (level %u)", b->level);
+
+ if (n3 == ERR_PTR(-EAGAIN) ||
+ n2 == ERR_PTR(-EAGAIN) ||
+ n1 == ERR_PTR(-EAGAIN))
+ return -EAGAIN;
+
+ return -ENOMEM;
+}
+
+static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
+ struct keylist *insert_keys,
+ atomic_t *journal_ref,
+ struct bkey *replace_key)
+{
+ struct closure cl;
+
+ BUG_ON(b->level && replace_key);
+
+ closure_init_stack(&cl);
+
+ mutex_lock(&b->write_lock);
+
+ if (write_block(b) != btree_bset_last(b) &&
+ b->keys.last_set_unwritten)
+ bch_btree_init_next(b); /* just wrote a set */
+
+ if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
+ mutex_unlock(&b->write_lock);
+ goto split;
+ }
+
+ BUG_ON(write_block(b) != btree_bset_last(b));
+
+ if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
+ if (!b->level)
+ bch_btree_leaf_dirty(b, journal_ref);
+ else
+ bch_btree_node_write(b, &cl);
+ }
+
+ mutex_unlock(&b->write_lock);
+
+ /* wait for btree node write if necessary, after unlock */
+ closure_sync(&cl);
+
+ return 0;
+split:
+ if (current->bio_list) {
+ op->lock = b->c->root->level + 1;
+ return -EAGAIN;
+ } else if (op->lock <= b->c->root->level) {
+ op->lock = b->c->root->level + 1;
+ return -EINTR;
+ } else {
+ /* Invalidated all iterators */
+ int ret = btree_split(b, op, insert_keys, replace_key);
+
+ if (bch_keylist_empty(insert_keys))
+ return 0;
+ else if (!ret)
+ return -EINTR;
+ return ret;
+ }
+}
+
+int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
+ struct bkey *check_key)
+{
+ int ret = -EINTR;
+ uint64_t btree_ptr = b->key.ptr[0];
+ unsigned long seq = b->seq;
+ struct keylist insert;
+ bool upgrade = op->lock == -1;
+
+ bch_keylist_init(&insert);
+
+ if (upgrade) {
+ rw_unlock(false, b);
+ rw_lock(true, b, b->level);
+
+ if (b->key.ptr[0] != btree_ptr ||
+ b->seq != seq + 1) {
+ op->lock = b->level;
+ goto out;
+ }
+ }
+
+ SET_KEY_PTRS(check_key, 1);
+ get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
+
+ SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
+
+ bch_keylist_add(&insert, check_key);
+
+ ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
+
+ BUG_ON(!ret && !bch_keylist_empty(&insert));
+out:
+ if (upgrade)
+ downgrade_write(&b->lock);
+ return ret;
+}
+
+struct btree_insert_op {
+ struct btree_op op;
+ struct keylist *keys;
+ atomic_t *journal_ref;
+ struct bkey *replace_key;
+};
+
+static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
+{
+ struct btree_insert_op *op = container_of(b_op,
+ struct btree_insert_op, op);
+
+ int ret = bch_btree_insert_node(b, &op->op, op->keys,
+ op->journal_ref, op->replace_key);
+ if (ret && !bch_keylist_empty(op->keys))
+ return ret;
+ else
+ return MAP_DONE;
+}
+
+int bch_btree_insert(struct cache_set *c, struct keylist *keys,
+ atomic_t *journal_ref, struct bkey *replace_key)
+{
+ struct btree_insert_op op;
+ int ret = 0;
+
+ BUG_ON(current->bio_list);
+ BUG_ON(bch_keylist_empty(keys));
+
+ bch_btree_op_init(&op.op, 0);
+ op.keys = keys;
+ op.journal_ref = journal_ref;
+ op.replace_key = replace_key;
+
+ while (!ret && !bch_keylist_empty(keys)) {
+ op.op.lock = 0;
+ ret = bch_btree_map_leaf_nodes(&op.op, c,
+ &START_KEY(keys->keys),
+ btree_insert_fn);
+ }
+
+ if (ret) {
+ struct bkey *k;
+
+ pr_err("error %i\n", ret);
+
+ while ((k = bch_keylist_pop(keys)))
+ bkey_put(c, k);
+ } else if (op.op.insert_collision)
+ ret = -ESRCH;
+
+ return ret;
+}
+
+void bch_btree_set_root(struct btree *b)
+{
+ unsigned int i;
+ struct closure cl;
+
+ closure_init_stack(&cl);
+
+ trace_bcache_btree_set_root(b);
+
+ BUG_ON(!b->written);
+
+ for (i = 0; i < KEY_PTRS(&b->key); i++)
+ BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
+
+ mutex_lock(&b->c->bucket_lock);
+ list_del_init(&b->list);
+ mutex_unlock(&b->c->bucket_lock);
+
+ b->c->root = b;
+
+ bch_journal_meta(b->c, &cl);
+ closure_sync(&cl);
+}
+
+/* Map across nodes or keys */
+
+static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
+ struct bkey *from,
+ btree_map_nodes_fn *fn, int flags)
+{
+ int ret = MAP_CONTINUE;
+
+ if (b->level) {
+ struct bkey *k;
+ struct btree_iter iter;
+
+ bch_btree_iter_init(&b->keys, &iter, from);
+
+ while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
+ bch_ptr_bad))) {
+ ret = bcache_btree(map_nodes_recurse, k, b,
+ op, from, fn, flags);
+ from = NULL;
+
+ if (ret != MAP_CONTINUE)
+ return ret;
+ }
+ }
+
+ if (!b->level || flags == MAP_ALL_NODES)
+ ret = fn(op, b);
+
+ return ret;
+}
+
+int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
+ struct bkey *from, btree_map_nodes_fn *fn, int flags)
+{
+ return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
+}
+
+int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
+ struct bkey *from, btree_map_keys_fn *fn,
+ int flags)
+{
+ int ret = MAP_CONTINUE;
+ struct bkey *k;
+ struct btree_iter iter;
+
+ bch_btree_iter_init(&b->keys, &iter, from);
+
+ while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
+ ret = !b->level
+ ? fn(op, b, k)
+ : bcache_btree(map_keys_recurse, k,
+ b, op, from, fn, flags);
+ from = NULL;
+
+ if (ret != MAP_CONTINUE)
+ return ret;
+ }
+
+ if (!b->level && (flags & MAP_END_KEY))
+ ret = fn(op, b, &KEY(KEY_INODE(&b->key),
+ KEY_OFFSET(&b->key), 0));
+
+ return ret;
+}
+
+int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
+ struct bkey *from, btree_map_keys_fn *fn, int flags)
+{
+ return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
+}
+
+/* Keybuf code */
+
+static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
+{
+ /* Overlapping keys compare equal */
+ if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
+ return -1;
+ if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
+ return 1;
+ return 0;
+}
+
+static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
+ struct keybuf_key *r)
+{
+ return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
+}
+
+struct refill {
+ struct btree_op op;
+ unsigned int nr_found;
+ struct keybuf *buf;
+ struct bkey *end;
+ keybuf_pred_fn *pred;
+};
+
+static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
+ struct bkey *k)
+{
+ struct refill *refill = container_of(op, struct refill, op);
+ struct keybuf *buf = refill->buf;
+ int ret = MAP_CONTINUE;
+
+ if (bkey_cmp(k, refill->end) > 0) {
+ ret = MAP_DONE;
+ goto out;
+ }
+
+ if (!KEY_SIZE(k)) /* end key */
+ goto out;
+
+ if (refill->pred(buf, k)) {
+ struct keybuf_key *w;
+
+ spin_lock(&buf->lock);
+
+ w = array_alloc(&buf->freelist);
+ if (!w) {
+ spin_unlock(&buf->lock);
+ return MAP_DONE;
+ }
+
+ w->private = NULL;
+ bkey_copy(&w->key, k);
+
+ if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
+ array_free(&buf->freelist, w);
+ else
+ refill->nr_found++;
+
+ if (array_freelist_empty(&buf->freelist))
+ ret = MAP_DONE;
+
+ spin_unlock(&buf->lock);
+ }
+out:
+ buf->last_scanned = *k;
+ return ret;
+}
+
+void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
+ struct bkey *end, keybuf_pred_fn *pred)
+{
+ struct bkey start = buf->last_scanned;
+ struct refill refill;
+
+ cond_resched();
+
+ bch_btree_op_init(&refill.op, -1);
+ refill.nr_found = 0;
+ refill.buf = buf;
+ refill.end = end;
+ refill.pred = pred;
+
+ bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
+ refill_keybuf_fn, MAP_END_KEY);
+
+ trace_bcache_keyscan(refill.nr_found,
+ KEY_INODE(&start), KEY_OFFSET(&start),
+ KEY_INODE(&buf->last_scanned),
+ KEY_OFFSET(&buf->last_scanned));
+
+ spin_lock(&buf->lock);
+
+ if (!RB_EMPTY_ROOT(&buf->keys)) {
+ struct keybuf_key *w;
+
+ w = RB_FIRST(&buf->keys, struct keybuf_key, node);
+ buf->start = START_KEY(&w->key);
+
+ w = RB_LAST(&buf->keys, struct keybuf_key, node);
+ buf->end = w->key;
+ } else {
+ buf->start = MAX_KEY;
+ buf->end = MAX_KEY;
+ }
+
+ spin_unlock(&buf->lock);
+}
+
+static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
+{
+ rb_erase(&w->node, &buf->keys);
+ array_free(&buf->freelist, w);
+}
+
+void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
+{
+ spin_lock(&buf->lock);
+ __bch_keybuf_del(buf, w);
+ spin_unlock(&buf->lock);
+}
+
+bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
+ struct bkey *end)
+{
+ bool ret = false;
+ struct keybuf_key *p, *w, s;
+
+ s.key = *start;
+
+ if (bkey_cmp(end, &buf->start) <= 0 ||
+ bkey_cmp(start, &buf->end) >= 0)
+ return false;
+
+ spin_lock(&buf->lock);
+ w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
+
+ while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
+ p = w;
+ w = RB_NEXT(w, node);
+
+ if (p->private)
+ ret = true;
+ else
+ __bch_keybuf_del(buf, p);
+ }
+
+ spin_unlock(&buf->lock);
+ return ret;
+}
+
+struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
+{
+ struct keybuf_key *w;
+
+ spin_lock(&buf->lock);
+
+ w = RB_FIRST(&buf->keys, struct keybuf_key, node);
+
+ while (w && w->private)
+ w = RB_NEXT(w, node);
+
+ if (w)
+ w->private = ERR_PTR(-EINTR);
+
+ spin_unlock(&buf->lock);
+ return w;
+}
+
+struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
+ struct keybuf *buf,
+ struct bkey *end,
+ keybuf_pred_fn *pred)
+{
+ struct keybuf_key *ret;
+
+ while (1) {
+ ret = bch_keybuf_next(buf);
+ if (ret)
+ break;
+
+ if (bkey_cmp(&buf->last_scanned, end) >= 0) {
+ pr_debug("scan finished\n");
+ break;
+ }
+
+ bch_refill_keybuf(c, buf, end, pred);
+ }
+
+ return ret;
+}
+
+void bch_keybuf_init(struct keybuf *buf)
+{
+ buf->last_scanned = MAX_KEY;
+ buf->keys = RB_ROOT;
+
+ spin_lock_init(&buf->lock);
+ array_allocator_init(&buf->freelist);
+}
+
+void bch_btree_exit(void)
+{
+ if (btree_io_wq)
+ destroy_workqueue(btree_io_wq);
+}
+
+int __init bch_btree_init(void)
+{
+ btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0);
+ if (!btree_io_wq)
+ return -ENOMEM;
+
+ return 0;
+}
diff --git a/drivers/md/bcache/btree.h b/drivers/md/bcache/btree.h
new file mode 100644
index 000000000..a2920bbfc
--- /dev/null
+++ b/drivers/md/bcache/btree.h
@@ -0,0 +1,417 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _BCACHE_BTREE_H
+#define _BCACHE_BTREE_H
+
+/*
+ * THE BTREE:
+ *
+ * At a high level, bcache's btree is relatively standard b+ tree. All keys and
+ * pointers are in the leaves; interior nodes only have pointers to the child
+ * nodes.
+ *
+ * In the interior nodes, a struct bkey always points to a child btree node, and
+ * the key is the highest key in the child node - except that the highest key in
+ * an interior node is always MAX_KEY. The size field refers to the size on disk
+ * of the child node - this would allow us to have variable sized btree nodes
+ * (handy for keeping the depth of the btree 1 by expanding just the root).
+ *
+ * Btree nodes are themselves log structured, but this is hidden fairly
+ * thoroughly. Btree nodes on disk will in practice have extents that overlap
+ * (because they were written at different times), but in memory we never have
+ * overlapping extents - when we read in a btree node from disk, the first thing
+ * we do is resort all the sets of keys with a mergesort, and in the same pass
+ * we check for overlapping extents and adjust them appropriately.
+ *
+ * struct btree_op is a central interface to the btree code. It's used for
+ * specifying read vs. write locking, and the embedded closure is used for
+ * waiting on IO or reserve memory.
+ *
+ * BTREE CACHE:
+ *
+ * Btree nodes are cached in memory; traversing the btree might require reading
+ * in btree nodes which is handled mostly transparently.
+ *
+ * bch_btree_node_get() looks up a btree node in the cache and reads it in from
+ * disk if necessary. This function is almost never called directly though - the
+ * btree() macro is used to get a btree node, call some function on it, and
+ * unlock the node after the function returns.
+ *
+ * The root is special cased - it's taken out of the cache's lru (thus pinning
+ * it in memory), so we can find the root of the btree by just dereferencing a
+ * pointer instead of looking it up in the cache. This makes locking a bit
+ * tricky, since the root pointer is protected by the lock in the btree node it
+ * points to - the btree_root() macro handles this.
+ *
+ * In various places we must be able to allocate memory for multiple btree nodes
+ * in order to make forward progress. To do this we use the btree cache itself
+ * as a reserve; if __get_free_pages() fails, we'll find a node in the btree
+ * cache we can reuse. We can't allow more than one thread to be doing this at a
+ * time, so there's a lock, implemented by a pointer to the btree_op closure -
+ * this allows the btree_root() macro to implicitly release this lock.
+ *
+ * BTREE IO:
+ *
+ * Btree nodes never have to be explicitly read in; bch_btree_node_get() handles
+ * this.
+ *
+ * For writing, we have two btree_write structs embeddded in struct btree - one
+ * write in flight, and one being set up, and we toggle between them.
+ *
+ * Writing is done with a single function - bch_btree_write() really serves two
+ * different purposes and should be broken up into two different functions. When
+ * passing now = false, it merely indicates that the node is now dirty - calling
+ * it ensures that the dirty keys will be written at some point in the future.
+ *
+ * When passing now = true, bch_btree_write() causes a write to happen
+ * "immediately" (if there was already a write in flight, it'll cause the write
+ * to happen as soon as the previous write completes). It returns immediately
+ * though - but it takes a refcount on the closure in struct btree_op you passed
+ * to it, so a closure_sync() later can be used to wait for the write to
+ * complete.
+ *
+ * This is handy because btree_split() and garbage collection can issue writes
+ * in parallel, reducing the amount of time they have to hold write locks.
+ *
+ * LOCKING:
+ *
+ * When traversing the btree, we may need write locks starting at some level -
+ * inserting a key into the btree will typically only require a write lock on
+ * the leaf node.
+ *
+ * This is specified with the lock field in struct btree_op; lock = 0 means we
+ * take write locks at level <= 0, i.e. only leaf nodes. bch_btree_node_get()
+ * checks this field and returns the node with the appropriate lock held.
+ *
+ * If, after traversing the btree, the insertion code discovers it has to split
+ * then it must restart from the root and take new locks - to do this it changes
+ * the lock field and returns -EINTR, which causes the btree_root() macro to
+ * loop.
+ *
+ * Handling cache misses require a different mechanism for upgrading to a write
+ * lock. We do cache lookups with only a read lock held, but if we get a cache
+ * miss and we wish to insert this data into the cache, we have to insert a
+ * placeholder key to detect races - otherwise, we could race with a write and
+ * overwrite the data that was just written to the cache with stale data from
+ * the backing device.
+ *
+ * For this we use a sequence number that write locks and unlocks increment - to
+ * insert the check key it unlocks the btree node and then takes a write lock,
+ * and fails if the sequence number doesn't match.
+ */
+
+#include "bset.h"
+#include "debug.h"
+
+struct btree_write {
+ atomic_t *journal;
+
+ /* If btree_split() frees a btree node, it writes a new pointer to that
+ * btree node indicating it was freed; it takes a refcount on
+ * c->prio_blocked because we can't write the gens until the new
+ * pointer is on disk. This allows btree_write_endio() to release the
+ * refcount that btree_split() took.
+ */
+ int prio_blocked;
+};
+
+struct btree {
+ /* Hottest entries first */
+ struct hlist_node hash;
+
+ /* Key/pointer for this btree node */
+ BKEY_PADDED(key);
+
+ unsigned long seq;
+ struct rw_semaphore lock;
+ struct cache_set *c;
+ struct btree *parent;
+
+ struct mutex write_lock;
+
+ unsigned long flags;
+ uint16_t written; /* would be nice to kill */
+ uint8_t level;
+
+ struct btree_keys keys;
+
+ /* For outstanding btree writes, used as a lock - protects write_idx */
+ struct closure io;
+ struct semaphore io_mutex;
+
+ struct list_head list;
+ struct delayed_work work;
+
+ struct btree_write writes[2];
+ struct bio *bio;
+};
+
+
+
+
+#define BTREE_FLAG(flag) \
+static inline bool btree_node_ ## flag(struct btree *b) \
+{ return test_bit(BTREE_NODE_ ## flag, &b->flags); } \
+ \
+static inline void set_btree_node_ ## flag(struct btree *b) \
+{ set_bit(BTREE_NODE_ ## flag, &b->flags); }
+
+enum btree_flags {
+ BTREE_NODE_io_error,
+ BTREE_NODE_dirty,
+ BTREE_NODE_write_idx,
+ BTREE_NODE_journal_flush,
+};
+
+BTREE_FLAG(io_error);
+BTREE_FLAG(dirty);
+BTREE_FLAG(write_idx);
+BTREE_FLAG(journal_flush);
+
+static inline struct btree_write *btree_current_write(struct btree *b)
+{
+ return b->writes + btree_node_write_idx(b);
+}
+
+static inline struct btree_write *btree_prev_write(struct btree *b)
+{
+ return b->writes + (btree_node_write_idx(b) ^ 1);
+}
+
+static inline struct bset *btree_bset_first(struct btree *b)
+{
+ return b->keys.set->data;
+}
+
+static inline struct bset *btree_bset_last(struct btree *b)
+{
+ return bset_tree_last(&b->keys)->data;
+}
+
+static inline unsigned int bset_block_offset(struct btree *b, struct bset *i)
+{
+ return bset_sector_offset(&b->keys, i) >> b->c->block_bits;
+}
+
+static inline void set_gc_sectors(struct cache_set *c)
+{
+ atomic_set(&c->sectors_to_gc, c->cache->sb.bucket_size * c->nbuckets / 16);
+}
+
+void bkey_put(struct cache_set *c, struct bkey *k);
+
+/* Looping macros */
+
+#define for_each_cached_btree(b, c, iter) \
+ for (iter = 0; \
+ iter < ARRAY_SIZE((c)->bucket_hash); \
+ iter++) \
+ hlist_for_each_entry_rcu((b), (c)->bucket_hash + iter, hash)
+
+/* Recursing down the btree */
+
+struct btree_op {
+ /* for waiting on btree reserve in btree_split() */
+ wait_queue_entry_t wait;
+
+ /* Btree level at which we start taking write locks */
+ short lock;
+
+ unsigned int insert_collision:1;
+};
+
+struct btree_check_state;
+struct btree_check_info {
+ struct btree_check_state *state;
+ struct task_struct *thread;
+ int result;
+};
+
+#define BCH_BTR_CHKTHREAD_MAX 12
+struct btree_check_state {
+ struct cache_set *c;
+ int total_threads;
+ int key_idx;
+ spinlock_t idx_lock;
+ atomic_t started;
+ atomic_t enough;
+ wait_queue_head_t wait;
+ struct btree_check_info infos[BCH_BTR_CHKTHREAD_MAX];
+};
+
+static inline void bch_btree_op_init(struct btree_op *op, int write_lock_level)
+{
+ memset(op, 0, sizeof(struct btree_op));
+ init_wait(&op->wait);
+ op->lock = write_lock_level;
+}
+
+static inline void rw_lock(bool w, struct btree *b, int level)
+{
+ w ? down_write_nested(&b->lock, level + 1)
+ : down_read_nested(&b->lock, level + 1);
+ if (w)
+ b->seq++;
+}
+
+static inline void rw_unlock(bool w, struct btree *b)
+{
+ if (w)
+ b->seq++;
+ (w ? up_write : up_read)(&b->lock);
+}
+
+void bch_btree_node_read_done(struct btree *b);
+void __bch_btree_node_write(struct btree *b, struct closure *parent);
+void bch_btree_node_write(struct btree *b, struct closure *parent);
+
+void bch_btree_set_root(struct btree *b);
+struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
+ int level, bool wait,
+ struct btree *parent);
+struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
+ struct bkey *k, int level, bool write,
+ struct btree *parent);
+
+int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
+ struct bkey *check_key);
+int bch_btree_insert(struct cache_set *c, struct keylist *keys,
+ atomic_t *journal_ref, struct bkey *replace_key);
+
+int bch_gc_thread_start(struct cache_set *c);
+void bch_initial_gc_finish(struct cache_set *c);
+void bch_moving_gc(struct cache_set *c);
+int bch_btree_check(struct cache_set *c);
+void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k);
+void bch_cannibalize_unlock(struct cache_set *c);
+
+static inline void wake_up_gc(struct cache_set *c)
+{
+ wake_up(&c->gc_wait);
+}
+
+static inline void force_wake_up_gc(struct cache_set *c)
+{
+ /*
+ * Garbage collection thread only works when sectors_to_gc < 0,
+ * calling wake_up_gc() won't start gc thread if sectors_to_gc is
+ * not a nagetive value.
+ * Therefore sectors_to_gc is set to -1 here, before waking up
+ * gc thread by calling wake_up_gc(). Then gc_should_run() will
+ * give a chance to permit gc thread to run. "Give a chance" means
+ * before going into gc_should_run(), there is still possibility
+ * that c->sectors_to_gc being set to other positive value. So
+ * this routine won't 100% make sure gc thread will be woken up
+ * to run.
+ */
+ atomic_set(&c->sectors_to_gc, -1);
+ wake_up_gc(c);
+}
+
+/*
+ * These macros are for recursing down the btree - they handle the details of
+ * locking and looking up nodes in the cache for you. They're best treated as
+ * mere syntax when reading code that uses them.
+ *
+ * op->lock determines whether we take a read or a write lock at a given depth.
+ * If you've got a read lock and find that you need a write lock (i.e. you're
+ * going to have to split), set op->lock and return -EINTR; btree_root() will
+ * call you again and you'll have the correct lock.
+ */
+
+/**
+ * btree - recurse down the btree on a specified key
+ * @fn: function to call, which will be passed the child node
+ * @key: key to recurse on
+ * @b: parent btree node
+ * @op: pointer to struct btree_op
+ */
+#define bcache_btree(fn, key, b, op, ...) \
+({ \
+ int _r, l = (b)->level - 1; \
+ bool _w = l <= (op)->lock; \
+ struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
+ _w, b); \
+ if (!IS_ERR(_child)) { \
+ _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
+ rw_unlock(_w, _child); \
+ } else \
+ _r = PTR_ERR(_child); \
+ _r; \
+})
+
+/**
+ * btree_root - call a function on the root of the btree
+ * @fn: function to call, which will be passed the child node
+ * @c: cache set
+ * @op: pointer to struct btree_op
+ */
+#define bcache_btree_root(fn, c, op, ...) \
+({ \
+ int _r = -EINTR; \
+ do { \
+ struct btree *_b = (c)->root; \
+ bool _w = insert_lock(op, _b); \
+ rw_lock(_w, _b, _b->level); \
+ if (_b == (c)->root && \
+ _w == insert_lock(op, _b)) { \
+ _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
+ } \
+ rw_unlock(_w, _b); \
+ bch_cannibalize_unlock(c); \
+ if (_r == -EINTR) \
+ schedule(); \
+ } while (_r == -EINTR); \
+ \
+ finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
+ _r; \
+})
+
+#define MAP_DONE 0
+#define MAP_CONTINUE 1
+
+#define MAP_ALL_NODES 0
+#define MAP_LEAF_NODES 1
+
+#define MAP_END_KEY 1
+
+typedef int (btree_map_nodes_fn)(struct btree_op *b_op, struct btree *b);
+int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
+ struct bkey *from, btree_map_nodes_fn *fn, int flags);
+
+static inline int bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
+ struct bkey *from, btree_map_nodes_fn *fn)
+{
+ return __bch_btree_map_nodes(op, c, from, fn, MAP_ALL_NODES);
+}
+
+static inline int bch_btree_map_leaf_nodes(struct btree_op *op,
+ struct cache_set *c,
+ struct bkey *from,
+ btree_map_nodes_fn *fn)
+{
+ return __bch_btree_map_nodes(op, c, from, fn, MAP_LEAF_NODES);
+}
+
+typedef int (btree_map_keys_fn)(struct btree_op *op, struct btree *b,
+ struct bkey *k);
+int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
+ struct bkey *from, btree_map_keys_fn *fn, int flags);
+int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
+ struct bkey *from, btree_map_keys_fn *fn,
+ int flags);
+
+typedef bool (keybuf_pred_fn)(struct keybuf *buf, struct bkey *k);
+
+void bch_keybuf_init(struct keybuf *buf);
+void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
+ struct bkey *end, keybuf_pred_fn *pred);
+bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
+ struct bkey *end);
+void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w);
+struct keybuf_key *bch_keybuf_next(struct keybuf *buf);
+struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
+ struct keybuf *buf,
+ struct bkey *end,
+ keybuf_pred_fn *pred);
+void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats);
+#endif
diff --git a/drivers/md/bcache/closure.c b/drivers/md/bcache/closure.c
new file mode 100644
index 000000000..d8d9394a6
--- /dev/null
+++ b/drivers/md/bcache/closure.c
@@ -0,0 +1,207 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Asynchronous refcounty things
+ *
+ * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
+ * Copyright 2012 Google, Inc.
+ */
+
+#include <linux/debugfs.h>
+#include <linux/module.h>
+#include <linux/seq_file.h>
+#include <linux/sched/debug.h>
+
+#include "closure.h"
+
+static inline void closure_put_after_sub(struct closure *cl, int flags)
+{
+ int r = flags & CLOSURE_REMAINING_MASK;
+
+ BUG_ON(flags & CLOSURE_GUARD_MASK);
+ BUG_ON(!r && (flags & ~CLOSURE_DESTRUCTOR));
+
+ if (!r) {
+ if (cl->fn && !(flags & CLOSURE_DESTRUCTOR)) {
+ atomic_set(&cl->remaining,
+ CLOSURE_REMAINING_INITIALIZER);
+ closure_queue(cl);
+ } else {
+ struct closure *parent = cl->parent;
+ closure_fn *destructor = cl->fn;
+
+ closure_debug_destroy(cl);
+
+ if (destructor)
+ destructor(cl);
+
+ if (parent)
+ closure_put(parent);
+ }
+ }
+}
+
+/* For clearing flags with the same atomic op as a put */
+void closure_sub(struct closure *cl, int v)
+{
+ closure_put_after_sub(cl, atomic_sub_return(v, &cl->remaining));
+}
+
+/*
+ * closure_put - decrement a closure's refcount
+ */
+void closure_put(struct closure *cl)
+{
+ closure_put_after_sub(cl, atomic_dec_return(&cl->remaining));
+}
+
+/*
+ * closure_wake_up - wake up all closures on a wait list, without memory barrier
+ */
+void __closure_wake_up(struct closure_waitlist *wait_list)
+{
+ struct llist_node *list;
+ struct closure *cl, *t;
+ struct llist_node *reverse = NULL;
+
+ list = llist_del_all(&wait_list->list);
+
+ /* We first reverse the list to preserve FIFO ordering and fairness */
+ reverse = llist_reverse_order(list);
+
+ /* Then do the wakeups */
+ llist_for_each_entry_safe(cl, t, reverse, list) {
+ closure_set_waiting(cl, 0);
+ closure_sub(cl, CLOSURE_WAITING + 1);
+ }
+}
+
+/**
+ * closure_wait - add a closure to a waitlist
+ * @waitlist: will own a ref on @cl, which will be released when
+ * closure_wake_up() is called on @waitlist.
+ * @cl: closure pointer.
+ *
+ */
+bool closure_wait(struct closure_waitlist *waitlist, struct closure *cl)
+{
+ if (atomic_read(&cl->remaining) & CLOSURE_WAITING)
+ return false;
+
+ closure_set_waiting(cl, _RET_IP_);
+ atomic_add(CLOSURE_WAITING + 1, &cl->remaining);
+ llist_add(&cl->list, &waitlist->list);
+
+ return true;
+}
+
+struct closure_syncer {
+ struct task_struct *task;
+ int done;
+};
+
+static void closure_sync_fn(struct closure *cl)
+{
+ struct closure_syncer *s = cl->s;
+ struct task_struct *p;
+
+ rcu_read_lock();
+ p = READ_ONCE(s->task);
+ s->done = 1;
+ wake_up_process(p);
+ rcu_read_unlock();
+}
+
+void __sched __closure_sync(struct closure *cl)
+{
+ struct closure_syncer s = { .task = current };
+
+ cl->s = &s;
+ continue_at(cl, closure_sync_fn, NULL);
+
+ while (1) {
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ if (s.done)
+ break;
+ schedule();
+ }
+
+ __set_current_state(TASK_RUNNING);
+}
+
+#ifdef CONFIG_BCACHE_CLOSURES_DEBUG
+
+static LIST_HEAD(closure_list);
+static DEFINE_SPINLOCK(closure_list_lock);
+
+void closure_debug_create(struct closure *cl)
+{
+ unsigned long flags;
+
+ BUG_ON(cl->magic == CLOSURE_MAGIC_ALIVE);
+ cl->magic = CLOSURE_MAGIC_ALIVE;
+
+ spin_lock_irqsave(&closure_list_lock, flags);
+ list_add(&cl->all, &closure_list);
+ spin_unlock_irqrestore(&closure_list_lock, flags);
+}
+
+void closure_debug_destroy(struct closure *cl)
+{
+ unsigned long flags;
+
+ BUG_ON(cl->magic != CLOSURE_MAGIC_ALIVE);
+ cl->magic = CLOSURE_MAGIC_DEAD;
+
+ spin_lock_irqsave(&closure_list_lock, flags);
+ list_del(&cl->all);
+ spin_unlock_irqrestore(&closure_list_lock, flags);
+}
+
+static struct dentry *closure_debug;
+
+static int debug_show(struct seq_file *f, void *data)
+{
+ struct closure *cl;
+
+ spin_lock_irq(&closure_list_lock);
+
+ list_for_each_entry(cl, &closure_list, all) {
+ int r = atomic_read(&cl->remaining);
+
+ seq_printf(f, "%p: %pS -> %pS p %p r %i ",
+ cl, (void *) cl->ip, cl->fn, cl->parent,
+ r & CLOSURE_REMAINING_MASK);
+
+ seq_printf(f, "%s%s\n",
+ test_bit(WORK_STRUCT_PENDING_BIT,
+ work_data_bits(&cl->work)) ? "Q" : "",
+ r & CLOSURE_RUNNING ? "R" : "");
+
+ if (r & CLOSURE_WAITING)
+ seq_printf(f, " W %pS\n",
+ (void *) cl->waiting_on);
+
+ seq_printf(f, "\n");
+ }
+
+ spin_unlock_irq(&closure_list_lock);
+ return 0;
+}
+
+DEFINE_SHOW_ATTRIBUTE(debug);
+
+void __init closure_debug_init(void)
+{
+ if (!IS_ERR_OR_NULL(bcache_debug))
+ /*
+ * it is unnecessary to check return value of
+ * debugfs_create_file(), we should not care
+ * about this.
+ */
+ closure_debug = debugfs_create_file(
+ "closures", 0400, bcache_debug, NULL, &debug_fops);
+}
+#endif
+
+MODULE_AUTHOR("Kent Overstreet <koverstreet@google.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/bcache/closure.h b/drivers/md/bcache/closure.h
new file mode 100644
index 000000000..c88cdc4ae
--- /dev/null
+++ b/drivers/md/bcache/closure.h
@@ -0,0 +1,378 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _LINUX_CLOSURE_H
+#define _LINUX_CLOSURE_H
+
+#include <linux/llist.h>
+#include <linux/sched.h>
+#include <linux/sched/task_stack.h>
+#include <linux/workqueue.h>
+
+/*
+ * Closure is perhaps the most overused and abused term in computer science, but
+ * since I've been unable to come up with anything better you're stuck with it
+ * again.
+ *
+ * What are closures?
+ *
+ * They embed a refcount. The basic idea is they count "things that are in
+ * progress" - in flight bios, some other thread that's doing something else -
+ * anything you might want to wait on.
+ *
+ * The refcount may be manipulated with closure_get() and closure_put().
+ * closure_put() is where many of the interesting things happen, when it causes
+ * the refcount to go to 0.
+ *
+ * Closures can be used to wait on things both synchronously and asynchronously,
+ * and synchronous and asynchronous use can be mixed without restriction. To
+ * wait synchronously, use closure_sync() - you will sleep until your closure's
+ * refcount hits 1.
+ *
+ * To wait asynchronously, use
+ * continue_at(cl, next_function, workqueue);
+ *
+ * passing it, as you might expect, the function to run when nothing is pending
+ * and the workqueue to run that function out of.
+ *
+ * continue_at() also, critically, requires a 'return' immediately following the
+ * location where this macro is referenced, to return to the calling function.
+ * There's good reason for this.
+ *
+ * To use safely closures asynchronously, they must always have a refcount while
+ * they are running owned by the thread that is running them. Otherwise, suppose
+ * you submit some bios and wish to have a function run when they all complete:
+ *
+ * foo_endio(struct bio *bio)
+ * {
+ * closure_put(cl);
+ * }
+ *
+ * closure_init(cl);
+ *
+ * do_stuff();
+ * closure_get(cl);
+ * bio1->bi_endio = foo_endio;
+ * bio_submit(bio1);
+ *
+ * do_more_stuff();
+ * closure_get(cl);
+ * bio2->bi_endio = foo_endio;
+ * bio_submit(bio2);
+ *
+ * continue_at(cl, complete_some_read, system_wq);
+ *
+ * If closure's refcount started at 0, complete_some_read() could run before the
+ * second bio was submitted - which is almost always not what you want! More
+ * importantly, it wouldn't be possible to say whether the original thread or
+ * complete_some_read()'s thread owned the closure - and whatever state it was
+ * associated with!
+ *
+ * So, closure_init() initializes a closure's refcount to 1 - and when a
+ * closure_fn is run, the refcount will be reset to 1 first.
+ *
+ * Then, the rule is - if you got the refcount with closure_get(), release it
+ * with closure_put() (i.e, in a bio->bi_endio function). If you have a refcount
+ * on a closure because you called closure_init() or you were run out of a
+ * closure - _always_ use continue_at(). Doing so consistently will help
+ * eliminate an entire class of particularly pernicious races.
+ *
+ * Lastly, you might have a wait list dedicated to a specific event, and have no
+ * need for specifying the condition - you just want to wait until someone runs
+ * closure_wake_up() on the appropriate wait list. In that case, just use
+ * closure_wait(). It will return either true or false, depending on whether the
+ * closure was already on a wait list or not - a closure can only be on one wait
+ * list at a time.
+ *
+ * Parents:
+ *
+ * closure_init() takes two arguments - it takes the closure to initialize, and
+ * a (possibly null) parent.
+ *
+ * If parent is non null, the new closure will have a refcount for its lifetime;
+ * a closure is considered to be "finished" when its refcount hits 0 and the
+ * function to run is null. Hence
+ *
+ * continue_at(cl, NULL, NULL);
+ *
+ * returns up the (spaghetti) stack of closures, precisely like normal return
+ * returns up the C stack. continue_at() with non null fn is better thought of
+ * as doing a tail call.
+ *
+ * All this implies that a closure should typically be embedded in a particular
+ * struct (which its refcount will normally control the lifetime of), and that
+ * struct can very much be thought of as a stack frame.
+ */
+
+struct closure;
+struct closure_syncer;
+typedef void (closure_fn) (struct closure *);
+extern struct dentry *bcache_debug;
+
+struct closure_waitlist {
+ struct llist_head list;
+};
+
+enum closure_state {
+ /*
+ * CLOSURE_WAITING: Set iff the closure is on a waitlist. Must be set by
+ * the thread that owns the closure, and cleared by the thread that's
+ * waking up the closure.
+ *
+ * The rest are for debugging and don't affect behaviour:
+ *
+ * CLOSURE_RUNNING: Set when a closure is running (i.e. by
+ * closure_init() and when closure_put() runs then next function), and
+ * must be cleared before remaining hits 0. Primarily to help guard
+ * against incorrect usage and accidentally transferring references.
+ * continue_at() and closure_return() clear it for you, if you're doing
+ * something unusual you can use closure_set_dead() which also helps
+ * annotate where references are being transferred.
+ */
+
+ CLOSURE_BITS_START = (1U << 26),
+ CLOSURE_DESTRUCTOR = (1U << 26),
+ CLOSURE_WAITING = (1U << 28),
+ CLOSURE_RUNNING = (1U << 30),
+};
+
+#define CLOSURE_GUARD_MASK \
+ ((CLOSURE_DESTRUCTOR|CLOSURE_WAITING|CLOSURE_RUNNING) << 1)
+
+#define CLOSURE_REMAINING_MASK (CLOSURE_BITS_START - 1)
+#define CLOSURE_REMAINING_INITIALIZER (1|CLOSURE_RUNNING)
+
+struct closure {
+ union {
+ struct {
+ struct workqueue_struct *wq;
+ struct closure_syncer *s;
+ struct llist_node list;
+ closure_fn *fn;
+ };
+ struct work_struct work;
+ };
+
+ struct closure *parent;
+
+ atomic_t remaining;
+
+#ifdef CONFIG_BCACHE_CLOSURES_DEBUG
+#define CLOSURE_MAGIC_DEAD 0xc054dead
+#define CLOSURE_MAGIC_ALIVE 0xc054a11e
+
+ unsigned int magic;
+ struct list_head all;
+ unsigned long ip;
+ unsigned long waiting_on;
+#endif
+};
+
+void closure_sub(struct closure *cl, int v);
+void closure_put(struct closure *cl);
+void __closure_wake_up(struct closure_waitlist *list);
+bool closure_wait(struct closure_waitlist *list, struct closure *cl);
+void __closure_sync(struct closure *cl);
+
+/**
+ * closure_sync - sleep until a closure a closure has nothing left to wait on
+ *
+ * Sleeps until the refcount hits 1 - the thread that's running the closure owns
+ * the last refcount.
+ */
+static inline void closure_sync(struct closure *cl)
+{
+ if ((atomic_read(&cl->remaining) & CLOSURE_REMAINING_MASK) != 1)
+ __closure_sync(cl);
+}
+
+#ifdef CONFIG_BCACHE_CLOSURES_DEBUG
+
+void closure_debug_init(void);
+void closure_debug_create(struct closure *cl);
+void closure_debug_destroy(struct closure *cl);
+
+#else
+
+static inline void closure_debug_init(void) {}
+static inline void closure_debug_create(struct closure *cl) {}
+static inline void closure_debug_destroy(struct closure *cl) {}
+
+#endif
+
+static inline void closure_set_ip(struct closure *cl)
+{
+#ifdef CONFIG_BCACHE_CLOSURES_DEBUG
+ cl->ip = _THIS_IP_;
+#endif
+}
+
+static inline void closure_set_ret_ip(struct closure *cl)
+{
+#ifdef CONFIG_BCACHE_CLOSURES_DEBUG
+ cl->ip = _RET_IP_;
+#endif
+}
+
+static inline void closure_set_waiting(struct closure *cl, unsigned long f)
+{
+#ifdef CONFIG_BCACHE_CLOSURES_DEBUG
+ cl->waiting_on = f;
+#endif
+}
+
+static inline void closure_set_stopped(struct closure *cl)
+{
+ atomic_sub(CLOSURE_RUNNING, &cl->remaining);
+}
+
+static inline void set_closure_fn(struct closure *cl, closure_fn *fn,
+ struct workqueue_struct *wq)
+{
+ closure_set_ip(cl);
+ cl->fn = fn;
+ cl->wq = wq;
+ /* between atomic_dec() in closure_put() */
+ smp_mb__before_atomic();
+}
+
+static inline void closure_queue(struct closure *cl)
+{
+ struct workqueue_struct *wq = cl->wq;
+ /**
+ * Changes made to closure, work_struct, or a couple of other structs
+ * may cause work.func not pointing to the right location.
+ */
+ BUILD_BUG_ON(offsetof(struct closure, fn)
+ != offsetof(struct work_struct, func));
+ if (wq) {
+ INIT_WORK(&cl->work, cl->work.func);
+ BUG_ON(!queue_work(wq, &cl->work));
+ } else
+ cl->fn(cl);
+}
+
+/**
+ * closure_get - increment a closure's refcount
+ */
+static inline void closure_get(struct closure *cl)
+{
+#ifdef CONFIG_BCACHE_CLOSURES_DEBUG
+ BUG_ON((atomic_inc_return(&cl->remaining) &
+ CLOSURE_REMAINING_MASK) <= 1);
+#else
+ atomic_inc(&cl->remaining);
+#endif
+}
+
+/**
+ * closure_init - Initialize a closure, setting the refcount to 1
+ * @cl: closure to initialize
+ * @parent: parent of the new closure. cl will take a refcount on it for its
+ * lifetime; may be NULL.
+ */
+static inline void closure_init(struct closure *cl, struct closure *parent)
+{
+ memset(cl, 0, sizeof(struct closure));
+ cl->parent = parent;
+ if (parent)
+ closure_get(parent);
+
+ atomic_set(&cl->remaining, CLOSURE_REMAINING_INITIALIZER);
+
+ closure_debug_create(cl);
+ closure_set_ip(cl);
+}
+
+static inline void closure_init_stack(struct closure *cl)
+{
+ memset(cl, 0, sizeof(struct closure));
+ atomic_set(&cl->remaining, CLOSURE_REMAINING_INITIALIZER);
+}
+
+/**
+ * closure_wake_up - wake up all closures on a wait list,
+ * with memory barrier
+ */
+static inline void closure_wake_up(struct closure_waitlist *list)
+{
+ /* Memory barrier for the wait list */
+ smp_mb();
+ __closure_wake_up(list);
+}
+
+/**
+ * continue_at - jump to another function with barrier
+ *
+ * After @cl is no longer waiting on anything (i.e. all outstanding refs have
+ * been dropped with closure_put()), it will resume execution at @fn running out
+ * of @wq (or, if @wq is NULL, @fn will be called by closure_put() directly).
+ *
+ * This is because after calling continue_at() you no longer have a ref on @cl,
+ * and whatever @cl owns may be freed out from under you - a running closure fn
+ * has a ref on its own closure which continue_at() drops.
+ *
+ * Note you are expected to immediately return after using this macro.
+ */
+#define continue_at(_cl, _fn, _wq) \
+do { \
+ set_closure_fn(_cl, _fn, _wq); \
+ closure_sub(_cl, CLOSURE_RUNNING + 1); \
+} while (0)
+
+/**
+ * closure_return - finish execution of a closure
+ *
+ * This is used to indicate that @cl is finished: when all outstanding refs on
+ * @cl have been dropped @cl's ref on its parent closure (as passed to
+ * closure_init()) will be dropped, if one was specified - thus this can be
+ * thought of as returning to the parent closure.
+ */
+#define closure_return(_cl) continue_at((_cl), NULL, NULL)
+
+/**
+ * continue_at_nobarrier - jump to another function without barrier
+ *
+ * Causes @fn to be executed out of @cl, in @wq context (or called directly if
+ * @wq is NULL).
+ *
+ * The ref the caller of continue_at_nobarrier() had on @cl is now owned by @fn,
+ * thus it's not safe to touch anything protected by @cl after a
+ * continue_at_nobarrier().
+ */
+#define continue_at_nobarrier(_cl, _fn, _wq) \
+do { \
+ set_closure_fn(_cl, _fn, _wq); \
+ closure_queue(_cl); \
+} while (0)
+
+/**
+ * closure_return_with_destructor - finish execution of a closure,
+ * with destructor
+ *
+ * Works like closure_return(), except @destructor will be called when all
+ * outstanding refs on @cl have been dropped; @destructor may be used to safely
+ * free the memory occupied by @cl, and it is called with the ref on the parent
+ * closure still held - so @destructor could safely return an item to a
+ * freelist protected by @cl's parent.
+ */
+#define closure_return_with_destructor(_cl, _destructor) \
+do { \
+ set_closure_fn(_cl, _destructor, NULL); \
+ closure_sub(_cl, CLOSURE_RUNNING - CLOSURE_DESTRUCTOR + 1); \
+} while (0)
+
+/**
+ * closure_call - execute @fn out of a new, uninitialized closure
+ *
+ * Typically used when running out of one closure, and we want to run @fn
+ * asynchronously out of a new closure - @parent will then wait for @cl to
+ * finish.
+ */
+static inline void closure_call(struct closure *cl, closure_fn fn,
+ struct workqueue_struct *wq,
+ struct closure *parent)
+{
+ closure_init(cl, parent);
+ continue_at_nobarrier(cl, fn, wq);
+}
+
+#endif /* _LINUX_CLOSURE_H */
diff --git a/drivers/md/bcache/debug.c b/drivers/md/bcache/debug.c
new file mode 100644
index 000000000..7510d1c98
--- /dev/null
+++ b/drivers/md/bcache/debug.c
@@ -0,0 +1,263 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Assorted bcache debug code
+ *
+ * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
+ * Copyright 2012 Google, Inc.
+ */
+
+#include "bcache.h"
+#include "btree.h"
+#include "debug.h"
+#include "extents.h"
+
+#include <linux/console.h>
+#include <linux/debugfs.h>
+#include <linux/module.h>
+#include <linux/random.h>
+#include <linux/seq_file.h>
+
+struct dentry *bcache_debug;
+
+#ifdef CONFIG_BCACHE_DEBUG
+
+#define for_each_written_bset(b, start, i) \
+ for (i = (start); \
+ (void *) i < (void *) (start) + (KEY_SIZE(&b->key) << 9) &&\
+ i->seq == (start)->seq; \
+ i = (void *) i + set_blocks(i, block_bytes(b->c->cache)) * \
+ block_bytes(b->c->cache))
+
+void bch_btree_verify(struct btree *b)
+{
+ struct btree *v = b->c->verify_data;
+ struct bset *ondisk, *sorted, *inmemory;
+ struct bio *bio;
+
+ if (!b->c->verify || !b->c->verify_ondisk)
+ return;
+
+ down(&b->io_mutex);
+ mutex_lock(&b->c->verify_lock);
+
+ ondisk = b->c->verify_ondisk;
+ sorted = b->c->verify_data->keys.set->data;
+ inmemory = b->keys.set->data;
+
+ bkey_copy(&v->key, &b->key);
+ v->written = 0;
+ v->level = b->level;
+ v->keys.ops = b->keys.ops;
+
+ bio = bch_bbio_alloc(b->c);
+ bio_set_dev(bio, b->c->cache->bdev);
+ bio->bi_iter.bi_sector = PTR_OFFSET(&b->key, 0);
+ bio->bi_iter.bi_size = KEY_SIZE(&v->key) << 9;
+ bio->bi_opf = REQ_OP_READ | REQ_META;
+ bch_bio_map(bio, sorted);
+
+ submit_bio_wait(bio);
+ bch_bbio_free(bio, b->c);
+
+ memcpy(ondisk, sorted, KEY_SIZE(&v->key) << 9);
+
+ bch_btree_node_read_done(v);
+ sorted = v->keys.set->data;
+
+ if (inmemory->keys != sorted->keys ||
+ memcmp(inmemory->start,
+ sorted->start,
+ (void *) bset_bkey_last(inmemory) -
+ (void *) inmemory->start)) {
+ struct bset *i;
+ unsigned int j;
+
+ console_lock();
+
+ pr_err("*** in memory:\n");
+ bch_dump_bset(&b->keys, inmemory, 0);
+
+ pr_err("*** read back in:\n");
+ bch_dump_bset(&v->keys, sorted, 0);
+
+ for_each_written_bset(b, ondisk, i) {
+ unsigned int block = ((void *) i - (void *) ondisk) /
+ block_bytes(b->c->cache);
+
+ pr_err("*** on disk block %u:\n", block);
+ bch_dump_bset(&b->keys, i, block);
+ }
+
+ pr_err("*** block %zu not written\n",
+ ((void *) i - (void *) ondisk) / block_bytes(b->c->cache));
+
+ for (j = 0; j < inmemory->keys; j++)
+ if (inmemory->d[j] != sorted->d[j])
+ break;
+
+ pr_err("b->written %u\n", b->written);
+
+ console_unlock();
+ panic("verify failed at %u\n", j);
+ }
+
+ mutex_unlock(&b->c->verify_lock);
+ up(&b->io_mutex);
+}
+
+void bch_data_verify(struct cached_dev *dc, struct bio *bio)
+{
+ unsigned int nr_segs = bio_segments(bio);
+ struct bio *check;
+ struct bio_vec bv, cbv;
+ struct bvec_iter iter, citer = { 0 };
+
+ check = bio_kmalloc(nr_segs, GFP_NOIO);
+ if (!check)
+ return;
+ bio_init(check, bio->bi_bdev, check->bi_inline_vecs, nr_segs,
+ REQ_OP_READ);
+ check->bi_iter.bi_sector = bio->bi_iter.bi_sector;
+ check->bi_iter.bi_size = bio->bi_iter.bi_size;
+
+ bch_bio_map(check, NULL);
+ if (bch_bio_alloc_pages(check, GFP_NOIO))
+ goto out_put;
+
+ submit_bio_wait(check);
+
+ citer.bi_size = UINT_MAX;
+ bio_for_each_segment(bv, bio, iter) {
+ void *p1 = bvec_kmap_local(&bv);
+ void *p2;
+
+ cbv = bio_iter_iovec(check, citer);
+ p2 = bvec_kmap_local(&cbv);
+
+ cache_set_err_on(memcmp(p1, p2, bv.bv_len),
+ dc->disk.c,
+ "verify failed at dev %pg sector %llu",
+ dc->bdev,
+ (uint64_t) bio->bi_iter.bi_sector);
+
+ kunmap_local(p2);
+ kunmap_local(p1);
+ bio_advance_iter(check, &citer, bv.bv_len);
+ }
+
+ bio_free_pages(check);
+out_put:
+ bio_uninit(check);
+ kfree(check);
+}
+
+#endif
+
+#ifdef CONFIG_DEBUG_FS
+
+/* XXX: cache set refcounting */
+
+struct dump_iterator {
+ char buf[PAGE_SIZE];
+ size_t bytes;
+ struct cache_set *c;
+ struct keybuf keys;
+};
+
+static bool dump_pred(struct keybuf *buf, struct bkey *k)
+{
+ return true;
+}
+
+static ssize_t bch_dump_read(struct file *file, char __user *buf,
+ size_t size, loff_t *ppos)
+{
+ struct dump_iterator *i = file->private_data;
+ ssize_t ret = 0;
+ char kbuf[80];
+
+ while (size) {
+ struct keybuf_key *w;
+ unsigned int bytes = min(i->bytes, size);
+
+ if (copy_to_user(buf, i->buf, bytes))
+ return -EFAULT;
+
+ ret += bytes;
+ buf += bytes;
+ size -= bytes;
+ i->bytes -= bytes;
+ memmove(i->buf, i->buf + bytes, i->bytes);
+
+ if (i->bytes)
+ break;
+
+ w = bch_keybuf_next_rescan(i->c, &i->keys, &MAX_KEY, dump_pred);
+ if (!w)
+ break;
+
+ bch_extent_to_text(kbuf, sizeof(kbuf), &w->key);
+ i->bytes = snprintf(i->buf, PAGE_SIZE, "%s\n", kbuf);
+ bch_keybuf_del(&i->keys, w);
+ }
+
+ return ret;
+}
+
+static int bch_dump_open(struct inode *inode, struct file *file)
+{
+ struct cache_set *c = inode->i_private;
+ struct dump_iterator *i;
+
+ i = kzalloc(sizeof(struct dump_iterator), GFP_KERNEL);
+ if (!i)
+ return -ENOMEM;
+
+ file->private_data = i;
+ i->c = c;
+ bch_keybuf_init(&i->keys);
+ i->keys.last_scanned = KEY(0, 0, 0);
+
+ return 0;
+}
+
+static int bch_dump_release(struct inode *inode, struct file *file)
+{
+ kfree(file->private_data);
+ return 0;
+}
+
+static const struct file_operations cache_set_debug_ops = {
+ .owner = THIS_MODULE,
+ .open = bch_dump_open,
+ .read = bch_dump_read,
+ .release = bch_dump_release
+};
+
+void bch_debug_init_cache_set(struct cache_set *c)
+{
+ if (!IS_ERR_OR_NULL(bcache_debug)) {
+ char name[50];
+
+ snprintf(name, 50, "bcache-%pU", c->set_uuid);
+ c->debug = debugfs_create_file(name, 0400, bcache_debug, c,
+ &cache_set_debug_ops);
+ }
+}
+
+#endif
+
+void bch_debug_exit(void)
+{
+ debugfs_remove_recursive(bcache_debug);
+}
+
+void __init bch_debug_init(void)
+{
+ /*
+ * it is unnecessary to check return value of
+ * debugfs_create_file(), we should not care
+ * about this.
+ */
+ bcache_debug = debugfs_create_dir("bcache", NULL);
+}
diff --git a/drivers/md/bcache/debug.h b/drivers/md/bcache/debug.h
new file mode 100644
index 000000000..fb3d4dff4
--- /dev/null
+++ b/drivers/md/bcache/debug.h
@@ -0,0 +1,35 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _BCACHE_DEBUG_H
+#define _BCACHE_DEBUG_H
+
+struct bio;
+struct cached_dev;
+struct cache_set;
+
+#ifdef CONFIG_BCACHE_DEBUG
+
+void bch_btree_verify(struct btree *b);
+void bch_data_verify(struct cached_dev *dc, struct bio *bio);
+
+#define expensive_debug_checks(c) ((c)->expensive_debug_checks)
+#define key_merging_disabled(c) ((c)->key_merging_disabled)
+#define bypass_torture_test(d) ((d)->bypass_torture_test)
+
+#else /* DEBUG */
+
+static inline void bch_btree_verify(struct btree *b) {}
+static inline void bch_data_verify(struct cached_dev *dc, struct bio *bio) {}
+
+#define expensive_debug_checks(c) 0
+#define key_merging_disabled(c) 0
+#define bypass_torture_test(d) 0
+
+#endif
+
+#ifdef CONFIG_DEBUG_FS
+void bch_debug_init_cache_set(struct cache_set *c);
+#else
+static inline void bch_debug_init_cache_set(struct cache_set *c) {}
+#endif
+
+#endif
diff --git a/drivers/md/bcache/extents.c b/drivers/md/bcache/extents.c
new file mode 100644
index 000000000..d626ffcbe
--- /dev/null
+++ b/drivers/md/bcache/extents.c
@@ -0,0 +1,630 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
+ *
+ * Uses a block device as cache for other block devices; optimized for SSDs.
+ * All allocation is done in buckets, which should match the erase block size
+ * of the device.
+ *
+ * Buckets containing cached data are kept on a heap sorted by priority;
+ * bucket priority is increased on cache hit, and periodically all the buckets
+ * on the heap have their priority scaled down. This currently is just used as
+ * an LRU but in the future should allow for more intelligent heuristics.
+ *
+ * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
+ * counter. Garbage collection is used to remove stale pointers.
+ *
+ * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
+ * as keys are inserted we only sort the pages that have not yet been written.
+ * When garbage collection is run, we resort the entire node.
+ *
+ * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
+ */
+
+#include "bcache.h"
+#include "btree.h"
+#include "debug.h"
+#include "extents.h"
+#include "writeback.h"
+
+static void sort_key_next(struct btree_iter *iter,
+ struct btree_iter_set *i)
+{
+ i->k = bkey_next(i->k);
+
+ if (i->k == i->end)
+ *i = iter->data[--iter->used];
+}
+
+static bool bch_key_sort_cmp(struct btree_iter_set l,
+ struct btree_iter_set r)
+{
+ int64_t c = bkey_cmp(l.k, r.k);
+
+ return c ? c > 0 : l.k < r.k;
+}
+
+static bool __ptr_invalid(struct cache_set *c, const struct bkey *k)
+{
+ unsigned int i;
+
+ for (i = 0; i < KEY_PTRS(k); i++)
+ if (ptr_available(c, k, i)) {
+ struct cache *ca = c->cache;
+ size_t bucket = PTR_BUCKET_NR(c, k, i);
+ size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
+
+ if (KEY_SIZE(k) + r > c->cache->sb.bucket_size ||
+ bucket < ca->sb.first_bucket ||
+ bucket >= ca->sb.nbuckets)
+ return true;
+ }
+
+ return false;
+}
+
+/* Common among btree and extent ptrs */
+
+static const char *bch_ptr_status(struct cache_set *c, const struct bkey *k)
+{
+ unsigned int i;
+
+ for (i = 0; i < KEY_PTRS(k); i++)
+ if (ptr_available(c, k, i)) {
+ struct cache *ca = c->cache;
+ size_t bucket = PTR_BUCKET_NR(c, k, i);
+ size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
+
+ if (KEY_SIZE(k) + r > c->cache->sb.bucket_size)
+ return "bad, length too big";
+ if (bucket < ca->sb.first_bucket)
+ return "bad, short offset";
+ if (bucket >= ca->sb.nbuckets)
+ return "bad, offset past end of device";
+ if (ptr_stale(c, k, i))
+ return "stale";
+ }
+
+ if (!bkey_cmp(k, &ZERO_KEY))
+ return "bad, null key";
+ if (!KEY_PTRS(k))
+ return "bad, no pointers";
+ if (!KEY_SIZE(k))
+ return "zeroed key";
+ return "";
+}
+
+void bch_extent_to_text(char *buf, size_t size, const struct bkey *k)
+{
+ unsigned int i = 0;
+ char *out = buf, *end = buf + size;
+
+#define p(...) (out += scnprintf(out, end - out, __VA_ARGS__))
+
+ p("%llu:%llu len %llu -> [", KEY_INODE(k), KEY_START(k), KEY_SIZE(k));
+
+ for (i = 0; i < KEY_PTRS(k); i++) {
+ if (i)
+ p(", ");
+
+ if (PTR_DEV(k, i) == PTR_CHECK_DEV)
+ p("check dev");
+ else
+ p("%llu:%llu gen %llu", PTR_DEV(k, i),
+ PTR_OFFSET(k, i), PTR_GEN(k, i));
+ }
+
+ p("]");
+
+ if (KEY_DIRTY(k))
+ p(" dirty");
+ if (KEY_CSUM(k))
+ p(" cs%llu %llx", KEY_CSUM(k), k->ptr[1]);
+#undef p
+}
+
+static void bch_bkey_dump(struct btree_keys *keys, const struct bkey *k)
+{
+ struct btree *b = container_of(keys, struct btree, keys);
+ unsigned int j;
+ char buf[80];
+
+ bch_extent_to_text(buf, sizeof(buf), k);
+ pr_cont(" %s", buf);
+
+ for (j = 0; j < KEY_PTRS(k); j++) {
+ size_t n = PTR_BUCKET_NR(b->c, k, j);
+
+ pr_cont(" bucket %zu", n);
+ if (n >= b->c->cache->sb.first_bucket && n < b->c->cache->sb.nbuckets)
+ pr_cont(" prio %i",
+ PTR_BUCKET(b->c, k, j)->prio);
+ }
+
+ pr_cont(" %s\n", bch_ptr_status(b->c, k));
+}
+
+/* Btree ptrs */
+
+bool __bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k)
+{
+ char buf[80];
+
+ if (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))
+ goto bad;
+
+ if (__ptr_invalid(c, k))
+ goto bad;
+
+ return false;
+bad:
+ bch_extent_to_text(buf, sizeof(buf), k);
+ cache_bug(c, "spotted btree ptr %s: %s", buf, bch_ptr_status(c, k));
+ return true;
+}
+
+static bool bch_btree_ptr_invalid(struct btree_keys *bk, const struct bkey *k)
+{
+ struct btree *b = container_of(bk, struct btree, keys);
+
+ return __bch_btree_ptr_invalid(b->c, k);
+}
+
+static bool btree_ptr_bad_expensive(struct btree *b, const struct bkey *k)
+{
+ unsigned int i;
+ char buf[80];
+ struct bucket *g;
+
+ if (mutex_trylock(&b->c->bucket_lock)) {
+ for (i = 0; i < KEY_PTRS(k); i++)
+ if (ptr_available(b->c, k, i)) {
+ g = PTR_BUCKET(b->c, k, i);
+
+ if (KEY_DIRTY(k) ||
+ g->prio != BTREE_PRIO ||
+ (b->c->gc_mark_valid &&
+ GC_MARK(g) != GC_MARK_METADATA))
+ goto err;
+ }
+
+ mutex_unlock(&b->c->bucket_lock);
+ }
+
+ return false;
+err:
+ mutex_unlock(&b->c->bucket_lock);
+ bch_extent_to_text(buf, sizeof(buf), k);
+ btree_bug(b,
+"inconsistent btree pointer %s: bucket %zi pin %i prio %i gen %i last_gc %i mark %llu",
+ buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin),
+ g->prio, g->gen, g->last_gc, GC_MARK(g));
+ return true;
+}
+
+static bool bch_btree_ptr_bad(struct btree_keys *bk, const struct bkey *k)
+{
+ struct btree *b = container_of(bk, struct btree, keys);
+ unsigned int i;
+
+ if (!bkey_cmp(k, &ZERO_KEY) ||
+ !KEY_PTRS(k) ||
+ bch_ptr_invalid(bk, k))
+ return true;
+
+ for (i = 0; i < KEY_PTRS(k); i++)
+ if (!ptr_available(b->c, k, i) ||
+ ptr_stale(b->c, k, i))
+ return true;
+
+ if (expensive_debug_checks(b->c) &&
+ btree_ptr_bad_expensive(b, k))
+ return true;
+
+ return false;
+}
+
+static bool bch_btree_ptr_insert_fixup(struct btree_keys *bk,
+ struct bkey *insert,
+ struct btree_iter *iter,
+ struct bkey *replace_key)
+{
+ struct btree *b = container_of(bk, struct btree, keys);
+
+ if (!KEY_OFFSET(insert))
+ btree_current_write(b)->prio_blocked++;
+
+ return false;
+}
+
+const struct btree_keys_ops bch_btree_keys_ops = {
+ .sort_cmp = bch_key_sort_cmp,
+ .insert_fixup = bch_btree_ptr_insert_fixup,
+ .key_invalid = bch_btree_ptr_invalid,
+ .key_bad = bch_btree_ptr_bad,
+ .key_to_text = bch_extent_to_text,
+ .key_dump = bch_bkey_dump,
+};
+
+/* Extents */
+
+/*
+ * Returns true if l > r - unless l == r, in which case returns true if l is
+ * older than r.
+ *
+ * Necessary for btree_sort_fixup() - if there are multiple keys that compare
+ * equal in different sets, we have to process them newest to oldest.
+ */
+static bool bch_extent_sort_cmp(struct btree_iter_set l,
+ struct btree_iter_set r)
+{
+ int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k));
+
+ return c ? c > 0 : l.k < r.k;
+}
+
+static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter,
+ struct bkey *tmp)
+{
+ while (iter->used > 1) {
+ struct btree_iter_set *top = iter->data, *i = top + 1;
+
+ if (iter->used > 2 &&
+ bch_extent_sort_cmp(i[0], i[1]))
+ i++;
+
+ if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0)
+ break;
+
+ if (!KEY_SIZE(i->k)) {
+ sort_key_next(iter, i);
+ heap_sift(iter, i - top, bch_extent_sort_cmp);
+ continue;
+ }
+
+ if (top->k > i->k) {
+ if (bkey_cmp(top->k, i->k) >= 0)
+ sort_key_next(iter, i);
+ else
+ bch_cut_front(top->k, i->k);
+
+ heap_sift(iter, i - top, bch_extent_sort_cmp);
+ } else {
+ /* can't happen because of comparison func */
+ BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k)));
+
+ if (bkey_cmp(i->k, top->k) < 0) {
+ bkey_copy(tmp, top->k);
+
+ bch_cut_back(&START_KEY(i->k), tmp);
+ bch_cut_front(i->k, top->k);
+ heap_sift(iter, 0, bch_extent_sort_cmp);
+
+ return tmp;
+ } else {
+ bch_cut_back(&START_KEY(i->k), top->k);
+ }
+ }
+ }
+
+ return NULL;
+}
+
+static void bch_subtract_dirty(struct bkey *k,
+ struct cache_set *c,
+ uint64_t offset,
+ int sectors)
+{
+ if (KEY_DIRTY(k))
+ bcache_dev_sectors_dirty_add(c, KEY_INODE(k),
+ offset, -sectors);
+}
+
+static bool bch_extent_insert_fixup(struct btree_keys *b,
+ struct bkey *insert,
+ struct btree_iter *iter,
+ struct bkey *replace_key)
+{
+ struct cache_set *c = container_of(b, struct btree, keys)->c;
+
+ uint64_t old_offset;
+ unsigned int old_size, sectors_found = 0;
+
+ BUG_ON(!KEY_OFFSET(insert));
+ BUG_ON(!KEY_SIZE(insert));
+
+ while (1) {
+ struct bkey *k = bch_btree_iter_next(iter);
+
+ if (!k)
+ break;
+
+ if (bkey_cmp(&START_KEY(k), insert) >= 0) {
+ if (KEY_SIZE(k))
+ break;
+ else
+ continue;
+ }
+
+ if (bkey_cmp(k, &START_KEY(insert)) <= 0)
+ continue;
+
+ old_offset = KEY_START(k);
+ old_size = KEY_SIZE(k);
+
+ /*
+ * We might overlap with 0 size extents; we can't skip these
+ * because if they're in the set we're inserting to we have to
+ * adjust them so they don't overlap with the key we're
+ * inserting. But we don't want to check them for replace
+ * operations.
+ */
+
+ if (replace_key && KEY_SIZE(k)) {
+ /*
+ * k might have been split since we inserted/found the
+ * key we're replacing
+ */
+ unsigned int i;
+ uint64_t offset = KEY_START(k) -
+ KEY_START(replace_key);
+
+ /* But it must be a subset of the replace key */
+ if (KEY_START(k) < KEY_START(replace_key) ||
+ KEY_OFFSET(k) > KEY_OFFSET(replace_key))
+ goto check_failed;
+
+ /* We didn't find a key that we were supposed to */
+ if (KEY_START(k) > KEY_START(insert) + sectors_found)
+ goto check_failed;
+
+ if (!bch_bkey_equal_header(k, replace_key))
+ goto check_failed;
+
+ /* skip past gen */
+ offset <<= 8;
+
+ BUG_ON(!KEY_PTRS(replace_key));
+
+ for (i = 0; i < KEY_PTRS(replace_key); i++)
+ if (k->ptr[i] != replace_key->ptr[i] + offset)
+ goto check_failed;
+
+ sectors_found = KEY_OFFSET(k) - KEY_START(insert);
+ }
+
+ if (bkey_cmp(insert, k) < 0 &&
+ bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
+ /*
+ * We overlapped in the middle of an existing key: that
+ * means we have to split the old key. But we have to do
+ * slightly different things depending on whether the
+ * old key has been written out yet.
+ */
+
+ struct bkey *top;
+
+ bch_subtract_dirty(k, c, KEY_START(insert),
+ KEY_SIZE(insert));
+
+ if (bkey_written(b, k)) {
+ /*
+ * We insert a new key to cover the top of the
+ * old key, and the old key is modified in place
+ * to represent the bottom split.
+ *
+ * It's completely arbitrary whether the new key
+ * is the top or the bottom, but it has to match
+ * up with what btree_sort_fixup() does - it
+ * doesn't check for this kind of overlap, it
+ * depends on us inserting a new key for the top
+ * here.
+ */
+ top = bch_bset_search(b, bset_tree_last(b),
+ insert);
+ bch_bset_insert(b, top, k);
+ } else {
+ BKEY_PADDED(key) temp;
+ bkey_copy(&temp.key, k);
+ bch_bset_insert(b, k, &temp.key);
+ top = bkey_next(k);
+ }
+
+ bch_cut_front(insert, top);
+ bch_cut_back(&START_KEY(insert), k);
+ bch_bset_fix_invalidated_key(b, k);
+ goto out;
+ }
+
+ if (bkey_cmp(insert, k) < 0) {
+ bch_cut_front(insert, k);
+ } else {
+ if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
+ old_offset = KEY_START(insert);
+
+ if (bkey_written(b, k) &&
+ bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
+ /*
+ * Completely overwrote, so we don't have to
+ * invalidate the binary search tree
+ */
+ bch_cut_front(k, k);
+ } else {
+ __bch_cut_back(&START_KEY(insert), k);
+ bch_bset_fix_invalidated_key(b, k);
+ }
+ }
+
+ bch_subtract_dirty(k, c, old_offset, old_size - KEY_SIZE(k));
+ }
+
+check_failed:
+ if (replace_key) {
+ if (!sectors_found) {
+ return true;
+ } else if (sectors_found < KEY_SIZE(insert)) {
+ SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
+ (KEY_SIZE(insert) - sectors_found));
+ SET_KEY_SIZE(insert, sectors_found);
+ }
+ }
+out:
+ if (KEY_DIRTY(insert))
+ bcache_dev_sectors_dirty_add(c, KEY_INODE(insert),
+ KEY_START(insert),
+ KEY_SIZE(insert));
+
+ return false;
+}
+
+bool __bch_extent_invalid(struct cache_set *c, const struct bkey *k)
+{
+ char buf[80];
+
+ if (!KEY_SIZE(k))
+ return true;
+
+ if (KEY_SIZE(k) > KEY_OFFSET(k))
+ goto bad;
+
+ if (__ptr_invalid(c, k))
+ goto bad;
+
+ return false;
+bad:
+ bch_extent_to_text(buf, sizeof(buf), k);
+ cache_bug(c, "spotted extent %s: %s", buf, bch_ptr_status(c, k));
+ return true;
+}
+
+static bool bch_extent_invalid(struct btree_keys *bk, const struct bkey *k)
+{
+ struct btree *b = container_of(bk, struct btree, keys);
+
+ return __bch_extent_invalid(b->c, k);
+}
+
+static bool bch_extent_bad_expensive(struct btree *b, const struct bkey *k,
+ unsigned int ptr)
+{
+ struct bucket *g = PTR_BUCKET(b->c, k, ptr);
+ char buf[80];
+
+ if (mutex_trylock(&b->c->bucket_lock)) {
+ if (b->c->gc_mark_valid &&
+ (!GC_MARK(g) ||
+ GC_MARK(g) == GC_MARK_METADATA ||
+ (GC_MARK(g) != GC_MARK_DIRTY && KEY_DIRTY(k))))
+ goto err;
+
+ if (g->prio == BTREE_PRIO)
+ goto err;
+
+ mutex_unlock(&b->c->bucket_lock);
+ }
+
+ return false;
+err:
+ mutex_unlock(&b->c->bucket_lock);
+ bch_extent_to_text(buf, sizeof(buf), k);
+ btree_bug(b,
+"inconsistent extent pointer %s:\nbucket %zu pin %i prio %i gen %i last_gc %i mark %llu",
+ buf, PTR_BUCKET_NR(b->c, k, ptr), atomic_read(&g->pin),
+ g->prio, g->gen, g->last_gc, GC_MARK(g));
+ return true;
+}
+
+static bool bch_extent_bad(struct btree_keys *bk, const struct bkey *k)
+{
+ struct btree *b = container_of(bk, struct btree, keys);
+ unsigned int i, stale;
+ char buf[80];
+
+ if (!KEY_PTRS(k) ||
+ bch_extent_invalid(bk, k))
+ return true;
+
+ for (i = 0; i < KEY_PTRS(k); i++)
+ if (!ptr_available(b->c, k, i))
+ return true;
+
+ for (i = 0; i < KEY_PTRS(k); i++) {
+ stale = ptr_stale(b->c, k, i);
+
+ if (stale && KEY_DIRTY(k)) {
+ bch_extent_to_text(buf, sizeof(buf), k);
+ pr_info("stale dirty pointer, stale %u, key: %s\n",
+ stale, buf);
+ }
+
+ btree_bug_on(stale > BUCKET_GC_GEN_MAX, b,
+ "key too stale: %i, need_gc %u",
+ stale, b->c->need_gc);
+
+ if (stale)
+ return true;
+
+ if (expensive_debug_checks(b->c) &&
+ bch_extent_bad_expensive(b, k, i))
+ return true;
+ }
+
+ return false;
+}
+
+static uint64_t merge_chksums(struct bkey *l, struct bkey *r)
+{
+ return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) &
+ ~((uint64_t)1 << 63);
+}
+
+static bool bch_extent_merge(struct btree_keys *bk,
+ struct bkey *l,
+ struct bkey *r)
+{
+ struct btree *b = container_of(bk, struct btree, keys);
+ unsigned int i;
+
+ if (key_merging_disabled(b->c))
+ return false;
+
+ for (i = 0; i < KEY_PTRS(l); i++)
+ if (l->ptr[i] + MAKE_PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
+ PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
+ return false;
+
+ /* Keys with no pointers aren't restricted to one bucket and could
+ * overflow KEY_SIZE
+ */
+ if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) {
+ SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l));
+ SET_KEY_SIZE(l, USHRT_MAX);
+
+ bch_cut_front(l, r);
+ return false;
+ }
+
+ if (KEY_CSUM(l)) {
+ if (KEY_CSUM(r))
+ l->ptr[KEY_PTRS(l)] = merge_chksums(l, r);
+ else
+ SET_KEY_CSUM(l, 0);
+ }
+
+ SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r));
+ SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r));
+
+ return true;
+}
+
+const struct btree_keys_ops bch_extent_keys_ops = {
+ .sort_cmp = bch_extent_sort_cmp,
+ .sort_fixup = bch_extent_sort_fixup,
+ .insert_fixup = bch_extent_insert_fixup,
+ .key_invalid = bch_extent_invalid,
+ .key_bad = bch_extent_bad,
+ .key_merge = bch_extent_merge,
+ .key_to_text = bch_extent_to_text,
+ .key_dump = bch_bkey_dump,
+ .is_extents = true,
+};
diff --git a/drivers/md/bcache/extents.h b/drivers/md/bcache/extents.h
new file mode 100644
index 000000000..4d667e05b
--- /dev/null
+++ b/drivers/md/bcache/extents.h
@@ -0,0 +1,15 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _BCACHE_EXTENTS_H
+#define _BCACHE_EXTENTS_H
+
+extern const struct btree_keys_ops bch_btree_keys_ops;
+extern const struct btree_keys_ops bch_extent_keys_ops;
+
+struct bkey;
+struct cache_set;
+
+void bch_extent_to_text(char *buf, size_t size, const struct bkey *k);
+bool __bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k);
+bool __bch_extent_invalid(struct cache_set *c, const struct bkey *k);
+
+#endif /* _BCACHE_EXTENTS_H */
diff --git a/drivers/md/bcache/features.c b/drivers/md/bcache/features.c
new file mode 100644
index 000000000..634922c56
--- /dev/null
+++ b/drivers/md/bcache/features.c
@@ -0,0 +1,75 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Feature set bits and string conversion.
+ * Inspired by ext4's features compat/incompat/ro_compat related code.
+ *
+ * Copyright 2020 Coly Li <colyli@suse.de>
+ *
+ */
+#include "bcache_ondisk.h"
+#include "bcache.h"
+#include "features.h"
+
+struct feature {
+ int compat;
+ unsigned int mask;
+ const char *string;
+};
+
+static struct feature feature_list[] = {
+ {BCH_FEATURE_INCOMPAT, BCH_FEATURE_INCOMPAT_LOG_LARGE_BUCKET_SIZE,
+ "large_bucket"},
+ {0, 0, NULL },
+};
+
+#define compose_feature_string(type) \
+({ \
+ struct feature *f; \
+ bool first = true; \
+ \
+ for (f = &feature_list[0]; f->compat != 0; f++) { \
+ if (f->compat != BCH_FEATURE_ ## type) \
+ continue; \
+ if (BCH_HAS_ ## type ## _FEATURE(&c->cache->sb, f->mask)) { \
+ if (first) { \
+ out += snprintf(out, buf + size - out, \
+ "["); \
+ } else { \
+ out += snprintf(out, buf + size - out, \
+ " ["); \
+ } \
+ } else if (!first) { \
+ out += snprintf(out, buf + size - out, " "); \
+ } \
+ \
+ out += snprintf(out, buf + size - out, "%s", f->string);\
+ \
+ if (BCH_HAS_ ## type ## _FEATURE(&c->cache->sb, f->mask)) \
+ out += snprintf(out, buf + size - out, "]"); \
+ \
+ first = false; \
+ } \
+ if (!first) \
+ out += snprintf(out, buf + size - out, "\n"); \
+})
+
+int bch_print_cache_set_feature_compat(struct cache_set *c, char *buf, int size)
+{
+ char *out = buf;
+ compose_feature_string(COMPAT);
+ return out - buf;
+}
+
+int bch_print_cache_set_feature_ro_compat(struct cache_set *c, char *buf, int size)
+{
+ char *out = buf;
+ compose_feature_string(RO_COMPAT);
+ return out - buf;
+}
+
+int bch_print_cache_set_feature_incompat(struct cache_set *c, char *buf, int size)
+{
+ char *out = buf;
+ compose_feature_string(INCOMPAT);
+ return out - buf;
+}
diff --git a/drivers/md/bcache/features.h b/drivers/md/bcache/features.h
new file mode 100644
index 000000000..09161b89c
--- /dev/null
+++ b/drivers/md/bcache/features.h
@@ -0,0 +1,113 @@
+/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
+#ifndef _BCACHE_FEATURES_H
+#define _BCACHE_FEATURES_H
+
+#include <linux/kernel.h>
+#include <linux/types.h>
+
+#include "bcache_ondisk.h"
+
+#define BCH_FEATURE_COMPAT 0
+#define BCH_FEATURE_RO_COMPAT 1
+#define BCH_FEATURE_INCOMPAT 2
+#define BCH_FEATURE_TYPE_MASK 0x03
+
+/* Feature set definition */
+/* Incompat feature set */
+/* 32bit bucket size, obsoleted */
+#define BCH_FEATURE_INCOMPAT_OBSO_LARGE_BUCKET 0x0001
+/* real bucket size is (1 << bucket_size) */
+#define BCH_FEATURE_INCOMPAT_LOG_LARGE_BUCKET_SIZE 0x0002
+
+#define BCH_FEATURE_COMPAT_SUPP 0
+#define BCH_FEATURE_RO_COMPAT_SUPP 0
+#define BCH_FEATURE_INCOMPAT_SUPP (BCH_FEATURE_INCOMPAT_OBSO_LARGE_BUCKET| \
+ BCH_FEATURE_INCOMPAT_LOG_LARGE_BUCKET_SIZE)
+
+#define BCH_HAS_COMPAT_FEATURE(sb, mask) \
+ ((sb)->feature_compat & (mask))
+#define BCH_HAS_RO_COMPAT_FEATURE(sb, mask) \
+ ((sb)->feature_ro_compat & (mask))
+#define BCH_HAS_INCOMPAT_FEATURE(sb, mask) \
+ ((sb)->feature_incompat & (mask))
+
+#define BCH_FEATURE_COMPAT_FUNCS(name, flagname) \
+static inline int bch_has_feature_##name(struct cache_sb *sb) \
+{ \
+ if (sb->version < BCACHE_SB_VERSION_CDEV_WITH_FEATURES) \
+ return 0; \
+ return (((sb)->feature_compat & \
+ BCH##_FEATURE_COMPAT_##flagname) != 0); \
+} \
+static inline void bch_set_feature_##name(struct cache_sb *sb) \
+{ \
+ (sb)->feature_compat |= \
+ BCH##_FEATURE_COMPAT_##flagname; \
+} \
+static inline void bch_clear_feature_##name(struct cache_sb *sb) \
+{ \
+ (sb)->feature_compat &= \
+ ~BCH##_FEATURE_COMPAT_##flagname; \
+}
+
+#define BCH_FEATURE_RO_COMPAT_FUNCS(name, flagname) \
+static inline int bch_has_feature_##name(struct cache_sb *sb) \
+{ \
+ if (sb->version < BCACHE_SB_VERSION_CDEV_WITH_FEATURES) \
+ return 0; \
+ return (((sb)->feature_ro_compat & \
+ BCH##_FEATURE_RO_COMPAT_##flagname) != 0); \
+} \
+static inline void bch_set_feature_##name(struct cache_sb *sb) \
+{ \
+ (sb)->feature_ro_compat |= \
+ BCH##_FEATURE_RO_COMPAT_##flagname; \
+} \
+static inline void bch_clear_feature_##name(struct cache_sb *sb) \
+{ \
+ (sb)->feature_ro_compat &= \
+ ~BCH##_FEATURE_RO_COMPAT_##flagname; \
+}
+
+#define BCH_FEATURE_INCOMPAT_FUNCS(name, flagname) \
+static inline int bch_has_feature_##name(struct cache_sb *sb) \
+{ \
+ if (sb->version < BCACHE_SB_VERSION_CDEV_WITH_FEATURES) \
+ return 0; \
+ return (((sb)->feature_incompat & \
+ BCH##_FEATURE_INCOMPAT_##flagname) != 0); \
+} \
+static inline void bch_set_feature_##name(struct cache_sb *sb) \
+{ \
+ (sb)->feature_incompat |= \
+ BCH##_FEATURE_INCOMPAT_##flagname; \
+} \
+static inline void bch_clear_feature_##name(struct cache_sb *sb) \
+{ \
+ (sb)->feature_incompat &= \
+ ~BCH##_FEATURE_INCOMPAT_##flagname; \
+}
+
+BCH_FEATURE_INCOMPAT_FUNCS(obso_large_bucket, OBSO_LARGE_BUCKET);
+BCH_FEATURE_INCOMPAT_FUNCS(large_bucket, LOG_LARGE_BUCKET_SIZE);
+
+static inline bool bch_has_unknown_compat_features(struct cache_sb *sb)
+{
+ return ((sb->feature_compat & ~BCH_FEATURE_COMPAT_SUPP) != 0);
+}
+
+static inline bool bch_has_unknown_ro_compat_features(struct cache_sb *sb)
+{
+ return ((sb->feature_ro_compat & ~BCH_FEATURE_RO_COMPAT_SUPP) != 0);
+}
+
+static inline bool bch_has_unknown_incompat_features(struct cache_sb *sb)
+{
+ return ((sb->feature_incompat & ~BCH_FEATURE_INCOMPAT_SUPP) != 0);
+}
+
+int bch_print_cache_set_feature_compat(struct cache_set *c, char *buf, int size);
+int bch_print_cache_set_feature_ro_compat(struct cache_set *c, char *buf, int size);
+int bch_print_cache_set_feature_incompat(struct cache_set *c, char *buf, int size);
+
+#endif
diff --git a/drivers/md/bcache/io.c b/drivers/md/bcache/io.c
new file mode 100644
index 000000000..020712c52
--- /dev/null
+++ b/drivers/md/bcache/io.c
@@ -0,0 +1,175 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Some low level IO code, and hacks for various block layer limitations
+ *
+ * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
+ * Copyright 2012 Google, Inc.
+ */
+
+#include "bcache.h"
+#include "bset.h"
+#include "debug.h"
+
+#include <linux/blkdev.h>
+
+/* Bios with headers */
+
+void bch_bbio_free(struct bio *bio, struct cache_set *c)
+{
+ struct bbio *b = container_of(bio, struct bbio, bio);
+
+ mempool_free(b, &c->bio_meta);
+}
+
+struct bio *bch_bbio_alloc(struct cache_set *c)
+{
+ struct bbio *b = mempool_alloc(&c->bio_meta, GFP_NOIO);
+ struct bio *bio = &b->bio;
+
+ bio_init(bio, NULL, bio->bi_inline_vecs,
+ meta_bucket_pages(&c->cache->sb), 0);
+
+ return bio;
+}
+
+void __bch_submit_bbio(struct bio *bio, struct cache_set *c)
+{
+ struct bbio *b = container_of(bio, struct bbio, bio);
+
+ bio->bi_iter.bi_sector = PTR_OFFSET(&b->key, 0);
+ bio_set_dev(bio, c->cache->bdev);
+
+ b->submit_time_us = local_clock_us();
+ closure_bio_submit(c, bio, bio->bi_private);
+}
+
+void bch_submit_bbio(struct bio *bio, struct cache_set *c,
+ struct bkey *k, unsigned int ptr)
+{
+ struct bbio *b = container_of(bio, struct bbio, bio);
+
+ bch_bkey_copy_single_ptr(&b->key, k, ptr);
+ __bch_submit_bbio(bio, c);
+}
+
+/* IO errors */
+void bch_count_backing_io_errors(struct cached_dev *dc, struct bio *bio)
+{
+ unsigned int errors;
+
+ WARN_ONCE(!dc, "NULL pointer of struct cached_dev");
+
+ /*
+ * Read-ahead requests on a degrading and recovering md raid
+ * (e.g. raid6) device might be failured immediately by md
+ * raid code, which is not a real hardware media failure. So
+ * we shouldn't count failed REQ_RAHEAD bio to dc->io_errors.
+ */
+ if (bio->bi_opf & REQ_RAHEAD) {
+ pr_warn_ratelimited("%pg: Read-ahead I/O failed on backing device, ignore\n",
+ dc->bdev);
+ return;
+ }
+
+ errors = atomic_add_return(1, &dc->io_errors);
+ if (errors < dc->error_limit)
+ pr_err("%pg: IO error on backing device, unrecoverable\n",
+ dc->bdev);
+ else
+ bch_cached_dev_error(dc);
+}
+
+void bch_count_io_errors(struct cache *ca,
+ blk_status_t error,
+ int is_read,
+ const char *m)
+{
+ /*
+ * The halflife of an error is:
+ * log2(1/2)/log2(127/128) * refresh ~= 88 * refresh
+ */
+
+ if (ca->set->error_decay) {
+ unsigned int count = atomic_inc_return(&ca->io_count);
+
+ while (count > ca->set->error_decay) {
+ unsigned int errors;
+ unsigned int old = count;
+ unsigned int new = count - ca->set->error_decay;
+
+ /*
+ * First we subtract refresh from count; each time we
+ * successfully do so, we rescale the errors once:
+ */
+
+ count = atomic_cmpxchg(&ca->io_count, old, new);
+
+ if (count == old) {
+ count = new;
+
+ errors = atomic_read(&ca->io_errors);
+ do {
+ old = errors;
+ new = ((uint64_t) errors * 127) / 128;
+ errors = atomic_cmpxchg(&ca->io_errors,
+ old, new);
+ } while (old != errors);
+ }
+ }
+ }
+
+ if (error) {
+ unsigned int errors = atomic_add_return(1 << IO_ERROR_SHIFT,
+ &ca->io_errors);
+ errors >>= IO_ERROR_SHIFT;
+
+ if (errors < ca->set->error_limit)
+ pr_err("%pg: IO error on %s%s\n",
+ ca->bdev, m,
+ is_read ? ", recovering." : ".");
+ else
+ bch_cache_set_error(ca->set,
+ "%pg: too many IO errors %s\n",
+ ca->bdev, m);
+ }
+}
+
+void bch_bbio_count_io_errors(struct cache_set *c, struct bio *bio,
+ blk_status_t error, const char *m)
+{
+ struct bbio *b = container_of(bio, struct bbio, bio);
+ struct cache *ca = c->cache;
+ int is_read = (bio_data_dir(bio) == READ ? 1 : 0);
+
+ unsigned int threshold = op_is_write(bio_op(bio))
+ ? c->congested_write_threshold_us
+ : c->congested_read_threshold_us;
+
+ if (threshold) {
+ unsigned int t = local_clock_us();
+ int us = t - b->submit_time_us;
+ int congested = atomic_read(&c->congested);
+
+ if (us > (int) threshold) {
+ int ms = us / 1024;
+
+ c->congested_last_us = t;
+
+ ms = min(ms, CONGESTED_MAX + congested);
+ atomic_sub(ms, &c->congested);
+ } else if (congested < 0)
+ atomic_inc(&c->congested);
+ }
+
+ bch_count_io_errors(ca, error, is_read, m);
+}
+
+void bch_bbio_endio(struct cache_set *c, struct bio *bio,
+ blk_status_t error, const char *m)
+{
+ struct closure *cl = bio->bi_private;
+
+ bch_bbio_count_io_errors(c, bio, error, m);
+ bio_put(bio);
+ closure_put(cl);
+}
diff --git a/drivers/md/bcache/journal.c b/drivers/md/bcache/journal.c
new file mode 100644
index 000000000..c182c21de
--- /dev/null
+++ b/drivers/md/bcache/journal.c
@@ -0,0 +1,1000 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * bcache journalling code, for btree insertions
+ *
+ * Copyright 2012 Google, Inc.
+ */
+
+#include "bcache.h"
+#include "btree.h"
+#include "debug.h"
+#include "extents.h"
+
+#include <trace/events/bcache.h>
+
+/*
+ * Journal replay/recovery:
+ *
+ * This code is all driven from run_cache_set(); we first read the journal
+ * entries, do some other stuff, then we mark all the keys in the journal
+ * entries (same as garbage collection would), then we replay them - reinserting
+ * them into the cache in precisely the same order as they appear in the
+ * journal.
+ *
+ * We only journal keys that go in leaf nodes, which simplifies things quite a
+ * bit.
+ */
+
+static void journal_read_endio(struct bio *bio)
+{
+ struct closure *cl = bio->bi_private;
+
+ closure_put(cl);
+}
+
+static int journal_read_bucket(struct cache *ca, struct list_head *list,
+ unsigned int bucket_index)
+{
+ struct journal_device *ja = &ca->journal;
+ struct bio *bio = &ja->bio;
+
+ struct journal_replay *i;
+ struct jset *j, *data = ca->set->journal.w[0].data;
+ struct closure cl;
+ unsigned int len, left, offset = 0;
+ int ret = 0;
+ sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]);
+
+ closure_init_stack(&cl);
+
+ pr_debug("reading %u\n", bucket_index);
+
+ while (offset < ca->sb.bucket_size) {
+reread: left = ca->sb.bucket_size - offset;
+ len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS);
+
+ bio_reset(bio, ca->bdev, REQ_OP_READ);
+ bio->bi_iter.bi_sector = bucket + offset;
+ bio->bi_iter.bi_size = len << 9;
+
+ bio->bi_end_io = journal_read_endio;
+ bio->bi_private = &cl;
+ bch_bio_map(bio, data);
+
+ closure_bio_submit(ca->set, bio, &cl);
+ closure_sync(&cl);
+
+ /* This function could be simpler now since we no longer write
+ * journal entries that overlap bucket boundaries; this means
+ * the start of a bucket will always have a valid journal entry
+ * if it has any journal entries at all.
+ */
+
+ j = data;
+ while (len) {
+ struct list_head *where;
+ size_t blocks, bytes = set_bytes(j);
+
+ if (j->magic != jset_magic(&ca->sb)) {
+ pr_debug("%u: bad magic\n", bucket_index);
+ return ret;
+ }
+
+ if (bytes > left << 9 ||
+ bytes > PAGE_SIZE << JSET_BITS) {
+ pr_info("%u: too big, %zu bytes, offset %u\n",
+ bucket_index, bytes, offset);
+ return ret;
+ }
+
+ if (bytes > len << 9)
+ goto reread;
+
+ if (j->csum != csum_set(j)) {
+ pr_info("%u: bad csum, %zu bytes, offset %u\n",
+ bucket_index, bytes, offset);
+ return ret;
+ }
+
+ blocks = set_blocks(j, block_bytes(ca));
+
+ /*
+ * Nodes in 'list' are in linear increasing order of
+ * i->j.seq, the node on head has the smallest (oldest)
+ * journal seq, the node on tail has the biggest
+ * (latest) journal seq.
+ */
+
+ /*
+ * Check from the oldest jset for last_seq. If
+ * i->j.seq < j->last_seq, it means the oldest jset
+ * in list is expired and useless, remove it from
+ * this list. Otherwise, j is a candidate jset for
+ * further following checks.
+ */
+ while (!list_empty(list)) {
+ i = list_first_entry(list,
+ struct journal_replay, list);
+ if (i->j.seq >= j->last_seq)
+ break;
+ list_del(&i->list);
+ kfree(i);
+ }
+
+ /* iterate list in reverse order (from latest jset) */
+ list_for_each_entry_reverse(i, list, list) {
+ if (j->seq == i->j.seq)
+ goto next_set;
+
+ /*
+ * if j->seq is less than any i->j.last_seq
+ * in list, j is an expired and useless jset.
+ */
+ if (j->seq < i->j.last_seq)
+ goto next_set;
+
+ /*
+ * 'where' points to first jset in list which
+ * is elder then j.
+ */
+ if (j->seq > i->j.seq) {
+ where = &i->list;
+ goto add;
+ }
+ }
+
+ where = list;
+add:
+ i = kmalloc(offsetof(struct journal_replay, j) +
+ bytes, GFP_KERNEL);
+ if (!i)
+ return -ENOMEM;
+ unsafe_memcpy(&i->j, j, bytes,
+ /* "bytes" was calculated by set_bytes() above */);
+ /* Add to the location after 'where' points to */
+ list_add(&i->list, where);
+ ret = 1;
+
+ if (j->seq > ja->seq[bucket_index])
+ ja->seq[bucket_index] = j->seq;
+next_set:
+ offset += blocks * ca->sb.block_size;
+ len -= blocks * ca->sb.block_size;
+ j = ((void *) j) + blocks * block_bytes(ca);
+ }
+ }
+
+ return ret;
+}
+
+int bch_journal_read(struct cache_set *c, struct list_head *list)
+{
+#define read_bucket(b) \
+ ({ \
+ ret = journal_read_bucket(ca, list, b); \
+ __set_bit(b, bitmap); \
+ if (ret < 0) \
+ return ret; \
+ ret; \
+ })
+
+ struct cache *ca = c->cache;
+ int ret = 0;
+ struct journal_device *ja = &ca->journal;
+ DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS);
+ unsigned int i, l, r, m;
+ uint64_t seq;
+
+ bitmap_zero(bitmap, SB_JOURNAL_BUCKETS);
+ pr_debug("%u journal buckets\n", ca->sb.njournal_buckets);
+
+ /*
+ * Read journal buckets ordered by golden ratio hash to quickly
+ * find a sequence of buckets with valid journal entries
+ */
+ for (i = 0; i < ca->sb.njournal_buckets; i++) {
+ /*
+ * We must try the index l with ZERO first for
+ * correctness due to the scenario that the journal
+ * bucket is circular buffer which might have wrapped
+ */
+ l = (i * 2654435769U) % ca->sb.njournal_buckets;
+
+ if (test_bit(l, bitmap))
+ break;
+
+ if (read_bucket(l))
+ goto bsearch;
+ }
+
+ /*
+ * If that fails, check all the buckets we haven't checked
+ * already
+ */
+ pr_debug("falling back to linear search\n");
+
+ for_each_clear_bit(l, bitmap, ca->sb.njournal_buckets)
+ if (read_bucket(l))
+ goto bsearch;
+
+ /* no journal entries on this device? */
+ if (l == ca->sb.njournal_buckets)
+ goto out;
+bsearch:
+ BUG_ON(list_empty(list));
+
+ /* Binary search */
+ m = l;
+ r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1);
+ pr_debug("starting binary search, l %u r %u\n", l, r);
+
+ while (l + 1 < r) {
+ seq = list_entry(list->prev, struct journal_replay,
+ list)->j.seq;
+
+ m = (l + r) >> 1;
+ read_bucket(m);
+
+ if (seq != list_entry(list->prev, struct journal_replay,
+ list)->j.seq)
+ l = m;
+ else
+ r = m;
+ }
+
+ /*
+ * Read buckets in reverse order until we stop finding more
+ * journal entries
+ */
+ pr_debug("finishing up: m %u njournal_buckets %u\n",
+ m, ca->sb.njournal_buckets);
+ l = m;
+
+ while (1) {
+ if (!l--)
+ l = ca->sb.njournal_buckets - 1;
+
+ if (l == m)
+ break;
+
+ if (test_bit(l, bitmap))
+ continue;
+
+ if (!read_bucket(l))
+ break;
+ }
+
+ seq = 0;
+
+ for (i = 0; i < ca->sb.njournal_buckets; i++)
+ if (ja->seq[i] > seq) {
+ seq = ja->seq[i];
+ /*
+ * When journal_reclaim() goes to allocate for
+ * the first time, it'll use the bucket after
+ * ja->cur_idx
+ */
+ ja->cur_idx = i;
+ ja->last_idx = ja->discard_idx = (i + 1) %
+ ca->sb.njournal_buckets;
+
+ }
+
+out:
+ if (!list_empty(list))
+ c->journal.seq = list_entry(list->prev,
+ struct journal_replay,
+ list)->j.seq;
+
+ return 0;
+#undef read_bucket
+}
+
+void bch_journal_mark(struct cache_set *c, struct list_head *list)
+{
+ atomic_t p = { 0 };
+ struct bkey *k;
+ struct journal_replay *i;
+ struct journal *j = &c->journal;
+ uint64_t last = j->seq;
+
+ /*
+ * journal.pin should never fill up - we never write a journal
+ * entry when it would fill up. But if for some reason it does, we
+ * iterate over the list in reverse order so that we can just skip that
+ * refcount instead of bugging.
+ */
+
+ list_for_each_entry_reverse(i, list, list) {
+ BUG_ON(last < i->j.seq);
+ i->pin = NULL;
+
+ while (last-- != i->j.seq)
+ if (fifo_free(&j->pin) > 1) {
+ fifo_push_front(&j->pin, p);
+ atomic_set(&fifo_front(&j->pin), 0);
+ }
+
+ if (fifo_free(&j->pin) > 1) {
+ fifo_push_front(&j->pin, p);
+ i->pin = &fifo_front(&j->pin);
+ atomic_set(i->pin, 1);
+ }
+
+ for (k = i->j.start;
+ k < bset_bkey_last(&i->j);
+ k = bkey_next(k))
+ if (!__bch_extent_invalid(c, k)) {
+ unsigned int j;
+
+ for (j = 0; j < KEY_PTRS(k); j++)
+ if (ptr_available(c, k, j))
+ atomic_inc(&PTR_BUCKET(c, k, j)->pin);
+
+ bch_initial_mark_key(c, 0, k);
+ }
+ }
+}
+
+static bool is_discard_enabled(struct cache_set *s)
+{
+ struct cache *ca = s->cache;
+
+ if (ca->discard)
+ return true;
+
+ return false;
+}
+
+int bch_journal_replay(struct cache_set *s, struct list_head *list)
+{
+ int ret = 0, keys = 0, entries = 0;
+ struct bkey *k;
+ struct journal_replay *i =
+ list_entry(list->prev, struct journal_replay, list);
+
+ uint64_t start = i->j.last_seq, end = i->j.seq, n = start;
+ struct keylist keylist;
+
+ list_for_each_entry(i, list, list) {
+ BUG_ON(i->pin && atomic_read(i->pin) != 1);
+
+ if (n != i->j.seq) {
+ if (n == start && is_discard_enabled(s))
+ pr_info("journal entries %llu-%llu may be discarded! (replaying %llu-%llu)\n",
+ n, i->j.seq - 1, start, end);
+ else {
+ pr_err("journal entries %llu-%llu missing! (replaying %llu-%llu)\n",
+ n, i->j.seq - 1, start, end);
+ ret = -EIO;
+ goto err;
+ }
+ }
+
+ for (k = i->j.start;
+ k < bset_bkey_last(&i->j);
+ k = bkey_next(k)) {
+ trace_bcache_journal_replay_key(k);
+
+ bch_keylist_init_single(&keylist, k);
+
+ ret = bch_btree_insert(s, &keylist, i->pin, NULL);
+ if (ret)
+ goto err;
+
+ BUG_ON(!bch_keylist_empty(&keylist));
+ keys++;
+
+ cond_resched();
+ }
+
+ if (i->pin)
+ atomic_dec(i->pin);
+ n = i->j.seq + 1;
+ entries++;
+ }
+
+ pr_info("journal replay done, %i keys in %i entries, seq %llu\n",
+ keys, entries, end);
+err:
+ while (!list_empty(list)) {
+ i = list_first_entry(list, struct journal_replay, list);
+ list_del(&i->list);
+ kfree(i);
+ }
+
+ return ret;
+}
+
+void bch_journal_space_reserve(struct journal *j)
+{
+ j->do_reserve = true;
+}
+
+/* Journalling */
+
+static void btree_flush_write(struct cache_set *c)
+{
+ struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR];
+ unsigned int i, nr;
+ int ref_nr;
+ atomic_t *fifo_front_p, *now_fifo_front_p;
+ size_t mask;
+
+ if (c->journal.btree_flushing)
+ return;
+
+ spin_lock(&c->journal.flush_write_lock);
+ if (c->journal.btree_flushing) {
+ spin_unlock(&c->journal.flush_write_lock);
+ return;
+ }
+ c->journal.btree_flushing = true;
+ spin_unlock(&c->journal.flush_write_lock);
+
+ /* get the oldest journal entry and check its refcount */
+ spin_lock(&c->journal.lock);
+ fifo_front_p = &fifo_front(&c->journal.pin);
+ ref_nr = atomic_read(fifo_front_p);
+ if (ref_nr <= 0) {
+ /*
+ * do nothing if no btree node references
+ * the oldest journal entry
+ */
+ spin_unlock(&c->journal.lock);
+ goto out;
+ }
+ spin_unlock(&c->journal.lock);
+
+ mask = c->journal.pin.mask;
+ nr = 0;
+ atomic_long_inc(&c->flush_write);
+ memset(btree_nodes, 0, sizeof(btree_nodes));
+
+ mutex_lock(&c->bucket_lock);
+ list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
+ /*
+ * It is safe to get now_fifo_front_p without holding
+ * c->journal.lock here, because we don't need to know
+ * the exactly accurate value, just check whether the
+ * front pointer of c->journal.pin is changed.
+ */
+ now_fifo_front_p = &fifo_front(&c->journal.pin);
+ /*
+ * If the oldest journal entry is reclaimed and front
+ * pointer of c->journal.pin changes, it is unnecessary
+ * to scan c->btree_cache anymore, just quit the loop and
+ * flush out what we have already.
+ */
+ if (now_fifo_front_p != fifo_front_p)
+ break;
+ /*
+ * quit this loop if all matching btree nodes are
+ * scanned and record in btree_nodes[] already.
+ */
+ ref_nr = atomic_read(fifo_front_p);
+ if (nr >= ref_nr)
+ break;
+
+ if (btree_node_journal_flush(b))
+ pr_err("BUG: flush_write bit should not be set here!\n");
+
+ mutex_lock(&b->write_lock);
+
+ if (!btree_node_dirty(b)) {
+ mutex_unlock(&b->write_lock);
+ continue;
+ }
+
+ if (!btree_current_write(b)->journal) {
+ mutex_unlock(&b->write_lock);
+ continue;
+ }
+
+ /*
+ * Only select the btree node which exactly references
+ * the oldest journal entry.
+ *
+ * If the journal entry pointed by fifo_front_p is
+ * reclaimed in parallel, don't worry:
+ * - the list_for_each_xxx loop will quit when checking
+ * next now_fifo_front_p.
+ * - If there are matched nodes recorded in btree_nodes[],
+ * they are clean now (this is why and how the oldest
+ * journal entry can be reclaimed). These selected nodes
+ * will be ignored and skipped in the following for-loop.
+ */
+ if (((btree_current_write(b)->journal - fifo_front_p) &
+ mask) != 0) {
+ mutex_unlock(&b->write_lock);
+ continue;
+ }
+
+ set_btree_node_journal_flush(b);
+
+ mutex_unlock(&b->write_lock);
+
+ btree_nodes[nr++] = b;
+ /*
+ * To avoid holding c->bucket_lock too long time,
+ * only scan for BTREE_FLUSH_NR matched btree nodes
+ * at most. If there are more btree nodes reference
+ * the oldest journal entry, try to flush them next
+ * time when btree_flush_write() is called.
+ */
+ if (nr == BTREE_FLUSH_NR)
+ break;
+ }
+ mutex_unlock(&c->bucket_lock);
+
+ for (i = 0; i < nr; i++) {
+ b = btree_nodes[i];
+ if (!b) {
+ pr_err("BUG: btree_nodes[%d] is NULL\n", i);
+ continue;
+ }
+
+ /* safe to check without holding b->write_lock */
+ if (!btree_node_journal_flush(b)) {
+ pr_err("BUG: bnode %p: journal_flush bit cleaned\n", b);
+ continue;
+ }
+
+ mutex_lock(&b->write_lock);
+ if (!btree_current_write(b)->journal) {
+ clear_bit(BTREE_NODE_journal_flush, &b->flags);
+ mutex_unlock(&b->write_lock);
+ pr_debug("bnode %p: written by others\n", b);
+ continue;
+ }
+
+ if (!btree_node_dirty(b)) {
+ clear_bit(BTREE_NODE_journal_flush, &b->flags);
+ mutex_unlock(&b->write_lock);
+ pr_debug("bnode %p: dirty bit cleaned by others\n", b);
+ continue;
+ }
+
+ __bch_btree_node_write(b, NULL);
+ clear_bit(BTREE_NODE_journal_flush, &b->flags);
+ mutex_unlock(&b->write_lock);
+ }
+
+out:
+ spin_lock(&c->journal.flush_write_lock);
+ c->journal.btree_flushing = false;
+ spin_unlock(&c->journal.flush_write_lock);
+}
+
+#define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1)
+
+static void journal_discard_endio(struct bio *bio)
+{
+ struct journal_device *ja =
+ container_of(bio, struct journal_device, discard_bio);
+ struct cache *ca = container_of(ja, struct cache, journal);
+
+ atomic_set(&ja->discard_in_flight, DISCARD_DONE);
+
+ closure_wake_up(&ca->set->journal.wait);
+ closure_put(&ca->set->cl);
+}
+
+static void journal_discard_work(struct work_struct *work)
+{
+ struct journal_device *ja =
+ container_of(work, struct journal_device, discard_work);
+
+ submit_bio(&ja->discard_bio);
+}
+
+static void do_journal_discard(struct cache *ca)
+{
+ struct journal_device *ja = &ca->journal;
+ struct bio *bio = &ja->discard_bio;
+
+ if (!ca->discard) {
+ ja->discard_idx = ja->last_idx;
+ return;
+ }
+
+ switch (atomic_read(&ja->discard_in_flight)) {
+ case DISCARD_IN_FLIGHT:
+ return;
+
+ case DISCARD_DONE:
+ ja->discard_idx = (ja->discard_idx + 1) %
+ ca->sb.njournal_buckets;
+
+ atomic_set(&ja->discard_in_flight, DISCARD_READY);
+ fallthrough;
+
+ case DISCARD_READY:
+ if (ja->discard_idx == ja->last_idx)
+ return;
+
+ atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT);
+
+ bio_init(bio, ca->bdev, bio->bi_inline_vecs, 1, REQ_OP_DISCARD);
+ bio->bi_iter.bi_sector = bucket_to_sector(ca->set,
+ ca->sb.d[ja->discard_idx]);
+ bio->bi_iter.bi_size = bucket_bytes(ca);
+ bio->bi_end_io = journal_discard_endio;
+
+ closure_get(&ca->set->cl);
+ INIT_WORK(&ja->discard_work, journal_discard_work);
+ queue_work(bch_journal_wq, &ja->discard_work);
+ }
+}
+
+static unsigned int free_journal_buckets(struct cache_set *c)
+{
+ struct journal *j = &c->journal;
+ struct cache *ca = c->cache;
+ struct journal_device *ja = &c->cache->journal;
+ unsigned int n;
+
+ /* In case njournal_buckets is not power of 2 */
+ if (ja->cur_idx >= ja->discard_idx)
+ n = ca->sb.njournal_buckets + ja->discard_idx - ja->cur_idx;
+ else
+ n = ja->discard_idx - ja->cur_idx;
+
+ if (n > (1 + j->do_reserve))
+ return n - (1 + j->do_reserve);
+
+ return 0;
+}
+
+static void journal_reclaim(struct cache_set *c)
+{
+ struct bkey *k = &c->journal.key;
+ struct cache *ca = c->cache;
+ uint64_t last_seq;
+ struct journal_device *ja = &ca->journal;
+ atomic_t p __maybe_unused;
+
+ atomic_long_inc(&c->reclaim);
+
+ while (!atomic_read(&fifo_front(&c->journal.pin)))
+ fifo_pop(&c->journal.pin, p);
+
+ last_seq = last_seq(&c->journal);
+
+ /* Update last_idx */
+
+ while (ja->last_idx != ja->cur_idx &&
+ ja->seq[ja->last_idx] < last_seq)
+ ja->last_idx = (ja->last_idx + 1) %
+ ca->sb.njournal_buckets;
+
+ do_journal_discard(ca);
+
+ if (c->journal.blocks_free)
+ goto out;
+
+ if (!free_journal_buckets(c))
+ goto out;
+
+ ja->cur_idx = (ja->cur_idx + 1) % ca->sb.njournal_buckets;
+ k->ptr[0] = MAKE_PTR(0,
+ bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
+ ca->sb.nr_this_dev);
+ atomic_long_inc(&c->reclaimed_journal_buckets);
+
+ bkey_init(k);
+ SET_KEY_PTRS(k, 1);
+ c->journal.blocks_free = ca->sb.bucket_size >> c->block_bits;
+
+out:
+ if (!journal_full(&c->journal))
+ __closure_wake_up(&c->journal.wait);
+}
+
+void bch_journal_next(struct journal *j)
+{
+ atomic_t p = { 1 };
+
+ j->cur = (j->cur == j->w)
+ ? &j->w[1]
+ : &j->w[0];
+
+ /*
+ * The fifo_push() needs to happen at the same time as j->seq is
+ * incremented for last_seq() to be calculated correctly
+ */
+ BUG_ON(!fifo_push(&j->pin, p));
+ atomic_set(&fifo_back(&j->pin), 1);
+
+ j->cur->data->seq = ++j->seq;
+ j->cur->dirty = false;
+ j->cur->need_write = false;
+ j->cur->data->keys = 0;
+
+ if (fifo_full(&j->pin))
+ pr_debug("journal_pin full (%zu)\n", fifo_used(&j->pin));
+}
+
+static void journal_write_endio(struct bio *bio)
+{
+ struct journal_write *w = bio->bi_private;
+
+ cache_set_err_on(bio->bi_status, w->c, "journal io error");
+ closure_put(&w->c->journal.io);
+}
+
+static void journal_write(struct closure *cl);
+
+static void journal_write_done(struct closure *cl)
+{
+ struct journal *j = container_of(cl, struct journal, io);
+ struct journal_write *w = (j->cur == j->w)
+ ? &j->w[1]
+ : &j->w[0];
+
+ __closure_wake_up(&w->wait);
+ continue_at_nobarrier(cl, journal_write, bch_journal_wq);
+}
+
+static void journal_write_unlock(struct closure *cl)
+ __releases(&c->journal.lock)
+{
+ struct cache_set *c = container_of(cl, struct cache_set, journal.io);
+
+ c->journal.io_in_flight = 0;
+ spin_unlock(&c->journal.lock);
+}
+
+static void journal_write_unlocked(struct closure *cl)
+ __releases(c->journal.lock)
+{
+ struct cache_set *c = container_of(cl, struct cache_set, journal.io);
+ struct cache *ca = c->cache;
+ struct journal_write *w = c->journal.cur;
+ struct bkey *k = &c->journal.key;
+ unsigned int i, sectors = set_blocks(w->data, block_bytes(ca)) *
+ ca->sb.block_size;
+
+ struct bio *bio;
+ struct bio_list list;
+
+ bio_list_init(&list);
+
+ if (!w->need_write) {
+ closure_return_with_destructor(cl, journal_write_unlock);
+ return;
+ } else if (journal_full(&c->journal)) {
+ journal_reclaim(c);
+ spin_unlock(&c->journal.lock);
+
+ btree_flush_write(c);
+ continue_at(cl, journal_write, bch_journal_wq);
+ return;
+ }
+
+ c->journal.blocks_free -= set_blocks(w->data, block_bytes(ca));
+
+ w->data->btree_level = c->root->level;
+
+ bkey_copy(&w->data->btree_root, &c->root->key);
+ bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket);
+
+ w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0];
+ w->data->magic = jset_magic(&ca->sb);
+ w->data->version = BCACHE_JSET_VERSION;
+ w->data->last_seq = last_seq(&c->journal);
+ w->data->csum = csum_set(w->data);
+
+ for (i = 0; i < KEY_PTRS(k); i++) {
+ ca = c->cache;
+ bio = &ca->journal.bio;
+
+ atomic_long_add(sectors, &ca->meta_sectors_written);
+
+ bio_reset(bio, ca->bdev, REQ_OP_WRITE |
+ REQ_SYNC | REQ_META | REQ_PREFLUSH | REQ_FUA);
+ bio->bi_iter.bi_sector = PTR_OFFSET(k, i);
+ bio->bi_iter.bi_size = sectors << 9;
+
+ bio->bi_end_io = journal_write_endio;
+ bio->bi_private = w;
+ bch_bio_map(bio, w->data);
+
+ trace_bcache_journal_write(bio, w->data->keys);
+ bio_list_add(&list, bio);
+
+ SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors);
+
+ ca->journal.seq[ca->journal.cur_idx] = w->data->seq;
+ }
+
+ /* If KEY_PTRS(k) == 0, this jset gets lost in air */
+ BUG_ON(i == 0);
+
+ atomic_dec_bug(&fifo_back(&c->journal.pin));
+ bch_journal_next(&c->journal);
+ journal_reclaim(c);
+
+ spin_unlock(&c->journal.lock);
+
+ while ((bio = bio_list_pop(&list)))
+ closure_bio_submit(c, bio, cl);
+
+ continue_at(cl, journal_write_done, NULL);
+}
+
+static void journal_write(struct closure *cl)
+{
+ struct cache_set *c = container_of(cl, struct cache_set, journal.io);
+
+ spin_lock(&c->journal.lock);
+ journal_write_unlocked(cl);
+}
+
+static void journal_try_write(struct cache_set *c)
+ __releases(c->journal.lock)
+{
+ struct closure *cl = &c->journal.io;
+ struct journal_write *w = c->journal.cur;
+
+ w->need_write = true;
+
+ if (!c->journal.io_in_flight) {
+ c->journal.io_in_flight = 1;
+ closure_call(cl, journal_write_unlocked, NULL, &c->cl);
+ } else {
+ spin_unlock(&c->journal.lock);
+ }
+}
+
+static struct journal_write *journal_wait_for_write(struct cache_set *c,
+ unsigned int nkeys)
+ __acquires(&c->journal.lock)
+{
+ size_t sectors;
+ struct closure cl;
+ bool wait = false;
+ struct cache *ca = c->cache;
+
+ closure_init_stack(&cl);
+
+ spin_lock(&c->journal.lock);
+
+ while (1) {
+ struct journal_write *w = c->journal.cur;
+
+ sectors = __set_blocks(w->data, w->data->keys + nkeys,
+ block_bytes(ca)) * ca->sb.block_size;
+
+ if (sectors <= min_t(size_t,
+ c->journal.blocks_free * ca->sb.block_size,
+ PAGE_SECTORS << JSET_BITS))
+ return w;
+
+ if (wait)
+ closure_wait(&c->journal.wait, &cl);
+
+ if (!journal_full(&c->journal)) {
+ if (wait)
+ trace_bcache_journal_entry_full(c);
+
+ /*
+ * XXX: If we were inserting so many keys that they
+ * won't fit in an _empty_ journal write, we'll
+ * deadlock. For now, handle this in
+ * bch_keylist_realloc() - but something to think about.
+ */
+ BUG_ON(!w->data->keys);
+
+ journal_try_write(c); /* unlocks */
+ } else {
+ if (wait)
+ trace_bcache_journal_full(c);
+
+ journal_reclaim(c);
+ spin_unlock(&c->journal.lock);
+
+ btree_flush_write(c);
+ }
+
+ closure_sync(&cl);
+ spin_lock(&c->journal.lock);
+ wait = true;
+ }
+}
+
+static void journal_write_work(struct work_struct *work)
+{
+ struct cache_set *c = container_of(to_delayed_work(work),
+ struct cache_set,
+ journal.work);
+ spin_lock(&c->journal.lock);
+ if (c->journal.cur->dirty)
+ journal_try_write(c);
+ else
+ spin_unlock(&c->journal.lock);
+}
+
+/*
+ * Entry point to the journalling code - bio_insert() and btree_invalidate()
+ * pass bch_journal() a list of keys to be journalled, and then
+ * bch_journal() hands those same keys off to btree_insert_async()
+ */
+
+atomic_t *bch_journal(struct cache_set *c,
+ struct keylist *keys,
+ struct closure *parent)
+{
+ struct journal_write *w;
+ atomic_t *ret;
+
+ /* No journaling if CACHE_SET_IO_DISABLE set already */
+ if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
+ return NULL;
+
+ if (!CACHE_SYNC(&c->cache->sb))
+ return NULL;
+
+ w = journal_wait_for_write(c, bch_keylist_nkeys(keys));
+
+ memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys));
+ w->data->keys += bch_keylist_nkeys(keys);
+
+ ret = &fifo_back(&c->journal.pin);
+ atomic_inc(ret);
+
+ if (parent) {
+ closure_wait(&w->wait, parent);
+ journal_try_write(c);
+ } else if (!w->dirty) {
+ w->dirty = true;
+ queue_delayed_work(bch_flush_wq, &c->journal.work,
+ msecs_to_jiffies(c->journal_delay_ms));
+ spin_unlock(&c->journal.lock);
+ } else {
+ spin_unlock(&c->journal.lock);
+ }
+
+
+ return ret;
+}
+
+void bch_journal_meta(struct cache_set *c, struct closure *cl)
+{
+ struct keylist keys;
+ atomic_t *ref;
+
+ bch_keylist_init(&keys);
+
+ ref = bch_journal(c, &keys, cl);
+ if (ref)
+ atomic_dec_bug(ref);
+}
+
+void bch_journal_free(struct cache_set *c)
+{
+ free_pages((unsigned long) c->journal.w[1].data, JSET_BITS);
+ free_pages((unsigned long) c->journal.w[0].data, JSET_BITS);
+ free_fifo(&c->journal.pin);
+}
+
+int bch_journal_alloc(struct cache_set *c)
+{
+ struct journal *j = &c->journal;
+
+ spin_lock_init(&j->lock);
+ spin_lock_init(&j->flush_write_lock);
+ INIT_DELAYED_WORK(&j->work, journal_write_work);
+
+ c->journal_delay_ms = 100;
+
+ j->w[0].c = c;
+ j->w[1].c = c;
+
+ if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) ||
+ !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)) ||
+ !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)))
+ return -ENOMEM;
+
+ return 0;
+}
diff --git a/drivers/md/bcache/journal.h b/drivers/md/bcache/journal.h
new file mode 100644
index 000000000..cd316b4a1
--- /dev/null
+++ b/drivers/md/bcache/journal.h
@@ -0,0 +1,188 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _BCACHE_JOURNAL_H
+#define _BCACHE_JOURNAL_H
+
+/*
+ * THE JOURNAL:
+ *
+ * The journal is treated as a circular buffer of buckets - a journal entry
+ * never spans two buckets. This means (not implemented yet) we can resize the
+ * journal at runtime, and will be needed for bcache on raw flash support.
+ *
+ * Journal entries contain a list of keys, ordered by the time they were
+ * inserted; thus journal replay just has to reinsert the keys.
+ *
+ * We also keep some things in the journal header that are logically part of the
+ * superblock - all the things that are frequently updated. This is for future
+ * bcache on raw flash support; the superblock (which will become another
+ * journal) can't be moved or wear leveled, so it contains just enough
+ * information to find the main journal, and the superblock only has to be
+ * rewritten when we want to move/wear level the main journal.
+ *
+ * Currently, we don't journal BTREE_REPLACE operations - this will hopefully be
+ * fixed eventually. This isn't a bug - BTREE_REPLACE is used for insertions
+ * from cache misses, which don't have to be journaled, and for writeback and
+ * moving gc we work around it by flushing the btree to disk before updating the
+ * gc information. But it is a potential issue with incremental garbage
+ * collection, and it's fragile.
+ *
+ * OPEN JOURNAL ENTRIES:
+ *
+ * Each journal entry contains, in the header, the sequence number of the last
+ * journal entry still open - i.e. that has keys that haven't been flushed to
+ * disk in the btree.
+ *
+ * We track this by maintaining a refcount for every open journal entry, in a
+ * fifo; each entry in the fifo corresponds to a particular journal
+ * entry/sequence number. When the refcount at the tail of the fifo goes to
+ * zero, we pop it off - thus, the size of the fifo tells us the number of open
+ * journal entries
+ *
+ * We take a refcount on a journal entry when we add some keys to a journal
+ * entry that we're going to insert (held by struct btree_op), and then when we
+ * insert those keys into the btree the btree write we're setting up takes a
+ * copy of that refcount (held by struct btree_write). That refcount is dropped
+ * when the btree write completes.
+ *
+ * A struct btree_write can only hold a refcount on a single journal entry, but
+ * might contain keys for many journal entries - we handle this by making sure
+ * it always has a refcount on the _oldest_ journal entry of all the journal
+ * entries it has keys for.
+ *
+ * JOURNAL RECLAIM:
+ *
+ * As mentioned previously, our fifo of refcounts tells us the number of open
+ * journal entries; from that and the current journal sequence number we compute
+ * last_seq - the oldest journal entry we still need. We write last_seq in each
+ * journal entry, and we also have to keep track of where it exists on disk so
+ * we don't overwrite it when we loop around the journal.
+ *
+ * To do that we track, for each journal bucket, the sequence number of the
+ * newest journal entry it contains - if we don't need that journal entry we
+ * don't need anything in that bucket anymore. From that we track the last
+ * journal bucket we still need; all this is tracked in struct journal_device
+ * and updated by journal_reclaim().
+ *
+ * JOURNAL FILLING UP:
+ *
+ * There are two ways the journal could fill up; either we could run out of
+ * space to write to, or we could have too many open journal entries and run out
+ * of room in the fifo of refcounts. Since those refcounts are decremented
+ * without any locking we can't safely resize that fifo, so we handle it the
+ * same way.
+ *
+ * If the journal fills up, we start flushing dirty btree nodes until we can
+ * allocate space for a journal write again - preferentially flushing btree
+ * nodes that are pinning the oldest journal entries first.
+ */
+
+/*
+ * Only used for holding the journal entries we read in btree_journal_read()
+ * during cache_registration
+ */
+struct journal_replay {
+ struct list_head list;
+ atomic_t *pin;
+ struct jset j;
+};
+
+/*
+ * We put two of these in struct journal; we used them for writes to the
+ * journal that are being staged or in flight.
+ */
+struct journal_write {
+ struct jset *data;
+#define JSET_BITS 3
+
+ struct cache_set *c;
+ struct closure_waitlist wait;
+ bool dirty;
+ bool need_write;
+};
+
+/* Embedded in struct cache_set */
+struct journal {
+ spinlock_t lock;
+ spinlock_t flush_write_lock;
+ bool btree_flushing;
+ bool do_reserve;
+ /* used when waiting because the journal was full */
+ struct closure_waitlist wait;
+ struct closure io;
+ int io_in_flight;
+ struct delayed_work work;
+
+ /* Number of blocks free in the bucket(s) we're currently writing to */
+ unsigned int blocks_free;
+ uint64_t seq;
+ DECLARE_FIFO(atomic_t, pin);
+
+ BKEY_PADDED(key);
+
+ struct journal_write w[2], *cur;
+};
+
+/*
+ * Embedded in struct cache. First three fields refer to the array of journal
+ * buckets, in cache_sb.
+ */
+struct journal_device {
+ /*
+ * For each journal bucket, contains the max sequence number of the
+ * journal writes it contains - so we know when a bucket can be reused.
+ */
+ uint64_t seq[SB_JOURNAL_BUCKETS];
+
+ /* Journal bucket we're currently writing to */
+ unsigned int cur_idx;
+
+ /* Last journal bucket that still contains an open journal entry */
+ unsigned int last_idx;
+
+ /* Next journal bucket to be discarded */
+ unsigned int discard_idx;
+
+#define DISCARD_READY 0
+#define DISCARD_IN_FLIGHT 1
+#define DISCARD_DONE 2
+ /* 1 - discard in flight, -1 - discard completed */
+ atomic_t discard_in_flight;
+
+ struct work_struct discard_work;
+ struct bio discard_bio;
+ struct bio_vec discard_bv;
+
+ /* Bio for journal reads/writes to this device */
+ struct bio bio;
+ struct bio_vec bv[8];
+};
+
+#define BTREE_FLUSH_NR 8
+
+#define journal_pin_cmp(c, l, r) \
+ (fifo_idx(&(c)->journal.pin, (l)) > fifo_idx(&(c)->journal.pin, (r)))
+
+#define JOURNAL_PIN 20000
+
+#define journal_full(j) \
+ (!(j)->blocks_free || fifo_free(&(j)->pin) <= 1)
+
+struct closure;
+struct cache_set;
+struct btree_op;
+struct keylist;
+
+atomic_t *bch_journal(struct cache_set *c,
+ struct keylist *keys,
+ struct closure *parent);
+void bch_journal_next(struct journal *j);
+void bch_journal_mark(struct cache_set *c, struct list_head *list);
+void bch_journal_meta(struct cache_set *c, struct closure *cl);
+int bch_journal_read(struct cache_set *c, struct list_head *list);
+int bch_journal_replay(struct cache_set *c, struct list_head *list);
+
+void bch_journal_free(struct cache_set *c);
+int bch_journal_alloc(struct cache_set *c);
+void bch_journal_space_reserve(struct journal *j);
+
+#endif /* _BCACHE_JOURNAL_H */
diff --git a/drivers/md/bcache/movinggc.c b/drivers/md/bcache/movinggc.c
new file mode 100644
index 000000000..99499d1f6
--- /dev/null
+++ b/drivers/md/bcache/movinggc.c
@@ -0,0 +1,252 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Moving/copying garbage collector
+ *
+ * Copyright 2012 Google, Inc.
+ */
+
+#include "bcache.h"
+#include "btree.h"
+#include "debug.h"
+#include "request.h"
+
+#include <trace/events/bcache.h>
+
+struct moving_io {
+ struct closure cl;
+ struct keybuf_key *w;
+ struct data_insert_op op;
+ struct bbio bio;
+};
+
+static bool moving_pred(struct keybuf *buf, struct bkey *k)
+{
+ struct cache_set *c = container_of(buf, struct cache_set,
+ moving_gc_keys);
+ unsigned int i;
+
+ for (i = 0; i < KEY_PTRS(k); i++)
+ if (ptr_available(c, k, i) &&
+ GC_MOVE(PTR_BUCKET(c, k, i)))
+ return true;
+
+ return false;
+}
+
+/* Moving GC - IO loop */
+
+static void moving_io_destructor(struct closure *cl)
+{
+ struct moving_io *io = container_of(cl, struct moving_io, cl);
+
+ kfree(io);
+}
+
+static void write_moving_finish(struct closure *cl)
+{
+ struct moving_io *io = container_of(cl, struct moving_io, cl);
+ struct bio *bio = &io->bio.bio;
+
+ bio_free_pages(bio);
+
+ if (io->op.replace_collision)
+ trace_bcache_gc_copy_collision(&io->w->key);
+
+ bch_keybuf_del(&io->op.c->moving_gc_keys, io->w);
+
+ up(&io->op.c->moving_in_flight);
+
+ closure_return_with_destructor(cl, moving_io_destructor);
+}
+
+static void read_moving_endio(struct bio *bio)
+{
+ struct bbio *b = container_of(bio, struct bbio, bio);
+ struct moving_io *io = container_of(bio->bi_private,
+ struct moving_io, cl);
+
+ if (bio->bi_status)
+ io->op.status = bio->bi_status;
+ else if (!KEY_DIRTY(&b->key) &&
+ ptr_stale(io->op.c, &b->key, 0)) {
+ io->op.status = BLK_STS_IOERR;
+ }
+
+ bch_bbio_endio(io->op.c, bio, bio->bi_status, "reading data to move");
+}
+
+static void moving_init(struct moving_io *io)
+{
+ struct bio *bio = &io->bio.bio;
+
+ bio_init(bio, NULL, bio->bi_inline_vecs,
+ DIV_ROUND_UP(KEY_SIZE(&io->w->key), PAGE_SECTORS), 0);
+ bio_get(bio);
+ bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
+
+ bio->bi_iter.bi_size = KEY_SIZE(&io->w->key) << 9;
+ bio->bi_private = &io->cl;
+ bch_bio_map(bio, NULL);
+}
+
+static void write_moving(struct closure *cl)
+{
+ struct moving_io *io = container_of(cl, struct moving_io, cl);
+ struct data_insert_op *op = &io->op;
+
+ if (!op->status) {
+ moving_init(io);
+
+ io->bio.bio.bi_iter.bi_sector = KEY_START(&io->w->key);
+ op->write_prio = 1;
+ op->bio = &io->bio.bio;
+
+ op->writeback = KEY_DIRTY(&io->w->key);
+ op->csum = KEY_CSUM(&io->w->key);
+
+ bkey_copy(&op->replace_key, &io->w->key);
+ op->replace = true;
+
+ closure_call(&op->cl, bch_data_insert, NULL, cl);
+ }
+
+ continue_at(cl, write_moving_finish, op->wq);
+}
+
+static void read_moving_submit(struct closure *cl)
+{
+ struct moving_io *io = container_of(cl, struct moving_io, cl);
+ struct bio *bio = &io->bio.bio;
+
+ bch_submit_bbio(bio, io->op.c, &io->w->key, 0);
+
+ continue_at(cl, write_moving, io->op.wq);
+}
+
+static void read_moving(struct cache_set *c)
+{
+ struct keybuf_key *w;
+ struct moving_io *io;
+ struct bio *bio;
+ struct closure cl;
+
+ closure_init_stack(&cl);
+
+ /* XXX: if we error, background writeback could stall indefinitely */
+
+ while (!test_bit(CACHE_SET_STOPPING, &c->flags)) {
+ w = bch_keybuf_next_rescan(c, &c->moving_gc_keys,
+ &MAX_KEY, moving_pred);
+ if (!w)
+ break;
+
+ if (ptr_stale(c, &w->key, 0)) {
+ bch_keybuf_del(&c->moving_gc_keys, w);
+ continue;
+ }
+
+ io = kzalloc(struct_size(io, bio.bio.bi_inline_vecs,
+ DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)),
+ GFP_KERNEL);
+ if (!io)
+ goto err;
+
+ w->private = io;
+ io->w = w;
+ io->op.inode = KEY_INODE(&w->key);
+ io->op.c = c;
+ io->op.wq = c->moving_gc_wq;
+
+ moving_init(io);
+ bio = &io->bio.bio;
+
+ bio_set_op_attrs(bio, REQ_OP_READ, 0);
+ bio->bi_end_io = read_moving_endio;
+
+ if (bch_bio_alloc_pages(bio, GFP_KERNEL))
+ goto err;
+
+ trace_bcache_gc_copy(&w->key);
+
+ down(&c->moving_in_flight);
+ closure_call(&io->cl, read_moving_submit, NULL, &cl);
+ }
+
+ if (0) {
+err: if (!IS_ERR_OR_NULL(w->private))
+ kfree(w->private);
+
+ bch_keybuf_del(&c->moving_gc_keys, w);
+ }
+
+ closure_sync(&cl);
+}
+
+static bool bucket_cmp(struct bucket *l, struct bucket *r)
+{
+ return GC_SECTORS_USED(l) < GC_SECTORS_USED(r);
+}
+
+static unsigned int bucket_heap_top(struct cache *ca)
+{
+ struct bucket *b;
+
+ return (b = heap_peek(&ca->heap)) ? GC_SECTORS_USED(b) : 0;
+}
+
+void bch_moving_gc(struct cache_set *c)
+{
+ struct cache *ca = c->cache;
+ struct bucket *b;
+ unsigned long sectors_to_move, reserve_sectors;
+
+ if (!c->copy_gc_enabled)
+ return;
+
+ mutex_lock(&c->bucket_lock);
+
+ sectors_to_move = 0;
+ reserve_sectors = ca->sb.bucket_size *
+ fifo_used(&ca->free[RESERVE_MOVINGGC]);
+
+ ca->heap.used = 0;
+
+ for_each_bucket(b, ca) {
+ if (GC_MARK(b) == GC_MARK_METADATA ||
+ !GC_SECTORS_USED(b) ||
+ GC_SECTORS_USED(b) == ca->sb.bucket_size ||
+ atomic_read(&b->pin))
+ continue;
+
+ if (!heap_full(&ca->heap)) {
+ sectors_to_move += GC_SECTORS_USED(b);
+ heap_add(&ca->heap, b, bucket_cmp);
+ } else if (bucket_cmp(b, heap_peek(&ca->heap))) {
+ sectors_to_move -= bucket_heap_top(ca);
+ sectors_to_move += GC_SECTORS_USED(b);
+
+ ca->heap.data[0] = b;
+ heap_sift(&ca->heap, 0, bucket_cmp);
+ }
+ }
+
+ while (sectors_to_move > reserve_sectors) {
+ heap_pop(&ca->heap, b, bucket_cmp);
+ sectors_to_move -= GC_SECTORS_USED(b);
+ }
+
+ while (heap_pop(&ca->heap, b, bucket_cmp))
+ SET_GC_MOVE(b, 1);
+
+ mutex_unlock(&c->bucket_lock);
+
+ c->moving_gc_keys.last_scanned = ZERO_KEY;
+
+ read_moving(c);
+}
+
+void bch_moving_init_cache_set(struct cache_set *c)
+{
+ bch_keybuf_init(&c->moving_gc_keys);
+ sema_init(&c->moving_in_flight, 64);
+}
diff --git a/drivers/md/bcache/request.c b/drivers/md/bcache/request.c
new file mode 100644
index 000000000..3427555b0
--- /dev/null
+++ b/drivers/md/bcache/request.c
@@ -0,0 +1,1345 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Main bcache entry point - handle a read or a write request and decide what to
+ * do with it; the make_request functions are called by the block layer.
+ *
+ * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
+ * Copyright 2012 Google, Inc.
+ */
+
+#include "bcache.h"
+#include "btree.h"
+#include "debug.h"
+#include "request.h"
+#include "writeback.h"
+
+#include <linux/module.h>
+#include <linux/hash.h>
+#include <linux/random.h>
+#include <linux/backing-dev.h>
+
+#include <trace/events/bcache.h>
+
+#define CUTOFF_CACHE_ADD 95
+#define CUTOFF_CACHE_READA 90
+
+struct kmem_cache *bch_search_cache;
+
+static void bch_data_insert_start(struct closure *cl);
+
+static unsigned int cache_mode(struct cached_dev *dc)
+{
+ return BDEV_CACHE_MODE(&dc->sb);
+}
+
+static bool verify(struct cached_dev *dc)
+{
+ return dc->verify;
+}
+
+static void bio_csum(struct bio *bio, struct bkey *k)
+{
+ struct bio_vec bv;
+ struct bvec_iter iter;
+ uint64_t csum = 0;
+
+ bio_for_each_segment(bv, bio, iter) {
+ void *d = bvec_kmap_local(&bv);
+
+ csum = crc64_be(csum, d, bv.bv_len);
+ kunmap_local(d);
+ }
+
+ k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
+}
+
+/* Insert data into cache */
+
+static void bch_data_insert_keys(struct closure *cl)
+{
+ struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
+ atomic_t *journal_ref = NULL;
+ struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
+ int ret;
+
+ if (!op->replace)
+ journal_ref = bch_journal(op->c, &op->insert_keys,
+ op->flush_journal ? cl : NULL);
+
+ ret = bch_btree_insert(op->c, &op->insert_keys,
+ journal_ref, replace_key);
+ if (ret == -ESRCH) {
+ op->replace_collision = true;
+ } else if (ret) {
+ op->status = BLK_STS_RESOURCE;
+ op->insert_data_done = true;
+ }
+
+ if (journal_ref)
+ atomic_dec_bug(journal_ref);
+
+ if (!op->insert_data_done) {
+ continue_at(cl, bch_data_insert_start, op->wq);
+ return;
+ }
+
+ bch_keylist_free(&op->insert_keys);
+ closure_return(cl);
+}
+
+static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
+ struct cache_set *c)
+{
+ size_t oldsize = bch_keylist_nkeys(l);
+ size_t newsize = oldsize + u64s;
+
+ /*
+ * The journalling code doesn't handle the case where the keys to insert
+ * is bigger than an empty write: If we just return -ENOMEM here,
+ * bch_data_insert_keys() will insert the keys created so far
+ * and finish the rest when the keylist is empty.
+ */
+ if (newsize * sizeof(uint64_t) > block_bytes(c->cache) - sizeof(struct jset))
+ return -ENOMEM;
+
+ return __bch_keylist_realloc(l, u64s);
+}
+
+static void bch_data_invalidate(struct closure *cl)
+{
+ struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
+ struct bio *bio = op->bio;
+
+ pr_debug("invalidating %i sectors from %llu\n",
+ bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
+
+ while (bio_sectors(bio)) {
+ unsigned int sectors = min(bio_sectors(bio),
+ 1U << (KEY_SIZE_BITS - 1));
+
+ if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
+ goto out;
+
+ bio->bi_iter.bi_sector += sectors;
+ bio->bi_iter.bi_size -= sectors << 9;
+
+ bch_keylist_add(&op->insert_keys,
+ &KEY(op->inode,
+ bio->bi_iter.bi_sector,
+ sectors));
+ }
+
+ op->insert_data_done = true;
+ /* get in bch_data_insert() */
+ bio_put(bio);
+out:
+ continue_at(cl, bch_data_insert_keys, op->wq);
+}
+
+static void bch_data_insert_error(struct closure *cl)
+{
+ struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
+
+ /*
+ * Our data write just errored, which means we've got a bunch of keys to
+ * insert that point to data that wasn't successfully written.
+ *
+ * We don't have to insert those keys but we still have to invalidate
+ * that region of the cache - so, if we just strip off all the pointers
+ * from the keys we'll accomplish just that.
+ */
+
+ struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
+
+ while (src != op->insert_keys.top) {
+ struct bkey *n = bkey_next(src);
+
+ SET_KEY_PTRS(src, 0);
+ memmove(dst, src, bkey_bytes(src));
+
+ dst = bkey_next(dst);
+ src = n;
+ }
+
+ op->insert_keys.top = dst;
+
+ bch_data_insert_keys(cl);
+}
+
+static void bch_data_insert_endio(struct bio *bio)
+{
+ struct closure *cl = bio->bi_private;
+ struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
+
+ if (bio->bi_status) {
+ /* TODO: We could try to recover from this. */
+ if (op->writeback)
+ op->status = bio->bi_status;
+ else if (!op->replace)
+ set_closure_fn(cl, bch_data_insert_error, op->wq);
+ else
+ set_closure_fn(cl, NULL, NULL);
+ }
+
+ bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
+}
+
+static void bch_data_insert_start(struct closure *cl)
+{
+ struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
+ struct bio *bio = op->bio, *n;
+
+ if (op->bypass)
+ return bch_data_invalidate(cl);
+
+ if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
+ wake_up_gc(op->c);
+
+ /*
+ * Journal writes are marked REQ_PREFLUSH; if the original write was a
+ * flush, it'll wait on the journal write.
+ */
+ bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
+
+ do {
+ unsigned int i;
+ struct bkey *k;
+ struct bio_set *split = &op->c->bio_split;
+
+ /* 1 for the device pointer and 1 for the chksum */
+ if (bch_keylist_realloc(&op->insert_keys,
+ 3 + (op->csum ? 1 : 0),
+ op->c)) {
+ continue_at(cl, bch_data_insert_keys, op->wq);
+ return;
+ }
+
+ k = op->insert_keys.top;
+ bkey_init(k);
+ SET_KEY_INODE(k, op->inode);
+ SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
+
+ if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
+ op->write_point, op->write_prio,
+ op->writeback))
+ goto err;
+
+ n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
+
+ n->bi_end_io = bch_data_insert_endio;
+ n->bi_private = cl;
+
+ if (op->writeback) {
+ SET_KEY_DIRTY(k, true);
+
+ for (i = 0; i < KEY_PTRS(k); i++)
+ SET_GC_MARK(PTR_BUCKET(op->c, k, i),
+ GC_MARK_DIRTY);
+ }
+
+ SET_KEY_CSUM(k, op->csum);
+ if (KEY_CSUM(k))
+ bio_csum(n, k);
+
+ trace_bcache_cache_insert(k);
+ bch_keylist_push(&op->insert_keys);
+
+ bio_set_op_attrs(n, REQ_OP_WRITE, 0);
+ bch_submit_bbio(n, op->c, k, 0);
+ } while (n != bio);
+
+ op->insert_data_done = true;
+ continue_at(cl, bch_data_insert_keys, op->wq);
+ return;
+err:
+ /* bch_alloc_sectors() blocks if s->writeback = true */
+ BUG_ON(op->writeback);
+
+ /*
+ * But if it's not a writeback write we'd rather just bail out if
+ * there aren't any buckets ready to write to - it might take awhile and
+ * we might be starving btree writes for gc or something.
+ */
+
+ if (!op->replace) {
+ /*
+ * Writethrough write: We can't complete the write until we've
+ * updated the index. But we don't want to delay the write while
+ * we wait for buckets to be freed up, so just invalidate the
+ * rest of the write.
+ */
+ op->bypass = true;
+ return bch_data_invalidate(cl);
+ } else {
+ /*
+ * From a cache miss, we can just insert the keys for the data
+ * we have written or bail out if we didn't do anything.
+ */
+ op->insert_data_done = true;
+ bio_put(bio);
+
+ if (!bch_keylist_empty(&op->insert_keys))
+ continue_at(cl, bch_data_insert_keys, op->wq);
+ else
+ closure_return(cl);
+ }
+}
+
+/**
+ * bch_data_insert - stick some data in the cache
+ * @cl: closure pointer.
+ *
+ * This is the starting point for any data to end up in a cache device; it could
+ * be from a normal write, or a writeback write, or a write to a flash only
+ * volume - it's also used by the moving garbage collector to compact data in
+ * mostly empty buckets.
+ *
+ * It first writes the data to the cache, creating a list of keys to be inserted
+ * (if the data had to be fragmented there will be multiple keys); after the
+ * data is written it calls bch_journal, and after the keys have been added to
+ * the next journal write they're inserted into the btree.
+ *
+ * It inserts the data in op->bio; bi_sector is used for the key offset,
+ * and op->inode is used for the key inode.
+ *
+ * If op->bypass is true, instead of inserting the data it invalidates the
+ * region of the cache represented by op->bio and op->inode.
+ */
+void bch_data_insert(struct closure *cl)
+{
+ struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
+
+ trace_bcache_write(op->c, op->inode, op->bio,
+ op->writeback, op->bypass);
+
+ bch_keylist_init(&op->insert_keys);
+ bio_get(op->bio);
+ bch_data_insert_start(cl);
+}
+
+/*
+ * Congested? Return 0 (not congested) or the limit (in sectors)
+ * beyond which we should bypass the cache due to congestion.
+ */
+unsigned int bch_get_congested(const struct cache_set *c)
+{
+ int i;
+
+ if (!c->congested_read_threshold_us &&
+ !c->congested_write_threshold_us)
+ return 0;
+
+ i = (local_clock_us() - c->congested_last_us) / 1024;
+ if (i < 0)
+ return 0;
+
+ i += atomic_read(&c->congested);
+ if (i >= 0)
+ return 0;
+
+ i += CONGESTED_MAX;
+
+ if (i > 0)
+ i = fract_exp_two(i, 6);
+
+ i -= hweight32(get_random_u32());
+
+ return i > 0 ? i : 1;
+}
+
+static void add_sequential(struct task_struct *t)
+{
+ ewma_add(t->sequential_io_avg,
+ t->sequential_io, 8, 0);
+
+ t->sequential_io = 0;
+}
+
+static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
+{
+ return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
+}
+
+static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
+{
+ struct cache_set *c = dc->disk.c;
+ unsigned int mode = cache_mode(dc);
+ unsigned int sectors, congested;
+ struct task_struct *task = current;
+ struct io *i;
+
+ if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
+ c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
+ (bio_op(bio) == REQ_OP_DISCARD))
+ goto skip;
+
+ if (mode == CACHE_MODE_NONE ||
+ (mode == CACHE_MODE_WRITEAROUND &&
+ op_is_write(bio_op(bio))))
+ goto skip;
+
+ /*
+ * If the bio is for read-ahead or background IO, bypass it or
+ * not depends on the following situations,
+ * - If the IO is for meta data, always cache it and no bypass
+ * - If the IO is not meta data, check dc->cache_reada_policy,
+ * BCH_CACHE_READA_ALL: cache it and not bypass
+ * BCH_CACHE_READA_META_ONLY: not cache it and bypass
+ * That is, read-ahead request for metadata always get cached
+ * (eg, for gfs2 or xfs).
+ */
+ if ((bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND))) {
+ if (!(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
+ (dc->cache_readahead_policy != BCH_CACHE_READA_ALL))
+ goto skip;
+ }
+
+ if (bio->bi_iter.bi_sector & (c->cache->sb.block_size - 1) ||
+ bio_sectors(bio) & (c->cache->sb.block_size - 1)) {
+ pr_debug("skipping unaligned io\n");
+ goto skip;
+ }
+
+ if (bypass_torture_test(dc)) {
+ if (prandom_u32_max(4) == 3)
+ goto skip;
+ else
+ goto rescale;
+ }
+
+ congested = bch_get_congested(c);
+ if (!congested && !dc->sequential_cutoff)
+ goto rescale;
+
+ spin_lock(&dc->io_lock);
+
+ hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
+ if (i->last == bio->bi_iter.bi_sector &&
+ time_before(jiffies, i->jiffies))
+ goto found;
+
+ i = list_first_entry(&dc->io_lru, struct io, lru);
+
+ add_sequential(task);
+ i->sequential = 0;
+found:
+ if (i->sequential + bio->bi_iter.bi_size > i->sequential)
+ i->sequential += bio->bi_iter.bi_size;
+
+ i->last = bio_end_sector(bio);
+ i->jiffies = jiffies + msecs_to_jiffies(5000);
+ task->sequential_io = i->sequential;
+
+ hlist_del(&i->hash);
+ hlist_add_head(&i->hash, iohash(dc, i->last));
+ list_move_tail(&i->lru, &dc->io_lru);
+
+ spin_unlock(&dc->io_lock);
+
+ sectors = max(task->sequential_io,
+ task->sequential_io_avg) >> 9;
+
+ if (dc->sequential_cutoff &&
+ sectors >= dc->sequential_cutoff >> 9) {
+ trace_bcache_bypass_sequential(bio);
+ goto skip;
+ }
+
+ if (congested && sectors >= congested) {
+ trace_bcache_bypass_congested(bio);
+ goto skip;
+ }
+
+rescale:
+ bch_rescale_priorities(c, bio_sectors(bio));
+ return false;
+skip:
+ bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
+ return true;
+}
+
+/* Cache lookup */
+
+struct search {
+ /* Stack frame for bio_complete */
+ struct closure cl;
+
+ struct bbio bio;
+ struct bio *orig_bio;
+ struct bio *cache_miss;
+ struct bcache_device *d;
+
+ unsigned int insert_bio_sectors;
+ unsigned int recoverable:1;
+ unsigned int write:1;
+ unsigned int read_dirty_data:1;
+ unsigned int cache_missed:1;
+
+ struct block_device *orig_bdev;
+ unsigned long start_time;
+
+ struct btree_op op;
+ struct data_insert_op iop;
+};
+
+static void bch_cache_read_endio(struct bio *bio)
+{
+ struct bbio *b = container_of(bio, struct bbio, bio);
+ struct closure *cl = bio->bi_private;
+ struct search *s = container_of(cl, struct search, cl);
+
+ /*
+ * If the bucket was reused while our bio was in flight, we might have
+ * read the wrong data. Set s->error but not error so it doesn't get
+ * counted against the cache device, but we'll still reread the data
+ * from the backing device.
+ */
+
+ if (bio->bi_status)
+ s->iop.status = bio->bi_status;
+ else if (!KEY_DIRTY(&b->key) &&
+ ptr_stale(s->iop.c, &b->key, 0)) {
+ atomic_long_inc(&s->iop.c->cache_read_races);
+ s->iop.status = BLK_STS_IOERR;
+ }
+
+ bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
+}
+
+/*
+ * Read from a single key, handling the initial cache miss if the key starts in
+ * the middle of the bio
+ */
+static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
+{
+ struct search *s = container_of(op, struct search, op);
+ struct bio *n, *bio = &s->bio.bio;
+ struct bkey *bio_key;
+ unsigned int ptr;
+
+ if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
+ return MAP_CONTINUE;
+
+ if (KEY_INODE(k) != s->iop.inode ||
+ KEY_START(k) > bio->bi_iter.bi_sector) {
+ unsigned int bio_sectors = bio_sectors(bio);
+ unsigned int sectors = KEY_INODE(k) == s->iop.inode
+ ? min_t(uint64_t, INT_MAX,
+ KEY_START(k) - bio->bi_iter.bi_sector)
+ : INT_MAX;
+ int ret = s->d->cache_miss(b, s, bio, sectors);
+
+ if (ret != MAP_CONTINUE)
+ return ret;
+
+ /* if this was a complete miss we shouldn't get here */
+ BUG_ON(bio_sectors <= sectors);
+ }
+
+ if (!KEY_SIZE(k))
+ return MAP_CONTINUE;
+
+ /* XXX: figure out best pointer - for multiple cache devices */
+ ptr = 0;
+
+ PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
+
+ if (KEY_DIRTY(k))
+ s->read_dirty_data = true;
+
+ n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
+ KEY_OFFSET(k) - bio->bi_iter.bi_sector),
+ GFP_NOIO, &s->d->bio_split);
+
+ bio_key = &container_of(n, struct bbio, bio)->key;
+ bch_bkey_copy_single_ptr(bio_key, k, ptr);
+
+ bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
+ bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
+
+ n->bi_end_io = bch_cache_read_endio;
+ n->bi_private = &s->cl;
+
+ /*
+ * The bucket we're reading from might be reused while our bio
+ * is in flight, and we could then end up reading the wrong
+ * data.
+ *
+ * We guard against this by checking (in cache_read_endio()) if
+ * the pointer is stale again; if so, we treat it as an error
+ * and reread from the backing device (but we don't pass that
+ * error up anywhere).
+ */
+
+ __bch_submit_bbio(n, b->c);
+ return n == bio ? MAP_DONE : MAP_CONTINUE;
+}
+
+static void cache_lookup(struct closure *cl)
+{
+ struct search *s = container_of(cl, struct search, iop.cl);
+ struct bio *bio = &s->bio.bio;
+ struct cached_dev *dc;
+ int ret;
+
+ bch_btree_op_init(&s->op, -1);
+
+ ret = bch_btree_map_keys(&s->op, s->iop.c,
+ &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
+ cache_lookup_fn, MAP_END_KEY);
+ if (ret == -EAGAIN) {
+ continue_at(cl, cache_lookup, bcache_wq);
+ return;
+ }
+
+ /*
+ * We might meet err when searching the btree, If that happens, we will
+ * get negative ret, in this scenario we should not recover data from
+ * backing device (when cache device is dirty) because we don't know
+ * whether bkeys the read request covered are all clean.
+ *
+ * And after that happened, s->iop.status is still its initial value
+ * before we submit s->bio.bio
+ */
+ if (ret < 0) {
+ BUG_ON(ret == -EINTR);
+ if (s->d && s->d->c &&
+ !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
+ dc = container_of(s->d, struct cached_dev, disk);
+ if (dc && atomic_read(&dc->has_dirty))
+ s->recoverable = false;
+ }
+ if (!s->iop.status)
+ s->iop.status = BLK_STS_IOERR;
+ }
+
+ closure_return(cl);
+}
+
+/* Common code for the make_request functions */
+
+static void request_endio(struct bio *bio)
+{
+ struct closure *cl = bio->bi_private;
+
+ if (bio->bi_status) {
+ struct search *s = container_of(cl, struct search, cl);
+
+ s->iop.status = bio->bi_status;
+ /* Only cache read errors are recoverable */
+ s->recoverable = false;
+ }
+
+ bio_put(bio);
+ closure_put(cl);
+}
+
+static void backing_request_endio(struct bio *bio)
+{
+ struct closure *cl = bio->bi_private;
+
+ if (bio->bi_status) {
+ struct search *s = container_of(cl, struct search, cl);
+ struct cached_dev *dc = container_of(s->d,
+ struct cached_dev, disk);
+ /*
+ * If a bio has REQ_PREFLUSH for writeback mode, it is
+ * speically assembled in cached_dev_write() for a non-zero
+ * write request which has REQ_PREFLUSH. we don't set
+ * s->iop.status by this failure, the status will be decided
+ * by result of bch_data_insert() operation.
+ */
+ if (unlikely(s->iop.writeback &&
+ bio->bi_opf & REQ_PREFLUSH)) {
+ pr_err("Can't flush %pg: returned bi_status %i\n",
+ dc->bdev, bio->bi_status);
+ } else {
+ /* set to orig_bio->bi_status in bio_complete() */
+ s->iop.status = bio->bi_status;
+ }
+ s->recoverable = false;
+ /* should count I/O error for backing device here */
+ bch_count_backing_io_errors(dc, bio);
+ }
+
+ bio_put(bio);
+ closure_put(cl);
+}
+
+static void bio_complete(struct search *s)
+{
+ if (s->orig_bio) {
+ /* Count on bcache device */
+ bio_end_io_acct_remapped(s->orig_bio, s->start_time,
+ s->orig_bdev);
+ trace_bcache_request_end(s->d, s->orig_bio);
+ s->orig_bio->bi_status = s->iop.status;
+ bio_endio(s->orig_bio);
+ s->orig_bio = NULL;
+ }
+}
+
+static void do_bio_hook(struct search *s,
+ struct bio *orig_bio,
+ bio_end_io_t *end_io_fn)
+{
+ struct bio *bio = &s->bio.bio;
+
+ bio_init_clone(orig_bio->bi_bdev, bio, orig_bio, GFP_NOIO);
+ /*
+ * bi_end_io can be set separately somewhere else, e.g. the
+ * variants in,
+ * - cache_bio->bi_end_io from cached_dev_cache_miss()
+ * - n->bi_end_io from cache_lookup_fn()
+ */
+ bio->bi_end_io = end_io_fn;
+ bio->bi_private = &s->cl;
+
+ bio_cnt_set(bio, 3);
+}
+
+static void search_free(struct closure *cl)
+{
+ struct search *s = container_of(cl, struct search, cl);
+
+ atomic_dec(&s->iop.c->search_inflight);
+
+ if (s->iop.bio)
+ bio_put(s->iop.bio);
+
+ bio_complete(s);
+ closure_debug_destroy(cl);
+ mempool_free(s, &s->iop.c->search);
+}
+
+static inline struct search *search_alloc(struct bio *bio,
+ struct bcache_device *d, struct block_device *orig_bdev,
+ unsigned long start_time)
+{
+ struct search *s;
+
+ s = mempool_alloc(&d->c->search, GFP_NOIO);
+
+ closure_init(&s->cl, NULL);
+ do_bio_hook(s, bio, request_endio);
+ atomic_inc(&d->c->search_inflight);
+
+ s->orig_bio = bio;
+ s->cache_miss = NULL;
+ s->cache_missed = 0;
+ s->d = d;
+ s->recoverable = 1;
+ s->write = op_is_write(bio_op(bio));
+ s->read_dirty_data = 0;
+ /* Count on the bcache device */
+ s->orig_bdev = orig_bdev;
+ s->start_time = start_time;
+ s->iop.c = d->c;
+ s->iop.bio = NULL;
+ s->iop.inode = d->id;
+ s->iop.write_point = hash_long((unsigned long) current, 16);
+ s->iop.write_prio = 0;
+ s->iop.status = 0;
+ s->iop.flags = 0;
+ s->iop.flush_journal = op_is_flush(bio->bi_opf);
+ s->iop.wq = bcache_wq;
+
+ return s;
+}
+
+/* Cached devices */
+
+static void cached_dev_bio_complete(struct closure *cl)
+{
+ struct search *s = container_of(cl, struct search, cl);
+ struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
+
+ cached_dev_put(dc);
+ search_free(cl);
+}
+
+/* Process reads */
+
+static void cached_dev_read_error_done(struct closure *cl)
+{
+ struct search *s = container_of(cl, struct search, cl);
+
+ if (s->iop.replace_collision)
+ bch_mark_cache_miss_collision(s->iop.c, s->d);
+
+ if (s->iop.bio)
+ bio_free_pages(s->iop.bio);
+
+ cached_dev_bio_complete(cl);
+}
+
+static void cached_dev_read_error(struct closure *cl)
+{
+ struct search *s = container_of(cl, struct search, cl);
+ struct bio *bio = &s->bio.bio;
+
+ /*
+ * If read request hit dirty data (s->read_dirty_data is true),
+ * then recovery a failed read request from cached device may
+ * get a stale data back. So read failure recovery is only
+ * permitted when read request hit clean data in cache device,
+ * or when cache read race happened.
+ */
+ if (s->recoverable && !s->read_dirty_data) {
+ /* Retry from the backing device: */
+ trace_bcache_read_retry(s->orig_bio);
+
+ s->iop.status = 0;
+ do_bio_hook(s, s->orig_bio, backing_request_endio);
+
+ /* XXX: invalidate cache */
+
+ /* I/O request sent to backing device */
+ closure_bio_submit(s->iop.c, bio, cl);
+ }
+
+ continue_at(cl, cached_dev_read_error_done, NULL);
+}
+
+static void cached_dev_cache_miss_done(struct closure *cl)
+{
+ struct search *s = container_of(cl, struct search, cl);
+ struct bcache_device *d = s->d;
+
+ if (s->iop.replace_collision)
+ bch_mark_cache_miss_collision(s->iop.c, s->d);
+
+ if (s->iop.bio)
+ bio_free_pages(s->iop.bio);
+
+ cached_dev_bio_complete(cl);
+ closure_put(&d->cl);
+}
+
+static void cached_dev_read_done(struct closure *cl)
+{
+ struct search *s = container_of(cl, struct search, cl);
+ struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
+
+ /*
+ * We had a cache miss; cache_bio now contains data ready to be inserted
+ * into the cache.
+ *
+ * First, we copy the data we just read from cache_bio's bounce buffers
+ * to the buffers the original bio pointed to:
+ */
+
+ if (s->iop.bio) {
+ bio_reset(s->iop.bio, s->cache_miss->bi_bdev, REQ_OP_READ);
+ s->iop.bio->bi_iter.bi_sector =
+ s->cache_miss->bi_iter.bi_sector;
+ s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
+ bio_clone_blkg_association(s->iop.bio, s->cache_miss);
+ bch_bio_map(s->iop.bio, NULL);
+
+ bio_copy_data(s->cache_miss, s->iop.bio);
+
+ bio_put(s->cache_miss);
+ s->cache_miss = NULL;
+ }
+
+ if (verify(dc) && s->recoverable && !s->read_dirty_data)
+ bch_data_verify(dc, s->orig_bio);
+
+ closure_get(&dc->disk.cl);
+ bio_complete(s);
+
+ if (s->iop.bio &&
+ !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
+ BUG_ON(!s->iop.replace);
+ closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
+ }
+
+ continue_at(cl, cached_dev_cache_miss_done, NULL);
+}
+
+static void cached_dev_read_done_bh(struct closure *cl)
+{
+ struct search *s = container_of(cl, struct search, cl);
+ struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
+
+ bch_mark_cache_accounting(s->iop.c, s->d,
+ !s->cache_missed, s->iop.bypass);
+ trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
+
+ if (s->iop.status)
+ continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
+ else if (s->iop.bio || verify(dc))
+ continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
+ else
+ continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
+}
+
+static int cached_dev_cache_miss(struct btree *b, struct search *s,
+ struct bio *bio, unsigned int sectors)
+{
+ int ret = MAP_CONTINUE;
+ struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
+ struct bio *miss, *cache_bio;
+ unsigned int size_limit;
+
+ s->cache_missed = 1;
+
+ if (s->cache_miss || s->iop.bypass) {
+ miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
+ ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
+ goto out_submit;
+ }
+
+ /* Limitation for valid replace key size and cache_bio bvecs number */
+ size_limit = min_t(unsigned int, BIO_MAX_VECS * PAGE_SECTORS,
+ (1 << KEY_SIZE_BITS) - 1);
+ s->insert_bio_sectors = min3(size_limit, sectors, bio_sectors(bio));
+
+ s->iop.replace_key = KEY(s->iop.inode,
+ bio->bi_iter.bi_sector + s->insert_bio_sectors,
+ s->insert_bio_sectors);
+
+ ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
+ if (ret)
+ return ret;
+
+ s->iop.replace = true;
+
+ miss = bio_next_split(bio, s->insert_bio_sectors, GFP_NOIO,
+ &s->d->bio_split);
+
+ /* btree_search_recurse()'s btree iterator is no good anymore */
+ ret = miss == bio ? MAP_DONE : -EINTR;
+
+ cache_bio = bio_alloc_bioset(miss->bi_bdev,
+ DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
+ 0, GFP_NOWAIT, &dc->disk.bio_split);
+ if (!cache_bio)
+ goto out_submit;
+
+ cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
+ cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
+
+ cache_bio->bi_end_io = backing_request_endio;
+ cache_bio->bi_private = &s->cl;
+
+ bch_bio_map(cache_bio, NULL);
+ if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
+ goto out_put;
+
+ s->cache_miss = miss;
+ s->iop.bio = cache_bio;
+ bio_get(cache_bio);
+ /* I/O request sent to backing device */
+ closure_bio_submit(s->iop.c, cache_bio, &s->cl);
+
+ return ret;
+out_put:
+ bio_put(cache_bio);
+out_submit:
+ miss->bi_end_io = backing_request_endio;
+ miss->bi_private = &s->cl;
+ /* I/O request sent to backing device */
+ closure_bio_submit(s->iop.c, miss, &s->cl);
+ return ret;
+}
+
+static void cached_dev_read(struct cached_dev *dc, struct search *s)
+{
+ struct closure *cl = &s->cl;
+
+ closure_call(&s->iop.cl, cache_lookup, NULL, cl);
+ continue_at(cl, cached_dev_read_done_bh, NULL);
+}
+
+/* Process writes */
+
+static void cached_dev_write_complete(struct closure *cl)
+{
+ struct search *s = container_of(cl, struct search, cl);
+ struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
+
+ up_read_non_owner(&dc->writeback_lock);
+ cached_dev_bio_complete(cl);
+}
+
+static void cached_dev_write(struct cached_dev *dc, struct search *s)
+{
+ struct closure *cl = &s->cl;
+ struct bio *bio = &s->bio.bio;
+ struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
+ struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
+
+ bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
+
+ down_read_non_owner(&dc->writeback_lock);
+ if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
+ /*
+ * We overlap with some dirty data undergoing background
+ * writeback, force this write to writeback
+ */
+ s->iop.bypass = false;
+ s->iop.writeback = true;
+ }
+
+ /*
+ * Discards aren't _required_ to do anything, so skipping if
+ * check_overlapping returned true is ok
+ *
+ * But check_overlapping drops dirty keys for which io hasn't started,
+ * so we still want to call it.
+ */
+ if (bio_op(bio) == REQ_OP_DISCARD)
+ s->iop.bypass = true;
+
+ if (should_writeback(dc, s->orig_bio,
+ cache_mode(dc),
+ s->iop.bypass)) {
+ s->iop.bypass = false;
+ s->iop.writeback = true;
+ }
+
+ if (s->iop.bypass) {
+ s->iop.bio = s->orig_bio;
+ bio_get(s->iop.bio);
+
+ if (bio_op(bio) == REQ_OP_DISCARD &&
+ !bdev_max_discard_sectors(dc->bdev))
+ goto insert_data;
+
+ /* I/O request sent to backing device */
+ bio->bi_end_io = backing_request_endio;
+ closure_bio_submit(s->iop.c, bio, cl);
+
+ } else if (s->iop.writeback) {
+ bch_writeback_add(dc);
+ s->iop.bio = bio;
+
+ if (bio->bi_opf & REQ_PREFLUSH) {
+ /*
+ * Also need to send a flush to the backing
+ * device.
+ */
+ struct bio *flush;
+
+ flush = bio_alloc_bioset(bio->bi_bdev, 0,
+ REQ_OP_WRITE | REQ_PREFLUSH,
+ GFP_NOIO, &dc->disk.bio_split);
+ if (!flush) {
+ s->iop.status = BLK_STS_RESOURCE;
+ goto insert_data;
+ }
+ flush->bi_end_io = backing_request_endio;
+ flush->bi_private = cl;
+ /* I/O request sent to backing device */
+ closure_bio_submit(s->iop.c, flush, cl);
+ }
+ } else {
+ s->iop.bio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
+ &dc->disk.bio_split);
+ /* I/O request sent to backing device */
+ bio->bi_end_io = backing_request_endio;
+ closure_bio_submit(s->iop.c, bio, cl);
+ }
+
+insert_data:
+ closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
+ continue_at(cl, cached_dev_write_complete, NULL);
+}
+
+static void cached_dev_nodata(struct closure *cl)
+{
+ struct search *s = container_of(cl, struct search, cl);
+ struct bio *bio = &s->bio.bio;
+
+ if (s->iop.flush_journal)
+ bch_journal_meta(s->iop.c, cl);
+
+ /* If it's a flush, we send the flush to the backing device too */
+ bio->bi_end_io = backing_request_endio;
+ closure_bio_submit(s->iop.c, bio, cl);
+
+ continue_at(cl, cached_dev_bio_complete, NULL);
+}
+
+struct detached_dev_io_private {
+ struct bcache_device *d;
+ unsigned long start_time;
+ bio_end_io_t *bi_end_io;
+ void *bi_private;
+ struct block_device *orig_bdev;
+};
+
+static void detached_dev_end_io(struct bio *bio)
+{
+ struct detached_dev_io_private *ddip;
+
+ ddip = bio->bi_private;
+ bio->bi_end_io = ddip->bi_end_io;
+ bio->bi_private = ddip->bi_private;
+
+ /* Count on the bcache device */
+ bio_end_io_acct_remapped(bio, ddip->start_time, ddip->orig_bdev);
+
+ if (bio->bi_status) {
+ struct cached_dev *dc = container_of(ddip->d,
+ struct cached_dev, disk);
+ /* should count I/O error for backing device here */
+ bch_count_backing_io_errors(dc, bio);
+ }
+
+ kfree(ddip);
+ bio->bi_end_io(bio);
+}
+
+static void detached_dev_do_request(struct bcache_device *d, struct bio *bio,
+ struct block_device *orig_bdev, unsigned long start_time)
+{
+ struct detached_dev_io_private *ddip;
+ struct cached_dev *dc = container_of(d, struct cached_dev, disk);
+
+ /*
+ * no need to call closure_get(&dc->disk.cl),
+ * because upper layer had already opened bcache device,
+ * which would call closure_get(&dc->disk.cl)
+ */
+ ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
+ if (!ddip) {
+ bio->bi_status = BLK_STS_RESOURCE;
+ bio->bi_end_io(bio);
+ return;
+ }
+
+ ddip->d = d;
+ /* Count on the bcache device */
+ ddip->orig_bdev = orig_bdev;
+ ddip->start_time = start_time;
+ ddip->bi_end_io = bio->bi_end_io;
+ ddip->bi_private = bio->bi_private;
+ bio->bi_end_io = detached_dev_end_io;
+ bio->bi_private = ddip;
+
+ if ((bio_op(bio) == REQ_OP_DISCARD) &&
+ !bdev_max_discard_sectors(dc->bdev))
+ bio->bi_end_io(bio);
+ else
+ submit_bio_noacct(bio);
+}
+
+static void quit_max_writeback_rate(struct cache_set *c,
+ struct cached_dev *this_dc)
+{
+ int i;
+ struct bcache_device *d;
+ struct cached_dev *dc;
+
+ /*
+ * mutex bch_register_lock may compete with other parallel requesters,
+ * or attach/detach operations on other backing device. Waiting to
+ * the mutex lock may increase I/O request latency for seconds or more.
+ * To avoid such situation, if mutext_trylock() failed, only writeback
+ * rate of current cached device is set to 1, and __update_write_back()
+ * will decide writeback rate of other cached devices (remember now
+ * c->idle_counter is 0 already).
+ */
+ if (mutex_trylock(&bch_register_lock)) {
+ for (i = 0; i < c->devices_max_used; i++) {
+ if (!c->devices[i])
+ continue;
+
+ if (UUID_FLASH_ONLY(&c->uuids[i]))
+ continue;
+
+ d = c->devices[i];
+ dc = container_of(d, struct cached_dev, disk);
+ /*
+ * set writeback rate to default minimum value,
+ * then let update_writeback_rate() to decide the
+ * upcoming rate.
+ */
+ atomic_long_set(&dc->writeback_rate.rate, 1);
+ }
+ mutex_unlock(&bch_register_lock);
+ } else
+ atomic_long_set(&this_dc->writeback_rate.rate, 1);
+}
+
+/* Cached devices - read & write stuff */
+
+void cached_dev_submit_bio(struct bio *bio)
+{
+ struct search *s;
+ struct block_device *orig_bdev = bio->bi_bdev;
+ struct bcache_device *d = orig_bdev->bd_disk->private_data;
+ struct cached_dev *dc = container_of(d, struct cached_dev, disk);
+ unsigned long start_time;
+ int rw = bio_data_dir(bio);
+
+ if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
+ dc->io_disable)) {
+ bio->bi_status = BLK_STS_IOERR;
+ bio_endio(bio);
+ return;
+ }
+
+ if (likely(d->c)) {
+ if (atomic_read(&d->c->idle_counter))
+ atomic_set(&d->c->idle_counter, 0);
+ /*
+ * If at_max_writeback_rate of cache set is true and new I/O
+ * comes, quit max writeback rate of all cached devices
+ * attached to this cache set, and set at_max_writeback_rate
+ * to false.
+ */
+ if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
+ atomic_set(&d->c->at_max_writeback_rate, 0);
+ quit_max_writeback_rate(d->c, dc);
+ }
+ }
+
+ start_time = bio_start_io_acct(bio);
+
+ bio_set_dev(bio, dc->bdev);
+ bio->bi_iter.bi_sector += dc->sb.data_offset;
+
+ if (cached_dev_get(dc)) {
+ s = search_alloc(bio, d, orig_bdev, start_time);
+ trace_bcache_request_start(s->d, bio);
+
+ if (!bio->bi_iter.bi_size) {
+ /*
+ * can't call bch_journal_meta from under
+ * submit_bio_noacct
+ */
+ continue_at_nobarrier(&s->cl,
+ cached_dev_nodata,
+ bcache_wq);
+ } else {
+ s->iop.bypass = check_should_bypass(dc, bio);
+
+ if (rw)
+ cached_dev_write(dc, s);
+ else
+ cached_dev_read(dc, s);
+ }
+ } else
+ /* I/O request sent to backing device */
+ detached_dev_do_request(d, bio, orig_bdev, start_time);
+}
+
+static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
+ unsigned int cmd, unsigned long arg)
+{
+ struct cached_dev *dc = container_of(d, struct cached_dev, disk);
+
+ if (dc->io_disable)
+ return -EIO;
+ if (!dc->bdev->bd_disk->fops->ioctl)
+ return -ENOTTY;
+ return dc->bdev->bd_disk->fops->ioctl(dc->bdev, mode, cmd, arg);
+}
+
+void bch_cached_dev_request_init(struct cached_dev *dc)
+{
+ dc->disk.cache_miss = cached_dev_cache_miss;
+ dc->disk.ioctl = cached_dev_ioctl;
+}
+
+/* Flash backed devices */
+
+static int flash_dev_cache_miss(struct btree *b, struct search *s,
+ struct bio *bio, unsigned int sectors)
+{
+ unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
+
+ swap(bio->bi_iter.bi_size, bytes);
+ zero_fill_bio(bio);
+ swap(bio->bi_iter.bi_size, bytes);
+
+ bio_advance(bio, bytes);
+
+ if (!bio->bi_iter.bi_size)
+ return MAP_DONE;
+
+ return MAP_CONTINUE;
+}
+
+static void flash_dev_nodata(struct closure *cl)
+{
+ struct search *s = container_of(cl, struct search, cl);
+
+ if (s->iop.flush_journal)
+ bch_journal_meta(s->iop.c, cl);
+
+ continue_at(cl, search_free, NULL);
+}
+
+void flash_dev_submit_bio(struct bio *bio)
+{
+ struct search *s;
+ struct closure *cl;
+ struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
+
+ if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
+ bio->bi_status = BLK_STS_IOERR;
+ bio_endio(bio);
+ return;
+ }
+
+ s = search_alloc(bio, d, bio->bi_bdev, bio_start_io_acct(bio));
+ cl = &s->cl;
+ bio = &s->bio.bio;
+
+ trace_bcache_request_start(s->d, bio);
+
+ if (!bio->bi_iter.bi_size) {
+ /*
+ * can't call bch_journal_meta from under submit_bio_noacct
+ */
+ continue_at_nobarrier(&s->cl,
+ flash_dev_nodata,
+ bcache_wq);
+ return;
+ } else if (bio_data_dir(bio)) {
+ bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
+ &KEY(d->id, bio->bi_iter.bi_sector, 0),
+ &KEY(d->id, bio_end_sector(bio), 0));
+
+ s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0;
+ s->iop.writeback = true;
+ s->iop.bio = bio;
+
+ closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
+ } else {
+ closure_call(&s->iop.cl, cache_lookup, NULL, cl);
+ }
+
+ continue_at(cl, search_free, NULL);
+}
+
+static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
+ unsigned int cmd, unsigned long arg)
+{
+ return -ENOTTY;
+}
+
+void bch_flash_dev_request_init(struct bcache_device *d)
+{
+ d->cache_miss = flash_dev_cache_miss;
+ d->ioctl = flash_dev_ioctl;
+}
+
+void bch_request_exit(void)
+{
+ kmem_cache_destroy(bch_search_cache);
+}
+
+int __init bch_request_init(void)
+{
+ bch_search_cache = KMEM_CACHE(search, 0);
+ if (!bch_search_cache)
+ return -ENOMEM;
+
+ return 0;
+}
diff --git a/drivers/md/bcache/request.h b/drivers/md/bcache/request.h
new file mode 100644
index 000000000..38ab4856e
--- /dev/null
+++ b/drivers/md/bcache/request.h
@@ -0,0 +1,47 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _BCACHE_REQUEST_H_
+#define _BCACHE_REQUEST_H_
+
+struct data_insert_op {
+ struct closure cl;
+ struct cache_set *c;
+ struct bio *bio;
+ struct workqueue_struct *wq;
+
+ unsigned int inode;
+ uint16_t write_point;
+ uint16_t write_prio;
+ blk_status_t status;
+
+ union {
+ uint16_t flags;
+
+ struct {
+ unsigned int bypass:1;
+ unsigned int writeback:1;
+ unsigned int flush_journal:1;
+ unsigned int csum:1;
+
+ unsigned int replace:1;
+ unsigned int replace_collision:1;
+
+ unsigned int insert_data_done:1;
+ };
+ };
+
+ struct keylist insert_keys;
+ BKEY_PADDED(replace_key);
+};
+
+unsigned int bch_get_congested(const struct cache_set *c);
+void bch_data_insert(struct closure *cl);
+
+void bch_cached_dev_request_init(struct cached_dev *dc);
+void cached_dev_submit_bio(struct bio *bio);
+
+void bch_flash_dev_request_init(struct bcache_device *d);
+void flash_dev_submit_bio(struct bio *bio);
+
+extern struct kmem_cache *bch_search_cache;
+
+#endif /* _BCACHE_REQUEST_H_ */
diff --git a/drivers/md/bcache/stats.c b/drivers/md/bcache/stats.c
new file mode 100644
index 000000000..68b022160
--- /dev/null
+++ b/drivers/md/bcache/stats.c
@@ -0,0 +1,234 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * bcache stats code
+ *
+ * Copyright 2012 Google, Inc.
+ */
+
+#include "bcache.h"
+#include "stats.h"
+#include "btree.h"
+#include "sysfs.h"
+
+/*
+ * We keep absolute totals of various statistics, and addionally a set of three
+ * rolling averages.
+ *
+ * Every so often, a timer goes off and rescales the rolling averages.
+ * accounting_rescale[] is how many times the timer has to go off before we
+ * rescale each set of numbers; that gets us half lives of 5 minutes, one hour,
+ * and one day.
+ *
+ * accounting_delay is how often the timer goes off - 22 times in 5 minutes,
+ * and accounting_weight is what we use to rescale:
+ *
+ * pow(31 / 32, 22) ~= 1/2
+ *
+ * So that we don't have to increment each set of numbers every time we (say)
+ * get a cache hit, we increment a single atomic_t in acc->collector, and when
+ * the rescale function runs it resets the atomic counter to 0 and adds its
+ * old value to each of the exported numbers.
+ *
+ * To reduce rounding error, the numbers in struct cache_stats are all
+ * stored left shifted by 16, and scaled back in the sysfs show() function.
+ */
+
+static const unsigned int DAY_RESCALE = 288;
+static const unsigned int HOUR_RESCALE = 12;
+static const unsigned int FIVE_MINUTE_RESCALE = 1;
+static const unsigned int accounting_delay = (HZ * 300) / 22;
+static const unsigned int accounting_weight = 32;
+
+/* sysfs reading/writing */
+
+read_attribute(cache_hits);
+read_attribute(cache_misses);
+read_attribute(cache_bypass_hits);
+read_attribute(cache_bypass_misses);
+read_attribute(cache_hit_ratio);
+read_attribute(cache_miss_collisions);
+read_attribute(bypassed);
+
+SHOW(bch_stats)
+{
+ struct cache_stats *s =
+ container_of(kobj, struct cache_stats, kobj);
+#define var(stat) (s->stat >> 16)
+ var_print(cache_hits);
+ var_print(cache_misses);
+ var_print(cache_bypass_hits);
+ var_print(cache_bypass_misses);
+
+ sysfs_print(cache_hit_ratio,
+ DIV_SAFE(var(cache_hits) * 100,
+ var(cache_hits) + var(cache_misses)));
+
+ var_print(cache_miss_collisions);
+ sysfs_hprint(bypassed, var(sectors_bypassed) << 9);
+#undef var
+ return 0;
+}
+
+STORE(bch_stats)
+{
+ return size;
+}
+
+static void bch_stats_release(struct kobject *k)
+{
+}
+
+static struct attribute *bch_stats_attrs[] = {
+ &sysfs_cache_hits,
+ &sysfs_cache_misses,
+ &sysfs_cache_bypass_hits,
+ &sysfs_cache_bypass_misses,
+ &sysfs_cache_hit_ratio,
+ &sysfs_cache_miss_collisions,
+ &sysfs_bypassed,
+ NULL
+};
+ATTRIBUTE_GROUPS(bch_stats);
+static KTYPE(bch_stats);
+
+int bch_cache_accounting_add_kobjs(struct cache_accounting *acc,
+ struct kobject *parent)
+{
+ int ret = kobject_add(&acc->total.kobj, parent,
+ "stats_total");
+ ret = ret ?: kobject_add(&acc->five_minute.kobj, parent,
+ "stats_five_minute");
+ ret = ret ?: kobject_add(&acc->hour.kobj, parent,
+ "stats_hour");
+ ret = ret ?: kobject_add(&acc->day.kobj, parent,
+ "stats_day");
+ return ret;
+}
+
+void bch_cache_accounting_clear(struct cache_accounting *acc)
+{
+ acc->total.cache_hits = 0;
+ acc->total.cache_misses = 0;
+ acc->total.cache_bypass_hits = 0;
+ acc->total.cache_bypass_misses = 0;
+ acc->total.cache_miss_collisions = 0;
+ acc->total.sectors_bypassed = 0;
+}
+
+void bch_cache_accounting_destroy(struct cache_accounting *acc)
+{
+ kobject_put(&acc->total.kobj);
+ kobject_put(&acc->five_minute.kobj);
+ kobject_put(&acc->hour.kobj);
+ kobject_put(&acc->day.kobj);
+
+ atomic_set(&acc->closing, 1);
+ if (del_timer_sync(&acc->timer))
+ closure_return(&acc->cl);
+}
+
+/* EWMA scaling */
+
+static void scale_stat(unsigned long *stat)
+{
+ *stat = ewma_add(*stat, 0, accounting_weight, 0);
+}
+
+static void scale_stats(struct cache_stats *stats, unsigned long rescale_at)
+{
+ if (++stats->rescale == rescale_at) {
+ stats->rescale = 0;
+ scale_stat(&stats->cache_hits);
+ scale_stat(&stats->cache_misses);
+ scale_stat(&stats->cache_bypass_hits);
+ scale_stat(&stats->cache_bypass_misses);
+ scale_stat(&stats->cache_miss_collisions);
+ scale_stat(&stats->sectors_bypassed);
+ }
+}
+
+static void scale_accounting(struct timer_list *t)
+{
+ struct cache_accounting *acc = from_timer(acc, t, timer);
+
+#define move_stat(name) do { \
+ unsigned int t = atomic_xchg(&acc->collector.name, 0); \
+ t <<= 16; \
+ acc->five_minute.name += t; \
+ acc->hour.name += t; \
+ acc->day.name += t; \
+ acc->total.name += t; \
+} while (0)
+
+ move_stat(cache_hits);
+ move_stat(cache_misses);
+ move_stat(cache_bypass_hits);
+ move_stat(cache_bypass_misses);
+ move_stat(cache_miss_collisions);
+ move_stat(sectors_bypassed);
+
+ scale_stats(&acc->total, 0);
+ scale_stats(&acc->day, DAY_RESCALE);
+ scale_stats(&acc->hour, HOUR_RESCALE);
+ scale_stats(&acc->five_minute, FIVE_MINUTE_RESCALE);
+
+ acc->timer.expires += accounting_delay;
+
+ if (!atomic_read(&acc->closing))
+ add_timer(&acc->timer);
+ else
+ closure_return(&acc->cl);
+}
+
+static void mark_cache_stats(struct cache_stat_collector *stats,
+ bool hit, bool bypass)
+{
+ if (!bypass)
+ if (hit)
+ atomic_inc(&stats->cache_hits);
+ else
+ atomic_inc(&stats->cache_misses);
+ else
+ if (hit)
+ atomic_inc(&stats->cache_bypass_hits);
+ else
+ atomic_inc(&stats->cache_bypass_misses);
+}
+
+void bch_mark_cache_accounting(struct cache_set *c, struct bcache_device *d,
+ bool hit, bool bypass)
+{
+ struct cached_dev *dc = container_of(d, struct cached_dev, disk);
+
+ mark_cache_stats(&dc->accounting.collector, hit, bypass);
+ mark_cache_stats(&c->accounting.collector, hit, bypass);
+}
+
+void bch_mark_cache_miss_collision(struct cache_set *c, struct bcache_device *d)
+{
+ struct cached_dev *dc = container_of(d, struct cached_dev, disk);
+
+ atomic_inc(&dc->accounting.collector.cache_miss_collisions);
+ atomic_inc(&c->accounting.collector.cache_miss_collisions);
+}
+
+void bch_mark_sectors_bypassed(struct cache_set *c, struct cached_dev *dc,
+ int sectors)
+{
+ atomic_add(sectors, &dc->accounting.collector.sectors_bypassed);
+ atomic_add(sectors, &c->accounting.collector.sectors_bypassed);
+}
+
+void bch_cache_accounting_init(struct cache_accounting *acc,
+ struct closure *parent)
+{
+ kobject_init(&acc->total.kobj, &bch_stats_ktype);
+ kobject_init(&acc->five_minute.kobj, &bch_stats_ktype);
+ kobject_init(&acc->hour.kobj, &bch_stats_ktype);
+ kobject_init(&acc->day.kobj, &bch_stats_ktype);
+
+ closure_init(&acc->cl, parent);
+ timer_setup(&acc->timer, scale_accounting, 0);
+ acc->timer.expires = jiffies + accounting_delay;
+ add_timer(&acc->timer);
+}
diff --git a/drivers/md/bcache/stats.h b/drivers/md/bcache/stats.h
new file mode 100644
index 000000000..bd3afc856
--- /dev/null
+++ b/drivers/md/bcache/stats.h
@@ -0,0 +1,63 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _BCACHE_STATS_H_
+#define _BCACHE_STATS_H_
+
+struct cache_stat_collector {
+ atomic_t cache_hits;
+ atomic_t cache_misses;
+ atomic_t cache_bypass_hits;
+ atomic_t cache_bypass_misses;
+ atomic_t cache_miss_collisions;
+ atomic_t sectors_bypassed;
+};
+
+struct cache_stats {
+ struct kobject kobj;
+
+ unsigned long cache_hits;
+ unsigned long cache_misses;
+ unsigned long cache_bypass_hits;
+ unsigned long cache_bypass_misses;
+ unsigned long cache_readaheads;
+ unsigned long cache_miss_collisions;
+ unsigned long sectors_bypassed;
+
+ unsigned int rescale;
+};
+
+struct cache_accounting {
+ struct closure cl;
+ struct timer_list timer;
+ atomic_t closing;
+
+ struct cache_stat_collector collector;
+
+ struct cache_stats total;
+ struct cache_stats five_minute;
+ struct cache_stats hour;
+ struct cache_stats day;
+};
+
+struct cache_set;
+struct cached_dev;
+struct bcache_device;
+
+void bch_cache_accounting_init(struct cache_accounting *acc,
+ struct closure *parent);
+
+int bch_cache_accounting_add_kobjs(struct cache_accounting *acc,
+ struct kobject *parent);
+
+void bch_cache_accounting_clear(struct cache_accounting *acc);
+
+void bch_cache_accounting_destroy(struct cache_accounting *acc);
+
+void bch_mark_cache_accounting(struct cache_set *c, struct bcache_device *d,
+ bool hit, bool bypass);
+void bch_mark_cache_miss_collision(struct cache_set *c,
+ struct bcache_device *d);
+void bch_mark_sectors_bypassed(struct cache_set *c,
+ struct cached_dev *dc,
+ int sectors);
+
+#endif /* _BCACHE_STATS_H_ */
diff --git a/drivers/md/bcache/super.c b/drivers/md/bcache/super.c
new file mode 100644
index 000000000..70e5bd896
--- /dev/null
+++ b/drivers/md/bcache/super.c
@@ -0,0 +1,2941 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * bcache setup/teardown code, and some metadata io - read a superblock and
+ * figure out what to do with it.
+ *
+ * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
+ * Copyright 2012 Google, Inc.
+ */
+
+#include "bcache.h"
+#include "btree.h"
+#include "debug.h"
+#include "extents.h"
+#include "request.h"
+#include "writeback.h"
+#include "features.h"
+
+#include <linux/blkdev.h>
+#include <linux/pagemap.h>
+#include <linux/debugfs.h>
+#include <linux/idr.h>
+#include <linux/kthread.h>
+#include <linux/workqueue.h>
+#include <linux/module.h>
+#include <linux/random.h>
+#include <linux/reboot.h>
+#include <linux/sysfs.h>
+
+unsigned int bch_cutoff_writeback;
+unsigned int bch_cutoff_writeback_sync;
+
+static const char bcache_magic[] = {
+ 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
+ 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
+};
+
+static const char invalid_uuid[] = {
+ 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
+ 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
+};
+
+static struct kobject *bcache_kobj;
+struct mutex bch_register_lock;
+bool bcache_is_reboot;
+LIST_HEAD(bch_cache_sets);
+static LIST_HEAD(uncached_devices);
+
+static int bcache_major;
+static DEFINE_IDA(bcache_device_idx);
+static wait_queue_head_t unregister_wait;
+struct workqueue_struct *bcache_wq;
+struct workqueue_struct *bch_flush_wq;
+struct workqueue_struct *bch_journal_wq;
+
+
+#define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
+/* limitation of partitions number on single bcache device */
+#define BCACHE_MINORS 128
+/* limitation of bcache devices number on single system */
+#define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS)
+
+/* Superblock */
+
+static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
+{
+ unsigned int bucket_size = le16_to_cpu(s->bucket_size);
+
+ if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
+ if (bch_has_feature_large_bucket(sb)) {
+ unsigned int max, order;
+
+ max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
+ order = le16_to_cpu(s->bucket_size);
+ /*
+ * bcache tool will make sure the overflow won't
+ * happen, an error message here is enough.
+ */
+ if (order > max)
+ pr_err("Bucket size (1 << %u) overflows\n",
+ order);
+ bucket_size = 1 << order;
+ } else if (bch_has_feature_obso_large_bucket(sb)) {
+ bucket_size +=
+ le16_to_cpu(s->obso_bucket_size_hi) << 16;
+ }
+ }
+
+ return bucket_size;
+}
+
+static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev,
+ struct cache_sb_disk *s)
+{
+ const char *err;
+ unsigned int i;
+
+ sb->first_bucket= le16_to_cpu(s->first_bucket);
+ sb->nbuckets = le64_to_cpu(s->nbuckets);
+ sb->bucket_size = get_bucket_size(sb, s);
+
+ sb->nr_in_set = le16_to_cpu(s->nr_in_set);
+ sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
+
+ err = "Too many journal buckets";
+ if (sb->keys > SB_JOURNAL_BUCKETS)
+ goto err;
+
+ err = "Too many buckets";
+ if (sb->nbuckets > LONG_MAX)
+ goto err;
+
+ err = "Not enough buckets";
+ if (sb->nbuckets < 1 << 7)
+ goto err;
+
+ err = "Bad block size (not power of 2)";
+ if (!is_power_of_2(sb->block_size))
+ goto err;
+
+ err = "Bad block size (larger than page size)";
+ if (sb->block_size > PAGE_SECTORS)
+ goto err;
+
+ err = "Bad bucket size (not power of 2)";
+ if (!is_power_of_2(sb->bucket_size))
+ goto err;
+
+ err = "Bad bucket size (smaller than page size)";
+ if (sb->bucket_size < PAGE_SECTORS)
+ goto err;
+
+ err = "Invalid superblock: device too small";
+ if (get_capacity(bdev->bd_disk) <
+ sb->bucket_size * sb->nbuckets)
+ goto err;
+
+ err = "Bad UUID";
+ if (bch_is_zero(sb->set_uuid, 16))
+ goto err;
+
+ err = "Bad cache device number in set";
+ if (!sb->nr_in_set ||
+ sb->nr_in_set <= sb->nr_this_dev ||
+ sb->nr_in_set > MAX_CACHES_PER_SET)
+ goto err;
+
+ err = "Journal buckets not sequential";
+ for (i = 0; i < sb->keys; i++)
+ if (sb->d[i] != sb->first_bucket + i)
+ goto err;
+
+ err = "Too many journal buckets";
+ if (sb->first_bucket + sb->keys > sb->nbuckets)
+ goto err;
+
+ err = "Invalid superblock: first bucket comes before end of super";
+ if (sb->first_bucket * sb->bucket_size < 16)
+ goto err;
+
+ err = NULL;
+err:
+ return err;
+}
+
+
+static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
+ struct cache_sb_disk **res)
+{
+ const char *err;
+ struct cache_sb_disk *s;
+ struct page *page;
+ unsigned int i;
+
+ page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
+ SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
+ if (IS_ERR(page))
+ return "IO error";
+ s = page_address(page) + offset_in_page(SB_OFFSET);
+
+ sb->offset = le64_to_cpu(s->offset);
+ sb->version = le64_to_cpu(s->version);
+
+ memcpy(sb->magic, s->magic, 16);
+ memcpy(sb->uuid, s->uuid, 16);
+ memcpy(sb->set_uuid, s->set_uuid, 16);
+ memcpy(sb->label, s->label, SB_LABEL_SIZE);
+
+ sb->flags = le64_to_cpu(s->flags);
+ sb->seq = le64_to_cpu(s->seq);
+ sb->last_mount = le32_to_cpu(s->last_mount);
+ sb->keys = le16_to_cpu(s->keys);
+
+ for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
+ sb->d[i] = le64_to_cpu(s->d[i]);
+
+ pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
+ sb->version, sb->flags, sb->seq, sb->keys);
+
+ err = "Not a bcache superblock (bad offset)";
+ if (sb->offset != SB_SECTOR)
+ goto err;
+
+ err = "Not a bcache superblock (bad magic)";
+ if (memcmp(sb->magic, bcache_magic, 16))
+ goto err;
+
+ err = "Bad checksum";
+ if (s->csum != csum_set(s))
+ goto err;
+
+ err = "Bad UUID";
+ if (bch_is_zero(sb->uuid, 16))
+ goto err;
+
+ sb->block_size = le16_to_cpu(s->block_size);
+
+ err = "Superblock block size smaller than device block size";
+ if (sb->block_size << 9 < bdev_logical_block_size(bdev))
+ goto err;
+
+ switch (sb->version) {
+ case BCACHE_SB_VERSION_BDEV:
+ sb->data_offset = BDEV_DATA_START_DEFAULT;
+ break;
+ case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
+ case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
+ sb->data_offset = le64_to_cpu(s->data_offset);
+
+ err = "Bad data offset";
+ if (sb->data_offset < BDEV_DATA_START_DEFAULT)
+ goto err;
+
+ break;
+ case BCACHE_SB_VERSION_CDEV:
+ case BCACHE_SB_VERSION_CDEV_WITH_UUID:
+ err = read_super_common(sb, bdev, s);
+ if (err)
+ goto err;
+ break;
+ case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
+ /*
+ * Feature bits are needed in read_super_common(),
+ * convert them firstly.
+ */
+ sb->feature_compat = le64_to_cpu(s->feature_compat);
+ sb->feature_incompat = le64_to_cpu(s->feature_incompat);
+ sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
+
+ /* Check incompatible features */
+ err = "Unsupported compatible feature found";
+ if (bch_has_unknown_compat_features(sb))
+ goto err;
+
+ err = "Unsupported read-only compatible feature found";
+ if (bch_has_unknown_ro_compat_features(sb))
+ goto err;
+
+ err = "Unsupported incompatible feature found";
+ if (bch_has_unknown_incompat_features(sb))
+ goto err;
+
+ err = read_super_common(sb, bdev, s);
+ if (err)
+ goto err;
+ break;
+ default:
+ err = "Unsupported superblock version";
+ goto err;
+ }
+
+ sb->last_mount = (u32)ktime_get_real_seconds();
+ *res = s;
+ return NULL;
+err:
+ put_page(page);
+ return err;
+}
+
+static void write_bdev_super_endio(struct bio *bio)
+{
+ struct cached_dev *dc = bio->bi_private;
+
+ if (bio->bi_status)
+ bch_count_backing_io_errors(dc, bio);
+
+ closure_put(&dc->sb_write);
+}
+
+static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
+ struct bio *bio)
+{
+ unsigned int i;
+
+ bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
+ bio->bi_iter.bi_sector = SB_SECTOR;
+ __bio_add_page(bio, virt_to_page(out), SB_SIZE,
+ offset_in_page(out));
+
+ out->offset = cpu_to_le64(sb->offset);
+
+ memcpy(out->uuid, sb->uuid, 16);
+ memcpy(out->set_uuid, sb->set_uuid, 16);
+ memcpy(out->label, sb->label, SB_LABEL_SIZE);
+
+ out->flags = cpu_to_le64(sb->flags);
+ out->seq = cpu_to_le64(sb->seq);
+
+ out->last_mount = cpu_to_le32(sb->last_mount);
+ out->first_bucket = cpu_to_le16(sb->first_bucket);
+ out->keys = cpu_to_le16(sb->keys);
+
+ for (i = 0; i < sb->keys; i++)
+ out->d[i] = cpu_to_le64(sb->d[i]);
+
+ if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
+ out->feature_compat = cpu_to_le64(sb->feature_compat);
+ out->feature_incompat = cpu_to_le64(sb->feature_incompat);
+ out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
+ }
+
+ out->version = cpu_to_le64(sb->version);
+ out->csum = csum_set(out);
+
+ pr_debug("ver %llu, flags %llu, seq %llu\n",
+ sb->version, sb->flags, sb->seq);
+
+ submit_bio(bio);
+}
+
+static void bch_write_bdev_super_unlock(struct closure *cl)
+{
+ struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
+
+ up(&dc->sb_write_mutex);
+}
+
+void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
+{
+ struct closure *cl = &dc->sb_write;
+ struct bio *bio = &dc->sb_bio;
+
+ down(&dc->sb_write_mutex);
+ closure_init(cl, parent);
+
+ bio_init(bio, dc->bdev, dc->sb_bv, 1, 0);
+ bio->bi_end_io = write_bdev_super_endio;
+ bio->bi_private = dc;
+
+ closure_get(cl);
+ /* I/O request sent to backing device */
+ __write_super(&dc->sb, dc->sb_disk, bio);
+
+ closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
+}
+
+static void write_super_endio(struct bio *bio)
+{
+ struct cache *ca = bio->bi_private;
+
+ /* is_read = 0 */
+ bch_count_io_errors(ca, bio->bi_status, 0,
+ "writing superblock");
+ closure_put(&ca->set->sb_write);
+}
+
+static void bcache_write_super_unlock(struct closure *cl)
+{
+ struct cache_set *c = container_of(cl, struct cache_set, sb_write);
+
+ up(&c->sb_write_mutex);
+}
+
+void bcache_write_super(struct cache_set *c)
+{
+ struct closure *cl = &c->sb_write;
+ struct cache *ca = c->cache;
+ struct bio *bio = &ca->sb_bio;
+ unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
+
+ down(&c->sb_write_mutex);
+ closure_init(cl, &c->cl);
+
+ ca->sb.seq++;
+
+ if (ca->sb.version < version)
+ ca->sb.version = version;
+
+ bio_init(bio, ca->bdev, ca->sb_bv, 1, 0);
+ bio->bi_end_io = write_super_endio;
+ bio->bi_private = ca;
+
+ closure_get(cl);
+ __write_super(&ca->sb, ca->sb_disk, bio);
+
+ closure_return_with_destructor(cl, bcache_write_super_unlock);
+}
+
+/* UUID io */
+
+static void uuid_endio(struct bio *bio)
+{
+ struct closure *cl = bio->bi_private;
+ struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
+
+ cache_set_err_on(bio->bi_status, c, "accessing uuids");
+ bch_bbio_free(bio, c);
+ closure_put(cl);
+}
+
+static void uuid_io_unlock(struct closure *cl)
+{
+ struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
+
+ up(&c->uuid_write_mutex);
+}
+
+static void uuid_io(struct cache_set *c, blk_opf_t opf, struct bkey *k,
+ struct closure *parent)
+{
+ struct closure *cl = &c->uuid_write;
+ struct uuid_entry *u;
+ unsigned int i;
+ char buf[80];
+
+ BUG_ON(!parent);
+ down(&c->uuid_write_mutex);
+ closure_init(cl, parent);
+
+ for (i = 0; i < KEY_PTRS(k); i++) {
+ struct bio *bio = bch_bbio_alloc(c);
+
+ bio->bi_opf = opf | REQ_SYNC | REQ_META;
+ bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
+
+ bio->bi_end_io = uuid_endio;
+ bio->bi_private = cl;
+ bch_bio_map(bio, c->uuids);
+
+ bch_submit_bbio(bio, c, k, i);
+
+ if ((opf & REQ_OP_MASK) != REQ_OP_WRITE)
+ break;
+ }
+
+ bch_extent_to_text(buf, sizeof(buf), k);
+ pr_debug("%s UUIDs at %s\n", (opf & REQ_OP_MASK) == REQ_OP_WRITE ?
+ "wrote" : "read", buf);
+
+ for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
+ if (!bch_is_zero(u->uuid, 16))
+ pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
+ u - c->uuids, u->uuid, u->label,
+ u->first_reg, u->last_reg, u->invalidated);
+
+ closure_return_with_destructor(cl, uuid_io_unlock);
+}
+
+static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
+{
+ struct bkey *k = &j->uuid_bucket;
+
+ if (__bch_btree_ptr_invalid(c, k))
+ return "bad uuid pointer";
+
+ bkey_copy(&c->uuid_bucket, k);
+ uuid_io(c, REQ_OP_READ, k, cl);
+
+ if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
+ struct uuid_entry_v0 *u0 = (void *) c->uuids;
+ struct uuid_entry *u1 = (void *) c->uuids;
+ int i;
+
+ closure_sync(cl);
+
+ /*
+ * Since the new uuid entry is bigger than the old, we have to
+ * convert starting at the highest memory address and work down
+ * in order to do it in place
+ */
+
+ for (i = c->nr_uuids - 1;
+ i >= 0;
+ --i) {
+ memcpy(u1[i].uuid, u0[i].uuid, 16);
+ memcpy(u1[i].label, u0[i].label, 32);
+
+ u1[i].first_reg = u0[i].first_reg;
+ u1[i].last_reg = u0[i].last_reg;
+ u1[i].invalidated = u0[i].invalidated;
+
+ u1[i].flags = 0;
+ u1[i].sectors = 0;
+ }
+ }
+
+ return NULL;
+}
+
+static int __uuid_write(struct cache_set *c)
+{
+ BKEY_PADDED(key) k;
+ struct closure cl;
+ struct cache *ca = c->cache;
+ unsigned int size;
+
+ closure_init_stack(&cl);
+ lockdep_assert_held(&bch_register_lock);
+
+ if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
+ return 1;
+
+ size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
+ SET_KEY_SIZE(&k.key, size);
+ uuid_io(c, REQ_OP_WRITE, &k.key, &cl);
+ closure_sync(&cl);
+
+ /* Only one bucket used for uuid write */
+ atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
+
+ bkey_copy(&c->uuid_bucket, &k.key);
+ bkey_put(c, &k.key);
+ return 0;
+}
+
+int bch_uuid_write(struct cache_set *c)
+{
+ int ret = __uuid_write(c);
+
+ if (!ret)
+ bch_journal_meta(c, NULL);
+
+ return ret;
+}
+
+static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
+{
+ struct uuid_entry *u;
+
+ for (u = c->uuids;
+ u < c->uuids + c->nr_uuids; u++)
+ if (!memcmp(u->uuid, uuid, 16))
+ return u;
+
+ return NULL;
+}
+
+static struct uuid_entry *uuid_find_empty(struct cache_set *c)
+{
+ static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
+
+ return uuid_find(c, zero_uuid);
+}
+
+/*
+ * Bucket priorities/gens:
+ *
+ * For each bucket, we store on disk its
+ * 8 bit gen
+ * 16 bit priority
+ *
+ * See alloc.c for an explanation of the gen. The priority is used to implement
+ * lru (and in the future other) cache replacement policies; for most purposes
+ * it's just an opaque integer.
+ *
+ * The gens and the priorities don't have a whole lot to do with each other, and
+ * it's actually the gens that must be written out at specific times - it's no
+ * big deal if the priorities don't get written, if we lose them we just reuse
+ * buckets in suboptimal order.
+ *
+ * On disk they're stored in a packed array, and in as many buckets are required
+ * to fit them all. The buckets we use to store them form a list; the journal
+ * header points to the first bucket, the first bucket points to the second
+ * bucket, et cetera.
+ *
+ * This code is used by the allocation code; periodically (whenever it runs out
+ * of buckets to allocate from) the allocation code will invalidate some
+ * buckets, but it can't use those buckets until their new gens are safely on
+ * disk.
+ */
+
+static void prio_endio(struct bio *bio)
+{
+ struct cache *ca = bio->bi_private;
+
+ cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
+ bch_bbio_free(bio, ca->set);
+ closure_put(&ca->prio);
+}
+
+static void prio_io(struct cache *ca, uint64_t bucket, blk_opf_t opf)
+{
+ struct closure *cl = &ca->prio;
+ struct bio *bio = bch_bbio_alloc(ca->set);
+
+ closure_init_stack(cl);
+
+ bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
+ bio_set_dev(bio, ca->bdev);
+ bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb);
+
+ bio->bi_end_io = prio_endio;
+ bio->bi_private = ca;
+ bio->bi_opf = opf | REQ_SYNC | REQ_META;
+ bch_bio_map(bio, ca->disk_buckets);
+
+ closure_bio_submit(ca->set, bio, &ca->prio);
+ closure_sync(cl);
+}
+
+int bch_prio_write(struct cache *ca, bool wait)
+{
+ int i;
+ struct bucket *b;
+ struct closure cl;
+
+ pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
+ fifo_used(&ca->free[RESERVE_PRIO]),
+ fifo_used(&ca->free[RESERVE_NONE]),
+ fifo_used(&ca->free_inc));
+
+ /*
+ * Pre-check if there are enough free buckets. In the non-blocking
+ * scenario it's better to fail early rather than starting to allocate
+ * buckets and do a cleanup later in case of failure.
+ */
+ if (!wait) {
+ size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
+ fifo_used(&ca->free[RESERVE_NONE]);
+ if (prio_buckets(ca) > avail)
+ return -ENOMEM;
+ }
+
+ closure_init_stack(&cl);
+
+ lockdep_assert_held(&ca->set->bucket_lock);
+
+ ca->disk_buckets->seq++;
+
+ atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
+ &ca->meta_sectors_written);
+
+ for (i = prio_buckets(ca) - 1; i >= 0; --i) {
+ long bucket;
+ struct prio_set *p = ca->disk_buckets;
+ struct bucket_disk *d = p->data;
+ struct bucket_disk *end = d + prios_per_bucket(ca);
+
+ for (b = ca->buckets + i * prios_per_bucket(ca);
+ b < ca->buckets + ca->sb.nbuckets && d < end;
+ b++, d++) {
+ d->prio = cpu_to_le16(b->prio);
+ d->gen = b->gen;
+ }
+
+ p->next_bucket = ca->prio_buckets[i + 1];
+ p->magic = pset_magic(&ca->sb);
+ p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
+
+ bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
+ BUG_ON(bucket == -1);
+
+ mutex_unlock(&ca->set->bucket_lock);
+ prio_io(ca, bucket, REQ_OP_WRITE);
+ mutex_lock(&ca->set->bucket_lock);
+
+ ca->prio_buckets[i] = bucket;
+ atomic_dec_bug(&ca->buckets[bucket].pin);
+ }
+
+ mutex_unlock(&ca->set->bucket_lock);
+
+ bch_journal_meta(ca->set, &cl);
+ closure_sync(&cl);
+
+ mutex_lock(&ca->set->bucket_lock);
+
+ /*
+ * Don't want the old priorities to get garbage collected until after we
+ * finish writing the new ones, and they're journalled
+ */
+ for (i = 0; i < prio_buckets(ca); i++) {
+ if (ca->prio_last_buckets[i])
+ __bch_bucket_free(ca,
+ &ca->buckets[ca->prio_last_buckets[i]]);
+
+ ca->prio_last_buckets[i] = ca->prio_buckets[i];
+ }
+ return 0;
+}
+
+static int prio_read(struct cache *ca, uint64_t bucket)
+{
+ struct prio_set *p = ca->disk_buckets;
+ struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
+ struct bucket *b;
+ unsigned int bucket_nr = 0;
+ int ret = -EIO;
+
+ for (b = ca->buckets;
+ b < ca->buckets + ca->sb.nbuckets;
+ b++, d++) {
+ if (d == end) {
+ ca->prio_buckets[bucket_nr] = bucket;
+ ca->prio_last_buckets[bucket_nr] = bucket;
+ bucket_nr++;
+
+ prio_io(ca, bucket, REQ_OP_READ);
+
+ if (p->csum !=
+ bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
+ pr_warn("bad csum reading priorities\n");
+ goto out;
+ }
+
+ if (p->magic != pset_magic(&ca->sb)) {
+ pr_warn("bad magic reading priorities\n");
+ goto out;
+ }
+
+ bucket = p->next_bucket;
+ d = p->data;
+ }
+
+ b->prio = le16_to_cpu(d->prio);
+ b->gen = b->last_gc = d->gen;
+ }
+
+ ret = 0;
+out:
+ return ret;
+}
+
+/* Bcache device */
+
+static int open_dev(struct block_device *b, fmode_t mode)
+{
+ struct bcache_device *d = b->bd_disk->private_data;
+
+ if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
+ return -ENXIO;
+
+ closure_get(&d->cl);
+ return 0;
+}
+
+static void release_dev(struct gendisk *b, fmode_t mode)
+{
+ struct bcache_device *d = b->private_data;
+
+ closure_put(&d->cl);
+}
+
+static int ioctl_dev(struct block_device *b, fmode_t mode,
+ unsigned int cmd, unsigned long arg)
+{
+ struct bcache_device *d = b->bd_disk->private_data;
+
+ return d->ioctl(d, mode, cmd, arg);
+}
+
+static const struct block_device_operations bcache_cached_ops = {
+ .submit_bio = cached_dev_submit_bio,
+ .open = open_dev,
+ .release = release_dev,
+ .ioctl = ioctl_dev,
+ .owner = THIS_MODULE,
+};
+
+static const struct block_device_operations bcache_flash_ops = {
+ .submit_bio = flash_dev_submit_bio,
+ .open = open_dev,
+ .release = release_dev,
+ .ioctl = ioctl_dev,
+ .owner = THIS_MODULE,
+};
+
+void bcache_device_stop(struct bcache_device *d)
+{
+ if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
+ /*
+ * closure_fn set to
+ * - cached device: cached_dev_flush()
+ * - flash dev: flash_dev_flush()
+ */
+ closure_queue(&d->cl);
+}
+
+static void bcache_device_unlink(struct bcache_device *d)
+{
+ lockdep_assert_held(&bch_register_lock);
+
+ if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
+ struct cache *ca = d->c->cache;
+
+ sysfs_remove_link(&d->c->kobj, d->name);
+ sysfs_remove_link(&d->kobj, "cache");
+
+ bd_unlink_disk_holder(ca->bdev, d->disk);
+ }
+}
+
+static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
+ const char *name)
+{
+ struct cache *ca = c->cache;
+ int ret;
+
+ bd_link_disk_holder(ca->bdev, d->disk);
+
+ snprintf(d->name, BCACHEDEVNAME_SIZE,
+ "%s%u", name, d->id);
+
+ ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
+ if (ret < 0)
+ pr_err("Couldn't create device -> cache set symlink\n");
+
+ ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
+ if (ret < 0)
+ pr_err("Couldn't create cache set -> device symlink\n");
+
+ clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
+}
+
+static void bcache_device_detach(struct bcache_device *d)
+{
+ lockdep_assert_held(&bch_register_lock);
+
+ atomic_dec(&d->c->attached_dev_nr);
+
+ if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
+ struct uuid_entry *u = d->c->uuids + d->id;
+
+ SET_UUID_FLASH_ONLY(u, 0);
+ memcpy(u->uuid, invalid_uuid, 16);
+ u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
+ bch_uuid_write(d->c);
+ }
+
+ bcache_device_unlink(d);
+
+ d->c->devices[d->id] = NULL;
+ closure_put(&d->c->caching);
+ d->c = NULL;
+}
+
+static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
+ unsigned int id)
+{
+ d->id = id;
+ d->c = c;
+ c->devices[id] = d;
+
+ if (id >= c->devices_max_used)
+ c->devices_max_used = id + 1;
+
+ closure_get(&c->caching);
+}
+
+static inline int first_minor_to_idx(int first_minor)
+{
+ return (first_minor/BCACHE_MINORS);
+}
+
+static inline int idx_to_first_minor(int idx)
+{
+ return (idx * BCACHE_MINORS);
+}
+
+static void bcache_device_free(struct bcache_device *d)
+{
+ struct gendisk *disk = d->disk;
+
+ lockdep_assert_held(&bch_register_lock);
+
+ if (disk)
+ pr_info("%s stopped\n", disk->disk_name);
+ else
+ pr_err("bcache device (NULL gendisk) stopped\n");
+
+ if (d->c)
+ bcache_device_detach(d);
+
+ if (disk) {
+ ida_simple_remove(&bcache_device_idx,
+ first_minor_to_idx(disk->first_minor));
+ put_disk(disk);
+ }
+
+ bioset_exit(&d->bio_split);
+ kvfree(d->full_dirty_stripes);
+ kvfree(d->stripe_sectors_dirty);
+
+ closure_debug_destroy(&d->cl);
+}
+
+static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
+ sector_t sectors, struct block_device *cached_bdev,
+ const struct block_device_operations *ops)
+{
+ struct request_queue *q;
+ const size_t max_stripes = min_t(size_t, INT_MAX,
+ SIZE_MAX / sizeof(atomic_t));
+ uint64_t n;
+ int idx;
+
+ if (!d->stripe_size)
+ d->stripe_size = 1 << 31;
+ else if (d->stripe_size < BCH_MIN_STRIPE_SZ)
+ d->stripe_size = roundup(BCH_MIN_STRIPE_SZ, d->stripe_size);
+
+ n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
+ if (!n || n > max_stripes) {
+ pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
+ n);
+ return -ENOMEM;
+ }
+ d->nr_stripes = n;
+
+ n = d->nr_stripes * sizeof(atomic_t);
+ d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
+ if (!d->stripe_sectors_dirty)
+ return -ENOMEM;
+
+ n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
+ d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
+ if (!d->full_dirty_stripes)
+ goto out_free_stripe_sectors_dirty;
+
+ idx = ida_simple_get(&bcache_device_idx, 0,
+ BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
+ if (idx < 0)
+ goto out_free_full_dirty_stripes;
+
+ if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
+ BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
+ goto out_ida_remove;
+
+ d->disk = blk_alloc_disk(NUMA_NO_NODE);
+ if (!d->disk)
+ goto out_bioset_exit;
+
+ set_capacity(d->disk, sectors);
+ snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
+
+ d->disk->major = bcache_major;
+ d->disk->first_minor = idx_to_first_minor(idx);
+ d->disk->minors = BCACHE_MINORS;
+ d->disk->fops = ops;
+ d->disk->private_data = d;
+
+ q = d->disk->queue;
+ q->limits.max_hw_sectors = UINT_MAX;
+ q->limits.max_sectors = UINT_MAX;
+ q->limits.max_segment_size = UINT_MAX;
+ q->limits.max_segments = BIO_MAX_VECS;
+ blk_queue_max_discard_sectors(q, UINT_MAX);
+ q->limits.discard_granularity = 512;
+ q->limits.io_min = block_size;
+ q->limits.logical_block_size = block_size;
+ q->limits.physical_block_size = block_size;
+
+ if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
+ /*
+ * This should only happen with BCACHE_SB_VERSION_BDEV.
+ * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
+ */
+ pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
+ d->disk->disk_name, q->limits.logical_block_size,
+ PAGE_SIZE, bdev_logical_block_size(cached_bdev));
+
+ /* This also adjusts physical block size/min io size if needed */
+ blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
+ }
+
+ blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
+ blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
+
+ blk_queue_write_cache(q, true, true);
+
+ return 0;
+
+out_bioset_exit:
+ bioset_exit(&d->bio_split);
+out_ida_remove:
+ ida_simple_remove(&bcache_device_idx, idx);
+out_free_full_dirty_stripes:
+ kvfree(d->full_dirty_stripes);
+out_free_stripe_sectors_dirty:
+ kvfree(d->stripe_sectors_dirty);
+ return -ENOMEM;
+
+}
+
+/* Cached device */
+
+static void calc_cached_dev_sectors(struct cache_set *c)
+{
+ uint64_t sectors = 0;
+ struct cached_dev *dc;
+
+ list_for_each_entry(dc, &c->cached_devs, list)
+ sectors += bdev_nr_sectors(dc->bdev);
+
+ c->cached_dev_sectors = sectors;
+}
+
+#define BACKING_DEV_OFFLINE_TIMEOUT 5
+static int cached_dev_status_update(void *arg)
+{
+ struct cached_dev *dc = arg;
+ struct request_queue *q;
+
+ /*
+ * If this delayed worker is stopping outside, directly quit here.
+ * dc->io_disable might be set via sysfs interface, so check it
+ * here too.
+ */
+ while (!kthread_should_stop() && !dc->io_disable) {
+ q = bdev_get_queue(dc->bdev);
+ if (blk_queue_dying(q))
+ dc->offline_seconds++;
+ else
+ dc->offline_seconds = 0;
+
+ if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
+ pr_err("%pg: device offline for %d seconds\n",
+ dc->bdev,
+ BACKING_DEV_OFFLINE_TIMEOUT);
+ pr_err("%s: disable I/O request due to backing device offline\n",
+ dc->disk.name);
+ dc->io_disable = true;
+ /* let others know earlier that io_disable is true */
+ smp_mb();
+ bcache_device_stop(&dc->disk);
+ break;
+ }
+ schedule_timeout_interruptible(HZ);
+ }
+
+ wait_for_kthread_stop();
+ return 0;
+}
+
+
+int bch_cached_dev_run(struct cached_dev *dc)
+{
+ int ret = 0;
+ struct bcache_device *d = &dc->disk;
+ char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
+ char *env[] = {
+ "DRIVER=bcache",
+ kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
+ kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
+ NULL,
+ };
+
+ if (dc->io_disable) {
+ pr_err("I/O disabled on cached dev %pg\n", dc->bdev);
+ ret = -EIO;
+ goto out;
+ }
+
+ if (atomic_xchg(&dc->running, 1)) {
+ pr_info("cached dev %pg is running already\n", dc->bdev);
+ ret = -EBUSY;
+ goto out;
+ }
+
+ if (!d->c &&
+ BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
+ struct closure cl;
+
+ closure_init_stack(&cl);
+
+ SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
+ bch_write_bdev_super(dc, &cl);
+ closure_sync(&cl);
+ }
+
+ ret = add_disk(d->disk);
+ if (ret)
+ goto out;
+ bd_link_disk_holder(dc->bdev, dc->disk.disk);
+ /*
+ * won't show up in the uevent file, use udevadm monitor -e instead
+ * only class / kset properties are persistent
+ */
+ kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
+
+ if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
+ sysfs_create_link(&disk_to_dev(d->disk)->kobj,
+ &d->kobj, "bcache")) {
+ pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ dc->status_update_thread = kthread_run(cached_dev_status_update,
+ dc, "bcache_status_update");
+ if (IS_ERR(dc->status_update_thread)) {
+ pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
+ }
+
+out:
+ kfree(env[1]);
+ kfree(env[2]);
+ kfree(buf);
+ return ret;
+}
+
+/*
+ * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
+ * work dc->writeback_rate_update is running. Wait until the routine
+ * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
+ * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
+ * seconds, give up waiting here and continue to cancel it too.
+ */
+static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
+{
+ int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
+
+ do {
+ if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
+ &dc->disk.flags))
+ break;
+ time_out--;
+ schedule_timeout_interruptible(1);
+ } while (time_out > 0);
+
+ if (time_out == 0)
+ pr_warn("give up waiting for dc->writeback_write_update to quit\n");
+
+ cancel_delayed_work_sync(&dc->writeback_rate_update);
+}
+
+static void cached_dev_detach_finish(struct work_struct *w)
+{
+ struct cached_dev *dc = container_of(w, struct cached_dev, detach);
+ struct cache_set *c = dc->disk.c;
+
+ BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
+ BUG_ON(refcount_read(&dc->count));
+
+
+ if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
+ cancel_writeback_rate_update_dwork(dc);
+
+ if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
+ kthread_stop(dc->writeback_thread);
+ dc->writeback_thread = NULL;
+ }
+
+ mutex_lock(&bch_register_lock);
+
+ bcache_device_detach(&dc->disk);
+ list_move(&dc->list, &uncached_devices);
+ calc_cached_dev_sectors(c);
+
+ clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
+ clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
+
+ mutex_unlock(&bch_register_lock);
+
+ pr_info("Caching disabled for %pg\n", dc->bdev);
+
+ /* Drop ref we took in cached_dev_detach() */
+ closure_put(&dc->disk.cl);
+}
+
+void bch_cached_dev_detach(struct cached_dev *dc)
+{
+ lockdep_assert_held(&bch_register_lock);
+
+ if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
+ return;
+
+ if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
+ return;
+
+ /*
+ * Block the device from being closed and freed until we're finished
+ * detaching
+ */
+ closure_get(&dc->disk.cl);
+
+ bch_writeback_queue(dc);
+
+ cached_dev_put(dc);
+}
+
+int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
+ uint8_t *set_uuid)
+{
+ uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
+ struct uuid_entry *u;
+ struct cached_dev *exist_dc, *t;
+ int ret = 0;
+
+ if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
+ (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
+ return -ENOENT;
+
+ if (dc->disk.c) {
+ pr_err("Can't attach %pg: already attached\n", dc->bdev);
+ return -EINVAL;
+ }
+
+ if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
+ pr_err("Can't attach %pg: shutting down\n", dc->bdev);
+ return -EINVAL;
+ }
+
+ if (dc->sb.block_size < c->cache->sb.block_size) {
+ /* Will die */
+ pr_err("Couldn't attach %pg: block size less than set's block size\n",
+ dc->bdev);
+ return -EINVAL;
+ }
+
+ /* Check whether already attached */
+ list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
+ if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
+ pr_err("Tried to attach %pg but duplicate UUID already attached\n",
+ dc->bdev);
+
+ return -EINVAL;
+ }
+ }
+
+ u = uuid_find(c, dc->sb.uuid);
+
+ if (u &&
+ (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
+ BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
+ memcpy(u->uuid, invalid_uuid, 16);
+ u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
+ u = NULL;
+ }
+
+ if (!u) {
+ if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
+ pr_err("Couldn't find uuid for %pg in set\n", dc->bdev);
+ return -ENOENT;
+ }
+
+ u = uuid_find_empty(c);
+ if (!u) {
+ pr_err("Not caching %pg, no room for UUID\n", dc->bdev);
+ return -EINVAL;
+ }
+ }
+
+ /*
+ * Deadlocks since we're called via sysfs...
+ * sysfs_remove_file(&dc->kobj, &sysfs_attach);
+ */
+
+ if (bch_is_zero(u->uuid, 16)) {
+ struct closure cl;
+
+ closure_init_stack(&cl);
+
+ memcpy(u->uuid, dc->sb.uuid, 16);
+ memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
+ u->first_reg = u->last_reg = rtime;
+ bch_uuid_write(c);
+
+ memcpy(dc->sb.set_uuid, c->set_uuid, 16);
+ SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
+
+ bch_write_bdev_super(dc, &cl);
+ closure_sync(&cl);
+ } else {
+ u->last_reg = rtime;
+ bch_uuid_write(c);
+ }
+
+ bcache_device_attach(&dc->disk, c, u - c->uuids);
+ list_move(&dc->list, &c->cached_devs);
+ calc_cached_dev_sectors(c);
+
+ /*
+ * dc->c must be set before dc->count != 0 - paired with the mb in
+ * cached_dev_get()
+ */
+ smp_wmb();
+ refcount_set(&dc->count, 1);
+
+ /* Block writeback thread, but spawn it */
+ down_write(&dc->writeback_lock);
+ if (bch_cached_dev_writeback_start(dc)) {
+ up_write(&dc->writeback_lock);
+ pr_err("Couldn't start writeback facilities for %s\n",
+ dc->disk.disk->disk_name);
+ return -ENOMEM;
+ }
+
+ if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
+ atomic_set(&dc->has_dirty, 1);
+ bch_writeback_queue(dc);
+ }
+
+ bch_sectors_dirty_init(&dc->disk);
+
+ ret = bch_cached_dev_run(dc);
+ if (ret && (ret != -EBUSY)) {
+ up_write(&dc->writeback_lock);
+ /*
+ * bch_register_lock is held, bcache_device_stop() is not
+ * able to be directly called. The kthread and kworker
+ * created previously in bch_cached_dev_writeback_start()
+ * have to be stopped manually here.
+ */
+ kthread_stop(dc->writeback_thread);
+ cancel_writeback_rate_update_dwork(dc);
+ pr_err("Couldn't run cached device %pg\n", dc->bdev);
+ return ret;
+ }
+
+ bcache_device_link(&dc->disk, c, "bdev");
+ atomic_inc(&c->attached_dev_nr);
+
+ if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
+ pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
+ pr_err("Please update to the latest bcache-tools to create the cache device\n");
+ set_disk_ro(dc->disk.disk, 1);
+ }
+
+ /* Allow the writeback thread to proceed */
+ up_write(&dc->writeback_lock);
+
+ pr_info("Caching %pg as %s on set %pU\n",
+ dc->bdev,
+ dc->disk.disk->disk_name,
+ dc->disk.c->set_uuid);
+ return 0;
+}
+
+/* when dc->disk.kobj released */
+void bch_cached_dev_release(struct kobject *kobj)
+{
+ struct cached_dev *dc = container_of(kobj, struct cached_dev,
+ disk.kobj);
+ kfree(dc);
+ module_put(THIS_MODULE);
+}
+
+static void cached_dev_free(struct closure *cl)
+{
+ struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
+
+ if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
+ cancel_writeback_rate_update_dwork(dc);
+
+ if (!IS_ERR_OR_NULL(dc->writeback_thread))
+ kthread_stop(dc->writeback_thread);
+ if (!IS_ERR_OR_NULL(dc->status_update_thread))
+ kthread_stop(dc->status_update_thread);
+
+ mutex_lock(&bch_register_lock);
+
+ if (atomic_read(&dc->running)) {
+ bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
+ del_gendisk(dc->disk.disk);
+ }
+ bcache_device_free(&dc->disk);
+ list_del(&dc->list);
+
+ mutex_unlock(&bch_register_lock);
+
+ if (dc->sb_disk)
+ put_page(virt_to_page(dc->sb_disk));
+
+ if (!IS_ERR_OR_NULL(dc->bdev))
+ blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
+
+ wake_up(&unregister_wait);
+
+ kobject_put(&dc->disk.kobj);
+}
+
+static void cached_dev_flush(struct closure *cl)
+{
+ struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
+ struct bcache_device *d = &dc->disk;
+
+ mutex_lock(&bch_register_lock);
+ bcache_device_unlink(d);
+ mutex_unlock(&bch_register_lock);
+
+ bch_cache_accounting_destroy(&dc->accounting);
+ kobject_del(&d->kobj);
+
+ continue_at(cl, cached_dev_free, system_wq);
+}
+
+static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
+{
+ int ret;
+ struct io *io;
+ struct request_queue *q = bdev_get_queue(dc->bdev);
+
+ __module_get(THIS_MODULE);
+ INIT_LIST_HEAD(&dc->list);
+ closure_init(&dc->disk.cl, NULL);
+ set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
+ kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
+ INIT_WORK(&dc->detach, cached_dev_detach_finish);
+ sema_init(&dc->sb_write_mutex, 1);
+ INIT_LIST_HEAD(&dc->io_lru);
+ spin_lock_init(&dc->io_lock);
+ bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
+
+ dc->sequential_cutoff = 4 << 20;
+
+ for (io = dc->io; io < dc->io + RECENT_IO; io++) {
+ list_add(&io->lru, &dc->io_lru);
+ hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
+ }
+
+ dc->disk.stripe_size = q->limits.io_opt >> 9;
+
+ if (dc->disk.stripe_size)
+ dc->partial_stripes_expensive =
+ q->limits.raid_partial_stripes_expensive;
+
+ ret = bcache_device_init(&dc->disk, block_size,
+ bdev_nr_sectors(dc->bdev) - dc->sb.data_offset,
+ dc->bdev, &bcache_cached_ops);
+ if (ret)
+ return ret;
+
+ blk_queue_io_opt(dc->disk.disk->queue,
+ max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
+
+ atomic_set(&dc->io_errors, 0);
+ dc->io_disable = false;
+ dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
+ /* default to auto */
+ dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
+
+ bch_cached_dev_request_init(dc);
+ bch_cached_dev_writeback_init(dc);
+ return 0;
+}
+
+/* Cached device - bcache superblock */
+
+static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
+ struct block_device *bdev,
+ struct cached_dev *dc)
+{
+ const char *err = "cannot allocate memory";
+ struct cache_set *c;
+ int ret = -ENOMEM;
+
+ memcpy(&dc->sb, sb, sizeof(struct cache_sb));
+ dc->bdev = bdev;
+ dc->bdev->bd_holder = dc;
+ dc->sb_disk = sb_disk;
+
+ if (cached_dev_init(dc, sb->block_size << 9))
+ goto err;
+
+ err = "error creating kobject";
+ if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache"))
+ goto err;
+ if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
+ goto err;
+
+ pr_info("registered backing device %pg\n", dc->bdev);
+
+ list_add(&dc->list, &uncached_devices);
+ /* attach to a matched cache set if it exists */
+ list_for_each_entry(c, &bch_cache_sets, list)
+ bch_cached_dev_attach(dc, c, NULL);
+
+ if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
+ BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
+ err = "failed to run cached device";
+ ret = bch_cached_dev_run(dc);
+ if (ret)
+ goto err;
+ }
+
+ return 0;
+err:
+ pr_notice("error %pg: %s\n", dc->bdev, err);
+ bcache_device_stop(&dc->disk);
+ return ret;
+}
+
+/* Flash only volumes */
+
+/* When d->kobj released */
+void bch_flash_dev_release(struct kobject *kobj)
+{
+ struct bcache_device *d = container_of(kobj, struct bcache_device,
+ kobj);
+ kfree(d);
+}
+
+static void flash_dev_free(struct closure *cl)
+{
+ struct bcache_device *d = container_of(cl, struct bcache_device, cl);
+
+ mutex_lock(&bch_register_lock);
+ atomic_long_sub(bcache_dev_sectors_dirty(d),
+ &d->c->flash_dev_dirty_sectors);
+ del_gendisk(d->disk);
+ bcache_device_free(d);
+ mutex_unlock(&bch_register_lock);
+ kobject_put(&d->kobj);
+}
+
+static void flash_dev_flush(struct closure *cl)
+{
+ struct bcache_device *d = container_of(cl, struct bcache_device, cl);
+
+ mutex_lock(&bch_register_lock);
+ bcache_device_unlink(d);
+ mutex_unlock(&bch_register_lock);
+ kobject_del(&d->kobj);
+ continue_at(cl, flash_dev_free, system_wq);
+}
+
+static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
+{
+ int err = -ENOMEM;
+ struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
+ GFP_KERNEL);
+ if (!d)
+ goto err_ret;
+
+ closure_init(&d->cl, NULL);
+ set_closure_fn(&d->cl, flash_dev_flush, system_wq);
+
+ kobject_init(&d->kobj, &bch_flash_dev_ktype);
+
+ if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
+ NULL, &bcache_flash_ops))
+ goto err;
+
+ bcache_device_attach(d, c, u - c->uuids);
+ bch_sectors_dirty_init(d);
+ bch_flash_dev_request_init(d);
+ err = add_disk(d->disk);
+ if (err)
+ goto err;
+
+ err = kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache");
+ if (err)
+ goto err;
+
+ bcache_device_link(d, c, "volume");
+
+ if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
+ pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
+ pr_err("Please update to the latest bcache-tools to create the cache device\n");
+ set_disk_ro(d->disk, 1);
+ }
+
+ return 0;
+err:
+ kobject_put(&d->kobj);
+err_ret:
+ return err;
+}
+
+static int flash_devs_run(struct cache_set *c)
+{
+ int ret = 0;
+ struct uuid_entry *u;
+
+ for (u = c->uuids;
+ u < c->uuids + c->nr_uuids && !ret;
+ u++)
+ if (UUID_FLASH_ONLY(u))
+ ret = flash_dev_run(c, u);
+
+ return ret;
+}
+
+int bch_flash_dev_create(struct cache_set *c, uint64_t size)
+{
+ struct uuid_entry *u;
+
+ if (test_bit(CACHE_SET_STOPPING, &c->flags))
+ return -EINTR;
+
+ if (!test_bit(CACHE_SET_RUNNING, &c->flags))
+ return -EPERM;
+
+ u = uuid_find_empty(c);
+ if (!u) {
+ pr_err("Can't create volume, no room for UUID\n");
+ return -EINVAL;
+ }
+
+ get_random_bytes(u->uuid, 16);
+ memset(u->label, 0, 32);
+ u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
+
+ SET_UUID_FLASH_ONLY(u, 1);
+ u->sectors = size >> 9;
+
+ bch_uuid_write(c);
+
+ return flash_dev_run(c, u);
+}
+
+bool bch_cached_dev_error(struct cached_dev *dc)
+{
+ if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
+ return false;
+
+ dc->io_disable = true;
+ /* make others know io_disable is true earlier */
+ smp_mb();
+
+ pr_err("stop %s: too many IO errors on backing device %pg\n",
+ dc->disk.disk->disk_name, dc->bdev);
+
+ bcache_device_stop(&dc->disk);
+ return true;
+}
+
+/* Cache set */
+
+__printf(2, 3)
+bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
+{
+ struct va_format vaf;
+ va_list args;
+
+ if (c->on_error != ON_ERROR_PANIC &&
+ test_bit(CACHE_SET_STOPPING, &c->flags))
+ return false;
+
+ if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
+ pr_info("CACHE_SET_IO_DISABLE already set\n");
+
+ /*
+ * XXX: we can be called from atomic context
+ * acquire_console_sem();
+ */
+
+ va_start(args, fmt);
+
+ vaf.fmt = fmt;
+ vaf.va = &args;
+
+ pr_err("error on %pU: %pV, disabling caching\n",
+ c->set_uuid, &vaf);
+
+ va_end(args);
+
+ if (c->on_error == ON_ERROR_PANIC)
+ panic("panic forced after error\n");
+
+ bch_cache_set_unregister(c);
+ return true;
+}
+
+/* When c->kobj released */
+void bch_cache_set_release(struct kobject *kobj)
+{
+ struct cache_set *c = container_of(kobj, struct cache_set, kobj);
+
+ kfree(c);
+ module_put(THIS_MODULE);
+}
+
+static void cache_set_free(struct closure *cl)
+{
+ struct cache_set *c = container_of(cl, struct cache_set, cl);
+ struct cache *ca;
+
+ debugfs_remove(c->debug);
+
+ bch_open_buckets_free(c);
+ bch_btree_cache_free(c);
+ bch_journal_free(c);
+
+ mutex_lock(&bch_register_lock);
+ bch_bset_sort_state_free(&c->sort);
+ free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
+
+ ca = c->cache;
+ if (ca) {
+ ca->set = NULL;
+ c->cache = NULL;
+ kobject_put(&ca->kobj);
+ }
+
+
+ if (c->moving_gc_wq)
+ destroy_workqueue(c->moving_gc_wq);
+ bioset_exit(&c->bio_split);
+ mempool_exit(&c->fill_iter);
+ mempool_exit(&c->bio_meta);
+ mempool_exit(&c->search);
+ kfree(c->devices);
+
+ list_del(&c->list);
+ mutex_unlock(&bch_register_lock);
+
+ pr_info("Cache set %pU unregistered\n", c->set_uuid);
+ wake_up(&unregister_wait);
+
+ closure_debug_destroy(&c->cl);
+ kobject_put(&c->kobj);
+}
+
+static void cache_set_flush(struct closure *cl)
+{
+ struct cache_set *c = container_of(cl, struct cache_set, caching);
+ struct cache *ca = c->cache;
+ struct btree *b;
+
+ bch_cache_accounting_destroy(&c->accounting);
+
+ kobject_put(&c->internal);
+ kobject_del(&c->kobj);
+
+ if (!IS_ERR_OR_NULL(c->gc_thread))
+ kthread_stop(c->gc_thread);
+
+ if (!IS_ERR(c->root))
+ list_add(&c->root->list, &c->btree_cache);
+
+ /*
+ * Avoid flushing cached nodes if cache set is retiring
+ * due to too many I/O errors detected.
+ */
+ if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
+ list_for_each_entry(b, &c->btree_cache, list) {
+ mutex_lock(&b->write_lock);
+ if (btree_node_dirty(b))
+ __bch_btree_node_write(b, NULL);
+ mutex_unlock(&b->write_lock);
+ }
+
+ if (ca->alloc_thread)
+ kthread_stop(ca->alloc_thread);
+
+ if (c->journal.cur) {
+ cancel_delayed_work_sync(&c->journal.work);
+ /* flush last journal entry if needed */
+ c->journal.work.work.func(&c->journal.work.work);
+ }
+
+ closure_return(cl);
+}
+
+/*
+ * This function is only called when CACHE_SET_IO_DISABLE is set, which means
+ * cache set is unregistering due to too many I/O errors. In this condition,
+ * the bcache device might be stopped, it depends on stop_when_cache_set_failed
+ * value and whether the broken cache has dirty data:
+ *
+ * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device
+ * BCH_CACHED_STOP_AUTO 0 NO
+ * BCH_CACHED_STOP_AUTO 1 YES
+ * BCH_CACHED_DEV_STOP_ALWAYS 0 YES
+ * BCH_CACHED_DEV_STOP_ALWAYS 1 YES
+ *
+ * The expected behavior is, if stop_when_cache_set_failed is configured to
+ * "auto" via sysfs interface, the bcache device will not be stopped if the
+ * backing device is clean on the broken cache device.
+ */
+static void conditional_stop_bcache_device(struct cache_set *c,
+ struct bcache_device *d,
+ struct cached_dev *dc)
+{
+ if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
+ pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
+ d->disk->disk_name, c->set_uuid);
+ bcache_device_stop(d);
+ } else if (atomic_read(&dc->has_dirty)) {
+ /*
+ * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
+ * and dc->has_dirty == 1
+ */
+ pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
+ d->disk->disk_name);
+ /*
+ * There might be a small time gap that cache set is
+ * released but bcache device is not. Inside this time
+ * gap, regular I/O requests will directly go into
+ * backing device as no cache set attached to. This
+ * behavior may also introduce potential inconsistence
+ * data in writeback mode while cache is dirty.
+ * Therefore before calling bcache_device_stop() due
+ * to a broken cache device, dc->io_disable should be
+ * explicitly set to true.
+ */
+ dc->io_disable = true;
+ /* make others know io_disable is true earlier */
+ smp_mb();
+ bcache_device_stop(d);
+ } else {
+ /*
+ * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
+ * and dc->has_dirty == 0
+ */
+ pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
+ d->disk->disk_name);
+ }
+}
+
+static void __cache_set_unregister(struct closure *cl)
+{
+ struct cache_set *c = container_of(cl, struct cache_set, caching);
+ struct cached_dev *dc;
+ struct bcache_device *d;
+ size_t i;
+
+ mutex_lock(&bch_register_lock);
+
+ for (i = 0; i < c->devices_max_used; i++) {
+ d = c->devices[i];
+ if (!d)
+ continue;
+
+ if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
+ test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
+ dc = container_of(d, struct cached_dev, disk);
+ bch_cached_dev_detach(dc);
+ if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
+ conditional_stop_bcache_device(c, d, dc);
+ } else {
+ bcache_device_stop(d);
+ }
+ }
+
+ mutex_unlock(&bch_register_lock);
+
+ continue_at(cl, cache_set_flush, system_wq);
+}
+
+void bch_cache_set_stop(struct cache_set *c)
+{
+ if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
+ /* closure_fn set to __cache_set_unregister() */
+ closure_queue(&c->caching);
+}
+
+void bch_cache_set_unregister(struct cache_set *c)
+{
+ set_bit(CACHE_SET_UNREGISTERING, &c->flags);
+ bch_cache_set_stop(c);
+}
+
+#define alloc_meta_bucket_pages(gfp, sb) \
+ ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
+
+struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
+{
+ int iter_size;
+ struct cache *ca = container_of(sb, struct cache, sb);
+ struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
+
+ if (!c)
+ return NULL;
+
+ __module_get(THIS_MODULE);
+ closure_init(&c->cl, NULL);
+ set_closure_fn(&c->cl, cache_set_free, system_wq);
+
+ closure_init(&c->caching, &c->cl);
+ set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
+
+ /* Maybe create continue_at_noreturn() and use it here? */
+ closure_set_stopped(&c->cl);
+ closure_put(&c->cl);
+
+ kobject_init(&c->kobj, &bch_cache_set_ktype);
+ kobject_init(&c->internal, &bch_cache_set_internal_ktype);
+
+ bch_cache_accounting_init(&c->accounting, &c->cl);
+
+ memcpy(c->set_uuid, sb->set_uuid, 16);
+
+ c->cache = ca;
+ c->cache->set = c;
+ c->bucket_bits = ilog2(sb->bucket_size);
+ c->block_bits = ilog2(sb->block_size);
+ c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
+ c->devices_max_used = 0;
+ atomic_set(&c->attached_dev_nr, 0);
+ c->btree_pages = meta_bucket_pages(sb);
+ if (c->btree_pages > BTREE_MAX_PAGES)
+ c->btree_pages = max_t(int, c->btree_pages / 4,
+ BTREE_MAX_PAGES);
+
+ sema_init(&c->sb_write_mutex, 1);
+ mutex_init(&c->bucket_lock);
+ init_waitqueue_head(&c->btree_cache_wait);
+ spin_lock_init(&c->btree_cannibalize_lock);
+ init_waitqueue_head(&c->bucket_wait);
+ init_waitqueue_head(&c->gc_wait);
+ sema_init(&c->uuid_write_mutex, 1);
+
+ spin_lock_init(&c->btree_gc_time.lock);
+ spin_lock_init(&c->btree_split_time.lock);
+ spin_lock_init(&c->btree_read_time.lock);
+
+ bch_moving_init_cache_set(c);
+
+ INIT_LIST_HEAD(&c->list);
+ INIT_LIST_HEAD(&c->cached_devs);
+ INIT_LIST_HEAD(&c->btree_cache);
+ INIT_LIST_HEAD(&c->btree_cache_freeable);
+ INIT_LIST_HEAD(&c->btree_cache_freed);
+ INIT_LIST_HEAD(&c->data_buckets);
+
+ iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
+ sizeof(struct btree_iter_set);
+
+ c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
+ if (!c->devices)
+ goto err;
+
+ if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
+ goto err;
+
+ if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
+ sizeof(struct bbio) +
+ sizeof(struct bio_vec) * meta_bucket_pages(sb)))
+ goto err;
+
+ if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
+ goto err;
+
+ if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
+ BIOSET_NEED_RESCUER))
+ goto err;
+
+ c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
+ if (!c->uuids)
+ goto err;
+
+ c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
+ if (!c->moving_gc_wq)
+ goto err;
+
+ if (bch_journal_alloc(c))
+ goto err;
+
+ if (bch_btree_cache_alloc(c))
+ goto err;
+
+ if (bch_open_buckets_alloc(c))
+ goto err;
+
+ if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
+ goto err;
+
+ c->congested_read_threshold_us = 2000;
+ c->congested_write_threshold_us = 20000;
+ c->error_limit = DEFAULT_IO_ERROR_LIMIT;
+ c->idle_max_writeback_rate_enabled = 1;
+ WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
+
+ return c;
+err:
+ bch_cache_set_unregister(c);
+ return NULL;
+}
+
+static int run_cache_set(struct cache_set *c)
+{
+ const char *err = "cannot allocate memory";
+ struct cached_dev *dc, *t;
+ struct cache *ca = c->cache;
+ struct closure cl;
+ LIST_HEAD(journal);
+ struct journal_replay *l;
+
+ closure_init_stack(&cl);
+
+ c->nbuckets = ca->sb.nbuckets;
+ set_gc_sectors(c);
+
+ if (CACHE_SYNC(&c->cache->sb)) {
+ struct bkey *k;
+ struct jset *j;
+
+ err = "cannot allocate memory for journal";
+ if (bch_journal_read(c, &journal))
+ goto err;
+
+ pr_debug("btree_journal_read() done\n");
+
+ err = "no journal entries found";
+ if (list_empty(&journal))
+ goto err;
+
+ j = &list_entry(journal.prev, struct journal_replay, list)->j;
+
+ err = "IO error reading priorities";
+ if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
+ goto err;
+
+ /*
+ * If prio_read() fails it'll call cache_set_error and we'll
+ * tear everything down right away, but if we perhaps checked
+ * sooner we could avoid journal replay.
+ */
+
+ k = &j->btree_root;
+
+ err = "bad btree root";
+ if (__bch_btree_ptr_invalid(c, k))
+ goto err;
+
+ err = "error reading btree root";
+ c->root = bch_btree_node_get(c, NULL, k,
+ j->btree_level,
+ true, NULL);
+ if (IS_ERR(c->root))
+ goto err;
+
+ list_del_init(&c->root->list);
+ rw_unlock(true, c->root);
+
+ err = uuid_read(c, j, &cl);
+ if (err)
+ goto err;
+
+ err = "error in recovery";
+ if (bch_btree_check(c))
+ goto err;
+
+ bch_journal_mark(c, &journal);
+ bch_initial_gc_finish(c);
+ pr_debug("btree_check() done\n");
+
+ /*
+ * bcache_journal_next() can't happen sooner, or
+ * btree_gc_finish() will give spurious errors about last_gc >
+ * gc_gen - this is a hack but oh well.
+ */
+ bch_journal_next(&c->journal);
+
+ err = "error starting allocator thread";
+ if (bch_cache_allocator_start(ca))
+ goto err;
+
+ /*
+ * First place it's safe to allocate: btree_check() and
+ * btree_gc_finish() have to run before we have buckets to
+ * allocate, and bch_bucket_alloc_set() might cause a journal
+ * entry to be written so bcache_journal_next() has to be called
+ * first.
+ *
+ * If the uuids were in the old format we have to rewrite them
+ * before the next journal entry is written:
+ */
+ if (j->version < BCACHE_JSET_VERSION_UUID)
+ __uuid_write(c);
+
+ err = "bcache: replay journal failed";
+ if (bch_journal_replay(c, &journal))
+ goto err;
+ } else {
+ unsigned int j;
+
+ pr_notice("invalidating existing data\n");
+ ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
+ 2, SB_JOURNAL_BUCKETS);
+
+ for (j = 0; j < ca->sb.keys; j++)
+ ca->sb.d[j] = ca->sb.first_bucket + j;
+
+ bch_initial_gc_finish(c);
+
+ err = "error starting allocator thread";
+ if (bch_cache_allocator_start(ca))
+ goto err;
+
+ mutex_lock(&c->bucket_lock);
+ bch_prio_write(ca, true);
+ mutex_unlock(&c->bucket_lock);
+
+ err = "cannot allocate new UUID bucket";
+ if (__uuid_write(c))
+ goto err;
+
+ err = "cannot allocate new btree root";
+ c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
+ if (IS_ERR(c->root))
+ goto err;
+
+ mutex_lock(&c->root->write_lock);
+ bkey_copy_key(&c->root->key, &MAX_KEY);
+ bch_btree_node_write(c->root, &cl);
+ mutex_unlock(&c->root->write_lock);
+
+ bch_btree_set_root(c->root);
+ rw_unlock(true, c->root);
+
+ /*
+ * We don't want to write the first journal entry until
+ * everything is set up - fortunately journal entries won't be
+ * written until the SET_CACHE_SYNC() here:
+ */
+ SET_CACHE_SYNC(&c->cache->sb, true);
+
+ bch_journal_next(&c->journal);
+ bch_journal_meta(c, &cl);
+ }
+
+ err = "error starting gc thread";
+ if (bch_gc_thread_start(c))
+ goto err;
+
+ closure_sync(&cl);
+ c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
+ bcache_write_super(c);
+
+ if (bch_has_feature_obso_large_bucket(&c->cache->sb))
+ pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
+
+ list_for_each_entry_safe(dc, t, &uncached_devices, list)
+ bch_cached_dev_attach(dc, c, NULL);
+
+ flash_devs_run(c);
+
+ bch_journal_space_reserve(&c->journal);
+ set_bit(CACHE_SET_RUNNING, &c->flags);
+ return 0;
+err:
+ while (!list_empty(&journal)) {
+ l = list_first_entry(&journal, struct journal_replay, list);
+ list_del(&l->list);
+ kfree(l);
+ }
+
+ closure_sync(&cl);
+
+ bch_cache_set_error(c, "%s", err);
+
+ return -EIO;
+}
+
+static const char *register_cache_set(struct cache *ca)
+{
+ char buf[12];
+ const char *err = "cannot allocate memory";
+ struct cache_set *c;
+
+ list_for_each_entry(c, &bch_cache_sets, list)
+ if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
+ if (c->cache)
+ return "duplicate cache set member";
+
+ goto found;
+ }
+
+ c = bch_cache_set_alloc(&ca->sb);
+ if (!c)
+ return err;
+
+ err = "error creating kobject";
+ if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
+ kobject_add(&c->internal, &c->kobj, "internal"))
+ goto err;
+
+ if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
+ goto err;
+
+ bch_debug_init_cache_set(c);
+
+ list_add(&c->list, &bch_cache_sets);
+found:
+ sprintf(buf, "cache%i", ca->sb.nr_this_dev);
+ if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
+ sysfs_create_link(&c->kobj, &ca->kobj, buf))
+ goto err;
+
+ kobject_get(&ca->kobj);
+ ca->set = c;
+ ca->set->cache = ca;
+
+ err = "failed to run cache set";
+ if (run_cache_set(c) < 0)
+ goto err;
+
+ return NULL;
+err:
+ bch_cache_set_unregister(c);
+ return err;
+}
+
+/* Cache device */
+
+/* When ca->kobj released */
+void bch_cache_release(struct kobject *kobj)
+{
+ struct cache *ca = container_of(kobj, struct cache, kobj);
+ unsigned int i;
+
+ if (ca->set) {
+ BUG_ON(ca->set->cache != ca);
+ ca->set->cache = NULL;
+ }
+
+ free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
+ kfree(ca->prio_buckets);
+ vfree(ca->buckets);
+
+ free_heap(&ca->heap);
+ free_fifo(&ca->free_inc);
+
+ for (i = 0; i < RESERVE_NR; i++)
+ free_fifo(&ca->free[i]);
+
+ if (ca->sb_disk)
+ put_page(virt_to_page(ca->sb_disk));
+
+ if (!IS_ERR_OR_NULL(ca->bdev))
+ blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
+
+ kfree(ca);
+ module_put(THIS_MODULE);
+}
+
+static int cache_alloc(struct cache *ca)
+{
+ size_t free;
+ size_t btree_buckets;
+ struct bucket *b;
+ int ret = -ENOMEM;
+ const char *err = NULL;
+
+ __module_get(THIS_MODULE);
+ kobject_init(&ca->kobj, &bch_cache_ktype);
+
+ bio_init(&ca->journal.bio, NULL, ca->journal.bio.bi_inline_vecs, 8, 0);
+
+ /*
+ * when ca->sb.njournal_buckets is not zero, journal exists,
+ * and in bch_journal_replay(), tree node may split,
+ * so bucket of RESERVE_BTREE type is needed,
+ * the worst situation is all journal buckets are valid journal,
+ * and all the keys need to replay,
+ * so the number of RESERVE_BTREE type buckets should be as much
+ * as journal buckets
+ */
+ btree_buckets = ca->sb.njournal_buckets ?: 8;
+ free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
+ if (!free) {
+ ret = -EPERM;
+ err = "ca->sb.nbuckets is too small";
+ goto err_free;
+ }
+
+ if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
+ GFP_KERNEL)) {
+ err = "ca->free[RESERVE_BTREE] alloc failed";
+ goto err_btree_alloc;
+ }
+
+ if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
+ GFP_KERNEL)) {
+ err = "ca->free[RESERVE_PRIO] alloc failed";
+ goto err_prio_alloc;
+ }
+
+ if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
+ err = "ca->free[RESERVE_MOVINGGC] alloc failed";
+ goto err_movinggc_alloc;
+ }
+
+ if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
+ err = "ca->free[RESERVE_NONE] alloc failed";
+ goto err_none_alloc;
+ }
+
+ if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
+ err = "ca->free_inc alloc failed";
+ goto err_free_inc_alloc;
+ }
+
+ if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
+ err = "ca->heap alloc failed";
+ goto err_heap_alloc;
+ }
+
+ ca->buckets = vzalloc(array_size(sizeof(struct bucket),
+ ca->sb.nbuckets));
+ if (!ca->buckets) {
+ err = "ca->buckets alloc failed";
+ goto err_buckets_alloc;
+ }
+
+ ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
+ prio_buckets(ca), 2),
+ GFP_KERNEL);
+ if (!ca->prio_buckets) {
+ err = "ca->prio_buckets alloc failed";
+ goto err_prio_buckets_alloc;
+ }
+
+ ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
+ if (!ca->disk_buckets) {
+ err = "ca->disk_buckets alloc failed";
+ goto err_disk_buckets_alloc;
+ }
+
+ ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
+
+ for_each_bucket(b, ca)
+ atomic_set(&b->pin, 0);
+ return 0;
+
+err_disk_buckets_alloc:
+ kfree(ca->prio_buckets);
+err_prio_buckets_alloc:
+ vfree(ca->buckets);
+err_buckets_alloc:
+ free_heap(&ca->heap);
+err_heap_alloc:
+ free_fifo(&ca->free_inc);
+err_free_inc_alloc:
+ free_fifo(&ca->free[RESERVE_NONE]);
+err_none_alloc:
+ free_fifo(&ca->free[RESERVE_MOVINGGC]);
+err_movinggc_alloc:
+ free_fifo(&ca->free[RESERVE_PRIO]);
+err_prio_alloc:
+ free_fifo(&ca->free[RESERVE_BTREE]);
+err_btree_alloc:
+err_free:
+ module_put(THIS_MODULE);
+ if (err)
+ pr_notice("error %pg: %s\n", ca->bdev, err);
+ return ret;
+}
+
+static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
+ struct block_device *bdev, struct cache *ca)
+{
+ const char *err = NULL; /* must be set for any error case */
+ int ret = 0;
+
+ memcpy(&ca->sb, sb, sizeof(struct cache_sb));
+ ca->bdev = bdev;
+ ca->bdev->bd_holder = ca;
+ ca->sb_disk = sb_disk;
+
+ if (bdev_max_discard_sectors((bdev)))
+ ca->discard = CACHE_DISCARD(&ca->sb);
+
+ ret = cache_alloc(ca);
+ if (ret != 0) {
+ /*
+ * If we failed here, it means ca->kobj is not initialized yet,
+ * kobject_put() won't be called and there is no chance to
+ * call blkdev_put() to bdev in bch_cache_release(). So we
+ * explicitly call blkdev_put() here.
+ */
+ blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
+ if (ret == -ENOMEM)
+ err = "cache_alloc(): -ENOMEM";
+ else if (ret == -EPERM)
+ err = "cache_alloc(): cache device is too small";
+ else
+ err = "cache_alloc(): unknown error";
+ goto err;
+ }
+
+ if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) {
+ err = "error calling kobject_add";
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ mutex_lock(&bch_register_lock);
+ err = register_cache_set(ca);
+ mutex_unlock(&bch_register_lock);
+
+ if (err) {
+ ret = -ENODEV;
+ goto out;
+ }
+
+ pr_info("registered cache device %pg\n", ca->bdev);
+
+out:
+ kobject_put(&ca->kobj);
+
+err:
+ if (err)
+ pr_notice("error %pg: %s\n", ca->bdev, err);
+
+ return ret;
+}
+
+/* Global interfaces/init */
+
+static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
+ const char *buffer, size_t size);
+static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
+ struct kobj_attribute *attr,
+ const char *buffer, size_t size);
+
+kobj_attribute_write(register, register_bcache);
+kobj_attribute_write(register_quiet, register_bcache);
+kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup);
+
+static bool bch_is_open_backing(dev_t dev)
+{
+ struct cache_set *c, *tc;
+ struct cached_dev *dc, *t;
+
+ list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
+ list_for_each_entry_safe(dc, t, &c->cached_devs, list)
+ if (dc->bdev->bd_dev == dev)
+ return true;
+ list_for_each_entry_safe(dc, t, &uncached_devices, list)
+ if (dc->bdev->bd_dev == dev)
+ return true;
+ return false;
+}
+
+static bool bch_is_open_cache(dev_t dev)
+{
+ struct cache_set *c, *tc;
+
+ list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
+ struct cache *ca = c->cache;
+
+ if (ca->bdev->bd_dev == dev)
+ return true;
+ }
+
+ return false;
+}
+
+static bool bch_is_open(dev_t dev)
+{
+ return bch_is_open_cache(dev) || bch_is_open_backing(dev);
+}
+
+struct async_reg_args {
+ struct delayed_work reg_work;
+ char *path;
+ struct cache_sb *sb;
+ struct cache_sb_disk *sb_disk;
+ struct block_device *bdev;
+};
+
+static void register_bdev_worker(struct work_struct *work)
+{
+ int fail = false;
+ struct async_reg_args *args =
+ container_of(work, struct async_reg_args, reg_work.work);
+ struct cached_dev *dc;
+
+ dc = kzalloc(sizeof(*dc), GFP_KERNEL);
+ if (!dc) {
+ fail = true;
+ put_page(virt_to_page(args->sb_disk));
+ blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
+ goto out;
+ }
+
+ mutex_lock(&bch_register_lock);
+ if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
+ fail = true;
+ mutex_unlock(&bch_register_lock);
+
+out:
+ if (fail)
+ pr_info("error %s: fail to register backing device\n",
+ args->path);
+ kfree(args->sb);
+ kfree(args->path);
+ kfree(args);
+ module_put(THIS_MODULE);
+}
+
+static void register_cache_worker(struct work_struct *work)
+{
+ int fail = false;
+ struct async_reg_args *args =
+ container_of(work, struct async_reg_args, reg_work.work);
+ struct cache *ca;
+
+ ca = kzalloc(sizeof(*ca), GFP_KERNEL);
+ if (!ca) {
+ fail = true;
+ put_page(virt_to_page(args->sb_disk));
+ blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
+ goto out;
+ }
+
+ /* blkdev_put() will be called in bch_cache_release() */
+ if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
+ fail = true;
+
+out:
+ if (fail)
+ pr_info("error %s: fail to register cache device\n",
+ args->path);
+ kfree(args->sb);
+ kfree(args->path);
+ kfree(args);
+ module_put(THIS_MODULE);
+}
+
+static void register_device_async(struct async_reg_args *args)
+{
+ if (SB_IS_BDEV(args->sb))
+ INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
+ else
+ INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
+
+ /* 10 jiffies is enough for a delay */
+ queue_delayed_work(system_wq, &args->reg_work, 10);
+}
+
+static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
+ const char *buffer, size_t size)
+{
+ const char *err;
+ char *path = NULL;
+ struct cache_sb *sb;
+ struct cache_sb_disk *sb_disk;
+ struct block_device *bdev;
+ ssize_t ret;
+ bool async_registration = false;
+
+#ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
+ async_registration = true;
+#endif
+
+ ret = -EBUSY;
+ err = "failed to reference bcache module";
+ if (!try_module_get(THIS_MODULE))
+ goto out;
+
+ /* For latest state of bcache_is_reboot */
+ smp_mb();
+ err = "bcache is in reboot";
+ if (bcache_is_reboot)
+ goto out_module_put;
+
+ ret = -ENOMEM;
+ err = "cannot allocate memory";
+ path = kstrndup(buffer, size, GFP_KERNEL);
+ if (!path)
+ goto out_module_put;
+
+ sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
+ if (!sb)
+ goto out_free_path;
+
+ ret = -EINVAL;
+ err = "failed to open device";
+ bdev = blkdev_get_by_path(strim(path),
+ FMODE_READ|FMODE_WRITE|FMODE_EXCL,
+ sb);
+ if (IS_ERR(bdev)) {
+ if (bdev == ERR_PTR(-EBUSY)) {
+ dev_t dev;
+
+ mutex_lock(&bch_register_lock);
+ if (lookup_bdev(strim(path), &dev) == 0 &&
+ bch_is_open(dev))
+ err = "device already registered";
+ else
+ err = "device busy";
+ mutex_unlock(&bch_register_lock);
+ if (attr == &ksysfs_register_quiet)
+ goto done;
+ }
+ goto out_free_sb;
+ }
+
+ err = "failed to set blocksize";
+ if (set_blocksize(bdev, 4096))
+ goto out_blkdev_put;
+
+ err = read_super(sb, bdev, &sb_disk);
+ if (err)
+ goto out_blkdev_put;
+
+ err = "failed to register device";
+
+ if (async_registration) {
+ /* register in asynchronous way */
+ struct async_reg_args *args =
+ kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
+
+ if (!args) {
+ ret = -ENOMEM;
+ err = "cannot allocate memory";
+ goto out_put_sb_page;
+ }
+
+ args->path = path;
+ args->sb = sb;
+ args->sb_disk = sb_disk;
+ args->bdev = bdev;
+ register_device_async(args);
+ /* No wait and returns to user space */
+ goto async_done;
+ }
+
+ if (SB_IS_BDEV(sb)) {
+ struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
+
+ if (!dc) {
+ ret = -ENOMEM;
+ err = "cannot allocate memory";
+ goto out_put_sb_page;
+ }
+
+ mutex_lock(&bch_register_lock);
+ ret = register_bdev(sb, sb_disk, bdev, dc);
+ mutex_unlock(&bch_register_lock);
+ /* blkdev_put() will be called in cached_dev_free() */
+ if (ret < 0)
+ goto out_free_sb;
+ } else {
+ struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
+
+ if (!ca) {
+ ret = -ENOMEM;
+ err = "cannot allocate memory";
+ goto out_put_sb_page;
+ }
+
+ /* blkdev_put() will be called in bch_cache_release() */
+ ret = register_cache(sb, sb_disk, bdev, ca);
+ if (ret)
+ goto out_free_sb;
+ }
+
+done:
+ kfree(sb);
+ kfree(path);
+ module_put(THIS_MODULE);
+async_done:
+ return size;
+
+out_put_sb_page:
+ put_page(virt_to_page(sb_disk));
+out_blkdev_put:
+ blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
+out_free_sb:
+ kfree(sb);
+out_free_path:
+ kfree(path);
+ path = NULL;
+out_module_put:
+ module_put(THIS_MODULE);
+out:
+ pr_info("error %s: %s\n", path?path:"", err);
+ return ret;
+}
+
+
+struct pdev {
+ struct list_head list;
+ struct cached_dev *dc;
+};
+
+static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
+ struct kobj_attribute *attr,
+ const char *buffer,
+ size_t size)
+{
+ LIST_HEAD(pending_devs);
+ ssize_t ret = size;
+ struct cached_dev *dc, *tdc;
+ struct pdev *pdev, *tpdev;
+ struct cache_set *c, *tc;
+
+ mutex_lock(&bch_register_lock);
+ list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
+ pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
+ if (!pdev)
+ break;
+ pdev->dc = dc;
+ list_add(&pdev->list, &pending_devs);
+ }
+
+ list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
+ char *pdev_set_uuid = pdev->dc->sb.set_uuid;
+ list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
+ char *set_uuid = c->set_uuid;
+
+ if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
+ list_del(&pdev->list);
+ kfree(pdev);
+ break;
+ }
+ }
+ }
+ mutex_unlock(&bch_register_lock);
+
+ list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
+ pr_info("delete pdev %p\n", pdev);
+ list_del(&pdev->list);
+ bcache_device_stop(&pdev->dc->disk);
+ kfree(pdev);
+ }
+
+ return ret;
+}
+
+static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
+{
+ if (bcache_is_reboot)
+ return NOTIFY_DONE;
+
+ if (code == SYS_DOWN ||
+ code == SYS_HALT ||
+ code == SYS_POWER_OFF) {
+ DEFINE_WAIT(wait);
+ unsigned long start = jiffies;
+ bool stopped = false;
+
+ struct cache_set *c, *tc;
+ struct cached_dev *dc, *tdc;
+
+ mutex_lock(&bch_register_lock);
+
+ if (bcache_is_reboot)
+ goto out;
+
+ /* New registration is rejected since now */
+ bcache_is_reboot = true;
+ /*
+ * Make registering caller (if there is) on other CPU
+ * core know bcache_is_reboot set to true earlier
+ */
+ smp_mb();
+
+ if (list_empty(&bch_cache_sets) &&
+ list_empty(&uncached_devices))
+ goto out;
+
+ mutex_unlock(&bch_register_lock);
+
+ pr_info("Stopping all devices:\n");
+
+ /*
+ * The reason bch_register_lock is not held to call
+ * bch_cache_set_stop() and bcache_device_stop() is to
+ * avoid potential deadlock during reboot, because cache
+ * set or bcache device stopping process will acquire
+ * bch_register_lock too.
+ *
+ * We are safe here because bcache_is_reboot sets to
+ * true already, register_bcache() will reject new
+ * registration now. bcache_is_reboot also makes sure
+ * bcache_reboot() won't be re-entered on by other thread,
+ * so there is no race in following list iteration by
+ * list_for_each_entry_safe().
+ */
+ list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
+ bch_cache_set_stop(c);
+
+ list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
+ bcache_device_stop(&dc->disk);
+
+
+ /*
+ * Give an early chance for other kthreads and
+ * kworkers to stop themselves
+ */
+ schedule();
+
+ /* What's a condition variable? */
+ while (1) {
+ long timeout = start + 10 * HZ - jiffies;
+
+ mutex_lock(&bch_register_lock);
+ stopped = list_empty(&bch_cache_sets) &&
+ list_empty(&uncached_devices);
+
+ if (timeout < 0 || stopped)
+ break;
+
+ prepare_to_wait(&unregister_wait, &wait,
+ TASK_UNINTERRUPTIBLE);
+
+ mutex_unlock(&bch_register_lock);
+ schedule_timeout(timeout);
+ }
+
+ finish_wait(&unregister_wait, &wait);
+
+ if (stopped)
+ pr_info("All devices stopped\n");
+ else
+ pr_notice("Timeout waiting for devices to be closed\n");
+out:
+ mutex_unlock(&bch_register_lock);
+ }
+
+ return NOTIFY_DONE;
+}
+
+static struct notifier_block reboot = {
+ .notifier_call = bcache_reboot,
+ .priority = INT_MAX, /* before any real devices */
+};
+
+static void bcache_exit(void)
+{
+ bch_debug_exit();
+ bch_request_exit();
+ if (bcache_kobj)
+ kobject_put(bcache_kobj);
+ if (bcache_wq)
+ destroy_workqueue(bcache_wq);
+ if (bch_journal_wq)
+ destroy_workqueue(bch_journal_wq);
+ if (bch_flush_wq)
+ destroy_workqueue(bch_flush_wq);
+ bch_btree_exit();
+
+ if (bcache_major)
+ unregister_blkdev(bcache_major, "bcache");
+ unregister_reboot_notifier(&reboot);
+ mutex_destroy(&bch_register_lock);
+}
+
+/* Check and fixup module parameters */
+static void check_module_parameters(void)
+{
+ if (bch_cutoff_writeback_sync == 0)
+ bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
+ else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
+ pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
+ bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
+ bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
+ }
+
+ if (bch_cutoff_writeback == 0)
+ bch_cutoff_writeback = CUTOFF_WRITEBACK;
+ else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
+ pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
+ bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
+ bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
+ }
+
+ if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
+ pr_warn("set bch_cutoff_writeback (%u) to %u\n",
+ bch_cutoff_writeback, bch_cutoff_writeback_sync);
+ bch_cutoff_writeback = bch_cutoff_writeback_sync;
+ }
+}
+
+static int __init bcache_init(void)
+{
+ static const struct attribute *files[] = {
+ &ksysfs_register.attr,
+ &ksysfs_register_quiet.attr,
+ &ksysfs_pendings_cleanup.attr,
+ NULL
+ };
+
+ check_module_parameters();
+
+ mutex_init(&bch_register_lock);
+ init_waitqueue_head(&unregister_wait);
+ register_reboot_notifier(&reboot);
+
+ bcache_major = register_blkdev(0, "bcache");
+ if (bcache_major < 0) {
+ unregister_reboot_notifier(&reboot);
+ mutex_destroy(&bch_register_lock);
+ return bcache_major;
+ }
+
+ if (bch_btree_init())
+ goto err;
+
+ bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
+ if (!bcache_wq)
+ goto err;
+
+ /*
+ * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
+ *
+ * 1. It used `system_wq` before which also does no memory reclaim.
+ * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
+ * reduced throughput can be observed.
+ *
+ * We still want to user our own queue to not congest the `system_wq`.
+ */
+ bch_flush_wq = alloc_workqueue("bch_flush", 0, 0);
+ if (!bch_flush_wq)
+ goto err;
+
+ bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
+ if (!bch_journal_wq)
+ goto err;
+
+ bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
+ if (!bcache_kobj)
+ goto err;
+
+ if (bch_request_init() ||
+ sysfs_create_files(bcache_kobj, files))
+ goto err;
+
+ bch_debug_init();
+ closure_debug_init();
+
+ bcache_is_reboot = false;
+
+ return 0;
+err:
+ bcache_exit();
+ return -ENOMEM;
+}
+
+/*
+ * Module hooks
+ */
+module_exit(bcache_exit);
+module_init(bcache_init);
+
+module_param(bch_cutoff_writeback, uint, 0);
+MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
+
+module_param(bch_cutoff_writeback_sync, uint, 0);
+MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
+
+MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
+MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/bcache/sysfs.c b/drivers/md/bcache/sysfs.c
new file mode 100644
index 000000000..025fe6479
--- /dev/null
+++ b/drivers/md/bcache/sysfs.c
@@ -0,0 +1,1204 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * bcache sysfs interfaces
+ *
+ * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
+ * Copyright 2012 Google, Inc.
+ */
+
+#include "bcache.h"
+#include "sysfs.h"
+#include "btree.h"
+#include "request.h"
+#include "writeback.h"
+#include "features.h"
+
+#include <linux/blkdev.h>
+#include <linux/sort.h>
+#include <linux/sched/clock.h>
+
+extern bool bcache_is_reboot;
+
+/* Default is 0 ("writethrough") */
+static const char * const bch_cache_modes[] = {
+ "writethrough",
+ "writeback",
+ "writearound",
+ "none",
+ NULL
+};
+
+static const char * const bch_reada_cache_policies[] = {
+ "all",
+ "meta-only",
+ NULL
+};
+
+/* Default is 0 ("auto") */
+static const char * const bch_stop_on_failure_modes[] = {
+ "auto",
+ "always",
+ NULL
+};
+
+static const char * const cache_replacement_policies[] = {
+ "lru",
+ "fifo",
+ "random",
+ NULL
+};
+
+static const char * const error_actions[] = {
+ "unregister",
+ "panic",
+ NULL
+};
+
+write_attribute(attach);
+write_attribute(detach);
+write_attribute(unregister);
+write_attribute(stop);
+write_attribute(clear_stats);
+write_attribute(trigger_gc);
+write_attribute(prune_cache);
+write_attribute(flash_vol_create);
+
+read_attribute(bucket_size);
+read_attribute(block_size);
+read_attribute(nbuckets);
+read_attribute(tree_depth);
+read_attribute(root_usage_percent);
+read_attribute(priority_stats);
+read_attribute(btree_cache_size);
+read_attribute(btree_cache_max_chain);
+read_attribute(cache_available_percent);
+read_attribute(written);
+read_attribute(btree_written);
+read_attribute(metadata_written);
+read_attribute(active_journal_entries);
+read_attribute(backing_dev_name);
+read_attribute(backing_dev_uuid);
+
+sysfs_time_stats_attribute(btree_gc, sec, ms);
+sysfs_time_stats_attribute(btree_split, sec, us);
+sysfs_time_stats_attribute(btree_sort, ms, us);
+sysfs_time_stats_attribute(btree_read, ms, us);
+
+read_attribute(btree_nodes);
+read_attribute(btree_used_percent);
+read_attribute(average_key_size);
+read_attribute(dirty_data);
+read_attribute(bset_tree_stats);
+read_attribute(feature_compat);
+read_attribute(feature_ro_compat);
+read_attribute(feature_incompat);
+
+read_attribute(state);
+read_attribute(cache_read_races);
+read_attribute(reclaim);
+read_attribute(reclaimed_journal_buckets);
+read_attribute(flush_write);
+read_attribute(writeback_keys_done);
+read_attribute(writeback_keys_failed);
+read_attribute(io_errors);
+read_attribute(congested);
+read_attribute(cutoff_writeback);
+read_attribute(cutoff_writeback_sync);
+rw_attribute(congested_read_threshold_us);
+rw_attribute(congested_write_threshold_us);
+
+rw_attribute(sequential_cutoff);
+rw_attribute(data_csum);
+rw_attribute(cache_mode);
+rw_attribute(readahead_cache_policy);
+rw_attribute(stop_when_cache_set_failed);
+rw_attribute(writeback_metadata);
+rw_attribute(writeback_running);
+rw_attribute(writeback_percent);
+rw_attribute(writeback_delay);
+rw_attribute(writeback_rate);
+rw_attribute(writeback_consider_fragment);
+
+rw_attribute(writeback_rate_update_seconds);
+rw_attribute(writeback_rate_i_term_inverse);
+rw_attribute(writeback_rate_p_term_inverse);
+rw_attribute(writeback_rate_fp_term_low);
+rw_attribute(writeback_rate_fp_term_mid);
+rw_attribute(writeback_rate_fp_term_high);
+rw_attribute(writeback_rate_minimum);
+read_attribute(writeback_rate_debug);
+
+read_attribute(stripe_size);
+read_attribute(partial_stripes_expensive);
+
+rw_attribute(synchronous);
+rw_attribute(journal_delay_ms);
+rw_attribute(io_disable);
+rw_attribute(discard);
+rw_attribute(running);
+rw_attribute(label);
+rw_attribute(errors);
+rw_attribute(io_error_limit);
+rw_attribute(io_error_halflife);
+rw_attribute(verify);
+rw_attribute(bypass_torture_test);
+rw_attribute(key_merging_disabled);
+rw_attribute(gc_always_rewrite);
+rw_attribute(expensive_debug_checks);
+rw_attribute(cache_replacement_policy);
+rw_attribute(btree_shrinker_disabled);
+rw_attribute(copy_gc_enabled);
+rw_attribute(idle_max_writeback_rate);
+rw_attribute(gc_after_writeback);
+rw_attribute(size);
+
+static ssize_t bch_snprint_string_list(char *buf,
+ size_t size,
+ const char * const list[],
+ size_t selected)
+{
+ char *out = buf;
+ size_t i;
+
+ for (i = 0; list[i]; i++)
+ out += scnprintf(out, buf + size - out,
+ i == selected ? "[%s] " : "%s ", list[i]);
+
+ out[-1] = '\n';
+ return out - buf;
+}
+
+SHOW(__bch_cached_dev)
+{
+ struct cached_dev *dc = container_of(kobj, struct cached_dev,
+ disk.kobj);
+ char const *states[] = { "no cache", "clean", "dirty", "inconsistent" };
+ int wb = dc->writeback_running;
+
+#define var(stat) (dc->stat)
+
+ if (attr == &sysfs_cache_mode)
+ return bch_snprint_string_list(buf, PAGE_SIZE,
+ bch_cache_modes,
+ BDEV_CACHE_MODE(&dc->sb));
+
+ if (attr == &sysfs_readahead_cache_policy)
+ return bch_snprint_string_list(buf, PAGE_SIZE,
+ bch_reada_cache_policies,
+ dc->cache_readahead_policy);
+
+ if (attr == &sysfs_stop_when_cache_set_failed)
+ return bch_snprint_string_list(buf, PAGE_SIZE,
+ bch_stop_on_failure_modes,
+ dc->stop_when_cache_set_failed);
+
+
+ sysfs_printf(data_csum, "%i", dc->disk.data_csum);
+ var_printf(verify, "%i");
+ var_printf(bypass_torture_test, "%i");
+ var_printf(writeback_metadata, "%i");
+ var_printf(writeback_running, "%i");
+ var_printf(writeback_consider_fragment, "%i");
+ var_print(writeback_delay);
+ var_print(writeback_percent);
+ sysfs_hprint(writeback_rate,
+ wb ? atomic_long_read(&dc->writeback_rate.rate) << 9 : 0);
+ sysfs_printf(io_errors, "%i", atomic_read(&dc->io_errors));
+ sysfs_printf(io_error_limit, "%i", dc->error_limit);
+ sysfs_printf(io_disable, "%i", dc->io_disable);
+ var_print(writeback_rate_update_seconds);
+ var_print(writeback_rate_i_term_inverse);
+ var_print(writeback_rate_p_term_inverse);
+ var_print(writeback_rate_fp_term_low);
+ var_print(writeback_rate_fp_term_mid);
+ var_print(writeback_rate_fp_term_high);
+ var_print(writeback_rate_minimum);
+
+ if (attr == &sysfs_writeback_rate_debug) {
+ char rate[20];
+ char dirty[20];
+ char target[20];
+ char proportional[20];
+ char integral[20];
+ char change[20];
+ s64 next_io;
+
+ /*
+ * Except for dirty and target, other values should
+ * be 0 if writeback is not running.
+ */
+ bch_hprint(rate,
+ wb ? atomic_long_read(&dc->writeback_rate.rate) << 9
+ : 0);
+ bch_hprint(dirty, bcache_dev_sectors_dirty(&dc->disk) << 9);
+ bch_hprint(target, dc->writeback_rate_target << 9);
+ bch_hprint(proportional,
+ wb ? dc->writeback_rate_proportional << 9 : 0);
+ bch_hprint(integral,
+ wb ? dc->writeback_rate_integral_scaled << 9 : 0);
+ bch_hprint(change, wb ? dc->writeback_rate_change << 9 : 0);
+ next_io = wb ? div64_s64(dc->writeback_rate.next-local_clock(),
+ NSEC_PER_MSEC) : 0;
+
+ return sprintf(buf,
+ "rate:\t\t%s/sec\n"
+ "dirty:\t\t%s\n"
+ "target:\t\t%s\n"
+ "proportional:\t%s\n"
+ "integral:\t%s\n"
+ "change:\t\t%s/sec\n"
+ "next io:\t%llims\n",
+ rate, dirty, target, proportional,
+ integral, change, next_io);
+ }
+
+ sysfs_hprint(dirty_data,
+ bcache_dev_sectors_dirty(&dc->disk) << 9);
+
+ sysfs_hprint(stripe_size, ((uint64_t)dc->disk.stripe_size) << 9);
+ var_printf(partial_stripes_expensive, "%u");
+
+ var_hprint(sequential_cutoff);
+
+ sysfs_print(running, atomic_read(&dc->running));
+ sysfs_print(state, states[BDEV_STATE(&dc->sb)]);
+
+ if (attr == &sysfs_label) {
+ memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
+ buf[SB_LABEL_SIZE + 1] = '\0';
+ strcat(buf, "\n");
+ return strlen(buf);
+ }
+
+ if (attr == &sysfs_backing_dev_name) {
+ snprintf(buf, BDEVNAME_SIZE + 1, "%pg", dc->bdev);
+ strcat(buf, "\n");
+ return strlen(buf);
+ }
+
+ if (attr == &sysfs_backing_dev_uuid) {
+ /* convert binary uuid into 36-byte string plus '\0' */
+ snprintf(buf, 36+1, "%pU", dc->sb.uuid);
+ strcat(buf, "\n");
+ return strlen(buf);
+ }
+
+#undef var
+ return 0;
+}
+SHOW_LOCKED(bch_cached_dev)
+
+STORE(__cached_dev)
+{
+ struct cached_dev *dc = container_of(kobj, struct cached_dev,
+ disk.kobj);
+ ssize_t v;
+ struct cache_set *c;
+ struct kobj_uevent_env *env;
+
+ /* no user space access if system is rebooting */
+ if (bcache_is_reboot)
+ return -EBUSY;
+
+#define d_strtoul(var) sysfs_strtoul(var, dc->var)
+#define d_strtoul_nonzero(var) sysfs_strtoul_clamp(var, dc->var, 1, INT_MAX)
+#define d_strtoi_h(var) sysfs_hatoi(var, dc->var)
+
+ sysfs_strtoul(data_csum, dc->disk.data_csum);
+ d_strtoul(verify);
+ sysfs_strtoul_bool(bypass_torture_test, dc->bypass_torture_test);
+ sysfs_strtoul_bool(writeback_metadata, dc->writeback_metadata);
+ sysfs_strtoul_bool(writeback_running, dc->writeback_running);
+ sysfs_strtoul_bool(writeback_consider_fragment, dc->writeback_consider_fragment);
+ sysfs_strtoul_clamp(writeback_delay, dc->writeback_delay, 0, UINT_MAX);
+
+ sysfs_strtoul_clamp(writeback_percent, dc->writeback_percent,
+ 0, bch_cutoff_writeback);
+
+ if (attr == &sysfs_writeback_rate) {
+ ssize_t ret;
+ long int v = atomic_long_read(&dc->writeback_rate.rate);
+
+ ret = strtoul_safe_clamp(buf, v, 1, INT_MAX);
+
+ if (!ret) {
+ atomic_long_set(&dc->writeback_rate.rate, v);
+ ret = size;
+ }
+
+ return ret;
+ }
+
+ sysfs_strtoul_clamp(writeback_rate_update_seconds,
+ dc->writeback_rate_update_seconds,
+ 1, WRITEBACK_RATE_UPDATE_SECS_MAX);
+ sysfs_strtoul_clamp(writeback_rate_i_term_inverse,
+ dc->writeback_rate_i_term_inverse,
+ 1, UINT_MAX);
+ sysfs_strtoul_clamp(writeback_rate_p_term_inverse,
+ dc->writeback_rate_p_term_inverse,
+ 1, UINT_MAX);
+ sysfs_strtoul_clamp(writeback_rate_fp_term_low,
+ dc->writeback_rate_fp_term_low,
+ 1, dc->writeback_rate_fp_term_mid - 1);
+ sysfs_strtoul_clamp(writeback_rate_fp_term_mid,
+ dc->writeback_rate_fp_term_mid,
+ dc->writeback_rate_fp_term_low + 1,
+ dc->writeback_rate_fp_term_high - 1);
+ sysfs_strtoul_clamp(writeback_rate_fp_term_high,
+ dc->writeback_rate_fp_term_high,
+ dc->writeback_rate_fp_term_mid + 1, UINT_MAX);
+ sysfs_strtoul_clamp(writeback_rate_minimum,
+ dc->writeback_rate_minimum,
+ 1, UINT_MAX);
+
+ sysfs_strtoul_clamp(io_error_limit, dc->error_limit, 0, INT_MAX);
+
+ if (attr == &sysfs_io_disable) {
+ int v = strtoul_or_return(buf);
+
+ dc->io_disable = v ? 1 : 0;
+ }
+
+ sysfs_strtoul_clamp(sequential_cutoff,
+ dc->sequential_cutoff,
+ 0, UINT_MAX);
+
+ if (attr == &sysfs_clear_stats)
+ bch_cache_accounting_clear(&dc->accounting);
+
+ if (attr == &sysfs_running &&
+ strtoul_or_return(buf)) {
+ v = bch_cached_dev_run(dc);
+ if (v)
+ return v;
+ }
+
+ if (attr == &sysfs_cache_mode) {
+ v = __sysfs_match_string(bch_cache_modes, -1, buf);
+ if (v < 0)
+ return v;
+
+ if ((unsigned int) v != BDEV_CACHE_MODE(&dc->sb)) {
+ SET_BDEV_CACHE_MODE(&dc->sb, v);
+ bch_write_bdev_super(dc, NULL);
+ }
+ }
+
+ if (attr == &sysfs_readahead_cache_policy) {
+ v = __sysfs_match_string(bch_reada_cache_policies, -1, buf);
+ if (v < 0)
+ return v;
+
+ if ((unsigned int) v != dc->cache_readahead_policy)
+ dc->cache_readahead_policy = v;
+ }
+
+ if (attr == &sysfs_stop_when_cache_set_failed) {
+ v = __sysfs_match_string(bch_stop_on_failure_modes, -1, buf);
+ if (v < 0)
+ return v;
+
+ dc->stop_when_cache_set_failed = v;
+ }
+
+ if (attr == &sysfs_label) {
+ if (size > SB_LABEL_SIZE)
+ return -EINVAL;
+ memcpy(dc->sb.label, buf, size);
+ if (size < SB_LABEL_SIZE)
+ dc->sb.label[size] = '\0';
+ if (size && dc->sb.label[size - 1] == '\n')
+ dc->sb.label[size - 1] = '\0';
+ bch_write_bdev_super(dc, NULL);
+ if (dc->disk.c) {
+ memcpy(dc->disk.c->uuids[dc->disk.id].label,
+ buf, SB_LABEL_SIZE);
+ bch_uuid_write(dc->disk.c);
+ }
+ env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
+ if (!env)
+ return -ENOMEM;
+ add_uevent_var(env, "DRIVER=bcache");
+ add_uevent_var(env, "CACHED_UUID=%pU", dc->sb.uuid);
+ add_uevent_var(env, "CACHED_LABEL=%s", buf);
+ kobject_uevent_env(&disk_to_dev(dc->disk.disk)->kobj,
+ KOBJ_CHANGE,
+ env->envp);
+ kfree(env);
+ }
+
+ if (attr == &sysfs_attach) {
+ uint8_t set_uuid[16];
+
+ if (bch_parse_uuid(buf, set_uuid) < 16)
+ return -EINVAL;
+
+ v = -ENOENT;
+ list_for_each_entry(c, &bch_cache_sets, list) {
+ v = bch_cached_dev_attach(dc, c, set_uuid);
+ if (!v)
+ return size;
+ }
+ if (v == -ENOENT)
+ pr_err("Can't attach %s: cache set not found\n", buf);
+ return v;
+ }
+
+ if (attr == &sysfs_detach && dc->disk.c)
+ bch_cached_dev_detach(dc);
+
+ if (attr == &sysfs_stop)
+ bcache_device_stop(&dc->disk);
+
+ return size;
+}
+
+STORE(bch_cached_dev)
+{
+ struct cached_dev *dc = container_of(kobj, struct cached_dev,
+ disk.kobj);
+
+ /* no user space access if system is rebooting */
+ if (bcache_is_reboot)
+ return -EBUSY;
+
+ mutex_lock(&bch_register_lock);
+ size = __cached_dev_store(kobj, attr, buf, size);
+
+ if (attr == &sysfs_writeback_running) {
+ /* dc->writeback_running changed in __cached_dev_store() */
+ if (IS_ERR_OR_NULL(dc->writeback_thread)) {
+ /*
+ * reject setting it to 1 via sysfs if writeback
+ * kthread is not created yet.
+ */
+ if (dc->writeback_running) {
+ dc->writeback_running = false;
+ pr_err("%s: failed to run non-existent writeback thread\n",
+ dc->disk.disk->disk_name);
+ }
+ } else
+ /*
+ * writeback kthread will check if dc->writeback_running
+ * is true or false.
+ */
+ bch_writeback_queue(dc);
+ }
+
+ /*
+ * Only set BCACHE_DEV_WB_RUNNING when cached device attached to
+ * a cache set, otherwise it doesn't make sense.
+ */
+ if (attr == &sysfs_writeback_percent)
+ if ((dc->disk.c != NULL) &&
+ (!test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)))
+ schedule_delayed_work(&dc->writeback_rate_update,
+ dc->writeback_rate_update_seconds * HZ);
+
+ mutex_unlock(&bch_register_lock);
+ return size;
+}
+
+static struct attribute *bch_cached_dev_attrs[] = {
+ &sysfs_attach,
+ &sysfs_detach,
+ &sysfs_stop,
+#if 0
+ &sysfs_data_csum,
+#endif
+ &sysfs_cache_mode,
+ &sysfs_readahead_cache_policy,
+ &sysfs_stop_when_cache_set_failed,
+ &sysfs_writeback_metadata,
+ &sysfs_writeback_running,
+ &sysfs_writeback_delay,
+ &sysfs_writeback_percent,
+ &sysfs_writeback_rate,
+ &sysfs_writeback_consider_fragment,
+ &sysfs_writeback_rate_update_seconds,
+ &sysfs_writeback_rate_i_term_inverse,
+ &sysfs_writeback_rate_p_term_inverse,
+ &sysfs_writeback_rate_fp_term_low,
+ &sysfs_writeback_rate_fp_term_mid,
+ &sysfs_writeback_rate_fp_term_high,
+ &sysfs_writeback_rate_minimum,
+ &sysfs_writeback_rate_debug,
+ &sysfs_io_errors,
+ &sysfs_io_error_limit,
+ &sysfs_io_disable,
+ &sysfs_dirty_data,
+ &sysfs_stripe_size,
+ &sysfs_partial_stripes_expensive,
+ &sysfs_sequential_cutoff,
+ &sysfs_clear_stats,
+ &sysfs_running,
+ &sysfs_state,
+ &sysfs_label,
+#ifdef CONFIG_BCACHE_DEBUG
+ &sysfs_verify,
+ &sysfs_bypass_torture_test,
+#endif
+ &sysfs_backing_dev_name,
+ &sysfs_backing_dev_uuid,
+ NULL
+};
+ATTRIBUTE_GROUPS(bch_cached_dev);
+KTYPE(bch_cached_dev);
+
+SHOW(bch_flash_dev)
+{
+ struct bcache_device *d = container_of(kobj, struct bcache_device,
+ kobj);
+ struct uuid_entry *u = &d->c->uuids[d->id];
+
+ sysfs_printf(data_csum, "%i", d->data_csum);
+ sysfs_hprint(size, u->sectors << 9);
+
+ if (attr == &sysfs_label) {
+ memcpy(buf, u->label, SB_LABEL_SIZE);
+ buf[SB_LABEL_SIZE + 1] = '\0';
+ strcat(buf, "\n");
+ return strlen(buf);
+ }
+
+ return 0;
+}
+
+STORE(__bch_flash_dev)
+{
+ struct bcache_device *d = container_of(kobj, struct bcache_device,
+ kobj);
+ struct uuid_entry *u = &d->c->uuids[d->id];
+
+ /* no user space access if system is rebooting */
+ if (bcache_is_reboot)
+ return -EBUSY;
+
+ sysfs_strtoul(data_csum, d->data_csum);
+
+ if (attr == &sysfs_size) {
+ uint64_t v;
+
+ strtoi_h_or_return(buf, v);
+
+ u->sectors = v >> 9;
+ bch_uuid_write(d->c);
+ set_capacity(d->disk, u->sectors);
+ }
+
+ if (attr == &sysfs_label) {
+ memcpy(u->label, buf, SB_LABEL_SIZE);
+ bch_uuid_write(d->c);
+ }
+
+ if (attr == &sysfs_unregister) {
+ set_bit(BCACHE_DEV_DETACHING, &d->flags);
+ bcache_device_stop(d);
+ }
+
+ return size;
+}
+STORE_LOCKED(bch_flash_dev)
+
+static struct attribute *bch_flash_dev_attrs[] = {
+ &sysfs_unregister,
+#if 0
+ &sysfs_data_csum,
+#endif
+ &sysfs_label,
+ &sysfs_size,
+ NULL
+};
+ATTRIBUTE_GROUPS(bch_flash_dev);
+KTYPE(bch_flash_dev);
+
+struct bset_stats_op {
+ struct btree_op op;
+ size_t nodes;
+ struct bset_stats stats;
+};
+
+static int bch_btree_bset_stats(struct btree_op *b_op, struct btree *b)
+{
+ struct bset_stats_op *op = container_of(b_op, struct bset_stats_op, op);
+
+ op->nodes++;
+ bch_btree_keys_stats(&b->keys, &op->stats);
+
+ return MAP_CONTINUE;
+}
+
+static int bch_bset_print_stats(struct cache_set *c, char *buf)
+{
+ struct bset_stats_op op;
+ int ret;
+
+ memset(&op, 0, sizeof(op));
+ bch_btree_op_init(&op.op, -1);
+
+ ret = bch_btree_map_nodes(&op.op, c, &ZERO_KEY, bch_btree_bset_stats);
+ if (ret < 0)
+ return ret;
+
+ return snprintf(buf, PAGE_SIZE,
+ "btree nodes: %zu\n"
+ "written sets: %zu\n"
+ "unwritten sets: %zu\n"
+ "written key bytes: %zu\n"
+ "unwritten key bytes: %zu\n"
+ "floats: %zu\n"
+ "failed: %zu\n",
+ op.nodes,
+ op.stats.sets_written, op.stats.sets_unwritten,
+ op.stats.bytes_written, op.stats.bytes_unwritten,
+ op.stats.floats, op.stats.failed);
+}
+
+static unsigned int bch_root_usage(struct cache_set *c)
+{
+ unsigned int bytes = 0;
+ struct bkey *k;
+ struct btree *b;
+ struct btree_iter iter;
+
+ goto lock_root;
+
+ do {
+ rw_unlock(false, b);
+lock_root:
+ b = c->root;
+ rw_lock(false, b, b->level);
+ } while (b != c->root);
+
+ for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
+ bytes += bkey_bytes(k);
+
+ rw_unlock(false, b);
+
+ return (bytes * 100) / btree_bytes(c);
+}
+
+static size_t bch_cache_size(struct cache_set *c)
+{
+ size_t ret = 0;
+ struct btree *b;
+
+ mutex_lock(&c->bucket_lock);
+ list_for_each_entry(b, &c->btree_cache, list)
+ ret += 1 << (b->keys.page_order + PAGE_SHIFT);
+
+ mutex_unlock(&c->bucket_lock);
+ return ret;
+}
+
+static unsigned int bch_cache_max_chain(struct cache_set *c)
+{
+ unsigned int ret = 0;
+ struct hlist_head *h;
+
+ mutex_lock(&c->bucket_lock);
+
+ for (h = c->bucket_hash;
+ h < c->bucket_hash + (1 << BUCKET_HASH_BITS);
+ h++) {
+ unsigned int i = 0;
+ struct hlist_node *p;
+
+ hlist_for_each(p, h)
+ i++;
+
+ ret = max(ret, i);
+ }
+
+ mutex_unlock(&c->bucket_lock);
+ return ret;
+}
+
+static unsigned int bch_btree_used(struct cache_set *c)
+{
+ return div64_u64(c->gc_stats.key_bytes * 100,
+ (c->gc_stats.nodes ?: 1) * btree_bytes(c));
+}
+
+static unsigned int bch_average_key_size(struct cache_set *c)
+{
+ return c->gc_stats.nkeys
+ ? div64_u64(c->gc_stats.data, c->gc_stats.nkeys)
+ : 0;
+}
+
+SHOW(__bch_cache_set)
+{
+ struct cache_set *c = container_of(kobj, struct cache_set, kobj);
+
+ sysfs_print(synchronous, CACHE_SYNC(&c->cache->sb));
+ sysfs_print(journal_delay_ms, c->journal_delay_ms);
+ sysfs_hprint(bucket_size, bucket_bytes(c->cache));
+ sysfs_hprint(block_size, block_bytes(c->cache));
+ sysfs_print(tree_depth, c->root->level);
+ sysfs_print(root_usage_percent, bch_root_usage(c));
+
+ sysfs_hprint(btree_cache_size, bch_cache_size(c));
+ sysfs_print(btree_cache_max_chain, bch_cache_max_chain(c));
+ sysfs_print(cache_available_percent, 100 - c->gc_stats.in_use);
+
+ sysfs_print_time_stats(&c->btree_gc_time, btree_gc, sec, ms);
+ sysfs_print_time_stats(&c->btree_split_time, btree_split, sec, us);
+ sysfs_print_time_stats(&c->sort.time, btree_sort, ms, us);
+ sysfs_print_time_stats(&c->btree_read_time, btree_read, ms, us);
+
+ sysfs_print(btree_used_percent, bch_btree_used(c));
+ sysfs_print(btree_nodes, c->gc_stats.nodes);
+ sysfs_hprint(average_key_size, bch_average_key_size(c));
+
+ sysfs_print(cache_read_races,
+ atomic_long_read(&c->cache_read_races));
+
+ sysfs_print(reclaim,
+ atomic_long_read(&c->reclaim));
+
+ sysfs_print(reclaimed_journal_buckets,
+ atomic_long_read(&c->reclaimed_journal_buckets));
+
+ sysfs_print(flush_write,
+ atomic_long_read(&c->flush_write));
+
+ sysfs_print(writeback_keys_done,
+ atomic_long_read(&c->writeback_keys_done));
+ sysfs_print(writeback_keys_failed,
+ atomic_long_read(&c->writeback_keys_failed));
+
+ if (attr == &sysfs_errors)
+ return bch_snprint_string_list(buf, PAGE_SIZE, error_actions,
+ c->on_error);
+
+ /* See count_io_errors for why 88 */
+ sysfs_print(io_error_halflife, c->error_decay * 88);
+ sysfs_print(io_error_limit, c->error_limit);
+
+ sysfs_hprint(congested,
+ ((uint64_t) bch_get_congested(c)) << 9);
+ sysfs_print(congested_read_threshold_us,
+ c->congested_read_threshold_us);
+ sysfs_print(congested_write_threshold_us,
+ c->congested_write_threshold_us);
+
+ sysfs_print(cutoff_writeback, bch_cutoff_writeback);
+ sysfs_print(cutoff_writeback_sync, bch_cutoff_writeback_sync);
+
+ sysfs_print(active_journal_entries, fifo_used(&c->journal.pin));
+ sysfs_printf(verify, "%i", c->verify);
+ sysfs_printf(key_merging_disabled, "%i", c->key_merging_disabled);
+ sysfs_printf(expensive_debug_checks,
+ "%i", c->expensive_debug_checks);
+ sysfs_printf(gc_always_rewrite, "%i", c->gc_always_rewrite);
+ sysfs_printf(btree_shrinker_disabled, "%i", c->shrinker_disabled);
+ sysfs_printf(copy_gc_enabled, "%i", c->copy_gc_enabled);
+ sysfs_printf(idle_max_writeback_rate, "%i",
+ c->idle_max_writeback_rate_enabled);
+ sysfs_printf(gc_after_writeback, "%i", c->gc_after_writeback);
+ sysfs_printf(io_disable, "%i",
+ test_bit(CACHE_SET_IO_DISABLE, &c->flags));
+
+ if (attr == &sysfs_bset_tree_stats)
+ return bch_bset_print_stats(c, buf);
+
+ if (attr == &sysfs_feature_compat)
+ return bch_print_cache_set_feature_compat(c, buf, PAGE_SIZE);
+ if (attr == &sysfs_feature_ro_compat)
+ return bch_print_cache_set_feature_ro_compat(c, buf, PAGE_SIZE);
+ if (attr == &sysfs_feature_incompat)
+ return bch_print_cache_set_feature_incompat(c, buf, PAGE_SIZE);
+
+ return 0;
+}
+SHOW_LOCKED(bch_cache_set)
+
+STORE(__bch_cache_set)
+{
+ struct cache_set *c = container_of(kobj, struct cache_set, kobj);
+ ssize_t v;
+
+ /* no user space access if system is rebooting */
+ if (bcache_is_reboot)
+ return -EBUSY;
+
+ if (attr == &sysfs_unregister)
+ bch_cache_set_unregister(c);
+
+ if (attr == &sysfs_stop)
+ bch_cache_set_stop(c);
+
+ if (attr == &sysfs_synchronous) {
+ bool sync = strtoul_or_return(buf);
+
+ if (sync != CACHE_SYNC(&c->cache->sb)) {
+ SET_CACHE_SYNC(&c->cache->sb, sync);
+ bcache_write_super(c);
+ }
+ }
+
+ if (attr == &sysfs_flash_vol_create) {
+ int r;
+ uint64_t v;
+
+ strtoi_h_or_return(buf, v);
+
+ r = bch_flash_dev_create(c, v);
+ if (r)
+ return r;
+ }
+
+ if (attr == &sysfs_clear_stats) {
+ atomic_long_set(&c->writeback_keys_done, 0);
+ atomic_long_set(&c->writeback_keys_failed, 0);
+
+ memset(&c->gc_stats, 0, sizeof(struct gc_stat));
+ bch_cache_accounting_clear(&c->accounting);
+ }
+
+ if (attr == &sysfs_trigger_gc)
+ force_wake_up_gc(c);
+
+ if (attr == &sysfs_prune_cache) {
+ struct shrink_control sc;
+
+ sc.gfp_mask = GFP_KERNEL;
+ sc.nr_to_scan = strtoul_or_return(buf);
+ c->shrink.scan_objects(&c->shrink, &sc);
+ }
+
+ sysfs_strtoul_clamp(congested_read_threshold_us,
+ c->congested_read_threshold_us,
+ 0, UINT_MAX);
+ sysfs_strtoul_clamp(congested_write_threshold_us,
+ c->congested_write_threshold_us,
+ 0, UINT_MAX);
+
+ if (attr == &sysfs_errors) {
+ v = __sysfs_match_string(error_actions, -1, buf);
+ if (v < 0)
+ return v;
+
+ c->on_error = v;
+ }
+
+ sysfs_strtoul_clamp(io_error_limit, c->error_limit, 0, UINT_MAX);
+
+ /* See count_io_errors() for why 88 */
+ if (attr == &sysfs_io_error_halflife) {
+ unsigned long v = 0;
+ ssize_t ret;
+
+ ret = strtoul_safe_clamp(buf, v, 0, UINT_MAX);
+ if (!ret) {
+ c->error_decay = v / 88;
+ return size;
+ }
+ return ret;
+ }
+
+ if (attr == &sysfs_io_disable) {
+ v = strtoul_or_return(buf);
+ if (v) {
+ if (test_and_set_bit(CACHE_SET_IO_DISABLE,
+ &c->flags))
+ pr_warn("CACHE_SET_IO_DISABLE already set\n");
+ } else {
+ if (!test_and_clear_bit(CACHE_SET_IO_DISABLE,
+ &c->flags))
+ pr_warn("CACHE_SET_IO_DISABLE already cleared\n");
+ }
+ }
+
+ sysfs_strtoul_clamp(journal_delay_ms,
+ c->journal_delay_ms,
+ 0, USHRT_MAX);
+ sysfs_strtoul_bool(verify, c->verify);
+ sysfs_strtoul_bool(key_merging_disabled, c->key_merging_disabled);
+ sysfs_strtoul(expensive_debug_checks, c->expensive_debug_checks);
+ sysfs_strtoul_bool(gc_always_rewrite, c->gc_always_rewrite);
+ sysfs_strtoul_bool(btree_shrinker_disabled, c->shrinker_disabled);
+ sysfs_strtoul_bool(copy_gc_enabled, c->copy_gc_enabled);
+ sysfs_strtoul_bool(idle_max_writeback_rate,
+ c->idle_max_writeback_rate_enabled);
+
+ /*
+ * write gc_after_writeback here may overwrite an already set
+ * BCH_DO_AUTO_GC, it doesn't matter because this flag will be
+ * set in next chance.
+ */
+ sysfs_strtoul_clamp(gc_after_writeback, c->gc_after_writeback, 0, 1);
+
+ return size;
+}
+STORE_LOCKED(bch_cache_set)
+
+SHOW(bch_cache_set_internal)
+{
+ struct cache_set *c = container_of(kobj, struct cache_set, internal);
+
+ return bch_cache_set_show(&c->kobj, attr, buf);
+}
+
+STORE(bch_cache_set_internal)
+{
+ struct cache_set *c = container_of(kobj, struct cache_set, internal);
+
+ /* no user space access if system is rebooting */
+ if (bcache_is_reboot)
+ return -EBUSY;
+
+ return bch_cache_set_store(&c->kobj, attr, buf, size);
+}
+
+static void bch_cache_set_internal_release(struct kobject *k)
+{
+}
+
+static struct attribute *bch_cache_set_attrs[] = {
+ &sysfs_unregister,
+ &sysfs_stop,
+ &sysfs_synchronous,
+ &sysfs_journal_delay_ms,
+ &sysfs_flash_vol_create,
+
+ &sysfs_bucket_size,
+ &sysfs_block_size,
+ &sysfs_tree_depth,
+ &sysfs_root_usage_percent,
+ &sysfs_btree_cache_size,
+ &sysfs_cache_available_percent,
+
+ &sysfs_average_key_size,
+
+ &sysfs_errors,
+ &sysfs_io_error_limit,
+ &sysfs_io_error_halflife,
+ &sysfs_congested,
+ &sysfs_congested_read_threshold_us,
+ &sysfs_congested_write_threshold_us,
+ &sysfs_clear_stats,
+ NULL
+};
+ATTRIBUTE_GROUPS(bch_cache_set);
+KTYPE(bch_cache_set);
+
+static struct attribute *bch_cache_set_internal_attrs[] = {
+ &sysfs_active_journal_entries,
+
+ sysfs_time_stats_attribute_list(btree_gc, sec, ms)
+ sysfs_time_stats_attribute_list(btree_split, sec, us)
+ sysfs_time_stats_attribute_list(btree_sort, ms, us)
+ sysfs_time_stats_attribute_list(btree_read, ms, us)
+
+ &sysfs_btree_nodes,
+ &sysfs_btree_used_percent,
+ &sysfs_btree_cache_max_chain,
+
+ &sysfs_bset_tree_stats,
+ &sysfs_cache_read_races,
+ &sysfs_reclaim,
+ &sysfs_reclaimed_journal_buckets,
+ &sysfs_flush_write,
+ &sysfs_writeback_keys_done,
+ &sysfs_writeback_keys_failed,
+
+ &sysfs_trigger_gc,
+ &sysfs_prune_cache,
+#ifdef CONFIG_BCACHE_DEBUG
+ &sysfs_verify,
+ &sysfs_key_merging_disabled,
+ &sysfs_expensive_debug_checks,
+#endif
+ &sysfs_gc_always_rewrite,
+ &sysfs_btree_shrinker_disabled,
+ &sysfs_copy_gc_enabled,
+ &sysfs_idle_max_writeback_rate,
+ &sysfs_gc_after_writeback,
+ &sysfs_io_disable,
+ &sysfs_cutoff_writeback,
+ &sysfs_cutoff_writeback_sync,
+ &sysfs_feature_compat,
+ &sysfs_feature_ro_compat,
+ &sysfs_feature_incompat,
+ NULL
+};
+ATTRIBUTE_GROUPS(bch_cache_set_internal);
+KTYPE(bch_cache_set_internal);
+
+static int __bch_cache_cmp(const void *l, const void *r)
+{
+ cond_resched();
+ return *((uint16_t *)r) - *((uint16_t *)l);
+}
+
+SHOW(__bch_cache)
+{
+ struct cache *ca = container_of(kobj, struct cache, kobj);
+
+ sysfs_hprint(bucket_size, bucket_bytes(ca));
+ sysfs_hprint(block_size, block_bytes(ca));
+ sysfs_print(nbuckets, ca->sb.nbuckets);
+ sysfs_print(discard, ca->discard);
+ sysfs_hprint(written, atomic_long_read(&ca->sectors_written) << 9);
+ sysfs_hprint(btree_written,
+ atomic_long_read(&ca->btree_sectors_written) << 9);
+ sysfs_hprint(metadata_written,
+ (atomic_long_read(&ca->meta_sectors_written) +
+ atomic_long_read(&ca->btree_sectors_written)) << 9);
+
+ sysfs_print(io_errors,
+ atomic_read(&ca->io_errors) >> IO_ERROR_SHIFT);
+
+ if (attr == &sysfs_cache_replacement_policy)
+ return bch_snprint_string_list(buf, PAGE_SIZE,
+ cache_replacement_policies,
+ CACHE_REPLACEMENT(&ca->sb));
+
+ if (attr == &sysfs_priority_stats) {
+ struct bucket *b;
+ size_t n = ca->sb.nbuckets, i;
+ size_t unused = 0, available = 0, dirty = 0, meta = 0;
+ uint64_t sum = 0;
+ /* Compute 31 quantiles */
+ uint16_t q[31], *p, *cached;
+ ssize_t ret;
+
+ cached = p = vmalloc(array_size(sizeof(uint16_t),
+ ca->sb.nbuckets));
+ if (!p)
+ return -ENOMEM;
+
+ mutex_lock(&ca->set->bucket_lock);
+ for_each_bucket(b, ca) {
+ if (!GC_SECTORS_USED(b))
+ unused++;
+ if (GC_MARK(b) == GC_MARK_RECLAIMABLE)
+ available++;
+ if (GC_MARK(b) == GC_MARK_DIRTY)
+ dirty++;
+ if (GC_MARK(b) == GC_MARK_METADATA)
+ meta++;
+ }
+
+ for (i = ca->sb.first_bucket; i < n; i++)
+ p[i] = ca->buckets[i].prio;
+ mutex_unlock(&ca->set->bucket_lock);
+
+ sort(p, n, sizeof(uint16_t), __bch_cache_cmp, NULL);
+
+ while (n &&
+ !cached[n - 1])
+ --n;
+
+ while (cached < p + n &&
+ *cached == BTREE_PRIO) {
+ cached++;
+ n--;
+ }
+
+ for (i = 0; i < n; i++)
+ sum += INITIAL_PRIO - cached[i];
+
+ if (n)
+ sum = div64_u64(sum, n);
+
+ for (i = 0; i < ARRAY_SIZE(q); i++)
+ q[i] = INITIAL_PRIO - cached[n * (i + 1) /
+ (ARRAY_SIZE(q) + 1)];
+
+ vfree(p);
+
+ ret = scnprintf(buf, PAGE_SIZE,
+ "Unused: %zu%%\n"
+ "Clean: %zu%%\n"
+ "Dirty: %zu%%\n"
+ "Metadata: %zu%%\n"
+ "Average: %llu\n"
+ "Sectors per Q: %zu\n"
+ "Quantiles: [",
+ unused * 100 / (size_t) ca->sb.nbuckets,
+ available * 100 / (size_t) ca->sb.nbuckets,
+ dirty * 100 / (size_t) ca->sb.nbuckets,
+ meta * 100 / (size_t) ca->sb.nbuckets, sum,
+ n * ca->sb.bucket_size / (ARRAY_SIZE(q) + 1));
+
+ for (i = 0; i < ARRAY_SIZE(q); i++)
+ ret += scnprintf(buf + ret, PAGE_SIZE - ret,
+ "%u ", q[i]);
+ ret--;
+
+ ret += scnprintf(buf + ret, PAGE_SIZE - ret, "]\n");
+
+ return ret;
+ }
+
+ return 0;
+}
+SHOW_LOCKED(bch_cache)
+
+STORE(__bch_cache)
+{
+ struct cache *ca = container_of(kobj, struct cache, kobj);
+ ssize_t v;
+
+ /* no user space access if system is rebooting */
+ if (bcache_is_reboot)
+ return -EBUSY;
+
+ if (attr == &sysfs_discard) {
+ bool v = strtoul_or_return(buf);
+
+ if (bdev_max_discard_sectors(ca->bdev))
+ ca->discard = v;
+
+ if (v != CACHE_DISCARD(&ca->sb)) {
+ SET_CACHE_DISCARD(&ca->sb, v);
+ bcache_write_super(ca->set);
+ }
+ }
+
+ if (attr == &sysfs_cache_replacement_policy) {
+ v = __sysfs_match_string(cache_replacement_policies, -1, buf);
+ if (v < 0)
+ return v;
+
+ if ((unsigned int) v != CACHE_REPLACEMENT(&ca->sb)) {
+ mutex_lock(&ca->set->bucket_lock);
+ SET_CACHE_REPLACEMENT(&ca->sb, v);
+ mutex_unlock(&ca->set->bucket_lock);
+
+ bcache_write_super(ca->set);
+ }
+ }
+
+ if (attr == &sysfs_clear_stats) {
+ atomic_long_set(&ca->sectors_written, 0);
+ atomic_long_set(&ca->btree_sectors_written, 0);
+ atomic_long_set(&ca->meta_sectors_written, 0);
+ atomic_set(&ca->io_count, 0);
+ atomic_set(&ca->io_errors, 0);
+ }
+
+ return size;
+}
+STORE_LOCKED(bch_cache)
+
+static struct attribute *bch_cache_attrs[] = {
+ &sysfs_bucket_size,
+ &sysfs_block_size,
+ &sysfs_nbuckets,
+ &sysfs_priority_stats,
+ &sysfs_discard,
+ &sysfs_written,
+ &sysfs_btree_written,
+ &sysfs_metadata_written,
+ &sysfs_io_errors,
+ &sysfs_clear_stats,
+ &sysfs_cache_replacement_policy,
+ NULL
+};
+ATTRIBUTE_GROUPS(bch_cache);
+KTYPE(bch_cache);
diff --git a/drivers/md/bcache/sysfs.h b/drivers/md/bcache/sysfs.h
new file mode 100644
index 000000000..a2ff6447b
--- /dev/null
+++ b/drivers/md/bcache/sysfs.h
@@ -0,0 +1,142 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _BCACHE_SYSFS_H_
+#define _BCACHE_SYSFS_H_
+
+#define KTYPE(type) \
+struct kobj_type type ## _ktype = { \
+ .release = type ## _release, \
+ .sysfs_ops = &((const struct sysfs_ops) { \
+ .show = type ## _show, \
+ .store = type ## _store \
+ }), \
+ .default_groups = type ## _groups \
+}
+
+#define SHOW(fn) \
+static ssize_t fn ## _show(struct kobject *kobj, struct attribute *attr,\
+ char *buf) \
+
+#define STORE(fn) \
+static ssize_t fn ## _store(struct kobject *kobj, struct attribute *attr,\
+ const char *buf, size_t size) \
+
+#define SHOW_LOCKED(fn) \
+SHOW(fn) \
+{ \
+ ssize_t ret; \
+ mutex_lock(&bch_register_lock); \
+ ret = __ ## fn ## _show(kobj, attr, buf); \
+ mutex_unlock(&bch_register_lock); \
+ return ret; \
+}
+
+#define STORE_LOCKED(fn) \
+STORE(fn) \
+{ \
+ ssize_t ret; \
+ mutex_lock(&bch_register_lock); \
+ ret = __ ## fn ## _store(kobj, attr, buf, size); \
+ mutex_unlock(&bch_register_lock); \
+ return ret; \
+}
+
+#define __sysfs_attribute(_name, _mode) \
+ static struct attribute sysfs_##_name = \
+ { .name = #_name, .mode = _mode }
+
+#define write_attribute(n) __sysfs_attribute(n, 0200)
+#define read_attribute(n) __sysfs_attribute(n, 0444)
+#define rw_attribute(n) __sysfs_attribute(n, 0644)
+
+#define sysfs_printf(file, fmt, ...) \
+do { \
+ if (attr == &sysfs_ ## file) \
+ return sysfs_emit(buf, fmt "\n", __VA_ARGS__); \
+} while (0)
+
+#define sysfs_print(file, var) \
+do { \
+ if (attr == &sysfs_ ## file) \
+ return sysfs_emit(buf, \
+ __builtin_types_compatible_p(typeof(var), int) \
+ ? "%i\n" : \
+ __builtin_types_compatible_p(typeof(var), unsigned int) \
+ ? "%u\n" : \
+ __builtin_types_compatible_p(typeof(var), long) \
+ ? "%li\n" : \
+ __builtin_types_compatible_p(typeof(var), unsigned long)\
+ ? "%lu\n" : \
+ __builtin_types_compatible_p(typeof(var), int64_t) \
+ ? "%lli\n" : \
+ __builtin_types_compatible_p(typeof(var), uint64_t) \
+ ? "%llu\n" : \
+ __builtin_types_compatible_p(typeof(var), const char *) \
+ ? "%s\n" : "%i\n", var); \
+} while (0)
+
+#define sysfs_hprint(file, val) \
+do { \
+ if (attr == &sysfs_ ## file) { \
+ ssize_t ret = bch_hprint(buf, val); \
+ strcat(buf, "\n"); \
+ return ret + 1; \
+ } \
+} while (0)
+
+#define var_printf(_var, fmt) sysfs_printf(_var, fmt, var(_var))
+#define var_print(_var) sysfs_print(_var, var(_var))
+#define var_hprint(_var) sysfs_hprint(_var, var(_var))
+
+#define sysfs_strtoul(file, var) \
+do { \
+ if (attr == &sysfs_ ## file) \
+ return strtoul_safe(buf, var) ?: (ssize_t) size; \
+} while (0)
+
+#define sysfs_strtoul_bool(file, var) \
+do { \
+ if (attr == &sysfs_ ## file) { \
+ unsigned long v = strtoul_or_return(buf); \
+ \
+ var = v ? 1 : 0; \
+ return size; \
+ } \
+} while (0)
+
+#define sysfs_strtoul_clamp(file, var, min, max) \
+do { \
+ if (attr == &sysfs_ ## file) { \
+ unsigned long v = 0; \
+ ssize_t ret; \
+ ret = strtoul_safe_clamp(buf, v, min, max); \
+ if (!ret) { \
+ var = v; \
+ return size; \
+ } \
+ return ret; \
+ } \
+} while (0)
+
+#define strtoul_or_return(cp) \
+({ \
+ unsigned long _v; \
+ int _r = kstrtoul(cp, 10, &_v); \
+ if (_r) \
+ return _r; \
+ _v; \
+})
+
+#define strtoi_h_or_return(cp, v) \
+do { \
+ int _r = strtoi_h(cp, &v); \
+ if (_r) \
+ return _r; \
+} while (0)
+
+#define sysfs_hatoi(file, var) \
+do { \
+ if (attr == &sysfs_ ## file) \
+ return strtoi_h(buf, &var) ?: (ssize_t) size; \
+} while (0)
+
+#endif /* _BCACHE_SYSFS_H_ */
diff --git a/drivers/md/bcache/trace.c b/drivers/md/bcache/trace.c
new file mode 100644
index 000000000..a9a73f560
--- /dev/null
+++ b/drivers/md/bcache/trace.c
@@ -0,0 +1,53 @@
+// SPDX-License-Identifier: GPL-2.0
+#include "bcache.h"
+#include "btree.h"
+
+#include <linux/blktrace_api.h>
+#include <linux/module.h>
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/bcache.h>
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_request_start);
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_request_end);
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_bypass_sequential);
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_bypass_congested);
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_read);
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_write);
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_read_retry);
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_cache_insert);
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_journal_replay_key);
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_journal_write);
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_journal_full);
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_journal_entry_full);
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_cache_cannibalize);
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_read);
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_write);
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_node_alloc);
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_node_alloc_fail);
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_node_free);
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_gc_coalesce);
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_gc_start);
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_gc_end);
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_gc_copy);
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_gc_copy_collision);
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_insert_key);
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_node_split);
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_node_compact);
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_btree_set_root);
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_invalidate);
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_alloc_fail);
+
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_writeback);
+EXPORT_TRACEPOINT_SYMBOL_GPL(bcache_writeback_collision);
diff --git a/drivers/md/bcache/util.c b/drivers/md/bcache/util.c
new file mode 100644
index 000000000..ae380bc39
--- /dev/null
+++ b/drivers/md/bcache/util.c
@@ -0,0 +1,287 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * random utiility code, for bcache but in theory not specific to bcache
+ *
+ * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
+ * Copyright 2012 Google, Inc.
+ */
+
+#include <linux/bio.h>
+#include <linux/blkdev.h>
+#include <linux/ctype.h>
+#include <linux/debugfs.h>
+#include <linux/module.h>
+#include <linux/seq_file.h>
+#include <linux/types.h>
+#include <linux/sched/clock.h>
+
+#include "util.h"
+
+#define simple_strtoint(c, end, base) simple_strtol(c, end, base)
+#define simple_strtouint(c, end, base) simple_strtoul(c, end, base)
+
+#define STRTO_H(name, type) \
+int bch_ ## name ## _h(const char *cp, type *res) \
+{ \
+ int u = 0; \
+ char *e; \
+ type i = simple_ ## name(cp, &e, 10); \
+ \
+ switch (tolower(*e)) { \
+ default: \
+ return -EINVAL; \
+ case 'y': \
+ case 'z': \
+ u++; \
+ fallthrough; \
+ case 'e': \
+ u++; \
+ fallthrough; \
+ case 'p': \
+ u++; \
+ fallthrough; \
+ case 't': \
+ u++; \
+ fallthrough; \
+ case 'g': \
+ u++; \
+ fallthrough; \
+ case 'm': \
+ u++; \
+ fallthrough; \
+ case 'k': \
+ u++; \
+ if (e++ == cp) \
+ return -EINVAL; \
+ fallthrough; \
+ case '\n': \
+ case '\0': \
+ if (*e == '\n') \
+ e++; \
+ } \
+ \
+ if (*e) \
+ return -EINVAL; \
+ \
+ while (u--) { \
+ if ((type) ~0 > 0 && \
+ (type) ~0 / 1024 <= i) \
+ return -EINVAL; \
+ if ((i > 0 && ANYSINT_MAX(type) / 1024 < i) || \
+ (i < 0 && -ANYSINT_MAX(type) / 1024 > i)) \
+ return -EINVAL; \
+ i *= 1024; \
+ } \
+ \
+ *res = i; \
+ return 0; \
+} \
+
+STRTO_H(strtoint, int)
+STRTO_H(strtouint, unsigned int)
+STRTO_H(strtoll, long long)
+STRTO_H(strtoull, unsigned long long)
+
+/**
+ * bch_hprint - formats @v to human readable string for sysfs.
+ * @buf: the (at least 8 byte) buffer to format the result into.
+ * @v: signed 64 bit integer
+ *
+ * Returns the number of bytes used by format.
+ */
+ssize_t bch_hprint(char *buf, int64_t v)
+{
+ static const char units[] = "?kMGTPEZY";
+ int u = 0, t;
+
+ uint64_t q;
+
+ if (v < 0)
+ q = -v;
+ else
+ q = v;
+
+ /* For as long as the number is more than 3 digits, but at least
+ * once, shift right / divide by 1024. Keep the remainder for
+ * a digit after the decimal point.
+ */
+ do {
+ u++;
+
+ t = q & ~(~0 << 10);
+ q >>= 10;
+ } while (q >= 1000);
+
+ if (v < 0)
+ /* '-', up to 3 digits, '.', 1 digit, 1 character, null;
+ * yields 8 bytes.
+ */
+ return sprintf(buf, "-%llu.%i%c", q, t * 10 / 1024, units[u]);
+ else
+ return sprintf(buf, "%llu.%i%c", q, t * 10 / 1024, units[u]);
+}
+
+bool bch_is_zero(const char *p, size_t n)
+{
+ size_t i;
+
+ for (i = 0; i < n; i++)
+ if (p[i])
+ return false;
+ return true;
+}
+
+int bch_parse_uuid(const char *s, char *uuid)
+{
+ size_t i, j, x;
+
+ memset(uuid, 0, 16);
+
+ for (i = 0, j = 0;
+ i < strspn(s, "-0123456789:ABCDEFabcdef") && j < 32;
+ i++) {
+ x = s[i] | 32;
+
+ switch (x) {
+ case '0'...'9':
+ x -= '0';
+ break;
+ case 'a'...'f':
+ x -= 'a' - 10;
+ break;
+ default:
+ continue;
+ }
+
+ if (!(j & 1))
+ x <<= 4;
+ uuid[j++ >> 1] |= x;
+ }
+ return i;
+}
+
+void bch_time_stats_update(struct time_stats *stats, uint64_t start_time)
+{
+ uint64_t now, duration, last;
+
+ spin_lock(&stats->lock);
+
+ now = local_clock();
+ duration = time_after64(now, start_time)
+ ? now - start_time : 0;
+ last = time_after64(now, stats->last)
+ ? now - stats->last : 0;
+
+ stats->max_duration = max(stats->max_duration, duration);
+
+ if (stats->last) {
+ ewma_add(stats->average_duration, duration, 8, 8);
+
+ if (stats->average_frequency)
+ ewma_add(stats->average_frequency, last, 8, 8);
+ else
+ stats->average_frequency = last << 8;
+ } else {
+ stats->average_duration = duration << 8;
+ }
+
+ stats->last = now ?: 1;
+
+ spin_unlock(&stats->lock);
+}
+
+/**
+ * bch_next_delay() - update ratelimiting statistics and calculate next delay
+ * @d: the struct bch_ratelimit to update
+ * @done: the amount of work done, in arbitrary units
+ *
+ * Increment @d by the amount of work done, and return how long to delay in
+ * jiffies until the next time to do some work.
+ */
+uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done)
+{
+ uint64_t now = local_clock();
+
+ d->next += div_u64(done * NSEC_PER_SEC, atomic_long_read(&d->rate));
+
+ /* Bound the time. Don't let us fall further than 2 seconds behind
+ * (this prevents unnecessary backlog that would make it impossible
+ * to catch up). If we're ahead of the desired writeback rate,
+ * don't let us sleep more than 2.5 seconds (so we can notice/respond
+ * if the control system tells us to speed up!).
+ */
+ if (time_before64(now + NSEC_PER_SEC * 5LLU / 2LLU, d->next))
+ d->next = now + NSEC_PER_SEC * 5LLU / 2LLU;
+
+ if (time_after64(now - NSEC_PER_SEC * 2, d->next))
+ d->next = now - NSEC_PER_SEC * 2;
+
+ return time_after64(d->next, now)
+ ? div_u64(d->next - now, NSEC_PER_SEC / HZ)
+ : 0;
+}
+
+/*
+ * Generally it isn't good to access .bi_io_vec and .bi_vcnt directly,
+ * the preferred way is bio_add_page, but in this case, bch_bio_map()
+ * supposes that the bvec table is empty, so it is safe to access
+ * .bi_vcnt & .bi_io_vec in this way even after multipage bvec is
+ * supported.
+ */
+void bch_bio_map(struct bio *bio, void *base)
+{
+ size_t size = bio->bi_iter.bi_size;
+ struct bio_vec *bv = bio->bi_io_vec;
+
+ BUG_ON(!bio->bi_iter.bi_size);
+ BUG_ON(bio->bi_vcnt);
+
+ bv->bv_offset = base ? offset_in_page(base) : 0;
+ goto start;
+
+ for (; size; bio->bi_vcnt++, bv++) {
+ bv->bv_offset = 0;
+start: bv->bv_len = min_t(size_t, PAGE_SIZE - bv->bv_offset,
+ size);
+ if (base) {
+ bv->bv_page = is_vmalloc_addr(base)
+ ? vmalloc_to_page(base)
+ : virt_to_page(base);
+
+ base += bv->bv_len;
+ }
+
+ size -= bv->bv_len;
+ }
+}
+
+/**
+ * bch_bio_alloc_pages - allocates a single page for each bvec in a bio
+ * @bio: bio to allocate pages for
+ * @gfp_mask: flags for allocation
+ *
+ * Allocates pages up to @bio->bi_vcnt.
+ *
+ * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
+ * freed.
+ */
+int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
+{
+ int i;
+ struct bio_vec *bv;
+
+ /*
+ * This is called on freshly new bio, so it is safe to access the
+ * bvec table directly.
+ */
+ for (i = 0, bv = bio->bi_io_vec; i < bio->bi_vcnt; bv++, i++) {
+ bv->bv_page = alloc_page(gfp_mask);
+ if (!bv->bv_page) {
+ while (--bv >= bio->bi_io_vec)
+ __free_page(bv->bv_page);
+ return -ENOMEM;
+ }
+ }
+
+ return 0;
+}
diff --git a/drivers/md/bcache/util.h b/drivers/md/bcache/util.h
new file mode 100644
index 000000000..6f3cb7c92
--- /dev/null
+++ b/drivers/md/bcache/util.h
@@ -0,0 +1,562 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+
+#ifndef _BCACHE_UTIL_H
+#define _BCACHE_UTIL_H
+
+#include <linux/blkdev.h>
+#include <linux/errno.h>
+#include <linux/kernel.h>
+#include <linux/sched/clock.h>
+#include <linux/llist.h>
+#include <linux/ratelimit.h>
+#include <linux/vmalloc.h>
+#include <linux/workqueue.h>
+#include <linux/crc64.h>
+
+#include "closure.h"
+
+struct closure;
+
+#ifdef CONFIG_BCACHE_DEBUG
+
+#define EBUG_ON(cond) BUG_ON(cond)
+#define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0)
+#define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i)
+
+#else /* DEBUG */
+
+#define EBUG_ON(cond) do { if (cond) do {} while (0); } while (0)
+#define atomic_dec_bug(v) atomic_dec(v)
+#define atomic_inc_bug(v, i) atomic_inc(v)
+
+#endif
+
+#define DECLARE_HEAP(type, name) \
+ struct { \
+ size_t size, used; \
+ type *data; \
+ } name
+
+#define init_heap(heap, _size, gfp) \
+({ \
+ size_t _bytes; \
+ (heap)->used = 0; \
+ (heap)->size = (_size); \
+ _bytes = (heap)->size * sizeof(*(heap)->data); \
+ (heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \
+ (heap)->data; \
+})
+
+#define free_heap(heap) \
+do { \
+ kvfree((heap)->data); \
+ (heap)->data = NULL; \
+} while (0)
+
+#define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j])
+
+#define heap_sift(h, i, cmp) \
+do { \
+ size_t _r, _j = i; \
+ \
+ for (; _j * 2 + 1 < (h)->used; _j = _r) { \
+ _r = _j * 2 + 1; \
+ if (_r + 1 < (h)->used && \
+ cmp((h)->data[_r], (h)->data[_r + 1])) \
+ _r++; \
+ \
+ if (cmp((h)->data[_r], (h)->data[_j])) \
+ break; \
+ heap_swap(h, _r, _j); \
+ } \
+} while (0)
+
+#define heap_sift_down(h, i, cmp) \
+do { \
+ while (i) { \
+ size_t p = (i - 1) / 2; \
+ if (cmp((h)->data[i], (h)->data[p])) \
+ break; \
+ heap_swap(h, i, p); \
+ i = p; \
+ } \
+} while (0)
+
+#define heap_add(h, d, cmp) \
+({ \
+ bool _r = !heap_full(h); \
+ if (_r) { \
+ size_t _i = (h)->used++; \
+ (h)->data[_i] = d; \
+ \
+ heap_sift_down(h, _i, cmp); \
+ heap_sift(h, _i, cmp); \
+ } \
+ _r; \
+})
+
+#define heap_pop(h, d, cmp) \
+({ \
+ bool _r = (h)->used; \
+ if (_r) { \
+ (d) = (h)->data[0]; \
+ (h)->used--; \
+ heap_swap(h, 0, (h)->used); \
+ heap_sift(h, 0, cmp); \
+ } \
+ _r; \
+})
+
+#define heap_peek(h) ((h)->used ? (h)->data[0] : NULL)
+
+#define heap_full(h) ((h)->used == (h)->size)
+
+#define DECLARE_FIFO(type, name) \
+ struct { \
+ size_t front, back, size, mask; \
+ type *data; \
+ } name
+
+#define fifo_for_each(c, fifo, iter) \
+ for (iter = (fifo)->front; \
+ c = (fifo)->data[iter], iter != (fifo)->back; \
+ iter = (iter + 1) & (fifo)->mask)
+
+#define __init_fifo(fifo, gfp) \
+({ \
+ size_t _allocated_size, _bytes; \
+ BUG_ON(!(fifo)->size); \
+ \
+ _allocated_size = roundup_pow_of_two((fifo)->size + 1); \
+ _bytes = _allocated_size * sizeof(*(fifo)->data); \
+ \
+ (fifo)->mask = _allocated_size - 1; \
+ (fifo)->front = (fifo)->back = 0; \
+ \
+ (fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \
+ (fifo)->data; \
+})
+
+#define init_fifo_exact(fifo, _size, gfp) \
+({ \
+ (fifo)->size = (_size); \
+ __init_fifo(fifo, gfp); \
+})
+
+#define init_fifo(fifo, _size, gfp) \
+({ \
+ (fifo)->size = (_size); \
+ if ((fifo)->size > 4) \
+ (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \
+ __init_fifo(fifo, gfp); \
+})
+
+#define free_fifo(fifo) \
+do { \
+ kvfree((fifo)->data); \
+ (fifo)->data = NULL; \
+} while (0)
+
+#define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask)
+#define fifo_free(fifo) ((fifo)->size - fifo_used(fifo))
+
+#define fifo_empty(fifo) (!fifo_used(fifo))
+#define fifo_full(fifo) (!fifo_free(fifo))
+
+#define fifo_front(fifo) ((fifo)->data[(fifo)->front])
+#define fifo_back(fifo) \
+ ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
+
+#define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask)
+
+#define fifo_push_back(fifo, i) \
+({ \
+ bool _r = !fifo_full((fifo)); \
+ if (_r) { \
+ (fifo)->data[(fifo)->back++] = (i); \
+ (fifo)->back &= (fifo)->mask; \
+ } \
+ _r; \
+})
+
+#define fifo_pop_front(fifo, i) \
+({ \
+ bool _r = !fifo_empty((fifo)); \
+ if (_r) { \
+ (i) = (fifo)->data[(fifo)->front++]; \
+ (fifo)->front &= (fifo)->mask; \
+ } \
+ _r; \
+})
+
+#define fifo_push_front(fifo, i) \
+({ \
+ bool _r = !fifo_full((fifo)); \
+ if (_r) { \
+ --(fifo)->front; \
+ (fifo)->front &= (fifo)->mask; \
+ (fifo)->data[(fifo)->front] = (i); \
+ } \
+ _r; \
+})
+
+#define fifo_pop_back(fifo, i) \
+({ \
+ bool _r = !fifo_empty((fifo)); \
+ if (_r) { \
+ --(fifo)->back; \
+ (fifo)->back &= (fifo)->mask; \
+ (i) = (fifo)->data[(fifo)->back] \
+ } \
+ _r; \
+})
+
+#define fifo_push(fifo, i) fifo_push_back(fifo, (i))
+#define fifo_pop(fifo, i) fifo_pop_front(fifo, (i))
+
+#define fifo_swap(l, r) \
+do { \
+ swap((l)->front, (r)->front); \
+ swap((l)->back, (r)->back); \
+ swap((l)->size, (r)->size); \
+ swap((l)->mask, (r)->mask); \
+ swap((l)->data, (r)->data); \
+} while (0)
+
+#define fifo_move(dest, src) \
+do { \
+ typeof(*((dest)->data)) _t; \
+ while (!fifo_full(dest) && \
+ fifo_pop(src, _t)) \
+ fifo_push(dest, _t); \
+} while (0)
+
+/*
+ * Simple array based allocator - preallocates a number of elements and you can
+ * never allocate more than that, also has no locking.
+ *
+ * Handy because if you know you only need a fixed number of elements you don't
+ * have to worry about memory allocation failure, and sometimes a mempool isn't
+ * what you want.
+ *
+ * We treat the free elements as entries in a singly linked list, and the
+ * freelist as a stack - allocating and freeing push and pop off the freelist.
+ */
+
+#define DECLARE_ARRAY_ALLOCATOR(type, name, size) \
+ struct { \
+ type *freelist; \
+ type data[size]; \
+ } name
+
+#define array_alloc(array) \
+({ \
+ typeof((array)->freelist) _ret = (array)->freelist; \
+ \
+ if (_ret) \
+ (array)->freelist = *((typeof((array)->freelist) *) _ret);\
+ \
+ _ret; \
+})
+
+#define array_free(array, ptr) \
+do { \
+ typeof((array)->freelist) _ptr = ptr; \
+ \
+ *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \
+ (array)->freelist = _ptr; \
+} while (0)
+
+#define array_allocator_init(array) \
+do { \
+ typeof((array)->freelist) _i; \
+ \
+ BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \
+ (array)->freelist = NULL; \
+ \
+ for (_i = (array)->data; \
+ _i < (array)->data + ARRAY_SIZE((array)->data); \
+ _i++) \
+ array_free(array, _i); \
+} while (0)
+
+#define array_freelist_empty(array) ((array)->freelist == NULL)
+
+#define ANYSINT_MAX(t) \
+ ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
+
+int bch_strtoint_h(const char *cp, int *res);
+int bch_strtouint_h(const char *cp, unsigned int *res);
+int bch_strtoll_h(const char *cp, long long *res);
+int bch_strtoull_h(const char *cp, unsigned long long *res);
+
+static inline int bch_strtol_h(const char *cp, long *res)
+{
+#if BITS_PER_LONG == 32
+ return bch_strtoint_h(cp, (int *) res);
+#else
+ return bch_strtoll_h(cp, (long long *) res);
+#endif
+}
+
+static inline int bch_strtoul_h(const char *cp, long *res)
+{
+#if BITS_PER_LONG == 32
+ return bch_strtouint_h(cp, (unsigned int *) res);
+#else
+ return bch_strtoull_h(cp, (unsigned long long *) res);
+#endif
+}
+
+#define strtoi_h(cp, res) \
+ (__builtin_types_compatible_p(typeof(*res), int) \
+ ? bch_strtoint_h(cp, (void *) res) \
+ : __builtin_types_compatible_p(typeof(*res), long) \
+ ? bch_strtol_h(cp, (void *) res) \
+ : __builtin_types_compatible_p(typeof(*res), long long) \
+ ? bch_strtoll_h(cp, (void *) res) \
+ : __builtin_types_compatible_p(typeof(*res), unsigned int) \
+ ? bch_strtouint_h(cp, (void *) res) \
+ : __builtin_types_compatible_p(typeof(*res), unsigned long) \
+ ? bch_strtoul_h(cp, (void *) res) \
+ : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
+ ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
+
+#define strtoul_safe(cp, var) \
+({ \
+ unsigned long _v; \
+ int _r = kstrtoul(cp, 10, &_v); \
+ if (!_r) \
+ var = _v; \
+ _r; \
+})
+
+#define strtoul_safe_clamp(cp, var, min, max) \
+({ \
+ unsigned long _v; \
+ int _r = kstrtoul(cp, 10, &_v); \
+ if (!_r) \
+ var = clamp_t(typeof(var), _v, min, max); \
+ _r; \
+})
+
+ssize_t bch_hprint(char *buf, int64_t v);
+
+bool bch_is_zero(const char *p, size_t n);
+int bch_parse_uuid(const char *s, char *uuid);
+
+struct time_stats {
+ spinlock_t lock;
+ /*
+ * all fields are in nanoseconds, averages are ewmas stored left shifted
+ * by 8
+ */
+ uint64_t max_duration;
+ uint64_t average_duration;
+ uint64_t average_frequency;
+ uint64_t last;
+};
+
+void bch_time_stats_update(struct time_stats *stats, uint64_t time);
+
+static inline unsigned int local_clock_us(void)
+{
+ return local_clock() >> 10;
+}
+
+#define NSEC_PER_ns 1L
+#define NSEC_PER_us NSEC_PER_USEC
+#define NSEC_PER_ms NSEC_PER_MSEC
+#define NSEC_PER_sec NSEC_PER_SEC
+
+#define __print_time_stat(stats, name, stat, units) \
+ sysfs_print(name ## _ ## stat ## _ ## units, \
+ div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
+
+#define sysfs_print_time_stats(stats, name, \
+ frequency_units, \
+ duration_units) \
+do { \
+ __print_time_stat(stats, name, \
+ average_frequency, frequency_units); \
+ __print_time_stat(stats, name, \
+ average_duration, duration_units); \
+ sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \
+ div_u64((stats)->max_duration, \
+ NSEC_PER_ ## duration_units)); \
+ \
+ sysfs_print(name ## _last_ ## frequency_units, (stats)->last \
+ ? div_s64(local_clock() - (stats)->last, \
+ NSEC_PER_ ## frequency_units) \
+ : -1LL); \
+} while (0)
+
+#define sysfs_time_stats_attribute(name, \
+ frequency_units, \
+ duration_units) \
+read_attribute(name ## _average_frequency_ ## frequency_units); \
+read_attribute(name ## _average_duration_ ## duration_units); \
+read_attribute(name ## _max_duration_ ## duration_units); \
+read_attribute(name ## _last_ ## frequency_units)
+
+#define sysfs_time_stats_attribute_list(name, \
+ frequency_units, \
+ duration_units) \
+&sysfs_ ## name ## _average_frequency_ ## frequency_units, \
+&sysfs_ ## name ## _average_duration_ ## duration_units, \
+&sysfs_ ## name ## _max_duration_ ## duration_units, \
+&sysfs_ ## name ## _last_ ## frequency_units,
+
+#define ewma_add(ewma, val, weight, factor) \
+({ \
+ (ewma) *= (weight) - 1; \
+ (ewma) += (val) << factor; \
+ (ewma) /= (weight); \
+ (ewma) >> factor; \
+})
+
+struct bch_ratelimit {
+ /* Next time we want to do some work, in nanoseconds */
+ uint64_t next;
+
+ /*
+ * Rate at which we want to do work, in units per second
+ * The units here correspond to the units passed to bch_next_delay()
+ */
+ atomic_long_t rate;
+};
+
+static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
+{
+ d->next = local_clock();
+}
+
+uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
+
+#define __DIV_SAFE(n, d, zero) \
+({ \
+ typeof(n) _n = (n); \
+ typeof(d) _d = (d); \
+ _d ? _n / _d : zero; \
+})
+
+#define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0)
+
+#define container_of_or_null(ptr, type, member) \
+({ \
+ typeof(ptr) _ptr = ptr; \
+ _ptr ? container_of(_ptr, type, member) : NULL; \
+})
+
+#define RB_INSERT(root, new, member, cmp) \
+({ \
+ __label__ dup; \
+ struct rb_node **n = &(root)->rb_node, *parent = NULL; \
+ typeof(new) this; \
+ int res, ret = -1; \
+ \
+ while (*n) { \
+ parent = *n; \
+ this = container_of(*n, typeof(*(new)), member); \
+ res = cmp(new, this); \
+ if (!res) \
+ goto dup; \
+ n = res < 0 \
+ ? &(*n)->rb_left \
+ : &(*n)->rb_right; \
+ } \
+ \
+ rb_link_node(&(new)->member, parent, n); \
+ rb_insert_color(&(new)->member, root); \
+ ret = 0; \
+dup: \
+ ret; \
+})
+
+#define RB_SEARCH(root, search, member, cmp) \
+({ \
+ struct rb_node *n = (root)->rb_node; \
+ typeof(&(search)) this, ret = NULL; \
+ int res; \
+ \
+ while (n) { \
+ this = container_of(n, typeof(search), member); \
+ res = cmp(&(search), this); \
+ if (!res) { \
+ ret = this; \
+ break; \
+ } \
+ n = res < 0 \
+ ? n->rb_left \
+ : n->rb_right; \
+ } \
+ ret; \
+})
+
+#define RB_GREATER(root, search, member, cmp) \
+({ \
+ struct rb_node *n = (root)->rb_node; \
+ typeof(&(search)) this, ret = NULL; \
+ int res; \
+ \
+ while (n) { \
+ this = container_of(n, typeof(search), member); \
+ res = cmp(&(search), this); \
+ if (res < 0) { \
+ ret = this; \
+ n = n->rb_left; \
+ } else \
+ n = n->rb_right; \
+ } \
+ ret; \
+})
+
+#define RB_FIRST(root, type, member) \
+ container_of_or_null(rb_first(root), type, member)
+
+#define RB_LAST(root, type, member) \
+ container_of_or_null(rb_last(root), type, member)
+
+#define RB_NEXT(ptr, member) \
+ container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
+
+#define RB_PREV(ptr, member) \
+ container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
+
+static inline uint64_t bch_crc64(const void *p, size_t len)
+{
+ uint64_t crc = 0xffffffffffffffffULL;
+
+ crc = crc64_be(crc, p, len);
+ return crc ^ 0xffffffffffffffffULL;
+}
+
+/*
+ * A stepwise-linear pseudo-exponential. This returns 1 << (x >>
+ * frac_bits), with the less-significant bits filled in by linear
+ * interpolation.
+ *
+ * This can also be interpreted as a floating-point number format,
+ * where the low frac_bits are the mantissa (with implicit leading
+ * 1 bit), and the more significant bits are the exponent.
+ * The return value is 1.mantissa * 2^exponent.
+ *
+ * The way this is used, fract_bits is 6 and the largest possible
+ * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc),
+ * so the maximum output is 0x1fc00.
+ */
+static inline unsigned int fract_exp_two(unsigned int x,
+ unsigned int fract_bits)
+{
+ unsigned int mantissa = 1 << fract_bits; /* Implicit bit */
+
+ mantissa += x & (mantissa - 1);
+ x >>= fract_bits; /* The exponent */
+ /* Largest intermediate value 0x7f0000 */
+ return mantissa << x >> fract_bits;
+}
+
+void bch_bio_map(struct bio *bio, void *base);
+int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask);
+
+#endif /* _BCACHE_UTIL_H */
diff --git a/drivers/md/bcache/writeback.c b/drivers/md/bcache/writeback.c
new file mode 100644
index 000000000..18c6e0d28
--- /dev/null
+++ b/drivers/md/bcache/writeback.c
@@ -0,0 +1,1100 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * background writeback - scan btree for dirty data and write it to the backing
+ * device
+ *
+ * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
+ * Copyright 2012 Google, Inc.
+ */
+
+#include "bcache.h"
+#include "btree.h"
+#include "debug.h"
+#include "writeback.h"
+
+#include <linux/delay.h>
+#include <linux/kthread.h>
+#include <linux/sched/clock.h>
+#include <trace/events/bcache.h>
+
+static void update_gc_after_writeback(struct cache_set *c)
+{
+ if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
+ c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
+ return;
+
+ c->gc_after_writeback |= BCH_DO_AUTO_GC;
+}
+
+/* Rate limiting */
+static uint64_t __calc_target_rate(struct cached_dev *dc)
+{
+ struct cache_set *c = dc->disk.c;
+
+ /*
+ * This is the size of the cache, minus the amount used for
+ * flash-only devices
+ */
+ uint64_t cache_sectors = c->nbuckets * c->cache->sb.bucket_size -
+ atomic_long_read(&c->flash_dev_dirty_sectors);
+
+ /*
+ * Unfortunately there is no control of global dirty data. If the
+ * user states that they want 10% dirty data in the cache, and has,
+ * e.g., 5 backing volumes of equal size, we try and ensure each
+ * backing volume uses about 2% of the cache for dirty data.
+ */
+ uint32_t bdev_share =
+ div64_u64(bdev_nr_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
+ c->cached_dev_sectors);
+
+ uint64_t cache_dirty_target =
+ div_u64(cache_sectors * dc->writeback_percent, 100);
+
+ /* Ensure each backing dev gets at least one dirty share */
+ if (bdev_share < 1)
+ bdev_share = 1;
+
+ return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
+}
+
+static void __update_writeback_rate(struct cached_dev *dc)
+{
+ /*
+ * PI controller:
+ * Figures out the amount that should be written per second.
+ *
+ * First, the error (number of sectors that are dirty beyond our
+ * target) is calculated. The error is accumulated (numerically
+ * integrated).
+ *
+ * Then, the proportional value and integral value are scaled
+ * based on configured values. These are stored as inverses to
+ * avoid fixed point math and to make configuration easy-- e.g.
+ * the default value of 40 for writeback_rate_p_term_inverse
+ * attempts to write at a rate that would retire all the dirty
+ * blocks in 40 seconds.
+ *
+ * The writeback_rate_i_inverse value of 10000 means that 1/10000th
+ * of the error is accumulated in the integral term per second.
+ * This acts as a slow, long-term average that is not subject to
+ * variations in usage like the p term.
+ */
+ int64_t target = __calc_target_rate(dc);
+ int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
+ int64_t error = dirty - target;
+ int64_t proportional_scaled =
+ div_s64(error, dc->writeback_rate_p_term_inverse);
+ int64_t integral_scaled;
+ uint32_t new_rate;
+
+ /*
+ * We need to consider the number of dirty buckets as well
+ * when calculating the proportional_scaled, Otherwise we might
+ * have an unreasonable small writeback rate at a highly fragmented situation
+ * when very few dirty sectors consumed a lot dirty buckets, the
+ * worst case is when dirty buckets reached cutoff_writeback_sync and
+ * dirty data is still not even reached to writeback percent, so the rate
+ * still will be at the minimum value, which will cause the write
+ * stuck at a non-writeback mode.
+ */
+ struct cache_set *c = dc->disk.c;
+
+ int64_t dirty_buckets = c->nbuckets - c->avail_nbuckets;
+
+ if (dc->writeback_consider_fragment &&
+ c->gc_stats.in_use > BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW && dirty > 0) {
+ int64_t fragment =
+ div_s64((dirty_buckets * c->cache->sb.bucket_size), dirty);
+ int64_t fp_term;
+ int64_t fps;
+
+ if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID) {
+ fp_term = (int64_t)dc->writeback_rate_fp_term_low *
+ (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW);
+ } else if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH) {
+ fp_term = (int64_t)dc->writeback_rate_fp_term_mid *
+ (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID);
+ } else {
+ fp_term = (int64_t)dc->writeback_rate_fp_term_high *
+ (c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH);
+ }
+ fps = div_s64(dirty, dirty_buckets) * fp_term;
+ if (fragment > 3 && fps > proportional_scaled) {
+ /* Only overrite the p when fragment > 3 */
+ proportional_scaled = fps;
+ }
+ }
+
+ if ((error < 0 && dc->writeback_rate_integral > 0) ||
+ (error > 0 && time_before64(local_clock(),
+ dc->writeback_rate.next + NSEC_PER_MSEC))) {
+ /*
+ * Only decrease the integral term if it's more than
+ * zero. Only increase the integral term if the device
+ * is keeping up. (Don't wind up the integral
+ * ineffectively in either case).
+ *
+ * It's necessary to scale this by
+ * writeback_rate_update_seconds to keep the integral
+ * term dimensioned properly.
+ */
+ dc->writeback_rate_integral += error *
+ dc->writeback_rate_update_seconds;
+ }
+
+ integral_scaled = div_s64(dc->writeback_rate_integral,
+ dc->writeback_rate_i_term_inverse);
+
+ new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
+ dc->writeback_rate_minimum, NSEC_PER_SEC);
+
+ dc->writeback_rate_proportional = proportional_scaled;
+ dc->writeback_rate_integral_scaled = integral_scaled;
+ dc->writeback_rate_change = new_rate -
+ atomic_long_read(&dc->writeback_rate.rate);
+ atomic_long_set(&dc->writeback_rate.rate, new_rate);
+ dc->writeback_rate_target = target;
+}
+
+static bool idle_counter_exceeded(struct cache_set *c)
+{
+ int counter, dev_nr;
+
+ /*
+ * If c->idle_counter is overflow (idel for really long time),
+ * reset as 0 and not set maximum rate this time for code
+ * simplicity.
+ */
+ counter = atomic_inc_return(&c->idle_counter);
+ if (counter <= 0) {
+ atomic_set(&c->idle_counter, 0);
+ return false;
+ }
+
+ dev_nr = atomic_read(&c->attached_dev_nr);
+ if (dev_nr == 0)
+ return false;
+
+ /*
+ * c->idle_counter is increased by writeback thread of all
+ * attached backing devices, in order to represent a rough
+ * time period, counter should be divided by dev_nr.
+ * Otherwise the idle time cannot be larger with more backing
+ * device attached.
+ * The following calculation equals to checking
+ * (counter / dev_nr) < (dev_nr * 6)
+ */
+ if (counter < (dev_nr * dev_nr * 6))
+ return false;
+
+ return true;
+}
+
+/*
+ * Idle_counter is increased every time when update_writeback_rate() is
+ * called. If all backing devices attached to the same cache set have
+ * identical dc->writeback_rate_update_seconds values, it is about 6
+ * rounds of update_writeback_rate() on each backing device before
+ * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
+ * to each dc->writeback_rate.rate.
+ * In order to avoid extra locking cost for counting exact dirty cached
+ * devices number, c->attached_dev_nr is used to calculate the idle
+ * throushold. It might be bigger if not all cached device are in write-
+ * back mode, but it still works well with limited extra rounds of
+ * update_writeback_rate().
+ */
+static bool set_at_max_writeback_rate(struct cache_set *c,
+ struct cached_dev *dc)
+{
+ /* Don't sst max writeback rate if it is disabled */
+ if (!c->idle_max_writeback_rate_enabled)
+ return false;
+
+ /* Don't set max writeback rate if gc is running */
+ if (!c->gc_mark_valid)
+ return false;
+
+ if (!idle_counter_exceeded(c))
+ return false;
+
+ if (atomic_read(&c->at_max_writeback_rate) != 1)
+ atomic_set(&c->at_max_writeback_rate, 1);
+
+ atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
+
+ /* keep writeback_rate_target as existing value */
+ dc->writeback_rate_proportional = 0;
+ dc->writeback_rate_integral_scaled = 0;
+ dc->writeback_rate_change = 0;
+
+ /*
+ * In case new I/O arrives during before
+ * set_at_max_writeback_rate() returns.
+ */
+ if (!idle_counter_exceeded(c) ||
+ !atomic_read(&c->at_max_writeback_rate))
+ return false;
+
+ return true;
+}
+
+static void update_writeback_rate(struct work_struct *work)
+{
+ struct cached_dev *dc = container_of(to_delayed_work(work),
+ struct cached_dev,
+ writeback_rate_update);
+ struct cache_set *c = dc->disk.c;
+
+ /*
+ * should check BCACHE_DEV_RATE_DW_RUNNING before calling
+ * cancel_delayed_work_sync().
+ */
+ set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
+ /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
+ smp_mb__after_atomic();
+
+ /*
+ * CACHE_SET_IO_DISABLE might be set via sysfs interface,
+ * check it here too.
+ */
+ if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
+ test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
+ clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
+ /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
+ smp_mb__after_atomic();
+ return;
+ }
+
+ /*
+ * If the whole cache set is idle, set_at_max_writeback_rate()
+ * will set writeback rate to a max number. Then it is
+ * unncessary to update writeback rate for an idle cache set
+ * in maximum writeback rate number(s).
+ */
+ if (atomic_read(&dc->has_dirty) && dc->writeback_percent &&
+ !set_at_max_writeback_rate(c, dc)) {
+ do {
+ if (!down_read_trylock((&dc->writeback_lock))) {
+ dc->rate_update_retry++;
+ if (dc->rate_update_retry <=
+ BCH_WBRATE_UPDATE_MAX_SKIPS)
+ break;
+ down_read(&dc->writeback_lock);
+ dc->rate_update_retry = 0;
+ }
+ __update_writeback_rate(dc);
+ update_gc_after_writeback(c);
+ up_read(&dc->writeback_lock);
+ } while (0);
+ }
+
+
+ /*
+ * CACHE_SET_IO_DISABLE might be set via sysfs interface,
+ * check it here too.
+ */
+ if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
+ !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
+ schedule_delayed_work(&dc->writeback_rate_update,
+ dc->writeback_rate_update_seconds * HZ);
+ }
+
+ /*
+ * should check BCACHE_DEV_RATE_DW_RUNNING before calling
+ * cancel_delayed_work_sync().
+ */
+ clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
+ /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
+ smp_mb__after_atomic();
+}
+
+static unsigned int writeback_delay(struct cached_dev *dc,
+ unsigned int sectors)
+{
+ if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
+ !dc->writeback_percent)
+ return 0;
+
+ return bch_next_delay(&dc->writeback_rate, sectors);
+}
+
+struct dirty_io {
+ struct closure cl;
+ struct cached_dev *dc;
+ uint16_t sequence;
+ struct bio bio;
+};
+
+static void dirty_init(struct keybuf_key *w)
+{
+ struct dirty_io *io = w->private;
+ struct bio *bio = &io->bio;
+
+ bio_init(bio, NULL, bio->bi_inline_vecs,
+ DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS), 0);
+ if (!io->dc->writeback_percent)
+ bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
+
+ bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
+ bio->bi_private = w;
+ bch_bio_map(bio, NULL);
+}
+
+static void dirty_io_destructor(struct closure *cl)
+{
+ struct dirty_io *io = container_of(cl, struct dirty_io, cl);
+
+ kfree(io);
+}
+
+static void write_dirty_finish(struct closure *cl)
+{
+ struct dirty_io *io = container_of(cl, struct dirty_io, cl);
+ struct keybuf_key *w = io->bio.bi_private;
+ struct cached_dev *dc = io->dc;
+
+ bio_free_pages(&io->bio);
+
+ /* This is kind of a dumb way of signalling errors. */
+ if (KEY_DIRTY(&w->key)) {
+ int ret;
+ unsigned int i;
+ struct keylist keys;
+
+ bch_keylist_init(&keys);
+
+ bkey_copy(keys.top, &w->key);
+ SET_KEY_DIRTY(keys.top, false);
+ bch_keylist_push(&keys);
+
+ for (i = 0; i < KEY_PTRS(&w->key); i++)
+ atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
+
+ ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
+
+ if (ret)
+ trace_bcache_writeback_collision(&w->key);
+
+ atomic_long_inc(ret
+ ? &dc->disk.c->writeback_keys_failed
+ : &dc->disk.c->writeback_keys_done);
+ }
+
+ bch_keybuf_del(&dc->writeback_keys, w);
+ up(&dc->in_flight);
+
+ closure_return_with_destructor(cl, dirty_io_destructor);
+}
+
+static void dirty_endio(struct bio *bio)
+{
+ struct keybuf_key *w = bio->bi_private;
+ struct dirty_io *io = w->private;
+
+ if (bio->bi_status) {
+ SET_KEY_DIRTY(&w->key, false);
+ bch_count_backing_io_errors(io->dc, bio);
+ }
+
+ closure_put(&io->cl);
+}
+
+static void write_dirty(struct closure *cl)
+{
+ struct dirty_io *io = container_of(cl, struct dirty_io, cl);
+ struct keybuf_key *w = io->bio.bi_private;
+ struct cached_dev *dc = io->dc;
+
+ uint16_t next_sequence;
+
+ if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
+ /* Not our turn to write; wait for a write to complete */
+ closure_wait(&dc->writeback_ordering_wait, cl);
+
+ if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
+ /*
+ * Edge case-- it happened in indeterminate order
+ * relative to when we were added to wait list..
+ */
+ closure_wake_up(&dc->writeback_ordering_wait);
+ }
+
+ continue_at(cl, write_dirty, io->dc->writeback_write_wq);
+ return;
+ }
+
+ next_sequence = io->sequence + 1;
+
+ /*
+ * IO errors are signalled using the dirty bit on the key.
+ * If we failed to read, we should not attempt to write to the
+ * backing device. Instead, immediately go to write_dirty_finish
+ * to clean up.
+ */
+ if (KEY_DIRTY(&w->key)) {
+ dirty_init(w);
+ bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
+ io->bio.bi_iter.bi_sector = KEY_START(&w->key);
+ bio_set_dev(&io->bio, io->dc->bdev);
+ io->bio.bi_end_io = dirty_endio;
+
+ /* I/O request sent to backing device */
+ closure_bio_submit(io->dc->disk.c, &io->bio, cl);
+ }
+
+ atomic_set(&dc->writeback_sequence_next, next_sequence);
+ closure_wake_up(&dc->writeback_ordering_wait);
+
+ continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
+}
+
+static void read_dirty_endio(struct bio *bio)
+{
+ struct keybuf_key *w = bio->bi_private;
+ struct dirty_io *io = w->private;
+
+ /* is_read = 1 */
+ bch_count_io_errors(io->dc->disk.c->cache,
+ bio->bi_status, 1,
+ "reading dirty data from cache");
+
+ dirty_endio(bio);
+}
+
+static void read_dirty_submit(struct closure *cl)
+{
+ struct dirty_io *io = container_of(cl, struct dirty_io, cl);
+
+ closure_bio_submit(io->dc->disk.c, &io->bio, cl);
+
+ continue_at(cl, write_dirty, io->dc->writeback_write_wq);
+}
+
+static void read_dirty(struct cached_dev *dc)
+{
+ unsigned int delay = 0;
+ struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
+ size_t size;
+ int nk, i;
+ struct dirty_io *io;
+ struct closure cl;
+ uint16_t sequence = 0;
+
+ BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
+ atomic_set(&dc->writeback_sequence_next, sequence);
+ closure_init_stack(&cl);
+
+ /*
+ * XXX: if we error, background writeback just spins. Should use some
+ * mempools.
+ */
+
+ next = bch_keybuf_next(&dc->writeback_keys);
+
+ while (!kthread_should_stop() &&
+ !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
+ next) {
+ size = 0;
+ nk = 0;
+
+ do {
+ BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
+
+ /*
+ * Don't combine too many operations, even if they
+ * are all small.
+ */
+ if (nk >= MAX_WRITEBACKS_IN_PASS)
+ break;
+
+ /*
+ * If the current operation is very large, don't
+ * further combine operations.
+ */
+ if (size >= MAX_WRITESIZE_IN_PASS)
+ break;
+
+ /*
+ * Operations are only eligible to be combined
+ * if they are contiguous.
+ *
+ * TODO: add a heuristic willing to fire a
+ * certain amount of non-contiguous IO per pass,
+ * so that we can benefit from backing device
+ * command queueing.
+ */
+ if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
+ &START_KEY(&next->key)))
+ break;
+
+ size += KEY_SIZE(&next->key);
+ keys[nk++] = next;
+ } while ((next = bch_keybuf_next(&dc->writeback_keys)));
+
+ /* Now we have gathered a set of 1..5 keys to write back. */
+ for (i = 0; i < nk; i++) {
+ w = keys[i];
+
+ io = kzalloc(struct_size(io, bio.bi_inline_vecs,
+ DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)),
+ GFP_KERNEL);
+ if (!io)
+ goto err;
+
+ w->private = io;
+ io->dc = dc;
+ io->sequence = sequence++;
+
+ dirty_init(w);
+ bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
+ io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
+ bio_set_dev(&io->bio, dc->disk.c->cache->bdev);
+ io->bio.bi_end_io = read_dirty_endio;
+
+ if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
+ goto err_free;
+
+ trace_bcache_writeback(&w->key);
+
+ down(&dc->in_flight);
+
+ /*
+ * We've acquired a semaphore for the maximum
+ * simultaneous number of writebacks; from here
+ * everything happens asynchronously.
+ */
+ closure_call(&io->cl, read_dirty_submit, NULL, &cl);
+ }
+
+ delay = writeback_delay(dc, size);
+
+ while (!kthread_should_stop() &&
+ !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
+ delay) {
+ schedule_timeout_interruptible(delay);
+ delay = writeback_delay(dc, 0);
+ }
+ }
+
+ if (0) {
+err_free:
+ kfree(w->private);
+err:
+ bch_keybuf_del(&dc->writeback_keys, w);
+ }
+
+ /*
+ * Wait for outstanding writeback IOs to finish (and keybuf slots to be
+ * freed) before refilling again
+ */
+ closure_sync(&cl);
+}
+
+/* Scan for dirty data */
+
+void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
+ uint64_t offset, int nr_sectors)
+{
+ struct bcache_device *d = c->devices[inode];
+ unsigned int stripe_offset, sectors_dirty;
+ int stripe;
+
+ if (!d)
+ return;
+
+ stripe = offset_to_stripe(d, offset);
+ if (stripe < 0)
+ return;
+
+ if (UUID_FLASH_ONLY(&c->uuids[inode]))
+ atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
+
+ stripe_offset = offset & (d->stripe_size - 1);
+
+ while (nr_sectors) {
+ int s = min_t(unsigned int, abs(nr_sectors),
+ d->stripe_size - stripe_offset);
+
+ if (nr_sectors < 0)
+ s = -s;
+
+ if (stripe >= d->nr_stripes)
+ return;
+
+ sectors_dirty = atomic_add_return(s,
+ d->stripe_sectors_dirty + stripe);
+ if (sectors_dirty == d->stripe_size) {
+ if (!test_bit(stripe, d->full_dirty_stripes))
+ set_bit(stripe, d->full_dirty_stripes);
+ } else {
+ if (test_bit(stripe, d->full_dirty_stripes))
+ clear_bit(stripe, d->full_dirty_stripes);
+ }
+
+ nr_sectors -= s;
+ stripe_offset = 0;
+ stripe++;
+ }
+}
+
+static bool dirty_pred(struct keybuf *buf, struct bkey *k)
+{
+ struct cached_dev *dc = container_of(buf,
+ struct cached_dev,
+ writeback_keys);
+
+ BUG_ON(KEY_INODE(k) != dc->disk.id);
+
+ return KEY_DIRTY(k);
+}
+
+static void refill_full_stripes(struct cached_dev *dc)
+{
+ struct keybuf *buf = &dc->writeback_keys;
+ unsigned int start_stripe, next_stripe;
+ int stripe;
+ bool wrapped = false;
+
+ stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
+ if (stripe < 0)
+ stripe = 0;
+
+ start_stripe = stripe;
+
+ while (1) {
+ stripe = find_next_bit(dc->disk.full_dirty_stripes,
+ dc->disk.nr_stripes, stripe);
+
+ if (stripe == dc->disk.nr_stripes)
+ goto next;
+
+ next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
+ dc->disk.nr_stripes, stripe);
+
+ buf->last_scanned = KEY(dc->disk.id,
+ stripe * dc->disk.stripe_size, 0);
+
+ bch_refill_keybuf(dc->disk.c, buf,
+ &KEY(dc->disk.id,
+ next_stripe * dc->disk.stripe_size, 0),
+ dirty_pred);
+
+ if (array_freelist_empty(&buf->freelist))
+ return;
+
+ stripe = next_stripe;
+next:
+ if (wrapped && stripe > start_stripe)
+ return;
+
+ if (stripe == dc->disk.nr_stripes) {
+ stripe = 0;
+ wrapped = true;
+ }
+ }
+}
+
+/*
+ * Returns true if we scanned the entire disk
+ */
+static bool refill_dirty(struct cached_dev *dc)
+{
+ struct keybuf *buf = &dc->writeback_keys;
+ struct bkey start = KEY(dc->disk.id, 0, 0);
+ struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
+ struct bkey start_pos;
+
+ /*
+ * make sure keybuf pos is inside the range for this disk - at bringup
+ * we might not be attached yet so this disk's inode nr isn't
+ * initialized then
+ */
+ if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
+ bkey_cmp(&buf->last_scanned, &end) > 0)
+ buf->last_scanned = start;
+
+ if (dc->partial_stripes_expensive) {
+ refill_full_stripes(dc);
+ if (array_freelist_empty(&buf->freelist))
+ return false;
+ }
+
+ start_pos = buf->last_scanned;
+ bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
+
+ if (bkey_cmp(&buf->last_scanned, &end) < 0)
+ return false;
+
+ /*
+ * If we get to the end start scanning again from the beginning, and
+ * only scan up to where we initially started scanning from:
+ */
+ buf->last_scanned = start;
+ bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
+
+ return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
+}
+
+static int bch_writeback_thread(void *arg)
+{
+ struct cached_dev *dc = arg;
+ struct cache_set *c = dc->disk.c;
+ bool searched_full_index;
+
+ bch_ratelimit_reset(&dc->writeback_rate);
+
+ while (!kthread_should_stop() &&
+ !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
+ down_write(&dc->writeback_lock);
+ set_current_state(TASK_INTERRUPTIBLE);
+ /*
+ * If the bache device is detaching, skip here and continue
+ * to perform writeback. Otherwise, if no dirty data on cache,
+ * or there is dirty data on cache but writeback is disabled,
+ * the writeback thread should sleep here and wait for others
+ * to wake up it.
+ */
+ if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
+ (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
+ up_write(&dc->writeback_lock);
+
+ if (kthread_should_stop() ||
+ test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
+ set_current_state(TASK_RUNNING);
+ break;
+ }
+
+ schedule();
+ continue;
+ }
+ set_current_state(TASK_RUNNING);
+
+ searched_full_index = refill_dirty(dc);
+
+ if (searched_full_index &&
+ RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
+ atomic_set(&dc->has_dirty, 0);
+ SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
+ bch_write_bdev_super(dc, NULL);
+ /*
+ * If bcache device is detaching via sysfs interface,
+ * writeback thread should stop after there is no dirty
+ * data on cache. BCACHE_DEV_DETACHING flag is set in
+ * bch_cached_dev_detach().
+ */
+ if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
+ struct closure cl;
+
+ closure_init_stack(&cl);
+ memset(&dc->sb.set_uuid, 0, 16);
+ SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
+
+ bch_write_bdev_super(dc, &cl);
+ closure_sync(&cl);
+
+ up_write(&dc->writeback_lock);
+ break;
+ }
+
+ /*
+ * When dirty data rate is high (e.g. 50%+), there might
+ * be heavy buckets fragmentation after writeback
+ * finished, which hurts following write performance.
+ * If users really care about write performance they
+ * may set BCH_ENABLE_AUTO_GC via sysfs, then when
+ * BCH_DO_AUTO_GC is set, garbage collection thread
+ * will be wake up here. After moving gc, the shrunk
+ * btree and discarded free buckets SSD space may be
+ * helpful for following write requests.
+ */
+ if (c->gc_after_writeback ==
+ (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
+ c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
+ force_wake_up_gc(c);
+ }
+ }
+
+ up_write(&dc->writeback_lock);
+
+ read_dirty(dc);
+
+ if (searched_full_index) {
+ unsigned int delay = dc->writeback_delay * HZ;
+
+ while (delay &&
+ !kthread_should_stop() &&
+ !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
+ !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
+ delay = schedule_timeout_interruptible(delay);
+
+ bch_ratelimit_reset(&dc->writeback_rate);
+ }
+ }
+
+ if (dc->writeback_write_wq)
+ destroy_workqueue(dc->writeback_write_wq);
+
+ cached_dev_put(dc);
+ wait_for_kthread_stop();
+
+ return 0;
+}
+
+/* Init */
+#define INIT_KEYS_EACH_TIME 500000
+
+struct sectors_dirty_init {
+ struct btree_op op;
+ unsigned int inode;
+ size_t count;
+};
+
+static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
+ struct bkey *k)
+{
+ struct sectors_dirty_init *op = container_of(_op,
+ struct sectors_dirty_init, op);
+ if (KEY_INODE(k) > op->inode)
+ return MAP_DONE;
+
+ if (KEY_DIRTY(k))
+ bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
+ KEY_START(k), KEY_SIZE(k));
+
+ op->count++;
+ if (!(op->count % INIT_KEYS_EACH_TIME))
+ cond_resched();
+
+ return MAP_CONTINUE;
+}
+
+static int bch_root_node_dirty_init(struct cache_set *c,
+ struct bcache_device *d,
+ struct bkey *k)
+{
+ struct sectors_dirty_init op;
+ int ret;
+
+ bch_btree_op_init(&op.op, -1);
+ op.inode = d->id;
+ op.count = 0;
+
+ ret = bcache_btree(map_keys_recurse,
+ k,
+ c->root,
+ &op.op,
+ &KEY(op.inode, 0, 0),
+ sectors_dirty_init_fn,
+ 0);
+ if (ret < 0)
+ pr_warn("sectors dirty init failed, ret=%d!\n", ret);
+
+ /*
+ * The op may be added to cache_set's btree_cache_wait
+ * in mca_cannibalize(), must ensure it is removed from
+ * the list and release btree_cache_alloc_lock before
+ * free op memory.
+ * Otherwise, the btree_cache_wait will be damaged.
+ */
+ bch_cannibalize_unlock(c);
+ finish_wait(&c->btree_cache_wait, &(&op.op)->wait);
+
+ return ret;
+}
+
+static int bch_dirty_init_thread(void *arg)
+{
+ struct dirty_init_thrd_info *info = arg;
+ struct bch_dirty_init_state *state = info->state;
+ struct cache_set *c = state->c;
+ struct btree_iter iter;
+ struct bkey *k, *p;
+ int cur_idx, prev_idx, skip_nr;
+
+ k = p = NULL;
+ prev_idx = 0;
+
+ bch_btree_iter_init(&c->root->keys, &iter, NULL);
+ k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
+ BUG_ON(!k);
+
+ p = k;
+
+ while (k) {
+ spin_lock(&state->idx_lock);
+ cur_idx = state->key_idx;
+ state->key_idx++;
+ spin_unlock(&state->idx_lock);
+
+ skip_nr = cur_idx - prev_idx;
+
+ while (skip_nr) {
+ k = bch_btree_iter_next_filter(&iter,
+ &c->root->keys,
+ bch_ptr_bad);
+ if (k)
+ p = k;
+ else {
+ atomic_set(&state->enough, 1);
+ /* Update state->enough earlier */
+ smp_mb__after_atomic();
+ goto out;
+ }
+ skip_nr--;
+ }
+
+ if (p) {
+ if (bch_root_node_dirty_init(c, state->d, p) < 0)
+ goto out;
+ }
+
+ p = NULL;
+ prev_idx = cur_idx;
+ }
+
+out:
+ /* In order to wake up state->wait in time */
+ smp_mb__before_atomic();
+ if (atomic_dec_and_test(&state->started))
+ wake_up(&state->wait);
+
+ return 0;
+}
+
+static int bch_btre_dirty_init_thread_nr(void)
+{
+ int n = num_online_cpus()/2;
+
+ if (n == 0)
+ n = 1;
+ else if (n > BCH_DIRTY_INIT_THRD_MAX)
+ n = BCH_DIRTY_INIT_THRD_MAX;
+
+ return n;
+}
+
+void bch_sectors_dirty_init(struct bcache_device *d)
+{
+ int i;
+ struct btree *b = NULL;
+ struct bkey *k = NULL;
+ struct btree_iter iter;
+ struct sectors_dirty_init op;
+ struct cache_set *c = d->c;
+ struct bch_dirty_init_state state;
+
+retry_lock:
+ b = c->root;
+ rw_lock(0, b, b->level);
+ if (b != c->root) {
+ rw_unlock(0, b);
+ goto retry_lock;
+ }
+
+ /* Just count root keys if no leaf node */
+ if (c->root->level == 0) {
+ bch_btree_op_init(&op.op, -1);
+ op.inode = d->id;
+ op.count = 0;
+
+ for_each_key_filter(&c->root->keys,
+ k, &iter, bch_ptr_invalid) {
+ if (KEY_INODE(k) != op.inode)
+ continue;
+ sectors_dirty_init_fn(&op.op, c->root, k);
+ }
+
+ rw_unlock(0, b);
+ return;
+ }
+
+ memset(&state, 0, sizeof(struct bch_dirty_init_state));
+ state.c = c;
+ state.d = d;
+ state.total_threads = bch_btre_dirty_init_thread_nr();
+ state.key_idx = 0;
+ spin_lock_init(&state.idx_lock);
+ atomic_set(&state.started, 0);
+ atomic_set(&state.enough, 0);
+ init_waitqueue_head(&state.wait);
+
+ for (i = 0; i < state.total_threads; i++) {
+ /* Fetch latest state.enough earlier */
+ smp_mb__before_atomic();
+ if (atomic_read(&state.enough))
+ break;
+
+ atomic_inc(&state.started);
+ state.infos[i].state = &state;
+ state.infos[i].thread =
+ kthread_run(bch_dirty_init_thread, &state.infos[i],
+ "bch_dirtcnt[%d]", i);
+ if (IS_ERR(state.infos[i].thread)) {
+ pr_err("fails to run thread bch_dirty_init[%d]\n", i);
+ atomic_dec(&state.started);
+ for (--i; i >= 0; i--)
+ kthread_stop(state.infos[i].thread);
+ goto out;
+ }
+ }
+
+out:
+ /* Must wait for all threads to stop. */
+ wait_event(state.wait, atomic_read(&state.started) == 0);
+ rw_unlock(0, b);
+}
+
+void bch_cached_dev_writeback_init(struct cached_dev *dc)
+{
+ sema_init(&dc->in_flight, 64);
+ init_rwsem(&dc->writeback_lock);
+ bch_keybuf_init(&dc->writeback_keys);
+
+ dc->writeback_metadata = true;
+ dc->writeback_running = false;
+ dc->writeback_consider_fragment = true;
+ dc->writeback_percent = 10;
+ dc->writeback_delay = 30;
+ atomic_long_set(&dc->writeback_rate.rate, 1024);
+ dc->writeback_rate_minimum = 8;
+
+ dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
+ dc->writeback_rate_p_term_inverse = 40;
+ dc->writeback_rate_fp_term_low = 1;
+ dc->writeback_rate_fp_term_mid = 10;
+ dc->writeback_rate_fp_term_high = 1000;
+ dc->writeback_rate_i_term_inverse = 10000;
+
+ /* For dc->writeback_lock contention in update_writeback_rate() */
+ dc->rate_update_retry = 0;
+
+ WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
+ INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
+}
+
+int bch_cached_dev_writeback_start(struct cached_dev *dc)
+{
+ dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
+ WQ_MEM_RECLAIM, 0);
+ if (!dc->writeback_write_wq)
+ return -ENOMEM;
+
+ cached_dev_get(dc);
+ dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
+ "bcache_writeback");
+ if (IS_ERR(dc->writeback_thread)) {
+ cached_dev_put(dc);
+ destroy_workqueue(dc->writeback_write_wq);
+ return PTR_ERR(dc->writeback_thread);
+ }
+ dc->writeback_running = true;
+
+ WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
+ schedule_delayed_work(&dc->writeback_rate_update,
+ dc->writeback_rate_update_seconds * HZ);
+
+ bch_writeback_queue(dc);
+
+ return 0;
+}
diff --git a/drivers/md/bcache/writeback.h b/drivers/md/bcache/writeback.h
new file mode 100644
index 000000000..31df71695
--- /dev/null
+++ b/drivers/md/bcache/writeback.h
@@ -0,0 +1,155 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _BCACHE_WRITEBACK_H
+#define _BCACHE_WRITEBACK_H
+
+#define CUTOFF_WRITEBACK 40
+#define CUTOFF_WRITEBACK_SYNC 70
+
+#define CUTOFF_WRITEBACK_MAX 70
+#define CUTOFF_WRITEBACK_SYNC_MAX 90
+
+#define MAX_WRITEBACKS_IN_PASS 5
+#define MAX_WRITESIZE_IN_PASS 5000 /* *512b */
+
+#define WRITEBACK_RATE_UPDATE_SECS_MAX 60
+#define WRITEBACK_RATE_UPDATE_SECS_DEFAULT 5
+
+#define BCH_AUTO_GC_DIRTY_THRESHOLD 50
+
+#define BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW 50
+#define BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID 57
+#define BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH 64
+
+#define BCH_DIRTY_INIT_THRD_MAX 12
+/*
+ * 14 (16384ths) is chosen here as something that each backing device
+ * should be a reasonable fraction of the share, and not to blow up
+ * until individual backing devices are a petabyte.
+ */
+#define WRITEBACK_SHARE_SHIFT 14
+
+struct bch_dirty_init_state;
+struct dirty_init_thrd_info {
+ struct bch_dirty_init_state *state;
+ struct task_struct *thread;
+};
+
+struct bch_dirty_init_state {
+ struct cache_set *c;
+ struct bcache_device *d;
+ int total_threads;
+ int key_idx;
+ spinlock_t idx_lock;
+ atomic_t started;
+ atomic_t enough;
+ wait_queue_head_t wait;
+ struct dirty_init_thrd_info infos[BCH_DIRTY_INIT_THRD_MAX];
+};
+
+static inline uint64_t bcache_dev_sectors_dirty(struct bcache_device *d)
+{
+ uint64_t i, ret = 0;
+
+ for (i = 0; i < d->nr_stripes; i++)
+ ret += atomic_read(d->stripe_sectors_dirty + i);
+
+ return ret;
+}
+
+static inline int offset_to_stripe(struct bcache_device *d,
+ uint64_t offset)
+{
+ do_div(offset, d->stripe_size);
+
+ /* d->nr_stripes is in range [1, INT_MAX] */
+ if (unlikely(offset >= d->nr_stripes)) {
+ pr_err("Invalid stripe %llu (>= nr_stripes %d).\n",
+ offset, d->nr_stripes);
+ return -EINVAL;
+ }
+
+ /*
+ * Here offset is definitly smaller than INT_MAX,
+ * return it as int will never overflow.
+ */
+ return offset;
+}
+
+static inline bool bcache_dev_stripe_dirty(struct cached_dev *dc,
+ uint64_t offset,
+ unsigned int nr_sectors)
+{
+ int stripe = offset_to_stripe(&dc->disk, offset);
+
+ if (stripe < 0)
+ return false;
+
+ while (1) {
+ if (atomic_read(dc->disk.stripe_sectors_dirty + stripe))
+ return true;
+
+ if (nr_sectors <= dc->disk.stripe_size)
+ return false;
+
+ nr_sectors -= dc->disk.stripe_size;
+ stripe++;
+ }
+}
+
+extern unsigned int bch_cutoff_writeback;
+extern unsigned int bch_cutoff_writeback_sync;
+
+static inline bool should_writeback(struct cached_dev *dc, struct bio *bio,
+ unsigned int cache_mode, bool would_skip)
+{
+ unsigned int in_use = dc->disk.c->gc_stats.in_use;
+
+ if (cache_mode != CACHE_MODE_WRITEBACK ||
+ test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
+ in_use > bch_cutoff_writeback_sync)
+ return false;
+
+ if (bio_op(bio) == REQ_OP_DISCARD)
+ return false;
+
+ if (dc->partial_stripes_expensive &&
+ bcache_dev_stripe_dirty(dc, bio->bi_iter.bi_sector,
+ bio_sectors(bio)))
+ return true;
+
+ if (would_skip)
+ return false;
+
+ return (op_is_sync(bio->bi_opf) ||
+ bio->bi_opf & (REQ_META|REQ_PRIO) ||
+ in_use <= bch_cutoff_writeback);
+}
+
+static inline void bch_writeback_queue(struct cached_dev *dc)
+{
+ if (!IS_ERR_OR_NULL(dc->writeback_thread))
+ wake_up_process(dc->writeback_thread);
+}
+
+static inline void bch_writeback_add(struct cached_dev *dc)
+{
+ if (!atomic_read(&dc->has_dirty) &&
+ !atomic_xchg(&dc->has_dirty, 1)) {
+ if (BDEV_STATE(&dc->sb) != BDEV_STATE_DIRTY) {
+ SET_BDEV_STATE(&dc->sb, BDEV_STATE_DIRTY);
+ /* XXX: should do this synchronously */
+ bch_write_bdev_super(dc, NULL);
+ }
+
+ bch_writeback_queue(dc);
+ }
+}
+
+void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
+ uint64_t offset, int nr_sectors);
+
+void bch_sectors_dirty_init(struct bcache_device *d);
+void bch_cached_dev_writeback_init(struct cached_dev *dc);
+int bch_cached_dev_writeback_start(struct cached_dev *dc);
+
+#endif
diff --git a/drivers/md/dm-audit.c b/drivers/md/dm-audit.c
new file mode 100644
index 000000000..3049dfe67
--- /dev/null
+++ b/drivers/md/dm-audit.c
@@ -0,0 +1,84 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Creating audit records for mapped devices.
+ *
+ * Copyright (C) 2021 Fraunhofer AISEC. All rights reserved.
+ *
+ * Authors: Michael Weiß <michael.weiss@aisec.fraunhofer.de>
+ */
+
+#include <linux/audit.h>
+#include <linux/module.h>
+#include <linux/device-mapper.h>
+#include <linux/bio.h>
+#include <linux/blkdev.h>
+
+#include "dm-audit.h"
+#include "dm-core.h"
+
+static struct audit_buffer *dm_audit_log_start(int audit_type,
+ const char *dm_msg_prefix,
+ const char *op)
+{
+ struct audit_buffer *ab;
+
+ if (audit_enabled == AUDIT_OFF)
+ return NULL;
+
+ ab = audit_log_start(audit_context(), GFP_KERNEL, audit_type);
+ if (unlikely(!ab))
+ return NULL;
+
+ audit_log_format(ab, "module=%s op=%s", dm_msg_prefix, op);
+ return ab;
+}
+
+void dm_audit_log_ti(int audit_type, const char *dm_msg_prefix, const char *op,
+ struct dm_target *ti, int result)
+{
+ struct audit_buffer *ab = NULL;
+ struct mapped_device *md = dm_table_get_md(ti->table);
+ int dev_major = dm_disk(md)->major;
+ int dev_minor = dm_disk(md)->first_minor;
+
+ switch (audit_type) {
+ case AUDIT_DM_CTRL:
+ ab = dm_audit_log_start(audit_type, dm_msg_prefix, op);
+ if (unlikely(!ab))
+ return;
+ audit_log_task_info(ab);
+ audit_log_format(ab, " dev=%d:%d error_msg='%s'", dev_major,
+ dev_minor, !result ? ti->error : "success");
+ break;
+ case AUDIT_DM_EVENT:
+ ab = dm_audit_log_start(audit_type, dm_msg_prefix, op);
+ if (unlikely(!ab))
+ return;
+ audit_log_format(ab, " dev=%d:%d sector=?", dev_major,
+ dev_minor);
+ break;
+ default: /* unintended use */
+ return;
+ }
+
+ audit_log_format(ab, " res=%d", result);
+ audit_log_end(ab);
+}
+EXPORT_SYMBOL_GPL(dm_audit_log_ti);
+
+void dm_audit_log_bio(const char *dm_msg_prefix, const char *op,
+ struct bio *bio, sector_t sector, int result)
+{
+ struct audit_buffer *ab;
+ int dev_major = MAJOR(bio->bi_bdev->bd_dev);
+ int dev_minor = MINOR(bio->bi_bdev->bd_dev);
+
+ ab = dm_audit_log_start(AUDIT_DM_EVENT, dm_msg_prefix, op);
+ if (unlikely(!ab))
+ return;
+
+ audit_log_format(ab, " dev=%d:%d sector=%llu res=%d",
+ dev_major, dev_minor, sector, result);
+ audit_log_end(ab);
+}
+EXPORT_SYMBOL_GPL(dm_audit_log_bio);
diff --git a/drivers/md/dm-audit.h b/drivers/md/dm-audit.h
new file mode 100644
index 000000000..2385f2b65
--- /dev/null
+++ b/drivers/md/dm-audit.h
@@ -0,0 +1,66 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Creating audit records for mapped devices.
+ *
+ * Copyright (C) 2021 Fraunhofer AISEC. All rights reserved.
+ *
+ * Authors: Michael Weiß <michael.weiss@aisec.fraunhofer.de>
+ */
+
+#ifndef DM_AUDIT_H
+#define DM_AUDIT_H
+
+#include <linux/device-mapper.h>
+#include <linux/audit.h>
+
+#ifdef CONFIG_DM_AUDIT
+void dm_audit_log_bio(const char *dm_msg_prefix, const char *op,
+ struct bio *bio, sector_t sector, int result);
+
+/*
+ * dm_audit_log_ti() is not intended to be used directly in dm modules,
+ * the wrapper functions below should be called by dm modules instead.
+ */
+void dm_audit_log_ti(int audit_type, const char *dm_msg_prefix, const char *op,
+ struct dm_target *ti, int result);
+
+static inline void dm_audit_log_ctr(const char *dm_msg_prefix,
+ struct dm_target *ti, int result)
+{
+ dm_audit_log_ti(AUDIT_DM_CTRL, dm_msg_prefix, "ctr", ti, result);
+}
+
+static inline void dm_audit_log_dtr(const char *dm_msg_prefix,
+ struct dm_target *ti, int result)
+{
+ dm_audit_log_ti(AUDIT_DM_CTRL, dm_msg_prefix, "dtr", ti, result);
+}
+
+static inline void dm_audit_log_target(const char *dm_msg_prefix, const char *op,
+ struct dm_target *ti, int result)
+{
+ dm_audit_log_ti(AUDIT_DM_EVENT, dm_msg_prefix, op, ti, result);
+}
+#else
+static inline void dm_audit_log_bio(const char *dm_msg_prefix, const char *op,
+ struct bio *bio, sector_t sector,
+ int result)
+{
+}
+static inline void dm_audit_log_target(const char *dm_msg_prefix,
+ const char *op, struct dm_target *ti,
+ int result)
+{
+}
+static inline void dm_audit_log_ctr(const char *dm_msg_prefix,
+ struct dm_target *ti, int result)
+{
+}
+
+static inline void dm_audit_log_dtr(const char *dm_msg_prefix,
+ struct dm_target *ti, int result)
+{
+}
+#endif
+
+#endif
diff --git a/drivers/md/dm-bio-prison-v1.c b/drivers/md/dm-bio-prison-v1.c
new file mode 100644
index 000000000..138067abe
--- /dev/null
+++ b/drivers/md/dm-bio-prison-v1.c
@@ -0,0 +1,458 @@
+/*
+ * Copyright (C) 2012 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm.h"
+#include "dm-bio-prison-v1.h"
+#include "dm-bio-prison-v2.h"
+
+#include <linux/spinlock.h>
+#include <linux/mempool.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+
+/*----------------------------------------------------------------*/
+
+#define MIN_CELLS 1024
+
+struct dm_bio_prison {
+ spinlock_t lock;
+ struct rb_root cells;
+ mempool_t cell_pool;
+};
+
+static struct kmem_cache *_cell_cache;
+
+/*----------------------------------------------------------------*/
+
+/*
+ * @nr_cells should be the number of cells you want in use _concurrently_.
+ * Don't confuse it with the number of distinct keys.
+ */
+struct dm_bio_prison *dm_bio_prison_create(void)
+{
+ struct dm_bio_prison *prison = kzalloc(sizeof(*prison), GFP_KERNEL);
+ int ret;
+
+ if (!prison)
+ return NULL;
+
+ spin_lock_init(&prison->lock);
+
+ ret = mempool_init_slab_pool(&prison->cell_pool, MIN_CELLS, _cell_cache);
+ if (ret) {
+ kfree(prison);
+ return NULL;
+ }
+
+ prison->cells = RB_ROOT;
+
+ return prison;
+}
+EXPORT_SYMBOL_GPL(dm_bio_prison_create);
+
+void dm_bio_prison_destroy(struct dm_bio_prison *prison)
+{
+ mempool_exit(&prison->cell_pool);
+ kfree(prison);
+}
+EXPORT_SYMBOL_GPL(dm_bio_prison_destroy);
+
+struct dm_bio_prison_cell *dm_bio_prison_alloc_cell(struct dm_bio_prison *prison, gfp_t gfp)
+{
+ return mempool_alloc(&prison->cell_pool, gfp);
+}
+EXPORT_SYMBOL_GPL(dm_bio_prison_alloc_cell);
+
+void dm_bio_prison_free_cell(struct dm_bio_prison *prison,
+ struct dm_bio_prison_cell *cell)
+{
+ mempool_free(cell, &prison->cell_pool);
+}
+EXPORT_SYMBOL_GPL(dm_bio_prison_free_cell);
+
+static void __setup_new_cell(struct dm_cell_key *key,
+ struct bio *holder,
+ struct dm_bio_prison_cell *cell)
+{
+ memcpy(&cell->key, key, sizeof(cell->key));
+ cell->holder = holder;
+ bio_list_init(&cell->bios);
+}
+
+static int cmp_keys(struct dm_cell_key *lhs,
+ struct dm_cell_key *rhs)
+{
+ if (lhs->virtual < rhs->virtual)
+ return -1;
+
+ if (lhs->virtual > rhs->virtual)
+ return 1;
+
+ if (lhs->dev < rhs->dev)
+ return -1;
+
+ if (lhs->dev > rhs->dev)
+ return 1;
+
+ if (lhs->block_end <= rhs->block_begin)
+ return -1;
+
+ if (lhs->block_begin >= rhs->block_end)
+ return 1;
+
+ return 0;
+}
+
+static int __bio_detain(struct dm_bio_prison *prison,
+ struct dm_cell_key *key,
+ struct bio *inmate,
+ struct dm_bio_prison_cell *cell_prealloc,
+ struct dm_bio_prison_cell **cell_result)
+{
+ int r;
+ struct rb_node **new = &prison->cells.rb_node, *parent = NULL;
+
+ while (*new) {
+ struct dm_bio_prison_cell *cell =
+ rb_entry(*new, struct dm_bio_prison_cell, node);
+
+ r = cmp_keys(key, &cell->key);
+
+ parent = *new;
+ if (r < 0)
+ new = &((*new)->rb_left);
+ else if (r > 0)
+ new = &((*new)->rb_right);
+ else {
+ if (inmate)
+ bio_list_add(&cell->bios, inmate);
+ *cell_result = cell;
+ return 1;
+ }
+ }
+
+ __setup_new_cell(key, inmate, cell_prealloc);
+ *cell_result = cell_prealloc;
+
+ rb_link_node(&cell_prealloc->node, parent, new);
+ rb_insert_color(&cell_prealloc->node, &prison->cells);
+
+ return 0;
+}
+
+static int bio_detain(struct dm_bio_prison *prison,
+ struct dm_cell_key *key,
+ struct bio *inmate,
+ struct dm_bio_prison_cell *cell_prealloc,
+ struct dm_bio_prison_cell **cell_result)
+{
+ int r;
+
+ spin_lock_irq(&prison->lock);
+ r = __bio_detain(prison, key, inmate, cell_prealloc, cell_result);
+ spin_unlock_irq(&prison->lock);
+
+ return r;
+}
+
+int dm_bio_detain(struct dm_bio_prison *prison,
+ struct dm_cell_key *key,
+ struct bio *inmate,
+ struct dm_bio_prison_cell *cell_prealloc,
+ struct dm_bio_prison_cell **cell_result)
+{
+ return bio_detain(prison, key, inmate, cell_prealloc, cell_result);
+}
+EXPORT_SYMBOL_GPL(dm_bio_detain);
+
+int dm_get_cell(struct dm_bio_prison *prison,
+ struct dm_cell_key *key,
+ struct dm_bio_prison_cell *cell_prealloc,
+ struct dm_bio_prison_cell **cell_result)
+{
+ return bio_detain(prison, key, NULL, cell_prealloc, cell_result);
+}
+EXPORT_SYMBOL_GPL(dm_get_cell);
+
+/*
+ * @inmates must have been initialised prior to this call
+ */
+static void __cell_release(struct dm_bio_prison *prison,
+ struct dm_bio_prison_cell *cell,
+ struct bio_list *inmates)
+{
+ rb_erase(&cell->node, &prison->cells);
+
+ if (inmates) {
+ if (cell->holder)
+ bio_list_add(inmates, cell->holder);
+ bio_list_merge(inmates, &cell->bios);
+ }
+}
+
+void dm_cell_release(struct dm_bio_prison *prison,
+ struct dm_bio_prison_cell *cell,
+ struct bio_list *bios)
+{
+ spin_lock_irq(&prison->lock);
+ __cell_release(prison, cell, bios);
+ spin_unlock_irq(&prison->lock);
+}
+EXPORT_SYMBOL_GPL(dm_cell_release);
+
+/*
+ * Sometimes we don't want the holder, just the additional bios.
+ */
+static void __cell_release_no_holder(struct dm_bio_prison *prison,
+ struct dm_bio_prison_cell *cell,
+ struct bio_list *inmates)
+{
+ rb_erase(&cell->node, &prison->cells);
+ bio_list_merge(inmates, &cell->bios);
+}
+
+void dm_cell_release_no_holder(struct dm_bio_prison *prison,
+ struct dm_bio_prison_cell *cell,
+ struct bio_list *inmates)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&prison->lock, flags);
+ __cell_release_no_holder(prison, cell, inmates);
+ spin_unlock_irqrestore(&prison->lock, flags);
+}
+EXPORT_SYMBOL_GPL(dm_cell_release_no_holder);
+
+void dm_cell_error(struct dm_bio_prison *prison,
+ struct dm_bio_prison_cell *cell, blk_status_t error)
+{
+ struct bio_list bios;
+ struct bio *bio;
+
+ bio_list_init(&bios);
+ dm_cell_release(prison, cell, &bios);
+
+ while ((bio = bio_list_pop(&bios))) {
+ bio->bi_status = error;
+ bio_endio(bio);
+ }
+}
+EXPORT_SYMBOL_GPL(dm_cell_error);
+
+void dm_cell_visit_release(struct dm_bio_prison *prison,
+ void (*visit_fn)(void *, struct dm_bio_prison_cell *),
+ void *context,
+ struct dm_bio_prison_cell *cell)
+{
+ spin_lock_irq(&prison->lock);
+ visit_fn(context, cell);
+ rb_erase(&cell->node, &prison->cells);
+ spin_unlock_irq(&prison->lock);
+}
+EXPORT_SYMBOL_GPL(dm_cell_visit_release);
+
+static int __promote_or_release(struct dm_bio_prison *prison,
+ struct dm_bio_prison_cell *cell)
+{
+ if (bio_list_empty(&cell->bios)) {
+ rb_erase(&cell->node, &prison->cells);
+ return 1;
+ }
+
+ cell->holder = bio_list_pop(&cell->bios);
+ return 0;
+}
+
+int dm_cell_promote_or_release(struct dm_bio_prison *prison,
+ struct dm_bio_prison_cell *cell)
+{
+ int r;
+
+ spin_lock_irq(&prison->lock);
+ r = __promote_or_release(prison, cell);
+ spin_unlock_irq(&prison->lock);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_cell_promote_or_release);
+
+/*----------------------------------------------------------------*/
+
+#define DEFERRED_SET_SIZE 64
+
+struct dm_deferred_entry {
+ struct dm_deferred_set *ds;
+ unsigned int count;
+ struct list_head work_items;
+};
+
+struct dm_deferred_set {
+ spinlock_t lock;
+ unsigned int current_entry;
+ unsigned int sweeper;
+ struct dm_deferred_entry entries[DEFERRED_SET_SIZE];
+};
+
+struct dm_deferred_set *dm_deferred_set_create(void)
+{
+ int i;
+ struct dm_deferred_set *ds;
+
+ ds = kmalloc(sizeof(*ds), GFP_KERNEL);
+ if (!ds)
+ return NULL;
+
+ spin_lock_init(&ds->lock);
+ ds->current_entry = 0;
+ ds->sweeper = 0;
+ for (i = 0; i < DEFERRED_SET_SIZE; i++) {
+ ds->entries[i].ds = ds;
+ ds->entries[i].count = 0;
+ INIT_LIST_HEAD(&ds->entries[i].work_items);
+ }
+
+ return ds;
+}
+EXPORT_SYMBOL_GPL(dm_deferred_set_create);
+
+void dm_deferred_set_destroy(struct dm_deferred_set *ds)
+{
+ kfree(ds);
+}
+EXPORT_SYMBOL_GPL(dm_deferred_set_destroy);
+
+struct dm_deferred_entry *dm_deferred_entry_inc(struct dm_deferred_set *ds)
+{
+ unsigned long flags;
+ struct dm_deferred_entry *entry;
+
+ spin_lock_irqsave(&ds->lock, flags);
+ entry = ds->entries + ds->current_entry;
+ entry->count++;
+ spin_unlock_irqrestore(&ds->lock, flags);
+
+ return entry;
+}
+EXPORT_SYMBOL_GPL(dm_deferred_entry_inc);
+
+static unsigned int ds_next(unsigned int index)
+{
+ return (index + 1) % DEFERRED_SET_SIZE;
+}
+
+static void __sweep(struct dm_deferred_set *ds, struct list_head *head)
+{
+ while ((ds->sweeper != ds->current_entry) &&
+ !ds->entries[ds->sweeper].count) {
+ list_splice_init(&ds->entries[ds->sweeper].work_items, head);
+ ds->sweeper = ds_next(ds->sweeper);
+ }
+
+ if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
+ list_splice_init(&ds->entries[ds->sweeper].work_items, head);
+}
+
+void dm_deferred_entry_dec(struct dm_deferred_entry *entry, struct list_head *head)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&entry->ds->lock, flags);
+ BUG_ON(!entry->count);
+ --entry->count;
+ __sweep(entry->ds, head);
+ spin_unlock_irqrestore(&entry->ds->lock, flags);
+}
+EXPORT_SYMBOL_GPL(dm_deferred_entry_dec);
+
+/*
+ * Returns 1 if deferred or 0 if no pending items to delay job.
+ */
+int dm_deferred_set_add_work(struct dm_deferred_set *ds, struct list_head *work)
+{
+ int r = 1;
+ unsigned int next_entry;
+
+ spin_lock_irq(&ds->lock);
+ if ((ds->sweeper == ds->current_entry) &&
+ !ds->entries[ds->current_entry].count)
+ r = 0;
+ else {
+ list_add(work, &ds->entries[ds->current_entry].work_items);
+ next_entry = ds_next(ds->current_entry);
+ if (!ds->entries[next_entry].count)
+ ds->current_entry = next_entry;
+ }
+ spin_unlock_irq(&ds->lock);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_deferred_set_add_work);
+
+/*----------------------------------------------------------------*/
+
+static int __init dm_bio_prison_init_v1(void)
+{
+ _cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
+ if (!_cell_cache)
+ return -ENOMEM;
+
+ return 0;
+}
+
+static void dm_bio_prison_exit_v1(void)
+{
+ kmem_cache_destroy(_cell_cache);
+ _cell_cache = NULL;
+}
+
+static int (*_inits[])(void) __initdata = {
+ dm_bio_prison_init_v1,
+ dm_bio_prison_init_v2,
+};
+
+static void (*_exits[])(void) = {
+ dm_bio_prison_exit_v1,
+ dm_bio_prison_exit_v2,
+};
+
+static int __init dm_bio_prison_init(void)
+{
+ const int count = ARRAY_SIZE(_inits);
+
+ int r, i;
+
+ for (i = 0; i < count; i++) {
+ r = _inits[i]();
+ if (r)
+ goto bad;
+ }
+
+ return 0;
+
+ bad:
+ while (i--)
+ _exits[i]();
+
+ return r;
+}
+
+static void __exit dm_bio_prison_exit(void)
+{
+ int i = ARRAY_SIZE(_exits);
+
+ while (i--)
+ _exits[i]();
+}
+
+/*
+ * module hooks
+ */
+module_init(dm_bio_prison_init);
+module_exit(dm_bio_prison_exit);
+
+MODULE_DESCRIPTION(DM_NAME " bio prison");
+MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-bio-prison-v1.h b/drivers/md/dm-bio-prison-v1.h
new file mode 100644
index 000000000..cec52ac5e
--- /dev/null
+++ b/drivers/md/dm-bio-prison-v1.h
@@ -0,0 +1,138 @@
+/*
+ * Copyright (C) 2011-2017 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_BIO_PRISON_H
+#define DM_BIO_PRISON_H
+
+#include "persistent-data/dm-block-manager.h" /* FIXME: for dm_block_t */
+#include "dm-thin-metadata.h" /* FIXME: for dm_thin_id */
+
+#include <linux/bio.h>
+#include <linux/rbtree.h>
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Sometimes we can't deal with a bio straight away. We put them in prison
+ * where they can't cause any mischief. Bios are put in a cell identified
+ * by a key, multiple bios can be in the same cell. When the cell is
+ * subsequently unlocked the bios become available.
+ */
+struct dm_bio_prison;
+
+/*
+ * Keys define a range of blocks within either a virtual or physical
+ * device.
+ */
+struct dm_cell_key {
+ int virtual;
+ dm_thin_id dev;
+ dm_block_t block_begin, block_end;
+};
+
+/*
+ * Treat this as opaque, only in header so callers can manage allocation
+ * themselves.
+ */
+struct dm_bio_prison_cell {
+ struct list_head user_list; /* for client use */
+ struct rb_node node;
+
+ struct dm_cell_key key;
+ struct bio *holder;
+ struct bio_list bios;
+};
+
+struct dm_bio_prison *dm_bio_prison_create(void);
+void dm_bio_prison_destroy(struct dm_bio_prison *prison);
+
+/*
+ * These two functions just wrap a mempool. This is a transitory step:
+ * Eventually all bio prison clients should manage their own cell memory.
+ *
+ * Like mempool_alloc(), dm_bio_prison_alloc_cell() can only fail if called
+ * in interrupt context or passed GFP_NOWAIT.
+ */
+struct dm_bio_prison_cell *dm_bio_prison_alloc_cell(struct dm_bio_prison *prison,
+ gfp_t gfp);
+void dm_bio_prison_free_cell(struct dm_bio_prison *prison,
+ struct dm_bio_prison_cell *cell);
+
+/*
+ * Creates, or retrieves a cell that overlaps the given key.
+ *
+ * Returns 1 if pre-existing cell returned, zero if new cell created using
+ * @cell_prealloc.
+ */
+int dm_get_cell(struct dm_bio_prison *prison,
+ struct dm_cell_key *key,
+ struct dm_bio_prison_cell *cell_prealloc,
+ struct dm_bio_prison_cell **cell_result);
+
+/*
+ * An atomic op that combines retrieving or creating a cell, and adding a
+ * bio to it.
+ *
+ * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
+ */
+int dm_bio_detain(struct dm_bio_prison *prison,
+ struct dm_cell_key *key,
+ struct bio *inmate,
+ struct dm_bio_prison_cell *cell_prealloc,
+ struct dm_bio_prison_cell **cell_result);
+
+void dm_cell_release(struct dm_bio_prison *prison,
+ struct dm_bio_prison_cell *cell,
+ struct bio_list *bios);
+void dm_cell_release_no_holder(struct dm_bio_prison *prison,
+ struct dm_bio_prison_cell *cell,
+ struct bio_list *inmates);
+void dm_cell_error(struct dm_bio_prison *prison,
+ struct dm_bio_prison_cell *cell, blk_status_t error);
+
+/*
+ * Visits the cell and then releases. Guarantees no new inmates are
+ * inserted between the visit and release.
+ */
+void dm_cell_visit_release(struct dm_bio_prison *prison,
+ void (*visit_fn)(void *, struct dm_bio_prison_cell *),
+ void *context, struct dm_bio_prison_cell *cell);
+
+/*
+ * Rather than always releasing the prisoners in a cell, the client may
+ * want to promote one of them to be the new holder. There is a race here
+ * though between releasing an empty cell, and other threads adding new
+ * inmates. So this function makes the decision with its lock held.
+ *
+ * This function can have two outcomes:
+ * i) An inmate is promoted to be the holder of the cell (return value of 0).
+ * ii) The cell has no inmate for promotion and is released (return value of 1).
+ */
+int dm_cell_promote_or_release(struct dm_bio_prison *prison,
+ struct dm_bio_prison_cell *cell);
+
+/*----------------------------------------------------------------*/
+
+/*
+ * We use the deferred set to keep track of pending reads to shared blocks.
+ * We do this to ensure the new mapping caused by a write isn't performed
+ * until these prior reads have completed. Otherwise the insertion of the
+ * new mapping could free the old block that the read bios are mapped to.
+ */
+
+struct dm_deferred_set;
+struct dm_deferred_entry;
+
+struct dm_deferred_set *dm_deferred_set_create(void);
+void dm_deferred_set_destroy(struct dm_deferred_set *ds);
+
+struct dm_deferred_entry *dm_deferred_entry_inc(struct dm_deferred_set *ds);
+void dm_deferred_entry_dec(struct dm_deferred_entry *entry, struct list_head *head);
+int dm_deferred_set_add_work(struct dm_deferred_set *ds, struct list_head *work);
+
+/*----------------------------------------------------------------*/
+
+#endif
diff --git a/drivers/md/dm-bio-prison-v2.c b/drivers/md/dm-bio-prison-v2.c
new file mode 100644
index 000000000..0cc0d13c4
--- /dev/null
+++ b/drivers/md/dm-bio-prison-v2.c
@@ -0,0 +1,364 @@
+/*
+ * Copyright (C) 2012-2017 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm.h"
+#include "dm-bio-prison-v2.h"
+
+#include <linux/spinlock.h>
+#include <linux/mempool.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/rwsem.h>
+
+/*----------------------------------------------------------------*/
+
+#define MIN_CELLS 1024
+
+struct dm_bio_prison_v2 {
+ struct workqueue_struct *wq;
+
+ spinlock_t lock;
+ struct rb_root cells;
+ mempool_t cell_pool;
+};
+
+static struct kmem_cache *_cell_cache;
+
+/*----------------------------------------------------------------*/
+
+/*
+ * @nr_cells should be the number of cells you want in use _concurrently_.
+ * Don't confuse it with the number of distinct keys.
+ */
+struct dm_bio_prison_v2 *dm_bio_prison_create_v2(struct workqueue_struct *wq)
+{
+ struct dm_bio_prison_v2 *prison = kzalloc(sizeof(*prison), GFP_KERNEL);
+ int ret;
+
+ if (!prison)
+ return NULL;
+
+ prison->wq = wq;
+ spin_lock_init(&prison->lock);
+
+ ret = mempool_init_slab_pool(&prison->cell_pool, MIN_CELLS, _cell_cache);
+ if (ret) {
+ kfree(prison);
+ return NULL;
+ }
+
+ prison->cells = RB_ROOT;
+
+ return prison;
+}
+EXPORT_SYMBOL_GPL(dm_bio_prison_create_v2);
+
+void dm_bio_prison_destroy_v2(struct dm_bio_prison_v2 *prison)
+{
+ mempool_exit(&prison->cell_pool);
+ kfree(prison);
+}
+EXPORT_SYMBOL_GPL(dm_bio_prison_destroy_v2);
+
+struct dm_bio_prison_cell_v2 *dm_bio_prison_alloc_cell_v2(struct dm_bio_prison_v2 *prison, gfp_t gfp)
+{
+ return mempool_alloc(&prison->cell_pool, gfp);
+}
+EXPORT_SYMBOL_GPL(dm_bio_prison_alloc_cell_v2);
+
+void dm_bio_prison_free_cell_v2(struct dm_bio_prison_v2 *prison,
+ struct dm_bio_prison_cell_v2 *cell)
+{
+ mempool_free(cell, &prison->cell_pool);
+}
+EXPORT_SYMBOL_GPL(dm_bio_prison_free_cell_v2);
+
+static void __setup_new_cell(struct dm_cell_key_v2 *key,
+ struct dm_bio_prison_cell_v2 *cell)
+{
+ memset(cell, 0, sizeof(*cell));
+ memcpy(&cell->key, key, sizeof(cell->key));
+ bio_list_init(&cell->bios);
+}
+
+static int cmp_keys(struct dm_cell_key_v2 *lhs,
+ struct dm_cell_key_v2 *rhs)
+{
+ if (lhs->virtual < rhs->virtual)
+ return -1;
+
+ if (lhs->virtual > rhs->virtual)
+ return 1;
+
+ if (lhs->dev < rhs->dev)
+ return -1;
+
+ if (lhs->dev > rhs->dev)
+ return 1;
+
+ if (lhs->block_end <= rhs->block_begin)
+ return -1;
+
+ if (lhs->block_begin >= rhs->block_end)
+ return 1;
+
+ return 0;
+}
+
+/*
+ * Returns true if node found, otherwise it inserts a new one.
+ */
+static bool __find_or_insert(struct dm_bio_prison_v2 *prison,
+ struct dm_cell_key_v2 *key,
+ struct dm_bio_prison_cell_v2 *cell_prealloc,
+ struct dm_bio_prison_cell_v2 **result)
+{
+ int r;
+ struct rb_node **new = &prison->cells.rb_node, *parent = NULL;
+
+ while (*new) {
+ struct dm_bio_prison_cell_v2 *cell =
+ rb_entry(*new, struct dm_bio_prison_cell_v2, node);
+
+ r = cmp_keys(key, &cell->key);
+
+ parent = *new;
+ if (r < 0)
+ new = &((*new)->rb_left);
+
+ else if (r > 0)
+ new = &((*new)->rb_right);
+
+ else {
+ *result = cell;
+ return true;
+ }
+ }
+
+ __setup_new_cell(key, cell_prealloc);
+ *result = cell_prealloc;
+ rb_link_node(&cell_prealloc->node, parent, new);
+ rb_insert_color(&cell_prealloc->node, &prison->cells);
+
+ return false;
+}
+
+static bool __get(struct dm_bio_prison_v2 *prison,
+ struct dm_cell_key_v2 *key,
+ unsigned int lock_level,
+ struct bio *inmate,
+ struct dm_bio_prison_cell_v2 *cell_prealloc,
+ struct dm_bio_prison_cell_v2 **cell)
+{
+ if (__find_or_insert(prison, key, cell_prealloc, cell)) {
+ if ((*cell)->exclusive_lock) {
+ if (lock_level <= (*cell)->exclusive_level) {
+ bio_list_add(&(*cell)->bios, inmate);
+ return false;
+ }
+ }
+
+ (*cell)->shared_count++;
+
+ } else
+ (*cell)->shared_count = 1;
+
+ return true;
+}
+
+bool dm_cell_get_v2(struct dm_bio_prison_v2 *prison,
+ struct dm_cell_key_v2 *key,
+ unsigned int lock_level,
+ struct bio *inmate,
+ struct dm_bio_prison_cell_v2 *cell_prealloc,
+ struct dm_bio_prison_cell_v2 **cell_result)
+{
+ int r;
+
+ spin_lock_irq(&prison->lock);
+ r = __get(prison, key, lock_level, inmate, cell_prealloc, cell_result);
+ spin_unlock_irq(&prison->lock);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_cell_get_v2);
+
+static bool __put(struct dm_bio_prison_v2 *prison,
+ struct dm_bio_prison_cell_v2 *cell)
+{
+ BUG_ON(!cell->shared_count);
+ cell->shared_count--;
+
+ // FIXME: shared locks granted above the lock level could starve this
+ if (!cell->shared_count) {
+ if (cell->exclusive_lock){
+ if (cell->quiesce_continuation) {
+ queue_work(prison->wq, cell->quiesce_continuation);
+ cell->quiesce_continuation = NULL;
+ }
+ } else {
+ rb_erase(&cell->node, &prison->cells);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool dm_cell_put_v2(struct dm_bio_prison_v2 *prison,
+ struct dm_bio_prison_cell_v2 *cell)
+{
+ bool r;
+ unsigned long flags;
+
+ spin_lock_irqsave(&prison->lock, flags);
+ r = __put(prison, cell);
+ spin_unlock_irqrestore(&prison->lock, flags);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_cell_put_v2);
+
+static int __lock(struct dm_bio_prison_v2 *prison,
+ struct dm_cell_key_v2 *key,
+ unsigned int lock_level,
+ struct dm_bio_prison_cell_v2 *cell_prealloc,
+ struct dm_bio_prison_cell_v2 **cell_result)
+{
+ struct dm_bio_prison_cell_v2 *cell;
+
+ if (__find_or_insert(prison, key, cell_prealloc, &cell)) {
+ if (cell->exclusive_lock)
+ return -EBUSY;
+
+ cell->exclusive_lock = true;
+ cell->exclusive_level = lock_level;
+ *cell_result = cell;
+
+ // FIXME: we don't yet know what level these shared locks
+ // were taken at, so have to quiesce them all.
+ return cell->shared_count > 0;
+
+ } else {
+ cell = cell_prealloc;
+ cell->shared_count = 0;
+ cell->exclusive_lock = true;
+ cell->exclusive_level = lock_level;
+ *cell_result = cell;
+ }
+
+ return 0;
+}
+
+int dm_cell_lock_v2(struct dm_bio_prison_v2 *prison,
+ struct dm_cell_key_v2 *key,
+ unsigned int lock_level,
+ struct dm_bio_prison_cell_v2 *cell_prealloc,
+ struct dm_bio_prison_cell_v2 **cell_result)
+{
+ int r;
+
+ spin_lock_irq(&prison->lock);
+ r = __lock(prison, key, lock_level, cell_prealloc, cell_result);
+ spin_unlock_irq(&prison->lock);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_cell_lock_v2);
+
+static void __quiesce(struct dm_bio_prison_v2 *prison,
+ struct dm_bio_prison_cell_v2 *cell,
+ struct work_struct *continuation)
+{
+ if (!cell->shared_count)
+ queue_work(prison->wq, continuation);
+ else
+ cell->quiesce_continuation = continuation;
+}
+
+void dm_cell_quiesce_v2(struct dm_bio_prison_v2 *prison,
+ struct dm_bio_prison_cell_v2 *cell,
+ struct work_struct *continuation)
+{
+ spin_lock_irq(&prison->lock);
+ __quiesce(prison, cell, continuation);
+ spin_unlock_irq(&prison->lock);
+}
+EXPORT_SYMBOL_GPL(dm_cell_quiesce_v2);
+
+static int __promote(struct dm_bio_prison_v2 *prison,
+ struct dm_bio_prison_cell_v2 *cell,
+ unsigned int new_lock_level)
+{
+ if (!cell->exclusive_lock)
+ return -EINVAL;
+
+ cell->exclusive_level = new_lock_level;
+ return cell->shared_count > 0;
+}
+
+int dm_cell_lock_promote_v2(struct dm_bio_prison_v2 *prison,
+ struct dm_bio_prison_cell_v2 *cell,
+ unsigned int new_lock_level)
+{
+ int r;
+
+ spin_lock_irq(&prison->lock);
+ r = __promote(prison, cell, new_lock_level);
+ spin_unlock_irq(&prison->lock);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_cell_lock_promote_v2);
+
+static bool __unlock(struct dm_bio_prison_v2 *prison,
+ struct dm_bio_prison_cell_v2 *cell,
+ struct bio_list *bios)
+{
+ BUG_ON(!cell->exclusive_lock);
+
+ bio_list_merge(bios, &cell->bios);
+ bio_list_init(&cell->bios);
+
+ if (cell->shared_count) {
+ cell->exclusive_lock = false;
+ return false;
+ }
+
+ rb_erase(&cell->node, &prison->cells);
+ return true;
+}
+
+bool dm_cell_unlock_v2(struct dm_bio_prison_v2 *prison,
+ struct dm_bio_prison_cell_v2 *cell,
+ struct bio_list *bios)
+{
+ bool r;
+
+ spin_lock_irq(&prison->lock);
+ r = __unlock(prison, cell, bios);
+ spin_unlock_irq(&prison->lock);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_cell_unlock_v2);
+
+/*----------------------------------------------------------------*/
+
+int __init dm_bio_prison_init_v2(void)
+{
+ _cell_cache = KMEM_CACHE(dm_bio_prison_cell_v2, 0);
+ if (!_cell_cache)
+ return -ENOMEM;
+
+ return 0;
+}
+
+void dm_bio_prison_exit_v2(void)
+{
+ kmem_cache_destroy(_cell_cache);
+ _cell_cache = NULL;
+}
diff --git a/drivers/md/dm-bio-prison-v2.h b/drivers/md/dm-bio-prison-v2.h
new file mode 100644
index 000000000..5a7d996bb
--- /dev/null
+++ b/drivers/md/dm-bio-prison-v2.h
@@ -0,0 +1,152 @@
+/*
+ * Copyright (C) 2011-2017 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_BIO_PRISON_V2_H
+#define DM_BIO_PRISON_V2_H
+
+#include "persistent-data/dm-block-manager.h" /* FIXME: for dm_block_t */
+#include "dm-thin-metadata.h" /* FIXME: for dm_thin_id */
+
+#include <linux/bio.h>
+#include <linux/rbtree.h>
+#include <linux/workqueue.h>
+
+/*----------------------------------------------------------------*/
+
+int dm_bio_prison_init_v2(void);
+void dm_bio_prison_exit_v2(void);
+
+/*
+ * Sometimes we can't deal with a bio straight away. We put them in prison
+ * where they can't cause any mischief. Bios are put in a cell identified
+ * by a key, multiple bios can be in the same cell. When the cell is
+ * subsequently unlocked the bios become available.
+ */
+struct dm_bio_prison_v2;
+
+/*
+ * Keys define a range of blocks within either a virtual or physical
+ * device.
+ */
+struct dm_cell_key_v2 {
+ int virtual;
+ dm_thin_id dev;
+ dm_block_t block_begin, block_end;
+};
+
+/*
+ * Treat this as opaque, only in header so callers can manage allocation
+ * themselves.
+ */
+struct dm_bio_prison_cell_v2 {
+ // FIXME: pack these
+ bool exclusive_lock;
+ unsigned int exclusive_level;
+ unsigned int shared_count;
+ struct work_struct *quiesce_continuation;
+
+ struct rb_node node;
+ struct dm_cell_key_v2 key;
+ struct bio_list bios;
+};
+
+struct dm_bio_prison_v2 *dm_bio_prison_create_v2(struct workqueue_struct *wq);
+void dm_bio_prison_destroy_v2(struct dm_bio_prison_v2 *prison);
+
+/*
+ * These two functions just wrap a mempool. This is a transitory step:
+ * Eventually all bio prison clients should manage their own cell memory.
+ *
+ * Like mempool_alloc(), dm_bio_prison_alloc_cell_v2() can only fail if called
+ * in interrupt context or passed GFP_NOWAIT.
+ */
+struct dm_bio_prison_cell_v2 *dm_bio_prison_alloc_cell_v2(struct dm_bio_prison_v2 *prison,
+ gfp_t gfp);
+void dm_bio_prison_free_cell_v2(struct dm_bio_prison_v2 *prison,
+ struct dm_bio_prison_cell_v2 *cell);
+
+/*
+ * Shared locks have a bio associated with them.
+ *
+ * If the lock is granted the caller can continue to use the bio, and must
+ * call dm_cell_put_v2() to drop the reference count when finished using it.
+ *
+ * If the lock cannot be granted then the bio will be tracked within the
+ * cell, and later given to the holder of the exclusive lock.
+ *
+ * See dm_cell_lock_v2() for discussion of the lock_level parameter.
+ *
+ * Compare *cell_result with cell_prealloc to see if the prealloc was used.
+ * If cell_prealloc was used then inmate wasn't added to it.
+ *
+ * Returns true if the lock is granted.
+ */
+bool dm_cell_get_v2(struct dm_bio_prison_v2 *prison,
+ struct dm_cell_key_v2 *key,
+ unsigned int lock_level,
+ struct bio *inmate,
+ struct dm_bio_prison_cell_v2 *cell_prealloc,
+ struct dm_bio_prison_cell_v2 **cell_result);
+
+/*
+ * Decrement the shared reference count for the lock. Returns true if
+ * returning ownership of the cell (ie. you should free it).
+ */
+bool dm_cell_put_v2(struct dm_bio_prison_v2 *prison,
+ struct dm_bio_prison_cell_v2 *cell);
+
+/*
+ * Locks a cell. No associated bio. Exclusive locks get priority. These
+ * locks constrain whether the io locks are granted according to level.
+ *
+ * Shared locks will still be granted if the lock_level is > (not = to) the
+ * exclusive lock level.
+ *
+ * If an _exclusive_ lock is already held then -EBUSY is returned.
+ *
+ * Return values:
+ * < 0 - error
+ * 0 - locked; no quiescing needed
+ * 1 - locked; quiescing needed
+ */
+int dm_cell_lock_v2(struct dm_bio_prison_v2 *prison,
+ struct dm_cell_key_v2 *key,
+ unsigned int lock_level,
+ struct dm_bio_prison_cell_v2 *cell_prealloc,
+ struct dm_bio_prison_cell_v2 **cell_result);
+
+void dm_cell_quiesce_v2(struct dm_bio_prison_v2 *prison,
+ struct dm_bio_prison_cell_v2 *cell,
+ struct work_struct *continuation);
+
+/*
+ * Promotes an _exclusive_ lock to a higher lock level.
+ *
+ * Return values:
+ * < 0 - error
+ * 0 - promoted; no quiescing needed
+ * 1 - promoted; quiescing needed
+ */
+int dm_cell_lock_promote_v2(struct dm_bio_prison_v2 *prison,
+ struct dm_bio_prison_cell_v2 *cell,
+ unsigned int new_lock_level);
+
+/*
+ * Adds any held bios to the bio list.
+ *
+ * There may be shared locks still held at this point even if you quiesced
+ * (ie. different lock levels).
+ *
+ * Returns true if returning ownership of the cell (ie. you should free
+ * it).
+ */
+bool dm_cell_unlock_v2(struct dm_bio_prison_v2 *prison,
+ struct dm_bio_prison_cell_v2 *cell,
+ struct bio_list *bios);
+
+/*----------------------------------------------------------------*/
+
+#endif
diff --git a/drivers/md/dm-bio-record.h b/drivers/md/dm-bio-record.h
new file mode 100644
index 000000000..745e3ab4a
--- /dev/null
+++ b/drivers/md/dm-bio-record.h
@@ -0,0 +1,56 @@
+/*
+ * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_BIO_RECORD_H
+#define DM_BIO_RECORD_H
+
+#include <linux/bio.h>
+#include <linux/blk-integrity.h>
+
+/*
+ * There are lots of mutable fields in the bio struct that get
+ * changed by the lower levels of the block layer. Some targets,
+ * such as multipath, may wish to resubmit a bio on error. The
+ * functions in this file help the target record and restore the
+ * original bio state.
+ */
+
+struct dm_bio_details {
+ struct block_device *bi_bdev;
+ int __bi_remaining;
+ unsigned long bi_flags;
+ struct bvec_iter bi_iter;
+ bio_end_io_t *bi_end_io;
+#if defined(CONFIG_BLK_DEV_INTEGRITY)
+ struct bio_integrity_payload *bi_integrity;
+#endif
+};
+
+static inline void dm_bio_record(struct dm_bio_details *bd, struct bio *bio)
+{
+ bd->bi_bdev = bio->bi_bdev;
+ bd->bi_flags = bio->bi_flags;
+ bd->bi_iter = bio->bi_iter;
+ bd->__bi_remaining = atomic_read(&bio->__bi_remaining);
+ bd->bi_end_io = bio->bi_end_io;
+#if defined(CONFIG_BLK_DEV_INTEGRITY)
+ bd->bi_integrity = bio_integrity(bio);
+#endif
+}
+
+static inline void dm_bio_restore(struct dm_bio_details *bd, struct bio *bio)
+{
+ bio->bi_bdev = bd->bi_bdev;
+ bio->bi_flags = bd->bi_flags;
+ bio->bi_iter = bd->bi_iter;
+ atomic_set(&bio->__bi_remaining, bd->__bi_remaining);
+ bio->bi_end_io = bd->bi_end_io;
+#if defined(CONFIG_BLK_DEV_INTEGRITY)
+ bio->bi_integrity = bd->bi_integrity;
+#endif
+}
+
+#endif
diff --git a/drivers/md/dm-bufio.c b/drivers/md/dm-bufio.c
new file mode 100644
index 000000000..100a6a236
--- /dev/null
+++ b/drivers/md/dm-bufio.c
@@ -0,0 +1,2181 @@
+/*
+ * Copyright (C) 2009-2011 Red Hat, Inc.
+ *
+ * Author: Mikulas Patocka <mpatocka@redhat.com>
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/dm-bufio.h>
+
+#include <linux/device-mapper.h>
+#include <linux/dm-io.h>
+#include <linux/slab.h>
+#include <linux/sched/mm.h>
+#include <linux/jiffies.h>
+#include <linux/vmalloc.h>
+#include <linux/shrinker.h>
+#include <linux/module.h>
+#include <linux/rbtree.h>
+#include <linux/stacktrace.h>
+#include <linux/jump_label.h>
+
+#define DM_MSG_PREFIX "bufio"
+
+/*
+ * Memory management policy:
+ * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
+ * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
+ * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
+ * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
+ * dirty buffers.
+ */
+#define DM_BUFIO_MIN_BUFFERS 8
+
+#define DM_BUFIO_MEMORY_PERCENT 2
+#define DM_BUFIO_VMALLOC_PERCENT 25
+#define DM_BUFIO_WRITEBACK_RATIO 3
+#define DM_BUFIO_LOW_WATERMARK_RATIO 16
+
+/*
+ * Check buffer ages in this interval (seconds)
+ */
+#define DM_BUFIO_WORK_TIMER_SECS 30
+
+/*
+ * Free buffers when they are older than this (seconds)
+ */
+#define DM_BUFIO_DEFAULT_AGE_SECS 300
+
+/*
+ * The nr of bytes of cached data to keep around.
+ */
+#define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024)
+
+/*
+ * Align buffer writes to this boundary.
+ * Tests show that SSDs have the highest IOPS when using 4k writes.
+ */
+#define DM_BUFIO_WRITE_ALIGN 4096
+
+/*
+ * dm_buffer->list_mode
+ */
+#define LIST_CLEAN 0
+#define LIST_DIRTY 1
+#define LIST_SIZE 2
+
+/*
+ * Linking of buffers:
+ * All buffers are linked to buffer_tree with their node field.
+ *
+ * Clean buffers that are not being written (B_WRITING not set)
+ * are linked to lru[LIST_CLEAN] with their lru_list field.
+ *
+ * Dirty and clean buffers that are being written are linked to
+ * lru[LIST_DIRTY] with their lru_list field. When the write
+ * finishes, the buffer cannot be relinked immediately (because we
+ * are in an interrupt context and relinking requires process
+ * context), so some clean-not-writing buffers can be held on
+ * dirty_lru too. They are later added to lru in the process
+ * context.
+ */
+struct dm_bufio_client {
+ struct mutex lock;
+ spinlock_t spinlock;
+ bool no_sleep;
+
+ struct list_head lru[LIST_SIZE];
+ unsigned long n_buffers[LIST_SIZE];
+
+ struct block_device *bdev;
+ unsigned int block_size;
+ s8 sectors_per_block_bits;
+ void (*alloc_callback)(struct dm_buffer *);
+ void (*write_callback)(struct dm_buffer *);
+ struct kmem_cache *slab_buffer;
+ struct kmem_cache *slab_cache;
+ struct dm_io_client *dm_io;
+
+ struct list_head reserved_buffers;
+ unsigned int need_reserved_buffers;
+
+ unsigned int minimum_buffers;
+
+ struct rb_root buffer_tree;
+ wait_queue_head_t free_buffer_wait;
+
+ sector_t start;
+
+ int async_write_error;
+
+ struct list_head client_list;
+
+ struct shrinker shrinker;
+ struct work_struct shrink_work;
+ atomic_long_t need_shrink;
+};
+
+/*
+ * Buffer state bits.
+ */
+#define B_READING 0
+#define B_WRITING 1
+#define B_DIRTY 2
+
+/*
+ * Describes how the block was allocated:
+ * kmem_cache_alloc(), __get_free_pages() or vmalloc().
+ * See the comment at alloc_buffer_data.
+ */
+enum data_mode {
+ DATA_MODE_SLAB = 0,
+ DATA_MODE_GET_FREE_PAGES = 1,
+ DATA_MODE_VMALLOC = 2,
+ DATA_MODE_LIMIT = 3
+};
+
+struct dm_buffer {
+ struct rb_node node;
+ struct list_head lru_list;
+ struct list_head global_list;
+ sector_t block;
+ void *data;
+ unsigned char data_mode; /* DATA_MODE_* */
+ unsigned char list_mode; /* LIST_* */
+ blk_status_t read_error;
+ blk_status_t write_error;
+ unsigned int accessed;
+ unsigned int hold_count;
+ unsigned long state;
+ unsigned long last_accessed;
+ unsigned int dirty_start;
+ unsigned int dirty_end;
+ unsigned int write_start;
+ unsigned int write_end;
+ struct dm_bufio_client *c;
+ struct list_head write_list;
+ void (*end_io)(struct dm_buffer *, blk_status_t);
+#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
+#define MAX_STACK 10
+ unsigned int stack_len;
+ unsigned long stack_entries[MAX_STACK];
+#endif
+};
+
+static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
+
+/*----------------------------------------------------------------*/
+
+#define dm_bufio_in_request() (!!current->bio_list)
+
+static void dm_bufio_lock(struct dm_bufio_client *c)
+{
+ if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
+ spin_lock_bh(&c->spinlock);
+ else
+ mutex_lock_nested(&c->lock, dm_bufio_in_request());
+}
+
+static int dm_bufio_trylock(struct dm_bufio_client *c)
+{
+ if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
+ return spin_trylock_bh(&c->spinlock);
+ else
+ return mutex_trylock(&c->lock);
+}
+
+static void dm_bufio_unlock(struct dm_bufio_client *c)
+{
+ if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
+ spin_unlock_bh(&c->spinlock);
+ else
+ mutex_unlock(&c->lock);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Default cache size: available memory divided by the ratio.
+ */
+static unsigned long dm_bufio_default_cache_size;
+
+/*
+ * Total cache size set by the user.
+ */
+static unsigned long dm_bufio_cache_size;
+
+/*
+ * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
+ * at any time. If it disagrees, the user has changed cache size.
+ */
+static unsigned long dm_bufio_cache_size_latch;
+
+static DEFINE_SPINLOCK(global_spinlock);
+
+static LIST_HEAD(global_queue);
+
+static unsigned long global_num = 0;
+
+/*
+ * Buffers are freed after this timeout
+ */
+static unsigned int dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
+static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
+
+static unsigned long dm_bufio_peak_allocated;
+static unsigned long dm_bufio_allocated_kmem_cache;
+static unsigned long dm_bufio_allocated_get_free_pages;
+static unsigned long dm_bufio_allocated_vmalloc;
+static unsigned long dm_bufio_current_allocated;
+
+/*----------------------------------------------------------------*/
+
+/*
+ * The current number of clients.
+ */
+static int dm_bufio_client_count;
+
+/*
+ * The list of all clients.
+ */
+static LIST_HEAD(dm_bufio_all_clients);
+
+/*
+ * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
+ */
+static DEFINE_MUTEX(dm_bufio_clients_lock);
+
+static struct workqueue_struct *dm_bufio_wq;
+static struct delayed_work dm_bufio_cleanup_old_work;
+static struct work_struct dm_bufio_replacement_work;
+
+
+#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
+static void buffer_record_stack(struct dm_buffer *b)
+{
+ b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
+}
+#endif
+
+/*----------------------------------------------------------------
+ * A red/black tree acts as an index for all the buffers.
+ *--------------------------------------------------------------*/
+static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
+{
+ struct rb_node *n = c->buffer_tree.rb_node;
+ struct dm_buffer *b;
+
+ while (n) {
+ b = container_of(n, struct dm_buffer, node);
+
+ if (b->block == block)
+ return b;
+
+ n = block < b->block ? n->rb_left : n->rb_right;
+ }
+
+ return NULL;
+}
+
+static struct dm_buffer *__find_next(struct dm_bufio_client *c, sector_t block)
+{
+ struct rb_node *n = c->buffer_tree.rb_node;
+ struct dm_buffer *b;
+ struct dm_buffer *best = NULL;
+
+ while (n) {
+ b = container_of(n, struct dm_buffer, node);
+
+ if (b->block == block)
+ return b;
+
+ if (block <= b->block) {
+ n = n->rb_left;
+ best = b;
+ } else {
+ n = n->rb_right;
+ }
+ }
+
+ return best;
+}
+
+static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
+{
+ struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
+ struct dm_buffer *found;
+
+ while (*new) {
+ found = container_of(*new, struct dm_buffer, node);
+
+ if (found->block == b->block) {
+ BUG_ON(found != b);
+ return;
+ }
+
+ parent = *new;
+ new = b->block < found->block ?
+ &found->node.rb_left : &found->node.rb_right;
+ }
+
+ rb_link_node(&b->node, parent, new);
+ rb_insert_color(&b->node, &c->buffer_tree);
+}
+
+static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
+{
+ rb_erase(&b->node, &c->buffer_tree);
+}
+
+/*----------------------------------------------------------------*/
+
+static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
+{
+ unsigned char data_mode;
+ long diff;
+
+ static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
+ &dm_bufio_allocated_kmem_cache,
+ &dm_bufio_allocated_get_free_pages,
+ &dm_bufio_allocated_vmalloc,
+ };
+
+ data_mode = b->data_mode;
+ diff = (long)b->c->block_size;
+ if (unlink)
+ diff = -diff;
+
+ spin_lock(&global_spinlock);
+
+ *class_ptr[data_mode] += diff;
+
+ dm_bufio_current_allocated += diff;
+
+ if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
+ dm_bufio_peak_allocated = dm_bufio_current_allocated;
+
+ b->accessed = 1;
+
+ if (!unlink) {
+ list_add(&b->global_list, &global_queue);
+ global_num++;
+ if (dm_bufio_current_allocated > dm_bufio_cache_size)
+ queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
+ } else {
+ list_del(&b->global_list);
+ global_num--;
+ }
+
+ spin_unlock(&global_spinlock);
+}
+
+/*
+ * Change the number of clients and recalculate per-client limit.
+ */
+static void __cache_size_refresh(void)
+{
+ BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
+ BUG_ON(dm_bufio_client_count < 0);
+
+ dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
+
+ /*
+ * Use default if set to 0 and report the actual cache size used.
+ */
+ if (!dm_bufio_cache_size_latch) {
+ (void)cmpxchg(&dm_bufio_cache_size, 0,
+ dm_bufio_default_cache_size);
+ dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
+ }
+}
+
+/*
+ * Allocating buffer data.
+ *
+ * Small buffers are allocated with kmem_cache, to use space optimally.
+ *
+ * For large buffers, we choose between get_free_pages and vmalloc.
+ * Each has advantages and disadvantages.
+ *
+ * __get_free_pages can randomly fail if the memory is fragmented.
+ * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
+ * as low as 128M) so using it for caching is not appropriate.
+ *
+ * If the allocation may fail we use __get_free_pages. Memory fragmentation
+ * won't have a fatal effect here, but it just causes flushes of some other
+ * buffers and more I/O will be performed. Don't use __get_free_pages if it
+ * always fails (i.e. order >= MAX_ORDER).
+ *
+ * If the allocation shouldn't fail we use __vmalloc. This is only for the
+ * initial reserve allocation, so there's no risk of wasting all vmalloc
+ * space.
+ */
+static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
+ unsigned char *data_mode)
+{
+ if (unlikely(c->slab_cache != NULL)) {
+ *data_mode = DATA_MODE_SLAB;
+ return kmem_cache_alloc(c->slab_cache, gfp_mask);
+ }
+
+ if (c->block_size <= KMALLOC_MAX_SIZE &&
+ gfp_mask & __GFP_NORETRY) {
+ *data_mode = DATA_MODE_GET_FREE_PAGES;
+ return (void *)__get_free_pages(gfp_mask,
+ c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
+ }
+
+ *data_mode = DATA_MODE_VMALLOC;
+
+ /*
+ * __vmalloc allocates the data pages and auxiliary structures with
+ * gfp_flags that were specified, but pagetables are always allocated
+ * with GFP_KERNEL, no matter what was specified as gfp_mask.
+ *
+ * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
+ * all allocations done by this process (including pagetables) are done
+ * as if GFP_NOIO was specified.
+ */
+ if (gfp_mask & __GFP_NORETRY) {
+ unsigned int noio_flag = memalloc_noio_save();
+ void *ptr = __vmalloc(c->block_size, gfp_mask);
+
+ memalloc_noio_restore(noio_flag);
+ return ptr;
+ }
+
+ return __vmalloc(c->block_size, gfp_mask);
+}
+
+/*
+ * Free buffer's data.
+ */
+static void free_buffer_data(struct dm_bufio_client *c,
+ void *data, unsigned char data_mode)
+{
+ switch (data_mode) {
+ case DATA_MODE_SLAB:
+ kmem_cache_free(c->slab_cache, data);
+ break;
+
+ case DATA_MODE_GET_FREE_PAGES:
+ free_pages((unsigned long)data,
+ c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
+ break;
+
+ case DATA_MODE_VMALLOC:
+ vfree(data);
+ break;
+
+ default:
+ DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
+ data_mode);
+ BUG();
+ }
+}
+
+/*
+ * Allocate buffer and its data.
+ */
+static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
+{
+ struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
+
+ if (!b)
+ return NULL;
+
+ b->c = c;
+
+ b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
+ if (!b->data) {
+ kmem_cache_free(c->slab_buffer, b);
+ return NULL;
+ }
+
+#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
+ b->stack_len = 0;
+#endif
+ return b;
+}
+
+/*
+ * Free buffer and its data.
+ */
+static void free_buffer(struct dm_buffer *b)
+{
+ struct dm_bufio_client *c = b->c;
+
+ free_buffer_data(c, b->data, b->data_mode);
+ kmem_cache_free(c->slab_buffer, b);
+}
+
+/*
+ * Link buffer to the buffer tree and clean or dirty queue.
+ */
+static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
+{
+ struct dm_bufio_client *c = b->c;
+
+ c->n_buffers[dirty]++;
+ b->block = block;
+ b->list_mode = dirty;
+ list_add(&b->lru_list, &c->lru[dirty]);
+ __insert(b->c, b);
+ b->last_accessed = jiffies;
+
+ adjust_total_allocated(b, false);
+}
+
+/*
+ * Unlink buffer from the buffer tree and dirty or clean queue.
+ */
+static void __unlink_buffer(struct dm_buffer *b)
+{
+ struct dm_bufio_client *c = b->c;
+
+ BUG_ON(!c->n_buffers[b->list_mode]);
+
+ c->n_buffers[b->list_mode]--;
+ __remove(b->c, b);
+ list_del(&b->lru_list);
+
+ adjust_total_allocated(b, true);
+}
+
+/*
+ * Place the buffer to the head of dirty or clean LRU queue.
+ */
+static void __relink_lru(struct dm_buffer *b, int dirty)
+{
+ struct dm_bufio_client *c = b->c;
+
+ b->accessed = 1;
+
+ BUG_ON(!c->n_buffers[b->list_mode]);
+
+ c->n_buffers[b->list_mode]--;
+ c->n_buffers[dirty]++;
+ b->list_mode = dirty;
+ list_move(&b->lru_list, &c->lru[dirty]);
+ b->last_accessed = jiffies;
+}
+
+/*----------------------------------------------------------------
+ * Submit I/O on the buffer.
+ *
+ * Bio interface is faster but it has some problems:
+ * the vector list is limited (increasing this limit increases
+ * memory-consumption per buffer, so it is not viable);
+ *
+ * the memory must be direct-mapped, not vmalloced;
+ *
+ * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
+ * it is not vmalloced, try using the bio interface.
+ *
+ * If the buffer is big, if it is vmalloced or if the underlying device
+ * rejects the bio because it is too large, use dm-io layer to do the I/O.
+ * The dm-io layer splits the I/O into multiple requests, avoiding the above
+ * shortcomings.
+ *--------------------------------------------------------------*/
+
+/*
+ * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
+ * that the request was handled directly with bio interface.
+ */
+static void dmio_complete(unsigned long error, void *context)
+{
+ struct dm_buffer *b = context;
+
+ b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
+}
+
+static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
+ unsigned int n_sectors, unsigned int offset)
+{
+ int r;
+ struct dm_io_request io_req = {
+ .bi_opf = op,
+ .notify.fn = dmio_complete,
+ .notify.context = b,
+ .client = b->c->dm_io,
+ };
+ struct dm_io_region region = {
+ .bdev = b->c->bdev,
+ .sector = sector,
+ .count = n_sectors,
+ };
+
+ if (b->data_mode != DATA_MODE_VMALLOC) {
+ io_req.mem.type = DM_IO_KMEM;
+ io_req.mem.ptr.addr = (char *)b->data + offset;
+ } else {
+ io_req.mem.type = DM_IO_VMA;
+ io_req.mem.ptr.vma = (char *)b->data + offset;
+ }
+
+ r = dm_io(&io_req, 1, &region, NULL);
+ if (unlikely(r))
+ b->end_io(b, errno_to_blk_status(r));
+}
+
+static void bio_complete(struct bio *bio)
+{
+ struct dm_buffer *b = bio->bi_private;
+ blk_status_t status = bio->bi_status;
+ bio_uninit(bio);
+ kfree(bio);
+ b->end_io(b, status);
+}
+
+static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
+ unsigned int n_sectors, unsigned int offset)
+{
+ struct bio *bio;
+ char *ptr;
+ unsigned int vec_size, len;
+
+ vec_size = b->c->block_size >> PAGE_SHIFT;
+ if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
+ vec_size += 2;
+
+ bio = bio_kmalloc(vec_size, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
+ if (!bio) {
+dmio:
+ use_dmio(b, op, sector, n_sectors, offset);
+ return;
+ }
+ bio_init(bio, b->c->bdev, bio->bi_inline_vecs, vec_size, op);
+ bio->bi_iter.bi_sector = sector;
+ bio->bi_end_io = bio_complete;
+ bio->bi_private = b;
+
+ ptr = (char *)b->data + offset;
+ len = n_sectors << SECTOR_SHIFT;
+
+ do {
+ unsigned int this_step = min((unsigned int)(PAGE_SIZE - offset_in_page(ptr)), len);
+ if (!bio_add_page(bio, virt_to_page(ptr), this_step,
+ offset_in_page(ptr))) {
+ bio_put(bio);
+ goto dmio;
+ }
+
+ len -= this_step;
+ ptr += this_step;
+ } while (len > 0);
+
+ submit_bio(bio);
+}
+
+static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
+{
+ sector_t sector;
+
+ if (likely(c->sectors_per_block_bits >= 0))
+ sector = block << c->sectors_per_block_bits;
+ else
+ sector = block * (c->block_size >> SECTOR_SHIFT);
+ sector += c->start;
+
+ return sector;
+}
+
+static void submit_io(struct dm_buffer *b, enum req_op op,
+ void (*end_io)(struct dm_buffer *, blk_status_t))
+{
+ unsigned int n_sectors;
+ sector_t sector;
+ unsigned int offset, end;
+
+ b->end_io = end_io;
+
+ sector = block_to_sector(b->c, b->block);
+
+ if (op != REQ_OP_WRITE) {
+ n_sectors = b->c->block_size >> SECTOR_SHIFT;
+ offset = 0;
+ } else {
+ if (b->c->write_callback)
+ b->c->write_callback(b);
+ offset = b->write_start;
+ end = b->write_end;
+ offset &= -DM_BUFIO_WRITE_ALIGN;
+ end += DM_BUFIO_WRITE_ALIGN - 1;
+ end &= -DM_BUFIO_WRITE_ALIGN;
+ if (unlikely(end > b->c->block_size))
+ end = b->c->block_size;
+
+ sector += offset >> SECTOR_SHIFT;
+ n_sectors = (end - offset) >> SECTOR_SHIFT;
+ }
+
+ if (b->data_mode != DATA_MODE_VMALLOC)
+ use_bio(b, op, sector, n_sectors, offset);
+ else
+ use_dmio(b, op, sector, n_sectors, offset);
+}
+
+/*----------------------------------------------------------------
+ * Writing dirty buffers
+ *--------------------------------------------------------------*/
+
+/*
+ * The endio routine for write.
+ *
+ * Set the error, clear B_WRITING bit and wake anyone who was waiting on
+ * it.
+ */
+static void write_endio(struct dm_buffer *b, blk_status_t status)
+{
+ b->write_error = status;
+ if (unlikely(status)) {
+ struct dm_bufio_client *c = b->c;
+
+ (void)cmpxchg(&c->async_write_error, 0,
+ blk_status_to_errno(status));
+ }
+
+ BUG_ON(!test_bit(B_WRITING, &b->state));
+
+ smp_mb__before_atomic();
+ clear_bit(B_WRITING, &b->state);
+ smp_mb__after_atomic();
+
+ wake_up_bit(&b->state, B_WRITING);
+}
+
+/*
+ * Initiate a write on a dirty buffer, but don't wait for it.
+ *
+ * - If the buffer is not dirty, exit.
+ * - If there some previous write going on, wait for it to finish (we can't
+ * have two writes on the same buffer simultaneously).
+ * - Submit our write and don't wait on it. We set B_WRITING indicating
+ * that there is a write in progress.
+ */
+static void __write_dirty_buffer(struct dm_buffer *b,
+ struct list_head *write_list)
+{
+ if (!test_bit(B_DIRTY, &b->state))
+ return;
+
+ clear_bit(B_DIRTY, &b->state);
+ wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
+
+ b->write_start = b->dirty_start;
+ b->write_end = b->dirty_end;
+
+ if (!write_list)
+ submit_io(b, REQ_OP_WRITE, write_endio);
+ else
+ list_add_tail(&b->write_list, write_list);
+}
+
+static void __flush_write_list(struct list_head *write_list)
+{
+ struct blk_plug plug;
+ blk_start_plug(&plug);
+ while (!list_empty(write_list)) {
+ struct dm_buffer *b =
+ list_entry(write_list->next, struct dm_buffer, write_list);
+ list_del(&b->write_list);
+ submit_io(b, REQ_OP_WRITE, write_endio);
+ cond_resched();
+ }
+ blk_finish_plug(&plug);
+}
+
+/*
+ * Wait until any activity on the buffer finishes. Possibly write the
+ * buffer if it is dirty. When this function finishes, there is no I/O
+ * running on the buffer and the buffer is not dirty.
+ */
+static void __make_buffer_clean(struct dm_buffer *b)
+{
+ BUG_ON(b->hold_count);
+
+ /* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */
+ if (!smp_load_acquire(&b->state)) /* fast case */
+ return;
+
+ wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
+ __write_dirty_buffer(b, NULL);
+ wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
+}
+
+/*
+ * Find some buffer that is not held by anybody, clean it, unlink it and
+ * return it.
+ */
+static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
+{
+ struct dm_buffer *b;
+
+ list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
+ BUG_ON(test_bit(B_WRITING, &b->state));
+ BUG_ON(test_bit(B_DIRTY, &b->state));
+
+ if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
+ unlikely(test_bit_acquire(B_READING, &b->state)))
+ continue;
+
+ if (!b->hold_count) {
+ __make_buffer_clean(b);
+ __unlink_buffer(b);
+ return b;
+ }
+ cond_resched();
+ }
+
+ if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
+ return NULL;
+
+ list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
+ BUG_ON(test_bit(B_READING, &b->state));
+
+ if (!b->hold_count) {
+ __make_buffer_clean(b);
+ __unlink_buffer(b);
+ return b;
+ }
+ cond_resched();
+ }
+
+ return NULL;
+}
+
+/*
+ * Wait until some other threads free some buffer or release hold count on
+ * some buffer.
+ *
+ * This function is entered with c->lock held, drops it and regains it
+ * before exiting.
+ */
+static void __wait_for_free_buffer(struct dm_bufio_client *c)
+{
+ DECLARE_WAITQUEUE(wait, current);
+
+ add_wait_queue(&c->free_buffer_wait, &wait);
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ dm_bufio_unlock(c);
+
+ io_schedule();
+
+ remove_wait_queue(&c->free_buffer_wait, &wait);
+
+ dm_bufio_lock(c);
+}
+
+enum new_flag {
+ NF_FRESH = 0,
+ NF_READ = 1,
+ NF_GET = 2,
+ NF_PREFETCH = 3
+};
+
+/*
+ * Allocate a new buffer. If the allocation is not possible, wait until
+ * some other thread frees a buffer.
+ *
+ * May drop the lock and regain it.
+ */
+static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
+{
+ struct dm_buffer *b;
+ bool tried_noio_alloc = false;
+
+ /*
+ * dm-bufio is resistant to allocation failures (it just keeps
+ * one buffer reserved in cases all the allocations fail).
+ * So set flags to not try too hard:
+ * GFP_NOWAIT: don't wait; if we need to sleep we'll release our
+ * mutex and wait ourselves.
+ * __GFP_NORETRY: don't retry and rather return failure
+ * __GFP_NOMEMALLOC: don't use emergency reserves
+ * __GFP_NOWARN: don't print a warning in case of failure
+ *
+ * For debugging, if we set the cache size to 1, no new buffers will
+ * be allocated.
+ */
+ while (1) {
+ if (dm_bufio_cache_size_latch != 1) {
+ b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
+ if (b)
+ return b;
+ }
+
+ if (nf == NF_PREFETCH)
+ return NULL;
+
+ if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
+ dm_bufio_unlock(c);
+ b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
+ dm_bufio_lock(c);
+ if (b)
+ return b;
+ tried_noio_alloc = true;
+ }
+
+ if (!list_empty(&c->reserved_buffers)) {
+ b = list_entry(c->reserved_buffers.next,
+ struct dm_buffer, lru_list);
+ list_del(&b->lru_list);
+ c->need_reserved_buffers++;
+
+ return b;
+ }
+
+ b = __get_unclaimed_buffer(c);
+ if (b)
+ return b;
+
+ __wait_for_free_buffer(c);
+ }
+}
+
+static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
+{
+ struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
+
+ if (!b)
+ return NULL;
+
+ if (c->alloc_callback)
+ c->alloc_callback(b);
+
+ return b;
+}
+
+/*
+ * Free a buffer and wake other threads waiting for free buffers.
+ */
+static void __free_buffer_wake(struct dm_buffer *b)
+{
+ struct dm_bufio_client *c = b->c;
+
+ if (!c->need_reserved_buffers)
+ free_buffer(b);
+ else {
+ list_add(&b->lru_list, &c->reserved_buffers);
+ c->need_reserved_buffers--;
+ }
+
+ wake_up(&c->free_buffer_wait);
+}
+
+static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
+ struct list_head *write_list)
+{
+ struct dm_buffer *b, *tmp;
+
+ list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
+ BUG_ON(test_bit(B_READING, &b->state));
+
+ if (!test_bit(B_DIRTY, &b->state) &&
+ !test_bit(B_WRITING, &b->state)) {
+ __relink_lru(b, LIST_CLEAN);
+ continue;
+ }
+
+ if (no_wait && test_bit(B_WRITING, &b->state))
+ return;
+
+ __write_dirty_buffer(b, write_list);
+ cond_resched();
+ }
+}
+
+/*
+ * Check if we're over watermark.
+ * If we are over threshold_buffers, start freeing buffers.
+ * If we're over "limit_buffers", block until we get under the limit.
+ */
+static void __check_watermark(struct dm_bufio_client *c,
+ struct list_head *write_list)
+{
+ if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO)
+ __write_dirty_buffers_async(c, 1, write_list);
+}
+
+/*----------------------------------------------------------------
+ * Getting a buffer
+ *--------------------------------------------------------------*/
+
+static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
+ enum new_flag nf, int *need_submit,
+ struct list_head *write_list)
+{
+ struct dm_buffer *b, *new_b = NULL;
+
+ *need_submit = 0;
+
+ b = __find(c, block);
+ if (b)
+ goto found_buffer;
+
+ if (nf == NF_GET)
+ return NULL;
+
+ new_b = __alloc_buffer_wait(c, nf);
+ if (!new_b)
+ return NULL;
+
+ /*
+ * We've had a period where the mutex was unlocked, so need to
+ * recheck the buffer tree.
+ */
+ b = __find(c, block);
+ if (b) {
+ __free_buffer_wake(new_b);
+ goto found_buffer;
+ }
+
+ __check_watermark(c, write_list);
+
+ b = new_b;
+ b->hold_count = 1;
+ b->read_error = 0;
+ b->write_error = 0;
+ __link_buffer(b, block, LIST_CLEAN);
+
+ if (nf == NF_FRESH) {
+ b->state = 0;
+ return b;
+ }
+
+ b->state = 1 << B_READING;
+ *need_submit = 1;
+
+ return b;
+
+found_buffer:
+ if (nf == NF_PREFETCH)
+ return NULL;
+ /*
+ * Note: it is essential that we don't wait for the buffer to be
+ * read if dm_bufio_get function is used. Both dm_bufio_get and
+ * dm_bufio_prefetch can be used in the driver request routine.
+ * If the user called both dm_bufio_prefetch and dm_bufio_get on
+ * the same buffer, it would deadlock if we waited.
+ */
+ if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state)))
+ return NULL;
+
+ b->hold_count++;
+ __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
+ test_bit(B_WRITING, &b->state));
+ return b;
+}
+
+/*
+ * The endio routine for reading: set the error, clear the bit and wake up
+ * anyone waiting on the buffer.
+ */
+static void read_endio(struct dm_buffer *b, blk_status_t status)
+{
+ b->read_error = status;
+
+ BUG_ON(!test_bit(B_READING, &b->state));
+
+ smp_mb__before_atomic();
+ clear_bit(B_READING, &b->state);
+ smp_mb__after_atomic();
+
+ wake_up_bit(&b->state, B_READING);
+}
+
+/*
+ * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
+ * functions is similar except that dm_bufio_new doesn't read the
+ * buffer from the disk (assuming that the caller overwrites all the data
+ * and uses dm_bufio_mark_buffer_dirty to write new data back).
+ */
+static void *new_read(struct dm_bufio_client *c, sector_t block,
+ enum new_flag nf, struct dm_buffer **bp)
+{
+ int need_submit;
+ struct dm_buffer *b;
+
+ LIST_HEAD(write_list);
+
+ dm_bufio_lock(c);
+ b = __bufio_new(c, block, nf, &need_submit, &write_list);
+#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
+ if (b && b->hold_count == 1)
+ buffer_record_stack(b);
+#endif
+ dm_bufio_unlock(c);
+
+ __flush_write_list(&write_list);
+
+ if (!b)
+ return NULL;
+
+ if (need_submit)
+ submit_io(b, REQ_OP_READ, read_endio);
+
+ wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
+
+ if (b->read_error) {
+ int error = blk_status_to_errno(b->read_error);
+
+ dm_bufio_release(b);
+
+ return ERR_PTR(error);
+ }
+
+ *bp = b;
+
+ return b->data;
+}
+
+void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
+ struct dm_buffer **bp)
+{
+ return new_read(c, block, NF_GET, bp);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_get);
+
+void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
+ struct dm_buffer **bp)
+{
+ BUG_ON(dm_bufio_in_request());
+
+ return new_read(c, block, NF_READ, bp);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_read);
+
+void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
+ struct dm_buffer **bp)
+{
+ BUG_ON(dm_bufio_in_request());
+
+ return new_read(c, block, NF_FRESH, bp);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_new);
+
+void dm_bufio_prefetch(struct dm_bufio_client *c,
+ sector_t block, unsigned int n_blocks)
+{
+ struct blk_plug plug;
+
+ LIST_HEAD(write_list);
+
+ BUG_ON(dm_bufio_in_request());
+
+ blk_start_plug(&plug);
+ dm_bufio_lock(c);
+
+ for (; n_blocks--; block++) {
+ int need_submit;
+ struct dm_buffer *b;
+ b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
+ &write_list);
+ if (unlikely(!list_empty(&write_list))) {
+ dm_bufio_unlock(c);
+ blk_finish_plug(&plug);
+ __flush_write_list(&write_list);
+ blk_start_plug(&plug);
+ dm_bufio_lock(c);
+ }
+ if (unlikely(b != NULL)) {
+ dm_bufio_unlock(c);
+
+ if (need_submit)
+ submit_io(b, REQ_OP_READ, read_endio);
+ dm_bufio_release(b);
+
+ cond_resched();
+
+ if (!n_blocks)
+ goto flush_plug;
+ dm_bufio_lock(c);
+ }
+ }
+
+ dm_bufio_unlock(c);
+
+flush_plug:
+ blk_finish_plug(&plug);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
+
+void dm_bufio_release(struct dm_buffer *b)
+{
+ struct dm_bufio_client *c = b->c;
+
+ dm_bufio_lock(c);
+
+ BUG_ON(!b->hold_count);
+
+ b->hold_count--;
+ if (!b->hold_count) {
+ wake_up(&c->free_buffer_wait);
+
+ /*
+ * If there were errors on the buffer, and the buffer is not
+ * to be written, free the buffer. There is no point in caching
+ * invalid buffer.
+ */
+ if ((b->read_error || b->write_error) &&
+ !test_bit_acquire(B_READING, &b->state) &&
+ !test_bit(B_WRITING, &b->state) &&
+ !test_bit(B_DIRTY, &b->state)) {
+ __unlink_buffer(b);
+ __free_buffer_wake(b);
+ }
+ }
+
+ dm_bufio_unlock(c);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_release);
+
+void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
+ unsigned int start, unsigned int end)
+{
+ struct dm_bufio_client *c = b->c;
+
+ BUG_ON(start >= end);
+ BUG_ON(end > b->c->block_size);
+
+ dm_bufio_lock(c);
+
+ BUG_ON(test_bit(B_READING, &b->state));
+
+ if (!test_and_set_bit(B_DIRTY, &b->state)) {
+ b->dirty_start = start;
+ b->dirty_end = end;
+ __relink_lru(b, LIST_DIRTY);
+ } else {
+ if (start < b->dirty_start)
+ b->dirty_start = start;
+ if (end > b->dirty_end)
+ b->dirty_end = end;
+ }
+
+ dm_bufio_unlock(c);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
+
+void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
+{
+ dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
+
+void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
+{
+ LIST_HEAD(write_list);
+
+ BUG_ON(dm_bufio_in_request());
+
+ dm_bufio_lock(c);
+ __write_dirty_buffers_async(c, 0, &write_list);
+ dm_bufio_unlock(c);
+ __flush_write_list(&write_list);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
+
+/*
+ * For performance, it is essential that the buffers are written asynchronously
+ * and simultaneously (so that the block layer can merge the writes) and then
+ * waited upon.
+ *
+ * Finally, we flush hardware disk cache.
+ */
+int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
+{
+ int a, f;
+ unsigned long buffers_processed = 0;
+ struct dm_buffer *b, *tmp;
+
+ LIST_HEAD(write_list);
+
+ dm_bufio_lock(c);
+ __write_dirty_buffers_async(c, 0, &write_list);
+ dm_bufio_unlock(c);
+ __flush_write_list(&write_list);
+ dm_bufio_lock(c);
+
+again:
+ list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
+ int dropped_lock = 0;
+
+ if (buffers_processed < c->n_buffers[LIST_DIRTY])
+ buffers_processed++;
+
+ BUG_ON(test_bit(B_READING, &b->state));
+
+ if (test_bit(B_WRITING, &b->state)) {
+ if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
+ dropped_lock = 1;
+ b->hold_count++;
+ dm_bufio_unlock(c);
+ wait_on_bit_io(&b->state, B_WRITING,
+ TASK_UNINTERRUPTIBLE);
+ dm_bufio_lock(c);
+ b->hold_count--;
+ } else
+ wait_on_bit_io(&b->state, B_WRITING,
+ TASK_UNINTERRUPTIBLE);
+ }
+
+ if (!test_bit(B_DIRTY, &b->state) &&
+ !test_bit(B_WRITING, &b->state))
+ __relink_lru(b, LIST_CLEAN);
+
+ cond_resched();
+
+ /*
+ * If we dropped the lock, the list is no longer consistent,
+ * so we must restart the search.
+ *
+ * In the most common case, the buffer just processed is
+ * relinked to the clean list, so we won't loop scanning the
+ * same buffer again and again.
+ *
+ * This may livelock if there is another thread simultaneously
+ * dirtying buffers, so we count the number of buffers walked
+ * and if it exceeds the total number of buffers, it means that
+ * someone is doing some writes simultaneously with us. In
+ * this case, stop, dropping the lock.
+ */
+ if (dropped_lock)
+ goto again;
+ }
+ wake_up(&c->free_buffer_wait);
+ dm_bufio_unlock(c);
+
+ a = xchg(&c->async_write_error, 0);
+ f = dm_bufio_issue_flush(c);
+ if (a)
+ return a;
+
+ return f;
+}
+EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
+
+/*
+ * Use dm-io to send an empty barrier to flush the device.
+ */
+int dm_bufio_issue_flush(struct dm_bufio_client *c)
+{
+ struct dm_io_request io_req = {
+ .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
+ .mem.type = DM_IO_KMEM,
+ .mem.ptr.addr = NULL,
+ .client = c->dm_io,
+ };
+ struct dm_io_region io_reg = {
+ .bdev = c->bdev,
+ .sector = 0,
+ .count = 0,
+ };
+
+ BUG_ON(dm_bufio_in_request());
+
+ return dm_io(&io_req, 1, &io_reg, NULL);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
+
+/*
+ * Use dm-io to send a discard request to flush the device.
+ */
+int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
+{
+ struct dm_io_request io_req = {
+ .bi_opf = REQ_OP_DISCARD | REQ_SYNC,
+ .mem.type = DM_IO_KMEM,
+ .mem.ptr.addr = NULL,
+ .client = c->dm_io,
+ };
+ struct dm_io_region io_reg = {
+ .bdev = c->bdev,
+ .sector = block_to_sector(c, block),
+ .count = block_to_sector(c, count),
+ };
+
+ BUG_ON(dm_bufio_in_request());
+
+ return dm_io(&io_req, 1, &io_reg, NULL);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
+
+/*
+ * We first delete any other buffer that may be at that new location.
+ *
+ * Then, we write the buffer to the original location if it was dirty.
+ *
+ * Then, if we are the only one who is holding the buffer, relink the buffer
+ * in the buffer tree for the new location.
+ *
+ * If there was someone else holding the buffer, we write it to the new
+ * location but not relink it, because that other user needs to have the buffer
+ * at the same place.
+ */
+void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
+{
+ struct dm_bufio_client *c = b->c;
+ struct dm_buffer *new;
+
+ BUG_ON(dm_bufio_in_request());
+
+ dm_bufio_lock(c);
+
+retry:
+ new = __find(c, new_block);
+ if (new) {
+ if (new->hold_count) {
+ __wait_for_free_buffer(c);
+ goto retry;
+ }
+
+ /*
+ * FIXME: Is there any point waiting for a write that's going
+ * to be overwritten in a bit?
+ */
+ __make_buffer_clean(new);
+ __unlink_buffer(new);
+ __free_buffer_wake(new);
+ }
+
+ BUG_ON(!b->hold_count);
+ BUG_ON(test_bit(B_READING, &b->state));
+
+ __write_dirty_buffer(b, NULL);
+ if (b->hold_count == 1) {
+ wait_on_bit_io(&b->state, B_WRITING,
+ TASK_UNINTERRUPTIBLE);
+ set_bit(B_DIRTY, &b->state);
+ b->dirty_start = 0;
+ b->dirty_end = c->block_size;
+ __unlink_buffer(b);
+ __link_buffer(b, new_block, LIST_DIRTY);
+ } else {
+ sector_t old_block;
+ wait_on_bit_lock_io(&b->state, B_WRITING,
+ TASK_UNINTERRUPTIBLE);
+ /*
+ * Relink buffer to "new_block" so that write_callback
+ * sees "new_block" as a block number.
+ * After the write, link the buffer back to old_block.
+ * All this must be done in bufio lock, so that block number
+ * change isn't visible to other threads.
+ */
+ old_block = b->block;
+ __unlink_buffer(b);
+ __link_buffer(b, new_block, b->list_mode);
+ submit_io(b, REQ_OP_WRITE, write_endio);
+ wait_on_bit_io(&b->state, B_WRITING,
+ TASK_UNINTERRUPTIBLE);
+ __unlink_buffer(b);
+ __link_buffer(b, old_block, b->list_mode);
+ }
+
+ dm_bufio_unlock(c);
+ dm_bufio_release(b);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_release_move);
+
+static void forget_buffer_locked(struct dm_buffer *b)
+{
+ if (likely(!b->hold_count) && likely(!smp_load_acquire(&b->state))) {
+ __unlink_buffer(b);
+ __free_buffer_wake(b);
+ }
+}
+
+/*
+ * Free the given buffer.
+ *
+ * This is just a hint, if the buffer is in use or dirty, this function
+ * does nothing.
+ */
+void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
+{
+ struct dm_buffer *b;
+
+ dm_bufio_lock(c);
+
+ b = __find(c, block);
+ if (b)
+ forget_buffer_locked(b);
+
+ dm_bufio_unlock(c);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_forget);
+
+void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
+{
+ struct dm_buffer *b;
+ sector_t end_block = block + n_blocks;
+
+ while (block < end_block) {
+ dm_bufio_lock(c);
+
+ b = __find_next(c, block);
+ if (b) {
+ block = b->block + 1;
+ forget_buffer_locked(b);
+ }
+
+ dm_bufio_unlock(c);
+
+ if (!b)
+ break;
+ }
+
+}
+EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
+
+void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n)
+{
+ c->minimum_buffers = n;
+}
+EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
+
+unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c)
+{
+ return c->block_size;
+}
+EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
+
+sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
+{
+ sector_t s = bdev_nr_sectors(c->bdev);
+ if (s >= c->start)
+ s -= c->start;
+ else
+ s = 0;
+ if (likely(c->sectors_per_block_bits >= 0))
+ s >>= c->sectors_per_block_bits;
+ else
+ sector_div(s, c->block_size >> SECTOR_SHIFT);
+ return s;
+}
+EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
+
+struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
+{
+ return c->dm_io;
+}
+EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
+
+sector_t dm_bufio_get_block_number(struct dm_buffer *b)
+{
+ return b->block;
+}
+EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
+
+void *dm_bufio_get_block_data(struct dm_buffer *b)
+{
+ return b->data;
+}
+EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
+
+void *dm_bufio_get_aux_data(struct dm_buffer *b)
+{
+ return b + 1;
+}
+EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
+
+struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
+{
+ return b->c;
+}
+EXPORT_SYMBOL_GPL(dm_bufio_get_client);
+
+static void drop_buffers(struct dm_bufio_client *c)
+{
+ struct dm_buffer *b;
+ int i;
+ bool warned = false;
+
+ BUG_ON(dm_bufio_in_request());
+
+ /*
+ * An optimization so that the buffers are not written one-by-one.
+ */
+ dm_bufio_write_dirty_buffers_async(c);
+
+ dm_bufio_lock(c);
+
+ while ((b = __get_unclaimed_buffer(c)))
+ __free_buffer_wake(b);
+
+ for (i = 0; i < LIST_SIZE; i++)
+ list_for_each_entry(b, &c->lru[i], lru_list) {
+ WARN_ON(!warned);
+ warned = true;
+ DMERR("leaked buffer %llx, hold count %u, list %d",
+ (unsigned long long)b->block, b->hold_count, i);
+#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
+ stack_trace_print(b->stack_entries, b->stack_len, 1);
+ /* mark unclaimed to avoid BUG_ON below */
+ b->hold_count = 0;
+#endif
+ }
+
+#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
+ while ((b = __get_unclaimed_buffer(c)))
+ __free_buffer_wake(b);
+#endif
+
+ for (i = 0; i < LIST_SIZE; i++)
+ BUG_ON(!list_empty(&c->lru[i]));
+
+ dm_bufio_unlock(c);
+}
+
+/*
+ * We may not be able to evict this buffer if IO pending or the client
+ * is still using it. Caller is expected to know buffer is too old.
+ *
+ * And if GFP_NOFS is used, we must not do any I/O because we hold
+ * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
+ * rerouted to different bufio client.
+ */
+static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
+{
+ if (!(gfp & __GFP_FS) ||
+ (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) {
+ if (test_bit_acquire(B_READING, &b->state) ||
+ test_bit(B_WRITING, &b->state) ||
+ test_bit(B_DIRTY, &b->state))
+ return false;
+ }
+
+ if (b->hold_count)
+ return false;
+
+ __make_buffer_clean(b);
+ __unlink_buffer(b);
+ __free_buffer_wake(b);
+
+ return true;
+}
+
+static unsigned long get_retain_buffers(struct dm_bufio_client *c)
+{
+ unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
+ if (likely(c->sectors_per_block_bits >= 0))
+ retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
+ else
+ retain_bytes /= c->block_size;
+ return retain_bytes;
+}
+
+static void __scan(struct dm_bufio_client *c)
+{
+ int l;
+ struct dm_buffer *b, *tmp;
+ unsigned long freed = 0;
+ unsigned long count = c->n_buffers[LIST_CLEAN] +
+ c->n_buffers[LIST_DIRTY];
+ unsigned long retain_target = get_retain_buffers(c);
+
+ for (l = 0; l < LIST_SIZE; l++) {
+ list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
+ if (count - freed <= retain_target)
+ atomic_long_set(&c->need_shrink, 0);
+ if (!atomic_long_read(&c->need_shrink))
+ return;
+ if (__try_evict_buffer(b, GFP_KERNEL)) {
+ atomic_long_dec(&c->need_shrink);
+ freed++;
+ }
+ cond_resched();
+ }
+ }
+}
+
+static void shrink_work(struct work_struct *w)
+{
+ struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
+
+ dm_bufio_lock(c);
+ __scan(c);
+ dm_bufio_unlock(c);
+}
+
+static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
+{
+ struct dm_bufio_client *c;
+
+ c = container_of(shrink, struct dm_bufio_client, shrinker);
+ atomic_long_add(sc->nr_to_scan, &c->need_shrink);
+ queue_work(dm_bufio_wq, &c->shrink_work);
+
+ return sc->nr_to_scan;
+}
+
+static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
+{
+ struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
+ unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
+ READ_ONCE(c->n_buffers[LIST_DIRTY]);
+ unsigned long retain_target = get_retain_buffers(c);
+ unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
+
+ if (unlikely(count < retain_target))
+ count = 0;
+ else
+ count -= retain_target;
+
+ if (unlikely(count < queued_for_cleanup))
+ count = 0;
+ else
+ count -= queued_for_cleanup;
+
+ return count;
+}
+
+/*
+ * Create the buffering interface
+ */
+struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size,
+ unsigned int reserved_buffers, unsigned int aux_size,
+ void (*alloc_callback)(struct dm_buffer *),
+ void (*write_callback)(struct dm_buffer *),
+ unsigned int flags)
+{
+ int r;
+ struct dm_bufio_client *c;
+ unsigned int i;
+ char slab_name[27];
+
+ if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
+ DMERR("%s: block size not specified or is not multiple of 512b", __func__);
+ r = -EINVAL;
+ goto bad_client;
+ }
+
+ c = kzalloc(sizeof(*c), GFP_KERNEL);
+ if (!c) {
+ r = -ENOMEM;
+ goto bad_client;
+ }
+ c->buffer_tree = RB_ROOT;
+
+ c->bdev = bdev;
+ c->block_size = block_size;
+ if (is_power_of_2(block_size))
+ c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
+ else
+ c->sectors_per_block_bits = -1;
+
+ c->alloc_callback = alloc_callback;
+ c->write_callback = write_callback;
+
+ if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
+ c->no_sleep = true;
+ static_branch_inc(&no_sleep_enabled);
+ }
+
+ for (i = 0; i < LIST_SIZE; i++) {
+ INIT_LIST_HEAD(&c->lru[i]);
+ c->n_buffers[i] = 0;
+ }
+
+ mutex_init(&c->lock);
+ spin_lock_init(&c->spinlock);
+ INIT_LIST_HEAD(&c->reserved_buffers);
+ c->need_reserved_buffers = reserved_buffers;
+
+ dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
+
+ init_waitqueue_head(&c->free_buffer_wait);
+ c->async_write_error = 0;
+
+ c->dm_io = dm_io_client_create();
+ if (IS_ERR(c->dm_io)) {
+ r = PTR_ERR(c->dm_io);
+ goto bad_dm_io;
+ }
+
+ if (block_size <= KMALLOC_MAX_SIZE &&
+ (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
+ unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE);
+ snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
+ c->slab_cache = kmem_cache_create(slab_name, block_size, align,
+ SLAB_RECLAIM_ACCOUNT, NULL);
+ if (!c->slab_cache) {
+ r = -ENOMEM;
+ goto bad;
+ }
+ }
+ if (aux_size)
+ snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
+ else
+ snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
+ c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
+ 0, SLAB_RECLAIM_ACCOUNT, NULL);
+ if (!c->slab_buffer) {
+ r = -ENOMEM;
+ goto bad;
+ }
+
+ while (c->need_reserved_buffers) {
+ struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
+
+ if (!b) {
+ r = -ENOMEM;
+ goto bad;
+ }
+ __free_buffer_wake(b);
+ }
+
+ INIT_WORK(&c->shrink_work, shrink_work);
+ atomic_long_set(&c->need_shrink, 0);
+
+ c->shrinker.count_objects = dm_bufio_shrink_count;
+ c->shrinker.scan_objects = dm_bufio_shrink_scan;
+ c->shrinker.seeks = 1;
+ c->shrinker.batch = 0;
+ r = register_shrinker(&c->shrinker, "dm-bufio:(%u:%u)",
+ MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
+ if (r)
+ goto bad;
+
+ mutex_lock(&dm_bufio_clients_lock);
+ dm_bufio_client_count++;
+ list_add(&c->client_list, &dm_bufio_all_clients);
+ __cache_size_refresh();
+ mutex_unlock(&dm_bufio_clients_lock);
+
+ return c;
+
+bad:
+ while (!list_empty(&c->reserved_buffers)) {
+ struct dm_buffer *b = list_entry(c->reserved_buffers.next,
+ struct dm_buffer, lru_list);
+ list_del(&b->lru_list);
+ free_buffer(b);
+ }
+ kmem_cache_destroy(c->slab_cache);
+ kmem_cache_destroy(c->slab_buffer);
+ dm_io_client_destroy(c->dm_io);
+bad_dm_io:
+ mutex_destroy(&c->lock);
+ if (c->no_sleep)
+ static_branch_dec(&no_sleep_enabled);
+ kfree(c);
+bad_client:
+ return ERR_PTR(r);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_client_create);
+
+/*
+ * Free the buffering interface.
+ * It is required that there are no references on any buffers.
+ */
+void dm_bufio_client_destroy(struct dm_bufio_client *c)
+{
+ unsigned int i;
+
+ drop_buffers(c);
+
+ unregister_shrinker(&c->shrinker);
+ flush_work(&c->shrink_work);
+
+ mutex_lock(&dm_bufio_clients_lock);
+
+ list_del(&c->client_list);
+ dm_bufio_client_count--;
+ __cache_size_refresh();
+
+ mutex_unlock(&dm_bufio_clients_lock);
+
+ BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
+ BUG_ON(c->need_reserved_buffers);
+
+ while (!list_empty(&c->reserved_buffers)) {
+ struct dm_buffer *b = list_entry(c->reserved_buffers.next,
+ struct dm_buffer, lru_list);
+ list_del(&b->lru_list);
+ free_buffer(b);
+ }
+
+ for (i = 0; i < LIST_SIZE; i++)
+ if (c->n_buffers[i])
+ DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
+
+ for (i = 0; i < LIST_SIZE; i++)
+ BUG_ON(c->n_buffers[i]);
+
+ kmem_cache_destroy(c->slab_cache);
+ kmem_cache_destroy(c->slab_buffer);
+ dm_io_client_destroy(c->dm_io);
+ mutex_destroy(&c->lock);
+ if (c->no_sleep)
+ static_branch_dec(&no_sleep_enabled);
+ kfree(c);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
+
+void dm_bufio_client_reset(struct dm_bufio_client *c)
+{
+ drop_buffers(c);
+ flush_work(&c->shrink_work);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_client_reset);
+
+void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
+{
+ c->start = start;
+}
+EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
+
+static unsigned int get_max_age_hz(void)
+{
+ unsigned int max_age = READ_ONCE(dm_bufio_max_age);
+
+ if (max_age > UINT_MAX / HZ)
+ max_age = UINT_MAX / HZ;
+
+ return max_age * HZ;
+}
+
+static bool older_than(struct dm_buffer *b, unsigned long age_hz)
+{
+ return time_after_eq(jiffies, b->last_accessed + age_hz);
+}
+
+static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
+{
+ struct dm_buffer *b, *tmp;
+ unsigned long retain_target = get_retain_buffers(c);
+ unsigned long count;
+ LIST_HEAD(write_list);
+
+ dm_bufio_lock(c);
+
+ __check_watermark(c, &write_list);
+ if (unlikely(!list_empty(&write_list))) {
+ dm_bufio_unlock(c);
+ __flush_write_list(&write_list);
+ dm_bufio_lock(c);
+ }
+
+ count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
+ list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
+ if (count <= retain_target)
+ break;
+
+ if (!older_than(b, age_hz))
+ break;
+
+ if (__try_evict_buffer(b, 0))
+ count--;
+
+ cond_resched();
+ }
+
+ dm_bufio_unlock(c);
+}
+
+static void do_global_cleanup(struct work_struct *w)
+{
+ struct dm_bufio_client *locked_client = NULL;
+ struct dm_bufio_client *current_client;
+ struct dm_buffer *b;
+ unsigned int spinlock_hold_count;
+ unsigned long threshold = dm_bufio_cache_size -
+ dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
+ unsigned long loops = global_num * 2;
+
+ mutex_lock(&dm_bufio_clients_lock);
+
+ while (1) {
+ cond_resched();
+
+ spin_lock(&global_spinlock);
+ if (unlikely(dm_bufio_current_allocated <= threshold))
+ break;
+
+ spinlock_hold_count = 0;
+get_next:
+ if (!loops--)
+ break;
+ if (unlikely(list_empty(&global_queue)))
+ break;
+ b = list_entry(global_queue.prev, struct dm_buffer, global_list);
+
+ if (b->accessed) {
+ b->accessed = 0;
+ list_move(&b->global_list, &global_queue);
+ if (likely(++spinlock_hold_count < 16))
+ goto get_next;
+ spin_unlock(&global_spinlock);
+ continue;
+ }
+
+ current_client = b->c;
+ if (unlikely(current_client != locked_client)) {
+ if (locked_client)
+ dm_bufio_unlock(locked_client);
+
+ if (!dm_bufio_trylock(current_client)) {
+ spin_unlock(&global_spinlock);
+ dm_bufio_lock(current_client);
+ locked_client = current_client;
+ continue;
+ }
+
+ locked_client = current_client;
+ }
+
+ spin_unlock(&global_spinlock);
+
+ if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) {
+ spin_lock(&global_spinlock);
+ list_move(&b->global_list, &global_queue);
+ spin_unlock(&global_spinlock);
+ }
+ }
+
+ spin_unlock(&global_spinlock);
+
+ if (locked_client)
+ dm_bufio_unlock(locked_client);
+
+ mutex_unlock(&dm_bufio_clients_lock);
+}
+
+static void cleanup_old_buffers(void)
+{
+ unsigned long max_age_hz = get_max_age_hz();
+ struct dm_bufio_client *c;
+
+ mutex_lock(&dm_bufio_clients_lock);
+
+ __cache_size_refresh();
+
+ list_for_each_entry(c, &dm_bufio_all_clients, client_list)
+ __evict_old_buffers(c, max_age_hz);
+
+ mutex_unlock(&dm_bufio_clients_lock);
+}
+
+static void work_fn(struct work_struct *w)
+{
+ cleanup_old_buffers();
+
+ queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
+ DM_BUFIO_WORK_TIMER_SECS * HZ);
+}
+
+/*----------------------------------------------------------------
+ * Module setup
+ *--------------------------------------------------------------*/
+
+/*
+ * This is called only once for the whole dm_bufio module.
+ * It initializes memory limit.
+ */
+static int __init dm_bufio_init(void)
+{
+ __u64 mem;
+
+ dm_bufio_allocated_kmem_cache = 0;
+ dm_bufio_allocated_get_free_pages = 0;
+ dm_bufio_allocated_vmalloc = 0;
+ dm_bufio_current_allocated = 0;
+
+ mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
+ DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
+
+ if (mem > ULONG_MAX)
+ mem = ULONG_MAX;
+
+#ifdef CONFIG_MMU
+ if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
+ mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
+#endif
+
+ dm_bufio_default_cache_size = mem;
+
+ mutex_lock(&dm_bufio_clients_lock);
+ __cache_size_refresh();
+ mutex_unlock(&dm_bufio_clients_lock);
+
+ dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
+ if (!dm_bufio_wq)
+ return -ENOMEM;
+
+ INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
+ INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
+ queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
+ DM_BUFIO_WORK_TIMER_SECS * HZ);
+
+ return 0;
+}
+
+/*
+ * This is called once when unloading the dm_bufio module.
+ */
+static void __exit dm_bufio_exit(void)
+{
+ int bug = 0;
+
+ cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
+ destroy_workqueue(dm_bufio_wq);
+
+ if (dm_bufio_client_count) {
+ DMCRIT("%s: dm_bufio_client_count leaked: %d",
+ __func__, dm_bufio_client_count);
+ bug = 1;
+ }
+
+ if (dm_bufio_current_allocated) {
+ DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
+ __func__, dm_bufio_current_allocated);
+ bug = 1;
+ }
+
+ if (dm_bufio_allocated_get_free_pages) {
+ DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
+ __func__, dm_bufio_allocated_get_free_pages);
+ bug = 1;
+ }
+
+ if (dm_bufio_allocated_vmalloc) {
+ DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
+ __func__, dm_bufio_allocated_vmalloc);
+ bug = 1;
+ }
+
+ BUG_ON(bug);
+}
+
+module_init(dm_bufio_init)
+module_exit(dm_bufio_exit)
+
+module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
+
+module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
+
+module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
+
+module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
+
+module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
+MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
+
+module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
+MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
+
+module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
+MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
+
+module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
+MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
+
+MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
+MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-builtin.c b/drivers/md/dm-builtin.c
new file mode 100644
index 000000000..8eb52e425
--- /dev/null
+++ b/drivers/md/dm-builtin.c
@@ -0,0 +1,49 @@
+// SPDX-License-Identifier: GPL-2.0
+#include "dm-core.h"
+
+/*
+ * The kobject release method must not be placed in the module itself,
+ * otherwise we are subject to module unload races.
+ *
+ * The release method is called when the last reference to the kobject is
+ * dropped. It may be called by any other kernel code that drops the last
+ * reference.
+ *
+ * The release method suffers from module unload race. We may prevent the
+ * module from being unloaded at the start of the release method (using
+ * increased module reference count or synchronizing against the release
+ * method), however there is no way to prevent the module from being
+ * unloaded at the end of the release method.
+ *
+ * If this code were placed in the dm module, the following race may
+ * happen:
+ * 1. Some other process takes a reference to dm kobject
+ * 2. The user issues ioctl function to unload the dm device
+ * 3. dm_sysfs_exit calls kobject_put, however the object is not released
+ * because of the other reference taken at step 1
+ * 4. dm_sysfs_exit waits on the completion
+ * 5. The other process that took the reference in step 1 drops it,
+ * dm_kobject_release is called from this process
+ * 6. dm_kobject_release calls complete()
+ * 7. a reschedule happens before dm_kobject_release returns
+ * 8. dm_sysfs_exit continues, the dm device is unloaded, module reference
+ * count is decremented
+ * 9. The user unloads the dm module
+ * 10. The other process that was rescheduled in step 7 continues to run,
+ * it is now executing code in unloaded module, so it crashes
+ *
+ * Note that if the process that takes the foreign reference to dm kobject
+ * has a low priority and the system is sufficiently loaded with
+ * higher-priority processes that prevent the low-priority process from
+ * being scheduled long enough, this bug may really happen.
+ *
+ * In order to fix this module unload race, we place the release method
+ * into a helper code that is compiled directly into the kernel.
+ */
+
+void dm_kobject_release(struct kobject *kobj)
+{
+ complete(dm_get_completion_from_kobject(kobj));
+}
+
+EXPORT_SYMBOL(dm_kobject_release);
diff --git a/drivers/md/dm-cache-background-tracker.c b/drivers/md/dm-cache-background-tracker.c
new file mode 100644
index 000000000..c606e6bfc
--- /dev/null
+++ b/drivers/md/dm-cache-background-tracker.c
@@ -0,0 +1,257 @@
+/*
+ * Copyright (C) 2017 Red Hat. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-cache-background-tracker.h"
+
+/*----------------------------------------------------------------*/
+
+#define DM_MSG_PREFIX "dm-background-tracker"
+
+struct bt_work {
+ struct list_head list;
+ struct rb_node node;
+ struct policy_work work;
+};
+
+struct background_tracker {
+ unsigned int max_work;
+ atomic_t pending_promotes;
+ atomic_t pending_writebacks;
+ atomic_t pending_demotes;
+
+ struct list_head issued;
+ struct list_head queued;
+ struct rb_root pending;
+
+ struct kmem_cache *work_cache;
+};
+
+struct background_tracker *btracker_create(unsigned int max_work)
+{
+ struct background_tracker *b = kmalloc(sizeof(*b), GFP_KERNEL);
+
+ if (!b) {
+ DMERR("couldn't create background_tracker");
+ return NULL;
+ }
+
+ b->max_work = max_work;
+ atomic_set(&b->pending_promotes, 0);
+ atomic_set(&b->pending_writebacks, 0);
+ atomic_set(&b->pending_demotes, 0);
+
+ INIT_LIST_HEAD(&b->issued);
+ INIT_LIST_HEAD(&b->queued);
+
+ b->pending = RB_ROOT;
+ b->work_cache = KMEM_CACHE(bt_work, 0);
+ if (!b->work_cache) {
+ DMERR("couldn't create mempool for background work items");
+ kfree(b);
+ b = NULL;
+ }
+
+ return b;
+}
+EXPORT_SYMBOL_GPL(btracker_create);
+
+void btracker_destroy(struct background_tracker *b)
+{
+ struct bt_work *w, *tmp;
+
+ BUG_ON(!list_empty(&b->issued));
+ list_for_each_entry_safe (w, tmp, &b->queued, list) {
+ list_del(&w->list);
+ kmem_cache_free(b->work_cache, w);
+ }
+
+ kmem_cache_destroy(b->work_cache);
+ kfree(b);
+}
+EXPORT_SYMBOL_GPL(btracker_destroy);
+
+static int cmp_oblock(dm_oblock_t lhs, dm_oblock_t rhs)
+{
+ if (from_oblock(lhs) < from_oblock(rhs))
+ return -1;
+
+ if (from_oblock(rhs) < from_oblock(lhs))
+ return 1;
+
+ return 0;
+}
+
+static bool __insert_pending(struct background_tracker *b,
+ struct bt_work *nw)
+{
+ int cmp;
+ struct bt_work *w;
+ struct rb_node **new = &b->pending.rb_node, *parent = NULL;
+
+ while (*new) {
+ w = container_of(*new, struct bt_work, node);
+
+ parent = *new;
+ cmp = cmp_oblock(w->work.oblock, nw->work.oblock);
+ if (cmp < 0)
+ new = &((*new)->rb_left);
+
+ else if (cmp > 0)
+ new = &((*new)->rb_right);
+
+ else
+ /* already present */
+ return false;
+ }
+
+ rb_link_node(&nw->node, parent, new);
+ rb_insert_color(&nw->node, &b->pending);
+
+ return true;
+}
+
+static struct bt_work *__find_pending(struct background_tracker *b,
+ dm_oblock_t oblock)
+{
+ int cmp;
+ struct bt_work *w;
+ struct rb_node **new = &b->pending.rb_node;
+
+ while (*new) {
+ w = container_of(*new, struct bt_work, node);
+
+ cmp = cmp_oblock(w->work.oblock, oblock);
+ if (cmp < 0)
+ new = &((*new)->rb_left);
+
+ else if (cmp > 0)
+ new = &((*new)->rb_right);
+
+ else
+ break;
+ }
+
+ return *new ? w : NULL;
+}
+
+
+static void update_stats(struct background_tracker *b, struct policy_work *w, int delta)
+{
+ switch (w->op) {
+ case POLICY_PROMOTE:
+ atomic_add(delta, &b->pending_promotes);
+ break;
+
+ case POLICY_DEMOTE:
+ atomic_add(delta, &b->pending_demotes);
+ break;
+
+ case POLICY_WRITEBACK:
+ atomic_add(delta, &b->pending_writebacks);
+ break;
+ }
+}
+
+unsigned int btracker_nr_writebacks_queued(struct background_tracker *b)
+{
+ return atomic_read(&b->pending_writebacks);
+}
+EXPORT_SYMBOL_GPL(btracker_nr_writebacks_queued);
+
+unsigned int btracker_nr_demotions_queued(struct background_tracker *b)
+{
+ return atomic_read(&b->pending_demotes);
+}
+EXPORT_SYMBOL_GPL(btracker_nr_demotions_queued);
+
+static bool max_work_reached(struct background_tracker *b)
+{
+ return atomic_read(&b->pending_promotes) +
+ atomic_read(&b->pending_writebacks) +
+ atomic_read(&b->pending_demotes) >= b->max_work;
+}
+
+static struct bt_work *alloc_work(struct background_tracker *b)
+{
+ if (max_work_reached(b))
+ return NULL;
+
+ return kmem_cache_alloc(b->work_cache, GFP_NOWAIT);
+}
+
+int btracker_queue(struct background_tracker *b,
+ struct policy_work *work,
+ struct policy_work **pwork)
+{
+ struct bt_work *w;
+
+ if (pwork)
+ *pwork = NULL;
+
+ w = alloc_work(b);
+ if (!w)
+ return -ENOMEM;
+
+ memcpy(&w->work, work, sizeof(*work));
+
+ if (!__insert_pending(b, w)) {
+ /*
+ * There was a race, we'll just ignore this second
+ * bit of work for the same oblock.
+ */
+ kmem_cache_free(b->work_cache, w);
+ return -EINVAL;
+ }
+
+ if (pwork) {
+ *pwork = &w->work;
+ list_add(&w->list, &b->issued);
+ } else
+ list_add(&w->list, &b->queued);
+ update_stats(b, &w->work, 1);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(btracker_queue);
+
+/*
+ * Returns -ENODATA if there's no work.
+ */
+int btracker_issue(struct background_tracker *b, struct policy_work **work)
+{
+ struct bt_work *w;
+
+ if (list_empty(&b->queued))
+ return -ENODATA;
+
+ w = list_first_entry(&b->queued, struct bt_work, list);
+ list_move(&w->list, &b->issued);
+ *work = &w->work;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(btracker_issue);
+
+void btracker_complete(struct background_tracker *b,
+ struct policy_work *op)
+{
+ struct bt_work *w = container_of(op, struct bt_work, work);
+
+ update_stats(b, &w->work, -1);
+ rb_erase(&w->node, &b->pending);
+ list_del(&w->list);
+ kmem_cache_free(b->work_cache, w);
+}
+EXPORT_SYMBOL_GPL(btracker_complete);
+
+bool btracker_promotion_already_present(struct background_tracker *b,
+ dm_oblock_t oblock)
+{
+ return __find_pending(b, oblock) != NULL;
+}
+EXPORT_SYMBOL_GPL(btracker_promotion_already_present);
+
+/*----------------------------------------------------------------*/
diff --git a/drivers/md/dm-cache-background-tracker.h b/drivers/md/dm-cache-background-tracker.h
new file mode 100644
index 000000000..14d3d53dc
--- /dev/null
+++ b/drivers/md/dm-cache-background-tracker.h
@@ -0,0 +1,80 @@
+/*
+ * Copyright (C) 2017 Red Hat. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_CACHE_BACKGROUND_WORK_H
+#define DM_CACHE_BACKGROUND_WORK_H
+
+#include <linux/vmalloc.h>
+#include "dm-cache-policy.h"
+
+/*----------------------------------------------------------------*/
+
+/*
+ * The cache policy decides what background work should be performed,
+ * such as promotions, demotions and writebacks. The core cache target
+ * is in charge of performing the work, and does so when it sees fit.
+ *
+ * The background_tracker acts as a go between. Keeping track of future
+ * work that the policy has decided upon, and handing (issuing) it to
+ * the core target when requested.
+ *
+ * There is no locking in this, so calls will probably need to be
+ * protected with a spinlock.
+ */
+
+struct background_work;
+struct background_tracker;
+
+/*
+ * Create a new tracker, it will not be able to queue more than
+ * 'max_work' entries.
+ */
+struct background_tracker *btracker_create(unsigned int max_work);
+
+/*
+ * Destroy the tracker. No issued, but not complete, work should
+ * exist when this is called. It is fine to have queued but unissued
+ * work.
+ */
+void btracker_destroy(struct background_tracker *b);
+
+unsigned int btracker_nr_writebacks_queued(struct background_tracker *b);
+unsigned int btracker_nr_demotions_queued(struct background_tracker *b);
+
+/*
+ * Queue some work within the tracker. 'work' should point to the work
+ * to queue, this will be copied (ownership doesn't pass). If pwork
+ * is not NULL then it will be set to point to the tracker's internal
+ * copy of the work.
+ *
+ * returns -EINVAL iff the work is already queued. -ENOMEM if the work
+ * couldn't be queued for another reason.
+ */
+int btracker_queue(struct background_tracker *b,
+ struct policy_work *work,
+ struct policy_work **pwork);
+
+/*
+ * Hands out the next piece of work to be performed.
+ * Returns -ENODATA if there's no work.
+ */
+int btracker_issue(struct background_tracker *b, struct policy_work **work);
+
+/*
+ * Informs the tracker that the work has been completed and it may forget
+ * about it.
+ */
+void btracker_complete(struct background_tracker *b, struct policy_work *op);
+
+/*
+ * Predicate to see if an origin block is already scheduled for promotion.
+ */
+bool btracker_promotion_already_present(struct background_tracker *b,
+ dm_oblock_t oblock);
+
+/*----------------------------------------------------------------*/
+
+#endif
diff --git a/drivers/md/dm-cache-block-types.h b/drivers/md/dm-cache-block-types.h
new file mode 100644
index 000000000..389c9e8ac
--- /dev/null
+++ b/drivers/md/dm-cache-block-types.h
@@ -0,0 +1,54 @@
+/*
+ * Copyright (C) 2012 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_CACHE_BLOCK_TYPES_H
+#define DM_CACHE_BLOCK_TYPES_H
+
+#include "persistent-data/dm-block-manager.h"
+
+/*----------------------------------------------------------------*/
+
+/*
+ * It's helpful to get sparse to differentiate between indexes into the
+ * origin device, indexes into the cache device, and indexes into the
+ * discard bitset.
+ */
+
+typedef dm_block_t __bitwise dm_oblock_t;
+typedef uint32_t __bitwise dm_cblock_t;
+typedef dm_block_t __bitwise dm_dblock_t;
+
+static inline dm_oblock_t to_oblock(dm_block_t b)
+{
+ return (__force dm_oblock_t) b;
+}
+
+static inline dm_block_t from_oblock(dm_oblock_t b)
+{
+ return (__force dm_block_t) b;
+}
+
+static inline dm_cblock_t to_cblock(uint32_t b)
+{
+ return (__force dm_cblock_t) b;
+}
+
+static inline uint32_t from_cblock(dm_cblock_t b)
+{
+ return (__force uint32_t) b;
+}
+
+static inline dm_dblock_t to_dblock(dm_block_t b)
+{
+ return (__force dm_dblock_t) b;
+}
+
+static inline dm_block_t from_dblock(dm_dblock_t b)
+{
+ return (__force dm_block_t) b;
+}
+
+#endif /* DM_CACHE_BLOCK_TYPES_H */
diff --git a/drivers/md/dm-cache-metadata.c b/drivers/md/dm-cache-metadata.c
new file mode 100644
index 000000000..f5b4c996d
--- /dev/null
+++ b/drivers/md/dm-cache-metadata.c
@@ -0,0 +1,1860 @@
+/*
+ * Copyright (C) 2012 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-cache-metadata.h"
+
+#include "persistent-data/dm-array.h"
+#include "persistent-data/dm-bitset.h"
+#include "persistent-data/dm-space-map.h"
+#include "persistent-data/dm-space-map-disk.h"
+#include "persistent-data/dm-transaction-manager.h"
+
+#include <linux/device-mapper.h>
+#include <linux/refcount.h>
+
+/*----------------------------------------------------------------*/
+
+#define DM_MSG_PREFIX "cache metadata"
+
+#define CACHE_SUPERBLOCK_MAGIC 06142003
+#define CACHE_SUPERBLOCK_LOCATION 0
+
+/*
+ * defines a range of metadata versions that this module can handle.
+ */
+#define MIN_CACHE_VERSION 1
+#define MAX_CACHE_VERSION 2
+
+/*
+ * 3 for btree insert +
+ * 2 for btree lookup used within space map
+ */
+#define CACHE_MAX_CONCURRENT_LOCKS 5
+#define SPACE_MAP_ROOT_SIZE 128
+
+enum superblock_flag_bits {
+ /* for spotting crashes that would invalidate the dirty bitset */
+ CLEAN_SHUTDOWN,
+ /* metadata must be checked using the tools */
+ NEEDS_CHECK,
+};
+
+/*
+ * Each mapping from cache block -> origin block carries a set of flags.
+ */
+enum mapping_bits {
+ /*
+ * A valid mapping. Because we're using an array we clear this
+ * flag for an non existant mapping.
+ */
+ M_VALID = 1,
+
+ /*
+ * The data on the cache is different from that on the origin.
+ * This flag is only used by metadata format 1.
+ */
+ M_DIRTY = 2
+};
+
+struct cache_disk_superblock {
+ __le32 csum;
+ __le32 flags;
+ __le64 blocknr;
+
+ __u8 uuid[16];
+ __le64 magic;
+ __le32 version;
+
+ __u8 policy_name[CACHE_POLICY_NAME_SIZE];
+ __le32 policy_hint_size;
+
+ __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
+ __le64 mapping_root;
+ __le64 hint_root;
+
+ __le64 discard_root;
+ __le64 discard_block_size;
+ __le64 discard_nr_blocks;
+
+ __le32 data_block_size;
+ __le32 metadata_block_size;
+ __le32 cache_blocks;
+
+ __le32 compat_flags;
+ __le32 compat_ro_flags;
+ __le32 incompat_flags;
+
+ __le32 read_hits;
+ __le32 read_misses;
+ __le32 write_hits;
+ __le32 write_misses;
+
+ __le32 policy_version[CACHE_POLICY_VERSION_SIZE];
+
+ /*
+ * Metadata format 2 fields.
+ */
+ __le64 dirty_root;
+} __packed;
+
+struct dm_cache_metadata {
+ refcount_t ref_count;
+ struct list_head list;
+
+ unsigned int version;
+ struct block_device *bdev;
+ struct dm_block_manager *bm;
+ struct dm_space_map *metadata_sm;
+ struct dm_transaction_manager *tm;
+
+ struct dm_array_info info;
+ struct dm_array_info hint_info;
+ struct dm_disk_bitset discard_info;
+
+ struct rw_semaphore root_lock;
+ unsigned long flags;
+ dm_block_t root;
+ dm_block_t hint_root;
+ dm_block_t discard_root;
+
+ sector_t discard_block_size;
+ dm_dblock_t discard_nr_blocks;
+
+ sector_t data_block_size;
+ dm_cblock_t cache_blocks;
+ bool changed:1;
+ bool clean_when_opened:1;
+
+ char policy_name[CACHE_POLICY_NAME_SIZE];
+ unsigned int policy_version[CACHE_POLICY_VERSION_SIZE];
+ size_t policy_hint_size;
+ struct dm_cache_statistics stats;
+
+ /*
+ * Reading the space map root can fail, so we read it into this
+ * buffer before the superblock is locked and updated.
+ */
+ __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
+
+ /*
+ * Set if a transaction has to be aborted but the attempt to roll
+ * back to the previous (good) transaction failed. The only
+ * metadata operation permissible in this state is the closing of
+ * the device.
+ */
+ bool fail_io:1;
+
+ /*
+ * Metadata format 2 fields.
+ */
+ dm_block_t dirty_root;
+ struct dm_disk_bitset dirty_info;
+
+ /*
+ * These structures are used when loading metadata. They're too
+ * big to put on the stack.
+ */
+ struct dm_array_cursor mapping_cursor;
+ struct dm_array_cursor hint_cursor;
+ struct dm_bitset_cursor dirty_cursor;
+};
+
+/*-------------------------------------------------------------------
+ * superblock validator
+ *-----------------------------------------------------------------*/
+
+#define SUPERBLOCK_CSUM_XOR 9031977
+
+static void sb_prepare_for_write(struct dm_block_validator *v,
+ struct dm_block *b,
+ size_t sb_block_size)
+{
+ struct cache_disk_superblock *disk_super = dm_block_data(b);
+
+ disk_super->blocknr = cpu_to_le64(dm_block_location(b));
+ disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
+ sb_block_size - sizeof(__le32),
+ SUPERBLOCK_CSUM_XOR));
+}
+
+static int check_metadata_version(struct cache_disk_superblock *disk_super)
+{
+ uint32_t metadata_version = le32_to_cpu(disk_super->version);
+
+ if (metadata_version < MIN_CACHE_VERSION || metadata_version > MAX_CACHE_VERSION) {
+ DMERR("Cache metadata version %u found, but only versions between %u and %u supported.",
+ metadata_version, MIN_CACHE_VERSION, MAX_CACHE_VERSION);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int sb_check(struct dm_block_validator *v,
+ struct dm_block *b,
+ size_t sb_block_size)
+{
+ struct cache_disk_superblock *disk_super = dm_block_data(b);
+ __le32 csum_le;
+
+ if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
+ DMERR("sb_check failed: blocknr %llu: wanted %llu",
+ le64_to_cpu(disk_super->blocknr),
+ (unsigned long long)dm_block_location(b));
+ return -ENOTBLK;
+ }
+
+ if (le64_to_cpu(disk_super->magic) != CACHE_SUPERBLOCK_MAGIC) {
+ DMERR("sb_check failed: magic %llu: wanted %llu",
+ le64_to_cpu(disk_super->magic),
+ (unsigned long long)CACHE_SUPERBLOCK_MAGIC);
+ return -EILSEQ;
+ }
+
+ csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
+ sb_block_size - sizeof(__le32),
+ SUPERBLOCK_CSUM_XOR));
+ if (csum_le != disk_super->csum) {
+ DMERR("sb_check failed: csum %u: wanted %u",
+ le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
+ return -EILSEQ;
+ }
+
+ return check_metadata_version(disk_super);
+}
+
+static struct dm_block_validator sb_validator = {
+ .name = "superblock",
+ .prepare_for_write = sb_prepare_for_write,
+ .check = sb_check
+};
+
+/*----------------------------------------------------------------*/
+
+static int superblock_read_lock(struct dm_cache_metadata *cmd,
+ struct dm_block **sblock)
+{
+ return dm_bm_read_lock(cmd->bm, CACHE_SUPERBLOCK_LOCATION,
+ &sb_validator, sblock);
+}
+
+static int superblock_lock_zero(struct dm_cache_metadata *cmd,
+ struct dm_block **sblock)
+{
+ return dm_bm_write_lock_zero(cmd->bm, CACHE_SUPERBLOCK_LOCATION,
+ &sb_validator, sblock);
+}
+
+static int superblock_lock(struct dm_cache_metadata *cmd,
+ struct dm_block **sblock)
+{
+ return dm_bm_write_lock(cmd->bm, CACHE_SUPERBLOCK_LOCATION,
+ &sb_validator, sblock);
+}
+
+/*----------------------------------------------------------------*/
+
+static int __superblock_all_zeroes(struct dm_block_manager *bm, bool *result)
+{
+ int r;
+ unsigned int i;
+ struct dm_block *b;
+ __le64 *data_le, zero = cpu_to_le64(0);
+ unsigned int sb_block_size = dm_bm_block_size(bm) / sizeof(__le64);
+
+ /*
+ * We can't use a validator here - it may be all zeroes.
+ */
+ r = dm_bm_read_lock(bm, CACHE_SUPERBLOCK_LOCATION, NULL, &b);
+ if (r)
+ return r;
+
+ data_le = dm_block_data(b);
+ *result = true;
+ for (i = 0; i < sb_block_size; i++) {
+ if (data_le[i] != zero) {
+ *result = false;
+ break;
+ }
+ }
+
+ dm_bm_unlock(b);
+
+ return 0;
+}
+
+static void __setup_mapping_info(struct dm_cache_metadata *cmd)
+{
+ struct dm_btree_value_type vt;
+
+ vt.context = NULL;
+ vt.size = sizeof(__le64);
+ vt.inc = NULL;
+ vt.dec = NULL;
+ vt.equal = NULL;
+ dm_array_info_init(&cmd->info, cmd->tm, &vt);
+
+ if (cmd->policy_hint_size) {
+ vt.size = sizeof(__le32);
+ dm_array_info_init(&cmd->hint_info, cmd->tm, &vt);
+ }
+}
+
+static int __save_sm_root(struct dm_cache_metadata *cmd)
+{
+ int r;
+ size_t metadata_len;
+
+ r = dm_sm_root_size(cmd->metadata_sm, &metadata_len);
+ if (r < 0)
+ return r;
+
+ return dm_sm_copy_root(cmd->metadata_sm, &cmd->metadata_space_map_root,
+ metadata_len);
+}
+
+static void __copy_sm_root(struct dm_cache_metadata *cmd,
+ struct cache_disk_superblock *disk_super)
+{
+ memcpy(&disk_super->metadata_space_map_root,
+ &cmd->metadata_space_map_root,
+ sizeof(cmd->metadata_space_map_root));
+}
+
+static bool separate_dirty_bits(struct dm_cache_metadata *cmd)
+{
+ return cmd->version >= 2;
+}
+
+static int __write_initial_superblock(struct dm_cache_metadata *cmd)
+{
+ int r;
+ struct dm_block *sblock;
+ struct cache_disk_superblock *disk_super;
+ sector_t bdev_size = bdev_nr_sectors(cmd->bdev);
+
+ /* FIXME: see if we can lose the max sectors limit */
+ if (bdev_size > DM_CACHE_METADATA_MAX_SECTORS)
+ bdev_size = DM_CACHE_METADATA_MAX_SECTORS;
+
+ r = dm_tm_pre_commit(cmd->tm);
+ if (r < 0)
+ return r;
+
+ /*
+ * dm_sm_copy_root() can fail. So we need to do it before we start
+ * updating the superblock.
+ */
+ r = __save_sm_root(cmd);
+ if (r)
+ return r;
+
+ r = superblock_lock_zero(cmd, &sblock);
+ if (r)
+ return r;
+
+ disk_super = dm_block_data(sblock);
+ disk_super->flags = 0;
+ memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
+ disk_super->magic = cpu_to_le64(CACHE_SUPERBLOCK_MAGIC);
+ disk_super->version = cpu_to_le32(cmd->version);
+ memset(disk_super->policy_name, 0, sizeof(disk_super->policy_name));
+ memset(disk_super->policy_version, 0, sizeof(disk_super->policy_version));
+ disk_super->policy_hint_size = cpu_to_le32(0);
+
+ __copy_sm_root(cmd, disk_super);
+
+ disk_super->mapping_root = cpu_to_le64(cmd->root);
+ disk_super->hint_root = cpu_to_le64(cmd->hint_root);
+ disk_super->discard_root = cpu_to_le64(cmd->discard_root);
+ disk_super->discard_block_size = cpu_to_le64(cmd->discard_block_size);
+ disk_super->discard_nr_blocks = cpu_to_le64(from_dblock(cmd->discard_nr_blocks));
+ disk_super->metadata_block_size = cpu_to_le32(DM_CACHE_METADATA_BLOCK_SIZE);
+ disk_super->data_block_size = cpu_to_le32(cmd->data_block_size);
+ disk_super->cache_blocks = cpu_to_le32(0);
+
+ disk_super->read_hits = cpu_to_le32(0);
+ disk_super->read_misses = cpu_to_le32(0);
+ disk_super->write_hits = cpu_to_le32(0);
+ disk_super->write_misses = cpu_to_le32(0);
+
+ if (separate_dirty_bits(cmd))
+ disk_super->dirty_root = cpu_to_le64(cmd->dirty_root);
+
+ return dm_tm_commit(cmd->tm, sblock);
+}
+
+static int __format_metadata(struct dm_cache_metadata *cmd)
+{
+ int r;
+
+ r = dm_tm_create_with_sm(cmd->bm, CACHE_SUPERBLOCK_LOCATION,
+ &cmd->tm, &cmd->metadata_sm);
+ if (r < 0) {
+ DMERR("tm_create_with_sm failed");
+ return r;
+ }
+
+ __setup_mapping_info(cmd);
+
+ r = dm_array_empty(&cmd->info, &cmd->root);
+ if (r < 0)
+ goto bad;
+
+ if (separate_dirty_bits(cmd)) {
+ dm_disk_bitset_init(cmd->tm, &cmd->dirty_info);
+ r = dm_bitset_empty(&cmd->dirty_info, &cmd->dirty_root);
+ if (r < 0)
+ goto bad;
+ }
+
+ dm_disk_bitset_init(cmd->tm, &cmd->discard_info);
+ r = dm_bitset_empty(&cmd->discard_info, &cmd->discard_root);
+ if (r < 0)
+ goto bad;
+
+ cmd->discard_block_size = 0;
+ cmd->discard_nr_blocks = 0;
+
+ r = __write_initial_superblock(cmd);
+ if (r)
+ goto bad;
+
+ cmd->clean_when_opened = true;
+ return 0;
+
+bad:
+ dm_tm_destroy(cmd->tm);
+ dm_sm_destroy(cmd->metadata_sm);
+
+ return r;
+}
+
+static int __check_incompat_features(struct cache_disk_superblock *disk_super,
+ struct dm_cache_metadata *cmd)
+{
+ uint32_t incompat_flags, features;
+
+ incompat_flags = le32_to_cpu(disk_super->incompat_flags);
+ features = incompat_flags & ~DM_CACHE_FEATURE_INCOMPAT_SUPP;
+ if (features) {
+ DMERR("could not access metadata due to unsupported optional features (%lx).",
+ (unsigned long)features);
+ return -EINVAL;
+ }
+
+ /*
+ * Check for read-only metadata to skip the following RDWR checks.
+ */
+ if (bdev_read_only(cmd->bdev))
+ return 0;
+
+ features = le32_to_cpu(disk_super->compat_ro_flags) & ~DM_CACHE_FEATURE_COMPAT_RO_SUPP;
+ if (features) {
+ DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
+ (unsigned long)features);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int __open_metadata(struct dm_cache_metadata *cmd)
+{
+ int r;
+ struct dm_block *sblock;
+ struct cache_disk_superblock *disk_super;
+ unsigned long sb_flags;
+
+ r = superblock_read_lock(cmd, &sblock);
+ if (r < 0) {
+ DMERR("couldn't read lock superblock");
+ return r;
+ }
+
+ disk_super = dm_block_data(sblock);
+
+ /* Verify the data block size hasn't changed */
+ if (le32_to_cpu(disk_super->data_block_size) != cmd->data_block_size) {
+ DMERR("changing the data block size (from %u to %llu) is not supported",
+ le32_to_cpu(disk_super->data_block_size),
+ (unsigned long long)cmd->data_block_size);
+ r = -EINVAL;
+ goto bad;
+ }
+
+ r = __check_incompat_features(disk_super, cmd);
+ if (r < 0)
+ goto bad;
+
+ r = dm_tm_open_with_sm(cmd->bm, CACHE_SUPERBLOCK_LOCATION,
+ disk_super->metadata_space_map_root,
+ sizeof(disk_super->metadata_space_map_root),
+ &cmd->tm, &cmd->metadata_sm);
+ if (r < 0) {
+ DMERR("tm_open_with_sm failed");
+ goto bad;
+ }
+
+ __setup_mapping_info(cmd);
+ dm_disk_bitset_init(cmd->tm, &cmd->dirty_info);
+ dm_disk_bitset_init(cmd->tm, &cmd->discard_info);
+ sb_flags = le32_to_cpu(disk_super->flags);
+ cmd->clean_when_opened = test_bit(CLEAN_SHUTDOWN, &sb_flags);
+ dm_bm_unlock(sblock);
+
+ return 0;
+
+bad:
+ dm_bm_unlock(sblock);
+ return r;
+}
+
+static int __open_or_format_metadata(struct dm_cache_metadata *cmd,
+ bool format_device)
+{
+ int r;
+ bool unformatted = false;
+
+ r = __superblock_all_zeroes(cmd->bm, &unformatted);
+ if (r)
+ return r;
+
+ if (unformatted)
+ return format_device ? __format_metadata(cmd) : -EPERM;
+
+ return __open_metadata(cmd);
+}
+
+static int __create_persistent_data_objects(struct dm_cache_metadata *cmd,
+ bool may_format_device)
+{
+ int r;
+ cmd->bm = dm_block_manager_create(cmd->bdev, DM_CACHE_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
+ CACHE_MAX_CONCURRENT_LOCKS);
+ if (IS_ERR(cmd->bm)) {
+ DMERR("could not create block manager");
+ r = PTR_ERR(cmd->bm);
+ cmd->bm = NULL;
+ return r;
+ }
+
+ r = __open_or_format_metadata(cmd, may_format_device);
+ if (r) {
+ dm_block_manager_destroy(cmd->bm);
+ cmd->bm = NULL;
+ }
+
+ return r;
+}
+
+static void __destroy_persistent_data_objects(struct dm_cache_metadata *cmd,
+ bool destroy_bm)
+{
+ dm_sm_destroy(cmd->metadata_sm);
+ dm_tm_destroy(cmd->tm);
+ if (destroy_bm)
+ dm_block_manager_destroy(cmd->bm);
+}
+
+typedef unsigned long (*flags_mutator)(unsigned long);
+
+static void update_flags(struct cache_disk_superblock *disk_super,
+ flags_mutator mutator)
+{
+ uint32_t sb_flags = mutator(le32_to_cpu(disk_super->flags));
+ disk_super->flags = cpu_to_le32(sb_flags);
+}
+
+static unsigned long set_clean_shutdown(unsigned long flags)
+{
+ set_bit(CLEAN_SHUTDOWN, &flags);
+ return flags;
+}
+
+static unsigned long clear_clean_shutdown(unsigned long flags)
+{
+ clear_bit(CLEAN_SHUTDOWN, &flags);
+ return flags;
+}
+
+static void read_superblock_fields(struct dm_cache_metadata *cmd,
+ struct cache_disk_superblock *disk_super)
+{
+ cmd->version = le32_to_cpu(disk_super->version);
+ cmd->flags = le32_to_cpu(disk_super->flags);
+ cmd->root = le64_to_cpu(disk_super->mapping_root);
+ cmd->hint_root = le64_to_cpu(disk_super->hint_root);
+ cmd->discard_root = le64_to_cpu(disk_super->discard_root);
+ cmd->discard_block_size = le64_to_cpu(disk_super->discard_block_size);
+ cmd->discard_nr_blocks = to_dblock(le64_to_cpu(disk_super->discard_nr_blocks));
+ cmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
+ cmd->cache_blocks = to_cblock(le32_to_cpu(disk_super->cache_blocks));
+ strncpy(cmd->policy_name, disk_super->policy_name, sizeof(cmd->policy_name));
+ cmd->policy_version[0] = le32_to_cpu(disk_super->policy_version[0]);
+ cmd->policy_version[1] = le32_to_cpu(disk_super->policy_version[1]);
+ cmd->policy_version[2] = le32_to_cpu(disk_super->policy_version[2]);
+ cmd->policy_hint_size = le32_to_cpu(disk_super->policy_hint_size);
+
+ cmd->stats.read_hits = le32_to_cpu(disk_super->read_hits);
+ cmd->stats.read_misses = le32_to_cpu(disk_super->read_misses);
+ cmd->stats.write_hits = le32_to_cpu(disk_super->write_hits);
+ cmd->stats.write_misses = le32_to_cpu(disk_super->write_misses);
+
+ if (separate_dirty_bits(cmd))
+ cmd->dirty_root = le64_to_cpu(disk_super->dirty_root);
+
+ cmd->changed = false;
+}
+
+/*
+ * The mutator updates the superblock flags.
+ */
+static int __begin_transaction_flags(struct dm_cache_metadata *cmd,
+ flags_mutator mutator)
+{
+ int r;
+ struct cache_disk_superblock *disk_super;
+ struct dm_block *sblock;
+
+ r = superblock_lock(cmd, &sblock);
+ if (r)
+ return r;
+
+ disk_super = dm_block_data(sblock);
+ update_flags(disk_super, mutator);
+ read_superblock_fields(cmd, disk_super);
+ dm_bm_unlock(sblock);
+
+ return dm_bm_flush(cmd->bm);
+}
+
+static int __begin_transaction(struct dm_cache_metadata *cmd)
+{
+ int r;
+ struct cache_disk_superblock *disk_super;
+ struct dm_block *sblock;
+
+ /*
+ * We re-read the superblock every time. Shouldn't need to do this
+ * really.
+ */
+ r = superblock_read_lock(cmd, &sblock);
+ if (r)
+ return r;
+
+ disk_super = dm_block_data(sblock);
+ read_superblock_fields(cmd, disk_super);
+ dm_bm_unlock(sblock);
+
+ return 0;
+}
+
+static int __commit_transaction(struct dm_cache_metadata *cmd,
+ flags_mutator mutator)
+{
+ int r;
+ struct cache_disk_superblock *disk_super;
+ struct dm_block *sblock;
+
+ /*
+ * We need to know if the cache_disk_superblock exceeds a 512-byte sector.
+ */
+ BUILD_BUG_ON(sizeof(struct cache_disk_superblock) > 512);
+
+ if (separate_dirty_bits(cmd)) {
+ r = dm_bitset_flush(&cmd->dirty_info, cmd->dirty_root,
+ &cmd->dirty_root);
+ if (r)
+ return r;
+ }
+
+ r = dm_bitset_flush(&cmd->discard_info, cmd->discard_root,
+ &cmd->discard_root);
+ if (r)
+ return r;
+
+ r = dm_tm_pre_commit(cmd->tm);
+ if (r < 0)
+ return r;
+
+ r = __save_sm_root(cmd);
+ if (r)
+ return r;
+
+ r = superblock_lock(cmd, &sblock);
+ if (r)
+ return r;
+
+ disk_super = dm_block_data(sblock);
+
+ disk_super->flags = cpu_to_le32(cmd->flags);
+ if (mutator)
+ update_flags(disk_super, mutator);
+
+ disk_super->mapping_root = cpu_to_le64(cmd->root);
+ if (separate_dirty_bits(cmd))
+ disk_super->dirty_root = cpu_to_le64(cmd->dirty_root);
+ disk_super->hint_root = cpu_to_le64(cmd->hint_root);
+ disk_super->discard_root = cpu_to_le64(cmd->discard_root);
+ disk_super->discard_block_size = cpu_to_le64(cmd->discard_block_size);
+ disk_super->discard_nr_blocks = cpu_to_le64(from_dblock(cmd->discard_nr_blocks));
+ disk_super->cache_blocks = cpu_to_le32(from_cblock(cmd->cache_blocks));
+ strncpy(disk_super->policy_name, cmd->policy_name, sizeof(disk_super->policy_name));
+ disk_super->policy_version[0] = cpu_to_le32(cmd->policy_version[0]);
+ disk_super->policy_version[1] = cpu_to_le32(cmd->policy_version[1]);
+ disk_super->policy_version[2] = cpu_to_le32(cmd->policy_version[2]);
+ disk_super->policy_hint_size = cpu_to_le32(cmd->policy_hint_size);
+
+ disk_super->read_hits = cpu_to_le32(cmd->stats.read_hits);
+ disk_super->read_misses = cpu_to_le32(cmd->stats.read_misses);
+ disk_super->write_hits = cpu_to_le32(cmd->stats.write_hits);
+ disk_super->write_misses = cpu_to_le32(cmd->stats.write_misses);
+ __copy_sm_root(cmd, disk_super);
+
+ return dm_tm_commit(cmd->tm, sblock);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * The mappings are held in a dm-array that has 64-bit values stored in
+ * little-endian format. The index is the cblock, the high 48bits of the
+ * value are the oblock and the low 16 bit the flags.
+ */
+#define FLAGS_MASK ((1 << 16) - 1)
+
+static __le64 pack_value(dm_oblock_t block, unsigned int flags)
+{
+ uint64_t value = from_oblock(block);
+ value <<= 16;
+ value = value | (flags & FLAGS_MASK);
+ return cpu_to_le64(value);
+}
+
+static void unpack_value(__le64 value_le, dm_oblock_t *block, unsigned int *flags)
+{
+ uint64_t value = le64_to_cpu(value_le);
+ uint64_t b = value >> 16;
+ *block = to_oblock(b);
+ *flags = value & FLAGS_MASK;
+}
+
+/*----------------------------------------------------------------*/
+
+static struct dm_cache_metadata *metadata_open(struct block_device *bdev,
+ sector_t data_block_size,
+ bool may_format_device,
+ size_t policy_hint_size,
+ unsigned int metadata_version)
+{
+ int r;
+ struct dm_cache_metadata *cmd;
+
+ cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
+ if (!cmd) {
+ DMERR("could not allocate metadata struct");
+ return ERR_PTR(-ENOMEM);
+ }
+
+ cmd->version = metadata_version;
+ refcount_set(&cmd->ref_count, 1);
+ init_rwsem(&cmd->root_lock);
+ cmd->bdev = bdev;
+ cmd->data_block_size = data_block_size;
+ cmd->cache_blocks = 0;
+ cmd->policy_hint_size = policy_hint_size;
+ cmd->changed = true;
+ cmd->fail_io = false;
+
+ r = __create_persistent_data_objects(cmd, may_format_device);
+ if (r) {
+ kfree(cmd);
+ return ERR_PTR(r);
+ }
+
+ r = __begin_transaction_flags(cmd, clear_clean_shutdown);
+ if (r < 0) {
+ dm_cache_metadata_close(cmd);
+ return ERR_PTR(r);
+ }
+
+ return cmd;
+}
+
+/*
+ * We keep a little list of ref counted metadata objects to prevent two
+ * different target instances creating separate bufio instances. This is
+ * an issue if a table is reloaded before the suspend.
+ */
+static DEFINE_MUTEX(table_lock);
+static LIST_HEAD(table);
+
+static struct dm_cache_metadata *lookup(struct block_device *bdev)
+{
+ struct dm_cache_metadata *cmd;
+
+ list_for_each_entry(cmd, &table, list)
+ if (cmd->bdev == bdev) {
+ refcount_inc(&cmd->ref_count);
+ return cmd;
+ }
+
+ return NULL;
+}
+
+static struct dm_cache_metadata *lookup_or_open(struct block_device *bdev,
+ sector_t data_block_size,
+ bool may_format_device,
+ size_t policy_hint_size,
+ unsigned int metadata_version)
+{
+ struct dm_cache_metadata *cmd, *cmd2;
+
+ mutex_lock(&table_lock);
+ cmd = lookup(bdev);
+ mutex_unlock(&table_lock);
+
+ if (cmd)
+ return cmd;
+
+ cmd = metadata_open(bdev, data_block_size, may_format_device,
+ policy_hint_size, metadata_version);
+ if (!IS_ERR(cmd)) {
+ mutex_lock(&table_lock);
+ cmd2 = lookup(bdev);
+ if (cmd2) {
+ mutex_unlock(&table_lock);
+ __destroy_persistent_data_objects(cmd, true);
+ kfree(cmd);
+ return cmd2;
+ }
+ list_add(&cmd->list, &table);
+ mutex_unlock(&table_lock);
+ }
+
+ return cmd;
+}
+
+static bool same_params(struct dm_cache_metadata *cmd, sector_t data_block_size)
+{
+ if (cmd->data_block_size != data_block_size) {
+ DMERR("data_block_size (%llu) different from that in metadata (%llu)",
+ (unsigned long long) data_block_size,
+ (unsigned long long) cmd->data_block_size);
+ return false;
+ }
+
+ return true;
+}
+
+struct dm_cache_metadata *dm_cache_metadata_open(struct block_device *bdev,
+ sector_t data_block_size,
+ bool may_format_device,
+ size_t policy_hint_size,
+ unsigned int metadata_version)
+{
+ struct dm_cache_metadata *cmd = lookup_or_open(bdev, data_block_size, may_format_device,
+ policy_hint_size, metadata_version);
+
+ if (!IS_ERR(cmd) && !same_params(cmd, data_block_size)) {
+ dm_cache_metadata_close(cmd);
+ return ERR_PTR(-EINVAL);
+ }
+
+ return cmd;
+}
+
+void dm_cache_metadata_close(struct dm_cache_metadata *cmd)
+{
+ if (refcount_dec_and_test(&cmd->ref_count)) {
+ mutex_lock(&table_lock);
+ list_del(&cmd->list);
+ mutex_unlock(&table_lock);
+
+ if (!cmd->fail_io)
+ __destroy_persistent_data_objects(cmd, true);
+ kfree(cmd);
+ }
+}
+
+/*
+ * Checks that the given cache block is either unmapped or clean.
+ */
+static int block_clean_combined_dirty(struct dm_cache_metadata *cmd, dm_cblock_t b,
+ bool *result)
+{
+ int r;
+ __le64 value;
+ dm_oblock_t ob;
+ unsigned int flags;
+
+ r = dm_array_get_value(&cmd->info, cmd->root, from_cblock(b), &value);
+ if (r)
+ return r;
+
+ unpack_value(value, &ob, &flags);
+ *result = !((flags & M_VALID) && (flags & M_DIRTY));
+
+ return 0;
+}
+
+static int blocks_are_clean_combined_dirty(struct dm_cache_metadata *cmd,
+ dm_cblock_t begin, dm_cblock_t end,
+ bool *result)
+{
+ int r;
+ *result = true;
+
+ while (begin != end) {
+ r = block_clean_combined_dirty(cmd, begin, result);
+ if (r) {
+ DMERR("block_clean_combined_dirty failed");
+ return r;
+ }
+
+ if (!*result) {
+ DMERR("cache block %llu is dirty",
+ (unsigned long long) from_cblock(begin));
+ return 0;
+ }
+
+ begin = to_cblock(from_cblock(begin) + 1);
+ }
+
+ return 0;
+}
+
+static int blocks_are_clean_separate_dirty(struct dm_cache_metadata *cmd,
+ dm_cblock_t begin, dm_cblock_t end,
+ bool *result)
+{
+ int r;
+ bool dirty_flag;
+ *result = true;
+
+ if (from_cblock(cmd->cache_blocks) == 0)
+ /* Nothing to do */
+ return 0;
+
+ r = dm_bitset_cursor_begin(&cmd->dirty_info, cmd->dirty_root,
+ from_cblock(cmd->cache_blocks), &cmd->dirty_cursor);
+ if (r) {
+ DMERR("%s: dm_bitset_cursor_begin for dirty failed", __func__);
+ return r;
+ }
+
+ r = dm_bitset_cursor_skip(&cmd->dirty_cursor, from_cblock(begin));
+ if (r) {
+ DMERR("%s: dm_bitset_cursor_skip for dirty failed", __func__);
+ dm_bitset_cursor_end(&cmd->dirty_cursor);
+ return r;
+ }
+
+ while (begin != end) {
+ /*
+ * We assume that unmapped blocks have their dirty bit
+ * cleared.
+ */
+ dirty_flag = dm_bitset_cursor_get_value(&cmd->dirty_cursor);
+ if (dirty_flag) {
+ DMERR("%s: cache block %llu is dirty", __func__,
+ (unsigned long long) from_cblock(begin));
+ dm_bitset_cursor_end(&cmd->dirty_cursor);
+ *result = false;
+ return 0;
+ }
+
+ begin = to_cblock(from_cblock(begin) + 1);
+ if (begin == end)
+ break;
+
+ r = dm_bitset_cursor_next(&cmd->dirty_cursor);
+ if (r) {
+ DMERR("%s: dm_bitset_cursor_next for dirty failed", __func__);
+ dm_bitset_cursor_end(&cmd->dirty_cursor);
+ return r;
+ }
+ }
+
+ dm_bitset_cursor_end(&cmd->dirty_cursor);
+
+ return 0;
+}
+
+static int blocks_are_unmapped_or_clean(struct dm_cache_metadata *cmd,
+ dm_cblock_t begin, dm_cblock_t end,
+ bool *result)
+{
+ if (separate_dirty_bits(cmd))
+ return blocks_are_clean_separate_dirty(cmd, begin, end, result);
+ else
+ return blocks_are_clean_combined_dirty(cmd, begin, end, result);
+}
+
+static bool cmd_write_lock(struct dm_cache_metadata *cmd)
+{
+ down_write(&cmd->root_lock);
+ if (cmd->fail_io || dm_bm_is_read_only(cmd->bm)) {
+ up_write(&cmd->root_lock);
+ return false;
+ }
+ return true;
+}
+
+#define WRITE_LOCK(cmd) \
+ do { \
+ if (!cmd_write_lock((cmd))) \
+ return -EINVAL; \
+ } while(0)
+
+#define WRITE_LOCK_VOID(cmd) \
+ do { \
+ if (!cmd_write_lock((cmd))) \
+ return; \
+ } while(0)
+
+#define WRITE_UNLOCK(cmd) \
+ up_write(&(cmd)->root_lock)
+
+static bool cmd_read_lock(struct dm_cache_metadata *cmd)
+{
+ down_read(&cmd->root_lock);
+ if (cmd->fail_io) {
+ up_read(&cmd->root_lock);
+ return false;
+ }
+ return true;
+}
+
+#define READ_LOCK(cmd) \
+ do { \
+ if (!cmd_read_lock((cmd))) \
+ return -EINVAL; \
+ } while(0)
+
+#define READ_LOCK_VOID(cmd) \
+ do { \
+ if (!cmd_read_lock((cmd))) \
+ return; \
+ } while(0)
+
+#define READ_UNLOCK(cmd) \
+ up_read(&(cmd)->root_lock)
+
+int dm_cache_resize(struct dm_cache_metadata *cmd, dm_cblock_t new_cache_size)
+{
+ int r;
+ bool clean;
+ __le64 null_mapping = pack_value(0, 0);
+
+ WRITE_LOCK(cmd);
+ __dm_bless_for_disk(&null_mapping);
+
+ if (from_cblock(new_cache_size) < from_cblock(cmd->cache_blocks)) {
+ r = blocks_are_unmapped_or_clean(cmd, new_cache_size, cmd->cache_blocks, &clean);
+ if (r) {
+ __dm_unbless_for_disk(&null_mapping);
+ goto out;
+ }
+
+ if (!clean) {
+ DMERR("unable to shrink cache due to dirty blocks");
+ r = -EINVAL;
+ __dm_unbless_for_disk(&null_mapping);
+ goto out;
+ }
+ }
+
+ r = dm_array_resize(&cmd->info, cmd->root, from_cblock(cmd->cache_blocks),
+ from_cblock(new_cache_size),
+ &null_mapping, &cmd->root);
+ if (r)
+ goto out;
+
+ if (separate_dirty_bits(cmd)) {
+ r = dm_bitset_resize(&cmd->dirty_info, cmd->dirty_root,
+ from_cblock(cmd->cache_blocks), from_cblock(new_cache_size),
+ false, &cmd->dirty_root);
+ if (r)
+ goto out;
+ }
+
+ cmd->cache_blocks = new_cache_size;
+ cmd->changed = true;
+
+out:
+ WRITE_UNLOCK(cmd);
+
+ return r;
+}
+
+int dm_cache_discard_bitset_resize(struct dm_cache_metadata *cmd,
+ sector_t discard_block_size,
+ dm_dblock_t new_nr_entries)
+{
+ int r;
+
+ WRITE_LOCK(cmd);
+ r = dm_bitset_resize(&cmd->discard_info,
+ cmd->discard_root,
+ from_dblock(cmd->discard_nr_blocks),
+ from_dblock(new_nr_entries),
+ false, &cmd->discard_root);
+ if (!r) {
+ cmd->discard_block_size = discard_block_size;
+ cmd->discard_nr_blocks = new_nr_entries;
+ }
+
+ cmd->changed = true;
+ WRITE_UNLOCK(cmd);
+
+ return r;
+}
+
+static int __set_discard(struct dm_cache_metadata *cmd, dm_dblock_t b)
+{
+ return dm_bitset_set_bit(&cmd->discard_info, cmd->discard_root,
+ from_dblock(b), &cmd->discard_root);
+}
+
+static int __clear_discard(struct dm_cache_metadata *cmd, dm_dblock_t b)
+{
+ return dm_bitset_clear_bit(&cmd->discard_info, cmd->discard_root,
+ from_dblock(b), &cmd->discard_root);
+}
+
+static int __discard(struct dm_cache_metadata *cmd,
+ dm_dblock_t dblock, bool discard)
+{
+ int r;
+
+ r = (discard ? __set_discard : __clear_discard)(cmd, dblock);
+ if (r)
+ return r;
+
+ cmd->changed = true;
+ return 0;
+}
+
+int dm_cache_set_discard(struct dm_cache_metadata *cmd,
+ dm_dblock_t dblock, bool discard)
+{
+ int r;
+
+ WRITE_LOCK(cmd);
+ r = __discard(cmd, dblock, discard);
+ WRITE_UNLOCK(cmd);
+
+ return r;
+}
+
+static int __load_discards(struct dm_cache_metadata *cmd,
+ load_discard_fn fn, void *context)
+{
+ int r = 0;
+ uint32_t b;
+ struct dm_bitset_cursor c;
+
+ if (from_dblock(cmd->discard_nr_blocks) == 0)
+ /* nothing to do */
+ return 0;
+
+ if (cmd->clean_when_opened) {
+ r = dm_bitset_flush(&cmd->discard_info, cmd->discard_root, &cmd->discard_root);
+ if (r)
+ return r;
+
+ r = dm_bitset_cursor_begin(&cmd->discard_info, cmd->discard_root,
+ from_dblock(cmd->discard_nr_blocks), &c);
+ if (r)
+ return r;
+
+ for (b = 0; ; b++) {
+ r = fn(context, cmd->discard_block_size, to_dblock(b),
+ dm_bitset_cursor_get_value(&c));
+ if (r)
+ break;
+
+ if (b >= (from_dblock(cmd->discard_nr_blocks) - 1))
+ break;
+
+ r = dm_bitset_cursor_next(&c);
+ if (r)
+ break;
+ }
+
+ dm_bitset_cursor_end(&c);
+
+ } else {
+ for (b = 0; b < from_dblock(cmd->discard_nr_blocks); b++) {
+ r = fn(context, cmd->discard_block_size, to_dblock(b), false);
+ if (r)
+ return r;
+ }
+ }
+
+ return r;
+}
+
+int dm_cache_load_discards(struct dm_cache_metadata *cmd,
+ load_discard_fn fn, void *context)
+{
+ int r;
+
+ READ_LOCK(cmd);
+ r = __load_discards(cmd, fn, context);
+ READ_UNLOCK(cmd);
+
+ return r;
+}
+
+int dm_cache_size(struct dm_cache_metadata *cmd, dm_cblock_t *result)
+{
+ READ_LOCK(cmd);
+ *result = cmd->cache_blocks;
+ READ_UNLOCK(cmd);
+
+ return 0;
+}
+
+static int __remove(struct dm_cache_metadata *cmd, dm_cblock_t cblock)
+{
+ int r;
+ __le64 value = pack_value(0, 0);
+
+ __dm_bless_for_disk(&value);
+ r = dm_array_set_value(&cmd->info, cmd->root, from_cblock(cblock),
+ &value, &cmd->root);
+ if (r)
+ return r;
+
+ cmd->changed = true;
+ return 0;
+}
+
+int dm_cache_remove_mapping(struct dm_cache_metadata *cmd, dm_cblock_t cblock)
+{
+ int r;
+
+ WRITE_LOCK(cmd);
+ r = __remove(cmd, cblock);
+ WRITE_UNLOCK(cmd);
+
+ return r;
+}
+
+static int __insert(struct dm_cache_metadata *cmd,
+ dm_cblock_t cblock, dm_oblock_t oblock)
+{
+ int r;
+ __le64 value = pack_value(oblock, M_VALID);
+ __dm_bless_for_disk(&value);
+
+ r = dm_array_set_value(&cmd->info, cmd->root, from_cblock(cblock),
+ &value, &cmd->root);
+ if (r)
+ return r;
+
+ cmd->changed = true;
+ return 0;
+}
+
+int dm_cache_insert_mapping(struct dm_cache_metadata *cmd,
+ dm_cblock_t cblock, dm_oblock_t oblock)
+{
+ int r;
+
+ WRITE_LOCK(cmd);
+ r = __insert(cmd, cblock, oblock);
+ WRITE_UNLOCK(cmd);
+
+ return r;
+}
+
+struct thunk {
+ load_mapping_fn fn;
+ void *context;
+
+ struct dm_cache_metadata *cmd;
+ bool respect_dirty_flags;
+ bool hints_valid;
+};
+
+static bool policy_unchanged(struct dm_cache_metadata *cmd,
+ struct dm_cache_policy *policy)
+{
+ const char *policy_name = dm_cache_policy_get_name(policy);
+ const unsigned int *policy_version = dm_cache_policy_get_version(policy);
+ size_t policy_hint_size = dm_cache_policy_get_hint_size(policy);
+
+ /*
+ * Ensure policy names match.
+ */
+ if (strncmp(cmd->policy_name, policy_name, sizeof(cmd->policy_name)))
+ return false;
+
+ /*
+ * Ensure policy major versions match.
+ */
+ if (cmd->policy_version[0] != policy_version[0])
+ return false;
+
+ /*
+ * Ensure policy hint sizes match.
+ */
+ if (cmd->policy_hint_size != policy_hint_size)
+ return false;
+
+ return true;
+}
+
+static bool hints_array_initialized(struct dm_cache_metadata *cmd)
+{
+ return cmd->hint_root && cmd->policy_hint_size;
+}
+
+static bool hints_array_available(struct dm_cache_metadata *cmd,
+ struct dm_cache_policy *policy)
+{
+ return cmd->clean_when_opened && policy_unchanged(cmd, policy) &&
+ hints_array_initialized(cmd);
+}
+
+static int __load_mapping_v1(struct dm_cache_metadata *cmd,
+ uint64_t cb, bool hints_valid,
+ struct dm_array_cursor *mapping_cursor,
+ struct dm_array_cursor *hint_cursor,
+ load_mapping_fn fn, void *context)
+{
+ int r = 0;
+
+ __le64 mapping;
+ __le32 hint = 0;
+
+ __le64 *mapping_value_le;
+ __le32 *hint_value_le;
+
+ dm_oblock_t oblock;
+ unsigned int flags;
+ bool dirty = true;
+
+ dm_array_cursor_get_value(mapping_cursor, (void **) &mapping_value_le);
+ memcpy(&mapping, mapping_value_le, sizeof(mapping));
+ unpack_value(mapping, &oblock, &flags);
+
+ if (flags & M_VALID) {
+ if (hints_valid) {
+ dm_array_cursor_get_value(hint_cursor, (void **) &hint_value_le);
+ memcpy(&hint, hint_value_le, sizeof(hint));
+ }
+ if (cmd->clean_when_opened)
+ dirty = flags & M_DIRTY;
+
+ r = fn(context, oblock, to_cblock(cb), dirty,
+ le32_to_cpu(hint), hints_valid);
+ if (r) {
+ DMERR("policy couldn't load cache block %llu",
+ (unsigned long long) from_cblock(to_cblock(cb)));
+ }
+ }
+
+ return r;
+}
+
+static int __load_mapping_v2(struct dm_cache_metadata *cmd,
+ uint64_t cb, bool hints_valid,
+ struct dm_array_cursor *mapping_cursor,
+ struct dm_array_cursor *hint_cursor,
+ struct dm_bitset_cursor *dirty_cursor,
+ load_mapping_fn fn, void *context)
+{
+ int r = 0;
+
+ __le64 mapping;
+ __le32 hint = 0;
+
+ __le64 *mapping_value_le;
+ __le32 *hint_value_le;
+
+ dm_oblock_t oblock;
+ unsigned int flags;
+ bool dirty = true;
+
+ dm_array_cursor_get_value(mapping_cursor, (void **) &mapping_value_le);
+ memcpy(&mapping, mapping_value_le, sizeof(mapping));
+ unpack_value(mapping, &oblock, &flags);
+
+ if (flags & M_VALID) {
+ if (hints_valid) {
+ dm_array_cursor_get_value(hint_cursor, (void **) &hint_value_le);
+ memcpy(&hint, hint_value_le, sizeof(hint));
+ }
+ if (cmd->clean_when_opened)
+ dirty = dm_bitset_cursor_get_value(dirty_cursor);
+
+ r = fn(context, oblock, to_cblock(cb), dirty,
+ le32_to_cpu(hint), hints_valid);
+ if (r) {
+ DMERR("policy couldn't load cache block %llu",
+ (unsigned long long) from_cblock(to_cblock(cb)));
+ }
+ }
+
+ return r;
+}
+
+static int __load_mappings(struct dm_cache_metadata *cmd,
+ struct dm_cache_policy *policy,
+ load_mapping_fn fn, void *context)
+{
+ int r;
+ uint64_t cb;
+
+ bool hints_valid = hints_array_available(cmd, policy);
+
+ if (from_cblock(cmd->cache_blocks) == 0)
+ /* Nothing to do */
+ return 0;
+
+ r = dm_array_cursor_begin(&cmd->info, cmd->root, &cmd->mapping_cursor);
+ if (r)
+ return r;
+
+ if (hints_valid) {
+ r = dm_array_cursor_begin(&cmd->hint_info, cmd->hint_root, &cmd->hint_cursor);
+ if (r) {
+ dm_array_cursor_end(&cmd->mapping_cursor);
+ return r;
+ }
+ }
+
+ if (separate_dirty_bits(cmd)) {
+ r = dm_bitset_cursor_begin(&cmd->dirty_info, cmd->dirty_root,
+ from_cblock(cmd->cache_blocks),
+ &cmd->dirty_cursor);
+ if (r) {
+ dm_array_cursor_end(&cmd->hint_cursor);
+ dm_array_cursor_end(&cmd->mapping_cursor);
+ return r;
+ }
+ }
+
+ for (cb = 0; ; cb++) {
+ if (separate_dirty_bits(cmd))
+ r = __load_mapping_v2(cmd, cb, hints_valid,
+ &cmd->mapping_cursor,
+ &cmd->hint_cursor,
+ &cmd->dirty_cursor,
+ fn, context);
+ else
+ r = __load_mapping_v1(cmd, cb, hints_valid,
+ &cmd->mapping_cursor, &cmd->hint_cursor,
+ fn, context);
+ if (r)
+ goto out;
+
+ /*
+ * We need to break out before we move the cursors.
+ */
+ if (cb >= (from_cblock(cmd->cache_blocks) - 1))
+ break;
+
+ r = dm_array_cursor_next(&cmd->mapping_cursor);
+ if (r) {
+ DMERR("dm_array_cursor_next for mapping failed");
+ goto out;
+ }
+
+ if (hints_valid) {
+ r = dm_array_cursor_next(&cmd->hint_cursor);
+ if (r) {
+ dm_array_cursor_end(&cmd->hint_cursor);
+ hints_valid = false;
+ }
+ }
+
+ if (separate_dirty_bits(cmd)) {
+ r = dm_bitset_cursor_next(&cmd->dirty_cursor);
+ if (r) {
+ DMERR("dm_bitset_cursor_next for dirty failed");
+ goto out;
+ }
+ }
+ }
+out:
+ dm_array_cursor_end(&cmd->mapping_cursor);
+ if (hints_valid)
+ dm_array_cursor_end(&cmd->hint_cursor);
+
+ if (separate_dirty_bits(cmd))
+ dm_bitset_cursor_end(&cmd->dirty_cursor);
+
+ return r;
+}
+
+int dm_cache_load_mappings(struct dm_cache_metadata *cmd,
+ struct dm_cache_policy *policy,
+ load_mapping_fn fn, void *context)
+{
+ int r;
+
+ READ_LOCK(cmd);
+ r = __load_mappings(cmd, policy, fn, context);
+ READ_UNLOCK(cmd);
+
+ return r;
+}
+
+static int __dump_mapping(void *context, uint64_t cblock, void *leaf)
+{
+ __le64 value;
+ dm_oblock_t oblock;
+ unsigned int flags;
+
+ memcpy(&value, leaf, sizeof(value));
+ unpack_value(value, &oblock, &flags);
+
+ return 0;
+}
+
+static int __dump_mappings(struct dm_cache_metadata *cmd)
+{
+ return dm_array_walk(&cmd->info, cmd->root, __dump_mapping, NULL);
+}
+
+void dm_cache_dump(struct dm_cache_metadata *cmd)
+{
+ READ_LOCK_VOID(cmd);
+ __dump_mappings(cmd);
+ READ_UNLOCK(cmd);
+}
+
+int dm_cache_changed_this_transaction(struct dm_cache_metadata *cmd)
+{
+ int r;
+
+ READ_LOCK(cmd);
+ r = cmd->changed;
+ READ_UNLOCK(cmd);
+
+ return r;
+}
+
+static int __dirty(struct dm_cache_metadata *cmd, dm_cblock_t cblock, bool dirty)
+{
+ int r;
+ unsigned int flags;
+ dm_oblock_t oblock;
+ __le64 value;
+
+ r = dm_array_get_value(&cmd->info, cmd->root, from_cblock(cblock), &value);
+ if (r)
+ return r;
+
+ unpack_value(value, &oblock, &flags);
+
+ if (((flags & M_DIRTY) && dirty) || (!(flags & M_DIRTY) && !dirty))
+ /* nothing to be done */
+ return 0;
+
+ value = pack_value(oblock, (flags & ~M_DIRTY) | (dirty ? M_DIRTY : 0));
+ __dm_bless_for_disk(&value);
+
+ r = dm_array_set_value(&cmd->info, cmd->root, from_cblock(cblock),
+ &value, &cmd->root);
+ if (r)
+ return r;
+
+ cmd->changed = true;
+ return 0;
+
+}
+
+static int __set_dirty_bits_v1(struct dm_cache_metadata *cmd, unsigned int nr_bits, unsigned long *bits)
+{
+ int r;
+ unsigned int i;
+ for (i = 0; i < nr_bits; i++) {
+ r = __dirty(cmd, to_cblock(i), test_bit(i, bits));
+ if (r)
+ return r;
+ }
+
+ return 0;
+}
+
+static int is_dirty_callback(uint32_t index, bool *value, void *context)
+{
+ unsigned long *bits = context;
+ *value = test_bit(index, bits);
+ return 0;
+}
+
+static int __set_dirty_bits_v2(struct dm_cache_metadata *cmd, unsigned int nr_bits, unsigned long *bits)
+{
+ int r = 0;
+
+ /* nr_bits is really just a sanity check */
+ if (nr_bits != from_cblock(cmd->cache_blocks)) {
+ DMERR("dirty bitset is wrong size");
+ return -EINVAL;
+ }
+
+ r = dm_bitset_del(&cmd->dirty_info, cmd->dirty_root);
+ if (r)
+ return r;
+
+ cmd->changed = true;
+ return dm_bitset_new(&cmd->dirty_info, &cmd->dirty_root, nr_bits, is_dirty_callback, bits);
+}
+
+int dm_cache_set_dirty_bits(struct dm_cache_metadata *cmd,
+ unsigned int nr_bits,
+ unsigned long *bits)
+{
+ int r;
+
+ WRITE_LOCK(cmd);
+ if (separate_dirty_bits(cmd))
+ r = __set_dirty_bits_v2(cmd, nr_bits, bits);
+ else
+ r = __set_dirty_bits_v1(cmd, nr_bits, bits);
+ WRITE_UNLOCK(cmd);
+
+ return r;
+}
+
+void dm_cache_metadata_get_stats(struct dm_cache_metadata *cmd,
+ struct dm_cache_statistics *stats)
+{
+ READ_LOCK_VOID(cmd);
+ *stats = cmd->stats;
+ READ_UNLOCK(cmd);
+}
+
+void dm_cache_metadata_set_stats(struct dm_cache_metadata *cmd,
+ struct dm_cache_statistics *stats)
+{
+ WRITE_LOCK_VOID(cmd);
+ cmd->stats = *stats;
+ WRITE_UNLOCK(cmd);
+}
+
+int dm_cache_commit(struct dm_cache_metadata *cmd, bool clean_shutdown)
+{
+ int r = -EINVAL;
+ flags_mutator mutator = (clean_shutdown ? set_clean_shutdown :
+ clear_clean_shutdown);
+
+ WRITE_LOCK(cmd);
+ if (cmd->fail_io)
+ goto out;
+
+ r = __commit_transaction(cmd, mutator);
+ if (r)
+ goto out;
+
+ r = __begin_transaction(cmd);
+out:
+ WRITE_UNLOCK(cmd);
+ return r;
+}
+
+int dm_cache_get_free_metadata_block_count(struct dm_cache_metadata *cmd,
+ dm_block_t *result)
+{
+ int r = -EINVAL;
+
+ READ_LOCK(cmd);
+ if (!cmd->fail_io)
+ r = dm_sm_get_nr_free(cmd->metadata_sm, result);
+ READ_UNLOCK(cmd);
+
+ return r;
+}
+
+int dm_cache_get_metadata_dev_size(struct dm_cache_metadata *cmd,
+ dm_block_t *result)
+{
+ int r = -EINVAL;
+
+ READ_LOCK(cmd);
+ if (!cmd->fail_io)
+ r = dm_sm_get_nr_blocks(cmd->metadata_sm, result);
+ READ_UNLOCK(cmd);
+
+ return r;
+}
+
+/*----------------------------------------------------------------*/
+
+static int get_hint(uint32_t index, void *value_le, void *context)
+{
+ uint32_t value;
+ struct dm_cache_policy *policy = context;
+
+ value = policy_get_hint(policy, to_cblock(index));
+ *((__le32 *) value_le) = cpu_to_le32(value);
+
+ return 0;
+}
+
+/*
+ * It's quicker to always delete the hint array, and recreate with
+ * dm_array_new().
+ */
+static int write_hints(struct dm_cache_metadata *cmd, struct dm_cache_policy *policy)
+{
+ int r;
+ size_t hint_size;
+ const char *policy_name = dm_cache_policy_get_name(policy);
+ const unsigned int *policy_version = dm_cache_policy_get_version(policy);
+
+ if (!policy_name[0] ||
+ (strlen(policy_name) > sizeof(cmd->policy_name) - 1))
+ return -EINVAL;
+
+ strncpy(cmd->policy_name, policy_name, sizeof(cmd->policy_name));
+ memcpy(cmd->policy_version, policy_version, sizeof(cmd->policy_version));
+
+ hint_size = dm_cache_policy_get_hint_size(policy);
+ if (!hint_size)
+ return 0; /* short-circuit hints initialization */
+ cmd->policy_hint_size = hint_size;
+
+ if (cmd->hint_root) {
+ r = dm_array_del(&cmd->hint_info, cmd->hint_root);
+ if (r)
+ return r;
+ }
+
+ return dm_array_new(&cmd->hint_info, &cmd->hint_root,
+ from_cblock(cmd->cache_blocks),
+ get_hint, policy);
+}
+
+int dm_cache_write_hints(struct dm_cache_metadata *cmd, struct dm_cache_policy *policy)
+{
+ int r;
+
+ WRITE_LOCK(cmd);
+ r = write_hints(cmd, policy);
+ WRITE_UNLOCK(cmd);
+
+ return r;
+}
+
+int dm_cache_metadata_all_clean(struct dm_cache_metadata *cmd, bool *result)
+{
+ int r;
+
+ READ_LOCK(cmd);
+ r = blocks_are_unmapped_or_clean(cmd, 0, cmd->cache_blocks, result);
+ READ_UNLOCK(cmd);
+
+ return r;
+}
+
+void dm_cache_metadata_set_read_only(struct dm_cache_metadata *cmd)
+{
+ WRITE_LOCK_VOID(cmd);
+ dm_bm_set_read_only(cmd->bm);
+ WRITE_UNLOCK(cmd);
+}
+
+void dm_cache_metadata_set_read_write(struct dm_cache_metadata *cmd)
+{
+ WRITE_LOCK_VOID(cmd);
+ dm_bm_set_read_write(cmd->bm);
+ WRITE_UNLOCK(cmd);
+}
+
+int dm_cache_metadata_set_needs_check(struct dm_cache_metadata *cmd)
+{
+ int r;
+ struct dm_block *sblock;
+ struct cache_disk_superblock *disk_super;
+
+ WRITE_LOCK(cmd);
+ set_bit(NEEDS_CHECK, &cmd->flags);
+
+ r = superblock_lock(cmd, &sblock);
+ if (r) {
+ DMERR("couldn't read superblock");
+ goto out;
+ }
+
+ disk_super = dm_block_data(sblock);
+ disk_super->flags = cpu_to_le32(cmd->flags);
+
+ dm_bm_unlock(sblock);
+
+out:
+ WRITE_UNLOCK(cmd);
+ return r;
+}
+
+int dm_cache_metadata_needs_check(struct dm_cache_metadata *cmd, bool *result)
+{
+ READ_LOCK(cmd);
+ *result = !!test_bit(NEEDS_CHECK, &cmd->flags);
+ READ_UNLOCK(cmd);
+
+ return 0;
+}
+
+int dm_cache_metadata_abort(struct dm_cache_metadata *cmd)
+{
+ int r = -EINVAL;
+ struct dm_block_manager *old_bm = NULL, *new_bm = NULL;
+
+ /* fail_io is double-checked with cmd->root_lock held below */
+ if (unlikely(cmd->fail_io))
+ return r;
+
+ /*
+ * Replacement block manager (new_bm) is created and old_bm destroyed outside of
+ * cmd root_lock to avoid ABBA deadlock that would result (due to life-cycle of
+ * shrinker associated with the block manager's bufio client vs cmd root_lock).
+ * - must take shrinker_rwsem without holding cmd->root_lock
+ */
+ new_bm = dm_block_manager_create(cmd->bdev, DM_CACHE_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
+ CACHE_MAX_CONCURRENT_LOCKS);
+
+ WRITE_LOCK(cmd);
+ if (cmd->fail_io) {
+ WRITE_UNLOCK(cmd);
+ goto out;
+ }
+
+ __destroy_persistent_data_objects(cmd, false);
+ old_bm = cmd->bm;
+ if (IS_ERR(new_bm)) {
+ DMERR("could not create block manager during abort");
+ cmd->bm = NULL;
+ r = PTR_ERR(new_bm);
+ goto out_unlock;
+ }
+
+ cmd->bm = new_bm;
+ r = __open_or_format_metadata(cmd, false);
+ if (r) {
+ cmd->bm = NULL;
+ goto out_unlock;
+ }
+ new_bm = NULL;
+out_unlock:
+ if (r)
+ cmd->fail_io = true;
+ WRITE_UNLOCK(cmd);
+ dm_block_manager_destroy(old_bm);
+out:
+ if (new_bm && !IS_ERR(new_bm))
+ dm_block_manager_destroy(new_bm);
+
+ return r;
+}
diff --git a/drivers/md/dm-cache-metadata.h b/drivers/md/dm-cache-metadata.h
new file mode 100644
index 000000000..b40322bc4
--- /dev/null
+++ b/drivers/md/dm-cache-metadata.h
@@ -0,0 +1,153 @@
+/*
+ * Copyright (C) 2012 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_CACHE_METADATA_H
+#define DM_CACHE_METADATA_H
+
+#include "dm-cache-block-types.h"
+#include "dm-cache-policy-internal.h"
+#include "persistent-data/dm-space-map-metadata.h"
+
+/*----------------------------------------------------------------*/
+
+#define DM_CACHE_METADATA_BLOCK_SIZE DM_SM_METADATA_BLOCK_SIZE
+
+/* FIXME: remove this restriction */
+/*
+ * The metadata device is currently limited in size.
+ */
+#define DM_CACHE_METADATA_MAX_SECTORS DM_SM_METADATA_MAX_SECTORS
+
+/*
+ * A metadata device larger than 16GB triggers a warning.
+ */
+#define DM_CACHE_METADATA_MAX_SECTORS_WARNING (16 * (1024 * 1024 * 1024 >> SECTOR_SHIFT))
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Ext[234]-style compat feature flags.
+ *
+ * A new feature which old metadata will still be compatible with should
+ * define a DM_CACHE_FEATURE_COMPAT_* flag (rarely useful).
+ *
+ * A new feature that is not compatible with old code should define a
+ * DM_CACHE_FEATURE_INCOMPAT_* flag and guard the relevant code with
+ * that flag.
+ *
+ * A new feature that is not compatible with old code accessing the
+ * metadata RDWR should define a DM_CACHE_FEATURE_RO_COMPAT_* flag and
+ * guard the relevant code with that flag.
+ *
+ * As these various flags are defined they should be added to the
+ * following masks.
+ */
+
+#define DM_CACHE_FEATURE_COMPAT_SUPP 0UL
+#define DM_CACHE_FEATURE_COMPAT_RO_SUPP 0UL
+#define DM_CACHE_FEATURE_INCOMPAT_SUPP 0UL
+
+struct dm_cache_metadata;
+
+/*
+ * Reopens or creates a new, empty metadata volume. Returns an ERR_PTR on
+ * failure. If reopening then features must match.
+ */
+struct dm_cache_metadata *dm_cache_metadata_open(struct block_device *bdev,
+ sector_t data_block_size,
+ bool may_format_device,
+ size_t policy_hint_size,
+ unsigned int metadata_version);
+
+void dm_cache_metadata_close(struct dm_cache_metadata *cmd);
+
+/*
+ * The metadata needs to know how many cache blocks there are. We don't
+ * care about the origin, assuming the core target is giving us valid
+ * origin blocks to map to.
+ */
+int dm_cache_resize(struct dm_cache_metadata *cmd, dm_cblock_t new_cache_size);
+int dm_cache_size(struct dm_cache_metadata *cmd, dm_cblock_t *result);
+
+int dm_cache_discard_bitset_resize(struct dm_cache_metadata *cmd,
+ sector_t discard_block_size,
+ dm_dblock_t new_nr_entries);
+
+typedef int (*load_discard_fn)(void *context, sector_t discard_block_size,
+ dm_dblock_t dblock, bool discarded);
+int dm_cache_load_discards(struct dm_cache_metadata *cmd,
+ load_discard_fn fn, void *context);
+
+int dm_cache_set_discard(struct dm_cache_metadata *cmd, dm_dblock_t dblock, bool discard);
+
+int dm_cache_remove_mapping(struct dm_cache_metadata *cmd, dm_cblock_t cblock);
+int dm_cache_insert_mapping(struct dm_cache_metadata *cmd, dm_cblock_t cblock, dm_oblock_t oblock);
+int dm_cache_changed_this_transaction(struct dm_cache_metadata *cmd);
+
+typedef int (*load_mapping_fn)(void *context, dm_oblock_t oblock,
+ dm_cblock_t cblock, bool dirty,
+ uint32_t hint, bool hint_valid);
+int dm_cache_load_mappings(struct dm_cache_metadata *cmd,
+ struct dm_cache_policy *policy,
+ load_mapping_fn fn,
+ void *context);
+
+int dm_cache_set_dirty_bits(struct dm_cache_metadata *cmd,
+ unsigned int nr_bits, unsigned long *bits);
+
+struct dm_cache_statistics {
+ uint32_t read_hits;
+ uint32_t read_misses;
+ uint32_t write_hits;
+ uint32_t write_misses;
+};
+
+void dm_cache_metadata_get_stats(struct dm_cache_metadata *cmd,
+ struct dm_cache_statistics *stats);
+
+/*
+ * 'void' because it's no big deal if it fails.
+ */
+void dm_cache_metadata_set_stats(struct dm_cache_metadata *cmd,
+ struct dm_cache_statistics *stats);
+
+int dm_cache_commit(struct dm_cache_metadata *cmd, bool clean_shutdown);
+
+int dm_cache_get_free_metadata_block_count(struct dm_cache_metadata *cmd,
+ dm_block_t *result);
+
+int dm_cache_get_metadata_dev_size(struct dm_cache_metadata *cmd,
+ dm_block_t *result);
+
+void dm_cache_dump(struct dm_cache_metadata *cmd);
+
+/*
+ * The policy is invited to save a 32bit hint value for every cblock (eg,
+ * for a hit count). These are stored against the policy name. If
+ * policies are changed, then hints will be lost. If the machine crashes,
+ * hints will be lost.
+ *
+ * The hints are indexed by the cblock, but many policies will not
+ * necessarily have a fast way of accessing efficiently via cblock. So
+ * rather than querying the policy for each cblock, we let it walk its data
+ * structures and fill in the hints in whatever order it wishes.
+ */
+int dm_cache_write_hints(struct dm_cache_metadata *cmd, struct dm_cache_policy *p);
+
+/*
+ * Query method. Are all the blocks in the cache clean?
+ */
+int dm_cache_metadata_all_clean(struct dm_cache_metadata *cmd, bool *result);
+
+int dm_cache_metadata_needs_check(struct dm_cache_metadata *cmd, bool *result);
+int dm_cache_metadata_set_needs_check(struct dm_cache_metadata *cmd);
+void dm_cache_metadata_set_read_only(struct dm_cache_metadata *cmd);
+void dm_cache_metadata_set_read_write(struct dm_cache_metadata *cmd);
+int dm_cache_metadata_abort(struct dm_cache_metadata *cmd);
+
+/*----------------------------------------------------------------*/
+
+#endif /* DM_CACHE_METADATA_H */
diff --git a/drivers/md/dm-cache-policy-internal.h b/drivers/md/dm-cache-policy-internal.h
new file mode 100644
index 000000000..8e49baa78
--- /dev/null
+++ b/drivers/md/dm-cache-policy-internal.h
@@ -0,0 +1,163 @@
+/*
+ * Copyright (C) 2012 Red Hat. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_CACHE_POLICY_INTERNAL_H
+#define DM_CACHE_POLICY_INTERNAL_H
+
+#include <linux/vmalloc.h>
+#include "dm-cache-policy.h"
+
+/*----------------------------------------------------------------*/
+
+static inline int policy_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock,
+ int data_dir, bool fast_copy, bool *background_queued)
+{
+ return p->lookup(p, oblock, cblock, data_dir, fast_copy, background_queued);
+}
+
+static inline int policy_lookup_with_work(struct dm_cache_policy *p,
+ dm_oblock_t oblock, dm_cblock_t *cblock,
+ int data_dir, bool fast_copy,
+ struct policy_work **work)
+{
+ if (!p->lookup_with_work) {
+ *work = NULL;
+ return p->lookup(p, oblock, cblock, data_dir, fast_copy, NULL);
+ }
+
+ return p->lookup_with_work(p, oblock, cblock, data_dir, fast_copy, work);
+}
+
+static inline int policy_get_background_work(struct dm_cache_policy *p,
+ bool idle, struct policy_work **result)
+{
+ return p->get_background_work(p, idle, result);
+}
+
+static inline void policy_complete_background_work(struct dm_cache_policy *p,
+ struct policy_work *work,
+ bool success)
+{
+ return p->complete_background_work(p, work, success);
+}
+
+static inline void policy_set_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
+{
+ p->set_dirty(p, cblock);
+}
+
+static inline void policy_clear_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
+{
+ p->clear_dirty(p, cblock);
+}
+
+static inline int policy_load_mapping(struct dm_cache_policy *p,
+ dm_oblock_t oblock, dm_cblock_t cblock,
+ bool dirty, uint32_t hint, bool hint_valid)
+{
+ return p->load_mapping(p, oblock, cblock, dirty, hint, hint_valid);
+}
+
+static inline int policy_invalidate_mapping(struct dm_cache_policy *p,
+ dm_cblock_t cblock)
+{
+ return p->invalidate_mapping(p, cblock);
+}
+
+static inline uint32_t policy_get_hint(struct dm_cache_policy *p,
+ dm_cblock_t cblock)
+{
+ return p->get_hint ? p->get_hint(p, cblock) : 0;
+}
+
+static inline dm_cblock_t policy_residency(struct dm_cache_policy *p)
+{
+ return p->residency(p);
+}
+
+static inline void policy_tick(struct dm_cache_policy *p, bool can_block)
+{
+ if (p->tick)
+ return p->tick(p, can_block);
+}
+
+static inline int policy_emit_config_values(struct dm_cache_policy *p, char *result,
+ unsigned int maxlen, ssize_t *sz_ptr)
+{
+ ssize_t sz = *sz_ptr;
+ if (p->emit_config_values)
+ return p->emit_config_values(p, result, maxlen, sz_ptr);
+
+ DMEMIT("0 ");
+ *sz_ptr = sz;
+ return 0;
+}
+
+static inline int policy_set_config_value(struct dm_cache_policy *p,
+ const char *key, const char *value)
+{
+ return p->set_config_value ? p->set_config_value(p, key, value) : -EINVAL;
+}
+
+static inline void policy_allow_migrations(struct dm_cache_policy *p, bool allow)
+{
+ return p->allow_migrations(p, allow);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Some utility functions commonly used by policies and the core target.
+ */
+static inline size_t bitset_size_in_bytes(unsigned int nr_entries)
+{
+ return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
+}
+
+static inline unsigned long *alloc_bitset(unsigned int nr_entries)
+{
+ size_t s = bitset_size_in_bytes(nr_entries);
+ return vzalloc(s);
+}
+
+static inline void clear_bitset(void *bitset, unsigned int nr_entries)
+{
+ size_t s = bitset_size_in_bytes(nr_entries);
+ memset(bitset, 0, s);
+}
+
+static inline void free_bitset(unsigned long *bits)
+{
+ vfree(bits);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Creates a new cache policy given a policy name, a cache size, an origin size and the block size.
+ */
+struct dm_cache_policy *dm_cache_policy_create(const char *name, dm_cblock_t cache_size,
+ sector_t origin_size, sector_t block_size);
+
+/*
+ * Destroys the policy. This drops references to the policy module as well
+ * as calling it's destroy method. So always use this rather than calling
+ * the policy->destroy method directly.
+ */
+void dm_cache_policy_destroy(struct dm_cache_policy *p);
+
+/*
+ * In case we've forgotten.
+ */
+const char *dm_cache_policy_get_name(struct dm_cache_policy *p);
+
+const unsigned int *dm_cache_policy_get_version(struct dm_cache_policy *p);
+
+size_t dm_cache_policy_get_hint_size(struct dm_cache_policy *p);
+
+/*----------------------------------------------------------------*/
+
+#endif /* DM_CACHE_POLICY_INTERNAL_H */
diff --git a/drivers/md/dm-cache-policy-smq.c b/drivers/md/dm-cache-policy-smq.c
new file mode 100644
index 000000000..c983cf240
--- /dev/null
+++ b/drivers/md/dm-cache-policy-smq.c
@@ -0,0 +1,1953 @@
+/*
+ * Copyright (C) 2015 Red Hat. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-cache-background-tracker.h"
+#include "dm-cache-policy-internal.h"
+#include "dm-cache-policy.h"
+#include "dm.h"
+
+#include <linux/hash.h>
+#include <linux/jiffies.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/vmalloc.h>
+#include <linux/math64.h>
+
+#define DM_MSG_PREFIX "cache-policy-smq"
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Safe division functions that return zero on divide by zero.
+ */
+static unsigned int safe_div(unsigned int n, unsigned int d)
+{
+ return d ? n / d : 0u;
+}
+
+static unsigned int safe_mod(unsigned int n, unsigned int d)
+{
+ return d ? n % d : 0u;
+}
+
+/*----------------------------------------------------------------*/
+
+struct entry {
+ unsigned int hash_next:28;
+ unsigned int prev:28;
+ unsigned int next:28;
+ unsigned int level:6;
+ bool dirty:1;
+ bool allocated:1;
+ bool sentinel:1;
+ bool pending_work:1;
+
+ dm_oblock_t oblock;
+};
+
+/*----------------------------------------------------------------*/
+
+#define INDEXER_NULL ((1u << 28u) - 1u)
+
+/*
+ * An entry_space manages a set of entries that we use for the queues.
+ * The clean and dirty queues share entries, so this object is separate
+ * from the queue itself.
+ */
+struct entry_space {
+ struct entry *begin;
+ struct entry *end;
+};
+
+static int space_init(struct entry_space *es, unsigned int nr_entries)
+{
+ if (!nr_entries) {
+ es->begin = es->end = NULL;
+ return 0;
+ }
+
+ es->begin = vzalloc(array_size(nr_entries, sizeof(struct entry)));
+ if (!es->begin)
+ return -ENOMEM;
+
+ es->end = es->begin + nr_entries;
+ return 0;
+}
+
+static void space_exit(struct entry_space *es)
+{
+ vfree(es->begin);
+}
+
+static struct entry *__get_entry(struct entry_space *es, unsigned int block)
+{
+ struct entry *e;
+
+ e = es->begin + block;
+ BUG_ON(e >= es->end);
+
+ return e;
+}
+
+static unsigned int to_index(struct entry_space *es, struct entry *e)
+{
+ BUG_ON(e < es->begin || e >= es->end);
+ return e - es->begin;
+}
+
+static struct entry *to_entry(struct entry_space *es, unsigned int block)
+{
+ if (block == INDEXER_NULL)
+ return NULL;
+
+ return __get_entry(es, block);
+}
+
+/*----------------------------------------------------------------*/
+
+struct ilist {
+ unsigned int nr_elts; /* excluding sentinel entries */
+ unsigned int head, tail;
+};
+
+static void l_init(struct ilist *l)
+{
+ l->nr_elts = 0;
+ l->head = l->tail = INDEXER_NULL;
+}
+
+static struct entry *l_head(struct entry_space *es, struct ilist *l)
+{
+ return to_entry(es, l->head);
+}
+
+static struct entry *l_tail(struct entry_space *es, struct ilist *l)
+{
+ return to_entry(es, l->tail);
+}
+
+static struct entry *l_next(struct entry_space *es, struct entry *e)
+{
+ return to_entry(es, e->next);
+}
+
+static struct entry *l_prev(struct entry_space *es, struct entry *e)
+{
+ return to_entry(es, e->prev);
+}
+
+static bool l_empty(struct ilist *l)
+{
+ return l->head == INDEXER_NULL;
+}
+
+static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e)
+{
+ struct entry *head = l_head(es, l);
+
+ e->next = l->head;
+ e->prev = INDEXER_NULL;
+
+ if (head)
+ head->prev = l->head = to_index(es, e);
+ else
+ l->head = l->tail = to_index(es, e);
+
+ if (!e->sentinel)
+ l->nr_elts++;
+}
+
+static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e)
+{
+ struct entry *tail = l_tail(es, l);
+
+ e->next = INDEXER_NULL;
+ e->prev = l->tail;
+
+ if (tail)
+ tail->next = l->tail = to_index(es, e);
+ else
+ l->head = l->tail = to_index(es, e);
+
+ if (!e->sentinel)
+ l->nr_elts++;
+}
+
+static void l_add_before(struct entry_space *es, struct ilist *l,
+ struct entry *old, struct entry *e)
+{
+ struct entry *prev = l_prev(es, old);
+
+ if (!prev)
+ l_add_head(es, l, e);
+
+ else {
+ e->prev = old->prev;
+ e->next = to_index(es, old);
+ prev->next = old->prev = to_index(es, e);
+
+ if (!e->sentinel)
+ l->nr_elts++;
+ }
+}
+
+static void l_del(struct entry_space *es, struct ilist *l, struct entry *e)
+{
+ struct entry *prev = l_prev(es, e);
+ struct entry *next = l_next(es, e);
+
+ if (prev)
+ prev->next = e->next;
+ else
+ l->head = e->next;
+
+ if (next)
+ next->prev = e->prev;
+ else
+ l->tail = e->prev;
+
+ if (!e->sentinel)
+ l->nr_elts--;
+}
+
+static struct entry *l_pop_head(struct entry_space *es, struct ilist *l)
+{
+ struct entry *e;
+
+ for (e = l_head(es, l); e; e = l_next(es, e))
+ if (!e->sentinel) {
+ l_del(es, l, e);
+ return e;
+ }
+
+ return NULL;
+}
+
+static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l)
+{
+ struct entry *e;
+
+ for (e = l_tail(es, l); e; e = l_prev(es, e))
+ if (!e->sentinel) {
+ l_del(es, l, e);
+ return e;
+ }
+
+ return NULL;
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * The stochastic-multi-queue is a set of lru lists stacked into levels.
+ * Entries are moved up levels when they are used, which loosely orders the
+ * most accessed entries in the top levels and least in the bottom. This
+ * structure is *much* better than a single lru list.
+ */
+#define MAX_LEVELS 64u
+
+struct queue {
+ struct entry_space *es;
+
+ unsigned int nr_elts;
+ unsigned int nr_levels;
+ struct ilist qs[MAX_LEVELS];
+
+ /*
+ * We maintain a count of the number of entries we would like in each
+ * level.
+ */
+ unsigned int last_target_nr_elts;
+ unsigned int nr_top_levels;
+ unsigned int nr_in_top_levels;
+ unsigned int target_count[MAX_LEVELS];
+};
+
+static void q_init(struct queue *q, struct entry_space *es, unsigned int nr_levels)
+{
+ unsigned int i;
+
+ q->es = es;
+ q->nr_elts = 0;
+ q->nr_levels = nr_levels;
+
+ for (i = 0; i < q->nr_levels; i++) {
+ l_init(q->qs + i);
+ q->target_count[i] = 0u;
+ }
+
+ q->last_target_nr_elts = 0u;
+ q->nr_top_levels = 0u;
+ q->nr_in_top_levels = 0u;
+}
+
+static unsigned int q_size(struct queue *q)
+{
+ return q->nr_elts;
+}
+
+/*
+ * Insert an entry to the back of the given level.
+ */
+static void q_push(struct queue *q, struct entry *e)
+{
+ BUG_ON(e->pending_work);
+
+ if (!e->sentinel)
+ q->nr_elts++;
+
+ l_add_tail(q->es, q->qs + e->level, e);
+}
+
+static void q_push_front(struct queue *q, struct entry *e)
+{
+ BUG_ON(e->pending_work);
+
+ if (!e->sentinel)
+ q->nr_elts++;
+
+ l_add_head(q->es, q->qs + e->level, e);
+}
+
+static void q_push_before(struct queue *q, struct entry *old, struct entry *e)
+{
+ BUG_ON(e->pending_work);
+
+ if (!e->sentinel)
+ q->nr_elts++;
+
+ l_add_before(q->es, q->qs + e->level, old, e);
+}
+
+static void q_del(struct queue *q, struct entry *e)
+{
+ l_del(q->es, q->qs + e->level, e);
+ if (!e->sentinel)
+ q->nr_elts--;
+}
+
+/*
+ * Return the oldest entry of the lowest populated level.
+ */
+static struct entry *q_peek(struct queue *q, unsigned int max_level, bool can_cross_sentinel)
+{
+ unsigned int level;
+ struct entry *e;
+
+ max_level = min(max_level, q->nr_levels);
+
+ for (level = 0; level < max_level; level++)
+ for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
+ if (e->sentinel) {
+ if (can_cross_sentinel)
+ continue;
+ else
+ break;
+ }
+
+ return e;
+ }
+
+ return NULL;
+}
+
+static struct entry *q_pop(struct queue *q)
+{
+ struct entry *e = q_peek(q, q->nr_levels, true);
+
+ if (e)
+ q_del(q, e);
+
+ return e;
+}
+
+/*
+ * This function assumes there is a non-sentinel entry to pop. It's only
+ * used by redistribute, so we know this is true. It also doesn't adjust
+ * the q->nr_elts count.
+ */
+static struct entry *__redist_pop_from(struct queue *q, unsigned int level)
+{
+ struct entry *e;
+
+ for (; level < q->nr_levels; level++)
+ for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e))
+ if (!e->sentinel) {
+ l_del(q->es, q->qs + e->level, e);
+ return e;
+ }
+
+ return NULL;
+}
+
+static void q_set_targets_subrange_(struct queue *q, unsigned int nr_elts,
+ unsigned int lbegin, unsigned int lend)
+{
+ unsigned int level, nr_levels, entries_per_level, remainder;
+
+ BUG_ON(lbegin > lend);
+ BUG_ON(lend > q->nr_levels);
+ nr_levels = lend - lbegin;
+ entries_per_level = safe_div(nr_elts, nr_levels);
+ remainder = safe_mod(nr_elts, nr_levels);
+
+ for (level = lbegin; level < lend; level++)
+ q->target_count[level] =
+ (level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level;
+}
+
+/*
+ * Typically we have fewer elements in the top few levels which allows us
+ * to adjust the promote threshold nicely.
+ */
+static void q_set_targets(struct queue *q)
+{
+ if (q->last_target_nr_elts == q->nr_elts)
+ return;
+
+ q->last_target_nr_elts = q->nr_elts;
+
+ if (q->nr_top_levels > q->nr_levels)
+ q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels);
+
+ else {
+ q_set_targets_subrange_(q, q->nr_in_top_levels,
+ q->nr_levels - q->nr_top_levels, q->nr_levels);
+
+ if (q->nr_in_top_levels < q->nr_elts)
+ q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels,
+ 0, q->nr_levels - q->nr_top_levels);
+ else
+ q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels);
+ }
+}
+
+static void q_redistribute(struct queue *q)
+{
+ unsigned int target, level;
+ struct ilist *l, *l_above;
+ struct entry *e;
+
+ q_set_targets(q);
+
+ for (level = 0u; level < q->nr_levels - 1u; level++) {
+ l = q->qs + level;
+ target = q->target_count[level];
+
+ /*
+ * Pull down some entries from the level above.
+ */
+ while (l->nr_elts < target) {
+ e = __redist_pop_from(q, level + 1u);
+ if (!e) {
+ /* bug in nr_elts */
+ break;
+ }
+
+ e->level = level;
+ l_add_tail(q->es, l, e);
+ }
+
+ /*
+ * Push some entries up.
+ */
+ l_above = q->qs + level + 1u;
+ while (l->nr_elts > target) {
+ e = l_pop_tail(q->es, l);
+
+ if (!e)
+ /* bug in nr_elts */
+ break;
+
+ e->level = level + 1u;
+ l_add_tail(q->es, l_above, e);
+ }
+ }
+}
+
+static void q_requeue(struct queue *q, struct entry *e, unsigned int extra_levels,
+ struct entry *s1, struct entry *s2)
+{
+ struct entry *de;
+ unsigned int sentinels_passed = 0;
+ unsigned int new_level = min(q->nr_levels - 1u, e->level + extra_levels);
+
+ /* try and find an entry to swap with */
+ if (extra_levels && (e->level < q->nr_levels - 1u)) {
+ for (de = l_head(q->es, q->qs + new_level); de && de->sentinel; de = l_next(q->es, de))
+ sentinels_passed++;
+
+ if (de) {
+ q_del(q, de);
+ de->level = e->level;
+ if (s1) {
+ switch (sentinels_passed) {
+ case 0:
+ q_push_before(q, s1, de);
+ break;
+
+ case 1:
+ q_push_before(q, s2, de);
+ break;
+
+ default:
+ q_push(q, de);
+ }
+ } else
+ q_push(q, de);
+ }
+ }
+
+ q_del(q, e);
+ e->level = new_level;
+ q_push(q, e);
+}
+
+/*----------------------------------------------------------------*/
+
+#define FP_SHIFT 8
+#define SIXTEENTH (1u << (FP_SHIFT - 4u))
+#define EIGHTH (1u << (FP_SHIFT - 3u))
+
+struct stats {
+ unsigned int hit_threshold;
+ unsigned int hits;
+ unsigned int misses;
+};
+
+enum performance {
+ Q_POOR,
+ Q_FAIR,
+ Q_WELL
+};
+
+static void stats_init(struct stats *s, unsigned int nr_levels)
+{
+ s->hit_threshold = (nr_levels * 3u) / 4u;
+ s->hits = 0u;
+ s->misses = 0u;
+}
+
+static void stats_reset(struct stats *s)
+{
+ s->hits = s->misses = 0u;
+}
+
+static void stats_level_accessed(struct stats *s, unsigned int level)
+{
+ if (level >= s->hit_threshold)
+ s->hits++;
+ else
+ s->misses++;
+}
+
+static void stats_miss(struct stats *s)
+{
+ s->misses++;
+}
+
+/*
+ * There are times when we don't have any confidence in the hotspot queue.
+ * Such as when a fresh cache is created and the blocks have been spread
+ * out across the levels, or if an io load changes. We detect this by
+ * seeing how often a lookup is in the top levels of the hotspot queue.
+ */
+static enum performance stats_assess(struct stats *s)
+{
+ unsigned int confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses);
+
+ if (confidence < SIXTEENTH)
+ return Q_POOR;
+
+ else if (confidence < EIGHTH)
+ return Q_FAIR;
+
+ else
+ return Q_WELL;
+}
+
+/*----------------------------------------------------------------*/
+
+struct smq_hash_table {
+ struct entry_space *es;
+ unsigned long long hash_bits;
+ unsigned int *buckets;
+};
+
+/*
+ * All cache entries are stored in a chained hash table. To save space we
+ * use indexing again, and only store indexes to the next entry.
+ */
+static int h_init(struct smq_hash_table *ht, struct entry_space *es, unsigned int nr_entries)
+{
+ unsigned int i, nr_buckets;
+
+ ht->es = es;
+ nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u));
+ ht->hash_bits = __ffs(nr_buckets);
+
+ ht->buckets = vmalloc(array_size(nr_buckets, sizeof(*ht->buckets)));
+ if (!ht->buckets)
+ return -ENOMEM;
+
+ for (i = 0; i < nr_buckets; i++)
+ ht->buckets[i] = INDEXER_NULL;
+
+ return 0;
+}
+
+static void h_exit(struct smq_hash_table *ht)
+{
+ vfree(ht->buckets);
+}
+
+static struct entry *h_head(struct smq_hash_table *ht, unsigned int bucket)
+{
+ return to_entry(ht->es, ht->buckets[bucket]);
+}
+
+static struct entry *h_next(struct smq_hash_table *ht, struct entry *e)
+{
+ return to_entry(ht->es, e->hash_next);
+}
+
+static void __h_insert(struct smq_hash_table *ht, unsigned int bucket, struct entry *e)
+{
+ e->hash_next = ht->buckets[bucket];
+ ht->buckets[bucket] = to_index(ht->es, e);
+}
+
+static void h_insert(struct smq_hash_table *ht, struct entry *e)
+{
+ unsigned int h = hash_64(from_oblock(e->oblock), ht->hash_bits);
+ __h_insert(ht, h, e);
+}
+
+static struct entry *__h_lookup(struct smq_hash_table *ht, unsigned int h, dm_oblock_t oblock,
+ struct entry **prev)
+{
+ struct entry *e;
+
+ *prev = NULL;
+ for (e = h_head(ht, h); e; e = h_next(ht, e)) {
+ if (e->oblock == oblock)
+ return e;
+
+ *prev = e;
+ }
+
+ return NULL;
+}
+
+static void __h_unlink(struct smq_hash_table *ht, unsigned int h,
+ struct entry *e, struct entry *prev)
+{
+ if (prev)
+ prev->hash_next = e->hash_next;
+ else
+ ht->buckets[h] = e->hash_next;
+}
+
+/*
+ * Also moves each entry to the front of the bucket.
+ */
+static struct entry *h_lookup(struct smq_hash_table *ht, dm_oblock_t oblock)
+{
+ struct entry *e, *prev;
+ unsigned int h = hash_64(from_oblock(oblock), ht->hash_bits);
+
+ e = __h_lookup(ht, h, oblock, &prev);
+ if (e && prev) {
+ /*
+ * Move to the front because this entry is likely
+ * to be hit again.
+ */
+ __h_unlink(ht, h, e, prev);
+ __h_insert(ht, h, e);
+ }
+
+ return e;
+}
+
+static void h_remove(struct smq_hash_table *ht, struct entry *e)
+{
+ unsigned int h = hash_64(from_oblock(e->oblock), ht->hash_bits);
+ struct entry *prev;
+
+ /*
+ * The down side of using a singly linked list is we have to
+ * iterate the bucket to remove an item.
+ */
+ e = __h_lookup(ht, h, e->oblock, &prev);
+ if (e)
+ __h_unlink(ht, h, e, prev);
+}
+
+/*----------------------------------------------------------------*/
+
+struct entry_alloc {
+ struct entry_space *es;
+ unsigned int begin;
+
+ unsigned int nr_allocated;
+ struct ilist free;
+};
+
+static void init_allocator(struct entry_alloc *ea, struct entry_space *es,
+ unsigned int begin, unsigned int end)
+{
+ unsigned int i;
+
+ ea->es = es;
+ ea->nr_allocated = 0u;
+ ea->begin = begin;
+
+ l_init(&ea->free);
+ for (i = begin; i != end; i++)
+ l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i));
+}
+
+static void init_entry(struct entry *e)
+{
+ /*
+ * We can't memset because that would clear the hotspot and
+ * sentinel bits which remain constant.
+ */
+ e->hash_next = INDEXER_NULL;
+ e->next = INDEXER_NULL;
+ e->prev = INDEXER_NULL;
+ e->level = 0u;
+ e->dirty = true; /* FIXME: audit */
+ e->allocated = true;
+ e->sentinel = false;
+ e->pending_work = false;
+}
+
+static struct entry *alloc_entry(struct entry_alloc *ea)
+{
+ struct entry *e;
+
+ if (l_empty(&ea->free))
+ return NULL;
+
+ e = l_pop_head(ea->es, &ea->free);
+ init_entry(e);
+ ea->nr_allocated++;
+
+ return e;
+}
+
+/*
+ * This assumes the cblock hasn't already been allocated.
+ */
+static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned int i)
+{
+ struct entry *e = __get_entry(ea->es, ea->begin + i);
+
+ BUG_ON(e->allocated);
+
+ l_del(ea->es, &ea->free, e);
+ init_entry(e);
+ ea->nr_allocated++;
+
+ return e;
+}
+
+static void free_entry(struct entry_alloc *ea, struct entry *e)
+{
+ BUG_ON(!ea->nr_allocated);
+ BUG_ON(!e->allocated);
+
+ ea->nr_allocated--;
+ e->allocated = false;
+ l_add_tail(ea->es, &ea->free, e);
+}
+
+static bool allocator_empty(struct entry_alloc *ea)
+{
+ return l_empty(&ea->free);
+}
+
+static unsigned int get_index(struct entry_alloc *ea, struct entry *e)
+{
+ return to_index(ea->es, e) - ea->begin;
+}
+
+static struct entry *get_entry(struct entry_alloc *ea, unsigned int index)
+{
+ return __get_entry(ea->es, ea->begin + index);
+}
+
+/*----------------------------------------------------------------*/
+
+#define NR_HOTSPOT_LEVELS 64u
+#define NR_CACHE_LEVELS 64u
+
+#define WRITEBACK_PERIOD (10ul * HZ)
+#define DEMOTE_PERIOD (60ul * HZ)
+
+#define HOTSPOT_UPDATE_PERIOD (HZ)
+#define CACHE_UPDATE_PERIOD (60ul * HZ)
+
+struct smq_policy {
+ struct dm_cache_policy policy;
+
+ /* protects everything */
+ spinlock_t lock;
+ dm_cblock_t cache_size;
+ sector_t cache_block_size;
+
+ sector_t hotspot_block_size;
+ unsigned int nr_hotspot_blocks;
+ unsigned int cache_blocks_per_hotspot_block;
+ unsigned int hotspot_level_jump;
+
+ struct entry_space es;
+ struct entry_alloc writeback_sentinel_alloc;
+ struct entry_alloc demote_sentinel_alloc;
+ struct entry_alloc hotspot_alloc;
+ struct entry_alloc cache_alloc;
+
+ unsigned long *hotspot_hit_bits;
+ unsigned long *cache_hit_bits;
+
+ /*
+ * We maintain three queues of entries. The cache proper,
+ * consisting of a clean and dirty queue, containing the currently
+ * active mappings. The hotspot queue uses a larger block size to
+ * track blocks that are being hit frequently and potential
+ * candidates for promotion to the cache.
+ */
+ struct queue hotspot;
+ struct queue clean;
+ struct queue dirty;
+
+ struct stats hotspot_stats;
+ struct stats cache_stats;
+
+ /*
+ * Keeps track of time, incremented by the core. We use this to
+ * avoid attributing multiple hits within the same tick.
+ */
+ unsigned int tick;
+
+ /*
+ * The hash tables allows us to quickly find an entry by origin
+ * block.
+ */
+ struct smq_hash_table table;
+ struct smq_hash_table hotspot_table;
+
+ bool current_writeback_sentinels;
+ unsigned long next_writeback_period;
+
+ bool current_demote_sentinels;
+ unsigned long next_demote_period;
+
+ unsigned int write_promote_level;
+ unsigned int read_promote_level;
+
+ unsigned long next_hotspot_period;
+ unsigned long next_cache_period;
+
+ struct background_tracker *bg_work;
+
+ bool migrations_allowed:1;
+
+ /*
+ * If this is set the policy will try and clean the whole cache
+ * even if the device is not idle.
+ */
+ bool cleaner:1;
+};
+
+/*----------------------------------------------------------------*/
+
+static struct entry *get_sentinel(struct entry_alloc *ea, unsigned int level, bool which)
+{
+ return get_entry(ea, which ? level : NR_CACHE_LEVELS + level);
+}
+
+static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned int level)
+{
+ return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels);
+}
+
+static struct entry *demote_sentinel(struct smq_policy *mq, unsigned int level)
+{
+ return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels);
+}
+
+static void __update_writeback_sentinels(struct smq_policy *mq)
+{
+ unsigned int level;
+ struct queue *q = &mq->dirty;
+ struct entry *sentinel;
+
+ for (level = 0; level < q->nr_levels; level++) {
+ sentinel = writeback_sentinel(mq, level);
+ q_del(q, sentinel);
+ q_push(q, sentinel);
+ }
+}
+
+static void __update_demote_sentinels(struct smq_policy *mq)
+{
+ unsigned int level;
+ struct queue *q = &mq->clean;
+ struct entry *sentinel;
+
+ for (level = 0; level < q->nr_levels; level++) {
+ sentinel = demote_sentinel(mq, level);
+ q_del(q, sentinel);
+ q_push(q, sentinel);
+ }
+}
+
+static void update_sentinels(struct smq_policy *mq)
+{
+ if (time_after(jiffies, mq->next_writeback_period)) {
+ mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
+ mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
+ __update_writeback_sentinels(mq);
+ }
+
+ if (time_after(jiffies, mq->next_demote_period)) {
+ mq->next_demote_period = jiffies + DEMOTE_PERIOD;
+ mq->current_demote_sentinels = !mq->current_demote_sentinels;
+ __update_demote_sentinels(mq);
+ }
+}
+
+static void __sentinels_init(struct smq_policy *mq)
+{
+ unsigned int level;
+ struct entry *sentinel;
+
+ for (level = 0; level < NR_CACHE_LEVELS; level++) {
+ sentinel = writeback_sentinel(mq, level);
+ sentinel->level = level;
+ q_push(&mq->dirty, sentinel);
+
+ sentinel = demote_sentinel(mq, level);
+ sentinel->level = level;
+ q_push(&mq->clean, sentinel);
+ }
+}
+
+static void sentinels_init(struct smq_policy *mq)
+{
+ mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
+ mq->next_demote_period = jiffies + DEMOTE_PERIOD;
+
+ mq->current_writeback_sentinels = false;
+ mq->current_demote_sentinels = false;
+ __sentinels_init(mq);
+
+ mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
+ mq->current_demote_sentinels = !mq->current_demote_sentinels;
+ __sentinels_init(mq);
+}
+
+/*----------------------------------------------------------------*/
+
+static void del_queue(struct smq_policy *mq, struct entry *e)
+{
+ q_del(e->dirty ? &mq->dirty : &mq->clean, e);
+}
+
+static void push_queue(struct smq_policy *mq, struct entry *e)
+{
+ if (e->dirty)
+ q_push(&mq->dirty, e);
+ else
+ q_push(&mq->clean, e);
+}
+
+// !h, !q, a -> h, q, a
+static void push(struct smq_policy *mq, struct entry *e)
+{
+ h_insert(&mq->table, e);
+ if (!e->pending_work)
+ push_queue(mq, e);
+}
+
+static void push_queue_front(struct smq_policy *mq, struct entry *e)
+{
+ if (e->dirty)
+ q_push_front(&mq->dirty, e);
+ else
+ q_push_front(&mq->clean, e);
+}
+
+static void push_front(struct smq_policy *mq, struct entry *e)
+{
+ h_insert(&mq->table, e);
+ if (!e->pending_work)
+ push_queue_front(mq, e);
+}
+
+static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e)
+{
+ return to_cblock(get_index(&mq->cache_alloc, e));
+}
+
+static void requeue(struct smq_policy *mq, struct entry *e)
+{
+ /*
+ * Pending work has temporarily been taken out of the queues.
+ */
+ if (e->pending_work)
+ return;
+
+ if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) {
+ if (!e->dirty) {
+ q_requeue(&mq->clean, e, 1u, NULL, NULL);
+ return;
+ }
+
+ q_requeue(&mq->dirty, e, 1u,
+ get_sentinel(&mq->writeback_sentinel_alloc, e->level, !mq->current_writeback_sentinels),
+ get_sentinel(&mq->writeback_sentinel_alloc, e->level, mq->current_writeback_sentinels));
+ }
+}
+
+static unsigned int default_promote_level(struct smq_policy *mq)
+{
+ /*
+ * The promote level depends on the current performance of the
+ * cache.
+ *
+ * If the cache is performing badly, then we can't afford
+ * to promote much without causing performance to drop below that
+ * of the origin device.
+ *
+ * If the cache is performing well, then we don't need to promote
+ * much. If it isn't broken, don't fix it.
+ *
+ * If the cache is middling then we promote more.
+ *
+ * This scheme reminds me of a graph of entropy vs probability of a
+ * binary variable.
+ */
+ static const unsigned int table[] = {
+ 1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1
+ };
+
+ unsigned int hits = mq->cache_stats.hits;
+ unsigned int misses = mq->cache_stats.misses;
+ unsigned int index = safe_div(hits << 4u, hits + misses);
+ return table[index];
+}
+
+static void update_promote_levels(struct smq_policy *mq)
+{
+ /*
+ * If there are unused cache entries then we want to be really
+ * eager to promote.
+ */
+ unsigned int threshold_level = allocator_empty(&mq->cache_alloc) ?
+ default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u);
+
+ threshold_level = max(threshold_level, NR_HOTSPOT_LEVELS);
+
+ /*
+ * If the hotspot queue is performing badly then we have little
+ * confidence that we know which blocks to promote. So we cut down
+ * the amount of promotions.
+ */
+ switch (stats_assess(&mq->hotspot_stats)) {
+ case Q_POOR:
+ threshold_level /= 4u;
+ break;
+
+ case Q_FAIR:
+ threshold_level /= 2u;
+ break;
+
+ case Q_WELL:
+ break;
+ }
+
+ mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level;
+ mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level);
+}
+
+/*
+ * If the hotspot queue is performing badly, then we try and move entries
+ * around more quickly.
+ */
+static void update_level_jump(struct smq_policy *mq)
+{
+ switch (stats_assess(&mq->hotspot_stats)) {
+ case Q_POOR:
+ mq->hotspot_level_jump = 4u;
+ break;
+
+ case Q_FAIR:
+ mq->hotspot_level_jump = 2u;
+ break;
+
+ case Q_WELL:
+ mq->hotspot_level_jump = 1u;
+ break;
+ }
+}
+
+static void end_hotspot_period(struct smq_policy *mq)
+{
+ clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
+ update_promote_levels(mq);
+
+ if (time_after(jiffies, mq->next_hotspot_period)) {
+ update_level_jump(mq);
+ q_redistribute(&mq->hotspot);
+ stats_reset(&mq->hotspot_stats);
+ mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD;
+ }
+}
+
+static void end_cache_period(struct smq_policy *mq)
+{
+ if (time_after(jiffies, mq->next_cache_period)) {
+ clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
+
+ q_redistribute(&mq->dirty);
+ q_redistribute(&mq->clean);
+ stats_reset(&mq->cache_stats);
+
+ mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD;
+ }
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Targets are given as a percentage.
+ */
+#define CLEAN_TARGET 25u
+#define FREE_TARGET 25u
+
+static unsigned int percent_to_target(struct smq_policy *mq, unsigned int p)
+{
+ return from_cblock(mq->cache_size) * p / 100u;
+}
+
+static bool clean_target_met(struct smq_policy *mq, bool idle)
+{
+ /*
+ * Cache entries may not be populated. So we cannot rely on the
+ * size of the clean queue.
+ */
+ if (idle || mq->cleaner) {
+ /*
+ * We'd like to clean everything.
+ */
+ return q_size(&mq->dirty) == 0u;
+ }
+
+ /*
+ * If we're busy we don't worry about cleaning at all.
+ */
+ return true;
+}
+
+static bool free_target_met(struct smq_policy *mq)
+{
+ unsigned int nr_free;
+
+ nr_free = from_cblock(mq->cache_size) - mq->cache_alloc.nr_allocated;
+ return (nr_free + btracker_nr_demotions_queued(mq->bg_work)) >=
+ percent_to_target(mq, FREE_TARGET);
+}
+
+/*----------------------------------------------------------------*/
+
+static void mark_pending(struct smq_policy *mq, struct entry *e)
+{
+ BUG_ON(e->sentinel);
+ BUG_ON(!e->allocated);
+ BUG_ON(e->pending_work);
+ e->pending_work = true;
+}
+
+static void clear_pending(struct smq_policy *mq, struct entry *e)
+{
+ BUG_ON(!e->pending_work);
+ e->pending_work = false;
+}
+
+static void queue_writeback(struct smq_policy *mq, bool idle)
+{
+ int r;
+ struct policy_work work;
+ struct entry *e;
+
+ e = q_peek(&mq->dirty, mq->dirty.nr_levels, idle);
+ if (e) {
+ mark_pending(mq, e);
+ q_del(&mq->dirty, e);
+
+ work.op = POLICY_WRITEBACK;
+ work.oblock = e->oblock;
+ work.cblock = infer_cblock(mq, e);
+
+ r = btracker_queue(mq->bg_work, &work, NULL);
+ if (r) {
+ clear_pending(mq, e);
+ q_push_front(&mq->dirty, e);
+ }
+ }
+}
+
+static void queue_demotion(struct smq_policy *mq)
+{
+ int r;
+ struct policy_work work;
+ struct entry *e;
+
+ if (WARN_ON_ONCE(!mq->migrations_allowed))
+ return;
+
+ e = q_peek(&mq->clean, mq->clean.nr_levels / 2, true);
+ if (!e) {
+ if (!clean_target_met(mq, true))
+ queue_writeback(mq, false);
+ return;
+ }
+
+ mark_pending(mq, e);
+ q_del(&mq->clean, e);
+
+ work.op = POLICY_DEMOTE;
+ work.oblock = e->oblock;
+ work.cblock = infer_cblock(mq, e);
+ r = btracker_queue(mq->bg_work, &work, NULL);
+ if (r) {
+ clear_pending(mq, e);
+ q_push_front(&mq->clean, e);
+ }
+}
+
+static void queue_promotion(struct smq_policy *mq, dm_oblock_t oblock,
+ struct policy_work **workp)
+{
+ int r;
+ struct entry *e;
+ struct policy_work work;
+
+ if (!mq->migrations_allowed)
+ return;
+
+ if (allocator_empty(&mq->cache_alloc)) {
+ /*
+ * We always claim to be 'idle' to ensure some demotions happen
+ * with continuous loads.
+ */
+ if (!free_target_met(mq))
+ queue_demotion(mq);
+ return;
+ }
+
+ if (btracker_promotion_already_present(mq->bg_work, oblock))
+ return;
+
+ /*
+ * We allocate the entry now to reserve the cblock. If the
+ * background work is aborted we must remember to free it.
+ */
+ e = alloc_entry(&mq->cache_alloc);
+ BUG_ON(!e);
+ e->pending_work = true;
+ work.op = POLICY_PROMOTE;
+ work.oblock = oblock;
+ work.cblock = infer_cblock(mq, e);
+ r = btracker_queue(mq->bg_work, &work, workp);
+ if (r)
+ free_entry(&mq->cache_alloc, e);
+}
+
+/*----------------------------------------------------------------*/
+
+enum promote_result {
+ PROMOTE_NOT,
+ PROMOTE_TEMPORARY,
+ PROMOTE_PERMANENT
+};
+
+/*
+ * Converts a boolean into a promote result.
+ */
+static enum promote_result maybe_promote(bool promote)
+{
+ return promote ? PROMOTE_PERMANENT : PROMOTE_NOT;
+}
+
+static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e,
+ int data_dir, bool fast_promote)
+{
+ if (data_dir == WRITE) {
+ if (!allocator_empty(&mq->cache_alloc) && fast_promote)
+ return PROMOTE_TEMPORARY;
+
+ return maybe_promote(hs_e->level >= mq->write_promote_level);
+ } else
+ return maybe_promote(hs_e->level >= mq->read_promote_level);
+}
+
+static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b)
+{
+ sector_t r = from_oblock(b);
+ (void) sector_div(r, mq->cache_blocks_per_hotspot_block);
+ return to_oblock(r);
+}
+
+static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b)
+{
+ unsigned int hi;
+ dm_oblock_t hb = to_hblock(mq, b);
+ struct entry *e = h_lookup(&mq->hotspot_table, hb);
+
+ if (e) {
+ stats_level_accessed(&mq->hotspot_stats, e->level);
+
+ hi = get_index(&mq->hotspot_alloc, e);
+ q_requeue(&mq->hotspot, e,
+ test_and_set_bit(hi, mq->hotspot_hit_bits) ?
+ 0u : mq->hotspot_level_jump,
+ NULL, NULL);
+
+ } else {
+ stats_miss(&mq->hotspot_stats);
+
+ e = alloc_entry(&mq->hotspot_alloc);
+ if (!e) {
+ e = q_pop(&mq->hotspot);
+ if (e) {
+ h_remove(&mq->hotspot_table, e);
+ hi = get_index(&mq->hotspot_alloc, e);
+ clear_bit(hi, mq->hotspot_hit_bits);
+ }
+
+ }
+
+ if (e) {
+ e->oblock = hb;
+ q_push(&mq->hotspot, e);
+ h_insert(&mq->hotspot_table, e);
+ }
+ }
+
+ return e;
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Public interface, via the policy struct. See dm-cache-policy.h for a
+ * description of these.
+ */
+
+static struct smq_policy *to_smq_policy(struct dm_cache_policy *p)
+{
+ return container_of(p, struct smq_policy, policy);
+}
+
+static void smq_destroy(struct dm_cache_policy *p)
+{
+ struct smq_policy *mq = to_smq_policy(p);
+
+ btracker_destroy(mq->bg_work);
+ h_exit(&mq->hotspot_table);
+ h_exit(&mq->table);
+ free_bitset(mq->hotspot_hit_bits);
+ free_bitset(mq->cache_hit_bits);
+ space_exit(&mq->es);
+ kfree(mq);
+}
+
+/*----------------------------------------------------------------*/
+
+static int __lookup(struct smq_policy *mq, dm_oblock_t oblock, dm_cblock_t *cblock,
+ int data_dir, bool fast_copy,
+ struct policy_work **work, bool *background_work)
+{
+ struct entry *e, *hs_e;
+ enum promote_result pr;
+
+ *background_work = false;
+
+ e = h_lookup(&mq->table, oblock);
+ if (e) {
+ stats_level_accessed(&mq->cache_stats, e->level);
+
+ requeue(mq, e);
+ *cblock = infer_cblock(mq, e);
+ return 0;
+
+ } else {
+ stats_miss(&mq->cache_stats);
+
+ /*
+ * The hotspot queue only gets updated with misses.
+ */
+ hs_e = update_hotspot_queue(mq, oblock);
+
+ pr = should_promote(mq, hs_e, data_dir, fast_copy);
+ if (pr != PROMOTE_NOT) {
+ queue_promotion(mq, oblock, work);
+ *background_work = true;
+ }
+
+ return -ENOENT;
+ }
+}
+
+static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock,
+ int data_dir, bool fast_copy,
+ bool *background_work)
+{
+ int r;
+ unsigned long flags;
+ struct smq_policy *mq = to_smq_policy(p);
+
+ spin_lock_irqsave(&mq->lock, flags);
+ r = __lookup(mq, oblock, cblock,
+ data_dir, fast_copy,
+ NULL, background_work);
+ spin_unlock_irqrestore(&mq->lock, flags);
+
+ return r;
+}
+
+static int smq_lookup_with_work(struct dm_cache_policy *p,
+ dm_oblock_t oblock, dm_cblock_t *cblock,
+ int data_dir, bool fast_copy,
+ struct policy_work **work)
+{
+ int r;
+ bool background_queued;
+ unsigned long flags;
+ struct smq_policy *mq = to_smq_policy(p);
+
+ spin_lock_irqsave(&mq->lock, flags);
+ r = __lookup(mq, oblock, cblock, data_dir, fast_copy, work, &background_queued);
+ spin_unlock_irqrestore(&mq->lock, flags);
+
+ return r;
+}
+
+static int smq_get_background_work(struct dm_cache_policy *p, bool idle,
+ struct policy_work **result)
+{
+ int r;
+ unsigned long flags;
+ struct smq_policy *mq = to_smq_policy(p);
+
+ spin_lock_irqsave(&mq->lock, flags);
+ r = btracker_issue(mq->bg_work, result);
+ if (r == -ENODATA) {
+ if (!clean_target_met(mq, idle)) {
+ queue_writeback(mq, idle);
+ r = btracker_issue(mq->bg_work, result);
+ }
+ }
+ spin_unlock_irqrestore(&mq->lock, flags);
+
+ return r;
+}
+
+/*
+ * We need to clear any pending work flags that have been set, and in the
+ * case of promotion free the entry for the destination cblock.
+ */
+static void __complete_background_work(struct smq_policy *mq,
+ struct policy_work *work,
+ bool success)
+{
+ struct entry *e = get_entry(&mq->cache_alloc,
+ from_cblock(work->cblock));
+
+ switch (work->op) {
+ case POLICY_PROMOTE:
+ // !h, !q, a
+ clear_pending(mq, e);
+ if (success) {
+ e->oblock = work->oblock;
+ e->level = NR_CACHE_LEVELS - 1;
+ push(mq, e);
+ // h, q, a
+ } else {
+ free_entry(&mq->cache_alloc, e);
+ // !h, !q, !a
+ }
+ break;
+
+ case POLICY_DEMOTE:
+ // h, !q, a
+ if (success) {
+ h_remove(&mq->table, e);
+ free_entry(&mq->cache_alloc, e);
+ // !h, !q, !a
+ } else {
+ clear_pending(mq, e);
+ push_queue(mq, e);
+ // h, q, a
+ }
+ break;
+
+ case POLICY_WRITEBACK:
+ // h, !q, a
+ clear_pending(mq, e);
+ push_queue(mq, e);
+ // h, q, a
+ break;
+ }
+
+ btracker_complete(mq->bg_work, work);
+}
+
+static void smq_complete_background_work(struct dm_cache_policy *p,
+ struct policy_work *work,
+ bool success)
+{
+ unsigned long flags;
+ struct smq_policy *mq = to_smq_policy(p);
+
+ spin_lock_irqsave(&mq->lock, flags);
+ __complete_background_work(mq, work, success);
+ spin_unlock_irqrestore(&mq->lock, flags);
+}
+
+// in_hash(oblock) -> in_hash(oblock)
+static void __smq_set_clear_dirty(struct smq_policy *mq, dm_cblock_t cblock, bool set)
+{
+ struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
+
+ if (e->pending_work)
+ e->dirty = set;
+ else {
+ del_queue(mq, e);
+ e->dirty = set;
+ push_queue(mq, e);
+ }
+}
+
+static void smq_set_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
+{
+ unsigned long flags;
+ struct smq_policy *mq = to_smq_policy(p);
+
+ spin_lock_irqsave(&mq->lock, flags);
+ __smq_set_clear_dirty(mq, cblock, true);
+ spin_unlock_irqrestore(&mq->lock, flags);
+}
+
+static void smq_clear_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
+{
+ struct smq_policy *mq = to_smq_policy(p);
+ unsigned long flags;
+
+ spin_lock_irqsave(&mq->lock, flags);
+ __smq_set_clear_dirty(mq, cblock, false);
+ spin_unlock_irqrestore(&mq->lock, flags);
+}
+
+static unsigned int random_level(dm_cblock_t cblock)
+{
+ return hash_32(from_cblock(cblock), 9) & (NR_CACHE_LEVELS - 1);
+}
+
+static int smq_load_mapping(struct dm_cache_policy *p,
+ dm_oblock_t oblock, dm_cblock_t cblock,
+ bool dirty, uint32_t hint, bool hint_valid)
+{
+ struct smq_policy *mq = to_smq_policy(p);
+ struct entry *e;
+
+ e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock));
+ e->oblock = oblock;
+ e->dirty = dirty;
+ e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : random_level(cblock);
+ e->pending_work = false;
+
+ /*
+ * When we load mappings we push ahead of both sentinels in order to
+ * allow demotions and cleaning to occur immediately.
+ */
+ push_front(mq, e);
+
+ return 0;
+}
+
+static int smq_invalidate_mapping(struct dm_cache_policy *p, dm_cblock_t cblock)
+{
+ struct smq_policy *mq = to_smq_policy(p);
+ struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
+
+ if (!e->allocated)
+ return -ENODATA;
+
+ // FIXME: what if this block has pending background work?
+ del_queue(mq, e);
+ h_remove(&mq->table, e);
+ free_entry(&mq->cache_alloc, e);
+ return 0;
+}
+
+static uint32_t smq_get_hint(struct dm_cache_policy *p, dm_cblock_t cblock)
+{
+ struct smq_policy *mq = to_smq_policy(p);
+ struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
+
+ if (!e->allocated)
+ return 0;
+
+ return e->level;
+}
+
+static dm_cblock_t smq_residency(struct dm_cache_policy *p)
+{
+ dm_cblock_t r;
+ unsigned long flags;
+ struct smq_policy *mq = to_smq_policy(p);
+
+ spin_lock_irqsave(&mq->lock, flags);
+ r = to_cblock(mq->cache_alloc.nr_allocated);
+ spin_unlock_irqrestore(&mq->lock, flags);
+
+ return r;
+}
+
+static void smq_tick(struct dm_cache_policy *p, bool can_block)
+{
+ struct smq_policy *mq = to_smq_policy(p);
+ unsigned long flags;
+
+ spin_lock_irqsave(&mq->lock, flags);
+ mq->tick++;
+ update_sentinels(mq);
+ end_hotspot_period(mq);
+ end_cache_period(mq);
+ spin_unlock_irqrestore(&mq->lock, flags);
+}
+
+static void smq_allow_migrations(struct dm_cache_policy *p, bool allow)
+{
+ struct smq_policy *mq = to_smq_policy(p);
+ mq->migrations_allowed = allow;
+}
+
+/*
+ * smq has no config values, but the old mq policy did. To avoid breaking
+ * software we continue to accept these configurables for the mq policy,
+ * but they have no effect.
+ */
+static int mq_set_config_value(struct dm_cache_policy *p,
+ const char *key, const char *value)
+{
+ unsigned long tmp;
+
+ if (kstrtoul(value, 10, &tmp))
+ return -EINVAL;
+
+ if (!strcasecmp(key, "random_threshold") ||
+ !strcasecmp(key, "sequential_threshold") ||
+ !strcasecmp(key, "discard_promote_adjustment") ||
+ !strcasecmp(key, "read_promote_adjustment") ||
+ !strcasecmp(key, "write_promote_adjustment")) {
+ DMWARN("tunable '%s' no longer has any effect, mq policy is now an alias for smq", key);
+ return 0;
+ }
+
+ return -EINVAL;
+}
+
+static int mq_emit_config_values(struct dm_cache_policy *p, char *result,
+ unsigned int maxlen, ssize_t *sz_ptr)
+{
+ ssize_t sz = *sz_ptr;
+
+ DMEMIT("10 random_threshold 0 "
+ "sequential_threshold 0 "
+ "discard_promote_adjustment 0 "
+ "read_promote_adjustment 0 "
+ "write_promote_adjustment 0 ");
+
+ *sz_ptr = sz;
+ return 0;
+}
+
+/* Init the policy plugin interface function pointers. */
+static void init_policy_functions(struct smq_policy *mq, bool mimic_mq)
+{
+ mq->policy.destroy = smq_destroy;
+ mq->policy.lookup = smq_lookup;
+ mq->policy.lookup_with_work = smq_lookup_with_work;
+ mq->policy.get_background_work = smq_get_background_work;
+ mq->policy.complete_background_work = smq_complete_background_work;
+ mq->policy.set_dirty = smq_set_dirty;
+ mq->policy.clear_dirty = smq_clear_dirty;
+ mq->policy.load_mapping = smq_load_mapping;
+ mq->policy.invalidate_mapping = smq_invalidate_mapping;
+ mq->policy.get_hint = smq_get_hint;
+ mq->policy.residency = smq_residency;
+ mq->policy.tick = smq_tick;
+ mq->policy.allow_migrations = smq_allow_migrations;
+
+ if (mimic_mq) {
+ mq->policy.set_config_value = mq_set_config_value;
+ mq->policy.emit_config_values = mq_emit_config_values;
+ }
+}
+
+static bool too_many_hotspot_blocks(sector_t origin_size,
+ sector_t hotspot_block_size,
+ unsigned int nr_hotspot_blocks)
+{
+ return (hotspot_block_size * nr_hotspot_blocks) > origin_size;
+}
+
+static void calc_hotspot_params(sector_t origin_size,
+ sector_t cache_block_size,
+ unsigned int nr_cache_blocks,
+ sector_t *hotspot_block_size,
+ unsigned int *nr_hotspot_blocks)
+{
+ *hotspot_block_size = cache_block_size * 16u;
+ *nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u);
+
+ while ((*hotspot_block_size > cache_block_size) &&
+ too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks))
+ *hotspot_block_size /= 2u;
+}
+
+static struct dm_cache_policy *
+__smq_create(dm_cblock_t cache_size, sector_t origin_size, sector_t cache_block_size,
+ bool mimic_mq, bool migrations_allowed, bool cleaner)
+{
+ unsigned int i;
+ unsigned int nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS;
+ unsigned int total_sentinels = 2u * nr_sentinels_per_queue;
+ struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
+
+ if (!mq)
+ return NULL;
+
+ init_policy_functions(mq, mimic_mq);
+ mq->cache_size = cache_size;
+ mq->cache_block_size = cache_block_size;
+
+ calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size),
+ &mq->hotspot_block_size, &mq->nr_hotspot_blocks);
+
+ mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size);
+ mq->hotspot_level_jump = 1u;
+ if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) {
+ DMERR("couldn't initialize entry space");
+ goto bad_pool_init;
+ }
+
+ init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue);
+ for (i = 0; i < nr_sentinels_per_queue; i++)
+ get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true;
+
+ init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels);
+ for (i = 0; i < nr_sentinels_per_queue; i++)
+ get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true;
+
+ init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels,
+ total_sentinels + mq->nr_hotspot_blocks);
+
+ init_allocator(&mq->cache_alloc, &mq->es,
+ total_sentinels + mq->nr_hotspot_blocks,
+ total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size));
+
+ mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks);
+ if (!mq->hotspot_hit_bits) {
+ DMERR("couldn't allocate hotspot hit bitset");
+ goto bad_hotspot_hit_bits;
+ }
+ clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
+
+ if (from_cblock(cache_size)) {
+ mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size));
+ if (!mq->cache_hit_bits) {
+ DMERR("couldn't allocate cache hit bitset");
+ goto bad_cache_hit_bits;
+ }
+ clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
+ } else
+ mq->cache_hit_bits = NULL;
+
+ mq->tick = 0;
+ spin_lock_init(&mq->lock);
+
+ q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS);
+ mq->hotspot.nr_top_levels = 8;
+ mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS,
+ from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block);
+
+ q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS);
+ q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS);
+
+ stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS);
+ stats_init(&mq->cache_stats, NR_CACHE_LEVELS);
+
+ if (h_init(&mq->table, &mq->es, from_cblock(cache_size)))
+ goto bad_alloc_table;
+
+ if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks))
+ goto bad_alloc_hotspot_table;
+
+ sentinels_init(mq);
+ mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS;
+
+ mq->next_hotspot_period = jiffies;
+ mq->next_cache_period = jiffies;
+
+ mq->bg_work = btracker_create(4096); /* FIXME: hard coded value */
+ if (!mq->bg_work)
+ goto bad_btracker;
+
+ mq->migrations_allowed = migrations_allowed;
+ mq->cleaner = cleaner;
+
+ return &mq->policy;
+
+bad_btracker:
+ h_exit(&mq->hotspot_table);
+bad_alloc_hotspot_table:
+ h_exit(&mq->table);
+bad_alloc_table:
+ free_bitset(mq->cache_hit_bits);
+bad_cache_hit_bits:
+ free_bitset(mq->hotspot_hit_bits);
+bad_hotspot_hit_bits:
+ space_exit(&mq->es);
+bad_pool_init:
+ kfree(mq);
+
+ return NULL;
+}
+
+static struct dm_cache_policy *smq_create(dm_cblock_t cache_size,
+ sector_t origin_size,
+ sector_t cache_block_size)
+{
+ return __smq_create(cache_size, origin_size, cache_block_size,
+ false, true, false);
+}
+
+static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
+ sector_t origin_size,
+ sector_t cache_block_size)
+{
+ return __smq_create(cache_size, origin_size, cache_block_size,
+ true, true, false);
+}
+
+static struct dm_cache_policy *cleaner_create(dm_cblock_t cache_size,
+ sector_t origin_size,
+ sector_t cache_block_size)
+{
+ return __smq_create(cache_size, origin_size, cache_block_size,
+ false, false, true);
+}
+
+/*----------------------------------------------------------------*/
+
+static struct dm_cache_policy_type smq_policy_type = {
+ .name = "smq",
+ .version = {2, 0, 0},
+ .hint_size = 4,
+ .owner = THIS_MODULE,
+ .create = smq_create
+};
+
+static struct dm_cache_policy_type mq_policy_type = {
+ .name = "mq",
+ .version = {2, 0, 0},
+ .hint_size = 4,
+ .owner = THIS_MODULE,
+ .create = mq_create,
+};
+
+static struct dm_cache_policy_type cleaner_policy_type = {
+ .name = "cleaner",
+ .version = {2, 0, 0},
+ .hint_size = 4,
+ .owner = THIS_MODULE,
+ .create = cleaner_create,
+};
+
+static struct dm_cache_policy_type default_policy_type = {
+ .name = "default",
+ .version = {2, 0, 0},
+ .hint_size = 4,
+ .owner = THIS_MODULE,
+ .create = smq_create,
+ .real = &smq_policy_type
+};
+
+static int __init smq_init(void)
+{
+ int r;
+
+ r = dm_cache_policy_register(&smq_policy_type);
+ if (r) {
+ DMERR("register failed %d", r);
+ return -ENOMEM;
+ }
+
+ r = dm_cache_policy_register(&mq_policy_type);
+ if (r) {
+ DMERR("register failed (as mq) %d", r);
+ goto out_mq;
+ }
+
+ r = dm_cache_policy_register(&cleaner_policy_type);
+ if (r) {
+ DMERR("register failed (as cleaner) %d", r);
+ goto out_cleaner;
+ }
+
+ r = dm_cache_policy_register(&default_policy_type);
+ if (r) {
+ DMERR("register failed (as default) %d", r);
+ goto out_default;
+ }
+
+ return 0;
+
+out_default:
+ dm_cache_policy_unregister(&cleaner_policy_type);
+out_cleaner:
+ dm_cache_policy_unregister(&mq_policy_type);
+out_mq:
+ dm_cache_policy_unregister(&smq_policy_type);
+
+ return -ENOMEM;
+}
+
+static void __exit smq_exit(void)
+{
+ dm_cache_policy_unregister(&cleaner_policy_type);
+ dm_cache_policy_unregister(&smq_policy_type);
+ dm_cache_policy_unregister(&mq_policy_type);
+ dm_cache_policy_unregister(&default_policy_type);
+}
+
+module_init(smq_init);
+module_exit(smq_exit);
+
+MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("smq cache policy");
+
+MODULE_ALIAS("dm-cache-default");
+MODULE_ALIAS("dm-cache-mq");
+MODULE_ALIAS("dm-cache-cleaner");
diff --git a/drivers/md/dm-cache-policy.c b/drivers/md/dm-cache-policy.c
new file mode 100644
index 000000000..2e58bbcf3
--- /dev/null
+++ b/drivers/md/dm-cache-policy.c
@@ -0,0 +1,173 @@
+/*
+ * Copyright (C) 2012 Red Hat. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-cache-policy-internal.h"
+#include "dm.h"
+
+#include <linux/module.h>
+#include <linux/slab.h>
+
+/*----------------------------------------------------------------*/
+
+#define DM_MSG_PREFIX "cache-policy"
+
+static DEFINE_SPINLOCK(register_lock);
+static LIST_HEAD(register_list);
+
+static struct dm_cache_policy_type *__find_policy(const char *name)
+{
+ struct dm_cache_policy_type *t;
+
+ list_for_each_entry(t, &register_list, list)
+ if (!strcmp(t->name, name))
+ return t;
+
+ return NULL;
+}
+
+static struct dm_cache_policy_type *__get_policy_once(const char *name)
+{
+ struct dm_cache_policy_type *t = __find_policy(name);
+
+ if (t && !try_module_get(t->owner)) {
+ DMWARN("couldn't get module %s", name);
+ t = ERR_PTR(-EINVAL);
+ }
+
+ return t;
+}
+
+static struct dm_cache_policy_type *get_policy_once(const char *name)
+{
+ struct dm_cache_policy_type *t;
+
+ spin_lock(&register_lock);
+ t = __get_policy_once(name);
+ spin_unlock(&register_lock);
+
+ return t;
+}
+
+static struct dm_cache_policy_type *get_policy(const char *name)
+{
+ struct dm_cache_policy_type *t;
+
+ t = get_policy_once(name);
+ if (IS_ERR(t))
+ return NULL;
+
+ if (t)
+ return t;
+
+ request_module("dm-cache-%s", name);
+
+ t = get_policy_once(name);
+ if (IS_ERR(t))
+ return NULL;
+
+ return t;
+}
+
+static void put_policy(struct dm_cache_policy_type *t)
+{
+ module_put(t->owner);
+}
+
+int dm_cache_policy_register(struct dm_cache_policy_type *type)
+{
+ int r;
+
+ /* One size fits all for now */
+ if (type->hint_size != 0 && type->hint_size != 4) {
+ DMWARN("hint size must be 0 or 4 but %llu supplied.", (unsigned long long) type->hint_size);
+ return -EINVAL;
+ }
+
+ spin_lock(&register_lock);
+ if (__find_policy(type->name)) {
+ DMWARN("attempt to register policy under duplicate name %s", type->name);
+ r = -EINVAL;
+ } else {
+ list_add(&type->list, &register_list);
+ r = 0;
+ }
+ spin_unlock(&register_lock);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_cache_policy_register);
+
+void dm_cache_policy_unregister(struct dm_cache_policy_type *type)
+{
+ spin_lock(&register_lock);
+ list_del_init(&type->list);
+ spin_unlock(&register_lock);
+}
+EXPORT_SYMBOL_GPL(dm_cache_policy_unregister);
+
+struct dm_cache_policy *dm_cache_policy_create(const char *name,
+ dm_cblock_t cache_size,
+ sector_t origin_size,
+ sector_t cache_block_size)
+{
+ struct dm_cache_policy *p = NULL;
+ struct dm_cache_policy_type *type;
+
+ type = get_policy(name);
+ if (!type) {
+ DMWARN("unknown policy type");
+ return ERR_PTR(-EINVAL);
+ }
+
+ p = type->create(cache_size, origin_size, cache_block_size);
+ if (!p) {
+ put_policy(type);
+ return ERR_PTR(-ENOMEM);
+ }
+ p->private = type;
+
+ return p;
+}
+EXPORT_SYMBOL_GPL(dm_cache_policy_create);
+
+void dm_cache_policy_destroy(struct dm_cache_policy *p)
+{
+ struct dm_cache_policy_type *t = p->private;
+
+ p->destroy(p);
+ put_policy(t);
+}
+EXPORT_SYMBOL_GPL(dm_cache_policy_destroy);
+
+const char *dm_cache_policy_get_name(struct dm_cache_policy *p)
+{
+ struct dm_cache_policy_type *t = p->private;
+
+ /* if t->real is set then an alias was used (e.g. "default") */
+ if (t->real)
+ return t->real->name;
+
+ return t->name;
+}
+EXPORT_SYMBOL_GPL(dm_cache_policy_get_name);
+
+const unsigned int *dm_cache_policy_get_version(struct dm_cache_policy *p)
+{
+ struct dm_cache_policy_type *t = p->private;
+
+ return t->version;
+}
+EXPORT_SYMBOL_GPL(dm_cache_policy_get_version);
+
+size_t dm_cache_policy_get_hint_size(struct dm_cache_policy *p)
+{
+ struct dm_cache_policy_type *t = p->private;
+
+ return t->hint_size;
+}
+EXPORT_SYMBOL_GPL(dm_cache_policy_get_hint_size);
+
+/*----------------------------------------------------------------*/
diff --git a/drivers/md/dm-cache-policy.h b/drivers/md/dm-cache-policy.h
new file mode 100644
index 000000000..6ba3e9c91
--- /dev/null
+++ b/drivers/md/dm-cache-policy.h
@@ -0,0 +1,186 @@
+/*
+ * Copyright (C) 2012 Red Hat. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_CACHE_POLICY_H
+#define DM_CACHE_POLICY_H
+
+#include "dm-cache-block-types.h"
+
+#include <linux/device-mapper.h>
+
+/*----------------------------------------------------------------*/
+
+/*
+ * The cache policy makes the important decisions about which blocks get to
+ * live on the faster cache device.
+ */
+enum policy_operation {
+ POLICY_PROMOTE,
+ POLICY_DEMOTE,
+ POLICY_WRITEBACK
+};
+
+/*
+ * This is the instruction passed back to the core target.
+ */
+struct policy_work {
+ enum policy_operation op;
+ dm_oblock_t oblock;
+ dm_cblock_t cblock;
+};
+
+/*
+ * The cache policy object. It is envisaged that this structure will be
+ * embedded in a bigger, policy specific structure (ie. use container_of()).
+ */
+struct dm_cache_policy {
+ /*
+ * Destroys this object.
+ */
+ void (*destroy)(struct dm_cache_policy *p);
+
+ /*
+ * Find the location of a block.
+ *
+ * Must not block.
+ *
+ * Returns 0 if in cache (cblock will be set), -ENOENT if not, < 0 for
+ * other errors (-EWOULDBLOCK would be typical). data_dir should be
+ * READ or WRITE. fast_copy should be set if migrating this block would
+ * be 'cheap' somehow (eg, discarded data). background_queued will be set
+ * if a migration has just been queued.
+ */
+ int (*lookup)(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock,
+ int data_dir, bool fast_copy, bool *background_queued);
+
+ /*
+ * Sometimes the core target can optimise a migration, eg, the
+ * block may be discarded, or the bio may cover an entire block.
+ * In order to optimise it needs the migration immediately though
+ * so it knows to do something different with the bio.
+ *
+ * This method is optional (policy-internal will fallback to using
+ * lookup).
+ */
+ int (*lookup_with_work)(struct dm_cache_policy *p,
+ dm_oblock_t oblock, dm_cblock_t *cblock,
+ int data_dir, bool fast_copy,
+ struct policy_work **work);
+
+ /*
+ * Retrieves background work. Returns -ENODATA when there's no
+ * background work.
+ */
+ int (*get_background_work)(struct dm_cache_policy *p, bool idle,
+ struct policy_work **result);
+
+ /*
+ * You must pass in the same work pointer that you were given, not
+ * a copy.
+ */
+ void (*complete_background_work)(struct dm_cache_policy *p,
+ struct policy_work *work,
+ bool success);
+
+ void (*set_dirty)(struct dm_cache_policy *p, dm_cblock_t cblock);
+ void (*clear_dirty)(struct dm_cache_policy *p, dm_cblock_t cblock);
+
+ /*
+ * Called when a cache target is first created. Used to load a
+ * mapping from the metadata device into the policy.
+ */
+ int (*load_mapping)(struct dm_cache_policy *p, dm_oblock_t oblock,
+ dm_cblock_t cblock, bool dirty,
+ uint32_t hint, bool hint_valid);
+
+ /*
+ * Drops the mapping, irrespective of whether it's clean or dirty.
+ * Returns -ENODATA if cblock is not mapped.
+ */
+ int (*invalidate_mapping)(struct dm_cache_policy *p, dm_cblock_t cblock);
+
+ /*
+ * Gets the hint for a given cblock. Called in a single threaded
+ * context. So no locking required.
+ */
+ uint32_t (*get_hint)(struct dm_cache_policy *p, dm_cblock_t cblock);
+
+ /*
+ * How full is the cache?
+ */
+ dm_cblock_t (*residency)(struct dm_cache_policy *p);
+
+ /*
+ * Because of where we sit in the block layer, we can be asked to
+ * map a lot of little bios that are all in the same block (no
+ * queue merging has occurred). To stop the policy being fooled by
+ * these, the core target sends regular tick() calls to the policy.
+ * The policy should only count an entry as hit once per tick.
+ *
+ * This method is optional.
+ */
+ void (*tick)(struct dm_cache_policy *p, bool can_block);
+
+ /*
+ * Configuration.
+ */
+ int (*emit_config_values)(struct dm_cache_policy *p, char *result,
+ unsigned int maxlen, ssize_t *sz_ptr);
+ int (*set_config_value)(struct dm_cache_policy *p,
+ const char *key, const char *value);
+
+ void (*allow_migrations)(struct dm_cache_policy *p, bool allow);
+
+ /*
+ * Book keeping ptr for the policy register, not for general use.
+ */
+ void *private;
+};
+
+/*----------------------------------------------------------------*/
+
+/*
+ * We maintain a little register of the different policy types.
+ */
+#define CACHE_POLICY_NAME_SIZE 16
+#define CACHE_POLICY_VERSION_SIZE 3
+
+struct dm_cache_policy_type {
+ /* For use by the register code only. */
+ struct list_head list;
+
+ /*
+ * Policy writers should fill in these fields. The name field is
+ * what gets passed on the target line to select your policy.
+ */
+ char name[CACHE_POLICY_NAME_SIZE];
+ unsigned int version[CACHE_POLICY_VERSION_SIZE];
+
+ /*
+ * For use by an alias dm_cache_policy_type to point to the
+ * real dm_cache_policy_type.
+ */
+ struct dm_cache_policy_type *real;
+
+ /*
+ * Policies may store a hint for each cache block.
+ * Currently the size of this hint must be 0 or 4 bytes but we
+ * expect to relax this in future.
+ */
+ size_t hint_size;
+
+ struct module *owner;
+ struct dm_cache_policy *(*create)(dm_cblock_t cache_size,
+ sector_t origin_size,
+ sector_t block_size);
+};
+
+int dm_cache_policy_register(struct dm_cache_policy_type *type);
+void dm_cache_policy_unregister(struct dm_cache_policy_type *type);
+
+/*----------------------------------------------------------------*/
+
+#endif /* DM_CACHE_POLICY_H */
diff --git a/drivers/md/dm-cache-target.c b/drivers/md/dm-cache-target.c
new file mode 100644
index 000000000..8f7426b71
--- /dev/null
+++ b/drivers/md/dm-cache-target.c
@@ -0,0 +1,3454 @@
+/*
+ * Copyright (C) 2012 Red Hat. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm.h"
+#include "dm-bio-prison-v2.h"
+#include "dm-bio-record.h"
+#include "dm-cache-metadata.h"
+#include "dm-io-tracker.h"
+
+#include <linux/dm-io.h>
+#include <linux/dm-kcopyd.h>
+#include <linux/jiffies.h>
+#include <linux/init.h>
+#include <linux/mempool.h>
+#include <linux/module.h>
+#include <linux/rwsem.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+
+#define DM_MSG_PREFIX "cache"
+
+DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
+ "A percentage of time allocated for copying to and/or from cache");
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Glossary:
+ *
+ * oblock: index of an origin block
+ * cblock: index of a cache block
+ * promotion: movement of a block from origin to cache
+ * demotion: movement of a block from cache to origin
+ * migration: movement of a block between the origin and cache device,
+ * either direction
+ */
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Represents a chunk of future work. 'input' allows continuations to pass
+ * values between themselves, typically error values.
+ */
+struct continuation {
+ struct work_struct ws;
+ blk_status_t input;
+};
+
+static inline void init_continuation(struct continuation *k,
+ void (*fn)(struct work_struct *))
+{
+ INIT_WORK(&k->ws, fn);
+ k->input = 0;
+}
+
+static inline void queue_continuation(struct workqueue_struct *wq,
+ struct continuation *k)
+{
+ queue_work(wq, &k->ws);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * The batcher collects together pieces of work that need a particular
+ * operation to occur before they can proceed (typically a commit).
+ */
+struct batcher {
+ /*
+ * The operation that everyone is waiting for.
+ */
+ blk_status_t (*commit_op)(void *context);
+ void *commit_context;
+
+ /*
+ * This is how bios should be issued once the commit op is complete
+ * (accounted_request).
+ */
+ void (*issue_op)(struct bio *bio, void *context);
+ void *issue_context;
+
+ /*
+ * Queued work gets put on here after commit.
+ */
+ struct workqueue_struct *wq;
+
+ spinlock_t lock;
+ struct list_head work_items;
+ struct bio_list bios;
+ struct work_struct commit_work;
+
+ bool commit_scheduled;
+};
+
+static void __commit(struct work_struct *_ws)
+{
+ struct batcher *b = container_of(_ws, struct batcher, commit_work);
+ blk_status_t r;
+ struct list_head work_items;
+ struct work_struct *ws, *tmp;
+ struct continuation *k;
+ struct bio *bio;
+ struct bio_list bios;
+
+ INIT_LIST_HEAD(&work_items);
+ bio_list_init(&bios);
+
+ /*
+ * We have to grab these before the commit_op to avoid a race
+ * condition.
+ */
+ spin_lock_irq(&b->lock);
+ list_splice_init(&b->work_items, &work_items);
+ bio_list_merge(&bios, &b->bios);
+ bio_list_init(&b->bios);
+ b->commit_scheduled = false;
+ spin_unlock_irq(&b->lock);
+
+ r = b->commit_op(b->commit_context);
+
+ list_for_each_entry_safe(ws, tmp, &work_items, entry) {
+ k = container_of(ws, struct continuation, ws);
+ k->input = r;
+ INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
+ queue_work(b->wq, ws);
+ }
+
+ while ((bio = bio_list_pop(&bios))) {
+ if (r) {
+ bio->bi_status = r;
+ bio_endio(bio);
+ } else
+ b->issue_op(bio, b->issue_context);
+ }
+}
+
+static void batcher_init(struct batcher *b,
+ blk_status_t (*commit_op)(void *),
+ void *commit_context,
+ void (*issue_op)(struct bio *bio, void *),
+ void *issue_context,
+ struct workqueue_struct *wq)
+{
+ b->commit_op = commit_op;
+ b->commit_context = commit_context;
+ b->issue_op = issue_op;
+ b->issue_context = issue_context;
+ b->wq = wq;
+
+ spin_lock_init(&b->lock);
+ INIT_LIST_HEAD(&b->work_items);
+ bio_list_init(&b->bios);
+ INIT_WORK(&b->commit_work, __commit);
+ b->commit_scheduled = false;
+}
+
+static void async_commit(struct batcher *b)
+{
+ queue_work(b->wq, &b->commit_work);
+}
+
+static void continue_after_commit(struct batcher *b, struct continuation *k)
+{
+ bool commit_scheduled;
+
+ spin_lock_irq(&b->lock);
+ commit_scheduled = b->commit_scheduled;
+ list_add_tail(&k->ws.entry, &b->work_items);
+ spin_unlock_irq(&b->lock);
+
+ if (commit_scheduled)
+ async_commit(b);
+}
+
+/*
+ * Bios are errored if commit failed.
+ */
+static void issue_after_commit(struct batcher *b, struct bio *bio)
+{
+ bool commit_scheduled;
+
+ spin_lock_irq(&b->lock);
+ commit_scheduled = b->commit_scheduled;
+ bio_list_add(&b->bios, bio);
+ spin_unlock_irq(&b->lock);
+
+ if (commit_scheduled)
+ async_commit(b);
+}
+
+/*
+ * Call this if some urgent work is waiting for the commit to complete.
+ */
+static void schedule_commit(struct batcher *b)
+{
+ bool immediate;
+
+ spin_lock_irq(&b->lock);
+ immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
+ b->commit_scheduled = true;
+ spin_unlock_irq(&b->lock);
+
+ if (immediate)
+ async_commit(b);
+}
+
+/*
+ * There are a couple of places where we let a bio run, but want to do some
+ * work before calling its endio function. We do this by temporarily
+ * changing the endio fn.
+ */
+struct dm_hook_info {
+ bio_end_io_t *bi_end_io;
+};
+
+static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
+ bio_end_io_t *bi_end_io, void *bi_private)
+{
+ h->bi_end_io = bio->bi_end_io;
+
+ bio->bi_end_io = bi_end_io;
+ bio->bi_private = bi_private;
+}
+
+static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
+{
+ bio->bi_end_io = h->bi_end_io;
+}
+
+/*----------------------------------------------------------------*/
+
+#define MIGRATION_POOL_SIZE 128
+#define COMMIT_PERIOD HZ
+#define MIGRATION_COUNT_WINDOW 10
+
+/*
+ * The block size of the device holding cache data must be
+ * between 32KB and 1GB.
+ */
+#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
+#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
+
+enum cache_metadata_mode {
+ CM_WRITE, /* metadata may be changed */
+ CM_READ_ONLY, /* metadata may not be changed */
+ CM_FAIL
+};
+
+enum cache_io_mode {
+ /*
+ * Data is written to cached blocks only. These blocks are marked
+ * dirty. If you lose the cache device you will lose data.
+ * Potential performance increase for both reads and writes.
+ */
+ CM_IO_WRITEBACK,
+
+ /*
+ * Data is written to both cache and origin. Blocks are never
+ * dirty. Potential performance benfit for reads only.
+ */
+ CM_IO_WRITETHROUGH,
+
+ /*
+ * A degraded mode useful for various cache coherency situations
+ * (eg, rolling back snapshots). Reads and writes always go to the
+ * origin. If a write goes to a cached oblock, then the cache
+ * block is invalidated.
+ */
+ CM_IO_PASSTHROUGH
+};
+
+struct cache_features {
+ enum cache_metadata_mode mode;
+ enum cache_io_mode io_mode;
+ unsigned int metadata_version;
+ bool discard_passdown:1;
+};
+
+struct cache_stats {
+ atomic_t read_hit;
+ atomic_t read_miss;
+ atomic_t write_hit;
+ atomic_t write_miss;
+ atomic_t demotion;
+ atomic_t promotion;
+ atomic_t writeback;
+ atomic_t copies_avoided;
+ atomic_t cache_cell_clash;
+ atomic_t commit_count;
+ atomic_t discard_count;
+};
+
+struct cache {
+ struct dm_target *ti;
+ spinlock_t lock;
+
+ /*
+ * Fields for converting from sectors to blocks.
+ */
+ int sectors_per_block_shift;
+ sector_t sectors_per_block;
+
+ struct dm_cache_metadata *cmd;
+
+ /*
+ * Metadata is written to this device.
+ */
+ struct dm_dev *metadata_dev;
+
+ /*
+ * The slower of the two data devices. Typically a spindle.
+ */
+ struct dm_dev *origin_dev;
+
+ /*
+ * The faster of the two data devices. Typically an SSD.
+ */
+ struct dm_dev *cache_dev;
+
+ /*
+ * Size of the origin device in _complete_ blocks and native sectors.
+ */
+ dm_oblock_t origin_blocks;
+ sector_t origin_sectors;
+
+ /*
+ * Size of the cache device in blocks.
+ */
+ dm_cblock_t cache_size;
+
+ /*
+ * Invalidation fields.
+ */
+ spinlock_t invalidation_lock;
+ struct list_head invalidation_requests;
+
+ sector_t migration_threshold;
+ wait_queue_head_t migration_wait;
+ atomic_t nr_allocated_migrations;
+
+ /*
+ * The number of in flight migrations that are performing
+ * background io. eg, promotion, writeback.
+ */
+ atomic_t nr_io_migrations;
+
+ struct bio_list deferred_bios;
+
+ struct rw_semaphore quiesce_lock;
+
+ /*
+ * origin_blocks entries, discarded if set.
+ */
+ dm_dblock_t discard_nr_blocks;
+ unsigned long *discard_bitset;
+ uint32_t discard_block_size; /* a power of 2 times sectors per block */
+
+ /*
+ * Rather than reconstructing the table line for the status we just
+ * save it and regurgitate.
+ */
+ unsigned int nr_ctr_args;
+ const char **ctr_args;
+
+ struct dm_kcopyd_client *copier;
+ struct work_struct deferred_bio_worker;
+ struct work_struct migration_worker;
+ struct workqueue_struct *wq;
+ struct delayed_work waker;
+ struct dm_bio_prison_v2 *prison;
+
+ /*
+ * cache_size entries, dirty if set
+ */
+ unsigned long *dirty_bitset;
+ atomic_t nr_dirty;
+
+ unsigned int policy_nr_args;
+ struct dm_cache_policy *policy;
+
+ /*
+ * Cache features such as write-through.
+ */
+ struct cache_features features;
+
+ struct cache_stats stats;
+
+ bool need_tick_bio:1;
+ bool sized:1;
+ bool invalidate:1;
+ bool commit_requested:1;
+ bool loaded_mappings:1;
+ bool loaded_discards:1;
+
+ struct rw_semaphore background_work_lock;
+
+ struct batcher committer;
+ struct work_struct commit_ws;
+
+ struct dm_io_tracker tracker;
+
+ mempool_t migration_pool;
+
+ struct bio_set bs;
+};
+
+struct per_bio_data {
+ bool tick:1;
+ unsigned int req_nr:2;
+ struct dm_bio_prison_cell_v2 *cell;
+ struct dm_hook_info hook_info;
+ sector_t len;
+};
+
+struct dm_cache_migration {
+ struct continuation k;
+ struct cache *cache;
+
+ struct policy_work *op;
+ struct bio *overwrite_bio;
+ struct dm_bio_prison_cell_v2 *cell;
+
+ dm_cblock_t invalidate_cblock;
+ dm_oblock_t invalidate_oblock;
+};
+
+/*----------------------------------------------------------------*/
+
+static bool writethrough_mode(struct cache *cache)
+{
+ return cache->features.io_mode == CM_IO_WRITETHROUGH;
+}
+
+static bool writeback_mode(struct cache *cache)
+{
+ return cache->features.io_mode == CM_IO_WRITEBACK;
+}
+
+static inline bool passthrough_mode(struct cache *cache)
+{
+ return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
+}
+
+/*----------------------------------------------------------------*/
+
+static void wake_deferred_bio_worker(struct cache *cache)
+{
+ queue_work(cache->wq, &cache->deferred_bio_worker);
+}
+
+static void wake_migration_worker(struct cache *cache)
+{
+ if (passthrough_mode(cache))
+ return;
+
+ queue_work(cache->wq, &cache->migration_worker);
+}
+
+/*----------------------------------------------------------------*/
+
+static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
+{
+ return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
+}
+
+static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
+{
+ dm_bio_prison_free_cell_v2(cache->prison, cell);
+}
+
+static struct dm_cache_migration *alloc_migration(struct cache *cache)
+{
+ struct dm_cache_migration *mg;
+
+ mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
+
+ memset(mg, 0, sizeof(*mg));
+
+ mg->cache = cache;
+ atomic_inc(&cache->nr_allocated_migrations);
+
+ return mg;
+}
+
+static void free_migration(struct dm_cache_migration *mg)
+{
+ struct cache *cache = mg->cache;
+
+ if (atomic_dec_and_test(&cache->nr_allocated_migrations))
+ wake_up(&cache->migration_wait);
+
+ mempool_free(mg, &cache->migration_pool);
+}
+
+/*----------------------------------------------------------------*/
+
+static inline dm_oblock_t oblock_succ(dm_oblock_t b)
+{
+ return to_oblock(from_oblock(b) + 1ull);
+}
+
+static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
+{
+ key->virtual = 0;
+ key->dev = 0;
+ key->block_begin = from_oblock(begin);
+ key->block_end = from_oblock(end);
+}
+
+/*
+ * We have two lock levels. Level 0, which is used to prevent WRITEs, and
+ * level 1 which prevents *both* READs and WRITEs.
+ */
+#define WRITE_LOCK_LEVEL 0
+#define READ_WRITE_LOCK_LEVEL 1
+
+static unsigned int lock_level(struct bio *bio)
+{
+ return bio_data_dir(bio) == WRITE ?
+ WRITE_LOCK_LEVEL :
+ READ_WRITE_LOCK_LEVEL;
+}
+
+/*----------------------------------------------------------------
+ * Per bio data
+ *--------------------------------------------------------------*/
+
+static struct per_bio_data *get_per_bio_data(struct bio *bio)
+{
+ struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
+ BUG_ON(!pb);
+ return pb;
+}
+
+static struct per_bio_data *init_per_bio_data(struct bio *bio)
+{
+ struct per_bio_data *pb = get_per_bio_data(bio);
+
+ pb->tick = false;
+ pb->req_nr = dm_bio_get_target_bio_nr(bio);
+ pb->cell = NULL;
+ pb->len = 0;
+
+ return pb;
+}
+
+/*----------------------------------------------------------------*/
+
+static void defer_bio(struct cache *cache, struct bio *bio)
+{
+ spin_lock_irq(&cache->lock);
+ bio_list_add(&cache->deferred_bios, bio);
+ spin_unlock_irq(&cache->lock);
+
+ wake_deferred_bio_worker(cache);
+}
+
+static void defer_bios(struct cache *cache, struct bio_list *bios)
+{
+ spin_lock_irq(&cache->lock);
+ bio_list_merge(&cache->deferred_bios, bios);
+ bio_list_init(bios);
+ spin_unlock_irq(&cache->lock);
+
+ wake_deferred_bio_worker(cache);
+}
+
+/*----------------------------------------------------------------*/
+
+static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
+{
+ bool r;
+ struct per_bio_data *pb;
+ struct dm_cell_key_v2 key;
+ dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
+ struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
+
+ cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
+
+ build_key(oblock, end, &key);
+ r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
+ if (!r) {
+ /*
+ * Failed to get the lock.
+ */
+ free_prison_cell(cache, cell_prealloc);
+ return r;
+ }
+
+ if (cell != cell_prealloc)
+ free_prison_cell(cache, cell_prealloc);
+
+ pb = get_per_bio_data(bio);
+ pb->cell = cell;
+
+ return r;
+}
+
+/*----------------------------------------------------------------*/
+
+static bool is_dirty(struct cache *cache, dm_cblock_t b)
+{
+ return test_bit(from_cblock(b), cache->dirty_bitset);
+}
+
+static void set_dirty(struct cache *cache, dm_cblock_t cblock)
+{
+ if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
+ atomic_inc(&cache->nr_dirty);
+ policy_set_dirty(cache->policy, cblock);
+ }
+}
+
+/*
+ * These two are called when setting after migrations to force the policy
+ * and dirty bitset to be in sync.
+ */
+static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
+{
+ if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
+ atomic_inc(&cache->nr_dirty);
+ policy_set_dirty(cache->policy, cblock);
+}
+
+static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
+{
+ if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
+ if (atomic_dec_return(&cache->nr_dirty) == 0)
+ dm_table_event(cache->ti->table);
+ }
+
+ policy_clear_dirty(cache->policy, cblock);
+}
+
+/*----------------------------------------------------------------*/
+
+static bool block_size_is_power_of_two(struct cache *cache)
+{
+ return cache->sectors_per_block_shift >= 0;
+}
+
+static dm_block_t block_div(dm_block_t b, uint32_t n)
+{
+ do_div(b, n);
+
+ return b;
+}
+
+static dm_block_t oblocks_per_dblock(struct cache *cache)
+{
+ dm_block_t oblocks = cache->discard_block_size;
+
+ if (block_size_is_power_of_two(cache))
+ oblocks >>= cache->sectors_per_block_shift;
+ else
+ oblocks = block_div(oblocks, cache->sectors_per_block);
+
+ return oblocks;
+}
+
+static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
+{
+ return to_dblock(block_div(from_oblock(oblock),
+ oblocks_per_dblock(cache)));
+}
+
+static void set_discard(struct cache *cache, dm_dblock_t b)
+{
+ BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
+ atomic_inc(&cache->stats.discard_count);
+
+ spin_lock_irq(&cache->lock);
+ set_bit(from_dblock(b), cache->discard_bitset);
+ spin_unlock_irq(&cache->lock);
+}
+
+static void clear_discard(struct cache *cache, dm_dblock_t b)
+{
+ spin_lock_irq(&cache->lock);
+ clear_bit(from_dblock(b), cache->discard_bitset);
+ spin_unlock_irq(&cache->lock);
+}
+
+static bool is_discarded(struct cache *cache, dm_dblock_t b)
+{
+ int r;
+ spin_lock_irq(&cache->lock);
+ r = test_bit(from_dblock(b), cache->discard_bitset);
+ spin_unlock_irq(&cache->lock);
+
+ return r;
+}
+
+static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
+{
+ int r;
+ spin_lock_irq(&cache->lock);
+ r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
+ cache->discard_bitset);
+ spin_unlock_irq(&cache->lock);
+
+ return r;
+}
+
+/*----------------------------------------------------------------
+ * Remapping
+ *--------------------------------------------------------------*/
+static void remap_to_origin(struct cache *cache, struct bio *bio)
+{
+ bio_set_dev(bio, cache->origin_dev->bdev);
+}
+
+static void remap_to_cache(struct cache *cache, struct bio *bio,
+ dm_cblock_t cblock)
+{
+ sector_t bi_sector = bio->bi_iter.bi_sector;
+ sector_t block = from_cblock(cblock);
+
+ bio_set_dev(bio, cache->cache_dev->bdev);
+ if (!block_size_is_power_of_two(cache))
+ bio->bi_iter.bi_sector =
+ (block * cache->sectors_per_block) +
+ sector_div(bi_sector, cache->sectors_per_block);
+ else
+ bio->bi_iter.bi_sector =
+ (block << cache->sectors_per_block_shift) |
+ (bi_sector & (cache->sectors_per_block - 1));
+}
+
+static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
+{
+ struct per_bio_data *pb;
+
+ spin_lock_irq(&cache->lock);
+ if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
+ bio_op(bio) != REQ_OP_DISCARD) {
+ pb = get_per_bio_data(bio);
+ pb->tick = true;
+ cache->need_tick_bio = false;
+ }
+ spin_unlock_irq(&cache->lock);
+}
+
+static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
+ dm_oblock_t oblock)
+{
+ // FIXME: check_if_tick_bio_needed() is called way too much through this interface
+ check_if_tick_bio_needed(cache, bio);
+ remap_to_origin(cache, bio);
+ if (bio_data_dir(bio) == WRITE)
+ clear_discard(cache, oblock_to_dblock(cache, oblock));
+}
+
+static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
+ dm_oblock_t oblock, dm_cblock_t cblock)
+{
+ check_if_tick_bio_needed(cache, bio);
+ remap_to_cache(cache, bio, cblock);
+ if (bio_data_dir(bio) == WRITE) {
+ set_dirty(cache, cblock);
+ clear_discard(cache, oblock_to_dblock(cache, oblock));
+ }
+}
+
+static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
+{
+ sector_t block_nr = bio->bi_iter.bi_sector;
+
+ if (!block_size_is_power_of_two(cache))
+ (void) sector_div(block_nr, cache->sectors_per_block);
+ else
+ block_nr >>= cache->sectors_per_block_shift;
+
+ return to_oblock(block_nr);
+}
+
+static bool accountable_bio(struct cache *cache, struct bio *bio)
+{
+ return bio_op(bio) != REQ_OP_DISCARD;
+}
+
+static void accounted_begin(struct cache *cache, struct bio *bio)
+{
+ struct per_bio_data *pb;
+
+ if (accountable_bio(cache, bio)) {
+ pb = get_per_bio_data(bio);
+ pb->len = bio_sectors(bio);
+ dm_iot_io_begin(&cache->tracker, pb->len);
+ }
+}
+
+static void accounted_complete(struct cache *cache, struct bio *bio)
+{
+ struct per_bio_data *pb = get_per_bio_data(bio);
+
+ dm_iot_io_end(&cache->tracker, pb->len);
+}
+
+static void accounted_request(struct cache *cache, struct bio *bio)
+{
+ accounted_begin(cache, bio);
+ dm_submit_bio_remap(bio, NULL);
+}
+
+static void issue_op(struct bio *bio, void *context)
+{
+ struct cache *cache = context;
+ accounted_request(cache, bio);
+}
+
+/*
+ * When running in writethrough mode we need to send writes to clean blocks
+ * to both the cache and origin devices. Clone the bio and send them in parallel.
+ */
+static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
+ dm_oblock_t oblock, dm_cblock_t cblock)
+{
+ struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio,
+ GFP_NOIO, &cache->bs);
+
+ BUG_ON(!origin_bio);
+
+ bio_chain(origin_bio, bio);
+
+ if (bio_data_dir(origin_bio) == WRITE)
+ clear_discard(cache, oblock_to_dblock(cache, oblock));
+ submit_bio(origin_bio);
+
+ remap_to_cache(cache, bio, cblock);
+}
+
+/*----------------------------------------------------------------
+ * Failure modes
+ *--------------------------------------------------------------*/
+static enum cache_metadata_mode get_cache_mode(struct cache *cache)
+{
+ return cache->features.mode;
+}
+
+static const char *cache_device_name(struct cache *cache)
+{
+ return dm_table_device_name(cache->ti->table);
+}
+
+static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
+{
+ const char *descs[] = {
+ "write",
+ "read-only",
+ "fail"
+ };
+
+ dm_table_event(cache->ti->table);
+ DMINFO("%s: switching cache to %s mode",
+ cache_device_name(cache), descs[(int)mode]);
+}
+
+static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
+{
+ bool needs_check;
+ enum cache_metadata_mode old_mode = get_cache_mode(cache);
+
+ if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
+ DMERR("%s: unable to read needs_check flag, setting failure mode.",
+ cache_device_name(cache));
+ new_mode = CM_FAIL;
+ }
+
+ if (new_mode == CM_WRITE && needs_check) {
+ DMERR("%s: unable to switch cache to write mode until repaired.",
+ cache_device_name(cache));
+ if (old_mode != new_mode)
+ new_mode = old_mode;
+ else
+ new_mode = CM_READ_ONLY;
+ }
+
+ /* Never move out of fail mode */
+ if (old_mode == CM_FAIL)
+ new_mode = CM_FAIL;
+
+ switch (new_mode) {
+ case CM_FAIL:
+ case CM_READ_ONLY:
+ dm_cache_metadata_set_read_only(cache->cmd);
+ break;
+
+ case CM_WRITE:
+ dm_cache_metadata_set_read_write(cache->cmd);
+ break;
+ }
+
+ cache->features.mode = new_mode;
+
+ if (new_mode != old_mode)
+ notify_mode_switch(cache, new_mode);
+}
+
+static void abort_transaction(struct cache *cache)
+{
+ const char *dev_name = cache_device_name(cache);
+
+ if (get_cache_mode(cache) >= CM_READ_ONLY)
+ return;
+
+ DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
+ if (dm_cache_metadata_abort(cache->cmd)) {
+ DMERR("%s: failed to abort metadata transaction", dev_name);
+ set_cache_mode(cache, CM_FAIL);
+ }
+
+ if (dm_cache_metadata_set_needs_check(cache->cmd)) {
+ DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
+ set_cache_mode(cache, CM_FAIL);
+ }
+}
+
+static void metadata_operation_failed(struct cache *cache, const char *op, int r)
+{
+ DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
+ cache_device_name(cache), op, r);
+ abort_transaction(cache);
+ set_cache_mode(cache, CM_READ_ONLY);
+}
+
+/*----------------------------------------------------------------*/
+
+static void load_stats(struct cache *cache)
+{
+ struct dm_cache_statistics stats;
+
+ dm_cache_metadata_get_stats(cache->cmd, &stats);
+ atomic_set(&cache->stats.read_hit, stats.read_hits);
+ atomic_set(&cache->stats.read_miss, stats.read_misses);
+ atomic_set(&cache->stats.write_hit, stats.write_hits);
+ atomic_set(&cache->stats.write_miss, stats.write_misses);
+}
+
+static void save_stats(struct cache *cache)
+{
+ struct dm_cache_statistics stats;
+
+ if (get_cache_mode(cache) >= CM_READ_ONLY)
+ return;
+
+ stats.read_hits = atomic_read(&cache->stats.read_hit);
+ stats.read_misses = atomic_read(&cache->stats.read_miss);
+ stats.write_hits = atomic_read(&cache->stats.write_hit);
+ stats.write_misses = atomic_read(&cache->stats.write_miss);
+
+ dm_cache_metadata_set_stats(cache->cmd, &stats);
+}
+
+static void update_stats(struct cache_stats *stats, enum policy_operation op)
+{
+ switch (op) {
+ case POLICY_PROMOTE:
+ atomic_inc(&stats->promotion);
+ break;
+
+ case POLICY_DEMOTE:
+ atomic_inc(&stats->demotion);
+ break;
+
+ case POLICY_WRITEBACK:
+ atomic_inc(&stats->writeback);
+ break;
+ }
+}
+
+/*----------------------------------------------------------------
+ * Migration processing
+ *
+ * Migration covers moving data from the origin device to the cache, or
+ * vice versa.
+ *--------------------------------------------------------------*/
+
+static void inc_io_migrations(struct cache *cache)
+{
+ atomic_inc(&cache->nr_io_migrations);
+}
+
+static void dec_io_migrations(struct cache *cache)
+{
+ atomic_dec(&cache->nr_io_migrations);
+}
+
+static bool discard_or_flush(struct bio *bio)
+{
+ return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
+}
+
+static void calc_discard_block_range(struct cache *cache, struct bio *bio,
+ dm_dblock_t *b, dm_dblock_t *e)
+{
+ sector_t sb = bio->bi_iter.bi_sector;
+ sector_t se = bio_end_sector(bio);
+
+ *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
+
+ if (se - sb < cache->discard_block_size)
+ *e = *b;
+ else
+ *e = to_dblock(block_div(se, cache->discard_block_size));
+}
+
+/*----------------------------------------------------------------*/
+
+static void prevent_background_work(struct cache *cache)
+{
+ lockdep_off();
+ down_write(&cache->background_work_lock);
+ lockdep_on();
+}
+
+static void allow_background_work(struct cache *cache)
+{
+ lockdep_off();
+ up_write(&cache->background_work_lock);
+ lockdep_on();
+}
+
+static bool background_work_begin(struct cache *cache)
+{
+ bool r;
+
+ lockdep_off();
+ r = down_read_trylock(&cache->background_work_lock);
+ lockdep_on();
+
+ return r;
+}
+
+static void background_work_end(struct cache *cache)
+{
+ lockdep_off();
+ up_read(&cache->background_work_lock);
+ lockdep_on();
+}
+
+/*----------------------------------------------------------------*/
+
+static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
+{
+ return (bio_data_dir(bio) == WRITE) &&
+ (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
+}
+
+static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
+{
+ return writeback_mode(cache) &&
+ (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
+}
+
+static void quiesce(struct dm_cache_migration *mg,
+ void (*continuation)(struct work_struct *))
+{
+ init_continuation(&mg->k, continuation);
+ dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
+}
+
+static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
+{
+ struct continuation *k = container_of(ws, struct continuation, ws);
+ return container_of(k, struct dm_cache_migration, k);
+}
+
+static void copy_complete(int read_err, unsigned long write_err, void *context)
+{
+ struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
+
+ if (read_err || write_err)
+ mg->k.input = BLK_STS_IOERR;
+
+ queue_continuation(mg->cache->wq, &mg->k);
+}
+
+static void copy(struct dm_cache_migration *mg, bool promote)
+{
+ struct dm_io_region o_region, c_region;
+ struct cache *cache = mg->cache;
+
+ o_region.bdev = cache->origin_dev->bdev;
+ o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
+ o_region.count = cache->sectors_per_block;
+
+ c_region.bdev = cache->cache_dev->bdev;
+ c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
+ c_region.count = cache->sectors_per_block;
+
+ if (promote)
+ dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
+ else
+ dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
+}
+
+static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
+{
+ struct per_bio_data *pb = get_per_bio_data(bio);
+
+ if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
+ free_prison_cell(cache, pb->cell);
+ pb->cell = NULL;
+}
+
+static void overwrite_endio(struct bio *bio)
+{
+ struct dm_cache_migration *mg = bio->bi_private;
+ struct cache *cache = mg->cache;
+ struct per_bio_data *pb = get_per_bio_data(bio);
+
+ dm_unhook_bio(&pb->hook_info, bio);
+
+ if (bio->bi_status)
+ mg->k.input = bio->bi_status;
+
+ queue_continuation(cache->wq, &mg->k);
+}
+
+static void overwrite(struct dm_cache_migration *mg,
+ void (*continuation)(struct work_struct *))
+{
+ struct bio *bio = mg->overwrite_bio;
+ struct per_bio_data *pb = get_per_bio_data(bio);
+
+ dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
+
+ /*
+ * The overwrite bio is part of the copy operation, as such it does
+ * not set/clear discard or dirty flags.
+ */
+ if (mg->op->op == POLICY_PROMOTE)
+ remap_to_cache(mg->cache, bio, mg->op->cblock);
+ else
+ remap_to_origin(mg->cache, bio);
+
+ init_continuation(&mg->k, continuation);
+ accounted_request(mg->cache, bio);
+}
+
+/*
+ * Migration steps:
+ *
+ * 1) exclusive lock preventing WRITEs
+ * 2) quiesce
+ * 3) copy or issue overwrite bio
+ * 4) upgrade to exclusive lock preventing READs and WRITEs
+ * 5) quiesce
+ * 6) update metadata and commit
+ * 7) unlock
+ */
+static void mg_complete(struct dm_cache_migration *mg, bool success)
+{
+ struct bio_list bios;
+ struct cache *cache = mg->cache;
+ struct policy_work *op = mg->op;
+ dm_cblock_t cblock = op->cblock;
+
+ if (success)
+ update_stats(&cache->stats, op->op);
+
+ switch (op->op) {
+ case POLICY_PROMOTE:
+ clear_discard(cache, oblock_to_dblock(cache, op->oblock));
+ policy_complete_background_work(cache->policy, op, success);
+
+ if (mg->overwrite_bio) {
+ if (success)
+ force_set_dirty(cache, cblock);
+ else if (mg->k.input)
+ mg->overwrite_bio->bi_status = mg->k.input;
+ else
+ mg->overwrite_bio->bi_status = BLK_STS_IOERR;
+ bio_endio(mg->overwrite_bio);
+ } else {
+ if (success)
+ force_clear_dirty(cache, cblock);
+ dec_io_migrations(cache);
+ }
+ break;
+
+ case POLICY_DEMOTE:
+ /*
+ * We clear dirty here to update the nr_dirty counter.
+ */
+ if (success)
+ force_clear_dirty(cache, cblock);
+ policy_complete_background_work(cache->policy, op, success);
+ dec_io_migrations(cache);
+ break;
+
+ case POLICY_WRITEBACK:
+ if (success)
+ force_clear_dirty(cache, cblock);
+ policy_complete_background_work(cache->policy, op, success);
+ dec_io_migrations(cache);
+ break;
+ }
+
+ bio_list_init(&bios);
+ if (mg->cell) {
+ if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
+ free_prison_cell(cache, mg->cell);
+ }
+
+ free_migration(mg);
+ defer_bios(cache, &bios);
+ wake_migration_worker(cache);
+
+ background_work_end(cache);
+}
+
+static void mg_success(struct work_struct *ws)
+{
+ struct dm_cache_migration *mg = ws_to_mg(ws);
+ mg_complete(mg, mg->k.input == 0);
+}
+
+static void mg_update_metadata(struct work_struct *ws)
+{
+ int r;
+ struct dm_cache_migration *mg = ws_to_mg(ws);
+ struct cache *cache = mg->cache;
+ struct policy_work *op = mg->op;
+
+ switch (op->op) {
+ case POLICY_PROMOTE:
+ r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
+ if (r) {
+ DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
+ cache_device_name(cache));
+ metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
+
+ mg_complete(mg, false);
+ return;
+ }
+ mg_complete(mg, true);
+ break;
+
+ case POLICY_DEMOTE:
+ r = dm_cache_remove_mapping(cache->cmd, op->cblock);
+ if (r) {
+ DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
+ cache_device_name(cache));
+ metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
+
+ mg_complete(mg, false);
+ return;
+ }
+
+ /*
+ * It would be nice if we only had to commit when a REQ_FLUSH
+ * comes through. But there's one scenario that we have to
+ * look out for:
+ *
+ * - vblock x in a cache block
+ * - domotion occurs
+ * - cache block gets reallocated and over written
+ * - crash
+ *
+ * When we recover, because there was no commit the cache will
+ * rollback to having the data for vblock x in the cache block.
+ * But the cache block has since been overwritten, so it'll end
+ * up pointing to data that was never in 'x' during the history
+ * of the device.
+ *
+ * To avoid this issue we require a commit as part of the
+ * demotion operation.
+ */
+ init_continuation(&mg->k, mg_success);
+ continue_after_commit(&cache->committer, &mg->k);
+ schedule_commit(&cache->committer);
+ break;
+
+ case POLICY_WRITEBACK:
+ mg_complete(mg, true);
+ break;
+ }
+}
+
+static void mg_update_metadata_after_copy(struct work_struct *ws)
+{
+ struct dm_cache_migration *mg = ws_to_mg(ws);
+
+ /*
+ * Did the copy succeed?
+ */
+ if (mg->k.input)
+ mg_complete(mg, false);
+ else
+ mg_update_metadata(ws);
+}
+
+static void mg_upgrade_lock(struct work_struct *ws)
+{
+ int r;
+ struct dm_cache_migration *mg = ws_to_mg(ws);
+
+ /*
+ * Did the copy succeed?
+ */
+ if (mg->k.input)
+ mg_complete(mg, false);
+
+ else {
+ /*
+ * Now we want the lock to prevent both reads and writes.
+ */
+ r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
+ READ_WRITE_LOCK_LEVEL);
+ if (r < 0)
+ mg_complete(mg, false);
+
+ else if (r)
+ quiesce(mg, mg_update_metadata);
+
+ else
+ mg_update_metadata(ws);
+ }
+}
+
+static void mg_full_copy(struct work_struct *ws)
+{
+ struct dm_cache_migration *mg = ws_to_mg(ws);
+ struct cache *cache = mg->cache;
+ struct policy_work *op = mg->op;
+ bool is_policy_promote = (op->op == POLICY_PROMOTE);
+
+ if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
+ is_discarded_oblock(cache, op->oblock)) {
+ mg_upgrade_lock(ws);
+ return;
+ }
+
+ init_continuation(&mg->k, mg_upgrade_lock);
+ copy(mg, is_policy_promote);
+}
+
+static void mg_copy(struct work_struct *ws)
+{
+ struct dm_cache_migration *mg = ws_to_mg(ws);
+
+ if (mg->overwrite_bio) {
+ /*
+ * No exclusive lock was held when we last checked if the bio
+ * was optimisable. So we have to check again in case things
+ * have changed (eg, the block may no longer be discarded).
+ */
+ if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
+ /*
+ * Fallback to a real full copy after doing some tidying up.
+ */
+ bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
+ BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
+ mg->overwrite_bio = NULL;
+ inc_io_migrations(mg->cache);
+ mg_full_copy(ws);
+ return;
+ }
+
+ /*
+ * It's safe to do this here, even though it's new data
+ * because all IO has been locked out of the block.
+ *
+ * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
+ * so _not_ using mg_upgrade_lock() as continutation.
+ */
+ overwrite(mg, mg_update_metadata_after_copy);
+
+ } else
+ mg_full_copy(ws);
+}
+
+static int mg_lock_writes(struct dm_cache_migration *mg)
+{
+ int r;
+ struct dm_cell_key_v2 key;
+ struct cache *cache = mg->cache;
+ struct dm_bio_prison_cell_v2 *prealloc;
+
+ prealloc = alloc_prison_cell(cache);
+
+ /*
+ * Prevent writes to the block, but allow reads to continue.
+ * Unless we're using an overwrite bio, in which case we lock
+ * everything.
+ */
+ build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
+ r = dm_cell_lock_v2(cache->prison, &key,
+ mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
+ prealloc, &mg->cell);
+ if (r < 0) {
+ free_prison_cell(cache, prealloc);
+ mg_complete(mg, false);
+ return r;
+ }
+
+ if (mg->cell != prealloc)
+ free_prison_cell(cache, prealloc);
+
+ if (r == 0)
+ mg_copy(&mg->k.ws);
+ else
+ quiesce(mg, mg_copy);
+
+ return 0;
+}
+
+static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
+{
+ struct dm_cache_migration *mg;
+
+ if (!background_work_begin(cache)) {
+ policy_complete_background_work(cache->policy, op, false);
+ return -EPERM;
+ }
+
+ mg = alloc_migration(cache);
+
+ mg->op = op;
+ mg->overwrite_bio = bio;
+
+ if (!bio)
+ inc_io_migrations(cache);
+
+ return mg_lock_writes(mg);
+}
+
+/*----------------------------------------------------------------
+ * invalidation processing
+ *--------------------------------------------------------------*/
+
+static void invalidate_complete(struct dm_cache_migration *mg, bool success)
+{
+ struct bio_list bios;
+ struct cache *cache = mg->cache;
+
+ bio_list_init(&bios);
+ if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
+ free_prison_cell(cache, mg->cell);
+
+ if (!success && mg->overwrite_bio)
+ bio_io_error(mg->overwrite_bio);
+
+ free_migration(mg);
+ defer_bios(cache, &bios);
+
+ background_work_end(cache);
+}
+
+static void invalidate_completed(struct work_struct *ws)
+{
+ struct dm_cache_migration *mg = ws_to_mg(ws);
+ invalidate_complete(mg, !mg->k.input);
+}
+
+static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
+{
+ int r = policy_invalidate_mapping(cache->policy, cblock);
+ if (!r) {
+ r = dm_cache_remove_mapping(cache->cmd, cblock);
+ if (r) {
+ DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
+ cache_device_name(cache));
+ metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
+ }
+
+ } else if (r == -ENODATA) {
+ /*
+ * Harmless, already unmapped.
+ */
+ r = 0;
+
+ } else
+ DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
+
+ return r;
+}
+
+static void invalidate_remove(struct work_struct *ws)
+{
+ int r;
+ struct dm_cache_migration *mg = ws_to_mg(ws);
+ struct cache *cache = mg->cache;
+
+ r = invalidate_cblock(cache, mg->invalidate_cblock);
+ if (r) {
+ invalidate_complete(mg, false);
+ return;
+ }
+
+ init_continuation(&mg->k, invalidate_completed);
+ continue_after_commit(&cache->committer, &mg->k);
+ remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
+ mg->overwrite_bio = NULL;
+ schedule_commit(&cache->committer);
+}
+
+static int invalidate_lock(struct dm_cache_migration *mg)
+{
+ int r;
+ struct dm_cell_key_v2 key;
+ struct cache *cache = mg->cache;
+ struct dm_bio_prison_cell_v2 *prealloc;
+
+ prealloc = alloc_prison_cell(cache);
+
+ build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
+ r = dm_cell_lock_v2(cache->prison, &key,
+ READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
+ if (r < 0) {
+ free_prison_cell(cache, prealloc);
+ invalidate_complete(mg, false);
+ return r;
+ }
+
+ if (mg->cell != prealloc)
+ free_prison_cell(cache, prealloc);
+
+ if (r)
+ quiesce(mg, invalidate_remove);
+
+ else {
+ /*
+ * We can't call invalidate_remove() directly here because we
+ * might still be in request context.
+ */
+ init_continuation(&mg->k, invalidate_remove);
+ queue_work(cache->wq, &mg->k.ws);
+ }
+
+ return 0;
+}
+
+static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
+ dm_oblock_t oblock, struct bio *bio)
+{
+ struct dm_cache_migration *mg;
+
+ if (!background_work_begin(cache))
+ return -EPERM;
+
+ mg = alloc_migration(cache);
+
+ mg->overwrite_bio = bio;
+ mg->invalidate_cblock = cblock;
+ mg->invalidate_oblock = oblock;
+
+ return invalidate_lock(mg);
+}
+
+/*----------------------------------------------------------------
+ * bio processing
+ *--------------------------------------------------------------*/
+
+enum busy {
+ IDLE,
+ BUSY
+};
+
+static enum busy spare_migration_bandwidth(struct cache *cache)
+{
+ bool idle = dm_iot_idle_for(&cache->tracker, HZ);
+ sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
+ cache->sectors_per_block;
+
+ if (idle && current_volume <= cache->migration_threshold)
+ return IDLE;
+ else
+ return BUSY;
+}
+
+static void inc_hit_counter(struct cache *cache, struct bio *bio)
+{
+ atomic_inc(bio_data_dir(bio) == READ ?
+ &cache->stats.read_hit : &cache->stats.write_hit);
+}
+
+static void inc_miss_counter(struct cache *cache, struct bio *bio)
+{
+ atomic_inc(bio_data_dir(bio) == READ ?
+ &cache->stats.read_miss : &cache->stats.write_miss);
+}
+
+/*----------------------------------------------------------------*/
+
+static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
+ bool *commit_needed)
+{
+ int r, data_dir;
+ bool rb, background_queued;
+ dm_cblock_t cblock;
+
+ *commit_needed = false;
+
+ rb = bio_detain_shared(cache, block, bio);
+ if (!rb) {
+ /*
+ * An exclusive lock is held for this block, so we have to
+ * wait. We set the commit_needed flag so the current
+ * transaction will be committed asap, allowing this lock
+ * to be dropped.
+ */
+ *commit_needed = true;
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ data_dir = bio_data_dir(bio);
+
+ if (optimisable_bio(cache, bio, block)) {
+ struct policy_work *op = NULL;
+
+ r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
+ if (unlikely(r && r != -ENOENT)) {
+ DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
+ cache_device_name(cache), r);
+ bio_io_error(bio);
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ if (r == -ENOENT && op) {
+ bio_drop_shared_lock(cache, bio);
+ BUG_ON(op->op != POLICY_PROMOTE);
+ mg_start(cache, op, bio);
+ return DM_MAPIO_SUBMITTED;
+ }
+ } else {
+ r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
+ if (unlikely(r && r != -ENOENT)) {
+ DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
+ cache_device_name(cache), r);
+ bio_io_error(bio);
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ if (background_queued)
+ wake_migration_worker(cache);
+ }
+
+ if (r == -ENOENT) {
+ struct per_bio_data *pb = get_per_bio_data(bio);
+
+ /*
+ * Miss.
+ */
+ inc_miss_counter(cache, bio);
+ if (pb->req_nr == 0) {
+ accounted_begin(cache, bio);
+ remap_to_origin_clear_discard(cache, bio, block);
+ } else {
+ /*
+ * This is a duplicate writethrough io that is no
+ * longer needed because the block has been demoted.
+ */
+ bio_endio(bio);
+ return DM_MAPIO_SUBMITTED;
+ }
+ } else {
+ /*
+ * Hit.
+ */
+ inc_hit_counter(cache, bio);
+
+ /*
+ * Passthrough always maps to the origin, invalidating any
+ * cache blocks that are written to.
+ */
+ if (passthrough_mode(cache)) {
+ if (bio_data_dir(bio) == WRITE) {
+ bio_drop_shared_lock(cache, bio);
+ atomic_inc(&cache->stats.demotion);
+ invalidate_start(cache, cblock, block, bio);
+ } else
+ remap_to_origin_clear_discard(cache, bio, block);
+ } else {
+ if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
+ !is_dirty(cache, cblock)) {
+ remap_to_origin_and_cache(cache, bio, block, cblock);
+ accounted_begin(cache, bio);
+ } else
+ remap_to_cache_dirty(cache, bio, block, cblock);
+ }
+ }
+
+ /*
+ * dm core turns FUA requests into a separate payload and FLUSH req.
+ */
+ if (bio->bi_opf & REQ_FUA) {
+ /*
+ * issue_after_commit will call accounted_begin a second time. So
+ * we call accounted_complete() to avoid double accounting.
+ */
+ accounted_complete(cache, bio);
+ issue_after_commit(&cache->committer, bio);
+ *commit_needed = true;
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ return DM_MAPIO_REMAPPED;
+}
+
+static bool process_bio(struct cache *cache, struct bio *bio)
+{
+ bool commit_needed;
+
+ if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
+ dm_submit_bio_remap(bio, NULL);
+
+ return commit_needed;
+}
+
+/*
+ * A non-zero return indicates read_only or fail_io mode.
+ */
+static int commit(struct cache *cache, bool clean_shutdown)
+{
+ int r;
+
+ if (get_cache_mode(cache) >= CM_READ_ONLY)
+ return -EINVAL;
+
+ atomic_inc(&cache->stats.commit_count);
+ r = dm_cache_commit(cache->cmd, clean_shutdown);
+ if (r)
+ metadata_operation_failed(cache, "dm_cache_commit", r);
+
+ return r;
+}
+
+/*
+ * Used by the batcher.
+ */
+static blk_status_t commit_op(void *context)
+{
+ struct cache *cache = context;
+
+ if (dm_cache_changed_this_transaction(cache->cmd))
+ return errno_to_blk_status(commit(cache, false));
+
+ return 0;
+}
+
+/*----------------------------------------------------------------*/
+
+static bool process_flush_bio(struct cache *cache, struct bio *bio)
+{
+ struct per_bio_data *pb = get_per_bio_data(bio);
+
+ if (!pb->req_nr)
+ remap_to_origin(cache, bio);
+ else
+ remap_to_cache(cache, bio, 0);
+
+ issue_after_commit(&cache->committer, bio);
+ return true;
+}
+
+static bool process_discard_bio(struct cache *cache, struct bio *bio)
+{
+ dm_dblock_t b, e;
+
+ // FIXME: do we need to lock the region? Or can we just assume the
+ // user wont be so foolish as to issue discard concurrently with
+ // other IO?
+ calc_discard_block_range(cache, bio, &b, &e);
+ while (b != e) {
+ set_discard(cache, b);
+ b = to_dblock(from_dblock(b) + 1);
+ }
+
+ if (cache->features.discard_passdown) {
+ remap_to_origin(cache, bio);
+ dm_submit_bio_remap(bio, NULL);
+ } else
+ bio_endio(bio);
+
+ return false;
+}
+
+static void process_deferred_bios(struct work_struct *ws)
+{
+ struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
+
+ bool commit_needed = false;
+ struct bio_list bios;
+ struct bio *bio;
+
+ bio_list_init(&bios);
+
+ spin_lock_irq(&cache->lock);
+ bio_list_merge(&bios, &cache->deferred_bios);
+ bio_list_init(&cache->deferred_bios);
+ spin_unlock_irq(&cache->lock);
+
+ while ((bio = bio_list_pop(&bios))) {
+ if (bio->bi_opf & REQ_PREFLUSH)
+ commit_needed = process_flush_bio(cache, bio) || commit_needed;
+
+ else if (bio_op(bio) == REQ_OP_DISCARD)
+ commit_needed = process_discard_bio(cache, bio) || commit_needed;
+
+ else
+ commit_needed = process_bio(cache, bio) || commit_needed;
+ cond_resched();
+ }
+
+ if (commit_needed)
+ schedule_commit(&cache->committer);
+}
+
+/*----------------------------------------------------------------
+ * Main worker loop
+ *--------------------------------------------------------------*/
+
+static void requeue_deferred_bios(struct cache *cache)
+{
+ struct bio *bio;
+ struct bio_list bios;
+
+ bio_list_init(&bios);
+ bio_list_merge(&bios, &cache->deferred_bios);
+ bio_list_init(&cache->deferred_bios);
+
+ while ((bio = bio_list_pop(&bios))) {
+ bio->bi_status = BLK_STS_DM_REQUEUE;
+ bio_endio(bio);
+ cond_resched();
+ }
+}
+
+/*
+ * We want to commit periodically so that not too much
+ * unwritten metadata builds up.
+ */
+static void do_waker(struct work_struct *ws)
+{
+ struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
+
+ policy_tick(cache->policy, true);
+ wake_migration_worker(cache);
+ schedule_commit(&cache->committer);
+ queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
+}
+
+static void check_migrations(struct work_struct *ws)
+{
+ int r;
+ struct policy_work *op;
+ struct cache *cache = container_of(ws, struct cache, migration_worker);
+ enum busy b;
+
+ for (;;) {
+ b = spare_migration_bandwidth(cache);
+
+ r = policy_get_background_work(cache->policy, b == IDLE, &op);
+ if (r == -ENODATA)
+ break;
+
+ if (r) {
+ DMERR_LIMIT("%s: policy_background_work failed",
+ cache_device_name(cache));
+ break;
+ }
+
+ r = mg_start(cache, op, NULL);
+ if (r)
+ break;
+
+ cond_resched();
+ }
+}
+
+/*----------------------------------------------------------------
+ * Target methods
+ *--------------------------------------------------------------*/
+
+/*
+ * This function gets called on the error paths of the constructor, so we
+ * have to cope with a partially initialised struct.
+ */
+static void destroy(struct cache *cache)
+{
+ unsigned int i;
+
+ mempool_exit(&cache->migration_pool);
+
+ if (cache->prison)
+ dm_bio_prison_destroy_v2(cache->prison);
+
+ cancel_delayed_work_sync(&cache->waker);
+ if (cache->wq)
+ destroy_workqueue(cache->wq);
+
+ if (cache->dirty_bitset)
+ free_bitset(cache->dirty_bitset);
+
+ if (cache->discard_bitset)
+ free_bitset(cache->discard_bitset);
+
+ if (cache->copier)
+ dm_kcopyd_client_destroy(cache->copier);
+
+ if (cache->cmd)
+ dm_cache_metadata_close(cache->cmd);
+
+ if (cache->metadata_dev)
+ dm_put_device(cache->ti, cache->metadata_dev);
+
+ if (cache->origin_dev)
+ dm_put_device(cache->ti, cache->origin_dev);
+
+ if (cache->cache_dev)
+ dm_put_device(cache->ti, cache->cache_dev);
+
+ if (cache->policy)
+ dm_cache_policy_destroy(cache->policy);
+
+ for (i = 0; i < cache->nr_ctr_args ; i++)
+ kfree(cache->ctr_args[i]);
+ kfree(cache->ctr_args);
+
+ bioset_exit(&cache->bs);
+
+ kfree(cache);
+}
+
+static void cache_dtr(struct dm_target *ti)
+{
+ struct cache *cache = ti->private;
+
+ destroy(cache);
+}
+
+static sector_t get_dev_size(struct dm_dev *dev)
+{
+ return bdev_nr_sectors(dev->bdev);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Construct a cache device mapping.
+ *
+ * cache <metadata dev> <cache dev> <origin dev> <block size>
+ * <#feature args> [<feature arg>]*
+ * <policy> <#policy args> [<policy arg>]*
+ *
+ * metadata dev : fast device holding the persistent metadata
+ * cache dev : fast device holding cached data blocks
+ * origin dev : slow device holding original data blocks
+ * block size : cache unit size in sectors
+ *
+ * #feature args : number of feature arguments passed
+ * feature args : writethrough. (The default is writeback.)
+ *
+ * policy : the replacement policy to use
+ * #policy args : an even number of policy arguments corresponding
+ * to key/value pairs passed to the policy
+ * policy args : key/value pairs passed to the policy
+ * E.g. 'sequential_threshold 1024'
+ * See cache-policies.txt for details.
+ *
+ * Optional feature arguments are:
+ * writethrough : write through caching that prohibits cache block
+ * content from being different from origin block content.
+ * Without this argument, the default behaviour is to write
+ * back cache block contents later for performance reasons,
+ * so they may differ from the corresponding origin blocks.
+ */
+struct cache_args {
+ struct dm_target *ti;
+
+ struct dm_dev *metadata_dev;
+
+ struct dm_dev *cache_dev;
+ sector_t cache_sectors;
+
+ struct dm_dev *origin_dev;
+ sector_t origin_sectors;
+
+ uint32_t block_size;
+
+ const char *policy_name;
+ int policy_argc;
+ const char **policy_argv;
+
+ struct cache_features features;
+};
+
+static void destroy_cache_args(struct cache_args *ca)
+{
+ if (ca->metadata_dev)
+ dm_put_device(ca->ti, ca->metadata_dev);
+
+ if (ca->cache_dev)
+ dm_put_device(ca->ti, ca->cache_dev);
+
+ if (ca->origin_dev)
+ dm_put_device(ca->ti, ca->origin_dev);
+
+ kfree(ca);
+}
+
+static bool at_least_one_arg(struct dm_arg_set *as, char **error)
+{
+ if (!as->argc) {
+ *error = "Insufficient args";
+ return false;
+ }
+
+ return true;
+}
+
+static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
+ char **error)
+{
+ int r;
+ sector_t metadata_dev_size;
+
+ if (!at_least_one_arg(as, error))
+ return -EINVAL;
+
+ r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
+ &ca->metadata_dev);
+ if (r) {
+ *error = "Error opening metadata device";
+ return r;
+ }
+
+ metadata_dev_size = get_dev_size(ca->metadata_dev);
+ if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
+ DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
+ ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS);
+
+ return 0;
+}
+
+static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
+ char **error)
+{
+ int r;
+
+ if (!at_least_one_arg(as, error))
+ return -EINVAL;
+
+ r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
+ &ca->cache_dev);
+ if (r) {
+ *error = "Error opening cache device";
+ return r;
+ }
+ ca->cache_sectors = get_dev_size(ca->cache_dev);
+
+ return 0;
+}
+
+static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
+ char **error)
+{
+ int r;
+
+ if (!at_least_one_arg(as, error))
+ return -EINVAL;
+
+ r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
+ &ca->origin_dev);
+ if (r) {
+ *error = "Error opening origin device";
+ return r;
+ }
+
+ ca->origin_sectors = get_dev_size(ca->origin_dev);
+ if (ca->ti->len > ca->origin_sectors) {
+ *error = "Device size larger than cached device";
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
+ char **error)
+{
+ unsigned long block_size;
+
+ if (!at_least_one_arg(as, error))
+ return -EINVAL;
+
+ if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
+ block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
+ block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
+ block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
+ *error = "Invalid data block size";
+ return -EINVAL;
+ }
+
+ if (block_size > ca->cache_sectors) {
+ *error = "Data block size is larger than the cache device";
+ return -EINVAL;
+ }
+
+ ca->block_size = block_size;
+
+ return 0;
+}
+
+static void init_features(struct cache_features *cf)
+{
+ cf->mode = CM_WRITE;
+ cf->io_mode = CM_IO_WRITEBACK;
+ cf->metadata_version = 1;
+ cf->discard_passdown = true;
+}
+
+static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
+ char **error)
+{
+ static const struct dm_arg _args[] = {
+ {0, 3, "Invalid number of cache feature arguments"},
+ };
+
+ int r, mode_ctr = 0;
+ unsigned int argc;
+ const char *arg;
+ struct cache_features *cf = &ca->features;
+
+ init_features(cf);
+
+ r = dm_read_arg_group(_args, as, &argc, error);
+ if (r)
+ return -EINVAL;
+
+ while (argc--) {
+ arg = dm_shift_arg(as);
+
+ if (!strcasecmp(arg, "writeback")) {
+ cf->io_mode = CM_IO_WRITEBACK;
+ mode_ctr++;
+ }
+
+ else if (!strcasecmp(arg, "writethrough")) {
+ cf->io_mode = CM_IO_WRITETHROUGH;
+ mode_ctr++;
+ }
+
+ else if (!strcasecmp(arg, "passthrough")) {
+ cf->io_mode = CM_IO_PASSTHROUGH;
+ mode_ctr++;
+ }
+
+ else if (!strcasecmp(arg, "metadata2"))
+ cf->metadata_version = 2;
+
+ else if (!strcasecmp(arg, "no_discard_passdown"))
+ cf->discard_passdown = false;
+
+ else {
+ *error = "Unrecognised cache feature requested";
+ return -EINVAL;
+ }
+ }
+
+ if (mode_ctr > 1) {
+ *error = "Duplicate cache io_mode features requested";
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
+ char **error)
+{
+ static const struct dm_arg _args[] = {
+ {0, 1024, "Invalid number of policy arguments"},
+ };
+
+ int r;
+
+ if (!at_least_one_arg(as, error))
+ return -EINVAL;
+
+ ca->policy_name = dm_shift_arg(as);
+
+ r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
+ if (r)
+ return -EINVAL;
+
+ ca->policy_argv = (const char **)as->argv;
+ dm_consume_args(as, ca->policy_argc);
+
+ return 0;
+}
+
+static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
+ char **error)
+{
+ int r;
+ struct dm_arg_set as;
+
+ as.argc = argc;
+ as.argv = argv;
+
+ r = parse_metadata_dev(ca, &as, error);
+ if (r)
+ return r;
+
+ r = parse_cache_dev(ca, &as, error);
+ if (r)
+ return r;
+
+ r = parse_origin_dev(ca, &as, error);
+ if (r)
+ return r;
+
+ r = parse_block_size(ca, &as, error);
+ if (r)
+ return r;
+
+ r = parse_features(ca, &as, error);
+ if (r)
+ return r;
+
+ r = parse_policy(ca, &as, error);
+ if (r)
+ return r;
+
+ return 0;
+}
+
+/*----------------------------------------------------------------*/
+
+static struct kmem_cache *migration_cache;
+
+#define NOT_CORE_OPTION 1
+
+static int process_config_option(struct cache *cache, const char *key, const char *value)
+{
+ unsigned long tmp;
+
+ if (!strcasecmp(key, "migration_threshold")) {
+ if (kstrtoul(value, 10, &tmp))
+ return -EINVAL;
+
+ cache->migration_threshold = tmp;
+ return 0;
+ }
+
+ return NOT_CORE_OPTION;
+}
+
+static int set_config_value(struct cache *cache, const char *key, const char *value)
+{
+ int r = process_config_option(cache, key, value);
+
+ if (r == NOT_CORE_OPTION)
+ r = policy_set_config_value(cache->policy, key, value);
+
+ if (r)
+ DMWARN("bad config value for %s: %s", key, value);
+
+ return r;
+}
+
+static int set_config_values(struct cache *cache, int argc, const char **argv)
+{
+ int r = 0;
+
+ if (argc & 1) {
+ DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
+ return -EINVAL;
+ }
+
+ while (argc) {
+ r = set_config_value(cache, argv[0], argv[1]);
+ if (r)
+ break;
+
+ argc -= 2;
+ argv += 2;
+ }
+
+ return r;
+}
+
+static int create_cache_policy(struct cache *cache, struct cache_args *ca,
+ char **error)
+{
+ struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
+ cache->cache_size,
+ cache->origin_sectors,
+ cache->sectors_per_block);
+ if (IS_ERR(p)) {
+ *error = "Error creating cache's policy";
+ return PTR_ERR(p);
+ }
+ cache->policy = p;
+ BUG_ON(!cache->policy);
+
+ return 0;
+}
+
+/*
+ * We want the discard block size to be at least the size of the cache
+ * block size and have no more than 2^14 discard blocks across the origin.
+ */
+#define MAX_DISCARD_BLOCKS (1 << 14)
+
+static bool too_many_discard_blocks(sector_t discard_block_size,
+ sector_t origin_size)
+{
+ (void) sector_div(origin_size, discard_block_size);
+
+ return origin_size > MAX_DISCARD_BLOCKS;
+}
+
+static sector_t calculate_discard_block_size(sector_t cache_block_size,
+ sector_t origin_size)
+{
+ sector_t discard_block_size = cache_block_size;
+
+ if (origin_size)
+ while (too_many_discard_blocks(discard_block_size, origin_size))
+ discard_block_size *= 2;
+
+ return discard_block_size;
+}
+
+static void set_cache_size(struct cache *cache, dm_cblock_t size)
+{
+ dm_block_t nr_blocks = from_cblock(size);
+
+ if (nr_blocks > (1 << 20) && cache->cache_size != size)
+ DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
+ "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
+ "Please consider increasing the cache block size to reduce the overall cache block count.",
+ (unsigned long long) nr_blocks);
+
+ cache->cache_size = size;
+}
+
+#define DEFAULT_MIGRATION_THRESHOLD 2048
+
+static int cache_create(struct cache_args *ca, struct cache **result)
+{
+ int r = 0;
+ char **error = &ca->ti->error;
+ struct cache *cache;
+ struct dm_target *ti = ca->ti;
+ dm_block_t origin_blocks;
+ struct dm_cache_metadata *cmd;
+ bool may_format = ca->features.mode == CM_WRITE;
+
+ cache = kzalloc(sizeof(*cache), GFP_KERNEL);
+ if (!cache)
+ return -ENOMEM;
+
+ cache->ti = ca->ti;
+ ti->private = cache;
+ ti->accounts_remapped_io = true;
+ ti->num_flush_bios = 2;
+ ti->flush_supported = true;
+
+ ti->num_discard_bios = 1;
+ ti->discards_supported = true;
+
+ ti->per_io_data_size = sizeof(struct per_bio_data);
+
+ cache->features = ca->features;
+ if (writethrough_mode(cache)) {
+ /* Create bioset for writethrough bios issued to origin */
+ r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
+ if (r)
+ goto bad;
+ }
+
+ cache->metadata_dev = ca->metadata_dev;
+ cache->origin_dev = ca->origin_dev;
+ cache->cache_dev = ca->cache_dev;
+
+ ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
+
+ origin_blocks = cache->origin_sectors = ca->origin_sectors;
+ origin_blocks = block_div(origin_blocks, ca->block_size);
+ cache->origin_blocks = to_oblock(origin_blocks);
+
+ cache->sectors_per_block = ca->block_size;
+ if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
+ r = -EINVAL;
+ goto bad;
+ }
+
+ if (ca->block_size & (ca->block_size - 1)) {
+ dm_block_t cache_size = ca->cache_sectors;
+
+ cache->sectors_per_block_shift = -1;
+ cache_size = block_div(cache_size, ca->block_size);
+ set_cache_size(cache, to_cblock(cache_size));
+ } else {
+ cache->sectors_per_block_shift = __ffs(ca->block_size);
+ set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
+ }
+
+ r = create_cache_policy(cache, ca, error);
+ if (r)
+ goto bad;
+
+ cache->policy_nr_args = ca->policy_argc;
+ cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
+
+ r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
+ if (r) {
+ *error = "Error setting cache policy's config values";
+ goto bad;
+ }
+
+ cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
+ ca->block_size, may_format,
+ dm_cache_policy_get_hint_size(cache->policy),
+ ca->features.metadata_version);
+ if (IS_ERR(cmd)) {
+ *error = "Error creating metadata object";
+ r = PTR_ERR(cmd);
+ goto bad;
+ }
+ cache->cmd = cmd;
+ set_cache_mode(cache, CM_WRITE);
+ if (get_cache_mode(cache) != CM_WRITE) {
+ *error = "Unable to get write access to metadata, please check/repair metadata.";
+ r = -EINVAL;
+ goto bad;
+ }
+
+ if (passthrough_mode(cache)) {
+ bool all_clean;
+
+ r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
+ if (r) {
+ *error = "dm_cache_metadata_all_clean() failed";
+ goto bad;
+ }
+
+ if (!all_clean) {
+ *error = "Cannot enter passthrough mode unless all blocks are clean";
+ r = -EINVAL;
+ goto bad;
+ }
+
+ policy_allow_migrations(cache->policy, false);
+ }
+
+ spin_lock_init(&cache->lock);
+ bio_list_init(&cache->deferred_bios);
+ atomic_set(&cache->nr_allocated_migrations, 0);
+ atomic_set(&cache->nr_io_migrations, 0);
+ init_waitqueue_head(&cache->migration_wait);
+
+ r = -ENOMEM;
+ atomic_set(&cache->nr_dirty, 0);
+ cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
+ if (!cache->dirty_bitset) {
+ *error = "could not allocate dirty bitset";
+ goto bad;
+ }
+ clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
+
+ cache->discard_block_size =
+ calculate_discard_block_size(cache->sectors_per_block,
+ cache->origin_sectors);
+ cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
+ cache->discard_block_size));
+ cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
+ if (!cache->discard_bitset) {
+ *error = "could not allocate discard bitset";
+ goto bad;
+ }
+ clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
+
+ cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
+ if (IS_ERR(cache->copier)) {
+ *error = "could not create kcopyd client";
+ r = PTR_ERR(cache->copier);
+ goto bad;
+ }
+
+ cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
+ if (!cache->wq) {
+ *error = "could not create workqueue for metadata object";
+ goto bad;
+ }
+ INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
+ INIT_WORK(&cache->migration_worker, check_migrations);
+ INIT_DELAYED_WORK(&cache->waker, do_waker);
+
+ cache->prison = dm_bio_prison_create_v2(cache->wq);
+ if (!cache->prison) {
+ *error = "could not create bio prison";
+ goto bad;
+ }
+
+ r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
+ migration_cache);
+ if (r) {
+ *error = "Error creating cache's migration mempool";
+ goto bad;
+ }
+
+ cache->need_tick_bio = true;
+ cache->sized = false;
+ cache->invalidate = false;
+ cache->commit_requested = false;
+ cache->loaded_mappings = false;
+ cache->loaded_discards = false;
+
+ load_stats(cache);
+
+ atomic_set(&cache->stats.demotion, 0);
+ atomic_set(&cache->stats.promotion, 0);
+ atomic_set(&cache->stats.copies_avoided, 0);
+ atomic_set(&cache->stats.cache_cell_clash, 0);
+ atomic_set(&cache->stats.commit_count, 0);
+ atomic_set(&cache->stats.discard_count, 0);
+
+ spin_lock_init(&cache->invalidation_lock);
+ INIT_LIST_HEAD(&cache->invalidation_requests);
+
+ batcher_init(&cache->committer, commit_op, cache,
+ issue_op, cache, cache->wq);
+ dm_iot_init(&cache->tracker);
+
+ init_rwsem(&cache->background_work_lock);
+ prevent_background_work(cache);
+
+ *result = cache;
+ return 0;
+bad:
+ destroy(cache);
+ return r;
+}
+
+static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
+{
+ unsigned int i;
+ const char **copy;
+
+ copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
+ if (!copy)
+ return -ENOMEM;
+ for (i = 0; i < argc; i++) {
+ copy[i] = kstrdup(argv[i], GFP_KERNEL);
+ if (!copy[i]) {
+ while (i--)
+ kfree(copy[i]);
+ kfree(copy);
+ return -ENOMEM;
+ }
+ }
+
+ cache->nr_ctr_args = argc;
+ cache->ctr_args = copy;
+
+ return 0;
+}
+
+static int cache_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ int r = -EINVAL;
+ struct cache_args *ca;
+ struct cache *cache = NULL;
+
+ ca = kzalloc(sizeof(*ca), GFP_KERNEL);
+ if (!ca) {
+ ti->error = "Error allocating memory for cache";
+ return -ENOMEM;
+ }
+ ca->ti = ti;
+
+ r = parse_cache_args(ca, argc, argv, &ti->error);
+ if (r)
+ goto out;
+
+ r = cache_create(ca, &cache);
+ if (r)
+ goto out;
+
+ r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
+ if (r) {
+ destroy(cache);
+ goto out;
+ }
+
+ ti->private = cache;
+out:
+ destroy_cache_args(ca);
+ return r;
+}
+
+/*----------------------------------------------------------------*/
+
+static int cache_map(struct dm_target *ti, struct bio *bio)
+{
+ struct cache *cache = ti->private;
+
+ int r;
+ bool commit_needed;
+ dm_oblock_t block = get_bio_block(cache, bio);
+
+ init_per_bio_data(bio);
+ if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
+ /*
+ * This can only occur if the io goes to a partial block at
+ * the end of the origin device. We don't cache these.
+ * Just remap to the origin and carry on.
+ */
+ remap_to_origin(cache, bio);
+ accounted_begin(cache, bio);
+ return DM_MAPIO_REMAPPED;
+ }
+
+ if (discard_or_flush(bio)) {
+ defer_bio(cache, bio);
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ r = map_bio(cache, bio, block, &commit_needed);
+ if (commit_needed)
+ schedule_commit(&cache->committer);
+
+ return r;
+}
+
+static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
+{
+ struct cache *cache = ti->private;
+ unsigned long flags;
+ struct per_bio_data *pb = get_per_bio_data(bio);
+
+ if (pb->tick) {
+ policy_tick(cache->policy, false);
+
+ spin_lock_irqsave(&cache->lock, flags);
+ cache->need_tick_bio = true;
+ spin_unlock_irqrestore(&cache->lock, flags);
+ }
+
+ bio_drop_shared_lock(cache, bio);
+ accounted_complete(cache, bio);
+
+ return DM_ENDIO_DONE;
+}
+
+static int write_dirty_bitset(struct cache *cache)
+{
+ int r;
+
+ if (get_cache_mode(cache) >= CM_READ_ONLY)
+ return -EINVAL;
+
+ r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
+ if (r)
+ metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
+
+ return r;
+}
+
+static int write_discard_bitset(struct cache *cache)
+{
+ unsigned int i, r;
+
+ if (get_cache_mode(cache) >= CM_READ_ONLY)
+ return -EINVAL;
+
+ r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
+ cache->discard_nr_blocks);
+ if (r) {
+ DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
+ metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
+ return r;
+ }
+
+ for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
+ r = dm_cache_set_discard(cache->cmd, to_dblock(i),
+ is_discarded(cache, to_dblock(i)));
+ if (r) {
+ metadata_operation_failed(cache, "dm_cache_set_discard", r);
+ return r;
+ }
+ }
+
+ return 0;
+}
+
+static int write_hints(struct cache *cache)
+{
+ int r;
+
+ if (get_cache_mode(cache) >= CM_READ_ONLY)
+ return -EINVAL;
+
+ r = dm_cache_write_hints(cache->cmd, cache->policy);
+ if (r) {
+ metadata_operation_failed(cache, "dm_cache_write_hints", r);
+ return r;
+ }
+
+ return 0;
+}
+
+/*
+ * returns true on success
+ */
+static bool sync_metadata(struct cache *cache)
+{
+ int r1, r2, r3, r4;
+
+ r1 = write_dirty_bitset(cache);
+ if (r1)
+ DMERR("%s: could not write dirty bitset", cache_device_name(cache));
+
+ r2 = write_discard_bitset(cache);
+ if (r2)
+ DMERR("%s: could not write discard bitset", cache_device_name(cache));
+
+ save_stats(cache);
+
+ r3 = write_hints(cache);
+ if (r3)
+ DMERR("%s: could not write hints", cache_device_name(cache));
+
+ /*
+ * If writing the above metadata failed, we still commit, but don't
+ * set the clean shutdown flag. This will effectively force every
+ * dirty bit to be set on reload.
+ */
+ r4 = commit(cache, !r1 && !r2 && !r3);
+ if (r4)
+ DMERR("%s: could not write cache metadata", cache_device_name(cache));
+
+ return !r1 && !r2 && !r3 && !r4;
+}
+
+static void cache_postsuspend(struct dm_target *ti)
+{
+ struct cache *cache = ti->private;
+
+ prevent_background_work(cache);
+ BUG_ON(atomic_read(&cache->nr_io_migrations));
+
+ cancel_delayed_work_sync(&cache->waker);
+ drain_workqueue(cache->wq);
+ WARN_ON(cache->tracker.in_flight);
+
+ /*
+ * If it's a flush suspend there won't be any deferred bios, so this
+ * call is harmless.
+ */
+ requeue_deferred_bios(cache);
+
+ if (get_cache_mode(cache) == CM_WRITE)
+ (void) sync_metadata(cache);
+}
+
+static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
+ bool dirty, uint32_t hint, bool hint_valid)
+{
+ struct cache *cache = context;
+
+ if (dirty) {
+ set_bit(from_cblock(cblock), cache->dirty_bitset);
+ atomic_inc(&cache->nr_dirty);
+ } else
+ clear_bit(from_cblock(cblock), cache->dirty_bitset);
+
+ return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
+}
+
+/*
+ * The discard block size in the on disk metadata is not
+ * necessarily the same as we're currently using. So we have to
+ * be careful to only set the discarded attribute if we know it
+ * covers a complete block of the new size.
+ */
+struct discard_load_info {
+ struct cache *cache;
+
+ /*
+ * These blocks are sized using the on disk dblock size, rather
+ * than the current one.
+ */
+ dm_block_t block_size;
+ dm_block_t discard_begin, discard_end;
+};
+
+static void discard_load_info_init(struct cache *cache,
+ struct discard_load_info *li)
+{
+ li->cache = cache;
+ li->discard_begin = li->discard_end = 0;
+}
+
+static void set_discard_range(struct discard_load_info *li)
+{
+ sector_t b, e;
+
+ if (li->discard_begin == li->discard_end)
+ return;
+
+ /*
+ * Convert to sectors.
+ */
+ b = li->discard_begin * li->block_size;
+ e = li->discard_end * li->block_size;
+
+ /*
+ * Then convert back to the current dblock size.
+ */
+ b = dm_sector_div_up(b, li->cache->discard_block_size);
+ sector_div(e, li->cache->discard_block_size);
+
+ /*
+ * The origin may have shrunk, so we need to check we're still in
+ * bounds.
+ */
+ if (e > from_dblock(li->cache->discard_nr_blocks))
+ e = from_dblock(li->cache->discard_nr_blocks);
+
+ for (; b < e; b++)
+ set_discard(li->cache, to_dblock(b));
+}
+
+static int load_discard(void *context, sector_t discard_block_size,
+ dm_dblock_t dblock, bool discard)
+{
+ struct discard_load_info *li = context;
+
+ li->block_size = discard_block_size;
+
+ if (discard) {
+ if (from_dblock(dblock) == li->discard_end)
+ /*
+ * We're already in a discard range, just extend it.
+ */
+ li->discard_end = li->discard_end + 1ULL;
+
+ else {
+ /*
+ * Emit the old range and start a new one.
+ */
+ set_discard_range(li);
+ li->discard_begin = from_dblock(dblock);
+ li->discard_end = li->discard_begin + 1ULL;
+ }
+ } else {
+ set_discard_range(li);
+ li->discard_begin = li->discard_end = 0;
+ }
+
+ return 0;
+}
+
+static dm_cblock_t get_cache_dev_size(struct cache *cache)
+{
+ sector_t size = get_dev_size(cache->cache_dev);
+ (void) sector_div(size, cache->sectors_per_block);
+ return to_cblock(size);
+}
+
+static bool can_resize(struct cache *cache, dm_cblock_t new_size)
+{
+ if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
+ if (cache->sized) {
+ DMERR("%s: unable to extend cache due to missing cache table reload",
+ cache_device_name(cache));
+ return false;
+ }
+ }
+
+ /*
+ * We can't drop a dirty block when shrinking the cache.
+ */
+ while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
+ new_size = to_cblock(from_cblock(new_size) + 1);
+ if (is_dirty(cache, new_size)) {
+ DMERR("%s: unable to shrink cache; cache block %llu is dirty",
+ cache_device_name(cache),
+ (unsigned long long) from_cblock(new_size));
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
+{
+ int r;
+
+ r = dm_cache_resize(cache->cmd, new_size);
+ if (r) {
+ DMERR("%s: could not resize cache metadata", cache_device_name(cache));
+ metadata_operation_failed(cache, "dm_cache_resize", r);
+ return r;
+ }
+
+ set_cache_size(cache, new_size);
+
+ return 0;
+}
+
+static int cache_preresume(struct dm_target *ti)
+{
+ int r = 0;
+ struct cache *cache = ti->private;
+ dm_cblock_t csize = get_cache_dev_size(cache);
+
+ /*
+ * Check to see if the cache has resized.
+ */
+ if (!cache->sized) {
+ r = resize_cache_dev(cache, csize);
+ if (r)
+ return r;
+
+ cache->sized = true;
+
+ } else if (csize != cache->cache_size) {
+ if (!can_resize(cache, csize))
+ return -EINVAL;
+
+ r = resize_cache_dev(cache, csize);
+ if (r)
+ return r;
+ }
+
+ if (!cache->loaded_mappings) {
+ r = dm_cache_load_mappings(cache->cmd, cache->policy,
+ load_mapping, cache);
+ if (r) {
+ DMERR("%s: could not load cache mappings", cache_device_name(cache));
+ metadata_operation_failed(cache, "dm_cache_load_mappings", r);
+ return r;
+ }
+
+ cache->loaded_mappings = true;
+ }
+
+ if (!cache->loaded_discards) {
+ struct discard_load_info li;
+
+ /*
+ * The discard bitset could have been resized, or the
+ * discard block size changed. To be safe we start by
+ * setting every dblock to not discarded.
+ */
+ clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
+
+ discard_load_info_init(cache, &li);
+ r = dm_cache_load_discards(cache->cmd, load_discard, &li);
+ if (r) {
+ DMERR("%s: could not load origin discards", cache_device_name(cache));
+ metadata_operation_failed(cache, "dm_cache_load_discards", r);
+ return r;
+ }
+ set_discard_range(&li);
+
+ cache->loaded_discards = true;
+ }
+
+ return r;
+}
+
+static void cache_resume(struct dm_target *ti)
+{
+ struct cache *cache = ti->private;
+
+ cache->need_tick_bio = true;
+ allow_background_work(cache);
+ do_waker(&cache->waker.work);
+}
+
+static void emit_flags(struct cache *cache, char *result,
+ unsigned int maxlen, ssize_t *sz_ptr)
+{
+ ssize_t sz = *sz_ptr;
+ struct cache_features *cf = &cache->features;
+ unsigned int count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
+
+ DMEMIT("%u ", count);
+
+ if (cf->metadata_version == 2)
+ DMEMIT("metadata2 ");
+
+ if (writethrough_mode(cache))
+ DMEMIT("writethrough ");
+
+ else if (passthrough_mode(cache))
+ DMEMIT("passthrough ");
+
+ else if (writeback_mode(cache))
+ DMEMIT("writeback ");
+
+ else {
+ DMEMIT("unknown ");
+ DMERR("%s: internal error: unknown io mode: %d",
+ cache_device_name(cache), (int) cf->io_mode);
+ }
+
+ if (!cf->discard_passdown)
+ DMEMIT("no_discard_passdown ");
+
+ *sz_ptr = sz;
+}
+
+/*
+ * Status format:
+ *
+ * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
+ * <cache block size> <#used cache blocks>/<#total cache blocks>
+ * <#read hits> <#read misses> <#write hits> <#write misses>
+ * <#demotions> <#promotions> <#dirty>
+ * <#features> <features>*
+ * <#core args> <core args>
+ * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
+ */
+static void cache_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ int r = 0;
+ unsigned int i;
+ ssize_t sz = 0;
+ dm_block_t nr_free_blocks_metadata = 0;
+ dm_block_t nr_blocks_metadata = 0;
+ char buf[BDEVNAME_SIZE];
+ struct cache *cache = ti->private;
+ dm_cblock_t residency;
+ bool needs_check;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ if (get_cache_mode(cache) == CM_FAIL) {
+ DMEMIT("Fail");
+ break;
+ }
+
+ /* Commit to ensure statistics aren't out-of-date */
+ if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
+ (void) commit(cache, false);
+
+ r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
+ if (r) {
+ DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
+ cache_device_name(cache), r);
+ goto err;
+ }
+
+ r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
+ if (r) {
+ DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
+ cache_device_name(cache), r);
+ goto err;
+ }
+
+ residency = policy_residency(cache->policy);
+
+ DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
+ (unsigned int)DM_CACHE_METADATA_BLOCK_SIZE,
+ (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
+ (unsigned long long)nr_blocks_metadata,
+ (unsigned long long)cache->sectors_per_block,
+ (unsigned long long) from_cblock(residency),
+ (unsigned long long) from_cblock(cache->cache_size),
+ (unsigned int) atomic_read(&cache->stats.read_hit),
+ (unsigned int) atomic_read(&cache->stats.read_miss),
+ (unsigned int) atomic_read(&cache->stats.write_hit),
+ (unsigned int) atomic_read(&cache->stats.write_miss),
+ (unsigned int) atomic_read(&cache->stats.demotion),
+ (unsigned int) atomic_read(&cache->stats.promotion),
+ (unsigned long) atomic_read(&cache->nr_dirty));
+
+ emit_flags(cache, result, maxlen, &sz);
+
+ DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
+
+ DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
+ if (sz < maxlen) {
+ r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
+ if (r)
+ DMERR("%s: policy_emit_config_values returned %d",
+ cache_device_name(cache), r);
+ }
+
+ if (get_cache_mode(cache) == CM_READ_ONLY)
+ DMEMIT("ro ");
+ else
+ DMEMIT("rw ");
+
+ r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
+
+ if (r || needs_check)
+ DMEMIT("needs_check ");
+ else
+ DMEMIT("- ");
+
+ break;
+
+ case STATUSTYPE_TABLE:
+ format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
+ DMEMIT("%s ", buf);
+ format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
+ DMEMIT("%s ", buf);
+ format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
+ DMEMIT("%s", buf);
+
+ for (i = 0; i < cache->nr_ctr_args - 1; i++)
+ DMEMIT(" %s", cache->ctr_args[i]);
+ if (cache->nr_ctr_args)
+ DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
+ break;
+
+ case STATUSTYPE_IMA:
+ DMEMIT_TARGET_NAME_VERSION(ti->type);
+ if (get_cache_mode(cache) == CM_FAIL)
+ DMEMIT(",metadata_mode=fail");
+ else if (get_cache_mode(cache) == CM_READ_ONLY)
+ DMEMIT(",metadata_mode=ro");
+ else
+ DMEMIT(",metadata_mode=rw");
+
+ format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
+ DMEMIT(",cache_metadata_device=%s", buf);
+ format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
+ DMEMIT(",cache_device=%s", buf);
+ format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
+ DMEMIT(",cache_origin_device=%s", buf);
+ DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
+ DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
+ DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
+ DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
+ DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
+ DMEMIT(";");
+ break;
+ }
+
+ return;
+
+err:
+ DMEMIT("Error");
+}
+
+/*
+ * Defines a range of cblocks, begin to (end - 1) are in the range. end is
+ * the one-past-the-end value.
+ */
+struct cblock_range {
+ dm_cblock_t begin;
+ dm_cblock_t end;
+};
+
+/*
+ * A cache block range can take two forms:
+ *
+ * i) A single cblock, eg. '3456'
+ * ii) A begin and end cblock with a dash between, eg. 123-234
+ */
+static int parse_cblock_range(struct cache *cache, const char *str,
+ struct cblock_range *result)
+{
+ char dummy;
+ uint64_t b, e;
+ int r;
+
+ /*
+ * Try and parse form (ii) first.
+ */
+ r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
+ if (r < 0)
+ return r;
+
+ if (r == 2) {
+ result->begin = to_cblock(b);
+ result->end = to_cblock(e);
+ return 0;
+ }
+
+ /*
+ * That didn't work, try form (i).
+ */
+ r = sscanf(str, "%llu%c", &b, &dummy);
+ if (r < 0)
+ return r;
+
+ if (r == 1) {
+ result->begin = to_cblock(b);
+ result->end = to_cblock(from_cblock(result->begin) + 1u);
+ return 0;
+ }
+
+ DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
+ return -EINVAL;
+}
+
+static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
+{
+ uint64_t b = from_cblock(range->begin);
+ uint64_t e = from_cblock(range->end);
+ uint64_t n = from_cblock(cache->cache_size);
+
+ if (b >= n) {
+ DMERR("%s: begin cblock out of range: %llu >= %llu",
+ cache_device_name(cache), b, n);
+ return -EINVAL;
+ }
+
+ if (e > n) {
+ DMERR("%s: end cblock out of range: %llu > %llu",
+ cache_device_name(cache), e, n);
+ return -EINVAL;
+ }
+
+ if (b >= e) {
+ DMERR("%s: invalid cblock range: %llu >= %llu",
+ cache_device_name(cache), b, e);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static inline dm_cblock_t cblock_succ(dm_cblock_t b)
+{
+ return to_cblock(from_cblock(b) + 1);
+}
+
+static int request_invalidation(struct cache *cache, struct cblock_range *range)
+{
+ int r = 0;
+
+ /*
+ * We don't need to do any locking here because we know we're in
+ * passthrough mode. There's is potential for a race between an
+ * invalidation triggered by an io and an invalidation message. This
+ * is harmless, we must not worry if the policy call fails.
+ */
+ while (range->begin != range->end) {
+ r = invalidate_cblock(cache, range->begin);
+ if (r)
+ return r;
+
+ range->begin = cblock_succ(range->begin);
+ }
+
+ cache->commit_requested = true;
+ return r;
+}
+
+static int process_invalidate_cblocks_message(struct cache *cache, unsigned int count,
+ const char **cblock_ranges)
+{
+ int r = 0;
+ unsigned int i;
+ struct cblock_range range;
+
+ if (!passthrough_mode(cache)) {
+ DMERR("%s: cache has to be in passthrough mode for invalidation",
+ cache_device_name(cache));
+ return -EPERM;
+ }
+
+ for (i = 0; i < count; i++) {
+ r = parse_cblock_range(cache, cblock_ranges[i], &range);
+ if (r)
+ break;
+
+ r = validate_cblock_range(cache, &range);
+ if (r)
+ break;
+
+ /*
+ * Pass begin and end origin blocks to the worker and wake it.
+ */
+ r = request_invalidation(cache, &range);
+ if (r)
+ break;
+ }
+
+ return r;
+}
+
+/*
+ * Supports
+ * "<key> <value>"
+ * and
+ * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
+ *
+ * The key migration_threshold is supported by the cache target core.
+ */
+static int cache_message(struct dm_target *ti, unsigned int argc, char **argv,
+ char *result, unsigned int maxlen)
+{
+ struct cache *cache = ti->private;
+
+ if (!argc)
+ return -EINVAL;
+
+ if (get_cache_mode(cache) >= CM_READ_ONLY) {
+ DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
+ cache_device_name(cache));
+ return -EOPNOTSUPP;
+ }
+
+ if (!strcasecmp(argv[0], "invalidate_cblocks"))
+ return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
+
+ if (argc != 2)
+ return -EINVAL;
+
+ return set_config_value(cache, argv[0], argv[1]);
+}
+
+static int cache_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ int r = 0;
+ struct cache *cache = ti->private;
+
+ r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
+ if (!r)
+ r = fn(ti, cache->origin_dev, 0, ti->len, data);
+
+ return r;
+}
+
+/*
+ * If discard_passdown was enabled verify that the origin device
+ * supports discards. Disable discard_passdown if not.
+ */
+static void disable_passdown_if_not_supported(struct cache *cache)
+{
+ struct block_device *origin_bdev = cache->origin_dev->bdev;
+ struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
+ const char *reason = NULL;
+
+ if (!cache->features.discard_passdown)
+ return;
+
+ if (!bdev_max_discard_sectors(origin_bdev))
+ reason = "discard unsupported";
+
+ else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
+ reason = "max discard sectors smaller than a block";
+
+ if (reason) {
+ DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
+ origin_bdev, reason);
+ cache->features.discard_passdown = false;
+ }
+}
+
+static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
+{
+ struct block_device *origin_bdev = cache->origin_dev->bdev;
+ struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
+
+ if (!cache->features.discard_passdown) {
+ /* No passdown is done so setting own virtual limits */
+ limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
+ cache->origin_sectors);
+ limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
+ return;
+ }
+
+ /*
+ * cache_iterate_devices() is stacking both origin and fast device limits
+ * but discards aren't passed to fast device, so inherit origin's limits.
+ */
+ limits->max_discard_sectors = origin_limits->max_discard_sectors;
+ limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
+ limits->discard_granularity = origin_limits->discard_granularity;
+ limits->discard_alignment = origin_limits->discard_alignment;
+ limits->discard_misaligned = origin_limits->discard_misaligned;
+}
+
+static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+ struct cache *cache = ti->private;
+ uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
+
+ /*
+ * If the system-determined stacked limits are compatible with the
+ * cache's blocksize (io_opt is a factor) do not override them.
+ */
+ if (io_opt_sectors < cache->sectors_per_block ||
+ do_div(io_opt_sectors, cache->sectors_per_block)) {
+ blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
+ blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
+ }
+
+ disable_passdown_if_not_supported(cache);
+ set_discard_limits(cache, limits);
+}
+
+/*----------------------------------------------------------------*/
+
+static struct target_type cache_target = {
+ .name = "cache",
+ .version = {2, 2, 0},
+ .module = THIS_MODULE,
+ .ctr = cache_ctr,
+ .dtr = cache_dtr,
+ .map = cache_map,
+ .end_io = cache_end_io,
+ .postsuspend = cache_postsuspend,
+ .preresume = cache_preresume,
+ .resume = cache_resume,
+ .status = cache_status,
+ .message = cache_message,
+ .iterate_devices = cache_iterate_devices,
+ .io_hints = cache_io_hints,
+};
+
+static int __init dm_cache_init(void)
+{
+ int r;
+
+ migration_cache = KMEM_CACHE(dm_cache_migration, 0);
+ if (!migration_cache)
+ return -ENOMEM;
+
+ r = dm_register_target(&cache_target);
+ if (r) {
+ DMERR("cache target registration failed: %d", r);
+ kmem_cache_destroy(migration_cache);
+ return r;
+ }
+
+ return 0;
+}
+
+static void __exit dm_cache_exit(void)
+{
+ dm_unregister_target(&cache_target);
+ kmem_cache_destroy(migration_cache);
+}
+
+module_init(dm_cache_init);
+module_exit(dm_cache_exit);
+
+MODULE_DESCRIPTION(DM_NAME " cache target");
+MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-clone-metadata.c b/drivers/md/dm-clone-metadata.c
new file mode 100644
index 000000000..c43d55672
--- /dev/null
+++ b/drivers/md/dm-clone-metadata.c
@@ -0,0 +1,1028 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2019 Arrikto, Inc. All Rights Reserved.
+ */
+
+#include <linux/mm.h>
+#include <linux/err.h>
+#include <linux/slab.h>
+#include <linux/rwsem.h>
+#include <linux/bitops.h>
+#include <linux/bitmap.h>
+#include <linux/device-mapper.h>
+
+#include "persistent-data/dm-bitset.h"
+#include "persistent-data/dm-space-map.h"
+#include "persistent-data/dm-block-manager.h"
+#include "persistent-data/dm-transaction-manager.h"
+
+#include "dm-clone-metadata.h"
+
+#define DM_MSG_PREFIX "clone metadata"
+
+#define SUPERBLOCK_LOCATION 0
+#define SUPERBLOCK_MAGIC 0x8af27f64
+#define SUPERBLOCK_CSUM_XOR 257649492
+
+#define DM_CLONE_MAX_CONCURRENT_LOCKS 5
+
+#define UUID_LEN 16
+
+/* Min and max dm-clone metadata versions supported */
+#define DM_CLONE_MIN_METADATA_VERSION 1
+#define DM_CLONE_MAX_METADATA_VERSION 1
+
+/*
+ * On-disk metadata layout
+ */
+struct superblock_disk {
+ __le32 csum;
+ __le32 flags;
+ __le64 blocknr;
+
+ __u8 uuid[UUID_LEN];
+ __le64 magic;
+ __le32 version;
+
+ __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
+
+ __le64 region_size;
+ __le64 target_size;
+
+ __le64 bitset_root;
+} __packed;
+
+/*
+ * Region and Dirty bitmaps.
+ *
+ * dm-clone logically splits the source and destination devices in regions of
+ * fixed size. The destination device's regions are gradually hydrated, i.e.,
+ * we copy (clone) the source's regions to the destination device. Eventually,
+ * all regions will get hydrated and all I/O will be served from the
+ * destination device.
+ *
+ * We maintain an on-disk bitmap which tracks the state of each of the
+ * destination device's regions, i.e., whether they are hydrated or not.
+ *
+ * To save constantly doing look ups on disk we keep an in core copy of the
+ * on-disk bitmap, the region_map.
+ *
+ * In order to track which regions are hydrated during a metadata transaction,
+ * we use a second set of bitmaps, the dmap (dirty bitmap), which includes two
+ * bitmaps, namely dirty_regions and dirty_words. The dirty_regions bitmap
+ * tracks the regions that got hydrated during the current metadata
+ * transaction. The dirty_words bitmap tracks the dirty words, i.e. longs, of
+ * the dirty_regions bitmap.
+ *
+ * This allows us to precisely track the regions that were hydrated during the
+ * current metadata transaction and update the metadata accordingly, when we
+ * commit the current transaction. This is important because dm-clone should
+ * only commit the metadata of regions that were properly flushed to the
+ * destination device beforehand. Otherwise, in case of a crash, we could end
+ * up with a corrupted dm-clone device.
+ *
+ * When a region finishes hydrating dm-clone calls
+ * dm_clone_set_region_hydrated(), or for discard requests
+ * dm_clone_cond_set_range(), which sets the corresponding bits in region_map
+ * and dmap.
+ *
+ * During a metadata commit we scan dmap->dirty_words and dmap->dirty_regions
+ * and update the on-disk metadata accordingly. Thus, we don't have to flush to
+ * disk the whole region_map. We can just flush the dirty region_map bits.
+ *
+ * We use the helper dmap->dirty_words bitmap, which is smaller than the
+ * original region_map, to reduce the amount of memory accesses during a
+ * metadata commit. Moreover, as dm-bitset also accesses the on-disk bitmap in
+ * 64-bit word granularity, the dirty_words bitmap helps us avoid useless disk
+ * accesses.
+ *
+ * We could update directly the on-disk bitmap, when dm-clone calls either
+ * dm_clone_set_region_hydrated() or dm_clone_cond_set_range(), buts this
+ * inserts significant metadata I/O overhead in dm-clone's I/O path. Also, as
+ * these two functions don't block, we can call them in interrupt context,
+ * e.g., in a hooked overwrite bio's completion routine, and further reduce the
+ * I/O completion latency.
+ *
+ * We maintain two dirty bitmap sets. During a metadata commit we atomically
+ * swap the currently used dmap with the unused one. This allows the metadata
+ * update functions to run concurrently with an ongoing commit.
+ */
+struct dirty_map {
+ unsigned long *dirty_words;
+ unsigned long *dirty_regions;
+ unsigned int changed;
+};
+
+struct dm_clone_metadata {
+ /* The metadata block device */
+ struct block_device *bdev;
+
+ sector_t target_size;
+ sector_t region_size;
+ unsigned long nr_regions;
+ unsigned long nr_words;
+
+ /* Spinlock protecting the region and dirty bitmaps. */
+ spinlock_t bitmap_lock;
+ struct dirty_map dmap[2];
+ struct dirty_map *current_dmap;
+
+ /* Protected by lock */
+ struct dirty_map *committing_dmap;
+
+ /*
+ * In core copy of the on-disk bitmap to save constantly doing look ups
+ * on disk.
+ */
+ unsigned long *region_map;
+
+ /* Protected by bitmap_lock */
+ unsigned int read_only;
+
+ struct dm_block_manager *bm;
+ struct dm_space_map *sm;
+ struct dm_transaction_manager *tm;
+
+ struct rw_semaphore lock;
+
+ struct dm_disk_bitset bitset_info;
+ dm_block_t bitset_root;
+
+ /*
+ * Reading the space map root can fail, so we read it into this
+ * buffer before the superblock is locked and updated.
+ */
+ __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
+
+ bool hydration_done:1;
+ bool fail_io:1;
+};
+
+/*---------------------------------------------------------------------------*/
+
+/*
+ * Superblock validation.
+ */
+static void sb_prepare_for_write(struct dm_block_validator *v,
+ struct dm_block *b, size_t sb_block_size)
+{
+ struct superblock_disk *sb;
+ u32 csum;
+
+ sb = dm_block_data(b);
+ sb->blocknr = cpu_to_le64(dm_block_location(b));
+
+ csum = dm_bm_checksum(&sb->flags, sb_block_size - sizeof(__le32),
+ SUPERBLOCK_CSUM_XOR);
+ sb->csum = cpu_to_le32(csum);
+}
+
+static int sb_check(struct dm_block_validator *v, struct dm_block *b,
+ size_t sb_block_size)
+{
+ struct superblock_disk *sb;
+ u32 csum, metadata_version;
+
+ sb = dm_block_data(b);
+
+ if (dm_block_location(b) != le64_to_cpu(sb->blocknr)) {
+ DMERR("Superblock check failed: blocknr %llu, expected %llu",
+ le64_to_cpu(sb->blocknr),
+ (unsigned long long)dm_block_location(b));
+ return -ENOTBLK;
+ }
+
+ if (le64_to_cpu(sb->magic) != SUPERBLOCK_MAGIC) {
+ DMERR("Superblock check failed: magic %llu, expected %llu",
+ le64_to_cpu(sb->magic),
+ (unsigned long long)SUPERBLOCK_MAGIC);
+ return -EILSEQ;
+ }
+
+ csum = dm_bm_checksum(&sb->flags, sb_block_size - sizeof(__le32),
+ SUPERBLOCK_CSUM_XOR);
+ if (sb->csum != cpu_to_le32(csum)) {
+ DMERR("Superblock check failed: checksum %u, expected %u",
+ csum, le32_to_cpu(sb->csum));
+ return -EILSEQ;
+ }
+
+ /* Check metadata version */
+ metadata_version = le32_to_cpu(sb->version);
+ if (metadata_version < DM_CLONE_MIN_METADATA_VERSION ||
+ metadata_version > DM_CLONE_MAX_METADATA_VERSION) {
+ DMERR("Clone metadata version %u found, but only versions between %u and %u supported.",
+ metadata_version, DM_CLONE_MIN_METADATA_VERSION,
+ DM_CLONE_MAX_METADATA_VERSION);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static struct dm_block_validator sb_validator = {
+ .name = "superblock",
+ .prepare_for_write = sb_prepare_for_write,
+ .check = sb_check
+};
+
+/*
+ * Check if the superblock is formatted or not. We consider the superblock to
+ * be formatted in case we find non-zero bytes in it.
+ */
+static int __superblock_all_zeroes(struct dm_block_manager *bm, bool *formatted)
+{
+ int r;
+ unsigned int i, nr_words;
+ struct dm_block *sblock;
+ __le64 *data_le, zero = cpu_to_le64(0);
+
+ /*
+ * We don't use a validator here because the superblock could be all
+ * zeroes.
+ */
+ r = dm_bm_read_lock(bm, SUPERBLOCK_LOCATION, NULL, &sblock);
+ if (r) {
+ DMERR("Failed to read_lock superblock");
+ return r;
+ }
+
+ data_le = dm_block_data(sblock);
+ *formatted = false;
+
+ /* This assumes that the block size is a multiple of 8 bytes */
+ BUG_ON(dm_bm_block_size(bm) % sizeof(__le64));
+ nr_words = dm_bm_block_size(bm) / sizeof(__le64);
+ for (i = 0; i < nr_words; i++) {
+ if (data_le[i] != zero) {
+ *formatted = true;
+ break;
+ }
+ }
+
+ dm_bm_unlock(sblock);
+
+ return 0;
+}
+
+/*---------------------------------------------------------------------------*/
+
+/*
+ * Low-level metadata handling.
+ */
+static inline int superblock_read_lock(struct dm_clone_metadata *cmd,
+ struct dm_block **sblock)
+{
+ return dm_bm_read_lock(cmd->bm, SUPERBLOCK_LOCATION, &sb_validator, sblock);
+}
+
+static inline int superblock_write_lock_zero(struct dm_clone_metadata *cmd,
+ struct dm_block **sblock)
+{
+ return dm_bm_write_lock_zero(cmd->bm, SUPERBLOCK_LOCATION, &sb_validator, sblock);
+}
+
+static int __copy_sm_root(struct dm_clone_metadata *cmd)
+{
+ int r;
+ size_t root_size;
+
+ r = dm_sm_root_size(cmd->sm, &root_size);
+ if (r)
+ return r;
+
+ return dm_sm_copy_root(cmd->sm, &cmd->metadata_space_map_root, root_size);
+}
+
+/* Save dm-clone metadata in superblock */
+static void __prepare_superblock(struct dm_clone_metadata *cmd,
+ struct superblock_disk *sb)
+{
+ sb->flags = cpu_to_le32(0UL);
+
+ /* FIXME: UUID is currently unused */
+ memset(sb->uuid, 0, sizeof(sb->uuid));
+
+ sb->magic = cpu_to_le64(SUPERBLOCK_MAGIC);
+ sb->version = cpu_to_le32(DM_CLONE_MAX_METADATA_VERSION);
+
+ /* Save the metadata space_map root */
+ memcpy(&sb->metadata_space_map_root, &cmd->metadata_space_map_root,
+ sizeof(cmd->metadata_space_map_root));
+
+ sb->region_size = cpu_to_le64(cmd->region_size);
+ sb->target_size = cpu_to_le64(cmd->target_size);
+ sb->bitset_root = cpu_to_le64(cmd->bitset_root);
+}
+
+static int __open_metadata(struct dm_clone_metadata *cmd)
+{
+ int r;
+ struct dm_block *sblock;
+ struct superblock_disk *sb;
+
+ r = superblock_read_lock(cmd, &sblock);
+
+ if (r) {
+ DMERR("Failed to read_lock superblock");
+ return r;
+ }
+
+ sb = dm_block_data(sblock);
+
+ /* Verify that target_size and region_size haven't changed. */
+ if (cmd->region_size != le64_to_cpu(sb->region_size) ||
+ cmd->target_size != le64_to_cpu(sb->target_size)) {
+ DMERR("Region and/or target size don't match the ones in metadata");
+ r = -EINVAL;
+ goto out_with_lock;
+ }
+
+ r = dm_tm_open_with_sm(cmd->bm, SUPERBLOCK_LOCATION,
+ sb->metadata_space_map_root,
+ sizeof(sb->metadata_space_map_root),
+ &cmd->tm, &cmd->sm);
+
+ if (r) {
+ DMERR("dm_tm_open_with_sm failed");
+ goto out_with_lock;
+ }
+
+ dm_disk_bitset_init(cmd->tm, &cmd->bitset_info);
+ cmd->bitset_root = le64_to_cpu(sb->bitset_root);
+
+out_with_lock:
+ dm_bm_unlock(sblock);
+
+ return r;
+}
+
+static int __format_metadata(struct dm_clone_metadata *cmd)
+{
+ int r;
+ struct dm_block *sblock;
+ struct superblock_disk *sb;
+
+ r = dm_tm_create_with_sm(cmd->bm, SUPERBLOCK_LOCATION, &cmd->tm, &cmd->sm);
+ if (r) {
+ DMERR("Failed to create transaction manager");
+ return r;
+ }
+
+ dm_disk_bitset_init(cmd->tm, &cmd->bitset_info);
+
+ r = dm_bitset_empty(&cmd->bitset_info, &cmd->bitset_root);
+ if (r) {
+ DMERR("Failed to create empty on-disk bitset");
+ goto err_with_tm;
+ }
+
+ r = dm_bitset_resize(&cmd->bitset_info, cmd->bitset_root, 0,
+ cmd->nr_regions, false, &cmd->bitset_root);
+ if (r) {
+ DMERR("Failed to resize on-disk bitset to %lu entries", cmd->nr_regions);
+ goto err_with_tm;
+ }
+
+ /* Flush to disk all blocks, except the superblock */
+ r = dm_tm_pre_commit(cmd->tm);
+ if (r) {
+ DMERR("dm_tm_pre_commit failed");
+ goto err_with_tm;
+ }
+
+ r = __copy_sm_root(cmd);
+ if (r) {
+ DMERR("__copy_sm_root failed");
+ goto err_with_tm;
+ }
+
+ r = superblock_write_lock_zero(cmd, &sblock);
+ if (r) {
+ DMERR("Failed to write_lock superblock");
+ goto err_with_tm;
+ }
+
+ sb = dm_block_data(sblock);
+ __prepare_superblock(cmd, sb);
+ r = dm_tm_commit(cmd->tm, sblock);
+ if (r) {
+ DMERR("Failed to commit superblock");
+ goto err_with_tm;
+ }
+
+ return 0;
+
+err_with_tm:
+ dm_sm_destroy(cmd->sm);
+ dm_tm_destroy(cmd->tm);
+
+ return r;
+}
+
+static int __open_or_format_metadata(struct dm_clone_metadata *cmd, bool may_format_device)
+{
+ int r;
+ bool formatted = false;
+
+ r = __superblock_all_zeroes(cmd->bm, &formatted);
+ if (r)
+ return r;
+
+ if (!formatted)
+ return may_format_device ? __format_metadata(cmd) : -EPERM;
+
+ return __open_metadata(cmd);
+}
+
+static int __create_persistent_data_structures(struct dm_clone_metadata *cmd,
+ bool may_format_device)
+{
+ int r;
+
+ /* Create block manager */
+ cmd->bm = dm_block_manager_create(cmd->bdev,
+ DM_CLONE_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
+ DM_CLONE_MAX_CONCURRENT_LOCKS);
+ if (IS_ERR(cmd->bm)) {
+ DMERR("Failed to create block manager");
+ return PTR_ERR(cmd->bm);
+ }
+
+ r = __open_or_format_metadata(cmd, may_format_device);
+ if (r)
+ dm_block_manager_destroy(cmd->bm);
+
+ return r;
+}
+
+static void __destroy_persistent_data_structures(struct dm_clone_metadata *cmd)
+{
+ dm_sm_destroy(cmd->sm);
+ dm_tm_destroy(cmd->tm);
+ dm_block_manager_destroy(cmd->bm);
+}
+
+/*---------------------------------------------------------------------------*/
+
+static size_t bitmap_size(unsigned long nr_bits)
+{
+ return BITS_TO_LONGS(nr_bits) * sizeof(long);
+}
+
+static int __dirty_map_init(struct dirty_map *dmap, unsigned long nr_words,
+ unsigned long nr_regions)
+{
+ dmap->changed = 0;
+
+ dmap->dirty_words = kvzalloc(bitmap_size(nr_words), GFP_KERNEL);
+ if (!dmap->dirty_words)
+ return -ENOMEM;
+
+ dmap->dirty_regions = kvzalloc(bitmap_size(nr_regions), GFP_KERNEL);
+ if (!dmap->dirty_regions) {
+ kvfree(dmap->dirty_words);
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static void __dirty_map_exit(struct dirty_map *dmap)
+{
+ kvfree(dmap->dirty_words);
+ kvfree(dmap->dirty_regions);
+}
+
+static int dirty_map_init(struct dm_clone_metadata *cmd)
+{
+ if (__dirty_map_init(&cmd->dmap[0], cmd->nr_words, cmd->nr_regions)) {
+ DMERR("Failed to allocate dirty bitmap");
+ return -ENOMEM;
+ }
+
+ if (__dirty_map_init(&cmd->dmap[1], cmd->nr_words, cmd->nr_regions)) {
+ DMERR("Failed to allocate dirty bitmap");
+ __dirty_map_exit(&cmd->dmap[0]);
+ return -ENOMEM;
+ }
+
+ cmd->current_dmap = &cmd->dmap[0];
+ cmd->committing_dmap = NULL;
+
+ return 0;
+}
+
+static void dirty_map_exit(struct dm_clone_metadata *cmd)
+{
+ __dirty_map_exit(&cmd->dmap[0]);
+ __dirty_map_exit(&cmd->dmap[1]);
+}
+
+static int __load_bitset_in_core(struct dm_clone_metadata *cmd)
+{
+ int r;
+ unsigned long i;
+ struct dm_bitset_cursor c;
+
+ /* Flush bitset cache */
+ r = dm_bitset_flush(&cmd->bitset_info, cmd->bitset_root, &cmd->bitset_root);
+ if (r)
+ return r;
+
+ r = dm_bitset_cursor_begin(&cmd->bitset_info, cmd->bitset_root, cmd->nr_regions, &c);
+ if (r)
+ return r;
+
+ for (i = 0; ; i++) {
+ if (dm_bitset_cursor_get_value(&c))
+ __set_bit(i, cmd->region_map);
+ else
+ __clear_bit(i, cmd->region_map);
+
+ if (i >= (cmd->nr_regions - 1))
+ break;
+
+ r = dm_bitset_cursor_next(&c);
+
+ if (r)
+ break;
+ }
+
+ dm_bitset_cursor_end(&c);
+
+ return r;
+}
+
+struct dm_clone_metadata *dm_clone_metadata_open(struct block_device *bdev,
+ sector_t target_size,
+ sector_t region_size)
+{
+ int r;
+ struct dm_clone_metadata *cmd;
+
+ cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
+ if (!cmd) {
+ DMERR("Failed to allocate memory for dm-clone metadata");
+ return ERR_PTR(-ENOMEM);
+ }
+
+ cmd->bdev = bdev;
+ cmd->target_size = target_size;
+ cmd->region_size = region_size;
+ cmd->nr_regions = dm_sector_div_up(cmd->target_size, cmd->region_size);
+ cmd->nr_words = BITS_TO_LONGS(cmd->nr_regions);
+
+ init_rwsem(&cmd->lock);
+ spin_lock_init(&cmd->bitmap_lock);
+ cmd->read_only = 0;
+ cmd->fail_io = false;
+ cmd->hydration_done = false;
+
+ cmd->region_map = kvmalloc(bitmap_size(cmd->nr_regions), GFP_KERNEL);
+ if (!cmd->region_map) {
+ DMERR("Failed to allocate memory for region bitmap");
+ r = -ENOMEM;
+ goto out_with_md;
+ }
+
+ r = __create_persistent_data_structures(cmd, true);
+ if (r)
+ goto out_with_region_map;
+
+ r = __load_bitset_in_core(cmd);
+ if (r) {
+ DMERR("Failed to load on-disk region map");
+ goto out_with_pds;
+ }
+
+ r = dirty_map_init(cmd);
+ if (r)
+ goto out_with_pds;
+
+ if (bitmap_full(cmd->region_map, cmd->nr_regions))
+ cmd->hydration_done = true;
+
+ return cmd;
+
+out_with_pds:
+ __destroy_persistent_data_structures(cmd);
+
+out_with_region_map:
+ kvfree(cmd->region_map);
+
+out_with_md:
+ kfree(cmd);
+
+ return ERR_PTR(r);
+}
+
+void dm_clone_metadata_close(struct dm_clone_metadata *cmd)
+{
+ if (!cmd->fail_io)
+ __destroy_persistent_data_structures(cmd);
+
+ dirty_map_exit(cmd);
+ kvfree(cmd->region_map);
+ kfree(cmd);
+}
+
+bool dm_clone_is_hydration_done(struct dm_clone_metadata *cmd)
+{
+ return cmd->hydration_done;
+}
+
+bool dm_clone_is_region_hydrated(struct dm_clone_metadata *cmd, unsigned long region_nr)
+{
+ return dm_clone_is_hydration_done(cmd) || test_bit(region_nr, cmd->region_map);
+}
+
+bool dm_clone_is_range_hydrated(struct dm_clone_metadata *cmd,
+ unsigned long start, unsigned long nr_regions)
+{
+ unsigned long bit;
+
+ if (dm_clone_is_hydration_done(cmd))
+ return true;
+
+ bit = find_next_zero_bit(cmd->region_map, cmd->nr_regions, start);
+
+ return (bit >= (start + nr_regions));
+}
+
+unsigned int dm_clone_nr_of_hydrated_regions(struct dm_clone_metadata *cmd)
+{
+ return bitmap_weight(cmd->region_map, cmd->nr_regions);
+}
+
+unsigned long dm_clone_find_next_unhydrated_region(struct dm_clone_metadata *cmd,
+ unsigned long start)
+{
+ return find_next_zero_bit(cmd->region_map, cmd->nr_regions, start);
+}
+
+static int __update_metadata_word(struct dm_clone_metadata *cmd,
+ unsigned long *dirty_regions,
+ unsigned long word)
+{
+ int r;
+ unsigned long index = word * BITS_PER_LONG;
+ unsigned long max_index = min(cmd->nr_regions, (word + 1) * BITS_PER_LONG);
+
+ while (index < max_index) {
+ if (test_bit(index, dirty_regions)) {
+ r = dm_bitset_set_bit(&cmd->bitset_info, cmd->bitset_root,
+ index, &cmd->bitset_root);
+ if (r) {
+ DMERR("dm_bitset_set_bit failed");
+ return r;
+ }
+ __clear_bit(index, dirty_regions);
+ }
+ index++;
+ }
+
+ return 0;
+}
+
+static int __metadata_commit(struct dm_clone_metadata *cmd)
+{
+ int r;
+ struct dm_block *sblock;
+ struct superblock_disk *sb;
+
+ /* Flush bitset cache */
+ r = dm_bitset_flush(&cmd->bitset_info, cmd->bitset_root, &cmd->bitset_root);
+ if (r) {
+ DMERR("dm_bitset_flush failed");
+ return r;
+ }
+
+ /* Flush to disk all blocks, except the superblock */
+ r = dm_tm_pre_commit(cmd->tm);
+ if (r) {
+ DMERR("dm_tm_pre_commit failed");
+ return r;
+ }
+
+ /* Save the space map root in cmd->metadata_space_map_root */
+ r = __copy_sm_root(cmd);
+ if (r) {
+ DMERR("__copy_sm_root failed");
+ return r;
+ }
+
+ /* Lock the superblock */
+ r = superblock_write_lock_zero(cmd, &sblock);
+ if (r) {
+ DMERR("Failed to write_lock superblock");
+ return r;
+ }
+
+ /* Save the metadata in superblock */
+ sb = dm_block_data(sblock);
+ __prepare_superblock(cmd, sb);
+
+ /* Unlock superblock and commit it to disk */
+ r = dm_tm_commit(cmd->tm, sblock);
+ if (r) {
+ DMERR("Failed to commit superblock");
+ return r;
+ }
+
+ /*
+ * FIXME: Find a more efficient way to check if the hydration is done.
+ */
+ if (bitmap_full(cmd->region_map, cmd->nr_regions))
+ cmd->hydration_done = true;
+
+ return 0;
+}
+
+static int __flush_dmap(struct dm_clone_metadata *cmd, struct dirty_map *dmap)
+{
+ int r;
+ unsigned long word;
+
+ word = 0;
+ do {
+ word = find_next_bit(dmap->dirty_words, cmd->nr_words, word);
+
+ if (word == cmd->nr_words)
+ break;
+
+ r = __update_metadata_word(cmd, dmap->dirty_regions, word);
+
+ if (r)
+ return r;
+
+ __clear_bit(word, dmap->dirty_words);
+ word++;
+ } while (word < cmd->nr_words);
+
+ r = __metadata_commit(cmd);
+
+ if (r)
+ return r;
+
+ /* Update the changed flag */
+ spin_lock_irq(&cmd->bitmap_lock);
+ dmap->changed = 0;
+ spin_unlock_irq(&cmd->bitmap_lock);
+
+ return 0;
+}
+
+int dm_clone_metadata_pre_commit(struct dm_clone_metadata *cmd)
+{
+ int r = 0;
+ struct dirty_map *dmap, *next_dmap;
+
+ down_write(&cmd->lock);
+
+ if (cmd->fail_io || dm_bm_is_read_only(cmd->bm)) {
+ r = -EPERM;
+ goto out;
+ }
+
+ /* Get current dirty bitmap */
+ dmap = cmd->current_dmap;
+
+ /* Get next dirty bitmap */
+ next_dmap = (dmap == &cmd->dmap[0]) ? &cmd->dmap[1] : &cmd->dmap[0];
+
+ /*
+ * The last commit failed, so we don't have a clean dirty-bitmap to
+ * use.
+ */
+ if (WARN_ON(next_dmap->changed || cmd->committing_dmap)) {
+ r = -EINVAL;
+ goto out;
+ }
+
+ /* Swap dirty bitmaps */
+ spin_lock_irq(&cmd->bitmap_lock);
+ cmd->current_dmap = next_dmap;
+ spin_unlock_irq(&cmd->bitmap_lock);
+
+ /* Set old dirty bitmap as currently committing */
+ cmd->committing_dmap = dmap;
+out:
+ up_write(&cmd->lock);
+
+ return r;
+}
+
+int dm_clone_metadata_commit(struct dm_clone_metadata *cmd)
+{
+ int r = -EPERM;
+
+ down_write(&cmd->lock);
+
+ if (cmd->fail_io || dm_bm_is_read_only(cmd->bm))
+ goto out;
+
+ if (WARN_ON(!cmd->committing_dmap)) {
+ r = -EINVAL;
+ goto out;
+ }
+
+ r = __flush_dmap(cmd, cmd->committing_dmap);
+ if (!r) {
+ /* Clear committing dmap */
+ cmd->committing_dmap = NULL;
+ }
+out:
+ up_write(&cmd->lock);
+
+ return r;
+}
+
+int dm_clone_set_region_hydrated(struct dm_clone_metadata *cmd, unsigned long region_nr)
+{
+ int r = 0;
+ struct dirty_map *dmap;
+ unsigned long word, flags;
+
+ if (unlikely(region_nr >= cmd->nr_regions)) {
+ DMERR("Region %lu out of range (total number of regions %lu)",
+ region_nr, cmd->nr_regions);
+ return -ERANGE;
+ }
+
+ word = region_nr / BITS_PER_LONG;
+
+ spin_lock_irqsave(&cmd->bitmap_lock, flags);
+
+ if (cmd->read_only) {
+ r = -EPERM;
+ goto out;
+ }
+
+ dmap = cmd->current_dmap;
+
+ __set_bit(word, dmap->dirty_words);
+ __set_bit(region_nr, dmap->dirty_regions);
+ __set_bit(region_nr, cmd->region_map);
+ dmap->changed = 1;
+
+out:
+ spin_unlock_irqrestore(&cmd->bitmap_lock, flags);
+
+ return r;
+}
+
+int dm_clone_cond_set_range(struct dm_clone_metadata *cmd, unsigned long start,
+ unsigned long nr_regions)
+{
+ int r = 0;
+ struct dirty_map *dmap;
+ unsigned long word, region_nr;
+
+ if (unlikely(start >= cmd->nr_regions || (start + nr_regions) < start ||
+ (start + nr_regions) > cmd->nr_regions)) {
+ DMERR("Invalid region range: start %lu, nr_regions %lu (total number of regions %lu)",
+ start, nr_regions, cmd->nr_regions);
+ return -ERANGE;
+ }
+
+ spin_lock_irq(&cmd->bitmap_lock);
+
+ if (cmd->read_only) {
+ r = -EPERM;
+ goto out;
+ }
+
+ dmap = cmd->current_dmap;
+ for (region_nr = start; region_nr < (start + nr_regions); region_nr++) {
+ if (!test_bit(region_nr, cmd->region_map)) {
+ word = region_nr / BITS_PER_LONG;
+ __set_bit(word, dmap->dirty_words);
+ __set_bit(region_nr, dmap->dirty_regions);
+ __set_bit(region_nr, cmd->region_map);
+ dmap->changed = 1;
+ }
+ }
+out:
+ spin_unlock_irq(&cmd->bitmap_lock);
+
+ return r;
+}
+
+/*
+ * WARNING: This must not be called concurrently with either
+ * dm_clone_set_region_hydrated() or dm_clone_cond_set_range(), as it changes
+ * cmd->region_map without taking the cmd->bitmap_lock spinlock. The only
+ * exception is after setting the metadata to read-only mode, using
+ * dm_clone_metadata_set_read_only().
+ *
+ * We don't take the spinlock because __load_bitset_in_core() does I/O, so it
+ * may block.
+ */
+int dm_clone_reload_in_core_bitset(struct dm_clone_metadata *cmd)
+{
+ int r = -EINVAL;
+
+ down_write(&cmd->lock);
+
+ if (cmd->fail_io)
+ goto out;
+
+ r = __load_bitset_in_core(cmd);
+out:
+ up_write(&cmd->lock);
+
+ return r;
+}
+
+bool dm_clone_changed_this_transaction(struct dm_clone_metadata *cmd)
+{
+ bool r;
+ unsigned long flags;
+
+ spin_lock_irqsave(&cmd->bitmap_lock, flags);
+ r = cmd->dmap[0].changed || cmd->dmap[1].changed;
+ spin_unlock_irqrestore(&cmd->bitmap_lock, flags);
+
+ return r;
+}
+
+int dm_clone_metadata_abort(struct dm_clone_metadata *cmd)
+{
+ int r = -EPERM;
+
+ down_write(&cmd->lock);
+
+ if (cmd->fail_io || dm_bm_is_read_only(cmd->bm))
+ goto out;
+
+ __destroy_persistent_data_structures(cmd);
+
+ r = __create_persistent_data_structures(cmd, false);
+ if (r) {
+ /* If something went wrong we can neither write nor read the metadata */
+ cmd->fail_io = true;
+ }
+out:
+ up_write(&cmd->lock);
+
+ return r;
+}
+
+void dm_clone_metadata_set_read_only(struct dm_clone_metadata *cmd)
+{
+ down_write(&cmd->lock);
+
+ spin_lock_irq(&cmd->bitmap_lock);
+ cmd->read_only = 1;
+ spin_unlock_irq(&cmd->bitmap_lock);
+
+ if (!cmd->fail_io)
+ dm_bm_set_read_only(cmd->bm);
+
+ up_write(&cmd->lock);
+}
+
+void dm_clone_metadata_set_read_write(struct dm_clone_metadata *cmd)
+{
+ down_write(&cmd->lock);
+
+ spin_lock_irq(&cmd->bitmap_lock);
+ cmd->read_only = 0;
+ spin_unlock_irq(&cmd->bitmap_lock);
+
+ if (!cmd->fail_io)
+ dm_bm_set_read_write(cmd->bm);
+
+ up_write(&cmd->lock);
+}
+
+int dm_clone_get_free_metadata_block_count(struct dm_clone_metadata *cmd,
+ dm_block_t *result)
+{
+ int r = -EINVAL;
+
+ down_read(&cmd->lock);
+
+ if (!cmd->fail_io)
+ r = dm_sm_get_nr_free(cmd->sm, result);
+
+ up_read(&cmd->lock);
+
+ return r;
+}
+
+int dm_clone_get_metadata_dev_size(struct dm_clone_metadata *cmd,
+ dm_block_t *result)
+{
+ int r = -EINVAL;
+
+ down_read(&cmd->lock);
+
+ if (!cmd->fail_io)
+ r = dm_sm_get_nr_blocks(cmd->sm, result);
+
+ up_read(&cmd->lock);
+
+ return r;
+}
diff --git a/drivers/md/dm-clone-metadata.h b/drivers/md/dm-clone-metadata.h
new file mode 100644
index 000000000..d848b8799
--- /dev/null
+++ b/drivers/md/dm-clone-metadata.h
@@ -0,0 +1,177 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2019 Arrikto, Inc. All Rights Reserved.
+ */
+
+#ifndef DM_CLONE_METADATA_H
+#define DM_CLONE_METADATA_H
+
+#include "persistent-data/dm-block-manager.h"
+#include "persistent-data/dm-space-map-metadata.h"
+
+#define DM_CLONE_METADATA_BLOCK_SIZE DM_SM_METADATA_BLOCK_SIZE
+
+/*
+ * The metadata device is currently limited in size.
+ */
+#define DM_CLONE_METADATA_MAX_SECTORS DM_SM_METADATA_MAX_SECTORS
+
+/*
+ * A metadata device larger than 16GB triggers a warning.
+ */
+#define DM_CLONE_METADATA_MAX_SECTORS_WARNING (16 * (1024 * 1024 * 1024 >> SECTOR_SHIFT))
+
+#define SPACE_MAP_ROOT_SIZE 128
+
+/* dm-clone metadata */
+struct dm_clone_metadata;
+
+/*
+ * Set region status to hydrated.
+ *
+ * @cmd: The dm-clone metadata
+ * @region_nr: The region number
+ *
+ * This function doesn't block, so it's safe to call it from interrupt context.
+ */
+int dm_clone_set_region_hydrated(struct dm_clone_metadata *cmd, unsigned long region_nr);
+
+/*
+ * Set status of all regions in the provided range to hydrated, if not already
+ * hydrated.
+ *
+ * @cmd: The dm-clone metadata
+ * @start: Starting region number
+ * @nr_regions: Number of regions in the range
+ *
+ * This function doesn't block, but since it uses spin_lock_irq()/spin_unlock_irq()
+ * it's NOT safe to call it from any context where interrupts are disabled, e.g.,
+ * from interrupt context.
+ */
+int dm_clone_cond_set_range(struct dm_clone_metadata *cmd, unsigned long start,
+ unsigned long nr_regions);
+
+/*
+ * Read existing or create fresh metadata.
+ *
+ * @bdev: The device storing the metadata
+ * @target_size: The target size
+ * @region_size: The region size
+ *
+ * @returns: The dm-clone metadata
+ *
+ * This function reads the superblock of @bdev and checks if it's all zeroes.
+ * If it is, it formats @bdev and creates fresh metadata. If it isn't, it
+ * validates the metadata stored in @bdev.
+ */
+struct dm_clone_metadata *dm_clone_metadata_open(struct block_device *bdev,
+ sector_t target_size,
+ sector_t region_size);
+
+/*
+ * Free the resources related to metadata management.
+ */
+void dm_clone_metadata_close(struct dm_clone_metadata *cmd);
+
+/*
+ * Commit dm-clone metadata to disk.
+ *
+ * We use a two phase commit:
+ *
+ * 1. dm_clone_metadata_pre_commit(): Prepare the current transaction for
+ * committing. After this is called, all subsequent metadata updates, done
+ * through either dm_clone_set_region_hydrated() or
+ * dm_clone_cond_set_range(), will be part of the **next** transaction.
+ *
+ * 2. dm_clone_metadata_commit(): Actually commit the current transaction to
+ * disk and start a new transaction.
+ *
+ * This allows dm-clone to flush the destination device after step (1) to
+ * ensure that all freshly hydrated regions, for which we are updating the
+ * metadata, are properly written to non-volatile storage and won't be lost in
+ * case of a crash.
+ */
+int dm_clone_metadata_pre_commit(struct dm_clone_metadata *cmd);
+int dm_clone_metadata_commit(struct dm_clone_metadata *cmd);
+
+/*
+ * Reload the in core copy of the on-disk bitmap.
+ *
+ * This should be used after aborting a metadata transaction and setting the
+ * metadata to read-only, to invalidate the in-core cache and make it match the
+ * on-disk metadata.
+ *
+ * WARNING: It must not be called concurrently with either
+ * dm_clone_set_region_hydrated() or dm_clone_cond_set_range(), as it updates
+ * the region bitmap without taking the relevant spinlock. We don't take the
+ * spinlock because dm_clone_reload_in_core_bitset() does I/O, so it may block.
+ *
+ * But, it's safe to use it after calling dm_clone_metadata_set_read_only(),
+ * because the latter sets the metadata to read-only mode. Both
+ * dm_clone_set_region_hydrated() and dm_clone_cond_set_range() refuse to touch
+ * the region bitmap, after calling dm_clone_metadata_set_read_only().
+ */
+int dm_clone_reload_in_core_bitset(struct dm_clone_metadata *cmd);
+
+/*
+ * Check whether dm-clone's metadata changed this transaction.
+ */
+bool dm_clone_changed_this_transaction(struct dm_clone_metadata *cmd);
+
+/*
+ * Abort current metadata transaction and rollback metadata to the last
+ * committed transaction.
+ */
+int dm_clone_metadata_abort(struct dm_clone_metadata *cmd);
+
+/*
+ * Switches metadata to a read only mode. Once read-only mode has been entered
+ * the following functions will return -EPERM:
+ *
+ * dm_clone_metadata_pre_commit()
+ * dm_clone_metadata_commit()
+ * dm_clone_set_region_hydrated()
+ * dm_clone_cond_set_range()
+ * dm_clone_metadata_abort()
+ */
+void dm_clone_metadata_set_read_only(struct dm_clone_metadata *cmd);
+void dm_clone_metadata_set_read_write(struct dm_clone_metadata *cmd);
+
+/*
+ * Returns true if the hydration of the destination device is finished.
+ */
+bool dm_clone_is_hydration_done(struct dm_clone_metadata *cmd);
+
+/*
+ * Returns true if region @region_nr is hydrated.
+ */
+bool dm_clone_is_region_hydrated(struct dm_clone_metadata *cmd, unsigned long region_nr);
+
+/*
+ * Returns true if all the regions in the range are hydrated.
+ */
+bool dm_clone_is_range_hydrated(struct dm_clone_metadata *cmd,
+ unsigned long start, unsigned long nr_regions);
+
+/*
+ * Returns the number of hydrated regions.
+ */
+unsigned int dm_clone_nr_of_hydrated_regions(struct dm_clone_metadata *cmd);
+
+/*
+ * Returns the first unhydrated region with region_nr >= @start
+ */
+unsigned long dm_clone_find_next_unhydrated_region(struct dm_clone_metadata *cmd,
+ unsigned long start);
+
+/*
+ * Get the number of free metadata blocks.
+ */
+int dm_clone_get_free_metadata_block_count(struct dm_clone_metadata *cmd, dm_block_t *result);
+
+/*
+ * Get the total number of metadata blocks.
+ */
+int dm_clone_get_metadata_dev_size(struct dm_clone_metadata *cmd, dm_block_t *result);
+
+#endif /* DM_CLONE_METADATA_H */
diff --git a/drivers/md/dm-clone-target.c b/drivers/md/dm-clone-target.c
new file mode 100644
index 000000000..e088081b7
--- /dev/null
+++ b/drivers/md/dm-clone-target.c
@@ -0,0 +1,2229 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2019 Arrikto, Inc. All Rights Reserved.
+ */
+
+#include <linux/mm.h>
+#include <linux/bio.h>
+#include <linux/err.h>
+#include <linux/hash.h>
+#include <linux/list.h>
+#include <linux/log2.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/wait.h>
+#include <linux/dm-io.h>
+#include <linux/mutex.h>
+#include <linux/atomic.h>
+#include <linux/bitops.h>
+#include <linux/blkdev.h>
+#include <linux/kdev_t.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/jiffies.h>
+#include <linux/mempool.h>
+#include <linux/spinlock.h>
+#include <linux/blk_types.h>
+#include <linux/dm-kcopyd.h>
+#include <linux/workqueue.h>
+#include <linux/backing-dev.h>
+#include <linux/device-mapper.h>
+
+#include "dm.h"
+#include "dm-clone-metadata.h"
+
+#define DM_MSG_PREFIX "clone"
+
+/*
+ * Minimum and maximum allowed region sizes
+ */
+#define MIN_REGION_SIZE (1 << 3) /* 4KB */
+#define MAX_REGION_SIZE (1 << 21) /* 1GB */
+
+#define MIN_HYDRATIONS 256 /* Size of hydration mempool */
+#define DEFAULT_HYDRATION_THRESHOLD 1 /* 1 region */
+#define DEFAULT_HYDRATION_BATCH_SIZE 1 /* Hydrate in batches of 1 region */
+
+#define COMMIT_PERIOD HZ /* 1 sec */
+
+/*
+ * Hydration hash table size: 1 << HASH_TABLE_BITS
+ */
+#define HASH_TABLE_BITS 15
+
+DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(clone_hydration_throttle,
+ "A percentage of time allocated for hydrating regions");
+
+/* Slab cache for struct dm_clone_region_hydration */
+static struct kmem_cache *_hydration_cache;
+
+/* dm-clone metadata modes */
+enum clone_metadata_mode {
+ CM_WRITE, /* metadata may be changed */
+ CM_READ_ONLY, /* metadata may not be changed */
+ CM_FAIL, /* all metadata I/O fails */
+};
+
+struct hash_table_bucket;
+
+struct clone {
+ struct dm_target *ti;
+
+ struct dm_dev *metadata_dev;
+ struct dm_dev *dest_dev;
+ struct dm_dev *source_dev;
+
+ unsigned long nr_regions;
+ sector_t region_size;
+ unsigned int region_shift;
+
+ /*
+ * A metadata commit and the actions taken in case it fails should run
+ * as a single atomic step.
+ */
+ struct mutex commit_lock;
+
+ struct dm_clone_metadata *cmd;
+
+ /* Region hydration hash table */
+ struct hash_table_bucket *ht;
+
+ atomic_t ios_in_flight;
+
+ wait_queue_head_t hydration_stopped;
+
+ mempool_t hydration_pool;
+
+ unsigned long last_commit_jiffies;
+
+ /*
+ * We defer incoming WRITE bios for regions that are not hydrated,
+ * until after these regions have been hydrated.
+ *
+ * Also, we defer REQ_FUA and REQ_PREFLUSH bios, until after the
+ * metadata have been committed.
+ */
+ spinlock_t lock;
+ struct bio_list deferred_bios;
+ struct bio_list deferred_discard_bios;
+ struct bio_list deferred_flush_bios;
+ struct bio_list deferred_flush_completions;
+
+ /* Maximum number of regions being copied during background hydration. */
+ unsigned int hydration_threshold;
+
+ /* Number of regions to batch together during background hydration. */
+ unsigned int hydration_batch_size;
+
+ /* Which region to hydrate next */
+ unsigned long hydration_offset;
+
+ atomic_t hydrations_in_flight;
+
+ /*
+ * Save a copy of the table line rather than reconstructing it for the
+ * status.
+ */
+ unsigned int nr_ctr_args;
+ const char **ctr_args;
+
+ struct workqueue_struct *wq;
+ struct work_struct worker;
+ struct delayed_work waker;
+
+ struct dm_kcopyd_client *kcopyd_client;
+
+ enum clone_metadata_mode mode;
+ unsigned long flags;
+};
+
+/*
+ * dm-clone flags
+ */
+#define DM_CLONE_DISCARD_PASSDOWN 0
+#define DM_CLONE_HYDRATION_ENABLED 1
+#define DM_CLONE_HYDRATION_SUSPENDED 2
+
+/*---------------------------------------------------------------------------*/
+
+/*
+ * Metadata failure handling.
+ */
+static enum clone_metadata_mode get_clone_mode(struct clone *clone)
+{
+ return READ_ONCE(clone->mode);
+}
+
+static const char *clone_device_name(struct clone *clone)
+{
+ return dm_table_device_name(clone->ti->table);
+}
+
+static void __set_clone_mode(struct clone *clone, enum clone_metadata_mode new_mode)
+{
+ static const char * const descs[] = {
+ "read-write",
+ "read-only",
+ "fail"
+ };
+
+ enum clone_metadata_mode old_mode = get_clone_mode(clone);
+
+ /* Never move out of fail mode */
+ if (old_mode == CM_FAIL)
+ new_mode = CM_FAIL;
+
+ switch (new_mode) {
+ case CM_FAIL:
+ case CM_READ_ONLY:
+ dm_clone_metadata_set_read_only(clone->cmd);
+ break;
+
+ case CM_WRITE:
+ dm_clone_metadata_set_read_write(clone->cmd);
+ break;
+ }
+
+ WRITE_ONCE(clone->mode, new_mode);
+
+ if (new_mode != old_mode) {
+ dm_table_event(clone->ti->table);
+ DMINFO("%s: Switching to %s mode", clone_device_name(clone),
+ descs[(int)new_mode]);
+ }
+}
+
+static void __abort_transaction(struct clone *clone)
+{
+ const char *dev_name = clone_device_name(clone);
+
+ if (get_clone_mode(clone) >= CM_READ_ONLY)
+ return;
+
+ DMERR("%s: Aborting current metadata transaction", dev_name);
+ if (dm_clone_metadata_abort(clone->cmd)) {
+ DMERR("%s: Failed to abort metadata transaction", dev_name);
+ __set_clone_mode(clone, CM_FAIL);
+ }
+}
+
+static void __reload_in_core_bitset(struct clone *clone)
+{
+ const char *dev_name = clone_device_name(clone);
+
+ if (get_clone_mode(clone) == CM_FAIL)
+ return;
+
+ /* Reload the on-disk bitset */
+ DMINFO("%s: Reloading on-disk bitmap", dev_name);
+ if (dm_clone_reload_in_core_bitset(clone->cmd)) {
+ DMERR("%s: Failed to reload on-disk bitmap", dev_name);
+ __set_clone_mode(clone, CM_FAIL);
+ }
+}
+
+static void __metadata_operation_failed(struct clone *clone, const char *op, int r)
+{
+ DMERR("%s: Metadata operation `%s' failed: error = %d",
+ clone_device_name(clone), op, r);
+
+ __abort_transaction(clone);
+ __set_clone_mode(clone, CM_READ_ONLY);
+
+ /*
+ * dm_clone_reload_in_core_bitset() may run concurrently with either
+ * dm_clone_set_region_hydrated() or dm_clone_cond_set_range(), but
+ * it's safe as we have already set the metadata to read-only mode.
+ */
+ __reload_in_core_bitset(clone);
+}
+
+/*---------------------------------------------------------------------------*/
+
+/* Wake up anyone waiting for region hydrations to stop */
+static inline void wakeup_hydration_waiters(struct clone *clone)
+{
+ wake_up_all(&clone->hydration_stopped);
+}
+
+static inline void wake_worker(struct clone *clone)
+{
+ queue_work(clone->wq, &clone->worker);
+}
+
+/*---------------------------------------------------------------------------*/
+
+/*
+ * bio helper functions.
+ */
+static inline void remap_to_source(struct clone *clone, struct bio *bio)
+{
+ bio_set_dev(bio, clone->source_dev->bdev);
+}
+
+static inline void remap_to_dest(struct clone *clone, struct bio *bio)
+{
+ bio_set_dev(bio, clone->dest_dev->bdev);
+}
+
+static bool bio_triggers_commit(struct clone *clone, struct bio *bio)
+{
+ return op_is_flush(bio->bi_opf) &&
+ dm_clone_changed_this_transaction(clone->cmd);
+}
+
+/* Get the address of the region in sectors */
+static inline sector_t region_to_sector(struct clone *clone, unsigned long region_nr)
+{
+ return ((sector_t)region_nr << clone->region_shift);
+}
+
+/* Get the region number of the bio */
+static inline unsigned long bio_to_region(struct clone *clone, struct bio *bio)
+{
+ return (bio->bi_iter.bi_sector >> clone->region_shift);
+}
+
+/* Get the region range covered by the bio */
+static void bio_region_range(struct clone *clone, struct bio *bio,
+ unsigned long *rs, unsigned long *nr_regions)
+{
+ unsigned long end;
+
+ *rs = dm_sector_div_up(bio->bi_iter.bi_sector, clone->region_size);
+ end = bio_end_sector(bio) >> clone->region_shift;
+
+ if (*rs >= end)
+ *nr_regions = 0;
+ else
+ *nr_regions = end - *rs;
+}
+
+/* Check whether a bio overwrites a region */
+static inline bool is_overwrite_bio(struct clone *clone, struct bio *bio)
+{
+ return (bio_data_dir(bio) == WRITE && bio_sectors(bio) == clone->region_size);
+}
+
+static void fail_bios(struct bio_list *bios, blk_status_t status)
+{
+ struct bio *bio;
+
+ while ((bio = bio_list_pop(bios))) {
+ bio->bi_status = status;
+ bio_endio(bio);
+ }
+}
+
+static void submit_bios(struct bio_list *bios)
+{
+ struct bio *bio;
+ struct blk_plug plug;
+
+ blk_start_plug(&plug);
+
+ while ((bio = bio_list_pop(bios)))
+ submit_bio_noacct(bio);
+
+ blk_finish_plug(&plug);
+}
+
+/*
+ * Submit bio to the underlying device.
+ *
+ * If the bio triggers a commit, delay it, until after the metadata have been
+ * committed.
+ *
+ * NOTE: The bio remapping must be performed by the caller.
+ */
+static void issue_bio(struct clone *clone, struct bio *bio)
+{
+ if (!bio_triggers_commit(clone, bio)) {
+ submit_bio_noacct(bio);
+ return;
+ }
+
+ /*
+ * If the metadata mode is RO or FAIL we won't be able to commit the
+ * metadata, so we complete the bio with an error.
+ */
+ if (unlikely(get_clone_mode(clone) >= CM_READ_ONLY)) {
+ bio_io_error(bio);
+ return;
+ }
+
+ /*
+ * Batch together any bios that trigger commits and then issue a single
+ * commit for them in process_deferred_flush_bios().
+ */
+ spin_lock_irq(&clone->lock);
+ bio_list_add(&clone->deferred_flush_bios, bio);
+ spin_unlock_irq(&clone->lock);
+
+ wake_worker(clone);
+}
+
+/*
+ * Remap bio to the destination device and submit it.
+ *
+ * If the bio triggers a commit, delay it, until after the metadata have been
+ * committed.
+ */
+static void remap_and_issue(struct clone *clone, struct bio *bio)
+{
+ remap_to_dest(clone, bio);
+ issue_bio(clone, bio);
+}
+
+/*
+ * Issue bios that have been deferred until after their region has finished
+ * hydrating.
+ *
+ * We delegate the bio submission to the worker thread, so this is safe to call
+ * from interrupt context.
+ */
+static void issue_deferred_bios(struct clone *clone, struct bio_list *bios)
+{
+ struct bio *bio;
+ unsigned long flags;
+ struct bio_list flush_bios = BIO_EMPTY_LIST;
+ struct bio_list normal_bios = BIO_EMPTY_LIST;
+
+ if (bio_list_empty(bios))
+ return;
+
+ while ((bio = bio_list_pop(bios))) {
+ if (bio_triggers_commit(clone, bio))
+ bio_list_add(&flush_bios, bio);
+ else
+ bio_list_add(&normal_bios, bio);
+ }
+
+ spin_lock_irqsave(&clone->lock, flags);
+ bio_list_merge(&clone->deferred_bios, &normal_bios);
+ bio_list_merge(&clone->deferred_flush_bios, &flush_bios);
+ spin_unlock_irqrestore(&clone->lock, flags);
+
+ wake_worker(clone);
+}
+
+static void complete_overwrite_bio(struct clone *clone, struct bio *bio)
+{
+ unsigned long flags;
+
+ /*
+ * If the bio has the REQ_FUA flag set we must commit the metadata
+ * before signaling its completion.
+ *
+ * complete_overwrite_bio() is only called by hydration_complete(),
+ * after having successfully updated the metadata. This means we don't
+ * need to call dm_clone_changed_this_transaction() to check if the
+ * metadata has changed and thus we can avoid taking the metadata spin
+ * lock.
+ */
+ if (!(bio->bi_opf & REQ_FUA)) {
+ bio_endio(bio);
+ return;
+ }
+
+ /*
+ * If the metadata mode is RO or FAIL we won't be able to commit the
+ * metadata, so we complete the bio with an error.
+ */
+ if (unlikely(get_clone_mode(clone) >= CM_READ_ONLY)) {
+ bio_io_error(bio);
+ return;
+ }
+
+ /*
+ * Batch together any bios that trigger commits and then issue a single
+ * commit for them in process_deferred_flush_bios().
+ */
+ spin_lock_irqsave(&clone->lock, flags);
+ bio_list_add(&clone->deferred_flush_completions, bio);
+ spin_unlock_irqrestore(&clone->lock, flags);
+
+ wake_worker(clone);
+}
+
+static void trim_bio(struct bio *bio, sector_t sector, unsigned int len)
+{
+ bio->bi_iter.bi_sector = sector;
+ bio->bi_iter.bi_size = to_bytes(len);
+}
+
+static void complete_discard_bio(struct clone *clone, struct bio *bio, bool success)
+{
+ unsigned long rs, nr_regions;
+
+ /*
+ * If the destination device supports discards, remap and trim the
+ * discard bio and pass it down. Otherwise complete the bio
+ * immediately.
+ */
+ if (test_bit(DM_CLONE_DISCARD_PASSDOWN, &clone->flags) && success) {
+ remap_to_dest(clone, bio);
+ bio_region_range(clone, bio, &rs, &nr_regions);
+ trim_bio(bio, region_to_sector(clone, rs),
+ nr_regions << clone->region_shift);
+ submit_bio_noacct(bio);
+ } else
+ bio_endio(bio);
+}
+
+static void process_discard_bio(struct clone *clone, struct bio *bio)
+{
+ unsigned long rs, nr_regions;
+
+ bio_region_range(clone, bio, &rs, &nr_regions);
+ if (!nr_regions) {
+ bio_endio(bio);
+ return;
+ }
+
+ if (WARN_ON(rs >= clone->nr_regions || (rs + nr_regions) < rs ||
+ (rs + nr_regions) > clone->nr_regions)) {
+ DMERR("%s: Invalid range (%lu + %lu, total regions %lu) for discard (%llu + %u)",
+ clone_device_name(clone), rs, nr_regions,
+ clone->nr_regions,
+ (unsigned long long)bio->bi_iter.bi_sector,
+ bio_sectors(bio));
+ bio_endio(bio);
+ return;
+ }
+
+ /*
+ * The covered regions are already hydrated so we just need to pass
+ * down the discard.
+ */
+ if (dm_clone_is_range_hydrated(clone->cmd, rs, nr_regions)) {
+ complete_discard_bio(clone, bio, true);
+ return;
+ }
+
+ /*
+ * If the metadata mode is RO or FAIL we won't be able to update the
+ * metadata for the regions covered by the discard so we just ignore
+ * it.
+ */
+ if (unlikely(get_clone_mode(clone) >= CM_READ_ONLY)) {
+ bio_endio(bio);
+ return;
+ }
+
+ /*
+ * Defer discard processing.
+ */
+ spin_lock_irq(&clone->lock);
+ bio_list_add(&clone->deferred_discard_bios, bio);
+ spin_unlock_irq(&clone->lock);
+
+ wake_worker(clone);
+}
+
+/*---------------------------------------------------------------------------*/
+
+/*
+ * dm-clone region hydrations.
+ */
+struct dm_clone_region_hydration {
+ struct clone *clone;
+ unsigned long region_nr;
+
+ struct bio *overwrite_bio;
+ bio_end_io_t *overwrite_bio_end_io;
+
+ struct bio_list deferred_bios;
+
+ blk_status_t status;
+
+ /* Used by hydration batching */
+ struct list_head list;
+
+ /* Used by hydration hash table */
+ struct hlist_node h;
+};
+
+/*
+ * Hydration hash table implementation.
+ *
+ * Ideally we would like to use list_bl, which uses bit spin locks and employs
+ * the least significant bit of the list head to lock the corresponding bucket,
+ * reducing the memory overhead for the locks. But, currently, list_bl and bit
+ * spin locks don't support IRQ safe versions. Since we have to take the lock
+ * in both process and interrupt context, we must fall back to using regular
+ * spin locks; one per hash table bucket.
+ */
+struct hash_table_bucket {
+ struct hlist_head head;
+
+ /* Spinlock protecting the bucket */
+ spinlock_t lock;
+};
+
+#define bucket_lock_irqsave(bucket, flags) \
+ spin_lock_irqsave(&(bucket)->lock, flags)
+
+#define bucket_unlock_irqrestore(bucket, flags) \
+ spin_unlock_irqrestore(&(bucket)->lock, flags)
+
+#define bucket_lock_irq(bucket) \
+ spin_lock_irq(&(bucket)->lock)
+
+#define bucket_unlock_irq(bucket) \
+ spin_unlock_irq(&(bucket)->lock)
+
+static int hash_table_init(struct clone *clone)
+{
+ unsigned int i, sz;
+ struct hash_table_bucket *bucket;
+
+ sz = 1 << HASH_TABLE_BITS;
+
+ clone->ht = kvmalloc(sz * sizeof(struct hash_table_bucket), GFP_KERNEL);
+ if (!clone->ht)
+ return -ENOMEM;
+
+ for (i = 0; i < sz; i++) {
+ bucket = clone->ht + i;
+
+ INIT_HLIST_HEAD(&bucket->head);
+ spin_lock_init(&bucket->lock);
+ }
+
+ return 0;
+}
+
+static void hash_table_exit(struct clone *clone)
+{
+ kvfree(clone->ht);
+}
+
+static struct hash_table_bucket *get_hash_table_bucket(struct clone *clone,
+ unsigned long region_nr)
+{
+ return &clone->ht[hash_long(region_nr, HASH_TABLE_BITS)];
+}
+
+/*
+ * Search hash table for a hydration with hd->region_nr == region_nr
+ *
+ * NOTE: Must be called with the bucket lock held
+ */
+static struct dm_clone_region_hydration *__hash_find(struct hash_table_bucket *bucket,
+ unsigned long region_nr)
+{
+ struct dm_clone_region_hydration *hd;
+
+ hlist_for_each_entry(hd, &bucket->head, h) {
+ if (hd->region_nr == region_nr)
+ return hd;
+ }
+
+ return NULL;
+}
+
+/*
+ * Insert a hydration into the hash table.
+ *
+ * NOTE: Must be called with the bucket lock held.
+ */
+static inline void __insert_region_hydration(struct hash_table_bucket *bucket,
+ struct dm_clone_region_hydration *hd)
+{
+ hlist_add_head(&hd->h, &bucket->head);
+}
+
+/*
+ * This function inserts a hydration into the hash table, unless someone else
+ * managed to insert a hydration for the same region first. In the latter case
+ * it returns the existing hydration descriptor for this region.
+ *
+ * NOTE: Must be called with the hydration hash table lock held.
+ */
+static struct dm_clone_region_hydration *
+__find_or_insert_region_hydration(struct hash_table_bucket *bucket,
+ struct dm_clone_region_hydration *hd)
+{
+ struct dm_clone_region_hydration *hd2;
+
+ hd2 = __hash_find(bucket, hd->region_nr);
+ if (hd2)
+ return hd2;
+
+ __insert_region_hydration(bucket, hd);
+
+ return hd;
+}
+
+/*---------------------------------------------------------------------------*/
+
+/* Allocate a hydration */
+static struct dm_clone_region_hydration *alloc_hydration(struct clone *clone)
+{
+ struct dm_clone_region_hydration *hd;
+
+ /*
+ * Allocate a hydration from the hydration mempool.
+ * This might block but it can't fail.
+ */
+ hd = mempool_alloc(&clone->hydration_pool, GFP_NOIO);
+ hd->clone = clone;
+
+ return hd;
+}
+
+static inline void free_hydration(struct dm_clone_region_hydration *hd)
+{
+ mempool_free(hd, &hd->clone->hydration_pool);
+}
+
+/* Initialize a hydration */
+static void hydration_init(struct dm_clone_region_hydration *hd, unsigned long region_nr)
+{
+ hd->region_nr = region_nr;
+ hd->overwrite_bio = NULL;
+ bio_list_init(&hd->deferred_bios);
+ hd->status = 0;
+
+ INIT_LIST_HEAD(&hd->list);
+ INIT_HLIST_NODE(&hd->h);
+}
+
+/*---------------------------------------------------------------------------*/
+
+/*
+ * Update dm-clone's metadata after a region has finished hydrating and remove
+ * hydration from the hash table.
+ */
+static int hydration_update_metadata(struct dm_clone_region_hydration *hd)
+{
+ int r = 0;
+ unsigned long flags;
+ struct hash_table_bucket *bucket;
+ struct clone *clone = hd->clone;
+
+ if (unlikely(get_clone_mode(clone) >= CM_READ_ONLY))
+ r = -EPERM;
+
+ /* Update the metadata */
+ if (likely(!r) && hd->status == BLK_STS_OK)
+ r = dm_clone_set_region_hydrated(clone->cmd, hd->region_nr);
+
+ bucket = get_hash_table_bucket(clone, hd->region_nr);
+
+ /* Remove hydration from hash table */
+ bucket_lock_irqsave(bucket, flags);
+ hlist_del(&hd->h);
+ bucket_unlock_irqrestore(bucket, flags);
+
+ return r;
+}
+
+/*
+ * Complete a region's hydration:
+ *
+ * 1. Update dm-clone's metadata.
+ * 2. Remove hydration from hash table.
+ * 3. Complete overwrite bio.
+ * 4. Issue deferred bios.
+ * 5. If this was the last hydration, wake up anyone waiting for
+ * hydrations to finish.
+ */
+static void hydration_complete(struct dm_clone_region_hydration *hd)
+{
+ int r;
+ blk_status_t status;
+ struct clone *clone = hd->clone;
+
+ r = hydration_update_metadata(hd);
+
+ if (hd->status == BLK_STS_OK && likely(!r)) {
+ if (hd->overwrite_bio)
+ complete_overwrite_bio(clone, hd->overwrite_bio);
+
+ issue_deferred_bios(clone, &hd->deferred_bios);
+ } else {
+ status = r ? BLK_STS_IOERR : hd->status;
+
+ if (hd->overwrite_bio)
+ bio_list_add(&hd->deferred_bios, hd->overwrite_bio);
+
+ fail_bios(&hd->deferred_bios, status);
+ }
+
+ free_hydration(hd);
+
+ if (atomic_dec_and_test(&clone->hydrations_in_flight))
+ wakeup_hydration_waiters(clone);
+}
+
+static void hydration_kcopyd_callback(int read_err, unsigned long write_err, void *context)
+{
+ blk_status_t status;
+
+ struct dm_clone_region_hydration *tmp, *hd = context;
+ struct clone *clone = hd->clone;
+
+ LIST_HEAD(batched_hydrations);
+
+ if (read_err || write_err) {
+ DMERR_LIMIT("%s: hydration failed", clone_device_name(clone));
+ status = BLK_STS_IOERR;
+ } else {
+ status = BLK_STS_OK;
+ }
+ list_splice_tail(&hd->list, &batched_hydrations);
+
+ hd->status = status;
+ hydration_complete(hd);
+
+ /* Complete batched hydrations */
+ list_for_each_entry_safe(hd, tmp, &batched_hydrations, list) {
+ hd->status = status;
+ hydration_complete(hd);
+ }
+
+ /* Continue background hydration, if there is no I/O in-flight */
+ if (test_bit(DM_CLONE_HYDRATION_ENABLED, &clone->flags) &&
+ !atomic_read(&clone->ios_in_flight))
+ wake_worker(clone);
+}
+
+static void hydration_copy(struct dm_clone_region_hydration *hd, unsigned int nr_regions)
+{
+ unsigned long region_start, region_end;
+ sector_t tail_size, region_size, total_size;
+ struct dm_io_region from, to;
+ struct clone *clone = hd->clone;
+
+ if (WARN_ON(!nr_regions))
+ return;
+
+ region_size = clone->region_size;
+ region_start = hd->region_nr;
+ region_end = region_start + nr_regions - 1;
+
+ total_size = region_to_sector(clone, nr_regions - 1);
+
+ if (region_end == clone->nr_regions - 1) {
+ /*
+ * The last region of the target might be smaller than
+ * region_size.
+ */
+ tail_size = clone->ti->len & (region_size - 1);
+ if (!tail_size)
+ tail_size = region_size;
+ } else {
+ tail_size = region_size;
+ }
+
+ total_size += tail_size;
+
+ from.bdev = clone->source_dev->bdev;
+ from.sector = region_to_sector(clone, region_start);
+ from.count = total_size;
+
+ to.bdev = clone->dest_dev->bdev;
+ to.sector = from.sector;
+ to.count = from.count;
+
+ /* Issue copy */
+ atomic_add(nr_regions, &clone->hydrations_in_flight);
+ dm_kcopyd_copy(clone->kcopyd_client, &from, 1, &to, 0,
+ hydration_kcopyd_callback, hd);
+}
+
+static void overwrite_endio(struct bio *bio)
+{
+ struct dm_clone_region_hydration *hd = bio->bi_private;
+
+ bio->bi_end_io = hd->overwrite_bio_end_io;
+ hd->status = bio->bi_status;
+
+ hydration_complete(hd);
+}
+
+static void hydration_overwrite(struct dm_clone_region_hydration *hd, struct bio *bio)
+{
+ /*
+ * We don't need to save and restore bio->bi_private because device
+ * mapper core generates a new bio for us to use, with clean
+ * bi_private.
+ */
+ hd->overwrite_bio = bio;
+ hd->overwrite_bio_end_io = bio->bi_end_io;
+
+ bio->bi_end_io = overwrite_endio;
+ bio->bi_private = hd;
+
+ atomic_inc(&hd->clone->hydrations_in_flight);
+ submit_bio_noacct(bio);
+}
+
+/*
+ * Hydrate bio's region.
+ *
+ * This function starts the hydration of the bio's region and puts the bio in
+ * the list of deferred bios for this region. In case, by the time this
+ * function is called, the region has finished hydrating it's submitted to the
+ * destination device.
+ *
+ * NOTE: The bio remapping must be performed by the caller.
+ */
+static void hydrate_bio_region(struct clone *clone, struct bio *bio)
+{
+ unsigned long region_nr;
+ struct hash_table_bucket *bucket;
+ struct dm_clone_region_hydration *hd, *hd2;
+
+ region_nr = bio_to_region(clone, bio);
+ bucket = get_hash_table_bucket(clone, region_nr);
+
+ bucket_lock_irq(bucket);
+
+ hd = __hash_find(bucket, region_nr);
+ if (hd) {
+ /* Someone else is hydrating the region */
+ bio_list_add(&hd->deferred_bios, bio);
+ bucket_unlock_irq(bucket);
+ return;
+ }
+
+ if (dm_clone_is_region_hydrated(clone->cmd, region_nr)) {
+ /* The region has been hydrated */
+ bucket_unlock_irq(bucket);
+ issue_bio(clone, bio);
+ return;
+ }
+
+ /*
+ * We must allocate a hydration descriptor and start the hydration of
+ * the corresponding region.
+ */
+ bucket_unlock_irq(bucket);
+
+ hd = alloc_hydration(clone);
+ hydration_init(hd, region_nr);
+
+ bucket_lock_irq(bucket);
+
+ /* Check if the region has been hydrated in the meantime. */
+ if (dm_clone_is_region_hydrated(clone->cmd, region_nr)) {
+ bucket_unlock_irq(bucket);
+ free_hydration(hd);
+ issue_bio(clone, bio);
+ return;
+ }
+
+ hd2 = __find_or_insert_region_hydration(bucket, hd);
+ if (hd2 != hd) {
+ /* Someone else started the region's hydration. */
+ bio_list_add(&hd2->deferred_bios, bio);
+ bucket_unlock_irq(bucket);
+ free_hydration(hd);
+ return;
+ }
+
+ /*
+ * If the metadata mode is RO or FAIL then there is no point starting a
+ * hydration, since we will not be able to update the metadata when the
+ * hydration finishes.
+ */
+ if (unlikely(get_clone_mode(clone) >= CM_READ_ONLY)) {
+ hlist_del(&hd->h);
+ bucket_unlock_irq(bucket);
+ free_hydration(hd);
+ bio_io_error(bio);
+ return;
+ }
+
+ /*
+ * Start region hydration.
+ *
+ * If a bio overwrites a region, i.e., its size is equal to the
+ * region's size, then we don't need to copy the region from the source
+ * to the destination device.
+ */
+ if (is_overwrite_bio(clone, bio)) {
+ bucket_unlock_irq(bucket);
+ hydration_overwrite(hd, bio);
+ } else {
+ bio_list_add(&hd->deferred_bios, bio);
+ bucket_unlock_irq(bucket);
+ hydration_copy(hd, 1);
+ }
+}
+
+/*---------------------------------------------------------------------------*/
+
+/*
+ * Background hydrations.
+ */
+
+/*
+ * Batch region hydrations.
+ *
+ * To better utilize device bandwidth we batch together the hydration of
+ * adjacent regions. This allows us to use small region sizes, e.g., 4KB, which
+ * is good for small, random write performance (because of the overwriting of
+ * un-hydrated regions) and at the same time issue big copy requests to kcopyd
+ * to achieve high hydration bandwidth.
+ */
+struct batch_info {
+ struct dm_clone_region_hydration *head;
+ unsigned int nr_batched_regions;
+};
+
+static void __batch_hydration(struct batch_info *batch,
+ struct dm_clone_region_hydration *hd)
+{
+ struct clone *clone = hd->clone;
+ unsigned int max_batch_size = READ_ONCE(clone->hydration_batch_size);
+
+ if (batch->head) {
+ /* Try to extend the current batch */
+ if (batch->nr_batched_regions < max_batch_size &&
+ (batch->head->region_nr + batch->nr_batched_regions) == hd->region_nr) {
+ list_add_tail(&hd->list, &batch->head->list);
+ batch->nr_batched_regions++;
+ hd = NULL;
+ }
+
+ /* Check if we should issue the current batch */
+ if (batch->nr_batched_regions >= max_batch_size || hd) {
+ hydration_copy(batch->head, batch->nr_batched_regions);
+ batch->head = NULL;
+ batch->nr_batched_regions = 0;
+ }
+ }
+
+ if (!hd)
+ return;
+
+ /* We treat max batch sizes of zero and one equivalently */
+ if (max_batch_size <= 1) {
+ hydration_copy(hd, 1);
+ return;
+ }
+
+ /* Start a new batch */
+ BUG_ON(!list_empty(&hd->list));
+ batch->head = hd;
+ batch->nr_batched_regions = 1;
+}
+
+static unsigned long __start_next_hydration(struct clone *clone,
+ unsigned long offset,
+ struct batch_info *batch)
+{
+ struct hash_table_bucket *bucket;
+ struct dm_clone_region_hydration *hd;
+ unsigned long nr_regions = clone->nr_regions;
+
+ hd = alloc_hydration(clone);
+
+ /* Try to find a region to hydrate. */
+ do {
+ offset = dm_clone_find_next_unhydrated_region(clone->cmd, offset);
+ if (offset == nr_regions)
+ break;
+
+ bucket = get_hash_table_bucket(clone, offset);
+ bucket_lock_irq(bucket);
+
+ if (!dm_clone_is_region_hydrated(clone->cmd, offset) &&
+ !__hash_find(bucket, offset)) {
+ hydration_init(hd, offset);
+ __insert_region_hydration(bucket, hd);
+ bucket_unlock_irq(bucket);
+
+ /* Batch hydration */
+ __batch_hydration(batch, hd);
+
+ return (offset + 1);
+ }
+
+ bucket_unlock_irq(bucket);
+
+ } while (++offset < nr_regions);
+
+ if (hd)
+ free_hydration(hd);
+
+ return offset;
+}
+
+/*
+ * This function searches for regions that still reside in the source device
+ * and starts their hydration.
+ */
+static void do_hydration(struct clone *clone)
+{
+ unsigned int current_volume;
+ unsigned long offset, nr_regions = clone->nr_regions;
+
+ struct batch_info batch = {
+ .head = NULL,
+ .nr_batched_regions = 0,
+ };
+
+ if (unlikely(get_clone_mode(clone) >= CM_READ_ONLY))
+ return;
+
+ if (dm_clone_is_hydration_done(clone->cmd))
+ return;
+
+ /*
+ * Avoid race with device suspension.
+ */
+ atomic_inc(&clone->hydrations_in_flight);
+
+ /*
+ * Make sure atomic_inc() is ordered before test_bit(), otherwise we
+ * might race with clone_postsuspend() and start a region hydration
+ * after the target has been suspended.
+ *
+ * This is paired with the smp_mb__after_atomic() in
+ * clone_postsuspend().
+ */
+ smp_mb__after_atomic();
+
+ offset = clone->hydration_offset;
+ while (likely(!test_bit(DM_CLONE_HYDRATION_SUSPENDED, &clone->flags)) &&
+ !atomic_read(&clone->ios_in_flight) &&
+ test_bit(DM_CLONE_HYDRATION_ENABLED, &clone->flags) &&
+ offset < nr_regions) {
+ current_volume = atomic_read(&clone->hydrations_in_flight);
+ current_volume += batch.nr_batched_regions;
+
+ if (current_volume > READ_ONCE(clone->hydration_threshold))
+ break;
+
+ offset = __start_next_hydration(clone, offset, &batch);
+ }
+
+ if (batch.head)
+ hydration_copy(batch.head, batch.nr_batched_regions);
+
+ if (offset >= nr_regions)
+ offset = 0;
+
+ clone->hydration_offset = offset;
+
+ if (atomic_dec_and_test(&clone->hydrations_in_flight))
+ wakeup_hydration_waiters(clone);
+}
+
+/*---------------------------------------------------------------------------*/
+
+static bool need_commit_due_to_time(struct clone *clone)
+{
+ return !time_in_range(jiffies, clone->last_commit_jiffies,
+ clone->last_commit_jiffies + COMMIT_PERIOD);
+}
+
+/*
+ * A non-zero return indicates read-only or fail mode.
+ */
+static int commit_metadata(struct clone *clone, bool *dest_dev_flushed)
+{
+ int r = 0;
+
+ if (dest_dev_flushed)
+ *dest_dev_flushed = false;
+
+ mutex_lock(&clone->commit_lock);
+
+ if (!dm_clone_changed_this_transaction(clone->cmd))
+ goto out;
+
+ if (unlikely(get_clone_mode(clone) >= CM_READ_ONLY)) {
+ r = -EPERM;
+ goto out;
+ }
+
+ r = dm_clone_metadata_pre_commit(clone->cmd);
+ if (unlikely(r)) {
+ __metadata_operation_failed(clone, "dm_clone_metadata_pre_commit", r);
+ goto out;
+ }
+
+ r = blkdev_issue_flush(clone->dest_dev->bdev);
+ if (unlikely(r)) {
+ __metadata_operation_failed(clone, "flush destination device", r);
+ goto out;
+ }
+
+ if (dest_dev_flushed)
+ *dest_dev_flushed = true;
+
+ r = dm_clone_metadata_commit(clone->cmd);
+ if (unlikely(r)) {
+ __metadata_operation_failed(clone, "dm_clone_metadata_commit", r);
+ goto out;
+ }
+
+ if (dm_clone_is_hydration_done(clone->cmd))
+ dm_table_event(clone->ti->table);
+out:
+ mutex_unlock(&clone->commit_lock);
+
+ return r;
+}
+
+static void process_deferred_discards(struct clone *clone)
+{
+ int r = -EPERM;
+ struct bio *bio;
+ struct blk_plug plug;
+ unsigned long rs, nr_regions;
+ struct bio_list discards = BIO_EMPTY_LIST;
+
+ spin_lock_irq(&clone->lock);
+ bio_list_merge(&discards, &clone->deferred_discard_bios);
+ bio_list_init(&clone->deferred_discard_bios);
+ spin_unlock_irq(&clone->lock);
+
+ if (bio_list_empty(&discards))
+ return;
+
+ if (unlikely(get_clone_mode(clone) >= CM_READ_ONLY))
+ goto out;
+
+ /* Update the metadata */
+ bio_list_for_each(bio, &discards) {
+ bio_region_range(clone, bio, &rs, &nr_regions);
+ /*
+ * A discard request might cover regions that have been already
+ * hydrated. There is no need to update the metadata for these
+ * regions.
+ */
+ r = dm_clone_cond_set_range(clone->cmd, rs, nr_regions);
+ if (unlikely(r))
+ break;
+ }
+out:
+ blk_start_plug(&plug);
+ while ((bio = bio_list_pop(&discards)))
+ complete_discard_bio(clone, bio, r == 0);
+ blk_finish_plug(&plug);
+}
+
+static void process_deferred_bios(struct clone *clone)
+{
+ struct bio_list bios = BIO_EMPTY_LIST;
+
+ spin_lock_irq(&clone->lock);
+ bio_list_merge(&bios, &clone->deferred_bios);
+ bio_list_init(&clone->deferred_bios);
+ spin_unlock_irq(&clone->lock);
+
+ if (bio_list_empty(&bios))
+ return;
+
+ submit_bios(&bios);
+}
+
+static void process_deferred_flush_bios(struct clone *clone)
+{
+ struct bio *bio;
+ bool dest_dev_flushed;
+ struct bio_list bios = BIO_EMPTY_LIST;
+ struct bio_list bio_completions = BIO_EMPTY_LIST;
+
+ /*
+ * If there are any deferred flush bios, we must commit the metadata
+ * before issuing them or signaling their completion.
+ */
+ spin_lock_irq(&clone->lock);
+ bio_list_merge(&bios, &clone->deferred_flush_bios);
+ bio_list_init(&clone->deferred_flush_bios);
+
+ bio_list_merge(&bio_completions, &clone->deferred_flush_completions);
+ bio_list_init(&clone->deferred_flush_completions);
+ spin_unlock_irq(&clone->lock);
+
+ if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
+ !(dm_clone_changed_this_transaction(clone->cmd) && need_commit_due_to_time(clone)))
+ return;
+
+ if (commit_metadata(clone, &dest_dev_flushed)) {
+ bio_list_merge(&bios, &bio_completions);
+
+ while ((bio = bio_list_pop(&bios)))
+ bio_io_error(bio);
+
+ return;
+ }
+
+ clone->last_commit_jiffies = jiffies;
+
+ while ((bio = bio_list_pop(&bio_completions)))
+ bio_endio(bio);
+
+ while ((bio = bio_list_pop(&bios))) {
+ if ((bio->bi_opf & REQ_PREFLUSH) && dest_dev_flushed) {
+ /* We just flushed the destination device as part of
+ * the metadata commit, so there is no reason to send
+ * another flush.
+ */
+ bio_endio(bio);
+ } else {
+ submit_bio_noacct(bio);
+ }
+ }
+}
+
+static void do_worker(struct work_struct *work)
+{
+ struct clone *clone = container_of(work, typeof(*clone), worker);
+
+ process_deferred_bios(clone);
+ process_deferred_discards(clone);
+
+ /*
+ * process_deferred_flush_bios():
+ *
+ * - Commit metadata
+ *
+ * - Process deferred REQ_FUA completions
+ *
+ * - Process deferred REQ_PREFLUSH bios
+ */
+ process_deferred_flush_bios(clone);
+
+ /* Background hydration */
+ do_hydration(clone);
+}
+
+/*
+ * Commit periodically so that not too much unwritten data builds up.
+ *
+ * Also, restart background hydration, if it has been stopped by in-flight I/O.
+ */
+static void do_waker(struct work_struct *work)
+{
+ struct clone *clone = container_of(to_delayed_work(work), struct clone, waker);
+
+ wake_worker(clone);
+ queue_delayed_work(clone->wq, &clone->waker, COMMIT_PERIOD);
+}
+
+/*---------------------------------------------------------------------------*/
+
+/*
+ * Target methods
+ */
+static int clone_map(struct dm_target *ti, struct bio *bio)
+{
+ struct clone *clone = ti->private;
+ unsigned long region_nr;
+
+ atomic_inc(&clone->ios_in_flight);
+
+ if (unlikely(get_clone_mode(clone) == CM_FAIL))
+ return DM_MAPIO_KILL;
+
+ /*
+ * REQ_PREFLUSH bios carry no data:
+ *
+ * - Commit metadata, if changed
+ *
+ * - Pass down to destination device
+ */
+ if (bio->bi_opf & REQ_PREFLUSH) {
+ remap_and_issue(clone, bio);
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
+
+ /*
+ * dm-clone interprets discards and performs a fast hydration of the
+ * discarded regions, i.e., we skip the copy from the source device and
+ * just mark the regions as hydrated.
+ */
+ if (bio_op(bio) == REQ_OP_DISCARD) {
+ process_discard_bio(clone, bio);
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ /*
+ * If the bio's region is hydrated, redirect it to the destination
+ * device.
+ *
+ * If the region is not hydrated and the bio is a READ, redirect it to
+ * the source device.
+ *
+ * Else, defer WRITE bio until after its region has been hydrated and
+ * start the region's hydration immediately.
+ */
+ region_nr = bio_to_region(clone, bio);
+ if (dm_clone_is_region_hydrated(clone->cmd, region_nr)) {
+ remap_and_issue(clone, bio);
+ return DM_MAPIO_SUBMITTED;
+ } else if (bio_data_dir(bio) == READ) {
+ remap_to_source(clone, bio);
+ return DM_MAPIO_REMAPPED;
+ }
+
+ remap_to_dest(clone, bio);
+ hydrate_bio_region(clone, bio);
+
+ return DM_MAPIO_SUBMITTED;
+}
+
+static int clone_endio(struct dm_target *ti, struct bio *bio, blk_status_t *error)
+{
+ struct clone *clone = ti->private;
+
+ atomic_dec(&clone->ios_in_flight);
+
+ return DM_ENDIO_DONE;
+}
+
+static void emit_flags(struct clone *clone, char *result, unsigned int maxlen,
+ ssize_t *sz_ptr)
+{
+ ssize_t sz = *sz_ptr;
+ unsigned int count;
+
+ count = !test_bit(DM_CLONE_HYDRATION_ENABLED, &clone->flags);
+ count += !test_bit(DM_CLONE_DISCARD_PASSDOWN, &clone->flags);
+
+ DMEMIT("%u ", count);
+
+ if (!test_bit(DM_CLONE_HYDRATION_ENABLED, &clone->flags))
+ DMEMIT("no_hydration ");
+
+ if (!test_bit(DM_CLONE_DISCARD_PASSDOWN, &clone->flags))
+ DMEMIT("no_discard_passdown ");
+
+ *sz_ptr = sz;
+}
+
+static void emit_core_args(struct clone *clone, char *result,
+ unsigned int maxlen, ssize_t *sz_ptr)
+{
+ ssize_t sz = *sz_ptr;
+ unsigned int count = 4;
+
+ DMEMIT("%u hydration_threshold %u hydration_batch_size %u ", count,
+ READ_ONCE(clone->hydration_threshold),
+ READ_ONCE(clone->hydration_batch_size));
+
+ *sz_ptr = sz;
+}
+
+/*
+ * Status format:
+ *
+ * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
+ * <clone region size> <#hydrated regions>/<#total regions> <#hydrating regions>
+ * <#features> <features>* <#core args> <core args>* <clone metadata mode>
+ */
+static void clone_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result,
+ unsigned int maxlen)
+{
+ int r;
+ unsigned int i;
+ ssize_t sz = 0;
+ dm_block_t nr_free_metadata_blocks = 0;
+ dm_block_t nr_metadata_blocks = 0;
+ char buf[BDEVNAME_SIZE];
+ struct clone *clone = ti->private;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ if (get_clone_mode(clone) == CM_FAIL) {
+ DMEMIT("Fail");
+ break;
+ }
+
+ /* Commit to ensure statistics aren't out-of-date */
+ if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
+ (void) commit_metadata(clone, NULL);
+
+ r = dm_clone_get_free_metadata_block_count(clone->cmd, &nr_free_metadata_blocks);
+
+ if (r) {
+ DMERR("%s: dm_clone_get_free_metadata_block_count returned %d",
+ clone_device_name(clone), r);
+ goto error;
+ }
+
+ r = dm_clone_get_metadata_dev_size(clone->cmd, &nr_metadata_blocks);
+
+ if (r) {
+ DMERR("%s: dm_clone_get_metadata_dev_size returned %d",
+ clone_device_name(clone), r);
+ goto error;
+ }
+
+ DMEMIT("%u %llu/%llu %llu %u/%lu %u ",
+ DM_CLONE_METADATA_BLOCK_SIZE,
+ (unsigned long long)(nr_metadata_blocks - nr_free_metadata_blocks),
+ (unsigned long long)nr_metadata_blocks,
+ (unsigned long long)clone->region_size,
+ dm_clone_nr_of_hydrated_regions(clone->cmd),
+ clone->nr_regions,
+ atomic_read(&clone->hydrations_in_flight));
+
+ emit_flags(clone, result, maxlen, &sz);
+ emit_core_args(clone, result, maxlen, &sz);
+
+ switch (get_clone_mode(clone)) {
+ case CM_WRITE:
+ DMEMIT("rw");
+ break;
+ case CM_READ_ONLY:
+ DMEMIT("ro");
+ break;
+ case CM_FAIL:
+ DMEMIT("Fail");
+ }
+
+ break;
+
+ case STATUSTYPE_TABLE:
+ format_dev_t(buf, clone->metadata_dev->bdev->bd_dev);
+ DMEMIT("%s ", buf);
+
+ format_dev_t(buf, clone->dest_dev->bdev->bd_dev);
+ DMEMIT("%s ", buf);
+
+ format_dev_t(buf, clone->source_dev->bdev->bd_dev);
+ DMEMIT("%s", buf);
+
+ for (i = 0; i < clone->nr_ctr_args; i++)
+ DMEMIT(" %s", clone->ctr_args[i]);
+ break;
+
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+
+ return;
+
+error:
+ DMEMIT("Error");
+}
+
+static sector_t get_dev_size(struct dm_dev *dev)
+{
+ return bdev_nr_sectors(dev->bdev);
+}
+
+/*---------------------------------------------------------------------------*/
+
+/*
+ * Construct a clone device mapping:
+ *
+ * clone <metadata dev> <destination dev> <source dev> <region size>
+ * [<#feature args> [<feature arg>]* [<#core args> [key value]*]]
+ *
+ * metadata dev: Fast device holding the persistent metadata
+ * destination dev: The destination device, which will become a clone of the
+ * source device
+ * source dev: The read-only source device that gets cloned
+ * region size: dm-clone unit size in sectors
+ *
+ * #feature args: Number of feature arguments passed
+ * feature args: E.g. no_hydration, no_discard_passdown
+ *
+ * #core arguments: An even number of core arguments
+ * core arguments: Key/value pairs for tuning the core
+ * E.g. 'hydration_threshold 256'
+ */
+static int parse_feature_args(struct dm_arg_set *as, struct clone *clone)
+{
+ int r;
+ unsigned int argc;
+ const char *arg_name;
+ struct dm_target *ti = clone->ti;
+
+ const struct dm_arg args = {
+ .min = 0,
+ .max = 2,
+ .error = "Invalid number of feature arguments"
+ };
+
+ /* No feature arguments supplied */
+ if (!as->argc)
+ return 0;
+
+ r = dm_read_arg_group(&args, as, &argc, &ti->error);
+ if (r)
+ return r;
+
+ while (argc) {
+ arg_name = dm_shift_arg(as);
+ argc--;
+
+ if (!strcasecmp(arg_name, "no_hydration")) {
+ __clear_bit(DM_CLONE_HYDRATION_ENABLED, &clone->flags);
+ } else if (!strcasecmp(arg_name, "no_discard_passdown")) {
+ __clear_bit(DM_CLONE_DISCARD_PASSDOWN, &clone->flags);
+ } else {
+ ti->error = "Invalid feature argument";
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+static int parse_core_args(struct dm_arg_set *as, struct clone *clone)
+{
+ int r;
+ unsigned int argc;
+ unsigned int value;
+ const char *arg_name;
+ struct dm_target *ti = clone->ti;
+
+ const struct dm_arg args = {
+ .min = 0,
+ .max = 4,
+ .error = "Invalid number of core arguments"
+ };
+
+ /* Initialize core arguments */
+ clone->hydration_batch_size = DEFAULT_HYDRATION_BATCH_SIZE;
+ clone->hydration_threshold = DEFAULT_HYDRATION_THRESHOLD;
+
+ /* No core arguments supplied */
+ if (!as->argc)
+ return 0;
+
+ r = dm_read_arg_group(&args, as, &argc, &ti->error);
+ if (r)
+ return r;
+
+ if (argc & 1) {
+ ti->error = "Number of core arguments must be even";
+ return -EINVAL;
+ }
+
+ while (argc) {
+ arg_name = dm_shift_arg(as);
+ argc -= 2;
+
+ if (!strcasecmp(arg_name, "hydration_threshold")) {
+ if (kstrtouint(dm_shift_arg(as), 10, &value)) {
+ ti->error = "Invalid value for argument `hydration_threshold'";
+ return -EINVAL;
+ }
+ clone->hydration_threshold = value;
+ } else if (!strcasecmp(arg_name, "hydration_batch_size")) {
+ if (kstrtouint(dm_shift_arg(as), 10, &value)) {
+ ti->error = "Invalid value for argument `hydration_batch_size'";
+ return -EINVAL;
+ }
+ clone->hydration_batch_size = value;
+ } else {
+ ti->error = "Invalid core argument";
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+static int parse_region_size(struct clone *clone, struct dm_arg_set *as, char **error)
+{
+ int r;
+ unsigned int region_size;
+ struct dm_arg arg;
+
+ arg.min = MIN_REGION_SIZE;
+ arg.max = MAX_REGION_SIZE;
+ arg.error = "Invalid region size";
+
+ r = dm_read_arg(&arg, as, &region_size, error);
+ if (r)
+ return r;
+
+ /* Check region size is a power of 2 */
+ if (!is_power_of_2(region_size)) {
+ *error = "Region size is not a power of 2";
+ return -EINVAL;
+ }
+
+ /* Validate the region size against the device logical block size */
+ if (region_size % (bdev_logical_block_size(clone->source_dev->bdev) >> 9) ||
+ region_size % (bdev_logical_block_size(clone->dest_dev->bdev) >> 9)) {
+ *error = "Region size is not a multiple of device logical block size";
+ return -EINVAL;
+ }
+
+ clone->region_size = region_size;
+
+ return 0;
+}
+
+static int validate_nr_regions(unsigned long n, char **error)
+{
+ /*
+ * dm_bitset restricts us to 2^32 regions. test_bit & co. restrict us
+ * further to 2^31 regions.
+ */
+ if (n > (1UL << 31)) {
+ *error = "Too many regions. Consider increasing the region size";
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int parse_metadata_dev(struct clone *clone, struct dm_arg_set *as, char **error)
+{
+ int r;
+ sector_t metadata_dev_size;
+
+ r = dm_get_device(clone->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
+ &clone->metadata_dev);
+ if (r) {
+ *error = "Error opening metadata device";
+ return r;
+ }
+
+ metadata_dev_size = get_dev_size(clone->metadata_dev);
+ if (metadata_dev_size > DM_CLONE_METADATA_MAX_SECTORS_WARNING)
+ DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
+ clone->metadata_dev->bdev, DM_CLONE_METADATA_MAX_SECTORS);
+
+ return 0;
+}
+
+static int parse_dest_dev(struct clone *clone, struct dm_arg_set *as, char **error)
+{
+ int r;
+ sector_t dest_dev_size;
+
+ r = dm_get_device(clone->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
+ &clone->dest_dev);
+ if (r) {
+ *error = "Error opening destination device";
+ return r;
+ }
+
+ dest_dev_size = get_dev_size(clone->dest_dev);
+ if (dest_dev_size < clone->ti->len) {
+ dm_put_device(clone->ti, clone->dest_dev);
+ *error = "Device size larger than destination device";
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int parse_source_dev(struct clone *clone, struct dm_arg_set *as, char **error)
+{
+ int r;
+ sector_t source_dev_size;
+
+ r = dm_get_device(clone->ti, dm_shift_arg(as), FMODE_READ,
+ &clone->source_dev);
+ if (r) {
+ *error = "Error opening source device";
+ return r;
+ }
+
+ source_dev_size = get_dev_size(clone->source_dev);
+ if (source_dev_size < clone->ti->len) {
+ dm_put_device(clone->ti, clone->source_dev);
+ *error = "Device size larger than source device";
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int copy_ctr_args(struct clone *clone, int argc, const char **argv, char **error)
+{
+ unsigned int i;
+ const char **copy;
+
+ copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
+ if (!copy)
+ goto error;
+
+ for (i = 0; i < argc; i++) {
+ copy[i] = kstrdup(argv[i], GFP_KERNEL);
+
+ if (!copy[i]) {
+ while (i--)
+ kfree(copy[i]);
+ kfree(copy);
+ goto error;
+ }
+ }
+
+ clone->nr_ctr_args = argc;
+ clone->ctr_args = copy;
+ return 0;
+
+error:
+ *error = "Failed to allocate memory for table line";
+ return -ENOMEM;
+}
+
+static int clone_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ int r;
+ sector_t nr_regions;
+ struct clone *clone;
+ struct dm_arg_set as;
+
+ if (argc < 4) {
+ ti->error = "Invalid number of arguments";
+ return -EINVAL;
+ }
+
+ as.argc = argc;
+ as.argv = argv;
+
+ clone = kzalloc(sizeof(*clone), GFP_KERNEL);
+ if (!clone) {
+ ti->error = "Failed to allocate clone structure";
+ return -ENOMEM;
+ }
+
+ clone->ti = ti;
+
+ /* Initialize dm-clone flags */
+ __set_bit(DM_CLONE_HYDRATION_ENABLED, &clone->flags);
+ __set_bit(DM_CLONE_HYDRATION_SUSPENDED, &clone->flags);
+ __set_bit(DM_CLONE_DISCARD_PASSDOWN, &clone->flags);
+
+ r = parse_metadata_dev(clone, &as, &ti->error);
+ if (r)
+ goto out_with_clone;
+
+ r = parse_dest_dev(clone, &as, &ti->error);
+ if (r)
+ goto out_with_meta_dev;
+
+ r = parse_source_dev(clone, &as, &ti->error);
+ if (r)
+ goto out_with_dest_dev;
+
+ r = parse_region_size(clone, &as, &ti->error);
+ if (r)
+ goto out_with_source_dev;
+
+ clone->region_shift = __ffs(clone->region_size);
+ nr_regions = dm_sector_div_up(ti->len, clone->region_size);
+
+ /* Check for overflow */
+ if (nr_regions != (unsigned long)nr_regions) {
+ ti->error = "Too many regions. Consider increasing the region size";
+ r = -EOVERFLOW;
+ goto out_with_source_dev;
+ }
+
+ clone->nr_regions = nr_regions;
+
+ r = validate_nr_regions(clone->nr_regions, &ti->error);
+ if (r)
+ goto out_with_source_dev;
+
+ r = dm_set_target_max_io_len(ti, clone->region_size);
+ if (r) {
+ ti->error = "Failed to set max io len";
+ goto out_with_source_dev;
+ }
+
+ r = parse_feature_args(&as, clone);
+ if (r)
+ goto out_with_source_dev;
+
+ r = parse_core_args(&as, clone);
+ if (r)
+ goto out_with_source_dev;
+
+ /* Load metadata */
+ clone->cmd = dm_clone_metadata_open(clone->metadata_dev->bdev, ti->len,
+ clone->region_size);
+ if (IS_ERR(clone->cmd)) {
+ ti->error = "Failed to load metadata";
+ r = PTR_ERR(clone->cmd);
+ goto out_with_source_dev;
+ }
+
+ __set_clone_mode(clone, CM_WRITE);
+
+ if (get_clone_mode(clone) != CM_WRITE) {
+ ti->error = "Unable to get write access to metadata, please check/repair metadata";
+ r = -EPERM;
+ goto out_with_metadata;
+ }
+
+ clone->last_commit_jiffies = jiffies;
+
+ /* Allocate hydration hash table */
+ r = hash_table_init(clone);
+ if (r) {
+ ti->error = "Failed to allocate hydration hash table";
+ goto out_with_metadata;
+ }
+
+ atomic_set(&clone->ios_in_flight, 0);
+ init_waitqueue_head(&clone->hydration_stopped);
+ spin_lock_init(&clone->lock);
+ bio_list_init(&clone->deferred_bios);
+ bio_list_init(&clone->deferred_discard_bios);
+ bio_list_init(&clone->deferred_flush_bios);
+ bio_list_init(&clone->deferred_flush_completions);
+ clone->hydration_offset = 0;
+ atomic_set(&clone->hydrations_in_flight, 0);
+
+ clone->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
+ if (!clone->wq) {
+ ti->error = "Failed to allocate workqueue";
+ r = -ENOMEM;
+ goto out_with_ht;
+ }
+
+ INIT_WORK(&clone->worker, do_worker);
+ INIT_DELAYED_WORK(&clone->waker, do_waker);
+
+ clone->kcopyd_client = dm_kcopyd_client_create(&dm_kcopyd_throttle);
+ if (IS_ERR(clone->kcopyd_client)) {
+ r = PTR_ERR(clone->kcopyd_client);
+ goto out_with_wq;
+ }
+
+ r = mempool_init_slab_pool(&clone->hydration_pool, MIN_HYDRATIONS,
+ _hydration_cache);
+ if (r) {
+ ti->error = "Failed to create dm_clone_region_hydration memory pool";
+ goto out_with_kcopyd;
+ }
+
+ /* Save a copy of the table line */
+ r = copy_ctr_args(clone, argc - 3, (const char **)argv + 3, &ti->error);
+ if (r)
+ goto out_with_mempool;
+
+ mutex_init(&clone->commit_lock);
+
+ /* Enable flushes */
+ ti->num_flush_bios = 1;
+ ti->flush_supported = true;
+
+ /* Enable discards */
+ ti->discards_supported = true;
+ ti->num_discard_bios = 1;
+
+ ti->private = clone;
+
+ return 0;
+
+out_with_mempool:
+ mempool_exit(&clone->hydration_pool);
+out_with_kcopyd:
+ dm_kcopyd_client_destroy(clone->kcopyd_client);
+out_with_wq:
+ destroy_workqueue(clone->wq);
+out_with_ht:
+ hash_table_exit(clone);
+out_with_metadata:
+ dm_clone_metadata_close(clone->cmd);
+out_with_source_dev:
+ dm_put_device(ti, clone->source_dev);
+out_with_dest_dev:
+ dm_put_device(ti, clone->dest_dev);
+out_with_meta_dev:
+ dm_put_device(ti, clone->metadata_dev);
+out_with_clone:
+ kfree(clone);
+
+ return r;
+}
+
+static void clone_dtr(struct dm_target *ti)
+{
+ unsigned int i;
+ struct clone *clone = ti->private;
+
+ mutex_destroy(&clone->commit_lock);
+
+ for (i = 0; i < clone->nr_ctr_args; i++)
+ kfree(clone->ctr_args[i]);
+ kfree(clone->ctr_args);
+
+ mempool_exit(&clone->hydration_pool);
+ dm_kcopyd_client_destroy(clone->kcopyd_client);
+ cancel_delayed_work_sync(&clone->waker);
+ destroy_workqueue(clone->wq);
+ hash_table_exit(clone);
+ dm_clone_metadata_close(clone->cmd);
+ dm_put_device(ti, clone->source_dev);
+ dm_put_device(ti, clone->dest_dev);
+ dm_put_device(ti, clone->metadata_dev);
+
+ kfree(clone);
+}
+
+/*---------------------------------------------------------------------------*/
+
+static void clone_postsuspend(struct dm_target *ti)
+{
+ struct clone *clone = ti->private;
+
+ /*
+ * To successfully suspend the device:
+ *
+ * - We cancel the delayed work for periodic commits and wait for
+ * it to finish.
+ *
+ * - We stop the background hydration, i.e. we prevent new region
+ * hydrations from starting.
+ *
+ * - We wait for any in-flight hydrations to finish.
+ *
+ * - We flush the workqueue.
+ *
+ * - We commit the metadata.
+ */
+ cancel_delayed_work_sync(&clone->waker);
+
+ set_bit(DM_CLONE_HYDRATION_SUSPENDED, &clone->flags);
+
+ /*
+ * Make sure set_bit() is ordered before atomic_read(), otherwise we
+ * might race with do_hydration() and miss some started region
+ * hydrations.
+ *
+ * This is paired with smp_mb__after_atomic() in do_hydration().
+ */
+ smp_mb__after_atomic();
+
+ wait_event(clone->hydration_stopped, !atomic_read(&clone->hydrations_in_flight));
+ flush_workqueue(clone->wq);
+
+ (void) commit_metadata(clone, NULL);
+}
+
+static void clone_resume(struct dm_target *ti)
+{
+ struct clone *clone = ti->private;
+
+ clear_bit(DM_CLONE_HYDRATION_SUSPENDED, &clone->flags);
+ do_waker(&clone->waker.work);
+}
+
+/*
+ * If discard_passdown was enabled verify that the destination device supports
+ * discards. Disable discard_passdown if not.
+ */
+static void disable_passdown_if_not_supported(struct clone *clone)
+{
+ struct block_device *dest_dev = clone->dest_dev->bdev;
+ struct queue_limits *dest_limits = &bdev_get_queue(dest_dev)->limits;
+ const char *reason = NULL;
+
+ if (!test_bit(DM_CLONE_DISCARD_PASSDOWN, &clone->flags))
+ return;
+
+ if (!bdev_max_discard_sectors(dest_dev))
+ reason = "discard unsupported";
+ else if (dest_limits->max_discard_sectors < clone->region_size)
+ reason = "max discard sectors smaller than a region";
+
+ if (reason) {
+ DMWARN("Destination device (%pg) %s: Disabling discard passdown.",
+ dest_dev, reason);
+ clear_bit(DM_CLONE_DISCARD_PASSDOWN, &clone->flags);
+ }
+}
+
+static void set_discard_limits(struct clone *clone, struct queue_limits *limits)
+{
+ struct block_device *dest_bdev = clone->dest_dev->bdev;
+ struct queue_limits *dest_limits = &bdev_get_queue(dest_bdev)->limits;
+
+ if (!test_bit(DM_CLONE_DISCARD_PASSDOWN, &clone->flags)) {
+ /* No passdown is done so we set our own virtual limits */
+ limits->discard_granularity = clone->region_size << SECTOR_SHIFT;
+ limits->max_discard_sectors = round_down(UINT_MAX >> SECTOR_SHIFT, clone->region_size);
+ return;
+ }
+
+ /*
+ * clone_iterate_devices() is stacking both the source and destination
+ * device limits but discards aren't passed to the source device, so
+ * inherit destination's limits.
+ */
+ limits->max_discard_sectors = dest_limits->max_discard_sectors;
+ limits->max_hw_discard_sectors = dest_limits->max_hw_discard_sectors;
+ limits->discard_granularity = dest_limits->discard_granularity;
+ limits->discard_alignment = dest_limits->discard_alignment;
+ limits->discard_misaligned = dest_limits->discard_misaligned;
+ limits->max_discard_segments = dest_limits->max_discard_segments;
+}
+
+static void clone_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+ struct clone *clone = ti->private;
+ u64 io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
+
+ /*
+ * If the system-determined stacked limits are compatible with
+ * dm-clone's region size (io_opt is a factor) do not override them.
+ */
+ if (io_opt_sectors < clone->region_size ||
+ do_div(io_opt_sectors, clone->region_size)) {
+ blk_limits_io_min(limits, clone->region_size << SECTOR_SHIFT);
+ blk_limits_io_opt(limits, clone->region_size << SECTOR_SHIFT);
+ }
+
+ disable_passdown_if_not_supported(clone);
+ set_discard_limits(clone, limits);
+}
+
+static int clone_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ int ret;
+ struct clone *clone = ti->private;
+ struct dm_dev *dest_dev = clone->dest_dev;
+ struct dm_dev *source_dev = clone->source_dev;
+
+ ret = fn(ti, source_dev, 0, ti->len, data);
+ if (!ret)
+ ret = fn(ti, dest_dev, 0, ti->len, data);
+ return ret;
+}
+
+/*
+ * dm-clone message functions.
+ */
+static void set_hydration_threshold(struct clone *clone, unsigned int nr_regions)
+{
+ WRITE_ONCE(clone->hydration_threshold, nr_regions);
+
+ /*
+ * If user space sets hydration_threshold to zero then the hydration
+ * will stop. If at a later time the hydration_threshold is increased
+ * we must restart the hydration process by waking up the worker.
+ */
+ wake_worker(clone);
+}
+
+static void set_hydration_batch_size(struct clone *clone, unsigned int nr_regions)
+{
+ WRITE_ONCE(clone->hydration_batch_size, nr_regions);
+}
+
+static void enable_hydration(struct clone *clone)
+{
+ if (!test_and_set_bit(DM_CLONE_HYDRATION_ENABLED, &clone->flags))
+ wake_worker(clone);
+}
+
+static void disable_hydration(struct clone *clone)
+{
+ clear_bit(DM_CLONE_HYDRATION_ENABLED, &clone->flags);
+}
+
+static int clone_message(struct dm_target *ti, unsigned int argc, char **argv,
+ char *result, unsigned int maxlen)
+{
+ struct clone *clone = ti->private;
+ unsigned int value;
+
+ if (!argc)
+ return -EINVAL;
+
+ if (!strcasecmp(argv[0], "enable_hydration")) {
+ enable_hydration(clone);
+ return 0;
+ }
+
+ if (!strcasecmp(argv[0], "disable_hydration")) {
+ disable_hydration(clone);
+ return 0;
+ }
+
+ if (argc != 2)
+ return -EINVAL;
+
+ if (!strcasecmp(argv[0], "hydration_threshold")) {
+ if (kstrtouint(argv[1], 10, &value))
+ return -EINVAL;
+
+ set_hydration_threshold(clone, value);
+
+ return 0;
+ }
+
+ if (!strcasecmp(argv[0], "hydration_batch_size")) {
+ if (kstrtouint(argv[1], 10, &value))
+ return -EINVAL;
+
+ set_hydration_batch_size(clone, value);
+
+ return 0;
+ }
+
+ DMERR("%s: Unsupported message `%s'", clone_device_name(clone), argv[0]);
+ return -EINVAL;
+}
+
+static struct target_type clone_target = {
+ .name = "clone",
+ .version = {1, 0, 0},
+ .module = THIS_MODULE,
+ .ctr = clone_ctr,
+ .dtr = clone_dtr,
+ .map = clone_map,
+ .end_io = clone_endio,
+ .postsuspend = clone_postsuspend,
+ .resume = clone_resume,
+ .status = clone_status,
+ .message = clone_message,
+ .io_hints = clone_io_hints,
+ .iterate_devices = clone_iterate_devices,
+};
+
+/*---------------------------------------------------------------------------*/
+
+/* Module functions */
+static int __init dm_clone_init(void)
+{
+ int r;
+
+ _hydration_cache = KMEM_CACHE(dm_clone_region_hydration, 0);
+ if (!_hydration_cache)
+ return -ENOMEM;
+
+ r = dm_register_target(&clone_target);
+ if (r < 0) {
+ DMERR("Failed to register clone target");
+ kmem_cache_destroy(_hydration_cache);
+ return r;
+ }
+
+ return 0;
+}
+
+static void __exit dm_clone_exit(void)
+{
+ dm_unregister_target(&clone_target);
+
+ kmem_cache_destroy(_hydration_cache);
+ _hydration_cache = NULL;
+}
+
+/* Module hooks */
+module_init(dm_clone_init);
+module_exit(dm_clone_exit);
+
+MODULE_DESCRIPTION(DM_NAME " clone target");
+MODULE_AUTHOR("Nikos Tsironis <ntsironis@arrikto.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-core.h b/drivers/md/dm-core.h
new file mode 100644
index 000000000..71dcd8fd4
--- /dev/null
+++ b/drivers/md/dm-core.h
@@ -0,0 +1,341 @@
+/*
+ * Internal header file _only_ for device mapper core
+ *
+ * Copyright (C) 2016 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the LGPL.
+ */
+
+#ifndef DM_CORE_INTERNAL_H
+#define DM_CORE_INTERNAL_H
+
+#include <linux/kthread.h>
+#include <linux/ktime.h>
+#include <linux/blk-mq.h>
+#include <linux/blk-crypto-profile.h>
+#include <linux/jump_label.h>
+
+#include <trace/events/block.h>
+
+#include "dm.h"
+#include "dm-ima.h"
+
+#define DM_RESERVED_MAX_IOS 1024
+
+struct dm_io;
+
+struct dm_kobject_holder {
+ struct kobject kobj;
+ struct completion completion;
+};
+
+/*
+ * DM core internal structures used directly by dm.c, dm-rq.c and dm-table.c.
+ * DM targets must _not_ deference a mapped_device or dm_table to directly
+ * access their members!
+ */
+
+/*
+ * For mempools pre-allocation at the table loading time.
+ */
+struct dm_md_mempools {
+ struct bio_set bs;
+ struct bio_set io_bs;
+};
+
+struct mapped_device {
+ struct mutex suspend_lock;
+
+ struct mutex table_devices_lock;
+ struct list_head table_devices;
+
+ /*
+ * The current mapping (struct dm_table *).
+ * Use dm_get_live_table{_fast} or take suspend_lock for
+ * dereference.
+ */
+ void __rcu *map;
+
+ unsigned long flags;
+
+ /* Protect queue and type against concurrent access. */
+ struct mutex type_lock;
+ enum dm_queue_mode type;
+
+ int numa_node_id;
+ struct request_queue *queue;
+
+ atomic_t holders;
+ atomic_t open_count;
+
+ struct dm_target *immutable_target;
+ struct target_type *immutable_target_type;
+
+ char name[16];
+ struct gendisk *disk;
+ struct dax_device *dax_dev;
+
+ wait_queue_head_t wait;
+ unsigned long __percpu *pending_io;
+
+ /* forced geometry settings */
+ struct hd_geometry geometry;
+
+ /*
+ * Processing queue (flush)
+ */
+ struct workqueue_struct *wq;
+
+ /*
+ * A list of ios that arrived while we were suspended.
+ */
+ struct work_struct work;
+ spinlock_t deferred_lock;
+ struct bio_list deferred;
+
+ /*
+ * requeue work context is needed for cloning one new bio
+ * to represent the dm_io to be requeued, since each
+ * dm_io may point to the original bio from FS.
+ */
+ struct work_struct requeue_work;
+ struct dm_io *requeue_list;
+
+ void *interface_ptr;
+
+ /*
+ * Event handling.
+ */
+ wait_queue_head_t eventq;
+ atomic_t event_nr;
+ atomic_t uevent_seq;
+ struct list_head uevent_list;
+ spinlock_t uevent_lock; /* Protect access to uevent_list */
+
+ /* for blk-mq request-based DM support */
+ bool init_tio_pdu:1;
+ struct blk_mq_tag_set *tag_set;
+
+ struct dm_stats stats;
+
+ /* the number of internal suspends */
+ unsigned int internal_suspend_count;
+
+ int swap_bios;
+ struct semaphore swap_bios_semaphore;
+ struct mutex swap_bios_lock;
+
+ /*
+ * io objects are allocated from here.
+ */
+ struct dm_md_mempools *mempools;
+
+ /* kobject and completion */
+ struct dm_kobject_holder kobj_holder;
+
+ struct srcu_struct io_barrier;
+
+#ifdef CONFIG_BLK_DEV_ZONED
+ unsigned int nr_zones;
+ unsigned int *zwp_offset;
+#endif
+
+#ifdef CONFIG_IMA
+ struct dm_ima_measurements ima;
+#endif
+};
+
+/*
+ * Bits for the flags field of struct mapped_device.
+ */
+#define DMF_BLOCK_IO_FOR_SUSPEND 0
+#define DMF_SUSPENDED 1
+#define DMF_FROZEN 2
+#define DMF_FREEING 3
+#define DMF_DELETING 4
+#define DMF_NOFLUSH_SUSPENDING 5
+#define DMF_DEFERRED_REMOVE 6
+#define DMF_SUSPENDED_INTERNALLY 7
+#define DMF_POST_SUSPENDING 8
+#define DMF_EMULATE_ZONE_APPEND 9
+
+void disable_discard(struct mapped_device *md);
+void disable_write_zeroes(struct mapped_device *md);
+
+static inline sector_t dm_get_size(struct mapped_device *md)
+{
+ return get_capacity(md->disk);
+}
+
+static inline struct dm_stats *dm_get_stats(struct mapped_device *md)
+{
+ return &md->stats;
+}
+
+DECLARE_STATIC_KEY_FALSE(stats_enabled);
+DECLARE_STATIC_KEY_FALSE(swap_bios_enabled);
+DECLARE_STATIC_KEY_FALSE(zoned_enabled);
+
+static inline bool dm_emulate_zone_append(struct mapped_device *md)
+{
+ if (blk_queue_is_zoned(md->queue))
+ return test_bit(DMF_EMULATE_ZONE_APPEND, &md->flags);
+ return false;
+}
+
+#define DM_TABLE_MAX_DEPTH 16
+
+struct dm_table {
+ struct mapped_device *md;
+ enum dm_queue_mode type;
+
+ /* btree table */
+ unsigned int depth;
+ unsigned int counts[DM_TABLE_MAX_DEPTH]; /* in nodes */
+ sector_t *index[DM_TABLE_MAX_DEPTH];
+
+ unsigned int num_targets;
+ unsigned int num_allocated;
+ sector_t *highs;
+ struct dm_target *targets;
+
+ struct target_type *immutable_target_type;
+
+ bool integrity_supported:1;
+ bool singleton:1;
+ unsigned integrity_added:1;
+
+ /*
+ * Indicates the rw permissions for the new logical
+ * device. This should be a combination of FMODE_READ
+ * and FMODE_WRITE.
+ */
+ fmode_t mode;
+
+ /* a list of devices used by this table */
+ struct list_head devices;
+ struct rw_semaphore devices_lock;
+
+ /* events get handed up using this callback */
+ void (*event_fn)(void *);
+ void *event_context;
+
+ struct dm_md_mempools *mempools;
+
+#ifdef CONFIG_BLK_INLINE_ENCRYPTION
+ struct blk_crypto_profile *crypto_profile;
+#endif
+};
+
+static inline struct dm_target *dm_table_get_target(struct dm_table *t,
+ unsigned int index)
+{
+ BUG_ON(index >= t->num_targets);
+ return t->targets + index;
+}
+
+/*
+ * One of these is allocated per clone bio.
+ */
+#define DM_TIO_MAGIC 28714
+struct dm_target_io {
+ unsigned short magic;
+ blk_short_t flags;
+ unsigned int target_bio_nr;
+ struct dm_io *io;
+ struct dm_target *ti;
+ unsigned int *len_ptr;
+ sector_t old_sector;
+ struct bio clone;
+};
+#define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
+#define DM_IO_BIO_OFFSET \
+ (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
+
+/*
+ * dm_target_io flags
+ */
+enum {
+ DM_TIO_INSIDE_DM_IO,
+ DM_TIO_IS_DUPLICATE_BIO
+};
+
+static inline bool dm_tio_flagged(struct dm_target_io *tio, unsigned int bit)
+{
+ return (tio->flags & (1U << bit)) != 0;
+}
+
+static inline void dm_tio_set_flag(struct dm_target_io *tio, unsigned int bit)
+{
+ tio->flags |= (1U << bit);
+}
+
+static inline bool dm_tio_is_normal(struct dm_target_io *tio)
+{
+ return (dm_tio_flagged(tio, DM_TIO_INSIDE_DM_IO) &&
+ !dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
+}
+
+/*
+ * One of these is allocated per original bio.
+ * It contains the first clone used for that original.
+ */
+#define DM_IO_MAGIC 19577
+struct dm_io {
+ unsigned short magic;
+ blk_short_t flags;
+ spinlock_t lock;
+ unsigned long start_time;
+ void *data;
+ struct dm_io *next;
+ struct dm_stats_aux stats_aux;
+ blk_status_t status;
+ atomic_t io_count;
+ struct mapped_device *md;
+
+ /* The three fields represent mapped part of original bio */
+ struct bio *orig_bio;
+ unsigned int sector_offset; /* offset to end of orig_bio */
+ unsigned int sectors;
+
+ /* last member of dm_target_io is 'struct bio' */
+ struct dm_target_io tio;
+};
+
+/*
+ * dm_io flags
+ */
+enum {
+ DM_IO_ACCOUNTED,
+ DM_IO_WAS_SPLIT
+};
+
+static inline bool dm_io_flagged(struct dm_io *io, unsigned int bit)
+{
+ return (io->flags & (1U << bit)) != 0;
+}
+
+static inline void dm_io_set_flag(struct dm_io *io, unsigned int bit)
+{
+ io->flags |= (1U << bit);
+}
+
+void dm_io_rewind(struct dm_io *io, struct bio_set *bs);
+
+static inline struct completion *dm_get_completion_from_kobject(struct kobject *kobj)
+{
+ return &container_of(kobj, struct dm_kobject_holder, kobj)->completion;
+}
+
+unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max);
+
+static inline bool dm_message_test_buffer_overflow(char *result, unsigned int maxlen)
+{
+ return !maxlen || strlen(result) + 1 >= maxlen;
+}
+
+extern atomic_t dm_global_event_nr;
+extern wait_queue_head_t dm_global_eventq;
+void dm_issue_global_event(void);
+
+#endif
diff --git a/drivers/md/dm-crypt.c b/drivers/md/dm-crypt.c
new file mode 100644
index 000000000..ff515437d
--- /dev/null
+++ b/drivers/md/dm-crypt.c
@@ -0,0 +1,3678 @@
+/*
+ * Copyright (C) 2003 Jana Saout <jana@saout.de>
+ * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
+ * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
+ * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/completion.h>
+#include <linux/err.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/key.h>
+#include <linux/bio.h>
+#include <linux/blkdev.h>
+#include <linux/blk-integrity.h>
+#include <linux/mempool.h>
+#include <linux/slab.h>
+#include <linux/crypto.h>
+#include <linux/workqueue.h>
+#include <linux/kthread.h>
+#include <linux/backing-dev.h>
+#include <linux/atomic.h>
+#include <linux/scatterlist.h>
+#include <linux/rbtree.h>
+#include <linux/ctype.h>
+#include <asm/page.h>
+#include <asm/unaligned.h>
+#include <crypto/hash.h>
+#include <crypto/md5.h>
+#include <crypto/algapi.h>
+#include <crypto/skcipher.h>
+#include <crypto/aead.h>
+#include <crypto/authenc.h>
+#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
+#include <linux/key-type.h>
+#include <keys/user-type.h>
+#include <keys/encrypted-type.h>
+#include <keys/trusted-type.h>
+
+#include <linux/device-mapper.h>
+
+#include "dm-audit.h"
+
+#define DM_MSG_PREFIX "crypt"
+
+/*
+ * context holding the current state of a multi-part conversion
+ */
+struct convert_context {
+ struct completion restart;
+ struct bio *bio_in;
+ struct bio *bio_out;
+ struct bvec_iter iter_in;
+ struct bvec_iter iter_out;
+ u64 cc_sector;
+ atomic_t cc_pending;
+ union {
+ struct skcipher_request *req;
+ struct aead_request *req_aead;
+ } r;
+
+};
+
+/*
+ * per bio private data
+ */
+struct dm_crypt_io {
+ struct crypt_config *cc;
+ struct bio *base_bio;
+ u8 *integrity_metadata;
+ bool integrity_metadata_from_pool:1;
+ bool in_tasklet:1;
+
+ struct work_struct work;
+ struct tasklet_struct tasklet;
+
+ struct convert_context ctx;
+
+ atomic_t io_pending;
+ blk_status_t error;
+ sector_t sector;
+
+ struct rb_node rb_node;
+} CRYPTO_MINALIGN_ATTR;
+
+struct dm_crypt_request {
+ struct convert_context *ctx;
+ struct scatterlist sg_in[4];
+ struct scatterlist sg_out[4];
+ u64 iv_sector;
+};
+
+struct crypt_config;
+
+struct crypt_iv_operations {
+ int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
+ const char *opts);
+ void (*dtr)(struct crypt_config *cc);
+ int (*init)(struct crypt_config *cc);
+ int (*wipe)(struct crypt_config *cc);
+ int (*generator)(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq);
+ int (*post)(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq);
+};
+
+struct iv_benbi_private {
+ int shift;
+};
+
+#define LMK_SEED_SIZE 64 /* hash + 0 */
+struct iv_lmk_private {
+ struct crypto_shash *hash_tfm;
+ u8 *seed;
+};
+
+#define TCW_WHITENING_SIZE 16
+struct iv_tcw_private {
+ struct crypto_shash *crc32_tfm;
+ u8 *iv_seed;
+ u8 *whitening;
+};
+
+#define ELEPHANT_MAX_KEY_SIZE 32
+struct iv_elephant_private {
+ struct crypto_skcipher *tfm;
+};
+
+/*
+ * Crypt: maps a linear range of a block device
+ * and encrypts / decrypts at the same time.
+ */
+enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
+ DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
+ DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
+ DM_CRYPT_WRITE_INLINE };
+
+enum cipher_flags {
+ CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */
+ CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
+ CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */
+};
+
+/*
+ * The fields in here must be read only after initialization.
+ */
+struct crypt_config {
+ struct dm_dev *dev;
+ sector_t start;
+
+ struct percpu_counter n_allocated_pages;
+
+ struct workqueue_struct *io_queue;
+ struct workqueue_struct *crypt_queue;
+
+ spinlock_t write_thread_lock;
+ struct task_struct *write_thread;
+ struct rb_root write_tree;
+
+ char *cipher_string;
+ char *cipher_auth;
+ char *key_string;
+
+ const struct crypt_iv_operations *iv_gen_ops;
+ union {
+ struct iv_benbi_private benbi;
+ struct iv_lmk_private lmk;
+ struct iv_tcw_private tcw;
+ struct iv_elephant_private elephant;
+ } iv_gen_private;
+ u64 iv_offset;
+ unsigned int iv_size;
+ unsigned short sector_size;
+ unsigned char sector_shift;
+
+ union {
+ struct crypto_skcipher **tfms;
+ struct crypto_aead **tfms_aead;
+ } cipher_tfm;
+ unsigned int tfms_count;
+ unsigned long cipher_flags;
+
+ /*
+ * Layout of each crypto request:
+ *
+ * struct skcipher_request
+ * context
+ * padding
+ * struct dm_crypt_request
+ * padding
+ * IV
+ *
+ * The padding is added so that dm_crypt_request and the IV are
+ * correctly aligned.
+ */
+ unsigned int dmreq_start;
+
+ unsigned int per_bio_data_size;
+
+ unsigned long flags;
+ unsigned int key_size;
+ unsigned int key_parts; /* independent parts in key buffer */
+ unsigned int key_extra_size; /* additional keys length */
+ unsigned int key_mac_size; /* MAC key size for authenc(...) */
+
+ unsigned int integrity_tag_size;
+ unsigned int integrity_iv_size;
+ unsigned int on_disk_tag_size;
+
+ /*
+ * pool for per bio private data, crypto requests,
+ * encryption requeusts/buffer pages and integrity tags
+ */
+ unsigned int tag_pool_max_sectors;
+ mempool_t tag_pool;
+ mempool_t req_pool;
+ mempool_t page_pool;
+
+ struct bio_set bs;
+ struct mutex bio_alloc_lock;
+
+ u8 *authenc_key; /* space for keys in authenc() format (if used) */
+ u8 key[];
+};
+
+#define MIN_IOS 64
+#define MAX_TAG_SIZE 480
+#define POOL_ENTRY_SIZE 512
+
+static DEFINE_SPINLOCK(dm_crypt_clients_lock);
+static unsigned int dm_crypt_clients_n = 0;
+static volatile unsigned long dm_crypt_pages_per_client;
+#define DM_CRYPT_MEMORY_PERCENT 2
+#define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16)
+
+static void crypt_endio(struct bio *clone);
+static void kcryptd_queue_crypt(struct dm_crypt_io *io);
+static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
+ struct scatterlist *sg);
+
+static bool crypt_integrity_aead(struct crypt_config *cc);
+
+/*
+ * Use this to access cipher attributes that are independent of the key.
+ */
+static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
+{
+ return cc->cipher_tfm.tfms[0];
+}
+
+static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
+{
+ return cc->cipher_tfm.tfms_aead[0];
+}
+
+/*
+ * Different IV generation algorithms:
+ *
+ * plain: the initial vector is the 32-bit little-endian version of the sector
+ * number, padded with zeros if necessary.
+ *
+ * plain64: the initial vector is the 64-bit little-endian version of the sector
+ * number, padded with zeros if necessary.
+ *
+ * plain64be: the initial vector is the 64-bit big-endian version of the sector
+ * number, padded with zeros if necessary.
+ *
+ * essiv: "encrypted sector|salt initial vector", the sector number is
+ * encrypted with the bulk cipher using a salt as key. The salt
+ * should be derived from the bulk cipher's key via hashing.
+ *
+ * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
+ * (needed for LRW-32-AES and possible other narrow block modes)
+ *
+ * null: the initial vector is always zero. Provides compatibility with
+ * obsolete loop_fish2 devices. Do not use for new devices.
+ *
+ * lmk: Compatible implementation of the block chaining mode used
+ * by the Loop-AES block device encryption system
+ * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
+ * It operates on full 512 byte sectors and uses CBC
+ * with an IV derived from the sector number, the data and
+ * optionally extra IV seed.
+ * This means that after decryption the first block
+ * of sector must be tweaked according to decrypted data.
+ * Loop-AES can use three encryption schemes:
+ * version 1: is plain aes-cbc mode
+ * version 2: uses 64 multikey scheme with lmk IV generator
+ * version 3: the same as version 2 with additional IV seed
+ * (it uses 65 keys, last key is used as IV seed)
+ *
+ * tcw: Compatible implementation of the block chaining mode used
+ * by the TrueCrypt device encryption system (prior to version 4.1).
+ * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
+ * It operates on full 512 byte sectors and uses CBC
+ * with an IV derived from initial key and the sector number.
+ * In addition, whitening value is applied on every sector, whitening
+ * is calculated from initial key, sector number and mixed using CRC32.
+ * Note that this encryption scheme is vulnerable to watermarking attacks
+ * and should be used for old compatible containers access only.
+ *
+ * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
+ * The IV is encrypted little-endian byte-offset (with the same key
+ * and cipher as the volume).
+ *
+ * elephant: The extended version of eboiv with additional Elephant diffuser
+ * used with Bitlocker CBC mode.
+ * This mode was used in older Windows systems
+ * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
+ */
+
+static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ memset(iv, 0, cc->iv_size);
+ *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
+
+ return 0;
+}
+
+static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ memset(iv, 0, cc->iv_size);
+ *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
+
+ return 0;
+}
+
+static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ memset(iv, 0, cc->iv_size);
+ /* iv_size is at least of size u64; usually it is 16 bytes */
+ *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
+
+ return 0;
+}
+
+static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ /*
+ * ESSIV encryption of the IV is now handled by the crypto API,
+ * so just pass the plain sector number here.
+ */
+ memset(iv, 0, cc->iv_size);
+ *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
+
+ return 0;
+}
+
+static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
+ const char *opts)
+{
+ unsigned int bs;
+ int log;
+
+ if (crypt_integrity_aead(cc))
+ bs = crypto_aead_blocksize(any_tfm_aead(cc));
+ else
+ bs = crypto_skcipher_blocksize(any_tfm(cc));
+ log = ilog2(bs);
+
+ /* we need to calculate how far we must shift the sector count
+ * to get the cipher block count, we use this shift in _gen */
+
+ if (1 << log != bs) {
+ ti->error = "cypher blocksize is not a power of 2";
+ return -EINVAL;
+ }
+
+ if (log > 9) {
+ ti->error = "cypher blocksize is > 512";
+ return -EINVAL;
+ }
+
+ cc->iv_gen_private.benbi.shift = 9 - log;
+
+ return 0;
+}
+
+static void crypt_iv_benbi_dtr(struct crypt_config *cc)
+{
+}
+
+static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ __be64 val;
+
+ memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
+
+ val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
+ put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
+
+ return 0;
+}
+
+static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ memset(iv, 0, cc->iv_size);
+
+ return 0;
+}
+
+static void crypt_iv_lmk_dtr(struct crypt_config *cc)
+{
+ struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
+
+ if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
+ crypto_free_shash(lmk->hash_tfm);
+ lmk->hash_tfm = NULL;
+
+ kfree_sensitive(lmk->seed);
+ lmk->seed = NULL;
+}
+
+static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
+ const char *opts)
+{
+ struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
+
+ if (cc->sector_size != (1 << SECTOR_SHIFT)) {
+ ti->error = "Unsupported sector size for LMK";
+ return -EINVAL;
+ }
+
+ lmk->hash_tfm = crypto_alloc_shash("md5", 0,
+ CRYPTO_ALG_ALLOCATES_MEMORY);
+ if (IS_ERR(lmk->hash_tfm)) {
+ ti->error = "Error initializing LMK hash";
+ return PTR_ERR(lmk->hash_tfm);
+ }
+
+ /* No seed in LMK version 2 */
+ if (cc->key_parts == cc->tfms_count) {
+ lmk->seed = NULL;
+ return 0;
+ }
+
+ lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
+ if (!lmk->seed) {
+ crypt_iv_lmk_dtr(cc);
+ ti->error = "Error kmallocing seed storage in LMK";
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static int crypt_iv_lmk_init(struct crypt_config *cc)
+{
+ struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
+ int subkey_size = cc->key_size / cc->key_parts;
+
+ /* LMK seed is on the position of LMK_KEYS + 1 key */
+ if (lmk->seed)
+ memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
+ crypto_shash_digestsize(lmk->hash_tfm));
+
+ return 0;
+}
+
+static int crypt_iv_lmk_wipe(struct crypt_config *cc)
+{
+ struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
+
+ if (lmk->seed)
+ memset(lmk->seed, 0, LMK_SEED_SIZE);
+
+ return 0;
+}
+
+static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq,
+ u8 *data)
+{
+ struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
+ SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
+ struct md5_state md5state;
+ __le32 buf[4];
+ int i, r;
+
+ desc->tfm = lmk->hash_tfm;
+
+ r = crypto_shash_init(desc);
+ if (r)
+ return r;
+
+ if (lmk->seed) {
+ r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
+ if (r)
+ return r;
+ }
+
+ /* Sector is always 512B, block size 16, add data of blocks 1-31 */
+ r = crypto_shash_update(desc, data + 16, 16 * 31);
+ if (r)
+ return r;
+
+ /* Sector is cropped to 56 bits here */
+ buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
+ buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
+ buf[2] = cpu_to_le32(4024);
+ buf[3] = 0;
+ r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
+ if (r)
+ return r;
+
+ /* No MD5 padding here */
+ r = crypto_shash_export(desc, &md5state);
+ if (r)
+ return r;
+
+ for (i = 0; i < MD5_HASH_WORDS; i++)
+ __cpu_to_le32s(&md5state.hash[i]);
+ memcpy(iv, &md5state.hash, cc->iv_size);
+
+ return 0;
+}
+
+static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ struct scatterlist *sg;
+ u8 *src;
+ int r = 0;
+
+ if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
+ sg = crypt_get_sg_data(cc, dmreq->sg_in);
+ src = kmap_atomic(sg_page(sg));
+ r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
+ kunmap_atomic(src);
+ } else
+ memset(iv, 0, cc->iv_size);
+
+ return r;
+}
+
+static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ struct scatterlist *sg;
+ u8 *dst;
+ int r;
+
+ if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
+ return 0;
+
+ sg = crypt_get_sg_data(cc, dmreq->sg_out);
+ dst = kmap_atomic(sg_page(sg));
+ r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
+
+ /* Tweak the first block of plaintext sector */
+ if (!r)
+ crypto_xor(dst + sg->offset, iv, cc->iv_size);
+
+ kunmap_atomic(dst);
+ return r;
+}
+
+static void crypt_iv_tcw_dtr(struct crypt_config *cc)
+{
+ struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
+
+ kfree_sensitive(tcw->iv_seed);
+ tcw->iv_seed = NULL;
+ kfree_sensitive(tcw->whitening);
+ tcw->whitening = NULL;
+
+ if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
+ crypto_free_shash(tcw->crc32_tfm);
+ tcw->crc32_tfm = NULL;
+}
+
+static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
+ const char *opts)
+{
+ struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
+
+ if (cc->sector_size != (1 << SECTOR_SHIFT)) {
+ ti->error = "Unsupported sector size for TCW";
+ return -EINVAL;
+ }
+
+ if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
+ ti->error = "Wrong key size for TCW";
+ return -EINVAL;
+ }
+
+ tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
+ CRYPTO_ALG_ALLOCATES_MEMORY);
+ if (IS_ERR(tcw->crc32_tfm)) {
+ ti->error = "Error initializing CRC32 in TCW";
+ return PTR_ERR(tcw->crc32_tfm);
+ }
+
+ tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
+ tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
+ if (!tcw->iv_seed || !tcw->whitening) {
+ crypt_iv_tcw_dtr(cc);
+ ti->error = "Error allocating seed storage in TCW";
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static int crypt_iv_tcw_init(struct crypt_config *cc)
+{
+ struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
+ int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
+
+ memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
+ memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
+ TCW_WHITENING_SIZE);
+
+ return 0;
+}
+
+static int crypt_iv_tcw_wipe(struct crypt_config *cc)
+{
+ struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
+
+ memset(tcw->iv_seed, 0, cc->iv_size);
+ memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
+
+ return 0;
+}
+
+static int crypt_iv_tcw_whitening(struct crypt_config *cc,
+ struct dm_crypt_request *dmreq,
+ u8 *data)
+{
+ struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
+ __le64 sector = cpu_to_le64(dmreq->iv_sector);
+ u8 buf[TCW_WHITENING_SIZE];
+ SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
+ int i, r;
+
+ /* xor whitening with sector number */
+ crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
+ crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
+
+ /* calculate crc32 for every 32bit part and xor it */
+ desc->tfm = tcw->crc32_tfm;
+ for (i = 0; i < 4; i++) {
+ r = crypto_shash_init(desc);
+ if (r)
+ goto out;
+ r = crypto_shash_update(desc, &buf[i * 4], 4);
+ if (r)
+ goto out;
+ r = crypto_shash_final(desc, &buf[i * 4]);
+ if (r)
+ goto out;
+ }
+ crypto_xor(&buf[0], &buf[12], 4);
+ crypto_xor(&buf[4], &buf[8], 4);
+
+ /* apply whitening (8 bytes) to whole sector */
+ for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
+ crypto_xor(data + i * 8, buf, 8);
+out:
+ memzero_explicit(buf, sizeof(buf));
+ return r;
+}
+
+static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ struct scatterlist *sg;
+ struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
+ __le64 sector = cpu_to_le64(dmreq->iv_sector);
+ u8 *src;
+ int r = 0;
+
+ /* Remove whitening from ciphertext */
+ if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
+ sg = crypt_get_sg_data(cc, dmreq->sg_in);
+ src = kmap_atomic(sg_page(sg));
+ r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
+ kunmap_atomic(src);
+ }
+
+ /* Calculate IV */
+ crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
+ if (cc->iv_size > 8)
+ crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
+ cc->iv_size - 8);
+
+ return r;
+}
+
+static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ struct scatterlist *sg;
+ u8 *dst;
+ int r;
+
+ if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
+ return 0;
+
+ /* Apply whitening on ciphertext */
+ sg = crypt_get_sg_data(cc, dmreq->sg_out);
+ dst = kmap_atomic(sg_page(sg));
+ r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
+ kunmap_atomic(dst);
+
+ return r;
+}
+
+static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ /* Used only for writes, there must be an additional space to store IV */
+ get_random_bytes(iv, cc->iv_size);
+ return 0;
+}
+
+static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
+ const char *opts)
+{
+ if (crypt_integrity_aead(cc)) {
+ ti->error = "AEAD transforms not supported for EBOIV";
+ return -EINVAL;
+ }
+
+ if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
+ ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
+ struct skcipher_request *req;
+ struct scatterlist src, dst;
+ DECLARE_CRYPTO_WAIT(wait);
+ int err;
+
+ req = skcipher_request_alloc(any_tfm(cc), GFP_NOIO);
+ if (!req)
+ return -ENOMEM;
+
+ memset(buf, 0, cc->iv_size);
+ *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
+
+ sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
+ sg_init_one(&dst, iv, cc->iv_size);
+ skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
+ skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
+ err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
+ skcipher_request_free(req);
+
+ return err;
+}
+
+static void crypt_iv_elephant_dtr(struct crypt_config *cc)
+{
+ struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
+
+ crypto_free_skcipher(elephant->tfm);
+ elephant->tfm = NULL;
+}
+
+static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
+ const char *opts)
+{
+ struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
+ int r;
+
+ elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
+ CRYPTO_ALG_ALLOCATES_MEMORY);
+ if (IS_ERR(elephant->tfm)) {
+ r = PTR_ERR(elephant->tfm);
+ elephant->tfm = NULL;
+ return r;
+ }
+
+ r = crypt_iv_eboiv_ctr(cc, ti, NULL);
+ if (r)
+ crypt_iv_elephant_dtr(cc);
+ return r;
+}
+
+static void diffuser_disk_to_cpu(u32 *d, size_t n)
+{
+#ifndef __LITTLE_ENDIAN
+ int i;
+
+ for (i = 0; i < n; i++)
+ d[i] = le32_to_cpu((__le32)d[i]);
+#endif
+}
+
+static void diffuser_cpu_to_disk(__le32 *d, size_t n)
+{
+#ifndef __LITTLE_ENDIAN
+ int i;
+
+ for (i = 0; i < n; i++)
+ d[i] = cpu_to_le32((u32)d[i]);
+#endif
+}
+
+static void diffuser_a_decrypt(u32 *d, size_t n)
+{
+ int i, i1, i2, i3;
+
+ for (i = 0; i < 5; i++) {
+ i1 = 0;
+ i2 = n - 2;
+ i3 = n - 5;
+
+ while (i1 < (n - 1)) {
+ d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
+ i1++; i2++; i3++;
+
+ if (i3 >= n)
+ i3 -= n;
+
+ d[i1] += d[i2] ^ d[i3];
+ i1++; i2++; i3++;
+
+ if (i2 >= n)
+ i2 -= n;
+
+ d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
+ i1++; i2++; i3++;
+
+ d[i1] += d[i2] ^ d[i3];
+ i1++; i2++; i3++;
+ }
+ }
+}
+
+static void diffuser_a_encrypt(u32 *d, size_t n)
+{
+ int i, i1, i2, i3;
+
+ for (i = 0; i < 5; i++) {
+ i1 = n - 1;
+ i2 = n - 2 - 1;
+ i3 = n - 5 - 1;
+
+ while (i1 > 0) {
+ d[i1] -= d[i2] ^ d[i3];
+ i1--; i2--; i3--;
+
+ d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
+ i1--; i2--; i3--;
+
+ if (i2 < 0)
+ i2 += n;
+
+ d[i1] -= d[i2] ^ d[i3];
+ i1--; i2--; i3--;
+
+ if (i3 < 0)
+ i3 += n;
+
+ d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
+ i1--; i2--; i3--;
+ }
+ }
+}
+
+static void diffuser_b_decrypt(u32 *d, size_t n)
+{
+ int i, i1, i2, i3;
+
+ for (i = 0; i < 3; i++) {
+ i1 = 0;
+ i2 = 2;
+ i3 = 5;
+
+ while (i1 < (n - 1)) {
+ d[i1] += d[i2] ^ d[i3];
+ i1++; i2++; i3++;
+
+ d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
+ i1++; i2++; i3++;
+
+ if (i2 >= n)
+ i2 -= n;
+
+ d[i1] += d[i2] ^ d[i3];
+ i1++; i2++; i3++;
+
+ if (i3 >= n)
+ i3 -= n;
+
+ d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
+ i1++; i2++; i3++;
+ }
+ }
+}
+
+static void diffuser_b_encrypt(u32 *d, size_t n)
+{
+ int i, i1, i2, i3;
+
+ for (i = 0; i < 3; i++) {
+ i1 = n - 1;
+ i2 = 2 - 1;
+ i3 = 5 - 1;
+
+ while (i1 > 0) {
+ d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
+ i1--; i2--; i3--;
+
+ if (i3 < 0)
+ i3 += n;
+
+ d[i1] -= d[i2] ^ d[i3];
+ i1--; i2--; i3--;
+
+ if (i2 < 0)
+ i2 += n;
+
+ d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
+ i1--; i2--; i3--;
+
+ d[i1] -= d[i2] ^ d[i3];
+ i1--; i2--; i3--;
+ }
+ }
+}
+
+static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
+{
+ struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
+ u8 *es, *ks, *data, *data2, *data_offset;
+ struct skcipher_request *req;
+ struct scatterlist *sg, *sg2, src, dst;
+ DECLARE_CRYPTO_WAIT(wait);
+ int i, r;
+
+ req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
+ es = kzalloc(16, GFP_NOIO); /* Key for AES */
+ ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
+
+ if (!req || !es || !ks) {
+ r = -ENOMEM;
+ goto out;
+ }
+
+ *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
+
+ /* E(Ks, e(s)) */
+ sg_init_one(&src, es, 16);
+ sg_init_one(&dst, ks, 16);
+ skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
+ skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
+ r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
+ if (r)
+ goto out;
+
+ /* E(Ks, e'(s)) */
+ es[15] = 0x80;
+ sg_init_one(&dst, &ks[16], 16);
+ r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
+ if (r)
+ goto out;
+
+ sg = crypt_get_sg_data(cc, dmreq->sg_out);
+ data = kmap_atomic(sg_page(sg));
+ data_offset = data + sg->offset;
+
+ /* Cannot modify original bio, copy to sg_out and apply Elephant to it */
+ if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
+ sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
+ data2 = kmap_atomic(sg_page(sg2));
+ memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
+ kunmap_atomic(data2);
+ }
+
+ if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
+ diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
+ diffuser_b_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
+ diffuser_a_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
+ diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
+ }
+
+ for (i = 0; i < (cc->sector_size / 32); i++)
+ crypto_xor(data_offset + i * 32, ks, 32);
+
+ if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
+ diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
+ diffuser_a_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
+ diffuser_b_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
+ diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
+ }
+
+ kunmap_atomic(data);
+out:
+ kfree_sensitive(ks);
+ kfree_sensitive(es);
+ skcipher_request_free(req);
+ return r;
+}
+
+static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ int r;
+
+ if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
+ r = crypt_iv_elephant(cc, dmreq);
+ if (r)
+ return r;
+ }
+
+ return crypt_iv_eboiv_gen(cc, iv, dmreq);
+}
+
+static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
+ struct dm_crypt_request *dmreq)
+{
+ if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
+ return crypt_iv_elephant(cc, dmreq);
+
+ return 0;
+}
+
+static int crypt_iv_elephant_init(struct crypt_config *cc)
+{
+ struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
+ int key_offset = cc->key_size - cc->key_extra_size;
+
+ return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
+}
+
+static int crypt_iv_elephant_wipe(struct crypt_config *cc)
+{
+ struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
+ u8 key[ELEPHANT_MAX_KEY_SIZE];
+
+ memset(key, 0, cc->key_extra_size);
+ return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
+}
+
+static const struct crypt_iv_operations crypt_iv_plain_ops = {
+ .generator = crypt_iv_plain_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_plain64_ops = {
+ .generator = crypt_iv_plain64_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
+ .generator = crypt_iv_plain64be_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_essiv_ops = {
+ .generator = crypt_iv_essiv_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_benbi_ops = {
+ .ctr = crypt_iv_benbi_ctr,
+ .dtr = crypt_iv_benbi_dtr,
+ .generator = crypt_iv_benbi_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_null_ops = {
+ .generator = crypt_iv_null_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_lmk_ops = {
+ .ctr = crypt_iv_lmk_ctr,
+ .dtr = crypt_iv_lmk_dtr,
+ .init = crypt_iv_lmk_init,
+ .wipe = crypt_iv_lmk_wipe,
+ .generator = crypt_iv_lmk_gen,
+ .post = crypt_iv_lmk_post
+};
+
+static const struct crypt_iv_operations crypt_iv_tcw_ops = {
+ .ctr = crypt_iv_tcw_ctr,
+ .dtr = crypt_iv_tcw_dtr,
+ .init = crypt_iv_tcw_init,
+ .wipe = crypt_iv_tcw_wipe,
+ .generator = crypt_iv_tcw_gen,
+ .post = crypt_iv_tcw_post
+};
+
+static const struct crypt_iv_operations crypt_iv_random_ops = {
+ .generator = crypt_iv_random_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
+ .ctr = crypt_iv_eboiv_ctr,
+ .generator = crypt_iv_eboiv_gen
+};
+
+static const struct crypt_iv_operations crypt_iv_elephant_ops = {
+ .ctr = crypt_iv_elephant_ctr,
+ .dtr = crypt_iv_elephant_dtr,
+ .init = crypt_iv_elephant_init,
+ .wipe = crypt_iv_elephant_wipe,
+ .generator = crypt_iv_elephant_gen,
+ .post = crypt_iv_elephant_post
+};
+
+/*
+ * Integrity extensions
+ */
+static bool crypt_integrity_aead(struct crypt_config *cc)
+{
+ return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
+}
+
+static bool crypt_integrity_hmac(struct crypt_config *cc)
+{
+ return crypt_integrity_aead(cc) && cc->key_mac_size;
+}
+
+/* Get sg containing data */
+static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
+ struct scatterlist *sg)
+{
+ if (unlikely(crypt_integrity_aead(cc)))
+ return &sg[2];
+
+ return sg;
+}
+
+static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
+{
+ struct bio_integrity_payload *bip;
+ unsigned int tag_len;
+ int ret;
+
+ if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
+ return 0;
+
+ bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
+ if (IS_ERR(bip))
+ return PTR_ERR(bip);
+
+ tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
+
+ bip->bip_iter.bi_size = tag_len;
+ bip->bip_iter.bi_sector = io->cc->start + io->sector;
+
+ ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
+ tag_len, offset_in_page(io->integrity_metadata));
+ if (unlikely(ret != tag_len))
+ return -ENOMEM;
+
+ return 0;
+}
+
+static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
+{
+#ifdef CONFIG_BLK_DEV_INTEGRITY
+ struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
+ struct mapped_device *md = dm_table_get_md(ti->table);
+
+ /* From now we require underlying device with our integrity profile */
+ if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
+ ti->error = "Integrity profile not supported.";
+ return -EINVAL;
+ }
+
+ if (bi->tag_size != cc->on_disk_tag_size ||
+ bi->tuple_size != cc->on_disk_tag_size) {
+ ti->error = "Integrity profile tag size mismatch.";
+ return -EINVAL;
+ }
+ if (1 << bi->interval_exp != cc->sector_size) {
+ ti->error = "Integrity profile sector size mismatch.";
+ return -EINVAL;
+ }
+
+ if (crypt_integrity_aead(cc)) {
+ cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
+ DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
+ cc->integrity_tag_size, cc->integrity_iv_size);
+
+ if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
+ ti->error = "Integrity AEAD auth tag size is not supported.";
+ return -EINVAL;
+ }
+ } else if (cc->integrity_iv_size)
+ DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
+ cc->integrity_iv_size);
+
+ if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
+ ti->error = "Not enough space for integrity tag in the profile.";
+ return -EINVAL;
+ }
+
+ return 0;
+#else
+ ti->error = "Integrity profile not supported.";
+ return -EINVAL;
+#endif
+}
+
+static void crypt_convert_init(struct crypt_config *cc,
+ struct convert_context *ctx,
+ struct bio *bio_out, struct bio *bio_in,
+ sector_t sector)
+{
+ ctx->bio_in = bio_in;
+ ctx->bio_out = bio_out;
+ if (bio_in)
+ ctx->iter_in = bio_in->bi_iter;
+ if (bio_out)
+ ctx->iter_out = bio_out->bi_iter;
+ ctx->cc_sector = sector + cc->iv_offset;
+ init_completion(&ctx->restart);
+}
+
+static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
+ void *req)
+{
+ return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
+}
+
+static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
+{
+ return (void *)((char *)dmreq - cc->dmreq_start);
+}
+
+static u8 *iv_of_dmreq(struct crypt_config *cc,
+ struct dm_crypt_request *dmreq)
+{
+ if (crypt_integrity_aead(cc))
+ return (u8 *)ALIGN((unsigned long)(dmreq + 1),
+ crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
+ else
+ return (u8 *)ALIGN((unsigned long)(dmreq + 1),
+ crypto_skcipher_alignmask(any_tfm(cc)) + 1);
+}
+
+static u8 *org_iv_of_dmreq(struct crypt_config *cc,
+ struct dm_crypt_request *dmreq)
+{
+ return iv_of_dmreq(cc, dmreq) + cc->iv_size;
+}
+
+static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
+ struct dm_crypt_request *dmreq)
+{
+ u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
+ return (__le64 *) ptr;
+}
+
+static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
+ struct dm_crypt_request *dmreq)
+{
+ u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
+ cc->iv_size + sizeof(uint64_t);
+ return (unsigned int*)ptr;
+}
+
+static void *tag_from_dmreq(struct crypt_config *cc,
+ struct dm_crypt_request *dmreq)
+{
+ struct convert_context *ctx = dmreq->ctx;
+ struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
+
+ return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
+ cc->on_disk_tag_size];
+}
+
+static void *iv_tag_from_dmreq(struct crypt_config *cc,
+ struct dm_crypt_request *dmreq)
+{
+ return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
+}
+
+static int crypt_convert_block_aead(struct crypt_config *cc,
+ struct convert_context *ctx,
+ struct aead_request *req,
+ unsigned int tag_offset)
+{
+ struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
+ struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
+ struct dm_crypt_request *dmreq;
+ u8 *iv, *org_iv, *tag_iv, *tag;
+ __le64 *sector;
+ int r = 0;
+
+ BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
+
+ /* Reject unexpected unaligned bio. */
+ if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
+ return -EIO;
+
+ dmreq = dmreq_of_req(cc, req);
+ dmreq->iv_sector = ctx->cc_sector;
+ if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
+ dmreq->iv_sector >>= cc->sector_shift;
+ dmreq->ctx = ctx;
+
+ *org_tag_of_dmreq(cc, dmreq) = tag_offset;
+
+ sector = org_sector_of_dmreq(cc, dmreq);
+ *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
+
+ iv = iv_of_dmreq(cc, dmreq);
+ org_iv = org_iv_of_dmreq(cc, dmreq);
+ tag = tag_from_dmreq(cc, dmreq);
+ tag_iv = iv_tag_from_dmreq(cc, dmreq);
+
+ /* AEAD request:
+ * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
+ * | (authenticated) | (auth+encryption) | |
+ * | sector_LE | IV | sector in/out | tag in/out |
+ */
+ sg_init_table(dmreq->sg_in, 4);
+ sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
+ sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
+ sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
+ sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
+
+ sg_init_table(dmreq->sg_out, 4);
+ sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
+ sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
+ sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
+ sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
+
+ if (cc->iv_gen_ops) {
+ /* For READs use IV stored in integrity metadata */
+ if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
+ memcpy(org_iv, tag_iv, cc->iv_size);
+ } else {
+ r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
+ if (r < 0)
+ return r;
+ /* Store generated IV in integrity metadata */
+ if (cc->integrity_iv_size)
+ memcpy(tag_iv, org_iv, cc->iv_size);
+ }
+ /* Working copy of IV, to be modified in crypto API */
+ memcpy(iv, org_iv, cc->iv_size);
+ }
+
+ aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
+ if (bio_data_dir(ctx->bio_in) == WRITE) {
+ aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
+ cc->sector_size, iv);
+ r = crypto_aead_encrypt(req);
+ if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
+ memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
+ cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
+ } else {
+ aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
+ cc->sector_size + cc->integrity_tag_size, iv);
+ r = crypto_aead_decrypt(req);
+ }
+
+ if (r == -EBADMSG) {
+ sector_t s = le64_to_cpu(*sector);
+
+ DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
+ ctx->bio_in->bi_bdev, s);
+ dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
+ ctx->bio_in, s, 0);
+ }
+
+ if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
+ r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
+
+ bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
+ bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
+
+ return r;
+}
+
+static int crypt_convert_block_skcipher(struct crypt_config *cc,
+ struct convert_context *ctx,
+ struct skcipher_request *req,
+ unsigned int tag_offset)
+{
+ struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
+ struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
+ struct scatterlist *sg_in, *sg_out;
+ struct dm_crypt_request *dmreq;
+ u8 *iv, *org_iv, *tag_iv;
+ __le64 *sector;
+ int r = 0;
+
+ /* Reject unexpected unaligned bio. */
+ if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
+ return -EIO;
+
+ dmreq = dmreq_of_req(cc, req);
+ dmreq->iv_sector = ctx->cc_sector;
+ if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
+ dmreq->iv_sector >>= cc->sector_shift;
+ dmreq->ctx = ctx;
+
+ *org_tag_of_dmreq(cc, dmreq) = tag_offset;
+
+ iv = iv_of_dmreq(cc, dmreq);
+ org_iv = org_iv_of_dmreq(cc, dmreq);
+ tag_iv = iv_tag_from_dmreq(cc, dmreq);
+
+ sector = org_sector_of_dmreq(cc, dmreq);
+ *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
+
+ /* For skcipher we use only the first sg item */
+ sg_in = &dmreq->sg_in[0];
+ sg_out = &dmreq->sg_out[0];
+
+ sg_init_table(sg_in, 1);
+ sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
+
+ sg_init_table(sg_out, 1);
+ sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
+
+ if (cc->iv_gen_ops) {
+ /* For READs use IV stored in integrity metadata */
+ if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
+ memcpy(org_iv, tag_iv, cc->integrity_iv_size);
+ } else {
+ r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
+ if (r < 0)
+ return r;
+ /* Data can be already preprocessed in generator */
+ if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
+ sg_in = sg_out;
+ /* Store generated IV in integrity metadata */
+ if (cc->integrity_iv_size)
+ memcpy(tag_iv, org_iv, cc->integrity_iv_size);
+ }
+ /* Working copy of IV, to be modified in crypto API */
+ memcpy(iv, org_iv, cc->iv_size);
+ }
+
+ skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
+
+ if (bio_data_dir(ctx->bio_in) == WRITE)
+ r = crypto_skcipher_encrypt(req);
+ else
+ r = crypto_skcipher_decrypt(req);
+
+ if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
+ r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
+
+ bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
+ bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
+
+ return r;
+}
+
+static void kcryptd_async_done(struct crypto_async_request *async_req,
+ int error);
+
+static int crypt_alloc_req_skcipher(struct crypt_config *cc,
+ struct convert_context *ctx)
+{
+ unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
+
+ if (!ctx->r.req) {
+ ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
+ if (!ctx->r.req)
+ return -ENOMEM;
+ }
+
+ skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
+
+ /*
+ * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
+ * requests if driver request queue is full.
+ */
+ skcipher_request_set_callback(ctx->r.req,
+ CRYPTO_TFM_REQ_MAY_BACKLOG,
+ kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
+
+ return 0;
+}
+
+static int crypt_alloc_req_aead(struct crypt_config *cc,
+ struct convert_context *ctx)
+{
+ if (!ctx->r.req_aead) {
+ ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
+ if (!ctx->r.req_aead)
+ return -ENOMEM;
+ }
+
+ aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
+
+ /*
+ * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
+ * requests if driver request queue is full.
+ */
+ aead_request_set_callback(ctx->r.req_aead,
+ CRYPTO_TFM_REQ_MAY_BACKLOG,
+ kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
+
+ return 0;
+}
+
+static int crypt_alloc_req(struct crypt_config *cc,
+ struct convert_context *ctx)
+{
+ if (crypt_integrity_aead(cc))
+ return crypt_alloc_req_aead(cc, ctx);
+ else
+ return crypt_alloc_req_skcipher(cc, ctx);
+}
+
+static void crypt_free_req_skcipher(struct crypt_config *cc,
+ struct skcipher_request *req, struct bio *base_bio)
+{
+ struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
+
+ if ((struct skcipher_request *)(io + 1) != req)
+ mempool_free(req, &cc->req_pool);
+}
+
+static void crypt_free_req_aead(struct crypt_config *cc,
+ struct aead_request *req, struct bio *base_bio)
+{
+ struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
+
+ if ((struct aead_request *)(io + 1) != req)
+ mempool_free(req, &cc->req_pool);
+}
+
+static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
+{
+ if (crypt_integrity_aead(cc))
+ crypt_free_req_aead(cc, req, base_bio);
+ else
+ crypt_free_req_skcipher(cc, req, base_bio);
+}
+
+/*
+ * Encrypt / decrypt data from one bio to another one (can be the same one)
+ */
+static blk_status_t crypt_convert(struct crypt_config *cc,
+ struct convert_context *ctx, bool atomic, bool reset_pending)
+{
+ unsigned int tag_offset = 0;
+ unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
+ int r;
+
+ /*
+ * if reset_pending is set we are dealing with the bio for the first time,
+ * else we're continuing to work on the previous bio, so don't mess with
+ * the cc_pending counter
+ */
+ if (reset_pending)
+ atomic_set(&ctx->cc_pending, 1);
+
+ while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
+
+ r = crypt_alloc_req(cc, ctx);
+ if (r) {
+ complete(&ctx->restart);
+ return BLK_STS_DEV_RESOURCE;
+ }
+
+ atomic_inc(&ctx->cc_pending);
+
+ if (crypt_integrity_aead(cc))
+ r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
+ else
+ r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
+
+ switch (r) {
+ /*
+ * The request was queued by a crypto driver
+ * but the driver request queue is full, let's wait.
+ */
+ case -EBUSY:
+ if (in_interrupt()) {
+ if (try_wait_for_completion(&ctx->restart)) {
+ /*
+ * we don't have to block to wait for completion,
+ * so proceed
+ */
+ } else {
+ /*
+ * we can't wait for completion without blocking
+ * exit and continue processing in a workqueue
+ */
+ ctx->r.req = NULL;
+ ctx->cc_sector += sector_step;
+ tag_offset++;
+ return BLK_STS_DEV_RESOURCE;
+ }
+ } else {
+ wait_for_completion(&ctx->restart);
+ }
+ reinit_completion(&ctx->restart);
+ fallthrough;
+ /*
+ * The request is queued and processed asynchronously,
+ * completion function kcryptd_async_done() will be called.
+ */
+ case -EINPROGRESS:
+ ctx->r.req = NULL;
+ ctx->cc_sector += sector_step;
+ tag_offset++;
+ continue;
+ /*
+ * The request was already processed (synchronously).
+ */
+ case 0:
+ atomic_dec(&ctx->cc_pending);
+ ctx->cc_sector += sector_step;
+ tag_offset++;
+ if (!atomic)
+ cond_resched();
+ continue;
+ /*
+ * There was a data integrity error.
+ */
+ case -EBADMSG:
+ atomic_dec(&ctx->cc_pending);
+ return BLK_STS_PROTECTION;
+ /*
+ * There was an error while processing the request.
+ */
+ default:
+ atomic_dec(&ctx->cc_pending);
+ return BLK_STS_IOERR;
+ }
+ }
+
+ return 0;
+}
+
+static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
+
+/*
+ * Generate a new unfragmented bio with the given size
+ * This should never violate the device limitations (but only because
+ * max_segment_size is being constrained to PAGE_SIZE).
+ *
+ * This function may be called concurrently. If we allocate from the mempool
+ * concurrently, there is a possibility of deadlock. For example, if we have
+ * mempool of 256 pages, two processes, each wanting 256, pages allocate from
+ * the mempool concurrently, it may deadlock in a situation where both processes
+ * have allocated 128 pages and the mempool is exhausted.
+ *
+ * In order to avoid this scenario we allocate the pages under a mutex.
+ *
+ * In order to not degrade performance with excessive locking, we try
+ * non-blocking allocations without a mutex first but on failure we fallback
+ * to blocking allocations with a mutex.
+ */
+static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
+{
+ struct crypt_config *cc = io->cc;
+ struct bio *clone;
+ unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
+ gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
+ unsigned int i, len, remaining_size;
+ struct page *page;
+
+retry:
+ if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
+ mutex_lock(&cc->bio_alloc_lock);
+
+ clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
+ GFP_NOIO, &cc->bs);
+ clone->bi_private = io;
+ clone->bi_end_io = crypt_endio;
+
+ remaining_size = size;
+
+ for (i = 0; i < nr_iovecs; i++) {
+ page = mempool_alloc(&cc->page_pool, gfp_mask);
+ if (!page) {
+ crypt_free_buffer_pages(cc, clone);
+ bio_put(clone);
+ gfp_mask |= __GFP_DIRECT_RECLAIM;
+ goto retry;
+ }
+
+ len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
+
+ bio_add_page(clone, page, len, 0);
+
+ remaining_size -= len;
+ }
+
+ /* Allocate space for integrity tags */
+ if (dm_crypt_integrity_io_alloc(io, clone)) {
+ crypt_free_buffer_pages(cc, clone);
+ bio_put(clone);
+ clone = NULL;
+ }
+
+ if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
+ mutex_unlock(&cc->bio_alloc_lock);
+
+ return clone;
+}
+
+static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
+{
+ struct bio_vec *bv;
+ struct bvec_iter_all iter_all;
+
+ bio_for_each_segment_all(bv, clone, iter_all) {
+ BUG_ON(!bv->bv_page);
+ mempool_free(bv->bv_page, &cc->page_pool);
+ }
+}
+
+static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
+ struct bio *bio, sector_t sector)
+{
+ io->cc = cc;
+ io->base_bio = bio;
+ io->sector = sector;
+ io->error = 0;
+ io->ctx.r.req = NULL;
+ io->integrity_metadata = NULL;
+ io->integrity_metadata_from_pool = false;
+ io->in_tasklet = false;
+ atomic_set(&io->io_pending, 0);
+}
+
+static void crypt_inc_pending(struct dm_crypt_io *io)
+{
+ atomic_inc(&io->io_pending);
+}
+
+static void kcryptd_io_bio_endio(struct work_struct *work)
+{
+ struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
+ bio_endio(io->base_bio);
+}
+
+/*
+ * One of the bios was finished. Check for completion of
+ * the whole request and correctly clean up the buffer.
+ */
+static void crypt_dec_pending(struct dm_crypt_io *io)
+{
+ struct crypt_config *cc = io->cc;
+ struct bio *base_bio = io->base_bio;
+ blk_status_t error = io->error;
+
+ if (!atomic_dec_and_test(&io->io_pending))
+ return;
+
+ if (io->ctx.r.req)
+ crypt_free_req(cc, io->ctx.r.req, base_bio);
+
+ if (unlikely(io->integrity_metadata_from_pool))
+ mempool_free(io->integrity_metadata, &io->cc->tag_pool);
+ else
+ kfree(io->integrity_metadata);
+
+ base_bio->bi_status = error;
+
+ /*
+ * If we are running this function from our tasklet,
+ * we can't call bio_endio() here, because it will call
+ * clone_endio() from dm.c, which in turn will
+ * free the current struct dm_crypt_io structure with
+ * our tasklet. In this case we need to delay bio_endio()
+ * execution to after the tasklet is done and dequeued.
+ */
+ if (io->in_tasklet) {
+ INIT_WORK(&io->work, kcryptd_io_bio_endio);
+ queue_work(cc->io_queue, &io->work);
+ return;
+ }
+
+ bio_endio(base_bio);
+}
+
+/*
+ * kcryptd/kcryptd_io:
+ *
+ * Needed because it would be very unwise to do decryption in an
+ * interrupt context.
+ *
+ * kcryptd performs the actual encryption or decryption.
+ *
+ * kcryptd_io performs the IO submission.
+ *
+ * They must be separated as otherwise the final stages could be
+ * starved by new requests which can block in the first stages due
+ * to memory allocation.
+ *
+ * The work is done per CPU global for all dm-crypt instances.
+ * They should not depend on each other and do not block.
+ */
+static void crypt_endio(struct bio *clone)
+{
+ struct dm_crypt_io *io = clone->bi_private;
+ struct crypt_config *cc = io->cc;
+ unsigned int rw = bio_data_dir(clone);
+ blk_status_t error;
+
+ /*
+ * free the processed pages
+ */
+ if (rw == WRITE)
+ crypt_free_buffer_pages(cc, clone);
+
+ error = clone->bi_status;
+ bio_put(clone);
+
+ if (rw == READ && !error) {
+ kcryptd_queue_crypt(io);
+ return;
+ }
+
+ if (unlikely(error))
+ io->error = error;
+
+ crypt_dec_pending(io);
+}
+
+#define CRYPT_MAP_READ_GFP GFP_NOWAIT
+
+static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
+{
+ struct crypt_config *cc = io->cc;
+ struct bio *clone;
+
+ /*
+ * We need the original biovec array in order to decrypt the whole bio
+ * data *afterwards* -- thanks to immutable biovecs we don't need to
+ * worry about the block layer modifying the biovec array; so leverage
+ * bio_alloc_clone().
+ */
+ clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
+ if (!clone)
+ return 1;
+ clone->bi_private = io;
+ clone->bi_end_io = crypt_endio;
+
+ crypt_inc_pending(io);
+
+ clone->bi_iter.bi_sector = cc->start + io->sector;
+
+ if (dm_crypt_integrity_io_alloc(io, clone)) {
+ crypt_dec_pending(io);
+ bio_put(clone);
+ return 1;
+ }
+
+ dm_submit_bio_remap(io->base_bio, clone);
+ return 0;
+}
+
+static void kcryptd_io_read_work(struct work_struct *work)
+{
+ struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
+
+ crypt_inc_pending(io);
+ if (kcryptd_io_read(io, GFP_NOIO))
+ io->error = BLK_STS_RESOURCE;
+ crypt_dec_pending(io);
+}
+
+static void kcryptd_queue_read(struct dm_crypt_io *io)
+{
+ struct crypt_config *cc = io->cc;
+
+ INIT_WORK(&io->work, kcryptd_io_read_work);
+ queue_work(cc->io_queue, &io->work);
+}
+
+static void kcryptd_io_write(struct dm_crypt_io *io)
+{
+ struct bio *clone = io->ctx.bio_out;
+
+ dm_submit_bio_remap(io->base_bio, clone);
+}
+
+#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
+
+static int dmcrypt_write(void *data)
+{
+ struct crypt_config *cc = data;
+ struct dm_crypt_io *io;
+
+ while (1) {
+ struct rb_root write_tree;
+ struct blk_plug plug;
+
+ spin_lock_irq(&cc->write_thread_lock);
+continue_locked:
+
+ if (!RB_EMPTY_ROOT(&cc->write_tree))
+ goto pop_from_list;
+
+ set_current_state(TASK_INTERRUPTIBLE);
+
+ spin_unlock_irq(&cc->write_thread_lock);
+
+ if (unlikely(kthread_should_stop())) {
+ set_current_state(TASK_RUNNING);
+ break;
+ }
+
+ schedule();
+
+ set_current_state(TASK_RUNNING);
+ spin_lock_irq(&cc->write_thread_lock);
+ goto continue_locked;
+
+pop_from_list:
+ write_tree = cc->write_tree;
+ cc->write_tree = RB_ROOT;
+ spin_unlock_irq(&cc->write_thread_lock);
+
+ BUG_ON(rb_parent(write_tree.rb_node));
+
+ /*
+ * Note: we cannot walk the tree here with rb_next because
+ * the structures may be freed when kcryptd_io_write is called.
+ */
+ blk_start_plug(&plug);
+ do {
+ io = crypt_io_from_node(rb_first(&write_tree));
+ rb_erase(&io->rb_node, &write_tree);
+ kcryptd_io_write(io);
+ cond_resched();
+ } while (!RB_EMPTY_ROOT(&write_tree));
+ blk_finish_plug(&plug);
+ }
+ return 0;
+}
+
+static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
+{
+ struct bio *clone = io->ctx.bio_out;
+ struct crypt_config *cc = io->cc;
+ unsigned long flags;
+ sector_t sector;
+ struct rb_node **rbp, *parent;
+
+ if (unlikely(io->error)) {
+ crypt_free_buffer_pages(cc, clone);
+ bio_put(clone);
+ crypt_dec_pending(io);
+ return;
+ }
+
+ /* crypt_convert should have filled the clone bio */
+ BUG_ON(io->ctx.iter_out.bi_size);
+
+ clone->bi_iter.bi_sector = cc->start + io->sector;
+
+ if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
+ test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
+ dm_submit_bio_remap(io->base_bio, clone);
+ return;
+ }
+
+ spin_lock_irqsave(&cc->write_thread_lock, flags);
+ if (RB_EMPTY_ROOT(&cc->write_tree))
+ wake_up_process(cc->write_thread);
+ rbp = &cc->write_tree.rb_node;
+ parent = NULL;
+ sector = io->sector;
+ while (*rbp) {
+ parent = *rbp;
+ if (sector < crypt_io_from_node(parent)->sector)
+ rbp = &(*rbp)->rb_left;
+ else
+ rbp = &(*rbp)->rb_right;
+ }
+ rb_link_node(&io->rb_node, parent, rbp);
+ rb_insert_color(&io->rb_node, &cc->write_tree);
+ spin_unlock_irqrestore(&cc->write_thread_lock, flags);
+}
+
+static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
+ struct convert_context *ctx)
+
+{
+ if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
+ return false;
+
+ /*
+ * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
+ * constraints so they do not need to be issued inline by
+ * kcryptd_crypt_write_convert().
+ */
+ switch (bio_op(ctx->bio_in)) {
+ case REQ_OP_WRITE:
+ case REQ_OP_WRITE_ZEROES:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static void kcryptd_crypt_write_continue(struct work_struct *work)
+{
+ struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
+ struct crypt_config *cc = io->cc;
+ struct convert_context *ctx = &io->ctx;
+ int crypt_finished;
+ sector_t sector = io->sector;
+ blk_status_t r;
+
+ wait_for_completion(&ctx->restart);
+ reinit_completion(&ctx->restart);
+
+ r = crypt_convert(cc, &io->ctx, true, false);
+ if (r)
+ io->error = r;
+ crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
+ if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
+ /* Wait for completion signaled by kcryptd_async_done() */
+ wait_for_completion(&ctx->restart);
+ crypt_finished = 1;
+ }
+
+ /* Encryption was already finished, submit io now */
+ if (crypt_finished) {
+ kcryptd_crypt_write_io_submit(io, 0);
+ io->sector = sector;
+ }
+
+ crypt_dec_pending(io);
+}
+
+static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
+{
+ struct crypt_config *cc = io->cc;
+ struct convert_context *ctx = &io->ctx;
+ struct bio *clone;
+ int crypt_finished;
+ sector_t sector = io->sector;
+ blk_status_t r;
+
+ /*
+ * Prevent io from disappearing until this function completes.
+ */
+ crypt_inc_pending(io);
+ crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
+
+ clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
+ if (unlikely(!clone)) {
+ io->error = BLK_STS_IOERR;
+ goto dec;
+ }
+
+ io->ctx.bio_out = clone;
+ io->ctx.iter_out = clone->bi_iter;
+
+ sector += bio_sectors(clone);
+
+ crypt_inc_pending(io);
+ r = crypt_convert(cc, ctx,
+ test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
+ /*
+ * Crypto API backlogged the request, because its queue was full
+ * and we're in softirq context, so continue from a workqueue
+ * (TODO: is it actually possible to be in softirq in the write path?)
+ */
+ if (r == BLK_STS_DEV_RESOURCE) {
+ INIT_WORK(&io->work, kcryptd_crypt_write_continue);
+ queue_work(cc->crypt_queue, &io->work);
+ return;
+ }
+ if (r)
+ io->error = r;
+ crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
+ if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
+ /* Wait for completion signaled by kcryptd_async_done() */
+ wait_for_completion(&ctx->restart);
+ crypt_finished = 1;
+ }
+
+ /* Encryption was already finished, submit io now */
+ if (crypt_finished) {
+ kcryptd_crypt_write_io_submit(io, 0);
+ io->sector = sector;
+ }
+
+dec:
+ crypt_dec_pending(io);
+}
+
+static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
+{
+ crypt_dec_pending(io);
+}
+
+static void kcryptd_crypt_read_continue(struct work_struct *work)
+{
+ struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
+ struct crypt_config *cc = io->cc;
+ blk_status_t r;
+
+ wait_for_completion(&io->ctx.restart);
+ reinit_completion(&io->ctx.restart);
+
+ r = crypt_convert(cc, &io->ctx, true, false);
+ if (r)
+ io->error = r;
+
+ if (atomic_dec_and_test(&io->ctx.cc_pending))
+ kcryptd_crypt_read_done(io);
+
+ crypt_dec_pending(io);
+}
+
+static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
+{
+ struct crypt_config *cc = io->cc;
+ blk_status_t r;
+
+ crypt_inc_pending(io);
+
+ crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
+ io->sector);
+
+ r = crypt_convert(cc, &io->ctx,
+ test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
+ /*
+ * Crypto API backlogged the request, because its queue was full
+ * and we're in softirq context, so continue from a workqueue
+ */
+ if (r == BLK_STS_DEV_RESOURCE) {
+ INIT_WORK(&io->work, kcryptd_crypt_read_continue);
+ queue_work(cc->crypt_queue, &io->work);
+ return;
+ }
+ if (r)
+ io->error = r;
+
+ if (atomic_dec_and_test(&io->ctx.cc_pending))
+ kcryptd_crypt_read_done(io);
+
+ crypt_dec_pending(io);
+}
+
+static void kcryptd_async_done(struct crypto_async_request *async_req,
+ int error)
+{
+ struct dm_crypt_request *dmreq = async_req->data;
+ struct convert_context *ctx = dmreq->ctx;
+ struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
+ struct crypt_config *cc = io->cc;
+
+ /*
+ * A request from crypto driver backlog is going to be processed now,
+ * finish the completion and continue in crypt_convert().
+ * (Callback will be called for the second time for this request.)
+ */
+ if (error == -EINPROGRESS) {
+ complete(&ctx->restart);
+ return;
+ }
+
+ if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
+ error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
+
+ if (error == -EBADMSG) {
+ sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
+
+ DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
+ ctx->bio_in->bi_bdev, s);
+ dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
+ ctx->bio_in, s, 0);
+ io->error = BLK_STS_PROTECTION;
+ } else if (error < 0)
+ io->error = BLK_STS_IOERR;
+
+ crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
+
+ if (!atomic_dec_and_test(&ctx->cc_pending))
+ return;
+
+ /*
+ * The request is fully completed: for inline writes, let
+ * kcryptd_crypt_write_convert() do the IO submission.
+ */
+ if (bio_data_dir(io->base_bio) == READ) {
+ kcryptd_crypt_read_done(io);
+ return;
+ }
+
+ if (kcryptd_crypt_write_inline(cc, ctx)) {
+ complete(&ctx->restart);
+ return;
+ }
+
+ kcryptd_crypt_write_io_submit(io, 1);
+}
+
+static void kcryptd_crypt(struct work_struct *work)
+{
+ struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
+
+ if (bio_data_dir(io->base_bio) == READ)
+ kcryptd_crypt_read_convert(io);
+ else
+ kcryptd_crypt_write_convert(io);
+}
+
+static void kcryptd_crypt_tasklet(unsigned long work)
+{
+ kcryptd_crypt((struct work_struct *)work);
+}
+
+static void kcryptd_queue_crypt(struct dm_crypt_io *io)
+{
+ struct crypt_config *cc = io->cc;
+
+ if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
+ (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
+ /*
+ * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
+ * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
+ * it is being executed with irqs disabled.
+ */
+ if (in_hardirq() || irqs_disabled()) {
+ io->in_tasklet = true;
+ tasklet_init(&io->tasklet, kcryptd_crypt_tasklet, (unsigned long)&io->work);
+ tasklet_schedule(&io->tasklet);
+ return;
+ }
+
+ kcryptd_crypt(&io->work);
+ return;
+ }
+
+ INIT_WORK(&io->work, kcryptd_crypt);
+ queue_work(cc->crypt_queue, &io->work);
+}
+
+static void crypt_free_tfms_aead(struct crypt_config *cc)
+{
+ if (!cc->cipher_tfm.tfms_aead)
+ return;
+
+ if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
+ crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
+ cc->cipher_tfm.tfms_aead[0] = NULL;
+ }
+
+ kfree(cc->cipher_tfm.tfms_aead);
+ cc->cipher_tfm.tfms_aead = NULL;
+}
+
+static void crypt_free_tfms_skcipher(struct crypt_config *cc)
+{
+ unsigned int i;
+
+ if (!cc->cipher_tfm.tfms)
+ return;
+
+ for (i = 0; i < cc->tfms_count; i++)
+ if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
+ crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
+ cc->cipher_tfm.tfms[i] = NULL;
+ }
+
+ kfree(cc->cipher_tfm.tfms);
+ cc->cipher_tfm.tfms = NULL;
+}
+
+static void crypt_free_tfms(struct crypt_config *cc)
+{
+ if (crypt_integrity_aead(cc))
+ crypt_free_tfms_aead(cc);
+ else
+ crypt_free_tfms_skcipher(cc);
+}
+
+static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
+{
+ unsigned int i;
+ int err;
+
+ cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
+ sizeof(struct crypto_skcipher *),
+ GFP_KERNEL);
+ if (!cc->cipher_tfm.tfms)
+ return -ENOMEM;
+
+ for (i = 0; i < cc->tfms_count; i++) {
+ cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
+ CRYPTO_ALG_ALLOCATES_MEMORY);
+ if (IS_ERR(cc->cipher_tfm.tfms[i])) {
+ err = PTR_ERR(cc->cipher_tfm.tfms[i]);
+ crypt_free_tfms(cc);
+ return err;
+ }
+ }
+
+ /*
+ * dm-crypt performance can vary greatly depending on which crypto
+ * algorithm implementation is used. Help people debug performance
+ * problems by logging the ->cra_driver_name.
+ */
+ DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
+ crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
+ return 0;
+}
+
+static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
+{
+ int err;
+
+ cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
+ if (!cc->cipher_tfm.tfms)
+ return -ENOMEM;
+
+ cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
+ CRYPTO_ALG_ALLOCATES_MEMORY);
+ if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
+ err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
+ crypt_free_tfms(cc);
+ return err;
+ }
+
+ DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
+ crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
+ return 0;
+}
+
+static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
+{
+ if (crypt_integrity_aead(cc))
+ return crypt_alloc_tfms_aead(cc, ciphermode);
+ else
+ return crypt_alloc_tfms_skcipher(cc, ciphermode);
+}
+
+static unsigned int crypt_subkey_size(struct crypt_config *cc)
+{
+ return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
+}
+
+static unsigned int crypt_authenckey_size(struct crypt_config *cc)
+{
+ return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
+}
+
+/*
+ * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
+ * the key must be for some reason in special format.
+ * This funcion converts cc->key to this special format.
+ */
+static void crypt_copy_authenckey(char *p, const void *key,
+ unsigned int enckeylen, unsigned int authkeylen)
+{
+ struct crypto_authenc_key_param *param;
+ struct rtattr *rta;
+
+ rta = (struct rtattr *)p;
+ param = RTA_DATA(rta);
+ param->enckeylen = cpu_to_be32(enckeylen);
+ rta->rta_len = RTA_LENGTH(sizeof(*param));
+ rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
+ p += RTA_SPACE(sizeof(*param));
+ memcpy(p, key + enckeylen, authkeylen);
+ p += authkeylen;
+ memcpy(p, key, enckeylen);
+}
+
+static int crypt_setkey(struct crypt_config *cc)
+{
+ unsigned int subkey_size;
+ int err = 0, i, r;
+
+ /* Ignore extra keys (which are used for IV etc) */
+ subkey_size = crypt_subkey_size(cc);
+
+ if (crypt_integrity_hmac(cc)) {
+ if (subkey_size < cc->key_mac_size)
+ return -EINVAL;
+
+ crypt_copy_authenckey(cc->authenc_key, cc->key,
+ subkey_size - cc->key_mac_size,
+ cc->key_mac_size);
+ }
+
+ for (i = 0; i < cc->tfms_count; i++) {
+ if (crypt_integrity_hmac(cc))
+ r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
+ cc->authenc_key, crypt_authenckey_size(cc));
+ else if (crypt_integrity_aead(cc))
+ r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
+ cc->key + (i * subkey_size),
+ subkey_size);
+ else
+ r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
+ cc->key + (i * subkey_size),
+ subkey_size);
+ if (r)
+ err = r;
+ }
+
+ if (crypt_integrity_hmac(cc))
+ memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
+
+ return err;
+}
+
+#ifdef CONFIG_KEYS
+
+static bool contains_whitespace(const char *str)
+{
+ while (*str)
+ if (isspace(*str++))
+ return true;
+ return false;
+}
+
+static int set_key_user(struct crypt_config *cc, struct key *key)
+{
+ const struct user_key_payload *ukp;
+
+ ukp = user_key_payload_locked(key);
+ if (!ukp)
+ return -EKEYREVOKED;
+
+ if (cc->key_size != ukp->datalen)
+ return -EINVAL;
+
+ memcpy(cc->key, ukp->data, cc->key_size);
+
+ return 0;
+}
+
+static int set_key_encrypted(struct crypt_config *cc, struct key *key)
+{
+ const struct encrypted_key_payload *ekp;
+
+ ekp = key->payload.data[0];
+ if (!ekp)
+ return -EKEYREVOKED;
+
+ if (cc->key_size != ekp->decrypted_datalen)
+ return -EINVAL;
+
+ memcpy(cc->key, ekp->decrypted_data, cc->key_size);
+
+ return 0;
+}
+
+static int set_key_trusted(struct crypt_config *cc, struct key *key)
+{
+ const struct trusted_key_payload *tkp;
+
+ tkp = key->payload.data[0];
+ if (!tkp)
+ return -EKEYREVOKED;
+
+ if (cc->key_size != tkp->key_len)
+ return -EINVAL;
+
+ memcpy(cc->key, tkp->key, cc->key_size);
+
+ return 0;
+}
+
+static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
+{
+ char *new_key_string, *key_desc;
+ int ret;
+ struct key_type *type;
+ struct key *key;
+ int (*set_key)(struct crypt_config *cc, struct key *key);
+
+ /*
+ * Reject key_string with whitespace. dm core currently lacks code for
+ * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
+ */
+ if (contains_whitespace(key_string)) {
+ DMERR("whitespace chars not allowed in key string");
+ return -EINVAL;
+ }
+
+ /* look for next ':' separating key_type from key_description */
+ key_desc = strpbrk(key_string, ":");
+ if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
+ return -EINVAL;
+
+ if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
+ type = &key_type_logon;
+ set_key = set_key_user;
+ } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
+ type = &key_type_user;
+ set_key = set_key_user;
+ } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
+ !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
+ type = &key_type_encrypted;
+ set_key = set_key_encrypted;
+ } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
+ !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
+ type = &key_type_trusted;
+ set_key = set_key_trusted;
+ } else {
+ return -EINVAL;
+ }
+
+ new_key_string = kstrdup(key_string, GFP_KERNEL);
+ if (!new_key_string)
+ return -ENOMEM;
+
+ key = request_key(type, key_desc + 1, NULL);
+ if (IS_ERR(key)) {
+ kfree_sensitive(new_key_string);
+ return PTR_ERR(key);
+ }
+
+ down_read(&key->sem);
+
+ ret = set_key(cc, key);
+ if (ret < 0) {
+ up_read(&key->sem);
+ key_put(key);
+ kfree_sensitive(new_key_string);
+ return ret;
+ }
+
+ up_read(&key->sem);
+ key_put(key);
+
+ /* clear the flag since following operations may invalidate previously valid key */
+ clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
+
+ ret = crypt_setkey(cc);
+
+ if (!ret) {
+ set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
+ kfree_sensitive(cc->key_string);
+ cc->key_string = new_key_string;
+ } else
+ kfree_sensitive(new_key_string);
+
+ return ret;
+}
+
+static int get_key_size(char **key_string)
+{
+ char *colon, dummy;
+ int ret;
+
+ if (*key_string[0] != ':')
+ return strlen(*key_string) >> 1;
+
+ /* look for next ':' in key string */
+ colon = strpbrk(*key_string + 1, ":");
+ if (!colon)
+ return -EINVAL;
+
+ if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
+ return -EINVAL;
+
+ *key_string = colon;
+
+ /* remaining key string should be :<logon|user>:<key_desc> */
+
+ return ret;
+}
+
+#else
+
+static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
+{
+ return -EINVAL;
+}
+
+static int get_key_size(char **key_string)
+{
+ return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
+}
+
+#endif /* CONFIG_KEYS */
+
+static int crypt_set_key(struct crypt_config *cc, char *key)
+{
+ int r = -EINVAL;
+ int key_string_len = strlen(key);
+
+ /* Hyphen (which gives a key_size of zero) means there is no key. */
+ if (!cc->key_size && strcmp(key, "-"))
+ goto out;
+
+ /* ':' means the key is in kernel keyring, short-circuit normal key processing */
+ if (key[0] == ':') {
+ r = crypt_set_keyring_key(cc, key + 1);
+ goto out;
+ }
+
+ /* clear the flag since following operations may invalidate previously valid key */
+ clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
+
+ /* wipe references to any kernel keyring key */
+ kfree_sensitive(cc->key_string);
+ cc->key_string = NULL;
+
+ /* Decode key from its hex representation. */
+ if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
+ goto out;
+
+ r = crypt_setkey(cc);
+ if (!r)
+ set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
+
+out:
+ /* Hex key string not needed after here, so wipe it. */
+ memset(key, '0', key_string_len);
+
+ return r;
+}
+
+static int crypt_wipe_key(struct crypt_config *cc)
+{
+ int r;
+
+ clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
+ get_random_bytes(&cc->key, cc->key_size);
+
+ /* Wipe IV private keys */
+ if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
+ r = cc->iv_gen_ops->wipe(cc);
+ if (r)
+ return r;
+ }
+
+ kfree_sensitive(cc->key_string);
+ cc->key_string = NULL;
+ r = crypt_setkey(cc);
+ memset(&cc->key, 0, cc->key_size * sizeof(u8));
+
+ return r;
+}
+
+static void crypt_calculate_pages_per_client(void)
+{
+ unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
+
+ if (!dm_crypt_clients_n)
+ return;
+
+ pages /= dm_crypt_clients_n;
+ if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
+ pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
+ dm_crypt_pages_per_client = pages;
+}
+
+static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
+{
+ struct crypt_config *cc = pool_data;
+ struct page *page;
+
+ /*
+ * Note, percpu_counter_read_positive() may over (and under) estimate
+ * the current usage by at most (batch - 1) * num_online_cpus() pages,
+ * but avoids potential spinlock contention of an exact result.
+ */
+ if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
+ likely(gfp_mask & __GFP_NORETRY))
+ return NULL;
+
+ page = alloc_page(gfp_mask);
+ if (likely(page != NULL))
+ percpu_counter_add(&cc->n_allocated_pages, 1);
+
+ return page;
+}
+
+static void crypt_page_free(void *page, void *pool_data)
+{
+ struct crypt_config *cc = pool_data;
+
+ __free_page(page);
+ percpu_counter_sub(&cc->n_allocated_pages, 1);
+}
+
+static void crypt_dtr(struct dm_target *ti)
+{
+ struct crypt_config *cc = ti->private;
+
+ ti->private = NULL;
+
+ if (!cc)
+ return;
+
+ if (cc->write_thread)
+ kthread_stop(cc->write_thread);
+
+ if (cc->io_queue)
+ destroy_workqueue(cc->io_queue);
+ if (cc->crypt_queue)
+ destroy_workqueue(cc->crypt_queue);
+
+ crypt_free_tfms(cc);
+
+ bioset_exit(&cc->bs);
+
+ mempool_exit(&cc->page_pool);
+ mempool_exit(&cc->req_pool);
+ mempool_exit(&cc->tag_pool);
+
+ WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
+ percpu_counter_destroy(&cc->n_allocated_pages);
+
+ if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
+ cc->iv_gen_ops->dtr(cc);
+
+ if (cc->dev)
+ dm_put_device(ti, cc->dev);
+
+ kfree_sensitive(cc->cipher_string);
+ kfree_sensitive(cc->key_string);
+ kfree_sensitive(cc->cipher_auth);
+ kfree_sensitive(cc->authenc_key);
+
+ mutex_destroy(&cc->bio_alloc_lock);
+
+ /* Must zero key material before freeing */
+ kfree_sensitive(cc);
+
+ spin_lock(&dm_crypt_clients_lock);
+ WARN_ON(!dm_crypt_clients_n);
+ dm_crypt_clients_n--;
+ crypt_calculate_pages_per_client();
+ spin_unlock(&dm_crypt_clients_lock);
+
+ dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
+}
+
+static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
+{
+ struct crypt_config *cc = ti->private;
+
+ if (crypt_integrity_aead(cc))
+ cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
+ else
+ cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
+
+ if (cc->iv_size)
+ /* at least a 64 bit sector number should fit in our buffer */
+ cc->iv_size = max(cc->iv_size,
+ (unsigned int)(sizeof(u64) / sizeof(u8)));
+ else if (ivmode) {
+ DMWARN("Selected cipher does not support IVs");
+ ivmode = NULL;
+ }
+
+ /* Choose ivmode, see comments at iv code. */
+ if (ivmode == NULL)
+ cc->iv_gen_ops = NULL;
+ else if (strcmp(ivmode, "plain") == 0)
+ cc->iv_gen_ops = &crypt_iv_plain_ops;
+ else if (strcmp(ivmode, "plain64") == 0)
+ cc->iv_gen_ops = &crypt_iv_plain64_ops;
+ else if (strcmp(ivmode, "plain64be") == 0)
+ cc->iv_gen_ops = &crypt_iv_plain64be_ops;
+ else if (strcmp(ivmode, "essiv") == 0)
+ cc->iv_gen_ops = &crypt_iv_essiv_ops;
+ else if (strcmp(ivmode, "benbi") == 0)
+ cc->iv_gen_ops = &crypt_iv_benbi_ops;
+ else if (strcmp(ivmode, "null") == 0)
+ cc->iv_gen_ops = &crypt_iv_null_ops;
+ else if (strcmp(ivmode, "eboiv") == 0)
+ cc->iv_gen_ops = &crypt_iv_eboiv_ops;
+ else if (strcmp(ivmode, "elephant") == 0) {
+ cc->iv_gen_ops = &crypt_iv_elephant_ops;
+ cc->key_parts = 2;
+ cc->key_extra_size = cc->key_size / 2;
+ if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
+ return -EINVAL;
+ set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
+ } else if (strcmp(ivmode, "lmk") == 0) {
+ cc->iv_gen_ops = &crypt_iv_lmk_ops;
+ /*
+ * Version 2 and 3 is recognised according
+ * to length of provided multi-key string.
+ * If present (version 3), last key is used as IV seed.
+ * All keys (including IV seed) are always the same size.
+ */
+ if (cc->key_size % cc->key_parts) {
+ cc->key_parts++;
+ cc->key_extra_size = cc->key_size / cc->key_parts;
+ }
+ } else if (strcmp(ivmode, "tcw") == 0) {
+ cc->iv_gen_ops = &crypt_iv_tcw_ops;
+ cc->key_parts += 2; /* IV + whitening */
+ cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
+ } else if (strcmp(ivmode, "random") == 0) {
+ cc->iv_gen_ops = &crypt_iv_random_ops;
+ /* Need storage space in integrity fields. */
+ cc->integrity_iv_size = cc->iv_size;
+ } else {
+ ti->error = "Invalid IV mode";
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/*
+ * Workaround to parse HMAC algorithm from AEAD crypto API spec.
+ * The HMAC is needed to calculate tag size (HMAC digest size).
+ * This should be probably done by crypto-api calls (once available...)
+ */
+static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
+{
+ char *start, *end, *mac_alg = NULL;
+ struct crypto_ahash *mac;
+
+ if (!strstarts(cipher_api, "authenc("))
+ return 0;
+
+ start = strchr(cipher_api, '(');
+ end = strchr(cipher_api, ',');
+ if (!start || !end || ++start > end)
+ return -EINVAL;
+
+ mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
+ if (!mac_alg)
+ return -ENOMEM;
+ strncpy(mac_alg, start, end - start);
+
+ mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
+ kfree(mac_alg);
+
+ if (IS_ERR(mac))
+ return PTR_ERR(mac);
+
+ cc->key_mac_size = crypto_ahash_digestsize(mac);
+ crypto_free_ahash(mac);
+
+ cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
+ if (!cc->authenc_key)
+ return -ENOMEM;
+
+ return 0;
+}
+
+static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
+ char **ivmode, char **ivopts)
+{
+ struct crypt_config *cc = ti->private;
+ char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
+ int ret = -EINVAL;
+
+ cc->tfms_count = 1;
+
+ /*
+ * New format (capi: prefix)
+ * capi:cipher_api_spec-iv:ivopts
+ */
+ tmp = &cipher_in[strlen("capi:")];
+
+ /* Separate IV options if present, it can contain another '-' in hash name */
+ *ivopts = strrchr(tmp, ':');
+ if (*ivopts) {
+ **ivopts = '\0';
+ (*ivopts)++;
+ }
+ /* Parse IV mode */
+ *ivmode = strrchr(tmp, '-');
+ if (*ivmode) {
+ **ivmode = '\0';
+ (*ivmode)++;
+ }
+ /* The rest is crypto API spec */
+ cipher_api = tmp;
+
+ /* Alloc AEAD, can be used only in new format. */
+ if (crypt_integrity_aead(cc)) {
+ ret = crypt_ctr_auth_cipher(cc, cipher_api);
+ if (ret < 0) {
+ ti->error = "Invalid AEAD cipher spec";
+ return -ENOMEM;
+ }
+ }
+
+ if (*ivmode && !strcmp(*ivmode, "lmk"))
+ cc->tfms_count = 64;
+
+ if (*ivmode && !strcmp(*ivmode, "essiv")) {
+ if (!*ivopts) {
+ ti->error = "Digest algorithm missing for ESSIV mode";
+ return -EINVAL;
+ }
+ ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
+ cipher_api, *ivopts);
+ if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
+ ti->error = "Cannot allocate cipher string";
+ return -ENOMEM;
+ }
+ cipher_api = buf;
+ }
+
+ cc->key_parts = cc->tfms_count;
+
+ /* Allocate cipher */
+ ret = crypt_alloc_tfms(cc, cipher_api);
+ if (ret < 0) {
+ ti->error = "Error allocating crypto tfm";
+ return ret;
+ }
+
+ if (crypt_integrity_aead(cc))
+ cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
+ else
+ cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
+
+ return 0;
+}
+
+static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
+ char **ivmode, char **ivopts)
+{
+ struct crypt_config *cc = ti->private;
+ char *tmp, *cipher, *chainmode, *keycount;
+ char *cipher_api = NULL;
+ int ret = -EINVAL;
+ char dummy;
+
+ if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
+ ti->error = "Bad cipher specification";
+ return -EINVAL;
+ }
+
+ /*
+ * Legacy dm-crypt cipher specification
+ * cipher[:keycount]-mode-iv:ivopts
+ */
+ tmp = cipher_in;
+ keycount = strsep(&tmp, "-");
+ cipher = strsep(&keycount, ":");
+
+ if (!keycount)
+ cc->tfms_count = 1;
+ else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
+ !is_power_of_2(cc->tfms_count)) {
+ ti->error = "Bad cipher key count specification";
+ return -EINVAL;
+ }
+ cc->key_parts = cc->tfms_count;
+
+ chainmode = strsep(&tmp, "-");
+ *ivmode = strsep(&tmp, ":");
+ *ivopts = tmp;
+
+ /*
+ * For compatibility with the original dm-crypt mapping format, if
+ * only the cipher name is supplied, use cbc-plain.
+ */
+ if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
+ chainmode = "cbc";
+ *ivmode = "plain";
+ }
+
+ if (strcmp(chainmode, "ecb") && !*ivmode) {
+ ti->error = "IV mechanism required";
+ return -EINVAL;
+ }
+
+ cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
+ if (!cipher_api)
+ goto bad_mem;
+
+ if (*ivmode && !strcmp(*ivmode, "essiv")) {
+ if (!*ivopts) {
+ ti->error = "Digest algorithm missing for ESSIV mode";
+ kfree(cipher_api);
+ return -EINVAL;
+ }
+ ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
+ "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
+ } else {
+ ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
+ "%s(%s)", chainmode, cipher);
+ }
+ if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
+ kfree(cipher_api);
+ goto bad_mem;
+ }
+
+ /* Allocate cipher */
+ ret = crypt_alloc_tfms(cc, cipher_api);
+ if (ret < 0) {
+ ti->error = "Error allocating crypto tfm";
+ kfree(cipher_api);
+ return ret;
+ }
+ kfree(cipher_api);
+
+ return 0;
+bad_mem:
+ ti->error = "Cannot allocate cipher strings";
+ return -ENOMEM;
+}
+
+static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
+{
+ struct crypt_config *cc = ti->private;
+ char *ivmode = NULL, *ivopts = NULL;
+ int ret;
+
+ cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
+ if (!cc->cipher_string) {
+ ti->error = "Cannot allocate cipher strings";
+ return -ENOMEM;
+ }
+
+ if (strstarts(cipher_in, "capi:"))
+ ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
+ else
+ ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
+ if (ret)
+ return ret;
+
+ /* Initialize IV */
+ ret = crypt_ctr_ivmode(ti, ivmode);
+ if (ret < 0)
+ return ret;
+
+ /* Initialize and set key */
+ ret = crypt_set_key(cc, key);
+ if (ret < 0) {
+ ti->error = "Error decoding and setting key";
+ return ret;
+ }
+
+ /* Allocate IV */
+ if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
+ ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
+ if (ret < 0) {
+ ti->error = "Error creating IV";
+ return ret;
+ }
+ }
+
+ /* Initialize IV (set keys for ESSIV etc) */
+ if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
+ ret = cc->iv_gen_ops->init(cc);
+ if (ret < 0) {
+ ti->error = "Error initialising IV";
+ return ret;
+ }
+ }
+
+ /* wipe the kernel key payload copy */
+ if (cc->key_string)
+ memset(cc->key, 0, cc->key_size * sizeof(u8));
+
+ return ret;
+}
+
+static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ struct crypt_config *cc = ti->private;
+ struct dm_arg_set as;
+ static const struct dm_arg _args[] = {
+ {0, 8, "Invalid number of feature args"},
+ };
+ unsigned int opt_params, val;
+ const char *opt_string, *sval;
+ char dummy;
+ int ret;
+
+ /* Optional parameters */
+ as.argc = argc;
+ as.argv = argv;
+
+ ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
+ if (ret)
+ return ret;
+
+ while (opt_params--) {
+ opt_string = dm_shift_arg(&as);
+ if (!opt_string) {
+ ti->error = "Not enough feature arguments";
+ return -EINVAL;
+ }
+
+ if (!strcasecmp(opt_string, "allow_discards"))
+ ti->num_discard_bios = 1;
+
+ else if (!strcasecmp(opt_string, "same_cpu_crypt"))
+ set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
+
+ else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
+ set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
+ else if (!strcasecmp(opt_string, "no_read_workqueue"))
+ set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
+ else if (!strcasecmp(opt_string, "no_write_workqueue"))
+ set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
+ else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
+ if (val == 0 || val > MAX_TAG_SIZE) {
+ ti->error = "Invalid integrity arguments";
+ return -EINVAL;
+ }
+ cc->on_disk_tag_size = val;
+ sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
+ if (!strcasecmp(sval, "aead")) {
+ set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
+ } else if (strcasecmp(sval, "none")) {
+ ti->error = "Unknown integrity profile";
+ return -EINVAL;
+ }
+
+ cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
+ if (!cc->cipher_auth)
+ return -ENOMEM;
+ } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
+ if (cc->sector_size < (1 << SECTOR_SHIFT) ||
+ cc->sector_size > 4096 ||
+ (cc->sector_size & (cc->sector_size - 1))) {
+ ti->error = "Invalid feature value for sector_size";
+ return -EINVAL;
+ }
+ if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
+ ti->error = "Device size is not multiple of sector_size feature";
+ return -EINVAL;
+ }
+ cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
+ } else if (!strcasecmp(opt_string, "iv_large_sectors"))
+ set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
+ else {
+ ti->error = "Invalid feature arguments";
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+#ifdef CONFIG_BLK_DEV_ZONED
+static int crypt_report_zones(struct dm_target *ti,
+ struct dm_report_zones_args *args, unsigned int nr_zones)
+{
+ struct crypt_config *cc = ti->private;
+
+ return dm_report_zones(cc->dev->bdev, cc->start,
+ cc->start + dm_target_offset(ti, args->next_sector),
+ args, nr_zones);
+}
+#else
+#define crypt_report_zones NULL
+#endif
+
+/*
+ * Construct an encryption mapping:
+ * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
+ */
+static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ struct crypt_config *cc;
+ const char *devname = dm_table_device_name(ti->table);
+ int key_size;
+ unsigned int align_mask;
+ unsigned long long tmpll;
+ int ret;
+ size_t iv_size_padding, additional_req_size;
+ char dummy;
+
+ if (argc < 5) {
+ ti->error = "Not enough arguments";
+ return -EINVAL;
+ }
+
+ key_size = get_key_size(&argv[1]);
+ if (key_size < 0) {
+ ti->error = "Cannot parse key size";
+ return -EINVAL;
+ }
+
+ cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
+ if (!cc) {
+ ti->error = "Cannot allocate encryption context";
+ return -ENOMEM;
+ }
+ cc->key_size = key_size;
+ cc->sector_size = (1 << SECTOR_SHIFT);
+ cc->sector_shift = 0;
+
+ ti->private = cc;
+
+ spin_lock(&dm_crypt_clients_lock);
+ dm_crypt_clients_n++;
+ crypt_calculate_pages_per_client();
+ spin_unlock(&dm_crypt_clients_lock);
+
+ ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
+ if (ret < 0)
+ goto bad;
+
+ /* Optional parameters need to be read before cipher constructor */
+ if (argc > 5) {
+ ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
+ if (ret)
+ goto bad;
+ }
+
+ ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
+ if (ret < 0)
+ goto bad;
+
+ if (crypt_integrity_aead(cc)) {
+ cc->dmreq_start = sizeof(struct aead_request);
+ cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
+ align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
+ } else {
+ cc->dmreq_start = sizeof(struct skcipher_request);
+ cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
+ align_mask = crypto_skcipher_alignmask(any_tfm(cc));
+ }
+ cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
+
+ if (align_mask < CRYPTO_MINALIGN) {
+ /* Allocate the padding exactly */
+ iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
+ & align_mask;
+ } else {
+ /*
+ * If the cipher requires greater alignment than kmalloc
+ * alignment, we don't know the exact position of the
+ * initialization vector. We must assume worst case.
+ */
+ iv_size_padding = align_mask;
+ }
+
+ /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
+ additional_req_size = sizeof(struct dm_crypt_request) +
+ iv_size_padding + cc->iv_size +
+ cc->iv_size +
+ sizeof(uint64_t) +
+ sizeof(unsigned int);
+
+ ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
+ if (ret) {
+ ti->error = "Cannot allocate crypt request mempool";
+ goto bad;
+ }
+
+ cc->per_bio_data_size = ti->per_io_data_size =
+ ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
+ ARCH_KMALLOC_MINALIGN);
+
+ ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
+ if (ret) {
+ ti->error = "Cannot allocate page mempool";
+ goto bad;
+ }
+
+ ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
+ if (ret) {
+ ti->error = "Cannot allocate crypt bioset";
+ goto bad;
+ }
+
+ mutex_init(&cc->bio_alloc_lock);
+
+ ret = -EINVAL;
+ if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
+ (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
+ ti->error = "Invalid iv_offset sector";
+ goto bad;
+ }
+ cc->iv_offset = tmpll;
+
+ ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
+ if (ret) {
+ ti->error = "Device lookup failed";
+ goto bad;
+ }
+
+ ret = -EINVAL;
+ if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
+ ti->error = "Invalid device sector";
+ goto bad;
+ }
+ cc->start = tmpll;
+
+ if (bdev_is_zoned(cc->dev->bdev)) {
+ /*
+ * For zoned block devices, we need to preserve the issuer write
+ * ordering. To do so, disable write workqueues and force inline
+ * encryption completion.
+ */
+ set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
+ set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
+
+ /*
+ * All zone append writes to a zone of a zoned block device will
+ * have the same BIO sector, the start of the zone. When the
+ * cypher IV mode uses sector values, all data targeting a
+ * zone will be encrypted using the first sector numbers of the
+ * zone. This will not result in write errors but will
+ * cause most reads to fail as reads will use the sector values
+ * for the actual data locations, resulting in IV mismatch.
+ * To avoid this problem, ask DM core to emulate zone append
+ * operations with regular writes.
+ */
+ DMDEBUG("Zone append operations will be emulated");
+ ti->emulate_zone_append = true;
+ }
+
+ if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
+ ret = crypt_integrity_ctr(cc, ti);
+ if (ret)
+ goto bad;
+
+ cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
+ if (!cc->tag_pool_max_sectors)
+ cc->tag_pool_max_sectors = 1;
+
+ ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
+ cc->tag_pool_max_sectors * cc->on_disk_tag_size);
+ if (ret) {
+ ti->error = "Cannot allocate integrity tags mempool";
+ goto bad;
+ }
+
+ cc->tag_pool_max_sectors <<= cc->sector_shift;
+ }
+
+ ret = -ENOMEM;
+ cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
+ if (!cc->io_queue) {
+ ti->error = "Couldn't create kcryptd io queue";
+ goto bad;
+ }
+
+ if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
+ cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
+ 1, devname);
+ else
+ cc->crypt_queue = alloc_workqueue("kcryptd/%s",
+ WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
+ num_online_cpus(), devname);
+ if (!cc->crypt_queue) {
+ ti->error = "Couldn't create kcryptd queue";
+ goto bad;
+ }
+
+ spin_lock_init(&cc->write_thread_lock);
+ cc->write_tree = RB_ROOT;
+
+ cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
+ if (IS_ERR(cc->write_thread)) {
+ ret = PTR_ERR(cc->write_thread);
+ cc->write_thread = NULL;
+ ti->error = "Couldn't spawn write thread";
+ goto bad;
+ }
+
+ ti->num_flush_bios = 1;
+ ti->limit_swap_bios = true;
+ ti->accounts_remapped_io = true;
+
+ dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
+ return 0;
+
+bad:
+ dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
+ crypt_dtr(ti);
+ return ret;
+}
+
+static int crypt_map(struct dm_target *ti, struct bio *bio)
+{
+ struct dm_crypt_io *io;
+ struct crypt_config *cc = ti->private;
+
+ /*
+ * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
+ * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
+ * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
+ */
+ if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
+ bio_op(bio) == REQ_OP_DISCARD)) {
+ bio_set_dev(bio, cc->dev->bdev);
+ if (bio_sectors(bio))
+ bio->bi_iter.bi_sector = cc->start +
+ dm_target_offset(ti, bio->bi_iter.bi_sector);
+ return DM_MAPIO_REMAPPED;
+ }
+
+ /*
+ * Check if bio is too large, split as needed.
+ */
+ if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
+ (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
+ dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
+
+ /*
+ * Ensure that bio is a multiple of internal sector encryption size
+ * and is aligned to this size as defined in IO hints.
+ */
+ if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
+ return DM_MAPIO_KILL;
+
+ if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
+ return DM_MAPIO_KILL;
+
+ io = dm_per_bio_data(bio, cc->per_bio_data_size);
+ crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
+
+ if (cc->on_disk_tag_size) {
+ unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
+
+ if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
+ unlikely(!(io->integrity_metadata = kmalloc(tag_len,
+ GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
+ if (bio_sectors(bio) > cc->tag_pool_max_sectors)
+ dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
+ io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
+ io->integrity_metadata_from_pool = true;
+ }
+ }
+
+ if (crypt_integrity_aead(cc))
+ io->ctx.r.req_aead = (struct aead_request *)(io + 1);
+ else
+ io->ctx.r.req = (struct skcipher_request *)(io + 1);
+
+ if (bio_data_dir(io->base_bio) == READ) {
+ if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
+ kcryptd_queue_read(io);
+ } else
+ kcryptd_queue_crypt(io);
+
+ return DM_MAPIO_SUBMITTED;
+}
+
+static char hex2asc(unsigned char c)
+{
+ return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
+}
+
+static void crypt_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ struct crypt_config *cc = ti->private;
+ unsigned int i, sz = 0;
+ int num_feature_args = 0;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ result[0] = '\0';
+ break;
+
+ case STATUSTYPE_TABLE:
+ DMEMIT("%s ", cc->cipher_string);
+
+ if (cc->key_size > 0) {
+ if (cc->key_string)
+ DMEMIT(":%u:%s", cc->key_size, cc->key_string);
+ else {
+ for (i = 0; i < cc->key_size; i++) {
+ DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
+ hex2asc(cc->key[i] & 0xf));
+ }
+ }
+ } else
+ DMEMIT("-");
+
+ DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
+ cc->dev->name, (unsigned long long)cc->start);
+
+ num_feature_args += !!ti->num_discard_bios;
+ num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
+ num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
+ num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
+ num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
+ num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
+ num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
+ if (cc->on_disk_tag_size)
+ num_feature_args++;
+ if (num_feature_args) {
+ DMEMIT(" %d", num_feature_args);
+ if (ti->num_discard_bios)
+ DMEMIT(" allow_discards");
+ if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
+ DMEMIT(" same_cpu_crypt");
+ if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
+ DMEMIT(" submit_from_crypt_cpus");
+ if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
+ DMEMIT(" no_read_workqueue");
+ if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
+ DMEMIT(" no_write_workqueue");
+ if (cc->on_disk_tag_size)
+ DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
+ if (cc->sector_size != (1 << SECTOR_SHIFT))
+ DMEMIT(" sector_size:%d", cc->sector_size);
+ if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
+ DMEMIT(" iv_large_sectors");
+ }
+ break;
+
+ case STATUSTYPE_IMA:
+ DMEMIT_TARGET_NAME_VERSION(ti->type);
+ DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
+ DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
+ DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
+ 'y' : 'n');
+ DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
+ 'y' : 'n');
+ DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
+ 'y' : 'n');
+ DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
+ 'y' : 'n');
+
+ if (cc->on_disk_tag_size)
+ DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
+ cc->on_disk_tag_size, cc->cipher_auth);
+ if (cc->sector_size != (1 << SECTOR_SHIFT))
+ DMEMIT(",sector_size=%d", cc->sector_size);
+ if (cc->cipher_string)
+ DMEMIT(",cipher_string=%s", cc->cipher_string);
+
+ DMEMIT(",key_size=%u", cc->key_size);
+ DMEMIT(",key_parts=%u", cc->key_parts);
+ DMEMIT(",key_extra_size=%u", cc->key_extra_size);
+ DMEMIT(",key_mac_size=%u", cc->key_mac_size);
+ DMEMIT(";");
+ break;
+ }
+}
+
+static void crypt_postsuspend(struct dm_target *ti)
+{
+ struct crypt_config *cc = ti->private;
+
+ set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
+}
+
+static int crypt_preresume(struct dm_target *ti)
+{
+ struct crypt_config *cc = ti->private;
+
+ if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
+ DMERR("aborting resume - crypt key is not set.");
+ return -EAGAIN;
+ }
+
+ return 0;
+}
+
+static void crypt_resume(struct dm_target *ti)
+{
+ struct crypt_config *cc = ti->private;
+
+ clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
+}
+
+/* Message interface
+ * key set <key>
+ * key wipe
+ */
+static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
+ char *result, unsigned int maxlen)
+{
+ struct crypt_config *cc = ti->private;
+ int key_size, ret = -EINVAL;
+
+ if (argc < 2)
+ goto error;
+
+ if (!strcasecmp(argv[0], "key")) {
+ if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
+ DMWARN("not suspended during key manipulation.");
+ return -EINVAL;
+ }
+ if (argc == 3 && !strcasecmp(argv[1], "set")) {
+ /* The key size may not be changed. */
+ key_size = get_key_size(&argv[2]);
+ if (key_size < 0 || cc->key_size != key_size) {
+ memset(argv[2], '0', strlen(argv[2]));
+ return -EINVAL;
+ }
+
+ ret = crypt_set_key(cc, argv[2]);
+ if (ret)
+ return ret;
+ if (cc->iv_gen_ops && cc->iv_gen_ops->init)
+ ret = cc->iv_gen_ops->init(cc);
+ /* wipe the kernel key payload copy */
+ if (cc->key_string)
+ memset(cc->key, 0, cc->key_size * sizeof(u8));
+ return ret;
+ }
+ if (argc == 2 && !strcasecmp(argv[1], "wipe"))
+ return crypt_wipe_key(cc);
+ }
+
+error:
+ DMWARN("unrecognised message received.");
+ return -EINVAL;
+}
+
+static int crypt_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ struct crypt_config *cc = ti->private;
+
+ return fn(ti, cc->dev, cc->start, ti->len, data);
+}
+
+static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+ struct crypt_config *cc = ti->private;
+
+ /*
+ * Unfortunate constraint that is required to avoid the potential
+ * for exceeding underlying device's max_segments limits -- due to
+ * crypt_alloc_buffer() possibly allocating pages for the encryption
+ * bio that are not as physically contiguous as the original bio.
+ */
+ limits->max_segment_size = PAGE_SIZE;
+
+ limits->logical_block_size =
+ max_t(unsigned int, limits->logical_block_size, cc->sector_size);
+ limits->physical_block_size =
+ max_t(unsigned int, limits->physical_block_size, cc->sector_size);
+ limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
+ limits->dma_alignment = limits->logical_block_size - 1;
+}
+
+static struct target_type crypt_target = {
+ .name = "crypt",
+ .version = {1, 24, 0},
+ .module = THIS_MODULE,
+ .ctr = crypt_ctr,
+ .dtr = crypt_dtr,
+ .features = DM_TARGET_ZONED_HM,
+ .report_zones = crypt_report_zones,
+ .map = crypt_map,
+ .status = crypt_status,
+ .postsuspend = crypt_postsuspend,
+ .preresume = crypt_preresume,
+ .resume = crypt_resume,
+ .message = crypt_message,
+ .iterate_devices = crypt_iterate_devices,
+ .io_hints = crypt_io_hints,
+};
+
+static int __init dm_crypt_init(void)
+{
+ int r;
+
+ r = dm_register_target(&crypt_target);
+ if (r < 0)
+ DMERR("register failed %d", r);
+
+ return r;
+}
+
+static void __exit dm_crypt_exit(void)
+{
+ dm_unregister_target(&crypt_target);
+}
+
+module_init(dm_crypt_init);
+module_exit(dm_crypt_exit);
+
+MODULE_AUTHOR("Jana Saout <jana@saout.de>");
+MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-delay.c b/drivers/md/dm-delay.c
new file mode 100644
index 000000000..43541c8e2
--- /dev/null
+++ b/drivers/md/dm-delay.c
@@ -0,0 +1,404 @@
+/*
+ * Copyright (C) 2005-2007 Red Hat GmbH
+ *
+ * A target that delays reads and/or writes and can send
+ * them to different devices.
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/blkdev.h>
+#include <linux/bio.h>
+#include <linux/slab.h>
+
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "delay"
+
+struct delay_class {
+ struct dm_dev *dev;
+ sector_t start;
+ unsigned int delay;
+ unsigned int ops;
+};
+
+struct delay_c {
+ struct timer_list delay_timer;
+ struct mutex timer_lock;
+ struct workqueue_struct *kdelayd_wq;
+ struct work_struct flush_expired_bios;
+ struct list_head delayed_bios;
+ bool may_delay;
+
+ struct delay_class read;
+ struct delay_class write;
+ struct delay_class flush;
+
+ int argc;
+};
+
+struct dm_delay_info {
+ struct delay_c *context;
+ struct delay_class *class;
+ struct list_head list;
+ unsigned long expires;
+};
+
+static DEFINE_MUTEX(delayed_bios_lock);
+
+static void handle_delayed_timer(struct timer_list *t)
+{
+ struct delay_c *dc = from_timer(dc, t, delay_timer);
+
+ queue_work(dc->kdelayd_wq, &dc->flush_expired_bios);
+}
+
+static void queue_timeout(struct delay_c *dc, unsigned long expires)
+{
+ mutex_lock(&dc->timer_lock);
+
+ if (!timer_pending(&dc->delay_timer) || expires < dc->delay_timer.expires)
+ mod_timer(&dc->delay_timer, expires);
+
+ mutex_unlock(&dc->timer_lock);
+}
+
+static void flush_bios(struct bio *bio)
+{
+ struct bio *n;
+
+ while (bio) {
+ n = bio->bi_next;
+ bio->bi_next = NULL;
+ dm_submit_bio_remap(bio, NULL);
+ bio = n;
+ }
+}
+
+static struct bio *flush_delayed_bios(struct delay_c *dc, int flush_all)
+{
+ struct dm_delay_info *delayed, *next;
+ unsigned long next_expires = 0;
+ unsigned long start_timer = 0;
+ struct bio_list flush_bios = { };
+
+ mutex_lock(&delayed_bios_lock);
+ list_for_each_entry_safe(delayed, next, &dc->delayed_bios, list) {
+ if (flush_all || time_after_eq(jiffies, delayed->expires)) {
+ struct bio *bio = dm_bio_from_per_bio_data(delayed,
+ sizeof(struct dm_delay_info));
+ list_del(&delayed->list);
+ bio_list_add(&flush_bios, bio);
+ delayed->class->ops--;
+ continue;
+ }
+
+ if (!start_timer) {
+ start_timer = 1;
+ next_expires = delayed->expires;
+ } else
+ next_expires = min(next_expires, delayed->expires);
+ }
+ mutex_unlock(&delayed_bios_lock);
+
+ if (start_timer)
+ queue_timeout(dc, next_expires);
+
+ return bio_list_get(&flush_bios);
+}
+
+static void flush_expired_bios(struct work_struct *work)
+{
+ struct delay_c *dc;
+
+ dc = container_of(work, struct delay_c, flush_expired_bios);
+ flush_bios(flush_delayed_bios(dc, 0));
+}
+
+static void delay_dtr(struct dm_target *ti)
+{
+ struct delay_c *dc = ti->private;
+
+ if (dc->kdelayd_wq)
+ destroy_workqueue(dc->kdelayd_wq);
+
+ if (dc->read.dev)
+ dm_put_device(ti, dc->read.dev);
+ if (dc->write.dev)
+ dm_put_device(ti, dc->write.dev);
+ if (dc->flush.dev)
+ dm_put_device(ti, dc->flush.dev);
+
+ mutex_destroy(&dc->timer_lock);
+
+ kfree(dc);
+}
+
+static int delay_class_ctr(struct dm_target *ti, struct delay_class *c, char **argv)
+{
+ int ret;
+ unsigned long long tmpll;
+ char dummy;
+
+ if (sscanf(argv[1], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
+ ti->error = "Invalid device sector";
+ return -EINVAL;
+ }
+ c->start = tmpll;
+
+ if (sscanf(argv[2], "%u%c", &c->delay, &dummy) != 1) {
+ ti->error = "Invalid delay";
+ return -EINVAL;
+ }
+
+ ret = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &c->dev);
+ if (ret) {
+ ti->error = "Device lookup failed";
+ return ret;
+ }
+
+ return 0;
+}
+
+/*
+ * Mapping parameters:
+ * <device> <offset> <delay> [<write_device> <write_offset> <write_delay>]
+ *
+ * With separate write parameters, the first set is only used for reads.
+ * Offsets are specified in sectors.
+ * Delays are specified in milliseconds.
+ */
+static int delay_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ struct delay_c *dc;
+ int ret;
+
+ if (argc != 3 && argc != 6 && argc != 9) {
+ ti->error = "Requires exactly 3, 6 or 9 arguments";
+ return -EINVAL;
+ }
+
+ dc = kzalloc(sizeof(*dc), GFP_KERNEL);
+ if (!dc) {
+ ti->error = "Cannot allocate context";
+ return -ENOMEM;
+ }
+
+ ti->private = dc;
+ timer_setup(&dc->delay_timer, handle_delayed_timer, 0);
+ INIT_WORK(&dc->flush_expired_bios, flush_expired_bios);
+ INIT_LIST_HEAD(&dc->delayed_bios);
+ mutex_init(&dc->timer_lock);
+ dc->may_delay = true;
+ dc->argc = argc;
+
+ ret = delay_class_ctr(ti, &dc->read, argv);
+ if (ret)
+ goto bad;
+
+ if (argc == 3) {
+ ret = delay_class_ctr(ti, &dc->write, argv);
+ if (ret)
+ goto bad;
+ ret = delay_class_ctr(ti, &dc->flush, argv);
+ if (ret)
+ goto bad;
+ goto out;
+ }
+
+ ret = delay_class_ctr(ti, &dc->write, argv + 3);
+ if (ret)
+ goto bad;
+ if (argc == 6) {
+ ret = delay_class_ctr(ti, &dc->flush, argv + 3);
+ if (ret)
+ goto bad;
+ goto out;
+ }
+
+ ret = delay_class_ctr(ti, &dc->flush, argv + 6);
+ if (ret)
+ goto bad;
+
+out:
+ dc->kdelayd_wq = alloc_workqueue("kdelayd", WQ_MEM_RECLAIM, 0);
+ if (!dc->kdelayd_wq) {
+ ret = -EINVAL;
+ DMERR("Couldn't start kdelayd");
+ goto bad;
+ }
+
+ ti->num_flush_bios = 1;
+ ti->num_discard_bios = 1;
+ ti->accounts_remapped_io = true;
+ ti->per_io_data_size = sizeof(struct dm_delay_info);
+ return 0;
+
+bad:
+ delay_dtr(ti);
+ return ret;
+}
+
+static int delay_bio(struct delay_c *dc, struct delay_class *c, struct bio *bio)
+{
+ struct dm_delay_info *delayed;
+ unsigned long expires = 0;
+
+ if (!c->delay)
+ return DM_MAPIO_REMAPPED;
+
+ delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
+
+ delayed->context = dc;
+ delayed->expires = expires = jiffies + msecs_to_jiffies(c->delay);
+
+ mutex_lock(&delayed_bios_lock);
+ if (unlikely(!dc->may_delay)) {
+ mutex_unlock(&delayed_bios_lock);
+ return DM_MAPIO_REMAPPED;
+ }
+ c->ops++;
+ list_add_tail(&delayed->list, &dc->delayed_bios);
+ mutex_unlock(&delayed_bios_lock);
+
+ queue_timeout(dc, expires);
+
+ return DM_MAPIO_SUBMITTED;
+}
+
+static void delay_presuspend(struct dm_target *ti)
+{
+ struct delay_c *dc = ti->private;
+
+ mutex_lock(&delayed_bios_lock);
+ dc->may_delay = false;
+ mutex_unlock(&delayed_bios_lock);
+
+ del_timer_sync(&dc->delay_timer);
+ flush_bios(flush_delayed_bios(dc, 1));
+}
+
+static void delay_resume(struct dm_target *ti)
+{
+ struct delay_c *dc = ti->private;
+
+ dc->may_delay = true;
+}
+
+static int delay_map(struct dm_target *ti, struct bio *bio)
+{
+ struct delay_c *dc = ti->private;
+ struct delay_class *c;
+ struct dm_delay_info *delayed = dm_per_bio_data(bio, sizeof(struct dm_delay_info));
+
+ if (bio_data_dir(bio) == WRITE) {
+ if (unlikely(bio->bi_opf & REQ_PREFLUSH))
+ c = &dc->flush;
+ else
+ c = &dc->write;
+ } else {
+ c = &dc->read;
+ }
+ delayed->class = c;
+ bio_set_dev(bio, c->dev->bdev);
+ bio->bi_iter.bi_sector = c->start + dm_target_offset(ti, bio->bi_iter.bi_sector);
+
+ return delay_bio(dc, c, bio);
+}
+
+#define DMEMIT_DELAY_CLASS(c) \
+ DMEMIT("%s %llu %u", (c)->dev->name, (unsigned long long)(c)->start, (c)->delay)
+
+static void delay_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ struct delay_c *dc = ti->private;
+ int sz = 0;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ DMEMIT("%u %u %u", dc->read.ops, dc->write.ops, dc->flush.ops);
+ break;
+
+ case STATUSTYPE_TABLE:
+ DMEMIT_DELAY_CLASS(&dc->read);
+ if (dc->argc >= 6) {
+ DMEMIT(" ");
+ DMEMIT_DELAY_CLASS(&dc->write);
+ }
+ if (dc->argc >= 9) {
+ DMEMIT(" ");
+ DMEMIT_DELAY_CLASS(&dc->flush);
+ }
+ break;
+
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+}
+
+static int delay_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ struct delay_c *dc = ti->private;
+ int ret = 0;
+
+ ret = fn(ti, dc->read.dev, dc->read.start, ti->len, data);
+ if (ret)
+ goto out;
+ ret = fn(ti, dc->write.dev, dc->write.start, ti->len, data);
+ if (ret)
+ goto out;
+ ret = fn(ti, dc->flush.dev, dc->flush.start, ti->len, data);
+ if (ret)
+ goto out;
+
+out:
+ return ret;
+}
+
+static struct target_type delay_target = {
+ .name = "delay",
+ .version = {1, 3, 0},
+ .features = DM_TARGET_PASSES_INTEGRITY,
+ .module = THIS_MODULE,
+ .ctr = delay_ctr,
+ .dtr = delay_dtr,
+ .map = delay_map,
+ .presuspend = delay_presuspend,
+ .resume = delay_resume,
+ .status = delay_status,
+ .iterate_devices = delay_iterate_devices,
+};
+
+static int __init dm_delay_init(void)
+{
+ int r;
+
+ r = dm_register_target(&delay_target);
+ if (r < 0) {
+ DMERR("register failed %d", r);
+ goto bad_register;
+ }
+
+ return 0;
+
+bad_register:
+ return r;
+}
+
+static void __exit dm_delay_exit(void)
+{
+ dm_unregister_target(&delay_target);
+}
+
+/* Module hooks */
+module_init(dm_delay_init);
+module_exit(dm_delay_exit);
+
+MODULE_DESCRIPTION(DM_NAME " delay target");
+MODULE_AUTHOR("Heinz Mauelshagen <mauelshagen@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-dust.c b/drivers/md/dm-dust.c
new file mode 100644
index 000000000..03672204b
--- /dev/null
+++ b/drivers/md/dm-dust.c
@@ -0,0 +1,594 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2018 Red Hat, Inc.
+ *
+ * This is a test "dust" device, which fails reads on specified
+ * sectors, emulating the behavior of a hard disk drive sending
+ * a "Read Medium Error" sense.
+ *
+ */
+
+#include <linux/device-mapper.h>
+#include <linux/module.h>
+#include <linux/rbtree.h>
+
+#define DM_MSG_PREFIX "dust"
+
+struct badblock {
+ struct rb_node node;
+ sector_t bb;
+ unsigned char wr_fail_cnt;
+};
+
+struct dust_device {
+ struct dm_dev *dev;
+ struct rb_root badblocklist;
+ unsigned long long badblock_count;
+ spinlock_t dust_lock;
+ unsigned int blksz;
+ int sect_per_block_shift;
+ unsigned int sect_per_block;
+ sector_t start;
+ bool fail_read_on_bb:1;
+ bool quiet_mode:1;
+};
+
+static struct badblock *dust_rb_search(struct rb_root *root, sector_t blk)
+{
+ struct rb_node *node = root->rb_node;
+
+ while (node) {
+ struct badblock *bblk = rb_entry(node, struct badblock, node);
+
+ if (bblk->bb > blk)
+ node = node->rb_left;
+ else if (bblk->bb < blk)
+ node = node->rb_right;
+ else
+ return bblk;
+ }
+
+ return NULL;
+}
+
+static bool dust_rb_insert(struct rb_root *root, struct badblock *new)
+{
+ struct badblock *bblk;
+ struct rb_node **link = &root->rb_node, *parent = NULL;
+ sector_t value = new->bb;
+
+ while (*link) {
+ parent = *link;
+ bblk = rb_entry(parent, struct badblock, node);
+
+ if (bblk->bb > value)
+ link = &(*link)->rb_left;
+ else if (bblk->bb < value)
+ link = &(*link)->rb_right;
+ else
+ return false;
+ }
+
+ rb_link_node(&new->node, parent, link);
+ rb_insert_color(&new->node, root);
+
+ return true;
+}
+
+static int dust_remove_block(struct dust_device *dd, unsigned long long block)
+{
+ struct badblock *bblock;
+ unsigned long flags;
+
+ spin_lock_irqsave(&dd->dust_lock, flags);
+ bblock = dust_rb_search(&dd->badblocklist, block);
+
+ if (bblock == NULL) {
+ if (!dd->quiet_mode) {
+ DMERR("%s: block %llu not found in badblocklist",
+ __func__, block);
+ }
+ spin_unlock_irqrestore(&dd->dust_lock, flags);
+ return -EINVAL;
+ }
+
+ rb_erase(&bblock->node, &dd->badblocklist);
+ dd->badblock_count--;
+ if (!dd->quiet_mode)
+ DMINFO("%s: badblock removed at block %llu", __func__, block);
+ kfree(bblock);
+ spin_unlock_irqrestore(&dd->dust_lock, flags);
+
+ return 0;
+}
+
+static int dust_add_block(struct dust_device *dd, unsigned long long block,
+ unsigned char wr_fail_cnt)
+{
+ struct badblock *bblock;
+ unsigned long flags;
+
+ bblock = kmalloc(sizeof(*bblock), GFP_KERNEL);
+ if (bblock == NULL) {
+ if (!dd->quiet_mode)
+ DMERR("%s: badblock allocation failed", __func__);
+ return -ENOMEM;
+ }
+
+ spin_lock_irqsave(&dd->dust_lock, flags);
+ bblock->bb = block;
+ bblock->wr_fail_cnt = wr_fail_cnt;
+ if (!dust_rb_insert(&dd->badblocklist, bblock)) {
+ if (!dd->quiet_mode) {
+ DMERR("%s: block %llu already in badblocklist",
+ __func__, block);
+ }
+ spin_unlock_irqrestore(&dd->dust_lock, flags);
+ kfree(bblock);
+ return -EINVAL;
+ }
+
+ dd->badblock_count++;
+ if (!dd->quiet_mode) {
+ DMINFO("%s: badblock added at block %llu with write fail count %u",
+ __func__, block, wr_fail_cnt);
+ }
+ spin_unlock_irqrestore(&dd->dust_lock, flags);
+
+ return 0;
+}
+
+static int dust_query_block(struct dust_device *dd, unsigned long long block, char *result,
+ unsigned int maxlen, unsigned int *sz_ptr)
+{
+ struct badblock *bblock;
+ unsigned long flags;
+ unsigned int sz = *sz_ptr;
+
+ spin_lock_irqsave(&dd->dust_lock, flags);
+ bblock = dust_rb_search(&dd->badblocklist, block);
+ if (bblock != NULL)
+ DMEMIT("%s: block %llu found in badblocklist", __func__, block);
+ else
+ DMEMIT("%s: block %llu not found in badblocklist", __func__, block);
+ spin_unlock_irqrestore(&dd->dust_lock, flags);
+
+ return 1;
+}
+
+static int __dust_map_read(struct dust_device *dd, sector_t thisblock)
+{
+ struct badblock *bblk = dust_rb_search(&dd->badblocklist, thisblock);
+
+ if (bblk)
+ return DM_MAPIO_KILL;
+
+ return DM_MAPIO_REMAPPED;
+}
+
+static int dust_map_read(struct dust_device *dd, sector_t thisblock,
+ bool fail_read_on_bb)
+{
+ unsigned long flags;
+ int r = DM_MAPIO_REMAPPED;
+
+ if (fail_read_on_bb) {
+ thisblock >>= dd->sect_per_block_shift;
+ spin_lock_irqsave(&dd->dust_lock, flags);
+ r = __dust_map_read(dd, thisblock);
+ spin_unlock_irqrestore(&dd->dust_lock, flags);
+ }
+
+ return r;
+}
+
+static int __dust_map_write(struct dust_device *dd, sector_t thisblock)
+{
+ struct badblock *bblk = dust_rb_search(&dd->badblocklist, thisblock);
+
+ if (bblk && bblk->wr_fail_cnt > 0) {
+ bblk->wr_fail_cnt--;
+ return DM_MAPIO_KILL;
+ }
+
+ if (bblk) {
+ rb_erase(&bblk->node, &dd->badblocklist);
+ dd->badblock_count--;
+ kfree(bblk);
+ if (!dd->quiet_mode) {
+ sector_div(thisblock, dd->sect_per_block);
+ DMINFO("block %llu removed from badblocklist by write",
+ (unsigned long long)thisblock);
+ }
+ }
+
+ return DM_MAPIO_REMAPPED;
+}
+
+static int dust_map_write(struct dust_device *dd, sector_t thisblock,
+ bool fail_read_on_bb)
+{
+ unsigned long flags;
+ int r = DM_MAPIO_REMAPPED;
+
+ if (fail_read_on_bb) {
+ thisblock >>= dd->sect_per_block_shift;
+ spin_lock_irqsave(&dd->dust_lock, flags);
+ r = __dust_map_write(dd, thisblock);
+ spin_unlock_irqrestore(&dd->dust_lock, flags);
+ }
+
+ return r;
+}
+
+static int dust_map(struct dm_target *ti, struct bio *bio)
+{
+ struct dust_device *dd = ti->private;
+ int r;
+
+ bio_set_dev(bio, dd->dev->bdev);
+ bio->bi_iter.bi_sector = dd->start + dm_target_offset(ti, bio->bi_iter.bi_sector);
+
+ if (bio_data_dir(bio) == READ)
+ r = dust_map_read(dd, bio->bi_iter.bi_sector, dd->fail_read_on_bb);
+ else
+ r = dust_map_write(dd, bio->bi_iter.bi_sector, dd->fail_read_on_bb);
+
+ return r;
+}
+
+static bool __dust_clear_badblocks(struct rb_root *tree,
+ unsigned long long count)
+{
+ struct rb_node *node = NULL, *nnode = NULL;
+
+ nnode = rb_first(tree);
+ if (nnode == NULL) {
+ BUG_ON(count != 0);
+ return false;
+ }
+
+ while (nnode) {
+ node = nnode;
+ nnode = rb_next(node);
+ rb_erase(node, tree);
+ count--;
+ kfree(node);
+ }
+ BUG_ON(count != 0);
+ BUG_ON(tree->rb_node != NULL);
+
+ return true;
+}
+
+static int dust_clear_badblocks(struct dust_device *dd, char *result, unsigned int maxlen,
+ unsigned int *sz_ptr)
+{
+ unsigned long flags;
+ struct rb_root badblocklist;
+ unsigned long long badblock_count;
+ unsigned int sz = *sz_ptr;
+
+ spin_lock_irqsave(&dd->dust_lock, flags);
+ badblocklist = dd->badblocklist;
+ badblock_count = dd->badblock_count;
+ dd->badblocklist = RB_ROOT;
+ dd->badblock_count = 0;
+ spin_unlock_irqrestore(&dd->dust_lock, flags);
+
+ if (!__dust_clear_badblocks(&badblocklist, badblock_count))
+ DMEMIT("%s: no badblocks found", __func__);
+ else
+ DMEMIT("%s: badblocks cleared", __func__);
+
+ return 1;
+}
+
+static int dust_list_badblocks(struct dust_device *dd, char *result, unsigned int maxlen,
+ unsigned int *sz_ptr)
+{
+ unsigned long flags;
+ struct rb_root badblocklist;
+ struct rb_node *node;
+ struct badblock *bblk;
+ unsigned int sz = *sz_ptr;
+ unsigned long long num = 0;
+
+ spin_lock_irqsave(&dd->dust_lock, flags);
+ badblocklist = dd->badblocklist;
+ for (node = rb_first(&badblocklist); node; node = rb_next(node)) {
+ bblk = rb_entry(node, struct badblock, node);
+ DMEMIT("%llu\n", bblk->bb);
+ num++;
+ }
+
+ spin_unlock_irqrestore(&dd->dust_lock, flags);
+ if (!num)
+ DMEMIT("No blocks in badblocklist");
+
+ return 1;
+}
+
+/*
+ * Target parameters:
+ *
+ * <device_path> <offset> <blksz>
+ *
+ * device_path: path to the block device
+ * offset: offset to data area from start of device_path
+ * blksz: block size (minimum 512, maximum 1073741824, must be a power of 2)
+ */
+static int dust_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ struct dust_device *dd;
+ unsigned long long tmp;
+ char dummy;
+ unsigned int blksz;
+ unsigned int sect_per_block;
+ sector_t DUST_MAX_BLKSZ_SECTORS = 2097152;
+ sector_t max_block_sectors = min(ti->len, DUST_MAX_BLKSZ_SECTORS);
+
+ if (argc != 3) {
+ ti->error = "Invalid argument count";
+ return -EINVAL;
+ }
+
+ if (kstrtouint(argv[2], 10, &blksz) || !blksz) {
+ ti->error = "Invalid block size parameter";
+ return -EINVAL;
+ }
+
+ if (blksz < 512) {
+ ti->error = "Block size must be at least 512";
+ return -EINVAL;
+ }
+
+ if (!is_power_of_2(blksz)) {
+ ti->error = "Block size must be a power of 2";
+ return -EINVAL;
+ }
+
+ if (to_sector(blksz) > max_block_sectors) {
+ ti->error = "Block size is too large";
+ return -EINVAL;
+ }
+
+ sect_per_block = (blksz >> SECTOR_SHIFT);
+
+ if (sscanf(argv[1], "%llu%c", &tmp, &dummy) != 1 || tmp != (sector_t)tmp) {
+ ti->error = "Invalid device offset sector";
+ return -EINVAL;
+ }
+
+ dd = kzalloc(sizeof(struct dust_device), GFP_KERNEL);
+ if (dd == NULL) {
+ ti->error = "Cannot allocate context";
+ return -ENOMEM;
+ }
+
+ if (dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &dd->dev)) {
+ ti->error = "Device lookup failed";
+ kfree(dd);
+ return -EINVAL;
+ }
+
+ dd->sect_per_block = sect_per_block;
+ dd->blksz = blksz;
+ dd->start = tmp;
+
+ dd->sect_per_block_shift = __ffs(sect_per_block);
+
+ /*
+ * Whether to fail a read on a "bad" block.
+ * Defaults to false; enabled later by message.
+ */
+ dd->fail_read_on_bb = false;
+
+ /*
+ * Initialize bad block list rbtree.
+ */
+ dd->badblocklist = RB_ROOT;
+ dd->badblock_count = 0;
+ spin_lock_init(&dd->dust_lock);
+
+ dd->quiet_mode = false;
+
+ BUG_ON(dm_set_target_max_io_len(ti, dd->sect_per_block) != 0);
+
+ ti->num_discard_bios = 1;
+ ti->num_flush_bios = 1;
+ ti->private = dd;
+
+ return 0;
+}
+
+static void dust_dtr(struct dm_target *ti)
+{
+ struct dust_device *dd = ti->private;
+
+ __dust_clear_badblocks(&dd->badblocklist, dd->badblock_count);
+ dm_put_device(ti, dd->dev);
+ kfree(dd);
+}
+
+static int dust_message(struct dm_target *ti, unsigned int argc, char **argv,
+ char *result, unsigned int maxlen)
+{
+ struct dust_device *dd = ti->private;
+ sector_t size = bdev_nr_sectors(dd->dev->bdev);
+ bool invalid_msg = false;
+ int r = -EINVAL;
+ unsigned long long tmp, block;
+ unsigned char wr_fail_cnt;
+ unsigned int tmp_ui;
+ unsigned long flags;
+ unsigned int sz = 0;
+ char dummy;
+
+ if (argc == 1) {
+ if (!strcasecmp(argv[0], "addbadblock") ||
+ !strcasecmp(argv[0], "removebadblock") ||
+ !strcasecmp(argv[0], "queryblock")) {
+ DMERR("%s requires an additional argument", argv[0]);
+ } else if (!strcasecmp(argv[0], "disable")) {
+ DMINFO("disabling read failures on bad sectors");
+ dd->fail_read_on_bb = false;
+ r = 0;
+ } else if (!strcasecmp(argv[0], "enable")) {
+ DMINFO("enabling read failures on bad sectors");
+ dd->fail_read_on_bb = true;
+ r = 0;
+ } else if (!strcasecmp(argv[0], "countbadblocks")) {
+ spin_lock_irqsave(&dd->dust_lock, flags);
+ DMEMIT("countbadblocks: %llu badblock(s) found",
+ dd->badblock_count);
+ spin_unlock_irqrestore(&dd->dust_lock, flags);
+ r = 1;
+ } else if (!strcasecmp(argv[0], "clearbadblocks")) {
+ r = dust_clear_badblocks(dd, result, maxlen, &sz);
+ } else if (!strcasecmp(argv[0], "quiet")) {
+ if (!dd->quiet_mode)
+ dd->quiet_mode = true;
+ else
+ dd->quiet_mode = false;
+ r = 0;
+ } else if (!strcasecmp(argv[0], "listbadblocks")) {
+ r = dust_list_badblocks(dd, result, maxlen, &sz);
+ } else {
+ invalid_msg = true;
+ }
+ } else if (argc == 2) {
+ if (sscanf(argv[1], "%llu%c", &tmp, &dummy) != 1)
+ return r;
+
+ block = tmp;
+ sector_div(size, dd->sect_per_block);
+ if (block > size) {
+ DMERR("selected block value out of range");
+ return r;
+ }
+
+ if (!strcasecmp(argv[0], "addbadblock"))
+ r = dust_add_block(dd, block, 0);
+ else if (!strcasecmp(argv[0], "removebadblock"))
+ r = dust_remove_block(dd, block);
+ else if (!strcasecmp(argv[0], "queryblock"))
+ r = dust_query_block(dd, block, result, maxlen, &sz);
+ else
+ invalid_msg = true;
+
+ } else if (argc == 3) {
+ if (sscanf(argv[1], "%llu%c", &tmp, &dummy) != 1)
+ return r;
+
+ if (sscanf(argv[2], "%u%c", &tmp_ui, &dummy) != 1)
+ return r;
+
+ block = tmp;
+ if (tmp_ui > 255) {
+ DMERR("selected write fail count out of range");
+ return r;
+ }
+ wr_fail_cnt = tmp_ui;
+ sector_div(size, dd->sect_per_block);
+ if (block > size) {
+ DMERR("selected block value out of range");
+ return r;
+ }
+
+ if (!strcasecmp(argv[0], "addbadblock"))
+ r = dust_add_block(dd, block, wr_fail_cnt);
+ else
+ invalid_msg = true;
+
+ } else
+ DMERR("invalid number of arguments '%d'", argc);
+
+ if (invalid_msg)
+ DMERR("unrecognized message '%s' received", argv[0]);
+
+ return r;
+}
+
+static void dust_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ struct dust_device *dd = ti->private;
+ unsigned int sz = 0;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ DMEMIT("%s %s %s", dd->dev->name,
+ dd->fail_read_on_bb ? "fail_read_on_bad_block" : "bypass",
+ dd->quiet_mode ? "quiet" : "verbose");
+ break;
+
+ case STATUSTYPE_TABLE:
+ DMEMIT("%s %llu %u", dd->dev->name,
+ (unsigned long long)dd->start, dd->blksz);
+ break;
+
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+}
+
+static int dust_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
+{
+ struct dust_device *dd = ti->private;
+ struct dm_dev *dev = dd->dev;
+
+ *bdev = dev->bdev;
+
+ /*
+ * Only pass ioctls through if the device sizes match exactly.
+ */
+ if (dd->start || ti->len != bdev_nr_sectors(dev->bdev))
+ return 1;
+
+ return 0;
+}
+
+static int dust_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn,
+ void *data)
+{
+ struct dust_device *dd = ti->private;
+
+ return fn(ti, dd->dev, dd->start, ti->len, data);
+}
+
+static struct target_type dust_target = {
+ .name = "dust",
+ .version = {1, 0, 0},
+ .module = THIS_MODULE,
+ .ctr = dust_ctr,
+ .dtr = dust_dtr,
+ .iterate_devices = dust_iterate_devices,
+ .map = dust_map,
+ .message = dust_message,
+ .status = dust_status,
+ .prepare_ioctl = dust_prepare_ioctl,
+};
+
+static int __init dm_dust_init(void)
+{
+ int r = dm_register_target(&dust_target);
+
+ if (r < 0)
+ DMERR("dm_register_target failed %d", r);
+
+ return r;
+}
+
+static void __exit dm_dust_exit(void)
+{
+ dm_unregister_target(&dust_target);
+}
+
+module_init(dm_dust_init);
+module_exit(dm_dust_exit);
+
+MODULE_DESCRIPTION(DM_NAME " dust test target");
+MODULE_AUTHOR("Bryan Gurney <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-ebs-target.c b/drivers/md/dm-ebs-target.c
new file mode 100644
index 000000000..7606c6695
--- /dev/null
+++ b/drivers/md/dm-ebs-target.c
@@ -0,0 +1,475 @@
+/*
+ * Copyright (C) 2020 Red Hat GmbH
+ *
+ * This file is released under the GPL.
+ *
+ * Device-mapper target to emulate smaller logical block
+ * size on backing devices exposing (natively) larger ones.
+ *
+ * E.g. 512 byte sector emulation on 4K native disks.
+ */
+
+#include "dm.h"
+#include <linux/module.h>
+#include <linux/workqueue.h>
+#include <linux/dm-bufio.h>
+
+#define DM_MSG_PREFIX "ebs"
+
+static void ebs_dtr(struct dm_target *ti);
+
+/* Emulated block size context. */
+struct ebs_c {
+ struct dm_dev *dev; /* Underlying device to emulate block size on. */
+ struct dm_bufio_client *bufio; /* Use dm-bufio for read and read-modify-write processing. */
+ struct workqueue_struct *wq; /* Workqueue for ^ processing of bios. */
+ struct work_struct ws; /* Work item used for ^. */
+ struct bio_list bios_in; /* Worker bios input list. */
+ spinlock_t lock; /* Guard bios input list above. */
+ sector_t start; /* <start> table line argument, see ebs_ctr below. */
+ unsigned int e_bs; /* Emulated block size in sectors exposed to upper layer. */
+ unsigned int u_bs; /* Underlying block size in sectors retrieved from/set on lower layer device. */
+ unsigned char block_shift; /* bitshift sectors -> blocks used in dm-bufio API. */
+ bool u_bs_set:1; /* Flag to indicate underlying block size is set on table line. */
+};
+
+static inline sector_t __sector_to_block(struct ebs_c *ec, sector_t sector)
+{
+ return sector >> ec->block_shift;
+}
+
+static inline sector_t __block_mod(sector_t sector, unsigned int bs)
+{
+ return sector & (bs - 1);
+}
+
+/* Return number of blocks for a bio, accounting for misalignment of start and end sectors. */
+static inline unsigned int __nr_blocks(struct ebs_c *ec, struct bio *bio)
+{
+ sector_t end_sector = __block_mod(bio->bi_iter.bi_sector, ec->u_bs) + bio_sectors(bio);
+
+ return __sector_to_block(ec, end_sector) + (__block_mod(end_sector, ec->u_bs) ? 1 : 0);
+}
+
+static inline bool __ebs_check_bs(unsigned int bs)
+{
+ return bs && is_power_of_2(bs);
+}
+
+/*
+ * READ/WRITE:
+ *
+ * copy blocks between bufio blocks and bio vector's (partial/overlapping) pages.
+ */
+static int __ebs_rw_bvec(struct ebs_c *ec, enum req_op op, struct bio_vec *bv,
+ struct bvec_iter *iter)
+{
+ int r = 0;
+ unsigned char *ba, *pa;
+ unsigned int cur_len;
+ unsigned int bv_len = bv->bv_len;
+ unsigned int buf_off = to_bytes(__block_mod(iter->bi_sector, ec->u_bs));
+ sector_t block = __sector_to_block(ec, iter->bi_sector);
+ struct dm_buffer *b;
+
+ if (unlikely(!bv->bv_page || !bv_len))
+ return -EIO;
+
+ pa = bvec_virt(bv);
+
+ /* Handle overlapping page <-> blocks */
+ while (bv_len) {
+ cur_len = min(dm_bufio_get_block_size(ec->bufio) - buf_off, bv_len);
+
+ /* Avoid reading for writes in case bio vector's page overwrites block completely. */
+ if (op == REQ_OP_READ || buf_off || bv_len < dm_bufio_get_block_size(ec->bufio))
+ ba = dm_bufio_read(ec->bufio, block, &b);
+ else
+ ba = dm_bufio_new(ec->bufio, block, &b);
+
+ if (IS_ERR(ba)) {
+ /*
+ * Carry on with next buffer, if any, to issue all possible
+ * data but return error.
+ */
+ r = PTR_ERR(ba);
+ } else {
+ /* Copy data to/from bio to buffer if read/new was successful above. */
+ ba += buf_off;
+ if (op == REQ_OP_READ) {
+ memcpy(pa, ba, cur_len);
+ flush_dcache_page(bv->bv_page);
+ } else {
+ flush_dcache_page(bv->bv_page);
+ memcpy(ba, pa, cur_len);
+ dm_bufio_mark_partial_buffer_dirty(b, buf_off, buf_off + cur_len);
+ }
+
+ dm_bufio_release(b);
+ }
+
+ pa += cur_len;
+ bv_len -= cur_len;
+ buf_off = 0;
+ block++;
+ }
+
+ return r;
+}
+
+/* READ/WRITE: iterate bio vector's copying between (partial) pages and bufio blocks. */
+static int __ebs_rw_bio(struct ebs_c *ec, enum req_op op, struct bio *bio)
+{
+ int r = 0, rr;
+ struct bio_vec bv;
+ struct bvec_iter iter;
+
+ bio_for_each_bvec(bv, bio, iter) {
+ rr = __ebs_rw_bvec(ec, op, &bv, &iter);
+ if (rr)
+ r = rr;
+ }
+
+ return r;
+}
+
+/*
+ * Discard bio's blocks, i.e. pass discards down.
+ *
+ * Avoid discarding partial blocks at beginning and end;
+ * return 0 in case no blocks can be discarded as a result.
+ */
+static int __ebs_discard_bio(struct ebs_c *ec, struct bio *bio)
+{
+ sector_t block, blocks, sector = bio->bi_iter.bi_sector;
+
+ block = __sector_to_block(ec, sector);
+ blocks = __nr_blocks(ec, bio);
+
+ /*
+ * Partial first underlying block (__nr_blocks() may have
+ * resulted in one block).
+ */
+ if (__block_mod(sector, ec->u_bs)) {
+ block++;
+ blocks--;
+ }
+
+ /* Partial last underlying block if any. */
+ if (blocks && __block_mod(bio_end_sector(bio), ec->u_bs))
+ blocks--;
+
+ return blocks ? dm_bufio_issue_discard(ec->bufio, block, blocks) : 0;
+}
+
+/* Release blocks them from the bufio cache. */
+static void __ebs_forget_bio(struct ebs_c *ec, struct bio *bio)
+{
+ sector_t blocks, sector = bio->bi_iter.bi_sector;
+
+ blocks = __nr_blocks(ec, bio);
+
+ dm_bufio_forget_buffers(ec->bufio, __sector_to_block(ec, sector), blocks);
+}
+
+/* Worker function to process incoming bios. */
+static void __ebs_process_bios(struct work_struct *ws)
+{
+ int r;
+ bool write = false;
+ sector_t block1, block2;
+ struct ebs_c *ec = container_of(ws, struct ebs_c, ws);
+ struct bio *bio;
+ struct bio_list bios;
+
+ bio_list_init(&bios);
+
+ spin_lock_irq(&ec->lock);
+ bios = ec->bios_in;
+ bio_list_init(&ec->bios_in);
+ spin_unlock_irq(&ec->lock);
+
+ /* Prefetch all read and any mis-aligned write buffers */
+ bio_list_for_each(bio, &bios) {
+ block1 = __sector_to_block(ec, bio->bi_iter.bi_sector);
+ if (bio_op(bio) == REQ_OP_READ)
+ dm_bufio_prefetch(ec->bufio, block1, __nr_blocks(ec, bio));
+ else if (bio_op(bio) == REQ_OP_WRITE && !(bio->bi_opf & REQ_PREFLUSH)) {
+ block2 = __sector_to_block(ec, bio_end_sector(bio));
+ if (__block_mod(bio->bi_iter.bi_sector, ec->u_bs))
+ dm_bufio_prefetch(ec->bufio, block1, 1);
+ if (__block_mod(bio_end_sector(bio), ec->u_bs) && block2 != block1)
+ dm_bufio_prefetch(ec->bufio, block2, 1);
+ }
+ }
+
+ bio_list_for_each(bio, &bios) {
+ r = -EIO;
+ if (bio_op(bio) == REQ_OP_READ)
+ r = __ebs_rw_bio(ec, REQ_OP_READ, bio);
+ else if (bio_op(bio) == REQ_OP_WRITE) {
+ write = true;
+ r = __ebs_rw_bio(ec, REQ_OP_WRITE, bio);
+ } else if (bio_op(bio) == REQ_OP_DISCARD) {
+ __ebs_forget_bio(ec, bio);
+ r = __ebs_discard_bio(ec, bio);
+ }
+
+ if (r < 0)
+ bio->bi_status = errno_to_blk_status(r);
+ }
+
+ /*
+ * We write dirty buffers after processing I/O on them
+ * but before we endio thus addressing REQ_FUA/REQ_SYNC.
+ */
+ r = write ? dm_bufio_write_dirty_buffers(ec->bufio) : 0;
+
+ while ((bio = bio_list_pop(&bios))) {
+ /* Any other request is endioed. */
+ if (unlikely(r && bio_op(bio) == REQ_OP_WRITE))
+ bio_io_error(bio);
+ else
+ bio_endio(bio);
+ }
+}
+
+/*
+ * Construct an emulated block size mapping: <dev_path> <offset> <ebs> [<ubs>]
+ *
+ * <dev_path>: path of the underlying device
+ * <offset>: offset in 512 bytes sectors into <dev_path>
+ * <ebs>: emulated block size in units of 512 bytes exposed to the upper layer
+ * [<ubs>]: underlying block size in units of 512 bytes imposed on the lower layer;
+ * optional, if not supplied, retrieve logical block size from underlying device
+ */
+static int ebs_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ int r;
+ unsigned short tmp1;
+ unsigned long long tmp;
+ char dummy;
+ struct ebs_c *ec;
+
+ if (argc < 3 || argc > 4) {
+ ti->error = "Invalid argument count";
+ return -EINVAL;
+ }
+
+ ec = ti->private = kzalloc(sizeof(*ec), GFP_KERNEL);
+ if (!ec) {
+ ti->error = "Cannot allocate ebs context";
+ return -ENOMEM;
+ }
+
+ r = -EINVAL;
+ if (sscanf(argv[1], "%llu%c", &tmp, &dummy) != 1 ||
+ tmp != (sector_t)tmp ||
+ (sector_t)tmp >= ti->len) {
+ ti->error = "Invalid device offset sector";
+ goto bad;
+ }
+ ec->start = tmp;
+
+ if (sscanf(argv[2], "%hu%c", &tmp1, &dummy) != 1 ||
+ !__ebs_check_bs(tmp1) ||
+ to_bytes(tmp1) > PAGE_SIZE) {
+ ti->error = "Invalid emulated block size";
+ goto bad;
+ }
+ ec->e_bs = tmp1;
+
+ if (argc > 3) {
+ if (sscanf(argv[3], "%hu%c", &tmp1, &dummy) != 1 || !__ebs_check_bs(tmp1)) {
+ ti->error = "Invalid underlying block size";
+ goto bad;
+ }
+ ec->u_bs = tmp1;
+ ec->u_bs_set = true;
+ } else
+ ec->u_bs_set = false;
+
+ r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ec->dev);
+ if (r) {
+ ti->error = "Device lookup failed";
+ ec->dev = NULL;
+ goto bad;
+ }
+
+ r = -EINVAL;
+ if (!ec->u_bs_set) {
+ ec->u_bs = to_sector(bdev_logical_block_size(ec->dev->bdev));
+ if (!__ebs_check_bs(ec->u_bs)) {
+ ti->error = "Invalid retrieved underlying block size";
+ goto bad;
+ }
+ }
+
+ if (!ec->u_bs_set && ec->e_bs == ec->u_bs)
+ DMINFO("Emulation superfluous: emulated equal to underlying block size");
+
+ if (__block_mod(ec->start, ec->u_bs)) {
+ ti->error = "Device offset must be multiple of underlying block size";
+ goto bad;
+ }
+
+ ec->bufio = dm_bufio_client_create(ec->dev->bdev, to_bytes(ec->u_bs), 1,
+ 0, NULL, NULL, 0);
+ if (IS_ERR(ec->bufio)) {
+ ti->error = "Cannot create dm bufio client";
+ r = PTR_ERR(ec->bufio);
+ ec->bufio = NULL;
+ goto bad;
+ }
+
+ ec->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
+ if (!ec->wq) {
+ ti->error = "Cannot create dm-" DM_MSG_PREFIX " workqueue";
+ r = -ENOMEM;
+ goto bad;
+ }
+
+ ec->block_shift = __ffs(ec->u_bs);
+ INIT_WORK(&ec->ws, &__ebs_process_bios);
+ bio_list_init(&ec->bios_in);
+ spin_lock_init(&ec->lock);
+
+ ti->num_flush_bios = 1;
+ ti->num_discard_bios = 1;
+ ti->num_secure_erase_bios = 0;
+ ti->num_write_zeroes_bios = 0;
+ return 0;
+bad:
+ ebs_dtr(ti);
+ return r;
+}
+
+static void ebs_dtr(struct dm_target *ti)
+{
+ struct ebs_c *ec = ti->private;
+
+ if (ec->wq)
+ destroy_workqueue(ec->wq);
+ if (ec->bufio)
+ dm_bufio_client_destroy(ec->bufio);
+ if (ec->dev)
+ dm_put_device(ti, ec->dev);
+ kfree(ec);
+}
+
+static int ebs_map(struct dm_target *ti, struct bio *bio)
+{
+ struct ebs_c *ec = ti->private;
+
+ bio_set_dev(bio, ec->dev->bdev);
+ bio->bi_iter.bi_sector = ec->start + dm_target_offset(ti, bio->bi_iter.bi_sector);
+
+ if (unlikely(bio_op(bio) == REQ_OP_FLUSH))
+ return DM_MAPIO_REMAPPED;
+ /*
+ * Only queue for bufio processing in case of partial or overlapping buffers
+ * -or-
+ * emulation with ebs == ubs aiming for tests of dm-bufio overhead.
+ */
+ if (likely(__block_mod(bio->bi_iter.bi_sector, ec->u_bs) ||
+ __block_mod(bio_end_sector(bio), ec->u_bs) ||
+ ec->e_bs == ec->u_bs)) {
+ spin_lock_irq(&ec->lock);
+ bio_list_add(&ec->bios_in, bio);
+ spin_unlock_irq(&ec->lock);
+
+ queue_work(ec->wq, &ec->ws);
+
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ /* Forget any buffer content relative to this direct backing device I/O. */
+ __ebs_forget_bio(ec, bio);
+
+ return DM_MAPIO_REMAPPED;
+}
+
+static void ebs_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ struct ebs_c *ec = ti->private;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ *result = '\0';
+ break;
+ case STATUSTYPE_TABLE:
+ snprintf(result, maxlen, ec->u_bs_set ? "%s %llu %u %u" : "%s %llu %u",
+ ec->dev->name, (unsigned long long) ec->start, ec->e_bs, ec->u_bs);
+ break;
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+}
+
+static int ebs_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
+{
+ struct ebs_c *ec = ti->private;
+ struct dm_dev *dev = ec->dev;
+
+ /*
+ * Only pass ioctls through if the device sizes match exactly.
+ */
+ *bdev = dev->bdev;
+ return !!(ec->start || ti->len != bdev_nr_sectors(dev->bdev));
+}
+
+static void ebs_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+ struct ebs_c *ec = ti->private;
+
+ limits->logical_block_size = to_bytes(ec->e_bs);
+ limits->physical_block_size = to_bytes(ec->u_bs);
+ limits->alignment_offset = limits->physical_block_size;
+ blk_limits_io_min(limits, limits->logical_block_size);
+}
+
+static int ebs_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ struct ebs_c *ec = ti->private;
+
+ return fn(ti, ec->dev, ec->start, ti->len, data);
+}
+
+static struct target_type ebs_target = {
+ .name = "ebs",
+ .version = {1, 0, 1},
+ .features = DM_TARGET_PASSES_INTEGRITY,
+ .module = THIS_MODULE,
+ .ctr = ebs_ctr,
+ .dtr = ebs_dtr,
+ .map = ebs_map,
+ .status = ebs_status,
+ .io_hints = ebs_io_hints,
+ .prepare_ioctl = ebs_prepare_ioctl,
+ .iterate_devices = ebs_iterate_devices,
+};
+
+static int __init dm_ebs_init(void)
+{
+ int r = dm_register_target(&ebs_target);
+
+ if (r < 0)
+ DMERR("register failed %d", r);
+
+ return r;
+}
+
+static void dm_ebs_exit(void)
+{
+ dm_unregister_target(&ebs_target);
+}
+
+module_init(dm_ebs_init);
+module_exit(dm_ebs_exit);
+
+MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
+MODULE_DESCRIPTION(DM_NAME " emulated block size target");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-era-target.c b/drivers/md/dm-era-target.c
new file mode 100644
index 000000000..a96290103
--- /dev/null
+++ b/drivers/md/dm-era-target.c
@@ -0,0 +1,1756 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#include "dm.h"
+#include "persistent-data/dm-transaction-manager.h"
+#include "persistent-data/dm-bitset.h"
+#include "persistent-data/dm-space-map.h"
+
+#include <linux/dm-io.h>
+#include <linux/dm-kcopyd.h>
+#include <linux/init.h>
+#include <linux/mempool.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+
+#define DM_MSG_PREFIX "era"
+
+#define SUPERBLOCK_LOCATION 0
+#define SUPERBLOCK_MAGIC 2126579579
+#define SUPERBLOCK_CSUM_XOR 146538381
+#define MIN_ERA_VERSION 1
+#define MAX_ERA_VERSION 1
+#define INVALID_WRITESET_ROOT SUPERBLOCK_LOCATION
+#define MIN_BLOCK_SIZE 8
+
+/*----------------------------------------------------------------
+ * Writeset
+ *--------------------------------------------------------------*/
+struct writeset_metadata {
+ uint32_t nr_bits;
+ dm_block_t root;
+};
+
+struct writeset {
+ struct writeset_metadata md;
+
+ /*
+ * An in core copy of the bits to save constantly doing look ups on
+ * disk.
+ */
+ unsigned long *bits;
+};
+
+/*
+ * This does not free off the on disk bitset as this will normally be done
+ * after digesting into the era array.
+ */
+static void writeset_free(struct writeset *ws)
+{
+ vfree(ws->bits);
+ ws->bits = NULL;
+}
+
+static int setup_on_disk_bitset(struct dm_disk_bitset *info,
+ unsigned int nr_bits, dm_block_t *root)
+{
+ int r;
+
+ r = dm_bitset_empty(info, root);
+ if (r)
+ return r;
+
+ return dm_bitset_resize(info, *root, 0, nr_bits, false, root);
+}
+
+static size_t bitset_size(unsigned int nr_bits)
+{
+ return sizeof(unsigned long) * dm_div_up(nr_bits, BITS_PER_LONG);
+}
+
+/*
+ * Allocates memory for the in core bitset.
+ */
+static int writeset_alloc(struct writeset *ws, dm_block_t nr_blocks)
+{
+ ws->bits = vzalloc(bitset_size(nr_blocks));
+ if (!ws->bits) {
+ DMERR("%s: couldn't allocate in memory bitset", __func__);
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+/*
+ * Wipes the in-core bitset, and creates a new on disk bitset.
+ */
+static int writeset_init(struct dm_disk_bitset *info, struct writeset *ws,
+ dm_block_t nr_blocks)
+{
+ int r;
+
+ memset(ws->bits, 0, bitset_size(nr_blocks));
+
+ ws->md.nr_bits = nr_blocks;
+ r = setup_on_disk_bitset(info, ws->md.nr_bits, &ws->md.root);
+ if (r) {
+ DMERR("%s: setup_on_disk_bitset failed", __func__);
+ return r;
+ }
+
+ return 0;
+}
+
+static bool writeset_marked(struct writeset *ws, dm_block_t block)
+{
+ return test_bit(block, ws->bits);
+}
+
+static int writeset_marked_on_disk(struct dm_disk_bitset *info,
+ struct writeset_metadata *m, dm_block_t block,
+ bool *result)
+{
+ dm_block_t old = m->root;
+
+ /*
+ * The bitset was flushed when it was archived, so we know there'll
+ * be no change to the root.
+ */
+ int r = dm_bitset_test_bit(info, m->root, block, &m->root, result);
+ if (r) {
+ DMERR("%s: dm_bitset_test_bit failed", __func__);
+ return r;
+ }
+
+ BUG_ON(m->root != old);
+
+ return r;
+}
+
+/*
+ * Returns < 0 on error, 0 if the bit wasn't previously set, 1 if it was.
+ */
+static int writeset_test_and_set(struct dm_disk_bitset *info,
+ struct writeset *ws, uint32_t block)
+{
+ int r;
+
+ if (!test_bit(block, ws->bits)) {
+ r = dm_bitset_set_bit(info, ws->md.root, block, &ws->md.root);
+ if (r) {
+ /* FIXME: fail mode */
+ return r;
+ }
+
+ return 0;
+ }
+
+ return 1;
+}
+
+/*----------------------------------------------------------------
+ * On disk metadata layout
+ *--------------------------------------------------------------*/
+#define SPACE_MAP_ROOT_SIZE 128
+#define UUID_LEN 16
+
+struct writeset_disk {
+ __le32 nr_bits;
+ __le64 root;
+} __packed;
+
+struct superblock_disk {
+ __le32 csum;
+ __le32 flags;
+ __le64 blocknr;
+
+ __u8 uuid[UUID_LEN];
+ __le64 magic;
+ __le32 version;
+
+ __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
+
+ __le32 data_block_size;
+ __le32 metadata_block_size;
+ __le32 nr_blocks;
+
+ __le32 current_era;
+ struct writeset_disk current_writeset;
+
+ /*
+ * Only these two fields are valid within the metadata snapshot.
+ */
+ __le64 writeset_tree_root;
+ __le64 era_array_root;
+
+ __le64 metadata_snap;
+} __packed;
+
+/*----------------------------------------------------------------
+ * Superblock validation
+ *--------------------------------------------------------------*/
+static void sb_prepare_for_write(struct dm_block_validator *v,
+ struct dm_block *b,
+ size_t sb_block_size)
+{
+ struct superblock_disk *disk = dm_block_data(b);
+
+ disk->blocknr = cpu_to_le64(dm_block_location(b));
+ disk->csum = cpu_to_le32(dm_bm_checksum(&disk->flags,
+ sb_block_size - sizeof(__le32),
+ SUPERBLOCK_CSUM_XOR));
+}
+
+static int check_metadata_version(struct superblock_disk *disk)
+{
+ uint32_t metadata_version = le32_to_cpu(disk->version);
+ if (metadata_version < MIN_ERA_VERSION || metadata_version > MAX_ERA_VERSION) {
+ DMERR("Era metadata version %u found, but only versions between %u and %u supported.",
+ metadata_version, MIN_ERA_VERSION, MAX_ERA_VERSION);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int sb_check(struct dm_block_validator *v,
+ struct dm_block *b,
+ size_t sb_block_size)
+{
+ struct superblock_disk *disk = dm_block_data(b);
+ __le32 csum_le;
+
+ if (dm_block_location(b) != le64_to_cpu(disk->blocknr)) {
+ DMERR("sb_check failed: blocknr %llu: wanted %llu",
+ le64_to_cpu(disk->blocknr),
+ (unsigned long long)dm_block_location(b));
+ return -ENOTBLK;
+ }
+
+ if (le64_to_cpu(disk->magic) != SUPERBLOCK_MAGIC) {
+ DMERR("sb_check failed: magic %llu: wanted %llu",
+ le64_to_cpu(disk->magic),
+ (unsigned long long) SUPERBLOCK_MAGIC);
+ return -EILSEQ;
+ }
+
+ csum_le = cpu_to_le32(dm_bm_checksum(&disk->flags,
+ sb_block_size - sizeof(__le32),
+ SUPERBLOCK_CSUM_XOR));
+ if (csum_le != disk->csum) {
+ DMERR("sb_check failed: csum %u: wanted %u",
+ le32_to_cpu(csum_le), le32_to_cpu(disk->csum));
+ return -EILSEQ;
+ }
+
+ return check_metadata_version(disk);
+}
+
+static struct dm_block_validator sb_validator = {
+ .name = "superblock",
+ .prepare_for_write = sb_prepare_for_write,
+ .check = sb_check
+};
+
+/*----------------------------------------------------------------
+ * Low level metadata handling
+ *--------------------------------------------------------------*/
+#define DM_ERA_METADATA_BLOCK_SIZE 4096
+#define ERA_MAX_CONCURRENT_LOCKS 5
+
+struct era_metadata {
+ struct block_device *bdev;
+ struct dm_block_manager *bm;
+ struct dm_space_map *sm;
+ struct dm_transaction_manager *tm;
+
+ dm_block_t block_size;
+ uint32_t nr_blocks;
+
+ uint32_t current_era;
+
+ /*
+ * We preallocate 2 writesets. When an era rolls over we
+ * switch between them. This means the allocation is done at
+ * preresume time, rather than on the io path.
+ */
+ struct writeset writesets[2];
+ struct writeset *current_writeset;
+
+ dm_block_t writeset_tree_root;
+ dm_block_t era_array_root;
+
+ struct dm_disk_bitset bitset_info;
+ struct dm_btree_info writeset_tree_info;
+ struct dm_array_info era_array_info;
+
+ dm_block_t metadata_snap;
+
+ /*
+ * A flag that is set whenever a writeset has been archived.
+ */
+ bool archived_writesets;
+
+ /*
+ * Reading the space map root can fail, so we read it into this
+ * buffer before the superblock is locked and updated.
+ */
+ __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
+};
+
+static int superblock_read_lock(struct era_metadata *md,
+ struct dm_block **sblock)
+{
+ return dm_bm_read_lock(md->bm, SUPERBLOCK_LOCATION,
+ &sb_validator, sblock);
+}
+
+static int superblock_lock_zero(struct era_metadata *md,
+ struct dm_block **sblock)
+{
+ return dm_bm_write_lock_zero(md->bm, SUPERBLOCK_LOCATION,
+ &sb_validator, sblock);
+}
+
+static int superblock_lock(struct era_metadata *md,
+ struct dm_block **sblock)
+{
+ return dm_bm_write_lock(md->bm, SUPERBLOCK_LOCATION,
+ &sb_validator, sblock);
+}
+
+/* FIXME: duplication with cache and thin */
+static int superblock_all_zeroes(struct dm_block_manager *bm, bool *result)
+{
+ int r;
+ unsigned int i;
+ struct dm_block *b;
+ __le64 *data_le, zero = cpu_to_le64(0);
+ unsigned int sb_block_size = dm_bm_block_size(bm) / sizeof(__le64);
+
+ /*
+ * We can't use a validator here - it may be all zeroes.
+ */
+ r = dm_bm_read_lock(bm, SUPERBLOCK_LOCATION, NULL, &b);
+ if (r)
+ return r;
+
+ data_le = dm_block_data(b);
+ *result = true;
+ for (i = 0; i < sb_block_size; i++) {
+ if (data_le[i] != zero) {
+ *result = false;
+ break;
+ }
+ }
+
+ dm_bm_unlock(b);
+
+ return 0;
+}
+
+/*----------------------------------------------------------------*/
+
+static void ws_pack(const struct writeset_metadata *core, struct writeset_disk *disk)
+{
+ disk->nr_bits = cpu_to_le32(core->nr_bits);
+ disk->root = cpu_to_le64(core->root);
+}
+
+static void ws_unpack(const struct writeset_disk *disk, struct writeset_metadata *core)
+{
+ core->nr_bits = le32_to_cpu(disk->nr_bits);
+ core->root = le64_to_cpu(disk->root);
+}
+
+static void ws_inc(void *context, const void *value, unsigned int count)
+{
+ struct era_metadata *md = context;
+ struct writeset_disk ws_d;
+ dm_block_t b;
+ unsigned int i;
+
+ for (i = 0; i < count; i++) {
+ memcpy(&ws_d, value + (i * sizeof(ws_d)), sizeof(ws_d));
+ b = le64_to_cpu(ws_d.root);
+ dm_tm_inc(md->tm, b);
+ }
+}
+
+static void ws_dec(void *context, const void *value, unsigned int count)
+{
+ struct era_metadata *md = context;
+ struct writeset_disk ws_d;
+ dm_block_t b;
+ unsigned int i;
+
+ for (i = 0; i < count; i++) {
+ memcpy(&ws_d, value + (i * sizeof(ws_d)), sizeof(ws_d));
+ b = le64_to_cpu(ws_d.root);
+ dm_bitset_del(&md->bitset_info, b);
+ }
+}
+
+static int ws_eq(void *context, const void *value1, const void *value2)
+{
+ return !memcmp(value1, value2, sizeof(struct writeset_disk));
+}
+
+/*----------------------------------------------------------------*/
+
+static void setup_writeset_tree_info(struct era_metadata *md)
+{
+ struct dm_btree_value_type *vt = &md->writeset_tree_info.value_type;
+ md->writeset_tree_info.tm = md->tm;
+ md->writeset_tree_info.levels = 1;
+ vt->context = md;
+ vt->size = sizeof(struct writeset_disk);
+ vt->inc = ws_inc;
+ vt->dec = ws_dec;
+ vt->equal = ws_eq;
+}
+
+static void setup_era_array_info(struct era_metadata *md)
+
+{
+ struct dm_btree_value_type vt;
+ vt.context = NULL;
+ vt.size = sizeof(__le32);
+ vt.inc = NULL;
+ vt.dec = NULL;
+ vt.equal = NULL;
+
+ dm_array_info_init(&md->era_array_info, md->tm, &vt);
+}
+
+static void setup_infos(struct era_metadata *md)
+{
+ dm_disk_bitset_init(md->tm, &md->bitset_info);
+ setup_writeset_tree_info(md);
+ setup_era_array_info(md);
+}
+
+/*----------------------------------------------------------------*/
+
+static int create_fresh_metadata(struct era_metadata *md)
+{
+ int r;
+
+ r = dm_tm_create_with_sm(md->bm, SUPERBLOCK_LOCATION,
+ &md->tm, &md->sm);
+ if (r < 0) {
+ DMERR("dm_tm_create_with_sm failed");
+ return r;
+ }
+
+ setup_infos(md);
+
+ r = dm_btree_empty(&md->writeset_tree_info, &md->writeset_tree_root);
+ if (r) {
+ DMERR("couldn't create new writeset tree");
+ goto bad;
+ }
+
+ r = dm_array_empty(&md->era_array_info, &md->era_array_root);
+ if (r) {
+ DMERR("couldn't create era array");
+ goto bad;
+ }
+
+ return 0;
+
+bad:
+ dm_sm_destroy(md->sm);
+ dm_tm_destroy(md->tm);
+
+ return r;
+}
+
+static int save_sm_root(struct era_metadata *md)
+{
+ int r;
+ size_t metadata_len;
+
+ r = dm_sm_root_size(md->sm, &metadata_len);
+ if (r < 0)
+ return r;
+
+ return dm_sm_copy_root(md->sm, &md->metadata_space_map_root,
+ metadata_len);
+}
+
+static void copy_sm_root(struct era_metadata *md, struct superblock_disk *disk)
+{
+ memcpy(&disk->metadata_space_map_root,
+ &md->metadata_space_map_root,
+ sizeof(md->metadata_space_map_root));
+}
+
+/*
+ * Writes a superblock, including the static fields that don't get updated
+ * with every commit (possible optimisation here). 'md' should be fully
+ * constructed when this is called.
+ */
+static void prepare_superblock(struct era_metadata *md, struct superblock_disk *disk)
+{
+ disk->magic = cpu_to_le64(SUPERBLOCK_MAGIC);
+ disk->flags = cpu_to_le32(0ul);
+
+ /* FIXME: can't keep blanking the uuid (uuid is currently unused though) */
+ memset(disk->uuid, 0, sizeof(disk->uuid));
+ disk->version = cpu_to_le32(MAX_ERA_VERSION);
+
+ copy_sm_root(md, disk);
+
+ disk->data_block_size = cpu_to_le32(md->block_size);
+ disk->metadata_block_size = cpu_to_le32(DM_ERA_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
+ disk->nr_blocks = cpu_to_le32(md->nr_blocks);
+ disk->current_era = cpu_to_le32(md->current_era);
+
+ ws_pack(&md->current_writeset->md, &disk->current_writeset);
+ disk->writeset_tree_root = cpu_to_le64(md->writeset_tree_root);
+ disk->era_array_root = cpu_to_le64(md->era_array_root);
+ disk->metadata_snap = cpu_to_le64(md->metadata_snap);
+}
+
+static int write_superblock(struct era_metadata *md)
+{
+ int r;
+ struct dm_block *sblock;
+ struct superblock_disk *disk;
+
+ r = save_sm_root(md);
+ if (r) {
+ DMERR("%s: save_sm_root failed", __func__);
+ return r;
+ }
+
+ r = superblock_lock_zero(md, &sblock);
+ if (r)
+ return r;
+
+ disk = dm_block_data(sblock);
+ prepare_superblock(md, disk);
+
+ return dm_tm_commit(md->tm, sblock);
+}
+
+/*
+ * Assumes block_size and the infos are set.
+ */
+static int format_metadata(struct era_metadata *md)
+{
+ int r;
+
+ r = create_fresh_metadata(md);
+ if (r)
+ return r;
+
+ r = write_superblock(md);
+ if (r) {
+ dm_sm_destroy(md->sm);
+ dm_tm_destroy(md->tm);
+ return r;
+ }
+
+ return 0;
+}
+
+static int open_metadata(struct era_metadata *md)
+{
+ int r;
+ struct dm_block *sblock;
+ struct superblock_disk *disk;
+
+ r = superblock_read_lock(md, &sblock);
+ if (r) {
+ DMERR("couldn't read_lock superblock");
+ return r;
+ }
+
+ disk = dm_block_data(sblock);
+
+ /* Verify the data block size hasn't changed */
+ if (le32_to_cpu(disk->data_block_size) != md->block_size) {
+ DMERR("changing the data block size (from %u to %llu) is not supported",
+ le32_to_cpu(disk->data_block_size), md->block_size);
+ r = -EINVAL;
+ goto bad;
+ }
+
+ r = dm_tm_open_with_sm(md->bm, SUPERBLOCK_LOCATION,
+ disk->metadata_space_map_root,
+ sizeof(disk->metadata_space_map_root),
+ &md->tm, &md->sm);
+ if (r) {
+ DMERR("dm_tm_open_with_sm failed");
+ goto bad;
+ }
+
+ setup_infos(md);
+
+ md->nr_blocks = le32_to_cpu(disk->nr_blocks);
+ md->current_era = le32_to_cpu(disk->current_era);
+
+ ws_unpack(&disk->current_writeset, &md->current_writeset->md);
+ md->writeset_tree_root = le64_to_cpu(disk->writeset_tree_root);
+ md->era_array_root = le64_to_cpu(disk->era_array_root);
+ md->metadata_snap = le64_to_cpu(disk->metadata_snap);
+ md->archived_writesets = true;
+
+ dm_bm_unlock(sblock);
+
+ return 0;
+
+bad:
+ dm_bm_unlock(sblock);
+ return r;
+}
+
+static int open_or_format_metadata(struct era_metadata *md,
+ bool may_format)
+{
+ int r;
+ bool unformatted = false;
+
+ r = superblock_all_zeroes(md->bm, &unformatted);
+ if (r)
+ return r;
+
+ if (unformatted)
+ return may_format ? format_metadata(md) : -EPERM;
+
+ return open_metadata(md);
+}
+
+static int create_persistent_data_objects(struct era_metadata *md,
+ bool may_format)
+{
+ int r;
+
+ md->bm = dm_block_manager_create(md->bdev, DM_ERA_METADATA_BLOCK_SIZE,
+ ERA_MAX_CONCURRENT_LOCKS);
+ if (IS_ERR(md->bm)) {
+ DMERR("could not create block manager");
+ return PTR_ERR(md->bm);
+ }
+
+ r = open_or_format_metadata(md, may_format);
+ if (r)
+ dm_block_manager_destroy(md->bm);
+
+ return r;
+}
+
+static void destroy_persistent_data_objects(struct era_metadata *md)
+{
+ dm_sm_destroy(md->sm);
+ dm_tm_destroy(md->tm);
+ dm_block_manager_destroy(md->bm);
+}
+
+/*
+ * This waits until all era_map threads have picked up the new filter.
+ */
+static void swap_writeset(struct era_metadata *md, struct writeset *new_writeset)
+{
+ rcu_assign_pointer(md->current_writeset, new_writeset);
+ synchronize_rcu();
+}
+
+/*----------------------------------------------------------------
+ * Writesets get 'digested' into the main era array.
+ *
+ * We're using a coroutine here so the worker thread can do the digestion,
+ * thus avoiding synchronisation of the metadata. Digesting a whole
+ * writeset in one go would cause too much latency.
+ *--------------------------------------------------------------*/
+struct digest {
+ uint32_t era;
+ unsigned int nr_bits, current_bit;
+ struct writeset_metadata writeset;
+ __le32 value;
+ struct dm_disk_bitset info;
+
+ int (*step)(struct era_metadata *, struct digest *);
+};
+
+static int metadata_digest_lookup_writeset(struct era_metadata *md,
+ struct digest *d);
+
+static int metadata_digest_remove_writeset(struct era_metadata *md,
+ struct digest *d)
+{
+ int r;
+ uint64_t key = d->era;
+
+ r = dm_btree_remove(&md->writeset_tree_info, md->writeset_tree_root,
+ &key, &md->writeset_tree_root);
+ if (r) {
+ DMERR("%s: dm_btree_remove failed", __func__);
+ return r;
+ }
+
+ d->step = metadata_digest_lookup_writeset;
+ return 0;
+}
+
+#define INSERTS_PER_STEP 100
+
+static int metadata_digest_transcribe_writeset(struct era_metadata *md,
+ struct digest *d)
+{
+ int r;
+ bool marked;
+ unsigned int b, e = min(d->current_bit + INSERTS_PER_STEP, d->nr_bits);
+
+ for (b = d->current_bit; b < e; b++) {
+ r = writeset_marked_on_disk(&d->info, &d->writeset, b, &marked);
+ if (r) {
+ DMERR("%s: writeset_marked_on_disk failed", __func__);
+ return r;
+ }
+
+ if (!marked)
+ continue;
+
+ __dm_bless_for_disk(&d->value);
+ r = dm_array_set_value(&md->era_array_info, md->era_array_root,
+ b, &d->value, &md->era_array_root);
+ if (r) {
+ DMERR("%s: dm_array_set_value failed", __func__);
+ return r;
+ }
+ }
+
+ if (b == d->nr_bits)
+ d->step = metadata_digest_remove_writeset;
+ else
+ d->current_bit = b;
+
+ return 0;
+}
+
+static int metadata_digest_lookup_writeset(struct era_metadata *md,
+ struct digest *d)
+{
+ int r;
+ uint64_t key;
+ struct writeset_disk disk;
+
+ r = dm_btree_find_lowest_key(&md->writeset_tree_info,
+ md->writeset_tree_root, &key);
+ if (r < 0)
+ return r;
+
+ d->era = key;
+
+ r = dm_btree_lookup(&md->writeset_tree_info,
+ md->writeset_tree_root, &key, &disk);
+ if (r) {
+ if (r == -ENODATA) {
+ d->step = NULL;
+ return 0;
+ }
+
+ DMERR("%s: dm_btree_lookup failed", __func__);
+ return r;
+ }
+
+ ws_unpack(&disk, &d->writeset);
+ d->value = cpu_to_le32(key);
+
+ /*
+ * We initialise another bitset info to avoid any caching side effects
+ * with the previous one.
+ */
+ dm_disk_bitset_init(md->tm, &d->info);
+
+ d->nr_bits = min(d->writeset.nr_bits, md->nr_blocks);
+ d->current_bit = 0;
+ d->step = metadata_digest_transcribe_writeset;
+
+ return 0;
+}
+
+static int metadata_digest_start(struct era_metadata *md, struct digest *d)
+{
+ if (d->step)
+ return 0;
+
+ memset(d, 0, sizeof(*d));
+ d->step = metadata_digest_lookup_writeset;
+
+ return 0;
+}
+
+/*----------------------------------------------------------------
+ * High level metadata interface. Target methods should use these, and not
+ * the lower level ones.
+ *--------------------------------------------------------------*/
+static struct era_metadata *metadata_open(struct block_device *bdev,
+ sector_t block_size,
+ bool may_format)
+{
+ int r;
+ struct era_metadata *md = kzalloc(sizeof(*md), GFP_KERNEL);
+
+ if (!md)
+ return NULL;
+
+ md->bdev = bdev;
+ md->block_size = block_size;
+
+ md->writesets[0].md.root = INVALID_WRITESET_ROOT;
+ md->writesets[1].md.root = INVALID_WRITESET_ROOT;
+ md->current_writeset = &md->writesets[0];
+
+ r = create_persistent_data_objects(md, may_format);
+ if (r) {
+ kfree(md);
+ return ERR_PTR(r);
+ }
+
+ return md;
+}
+
+static void metadata_close(struct era_metadata *md)
+{
+ writeset_free(&md->writesets[0]);
+ writeset_free(&md->writesets[1]);
+ destroy_persistent_data_objects(md);
+ kfree(md);
+}
+
+static bool valid_nr_blocks(dm_block_t n)
+{
+ /*
+ * dm_bitset restricts us to 2^32. test_bit & co. restrict us
+ * further to 2^31 - 1
+ */
+ return n < (1ull << 31);
+}
+
+static int metadata_resize(struct era_metadata *md, void *arg)
+{
+ int r;
+ dm_block_t *new_size = arg;
+ __le32 value;
+
+ if (!valid_nr_blocks(*new_size)) {
+ DMERR("Invalid number of origin blocks %llu",
+ (unsigned long long) *new_size);
+ return -EINVAL;
+ }
+
+ writeset_free(&md->writesets[0]);
+ writeset_free(&md->writesets[1]);
+
+ r = writeset_alloc(&md->writesets[0], *new_size);
+ if (r) {
+ DMERR("%s: writeset_alloc failed for writeset 0", __func__);
+ return r;
+ }
+
+ r = writeset_alloc(&md->writesets[1], *new_size);
+ if (r) {
+ DMERR("%s: writeset_alloc failed for writeset 1", __func__);
+ writeset_free(&md->writesets[0]);
+ return r;
+ }
+
+ value = cpu_to_le32(0u);
+ __dm_bless_for_disk(&value);
+ r = dm_array_resize(&md->era_array_info, md->era_array_root,
+ md->nr_blocks, *new_size,
+ &value, &md->era_array_root);
+ if (r) {
+ DMERR("%s: dm_array_resize failed", __func__);
+ writeset_free(&md->writesets[0]);
+ writeset_free(&md->writesets[1]);
+ return r;
+ }
+
+ md->nr_blocks = *new_size;
+ return 0;
+}
+
+static int metadata_era_archive(struct era_metadata *md)
+{
+ int r;
+ uint64_t keys[1];
+ struct writeset_disk value;
+
+ r = dm_bitset_flush(&md->bitset_info, md->current_writeset->md.root,
+ &md->current_writeset->md.root);
+ if (r) {
+ DMERR("%s: dm_bitset_flush failed", __func__);
+ return r;
+ }
+
+ ws_pack(&md->current_writeset->md, &value);
+
+ keys[0] = md->current_era;
+ __dm_bless_for_disk(&value);
+ r = dm_btree_insert(&md->writeset_tree_info, md->writeset_tree_root,
+ keys, &value, &md->writeset_tree_root);
+ if (r) {
+ DMERR("%s: couldn't insert writeset into btree", __func__);
+ /* FIXME: fail mode */
+ return r;
+ }
+
+ md->current_writeset->md.root = INVALID_WRITESET_ROOT;
+ md->archived_writesets = true;
+
+ return 0;
+}
+
+static struct writeset *next_writeset(struct era_metadata *md)
+{
+ return (md->current_writeset == &md->writesets[0]) ?
+ &md->writesets[1] : &md->writesets[0];
+}
+
+static int metadata_new_era(struct era_metadata *md)
+{
+ int r;
+ struct writeset *new_writeset = next_writeset(md);
+
+ r = writeset_init(&md->bitset_info, new_writeset, md->nr_blocks);
+ if (r) {
+ DMERR("%s: writeset_init failed", __func__);
+ return r;
+ }
+
+ swap_writeset(md, new_writeset);
+ md->current_era++;
+
+ return 0;
+}
+
+static int metadata_era_rollover(struct era_metadata *md)
+{
+ int r;
+
+ if (md->current_writeset->md.root != INVALID_WRITESET_ROOT) {
+ r = metadata_era_archive(md);
+ if (r) {
+ DMERR("%s: metadata_archive_era failed", __func__);
+ /* FIXME: fail mode? */
+ return r;
+ }
+ }
+
+ r = metadata_new_era(md);
+ if (r) {
+ DMERR("%s: new era failed", __func__);
+ /* FIXME: fail mode */
+ return r;
+ }
+
+ return 0;
+}
+
+static bool metadata_current_marked(struct era_metadata *md, dm_block_t block)
+{
+ bool r;
+ struct writeset *ws;
+
+ rcu_read_lock();
+ ws = rcu_dereference(md->current_writeset);
+ r = writeset_marked(ws, block);
+ rcu_read_unlock();
+
+ return r;
+}
+
+static int metadata_commit(struct era_metadata *md)
+{
+ int r;
+ struct dm_block *sblock;
+
+ if (md->current_writeset->md.root != INVALID_WRITESET_ROOT) {
+ r = dm_bitset_flush(&md->bitset_info, md->current_writeset->md.root,
+ &md->current_writeset->md.root);
+ if (r) {
+ DMERR("%s: bitset flush failed", __func__);
+ return r;
+ }
+ }
+
+ r = dm_tm_pre_commit(md->tm);
+ if (r) {
+ DMERR("%s: pre commit failed", __func__);
+ return r;
+ }
+
+ r = save_sm_root(md);
+ if (r) {
+ DMERR("%s: save_sm_root failed", __func__);
+ return r;
+ }
+
+ r = superblock_lock(md, &sblock);
+ if (r) {
+ DMERR("%s: superblock lock failed", __func__);
+ return r;
+ }
+
+ prepare_superblock(md, dm_block_data(sblock));
+
+ return dm_tm_commit(md->tm, sblock);
+}
+
+static int metadata_checkpoint(struct era_metadata *md)
+{
+ /*
+ * For now we just rollover, but later I want to put a check in to
+ * avoid this if the filter is still pretty fresh.
+ */
+ return metadata_era_rollover(md);
+}
+
+/*
+ * Metadata snapshots allow userland to access era data.
+ */
+static int metadata_take_snap(struct era_metadata *md)
+{
+ int r, inc;
+ struct dm_block *clone;
+
+ if (md->metadata_snap != SUPERBLOCK_LOCATION) {
+ DMERR("%s: metadata snapshot already exists", __func__);
+ return -EINVAL;
+ }
+
+ r = metadata_era_rollover(md);
+ if (r) {
+ DMERR("%s: era rollover failed", __func__);
+ return r;
+ }
+
+ r = metadata_commit(md);
+ if (r) {
+ DMERR("%s: pre commit failed", __func__);
+ return r;
+ }
+
+ r = dm_sm_inc_block(md->sm, SUPERBLOCK_LOCATION);
+ if (r) {
+ DMERR("%s: couldn't increment superblock", __func__);
+ return r;
+ }
+
+ r = dm_tm_shadow_block(md->tm, SUPERBLOCK_LOCATION,
+ &sb_validator, &clone, &inc);
+ if (r) {
+ DMERR("%s: couldn't shadow superblock", __func__);
+ dm_sm_dec_block(md->sm, SUPERBLOCK_LOCATION);
+ return r;
+ }
+ BUG_ON(!inc);
+
+ r = dm_sm_inc_block(md->sm, md->writeset_tree_root);
+ if (r) {
+ DMERR("%s: couldn't inc writeset tree root", __func__);
+ dm_tm_unlock(md->tm, clone);
+ return r;
+ }
+
+ r = dm_sm_inc_block(md->sm, md->era_array_root);
+ if (r) {
+ DMERR("%s: couldn't inc era tree root", __func__);
+ dm_sm_dec_block(md->sm, md->writeset_tree_root);
+ dm_tm_unlock(md->tm, clone);
+ return r;
+ }
+
+ md->metadata_snap = dm_block_location(clone);
+
+ dm_tm_unlock(md->tm, clone);
+
+ return 0;
+}
+
+static int metadata_drop_snap(struct era_metadata *md)
+{
+ int r;
+ dm_block_t location;
+ struct dm_block *clone;
+ struct superblock_disk *disk;
+
+ if (md->metadata_snap == SUPERBLOCK_LOCATION) {
+ DMERR("%s: no snap to drop", __func__);
+ return -EINVAL;
+ }
+
+ r = dm_tm_read_lock(md->tm, md->metadata_snap, &sb_validator, &clone);
+ if (r) {
+ DMERR("%s: couldn't read lock superblock clone", __func__);
+ return r;
+ }
+
+ /*
+ * Whatever happens now we'll commit with no record of the metadata
+ * snap.
+ */
+ md->metadata_snap = SUPERBLOCK_LOCATION;
+
+ disk = dm_block_data(clone);
+ r = dm_btree_del(&md->writeset_tree_info,
+ le64_to_cpu(disk->writeset_tree_root));
+ if (r) {
+ DMERR("%s: error deleting writeset tree clone", __func__);
+ dm_tm_unlock(md->tm, clone);
+ return r;
+ }
+
+ r = dm_array_del(&md->era_array_info, le64_to_cpu(disk->era_array_root));
+ if (r) {
+ DMERR("%s: error deleting era array clone", __func__);
+ dm_tm_unlock(md->tm, clone);
+ return r;
+ }
+
+ location = dm_block_location(clone);
+ dm_tm_unlock(md->tm, clone);
+
+ return dm_sm_dec_block(md->sm, location);
+}
+
+struct metadata_stats {
+ dm_block_t used;
+ dm_block_t total;
+ dm_block_t snap;
+ uint32_t era;
+};
+
+static int metadata_get_stats(struct era_metadata *md, void *ptr)
+{
+ int r;
+ struct metadata_stats *s = ptr;
+ dm_block_t nr_free, nr_total;
+
+ r = dm_sm_get_nr_free(md->sm, &nr_free);
+ if (r) {
+ DMERR("dm_sm_get_nr_free returned %d", r);
+ return r;
+ }
+
+ r = dm_sm_get_nr_blocks(md->sm, &nr_total);
+ if (r) {
+ DMERR("dm_pool_get_metadata_dev_size returned %d", r);
+ return r;
+ }
+
+ s->used = nr_total - nr_free;
+ s->total = nr_total;
+ s->snap = md->metadata_snap;
+ s->era = md->current_era;
+
+ return 0;
+}
+
+/*----------------------------------------------------------------*/
+
+struct era {
+ struct dm_target *ti;
+
+ struct dm_dev *metadata_dev;
+ struct dm_dev *origin_dev;
+
+ dm_block_t nr_blocks;
+ uint32_t sectors_per_block;
+ int sectors_per_block_shift;
+ struct era_metadata *md;
+
+ struct workqueue_struct *wq;
+ struct work_struct worker;
+
+ spinlock_t deferred_lock;
+ struct bio_list deferred_bios;
+
+ spinlock_t rpc_lock;
+ struct list_head rpc_calls;
+
+ struct digest digest;
+ atomic_t suspended;
+};
+
+struct rpc {
+ struct list_head list;
+
+ int (*fn0)(struct era_metadata *);
+ int (*fn1)(struct era_metadata *, void *);
+ void *arg;
+ int result;
+
+ struct completion complete;
+};
+
+/*----------------------------------------------------------------
+ * Remapping.
+ *---------------------------------------------------------------*/
+static bool block_size_is_power_of_two(struct era *era)
+{
+ return era->sectors_per_block_shift >= 0;
+}
+
+static dm_block_t get_block(struct era *era, struct bio *bio)
+{
+ sector_t block_nr = bio->bi_iter.bi_sector;
+
+ if (!block_size_is_power_of_two(era))
+ (void) sector_div(block_nr, era->sectors_per_block);
+ else
+ block_nr >>= era->sectors_per_block_shift;
+
+ return block_nr;
+}
+
+static void remap_to_origin(struct era *era, struct bio *bio)
+{
+ bio_set_dev(bio, era->origin_dev->bdev);
+}
+
+/*----------------------------------------------------------------
+ * Worker thread
+ *--------------------------------------------------------------*/
+static void wake_worker(struct era *era)
+{
+ if (!atomic_read(&era->suspended))
+ queue_work(era->wq, &era->worker);
+}
+
+static void process_old_eras(struct era *era)
+{
+ int r;
+
+ if (!era->digest.step)
+ return;
+
+ r = era->digest.step(era->md, &era->digest);
+ if (r < 0) {
+ DMERR("%s: digest step failed, stopping digestion", __func__);
+ era->digest.step = NULL;
+
+ } else if (era->digest.step)
+ wake_worker(era);
+}
+
+static void process_deferred_bios(struct era *era)
+{
+ int r;
+ struct bio_list deferred_bios, marked_bios;
+ struct bio *bio;
+ struct blk_plug plug;
+ bool commit_needed = false;
+ bool failed = false;
+ struct writeset *ws = era->md->current_writeset;
+
+ bio_list_init(&deferred_bios);
+ bio_list_init(&marked_bios);
+
+ spin_lock(&era->deferred_lock);
+ bio_list_merge(&deferred_bios, &era->deferred_bios);
+ bio_list_init(&era->deferred_bios);
+ spin_unlock(&era->deferred_lock);
+
+ if (bio_list_empty(&deferred_bios))
+ return;
+
+ while ((bio = bio_list_pop(&deferred_bios))) {
+ r = writeset_test_and_set(&era->md->bitset_info, ws,
+ get_block(era, bio));
+ if (r < 0) {
+ /*
+ * This is bad news, we need to rollback.
+ * FIXME: finish.
+ */
+ failed = true;
+ } else if (r == 0)
+ commit_needed = true;
+
+ bio_list_add(&marked_bios, bio);
+ }
+
+ if (commit_needed) {
+ r = metadata_commit(era->md);
+ if (r)
+ failed = true;
+ }
+
+ if (failed)
+ while ((bio = bio_list_pop(&marked_bios)))
+ bio_io_error(bio);
+ else {
+ blk_start_plug(&plug);
+ while ((bio = bio_list_pop(&marked_bios))) {
+ /*
+ * Only update the in-core writeset if the on-disk one
+ * was updated too.
+ */
+ if (commit_needed)
+ set_bit(get_block(era, bio), ws->bits);
+ submit_bio_noacct(bio);
+ }
+ blk_finish_plug(&plug);
+ }
+}
+
+static void process_rpc_calls(struct era *era)
+{
+ int r;
+ bool need_commit = false;
+ struct list_head calls;
+ struct rpc *rpc, *tmp;
+
+ INIT_LIST_HEAD(&calls);
+ spin_lock(&era->rpc_lock);
+ list_splice_init(&era->rpc_calls, &calls);
+ spin_unlock(&era->rpc_lock);
+
+ list_for_each_entry_safe(rpc, tmp, &calls, list) {
+ rpc->result = rpc->fn0 ? rpc->fn0(era->md) : rpc->fn1(era->md, rpc->arg);
+ need_commit = true;
+ }
+
+ if (need_commit) {
+ r = metadata_commit(era->md);
+ if (r)
+ list_for_each_entry_safe(rpc, tmp, &calls, list)
+ rpc->result = r;
+ }
+
+ list_for_each_entry_safe(rpc, tmp, &calls, list)
+ complete(&rpc->complete);
+}
+
+static void kick_off_digest(struct era *era)
+{
+ if (era->md->archived_writesets) {
+ era->md->archived_writesets = false;
+ metadata_digest_start(era->md, &era->digest);
+ }
+}
+
+static void do_work(struct work_struct *ws)
+{
+ struct era *era = container_of(ws, struct era, worker);
+
+ kick_off_digest(era);
+ process_old_eras(era);
+ process_deferred_bios(era);
+ process_rpc_calls(era);
+}
+
+static void defer_bio(struct era *era, struct bio *bio)
+{
+ spin_lock(&era->deferred_lock);
+ bio_list_add(&era->deferred_bios, bio);
+ spin_unlock(&era->deferred_lock);
+
+ wake_worker(era);
+}
+
+/*
+ * Make an rpc call to the worker to change the metadata.
+ */
+static int perform_rpc(struct era *era, struct rpc *rpc)
+{
+ rpc->result = 0;
+ init_completion(&rpc->complete);
+
+ spin_lock(&era->rpc_lock);
+ list_add(&rpc->list, &era->rpc_calls);
+ spin_unlock(&era->rpc_lock);
+
+ wake_worker(era);
+ wait_for_completion(&rpc->complete);
+
+ return rpc->result;
+}
+
+static int in_worker0(struct era *era, int (*fn)(struct era_metadata *))
+{
+ struct rpc rpc;
+ rpc.fn0 = fn;
+ rpc.fn1 = NULL;
+
+ return perform_rpc(era, &rpc);
+}
+
+static int in_worker1(struct era *era,
+ int (*fn)(struct era_metadata *, void *), void *arg)
+{
+ struct rpc rpc;
+ rpc.fn0 = NULL;
+ rpc.fn1 = fn;
+ rpc.arg = arg;
+
+ return perform_rpc(era, &rpc);
+}
+
+static void start_worker(struct era *era)
+{
+ atomic_set(&era->suspended, 0);
+}
+
+static void stop_worker(struct era *era)
+{
+ atomic_set(&era->suspended, 1);
+ drain_workqueue(era->wq);
+}
+
+/*----------------------------------------------------------------
+ * Target methods
+ *--------------------------------------------------------------*/
+static void era_destroy(struct era *era)
+{
+ if (era->md)
+ metadata_close(era->md);
+
+ if (era->wq)
+ destroy_workqueue(era->wq);
+
+ if (era->origin_dev)
+ dm_put_device(era->ti, era->origin_dev);
+
+ if (era->metadata_dev)
+ dm_put_device(era->ti, era->metadata_dev);
+
+ kfree(era);
+}
+
+static dm_block_t calc_nr_blocks(struct era *era)
+{
+ return dm_sector_div_up(era->ti->len, era->sectors_per_block);
+}
+
+static bool valid_block_size(dm_block_t block_size)
+{
+ bool greater_than_zero = block_size > 0;
+ bool multiple_of_min_block_size = (block_size & (MIN_BLOCK_SIZE - 1)) == 0;
+
+ return greater_than_zero && multiple_of_min_block_size;
+}
+
+/*
+ * <metadata dev> <data dev> <data block size (sectors)>
+ */
+static int era_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ int r;
+ char dummy;
+ struct era *era;
+ struct era_metadata *md;
+
+ if (argc != 3) {
+ ti->error = "Invalid argument count";
+ return -EINVAL;
+ }
+
+ era = kzalloc(sizeof(*era), GFP_KERNEL);
+ if (!era) {
+ ti->error = "Error allocating era structure";
+ return -ENOMEM;
+ }
+
+ era->ti = ti;
+
+ r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &era->metadata_dev);
+ if (r) {
+ ti->error = "Error opening metadata device";
+ era_destroy(era);
+ return -EINVAL;
+ }
+
+ r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &era->origin_dev);
+ if (r) {
+ ti->error = "Error opening data device";
+ era_destroy(era);
+ return -EINVAL;
+ }
+
+ r = sscanf(argv[2], "%u%c", &era->sectors_per_block, &dummy);
+ if (r != 1) {
+ ti->error = "Error parsing block size";
+ era_destroy(era);
+ return -EINVAL;
+ }
+
+ r = dm_set_target_max_io_len(ti, era->sectors_per_block);
+ if (r) {
+ ti->error = "could not set max io len";
+ era_destroy(era);
+ return -EINVAL;
+ }
+
+ if (!valid_block_size(era->sectors_per_block)) {
+ ti->error = "Invalid block size";
+ era_destroy(era);
+ return -EINVAL;
+ }
+ if (era->sectors_per_block & (era->sectors_per_block - 1))
+ era->sectors_per_block_shift = -1;
+ else
+ era->sectors_per_block_shift = __ffs(era->sectors_per_block);
+
+ md = metadata_open(era->metadata_dev->bdev, era->sectors_per_block, true);
+ if (IS_ERR(md)) {
+ ti->error = "Error reading metadata";
+ era_destroy(era);
+ return PTR_ERR(md);
+ }
+ era->md = md;
+
+ era->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
+ if (!era->wq) {
+ ti->error = "could not create workqueue for metadata object";
+ era_destroy(era);
+ return -ENOMEM;
+ }
+ INIT_WORK(&era->worker, do_work);
+
+ spin_lock_init(&era->deferred_lock);
+ bio_list_init(&era->deferred_bios);
+
+ spin_lock_init(&era->rpc_lock);
+ INIT_LIST_HEAD(&era->rpc_calls);
+
+ ti->private = era;
+ ti->num_flush_bios = 1;
+ ti->flush_supported = true;
+
+ ti->num_discard_bios = 1;
+
+ return 0;
+}
+
+static void era_dtr(struct dm_target *ti)
+{
+ era_destroy(ti->private);
+}
+
+static int era_map(struct dm_target *ti, struct bio *bio)
+{
+ struct era *era = ti->private;
+ dm_block_t block = get_block(era, bio);
+
+ /*
+ * All bios get remapped to the origin device. We do this now, but
+ * it may not get issued until later. Depending on whether the
+ * block is marked in this era.
+ */
+ remap_to_origin(era, bio);
+
+ /*
+ * REQ_PREFLUSH bios carry no data, so we're not interested in them.
+ */
+ if (!(bio->bi_opf & REQ_PREFLUSH) &&
+ (bio_data_dir(bio) == WRITE) &&
+ !metadata_current_marked(era->md, block)) {
+ defer_bio(era, bio);
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ return DM_MAPIO_REMAPPED;
+}
+
+static void era_postsuspend(struct dm_target *ti)
+{
+ int r;
+ struct era *era = ti->private;
+
+ r = in_worker0(era, metadata_era_archive);
+ if (r) {
+ DMERR("%s: couldn't archive current era", __func__);
+ /* FIXME: fail mode */
+ }
+
+ stop_worker(era);
+
+ r = metadata_commit(era->md);
+ if (r) {
+ DMERR("%s: metadata_commit failed", __func__);
+ /* FIXME: fail mode */
+ }
+}
+
+static int era_preresume(struct dm_target *ti)
+{
+ int r;
+ struct era *era = ti->private;
+ dm_block_t new_size = calc_nr_blocks(era);
+
+ if (era->nr_blocks != new_size) {
+ r = metadata_resize(era->md, &new_size);
+ if (r) {
+ DMERR("%s: metadata_resize failed", __func__);
+ return r;
+ }
+
+ r = metadata_commit(era->md);
+ if (r) {
+ DMERR("%s: metadata_commit failed", __func__);
+ return r;
+ }
+
+ era->nr_blocks = new_size;
+ }
+
+ start_worker(era);
+
+ r = in_worker0(era, metadata_era_rollover);
+ if (r) {
+ DMERR("%s: metadata_era_rollover failed", __func__);
+ return r;
+ }
+
+ return 0;
+}
+
+/*
+ * Status format:
+ *
+ * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
+ * <current era> <held metadata root | '-'>
+ */
+static void era_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ int r;
+ struct era *era = ti->private;
+ ssize_t sz = 0;
+ struct metadata_stats stats;
+ char buf[BDEVNAME_SIZE];
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ r = in_worker1(era, metadata_get_stats, &stats);
+ if (r)
+ goto err;
+
+ DMEMIT("%u %llu/%llu %u",
+ (unsigned int) (DM_ERA_METADATA_BLOCK_SIZE >> SECTOR_SHIFT),
+ (unsigned long long) stats.used,
+ (unsigned long long) stats.total,
+ (unsigned int) stats.era);
+
+ if (stats.snap != SUPERBLOCK_LOCATION)
+ DMEMIT(" %llu", stats.snap);
+ else
+ DMEMIT(" -");
+ break;
+
+ case STATUSTYPE_TABLE:
+ format_dev_t(buf, era->metadata_dev->bdev->bd_dev);
+ DMEMIT("%s ", buf);
+ format_dev_t(buf, era->origin_dev->bdev->bd_dev);
+ DMEMIT("%s %u", buf, era->sectors_per_block);
+ break;
+
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+
+ return;
+
+err:
+ DMEMIT("Error");
+}
+
+static int era_message(struct dm_target *ti, unsigned int argc, char **argv,
+ char *result, unsigned int maxlen)
+{
+ struct era *era = ti->private;
+
+ if (argc != 1) {
+ DMERR("incorrect number of message arguments");
+ return -EINVAL;
+ }
+
+ if (!strcasecmp(argv[0], "checkpoint"))
+ return in_worker0(era, metadata_checkpoint);
+
+ if (!strcasecmp(argv[0], "take_metadata_snap"))
+ return in_worker0(era, metadata_take_snap);
+
+ if (!strcasecmp(argv[0], "drop_metadata_snap"))
+ return in_worker0(era, metadata_drop_snap);
+
+ DMERR("unsupported message '%s'", argv[0]);
+ return -EINVAL;
+}
+
+static sector_t get_dev_size(struct dm_dev *dev)
+{
+ return bdev_nr_sectors(dev->bdev);
+}
+
+static int era_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ struct era *era = ti->private;
+ return fn(ti, era->origin_dev, 0, get_dev_size(era->origin_dev), data);
+}
+
+static void era_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+ struct era *era = ti->private;
+ uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
+
+ /*
+ * If the system-determined stacked limits are compatible with the
+ * era device's blocksize (io_opt is a factor) do not override them.
+ */
+ if (io_opt_sectors < era->sectors_per_block ||
+ do_div(io_opt_sectors, era->sectors_per_block)) {
+ blk_limits_io_min(limits, 0);
+ blk_limits_io_opt(limits, era->sectors_per_block << SECTOR_SHIFT);
+ }
+}
+
+/*----------------------------------------------------------------*/
+
+static struct target_type era_target = {
+ .name = "era",
+ .version = {1, 0, 0},
+ .module = THIS_MODULE,
+ .ctr = era_ctr,
+ .dtr = era_dtr,
+ .map = era_map,
+ .postsuspend = era_postsuspend,
+ .preresume = era_preresume,
+ .status = era_status,
+ .message = era_message,
+ .iterate_devices = era_iterate_devices,
+ .io_hints = era_io_hints
+};
+
+static int __init dm_era_init(void)
+{
+ int r;
+
+ r = dm_register_target(&era_target);
+ if (r) {
+ DMERR("era target registration failed: %d", r);
+ return r;
+ }
+
+ return 0;
+}
+
+static void __exit dm_era_exit(void)
+{
+ dm_unregister_target(&era_target);
+}
+
+module_init(dm_era_init);
+module_exit(dm_era_exit);
+
+MODULE_DESCRIPTION(DM_NAME " era target");
+MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-exception-store.c b/drivers/md/dm-exception-store.c
new file mode 100644
index 000000000..cc3987c97
--- /dev/null
+++ b/drivers/md/dm-exception-store.c
@@ -0,0 +1,290 @@
+/*
+ * Copyright (C) 2001-2002 Sistina Software (UK) Limited.
+ * Copyright (C) 2006-2008 Red Hat GmbH
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-exception-store.h"
+
+#include <linux/ctype.h>
+#include <linux/mm.h>
+#include <linux/pagemap.h>
+#include <linux/vmalloc.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+
+#define DM_MSG_PREFIX "snapshot exception stores"
+
+static LIST_HEAD(_exception_store_types);
+static DEFINE_SPINLOCK(_lock);
+
+static struct dm_exception_store_type *__find_exception_store_type(const char *name)
+{
+ struct dm_exception_store_type *type;
+
+ list_for_each_entry(type, &_exception_store_types, list)
+ if (!strcmp(name, type->name))
+ return type;
+
+ return NULL;
+}
+
+static struct dm_exception_store_type *_get_exception_store_type(const char *name)
+{
+ struct dm_exception_store_type *type;
+
+ spin_lock(&_lock);
+
+ type = __find_exception_store_type(name);
+
+ if (type && !try_module_get(type->module))
+ type = NULL;
+
+ spin_unlock(&_lock);
+
+ return type;
+}
+
+/*
+ * get_type
+ * @type_name
+ *
+ * Attempt to retrieve the dm_exception_store_type by name. If not already
+ * available, attempt to load the appropriate module.
+ *
+ * Exstore modules are named "dm-exstore-" followed by the 'type_name'.
+ * Modules may contain multiple types.
+ * This function will first try the module "dm-exstore-<type_name>",
+ * then truncate 'type_name' on the last '-' and try again.
+ *
+ * For example, if type_name was "clustered-shared", it would search
+ * 'dm-exstore-clustered-shared' then 'dm-exstore-clustered'.
+ *
+ * 'dm-exception-store-<type_name>' is too long of a name in my
+ * opinion, which is why I've chosen to have the files
+ * containing exception store implementations be 'dm-exstore-<type_name>'.
+ * If you want your module to be autoloaded, you will follow this
+ * naming convention.
+ *
+ * Returns: dm_exception_store_type* on success, NULL on failure
+ */
+static struct dm_exception_store_type *get_type(const char *type_name)
+{
+ char *p, *type_name_dup;
+ struct dm_exception_store_type *type;
+
+ type = _get_exception_store_type(type_name);
+ if (type)
+ return type;
+
+ type_name_dup = kstrdup(type_name, GFP_KERNEL);
+ if (!type_name_dup) {
+ DMERR("No memory left to attempt load for \"%s\"", type_name);
+ return NULL;
+ }
+
+ while (request_module("dm-exstore-%s", type_name_dup) ||
+ !(type = _get_exception_store_type(type_name))) {
+ p = strrchr(type_name_dup, '-');
+ if (!p)
+ break;
+ p[0] = '\0';
+ }
+
+ if (!type)
+ DMWARN("Module for exstore type \"%s\" not found.", type_name);
+
+ kfree(type_name_dup);
+
+ return type;
+}
+
+static void put_type(struct dm_exception_store_type *type)
+{
+ spin_lock(&_lock);
+ module_put(type->module);
+ spin_unlock(&_lock);
+}
+
+int dm_exception_store_type_register(struct dm_exception_store_type *type)
+{
+ int r = 0;
+
+ spin_lock(&_lock);
+ if (!__find_exception_store_type(type->name))
+ list_add(&type->list, &_exception_store_types);
+ else
+ r = -EEXIST;
+ spin_unlock(&_lock);
+
+ return r;
+}
+EXPORT_SYMBOL(dm_exception_store_type_register);
+
+int dm_exception_store_type_unregister(struct dm_exception_store_type *type)
+{
+ spin_lock(&_lock);
+
+ if (!__find_exception_store_type(type->name)) {
+ spin_unlock(&_lock);
+ return -EINVAL;
+ }
+
+ list_del(&type->list);
+
+ spin_unlock(&_lock);
+
+ return 0;
+}
+EXPORT_SYMBOL(dm_exception_store_type_unregister);
+
+static int set_chunk_size(struct dm_exception_store *store,
+ const char *chunk_size_arg, char **error)
+{
+ unsigned int chunk_size;
+
+ if (kstrtouint(chunk_size_arg, 10, &chunk_size)) {
+ *error = "Invalid chunk size";
+ return -EINVAL;
+ }
+
+ if (!chunk_size) {
+ store->chunk_size = store->chunk_mask = store->chunk_shift = 0;
+ return 0;
+ }
+
+ return dm_exception_store_set_chunk_size(store, chunk_size, error);
+}
+
+int dm_exception_store_set_chunk_size(struct dm_exception_store *store,
+ unsigned int chunk_size,
+ char **error)
+{
+ /* Check chunk_size is a power of 2 */
+ if (!is_power_of_2(chunk_size)) {
+ *error = "Chunk size is not a power of 2";
+ return -EINVAL;
+ }
+
+ /* Validate the chunk size against the device block size */
+ if (chunk_size %
+ (bdev_logical_block_size(dm_snap_cow(store->snap)->bdev) >> 9) ||
+ chunk_size %
+ (bdev_logical_block_size(dm_snap_origin(store->snap)->bdev) >> 9)) {
+ *error = "Chunk size is not a multiple of device blocksize";
+ return -EINVAL;
+ }
+
+ if (chunk_size > INT_MAX >> SECTOR_SHIFT) {
+ *error = "Chunk size is too high";
+ return -EINVAL;
+ }
+
+ store->chunk_size = chunk_size;
+ store->chunk_mask = chunk_size - 1;
+ store->chunk_shift = __ffs(chunk_size);
+
+ return 0;
+}
+
+int dm_exception_store_create(struct dm_target *ti, int argc, char **argv,
+ struct dm_snapshot *snap,
+ unsigned int *args_used,
+ struct dm_exception_store **store)
+{
+ int r = 0;
+ struct dm_exception_store_type *type = NULL;
+ struct dm_exception_store *tmp_store;
+ char persistent;
+
+ if (argc < 2) {
+ ti->error = "Insufficient exception store arguments";
+ return -EINVAL;
+ }
+
+ tmp_store = kzalloc(sizeof(*tmp_store), GFP_KERNEL);
+ if (!tmp_store) {
+ ti->error = "Exception store allocation failed";
+ return -ENOMEM;
+ }
+
+ persistent = toupper(*argv[0]);
+ if (persistent == 'P')
+ type = get_type("P");
+ else if (persistent == 'N')
+ type = get_type("N");
+ else {
+ ti->error = "Exception store type is not P or N";
+ r = -EINVAL;
+ goto bad_type;
+ }
+
+ if (!type) {
+ ti->error = "Exception store type not recognised";
+ r = -EINVAL;
+ goto bad_type;
+ }
+
+ tmp_store->type = type;
+ tmp_store->snap = snap;
+
+ r = set_chunk_size(tmp_store, argv[1], &ti->error);
+ if (r)
+ goto bad;
+
+ r = type->ctr(tmp_store, (strlen(argv[0]) > 1 ? &argv[0][1] : NULL));
+ if (r) {
+ ti->error = "Exception store type constructor failed";
+ goto bad;
+ }
+
+ *args_used = 2;
+ *store = tmp_store;
+ return 0;
+
+bad:
+ put_type(type);
+bad_type:
+ kfree(tmp_store);
+ return r;
+}
+EXPORT_SYMBOL(dm_exception_store_create);
+
+void dm_exception_store_destroy(struct dm_exception_store *store)
+{
+ store->type->dtr(store);
+ put_type(store->type);
+ kfree(store);
+}
+EXPORT_SYMBOL(dm_exception_store_destroy);
+
+int dm_exception_store_init(void)
+{
+ int r;
+
+ r = dm_transient_snapshot_init();
+ if (r) {
+ DMERR("Unable to register transient exception store type.");
+ goto transient_fail;
+ }
+
+ r = dm_persistent_snapshot_init();
+ if (r) {
+ DMERR("Unable to register persistent exception store type");
+ goto persistent_fail;
+ }
+
+ return 0;
+
+persistent_fail:
+ dm_transient_snapshot_exit();
+transient_fail:
+ return r;
+}
+
+void dm_exception_store_exit(void)
+{
+ dm_persistent_snapshot_exit();
+ dm_transient_snapshot_exit();
+}
diff --git a/drivers/md/dm-exception-store.h b/drivers/md/dm-exception-store.h
new file mode 100644
index 000000000..862df68a7
--- /dev/null
+++ b/drivers/md/dm-exception-store.h
@@ -0,0 +1,205 @@
+/*
+ * Copyright (C) 2001-2002 Sistina Software (UK) Limited.
+ * Copyright (C) 2008 Red Hat, Inc. All rights reserved.
+ *
+ * Device-mapper snapshot exception store.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef _LINUX_DM_EXCEPTION_STORE
+#define _LINUX_DM_EXCEPTION_STORE
+
+#include <linux/blkdev.h>
+#include <linux/list_bl.h>
+#include <linux/device-mapper.h>
+
+/*
+ * The snapshot code deals with largish chunks of the disk at a
+ * time. Typically 32k - 512k.
+ */
+typedef sector_t chunk_t;
+
+/*
+ * An exception is used where an old chunk of data has been
+ * replaced by a new one.
+ * If chunk_t is 64 bits in size, the top 8 bits of new_chunk hold the number
+ * of chunks that follow contiguously. Remaining bits hold the number of the
+ * chunk within the device.
+ */
+struct dm_exception {
+ struct hlist_bl_node hash_list;
+
+ chunk_t old_chunk;
+ chunk_t new_chunk;
+};
+
+/*
+ * Abstraction to handle the meta/layout of exception stores (the
+ * COW device).
+ */
+struct dm_exception_store;
+struct dm_exception_store_type {
+ const char *name;
+ struct module *module;
+
+ int (*ctr) (struct dm_exception_store *store, char *options);
+
+ /*
+ * Destroys this object when you've finished with it.
+ */
+ void (*dtr) (struct dm_exception_store *store);
+
+ /*
+ * The target shouldn't read the COW device until this is
+ * called. As exceptions are read from the COW, they are
+ * reported back via the callback.
+ */
+ int (*read_metadata) (struct dm_exception_store *store,
+ int (*callback)(void *callback_context,
+ chunk_t old, chunk_t new),
+ void *callback_context);
+
+ /*
+ * Find somewhere to store the next exception.
+ */
+ int (*prepare_exception) (struct dm_exception_store *store,
+ struct dm_exception *e);
+
+ /*
+ * Update the metadata with this exception.
+ */
+ void (*commit_exception) (struct dm_exception_store *store,
+ struct dm_exception *e, int valid,
+ void (*callback) (void *, int success),
+ void *callback_context);
+
+ /*
+ * Returns 0 if the exception store is empty.
+ *
+ * If there are exceptions still to be merged, sets
+ * *last_old_chunk and *last_new_chunk to the most recent
+ * still-to-be-merged chunk and returns the number of
+ * consecutive previous ones.
+ */
+ int (*prepare_merge) (struct dm_exception_store *store,
+ chunk_t *last_old_chunk, chunk_t *last_new_chunk);
+
+ /*
+ * Clear the last n exceptions.
+ * nr_merged must be <= the value returned by prepare_merge.
+ */
+ int (*commit_merge) (struct dm_exception_store *store, int nr_merged);
+
+ /*
+ * The snapshot is invalid, note this in the metadata.
+ */
+ void (*drop_snapshot) (struct dm_exception_store *store);
+
+ unsigned int (*status) (struct dm_exception_store *store,
+ status_type_t status, char *result,
+ unsigned int maxlen);
+
+ /*
+ * Return how full the snapshot is.
+ */
+ void (*usage) (struct dm_exception_store *store,
+ sector_t *total_sectors, sector_t *sectors_allocated,
+ sector_t *metadata_sectors);
+
+ /* For internal device-mapper use only. */
+ struct list_head list;
+};
+
+struct dm_snapshot;
+
+struct dm_exception_store {
+ struct dm_exception_store_type *type;
+ struct dm_snapshot *snap;
+
+ /* Size of data blocks saved - must be a power of 2 */
+ unsigned int chunk_size;
+ unsigned int chunk_mask;
+ unsigned int chunk_shift;
+
+ void *context;
+
+ bool userspace_supports_overflow;
+};
+
+/*
+ * Obtain the origin or cow device used by a given snapshot.
+ */
+struct dm_dev *dm_snap_origin(struct dm_snapshot *snap);
+struct dm_dev *dm_snap_cow(struct dm_snapshot *snap);
+
+/*
+ * Funtions to manipulate consecutive chunks
+ */
+#define DM_CHUNK_CONSECUTIVE_BITS 8
+#define DM_CHUNK_NUMBER_BITS 56
+
+static inline chunk_t dm_chunk_number(chunk_t chunk)
+{
+ return chunk & (chunk_t)((1ULL << DM_CHUNK_NUMBER_BITS) - 1ULL);
+}
+
+static inline unsigned int dm_consecutive_chunk_count(struct dm_exception *e)
+{
+ return e->new_chunk >> DM_CHUNK_NUMBER_BITS;
+}
+
+static inline void dm_consecutive_chunk_count_inc(struct dm_exception *e)
+{
+ e->new_chunk += (1ULL << DM_CHUNK_NUMBER_BITS);
+
+ BUG_ON(!dm_consecutive_chunk_count(e));
+}
+
+static inline void dm_consecutive_chunk_count_dec(struct dm_exception *e)
+{
+ BUG_ON(!dm_consecutive_chunk_count(e));
+
+ e->new_chunk -= (1ULL << DM_CHUNK_NUMBER_BITS);
+}
+
+/*
+ * Return the number of sectors in the device.
+ */
+static inline sector_t get_dev_size(struct block_device *bdev)
+{
+ return bdev_nr_sectors(bdev);
+}
+
+static inline chunk_t sector_to_chunk(struct dm_exception_store *store,
+ sector_t sector)
+{
+ return sector >> store->chunk_shift;
+}
+
+int dm_exception_store_type_register(struct dm_exception_store_type *type);
+int dm_exception_store_type_unregister(struct dm_exception_store_type *type);
+
+int dm_exception_store_set_chunk_size(struct dm_exception_store *store,
+ unsigned int chunk_size,
+ char **error);
+
+int dm_exception_store_create(struct dm_target *ti, int argc, char **argv,
+ struct dm_snapshot *snap,
+ unsigned int *args_used,
+ struct dm_exception_store **store);
+void dm_exception_store_destroy(struct dm_exception_store *store);
+
+int dm_exception_store_init(void);
+void dm_exception_store_exit(void);
+
+/*
+ * Two exception store implementations.
+ */
+int dm_persistent_snapshot_init(void);
+void dm_persistent_snapshot_exit(void);
+
+int dm_transient_snapshot_init(void);
+void dm_transient_snapshot_exit(void);
+
+#endif /* _LINUX_DM_EXCEPTION_STORE */
diff --git a/drivers/md/dm-flakey.c b/drivers/md/dm-flakey.c
new file mode 100644
index 000000000..3b34270ce
--- /dev/null
+++ b/drivers/md/dm-flakey.c
@@ -0,0 +1,530 @@
+/*
+ * Copyright (C) 2003 Sistina Software (UK) Limited.
+ * Copyright (C) 2004, 2010-2011 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/device-mapper.h>
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/blkdev.h>
+#include <linux/bio.h>
+#include <linux/slab.h>
+
+#define DM_MSG_PREFIX "flakey"
+
+#define all_corrupt_bio_flags_match(bio, fc) \
+ (((bio)->bi_opf & (fc)->corrupt_bio_flags) == (fc)->corrupt_bio_flags)
+
+/*
+ * Flakey: Used for testing only, simulates intermittent,
+ * catastrophic device failure.
+ */
+struct flakey_c {
+ struct dm_dev *dev;
+ unsigned long start_time;
+ sector_t start;
+ unsigned int up_interval;
+ unsigned int down_interval;
+ unsigned long flags;
+ unsigned int corrupt_bio_byte;
+ unsigned int corrupt_bio_rw;
+ unsigned int corrupt_bio_value;
+ blk_opf_t corrupt_bio_flags;
+};
+
+enum feature_flag_bits {
+ DROP_WRITES,
+ ERROR_WRITES
+};
+
+struct per_bio_data {
+ bool bio_submitted;
+};
+
+static int parse_features(struct dm_arg_set *as, struct flakey_c *fc,
+ struct dm_target *ti)
+{
+ int r;
+ unsigned int argc;
+ const char *arg_name;
+
+ static const struct dm_arg _args[] = {
+ {0, 6, "Invalid number of feature args"},
+ {1, UINT_MAX, "Invalid corrupt bio byte"},
+ {0, 255, "Invalid corrupt value to write into bio byte (0-255)"},
+ {0, UINT_MAX, "Invalid corrupt bio flags mask"},
+ };
+
+ /* No feature arguments supplied. */
+ if (!as->argc)
+ return 0;
+
+ r = dm_read_arg_group(_args, as, &argc, &ti->error);
+ if (r)
+ return r;
+
+ while (argc) {
+ arg_name = dm_shift_arg(as);
+ argc--;
+
+ if (!arg_name) {
+ ti->error = "Insufficient feature arguments";
+ return -EINVAL;
+ }
+
+ /*
+ * drop_writes
+ */
+ if (!strcasecmp(arg_name, "drop_writes")) {
+ if (test_and_set_bit(DROP_WRITES, &fc->flags)) {
+ ti->error = "Feature drop_writes duplicated";
+ return -EINVAL;
+ } else if (test_bit(ERROR_WRITES, &fc->flags)) {
+ ti->error = "Feature drop_writes conflicts with feature error_writes";
+ return -EINVAL;
+ }
+
+ continue;
+ }
+
+ /*
+ * error_writes
+ */
+ if (!strcasecmp(arg_name, "error_writes")) {
+ if (test_and_set_bit(ERROR_WRITES, &fc->flags)) {
+ ti->error = "Feature error_writes duplicated";
+ return -EINVAL;
+
+ } else if (test_bit(DROP_WRITES, &fc->flags)) {
+ ti->error = "Feature error_writes conflicts with feature drop_writes";
+ return -EINVAL;
+ }
+
+ continue;
+ }
+
+ /*
+ * corrupt_bio_byte <Nth_byte> <direction> <value> <bio_flags>
+ */
+ if (!strcasecmp(arg_name, "corrupt_bio_byte")) {
+ if (!argc) {
+ ti->error = "Feature corrupt_bio_byte requires parameters";
+ return -EINVAL;
+ }
+
+ r = dm_read_arg(_args + 1, as, &fc->corrupt_bio_byte, &ti->error);
+ if (r)
+ return r;
+ argc--;
+
+ /*
+ * Direction r or w?
+ */
+ arg_name = dm_shift_arg(as);
+ if (arg_name && !strcasecmp(arg_name, "w"))
+ fc->corrupt_bio_rw = WRITE;
+ else if (arg_name && !strcasecmp(arg_name, "r"))
+ fc->corrupt_bio_rw = READ;
+ else {
+ ti->error = "Invalid corrupt bio direction (r or w)";
+ return -EINVAL;
+ }
+ argc--;
+
+ /*
+ * Value of byte (0-255) to write in place of correct one.
+ */
+ r = dm_read_arg(_args + 2, as, &fc->corrupt_bio_value, &ti->error);
+ if (r)
+ return r;
+ argc--;
+
+ /*
+ * Only corrupt bios with these flags set.
+ */
+ BUILD_BUG_ON(sizeof(fc->corrupt_bio_flags) !=
+ sizeof(unsigned int));
+ r = dm_read_arg(_args + 3, as,
+ (__force unsigned int *)&fc->corrupt_bio_flags,
+ &ti->error);
+ if (r)
+ return r;
+ argc--;
+
+ continue;
+ }
+
+ ti->error = "Unrecognised flakey feature requested";
+ return -EINVAL;
+ }
+
+ if (test_bit(DROP_WRITES, &fc->flags) && (fc->corrupt_bio_rw == WRITE)) {
+ ti->error = "drop_writes is incompatible with corrupt_bio_byte with the WRITE flag set";
+ return -EINVAL;
+
+ } else if (test_bit(ERROR_WRITES, &fc->flags) && (fc->corrupt_bio_rw == WRITE)) {
+ ti->error = "error_writes is incompatible with corrupt_bio_byte with the WRITE flag set";
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/*
+ * Construct a flakey mapping:
+ * <dev_path> <offset> <up interval> <down interval> [<#feature args> [<arg>]*]
+ *
+ * Feature args:
+ * [drop_writes]
+ * [corrupt_bio_byte <Nth_byte> <direction> <value> <bio_flags>]
+ *
+ * Nth_byte starts from 1 for the first byte.
+ * Direction is r for READ or w for WRITE.
+ * bio_flags is ignored if 0.
+ */
+static int flakey_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ static const struct dm_arg _args[] = {
+ {0, UINT_MAX, "Invalid up interval"},
+ {0, UINT_MAX, "Invalid down interval"},
+ };
+
+ int r;
+ struct flakey_c *fc;
+ unsigned long long tmpll;
+ struct dm_arg_set as;
+ const char *devname;
+ char dummy;
+
+ as.argc = argc;
+ as.argv = argv;
+
+ if (argc < 4) {
+ ti->error = "Invalid argument count";
+ return -EINVAL;
+ }
+
+ fc = kzalloc(sizeof(*fc), GFP_KERNEL);
+ if (!fc) {
+ ti->error = "Cannot allocate context";
+ return -ENOMEM;
+ }
+ fc->start_time = jiffies;
+
+ devname = dm_shift_arg(&as);
+
+ r = -EINVAL;
+ if (sscanf(dm_shift_arg(&as), "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
+ ti->error = "Invalid device sector";
+ goto bad;
+ }
+ fc->start = tmpll;
+
+ r = dm_read_arg(_args, &as, &fc->up_interval, &ti->error);
+ if (r)
+ goto bad;
+
+ r = dm_read_arg(_args, &as, &fc->down_interval, &ti->error);
+ if (r)
+ goto bad;
+
+ if (!(fc->up_interval + fc->down_interval)) {
+ ti->error = "Total (up + down) interval is zero";
+ r = -EINVAL;
+ goto bad;
+ }
+
+ if (fc->up_interval + fc->down_interval < fc->up_interval) {
+ ti->error = "Interval overflow";
+ r = -EINVAL;
+ goto bad;
+ }
+
+ r = parse_features(&as, fc, ti);
+ if (r)
+ goto bad;
+
+ r = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &fc->dev);
+ if (r) {
+ ti->error = "Device lookup failed";
+ goto bad;
+ }
+
+ ti->num_flush_bios = 1;
+ ti->num_discard_bios = 1;
+ ti->per_io_data_size = sizeof(struct per_bio_data);
+ ti->private = fc;
+ return 0;
+
+bad:
+ kfree(fc);
+ return r;
+}
+
+static void flakey_dtr(struct dm_target *ti)
+{
+ struct flakey_c *fc = ti->private;
+
+ dm_put_device(ti, fc->dev);
+ kfree(fc);
+}
+
+static sector_t flakey_map_sector(struct dm_target *ti, sector_t bi_sector)
+{
+ struct flakey_c *fc = ti->private;
+
+ return fc->start + dm_target_offset(ti, bi_sector);
+}
+
+static void flakey_map_bio(struct dm_target *ti, struct bio *bio)
+{
+ struct flakey_c *fc = ti->private;
+
+ bio_set_dev(bio, fc->dev->bdev);
+ bio->bi_iter.bi_sector = flakey_map_sector(ti, bio->bi_iter.bi_sector);
+}
+
+static void corrupt_bio_data(struct bio *bio, struct flakey_c *fc)
+{
+ unsigned int corrupt_bio_byte = fc->corrupt_bio_byte - 1;
+
+ struct bvec_iter iter;
+ struct bio_vec bvec;
+
+ if (!bio_has_data(bio))
+ return;
+
+ /*
+ * Overwrite the Nth byte of the bio's data, on whichever page
+ * it falls.
+ */
+ bio_for_each_segment(bvec, bio, iter) {
+ if (bio_iter_len(bio, iter) > corrupt_bio_byte) {
+ char *segment;
+ struct page *page = bio_iter_page(bio, iter);
+ if (unlikely(page == ZERO_PAGE(0)))
+ break;
+ segment = bvec_kmap_local(&bvec);
+ segment[corrupt_bio_byte] = fc->corrupt_bio_value;
+ kunmap_local(segment);
+ DMDEBUG("Corrupting data bio=%p by writing %u to byte %u "
+ "(rw=%c bi_opf=%u bi_sector=%llu size=%u)\n",
+ bio, fc->corrupt_bio_value, fc->corrupt_bio_byte,
+ (bio_data_dir(bio) == WRITE) ? 'w' : 'r', bio->bi_opf,
+ (unsigned long long)bio->bi_iter.bi_sector, bio->bi_iter.bi_size);
+ break;
+ }
+ corrupt_bio_byte -= bio_iter_len(bio, iter);
+ }
+}
+
+static int flakey_map(struct dm_target *ti, struct bio *bio)
+{
+ struct flakey_c *fc = ti->private;
+ unsigned int elapsed;
+ struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
+ pb->bio_submitted = false;
+
+ if (op_is_zone_mgmt(bio_op(bio)))
+ goto map_bio;
+
+ /* Are we alive ? */
+ elapsed = (jiffies - fc->start_time) / HZ;
+ if (elapsed % (fc->up_interval + fc->down_interval) >= fc->up_interval) {
+ /*
+ * Flag this bio as submitted while down.
+ */
+ pb->bio_submitted = true;
+
+ /*
+ * Error reads if neither corrupt_bio_byte or drop_writes or error_writes are set.
+ * Otherwise, flakey_end_io() will decide if the reads should be modified.
+ */
+ if (bio_data_dir(bio) == READ) {
+ if (!fc->corrupt_bio_byte && !test_bit(DROP_WRITES, &fc->flags) &&
+ !test_bit(ERROR_WRITES, &fc->flags))
+ return DM_MAPIO_KILL;
+ goto map_bio;
+ }
+
+ /*
+ * Drop or error writes?
+ */
+ if (test_bit(DROP_WRITES, &fc->flags)) {
+ bio_endio(bio);
+ return DM_MAPIO_SUBMITTED;
+ }
+ else if (test_bit(ERROR_WRITES, &fc->flags)) {
+ bio_io_error(bio);
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ /*
+ * Corrupt matching writes.
+ */
+ if (fc->corrupt_bio_byte) {
+ if (fc->corrupt_bio_rw == WRITE) {
+ if (all_corrupt_bio_flags_match(bio, fc))
+ corrupt_bio_data(bio, fc);
+ }
+ goto map_bio;
+ }
+
+ /*
+ * By default, error all I/O.
+ */
+ return DM_MAPIO_KILL;
+ }
+
+map_bio:
+ flakey_map_bio(ti, bio);
+
+ return DM_MAPIO_REMAPPED;
+}
+
+static int flakey_end_io(struct dm_target *ti, struct bio *bio,
+ blk_status_t *error)
+{
+ struct flakey_c *fc = ti->private;
+ struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
+
+ if (op_is_zone_mgmt(bio_op(bio)))
+ return DM_ENDIO_DONE;
+
+ if (!*error && pb->bio_submitted && (bio_data_dir(bio) == READ)) {
+ if (fc->corrupt_bio_byte) {
+ if ((fc->corrupt_bio_rw == READ) &&
+ all_corrupt_bio_flags_match(bio, fc)) {
+ /*
+ * Corrupt successful matching READs while in down state.
+ */
+ corrupt_bio_data(bio, fc);
+ }
+ } else if (!test_bit(DROP_WRITES, &fc->flags) &&
+ !test_bit(ERROR_WRITES, &fc->flags)) {
+ /*
+ * Error read during the down_interval if drop_writes
+ * and error_writes were not configured.
+ */
+ *error = BLK_STS_IOERR;
+ }
+ }
+
+ return DM_ENDIO_DONE;
+}
+
+static void flakey_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ unsigned int sz = 0;
+ struct flakey_c *fc = ti->private;
+ unsigned int drop_writes, error_writes;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ result[0] = '\0';
+ break;
+
+ case STATUSTYPE_TABLE:
+ DMEMIT("%s %llu %u %u ", fc->dev->name,
+ (unsigned long long)fc->start, fc->up_interval,
+ fc->down_interval);
+
+ drop_writes = test_bit(DROP_WRITES, &fc->flags);
+ error_writes = test_bit(ERROR_WRITES, &fc->flags);
+ DMEMIT("%u ", drop_writes + error_writes + (fc->corrupt_bio_byte > 0) * 5);
+
+ if (drop_writes)
+ DMEMIT("drop_writes ");
+ else if (error_writes)
+ DMEMIT("error_writes ");
+
+ if (fc->corrupt_bio_byte)
+ DMEMIT("corrupt_bio_byte %u %c %u %u ",
+ fc->corrupt_bio_byte,
+ (fc->corrupt_bio_rw == WRITE) ? 'w' : 'r',
+ fc->corrupt_bio_value, fc->corrupt_bio_flags);
+
+ break;
+
+ case STATUSTYPE_IMA:
+ result[0] = '\0';
+ break;
+ }
+}
+
+static int flakey_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
+{
+ struct flakey_c *fc = ti->private;
+
+ *bdev = fc->dev->bdev;
+
+ /*
+ * Only pass ioctls through if the device sizes match exactly.
+ */
+ if (fc->start || ti->len != bdev_nr_sectors((*bdev)))
+ return 1;
+ return 0;
+}
+
+#ifdef CONFIG_BLK_DEV_ZONED
+static int flakey_report_zones(struct dm_target *ti,
+ struct dm_report_zones_args *args, unsigned int nr_zones)
+{
+ struct flakey_c *fc = ti->private;
+
+ return dm_report_zones(fc->dev->bdev, fc->start,
+ flakey_map_sector(ti, args->next_sector),
+ args, nr_zones);
+}
+#else
+#define flakey_report_zones NULL
+#endif
+
+static int flakey_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
+{
+ struct flakey_c *fc = ti->private;
+
+ return fn(ti, fc->dev, fc->start, ti->len, data);
+}
+
+static struct target_type flakey_target = {
+ .name = "flakey",
+ .version = {1, 5, 0},
+ .features = DM_TARGET_ZONED_HM | DM_TARGET_PASSES_CRYPTO,
+ .report_zones = flakey_report_zones,
+ .module = THIS_MODULE,
+ .ctr = flakey_ctr,
+ .dtr = flakey_dtr,
+ .map = flakey_map,
+ .end_io = flakey_end_io,
+ .status = flakey_status,
+ .prepare_ioctl = flakey_prepare_ioctl,
+ .iterate_devices = flakey_iterate_devices,
+};
+
+static int __init dm_flakey_init(void)
+{
+ int r = dm_register_target(&flakey_target);
+
+ if (r < 0)
+ DMERR("register failed %d", r);
+
+ return r;
+}
+
+static void __exit dm_flakey_exit(void)
+{
+ dm_unregister_target(&flakey_target);
+}
+
+/* Module hooks */
+module_init(dm_flakey_init);
+module_exit(dm_flakey_exit);
+
+MODULE_DESCRIPTION(DM_NAME " flakey target");
+MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-ima.c b/drivers/md/dm-ima.c
new file mode 100644
index 000000000..a1bd7cd52
--- /dev/null
+++ b/drivers/md/dm-ima.c
@@ -0,0 +1,749 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2021 Microsoft Corporation
+ *
+ * Author: Tushar Sugandhi <tusharsu@linux.microsoft.com>
+ *
+ * File: dm-ima.c
+ * Enables IMA measurements for DM targets
+ */
+
+#include "dm-core.h"
+#include "dm-ima.h"
+
+#include <linux/ima.h>
+#include <linux/sched/mm.h>
+#include <crypto/hash.h>
+#include <linux/crypto.h>
+#include <crypto/hash_info.h>
+
+#define DM_MSG_PREFIX "ima"
+
+/*
+ * Internal function to prefix separator characters in input buffer with escape
+ * character, so that they don't interfere with the construction of key-value pairs,
+ * and clients can split the key1=val1,key2=val2,key3=val3; pairs properly.
+ */
+static void fix_separator_chars(char **buf)
+{
+ int l = strlen(*buf);
+ int i, j, sp = 0;
+
+ for (i = 0; i < l; i++)
+ if ((*buf)[i] == '\\' || (*buf)[i] == ';' || (*buf)[i] == '=' || (*buf)[i] == ',')
+ sp++;
+
+ if (!sp)
+ return;
+
+ for (i = l-1, j = i+sp; i >= 0; i--) {
+ (*buf)[j--] = (*buf)[i];
+ if ((*buf)[i] == '\\' || (*buf)[i] == ';' || (*buf)[i] == '=' || (*buf)[i] == ',')
+ (*buf)[j--] = '\\';
+ }
+}
+
+/*
+ * Internal function to allocate memory for IMA measurements.
+ */
+static void *dm_ima_alloc(size_t len, gfp_t flags, bool noio)
+{
+ unsigned int noio_flag;
+ void *ptr;
+
+ if (noio)
+ noio_flag = memalloc_noio_save();
+
+ ptr = kzalloc(len, flags);
+
+ if (noio)
+ memalloc_noio_restore(noio_flag);
+
+ return ptr;
+}
+
+/*
+ * Internal function to allocate and copy name and uuid for IMA measurements.
+ */
+static int dm_ima_alloc_and_copy_name_uuid(struct mapped_device *md, char **dev_name,
+ char **dev_uuid, bool noio)
+{
+ int r;
+ *dev_name = dm_ima_alloc(DM_NAME_LEN*2, GFP_KERNEL, noio);
+ if (!(*dev_name)) {
+ r = -ENOMEM;
+ goto error;
+ }
+
+ *dev_uuid = dm_ima_alloc(DM_UUID_LEN*2, GFP_KERNEL, noio);
+ if (!(*dev_uuid)) {
+ r = -ENOMEM;
+ goto error;
+ }
+
+ r = dm_copy_name_and_uuid(md, *dev_name, *dev_uuid);
+ if (r)
+ goto error;
+
+ fix_separator_chars(dev_name);
+ fix_separator_chars(dev_uuid);
+
+ return 0;
+error:
+ kfree(*dev_name);
+ kfree(*dev_uuid);
+ *dev_name = NULL;
+ *dev_uuid = NULL;
+ return r;
+}
+
+/*
+ * Internal function to allocate and copy device data for IMA measurements.
+ */
+static int dm_ima_alloc_and_copy_device_data(struct mapped_device *md, char **device_data,
+ unsigned int num_targets, bool noio)
+{
+ char *dev_name = NULL, *dev_uuid = NULL;
+ int r;
+
+ r = dm_ima_alloc_and_copy_name_uuid(md, &dev_name, &dev_uuid, noio);
+ if (r)
+ return r;
+
+ *device_data = dm_ima_alloc(DM_IMA_DEVICE_BUF_LEN, GFP_KERNEL, noio);
+ if (!(*device_data)) {
+ r = -ENOMEM;
+ goto error;
+ }
+
+ scnprintf(*device_data, DM_IMA_DEVICE_BUF_LEN,
+ "name=%s,uuid=%s,major=%d,minor=%d,minor_count=%d,num_targets=%u;",
+ dev_name, dev_uuid, md->disk->major, md->disk->first_minor,
+ md->disk->minors, num_targets);
+error:
+ kfree(dev_name);
+ kfree(dev_uuid);
+ return r;
+}
+
+/*
+ * Internal wrapper function to call IMA to measure DM data.
+ */
+static void dm_ima_measure_data(const char *event_name, const void *buf, size_t buf_len,
+ bool noio)
+{
+ unsigned int noio_flag;
+
+ if (noio)
+ noio_flag = memalloc_noio_save();
+
+ ima_measure_critical_data(DM_NAME, event_name, buf, buf_len,
+ false, NULL, 0);
+
+ if (noio)
+ memalloc_noio_restore(noio_flag);
+}
+
+/*
+ * Internal function to allocate and copy current device capacity for IMA measurements.
+ */
+static int dm_ima_alloc_and_copy_capacity_str(struct mapped_device *md, char **capacity_str,
+ bool noio)
+{
+ sector_t capacity;
+
+ capacity = get_capacity(md->disk);
+
+ *capacity_str = dm_ima_alloc(DM_IMA_DEVICE_CAPACITY_BUF_LEN, GFP_KERNEL, noio);
+ if (!(*capacity_str))
+ return -ENOMEM;
+
+ scnprintf(*capacity_str, DM_IMA_DEVICE_BUF_LEN, "current_device_capacity=%llu;",
+ capacity);
+
+ return 0;
+}
+
+/*
+ * Initialize/reset the dm ima related data structure variables.
+ */
+void dm_ima_reset_data(struct mapped_device *md)
+{
+ memset(&(md->ima), 0, sizeof(md->ima));
+ md->ima.dm_version_str_len = strlen(DM_IMA_VERSION_STR);
+}
+
+/*
+ * Build up the IMA data for each target, and finally measure.
+ */
+void dm_ima_measure_on_table_load(struct dm_table *table, unsigned int status_flags)
+{
+ size_t device_data_buf_len, target_metadata_buf_len, target_data_buf_len, l = 0;
+ char *target_metadata_buf = NULL, *target_data_buf = NULL, *digest_buf = NULL;
+ char *ima_buf = NULL, *device_data_buf = NULL;
+ int digest_size, last_target_measured = -1, r;
+ status_type_t type = STATUSTYPE_IMA;
+ size_t cur_total_buf_len = 0;
+ unsigned int num_targets, i;
+ SHASH_DESC_ON_STACK(shash, NULL);
+ struct crypto_shash *tfm = NULL;
+ u8 *digest = NULL;
+ bool noio = false;
+ /*
+ * In below hash_alg_prefix_len assignment +1 is for the additional char (':'),
+ * when prefixing the hash value with the hash algorithm name. e.g. sha256:<hash_value>.
+ */
+ const size_t hash_alg_prefix_len = strlen(DM_IMA_TABLE_HASH_ALG) + 1;
+ char table_load_event_name[] = "dm_table_load";
+
+ ima_buf = dm_ima_alloc(DM_IMA_MEASUREMENT_BUF_LEN, GFP_KERNEL, noio);
+ if (!ima_buf)
+ return;
+
+ target_metadata_buf = dm_ima_alloc(DM_IMA_TARGET_METADATA_BUF_LEN, GFP_KERNEL, noio);
+ if (!target_metadata_buf)
+ goto error;
+
+ target_data_buf = dm_ima_alloc(DM_IMA_TARGET_DATA_BUF_LEN, GFP_KERNEL, noio);
+ if (!target_data_buf)
+ goto error;
+
+ num_targets = table->num_targets;
+
+ if (dm_ima_alloc_and_copy_device_data(table->md, &device_data_buf, num_targets, noio))
+ goto error;
+
+ tfm = crypto_alloc_shash(DM_IMA_TABLE_HASH_ALG, 0, 0);
+ if (IS_ERR(tfm))
+ goto error;
+
+ shash->tfm = tfm;
+ digest_size = crypto_shash_digestsize(tfm);
+ digest = dm_ima_alloc(digest_size, GFP_KERNEL, noio);
+ if (!digest)
+ goto error;
+
+ r = crypto_shash_init(shash);
+ if (r)
+ goto error;
+
+ memcpy(ima_buf + l, DM_IMA_VERSION_STR, table->md->ima.dm_version_str_len);
+ l += table->md->ima.dm_version_str_len;
+
+ device_data_buf_len = strlen(device_data_buf);
+ memcpy(ima_buf + l, device_data_buf, device_data_buf_len);
+ l += device_data_buf_len;
+
+ for (i = 0; i < num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(table, i);
+
+ last_target_measured = 0;
+
+ /*
+ * First retrieve the target metadata.
+ */
+ scnprintf(target_metadata_buf, DM_IMA_TARGET_METADATA_BUF_LEN,
+ "target_index=%d,target_begin=%llu,target_len=%llu,",
+ i, ti->begin, ti->len);
+ target_metadata_buf_len = strlen(target_metadata_buf);
+
+ /*
+ * Then retrieve the actual target data.
+ */
+ if (ti->type->status)
+ ti->type->status(ti, type, status_flags, target_data_buf,
+ DM_IMA_TARGET_DATA_BUF_LEN);
+ else
+ target_data_buf[0] = '\0';
+
+ target_data_buf_len = strlen(target_data_buf);
+
+ /*
+ * Check if the total data can fit into the IMA buffer.
+ */
+ cur_total_buf_len = l + target_metadata_buf_len + target_data_buf_len;
+
+ /*
+ * IMA measurements for DM targets are best-effort.
+ * If the total data buffered so far, including the current target,
+ * is too large to fit into DM_IMA_MEASUREMENT_BUF_LEN, measure what
+ * we have in the current buffer, and continue measuring the remaining
+ * targets by prefixing the device metadata again.
+ */
+ if (unlikely(cur_total_buf_len >= DM_IMA_MEASUREMENT_BUF_LEN)) {
+ dm_ima_measure_data(table_load_event_name, ima_buf, l, noio);
+ r = crypto_shash_update(shash, (const u8 *)ima_buf, l);
+ if (r < 0)
+ goto error;
+
+ memset(ima_buf, 0, DM_IMA_MEASUREMENT_BUF_LEN);
+ l = 0;
+
+ /*
+ * Each new "dm_table_load" entry in IMA log should have device data
+ * prefix, so that multiple records from the same "dm_table_load" for
+ * a given device can be linked together.
+ */
+ memcpy(ima_buf + l, DM_IMA_VERSION_STR, table->md->ima.dm_version_str_len);
+ l += table->md->ima.dm_version_str_len;
+
+ memcpy(ima_buf + l, device_data_buf, device_data_buf_len);
+ l += device_data_buf_len;
+
+ /*
+ * If this iteration of the for loop turns out to be the last target
+ * in the table, dm_ima_measure_data("dm_table_load", ...) doesn't need
+ * to be called again, just the hash needs to be finalized.
+ * "last_target_measured" tracks this state.
+ */
+ last_target_measured = 1;
+ }
+
+ /*
+ * Fill-in all the target metadata, so that multiple targets for the same
+ * device can be linked together.
+ */
+ memcpy(ima_buf + l, target_metadata_buf, target_metadata_buf_len);
+ l += target_metadata_buf_len;
+
+ memcpy(ima_buf + l, target_data_buf, target_data_buf_len);
+ l += target_data_buf_len;
+ }
+
+ if (!last_target_measured) {
+ dm_ima_measure_data(table_load_event_name, ima_buf, l, noio);
+
+ r = crypto_shash_update(shash, (const u8 *)ima_buf, l);
+ if (r < 0)
+ goto error;
+ }
+
+ /*
+ * Finalize the table hash, and store it in table->md->ima.inactive_table.hash,
+ * so that the table data can be verified against the future device state change
+ * events, e.g. resume, rename, remove, table-clear etc.
+ */
+ r = crypto_shash_final(shash, digest);
+ if (r < 0)
+ goto error;
+
+ digest_buf = dm_ima_alloc((digest_size*2) + hash_alg_prefix_len + 1, GFP_KERNEL, noio);
+
+ if (!digest_buf)
+ goto error;
+
+ snprintf(digest_buf, hash_alg_prefix_len + 1, "%s:", DM_IMA_TABLE_HASH_ALG);
+
+ for (i = 0; i < digest_size; i++)
+ snprintf((digest_buf + hash_alg_prefix_len + (i*2)), 3, "%02x", digest[i]);
+
+ if (table->md->ima.active_table.hash != table->md->ima.inactive_table.hash)
+ kfree(table->md->ima.inactive_table.hash);
+
+ table->md->ima.inactive_table.hash = digest_buf;
+ table->md->ima.inactive_table.hash_len = strlen(digest_buf);
+ table->md->ima.inactive_table.num_targets = num_targets;
+
+ if (table->md->ima.active_table.device_metadata !=
+ table->md->ima.inactive_table.device_metadata)
+ kfree(table->md->ima.inactive_table.device_metadata);
+
+ table->md->ima.inactive_table.device_metadata = device_data_buf;
+ table->md->ima.inactive_table.device_metadata_len = device_data_buf_len;
+
+ goto exit;
+error:
+ kfree(digest_buf);
+ kfree(device_data_buf);
+exit:
+ kfree(digest);
+ if (tfm)
+ crypto_free_shash(tfm);
+ kfree(ima_buf);
+ kfree(target_metadata_buf);
+ kfree(target_data_buf);
+}
+
+/*
+ * Measure IMA data on device resume.
+ */
+void dm_ima_measure_on_device_resume(struct mapped_device *md, bool swap)
+{
+ char *device_table_data, *dev_name = NULL, *dev_uuid = NULL, *capacity_str = NULL;
+ char active[] = "active_table_hash=";
+ unsigned int active_len = strlen(active), capacity_len = 0;
+ unsigned int l = 0;
+ bool noio = true;
+ bool nodata = true;
+ int r;
+
+ device_table_data = dm_ima_alloc(DM_IMA_DEVICE_BUF_LEN, GFP_KERNEL, noio);
+ if (!device_table_data)
+ return;
+
+ r = dm_ima_alloc_and_copy_capacity_str(md, &capacity_str, noio);
+ if (r)
+ goto error;
+
+ memcpy(device_table_data + l, DM_IMA_VERSION_STR, md->ima.dm_version_str_len);
+ l += md->ima.dm_version_str_len;
+
+ if (swap) {
+ if (md->ima.active_table.hash != md->ima.inactive_table.hash)
+ kfree(md->ima.active_table.hash);
+
+ md->ima.active_table.hash = NULL;
+ md->ima.active_table.hash_len = 0;
+
+ if (md->ima.active_table.device_metadata !=
+ md->ima.inactive_table.device_metadata)
+ kfree(md->ima.active_table.device_metadata);
+
+ md->ima.active_table.device_metadata = NULL;
+ md->ima.active_table.device_metadata_len = 0;
+ md->ima.active_table.num_targets = 0;
+
+ if (md->ima.inactive_table.hash) {
+ md->ima.active_table.hash = md->ima.inactive_table.hash;
+ md->ima.active_table.hash_len = md->ima.inactive_table.hash_len;
+ md->ima.inactive_table.hash = NULL;
+ md->ima.inactive_table.hash_len = 0;
+ }
+
+ if (md->ima.inactive_table.device_metadata) {
+ md->ima.active_table.device_metadata =
+ md->ima.inactive_table.device_metadata;
+ md->ima.active_table.device_metadata_len =
+ md->ima.inactive_table.device_metadata_len;
+ md->ima.active_table.num_targets = md->ima.inactive_table.num_targets;
+ md->ima.inactive_table.device_metadata = NULL;
+ md->ima.inactive_table.device_metadata_len = 0;
+ md->ima.inactive_table.num_targets = 0;
+ }
+ }
+
+ if (md->ima.active_table.device_metadata) {
+ memcpy(device_table_data + l, md->ima.active_table.device_metadata,
+ md->ima.active_table.device_metadata_len);
+ l += md->ima.active_table.device_metadata_len;
+
+ nodata = false;
+ }
+
+ if (md->ima.active_table.hash) {
+ memcpy(device_table_data + l, active, active_len);
+ l += active_len;
+
+ memcpy(device_table_data + l, md->ima.active_table.hash,
+ md->ima.active_table.hash_len);
+ l += md->ima.active_table.hash_len;
+
+ memcpy(device_table_data + l, ";", 1);
+ l++;
+
+ nodata = false;
+ }
+
+ if (nodata) {
+ r = dm_ima_alloc_and_copy_name_uuid(md, &dev_name, &dev_uuid, noio);
+ if (r)
+ goto error;
+
+ scnprintf(device_table_data, DM_IMA_DEVICE_BUF_LEN,
+ "%sname=%s,uuid=%s;device_resume=no_data;",
+ DM_IMA_VERSION_STR, dev_name, dev_uuid);
+ l = strlen(device_table_data);
+
+ }
+
+ capacity_len = strlen(capacity_str);
+ memcpy(device_table_data + l, capacity_str, capacity_len);
+ l += capacity_len;
+
+ dm_ima_measure_data("dm_device_resume", device_table_data, l, noio);
+
+ kfree(dev_name);
+ kfree(dev_uuid);
+error:
+ kfree(capacity_str);
+ kfree(device_table_data);
+}
+
+/*
+ * Measure IMA data on remove.
+ */
+void dm_ima_measure_on_device_remove(struct mapped_device *md, bool remove_all)
+{
+ char *device_table_data, *dev_name = NULL, *dev_uuid = NULL, *capacity_str = NULL;
+ char active_table_str[] = "active_table_hash=";
+ char inactive_table_str[] = "inactive_table_hash=";
+ char device_active_str[] = "device_active_metadata=";
+ char device_inactive_str[] = "device_inactive_metadata=";
+ char remove_all_str[] = "remove_all=";
+ unsigned int active_table_len = strlen(active_table_str);
+ unsigned int inactive_table_len = strlen(inactive_table_str);
+ unsigned int device_active_len = strlen(device_active_str);
+ unsigned int device_inactive_len = strlen(device_inactive_str);
+ unsigned int remove_all_len = strlen(remove_all_str);
+ unsigned int capacity_len = 0;
+ unsigned int l = 0;
+ bool noio = true;
+ bool nodata = true;
+ int r;
+
+ device_table_data = dm_ima_alloc(DM_IMA_DEVICE_BUF_LEN*2, GFP_KERNEL, noio);
+ if (!device_table_data)
+ goto exit;
+
+ r = dm_ima_alloc_and_copy_capacity_str(md, &capacity_str, noio);
+ if (r) {
+ kfree(device_table_data);
+ goto exit;
+ }
+
+ memcpy(device_table_data + l, DM_IMA_VERSION_STR, md->ima.dm_version_str_len);
+ l += md->ima.dm_version_str_len;
+
+ if (md->ima.active_table.device_metadata) {
+ memcpy(device_table_data + l, device_active_str, device_active_len);
+ l += device_active_len;
+
+ memcpy(device_table_data + l, md->ima.active_table.device_metadata,
+ md->ima.active_table.device_metadata_len);
+ l += md->ima.active_table.device_metadata_len;
+
+ nodata = false;
+ }
+
+ if (md->ima.inactive_table.device_metadata) {
+ memcpy(device_table_data + l, device_inactive_str, device_inactive_len);
+ l += device_inactive_len;
+
+ memcpy(device_table_data + l, md->ima.inactive_table.device_metadata,
+ md->ima.inactive_table.device_metadata_len);
+ l += md->ima.inactive_table.device_metadata_len;
+
+ nodata = false;
+ }
+
+ if (md->ima.active_table.hash) {
+ memcpy(device_table_data + l, active_table_str, active_table_len);
+ l += active_table_len;
+
+ memcpy(device_table_data + l, md->ima.active_table.hash,
+ md->ima.active_table.hash_len);
+ l += md->ima.active_table.hash_len;
+
+ memcpy(device_table_data + l, ",", 1);
+ l++;
+
+ nodata = false;
+ }
+
+ if (md->ima.inactive_table.hash) {
+ memcpy(device_table_data + l, inactive_table_str, inactive_table_len);
+ l += inactive_table_len;
+
+ memcpy(device_table_data + l, md->ima.inactive_table.hash,
+ md->ima.inactive_table.hash_len);
+ l += md->ima.inactive_table.hash_len;
+
+ memcpy(device_table_data + l, ",", 1);
+ l++;
+
+ nodata = false;
+ }
+ /*
+ * In case both active and inactive tables, and corresponding
+ * device metadata is cleared/missing - record the name and uuid
+ * in IMA measurements.
+ */
+ if (nodata) {
+ if (dm_ima_alloc_and_copy_name_uuid(md, &dev_name, &dev_uuid, noio))
+ goto error;
+
+ scnprintf(device_table_data, DM_IMA_DEVICE_BUF_LEN,
+ "%sname=%s,uuid=%s;device_remove=no_data;",
+ DM_IMA_VERSION_STR, dev_name, dev_uuid);
+ l = strlen(device_table_data);
+ }
+
+ memcpy(device_table_data + l, remove_all_str, remove_all_len);
+ l += remove_all_len;
+ memcpy(device_table_data + l, remove_all ? "y;" : "n;", 2);
+ l += 2;
+
+ capacity_len = strlen(capacity_str);
+ memcpy(device_table_data + l, capacity_str, capacity_len);
+ l += capacity_len;
+
+ dm_ima_measure_data("dm_device_remove", device_table_data, l, noio);
+
+error:
+ kfree(device_table_data);
+ kfree(capacity_str);
+exit:
+ kfree(md->ima.active_table.device_metadata);
+
+ if (md->ima.active_table.device_metadata !=
+ md->ima.inactive_table.device_metadata)
+ kfree(md->ima.inactive_table.device_metadata);
+
+ kfree(md->ima.active_table.hash);
+
+ if (md->ima.active_table.hash != md->ima.inactive_table.hash)
+ kfree(md->ima.inactive_table.hash);
+
+ dm_ima_reset_data(md);
+
+ kfree(dev_name);
+ kfree(dev_uuid);
+}
+
+/*
+ * Measure ima data on table clear.
+ */
+void dm_ima_measure_on_table_clear(struct mapped_device *md, bool new_map)
+{
+ unsigned int l = 0, capacity_len = 0;
+ char *device_table_data = NULL, *dev_name = NULL, *dev_uuid = NULL, *capacity_str = NULL;
+ char inactive_str[] = "inactive_table_hash=";
+ unsigned int inactive_len = strlen(inactive_str);
+ bool noio = true;
+ bool nodata = true;
+ int r;
+
+ device_table_data = dm_ima_alloc(DM_IMA_DEVICE_BUF_LEN, GFP_KERNEL, noio);
+ if (!device_table_data)
+ return;
+
+ r = dm_ima_alloc_and_copy_capacity_str(md, &capacity_str, noio);
+ if (r)
+ goto error1;
+
+ memcpy(device_table_data + l, DM_IMA_VERSION_STR, md->ima.dm_version_str_len);
+ l += md->ima.dm_version_str_len;
+
+ if (md->ima.inactive_table.device_metadata_len &&
+ md->ima.inactive_table.hash_len) {
+ memcpy(device_table_data + l, md->ima.inactive_table.device_metadata,
+ md->ima.inactive_table.device_metadata_len);
+ l += md->ima.inactive_table.device_metadata_len;
+
+ memcpy(device_table_data + l, inactive_str, inactive_len);
+ l += inactive_len;
+
+ memcpy(device_table_data + l, md->ima.inactive_table.hash,
+ md->ima.inactive_table.hash_len);
+
+ l += md->ima.inactive_table.hash_len;
+
+ memcpy(device_table_data + l, ";", 1);
+ l++;
+
+ nodata = false;
+ }
+
+ if (nodata) {
+ if (dm_ima_alloc_and_copy_name_uuid(md, &dev_name, &dev_uuid, noio))
+ goto error2;
+
+ scnprintf(device_table_data, DM_IMA_DEVICE_BUF_LEN,
+ "%sname=%s,uuid=%s;table_clear=no_data;",
+ DM_IMA_VERSION_STR, dev_name, dev_uuid);
+ l = strlen(device_table_data);
+ }
+
+ capacity_len = strlen(capacity_str);
+ memcpy(device_table_data + l, capacity_str, capacity_len);
+ l += capacity_len;
+
+ dm_ima_measure_data("dm_table_clear", device_table_data, l, noio);
+
+ if (new_map) {
+ if (md->ima.inactive_table.hash &&
+ md->ima.inactive_table.hash != md->ima.active_table.hash)
+ kfree(md->ima.inactive_table.hash);
+
+ md->ima.inactive_table.hash = NULL;
+ md->ima.inactive_table.hash_len = 0;
+
+ if (md->ima.inactive_table.device_metadata &&
+ md->ima.inactive_table.device_metadata != md->ima.active_table.device_metadata)
+ kfree(md->ima.inactive_table.device_metadata);
+
+ md->ima.inactive_table.device_metadata = NULL;
+ md->ima.inactive_table.device_metadata_len = 0;
+ md->ima.inactive_table.num_targets = 0;
+
+ if (md->ima.active_table.hash) {
+ md->ima.inactive_table.hash = md->ima.active_table.hash;
+ md->ima.inactive_table.hash_len = md->ima.active_table.hash_len;
+ }
+
+ if (md->ima.active_table.device_metadata) {
+ md->ima.inactive_table.device_metadata =
+ md->ima.active_table.device_metadata;
+ md->ima.inactive_table.device_metadata_len =
+ md->ima.active_table.device_metadata_len;
+ md->ima.inactive_table.num_targets =
+ md->ima.active_table.num_targets;
+ }
+ }
+
+ kfree(dev_name);
+ kfree(dev_uuid);
+error2:
+ kfree(capacity_str);
+error1:
+ kfree(device_table_data);
+}
+
+/*
+ * Measure IMA data on device rename.
+ */
+void dm_ima_measure_on_device_rename(struct mapped_device *md)
+{
+ char *old_device_data = NULL, *new_device_data = NULL, *combined_device_data = NULL;
+ char *new_dev_name = NULL, *new_dev_uuid = NULL, *capacity_str = NULL;
+ bool noio = true;
+ int r;
+
+ if (dm_ima_alloc_and_copy_device_data(md, &new_device_data,
+ md->ima.active_table.num_targets, noio))
+ return;
+
+ if (dm_ima_alloc_and_copy_name_uuid(md, &new_dev_name, &new_dev_uuid, noio))
+ goto error;
+
+ combined_device_data = dm_ima_alloc(DM_IMA_DEVICE_BUF_LEN * 2, GFP_KERNEL, noio);
+ if (!combined_device_data)
+ goto error;
+
+ r = dm_ima_alloc_and_copy_capacity_str(md, &capacity_str, noio);
+ if (r)
+ goto error;
+
+ old_device_data = md->ima.active_table.device_metadata;
+
+ md->ima.active_table.device_metadata = new_device_data;
+ md->ima.active_table.device_metadata_len = strlen(new_device_data);
+
+ scnprintf(combined_device_data, DM_IMA_DEVICE_BUF_LEN * 2,
+ "%s%snew_name=%s,new_uuid=%s;%s", DM_IMA_VERSION_STR, old_device_data,
+ new_dev_name, new_dev_uuid, capacity_str);
+
+ dm_ima_measure_data("dm_device_rename", combined_device_data, strlen(combined_device_data),
+ noio);
+
+ goto exit;
+
+error:
+ kfree(new_device_data);
+exit:
+ kfree(capacity_str);
+ kfree(combined_device_data);
+ kfree(old_device_data);
+ kfree(new_dev_name);
+ kfree(new_dev_uuid);
+}
diff --git a/drivers/md/dm-ima.h b/drivers/md/dm-ima.h
new file mode 100644
index 000000000..b8c3b6146
--- /dev/null
+++ b/drivers/md/dm-ima.h
@@ -0,0 +1,78 @@
+/* SPDX-License-Identifier: GPL-2.0
+ *
+ * Copyright (C) 2021 Microsoft Corporation
+ *
+ * Author: Tushar Sugandhi <tusharsu@linux.microsoft.com>
+ *
+ * File: dm-ima.h
+ * Header file for device mapper IMA measurements.
+ */
+
+#ifndef DM_IMA_H
+#define DM_IMA_H
+
+#define DM_IMA_MEASUREMENT_BUF_LEN 4096
+#define DM_IMA_DEVICE_BUF_LEN 1024
+#define DM_IMA_TARGET_METADATA_BUF_LEN 128
+#define DM_IMA_TARGET_DATA_BUF_LEN 2048
+#define DM_IMA_DEVICE_CAPACITY_BUF_LEN 128
+#define DM_IMA_TABLE_HASH_ALG "sha256"
+
+#define __dm_ima_stringify(s) #s
+#define __dm_ima_str(s) __dm_ima_stringify(s)
+
+#define DM_IMA_VERSION_STR "dm_version=" \
+ __dm_ima_str(DM_VERSION_MAJOR) "." \
+ __dm_ima_str(DM_VERSION_MINOR) "." \
+ __dm_ima_str(DM_VERSION_PATCHLEVEL) ";"
+
+#ifdef CONFIG_IMA
+
+struct dm_ima_device_table_metadata {
+ /*
+ * Contains data specific to the device which is common across
+ * all the targets in the table (e.g. name, uuid, major, minor, etc).
+ * The values are stored in comma separated list of key1=val1,key2=val2;
+ * pairs delimited by a semicolon at the end of the list.
+ */
+ char *device_metadata;
+ unsigned int device_metadata_len;
+ unsigned int num_targets;
+
+ /*
+ * Contains the sha256 hashes of the IMA measurements of the target
+ * attributes' key-value pairs from the active/inactive tables.
+ */
+ char *hash;
+ unsigned int hash_len;
+};
+
+/*
+ * This structure contains device metadata, and table hash for
+ * active and inactive tables for ima measurements.
+ */
+struct dm_ima_measurements {
+ struct dm_ima_device_table_metadata active_table;
+ struct dm_ima_device_table_metadata inactive_table;
+ unsigned int dm_version_str_len;
+};
+
+void dm_ima_reset_data(struct mapped_device *md);
+void dm_ima_measure_on_table_load(struct dm_table *table, unsigned int status_flags);
+void dm_ima_measure_on_device_resume(struct mapped_device *md, bool swap);
+void dm_ima_measure_on_device_remove(struct mapped_device *md, bool remove_all);
+void dm_ima_measure_on_table_clear(struct mapped_device *md, bool new_map);
+void dm_ima_measure_on_device_rename(struct mapped_device *md);
+
+#else
+
+static inline void dm_ima_reset_data(struct mapped_device *md) {}
+static inline void dm_ima_measure_on_table_load(struct dm_table *table, unsigned int status_flags) {}
+static inline void dm_ima_measure_on_device_resume(struct mapped_device *md, bool swap) {}
+static inline void dm_ima_measure_on_device_remove(struct mapped_device *md, bool remove_all) {}
+static inline void dm_ima_measure_on_table_clear(struct mapped_device *md, bool new_map) {}
+static inline void dm_ima_measure_on_device_rename(struct mapped_device *md) {}
+
+#endif /* CONFIG_IMA */
+
+#endif /* DM_IMA_H */
diff --git a/drivers/md/dm-init.c b/drivers/md/dm-init.c
new file mode 100644
index 000000000..dc4381d68
--- /dev/null
+++ b/drivers/md/dm-init.c
@@ -0,0 +1,323 @@
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * dm-init.c
+ * Copyright (C) 2017 The Chromium OS Authors <chromium-os-dev@chromium.org>
+ *
+ * This file is released under the GPLv2.
+ */
+
+#include <linux/ctype.h>
+#include <linux/delay.h>
+#include <linux/device.h>
+#include <linux/device-mapper.h>
+#include <linux/init.h>
+#include <linux/list.h>
+#include <linux/moduleparam.h>
+
+#define DM_MSG_PREFIX "init"
+#define DM_MAX_DEVICES 256
+#define DM_MAX_TARGETS 256
+#define DM_MAX_STR_SIZE 4096
+#define DM_MAX_WAITFOR 256
+
+static char *create;
+
+static char *waitfor[DM_MAX_WAITFOR];
+
+/*
+ * Format: dm-mod.create=<name>,<uuid>,<minor>,<flags>,<table>[,<table>+][;<name>,<uuid>,<minor>,<flags>,<table>[,<table>+]+]
+ * Table format: <start_sector> <num_sectors> <target_type> <target_args>
+ * Block devices to wait for to become available before setting up tables:
+ * dm-mod.waitfor=<device1>[,..,<deviceN>]
+ *
+ * See Documentation/admin-guide/device-mapper/dm-init.rst for dm-mod.create="..." format
+ * details.
+ */
+
+struct dm_device {
+ struct dm_ioctl dmi;
+ struct dm_target_spec *table[DM_MAX_TARGETS];
+ char *target_args_array[DM_MAX_TARGETS];
+ struct list_head list;
+};
+
+static const char * const dm_allowed_targets[] __initconst = {
+ "crypt",
+ "delay",
+ "linear",
+ "snapshot-origin",
+ "striped",
+ "verity",
+};
+
+static int __init dm_verify_target_type(const char *target)
+{
+ unsigned int i;
+
+ for (i = 0; i < ARRAY_SIZE(dm_allowed_targets); i++) {
+ if (!strcmp(dm_allowed_targets[i], target))
+ return 0;
+ }
+ return -EINVAL;
+}
+
+static void __init dm_setup_cleanup(struct list_head *devices)
+{
+ struct dm_device *dev, *tmp;
+ unsigned int i;
+
+ list_for_each_entry_safe(dev, tmp, devices, list) {
+ list_del(&dev->list);
+ for (i = 0; i < dev->dmi.target_count; i++) {
+ kfree(dev->table[i]);
+ kfree(dev->target_args_array[i]);
+ }
+ kfree(dev);
+ }
+}
+
+/**
+ * str_field_delimit - delimit a string based on a separator char.
+ * @str: the pointer to the string to delimit.
+ * @separator: char that delimits the field
+ *
+ * Find a @separator and replace it by '\0'.
+ * Remove leading and trailing spaces.
+ * Return the remainder string after the @separator.
+ */
+static char __init *str_field_delimit(char **str, char separator)
+{
+ char *s;
+
+ /* TODO: add support for escaped characters */
+ *str = skip_spaces(*str);
+ s = strchr(*str, separator);
+ /* Delimit the field and remove trailing spaces */
+ if (s)
+ *s = '\0';
+ *str = strim(*str);
+ return s ? ++s : NULL;
+}
+
+/**
+ * dm_parse_table_entry - parse a table entry
+ * @dev: device to store the parsed information.
+ * @str: the pointer to a string with the format:
+ * <start_sector> <num_sectors> <target_type> <target_args>[, ...]
+ *
+ * Return the remainder string after the table entry, i.e, after the comma which
+ * delimits the entry or NULL if reached the end of the string.
+ */
+static char __init *dm_parse_table_entry(struct dm_device *dev, char *str)
+{
+ const unsigned int n = dev->dmi.target_count - 1;
+ struct dm_target_spec *sp;
+ unsigned int i;
+ /* fields: */
+ char *field[4];
+ char *next;
+
+ field[0] = str;
+ /* Delimit first 3 fields that are separated by space */
+ for (i = 0; i < ARRAY_SIZE(field) - 1; i++) {
+ field[i + 1] = str_field_delimit(&field[i], ' ');
+ if (!field[i + 1])
+ return ERR_PTR(-EINVAL);
+ }
+ /* Delimit last field that can be terminated by comma */
+ next = str_field_delimit(&field[i], ',');
+
+ sp = kzalloc(sizeof(*sp), GFP_KERNEL);
+ if (!sp)
+ return ERR_PTR(-ENOMEM);
+ dev->table[n] = sp;
+
+ /* start_sector */
+ if (kstrtoull(field[0], 0, &sp->sector_start))
+ return ERR_PTR(-EINVAL);
+ /* num_sector */
+ if (kstrtoull(field[1], 0, &sp->length))
+ return ERR_PTR(-EINVAL);
+ /* target_type */
+ strscpy(sp->target_type, field[2], sizeof(sp->target_type));
+ if (dm_verify_target_type(sp->target_type)) {
+ DMERR("invalid type \"%s\"", sp->target_type);
+ return ERR_PTR(-EINVAL);
+ }
+ /* target_args */
+ dev->target_args_array[n] = kstrndup(field[3], DM_MAX_STR_SIZE,
+ GFP_KERNEL);
+ if (!dev->target_args_array[n])
+ return ERR_PTR(-ENOMEM);
+
+ return next;
+}
+
+/**
+ * dm_parse_table - parse "dm-mod.create=" table field
+ * @dev: device to store the parsed information.
+ * @str: the pointer to a string with the format:
+ * <table>[,<table>+]
+ */
+static int __init dm_parse_table(struct dm_device *dev, char *str)
+{
+ char *table_entry = str;
+
+ while (table_entry) {
+ DMDEBUG("parsing table \"%s\"", str);
+ if (++dev->dmi.target_count > DM_MAX_TARGETS) {
+ DMERR("too many targets %u > %d",
+ dev->dmi.target_count, DM_MAX_TARGETS);
+ return -EINVAL;
+ }
+ table_entry = dm_parse_table_entry(dev, table_entry);
+ if (IS_ERR(table_entry)) {
+ DMERR("couldn't parse table");
+ return PTR_ERR(table_entry);
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * dm_parse_device_entry - parse a device entry
+ * @dev: device to store the parsed information.
+ * @str: the pointer to a string with the format:
+ * name,uuid,minor,flags,table[; ...]
+ *
+ * Return the remainder string after the table entry, i.e, after the semi-colon
+ * which delimits the entry or NULL if reached the end of the string.
+ */
+static char __init *dm_parse_device_entry(struct dm_device *dev, char *str)
+{
+ /* There are 5 fields: name,uuid,minor,flags,table; */
+ char *field[5];
+ unsigned int i;
+ char *next;
+
+ field[0] = str;
+ /* Delimit first 4 fields that are separated by comma */
+ for (i = 0; i < ARRAY_SIZE(field) - 1; i++) {
+ field[i+1] = str_field_delimit(&field[i], ',');
+ if (!field[i+1])
+ return ERR_PTR(-EINVAL);
+ }
+ /* Delimit last field that can be delimited by semi-colon */
+ next = str_field_delimit(&field[i], ';');
+
+ /* name */
+ strscpy(dev->dmi.name, field[0], sizeof(dev->dmi.name));
+ /* uuid */
+ strscpy(dev->dmi.uuid, field[1], sizeof(dev->dmi.uuid));
+ /* minor */
+ if (strlen(field[2])) {
+ if (kstrtoull(field[2], 0, &dev->dmi.dev))
+ return ERR_PTR(-EINVAL);
+ dev->dmi.flags |= DM_PERSISTENT_DEV_FLAG;
+ }
+ /* flags */
+ if (!strcmp(field[3], "ro"))
+ dev->dmi.flags |= DM_READONLY_FLAG;
+ else if (strcmp(field[3], "rw"))
+ return ERR_PTR(-EINVAL);
+ /* table */
+ if (dm_parse_table(dev, field[4]))
+ return ERR_PTR(-EINVAL);
+
+ return next;
+}
+
+/**
+ * dm_parse_devices - parse "dm-mod.create=" argument
+ * @devices: list of struct dm_device to store the parsed information.
+ * @str: the pointer to a string with the format:
+ * <device>[;<device>+]
+ */
+static int __init dm_parse_devices(struct list_head *devices, char *str)
+{
+ unsigned long ndev = 0;
+ struct dm_device *dev;
+ char *device = str;
+
+ DMDEBUG("parsing \"%s\"", str);
+ while (device) {
+ dev = kzalloc(sizeof(*dev), GFP_KERNEL);
+ if (!dev)
+ return -ENOMEM;
+ list_add_tail(&dev->list, devices);
+
+ if (++ndev > DM_MAX_DEVICES) {
+ DMERR("too many devices %lu > %d",
+ ndev, DM_MAX_DEVICES);
+ return -EINVAL;
+ }
+
+ device = dm_parse_device_entry(dev, device);
+ if (IS_ERR(device)) {
+ DMERR("couldn't parse device");
+ return PTR_ERR(device);
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * dm_init_init - parse "dm-mod.create=" argument and configure drivers
+ */
+static int __init dm_init_init(void)
+{
+ struct dm_device *dev;
+ LIST_HEAD(devices);
+ char *str;
+ int i, r;
+
+ if (!create)
+ return 0;
+
+ if (strlen(create) >= DM_MAX_STR_SIZE) {
+ DMERR("Argument is too big. Limit is %d", DM_MAX_STR_SIZE);
+ return -EINVAL;
+ }
+ str = kstrndup(create, DM_MAX_STR_SIZE, GFP_KERNEL);
+ if (!str)
+ return -ENOMEM;
+
+ r = dm_parse_devices(&devices, str);
+ if (r)
+ goto out;
+
+ DMINFO("waiting for all devices to be available before creating mapped devices");
+ wait_for_device_probe();
+
+ for (i = 0; i < ARRAY_SIZE(waitfor); i++) {
+ if (waitfor[i]) {
+ DMINFO("waiting for device %s ...", waitfor[i]);
+ while (!dm_get_dev_t(waitfor[i]))
+ msleep(5);
+ }
+ }
+
+ if (waitfor[0])
+ DMINFO("all devices available");
+
+ list_for_each_entry(dev, &devices, list) {
+ if (dm_early_create(&dev->dmi, dev->table,
+ dev->target_args_array))
+ break;
+ }
+out:
+ kfree(str);
+ dm_setup_cleanup(&devices);
+ return r;
+}
+
+late_initcall(dm_init_init);
+
+module_param(create, charp, 0);
+MODULE_PARM_DESC(create, "Create a mapped device in early boot");
+
+module_param_array(waitfor, charp, NULL, 0);
+MODULE_PARM_DESC(waitfor, "Devices to wait for before setting up tables");
diff --git a/drivers/md/dm-integrity.c b/drivers/md/dm-integrity.c
new file mode 100644
index 000000000..77fcff82c
--- /dev/null
+++ b/drivers/md/dm-integrity.c
@@ -0,0 +1,4671 @@
+/*
+ * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
+ * Copyright (C) 2016-2017 Milan Broz
+ * Copyright (C) 2016-2017 Mikulas Patocka
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-bio-record.h"
+
+#include <linux/compiler.h>
+#include <linux/module.h>
+#include <linux/device-mapper.h>
+#include <linux/dm-io.h>
+#include <linux/vmalloc.h>
+#include <linux/sort.h>
+#include <linux/rbtree.h>
+#include <linux/delay.h>
+#include <linux/random.h>
+#include <linux/reboot.h>
+#include <crypto/hash.h>
+#include <crypto/skcipher.h>
+#include <linux/async_tx.h>
+#include <linux/dm-bufio.h>
+
+#include "dm-audit.h"
+
+#define DM_MSG_PREFIX "integrity"
+
+#define DEFAULT_INTERLEAVE_SECTORS 32768
+#define DEFAULT_JOURNAL_SIZE_FACTOR 7
+#define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
+#define DEFAULT_BUFFER_SECTORS 128
+#define DEFAULT_JOURNAL_WATERMARK 50
+#define DEFAULT_SYNC_MSEC 10000
+#define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
+#define MIN_LOG2_INTERLEAVE_SECTORS 3
+#define MAX_LOG2_INTERLEAVE_SECTORS 31
+#define METADATA_WORKQUEUE_MAX_ACTIVE 16
+#define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
+#define RECALC_WRITE_SUPER 16
+#define BITMAP_BLOCK_SIZE 4096 /* don't change it */
+#define BITMAP_FLUSH_INTERVAL (10 * HZ)
+#define DISCARD_FILLER 0xf6
+#define SALT_SIZE 16
+
+/*
+ * Warning - DEBUG_PRINT prints security-sensitive data to the log,
+ * so it should not be enabled in the official kernel
+ */
+//#define DEBUG_PRINT
+//#define INTERNAL_VERIFY
+
+/*
+ * On disk structures
+ */
+
+#define SB_MAGIC "integrt"
+#define SB_VERSION_1 1
+#define SB_VERSION_2 2
+#define SB_VERSION_3 3
+#define SB_VERSION_4 4
+#define SB_VERSION_5 5
+#define SB_SECTORS 8
+#define MAX_SECTORS_PER_BLOCK 8
+
+struct superblock {
+ __u8 magic[8];
+ __u8 version;
+ __u8 log2_interleave_sectors;
+ __le16 integrity_tag_size;
+ __le32 journal_sections;
+ __le64 provided_data_sectors; /* userspace uses this value */
+ __le32 flags;
+ __u8 log2_sectors_per_block;
+ __u8 log2_blocks_per_bitmap_bit;
+ __u8 pad[2];
+ __le64 recalc_sector;
+ __u8 pad2[8];
+ __u8 salt[SALT_SIZE];
+};
+
+#define SB_FLAG_HAVE_JOURNAL_MAC 0x1
+#define SB_FLAG_RECALCULATING 0x2
+#define SB_FLAG_DIRTY_BITMAP 0x4
+#define SB_FLAG_FIXED_PADDING 0x8
+#define SB_FLAG_FIXED_HMAC 0x10
+
+#define JOURNAL_ENTRY_ROUNDUP 8
+
+typedef __le64 commit_id_t;
+#define JOURNAL_MAC_PER_SECTOR 8
+
+struct journal_entry {
+ union {
+ struct {
+ __le32 sector_lo;
+ __le32 sector_hi;
+ } s;
+ __le64 sector;
+ } u;
+ commit_id_t last_bytes[];
+ /* __u8 tag[0]; */
+};
+
+#define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
+
+#if BITS_PER_LONG == 64
+#define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
+#else
+#define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
+#endif
+#define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
+#define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
+#define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
+#define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
+#define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
+
+#define JOURNAL_BLOCK_SECTORS 8
+#define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
+#define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
+
+struct journal_sector {
+ struct_group(sectors,
+ __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
+ __u8 mac[JOURNAL_MAC_PER_SECTOR];
+ );
+ commit_id_t commit_id;
+};
+
+#define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
+
+#define METADATA_PADDING_SECTORS 8
+
+#define N_COMMIT_IDS 4
+
+static unsigned char prev_commit_seq(unsigned char seq)
+{
+ return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
+}
+
+static unsigned char next_commit_seq(unsigned char seq)
+{
+ return (seq + 1) % N_COMMIT_IDS;
+}
+
+/*
+ * In-memory structures
+ */
+
+struct journal_node {
+ struct rb_node node;
+ sector_t sector;
+};
+
+struct alg_spec {
+ char *alg_string;
+ char *key_string;
+ __u8 *key;
+ unsigned int key_size;
+};
+
+struct dm_integrity_c {
+ struct dm_dev *dev;
+ struct dm_dev *meta_dev;
+ unsigned int tag_size;
+ __s8 log2_tag_size;
+ sector_t start;
+ mempool_t journal_io_mempool;
+ struct dm_io_client *io;
+ struct dm_bufio_client *bufio;
+ struct workqueue_struct *metadata_wq;
+ struct superblock *sb;
+ unsigned int journal_pages;
+ unsigned int n_bitmap_blocks;
+
+ struct page_list *journal;
+ struct page_list *journal_io;
+ struct page_list *journal_xor;
+ struct page_list *recalc_bitmap;
+ struct page_list *may_write_bitmap;
+ struct bitmap_block_status *bbs;
+ unsigned int bitmap_flush_interval;
+ int synchronous_mode;
+ struct bio_list synchronous_bios;
+ struct delayed_work bitmap_flush_work;
+
+ struct crypto_skcipher *journal_crypt;
+ struct scatterlist **journal_scatterlist;
+ struct scatterlist **journal_io_scatterlist;
+ struct skcipher_request **sk_requests;
+
+ struct crypto_shash *journal_mac;
+
+ struct journal_node *journal_tree;
+ struct rb_root journal_tree_root;
+
+ sector_t provided_data_sectors;
+
+ unsigned short journal_entry_size;
+ unsigned char journal_entries_per_sector;
+ unsigned char journal_section_entries;
+ unsigned short journal_section_sectors;
+ unsigned int journal_sections;
+ unsigned int journal_entries;
+ sector_t data_device_sectors;
+ sector_t meta_device_sectors;
+ unsigned int initial_sectors;
+ unsigned int metadata_run;
+ __s8 log2_metadata_run;
+ __u8 log2_buffer_sectors;
+ __u8 sectors_per_block;
+ __u8 log2_blocks_per_bitmap_bit;
+
+ unsigned char mode;
+
+ int failed;
+
+ struct crypto_shash *internal_hash;
+
+ struct dm_target *ti;
+
+ /* these variables are locked with endio_wait.lock */
+ struct rb_root in_progress;
+ struct list_head wait_list;
+ wait_queue_head_t endio_wait;
+ struct workqueue_struct *wait_wq;
+ struct workqueue_struct *offload_wq;
+
+ unsigned char commit_seq;
+ commit_id_t commit_ids[N_COMMIT_IDS];
+
+ unsigned int committed_section;
+ unsigned int n_committed_sections;
+
+ unsigned int uncommitted_section;
+ unsigned int n_uncommitted_sections;
+
+ unsigned int free_section;
+ unsigned char free_section_entry;
+ unsigned int free_sectors;
+
+ unsigned int free_sectors_threshold;
+
+ struct workqueue_struct *commit_wq;
+ struct work_struct commit_work;
+
+ struct workqueue_struct *writer_wq;
+ struct work_struct writer_work;
+
+ struct workqueue_struct *recalc_wq;
+ struct work_struct recalc_work;
+ u8 *recalc_buffer;
+ u8 *recalc_tags;
+
+ struct bio_list flush_bio_list;
+
+ unsigned long autocommit_jiffies;
+ struct timer_list autocommit_timer;
+ unsigned int autocommit_msec;
+
+ wait_queue_head_t copy_to_journal_wait;
+
+ struct completion crypto_backoff;
+
+ bool wrote_to_journal;
+ bool journal_uptodate;
+ bool just_formatted;
+ bool recalculate_flag;
+ bool reset_recalculate_flag;
+ bool discard;
+ bool fix_padding;
+ bool fix_hmac;
+ bool legacy_recalculate;
+
+ struct alg_spec internal_hash_alg;
+ struct alg_spec journal_crypt_alg;
+ struct alg_spec journal_mac_alg;
+
+ atomic64_t number_of_mismatches;
+
+ struct notifier_block reboot_notifier;
+};
+
+struct dm_integrity_range {
+ sector_t logical_sector;
+ sector_t n_sectors;
+ bool waiting;
+ union {
+ struct rb_node node;
+ struct {
+ struct task_struct *task;
+ struct list_head wait_entry;
+ };
+ };
+};
+
+struct dm_integrity_io {
+ struct work_struct work;
+
+ struct dm_integrity_c *ic;
+ enum req_op op;
+ bool fua;
+
+ struct dm_integrity_range range;
+
+ sector_t metadata_block;
+ unsigned int metadata_offset;
+
+ atomic_t in_flight;
+ blk_status_t bi_status;
+
+ struct completion *completion;
+
+ struct dm_bio_details bio_details;
+};
+
+struct journal_completion {
+ struct dm_integrity_c *ic;
+ atomic_t in_flight;
+ struct completion comp;
+};
+
+struct journal_io {
+ struct dm_integrity_range range;
+ struct journal_completion *comp;
+};
+
+struct bitmap_block_status {
+ struct work_struct work;
+ struct dm_integrity_c *ic;
+ unsigned int idx;
+ unsigned long *bitmap;
+ struct bio_list bio_queue;
+ spinlock_t bio_queue_lock;
+
+};
+
+static struct kmem_cache *journal_io_cache;
+
+#define JOURNAL_IO_MEMPOOL 32
+
+#ifdef DEBUG_PRINT
+#define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
+static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
+{
+ va_list args;
+ va_start(args, msg);
+ vprintk(msg, args);
+ va_end(args);
+ if (len)
+ pr_cont(":");
+ while (len) {
+ pr_cont(" %02x", *bytes);
+ bytes++;
+ len--;
+ }
+ pr_cont("\n");
+}
+#define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
+#else
+#define DEBUG_print(x, ...) do { } while (0)
+#define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
+#endif
+
+static void dm_integrity_prepare(struct request *rq)
+{
+}
+
+static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
+{
+}
+
+/*
+ * DM Integrity profile, protection is performed layer above (dm-crypt)
+ */
+static const struct blk_integrity_profile dm_integrity_profile = {
+ .name = "DM-DIF-EXT-TAG",
+ .generate_fn = NULL,
+ .verify_fn = NULL,
+ .prepare_fn = dm_integrity_prepare,
+ .complete_fn = dm_integrity_complete,
+};
+
+static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
+static void integrity_bio_wait(struct work_struct *w);
+static void dm_integrity_dtr(struct dm_target *ti);
+
+static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
+{
+ if (err == -EILSEQ)
+ atomic64_inc(&ic->number_of_mismatches);
+ if (!cmpxchg(&ic->failed, 0, err))
+ DMERR("Error on %s: %d", msg, err);
+}
+
+static int dm_integrity_failed(struct dm_integrity_c *ic)
+{
+ return READ_ONCE(ic->failed);
+}
+
+static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
+{
+ if (ic->legacy_recalculate)
+ return false;
+ if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
+ ic->internal_hash_alg.key || ic->journal_mac_alg.key :
+ ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
+ return true;
+ return false;
+}
+
+static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
+ unsigned int j, unsigned char seq)
+{
+ /*
+ * Xor the number with section and sector, so that if a piece of
+ * journal is written at wrong place, it is detected.
+ */
+ return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
+}
+
+static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
+ sector_t *area, sector_t *offset)
+{
+ if (!ic->meta_dev) {
+ __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
+ *area = data_sector >> log2_interleave_sectors;
+ *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
+ } else {
+ *area = 0;
+ *offset = data_sector;
+ }
+}
+
+#define sector_to_block(ic, n) \
+do { \
+ BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \
+ (n) >>= (ic)->sb->log2_sectors_per_block; \
+} while (0)
+
+static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
+ sector_t offset, unsigned int *metadata_offset)
+{
+ __u64 ms;
+ unsigned int mo;
+
+ ms = area << ic->sb->log2_interleave_sectors;
+ if (likely(ic->log2_metadata_run >= 0))
+ ms += area << ic->log2_metadata_run;
+ else
+ ms += area * ic->metadata_run;
+ ms >>= ic->log2_buffer_sectors;
+
+ sector_to_block(ic, offset);
+
+ if (likely(ic->log2_tag_size >= 0)) {
+ ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
+ mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
+ } else {
+ ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
+ mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
+ }
+ *metadata_offset = mo;
+ return ms;
+}
+
+static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
+{
+ sector_t result;
+
+ if (ic->meta_dev)
+ return offset;
+
+ result = area << ic->sb->log2_interleave_sectors;
+ if (likely(ic->log2_metadata_run >= 0))
+ result += (area + 1) << ic->log2_metadata_run;
+ else
+ result += (area + 1) * ic->metadata_run;
+
+ result += (sector_t)ic->initial_sectors + offset;
+ result += ic->start;
+
+ return result;
+}
+
+static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
+{
+ if (unlikely(*sec_ptr >= ic->journal_sections))
+ *sec_ptr -= ic->journal_sections;
+}
+
+static void sb_set_version(struct dm_integrity_c *ic)
+{
+ if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
+ ic->sb->version = SB_VERSION_5;
+ else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
+ ic->sb->version = SB_VERSION_4;
+ else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
+ ic->sb->version = SB_VERSION_3;
+ else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
+ ic->sb->version = SB_VERSION_2;
+ else
+ ic->sb->version = SB_VERSION_1;
+}
+
+static int sb_mac(struct dm_integrity_c *ic, bool wr)
+{
+ SHASH_DESC_ON_STACK(desc, ic->journal_mac);
+ int r;
+ unsigned int size = crypto_shash_digestsize(ic->journal_mac);
+
+ if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
+ dm_integrity_io_error(ic, "digest is too long", -EINVAL);
+ return -EINVAL;
+ }
+
+ desc->tfm = ic->journal_mac;
+
+ r = crypto_shash_init(desc);
+ if (unlikely(r < 0)) {
+ dm_integrity_io_error(ic, "crypto_shash_init", r);
+ return r;
+ }
+
+ r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
+ if (unlikely(r < 0)) {
+ dm_integrity_io_error(ic, "crypto_shash_update", r);
+ return r;
+ }
+
+ if (likely(wr)) {
+ r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
+ if (unlikely(r < 0)) {
+ dm_integrity_io_error(ic, "crypto_shash_final", r);
+ return r;
+ }
+ } else {
+ __u8 result[HASH_MAX_DIGESTSIZE];
+ r = crypto_shash_final(desc, result);
+ if (unlikely(r < 0)) {
+ dm_integrity_io_error(ic, "crypto_shash_final", r);
+ return r;
+ }
+ if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
+ dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
+ dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
+ return -EILSEQ;
+ }
+ }
+
+ return 0;
+}
+
+static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
+{
+ struct dm_io_request io_req;
+ struct dm_io_region io_loc;
+ const enum req_op op = opf & REQ_OP_MASK;
+ int r;
+
+ io_req.bi_opf = opf;
+ io_req.mem.type = DM_IO_KMEM;
+ io_req.mem.ptr.addr = ic->sb;
+ io_req.notify.fn = NULL;
+ io_req.client = ic->io;
+ io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
+ io_loc.sector = ic->start;
+ io_loc.count = SB_SECTORS;
+
+ if (op == REQ_OP_WRITE) {
+ sb_set_version(ic);
+ if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
+ r = sb_mac(ic, true);
+ if (unlikely(r))
+ return r;
+ }
+ }
+
+ r = dm_io(&io_req, 1, &io_loc, NULL);
+ if (unlikely(r))
+ return r;
+
+ if (op == REQ_OP_READ) {
+ if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
+ r = sb_mac(ic, false);
+ if (unlikely(r))
+ return r;
+ }
+ }
+
+ return 0;
+}
+
+#define BITMAP_OP_TEST_ALL_SET 0
+#define BITMAP_OP_TEST_ALL_CLEAR 1
+#define BITMAP_OP_SET 2
+#define BITMAP_OP_CLEAR 3
+
+static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
+ sector_t sector, sector_t n_sectors, int mode)
+{
+ unsigned long bit, end_bit, this_end_bit, page, end_page;
+ unsigned long *data;
+
+ if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
+ DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
+ sector,
+ n_sectors,
+ ic->sb->log2_sectors_per_block,
+ ic->log2_blocks_per_bitmap_bit,
+ mode);
+ BUG();
+ }
+
+ if (unlikely(!n_sectors))
+ return true;
+
+ bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
+ end_bit = (sector + n_sectors - 1) >>
+ (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
+
+ page = bit / (PAGE_SIZE * 8);
+ bit %= PAGE_SIZE * 8;
+
+ end_page = end_bit / (PAGE_SIZE * 8);
+ end_bit %= PAGE_SIZE * 8;
+
+repeat:
+ if (page < end_page) {
+ this_end_bit = PAGE_SIZE * 8 - 1;
+ } else {
+ this_end_bit = end_bit;
+ }
+
+ data = lowmem_page_address(bitmap[page].page);
+
+ if (mode == BITMAP_OP_TEST_ALL_SET) {
+ while (bit <= this_end_bit) {
+ if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
+ do {
+ if (data[bit / BITS_PER_LONG] != -1)
+ return false;
+ bit += BITS_PER_LONG;
+ } while (this_end_bit >= bit + BITS_PER_LONG - 1);
+ continue;
+ }
+ if (!test_bit(bit, data))
+ return false;
+ bit++;
+ }
+ } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
+ while (bit <= this_end_bit) {
+ if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
+ do {
+ if (data[bit / BITS_PER_LONG] != 0)
+ return false;
+ bit += BITS_PER_LONG;
+ } while (this_end_bit >= bit + BITS_PER_LONG - 1);
+ continue;
+ }
+ if (test_bit(bit, data))
+ return false;
+ bit++;
+ }
+ } else if (mode == BITMAP_OP_SET) {
+ while (bit <= this_end_bit) {
+ if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
+ do {
+ data[bit / BITS_PER_LONG] = -1;
+ bit += BITS_PER_LONG;
+ } while (this_end_bit >= bit + BITS_PER_LONG - 1);
+ continue;
+ }
+ __set_bit(bit, data);
+ bit++;
+ }
+ } else if (mode == BITMAP_OP_CLEAR) {
+ if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
+ clear_page(data);
+ else while (bit <= this_end_bit) {
+ if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
+ do {
+ data[bit / BITS_PER_LONG] = 0;
+ bit += BITS_PER_LONG;
+ } while (this_end_bit >= bit + BITS_PER_LONG - 1);
+ continue;
+ }
+ __clear_bit(bit, data);
+ bit++;
+ }
+ } else {
+ BUG();
+ }
+
+ if (unlikely(page < end_page)) {
+ bit = 0;
+ page++;
+ goto repeat;
+ }
+
+ return true;
+}
+
+static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
+{
+ unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
+ unsigned int i;
+
+ for (i = 0; i < n_bitmap_pages; i++) {
+ unsigned long *dst_data = lowmem_page_address(dst[i].page);
+ unsigned long *src_data = lowmem_page_address(src[i].page);
+ copy_page(dst_data, src_data);
+ }
+}
+
+static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
+{
+ unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
+ unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
+
+ BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
+ return &ic->bbs[bitmap_block];
+}
+
+static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
+ bool e, const char *function)
+{
+#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
+ unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
+
+ if (unlikely(section >= ic->journal_sections) ||
+ unlikely(offset >= limit)) {
+ DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
+ function, section, offset, ic->journal_sections, limit);
+ BUG();
+ }
+#endif
+}
+
+static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
+ unsigned int *pl_index, unsigned int *pl_offset)
+{
+ unsigned int sector;
+
+ access_journal_check(ic, section, offset, false, "page_list_location");
+
+ sector = section * ic->journal_section_sectors + offset;
+
+ *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
+ *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
+}
+
+static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
+ unsigned int section, unsigned int offset, unsigned int *n_sectors)
+{
+ unsigned int pl_index, pl_offset;
+ char *va;
+
+ page_list_location(ic, section, offset, &pl_index, &pl_offset);
+
+ if (n_sectors)
+ *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
+
+ va = lowmem_page_address(pl[pl_index].page);
+
+ return (struct journal_sector *)(va + pl_offset);
+}
+
+static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
+{
+ return access_page_list(ic, ic->journal, section, offset, NULL);
+}
+
+static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
+{
+ unsigned int rel_sector, offset;
+ struct journal_sector *js;
+
+ access_journal_check(ic, section, n, true, "access_journal_entry");
+
+ rel_sector = n % JOURNAL_BLOCK_SECTORS;
+ offset = n / JOURNAL_BLOCK_SECTORS;
+
+ js = access_journal(ic, section, rel_sector);
+ return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
+}
+
+static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
+{
+ n <<= ic->sb->log2_sectors_per_block;
+
+ n += JOURNAL_BLOCK_SECTORS;
+
+ access_journal_check(ic, section, n, false, "access_journal_data");
+
+ return access_journal(ic, section, n);
+}
+
+static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
+{
+ SHASH_DESC_ON_STACK(desc, ic->journal_mac);
+ int r;
+ unsigned int j, size;
+
+ desc->tfm = ic->journal_mac;
+
+ r = crypto_shash_init(desc);
+ if (unlikely(r < 0)) {
+ dm_integrity_io_error(ic, "crypto_shash_init", r);
+ goto err;
+ }
+
+ if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
+ __le64 section_le;
+
+ r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
+ if (unlikely(r < 0)) {
+ dm_integrity_io_error(ic, "crypto_shash_update", r);
+ goto err;
+ }
+
+ section_le = cpu_to_le64(section);
+ r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof section_le);
+ if (unlikely(r < 0)) {
+ dm_integrity_io_error(ic, "crypto_shash_update", r);
+ goto err;
+ }
+ }
+
+ for (j = 0; j < ic->journal_section_entries; j++) {
+ struct journal_entry *je = access_journal_entry(ic, section, j);
+ r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
+ if (unlikely(r < 0)) {
+ dm_integrity_io_error(ic, "crypto_shash_update", r);
+ goto err;
+ }
+ }
+
+ size = crypto_shash_digestsize(ic->journal_mac);
+
+ if (likely(size <= JOURNAL_MAC_SIZE)) {
+ r = crypto_shash_final(desc, result);
+ if (unlikely(r < 0)) {
+ dm_integrity_io_error(ic, "crypto_shash_final", r);
+ goto err;
+ }
+ memset(result + size, 0, JOURNAL_MAC_SIZE - size);
+ } else {
+ __u8 digest[HASH_MAX_DIGESTSIZE];
+
+ if (WARN_ON(size > sizeof(digest))) {
+ dm_integrity_io_error(ic, "digest_size", -EINVAL);
+ goto err;
+ }
+ r = crypto_shash_final(desc, digest);
+ if (unlikely(r < 0)) {
+ dm_integrity_io_error(ic, "crypto_shash_final", r);
+ goto err;
+ }
+ memcpy(result, digest, JOURNAL_MAC_SIZE);
+ }
+
+ return;
+err:
+ memset(result, 0, JOURNAL_MAC_SIZE);
+}
+
+static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
+{
+ __u8 result[JOURNAL_MAC_SIZE];
+ unsigned int j;
+
+ if (!ic->journal_mac)
+ return;
+
+ section_mac(ic, section, result);
+
+ for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
+ struct journal_sector *js = access_journal(ic, section, j);
+
+ if (likely(wr))
+ memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
+ else {
+ if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
+ dm_integrity_io_error(ic, "journal mac", -EILSEQ);
+ dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
+ }
+ }
+ }
+}
+
+static void complete_journal_op(void *context)
+{
+ struct journal_completion *comp = context;
+ BUG_ON(!atomic_read(&comp->in_flight));
+ if (likely(atomic_dec_and_test(&comp->in_flight)))
+ complete(&comp->comp);
+}
+
+static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
+ unsigned int n_sections, struct journal_completion *comp)
+{
+ struct async_submit_ctl submit;
+ size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
+ unsigned int pl_index, pl_offset, section_index;
+ struct page_list *source_pl, *target_pl;
+
+ if (likely(encrypt)) {
+ source_pl = ic->journal;
+ target_pl = ic->journal_io;
+ } else {
+ source_pl = ic->journal_io;
+ target_pl = ic->journal;
+ }
+
+ page_list_location(ic, section, 0, &pl_index, &pl_offset);
+
+ atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
+
+ init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
+
+ section_index = pl_index;
+
+ do {
+ size_t this_step;
+ struct page *src_pages[2];
+ struct page *dst_page;
+
+ while (unlikely(pl_index == section_index)) {
+ unsigned int dummy;
+ if (likely(encrypt))
+ rw_section_mac(ic, section, true);
+ section++;
+ n_sections--;
+ if (!n_sections)
+ break;
+ page_list_location(ic, section, 0, &section_index, &dummy);
+ }
+
+ this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
+ dst_page = target_pl[pl_index].page;
+ src_pages[0] = source_pl[pl_index].page;
+ src_pages[1] = ic->journal_xor[pl_index].page;
+
+ async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
+
+ pl_index++;
+ pl_offset = 0;
+ n_bytes -= this_step;
+ } while (n_bytes);
+
+ BUG_ON(n_sections);
+
+ async_tx_issue_pending_all();
+}
+
+static void complete_journal_encrypt(struct crypto_async_request *req, int err)
+{
+ struct journal_completion *comp = req->data;
+ if (unlikely(err)) {
+ if (likely(err == -EINPROGRESS)) {
+ complete(&comp->ic->crypto_backoff);
+ return;
+ }
+ dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
+ }
+ complete_journal_op(comp);
+}
+
+static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
+{
+ int r;
+ skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
+ complete_journal_encrypt, comp);
+ if (likely(encrypt))
+ r = crypto_skcipher_encrypt(req);
+ else
+ r = crypto_skcipher_decrypt(req);
+ if (likely(!r))
+ return false;
+ if (likely(r == -EINPROGRESS))
+ return true;
+ if (likely(r == -EBUSY)) {
+ wait_for_completion(&comp->ic->crypto_backoff);
+ reinit_completion(&comp->ic->crypto_backoff);
+ return true;
+ }
+ dm_integrity_io_error(comp->ic, "encrypt", r);
+ return false;
+}
+
+static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
+ unsigned int n_sections, struct journal_completion *comp)
+{
+ struct scatterlist **source_sg;
+ struct scatterlist **target_sg;
+
+ atomic_add(2, &comp->in_flight);
+
+ if (likely(encrypt)) {
+ source_sg = ic->journal_scatterlist;
+ target_sg = ic->journal_io_scatterlist;
+ } else {
+ source_sg = ic->journal_io_scatterlist;
+ target_sg = ic->journal_scatterlist;
+ }
+
+ do {
+ struct skcipher_request *req;
+ unsigned int ivsize;
+ char *iv;
+
+ if (likely(encrypt))
+ rw_section_mac(ic, section, true);
+
+ req = ic->sk_requests[section];
+ ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
+ iv = req->iv;
+
+ memcpy(iv, iv + ivsize, ivsize);
+
+ req->src = source_sg[section];
+ req->dst = target_sg[section];
+
+ if (unlikely(do_crypt(encrypt, req, comp)))
+ atomic_inc(&comp->in_flight);
+
+ section++;
+ n_sections--;
+ } while (n_sections);
+
+ atomic_dec(&comp->in_flight);
+ complete_journal_op(comp);
+}
+
+static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
+ unsigned int n_sections, struct journal_completion *comp)
+{
+ if (ic->journal_xor)
+ return xor_journal(ic, encrypt, section, n_sections, comp);
+ else
+ return crypt_journal(ic, encrypt, section, n_sections, comp);
+}
+
+static void complete_journal_io(unsigned long error, void *context)
+{
+ struct journal_completion *comp = context;
+ if (unlikely(error != 0))
+ dm_integrity_io_error(comp->ic, "writing journal", -EIO);
+ complete_journal_op(comp);
+}
+
+static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
+ unsigned int sector, unsigned int n_sectors,
+ struct journal_completion *comp)
+{
+ struct dm_io_request io_req;
+ struct dm_io_region io_loc;
+ unsigned int pl_index, pl_offset;
+ int r;
+
+ if (unlikely(dm_integrity_failed(ic))) {
+ if (comp)
+ complete_journal_io(-1UL, comp);
+ return;
+ }
+
+ pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
+ pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
+
+ io_req.bi_opf = opf;
+ io_req.mem.type = DM_IO_PAGE_LIST;
+ if (ic->journal_io)
+ io_req.mem.ptr.pl = &ic->journal_io[pl_index];
+ else
+ io_req.mem.ptr.pl = &ic->journal[pl_index];
+ io_req.mem.offset = pl_offset;
+ if (likely(comp != NULL)) {
+ io_req.notify.fn = complete_journal_io;
+ io_req.notify.context = comp;
+ } else {
+ io_req.notify.fn = NULL;
+ }
+ io_req.client = ic->io;
+ io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
+ io_loc.sector = ic->start + SB_SECTORS + sector;
+ io_loc.count = n_sectors;
+
+ r = dm_io(&io_req, 1, &io_loc, NULL);
+ if (unlikely(r)) {
+ dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
+ "reading journal" : "writing journal", r);
+ if (comp) {
+ WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
+ complete_journal_io(-1UL, comp);
+ }
+ }
+}
+
+static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
+ unsigned int section, unsigned int n_sections,
+ struct journal_completion *comp)
+{
+ unsigned int sector, n_sectors;
+
+ sector = section * ic->journal_section_sectors;
+ n_sectors = n_sections * ic->journal_section_sectors;
+
+ rw_journal_sectors(ic, opf, sector, n_sectors, comp);
+}
+
+static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
+{
+ struct journal_completion io_comp;
+ struct journal_completion crypt_comp_1;
+ struct journal_completion crypt_comp_2;
+ unsigned int i;
+
+ io_comp.ic = ic;
+ init_completion(&io_comp.comp);
+
+ if (commit_start + commit_sections <= ic->journal_sections) {
+ io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
+ if (ic->journal_io) {
+ crypt_comp_1.ic = ic;
+ init_completion(&crypt_comp_1.comp);
+ crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
+ encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
+ wait_for_completion_io(&crypt_comp_1.comp);
+ } else {
+ for (i = 0; i < commit_sections; i++)
+ rw_section_mac(ic, commit_start + i, true);
+ }
+ rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
+ commit_sections, &io_comp);
+ } else {
+ unsigned int to_end;
+ io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
+ to_end = ic->journal_sections - commit_start;
+ if (ic->journal_io) {
+ crypt_comp_1.ic = ic;
+ init_completion(&crypt_comp_1.comp);
+ crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
+ encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
+ if (try_wait_for_completion(&crypt_comp_1.comp)) {
+ rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
+ commit_start, to_end, &io_comp);
+ reinit_completion(&crypt_comp_1.comp);
+ crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
+ encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
+ wait_for_completion_io(&crypt_comp_1.comp);
+ } else {
+ crypt_comp_2.ic = ic;
+ init_completion(&crypt_comp_2.comp);
+ crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
+ encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
+ wait_for_completion_io(&crypt_comp_1.comp);
+ rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
+ wait_for_completion_io(&crypt_comp_2.comp);
+ }
+ } else {
+ for (i = 0; i < to_end; i++)
+ rw_section_mac(ic, commit_start + i, true);
+ rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
+ for (i = 0; i < commit_sections - to_end; i++)
+ rw_section_mac(ic, i, true);
+ }
+ rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
+ }
+
+ wait_for_completion_io(&io_comp.comp);
+}
+
+static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
+ unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
+{
+ struct dm_io_request io_req;
+ struct dm_io_region io_loc;
+ int r;
+ unsigned int sector, pl_index, pl_offset;
+
+ BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
+
+ if (unlikely(dm_integrity_failed(ic))) {
+ fn(-1UL, data);
+ return;
+ }
+
+ sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
+
+ pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
+ pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
+
+ io_req.bi_opf = REQ_OP_WRITE;
+ io_req.mem.type = DM_IO_PAGE_LIST;
+ io_req.mem.ptr.pl = &ic->journal[pl_index];
+ io_req.mem.offset = pl_offset;
+ io_req.notify.fn = fn;
+ io_req.notify.context = data;
+ io_req.client = ic->io;
+ io_loc.bdev = ic->dev->bdev;
+ io_loc.sector = target;
+ io_loc.count = n_sectors;
+
+ r = dm_io(&io_req, 1, &io_loc, NULL);
+ if (unlikely(r)) {
+ WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
+ fn(-1UL, data);
+ }
+}
+
+static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
+{
+ return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
+ range1->logical_sector + range1->n_sectors > range2->logical_sector;
+}
+
+static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
+{
+ struct rb_node **n = &ic->in_progress.rb_node;
+ struct rb_node *parent;
+
+ BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
+
+ if (likely(check_waiting)) {
+ struct dm_integrity_range *range;
+ list_for_each_entry(range, &ic->wait_list, wait_entry) {
+ if (unlikely(ranges_overlap(range, new_range)))
+ return false;
+ }
+ }
+
+ parent = NULL;
+
+ while (*n) {
+ struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
+
+ parent = *n;
+ if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
+ n = &range->node.rb_left;
+ } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
+ n = &range->node.rb_right;
+ } else {
+ return false;
+ }
+ }
+
+ rb_link_node(&new_range->node, parent, n);
+ rb_insert_color(&new_range->node, &ic->in_progress);
+
+ return true;
+}
+
+static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
+{
+ rb_erase(&range->node, &ic->in_progress);
+ while (unlikely(!list_empty(&ic->wait_list))) {
+ struct dm_integrity_range *last_range =
+ list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
+ struct task_struct *last_range_task;
+ last_range_task = last_range->task;
+ list_del(&last_range->wait_entry);
+ if (!add_new_range(ic, last_range, false)) {
+ last_range->task = last_range_task;
+ list_add(&last_range->wait_entry, &ic->wait_list);
+ break;
+ }
+ last_range->waiting = false;
+ wake_up_process(last_range_task);
+ }
+}
+
+static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&ic->endio_wait.lock, flags);
+ remove_range_unlocked(ic, range);
+ spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
+}
+
+static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
+{
+ new_range->waiting = true;
+ list_add_tail(&new_range->wait_entry, &ic->wait_list);
+ new_range->task = current;
+ do {
+ __set_current_state(TASK_UNINTERRUPTIBLE);
+ spin_unlock_irq(&ic->endio_wait.lock);
+ io_schedule();
+ spin_lock_irq(&ic->endio_wait.lock);
+ } while (unlikely(new_range->waiting));
+}
+
+static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
+{
+ if (unlikely(!add_new_range(ic, new_range, true)))
+ wait_and_add_new_range(ic, new_range);
+}
+
+static void init_journal_node(struct journal_node *node)
+{
+ RB_CLEAR_NODE(&node->node);
+ node->sector = (sector_t)-1;
+}
+
+static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
+{
+ struct rb_node **link;
+ struct rb_node *parent;
+
+ node->sector = sector;
+ BUG_ON(!RB_EMPTY_NODE(&node->node));
+
+ link = &ic->journal_tree_root.rb_node;
+ parent = NULL;
+
+ while (*link) {
+ struct journal_node *j;
+ parent = *link;
+ j = container_of(parent, struct journal_node, node);
+ if (sector < j->sector)
+ link = &j->node.rb_left;
+ else
+ link = &j->node.rb_right;
+ }
+
+ rb_link_node(&node->node, parent, link);
+ rb_insert_color(&node->node, &ic->journal_tree_root);
+}
+
+static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
+{
+ BUG_ON(RB_EMPTY_NODE(&node->node));
+ rb_erase(&node->node, &ic->journal_tree_root);
+ init_journal_node(node);
+}
+
+#define NOT_FOUND (-1U)
+
+static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
+{
+ struct rb_node *n = ic->journal_tree_root.rb_node;
+ unsigned int found = NOT_FOUND;
+ *next_sector = (sector_t)-1;
+ while (n) {
+ struct journal_node *j = container_of(n, struct journal_node, node);
+ if (sector == j->sector) {
+ found = j - ic->journal_tree;
+ }
+ if (sector < j->sector) {
+ *next_sector = j->sector;
+ n = j->node.rb_left;
+ } else {
+ n = j->node.rb_right;
+ }
+ }
+
+ return found;
+}
+
+static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
+{
+ struct journal_node *node, *next_node;
+ struct rb_node *next;
+
+ if (unlikely(pos >= ic->journal_entries))
+ return false;
+ node = &ic->journal_tree[pos];
+ if (unlikely(RB_EMPTY_NODE(&node->node)))
+ return false;
+ if (unlikely(node->sector != sector))
+ return false;
+
+ next = rb_next(&node->node);
+ if (unlikely(!next))
+ return true;
+
+ next_node = container_of(next, struct journal_node, node);
+ return next_node->sector != sector;
+}
+
+static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
+{
+ struct rb_node *next;
+ struct journal_node *next_node;
+ unsigned int next_section;
+
+ BUG_ON(RB_EMPTY_NODE(&node->node));
+
+ next = rb_next(&node->node);
+ if (unlikely(!next))
+ return false;
+
+ next_node = container_of(next, struct journal_node, node);
+
+ if (next_node->sector != node->sector)
+ return false;
+
+ next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
+ if (next_section >= ic->committed_section &&
+ next_section < ic->committed_section + ic->n_committed_sections)
+ return true;
+ if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
+ return true;
+
+ return false;
+}
+
+#define TAG_READ 0
+#define TAG_WRITE 1
+#define TAG_CMP 2
+
+static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
+ unsigned int *metadata_offset, unsigned int total_size, int op)
+{
+#define MAY_BE_FILLER 1
+#define MAY_BE_HASH 2
+ unsigned int hash_offset = 0;
+ unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
+
+ do {
+ unsigned char *data, *dp;
+ struct dm_buffer *b;
+ unsigned int to_copy;
+ int r;
+
+ r = dm_integrity_failed(ic);
+ if (unlikely(r))
+ return r;
+
+ data = dm_bufio_read(ic->bufio, *metadata_block, &b);
+ if (IS_ERR(data))
+ return PTR_ERR(data);
+
+ to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
+ dp = data + *metadata_offset;
+ if (op == TAG_READ) {
+ memcpy(tag, dp, to_copy);
+ } else if (op == TAG_WRITE) {
+ if (memcmp(dp, tag, to_copy)) {
+ memcpy(dp, tag, to_copy);
+ dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
+ }
+ } else {
+ /* e.g.: op == TAG_CMP */
+
+ if (likely(is_power_of_2(ic->tag_size))) {
+ if (unlikely(memcmp(dp, tag, to_copy)))
+ if (unlikely(!ic->discard) ||
+ unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
+ goto thorough_test;
+ }
+ } else {
+ unsigned int i, ts;
+thorough_test:
+ ts = total_size;
+
+ for (i = 0; i < to_copy; i++, ts--) {
+ if (unlikely(dp[i] != tag[i]))
+ may_be &= ~MAY_BE_HASH;
+ if (likely(dp[i] != DISCARD_FILLER))
+ may_be &= ~MAY_BE_FILLER;
+ hash_offset++;
+ if (unlikely(hash_offset == ic->tag_size)) {
+ if (unlikely(!may_be)) {
+ dm_bufio_release(b);
+ return ts;
+ }
+ hash_offset = 0;
+ may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
+ }
+ }
+ }
+ }
+ dm_bufio_release(b);
+
+ tag += to_copy;
+ *metadata_offset += to_copy;
+ if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
+ (*metadata_block)++;
+ *metadata_offset = 0;
+ }
+
+ if (unlikely(!is_power_of_2(ic->tag_size))) {
+ hash_offset = (hash_offset + to_copy) % ic->tag_size;
+ }
+
+ total_size -= to_copy;
+ } while (unlikely(total_size));
+
+ return 0;
+#undef MAY_BE_FILLER
+#undef MAY_BE_HASH
+}
+
+struct flush_request {
+ struct dm_io_request io_req;
+ struct dm_io_region io_reg;
+ struct dm_integrity_c *ic;
+ struct completion comp;
+};
+
+static void flush_notify(unsigned long error, void *fr_)
+{
+ struct flush_request *fr = fr_;
+ if (unlikely(error != 0))
+ dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
+ complete(&fr->comp);
+}
+
+static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
+{
+ int r;
+
+ struct flush_request fr;
+
+ if (!ic->meta_dev)
+ flush_data = false;
+ if (flush_data) {
+ fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
+ fr.io_req.mem.type = DM_IO_KMEM,
+ fr.io_req.mem.ptr.addr = NULL,
+ fr.io_req.notify.fn = flush_notify,
+ fr.io_req.notify.context = &fr;
+ fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
+ fr.io_reg.bdev = ic->dev->bdev,
+ fr.io_reg.sector = 0,
+ fr.io_reg.count = 0,
+ fr.ic = ic;
+ init_completion(&fr.comp);
+ r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
+ BUG_ON(r);
+ }
+
+ r = dm_bufio_write_dirty_buffers(ic->bufio);
+ if (unlikely(r))
+ dm_integrity_io_error(ic, "writing tags", r);
+
+ if (flush_data)
+ wait_for_completion(&fr.comp);
+}
+
+static void sleep_on_endio_wait(struct dm_integrity_c *ic)
+{
+ DECLARE_WAITQUEUE(wait, current);
+ __add_wait_queue(&ic->endio_wait, &wait);
+ __set_current_state(TASK_UNINTERRUPTIBLE);
+ spin_unlock_irq(&ic->endio_wait.lock);
+ io_schedule();
+ spin_lock_irq(&ic->endio_wait.lock);
+ __remove_wait_queue(&ic->endio_wait, &wait);
+}
+
+static void autocommit_fn(struct timer_list *t)
+{
+ struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
+
+ if (likely(!dm_integrity_failed(ic)))
+ queue_work(ic->commit_wq, &ic->commit_work);
+}
+
+static void schedule_autocommit(struct dm_integrity_c *ic)
+{
+ if (!timer_pending(&ic->autocommit_timer))
+ mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
+}
+
+static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
+{
+ struct bio *bio;
+ unsigned long flags;
+
+ spin_lock_irqsave(&ic->endio_wait.lock, flags);
+ bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
+ bio_list_add(&ic->flush_bio_list, bio);
+ spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
+
+ queue_work(ic->commit_wq, &ic->commit_work);
+}
+
+static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
+{
+ int r = dm_integrity_failed(ic);
+ if (unlikely(r) && !bio->bi_status)
+ bio->bi_status = errno_to_blk_status(r);
+ if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
+ unsigned long flags;
+ spin_lock_irqsave(&ic->endio_wait.lock, flags);
+ bio_list_add(&ic->synchronous_bios, bio);
+ queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
+ spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
+ return;
+ }
+ bio_endio(bio);
+}
+
+static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
+{
+ struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
+
+ if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
+ submit_flush_bio(ic, dio);
+ else
+ do_endio(ic, bio);
+}
+
+static void dec_in_flight(struct dm_integrity_io *dio)
+{
+ if (atomic_dec_and_test(&dio->in_flight)) {
+ struct dm_integrity_c *ic = dio->ic;
+ struct bio *bio;
+
+ remove_range(ic, &dio->range);
+
+ if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
+ schedule_autocommit(ic);
+
+ bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
+
+ if (unlikely(dio->bi_status) && !bio->bi_status)
+ bio->bi_status = dio->bi_status;
+ if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
+ dio->range.logical_sector += dio->range.n_sectors;
+ bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
+ INIT_WORK(&dio->work, integrity_bio_wait);
+ queue_work(ic->offload_wq, &dio->work);
+ return;
+ }
+ do_endio_flush(ic, dio);
+ }
+}
+
+static void integrity_end_io(struct bio *bio)
+{
+ struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
+
+ dm_bio_restore(&dio->bio_details, bio);
+ if (bio->bi_integrity)
+ bio->bi_opf |= REQ_INTEGRITY;
+
+ if (dio->completion)
+ complete(dio->completion);
+
+ dec_in_flight(dio);
+}
+
+static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
+ const char *data, char *result)
+{
+ __le64 sector_le = cpu_to_le64(sector);
+ SHASH_DESC_ON_STACK(req, ic->internal_hash);
+ int r;
+ unsigned int digest_size;
+
+ req->tfm = ic->internal_hash;
+
+ r = crypto_shash_init(req);
+ if (unlikely(r < 0)) {
+ dm_integrity_io_error(ic, "crypto_shash_init", r);
+ goto failed;
+ }
+
+ if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
+ r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
+ if (unlikely(r < 0)) {
+ dm_integrity_io_error(ic, "crypto_shash_update", r);
+ goto failed;
+ }
+ }
+
+ r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
+ if (unlikely(r < 0)) {
+ dm_integrity_io_error(ic, "crypto_shash_update", r);
+ goto failed;
+ }
+
+ r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
+ if (unlikely(r < 0)) {
+ dm_integrity_io_error(ic, "crypto_shash_update", r);
+ goto failed;
+ }
+
+ r = crypto_shash_final(req, result);
+ if (unlikely(r < 0)) {
+ dm_integrity_io_error(ic, "crypto_shash_final", r);
+ goto failed;
+ }
+
+ digest_size = crypto_shash_digestsize(ic->internal_hash);
+ if (unlikely(digest_size < ic->tag_size))
+ memset(result + digest_size, 0, ic->tag_size - digest_size);
+
+ return;
+
+failed:
+ /* this shouldn't happen anyway, the hash functions have no reason to fail */
+ get_random_bytes(result, ic->tag_size);
+}
+
+static void integrity_metadata(struct work_struct *w)
+{
+ struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
+ struct dm_integrity_c *ic = dio->ic;
+
+ int r;
+
+ if (ic->internal_hash) {
+ struct bvec_iter iter;
+ struct bio_vec bv;
+ unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
+ struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
+ char *checksums;
+ unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
+ char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
+ sector_t sector;
+ unsigned int sectors_to_process;
+
+ if (unlikely(ic->mode == 'R'))
+ goto skip_io;
+
+ if (likely(dio->op != REQ_OP_DISCARD))
+ checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
+ GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
+ else
+ checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
+ if (!checksums) {
+ checksums = checksums_onstack;
+ if (WARN_ON(extra_space &&
+ digest_size > sizeof(checksums_onstack))) {
+ r = -EINVAL;
+ goto error;
+ }
+ }
+
+ if (unlikely(dio->op == REQ_OP_DISCARD)) {
+ unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
+ unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
+ unsigned int max_blocks = max_size / ic->tag_size;
+ memset(checksums, DISCARD_FILLER, max_size);
+
+ while (bi_size) {
+ unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
+ this_step_blocks = min(this_step_blocks, max_blocks);
+ r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
+ this_step_blocks * ic->tag_size, TAG_WRITE);
+ if (unlikely(r)) {
+ if (likely(checksums != checksums_onstack))
+ kfree(checksums);
+ goto error;
+ }
+
+ bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
+ }
+
+ if (likely(checksums != checksums_onstack))
+ kfree(checksums);
+ goto skip_io;
+ }
+
+ sector = dio->range.logical_sector;
+ sectors_to_process = dio->range.n_sectors;
+
+ __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
+ struct bio_vec bv_copy = bv;
+ unsigned int pos;
+ char *mem, *checksums_ptr;
+
+again:
+ mem = bvec_kmap_local(&bv_copy);
+ pos = 0;
+ checksums_ptr = checksums;
+ do {
+ integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
+ checksums_ptr += ic->tag_size;
+ sectors_to_process -= ic->sectors_per_block;
+ pos += ic->sectors_per_block << SECTOR_SHIFT;
+ sector += ic->sectors_per_block;
+ } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
+ kunmap_local(mem);
+
+ r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
+ checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
+ if (unlikely(r)) {
+ if (r > 0) {
+ sector_t s;
+
+ s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
+ DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
+ bio->bi_bdev, s);
+ r = -EILSEQ;
+ atomic64_inc(&ic->number_of_mismatches);
+ dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
+ bio, s, 0);
+ }
+ if (likely(checksums != checksums_onstack))
+ kfree(checksums);
+ goto error;
+ }
+
+ if (!sectors_to_process)
+ break;
+
+ if (unlikely(pos < bv_copy.bv_len)) {
+ bv_copy.bv_offset += pos;
+ bv_copy.bv_len -= pos;
+ goto again;
+ }
+ }
+
+ if (likely(checksums != checksums_onstack))
+ kfree(checksums);
+ } else {
+ struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
+
+ if (bip) {
+ struct bio_vec biv;
+ struct bvec_iter iter;
+ unsigned int data_to_process = dio->range.n_sectors;
+ sector_to_block(ic, data_to_process);
+ data_to_process *= ic->tag_size;
+
+ bip_for_each_vec(biv, bip, iter) {
+ unsigned char *tag;
+ unsigned int this_len;
+
+ BUG_ON(PageHighMem(biv.bv_page));
+ tag = bvec_virt(&biv);
+ this_len = min(biv.bv_len, data_to_process);
+ r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
+ this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
+ if (unlikely(r))
+ goto error;
+ data_to_process -= this_len;
+ if (!data_to_process)
+ break;
+ }
+ }
+ }
+skip_io:
+ dec_in_flight(dio);
+ return;
+error:
+ dio->bi_status = errno_to_blk_status(r);
+ dec_in_flight(dio);
+}
+
+static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
+{
+ struct dm_integrity_c *ic = ti->private;
+ struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
+ struct bio_integrity_payload *bip;
+
+ sector_t area, offset;
+
+ dio->ic = ic;
+ dio->bi_status = 0;
+ dio->op = bio_op(bio);
+
+ if (unlikely(dio->op == REQ_OP_DISCARD)) {
+ if (ti->max_io_len) {
+ sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
+ unsigned int log2_max_io_len = __fls(ti->max_io_len);
+ sector_t start_boundary = sec >> log2_max_io_len;
+ sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
+ if (start_boundary < end_boundary) {
+ sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
+ dm_accept_partial_bio(bio, len);
+ }
+ }
+ }
+
+ if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
+ submit_flush_bio(ic, dio);
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
+ dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
+ if (unlikely(dio->fua)) {
+ /*
+ * Don't pass down the FUA flag because we have to flush
+ * disk cache anyway.
+ */
+ bio->bi_opf &= ~REQ_FUA;
+ }
+ if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
+ DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
+ dio->range.logical_sector, bio_sectors(bio),
+ ic->provided_data_sectors);
+ return DM_MAPIO_KILL;
+ }
+ if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
+ DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
+ ic->sectors_per_block,
+ dio->range.logical_sector, bio_sectors(bio));
+ return DM_MAPIO_KILL;
+ }
+
+ if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
+ struct bvec_iter iter;
+ struct bio_vec bv;
+ bio_for_each_segment(bv, bio, iter) {
+ if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
+ DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
+ bv.bv_offset, bv.bv_len, ic->sectors_per_block);
+ return DM_MAPIO_KILL;
+ }
+ }
+ }
+
+ bip = bio_integrity(bio);
+ if (!ic->internal_hash) {
+ if (bip) {
+ unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
+ if (ic->log2_tag_size >= 0)
+ wanted_tag_size <<= ic->log2_tag_size;
+ else
+ wanted_tag_size *= ic->tag_size;
+ if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
+ DMERR("Invalid integrity data size %u, expected %u",
+ bip->bip_iter.bi_size, wanted_tag_size);
+ return DM_MAPIO_KILL;
+ }
+ }
+ } else {
+ if (unlikely(bip != NULL)) {
+ DMERR("Unexpected integrity data when using internal hash");
+ return DM_MAPIO_KILL;
+ }
+ }
+
+ if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
+ return DM_MAPIO_KILL;
+
+ get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
+ dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
+ bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
+
+ dm_integrity_map_continue(dio, true);
+ return DM_MAPIO_SUBMITTED;
+}
+
+static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
+ unsigned int journal_section, unsigned int journal_entry)
+{
+ struct dm_integrity_c *ic = dio->ic;
+ sector_t logical_sector;
+ unsigned int n_sectors;
+
+ logical_sector = dio->range.logical_sector;
+ n_sectors = dio->range.n_sectors;
+ do {
+ struct bio_vec bv = bio_iovec(bio);
+ char *mem;
+
+ if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
+ bv.bv_len = n_sectors << SECTOR_SHIFT;
+ n_sectors -= bv.bv_len >> SECTOR_SHIFT;
+ bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
+retry_kmap:
+ mem = kmap_local_page(bv.bv_page);
+ if (likely(dio->op == REQ_OP_WRITE))
+ flush_dcache_page(bv.bv_page);
+
+ do {
+ struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
+
+ if (unlikely(dio->op == REQ_OP_READ)) {
+ struct journal_sector *js;
+ char *mem_ptr;
+ unsigned int s;
+
+ if (unlikely(journal_entry_is_inprogress(je))) {
+ flush_dcache_page(bv.bv_page);
+ kunmap_local(mem);
+
+ __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
+ goto retry_kmap;
+ }
+ smp_rmb();
+ BUG_ON(journal_entry_get_sector(je) != logical_sector);
+ js = access_journal_data(ic, journal_section, journal_entry);
+ mem_ptr = mem + bv.bv_offset;
+ s = 0;
+ do {
+ memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
+ *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
+ js++;
+ mem_ptr += 1 << SECTOR_SHIFT;
+ } while (++s < ic->sectors_per_block);
+#ifdef INTERNAL_VERIFY
+ if (ic->internal_hash) {
+ char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
+
+ integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
+ if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
+ DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
+ logical_sector);
+ dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
+ bio, logical_sector, 0);
+ }
+ }
+#endif
+ }
+
+ if (!ic->internal_hash) {
+ struct bio_integrity_payload *bip = bio_integrity(bio);
+ unsigned int tag_todo = ic->tag_size;
+ char *tag_ptr = journal_entry_tag(ic, je);
+
+ if (bip) do {
+ struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
+ unsigned int tag_now = min(biv.bv_len, tag_todo);
+ char *tag_addr;
+ BUG_ON(PageHighMem(biv.bv_page));
+ tag_addr = bvec_virt(&biv);
+ if (likely(dio->op == REQ_OP_WRITE))
+ memcpy(tag_ptr, tag_addr, tag_now);
+ else
+ memcpy(tag_addr, tag_ptr, tag_now);
+ bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
+ tag_ptr += tag_now;
+ tag_todo -= tag_now;
+ } while (unlikely(tag_todo)); else {
+ if (likely(dio->op == REQ_OP_WRITE))
+ memset(tag_ptr, 0, tag_todo);
+ }
+ }
+
+ if (likely(dio->op == REQ_OP_WRITE)) {
+ struct journal_sector *js;
+ unsigned int s;
+
+ js = access_journal_data(ic, journal_section, journal_entry);
+ memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
+
+ s = 0;
+ do {
+ je->last_bytes[s] = js[s].commit_id;
+ } while (++s < ic->sectors_per_block);
+
+ if (ic->internal_hash) {
+ unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
+ if (unlikely(digest_size > ic->tag_size)) {
+ char checksums_onstack[HASH_MAX_DIGESTSIZE];
+ integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
+ memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
+ } else
+ integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
+ }
+
+ journal_entry_set_sector(je, logical_sector);
+ }
+ logical_sector += ic->sectors_per_block;
+
+ journal_entry++;
+ if (unlikely(journal_entry == ic->journal_section_entries)) {
+ journal_entry = 0;
+ journal_section++;
+ wraparound_section(ic, &journal_section);
+ }
+
+ bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
+ } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
+
+ if (unlikely(dio->op == REQ_OP_READ))
+ flush_dcache_page(bv.bv_page);
+ kunmap_local(mem);
+ } while (n_sectors);
+
+ if (likely(dio->op == REQ_OP_WRITE)) {
+ smp_mb();
+ if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
+ wake_up(&ic->copy_to_journal_wait);
+ if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
+ queue_work(ic->commit_wq, &ic->commit_work);
+ } else {
+ schedule_autocommit(ic);
+ }
+ } else {
+ remove_range(ic, &dio->range);
+ }
+
+ if (unlikely(bio->bi_iter.bi_size)) {
+ sector_t area, offset;
+
+ dio->range.logical_sector = logical_sector;
+ get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
+ dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
+ return true;
+ }
+
+ return false;
+}
+
+static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
+{
+ struct dm_integrity_c *ic = dio->ic;
+ struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
+ unsigned int journal_section, journal_entry;
+ unsigned int journal_read_pos;
+ struct completion read_comp;
+ bool discard_retried = false;
+ bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
+ if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
+ need_sync_io = true;
+
+ if (need_sync_io && from_map) {
+ INIT_WORK(&dio->work, integrity_bio_wait);
+ queue_work(ic->offload_wq, &dio->work);
+ return;
+ }
+
+lock_retry:
+ spin_lock_irq(&ic->endio_wait.lock);
+retry:
+ if (unlikely(dm_integrity_failed(ic))) {
+ spin_unlock_irq(&ic->endio_wait.lock);
+ do_endio(ic, bio);
+ return;
+ }
+ dio->range.n_sectors = bio_sectors(bio);
+ journal_read_pos = NOT_FOUND;
+ if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
+ if (dio->op == REQ_OP_WRITE) {
+ unsigned int next_entry, i, pos;
+ unsigned int ws, we, range_sectors;
+
+ dio->range.n_sectors = min(dio->range.n_sectors,
+ (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
+ if (unlikely(!dio->range.n_sectors)) {
+ if (from_map)
+ goto offload_to_thread;
+ sleep_on_endio_wait(ic);
+ goto retry;
+ }
+ range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
+ ic->free_sectors -= range_sectors;
+ journal_section = ic->free_section;
+ journal_entry = ic->free_section_entry;
+
+ next_entry = ic->free_section_entry + range_sectors;
+ ic->free_section_entry = next_entry % ic->journal_section_entries;
+ ic->free_section += next_entry / ic->journal_section_entries;
+ ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
+ wraparound_section(ic, &ic->free_section);
+
+ pos = journal_section * ic->journal_section_entries + journal_entry;
+ ws = journal_section;
+ we = journal_entry;
+ i = 0;
+ do {
+ struct journal_entry *je;
+
+ add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
+ pos++;
+ if (unlikely(pos >= ic->journal_entries))
+ pos = 0;
+
+ je = access_journal_entry(ic, ws, we);
+ BUG_ON(!journal_entry_is_unused(je));
+ journal_entry_set_inprogress(je);
+ we++;
+ if (unlikely(we == ic->journal_section_entries)) {
+ we = 0;
+ ws++;
+ wraparound_section(ic, &ws);
+ }
+ } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
+
+ spin_unlock_irq(&ic->endio_wait.lock);
+ goto journal_read_write;
+ } else {
+ sector_t next_sector;
+ journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
+ if (likely(journal_read_pos == NOT_FOUND)) {
+ if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
+ dio->range.n_sectors = next_sector - dio->range.logical_sector;
+ } else {
+ unsigned int i;
+ unsigned int jp = journal_read_pos + 1;
+ for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
+ if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
+ break;
+ }
+ dio->range.n_sectors = i;
+ }
+ }
+ }
+ if (unlikely(!add_new_range(ic, &dio->range, true))) {
+ /*
+ * We must not sleep in the request routine because it could
+ * stall bios on current->bio_list.
+ * So, we offload the bio to a workqueue if we have to sleep.
+ */
+ if (from_map) {
+offload_to_thread:
+ spin_unlock_irq(&ic->endio_wait.lock);
+ INIT_WORK(&dio->work, integrity_bio_wait);
+ queue_work(ic->wait_wq, &dio->work);
+ return;
+ }
+ if (journal_read_pos != NOT_FOUND)
+ dio->range.n_sectors = ic->sectors_per_block;
+ wait_and_add_new_range(ic, &dio->range);
+ /*
+ * wait_and_add_new_range drops the spinlock, so the journal
+ * may have been changed arbitrarily. We need to recheck.
+ * To simplify the code, we restrict I/O size to just one block.
+ */
+ if (journal_read_pos != NOT_FOUND) {
+ sector_t next_sector;
+ unsigned int new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
+ if (unlikely(new_pos != journal_read_pos)) {
+ remove_range_unlocked(ic, &dio->range);
+ goto retry;
+ }
+ }
+ }
+ if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
+ sector_t next_sector;
+ unsigned int new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
+ if (unlikely(new_pos != NOT_FOUND) ||
+ unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
+ remove_range_unlocked(ic, &dio->range);
+ spin_unlock_irq(&ic->endio_wait.lock);
+ queue_work(ic->commit_wq, &ic->commit_work);
+ flush_workqueue(ic->commit_wq);
+ queue_work(ic->writer_wq, &ic->writer_work);
+ flush_workqueue(ic->writer_wq);
+ discard_retried = true;
+ goto lock_retry;
+ }
+ }
+ spin_unlock_irq(&ic->endio_wait.lock);
+
+ if (unlikely(journal_read_pos != NOT_FOUND)) {
+ journal_section = journal_read_pos / ic->journal_section_entries;
+ journal_entry = journal_read_pos % ic->journal_section_entries;
+ goto journal_read_write;
+ }
+
+ if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
+ if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
+ dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
+ struct bitmap_block_status *bbs;
+
+ bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
+ spin_lock(&bbs->bio_queue_lock);
+ bio_list_add(&bbs->bio_queue, bio);
+ spin_unlock(&bbs->bio_queue_lock);
+ queue_work(ic->writer_wq, &bbs->work);
+ return;
+ }
+ }
+
+ dio->in_flight = (atomic_t)ATOMIC_INIT(2);
+
+ if (need_sync_io) {
+ init_completion(&read_comp);
+ dio->completion = &read_comp;
+ } else
+ dio->completion = NULL;
+
+ dm_bio_record(&dio->bio_details, bio);
+ bio_set_dev(bio, ic->dev->bdev);
+ bio->bi_integrity = NULL;
+ bio->bi_opf &= ~REQ_INTEGRITY;
+ bio->bi_end_io = integrity_end_io;
+ bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
+
+ if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
+ integrity_metadata(&dio->work);
+ dm_integrity_flush_buffers(ic, false);
+
+ dio->in_flight = (atomic_t)ATOMIC_INIT(1);
+ dio->completion = NULL;
+
+ submit_bio_noacct(bio);
+
+ return;
+ }
+
+ submit_bio_noacct(bio);
+
+ if (need_sync_io) {
+ wait_for_completion_io(&read_comp);
+ if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
+ dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
+ goto skip_check;
+ if (ic->mode == 'B') {
+ if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
+ dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
+ goto skip_check;
+ }
+
+ if (likely(!bio->bi_status))
+ integrity_metadata(&dio->work);
+ else
+skip_check:
+ dec_in_flight(dio);
+
+ } else {
+ INIT_WORK(&dio->work, integrity_metadata);
+ queue_work(ic->metadata_wq, &dio->work);
+ }
+
+ return;
+
+journal_read_write:
+ if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
+ goto lock_retry;
+
+ do_endio_flush(ic, dio);
+}
+
+
+static void integrity_bio_wait(struct work_struct *w)
+{
+ struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
+
+ dm_integrity_map_continue(dio, false);
+}
+
+static void pad_uncommitted(struct dm_integrity_c *ic)
+{
+ if (ic->free_section_entry) {
+ ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
+ ic->free_section_entry = 0;
+ ic->free_section++;
+ wraparound_section(ic, &ic->free_section);
+ ic->n_uncommitted_sections++;
+ }
+ if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
+ (ic->n_uncommitted_sections + ic->n_committed_sections) *
+ ic->journal_section_entries + ic->free_sectors)) {
+ DMCRIT("journal_sections %u, journal_section_entries %u, "
+ "n_uncommitted_sections %u, n_committed_sections %u, "
+ "journal_section_entries %u, free_sectors %u",
+ ic->journal_sections, ic->journal_section_entries,
+ ic->n_uncommitted_sections, ic->n_committed_sections,
+ ic->journal_section_entries, ic->free_sectors);
+ }
+}
+
+static void integrity_commit(struct work_struct *w)
+{
+ struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
+ unsigned int commit_start, commit_sections;
+ unsigned int i, j, n;
+ struct bio *flushes;
+
+ del_timer(&ic->autocommit_timer);
+
+ spin_lock_irq(&ic->endio_wait.lock);
+ flushes = bio_list_get(&ic->flush_bio_list);
+ if (unlikely(ic->mode != 'J')) {
+ spin_unlock_irq(&ic->endio_wait.lock);
+ dm_integrity_flush_buffers(ic, true);
+ goto release_flush_bios;
+ }
+
+ pad_uncommitted(ic);
+ commit_start = ic->uncommitted_section;
+ commit_sections = ic->n_uncommitted_sections;
+ spin_unlock_irq(&ic->endio_wait.lock);
+
+ if (!commit_sections)
+ goto release_flush_bios;
+
+ ic->wrote_to_journal = true;
+
+ i = commit_start;
+ for (n = 0; n < commit_sections; n++) {
+ for (j = 0; j < ic->journal_section_entries; j++) {
+ struct journal_entry *je;
+ je = access_journal_entry(ic, i, j);
+ io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
+ }
+ for (j = 0; j < ic->journal_section_sectors; j++) {
+ struct journal_sector *js;
+ js = access_journal(ic, i, j);
+ js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
+ }
+ i++;
+ if (unlikely(i >= ic->journal_sections))
+ ic->commit_seq = next_commit_seq(ic->commit_seq);
+ wraparound_section(ic, &i);
+ }
+ smp_rmb();
+
+ write_journal(ic, commit_start, commit_sections);
+
+ spin_lock_irq(&ic->endio_wait.lock);
+ ic->uncommitted_section += commit_sections;
+ wraparound_section(ic, &ic->uncommitted_section);
+ ic->n_uncommitted_sections -= commit_sections;
+ ic->n_committed_sections += commit_sections;
+ spin_unlock_irq(&ic->endio_wait.lock);
+
+ if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
+ queue_work(ic->writer_wq, &ic->writer_work);
+
+release_flush_bios:
+ while (flushes) {
+ struct bio *next = flushes->bi_next;
+ flushes->bi_next = NULL;
+ do_endio(ic, flushes);
+ flushes = next;
+ }
+}
+
+static void complete_copy_from_journal(unsigned long error, void *context)
+{
+ struct journal_io *io = context;
+ struct journal_completion *comp = io->comp;
+ struct dm_integrity_c *ic = comp->ic;
+ remove_range(ic, &io->range);
+ mempool_free(io, &ic->journal_io_mempool);
+ if (unlikely(error != 0))
+ dm_integrity_io_error(ic, "copying from journal", -EIO);
+ complete_journal_op(comp);
+}
+
+static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
+ struct journal_entry *je)
+{
+ unsigned int s = 0;
+ do {
+ js->commit_id = je->last_bytes[s];
+ js++;
+ } while (++s < ic->sectors_per_block);
+}
+
+static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
+ unsigned int write_sections, bool from_replay)
+{
+ unsigned int i, j, n;
+ struct journal_completion comp;
+ struct blk_plug plug;
+
+ blk_start_plug(&plug);
+
+ comp.ic = ic;
+ comp.in_flight = (atomic_t)ATOMIC_INIT(1);
+ init_completion(&comp.comp);
+
+ i = write_start;
+ for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
+#ifndef INTERNAL_VERIFY
+ if (unlikely(from_replay))
+#endif
+ rw_section_mac(ic, i, false);
+ for (j = 0; j < ic->journal_section_entries; j++) {
+ struct journal_entry *je = access_journal_entry(ic, i, j);
+ sector_t sec, area, offset;
+ unsigned int k, l, next_loop;
+ sector_t metadata_block;
+ unsigned int metadata_offset;
+ struct journal_io *io;
+
+ if (journal_entry_is_unused(je))
+ continue;
+ BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
+ sec = journal_entry_get_sector(je);
+ if (unlikely(from_replay)) {
+ if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
+ dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
+ sec &= ~(sector_t)(ic->sectors_per_block - 1);
+ }
+ if (unlikely(sec >= ic->provided_data_sectors)) {
+ journal_entry_set_unused(je);
+ continue;
+ }
+ }
+ get_area_and_offset(ic, sec, &area, &offset);
+ restore_last_bytes(ic, access_journal_data(ic, i, j), je);
+ for (k = j + 1; k < ic->journal_section_entries; k++) {
+ struct journal_entry *je2 = access_journal_entry(ic, i, k);
+ sector_t sec2, area2, offset2;
+ if (journal_entry_is_unused(je2))
+ break;
+ BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
+ sec2 = journal_entry_get_sector(je2);
+ if (unlikely(sec2 >= ic->provided_data_sectors))
+ break;
+ get_area_and_offset(ic, sec2, &area2, &offset2);
+ if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
+ break;
+ restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
+ }
+ next_loop = k - 1;
+
+ io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
+ io->comp = &comp;
+ io->range.logical_sector = sec;
+ io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
+
+ spin_lock_irq(&ic->endio_wait.lock);
+ add_new_range_and_wait(ic, &io->range);
+
+ if (likely(!from_replay)) {
+ struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
+
+ /* don't write if there is newer committed sector */
+ while (j < k && find_newer_committed_node(ic, &section_node[j])) {
+ struct journal_entry *je2 = access_journal_entry(ic, i, j);
+
+ journal_entry_set_unused(je2);
+ remove_journal_node(ic, &section_node[j]);
+ j++;
+ sec += ic->sectors_per_block;
+ offset += ic->sectors_per_block;
+ }
+ while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
+ struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
+
+ journal_entry_set_unused(je2);
+ remove_journal_node(ic, &section_node[k - 1]);
+ k--;
+ }
+ if (j == k) {
+ remove_range_unlocked(ic, &io->range);
+ spin_unlock_irq(&ic->endio_wait.lock);
+ mempool_free(io, &ic->journal_io_mempool);
+ goto skip_io;
+ }
+ for (l = j; l < k; l++) {
+ remove_journal_node(ic, &section_node[l]);
+ }
+ }
+ spin_unlock_irq(&ic->endio_wait.lock);
+
+ metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
+ for (l = j; l < k; l++) {
+ int r;
+ struct journal_entry *je2 = access_journal_entry(ic, i, l);
+
+ if (
+#ifndef INTERNAL_VERIFY
+ unlikely(from_replay) &&
+#endif
+ ic->internal_hash) {
+ char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
+
+ integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
+ (char *)access_journal_data(ic, i, l), test_tag);
+ if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
+ dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
+ dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
+ }
+ }
+
+ journal_entry_set_unused(je2);
+ r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
+ ic->tag_size, TAG_WRITE);
+ if (unlikely(r)) {
+ dm_integrity_io_error(ic, "reading tags", r);
+ }
+ }
+
+ atomic_inc(&comp.in_flight);
+ copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
+ (k - j) << ic->sb->log2_sectors_per_block,
+ get_data_sector(ic, area, offset),
+ complete_copy_from_journal, io);
+skip_io:
+ j = next_loop;
+ }
+ }
+
+ dm_bufio_write_dirty_buffers_async(ic->bufio);
+
+ blk_finish_plug(&plug);
+
+ complete_journal_op(&comp);
+ wait_for_completion_io(&comp.comp);
+
+ dm_integrity_flush_buffers(ic, true);
+}
+
+static void integrity_writer(struct work_struct *w)
+{
+ struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
+ unsigned int write_start, write_sections;
+
+ unsigned int prev_free_sectors;
+
+ spin_lock_irq(&ic->endio_wait.lock);
+ write_start = ic->committed_section;
+ write_sections = ic->n_committed_sections;
+ spin_unlock_irq(&ic->endio_wait.lock);
+
+ if (!write_sections)
+ return;
+
+ do_journal_write(ic, write_start, write_sections, false);
+
+ spin_lock_irq(&ic->endio_wait.lock);
+
+ ic->committed_section += write_sections;
+ wraparound_section(ic, &ic->committed_section);
+ ic->n_committed_sections -= write_sections;
+
+ prev_free_sectors = ic->free_sectors;
+ ic->free_sectors += write_sections * ic->journal_section_entries;
+ if (unlikely(!prev_free_sectors))
+ wake_up_locked(&ic->endio_wait);
+
+ spin_unlock_irq(&ic->endio_wait.lock);
+}
+
+static void recalc_write_super(struct dm_integrity_c *ic)
+{
+ int r;
+
+ dm_integrity_flush_buffers(ic, false);
+ if (dm_integrity_failed(ic))
+ return;
+
+ r = sync_rw_sb(ic, REQ_OP_WRITE);
+ if (unlikely(r))
+ dm_integrity_io_error(ic, "writing superblock", r);
+}
+
+static void integrity_recalc(struct work_struct *w)
+{
+ struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
+ struct dm_integrity_range range;
+ struct dm_io_request io_req;
+ struct dm_io_region io_loc;
+ sector_t area, offset;
+ sector_t metadata_block;
+ unsigned int metadata_offset;
+ sector_t logical_sector, n_sectors;
+ __u8 *t;
+ unsigned int i;
+ int r;
+ unsigned int super_counter = 0;
+
+ DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
+
+ spin_lock_irq(&ic->endio_wait.lock);
+
+next_chunk:
+
+ if (unlikely(dm_post_suspending(ic->ti)))
+ goto unlock_ret;
+
+ range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
+ if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
+ if (ic->mode == 'B') {
+ block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
+ DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
+ queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
+ }
+ goto unlock_ret;
+ }
+
+ get_area_and_offset(ic, range.logical_sector, &area, &offset);
+ range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
+ if (!ic->meta_dev)
+ range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
+
+ add_new_range_and_wait(ic, &range);
+ spin_unlock_irq(&ic->endio_wait.lock);
+ logical_sector = range.logical_sector;
+ n_sectors = range.n_sectors;
+
+ if (ic->mode == 'B') {
+ if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
+ goto advance_and_next;
+ }
+ while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
+ ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
+ logical_sector += ic->sectors_per_block;
+ n_sectors -= ic->sectors_per_block;
+ cond_resched();
+ }
+ while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
+ ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
+ n_sectors -= ic->sectors_per_block;
+ cond_resched();
+ }
+ get_area_and_offset(ic, logical_sector, &area, &offset);
+ }
+
+ DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
+
+ if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
+ recalc_write_super(ic);
+ if (ic->mode == 'B') {
+ queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
+ }
+ super_counter = 0;
+ }
+
+ if (unlikely(dm_integrity_failed(ic)))
+ goto err;
+
+ io_req.bi_opf = REQ_OP_READ;
+ io_req.mem.type = DM_IO_VMA;
+ io_req.mem.ptr.addr = ic->recalc_buffer;
+ io_req.notify.fn = NULL;
+ io_req.client = ic->io;
+ io_loc.bdev = ic->dev->bdev;
+ io_loc.sector = get_data_sector(ic, area, offset);
+ io_loc.count = n_sectors;
+
+ r = dm_io(&io_req, 1, &io_loc, NULL);
+ if (unlikely(r)) {
+ dm_integrity_io_error(ic, "reading data", r);
+ goto err;
+ }
+
+ t = ic->recalc_tags;
+ for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
+ integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
+ t += ic->tag_size;
+ }
+
+ metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
+
+ r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
+ if (unlikely(r)) {
+ dm_integrity_io_error(ic, "writing tags", r);
+ goto err;
+ }
+
+ if (ic->mode == 'B') {
+ sector_t start, end;
+ start = (range.logical_sector >>
+ (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
+ (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
+ end = ((range.logical_sector + range.n_sectors) >>
+ (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
+ (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
+ block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
+ }
+
+advance_and_next:
+ cond_resched();
+
+ spin_lock_irq(&ic->endio_wait.lock);
+ remove_range_unlocked(ic, &range);
+ ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
+ goto next_chunk;
+
+err:
+ remove_range(ic, &range);
+ return;
+
+unlock_ret:
+ spin_unlock_irq(&ic->endio_wait.lock);
+
+ recalc_write_super(ic);
+}
+
+static void bitmap_block_work(struct work_struct *w)
+{
+ struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
+ struct dm_integrity_c *ic = bbs->ic;
+ struct bio *bio;
+ struct bio_list bio_queue;
+ struct bio_list waiting;
+
+ bio_list_init(&waiting);
+
+ spin_lock(&bbs->bio_queue_lock);
+ bio_queue = bbs->bio_queue;
+ bio_list_init(&bbs->bio_queue);
+ spin_unlock(&bbs->bio_queue_lock);
+
+ while ((bio = bio_list_pop(&bio_queue))) {
+ struct dm_integrity_io *dio;
+
+ dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
+
+ if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
+ dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
+ remove_range(ic, &dio->range);
+ INIT_WORK(&dio->work, integrity_bio_wait);
+ queue_work(ic->offload_wq, &dio->work);
+ } else {
+ block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
+ dio->range.n_sectors, BITMAP_OP_SET);
+ bio_list_add(&waiting, bio);
+ }
+ }
+
+ if (bio_list_empty(&waiting))
+ return;
+
+ rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
+ bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
+ BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
+
+ while ((bio = bio_list_pop(&waiting))) {
+ struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
+
+ block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
+ dio->range.n_sectors, BITMAP_OP_SET);
+
+ remove_range(ic, &dio->range);
+ INIT_WORK(&dio->work, integrity_bio_wait);
+ queue_work(ic->offload_wq, &dio->work);
+ }
+
+ queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
+}
+
+static void bitmap_flush_work(struct work_struct *work)
+{
+ struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
+ struct dm_integrity_range range;
+ unsigned long limit;
+ struct bio *bio;
+
+ dm_integrity_flush_buffers(ic, false);
+
+ range.logical_sector = 0;
+ range.n_sectors = ic->provided_data_sectors;
+
+ spin_lock_irq(&ic->endio_wait.lock);
+ add_new_range_and_wait(ic, &range);
+ spin_unlock_irq(&ic->endio_wait.lock);
+
+ dm_integrity_flush_buffers(ic, true);
+
+ limit = ic->provided_data_sectors;
+ if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
+ limit = le64_to_cpu(ic->sb->recalc_sector)
+ >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
+ << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
+ }
+ /*DEBUG_print("zeroing journal\n");*/
+ block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
+ block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
+
+ rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
+ ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
+
+ spin_lock_irq(&ic->endio_wait.lock);
+ remove_range_unlocked(ic, &range);
+ while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
+ bio_endio(bio);
+ spin_unlock_irq(&ic->endio_wait.lock);
+ spin_lock_irq(&ic->endio_wait.lock);
+ }
+ spin_unlock_irq(&ic->endio_wait.lock);
+}
+
+
+static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
+ unsigned int n_sections, unsigned char commit_seq)
+{
+ unsigned int i, j, n;
+
+ if (!n_sections)
+ return;
+
+ for (n = 0; n < n_sections; n++) {
+ i = start_section + n;
+ wraparound_section(ic, &i);
+ for (j = 0; j < ic->journal_section_sectors; j++) {
+ struct journal_sector *js = access_journal(ic, i, j);
+ BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
+ memset(&js->sectors, 0, sizeof(js->sectors));
+ js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
+ }
+ for (j = 0; j < ic->journal_section_entries; j++) {
+ struct journal_entry *je = access_journal_entry(ic, i, j);
+ journal_entry_set_unused(je);
+ }
+ }
+
+ write_journal(ic, start_section, n_sections);
+}
+
+static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
+{
+ unsigned char k;
+ for (k = 0; k < N_COMMIT_IDS; k++) {
+ if (dm_integrity_commit_id(ic, i, j, k) == id)
+ return k;
+ }
+ dm_integrity_io_error(ic, "journal commit id", -EIO);
+ return -EIO;
+}
+
+static void replay_journal(struct dm_integrity_c *ic)
+{
+ unsigned int i, j;
+ bool used_commit_ids[N_COMMIT_IDS];
+ unsigned int max_commit_id_sections[N_COMMIT_IDS];
+ unsigned int write_start, write_sections;
+ unsigned int continue_section;
+ bool journal_empty;
+ unsigned char unused, last_used, want_commit_seq;
+
+ if (ic->mode == 'R')
+ return;
+
+ if (ic->journal_uptodate)
+ return;
+
+ last_used = 0;
+ write_start = 0;
+
+ if (!ic->just_formatted) {
+ DEBUG_print("reading journal\n");
+ rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
+ if (ic->journal_io)
+ DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
+ if (ic->journal_io) {
+ struct journal_completion crypt_comp;
+ crypt_comp.ic = ic;
+ init_completion(&crypt_comp.comp);
+ crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
+ encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
+ wait_for_completion(&crypt_comp.comp);
+ }
+ DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
+ }
+
+ if (dm_integrity_failed(ic))
+ goto clear_journal;
+
+ journal_empty = true;
+ memset(used_commit_ids, 0, sizeof used_commit_ids);
+ memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
+ for (i = 0; i < ic->journal_sections; i++) {
+ for (j = 0; j < ic->journal_section_sectors; j++) {
+ int k;
+ struct journal_sector *js = access_journal(ic, i, j);
+ k = find_commit_seq(ic, i, j, js->commit_id);
+ if (k < 0)
+ goto clear_journal;
+ used_commit_ids[k] = true;
+ max_commit_id_sections[k] = i;
+ }
+ if (journal_empty) {
+ for (j = 0; j < ic->journal_section_entries; j++) {
+ struct journal_entry *je = access_journal_entry(ic, i, j);
+ if (!journal_entry_is_unused(je)) {
+ journal_empty = false;
+ break;
+ }
+ }
+ }
+ }
+
+ if (!used_commit_ids[N_COMMIT_IDS - 1]) {
+ unused = N_COMMIT_IDS - 1;
+ while (unused && !used_commit_ids[unused - 1])
+ unused--;
+ } else {
+ for (unused = 0; unused < N_COMMIT_IDS; unused++)
+ if (!used_commit_ids[unused])
+ break;
+ if (unused == N_COMMIT_IDS) {
+ dm_integrity_io_error(ic, "journal commit ids", -EIO);
+ goto clear_journal;
+ }
+ }
+ DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
+ unused, used_commit_ids[0], used_commit_ids[1],
+ used_commit_ids[2], used_commit_ids[3]);
+
+ last_used = prev_commit_seq(unused);
+ want_commit_seq = prev_commit_seq(last_used);
+
+ if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
+ journal_empty = true;
+
+ write_start = max_commit_id_sections[last_used] + 1;
+ if (unlikely(write_start >= ic->journal_sections))
+ want_commit_seq = next_commit_seq(want_commit_seq);
+ wraparound_section(ic, &write_start);
+
+ i = write_start;
+ for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
+ for (j = 0; j < ic->journal_section_sectors; j++) {
+ struct journal_sector *js = access_journal(ic, i, j);
+
+ if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
+ /*
+ * This could be caused by crash during writing.
+ * We won't replay the inconsistent part of the
+ * journal.
+ */
+ DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
+ i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
+ goto brk;
+ }
+ }
+ i++;
+ if (unlikely(i >= ic->journal_sections))
+ want_commit_seq = next_commit_seq(want_commit_seq);
+ wraparound_section(ic, &i);
+ }
+brk:
+
+ if (!journal_empty) {
+ DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
+ write_sections, write_start, want_commit_seq);
+ do_journal_write(ic, write_start, write_sections, true);
+ }
+
+ if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
+ continue_section = write_start;
+ ic->commit_seq = want_commit_seq;
+ DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
+ } else {
+ unsigned int s;
+ unsigned char erase_seq;
+clear_journal:
+ DEBUG_print("clearing journal\n");
+
+ erase_seq = prev_commit_seq(prev_commit_seq(last_used));
+ s = write_start;
+ init_journal(ic, s, 1, erase_seq);
+ s++;
+ wraparound_section(ic, &s);
+ if (ic->journal_sections >= 2) {
+ init_journal(ic, s, ic->journal_sections - 2, erase_seq);
+ s += ic->journal_sections - 2;
+ wraparound_section(ic, &s);
+ init_journal(ic, s, 1, erase_seq);
+ }
+
+ continue_section = 0;
+ ic->commit_seq = next_commit_seq(erase_seq);
+ }
+
+ ic->committed_section = continue_section;
+ ic->n_committed_sections = 0;
+
+ ic->uncommitted_section = continue_section;
+ ic->n_uncommitted_sections = 0;
+
+ ic->free_section = continue_section;
+ ic->free_section_entry = 0;
+ ic->free_sectors = ic->journal_entries;
+
+ ic->journal_tree_root = RB_ROOT;
+ for (i = 0; i < ic->journal_entries; i++)
+ init_journal_node(&ic->journal_tree[i]);
+}
+
+static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
+{
+ DEBUG_print("dm_integrity_enter_synchronous_mode\n");
+
+ if (ic->mode == 'B') {
+ ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
+ ic->synchronous_mode = 1;
+
+ cancel_delayed_work_sync(&ic->bitmap_flush_work);
+ queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
+ flush_workqueue(ic->commit_wq);
+ }
+}
+
+static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
+{
+ struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
+
+ DEBUG_print("dm_integrity_reboot\n");
+
+ dm_integrity_enter_synchronous_mode(ic);
+
+ return NOTIFY_DONE;
+}
+
+static void dm_integrity_postsuspend(struct dm_target *ti)
+{
+ struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
+ int r;
+
+ WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
+
+ del_timer_sync(&ic->autocommit_timer);
+
+ if (ic->recalc_wq)
+ drain_workqueue(ic->recalc_wq);
+
+ if (ic->mode == 'B')
+ cancel_delayed_work_sync(&ic->bitmap_flush_work);
+
+ queue_work(ic->commit_wq, &ic->commit_work);
+ drain_workqueue(ic->commit_wq);
+
+ if (ic->mode == 'J') {
+ queue_work(ic->writer_wq, &ic->writer_work);
+ drain_workqueue(ic->writer_wq);
+ dm_integrity_flush_buffers(ic, true);
+ if (ic->wrote_to_journal) {
+ init_journal(ic, ic->free_section,
+ ic->journal_sections - ic->free_section, ic->commit_seq);
+ if (ic->free_section) {
+ init_journal(ic, 0, ic->free_section,
+ next_commit_seq(ic->commit_seq));
+ }
+ }
+ }
+
+ if (ic->mode == 'B') {
+ dm_integrity_flush_buffers(ic, true);
+#if 1
+ /* set to 0 to test bitmap replay code */
+ init_journal(ic, 0, ic->journal_sections, 0);
+ ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
+ r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
+ if (unlikely(r))
+ dm_integrity_io_error(ic, "writing superblock", r);
+#endif
+ }
+
+ BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
+
+ ic->journal_uptodate = true;
+}
+
+static void dm_integrity_resume(struct dm_target *ti)
+{
+ struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
+ __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
+ int r;
+
+ DEBUG_print("resume\n");
+
+ ic->wrote_to_journal = false;
+
+ if (ic->provided_data_sectors != old_provided_data_sectors) {
+ if (ic->provided_data_sectors > old_provided_data_sectors &&
+ ic->mode == 'B' &&
+ ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
+ rw_journal_sectors(ic, REQ_OP_READ, 0,
+ ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
+ block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
+ ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
+ rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
+ ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
+ }
+
+ ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
+ r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
+ if (unlikely(r))
+ dm_integrity_io_error(ic, "writing superblock", r);
+ }
+
+ if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
+ DEBUG_print("resume dirty_bitmap\n");
+ rw_journal_sectors(ic, REQ_OP_READ, 0,
+ ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
+ if (ic->mode == 'B') {
+ if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
+ !ic->reset_recalculate_flag) {
+ block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
+ block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
+ if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
+ BITMAP_OP_TEST_ALL_CLEAR)) {
+ ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
+ ic->sb->recalc_sector = cpu_to_le64(0);
+ }
+ } else {
+ DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
+ ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
+ ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
+ block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
+ block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
+ block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
+ rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
+ ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
+ ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
+ ic->sb->recalc_sector = cpu_to_le64(0);
+ }
+ } else {
+ if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
+ block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
+ ic->reset_recalculate_flag) {
+ ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
+ ic->sb->recalc_sector = cpu_to_le64(0);
+ }
+ init_journal(ic, 0, ic->journal_sections, 0);
+ replay_journal(ic);
+ ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
+ }
+ r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
+ if (unlikely(r))
+ dm_integrity_io_error(ic, "writing superblock", r);
+ } else {
+ replay_journal(ic);
+ if (ic->reset_recalculate_flag) {
+ ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
+ ic->sb->recalc_sector = cpu_to_le64(0);
+ }
+ if (ic->mode == 'B') {
+ ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
+ ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
+ r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
+ if (unlikely(r))
+ dm_integrity_io_error(ic, "writing superblock", r);
+
+ block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
+ block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
+ block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
+ if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
+ le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
+ block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
+ ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
+ block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
+ ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
+ block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
+ ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
+ }
+ rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
+ ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
+ }
+ }
+
+ DEBUG_print("testing recalc: %x\n", ic->sb->flags);
+ if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
+ __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
+ DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
+ if (recalc_pos < ic->provided_data_sectors) {
+ queue_work(ic->recalc_wq, &ic->recalc_work);
+ } else if (recalc_pos > ic->provided_data_sectors) {
+ ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
+ recalc_write_super(ic);
+ }
+ }
+
+ ic->reboot_notifier.notifier_call = dm_integrity_reboot;
+ ic->reboot_notifier.next = NULL;
+ ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
+ WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
+
+#if 0
+ /* set to 1 to stress test synchronous mode */
+ dm_integrity_enter_synchronous_mode(ic);
+#endif
+}
+
+static void dm_integrity_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
+ unsigned int arg_count;
+ size_t sz = 0;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ DMEMIT("%llu %llu",
+ (unsigned long long)atomic64_read(&ic->number_of_mismatches),
+ ic->provided_data_sectors);
+ if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
+ DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
+ else
+ DMEMIT(" -");
+ break;
+
+ case STATUSTYPE_TABLE: {
+ __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
+ watermark_percentage += ic->journal_entries / 2;
+ do_div(watermark_percentage, ic->journal_entries);
+ arg_count = 3;
+ arg_count += !!ic->meta_dev;
+ arg_count += ic->sectors_per_block != 1;
+ arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
+ arg_count += ic->reset_recalculate_flag;
+ arg_count += ic->discard;
+ arg_count += ic->mode == 'J';
+ arg_count += ic->mode == 'J';
+ arg_count += ic->mode == 'B';
+ arg_count += ic->mode == 'B';
+ arg_count += !!ic->internal_hash_alg.alg_string;
+ arg_count += !!ic->journal_crypt_alg.alg_string;
+ arg_count += !!ic->journal_mac_alg.alg_string;
+ arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
+ arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
+ arg_count += ic->legacy_recalculate;
+ DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
+ ic->tag_size, ic->mode, arg_count);
+ if (ic->meta_dev)
+ DMEMIT(" meta_device:%s", ic->meta_dev->name);
+ if (ic->sectors_per_block != 1)
+ DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
+ if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
+ DMEMIT(" recalculate");
+ if (ic->reset_recalculate_flag)
+ DMEMIT(" reset_recalculate");
+ if (ic->discard)
+ DMEMIT(" allow_discards");
+ DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
+ DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
+ DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
+ if (ic->mode == 'J') {
+ DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
+ DMEMIT(" commit_time:%u", ic->autocommit_msec);
+ }
+ if (ic->mode == 'B') {
+ DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
+ DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
+ }
+ if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
+ DMEMIT(" fix_padding");
+ if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
+ DMEMIT(" fix_hmac");
+ if (ic->legacy_recalculate)
+ DMEMIT(" legacy_recalculate");
+
+#define EMIT_ALG(a, n) \
+ do { \
+ if (ic->a.alg_string) { \
+ DMEMIT(" %s:%s", n, ic->a.alg_string); \
+ if (ic->a.key_string) \
+ DMEMIT(":%s", ic->a.key_string);\
+ } \
+ } while (0)
+ EMIT_ALG(internal_hash_alg, "internal_hash");
+ EMIT_ALG(journal_crypt_alg, "journal_crypt");
+ EMIT_ALG(journal_mac_alg, "journal_mac");
+ break;
+ }
+ case STATUSTYPE_IMA:
+ DMEMIT_TARGET_NAME_VERSION(ti->type);
+ DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
+ ic->dev->name, ic->start, ic->tag_size, ic->mode);
+
+ if (ic->meta_dev)
+ DMEMIT(",meta_device=%s", ic->meta_dev->name);
+ if (ic->sectors_per_block != 1)
+ DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
+
+ DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
+ 'y' : 'n');
+ DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
+ DMEMIT(",fix_padding=%c",
+ ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
+ DMEMIT(",fix_hmac=%c",
+ ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
+ DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
+
+ DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
+ DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
+ DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
+ DMEMIT(";");
+ break;
+ }
+}
+
+static int dm_integrity_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ struct dm_integrity_c *ic = ti->private;
+
+ if (!ic->meta_dev)
+ return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
+ else
+ return fn(ti, ic->dev, 0, ti->len, data);
+}
+
+static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+ struct dm_integrity_c *ic = ti->private;
+
+ if (ic->sectors_per_block > 1) {
+ limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
+ limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
+ blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
+ limits->dma_alignment = limits->logical_block_size - 1;
+ }
+}
+
+static void calculate_journal_section_size(struct dm_integrity_c *ic)
+{
+ unsigned int sector_space = JOURNAL_SECTOR_DATA;
+
+ ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
+ ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
+ JOURNAL_ENTRY_ROUNDUP);
+
+ if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
+ sector_space -= JOURNAL_MAC_PER_SECTOR;
+ ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
+ ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
+ ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
+ ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
+}
+
+static int calculate_device_limits(struct dm_integrity_c *ic)
+{
+ __u64 initial_sectors;
+
+ calculate_journal_section_size(ic);
+ initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
+ if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
+ return -EINVAL;
+ ic->initial_sectors = initial_sectors;
+
+ if (!ic->meta_dev) {
+ sector_t last_sector, last_area, last_offset;
+
+ /* we have to maintain excessive padding for compatibility with existing volumes */
+ __u64 metadata_run_padding =
+ ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
+ (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
+ (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
+
+ ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
+ metadata_run_padding) >> SECTOR_SHIFT;
+ if (!(ic->metadata_run & (ic->metadata_run - 1)))
+ ic->log2_metadata_run = __ffs(ic->metadata_run);
+ else
+ ic->log2_metadata_run = -1;
+
+ get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
+ last_sector = get_data_sector(ic, last_area, last_offset);
+ if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
+ return -EINVAL;
+ } else {
+ __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
+ meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
+ >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
+ meta_size <<= ic->log2_buffer_sectors;
+ if (ic->initial_sectors + meta_size < ic->initial_sectors ||
+ ic->initial_sectors + meta_size > ic->meta_device_sectors)
+ return -EINVAL;
+ ic->metadata_run = 1;
+ ic->log2_metadata_run = 0;
+ }
+
+ return 0;
+}
+
+static void get_provided_data_sectors(struct dm_integrity_c *ic)
+{
+ if (!ic->meta_dev) {
+ int test_bit;
+ ic->provided_data_sectors = 0;
+ for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
+ __u64 prev_data_sectors = ic->provided_data_sectors;
+
+ ic->provided_data_sectors |= (sector_t)1 << test_bit;
+ if (calculate_device_limits(ic))
+ ic->provided_data_sectors = prev_data_sectors;
+ }
+ } else {
+ ic->provided_data_sectors = ic->data_device_sectors;
+ ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
+ }
+}
+
+static int initialize_superblock(struct dm_integrity_c *ic,
+ unsigned int journal_sectors, unsigned int interleave_sectors)
+{
+ unsigned int journal_sections;
+ int test_bit;
+
+ memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
+ memcpy(ic->sb->magic, SB_MAGIC, 8);
+ ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
+ ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
+ if (ic->journal_mac_alg.alg_string)
+ ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
+
+ calculate_journal_section_size(ic);
+ journal_sections = journal_sectors / ic->journal_section_sectors;
+ if (!journal_sections)
+ journal_sections = 1;
+
+ if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
+ ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
+ get_random_bytes(ic->sb->salt, SALT_SIZE);
+ }
+
+ if (!ic->meta_dev) {
+ if (ic->fix_padding)
+ ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
+ ic->sb->journal_sections = cpu_to_le32(journal_sections);
+ if (!interleave_sectors)
+ interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
+ ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
+ ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
+ ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
+
+ get_provided_data_sectors(ic);
+ if (!ic->provided_data_sectors)
+ return -EINVAL;
+ } else {
+ ic->sb->log2_interleave_sectors = 0;
+
+ get_provided_data_sectors(ic);
+ if (!ic->provided_data_sectors)
+ return -EINVAL;
+
+try_smaller_buffer:
+ ic->sb->journal_sections = cpu_to_le32(0);
+ for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
+ __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
+ __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
+ if (test_journal_sections > journal_sections)
+ continue;
+ ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
+ if (calculate_device_limits(ic))
+ ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
+
+ }
+ if (!le32_to_cpu(ic->sb->journal_sections)) {
+ if (ic->log2_buffer_sectors > 3) {
+ ic->log2_buffer_sectors--;
+ goto try_smaller_buffer;
+ }
+ return -EINVAL;
+ }
+ }
+
+ ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
+
+ sb_set_version(ic);
+
+ return 0;
+}
+
+static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
+{
+ struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
+ struct blk_integrity bi;
+
+ memset(&bi, 0, sizeof(bi));
+ bi.profile = &dm_integrity_profile;
+ bi.tuple_size = ic->tag_size;
+ bi.tag_size = bi.tuple_size;
+ bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
+
+ blk_integrity_register(disk, &bi);
+ blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
+}
+
+static void dm_integrity_free_page_list(struct page_list *pl)
+{
+ unsigned int i;
+
+ if (!pl)
+ return;
+ for (i = 0; pl[i].page; i++)
+ __free_page(pl[i].page);
+ kvfree(pl);
+}
+
+static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
+{
+ struct page_list *pl;
+ unsigned int i;
+
+ pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
+ if (!pl)
+ return NULL;
+
+ for (i = 0; i < n_pages; i++) {
+ pl[i].page = alloc_page(GFP_KERNEL);
+ if (!pl[i].page) {
+ dm_integrity_free_page_list(pl);
+ return NULL;
+ }
+ if (i)
+ pl[i - 1].next = &pl[i];
+ }
+ pl[i].page = NULL;
+ pl[i].next = NULL;
+
+ return pl;
+}
+
+static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
+{
+ unsigned int i;
+ for (i = 0; i < ic->journal_sections; i++)
+ kvfree(sl[i]);
+ kvfree(sl);
+}
+
+static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
+ struct page_list *pl)
+{
+ struct scatterlist **sl;
+ unsigned int i;
+
+ sl = kvmalloc_array(ic->journal_sections,
+ sizeof(struct scatterlist *),
+ GFP_KERNEL | __GFP_ZERO);
+ if (!sl)
+ return NULL;
+
+ for (i = 0; i < ic->journal_sections; i++) {
+ struct scatterlist *s;
+ unsigned int start_index, start_offset;
+ unsigned int end_index, end_offset;
+ unsigned int n_pages;
+ unsigned int idx;
+
+ page_list_location(ic, i, 0, &start_index, &start_offset);
+ page_list_location(ic, i, ic->journal_section_sectors - 1,
+ &end_index, &end_offset);
+
+ n_pages = (end_index - start_index + 1);
+
+ s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
+ GFP_KERNEL);
+ if (!s) {
+ dm_integrity_free_journal_scatterlist(ic, sl);
+ return NULL;
+ }
+
+ sg_init_table(s, n_pages);
+ for (idx = start_index; idx <= end_index; idx++) {
+ char *va = lowmem_page_address(pl[idx].page);
+ unsigned int start = 0, end = PAGE_SIZE;
+ if (idx == start_index)
+ start = start_offset;
+ if (idx == end_index)
+ end = end_offset + (1 << SECTOR_SHIFT);
+ sg_set_buf(&s[idx - start_index], va + start, end - start);
+ }
+
+ sl[i] = s;
+ }
+
+ return sl;
+}
+
+static void free_alg(struct alg_spec *a)
+{
+ kfree_sensitive(a->alg_string);
+ kfree_sensitive(a->key);
+ memset(a, 0, sizeof *a);
+}
+
+static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
+{
+ char *k;
+
+ free_alg(a);
+
+ a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
+ if (!a->alg_string)
+ goto nomem;
+
+ k = strchr(a->alg_string, ':');
+ if (k) {
+ *k = 0;
+ a->key_string = k + 1;
+ if (strlen(a->key_string) & 1)
+ goto inval;
+
+ a->key_size = strlen(a->key_string) / 2;
+ a->key = kmalloc(a->key_size, GFP_KERNEL);
+ if (!a->key)
+ goto nomem;
+ if (hex2bin(a->key, a->key_string, a->key_size))
+ goto inval;
+ }
+
+ return 0;
+inval:
+ *error = error_inval;
+ return -EINVAL;
+nomem:
+ *error = "Out of memory for an argument";
+ return -ENOMEM;
+}
+
+static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
+ char *error_alg, char *error_key)
+{
+ int r;
+
+ if (a->alg_string) {
+ *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
+ if (IS_ERR(*hash)) {
+ *error = error_alg;
+ r = PTR_ERR(*hash);
+ *hash = NULL;
+ return r;
+ }
+
+ if (a->key) {
+ r = crypto_shash_setkey(*hash, a->key, a->key_size);
+ if (r) {
+ *error = error_key;
+ return r;
+ }
+ } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
+ *error = error_key;
+ return -ENOKEY;
+ }
+ }
+
+ return 0;
+}
+
+static int create_journal(struct dm_integrity_c *ic, char **error)
+{
+ int r = 0;
+ unsigned int i;
+ __u64 journal_pages, journal_desc_size, journal_tree_size;
+ unsigned char *crypt_data = NULL, *crypt_iv = NULL;
+ struct skcipher_request *req = NULL;
+
+ ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
+ ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
+ ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
+ ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
+
+ journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
+ PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
+ journal_desc_size = journal_pages * sizeof(struct page_list);
+ if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
+ *error = "Journal doesn't fit into memory";
+ r = -ENOMEM;
+ goto bad;
+ }
+ ic->journal_pages = journal_pages;
+
+ ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
+ if (!ic->journal) {
+ *error = "Could not allocate memory for journal";
+ r = -ENOMEM;
+ goto bad;
+ }
+ if (ic->journal_crypt_alg.alg_string) {
+ unsigned int ivsize, blocksize;
+ struct journal_completion comp;
+
+ comp.ic = ic;
+ ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
+ if (IS_ERR(ic->journal_crypt)) {
+ *error = "Invalid journal cipher";
+ r = PTR_ERR(ic->journal_crypt);
+ ic->journal_crypt = NULL;
+ goto bad;
+ }
+ ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
+ blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
+
+ if (ic->journal_crypt_alg.key) {
+ r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
+ ic->journal_crypt_alg.key_size);
+ if (r) {
+ *error = "Error setting encryption key";
+ goto bad;
+ }
+ }
+ DEBUG_print("cipher %s, block size %u iv size %u\n",
+ ic->journal_crypt_alg.alg_string, blocksize, ivsize);
+
+ ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
+ if (!ic->journal_io) {
+ *error = "Could not allocate memory for journal io";
+ r = -ENOMEM;
+ goto bad;
+ }
+
+ if (blocksize == 1) {
+ struct scatterlist *sg;
+
+ req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
+ if (!req) {
+ *error = "Could not allocate crypt request";
+ r = -ENOMEM;
+ goto bad;
+ }
+
+ crypt_iv = kzalloc(ivsize, GFP_KERNEL);
+ if (!crypt_iv) {
+ *error = "Could not allocate iv";
+ r = -ENOMEM;
+ goto bad;
+ }
+
+ ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
+ if (!ic->journal_xor) {
+ *error = "Could not allocate memory for journal xor";
+ r = -ENOMEM;
+ goto bad;
+ }
+
+ sg = kvmalloc_array(ic->journal_pages + 1,
+ sizeof(struct scatterlist),
+ GFP_KERNEL);
+ if (!sg) {
+ *error = "Unable to allocate sg list";
+ r = -ENOMEM;
+ goto bad;
+ }
+ sg_init_table(sg, ic->journal_pages + 1);
+ for (i = 0; i < ic->journal_pages; i++) {
+ char *va = lowmem_page_address(ic->journal_xor[i].page);
+ clear_page(va);
+ sg_set_buf(&sg[i], va, PAGE_SIZE);
+ }
+ sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
+
+ skcipher_request_set_crypt(req, sg, sg,
+ PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
+ init_completion(&comp.comp);
+ comp.in_flight = (atomic_t)ATOMIC_INIT(1);
+ if (do_crypt(true, req, &comp))
+ wait_for_completion(&comp.comp);
+ kvfree(sg);
+ r = dm_integrity_failed(ic);
+ if (r) {
+ *error = "Unable to encrypt journal";
+ goto bad;
+ }
+ DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
+
+ crypto_free_skcipher(ic->journal_crypt);
+ ic->journal_crypt = NULL;
+ } else {
+ unsigned int crypt_len = roundup(ivsize, blocksize);
+
+ req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
+ if (!req) {
+ *error = "Could not allocate crypt request";
+ r = -ENOMEM;
+ goto bad;
+ }
+
+ crypt_iv = kmalloc(ivsize, GFP_KERNEL);
+ if (!crypt_iv) {
+ *error = "Could not allocate iv";
+ r = -ENOMEM;
+ goto bad;
+ }
+
+ crypt_data = kmalloc(crypt_len, GFP_KERNEL);
+ if (!crypt_data) {
+ *error = "Unable to allocate crypt data";
+ r = -ENOMEM;
+ goto bad;
+ }
+
+ ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
+ if (!ic->journal_scatterlist) {
+ *error = "Unable to allocate sg list";
+ r = -ENOMEM;
+ goto bad;
+ }
+ ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
+ if (!ic->journal_io_scatterlist) {
+ *error = "Unable to allocate sg list";
+ r = -ENOMEM;
+ goto bad;
+ }
+ ic->sk_requests = kvmalloc_array(ic->journal_sections,
+ sizeof(struct skcipher_request *),
+ GFP_KERNEL | __GFP_ZERO);
+ if (!ic->sk_requests) {
+ *error = "Unable to allocate sk requests";
+ r = -ENOMEM;
+ goto bad;
+ }
+ for (i = 0; i < ic->journal_sections; i++) {
+ struct scatterlist sg;
+ struct skcipher_request *section_req;
+ __le32 section_le = cpu_to_le32(i);
+
+ memset(crypt_iv, 0x00, ivsize);
+ memset(crypt_data, 0x00, crypt_len);
+ memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
+
+ sg_init_one(&sg, crypt_data, crypt_len);
+ skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
+ init_completion(&comp.comp);
+ comp.in_flight = (atomic_t)ATOMIC_INIT(1);
+ if (do_crypt(true, req, &comp))
+ wait_for_completion(&comp.comp);
+
+ r = dm_integrity_failed(ic);
+ if (r) {
+ *error = "Unable to generate iv";
+ goto bad;
+ }
+
+ section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
+ if (!section_req) {
+ *error = "Unable to allocate crypt request";
+ r = -ENOMEM;
+ goto bad;
+ }
+ section_req->iv = kmalloc_array(ivsize, 2,
+ GFP_KERNEL);
+ if (!section_req->iv) {
+ skcipher_request_free(section_req);
+ *error = "Unable to allocate iv";
+ r = -ENOMEM;
+ goto bad;
+ }
+ memcpy(section_req->iv + ivsize, crypt_data, ivsize);
+ section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
+ ic->sk_requests[i] = section_req;
+ DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
+ }
+ }
+ }
+
+ for (i = 0; i < N_COMMIT_IDS; i++) {
+ unsigned int j;
+retest_commit_id:
+ for (j = 0; j < i; j++) {
+ if (ic->commit_ids[j] == ic->commit_ids[i]) {
+ ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
+ goto retest_commit_id;
+ }
+ }
+ DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
+ }
+
+ journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
+ if (journal_tree_size > ULONG_MAX) {
+ *error = "Journal doesn't fit into memory";
+ r = -ENOMEM;
+ goto bad;
+ }
+ ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
+ if (!ic->journal_tree) {
+ *error = "Could not allocate memory for journal tree";
+ r = -ENOMEM;
+ }
+bad:
+ kfree(crypt_data);
+ kfree(crypt_iv);
+ skcipher_request_free(req);
+
+ return r;
+}
+
+/*
+ * Construct a integrity mapping
+ *
+ * Arguments:
+ * device
+ * offset from the start of the device
+ * tag size
+ * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
+ * number of optional arguments
+ * optional arguments:
+ * journal_sectors
+ * interleave_sectors
+ * buffer_sectors
+ * journal_watermark
+ * commit_time
+ * meta_device
+ * block_size
+ * sectors_per_bit
+ * bitmap_flush_interval
+ * internal_hash
+ * journal_crypt
+ * journal_mac
+ * recalculate
+ */
+static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ struct dm_integrity_c *ic;
+ char dummy;
+ int r;
+ unsigned int extra_args;
+ struct dm_arg_set as;
+ static const struct dm_arg _args[] = {
+ {0, 18, "Invalid number of feature args"},
+ };
+ unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
+ bool should_write_sb;
+ __u64 threshold;
+ unsigned long long start;
+ __s8 log2_sectors_per_bitmap_bit = -1;
+ __s8 log2_blocks_per_bitmap_bit;
+ __u64 bits_in_journal;
+ __u64 n_bitmap_bits;
+
+#define DIRECT_ARGUMENTS 4
+
+ if (argc <= DIRECT_ARGUMENTS) {
+ ti->error = "Invalid argument count";
+ return -EINVAL;
+ }
+
+ ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
+ if (!ic) {
+ ti->error = "Cannot allocate integrity context";
+ return -ENOMEM;
+ }
+ ti->private = ic;
+ ti->per_io_data_size = sizeof(struct dm_integrity_io);
+ ic->ti = ti;
+
+ ic->in_progress = RB_ROOT;
+ INIT_LIST_HEAD(&ic->wait_list);
+ init_waitqueue_head(&ic->endio_wait);
+ bio_list_init(&ic->flush_bio_list);
+ init_waitqueue_head(&ic->copy_to_journal_wait);
+ init_completion(&ic->crypto_backoff);
+ atomic64_set(&ic->number_of_mismatches, 0);
+ ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
+
+ r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
+ if (r) {
+ ti->error = "Device lookup failed";
+ goto bad;
+ }
+
+ if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
+ ti->error = "Invalid starting offset";
+ r = -EINVAL;
+ goto bad;
+ }
+ ic->start = start;
+
+ if (strcmp(argv[2], "-")) {
+ if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
+ ti->error = "Invalid tag size";
+ r = -EINVAL;
+ goto bad;
+ }
+ }
+
+ if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
+ !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
+ ic->mode = argv[3][0];
+ } else {
+ ti->error = "Invalid mode (expecting J, B, D, R)";
+ r = -EINVAL;
+ goto bad;
+ }
+
+ journal_sectors = 0;
+ interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
+ buffer_sectors = DEFAULT_BUFFER_SECTORS;
+ journal_watermark = DEFAULT_JOURNAL_WATERMARK;
+ sync_msec = DEFAULT_SYNC_MSEC;
+ ic->sectors_per_block = 1;
+
+ as.argc = argc - DIRECT_ARGUMENTS;
+ as.argv = argv + DIRECT_ARGUMENTS;
+ r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
+ if (r)
+ goto bad;
+
+ while (extra_args--) {
+ const char *opt_string;
+ unsigned int val;
+ unsigned long long llval;
+ opt_string = dm_shift_arg(&as);
+ if (!opt_string) {
+ r = -EINVAL;
+ ti->error = "Not enough feature arguments";
+ goto bad;
+ }
+ if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
+ journal_sectors = val ? val : 1;
+ else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
+ interleave_sectors = val;
+ else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
+ buffer_sectors = val;
+ else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
+ journal_watermark = val;
+ else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
+ sync_msec = val;
+ else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
+ if (ic->meta_dev) {
+ dm_put_device(ti, ic->meta_dev);
+ ic->meta_dev = NULL;
+ }
+ r = dm_get_device(ti, strchr(opt_string, ':') + 1,
+ dm_table_get_mode(ti->table), &ic->meta_dev);
+ if (r) {
+ ti->error = "Device lookup failed";
+ goto bad;
+ }
+ } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
+ if (val < 1 << SECTOR_SHIFT ||
+ val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
+ (val & (val -1))) {
+ r = -EINVAL;
+ ti->error = "Invalid block_size argument";
+ goto bad;
+ }
+ ic->sectors_per_block = val >> SECTOR_SHIFT;
+ } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
+ log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
+ } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
+ if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
+ r = -EINVAL;
+ ti->error = "Invalid bitmap_flush_interval argument";
+ goto bad;
+ }
+ ic->bitmap_flush_interval = msecs_to_jiffies(val);
+ } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
+ r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
+ "Invalid internal_hash argument");
+ if (r)
+ goto bad;
+ } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
+ r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
+ "Invalid journal_crypt argument");
+ if (r)
+ goto bad;
+ } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
+ r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
+ "Invalid journal_mac argument");
+ if (r)
+ goto bad;
+ } else if (!strcmp(opt_string, "recalculate")) {
+ ic->recalculate_flag = true;
+ } else if (!strcmp(opt_string, "reset_recalculate")) {
+ ic->recalculate_flag = true;
+ ic->reset_recalculate_flag = true;
+ } else if (!strcmp(opt_string, "allow_discards")) {
+ ic->discard = true;
+ } else if (!strcmp(opt_string, "fix_padding")) {
+ ic->fix_padding = true;
+ } else if (!strcmp(opt_string, "fix_hmac")) {
+ ic->fix_hmac = true;
+ } else if (!strcmp(opt_string, "legacy_recalculate")) {
+ ic->legacy_recalculate = true;
+ } else {
+ r = -EINVAL;
+ ti->error = "Invalid argument";
+ goto bad;
+ }
+ }
+
+ ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
+ if (!ic->meta_dev)
+ ic->meta_device_sectors = ic->data_device_sectors;
+ else
+ ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
+
+ if (!journal_sectors) {
+ journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
+ ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
+ }
+
+ if (!buffer_sectors)
+ buffer_sectors = 1;
+ ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
+
+ r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
+ "Invalid internal hash", "Error setting internal hash key");
+ if (r)
+ goto bad;
+
+ r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
+ "Invalid journal mac", "Error setting journal mac key");
+ if (r)
+ goto bad;
+
+ if (!ic->tag_size) {
+ if (!ic->internal_hash) {
+ ti->error = "Unknown tag size";
+ r = -EINVAL;
+ goto bad;
+ }
+ ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
+ }
+ if (ic->tag_size > MAX_TAG_SIZE) {
+ ti->error = "Too big tag size";
+ r = -EINVAL;
+ goto bad;
+ }
+ if (!(ic->tag_size & (ic->tag_size - 1)))
+ ic->log2_tag_size = __ffs(ic->tag_size);
+ else
+ ic->log2_tag_size = -1;
+
+ if (ic->mode == 'B' && !ic->internal_hash) {
+ r = -EINVAL;
+ ti->error = "Bitmap mode can be only used with internal hash";
+ goto bad;
+ }
+
+ if (ic->discard && !ic->internal_hash) {
+ r = -EINVAL;
+ ti->error = "Discard can be only used with internal hash";
+ goto bad;
+ }
+
+ ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
+ ic->autocommit_msec = sync_msec;
+ timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
+
+ ic->io = dm_io_client_create();
+ if (IS_ERR(ic->io)) {
+ r = PTR_ERR(ic->io);
+ ic->io = NULL;
+ ti->error = "Cannot allocate dm io";
+ goto bad;
+ }
+
+ r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
+ if (r) {
+ ti->error = "Cannot allocate mempool";
+ goto bad;
+ }
+
+ ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
+ WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
+ if (!ic->metadata_wq) {
+ ti->error = "Cannot allocate workqueue";
+ r = -ENOMEM;
+ goto bad;
+ }
+
+ /*
+ * If this workqueue were percpu, it would cause bio reordering
+ * and reduced performance.
+ */
+ ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
+ if (!ic->wait_wq) {
+ ti->error = "Cannot allocate workqueue";
+ r = -ENOMEM;
+ goto bad;
+ }
+
+ ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
+ METADATA_WORKQUEUE_MAX_ACTIVE);
+ if (!ic->offload_wq) {
+ ti->error = "Cannot allocate workqueue";
+ r = -ENOMEM;
+ goto bad;
+ }
+
+ ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
+ if (!ic->commit_wq) {
+ ti->error = "Cannot allocate workqueue";
+ r = -ENOMEM;
+ goto bad;
+ }
+ INIT_WORK(&ic->commit_work, integrity_commit);
+
+ if (ic->mode == 'J' || ic->mode == 'B') {
+ ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
+ if (!ic->writer_wq) {
+ ti->error = "Cannot allocate workqueue";
+ r = -ENOMEM;
+ goto bad;
+ }
+ INIT_WORK(&ic->writer_work, integrity_writer);
+ }
+
+ ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
+ if (!ic->sb) {
+ r = -ENOMEM;
+ ti->error = "Cannot allocate superblock area";
+ goto bad;
+ }
+
+ r = sync_rw_sb(ic, REQ_OP_READ);
+ if (r) {
+ ti->error = "Error reading superblock";
+ goto bad;
+ }
+ should_write_sb = false;
+ if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
+ if (ic->mode != 'R') {
+ if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
+ r = -EINVAL;
+ ti->error = "The device is not initialized";
+ goto bad;
+ }
+ }
+
+ r = initialize_superblock(ic, journal_sectors, interleave_sectors);
+ if (r) {
+ ti->error = "Could not initialize superblock";
+ goto bad;
+ }
+ if (ic->mode != 'R')
+ should_write_sb = true;
+ }
+
+ if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
+ r = -EINVAL;
+ ti->error = "Unknown version";
+ goto bad;
+ }
+ if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
+ r = -EINVAL;
+ ti->error = "Tag size doesn't match the information in superblock";
+ goto bad;
+ }
+ if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
+ r = -EINVAL;
+ ti->error = "Block size doesn't match the information in superblock";
+ goto bad;
+ }
+ if (!le32_to_cpu(ic->sb->journal_sections)) {
+ r = -EINVAL;
+ ti->error = "Corrupted superblock, journal_sections is 0";
+ goto bad;
+ }
+ /* make sure that ti->max_io_len doesn't overflow */
+ if (!ic->meta_dev) {
+ if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
+ ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
+ r = -EINVAL;
+ ti->error = "Invalid interleave_sectors in the superblock";
+ goto bad;
+ }
+ } else {
+ if (ic->sb->log2_interleave_sectors) {
+ r = -EINVAL;
+ ti->error = "Invalid interleave_sectors in the superblock";
+ goto bad;
+ }
+ }
+ if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
+ r = -EINVAL;
+ ti->error = "Journal mac mismatch";
+ goto bad;
+ }
+
+ get_provided_data_sectors(ic);
+ if (!ic->provided_data_sectors) {
+ r = -EINVAL;
+ ti->error = "The device is too small";
+ goto bad;
+ }
+
+try_smaller_buffer:
+ r = calculate_device_limits(ic);
+ if (r) {
+ if (ic->meta_dev) {
+ if (ic->log2_buffer_sectors > 3) {
+ ic->log2_buffer_sectors--;
+ goto try_smaller_buffer;
+ }
+ }
+ ti->error = "The device is too small";
+ goto bad;
+ }
+
+ if (log2_sectors_per_bitmap_bit < 0)
+ log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
+ if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
+ log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
+
+ bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
+ if (bits_in_journal > UINT_MAX)
+ bits_in_journal = UINT_MAX;
+ while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
+ log2_sectors_per_bitmap_bit++;
+
+ log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
+ ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
+ if (should_write_sb) {
+ ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
+ }
+ n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
+ + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
+ ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
+
+ if (!ic->meta_dev)
+ ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
+
+ if (ti->len > ic->provided_data_sectors) {
+ r = -EINVAL;
+ ti->error = "Not enough provided sectors for requested mapping size";
+ goto bad;
+ }
+
+
+ threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
+ threshold += 50;
+ do_div(threshold, 100);
+ ic->free_sectors_threshold = threshold;
+
+ DEBUG_print("initialized:\n");
+ DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
+ DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
+ DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
+ DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
+ DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
+ DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
+ DEBUG_print(" journal_entries %u\n", ic->journal_entries);
+ DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
+ DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
+ DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
+ DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
+ DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
+ DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
+ DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
+ DEBUG_print(" bits_in_journal %llu\n", bits_in_journal);
+
+ if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
+ ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
+ ic->sb->recalc_sector = cpu_to_le64(0);
+ }
+
+ if (ic->internal_hash) {
+ size_t recalc_tags_size;
+ ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
+ if (!ic->recalc_wq ) {
+ ti->error = "Cannot allocate workqueue";
+ r = -ENOMEM;
+ goto bad;
+ }
+ INIT_WORK(&ic->recalc_work, integrity_recalc);
+ ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
+ if (!ic->recalc_buffer) {
+ ti->error = "Cannot allocate buffer for recalculating";
+ r = -ENOMEM;
+ goto bad;
+ }
+ recalc_tags_size = (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size;
+ if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
+ recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
+ ic->recalc_tags = kvmalloc(recalc_tags_size, GFP_KERNEL);
+ if (!ic->recalc_tags) {
+ ti->error = "Cannot allocate tags for recalculating";
+ r = -ENOMEM;
+ goto bad;
+ }
+ } else {
+ if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
+ ti->error = "Recalculate can only be specified with internal_hash";
+ r = -EINVAL;
+ goto bad;
+ }
+ }
+
+ if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
+ le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
+ dm_integrity_disable_recalculate(ic)) {
+ ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
+ r = -EOPNOTSUPP;
+ goto bad;
+ }
+
+ ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
+ 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
+ if (IS_ERR(ic->bufio)) {
+ r = PTR_ERR(ic->bufio);
+ ti->error = "Cannot initialize dm-bufio";
+ ic->bufio = NULL;
+ goto bad;
+ }
+ dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
+
+ if (ic->mode != 'R') {
+ r = create_journal(ic, &ti->error);
+ if (r)
+ goto bad;
+
+ }
+
+ if (ic->mode == 'B') {
+ unsigned int i;
+ unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
+
+ ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
+ if (!ic->recalc_bitmap) {
+ r = -ENOMEM;
+ goto bad;
+ }
+ ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
+ if (!ic->may_write_bitmap) {
+ r = -ENOMEM;
+ goto bad;
+ }
+ ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
+ if (!ic->bbs) {
+ r = -ENOMEM;
+ goto bad;
+ }
+ INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
+ for (i = 0; i < ic->n_bitmap_blocks; i++) {
+ struct bitmap_block_status *bbs = &ic->bbs[i];
+ unsigned int sector, pl_index, pl_offset;
+
+ INIT_WORK(&bbs->work, bitmap_block_work);
+ bbs->ic = ic;
+ bbs->idx = i;
+ bio_list_init(&bbs->bio_queue);
+ spin_lock_init(&bbs->bio_queue_lock);
+
+ sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
+ pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
+ pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
+
+ bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
+ }
+ }
+
+ if (should_write_sb) {
+ init_journal(ic, 0, ic->journal_sections, 0);
+ r = dm_integrity_failed(ic);
+ if (unlikely(r)) {
+ ti->error = "Error initializing journal";
+ goto bad;
+ }
+ r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
+ if (r) {
+ ti->error = "Error initializing superblock";
+ goto bad;
+ }
+ ic->just_formatted = true;
+ }
+
+ if (!ic->meta_dev) {
+ r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
+ if (r)
+ goto bad;
+ }
+ if (ic->mode == 'B') {
+ unsigned int max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
+ if (!max_io_len)
+ max_io_len = 1U << 31;
+ DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
+ if (!ti->max_io_len || ti->max_io_len > max_io_len) {
+ r = dm_set_target_max_io_len(ti, max_io_len);
+ if (r)
+ goto bad;
+ }
+ }
+
+ if (!ic->internal_hash)
+ dm_integrity_set(ti, ic);
+
+ ti->num_flush_bios = 1;
+ ti->flush_supported = true;
+ if (ic->discard)
+ ti->num_discard_bios = 1;
+
+ dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
+ return 0;
+
+bad:
+ dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
+ dm_integrity_dtr(ti);
+ return r;
+}
+
+static void dm_integrity_dtr(struct dm_target *ti)
+{
+ struct dm_integrity_c *ic = ti->private;
+
+ BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
+ BUG_ON(!list_empty(&ic->wait_list));
+
+ if (ic->mode == 'B')
+ cancel_delayed_work_sync(&ic->bitmap_flush_work);
+ if (ic->metadata_wq)
+ destroy_workqueue(ic->metadata_wq);
+ if (ic->wait_wq)
+ destroy_workqueue(ic->wait_wq);
+ if (ic->offload_wq)
+ destroy_workqueue(ic->offload_wq);
+ if (ic->commit_wq)
+ destroy_workqueue(ic->commit_wq);
+ if (ic->writer_wq)
+ destroy_workqueue(ic->writer_wq);
+ if (ic->recalc_wq)
+ destroy_workqueue(ic->recalc_wq);
+ vfree(ic->recalc_buffer);
+ kvfree(ic->recalc_tags);
+ kvfree(ic->bbs);
+ if (ic->bufio)
+ dm_bufio_client_destroy(ic->bufio);
+ mempool_exit(&ic->journal_io_mempool);
+ if (ic->io)
+ dm_io_client_destroy(ic->io);
+ if (ic->dev)
+ dm_put_device(ti, ic->dev);
+ if (ic->meta_dev)
+ dm_put_device(ti, ic->meta_dev);
+ dm_integrity_free_page_list(ic->journal);
+ dm_integrity_free_page_list(ic->journal_io);
+ dm_integrity_free_page_list(ic->journal_xor);
+ dm_integrity_free_page_list(ic->recalc_bitmap);
+ dm_integrity_free_page_list(ic->may_write_bitmap);
+ if (ic->journal_scatterlist)
+ dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
+ if (ic->journal_io_scatterlist)
+ dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
+ if (ic->sk_requests) {
+ unsigned int i;
+
+ for (i = 0; i < ic->journal_sections; i++) {
+ struct skcipher_request *req = ic->sk_requests[i];
+ if (req) {
+ kfree_sensitive(req->iv);
+ skcipher_request_free(req);
+ }
+ }
+ kvfree(ic->sk_requests);
+ }
+ kvfree(ic->journal_tree);
+ if (ic->sb)
+ free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
+
+ if (ic->internal_hash)
+ crypto_free_shash(ic->internal_hash);
+ free_alg(&ic->internal_hash_alg);
+
+ if (ic->journal_crypt)
+ crypto_free_skcipher(ic->journal_crypt);
+ free_alg(&ic->journal_crypt_alg);
+
+ if (ic->journal_mac)
+ crypto_free_shash(ic->journal_mac);
+ free_alg(&ic->journal_mac_alg);
+
+ kfree(ic);
+ dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
+}
+
+static struct target_type integrity_target = {
+ .name = "integrity",
+ .version = {1, 10, 0},
+ .module = THIS_MODULE,
+ .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
+ .ctr = dm_integrity_ctr,
+ .dtr = dm_integrity_dtr,
+ .map = dm_integrity_map,
+ .postsuspend = dm_integrity_postsuspend,
+ .resume = dm_integrity_resume,
+ .status = dm_integrity_status,
+ .iterate_devices = dm_integrity_iterate_devices,
+ .io_hints = dm_integrity_io_hints,
+};
+
+static int __init dm_integrity_init(void)
+{
+ int r;
+
+ journal_io_cache = kmem_cache_create("integrity_journal_io",
+ sizeof(struct journal_io), 0, 0, NULL);
+ if (!journal_io_cache) {
+ DMERR("can't allocate journal io cache");
+ return -ENOMEM;
+ }
+
+ r = dm_register_target(&integrity_target);
+ if (r < 0) {
+ DMERR("register failed %d", r);
+ kmem_cache_destroy(journal_io_cache);
+ return r;
+ }
+
+ return 0;
+}
+
+static void __exit dm_integrity_exit(void)
+{
+ dm_unregister_target(&integrity_target);
+ kmem_cache_destroy(journal_io_cache);
+}
+
+module_init(dm_integrity_init);
+module_exit(dm_integrity_exit);
+
+MODULE_AUTHOR("Milan Broz");
+MODULE_AUTHOR("Mikulas Patocka");
+MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-io-rewind.c b/drivers/md/dm-io-rewind.c
new file mode 100644
index 000000000..773c4cff8
--- /dev/null
+++ b/drivers/md/dm-io-rewind.c
@@ -0,0 +1,166 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Copyright 2022 Red Hat, Inc.
+ */
+
+#include <linux/bio.h>
+#include <linux/blk-crypto.h>
+#include <linux/blk-integrity.h>
+
+#include "dm-core.h"
+
+static inline bool dm_bvec_iter_rewind(const struct bio_vec *bv,
+ struct bvec_iter *iter,
+ unsigned int bytes)
+{
+ int idx;
+
+ iter->bi_size += bytes;
+ if (bytes <= iter->bi_bvec_done) {
+ iter->bi_bvec_done -= bytes;
+ return true;
+ }
+
+ bytes -= iter->bi_bvec_done;
+ idx = iter->bi_idx - 1;
+
+ while (idx >= 0 && bytes && bytes > bv[idx].bv_len) {
+ bytes -= bv[idx].bv_len;
+ idx--;
+ }
+
+ if (WARN_ONCE(idx < 0 && bytes,
+ "Attempted to rewind iter beyond bvec's boundaries\n")) {
+ iter->bi_size -= bytes;
+ iter->bi_bvec_done = 0;
+ iter->bi_idx = 0;
+ return false;
+ }
+
+ iter->bi_idx = idx;
+ iter->bi_bvec_done = bv[idx].bv_len - bytes;
+ return true;
+}
+
+#if defined(CONFIG_BLK_DEV_INTEGRITY)
+
+/**
+ * dm_bio_integrity_rewind - Rewind integrity vector
+ * @bio: bio whose integrity vector to update
+ * @bytes_done: number of data bytes to rewind
+ *
+ * Description: This function calculates how many integrity bytes the
+ * number of completed data bytes correspond to and rewind the
+ * integrity vector accordingly.
+ */
+static void dm_bio_integrity_rewind(struct bio *bio, unsigned int bytes_done)
+{
+ struct bio_integrity_payload *bip = bio_integrity(bio);
+ struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
+ unsigned int bytes = bio_integrity_bytes(bi, bytes_done >> 9);
+
+ bip->bip_iter.bi_sector -= bio_integrity_intervals(bi, bytes_done >> 9);
+ dm_bvec_iter_rewind(bip->bip_vec, &bip->bip_iter, bytes);
+}
+
+#else /* CONFIG_BLK_DEV_INTEGRITY */
+
+static inline void dm_bio_integrity_rewind(struct bio *bio,
+ unsigned int bytes_done)
+{
+ return;
+}
+
+#endif
+
+#if defined(CONFIG_BLK_INLINE_ENCRYPTION)
+
+/* Decrements @dun by @dec, treating @dun as a multi-limb integer. */
+static void dm_bio_crypt_dun_decrement(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
+ unsigned int dec)
+{
+ int i;
+
+ for (i = 0; dec && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
+ u64 prev = dun[i];
+
+ dun[i] -= dec;
+ if (dun[i] > prev)
+ dec = 1;
+ else
+ dec = 0;
+ }
+}
+
+static void dm_bio_crypt_rewind(struct bio *bio, unsigned int bytes)
+{
+ struct bio_crypt_ctx *bc = bio->bi_crypt_context;
+
+ dm_bio_crypt_dun_decrement(bc->bc_dun,
+ bytes >> bc->bc_key->data_unit_size_bits);
+}
+
+#else /* CONFIG_BLK_INLINE_ENCRYPTION */
+
+static inline void dm_bio_crypt_rewind(struct bio *bio, unsigned int bytes)
+{
+ return;
+}
+
+#endif
+
+static inline void dm_bio_rewind_iter(const struct bio *bio,
+ struct bvec_iter *iter, unsigned int bytes)
+{
+ iter->bi_sector -= bytes >> 9;
+
+ /* No advance means no rewind */
+ if (bio_no_advance_iter(bio))
+ iter->bi_size += bytes;
+ else
+ dm_bvec_iter_rewind(bio->bi_io_vec, iter, bytes);
+}
+
+/**
+ * dm_bio_rewind - update ->bi_iter of @bio by rewinding @bytes.
+ * @bio: bio to rewind
+ * @bytes: how many bytes to rewind
+ *
+ * WARNING:
+ * Caller must ensure that @bio has a fixed end sector, to allow
+ * rewinding from end of bio and restoring its original position.
+ * Caller is also responsibile for restoring bio's size.
+ */
+static void dm_bio_rewind(struct bio *bio, unsigned int bytes)
+{
+ if (bio_integrity(bio))
+ dm_bio_integrity_rewind(bio, bytes);
+
+ if (bio_has_crypt_ctx(bio))
+ dm_bio_crypt_rewind(bio, bytes);
+
+ dm_bio_rewind_iter(bio, &bio->bi_iter, bytes);
+}
+
+void dm_io_rewind(struct dm_io *io, struct bio_set *bs)
+{
+ struct bio *orig = io->orig_bio;
+ struct bio *new_orig = bio_alloc_clone(orig->bi_bdev, orig,
+ GFP_NOIO, bs);
+ /*
+ * dm_bio_rewind can restore to previous position since the
+ * end sector is fixed for original bio, but we still need
+ * to restore bio's size manually (using io->sectors).
+ */
+ dm_bio_rewind(new_orig, ((io->sector_offset << 9) -
+ orig->bi_iter.bi_size));
+ bio_trim(new_orig, 0, io->sectors);
+
+ bio_chain(new_orig, orig);
+ /*
+ * __bi_remaining was increased (by dm_split_and_process_bio),
+ * so must drop the one added in bio_chain.
+ */
+ atomic_dec(&orig->__bi_remaining);
+ io->orig_bio = new_orig;
+}
diff --git a/drivers/md/dm-io-tracker.h b/drivers/md/dm-io-tracker.h
new file mode 100644
index 000000000..bdcc6273e
--- /dev/null
+++ b/drivers/md/dm-io-tracker.h
@@ -0,0 +1,81 @@
+/*
+ * Copyright (C) 2021 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_IO_TRACKER_H
+#define DM_IO_TRACKER_H
+
+#include <linux/jiffies.h>
+
+struct dm_io_tracker {
+ spinlock_t lock;
+
+ /*
+ * Sectors of in-flight IO.
+ */
+ sector_t in_flight;
+
+ /*
+ * The time, in jiffies, when this device became idle
+ * (if it is indeed idle).
+ */
+ unsigned long idle_time;
+ unsigned long last_update_time;
+};
+
+static inline void dm_iot_init(struct dm_io_tracker *iot)
+{
+ spin_lock_init(&iot->lock);
+ iot->in_flight = 0ul;
+ iot->idle_time = 0ul;
+ iot->last_update_time = jiffies;
+}
+
+static inline bool dm_iot_idle_for(struct dm_io_tracker *iot, unsigned long j)
+{
+ bool r = false;
+
+ spin_lock_irq(&iot->lock);
+ if (!iot->in_flight)
+ r = time_after(jiffies, iot->idle_time + j);
+ spin_unlock_irq(&iot->lock);
+
+ return r;
+}
+
+static inline unsigned long dm_iot_idle_time(struct dm_io_tracker *iot)
+{
+ unsigned long r = 0;
+
+ spin_lock_irq(&iot->lock);
+ if (!iot->in_flight)
+ r = jiffies - iot->idle_time;
+ spin_unlock_irq(&iot->lock);
+
+ return r;
+}
+
+static inline void dm_iot_io_begin(struct dm_io_tracker *iot, sector_t len)
+{
+ spin_lock_irq(&iot->lock);
+ iot->in_flight += len;
+ spin_unlock_irq(&iot->lock);
+}
+
+static inline void dm_iot_io_end(struct dm_io_tracker *iot, sector_t len)
+{
+ unsigned long flags;
+
+ if (!len)
+ return;
+
+ spin_lock_irqsave(&iot->lock, flags);
+ iot->in_flight -= len;
+ if (!iot->in_flight)
+ iot->idle_time = jiffies;
+ spin_unlock_irqrestore(&iot->lock, flags);
+}
+
+#endif
diff --git a/drivers/md/dm-io.c b/drivers/md/dm-io.c
new file mode 100644
index 000000000..e488b05e3
--- /dev/null
+++ b/drivers/md/dm-io.c
@@ -0,0 +1,544 @@
+/*
+ * Copyright (C) 2003 Sistina Software
+ * Copyright (C) 2006 Red Hat GmbH
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-core.h"
+
+#include <linux/device-mapper.h>
+
+#include <linux/bio.h>
+#include <linux/completion.h>
+#include <linux/mempool.h>
+#include <linux/module.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/dm-io.h>
+
+#define DM_MSG_PREFIX "io"
+
+#define DM_IO_MAX_REGIONS BITS_PER_LONG
+
+struct dm_io_client {
+ mempool_t pool;
+ struct bio_set bios;
+};
+
+/*
+ * Aligning 'struct io' reduces the number of bits required to store
+ * its address. Refer to store_io_and_region_in_bio() below.
+ */
+struct io {
+ unsigned long error_bits;
+ atomic_t count;
+ struct dm_io_client *client;
+ io_notify_fn callback;
+ void *context;
+ void *vma_invalidate_address;
+ unsigned long vma_invalidate_size;
+} __attribute__((aligned(DM_IO_MAX_REGIONS)));
+
+static struct kmem_cache *_dm_io_cache;
+
+/*
+ * Create a client with mempool and bioset.
+ */
+struct dm_io_client *dm_io_client_create(void)
+{
+ struct dm_io_client *client;
+ unsigned int min_ios = dm_get_reserved_bio_based_ios();
+ int ret;
+
+ client = kzalloc(sizeof(*client), GFP_KERNEL);
+ if (!client)
+ return ERR_PTR(-ENOMEM);
+
+ ret = mempool_init_slab_pool(&client->pool, min_ios, _dm_io_cache);
+ if (ret)
+ goto bad;
+
+ ret = bioset_init(&client->bios, min_ios, 0, BIOSET_NEED_BVECS);
+ if (ret)
+ goto bad;
+
+ return client;
+
+ bad:
+ mempool_exit(&client->pool);
+ kfree(client);
+ return ERR_PTR(ret);
+}
+EXPORT_SYMBOL(dm_io_client_create);
+
+void dm_io_client_destroy(struct dm_io_client *client)
+{
+ mempool_exit(&client->pool);
+ bioset_exit(&client->bios);
+ kfree(client);
+}
+EXPORT_SYMBOL(dm_io_client_destroy);
+
+/*-----------------------------------------------------------------
+ * We need to keep track of which region a bio is doing io for.
+ * To avoid a memory allocation to store just 5 or 6 bits, we
+ * ensure the 'struct io' pointer is aligned so enough low bits are
+ * always zero and then combine it with the region number directly in
+ * bi_private.
+ *---------------------------------------------------------------*/
+static void store_io_and_region_in_bio(struct bio *bio, struct io *io,
+ unsigned int region)
+{
+ if (unlikely(!IS_ALIGNED((unsigned long)io, DM_IO_MAX_REGIONS))) {
+ DMCRIT("Unaligned struct io pointer %p", io);
+ BUG();
+ }
+
+ bio->bi_private = (void *)((unsigned long)io | region);
+}
+
+static void retrieve_io_and_region_from_bio(struct bio *bio, struct io **io,
+ unsigned int *region)
+{
+ unsigned long val = (unsigned long)bio->bi_private;
+
+ *io = (void *)(val & -(unsigned long)DM_IO_MAX_REGIONS);
+ *region = val & (DM_IO_MAX_REGIONS - 1);
+}
+
+/*-----------------------------------------------------------------
+ * We need an io object to keep track of the number of bios that
+ * have been dispatched for a particular io.
+ *---------------------------------------------------------------*/
+static void complete_io(struct io *io)
+{
+ unsigned long error_bits = io->error_bits;
+ io_notify_fn fn = io->callback;
+ void *context = io->context;
+
+ if (io->vma_invalidate_size)
+ invalidate_kernel_vmap_range(io->vma_invalidate_address,
+ io->vma_invalidate_size);
+
+ mempool_free(io, &io->client->pool);
+ fn(error_bits, context);
+}
+
+static void dec_count(struct io *io, unsigned int region, blk_status_t error)
+{
+ if (error)
+ set_bit(region, &io->error_bits);
+
+ if (atomic_dec_and_test(&io->count))
+ complete_io(io);
+}
+
+static void endio(struct bio *bio)
+{
+ struct io *io;
+ unsigned int region;
+ blk_status_t error;
+
+ if (bio->bi_status && bio_data_dir(bio) == READ)
+ zero_fill_bio(bio);
+
+ /*
+ * The bio destructor in bio_put() may use the io object.
+ */
+ retrieve_io_and_region_from_bio(bio, &io, &region);
+
+ error = bio->bi_status;
+ bio_put(bio);
+
+ dec_count(io, region, error);
+}
+
+/*-----------------------------------------------------------------
+ * These little objects provide an abstraction for getting a new
+ * destination page for io.
+ *---------------------------------------------------------------*/
+struct dpages {
+ void (*get_page)(struct dpages *dp,
+ struct page **p, unsigned long *len, unsigned int *offset);
+ void (*next_page)(struct dpages *dp);
+
+ union {
+ unsigned int context_u;
+ struct bvec_iter context_bi;
+ };
+ void *context_ptr;
+
+ void *vma_invalidate_address;
+ unsigned long vma_invalidate_size;
+};
+
+/*
+ * Functions for getting the pages from a list.
+ */
+static void list_get_page(struct dpages *dp,
+ struct page **p, unsigned long *len, unsigned int *offset)
+{
+ unsigned int o = dp->context_u;
+ struct page_list *pl = (struct page_list *) dp->context_ptr;
+
+ *p = pl->page;
+ *len = PAGE_SIZE - o;
+ *offset = o;
+}
+
+static void list_next_page(struct dpages *dp)
+{
+ struct page_list *pl = (struct page_list *) dp->context_ptr;
+ dp->context_ptr = pl->next;
+ dp->context_u = 0;
+}
+
+static void list_dp_init(struct dpages *dp, struct page_list *pl, unsigned int offset)
+{
+ dp->get_page = list_get_page;
+ dp->next_page = list_next_page;
+ dp->context_u = offset;
+ dp->context_ptr = pl;
+}
+
+/*
+ * Functions for getting the pages from a bvec.
+ */
+static void bio_get_page(struct dpages *dp, struct page **p,
+ unsigned long *len, unsigned int *offset)
+{
+ struct bio_vec bvec = bvec_iter_bvec((struct bio_vec *)dp->context_ptr,
+ dp->context_bi);
+
+ *p = bvec.bv_page;
+ *len = bvec.bv_len;
+ *offset = bvec.bv_offset;
+
+ /* avoid figuring it out again in bio_next_page() */
+ dp->context_bi.bi_sector = (sector_t)bvec.bv_len;
+}
+
+static void bio_next_page(struct dpages *dp)
+{
+ unsigned int len = (unsigned int)dp->context_bi.bi_sector;
+
+ bvec_iter_advance((struct bio_vec *)dp->context_ptr,
+ &dp->context_bi, len);
+}
+
+static void bio_dp_init(struct dpages *dp, struct bio *bio)
+{
+ dp->get_page = bio_get_page;
+ dp->next_page = bio_next_page;
+
+ /*
+ * We just use bvec iterator to retrieve pages, so it is ok to
+ * access the bvec table directly here
+ */
+ dp->context_ptr = bio->bi_io_vec;
+ dp->context_bi = bio->bi_iter;
+}
+
+/*
+ * Functions for getting the pages from a VMA.
+ */
+static void vm_get_page(struct dpages *dp,
+ struct page **p, unsigned long *len, unsigned int *offset)
+{
+ *p = vmalloc_to_page(dp->context_ptr);
+ *offset = dp->context_u;
+ *len = PAGE_SIZE - dp->context_u;
+}
+
+static void vm_next_page(struct dpages *dp)
+{
+ dp->context_ptr += PAGE_SIZE - dp->context_u;
+ dp->context_u = 0;
+}
+
+static void vm_dp_init(struct dpages *dp, void *data)
+{
+ dp->get_page = vm_get_page;
+ dp->next_page = vm_next_page;
+ dp->context_u = offset_in_page(data);
+ dp->context_ptr = data;
+}
+
+/*
+ * Functions for getting the pages from kernel memory.
+ */
+static void km_get_page(struct dpages *dp, struct page **p, unsigned long *len,
+ unsigned int *offset)
+{
+ *p = virt_to_page(dp->context_ptr);
+ *offset = dp->context_u;
+ *len = PAGE_SIZE - dp->context_u;
+}
+
+static void km_next_page(struct dpages *dp)
+{
+ dp->context_ptr += PAGE_SIZE - dp->context_u;
+ dp->context_u = 0;
+}
+
+static void km_dp_init(struct dpages *dp, void *data)
+{
+ dp->get_page = km_get_page;
+ dp->next_page = km_next_page;
+ dp->context_u = offset_in_page(data);
+ dp->context_ptr = data;
+}
+
+/*-----------------------------------------------------------------
+ * IO routines that accept a list of pages.
+ *---------------------------------------------------------------*/
+static void do_region(const blk_opf_t opf, unsigned int region,
+ struct dm_io_region *where, struct dpages *dp,
+ struct io *io)
+{
+ struct bio *bio;
+ struct page *page;
+ unsigned long len;
+ unsigned int offset;
+ unsigned int num_bvecs;
+ sector_t remaining = where->count;
+ struct request_queue *q = bdev_get_queue(where->bdev);
+ sector_t num_sectors;
+ unsigned int special_cmd_max_sectors;
+ const enum req_op op = opf & REQ_OP_MASK;
+
+ /*
+ * Reject unsupported discard and write same requests.
+ */
+ if (op == REQ_OP_DISCARD)
+ special_cmd_max_sectors = bdev_max_discard_sectors(where->bdev);
+ else if (op == REQ_OP_WRITE_ZEROES)
+ special_cmd_max_sectors = q->limits.max_write_zeroes_sectors;
+ if ((op == REQ_OP_DISCARD || op == REQ_OP_WRITE_ZEROES) &&
+ special_cmd_max_sectors == 0) {
+ atomic_inc(&io->count);
+ dec_count(io, region, BLK_STS_NOTSUPP);
+ return;
+ }
+
+ /*
+ * where->count may be zero if op holds a flush and we need to
+ * send a zero-sized flush.
+ */
+ do {
+ /*
+ * Allocate a suitably sized-bio.
+ */
+ switch (op) {
+ case REQ_OP_DISCARD:
+ case REQ_OP_WRITE_ZEROES:
+ num_bvecs = 0;
+ break;
+ default:
+ num_bvecs = bio_max_segs(dm_sector_div_up(remaining,
+ (PAGE_SIZE >> SECTOR_SHIFT)));
+ }
+
+ bio = bio_alloc_bioset(where->bdev, num_bvecs, opf, GFP_NOIO,
+ &io->client->bios);
+ bio->bi_iter.bi_sector = where->sector + (where->count - remaining);
+ bio->bi_end_io = endio;
+ store_io_and_region_in_bio(bio, io, region);
+
+ if (op == REQ_OP_DISCARD || op == REQ_OP_WRITE_ZEROES) {
+ num_sectors = min_t(sector_t, special_cmd_max_sectors, remaining);
+ bio->bi_iter.bi_size = num_sectors << SECTOR_SHIFT;
+ remaining -= num_sectors;
+ } else while (remaining) {
+ /*
+ * Try and add as many pages as possible.
+ */
+ dp->get_page(dp, &page, &len, &offset);
+ len = min(len, to_bytes(remaining));
+ if (!bio_add_page(bio, page, len, offset))
+ break;
+
+ offset = 0;
+ remaining -= to_sector(len);
+ dp->next_page(dp);
+ }
+
+ atomic_inc(&io->count);
+ submit_bio(bio);
+ } while (remaining);
+}
+
+static void dispatch_io(blk_opf_t opf, unsigned int num_regions,
+ struct dm_io_region *where, struct dpages *dp,
+ struct io *io, int sync)
+{
+ int i;
+ struct dpages old_pages = *dp;
+
+ BUG_ON(num_regions > DM_IO_MAX_REGIONS);
+
+ if (sync)
+ opf |= REQ_SYNC;
+
+ /*
+ * For multiple regions we need to be careful to rewind
+ * the dp object for each call to do_region.
+ */
+ for (i = 0; i < num_regions; i++) {
+ *dp = old_pages;
+ if (where[i].count || (opf & REQ_PREFLUSH))
+ do_region(opf, i, where + i, dp, io);
+ }
+
+ /*
+ * Drop the extra reference that we were holding to avoid
+ * the io being completed too early.
+ */
+ dec_count(io, 0, 0);
+}
+
+struct sync_io {
+ unsigned long error_bits;
+ struct completion wait;
+};
+
+static void sync_io_complete(unsigned long error, void *context)
+{
+ struct sync_io *sio = context;
+
+ sio->error_bits = error;
+ complete(&sio->wait);
+}
+
+static int sync_io(struct dm_io_client *client, unsigned int num_regions,
+ struct dm_io_region *where, blk_opf_t opf, struct dpages *dp,
+ unsigned long *error_bits)
+{
+ struct io *io;
+ struct sync_io sio;
+
+ if (num_regions > 1 && !op_is_write(opf)) {
+ WARN_ON(1);
+ return -EIO;
+ }
+
+ init_completion(&sio.wait);
+
+ io = mempool_alloc(&client->pool, GFP_NOIO);
+ io->error_bits = 0;
+ atomic_set(&io->count, 1); /* see dispatch_io() */
+ io->client = client;
+ io->callback = sync_io_complete;
+ io->context = &sio;
+
+ io->vma_invalidate_address = dp->vma_invalidate_address;
+ io->vma_invalidate_size = dp->vma_invalidate_size;
+
+ dispatch_io(opf, num_regions, where, dp, io, 1);
+
+ wait_for_completion_io(&sio.wait);
+
+ if (error_bits)
+ *error_bits = sio.error_bits;
+
+ return sio.error_bits ? -EIO : 0;
+}
+
+static int async_io(struct dm_io_client *client, unsigned int num_regions,
+ struct dm_io_region *where, blk_opf_t opf,
+ struct dpages *dp, io_notify_fn fn, void *context)
+{
+ struct io *io;
+
+ if (num_regions > 1 && !op_is_write(opf)) {
+ WARN_ON(1);
+ fn(1, context);
+ return -EIO;
+ }
+
+ io = mempool_alloc(&client->pool, GFP_NOIO);
+ io->error_bits = 0;
+ atomic_set(&io->count, 1); /* see dispatch_io() */
+ io->client = client;
+ io->callback = fn;
+ io->context = context;
+
+ io->vma_invalidate_address = dp->vma_invalidate_address;
+ io->vma_invalidate_size = dp->vma_invalidate_size;
+
+ dispatch_io(opf, num_regions, where, dp, io, 0);
+ return 0;
+}
+
+static int dp_init(struct dm_io_request *io_req, struct dpages *dp,
+ unsigned long size)
+{
+ /* Set up dpages based on memory type */
+
+ dp->vma_invalidate_address = NULL;
+ dp->vma_invalidate_size = 0;
+
+ switch (io_req->mem.type) {
+ case DM_IO_PAGE_LIST:
+ list_dp_init(dp, io_req->mem.ptr.pl, io_req->mem.offset);
+ break;
+
+ case DM_IO_BIO:
+ bio_dp_init(dp, io_req->mem.ptr.bio);
+ break;
+
+ case DM_IO_VMA:
+ flush_kernel_vmap_range(io_req->mem.ptr.vma, size);
+ if ((io_req->bi_opf & REQ_OP_MASK) == REQ_OP_READ) {
+ dp->vma_invalidate_address = io_req->mem.ptr.vma;
+ dp->vma_invalidate_size = size;
+ }
+ vm_dp_init(dp, io_req->mem.ptr.vma);
+ break;
+
+ case DM_IO_KMEM:
+ km_dp_init(dp, io_req->mem.ptr.addr);
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+int dm_io(struct dm_io_request *io_req, unsigned int num_regions,
+ struct dm_io_region *where, unsigned long *sync_error_bits)
+{
+ int r;
+ struct dpages dp;
+
+ r = dp_init(io_req, &dp, (unsigned long)where->count << SECTOR_SHIFT);
+ if (r)
+ return r;
+
+ if (!io_req->notify.fn)
+ return sync_io(io_req->client, num_regions, where,
+ io_req->bi_opf, &dp, sync_error_bits);
+
+ return async_io(io_req->client, num_regions, where,
+ io_req->bi_opf, &dp, io_req->notify.fn,
+ io_req->notify.context);
+}
+EXPORT_SYMBOL(dm_io);
+
+int __init dm_io_init(void)
+{
+ _dm_io_cache = KMEM_CACHE(io, 0);
+ if (!_dm_io_cache)
+ return -ENOMEM;
+
+ return 0;
+}
+
+void dm_io_exit(void)
+{
+ kmem_cache_destroy(_dm_io_cache);
+ _dm_io_cache = NULL;
+}
diff --git a/drivers/md/dm-ioctl.c b/drivers/md/dm-ioctl.c
new file mode 100644
index 000000000..206e6ce55
--- /dev/null
+++ b/drivers/md/dm-ioctl.c
@@ -0,0 +1,2271 @@
+/*
+ * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
+ * Copyright (C) 2004 - 2006 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-core.h"
+#include "dm-ima.h"
+#include <linux/module.h>
+#include <linux/vmalloc.h>
+#include <linux/miscdevice.h>
+#include <linux/sched/mm.h>
+#include <linux/init.h>
+#include <linux/wait.h>
+#include <linux/slab.h>
+#include <linux/rbtree.h>
+#include <linux/dm-ioctl.h>
+#include <linux/hdreg.h>
+#include <linux/compat.h>
+#include <linux/nospec.h>
+
+#include <linux/uaccess.h>
+#include <linux/ima.h>
+
+#define DM_MSG_PREFIX "ioctl"
+#define DM_DRIVER_EMAIL "dm-devel@redhat.com"
+
+struct dm_file {
+ /*
+ * poll will wait until the global event number is greater than
+ * this value.
+ */
+ volatile unsigned int global_event_nr;
+};
+
+/*-----------------------------------------------------------------
+ * The ioctl interface needs to be able to look up devices by
+ * name or uuid.
+ *---------------------------------------------------------------*/
+struct hash_cell {
+ struct rb_node name_node;
+ struct rb_node uuid_node;
+ bool name_set;
+ bool uuid_set;
+
+ char *name;
+ char *uuid;
+ struct mapped_device *md;
+ struct dm_table *new_map;
+};
+
+struct vers_iter {
+ size_t param_size;
+ struct dm_target_versions *vers, *old_vers;
+ char *end;
+ uint32_t flags;
+};
+
+
+static struct rb_root name_rb_tree = RB_ROOT;
+static struct rb_root uuid_rb_tree = RB_ROOT;
+
+static void dm_hash_remove_all(bool keep_open_devices, bool mark_deferred, bool only_deferred);
+
+/*
+ * Guards access to both hash tables.
+ */
+static DECLARE_RWSEM(_hash_lock);
+
+/*
+ * Protects use of mdptr to obtain hash cell name and uuid from mapped device.
+ */
+static DEFINE_MUTEX(dm_hash_cells_mutex);
+
+static void dm_hash_exit(void)
+{
+ dm_hash_remove_all(false, false, false);
+}
+
+/*-----------------------------------------------------------------
+ * Code for looking up a device by name
+ *---------------------------------------------------------------*/
+static struct hash_cell *__get_name_cell(const char *str)
+{
+ struct rb_node *n = name_rb_tree.rb_node;
+
+ while (n) {
+ struct hash_cell *hc = container_of(n, struct hash_cell, name_node);
+ int c = strcmp(hc->name, str);
+ if (!c) {
+ dm_get(hc->md);
+ return hc;
+ }
+ n = c >= 0 ? n->rb_left : n->rb_right;
+ }
+
+ return NULL;
+}
+
+static struct hash_cell *__get_uuid_cell(const char *str)
+{
+ struct rb_node *n = uuid_rb_tree.rb_node;
+
+ while (n) {
+ struct hash_cell *hc = container_of(n, struct hash_cell, uuid_node);
+ int c = strcmp(hc->uuid, str);
+ if (!c) {
+ dm_get(hc->md);
+ return hc;
+ }
+ n = c >= 0 ? n->rb_left : n->rb_right;
+ }
+
+ return NULL;
+}
+
+static void __unlink_name(struct hash_cell *hc)
+{
+ if (hc->name_set) {
+ hc->name_set = false;
+ rb_erase(&hc->name_node, &name_rb_tree);
+ }
+}
+
+static void __unlink_uuid(struct hash_cell *hc)
+{
+ if (hc->uuid_set) {
+ hc->uuid_set = false;
+ rb_erase(&hc->uuid_node, &uuid_rb_tree);
+ }
+}
+
+static void __link_name(struct hash_cell *new_hc)
+{
+ struct rb_node **n, *parent;
+
+ __unlink_name(new_hc);
+
+ new_hc->name_set = true;
+
+ n = &name_rb_tree.rb_node;
+ parent = NULL;
+
+ while (*n) {
+ struct hash_cell *hc = container_of(*n, struct hash_cell, name_node);
+ int c = strcmp(hc->name, new_hc->name);
+ BUG_ON(!c);
+ parent = *n;
+ n = c >= 0 ? &hc->name_node.rb_left : &hc->name_node.rb_right;
+ }
+
+ rb_link_node(&new_hc->name_node, parent, n);
+ rb_insert_color(&new_hc->name_node, &name_rb_tree);
+}
+
+static void __link_uuid(struct hash_cell *new_hc)
+{
+ struct rb_node **n, *parent;
+
+ __unlink_uuid(new_hc);
+
+ new_hc->uuid_set = true;
+
+ n = &uuid_rb_tree.rb_node;
+ parent = NULL;
+
+ while (*n) {
+ struct hash_cell *hc = container_of(*n, struct hash_cell, uuid_node);
+ int c = strcmp(hc->uuid, new_hc->uuid);
+ BUG_ON(!c);
+ parent = *n;
+ n = c > 0 ? &hc->uuid_node.rb_left : &hc->uuid_node.rb_right;
+ }
+
+ rb_link_node(&new_hc->uuid_node, parent, n);
+ rb_insert_color(&new_hc->uuid_node, &uuid_rb_tree);
+}
+
+static struct hash_cell *__get_dev_cell(uint64_t dev)
+{
+ struct mapped_device *md;
+ struct hash_cell *hc;
+
+ md = dm_get_md(huge_decode_dev(dev));
+ if (!md)
+ return NULL;
+
+ hc = dm_get_mdptr(md);
+ if (!hc) {
+ dm_put(md);
+ return NULL;
+ }
+
+ return hc;
+}
+
+/*-----------------------------------------------------------------
+ * Inserting, removing and renaming a device.
+ *---------------------------------------------------------------*/
+static struct hash_cell *alloc_cell(const char *name, const char *uuid,
+ struct mapped_device *md)
+{
+ struct hash_cell *hc;
+
+ hc = kmalloc(sizeof(*hc), GFP_KERNEL);
+ if (!hc)
+ return NULL;
+
+ hc->name = kstrdup(name, GFP_KERNEL);
+ if (!hc->name) {
+ kfree(hc);
+ return NULL;
+ }
+
+ if (!uuid)
+ hc->uuid = NULL;
+
+ else {
+ hc->uuid = kstrdup(uuid, GFP_KERNEL);
+ if (!hc->uuid) {
+ kfree(hc->name);
+ kfree(hc);
+ return NULL;
+ }
+ }
+
+ hc->name_set = hc->uuid_set = false;
+ hc->md = md;
+ hc->new_map = NULL;
+ return hc;
+}
+
+static void free_cell(struct hash_cell *hc)
+{
+ if (hc) {
+ kfree(hc->name);
+ kfree(hc->uuid);
+ kfree(hc);
+ }
+}
+
+/*
+ * The kdev_t and uuid of a device can never change once it is
+ * initially inserted.
+ */
+static int dm_hash_insert(const char *name, const char *uuid, struct mapped_device *md)
+{
+ struct hash_cell *cell, *hc;
+
+ /*
+ * Allocate the new cells.
+ */
+ cell = alloc_cell(name, uuid, md);
+ if (!cell)
+ return -ENOMEM;
+
+ /*
+ * Insert the cell into both hash tables.
+ */
+ down_write(&_hash_lock);
+ hc = __get_name_cell(name);
+ if (hc) {
+ dm_put(hc->md);
+ goto bad;
+ }
+
+ __link_name(cell);
+
+ if (uuid) {
+ hc = __get_uuid_cell(uuid);
+ if (hc) {
+ __unlink_name(cell);
+ dm_put(hc->md);
+ goto bad;
+ }
+ __link_uuid(cell);
+ }
+ dm_get(md);
+ mutex_lock(&dm_hash_cells_mutex);
+ dm_set_mdptr(md, cell);
+ mutex_unlock(&dm_hash_cells_mutex);
+ up_write(&_hash_lock);
+
+ return 0;
+
+ bad:
+ up_write(&_hash_lock);
+ free_cell(cell);
+ return -EBUSY;
+}
+
+static struct dm_table *__hash_remove(struct hash_cell *hc)
+{
+ struct dm_table *table;
+ int srcu_idx;
+
+ /* remove from the dev trees */
+ __unlink_name(hc);
+ __unlink_uuid(hc);
+ mutex_lock(&dm_hash_cells_mutex);
+ dm_set_mdptr(hc->md, NULL);
+ mutex_unlock(&dm_hash_cells_mutex);
+
+ table = dm_get_live_table(hc->md, &srcu_idx);
+ if (table)
+ dm_table_event(table);
+ dm_put_live_table(hc->md, srcu_idx);
+
+ table = NULL;
+ if (hc->new_map)
+ table = hc->new_map;
+ dm_put(hc->md);
+ free_cell(hc);
+
+ return table;
+}
+
+static void dm_hash_remove_all(bool keep_open_devices, bool mark_deferred, bool only_deferred)
+{
+ int dev_skipped;
+ struct rb_node *n;
+ struct hash_cell *hc;
+ struct mapped_device *md;
+ struct dm_table *t;
+
+retry:
+ dev_skipped = 0;
+
+ down_write(&_hash_lock);
+
+ for (n = rb_first(&name_rb_tree); n; n = rb_next(n)) {
+ hc = container_of(n, struct hash_cell, name_node);
+ md = hc->md;
+ dm_get(md);
+
+ if (keep_open_devices &&
+ dm_lock_for_deletion(md, mark_deferred, only_deferred)) {
+ dm_put(md);
+ dev_skipped++;
+ continue;
+ }
+
+ t = __hash_remove(hc);
+
+ up_write(&_hash_lock);
+
+ if (t) {
+ dm_sync_table(md);
+ dm_table_destroy(t);
+ }
+ dm_ima_measure_on_device_remove(md, true);
+ dm_put(md);
+ if (likely(keep_open_devices))
+ dm_destroy(md);
+ else
+ dm_destroy_immediate(md);
+
+ /*
+ * Some mapped devices may be using other mapped
+ * devices, so repeat until we make no further
+ * progress. If a new mapped device is created
+ * here it will also get removed.
+ */
+ goto retry;
+ }
+
+ up_write(&_hash_lock);
+
+ if (dev_skipped)
+ DMWARN("remove_all left %d open device(s)", dev_skipped);
+}
+
+/*
+ * Set the uuid of a hash_cell that isn't already set.
+ */
+static void __set_cell_uuid(struct hash_cell *hc, char *new_uuid)
+{
+ mutex_lock(&dm_hash_cells_mutex);
+ hc->uuid = new_uuid;
+ mutex_unlock(&dm_hash_cells_mutex);
+
+ __link_uuid(hc);
+}
+
+/*
+ * Changes the name of a hash_cell and returns the old name for
+ * the caller to free.
+ */
+static char *__change_cell_name(struct hash_cell *hc, char *new_name)
+{
+ char *old_name;
+
+ /*
+ * Rename and move the name cell.
+ */
+ __unlink_name(hc);
+ old_name = hc->name;
+
+ mutex_lock(&dm_hash_cells_mutex);
+ hc->name = new_name;
+ mutex_unlock(&dm_hash_cells_mutex);
+
+ __link_name(hc);
+
+ return old_name;
+}
+
+static struct mapped_device *dm_hash_rename(struct dm_ioctl *param,
+ const char *new)
+{
+ char *new_data, *old_name = NULL;
+ struct hash_cell *hc;
+ struct dm_table *table;
+ struct mapped_device *md;
+ unsigned int change_uuid = (param->flags & DM_UUID_FLAG) ? 1 : 0;
+ int srcu_idx;
+
+ /*
+ * duplicate new.
+ */
+ new_data = kstrdup(new, GFP_KERNEL);
+ if (!new_data)
+ return ERR_PTR(-ENOMEM);
+
+ down_write(&_hash_lock);
+
+ /*
+ * Is new free ?
+ */
+ if (change_uuid)
+ hc = __get_uuid_cell(new);
+ else
+ hc = __get_name_cell(new);
+
+ if (hc) {
+ DMERR("Unable to change %s on mapped device %s to one that already exists: %s",
+ change_uuid ? "uuid" : "name",
+ param->name, new);
+ dm_put(hc->md);
+ up_write(&_hash_lock);
+ kfree(new_data);
+ return ERR_PTR(-EBUSY);
+ }
+
+ /*
+ * Is there such a device as 'old' ?
+ */
+ hc = __get_name_cell(param->name);
+ if (!hc) {
+ DMERR("Unable to rename non-existent device, %s to %s%s",
+ param->name, change_uuid ? "uuid " : "", new);
+ up_write(&_hash_lock);
+ kfree(new_data);
+ return ERR_PTR(-ENXIO);
+ }
+
+ /*
+ * Does this device already have a uuid?
+ */
+ if (change_uuid && hc->uuid) {
+ DMERR("Unable to change uuid of mapped device %s to %s "
+ "because uuid is already set to %s",
+ param->name, new, hc->uuid);
+ dm_put(hc->md);
+ up_write(&_hash_lock);
+ kfree(new_data);
+ return ERR_PTR(-EINVAL);
+ }
+
+ if (change_uuid)
+ __set_cell_uuid(hc, new_data);
+ else
+ old_name = __change_cell_name(hc, new_data);
+
+ /*
+ * Wake up any dm event waiters.
+ */
+ table = dm_get_live_table(hc->md, &srcu_idx);
+ if (table)
+ dm_table_event(table);
+ dm_put_live_table(hc->md, srcu_idx);
+
+ if (!dm_kobject_uevent(hc->md, KOBJ_CHANGE, param->event_nr, false))
+ param->flags |= DM_UEVENT_GENERATED_FLAG;
+
+ md = hc->md;
+
+ dm_ima_measure_on_device_rename(md);
+
+ up_write(&_hash_lock);
+ kfree(old_name);
+
+ return md;
+}
+
+void dm_deferred_remove(void)
+{
+ dm_hash_remove_all(true, false, true);
+}
+
+/*-----------------------------------------------------------------
+ * Implementation of the ioctl commands
+ *---------------------------------------------------------------*/
+/*
+ * All the ioctl commands get dispatched to functions with this
+ * prototype.
+ */
+typedef int (*ioctl_fn)(struct file *filp, struct dm_ioctl *param, size_t param_size);
+
+static int remove_all(struct file *filp, struct dm_ioctl *param, size_t param_size)
+{
+ dm_hash_remove_all(true, !!(param->flags & DM_DEFERRED_REMOVE), false);
+ param->data_size = 0;
+ return 0;
+}
+
+/*
+ * Round up the ptr to an 8-byte boundary.
+ */
+#define ALIGN_MASK 7
+static inline size_t align_val(size_t val)
+{
+ return (val + ALIGN_MASK) & ~ALIGN_MASK;
+}
+static inline void *align_ptr(void *ptr)
+{
+ return (void *)align_val((size_t)ptr);
+}
+
+/*
+ * Retrieves the data payload buffer from an already allocated
+ * struct dm_ioctl.
+ */
+static void *get_result_buffer(struct dm_ioctl *param, size_t param_size,
+ size_t *len)
+{
+ param->data_start = align_ptr(param + 1) - (void *) param;
+
+ if (param->data_start < param_size)
+ *len = param_size - param->data_start;
+ else
+ *len = 0;
+
+ return ((void *) param) + param->data_start;
+}
+
+static bool filter_device(struct hash_cell *hc, const char *pfx_name, const char *pfx_uuid)
+{
+ const char *val;
+ size_t val_len, pfx_len;
+
+ val = hc->name;
+ val_len = strlen(val);
+ pfx_len = strnlen(pfx_name, DM_NAME_LEN);
+ if (pfx_len > val_len)
+ return false;
+ if (memcmp(val, pfx_name, pfx_len))
+ return false;
+
+ val = hc->uuid ? hc->uuid : "";
+ val_len = strlen(val);
+ pfx_len = strnlen(pfx_uuid, DM_UUID_LEN);
+ if (pfx_len > val_len)
+ return false;
+ if (memcmp(val, pfx_uuid, pfx_len))
+ return false;
+
+ return true;
+}
+
+static int list_devices(struct file *filp, struct dm_ioctl *param, size_t param_size)
+{
+ struct rb_node *n;
+ struct hash_cell *hc;
+ size_t len, needed = 0;
+ struct gendisk *disk;
+ struct dm_name_list *orig_nl, *nl, *old_nl = NULL;
+ uint32_t *event_nr;
+
+ down_write(&_hash_lock);
+
+ /*
+ * Loop through all the devices working out how much
+ * space we need.
+ */
+ for (n = rb_first(&name_rb_tree); n; n = rb_next(n)) {
+ hc = container_of(n, struct hash_cell, name_node);
+ if (!filter_device(hc, param->name, param->uuid))
+ continue;
+ needed += align_val(offsetof(struct dm_name_list, name) + strlen(hc->name) + 1);
+ needed += align_val(sizeof(uint32_t) * 2);
+ if (param->flags & DM_UUID_FLAG && hc->uuid)
+ needed += align_val(strlen(hc->uuid) + 1);
+ }
+
+ /*
+ * Grab our output buffer.
+ */
+ nl = orig_nl = get_result_buffer(param, param_size, &len);
+ if (len < needed || len < sizeof(nl->dev)) {
+ param->flags |= DM_BUFFER_FULL_FLAG;
+ goto out;
+ }
+ param->data_size = param->data_start + needed;
+
+ nl->dev = 0; /* Flags no data */
+
+ /*
+ * Now loop through filling out the names.
+ */
+ for (n = rb_first(&name_rb_tree); n; n = rb_next(n)) {
+ void *uuid_ptr;
+ hc = container_of(n, struct hash_cell, name_node);
+ if (!filter_device(hc, param->name, param->uuid))
+ continue;
+ if (old_nl)
+ old_nl->next = (uint32_t) ((void *) nl -
+ (void *) old_nl);
+ disk = dm_disk(hc->md);
+ nl->dev = huge_encode_dev(disk_devt(disk));
+ nl->next = 0;
+ strcpy(nl->name, hc->name);
+
+ old_nl = nl;
+ event_nr = align_ptr(nl->name + strlen(hc->name) + 1);
+ event_nr[0] = dm_get_event_nr(hc->md);
+ event_nr[1] = 0;
+ uuid_ptr = align_ptr(event_nr + 2);
+ if (param->flags & DM_UUID_FLAG) {
+ if (hc->uuid) {
+ event_nr[1] |= DM_NAME_LIST_FLAG_HAS_UUID;
+ strcpy(uuid_ptr, hc->uuid);
+ uuid_ptr = align_ptr(uuid_ptr + strlen(hc->uuid) + 1);
+ } else {
+ event_nr[1] |= DM_NAME_LIST_FLAG_DOESNT_HAVE_UUID;
+ }
+ }
+ nl = uuid_ptr;
+ }
+ /*
+ * If mismatch happens, security may be compromised due to buffer
+ * overflow, so it's better to crash.
+ */
+ BUG_ON((char *)nl - (char *)orig_nl != needed);
+
+ out:
+ up_write(&_hash_lock);
+ return 0;
+}
+
+static void list_version_get_needed(struct target_type *tt, void *needed_param)
+{
+ size_t *needed = needed_param;
+
+ *needed += sizeof(struct dm_target_versions);
+ *needed += strlen(tt->name) + 1;
+ *needed += ALIGN_MASK;
+}
+
+static void list_version_get_info(struct target_type *tt, void *param)
+{
+ struct vers_iter *info = param;
+
+ /* Check space - it might have changed since the first iteration */
+ if ((char *)info->vers + sizeof(tt->version) + strlen(tt->name) + 1 >
+ info->end) {
+
+ info->flags = DM_BUFFER_FULL_FLAG;
+ return;
+ }
+
+ if (info->old_vers)
+ info->old_vers->next = (uint32_t) ((void *)info->vers -
+ (void *)info->old_vers);
+ info->vers->version[0] = tt->version[0];
+ info->vers->version[1] = tt->version[1];
+ info->vers->version[2] = tt->version[2];
+ info->vers->next = 0;
+ strcpy(info->vers->name, tt->name);
+
+ info->old_vers = info->vers;
+ info->vers = align_ptr(((void *) ++info->vers) + strlen(tt->name) + 1);
+}
+
+static int __list_versions(struct dm_ioctl *param, size_t param_size, const char *name)
+{
+ size_t len, needed = 0;
+ struct dm_target_versions *vers;
+ struct vers_iter iter_info;
+ struct target_type *tt = NULL;
+
+ if (name) {
+ tt = dm_get_target_type(name);
+ if (!tt)
+ return -EINVAL;
+ }
+
+ /*
+ * Loop through all the devices working out how much
+ * space we need.
+ */
+ if (!tt)
+ dm_target_iterate(list_version_get_needed, &needed);
+ else
+ list_version_get_needed(tt, &needed);
+
+ /*
+ * Grab our output buffer.
+ */
+ vers = get_result_buffer(param, param_size, &len);
+ if (len < needed) {
+ param->flags |= DM_BUFFER_FULL_FLAG;
+ goto out;
+ }
+ param->data_size = param->data_start + needed;
+
+ iter_info.param_size = param_size;
+ iter_info.old_vers = NULL;
+ iter_info.vers = vers;
+ iter_info.flags = 0;
+ iter_info.end = (char *)vers + needed;
+
+ /*
+ * Now loop through filling out the names & versions.
+ */
+ if (!tt)
+ dm_target_iterate(list_version_get_info, &iter_info);
+ else
+ list_version_get_info(tt, &iter_info);
+ param->flags |= iter_info.flags;
+
+ out:
+ if (tt)
+ dm_put_target_type(tt);
+ return 0;
+}
+
+static int list_versions(struct file *filp, struct dm_ioctl *param, size_t param_size)
+{
+ return __list_versions(param, param_size, NULL);
+}
+
+static int get_target_version(struct file *filp, struct dm_ioctl *param, size_t param_size)
+{
+ return __list_versions(param, param_size, param->name);
+}
+
+static int check_name(const char *name)
+{
+ if (strchr(name, '/')) {
+ DMERR("invalid device name");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/*
+ * On successful return, the caller must not attempt to acquire
+ * _hash_lock without first calling dm_put_live_table, because dm_table_destroy
+ * waits for this dm_put_live_table and could be called under this lock.
+ */
+static struct dm_table *dm_get_inactive_table(struct mapped_device *md, int *srcu_idx)
+{
+ struct hash_cell *hc;
+ struct dm_table *table = NULL;
+
+ /* increment rcu count, we don't care about the table pointer */
+ dm_get_live_table(md, srcu_idx);
+
+ down_read(&_hash_lock);
+ hc = dm_get_mdptr(md);
+ if (!hc || hc->md != md) {
+ DMERR("device has been removed from the dev hash table.");
+ goto out;
+ }
+
+ table = hc->new_map;
+
+out:
+ up_read(&_hash_lock);
+
+ return table;
+}
+
+static struct dm_table *dm_get_live_or_inactive_table(struct mapped_device *md,
+ struct dm_ioctl *param,
+ int *srcu_idx)
+{
+ return (param->flags & DM_QUERY_INACTIVE_TABLE_FLAG) ?
+ dm_get_inactive_table(md, srcu_idx) : dm_get_live_table(md, srcu_idx);
+}
+
+/*
+ * Fills in a dm_ioctl structure, ready for sending back to
+ * userland.
+ */
+static void __dev_status(struct mapped_device *md, struct dm_ioctl *param)
+{
+ struct gendisk *disk = dm_disk(md);
+ struct dm_table *table;
+ int srcu_idx;
+
+ param->flags &= ~(DM_SUSPEND_FLAG | DM_READONLY_FLAG |
+ DM_ACTIVE_PRESENT_FLAG | DM_INTERNAL_SUSPEND_FLAG);
+
+ if (dm_suspended_md(md))
+ param->flags |= DM_SUSPEND_FLAG;
+
+ if (dm_suspended_internally_md(md))
+ param->flags |= DM_INTERNAL_SUSPEND_FLAG;
+
+ if (dm_test_deferred_remove_flag(md))
+ param->flags |= DM_DEFERRED_REMOVE;
+
+ param->dev = huge_encode_dev(disk_devt(disk));
+
+ /*
+ * Yes, this will be out of date by the time it gets back
+ * to userland, but it is still very useful for
+ * debugging.
+ */
+ param->open_count = dm_open_count(md);
+
+ param->event_nr = dm_get_event_nr(md);
+ param->target_count = 0;
+
+ table = dm_get_live_table(md, &srcu_idx);
+ if (table) {
+ if (!(param->flags & DM_QUERY_INACTIVE_TABLE_FLAG)) {
+ if (get_disk_ro(disk))
+ param->flags |= DM_READONLY_FLAG;
+ param->target_count = table->num_targets;
+ }
+
+ param->flags |= DM_ACTIVE_PRESENT_FLAG;
+ }
+ dm_put_live_table(md, srcu_idx);
+
+ if (param->flags & DM_QUERY_INACTIVE_TABLE_FLAG) {
+ int srcu_idx;
+ table = dm_get_inactive_table(md, &srcu_idx);
+ if (table) {
+ if (!(dm_table_get_mode(table) & FMODE_WRITE))
+ param->flags |= DM_READONLY_FLAG;
+ param->target_count = table->num_targets;
+ }
+ dm_put_live_table(md, srcu_idx);
+ }
+}
+
+static int dev_create(struct file *filp, struct dm_ioctl *param, size_t param_size)
+{
+ int r, m = DM_ANY_MINOR;
+ struct mapped_device *md;
+
+ r = check_name(param->name);
+ if (r)
+ return r;
+
+ if (param->flags & DM_PERSISTENT_DEV_FLAG)
+ m = MINOR(huge_decode_dev(param->dev));
+
+ r = dm_create(m, &md);
+ if (r)
+ return r;
+
+ r = dm_hash_insert(param->name, *param->uuid ? param->uuid : NULL, md);
+ if (r) {
+ dm_put(md);
+ dm_destroy(md);
+ return r;
+ }
+
+ param->flags &= ~DM_INACTIVE_PRESENT_FLAG;
+
+ __dev_status(md, param);
+
+ dm_put(md);
+
+ return 0;
+}
+
+/*
+ * Always use UUID for lookups if it's present, otherwise use name or dev.
+ */
+static struct hash_cell *__find_device_hash_cell(struct dm_ioctl *param)
+{
+ struct hash_cell *hc = NULL;
+
+ if (*param->uuid) {
+ if (*param->name || param->dev) {
+ DMERR("Invalid ioctl structure: uuid %s, name %s, dev %llx",
+ param->uuid, param->name, (unsigned long long)param->dev);
+ return NULL;
+ }
+
+ hc = __get_uuid_cell(param->uuid);
+ if (!hc)
+ return NULL;
+ } else if (*param->name) {
+ if (param->dev) {
+ DMERR("Invalid ioctl structure: name %s, dev %llx",
+ param->name, (unsigned long long)param->dev);
+ return NULL;
+ }
+
+ hc = __get_name_cell(param->name);
+ if (!hc)
+ return NULL;
+ } else if (param->dev) {
+ hc = __get_dev_cell(param->dev);
+ if (!hc)
+ return NULL;
+ } else
+ return NULL;
+
+ /*
+ * Sneakily write in both the name and the uuid
+ * while we have the cell.
+ */
+ strlcpy(param->name, hc->name, sizeof(param->name));
+ if (hc->uuid)
+ strlcpy(param->uuid, hc->uuid, sizeof(param->uuid));
+ else
+ param->uuid[0] = '\0';
+
+ if (hc->new_map)
+ param->flags |= DM_INACTIVE_PRESENT_FLAG;
+ else
+ param->flags &= ~DM_INACTIVE_PRESENT_FLAG;
+
+ return hc;
+}
+
+static struct mapped_device *find_device(struct dm_ioctl *param)
+{
+ struct hash_cell *hc;
+ struct mapped_device *md = NULL;
+
+ down_read(&_hash_lock);
+ hc = __find_device_hash_cell(param);
+ if (hc)
+ md = hc->md;
+ up_read(&_hash_lock);
+
+ return md;
+}
+
+static int dev_remove(struct file *filp, struct dm_ioctl *param, size_t param_size)
+{
+ struct hash_cell *hc;
+ struct mapped_device *md;
+ int r;
+ struct dm_table *t;
+
+ down_write(&_hash_lock);
+ hc = __find_device_hash_cell(param);
+
+ if (!hc) {
+ DMDEBUG_LIMIT("device doesn't appear to be in the dev hash table.");
+ up_write(&_hash_lock);
+ return -ENXIO;
+ }
+
+ md = hc->md;
+
+ /*
+ * Ensure the device is not open and nothing further can open it.
+ */
+ r = dm_lock_for_deletion(md, !!(param->flags & DM_DEFERRED_REMOVE), false);
+ if (r) {
+ if (r == -EBUSY && param->flags & DM_DEFERRED_REMOVE) {
+ up_write(&_hash_lock);
+ dm_put(md);
+ return 0;
+ }
+ DMDEBUG_LIMIT("unable to remove open device %s", hc->name);
+ up_write(&_hash_lock);
+ dm_put(md);
+ return r;
+ }
+
+ t = __hash_remove(hc);
+ up_write(&_hash_lock);
+
+ if (t) {
+ dm_sync_table(md);
+ dm_table_destroy(t);
+ }
+
+ param->flags &= ~DM_DEFERRED_REMOVE;
+
+ dm_ima_measure_on_device_remove(md, false);
+
+ if (!dm_kobject_uevent(md, KOBJ_REMOVE, param->event_nr, false))
+ param->flags |= DM_UEVENT_GENERATED_FLAG;
+
+ dm_put(md);
+ dm_destroy(md);
+ return 0;
+}
+
+/*
+ * Check a string doesn't overrun the chunk of
+ * memory we copied from userland.
+ */
+static int invalid_str(char *str, void *end)
+{
+ while ((void *) str < end)
+ if (!*str++)
+ return 0;
+
+ return -EINVAL;
+}
+
+static int dev_rename(struct file *filp, struct dm_ioctl *param, size_t param_size)
+{
+ int r;
+ char *new_data = (char *) param + param->data_start;
+ struct mapped_device *md;
+ unsigned int change_uuid = (param->flags & DM_UUID_FLAG) ? 1 : 0;
+
+ if (new_data < param->data ||
+ invalid_str(new_data, (void *) param + param_size) || !*new_data ||
+ strlen(new_data) > (change_uuid ? DM_UUID_LEN - 1 : DM_NAME_LEN - 1)) {
+ DMERR("Invalid new mapped device name or uuid string supplied.");
+ return -EINVAL;
+ }
+
+ if (!change_uuid) {
+ r = check_name(new_data);
+ if (r)
+ return r;
+ }
+
+ md = dm_hash_rename(param, new_data);
+ if (IS_ERR(md))
+ return PTR_ERR(md);
+
+ __dev_status(md, param);
+ dm_put(md);
+
+ return 0;
+}
+
+static int dev_set_geometry(struct file *filp, struct dm_ioctl *param, size_t param_size)
+{
+ int r = -EINVAL, x;
+ struct mapped_device *md;
+ struct hd_geometry geometry;
+ unsigned long indata[4];
+ char *geostr = (char *) param + param->data_start;
+ char dummy;
+
+ md = find_device(param);
+ if (!md)
+ return -ENXIO;
+
+ if (geostr < param->data ||
+ invalid_str(geostr, (void *) param + param_size)) {
+ DMERR("Invalid geometry supplied.");
+ goto out;
+ }
+
+ x = sscanf(geostr, "%lu %lu %lu %lu%c", indata,
+ indata + 1, indata + 2, indata + 3, &dummy);
+
+ if (x != 4) {
+ DMERR("Unable to interpret geometry settings.");
+ goto out;
+ }
+
+ if (indata[0] > 65535 || indata[1] > 255 ||
+ indata[2] > 255 || indata[3] > ULONG_MAX) {
+ DMERR("Geometry exceeds range limits.");
+ goto out;
+ }
+
+ geometry.cylinders = indata[0];
+ geometry.heads = indata[1];
+ geometry.sectors = indata[2];
+ geometry.start = indata[3];
+
+ r = dm_set_geometry(md, &geometry);
+
+ param->data_size = 0;
+
+out:
+ dm_put(md);
+ return r;
+}
+
+static int do_suspend(struct dm_ioctl *param)
+{
+ int r = 0;
+ unsigned int suspend_flags = DM_SUSPEND_LOCKFS_FLAG;
+ struct mapped_device *md;
+
+ md = find_device(param);
+ if (!md)
+ return -ENXIO;
+
+ if (param->flags & DM_SKIP_LOCKFS_FLAG)
+ suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
+ if (param->flags & DM_NOFLUSH_FLAG)
+ suspend_flags |= DM_SUSPEND_NOFLUSH_FLAG;
+
+ if (!dm_suspended_md(md)) {
+ r = dm_suspend(md, suspend_flags);
+ if (r)
+ goto out;
+ }
+
+ __dev_status(md, param);
+
+out:
+ dm_put(md);
+
+ return r;
+}
+
+static int do_resume(struct dm_ioctl *param)
+{
+ int r = 0;
+ unsigned int suspend_flags = DM_SUSPEND_LOCKFS_FLAG;
+ struct hash_cell *hc;
+ struct mapped_device *md;
+ struct dm_table *new_map, *old_map = NULL;
+ bool need_resize_uevent = false;
+
+ down_write(&_hash_lock);
+
+ hc = __find_device_hash_cell(param);
+ if (!hc) {
+ DMDEBUG_LIMIT("device doesn't appear to be in the dev hash table.");
+ up_write(&_hash_lock);
+ return -ENXIO;
+ }
+
+ md = hc->md;
+
+ new_map = hc->new_map;
+ hc->new_map = NULL;
+ param->flags &= ~DM_INACTIVE_PRESENT_FLAG;
+
+ up_write(&_hash_lock);
+
+ /* Do we need to load a new map ? */
+ if (new_map) {
+ sector_t old_size, new_size;
+
+ /* Suspend if it isn't already suspended */
+ if (param->flags & DM_SKIP_LOCKFS_FLAG)
+ suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
+ if (param->flags & DM_NOFLUSH_FLAG)
+ suspend_flags |= DM_SUSPEND_NOFLUSH_FLAG;
+ if (!dm_suspended_md(md))
+ dm_suspend(md, suspend_flags);
+
+ old_size = dm_get_size(md);
+ old_map = dm_swap_table(md, new_map);
+ if (IS_ERR(old_map)) {
+ dm_sync_table(md);
+ dm_table_destroy(new_map);
+ dm_put(md);
+ return PTR_ERR(old_map);
+ }
+ new_size = dm_get_size(md);
+ if (old_size && new_size && old_size != new_size)
+ need_resize_uevent = true;
+
+ if (dm_table_get_mode(new_map) & FMODE_WRITE)
+ set_disk_ro(dm_disk(md), 0);
+ else
+ set_disk_ro(dm_disk(md), 1);
+ }
+
+ if (dm_suspended_md(md)) {
+ r = dm_resume(md);
+ if (!r) {
+ dm_ima_measure_on_device_resume(md, new_map ? true : false);
+
+ if (!dm_kobject_uevent(md, KOBJ_CHANGE, param->event_nr, need_resize_uevent))
+ param->flags |= DM_UEVENT_GENERATED_FLAG;
+ }
+ }
+
+ /*
+ * Since dm_swap_table synchronizes RCU, nobody should be in
+ * read-side critical section already.
+ */
+ if (old_map)
+ dm_table_destroy(old_map);
+
+ if (!r)
+ __dev_status(md, param);
+
+ dm_put(md);
+ return r;
+}
+
+/*
+ * Set or unset the suspension state of a device.
+ * If the device already is in the requested state we just return its status.
+ */
+static int dev_suspend(struct file *filp, struct dm_ioctl *param, size_t param_size)
+{
+ if (param->flags & DM_SUSPEND_FLAG)
+ return do_suspend(param);
+
+ return do_resume(param);
+}
+
+/*
+ * Copies device info back to user space, used by
+ * the create and info ioctls.
+ */
+static int dev_status(struct file *filp, struct dm_ioctl *param, size_t param_size)
+{
+ struct mapped_device *md;
+
+ md = find_device(param);
+ if (!md)
+ return -ENXIO;
+
+ __dev_status(md, param);
+ dm_put(md);
+
+ return 0;
+}
+
+/*
+ * Build up the status struct for each target
+ */
+static void retrieve_status(struct dm_table *table,
+ struct dm_ioctl *param, size_t param_size)
+{
+ unsigned int i, num_targets;
+ struct dm_target_spec *spec;
+ char *outbuf, *outptr;
+ status_type_t type;
+ size_t remaining, len, used = 0;
+ unsigned int status_flags = 0;
+
+ outptr = outbuf = get_result_buffer(param, param_size, &len);
+
+ if (param->flags & DM_STATUS_TABLE_FLAG)
+ type = STATUSTYPE_TABLE;
+ else if (param->flags & DM_IMA_MEASUREMENT_FLAG)
+ type = STATUSTYPE_IMA;
+ else
+ type = STATUSTYPE_INFO;
+
+ /* Get all the target info */
+ num_targets = table->num_targets;
+ for (i = 0; i < num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(table, i);
+ size_t l;
+
+ remaining = len - (outptr - outbuf);
+ if (remaining <= sizeof(struct dm_target_spec)) {
+ param->flags |= DM_BUFFER_FULL_FLAG;
+ break;
+ }
+
+ spec = (struct dm_target_spec *) outptr;
+
+ spec->status = 0;
+ spec->sector_start = ti->begin;
+ spec->length = ti->len;
+ strncpy(spec->target_type, ti->type->name,
+ sizeof(spec->target_type) - 1);
+
+ outptr += sizeof(struct dm_target_spec);
+ remaining = len - (outptr - outbuf);
+ if (remaining <= 0) {
+ param->flags |= DM_BUFFER_FULL_FLAG;
+ break;
+ }
+
+ /* Get the status/table string from the target driver */
+ if (ti->type->status) {
+ if (param->flags & DM_NOFLUSH_FLAG)
+ status_flags |= DM_STATUS_NOFLUSH_FLAG;
+ ti->type->status(ti, type, status_flags, outptr, remaining);
+ } else
+ outptr[0] = '\0';
+
+ l = strlen(outptr) + 1;
+ if (l == remaining) {
+ param->flags |= DM_BUFFER_FULL_FLAG;
+ break;
+ }
+
+ outptr += l;
+ used = param->data_start + (outptr - outbuf);
+
+ outptr = align_ptr(outptr);
+ spec->next = outptr - outbuf;
+ }
+
+ if (used)
+ param->data_size = used;
+
+ param->target_count = num_targets;
+}
+
+/*
+ * Wait for a device to report an event
+ */
+static int dev_wait(struct file *filp, struct dm_ioctl *param, size_t param_size)
+{
+ int r = 0;
+ struct mapped_device *md;
+ struct dm_table *table;
+ int srcu_idx;
+
+ md = find_device(param);
+ if (!md)
+ return -ENXIO;
+
+ /*
+ * Wait for a notification event
+ */
+ if (dm_wait_event(md, param->event_nr)) {
+ r = -ERESTARTSYS;
+ goto out;
+ }
+
+ /*
+ * The userland program is going to want to know what
+ * changed to trigger the event, so we may as well tell
+ * him and save an ioctl.
+ */
+ __dev_status(md, param);
+
+ table = dm_get_live_or_inactive_table(md, param, &srcu_idx);
+ if (table)
+ retrieve_status(table, param, param_size);
+ dm_put_live_table(md, srcu_idx);
+
+out:
+ dm_put(md);
+
+ return r;
+}
+
+/*
+ * Remember the global event number and make it possible to poll
+ * for further events.
+ */
+static int dev_arm_poll(struct file *filp, struct dm_ioctl *param, size_t param_size)
+{
+ struct dm_file *priv = filp->private_data;
+
+ priv->global_event_nr = atomic_read(&dm_global_event_nr);
+
+ return 0;
+}
+
+static inline fmode_t get_mode(struct dm_ioctl *param)
+{
+ fmode_t mode = FMODE_READ | FMODE_WRITE;
+
+ if (param->flags & DM_READONLY_FLAG)
+ mode = FMODE_READ;
+
+ return mode;
+}
+
+static int next_target(struct dm_target_spec *last, uint32_t next, void *end,
+ struct dm_target_spec **spec, char **target_params)
+{
+ *spec = (struct dm_target_spec *) ((unsigned char *) last + next);
+ *target_params = (char *) (*spec + 1);
+
+ if (*spec < (last + 1))
+ return -EINVAL;
+
+ return invalid_str(*target_params, end);
+}
+
+static int populate_table(struct dm_table *table,
+ struct dm_ioctl *param, size_t param_size)
+{
+ int r;
+ unsigned int i = 0;
+ struct dm_target_spec *spec = (struct dm_target_spec *) param;
+ uint32_t next = param->data_start;
+ void *end = (void *) param + param_size;
+ char *target_params;
+
+ if (!param->target_count) {
+ DMERR("populate_table: no targets specified");
+ return -EINVAL;
+ }
+
+ for (i = 0; i < param->target_count; i++) {
+
+ r = next_target(spec, next, end, &spec, &target_params);
+ if (r) {
+ DMERR("unable to find target");
+ return r;
+ }
+
+ r = dm_table_add_target(table, spec->target_type,
+ (sector_t) spec->sector_start,
+ (sector_t) spec->length,
+ target_params);
+ if (r) {
+ DMERR("error adding target to table");
+ return r;
+ }
+
+ next = spec->next;
+ }
+
+ return dm_table_complete(table);
+}
+
+static bool is_valid_type(enum dm_queue_mode cur, enum dm_queue_mode new)
+{
+ if (cur == new ||
+ (cur == DM_TYPE_BIO_BASED && new == DM_TYPE_DAX_BIO_BASED))
+ return true;
+
+ return false;
+}
+
+static int table_load(struct file *filp, struct dm_ioctl *param, size_t param_size)
+{
+ int r;
+ struct hash_cell *hc;
+ struct dm_table *t, *old_map = NULL;
+ struct mapped_device *md;
+ struct target_type *immutable_target_type;
+
+ md = find_device(param);
+ if (!md)
+ return -ENXIO;
+
+ r = dm_table_create(&t, get_mode(param), param->target_count, md);
+ if (r)
+ goto err;
+
+ /* Protect md->type and md->queue against concurrent table loads. */
+ dm_lock_md_type(md);
+ r = populate_table(t, param, param_size);
+ if (r)
+ goto err_unlock_md_type;
+
+ dm_ima_measure_on_table_load(t, STATUSTYPE_IMA);
+
+ immutable_target_type = dm_get_immutable_target_type(md);
+ if (immutable_target_type &&
+ (immutable_target_type != dm_table_get_immutable_target_type(t)) &&
+ !dm_table_get_wildcard_target(t)) {
+ DMERR("can't replace immutable target type %s",
+ immutable_target_type->name);
+ r = -EINVAL;
+ goto err_unlock_md_type;
+ }
+
+ if (dm_get_md_type(md) == DM_TYPE_NONE) {
+ /* setup md->queue to reflect md's type (may block) */
+ r = dm_setup_md_queue(md, t);
+ if (r) {
+ DMERR("unable to set up device queue for new table.");
+ goto err_unlock_md_type;
+ }
+ } else if (!is_valid_type(dm_get_md_type(md), dm_table_get_type(t))) {
+ DMERR("can't change device type (old=%u vs new=%u) after initial table load.",
+ dm_get_md_type(md), dm_table_get_type(t));
+ r = -EINVAL;
+ goto err_unlock_md_type;
+ }
+
+ dm_unlock_md_type(md);
+
+ /* stage inactive table */
+ down_write(&_hash_lock);
+ hc = dm_get_mdptr(md);
+ if (!hc || hc->md != md) {
+ DMERR("device has been removed from the dev hash table.");
+ up_write(&_hash_lock);
+ r = -ENXIO;
+ goto err_destroy_table;
+ }
+
+ if (hc->new_map)
+ old_map = hc->new_map;
+ hc->new_map = t;
+ up_write(&_hash_lock);
+
+ param->flags |= DM_INACTIVE_PRESENT_FLAG;
+ __dev_status(md, param);
+
+ if (old_map) {
+ dm_sync_table(md);
+ dm_table_destroy(old_map);
+ }
+
+ dm_put(md);
+
+ return 0;
+
+err_unlock_md_type:
+ dm_unlock_md_type(md);
+err_destroy_table:
+ dm_table_destroy(t);
+err:
+ dm_put(md);
+
+ return r;
+}
+
+static int table_clear(struct file *filp, struct dm_ioctl *param, size_t param_size)
+{
+ struct hash_cell *hc;
+ struct mapped_device *md;
+ struct dm_table *old_map = NULL;
+ bool has_new_map = false;
+
+ down_write(&_hash_lock);
+
+ hc = __find_device_hash_cell(param);
+ if (!hc) {
+ DMDEBUG_LIMIT("device doesn't appear to be in the dev hash table.");
+ up_write(&_hash_lock);
+ return -ENXIO;
+ }
+
+ if (hc->new_map) {
+ old_map = hc->new_map;
+ hc->new_map = NULL;
+ has_new_map = true;
+ }
+
+ md = hc->md;
+ up_write(&_hash_lock);
+
+ param->flags &= ~DM_INACTIVE_PRESENT_FLAG;
+ __dev_status(md, param);
+
+ if (old_map) {
+ dm_sync_table(md);
+ dm_table_destroy(old_map);
+ }
+ dm_ima_measure_on_table_clear(md, has_new_map);
+ dm_put(md);
+
+ return 0;
+}
+
+/*
+ * Retrieves a list of devices used by a particular dm device.
+ */
+static void retrieve_deps(struct dm_table *table,
+ struct dm_ioctl *param, size_t param_size)
+{
+ unsigned int count = 0;
+ struct list_head *tmp;
+ size_t len, needed;
+ struct dm_dev_internal *dd;
+ struct dm_target_deps *deps;
+
+ down_read(&table->devices_lock);
+
+ deps = get_result_buffer(param, param_size, &len);
+
+ /*
+ * Count the devices.
+ */
+ list_for_each(tmp, dm_table_get_devices(table))
+ count++;
+
+ /*
+ * Check we have enough space.
+ */
+ needed = struct_size(deps, dev, count);
+ if (len < needed) {
+ param->flags |= DM_BUFFER_FULL_FLAG;
+ goto out;
+ }
+
+ /*
+ * Fill in the devices.
+ */
+ deps->count = count;
+ count = 0;
+ list_for_each_entry(dd, dm_table_get_devices(table), list)
+ deps->dev[count++] = huge_encode_dev(dd->dm_dev->bdev->bd_dev);
+
+ param->data_size = param->data_start + needed;
+
+out:
+ up_read(&table->devices_lock);
+}
+
+static int table_deps(struct file *filp, struct dm_ioctl *param, size_t param_size)
+{
+ struct mapped_device *md;
+ struct dm_table *table;
+ int srcu_idx;
+
+ md = find_device(param);
+ if (!md)
+ return -ENXIO;
+
+ __dev_status(md, param);
+
+ table = dm_get_live_or_inactive_table(md, param, &srcu_idx);
+ if (table)
+ retrieve_deps(table, param, param_size);
+ dm_put_live_table(md, srcu_idx);
+
+ dm_put(md);
+
+ return 0;
+}
+
+/*
+ * Return the status of a device as a text string for each
+ * target.
+ */
+static int table_status(struct file *filp, struct dm_ioctl *param, size_t param_size)
+{
+ struct mapped_device *md;
+ struct dm_table *table;
+ int srcu_idx;
+
+ md = find_device(param);
+ if (!md)
+ return -ENXIO;
+
+ __dev_status(md, param);
+
+ table = dm_get_live_or_inactive_table(md, param, &srcu_idx);
+ if (table)
+ retrieve_status(table, param, param_size);
+ dm_put_live_table(md, srcu_idx);
+
+ dm_put(md);
+
+ return 0;
+}
+
+/*
+ * Process device-mapper dependent messages. Messages prefixed with '@'
+ * are processed by the DM core. All others are delivered to the target.
+ * Returns a number <= 1 if message was processed by device mapper.
+ * Returns 2 if message should be delivered to the target.
+ */
+static int message_for_md(struct mapped_device *md, unsigned int argc, char **argv,
+ char *result, unsigned int maxlen)
+{
+ int r;
+
+ if (**argv != '@')
+ return 2; /* no '@' prefix, deliver to target */
+
+ if (!strcasecmp(argv[0], "@cancel_deferred_remove")) {
+ if (argc != 1) {
+ DMERR("Invalid arguments for @cancel_deferred_remove");
+ return -EINVAL;
+ }
+ return dm_cancel_deferred_remove(md);
+ }
+
+ r = dm_stats_message(md, argc, argv, result, maxlen);
+ if (r < 2)
+ return r;
+
+ DMERR("Unsupported message sent to DM core: %s", argv[0]);
+ return -EINVAL;
+}
+
+/*
+ * Pass a message to the target that's at the supplied device offset.
+ */
+static int target_message(struct file *filp, struct dm_ioctl *param, size_t param_size)
+{
+ int r, argc;
+ char **argv;
+ struct mapped_device *md;
+ struct dm_table *table;
+ struct dm_target *ti;
+ struct dm_target_msg *tmsg = (void *) param + param->data_start;
+ size_t maxlen;
+ char *result = get_result_buffer(param, param_size, &maxlen);
+ int srcu_idx;
+
+ md = find_device(param);
+ if (!md)
+ return -ENXIO;
+
+ if (tmsg < (struct dm_target_msg *) param->data ||
+ invalid_str(tmsg->message, (void *) param + param_size)) {
+ DMERR("Invalid target message parameters.");
+ r = -EINVAL;
+ goto out;
+ }
+
+ r = dm_split_args(&argc, &argv, tmsg->message);
+ if (r) {
+ DMERR("Failed to split target message parameters");
+ goto out;
+ }
+
+ if (!argc) {
+ DMERR("Empty message received.");
+ r = -EINVAL;
+ goto out_argv;
+ }
+
+ r = message_for_md(md, argc, argv, result, maxlen);
+ if (r <= 1)
+ goto out_argv;
+
+ table = dm_get_live_table(md, &srcu_idx);
+ if (!table)
+ goto out_table;
+
+ if (dm_deleting_md(md)) {
+ r = -ENXIO;
+ goto out_table;
+ }
+
+ ti = dm_table_find_target(table, tmsg->sector);
+ if (!ti) {
+ DMERR("Target message sector outside device.");
+ r = -EINVAL;
+ } else if (ti->type->message)
+ r = ti->type->message(ti, argc, argv, result, maxlen);
+ else {
+ DMERR("Target type does not support messages");
+ r = -EINVAL;
+ }
+
+ out_table:
+ dm_put_live_table(md, srcu_idx);
+ out_argv:
+ kfree(argv);
+ out:
+ if (r >= 0)
+ __dev_status(md, param);
+
+ if (r == 1) {
+ param->flags |= DM_DATA_OUT_FLAG;
+ if (dm_message_test_buffer_overflow(result, maxlen))
+ param->flags |= DM_BUFFER_FULL_FLAG;
+ else
+ param->data_size = param->data_start + strlen(result) + 1;
+ r = 0;
+ }
+
+ dm_put(md);
+ return r;
+}
+
+/*
+ * The ioctl parameter block consists of two parts, a dm_ioctl struct
+ * followed by a data buffer. This flag is set if the second part,
+ * which has a variable size, is not used by the function processing
+ * the ioctl.
+ */
+#define IOCTL_FLAGS_NO_PARAMS 1
+#define IOCTL_FLAGS_ISSUE_GLOBAL_EVENT 2
+
+/*-----------------------------------------------------------------
+ * Implementation of open/close/ioctl on the special char
+ * device.
+ *---------------------------------------------------------------*/
+static ioctl_fn lookup_ioctl(unsigned int cmd, int *ioctl_flags)
+{
+ static const struct {
+ int cmd;
+ int flags;
+ ioctl_fn fn;
+ } _ioctls[] = {
+ {DM_VERSION_CMD, 0, NULL}, /* version is dealt with elsewhere */
+ {DM_REMOVE_ALL_CMD, IOCTL_FLAGS_NO_PARAMS | IOCTL_FLAGS_ISSUE_GLOBAL_EVENT, remove_all},
+ {DM_LIST_DEVICES_CMD, 0, list_devices},
+
+ {DM_DEV_CREATE_CMD, IOCTL_FLAGS_NO_PARAMS | IOCTL_FLAGS_ISSUE_GLOBAL_EVENT, dev_create},
+ {DM_DEV_REMOVE_CMD, IOCTL_FLAGS_NO_PARAMS | IOCTL_FLAGS_ISSUE_GLOBAL_EVENT, dev_remove},
+ {DM_DEV_RENAME_CMD, IOCTL_FLAGS_ISSUE_GLOBAL_EVENT, dev_rename},
+ {DM_DEV_SUSPEND_CMD, IOCTL_FLAGS_NO_PARAMS, dev_suspend},
+ {DM_DEV_STATUS_CMD, IOCTL_FLAGS_NO_PARAMS, dev_status},
+ {DM_DEV_WAIT_CMD, 0, dev_wait},
+
+ {DM_TABLE_LOAD_CMD, 0, table_load},
+ {DM_TABLE_CLEAR_CMD, IOCTL_FLAGS_NO_PARAMS, table_clear},
+ {DM_TABLE_DEPS_CMD, 0, table_deps},
+ {DM_TABLE_STATUS_CMD, 0, table_status},
+
+ {DM_LIST_VERSIONS_CMD, 0, list_versions},
+
+ {DM_TARGET_MSG_CMD, 0, target_message},
+ {DM_DEV_SET_GEOMETRY_CMD, 0, dev_set_geometry},
+ {DM_DEV_ARM_POLL, IOCTL_FLAGS_NO_PARAMS, dev_arm_poll},
+ {DM_GET_TARGET_VERSION, 0, get_target_version},
+ };
+
+ if (unlikely(cmd >= ARRAY_SIZE(_ioctls)))
+ return NULL;
+
+ cmd = array_index_nospec(cmd, ARRAY_SIZE(_ioctls));
+ *ioctl_flags = _ioctls[cmd].flags;
+ return _ioctls[cmd].fn;
+}
+
+/*
+ * As well as checking the version compatibility this always
+ * copies the kernel interface version out.
+ */
+static int check_version(unsigned int cmd, struct dm_ioctl __user *user,
+ struct dm_ioctl *kernel_params)
+{
+ int r = 0;
+
+ /* Make certain version is first member of dm_ioctl struct */
+ BUILD_BUG_ON(offsetof(struct dm_ioctl, version) != 0);
+
+ if (copy_from_user(kernel_params->version, user->version, sizeof(kernel_params->version)))
+ return -EFAULT;
+
+ if ((kernel_params->version[0] != DM_VERSION_MAJOR) ||
+ (kernel_params->version[1] > DM_VERSION_MINOR)) {
+ DMERR("ioctl interface mismatch: kernel(%u.%u.%u), user(%u.%u.%u), cmd(%d)",
+ DM_VERSION_MAJOR, DM_VERSION_MINOR,
+ DM_VERSION_PATCHLEVEL,
+ kernel_params->version[0],
+ kernel_params->version[1],
+ kernel_params->version[2],
+ cmd);
+ r = -EINVAL;
+ }
+
+ /*
+ * Fill in the kernel version.
+ */
+ kernel_params->version[0] = DM_VERSION_MAJOR;
+ kernel_params->version[1] = DM_VERSION_MINOR;
+ kernel_params->version[2] = DM_VERSION_PATCHLEVEL;
+ if (copy_to_user(user->version, kernel_params->version, sizeof(kernel_params->version)))
+ return -EFAULT;
+
+ return r;
+}
+
+#define DM_PARAMS_MALLOC 0x0001 /* Params allocated with kvmalloc() */
+#define DM_WIPE_BUFFER 0x0010 /* Wipe input buffer before returning from ioctl */
+
+static void free_params(struct dm_ioctl *param, size_t param_size, int param_flags)
+{
+ if (param_flags & DM_WIPE_BUFFER)
+ memset(param, 0, param_size);
+
+ if (param_flags & DM_PARAMS_MALLOC)
+ kvfree(param);
+}
+
+static int copy_params(struct dm_ioctl __user *user, struct dm_ioctl *param_kernel,
+ int ioctl_flags, struct dm_ioctl **param, int *param_flags)
+{
+ struct dm_ioctl *dmi;
+ int secure_data;
+ const size_t minimum_data_size = offsetof(struct dm_ioctl, data);
+ unsigned int noio_flag;
+
+ /* check_version() already copied version from userspace, avoid TOCTOU */
+ if (copy_from_user((char *)param_kernel + sizeof(param_kernel->version),
+ (char __user *)user + sizeof(param_kernel->version),
+ minimum_data_size - sizeof(param_kernel->version)))
+ return -EFAULT;
+
+ if (param_kernel->data_size < minimum_data_size) {
+ DMERR("Invalid data size in the ioctl structure: %u",
+ param_kernel->data_size);
+ return -EINVAL;
+ }
+
+ secure_data = param_kernel->flags & DM_SECURE_DATA_FLAG;
+
+ *param_flags = secure_data ? DM_WIPE_BUFFER : 0;
+
+ if (ioctl_flags & IOCTL_FLAGS_NO_PARAMS) {
+ dmi = param_kernel;
+ dmi->data_size = minimum_data_size;
+ goto data_copied;
+ }
+
+ /*
+ * Use __GFP_HIGH to avoid low memory issues when a device is
+ * suspended and the ioctl is needed to resume it.
+ * Use kmalloc() rather than vmalloc() when we can.
+ */
+ dmi = NULL;
+ noio_flag = memalloc_noio_save();
+ dmi = kvmalloc(param_kernel->data_size, GFP_KERNEL | __GFP_HIGH);
+ memalloc_noio_restore(noio_flag);
+
+ if (!dmi) {
+ if (secure_data && clear_user(user, param_kernel->data_size))
+ return -EFAULT;
+ return -ENOMEM;
+ }
+
+ *param_flags |= DM_PARAMS_MALLOC;
+
+ /* Copy from param_kernel (which was already copied from user) */
+ memcpy(dmi, param_kernel, minimum_data_size);
+
+ if (copy_from_user(&dmi->data, (char __user *)user + minimum_data_size,
+ param_kernel->data_size - minimum_data_size))
+ goto bad;
+data_copied:
+ /* Wipe the user buffer so we do not return it to userspace */
+ if (secure_data && clear_user(user, param_kernel->data_size))
+ goto bad;
+
+ *param = dmi;
+ return 0;
+
+bad:
+ free_params(dmi, param_kernel->data_size, *param_flags);
+
+ return -EFAULT;
+}
+
+static int validate_params(uint cmd, struct dm_ioctl *param)
+{
+ /* Always clear this flag */
+ param->flags &= ~DM_BUFFER_FULL_FLAG;
+ param->flags &= ~DM_UEVENT_GENERATED_FLAG;
+ param->flags &= ~DM_SECURE_DATA_FLAG;
+ param->flags &= ~DM_DATA_OUT_FLAG;
+
+ /* Ignores parameters */
+ if (cmd == DM_REMOVE_ALL_CMD ||
+ cmd == DM_LIST_DEVICES_CMD ||
+ cmd == DM_LIST_VERSIONS_CMD)
+ return 0;
+
+ if (cmd == DM_DEV_CREATE_CMD) {
+ if (!*param->name) {
+ DMERR("name not supplied when creating device");
+ return -EINVAL;
+ }
+ } else if (*param->uuid && *param->name) {
+ DMERR("only supply one of name or uuid, cmd(%u)", cmd);
+ return -EINVAL;
+ }
+
+ /* Ensure strings are terminated */
+ param->name[DM_NAME_LEN - 1] = '\0';
+ param->uuid[DM_UUID_LEN - 1] = '\0';
+
+ return 0;
+}
+
+static int ctl_ioctl(struct file *file, uint command, struct dm_ioctl __user *user)
+{
+ int r = 0;
+ int ioctl_flags;
+ int param_flags;
+ unsigned int cmd;
+ struct dm_ioctl *param;
+ ioctl_fn fn = NULL;
+ size_t input_param_size;
+ struct dm_ioctl param_kernel;
+
+ /* only root can play with this */
+ if (!capable(CAP_SYS_ADMIN))
+ return -EACCES;
+
+ if (_IOC_TYPE(command) != DM_IOCTL)
+ return -ENOTTY;
+
+ cmd = _IOC_NR(command);
+
+ /*
+ * Check the interface version passed in. This also
+ * writes out the kernel's interface version.
+ */
+ r = check_version(cmd, user, &param_kernel);
+ if (r)
+ return r;
+
+ /*
+ * Nothing more to do for the version command.
+ */
+ if (cmd == DM_VERSION_CMD)
+ return 0;
+
+ fn = lookup_ioctl(cmd, &ioctl_flags);
+ if (!fn) {
+ DMERR("dm_ctl_ioctl: unknown command 0x%x", command);
+ return -ENOTTY;
+ }
+
+ /*
+ * Copy the parameters into kernel space.
+ */
+ r = copy_params(user, &param_kernel, ioctl_flags, &param, &param_flags);
+
+ if (r)
+ return r;
+
+ input_param_size = param->data_size;
+ r = validate_params(cmd, param);
+ if (r)
+ goto out;
+
+ param->data_size = offsetof(struct dm_ioctl, data);
+ r = fn(file, param, input_param_size);
+
+ if (unlikely(param->flags & DM_BUFFER_FULL_FLAG) &&
+ unlikely(ioctl_flags & IOCTL_FLAGS_NO_PARAMS))
+ DMERR("ioctl %d tried to output some data but has IOCTL_FLAGS_NO_PARAMS set", cmd);
+
+ if (!r && ioctl_flags & IOCTL_FLAGS_ISSUE_GLOBAL_EVENT)
+ dm_issue_global_event();
+
+ /*
+ * Copy the results back to userland.
+ */
+ if (!r && copy_to_user(user, param, param->data_size))
+ r = -EFAULT;
+
+out:
+ free_params(param, input_param_size, param_flags);
+ return r;
+}
+
+static long dm_ctl_ioctl(struct file *file, uint command, ulong u)
+{
+ return (long)ctl_ioctl(file, command, (struct dm_ioctl __user *)u);
+}
+
+#ifdef CONFIG_COMPAT
+static long dm_compat_ctl_ioctl(struct file *file, uint command, ulong u)
+{
+ return (long)dm_ctl_ioctl(file, command, (ulong) compat_ptr(u));
+}
+#else
+#define dm_compat_ctl_ioctl NULL
+#endif
+
+static int dm_open(struct inode *inode, struct file *filp)
+{
+ int r;
+ struct dm_file *priv;
+
+ r = nonseekable_open(inode, filp);
+ if (unlikely(r))
+ return r;
+
+ priv = filp->private_data = kmalloc(sizeof(struct dm_file), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ priv->global_event_nr = atomic_read(&dm_global_event_nr);
+
+ return 0;
+}
+
+static int dm_release(struct inode *inode, struct file *filp)
+{
+ kfree(filp->private_data);
+ return 0;
+}
+
+static __poll_t dm_poll(struct file *filp, poll_table *wait)
+{
+ struct dm_file *priv = filp->private_data;
+ __poll_t mask = 0;
+
+ poll_wait(filp, &dm_global_eventq, wait);
+
+ if ((int)(atomic_read(&dm_global_event_nr) - priv->global_event_nr) > 0)
+ mask |= EPOLLIN;
+
+ return mask;
+}
+
+static const struct file_operations _ctl_fops = {
+ .open = dm_open,
+ .release = dm_release,
+ .poll = dm_poll,
+ .unlocked_ioctl = dm_ctl_ioctl,
+ .compat_ioctl = dm_compat_ctl_ioctl,
+ .owner = THIS_MODULE,
+ .llseek = noop_llseek,
+};
+
+static struct miscdevice _dm_misc = {
+ .minor = MAPPER_CTRL_MINOR,
+ .name = DM_NAME,
+ .nodename = DM_DIR "/" DM_CONTROL_NODE,
+ .fops = &_ctl_fops
+};
+
+MODULE_ALIAS_MISCDEV(MAPPER_CTRL_MINOR);
+MODULE_ALIAS("devname:" DM_DIR "/" DM_CONTROL_NODE);
+
+/*
+ * Create misc character device and link to DM_DIR/control.
+ */
+int __init dm_interface_init(void)
+{
+ int r;
+
+ r = misc_register(&_dm_misc);
+ if (r) {
+ DMERR("misc_register failed for control device");
+ return r;
+ }
+
+ DMINFO("%d.%d.%d%s initialised: %s", DM_VERSION_MAJOR,
+ DM_VERSION_MINOR, DM_VERSION_PATCHLEVEL, DM_VERSION_EXTRA,
+ DM_DRIVER_EMAIL);
+ return 0;
+}
+
+void dm_interface_exit(void)
+{
+ misc_deregister(&_dm_misc);
+ dm_hash_exit();
+}
+
+/**
+ * dm_copy_name_and_uuid - Copy mapped device name & uuid into supplied buffers
+ * @md: Pointer to mapped_device
+ * @name: Buffer (size DM_NAME_LEN) for name
+ * @uuid: Buffer (size DM_UUID_LEN) for uuid or empty string if uuid not defined
+ */
+int dm_copy_name_and_uuid(struct mapped_device *md, char *name, char *uuid)
+{
+ int r = 0;
+ struct hash_cell *hc;
+
+ if (!md)
+ return -ENXIO;
+
+ mutex_lock(&dm_hash_cells_mutex);
+ hc = dm_get_mdptr(md);
+ if (!hc || hc->md != md) {
+ r = -ENXIO;
+ goto out;
+ }
+
+ if (name)
+ strcpy(name, hc->name);
+ if (uuid)
+ strcpy(uuid, hc->uuid ? : "");
+
+out:
+ mutex_unlock(&dm_hash_cells_mutex);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_copy_name_and_uuid);
+
+/**
+ * dm_early_create - create a mapped device in early boot.
+ *
+ * @dmi: Contains main information of the device mapping to be created.
+ * @spec_array: array of pointers to struct dm_target_spec. Describes the
+ * mapping table of the device.
+ * @target_params_array: array of strings with the parameters to a specific
+ * target.
+ *
+ * Instead of having the struct dm_target_spec and the parameters for every
+ * target embedded at the end of struct dm_ioctl (as performed in a normal
+ * ioctl), pass them as arguments, so the caller doesn't need to serialize them.
+ * The size of the spec_array and target_params_array is given by
+ * @dmi->target_count.
+ * This function is supposed to be called in early boot, so locking mechanisms
+ * to protect against concurrent loads are not required.
+ */
+int __init dm_early_create(struct dm_ioctl *dmi,
+ struct dm_target_spec **spec_array,
+ char **target_params_array)
+{
+ int r, m = DM_ANY_MINOR;
+ struct dm_table *t, *old_map;
+ struct mapped_device *md;
+ unsigned int i;
+
+ if (!dmi->target_count)
+ return -EINVAL;
+
+ r = check_name(dmi->name);
+ if (r)
+ return r;
+
+ if (dmi->flags & DM_PERSISTENT_DEV_FLAG)
+ m = MINOR(huge_decode_dev(dmi->dev));
+
+ /* alloc dm device */
+ r = dm_create(m, &md);
+ if (r)
+ return r;
+
+ /* hash insert */
+ r = dm_hash_insert(dmi->name, *dmi->uuid ? dmi->uuid : NULL, md);
+ if (r)
+ goto err_destroy_dm;
+
+ /* alloc table */
+ r = dm_table_create(&t, get_mode(dmi), dmi->target_count, md);
+ if (r)
+ goto err_hash_remove;
+
+ /* add targets */
+ for (i = 0; i < dmi->target_count; i++) {
+ r = dm_table_add_target(t, spec_array[i]->target_type,
+ (sector_t) spec_array[i]->sector_start,
+ (sector_t) spec_array[i]->length,
+ target_params_array[i]);
+ if (r) {
+ DMERR("error adding target to table");
+ goto err_destroy_table;
+ }
+ }
+
+ /* finish table */
+ r = dm_table_complete(t);
+ if (r)
+ goto err_destroy_table;
+
+ /* setup md->queue to reflect md's type (may block) */
+ r = dm_setup_md_queue(md, t);
+ if (r) {
+ DMERR("unable to set up device queue for new table.");
+ goto err_destroy_table;
+ }
+
+ /* Set new map */
+ dm_suspend(md, 0);
+ old_map = dm_swap_table(md, t);
+ if (IS_ERR(old_map)) {
+ r = PTR_ERR(old_map);
+ goto err_destroy_table;
+ }
+ set_disk_ro(dm_disk(md), !!(dmi->flags & DM_READONLY_FLAG));
+
+ /* resume device */
+ r = dm_resume(md);
+ if (r)
+ goto err_destroy_table;
+
+ DMINFO("%s (%s) is ready", md->disk->disk_name, dmi->name);
+ dm_put(md);
+ return 0;
+
+err_destroy_table:
+ dm_table_destroy(t);
+err_hash_remove:
+ (void) __hash_remove(__get_name_cell(dmi->name));
+ /* release reference from __get_name_cell */
+ dm_put(md);
+err_destroy_dm:
+ dm_put(md);
+ dm_destroy(md);
+ return r;
+}
diff --git a/drivers/md/dm-kcopyd.c b/drivers/md/dm-kcopyd.c
new file mode 100644
index 000000000..0ef78e56a
--- /dev/null
+++ b/drivers/md/dm-kcopyd.c
@@ -0,0 +1,988 @@
+/*
+ * Copyright (C) 2002 Sistina Software (UK) Limited.
+ * Copyright (C) 2006 Red Hat GmbH
+ *
+ * This file is released under the GPL.
+ *
+ * Kcopyd provides a simple interface for copying an area of one
+ * block-device to one or more other block-devices, with an asynchronous
+ * completion notification.
+ */
+
+#include <linux/types.h>
+#include <linux/atomic.h>
+#include <linux/blkdev.h>
+#include <linux/fs.h>
+#include <linux/init.h>
+#include <linux/list.h>
+#include <linux/mempool.h>
+#include <linux/module.h>
+#include <linux/pagemap.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/workqueue.h>
+#include <linux/mutex.h>
+#include <linux/delay.h>
+#include <linux/device-mapper.h>
+#include <linux/dm-kcopyd.h>
+
+#include "dm-core.h"
+
+#define SPLIT_COUNT 8
+#define MIN_JOBS 8
+
+#define DEFAULT_SUB_JOB_SIZE_KB 512
+#define MAX_SUB_JOB_SIZE_KB 1024
+
+static unsigned int kcopyd_subjob_size_kb = DEFAULT_SUB_JOB_SIZE_KB;
+
+module_param(kcopyd_subjob_size_kb, uint, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(kcopyd_subjob_size_kb, "Sub-job size for dm-kcopyd clients");
+
+static unsigned int dm_get_kcopyd_subjob_size(void)
+{
+ unsigned int sub_job_size_kb;
+
+ sub_job_size_kb = __dm_get_module_param(&kcopyd_subjob_size_kb,
+ DEFAULT_SUB_JOB_SIZE_KB,
+ MAX_SUB_JOB_SIZE_KB);
+
+ return sub_job_size_kb << 1;
+}
+
+/*-----------------------------------------------------------------
+ * Each kcopyd client has its own little pool of preallocated
+ * pages for kcopyd io.
+ *---------------------------------------------------------------*/
+struct dm_kcopyd_client {
+ struct page_list *pages;
+ unsigned int nr_reserved_pages;
+ unsigned int nr_free_pages;
+ unsigned int sub_job_size;
+
+ struct dm_io_client *io_client;
+
+ wait_queue_head_t destroyq;
+
+ mempool_t job_pool;
+
+ struct workqueue_struct *kcopyd_wq;
+ struct work_struct kcopyd_work;
+
+ struct dm_kcopyd_throttle *throttle;
+
+ atomic_t nr_jobs;
+
+/*
+ * We maintain four lists of jobs:
+ *
+ * i) jobs waiting for pages
+ * ii) jobs that have pages, and are waiting for the io to be issued.
+ * iii) jobs that don't need to do any IO and just run a callback
+ * iv) jobs that have completed.
+ *
+ * All four of these are protected by job_lock.
+ */
+ spinlock_t job_lock;
+ struct list_head callback_jobs;
+ struct list_head complete_jobs;
+ struct list_head io_jobs;
+ struct list_head pages_jobs;
+};
+
+static struct page_list zero_page_list;
+
+static DEFINE_SPINLOCK(throttle_spinlock);
+
+/*
+ * IO/IDLE accounting slowly decays after (1 << ACCOUNT_INTERVAL_SHIFT) period.
+ * When total_period >= (1 << ACCOUNT_INTERVAL_SHIFT) the counters are divided
+ * by 2.
+ */
+#define ACCOUNT_INTERVAL_SHIFT SHIFT_HZ
+
+/*
+ * Sleep this number of milliseconds.
+ *
+ * The value was decided experimentally.
+ * Smaller values seem to cause an increased copy rate above the limit.
+ * The reason for this is unknown but possibly due to jiffies rounding errors
+ * or read/write cache inside the disk.
+ */
+#define SLEEP_MSEC 100
+
+/*
+ * Maximum number of sleep events. There is a theoretical livelock if more
+ * kcopyd clients do work simultaneously which this limit avoids.
+ */
+#define MAX_SLEEPS 10
+
+static void io_job_start(struct dm_kcopyd_throttle *t)
+{
+ unsigned int throttle, now, difference;
+ int slept = 0, skew;
+
+ if (unlikely(!t))
+ return;
+
+try_again:
+ spin_lock_irq(&throttle_spinlock);
+
+ throttle = READ_ONCE(t->throttle);
+
+ if (likely(throttle >= 100))
+ goto skip_limit;
+
+ now = jiffies;
+ difference = now - t->last_jiffies;
+ t->last_jiffies = now;
+ if (t->num_io_jobs)
+ t->io_period += difference;
+ t->total_period += difference;
+
+ /*
+ * Maintain sane values if we got a temporary overflow.
+ */
+ if (unlikely(t->io_period > t->total_period))
+ t->io_period = t->total_period;
+
+ if (unlikely(t->total_period >= (1 << ACCOUNT_INTERVAL_SHIFT))) {
+ int shift = fls(t->total_period >> ACCOUNT_INTERVAL_SHIFT);
+ t->total_period >>= shift;
+ t->io_period >>= shift;
+ }
+
+ skew = t->io_period - throttle * t->total_period / 100;
+
+ if (unlikely(skew > 0) && slept < MAX_SLEEPS) {
+ slept++;
+ spin_unlock_irq(&throttle_spinlock);
+ msleep(SLEEP_MSEC);
+ goto try_again;
+ }
+
+skip_limit:
+ t->num_io_jobs++;
+
+ spin_unlock_irq(&throttle_spinlock);
+}
+
+static void io_job_finish(struct dm_kcopyd_throttle *t)
+{
+ unsigned long flags;
+
+ if (unlikely(!t))
+ return;
+
+ spin_lock_irqsave(&throttle_spinlock, flags);
+
+ t->num_io_jobs--;
+
+ if (likely(READ_ONCE(t->throttle) >= 100))
+ goto skip_limit;
+
+ if (!t->num_io_jobs) {
+ unsigned int now, difference;
+
+ now = jiffies;
+ difference = now - t->last_jiffies;
+ t->last_jiffies = now;
+
+ t->io_period += difference;
+ t->total_period += difference;
+
+ /*
+ * Maintain sane values if we got a temporary overflow.
+ */
+ if (unlikely(t->io_period > t->total_period))
+ t->io_period = t->total_period;
+ }
+
+skip_limit:
+ spin_unlock_irqrestore(&throttle_spinlock, flags);
+}
+
+
+static void wake(struct dm_kcopyd_client *kc)
+{
+ queue_work(kc->kcopyd_wq, &kc->kcopyd_work);
+}
+
+/*
+ * Obtain one page for the use of kcopyd.
+ */
+static struct page_list *alloc_pl(gfp_t gfp)
+{
+ struct page_list *pl;
+
+ pl = kmalloc(sizeof(*pl), gfp);
+ if (!pl)
+ return NULL;
+
+ pl->page = alloc_page(gfp | __GFP_HIGHMEM);
+ if (!pl->page) {
+ kfree(pl);
+ return NULL;
+ }
+
+ return pl;
+}
+
+static void free_pl(struct page_list *pl)
+{
+ __free_page(pl->page);
+ kfree(pl);
+}
+
+/*
+ * Add the provided pages to a client's free page list, releasing
+ * back to the system any beyond the reserved_pages limit.
+ */
+static void kcopyd_put_pages(struct dm_kcopyd_client *kc, struct page_list *pl)
+{
+ struct page_list *next;
+
+ do {
+ next = pl->next;
+
+ if (kc->nr_free_pages >= kc->nr_reserved_pages)
+ free_pl(pl);
+ else {
+ pl->next = kc->pages;
+ kc->pages = pl;
+ kc->nr_free_pages++;
+ }
+
+ pl = next;
+ } while (pl);
+}
+
+static int kcopyd_get_pages(struct dm_kcopyd_client *kc,
+ unsigned int nr, struct page_list **pages)
+{
+ struct page_list *pl;
+
+ *pages = NULL;
+
+ do {
+ pl = alloc_pl(__GFP_NOWARN | __GFP_NORETRY | __GFP_KSWAPD_RECLAIM);
+ if (unlikely(!pl)) {
+ /* Use reserved pages */
+ pl = kc->pages;
+ if (unlikely(!pl))
+ goto out_of_memory;
+ kc->pages = pl->next;
+ kc->nr_free_pages--;
+ }
+ pl->next = *pages;
+ *pages = pl;
+ } while (--nr);
+
+ return 0;
+
+out_of_memory:
+ if (*pages)
+ kcopyd_put_pages(kc, *pages);
+ return -ENOMEM;
+}
+
+/*
+ * These three functions resize the page pool.
+ */
+static void drop_pages(struct page_list *pl)
+{
+ struct page_list *next;
+
+ while (pl) {
+ next = pl->next;
+ free_pl(pl);
+ pl = next;
+ }
+}
+
+/*
+ * Allocate and reserve nr_pages for the use of a specific client.
+ */
+static int client_reserve_pages(struct dm_kcopyd_client *kc, unsigned int nr_pages)
+{
+ unsigned int i;
+ struct page_list *pl = NULL, *next;
+
+ for (i = 0; i < nr_pages; i++) {
+ next = alloc_pl(GFP_KERNEL);
+ if (!next) {
+ if (pl)
+ drop_pages(pl);
+ return -ENOMEM;
+ }
+ next->next = pl;
+ pl = next;
+ }
+
+ kc->nr_reserved_pages += nr_pages;
+ kcopyd_put_pages(kc, pl);
+
+ return 0;
+}
+
+static void client_free_pages(struct dm_kcopyd_client *kc)
+{
+ BUG_ON(kc->nr_free_pages != kc->nr_reserved_pages);
+ drop_pages(kc->pages);
+ kc->pages = NULL;
+ kc->nr_free_pages = kc->nr_reserved_pages = 0;
+}
+
+/*-----------------------------------------------------------------
+ * kcopyd_jobs need to be allocated by the *clients* of kcopyd,
+ * for this reason we use a mempool to prevent the client from
+ * ever having to do io (which could cause a deadlock).
+ *---------------------------------------------------------------*/
+struct kcopyd_job {
+ struct dm_kcopyd_client *kc;
+ struct list_head list;
+ unsigned int flags;
+
+ /*
+ * Error state of the job.
+ */
+ int read_err;
+ unsigned long write_err;
+
+ /*
+ * REQ_OP_READ, REQ_OP_WRITE or REQ_OP_WRITE_ZEROES.
+ */
+ enum req_op op;
+ struct dm_io_region source;
+
+ /*
+ * The destinations for the transfer.
+ */
+ unsigned int num_dests;
+ struct dm_io_region dests[DM_KCOPYD_MAX_REGIONS];
+
+ struct page_list *pages;
+
+ /*
+ * Set this to ensure you are notified when the job has
+ * completed. 'context' is for callback to use.
+ */
+ dm_kcopyd_notify_fn fn;
+ void *context;
+
+ /*
+ * These fields are only used if the job has been split
+ * into more manageable parts.
+ */
+ struct mutex lock;
+ atomic_t sub_jobs;
+ sector_t progress;
+ sector_t write_offset;
+
+ struct kcopyd_job *master_job;
+};
+
+static struct kmem_cache *_job_cache;
+
+int __init dm_kcopyd_init(void)
+{
+ _job_cache = kmem_cache_create("kcopyd_job",
+ sizeof(struct kcopyd_job) * (SPLIT_COUNT + 1),
+ __alignof__(struct kcopyd_job), 0, NULL);
+ if (!_job_cache)
+ return -ENOMEM;
+
+ zero_page_list.next = &zero_page_list;
+ zero_page_list.page = ZERO_PAGE(0);
+
+ return 0;
+}
+
+void dm_kcopyd_exit(void)
+{
+ kmem_cache_destroy(_job_cache);
+ _job_cache = NULL;
+}
+
+/*
+ * Functions to push and pop a job onto the head of a given job
+ * list.
+ */
+static struct kcopyd_job *pop_io_job(struct list_head *jobs,
+ struct dm_kcopyd_client *kc)
+{
+ struct kcopyd_job *job;
+
+ /*
+ * For I/O jobs, pop any read, any write without sequential write
+ * constraint and sequential writes that are at the right position.
+ */
+ list_for_each_entry(job, jobs, list) {
+ if (job->op == REQ_OP_READ ||
+ !(job->flags & BIT(DM_KCOPYD_WRITE_SEQ))) {
+ list_del(&job->list);
+ return job;
+ }
+
+ if (job->write_offset == job->master_job->write_offset) {
+ job->master_job->write_offset += job->source.count;
+ list_del(&job->list);
+ return job;
+ }
+ }
+
+ return NULL;
+}
+
+static struct kcopyd_job *pop(struct list_head *jobs,
+ struct dm_kcopyd_client *kc)
+{
+ struct kcopyd_job *job = NULL;
+
+ spin_lock_irq(&kc->job_lock);
+
+ if (!list_empty(jobs)) {
+ if (jobs == &kc->io_jobs)
+ job = pop_io_job(jobs, kc);
+ else {
+ job = list_entry(jobs->next, struct kcopyd_job, list);
+ list_del(&job->list);
+ }
+ }
+ spin_unlock_irq(&kc->job_lock);
+
+ return job;
+}
+
+static void push(struct list_head *jobs, struct kcopyd_job *job)
+{
+ unsigned long flags;
+ struct dm_kcopyd_client *kc = job->kc;
+
+ spin_lock_irqsave(&kc->job_lock, flags);
+ list_add_tail(&job->list, jobs);
+ spin_unlock_irqrestore(&kc->job_lock, flags);
+}
+
+
+static void push_head(struct list_head *jobs, struct kcopyd_job *job)
+{
+ struct dm_kcopyd_client *kc = job->kc;
+
+ spin_lock_irq(&kc->job_lock);
+ list_add(&job->list, jobs);
+ spin_unlock_irq(&kc->job_lock);
+}
+
+/*
+ * These three functions process 1 item from the corresponding
+ * job list.
+ *
+ * They return:
+ * < 0: error
+ * 0: success
+ * > 0: can't process yet.
+ */
+static int run_complete_job(struct kcopyd_job *job)
+{
+ void *context = job->context;
+ int read_err = job->read_err;
+ unsigned long write_err = job->write_err;
+ dm_kcopyd_notify_fn fn = job->fn;
+ struct dm_kcopyd_client *kc = job->kc;
+
+ if (job->pages && job->pages != &zero_page_list)
+ kcopyd_put_pages(kc, job->pages);
+ /*
+ * If this is the master job, the sub jobs have already
+ * completed so we can free everything.
+ */
+ if (job->master_job == job) {
+ mutex_destroy(&job->lock);
+ mempool_free(job, &kc->job_pool);
+ }
+ fn(read_err, write_err, context);
+
+ if (atomic_dec_and_test(&kc->nr_jobs))
+ wake_up(&kc->destroyq);
+
+ cond_resched();
+
+ return 0;
+}
+
+static void complete_io(unsigned long error, void *context)
+{
+ struct kcopyd_job *job = (struct kcopyd_job *) context;
+ struct dm_kcopyd_client *kc = job->kc;
+
+ io_job_finish(kc->throttle);
+
+ if (error) {
+ if (op_is_write(job->op))
+ job->write_err |= error;
+ else
+ job->read_err = 1;
+
+ if (!(job->flags & BIT(DM_KCOPYD_IGNORE_ERROR))) {
+ push(&kc->complete_jobs, job);
+ wake(kc);
+ return;
+ }
+ }
+
+ if (op_is_write(job->op))
+ push(&kc->complete_jobs, job);
+
+ else {
+ job->op = REQ_OP_WRITE;
+ push(&kc->io_jobs, job);
+ }
+
+ wake(kc);
+}
+
+/*
+ * Request io on as many buffer heads as we can currently get for
+ * a particular job.
+ */
+static int run_io_job(struct kcopyd_job *job)
+{
+ int r;
+ struct dm_io_request io_req = {
+ .bi_opf = job->op,
+ .mem.type = DM_IO_PAGE_LIST,
+ .mem.ptr.pl = job->pages,
+ .mem.offset = 0,
+ .notify.fn = complete_io,
+ .notify.context = job,
+ .client = job->kc->io_client,
+ };
+
+ /*
+ * If we need to write sequentially and some reads or writes failed,
+ * no point in continuing.
+ */
+ if (job->flags & BIT(DM_KCOPYD_WRITE_SEQ) &&
+ job->master_job->write_err) {
+ job->write_err = job->master_job->write_err;
+ return -EIO;
+ }
+
+ io_job_start(job->kc->throttle);
+
+ if (job->op == REQ_OP_READ)
+ r = dm_io(&io_req, 1, &job->source, NULL);
+ else
+ r = dm_io(&io_req, job->num_dests, job->dests, NULL);
+
+ return r;
+}
+
+static int run_pages_job(struct kcopyd_job *job)
+{
+ int r;
+ unsigned int nr_pages = dm_div_up(job->dests[0].count, PAGE_SIZE >> 9);
+
+ r = kcopyd_get_pages(job->kc, nr_pages, &job->pages);
+ if (!r) {
+ /* this job is ready for io */
+ push(&job->kc->io_jobs, job);
+ return 0;
+ }
+
+ if (r == -ENOMEM)
+ /* can't complete now */
+ return 1;
+
+ return r;
+}
+
+/*
+ * Run through a list for as long as possible. Returns the count
+ * of successful jobs.
+ */
+static int process_jobs(struct list_head *jobs, struct dm_kcopyd_client *kc,
+ int (*fn) (struct kcopyd_job *))
+{
+ struct kcopyd_job *job;
+ int r, count = 0;
+
+ while ((job = pop(jobs, kc))) {
+
+ r = fn(job);
+
+ if (r < 0) {
+ /* error this rogue job */
+ if (op_is_write(job->op))
+ job->write_err = (unsigned long) -1L;
+ else
+ job->read_err = 1;
+ push(&kc->complete_jobs, job);
+ wake(kc);
+ break;
+ }
+
+ if (r > 0) {
+ /*
+ * We couldn't service this job ATM, so
+ * push this job back onto the list.
+ */
+ push_head(jobs, job);
+ break;
+ }
+
+ count++;
+ }
+
+ return count;
+}
+
+/*
+ * kcopyd does this every time it's woken up.
+ */
+static void do_work(struct work_struct *work)
+{
+ struct dm_kcopyd_client *kc = container_of(work,
+ struct dm_kcopyd_client, kcopyd_work);
+ struct blk_plug plug;
+
+ /*
+ * The order that these are called is *very* important.
+ * complete jobs can free some pages for pages jobs.
+ * Pages jobs when successful will jump onto the io jobs
+ * list. io jobs call wake when they complete and it all
+ * starts again.
+ */
+ spin_lock_irq(&kc->job_lock);
+ list_splice_tail_init(&kc->callback_jobs, &kc->complete_jobs);
+ spin_unlock_irq(&kc->job_lock);
+
+ blk_start_plug(&plug);
+ process_jobs(&kc->complete_jobs, kc, run_complete_job);
+ process_jobs(&kc->pages_jobs, kc, run_pages_job);
+ process_jobs(&kc->io_jobs, kc, run_io_job);
+ blk_finish_plug(&plug);
+}
+
+/*
+ * If we are copying a small region we just dispatch a single job
+ * to do the copy, otherwise the io has to be split up into many
+ * jobs.
+ */
+static void dispatch_job(struct kcopyd_job *job)
+{
+ struct dm_kcopyd_client *kc = job->kc;
+ atomic_inc(&kc->nr_jobs);
+ if (unlikely(!job->source.count))
+ push(&kc->callback_jobs, job);
+ else if (job->pages == &zero_page_list)
+ push(&kc->io_jobs, job);
+ else
+ push(&kc->pages_jobs, job);
+ wake(kc);
+}
+
+static void segment_complete(int read_err, unsigned long write_err,
+ void *context)
+{
+ /* FIXME: tidy this function */
+ sector_t progress = 0;
+ sector_t count = 0;
+ struct kcopyd_job *sub_job = (struct kcopyd_job *) context;
+ struct kcopyd_job *job = sub_job->master_job;
+ struct dm_kcopyd_client *kc = job->kc;
+
+ mutex_lock(&job->lock);
+
+ /* update the error */
+ if (read_err)
+ job->read_err = 1;
+
+ if (write_err)
+ job->write_err |= write_err;
+
+ /*
+ * Only dispatch more work if there hasn't been an error.
+ */
+ if ((!job->read_err && !job->write_err) ||
+ job->flags & BIT(DM_KCOPYD_IGNORE_ERROR)) {
+ /* get the next chunk of work */
+ progress = job->progress;
+ count = job->source.count - progress;
+ if (count) {
+ if (count > kc->sub_job_size)
+ count = kc->sub_job_size;
+
+ job->progress += count;
+ }
+ }
+ mutex_unlock(&job->lock);
+
+ if (count) {
+ int i;
+
+ *sub_job = *job;
+ sub_job->write_offset = progress;
+ sub_job->source.sector += progress;
+ sub_job->source.count = count;
+
+ for (i = 0; i < job->num_dests; i++) {
+ sub_job->dests[i].sector += progress;
+ sub_job->dests[i].count = count;
+ }
+
+ sub_job->fn = segment_complete;
+ sub_job->context = sub_job;
+ dispatch_job(sub_job);
+
+ } else if (atomic_dec_and_test(&job->sub_jobs)) {
+
+ /*
+ * Queue the completion callback to the kcopyd thread.
+ *
+ * Some callers assume that all the completions are called
+ * from a single thread and don't race with each other.
+ *
+ * We must not call the callback directly here because this
+ * code may not be executing in the thread.
+ */
+ push(&kc->complete_jobs, job);
+ wake(kc);
+ }
+}
+
+/*
+ * Create some sub jobs to share the work between them.
+ */
+static void split_job(struct kcopyd_job *master_job)
+{
+ int i;
+
+ atomic_inc(&master_job->kc->nr_jobs);
+
+ atomic_set(&master_job->sub_jobs, SPLIT_COUNT);
+ for (i = 0; i < SPLIT_COUNT; i++) {
+ master_job[i + 1].master_job = master_job;
+ segment_complete(0, 0u, &master_job[i + 1]);
+ }
+}
+
+void dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
+ unsigned int num_dests, struct dm_io_region *dests,
+ unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
+{
+ struct kcopyd_job *job;
+ int i;
+
+ /*
+ * Allocate an array of jobs consisting of one master job
+ * followed by SPLIT_COUNT sub jobs.
+ */
+ job = mempool_alloc(&kc->job_pool, GFP_NOIO);
+ mutex_init(&job->lock);
+
+ /*
+ * set up for the read.
+ */
+ job->kc = kc;
+ job->flags = flags;
+ job->read_err = 0;
+ job->write_err = 0;
+
+ job->num_dests = num_dests;
+ memcpy(&job->dests, dests, sizeof(*dests) * num_dests);
+
+ /*
+ * If one of the destination is a host-managed zoned block device,
+ * we need to write sequentially. If one of the destination is a
+ * host-aware device, then leave it to the caller to choose what to do.
+ */
+ if (!(job->flags & BIT(DM_KCOPYD_WRITE_SEQ))) {
+ for (i = 0; i < job->num_dests; i++) {
+ if (bdev_zoned_model(dests[i].bdev) == BLK_ZONED_HM) {
+ job->flags |= BIT(DM_KCOPYD_WRITE_SEQ);
+ break;
+ }
+ }
+ }
+
+ /*
+ * If we need to write sequentially, errors cannot be ignored.
+ */
+ if (job->flags & BIT(DM_KCOPYD_WRITE_SEQ) &&
+ job->flags & BIT(DM_KCOPYD_IGNORE_ERROR))
+ job->flags &= ~BIT(DM_KCOPYD_IGNORE_ERROR);
+
+ if (from) {
+ job->source = *from;
+ job->pages = NULL;
+ job->op = REQ_OP_READ;
+ } else {
+ memset(&job->source, 0, sizeof job->source);
+ job->source.count = job->dests[0].count;
+ job->pages = &zero_page_list;
+
+ /*
+ * Use WRITE ZEROES to optimize zeroing if all dests support it.
+ */
+ job->op = REQ_OP_WRITE_ZEROES;
+ for (i = 0; i < job->num_dests; i++)
+ if (!bdev_write_zeroes_sectors(job->dests[i].bdev)) {
+ job->op = REQ_OP_WRITE;
+ break;
+ }
+ }
+
+ job->fn = fn;
+ job->context = context;
+ job->master_job = job;
+ job->write_offset = 0;
+
+ if (job->source.count <= kc->sub_job_size)
+ dispatch_job(job);
+ else {
+ job->progress = 0;
+ split_job(job);
+ }
+}
+EXPORT_SYMBOL(dm_kcopyd_copy);
+
+void dm_kcopyd_zero(struct dm_kcopyd_client *kc,
+ unsigned int num_dests, struct dm_io_region *dests,
+ unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
+{
+ dm_kcopyd_copy(kc, NULL, num_dests, dests, flags, fn, context);
+}
+EXPORT_SYMBOL(dm_kcopyd_zero);
+
+void *dm_kcopyd_prepare_callback(struct dm_kcopyd_client *kc,
+ dm_kcopyd_notify_fn fn, void *context)
+{
+ struct kcopyd_job *job;
+
+ job = mempool_alloc(&kc->job_pool, GFP_NOIO);
+
+ memset(job, 0, sizeof(struct kcopyd_job));
+ job->kc = kc;
+ job->fn = fn;
+ job->context = context;
+ job->master_job = job;
+
+ atomic_inc(&kc->nr_jobs);
+
+ return job;
+}
+EXPORT_SYMBOL(dm_kcopyd_prepare_callback);
+
+void dm_kcopyd_do_callback(void *j, int read_err, unsigned long write_err)
+{
+ struct kcopyd_job *job = j;
+ struct dm_kcopyd_client *kc = job->kc;
+
+ job->read_err = read_err;
+ job->write_err = write_err;
+
+ push(&kc->callback_jobs, job);
+ wake(kc);
+}
+EXPORT_SYMBOL(dm_kcopyd_do_callback);
+
+/*
+ * Cancels a kcopyd job, eg. someone might be deactivating a
+ * mirror.
+ */
+#if 0
+int kcopyd_cancel(struct kcopyd_job *job, int block)
+{
+ /* FIXME: finish */
+ return -1;
+}
+#endif /* 0 */
+
+/*-----------------------------------------------------------------
+ * Client setup
+ *---------------------------------------------------------------*/
+struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle *throttle)
+{
+ int r;
+ unsigned int reserve_pages;
+ struct dm_kcopyd_client *kc;
+
+ kc = kzalloc(sizeof(*kc), GFP_KERNEL);
+ if (!kc)
+ return ERR_PTR(-ENOMEM);
+
+ spin_lock_init(&kc->job_lock);
+ INIT_LIST_HEAD(&kc->callback_jobs);
+ INIT_LIST_HEAD(&kc->complete_jobs);
+ INIT_LIST_HEAD(&kc->io_jobs);
+ INIT_LIST_HEAD(&kc->pages_jobs);
+ kc->throttle = throttle;
+
+ r = mempool_init_slab_pool(&kc->job_pool, MIN_JOBS, _job_cache);
+ if (r)
+ goto bad_slab;
+
+ INIT_WORK(&kc->kcopyd_work, do_work);
+ kc->kcopyd_wq = alloc_workqueue("kcopyd", WQ_MEM_RECLAIM, 0);
+ if (!kc->kcopyd_wq) {
+ r = -ENOMEM;
+ goto bad_workqueue;
+ }
+
+ kc->sub_job_size = dm_get_kcopyd_subjob_size();
+ reserve_pages = DIV_ROUND_UP(kc->sub_job_size << SECTOR_SHIFT, PAGE_SIZE);
+
+ kc->pages = NULL;
+ kc->nr_reserved_pages = kc->nr_free_pages = 0;
+ r = client_reserve_pages(kc, reserve_pages);
+ if (r)
+ goto bad_client_pages;
+
+ kc->io_client = dm_io_client_create();
+ if (IS_ERR(kc->io_client)) {
+ r = PTR_ERR(kc->io_client);
+ goto bad_io_client;
+ }
+
+ init_waitqueue_head(&kc->destroyq);
+ atomic_set(&kc->nr_jobs, 0);
+
+ return kc;
+
+bad_io_client:
+ client_free_pages(kc);
+bad_client_pages:
+ destroy_workqueue(kc->kcopyd_wq);
+bad_workqueue:
+ mempool_exit(&kc->job_pool);
+bad_slab:
+ kfree(kc);
+
+ return ERR_PTR(r);
+}
+EXPORT_SYMBOL(dm_kcopyd_client_create);
+
+void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc)
+{
+ /* Wait for completion of all jobs submitted by this client. */
+ wait_event(kc->destroyq, !atomic_read(&kc->nr_jobs));
+
+ BUG_ON(!list_empty(&kc->callback_jobs));
+ BUG_ON(!list_empty(&kc->complete_jobs));
+ BUG_ON(!list_empty(&kc->io_jobs));
+ BUG_ON(!list_empty(&kc->pages_jobs));
+ destroy_workqueue(kc->kcopyd_wq);
+ dm_io_client_destroy(kc->io_client);
+ client_free_pages(kc);
+ mempool_exit(&kc->job_pool);
+ kfree(kc);
+}
+EXPORT_SYMBOL(dm_kcopyd_client_destroy);
+
+void dm_kcopyd_client_flush(struct dm_kcopyd_client *kc)
+{
+ flush_workqueue(kc->kcopyd_wq);
+}
+EXPORT_SYMBOL(dm_kcopyd_client_flush);
diff --git a/drivers/md/dm-linear.c b/drivers/md/dm-linear.c
new file mode 100644
index 000000000..26b1af646
--- /dev/null
+++ b/drivers/md/dm-linear.c
@@ -0,0 +1,229 @@
+/*
+ * Copyright (C) 2001-2003 Sistina Software (UK) Limited.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm.h"
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/blkdev.h>
+#include <linux/bio.h>
+#include <linux/dax.h>
+#include <linux/slab.h>
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "linear"
+
+/*
+ * Linear: maps a linear range of a device.
+ */
+struct linear_c {
+ struct dm_dev *dev;
+ sector_t start;
+};
+
+/*
+ * Construct a linear mapping: <dev_path> <offset>
+ */
+static int linear_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ struct linear_c *lc;
+ unsigned long long tmp;
+ char dummy;
+ int ret;
+
+ if (argc != 2) {
+ ti->error = "Invalid argument count";
+ return -EINVAL;
+ }
+
+ lc = kmalloc(sizeof(*lc), GFP_KERNEL);
+ if (lc == NULL) {
+ ti->error = "Cannot allocate linear context";
+ return -ENOMEM;
+ }
+
+ ret = -EINVAL;
+ if (sscanf(argv[1], "%llu%c", &tmp, &dummy) != 1 || tmp != (sector_t)tmp) {
+ ti->error = "Invalid device sector";
+ goto bad;
+ }
+ lc->start = tmp;
+
+ ret = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &lc->dev);
+ if (ret) {
+ ti->error = "Device lookup failed";
+ goto bad;
+ }
+
+ ti->num_flush_bios = 1;
+ ti->num_discard_bios = 1;
+ ti->num_secure_erase_bios = 1;
+ ti->num_write_zeroes_bios = 1;
+ ti->private = lc;
+ return 0;
+
+ bad:
+ kfree(lc);
+ return ret;
+}
+
+static void linear_dtr(struct dm_target *ti)
+{
+ struct linear_c *lc = (struct linear_c *) ti->private;
+
+ dm_put_device(ti, lc->dev);
+ kfree(lc);
+}
+
+static sector_t linear_map_sector(struct dm_target *ti, sector_t bi_sector)
+{
+ struct linear_c *lc = ti->private;
+
+ return lc->start + dm_target_offset(ti, bi_sector);
+}
+
+static int linear_map(struct dm_target *ti, struct bio *bio)
+{
+ struct linear_c *lc = ti->private;
+
+ bio_set_dev(bio, lc->dev->bdev);
+ bio->bi_iter.bi_sector = linear_map_sector(ti, bio->bi_iter.bi_sector);
+
+ return DM_MAPIO_REMAPPED;
+}
+
+static void linear_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ struct linear_c *lc = (struct linear_c *) ti->private;
+ size_t sz = 0;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ result[0] = '\0';
+ break;
+
+ case STATUSTYPE_TABLE:
+ DMEMIT("%s %llu", lc->dev->name, (unsigned long long)lc->start);
+ break;
+
+ case STATUSTYPE_IMA:
+ DMEMIT_TARGET_NAME_VERSION(ti->type);
+ DMEMIT(",device_name=%s,start=%llu;", lc->dev->name,
+ (unsigned long long)lc->start);
+ break;
+ }
+}
+
+static int linear_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
+{
+ struct linear_c *lc = (struct linear_c *) ti->private;
+ struct dm_dev *dev = lc->dev;
+
+ *bdev = dev->bdev;
+
+ /*
+ * Only pass ioctls through if the device sizes match exactly.
+ */
+ if (lc->start || ti->len != bdev_nr_sectors(dev->bdev))
+ return 1;
+ return 0;
+}
+
+#ifdef CONFIG_BLK_DEV_ZONED
+static int linear_report_zones(struct dm_target *ti,
+ struct dm_report_zones_args *args, unsigned int nr_zones)
+{
+ struct linear_c *lc = ti->private;
+
+ return dm_report_zones(lc->dev->bdev, lc->start,
+ linear_map_sector(ti, args->next_sector),
+ args, nr_zones);
+}
+#else
+#define linear_report_zones NULL
+#endif
+
+static int linear_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ struct linear_c *lc = ti->private;
+
+ return fn(ti, lc->dev, lc->start, ti->len, data);
+}
+
+#if IS_ENABLED(CONFIG_FS_DAX)
+static struct dax_device *linear_dax_pgoff(struct dm_target *ti, pgoff_t *pgoff)
+{
+ struct linear_c *lc = ti->private;
+ sector_t sector = linear_map_sector(ti, *pgoff << PAGE_SECTORS_SHIFT);
+
+ *pgoff = (get_start_sect(lc->dev->bdev) + sector) >> PAGE_SECTORS_SHIFT;
+ return lc->dev->dax_dev;
+}
+
+static long linear_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
+ long nr_pages, enum dax_access_mode mode, void **kaddr,
+ pfn_t *pfn)
+{
+ struct dax_device *dax_dev = linear_dax_pgoff(ti, &pgoff);
+
+ return dax_direct_access(dax_dev, pgoff, nr_pages, mode, kaddr, pfn);
+}
+
+static int linear_dax_zero_page_range(struct dm_target *ti, pgoff_t pgoff,
+ size_t nr_pages)
+{
+ struct dax_device *dax_dev = linear_dax_pgoff(ti, &pgoff);
+
+ return dax_zero_page_range(dax_dev, pgoff, nr_pages);
+}
+
+static size_t linear_dax_recovery_write(struct dm_target *ti, pgoff_t pgoff,
+ void *addr, size_t bytes, struct iov_iter *i)
+{
+ struct dax_device *dax_dev = linear_dax_pgoff(ti, &pgoff);
+
+ return dax_recovery_write(dax_dev, pgoff, addr, bytes, i);
+}
+
+#else
+#define linear_dax_direct_access NULL
+#define linear_dax_zero_page_range NULL
+#define linear_dax_recovery_write NULL
+#endif
+
+static struct target_type linear_target = {
+ .name = "linear",
+ .version = {1, 4, 0},
+ .features = DM_TARGET_PASSES_INTEGRITY | DM_TARGET_NOWAIT |
+ DM_TARGET_ZONED_HM | DM_TARGET_PASSES_CRYPTO,
+ .report_zones = linear_report_zones,
+ .module = THIS_MODULE,
+ .ctr = linear_ctr,
+ .dtr = linear_dtr,
+ .map = linear_map,
+ .status = linear_status,
+ .prepare_ioctl = linear_prepare_ioctl,
+ .iterate_devices = linear_iterate_devices,
+ .direct_access = linear_dax_direct_access,
+ .dax_zero_page_range = linear_dax_zero_page_range,
+ .dax_recovery_write = linear_dax_recovery_write,
+};
+
+int __init dm_linear_init(void)
+{
+ int r = dm_register_target(&linear_target);
+
+ if (r < 0)
+ DMERR("register failed %d", r);
+
+ return r;
+}
+
+void dm_linear_exit(void)
+{
+ dm_unregister_target(&linear_target);
+}
diff --git a/drivers/md/dm-log-userspace-base.c b/drivers/md/dm-log-userspace-base.c
new file mode 100644
index 000000000..9fc693826
--- /dev/null
+++ b/drivers/md/dm-log-userspace-base.c
@@ -0,0 +1,937 @@
+/*
+ * Copyright (C) 2006-2009 Red Hat, Inc.
+ *
+ * This file is released under the LGPL.
+ */
+
+#include <linux/bio.h>
+#include <linux/slab.h>
+#include <linux/jiffies.h>
+#include <linux/dm-dirty-log.h>
+#include <linux/device-mapper.h>
+#include <linux/dm-log-userspace.h>
+#include <linux/module.h>
+#include <linux/workqueue.h>
+
+#include "dm-log-userspace-transfer.h"
+
+#define DM_LOG_USERSPACE_VSN "1.3.0"
+
+#define FLUSH_ENTRY_POOL_SIZE 16
+
+struct dm_dirty_log_flush_entry {
+ int type;
+ region_t region;
+ struct list_head list;
+};
+
+/*
+ * This limit on the number of mark and clear request is, to a degree,
+ * arbitrary. However, there is some basis for the choice in the limits
+ * imposed on the size of data payload by dm-log-userspace-transfer.c:
+ * dm_consult_userspace().
+ */
+#define MAX_FLUSH_GROUP_COUNT 32
+
+struct log_c {
+ struct dm_target *ti;
+ struct dm_dev *log_dev;
+
+ char *usr_argv_str;
+ uint32_t usr_argc;
+
+ uint32_t region_size;
+ region_t region_count;
+ uint64_t luid;
+ char uuid[DM_UUID_LEN];
+
+ /*
+ * Mark and clear requests are held until a flush is issued
+ * so that we can group, and thereby limit, the amount of
+ * network traffic between kernel and userspace. The 'flush_lock'
+ * is used to protect these lists.
+ */
+ spinlock_t flush_lock;
+ struct list_head mark_list;
+ struct list_head clear_list;
+
+ /*
+ * in_sync_hint gets set when doing is_remote_recovering. It
+ * represents the first region that needs recovery. IOW, the
+ * first zero bit of sync_bits. This can be useful for to limit
+ * traffic for calls like is_remote_recovering and get_resync_work,
+ * but be take care in its use for anything else.
+ */
+ uint64_t in_sync_hint;
+
+ /*
+ * Workqueue for flush of clear region requests.
+ */
+ struct workqueue_struct *dmlog_wq;
+ struct delayed_work flush_log_work;
+ atomic_t sched_flush;
+
+ /*
+ * Combine userspace flush and mark requests for efficiency.
+ */
+ uint32_t integrated_flush;
+
+ mempool_t flush_entry_pool;
+};
+
+static struct kmem_cache *_flush_entry_cache;
+
+static int userspace_do_request(struct log_c *lc, const char *uuid,
+ int request_type, char *data, size_t data_size,
+ char *rdata, size_t *rdata_size)
+{
+ int r;
+
+ /*
+ * If the server isn't there, -ESRCH is returned,
+ * and we must keep trying until the server is
+ * restored.
+ */
+retry:
+ r = dm_consult_userspace(uuid, lc->luid, request_type, data,
+ data_size, rdata, rdata_size);
+
+ if (r != -ESRCH)
+ return r;
+
+ DMERR(" Userspace log server not found.");
+ while (1) {
+ set_current_state(TASK_INTERRUPTIBLE);
+ schedule_timeout(2*HZ);
+ DMWARN("Attempting to contact userspace log server...");
+ r = dm_consult_userspace(uuid, lc->luid, DM_ULOG_CTR,
+ lc->usr_argv_str,
+ strlen(lc->usr_argv_str) + 1,
+ NULL, NULL);
+ if (!r)
+ break;
+ }
+ DMINFO("Reconnected to userspace log server... DM_ULOG_CTR complete");
+ r = dm_consult_userspace(uuid, lc->luid, DM_ULOG_RESUME, NULL,
+ 0, NULL, NULL);
+ if (!r)
+ goto retry;
+
+ DMERR("Error trying to resume userspace log: %d", r);
+
+ return -ESRCH;
+}
+
+static int build_constructor_string(struct dm_target *ti,
+ unsigned int argc, char **argv,
+ char **ctr_str)
+{
+ int i, str_size;
+ char *str = NULL;
+
+ *ctr_str = NULL;
+
+ /*
+ * Determine overall size of the string.
+ */
+ for (i = 0, str_size = 0; i < argc; i++)
+ str_size += strlen(argv[i]) + 1; /* +1 for space between args */
+
+ str_size += 20; /* Max number of chars in a printed u64 number */
+
+ str = kzalloc(str_size, GFP_KERNEL);
+ if (!str) {
+ DMWARN("Unable to allocate memory for constructor string");
+ return -ENOMEM;
+ }
+
+ str_size = sprintf(str, "%llu", (unsigned long long)ti->len);
+ for (i = 0; i < argc; i++)
+ str_size += sprintf(str + str_size, " %s", argv[i]);
+
+ *ctr_str = str;
+ return str_size;
+}
+
+static void do_flush(struct work_struct *work)
+{
+ int r;
+ struct log_c *lc = container_of(work, struct log_c, flush_log_work.work);
+
+ atomic_set(&lc->sched_flush, 0);
+
+ r = userspace_do_request(lc, lc->uuid, DM_ULOG_FLUSH, NULL, 0, NULL, NULL);
+
+ if (r)
+ dm_table_event(lc->ti->table);
+}
+
+/*
+ * userspace_ctr
+ *
+ * argv contains:
+ * <UUID> [integrated_flush] <other args>
+ * Where 'other args' are the userspace implementation-specific log
+ * arguments.
+ *
+ * Example:
+ * <UUID> [integrated_flush] clustered-disk <arg count> <log dev>
+ * <region_size> [[no]sync]
+ *
+ * This module strips off the <UUID> and uses it for identification
+ * purposes when communicating with userspace about a log.
+ *
+ * If integrated_flush is defined, the kernel combines flush
+ * and mark requests.
+ *
+ * The rest of the line, beginning with 'clustered-disk', is passed
+ * to the userspace ctr function.
+ */
+static int userspace_ctr(struct dm_dirty_log *log, struct dm_target *ti,
+ unsigned int argc, char **argv)
+{
+ int r = 0;
+ int str_size;
+ char *ctr_str = NULL;
+ struct log_c *lc = NULL;
+ uint64_t rdata;
+ size_t rdata_size = sizeof(rdata);
+ char *devices_rdata = NULL;
+ size_t devices_rdata_size = DM_NAME_LEN;
+
+ if (argc < 3) {
+ DMWARN("Too few arguments to userspace dirty log");
+ return -EINVAL;
+ }
+
+ lc = kzalloc(sizeof(*lc), GFP_KERNEL);
+ if (!lc) {
+ DMWARN("Unable to allocate userspace log context.");
+ return -ENOMEM;
+ }
+
+ /* The ptr value is sufficient for local unique id */
+ lc->luid = (unsigned long)lc;
+
+ lc->ti = ti;
+
+ if (strlen(argv[0]) > (DM_UUID_LEN - 1)) {
+ DMWARN("UUID argument too long.");
+ kfree(lc);
+ return -EINVAL;
+ }
+
+ lc->usr_argc = argc;
+
+ strncpy(lc->uuid, argv[0], DM_UUID_LEN);
+ argc--;
+ argv++;
+ spin_lock_init(&lc->flush_lock);
+ INIT_LIST_HEAD(&lc->mark_list);
+ INIT_LIST_HEAD(&lc->clear_list);
+
+ if (!strcasecmp(argv[0], "integrated_flush")) {
+ lc->integrated_flush = 1;
+ argc--;
+ argv++;
+ }
+
+ str_size = build_constructor_string(ti, argc, argv, &ctr_str);
+ if (str_size < 0) {
+ kfree(lc);
+ return str_size;
+ }
+
+ devices_rdata = kzalloc(devices_rdata_size, GFP_KERNEL);
+ if (!devices_rdata) {
+ DMERR("Failed to allocate memory for device information");
+ r = -ENOMEM;
+ goto out;
+ }
+
+ r = mempool_init_slab_pool(&lc->flush_entry_pool, FLUSH_ENTRY_POOL_SIZE,
+ _flush_entry_cache);
+ if (r) {
+ DMERR("Failed to create flush_entry_pool");
+ goto out;
+ }
+
+ /*
+ * Send table string and get back any opened device.
+ */
+ r = dm_consult_userspace(lc->uuid, lc->luid, DM_ULOG_CTR,
+ ctr_str, str_size,
+ devices_rdata, &devices_rdata_size);
+
+ if (r < 0) {
+ if (r == -ESRCH)
+ DMERR("Userspace log server not found");
+ else
+ DMERR("Userspace log server failed to create log");
+ goto out;
+ }
+
+ /* Since the region size does not change, get it now */
+ rdata_size = sizeof(rdata);
+ r = dm_consult_userspace(lc->uuid, lc->luid, DM_ULOG_GET_REGION_SIZE,
+ NULL, 0, (char *)&rdata, &rdata_size);
+
+ if (r) {
+ DMERR("Failed to get region size of dirty log");
+ goto out;
+ }
+
+ lc->region_size = (uint32_t)rdata;
+ lc->region_count = dm_sector_div_up(ti->len, lc->region_size);
+
+ if (devices_rdata_size) {
+ if (devices_rdata[devices_rdata_size - 1] != '\0') {
+ DMERR("DM_ULOG_CTR device return string not properly terminated");
+ r = -EINVAL;
+ goto out;
+ }
+ r = dm_get_device(ti, devices_rdata,
+ dm_table_get_mode(ti->table), &lc->log_dev);
+ if (r)
+ DMERR("Failed to register %s with device-mapper",
+ devices_rdata);
+ }
+
+ if (lc->integrated_flush) {
+ lc->dmlog_wq = alloc_workqueue("dmlogd", WQ_MEM_RECLAIM, 0);
+ if (!lc->dmlog_wq) {
+ DMERR("couldn't start dmlogd");
+ r = -ENOMEM;
+ goto out;
+ }
+
+ INIT_DELAYED_WORK(&lc->flush_log_work, do_flush);
+ atomic_set(&lc->sched_flush, 0);
+ }
+
+out:
+ kfree(devices_rdata);
+ if (r) {
+ mempool_exit(&lc->flush_entry_pool);
+ kfree(lc);
+ kfree(ctr_str);
+ } else {
+ lc->usr_argv_str = ctr_str;
+ log->context = lc;
+ }
+
+ return r;
+}
+
+static void userspace_dtr(struct dm_dirty_log *log)
+{
+ struct log_c *lc = log->context;
+
+ if (lc->integrated_flush) {
+ /* flush workqueue */
+ if (atomic_read(&lc->sched_flush))
+ flush_delayed_work(&lc->flush_log_work);
+
+ destroy_workqueue(lc->dmlog_wq);
+ }
+
+ (void) dm_consult_userspace(lc->uuid, lc->luid, DM_ULOG_DTR,
+ NULL, 0, NULL, NULL);
+
+ if (lc->log_dev)
+ dm_put_device(lc->ti, lc->log_dev);
+
+ mempool_exit(&lc->flush_entry_pool);
+
+ kfree(lc->usr_argv_str);
+ kfree(lc);
+
+ return;
+}
+
+static int userspace_presuspend(struct dm_dirty_log *log)
+{
+ int r;
+ struct log_c *lc = log->context;
+
+ r = dm_consult_userspace(lc->uuid, lc->luid, DM_ULOG_PRESUSPEND,
+ NULL, 0, NULL, NULL);
+
+ return r;
+}
+
+static int userspace_postsuspend(struct dm_dirty_log *log)
+{
+ int r;
+ struct log_c *lc = log->context;
+
+ /*
+ * Run planned flush earlier.
+ */
+ if (lc->integrated_flush && atomic_read(&lc->sched_flush))
+ flush_delayed_work(&lc->flush_log_work);
+
+ r = dm_consult_userspace(lc->uuid, lc->luid, DM_ULOG_POSTSUSPEND,
+ NULL, 0, NULL, NULL);
+
+ return r;
+}
+
+static int userspace_resume(struct dm_dirty_log *log)
+{
+ int r;
+ struct log_c *lc = log->context;
+
+ lc->in_sync_hint = 0;
+ r = dm_consult_userspace(lc->uuid, lc->luid, DM_ULOG_RESUME,
+ NULL, 0, NULL, NULL);
+
+ return r;
+}
+
+static uint32_t userspace_get_region_size(struct dm_dirty_log *log)
+{
+ struct log_c *lc = log->context;
+
+ return lc->region_size;
+}
+
+/*
+ * userspace_is_clean
+ *
+ * Check whether a region is clean. If there is any sort of
+ * failure when consulting the server, we return not clean.
+ *
+ * Returns: 1 if clean, 0 otherwise
+ */
+static int userspace_is_clean(struct dm_dirty_log *log, region_t region)
+{
+ int r;
+ uint64_t region64 = (uint64_t)region;
+ int64_t is_clean;
+ size_t rdata_size;
+ struct log_c *lc = log->context;
+
+ rdata_size = sizeof(is_clean);
+ r = userspace_do_request(lc, lc->uuid, DM_ULOG_IS_CLEAN,
+ (char *)&region64, sizeof(region64),
+ (char *)&is_clean, &rdata_size);
+
+ return (r) ? 0 : (int)is_clean;
+}
+
+/*
+ * userspace_in_sync
+ *
+ * Check if the region is in-sync. If there is any sort
+ * of failure when consulting the server, we assume that
+ * the region is not in sync.
+ *
+ * If 'can_block' is set, return immediately
+ *
+ * Returns: 1 if in-sync, 0 if not-in-sync, -EWOULDBLOCK
+ */
+static int userspace_in_sync(struct dm_dirty_log *log, region_t region,
+ int can_block)
+{
+ int r;
+ uint64_t region64 = region;
+ int64_t in_sync;
+ size_t rdata_size;
+ struct log_c *lc = log->context;
+
+ /*
+ * We can never respond directly - even if in_sync_hint is
+ * set. This is because another machine could see a device
+ * failure and mark the region out-of-sync. If we don't go
+ * to userspace to ask, we might think the region is in-sync
+ * and allow a read to pick up data that is stale. (This is
+ * very unlikely if a device actually fails; but it is very
+ * likely if a connection to one device from one machine fails.)
+ *
+ * There still might be a problem if the mirror caches the region
+ * state as in-sync... but then this call would not be made. So,
+ * that is a mirror problem.
+ */
+ if (!can_block)
+ return -EWOULDBLOCK;
+
+ rdata_size = sizeof(in_sync);
+ r = userspace_do_request(lc, lc->uuid, DM_ULOG_IN_SYNC,
+ (char *)&region64, sizeof(region64),
+ (char *)&in_sync, &rdata_size);
+ return (r) ? 0 : (int)in_sync;
+}
+
+static int flush_one_by_one(struct log_c *lc, struct list_head *flush_list)
+{
+ int r = 0;
+ struct dm_dirty_log_flush_entry *fe;
+
+ list_for_each_entry(fe, flush_list, list) {
+ r = userspace_do_request(lc, lc->uuid, fe->type,
+ (char *)&fe->region,
+ sizeof(fe->region),
+ NULL, NULL);
+ if (r)
+ break;
+ }
+
+ return r;
+}
+
+static int flush_by_group(struct log_c *lc, struct list_head *flush_list,
+ int flush_with_payload)
+{
+ int r = 0;
+ int count;
+ uint32_t type = 0;
+ struct dm_dirty_log_flush_entry *fe, *tmp_fe;
+ LIST_HEAD(tmp_list);
+ uint64_t group[MAX_FLUSH_GROUP_COUNT];
+
+ /*
+ * Group process the requests
+ */
+ while (!list_empty(flush_list)) {
+ count = 0;
+
+ list_for_each_entry_safe(fe, tmp_fe, flush_list, list) {
+ group[count] = fe->region;
+ count++;
+
+ list_move(&fe->list, &tmp_list);
+
+ type = fe->type;
+ if (count >= MAX_FLUSH_GROUP_COUNT)
+ break;
+ }
+
+ if (flush_with_payload) {
+ r = userspace_do_request(lc, lc->uuid, DM_ULOG_FLUSH,
+ (char *)(group),
+ count * sizeof(uint64_t),
+ NULL, NULL);
+ /*
+ * Integrated flush failed.
+ */
+ if (r)
+ break;
+ } else {
+ r = userspace_do_request(lc, lc->uuid, type,
+ (char *)(group),
+ count * sizeof(uint64_t),
+ NULL, NULL);
+ if (r) {
+ /*
+ * Group send failed. Attempt one-by-one.
+ */
+ list_splice_init(&tmp_list, flush_list);
+ r = flush_one_by_one(lc, flush_list);
+ break;
+ }
+ }
+ }
+
+ /*
+ * Must collect flush_entrys that were successfully processed
+ * as a group so that they will be free'd by the caller.
+ */
+ list_splice_init(&tmp_list, flush_list);
+
+ return r;
+}
+
+/*
+ * userspace_flush
+ *
+ * This function is ok to block.
+ * The flush happens in two stages. First, it sends all
+ * clear/mark requests that are on the list. Then it
+ * tells the server to commit them. This gives the
+ * server a chance to optimise the commit, instead of
+ * doing it for every request.
+ *
+ * Additionally, we could implement another thread that
+ * sends the requests up to the server - reducing the
+ * load on flush. Then the flush would have less in
+ * the list and be responsible for the finishing commit.
+ *
+ * Returns: 0 on success, < 0 on failure
+ */
+static int userspace_flush(struct dm_dirty_log *log)
+{
+ int r = 0;
+ unsigned long flags;
+ struct log_c *lc = log->context;
+ LIST_HEAD(mark_list);
+ LIST_HEAD(clear_list);
+ int mark_list_is_empty;
+ int clear_list_is_empty;
+ struct dm_dirty_log_flush_entry *fe, *tmp_fe;
+ mempool_t *flush_entry_pool = &lc->flush_entry_pool;
+
+ spin_lock_irqsave(&lc->flush_lock, flags);
+ list_splice_init(&lc->mark_list, &mark_list);
+ list_splice_init(&lc->clear_list, &clear_list);
+ spin_unlock_irqrestore(&lc->flush_lock, flags);
+
+ mark_list_is_empty = list_empty(&mark_list);
+ clear_list_is_empty = list_empty(&clear_list);
+
+ if (mark_list_is_empty && clear_list_is_empty)
+ return 0;
+
+ r = flush_by_group(lc, &clear_list, 0);
+ if (r)
+ goto out;
+
+ if (!lc->integrated_flush) {
+ r = flush_by_group(lc, &mark_list, 0);
+ if (r)
+ goto out;
+ r = userspace_do_request(lc, lc->uuid, DM_ULOG_FLUSH,
+ NULL, 0, NULL, NULL);
+ goto out;
+ }
+
+ /*
+ * Send integrated flush request with mark_list as payload.
+ */
+ r = flush_by_group(lc, &mark_list, 1);
+ if (r)
+ goto out;
+
+ if (mark_list_is_empty && !atomic_read(&lc->sched_flush)) {
+ /*
+ * When there are only clear region requests,
+ * we schedule a flush in the future.
+ */
+ queue_delayed_work(lc->dmlog_wq, &lc->flush_log_work, 3 * HZ);
+ atomic_set(&lc->sched_flush, 1);
+ } else {
+ /*
+ * Cancel pending flush because we
+ * have already flushed in mark_region.
+ */
+ cancel_delayed_work(&lc->flush_log_work);
+ atomic_set(&lc->sched_flush, 0);
+ }
+
+out:
+ /*
+ * We can safely remove these entries, even after failure.
+ * Calling code will receive an error and will know that
+ * the log facility has failed.
+ */
+ list_for_each_entry_safe(fe, tmp_fe, &mark_list, list) {
+ list_del(&fe->list);
+ mempool_free(fe, flush_entry_pool);
+ }
+ list_for_each_entry_safe(fe, tmp_fe, &clear_list, list) {
+ list_del(&fe->list);
+ mempool_free(fe, flush_entry_pool);
+ }
+
+ if (r)
+ dm_table_event(lc->ti->table);
+
+ return r;
+}
+
+/*
+ * userspace_mark_region
+ *
+ * This function should avoid blocking unless absolutely required.
+ * (Memory allocation is valid for blocking.)
+ */
+static void userspace_mark_region(struct dm_dirty_log *log, region_t region)
+{
+ unsigned long flags;
+ struct log_c *lc = log->context;
+ struct dm_dirty_log_flush_entry *fe;
+
+ /* Wait for an allocation, but _never_ fail */
+ fe = mempool_alloc(&lc->flush_entry_pool, GFP_NOIO);
+ BUG_ON(!fe);
+
+ spin_lock_irqsave(&lc->flush_lock, flags);
+ fe->type = DM_ULOG_MARK_REGION;
+ fe->region = region;
+ list_add(&fe->list, &lc->mark_list);
+ spin_unlock_irqrestore(&lc->flush_lock, flags);
+
+ return;
+}
+
+/*
+ * userspace_clear_region
+ *
+ * This function must not block.
+ * So, the alloc can't block. In the worst case, it is ok to
+ * fail. It would simply mean we can't clear the region.
+ * Does nothing to current sync context, but does mean
+ * the region will be re-sync'ed on a reload of the mirror
+ * even though it is in-sync.
+ */
+static void userspace_clear_region(struct dm_dirty_log *log, region_t region)
+{
+ unsigned long flags;
+ struct log_c *lc = log->context;
+ struct dm_dirty_log_flush_entry *fe;
+
+ /*
+ * If we fail to allocate, we skip the clearing of
+ * the region. This doesn't hurt us in any way, except
+ * to cause the region to be resync'ed when the
+ * device is activated next time.
+ */
+ fe = mempool_alloc(&lc->flush_entry_pool, GFP_ATOMIC);
+ if (!fe) {
+ DMERR("Failed to allocate memory to clear region.");
+ return;
+ }
+
+ spin_lock_irqsave(&lc->flush_lock, flags);
+ fe->type = DM_ULOG_CLEAR_REGION;
+ fe->region = region;
+ list_add(&fe->list, &lc->clear_list);
+ spin_unlock_irqrestore(&lc->flush_lock, flags);
+
+ return;
+}
+
+/*
+ * userspace_get_resync_work
+ *
+ * Get a region that needs recovery. It is valid to return
+ * an error for this function.
+ *
+ * Returns: 1 if region filled, 0 if no work, <0 on error
+ */
+static int userspace_get_resync_work(struct dm_dirty_log *log, region_t *region)
+{
+ int r;
+ size_t rdata_size;
+ struct log_c *lc = log->context;
+ struct {
+ int64_t i; /* 64-bit for mix arch compatibility */
+ region_t r;
+ } pkg;
+
+ if (lc->in_sync_hint >= lc->region_count)
+ return 0;
+
+ rdata_size = sizeof(pkg);
+ r = userspace_do_request(lc, lc->uuid, DM_ULOG_GET_RESYNC_WORK,
+ NULL, 0, (char *)&pkg, &rdata_size);
+
+ *region = pkg.r;
+ return (r) ? r : (int)pkg.i;
+}
+
+/*
+ * userspace_set_region_sync
+ *
+ * Set the sync status of a given region. This function
+ * must not fail.
+ */
+static void userspace_set_region_sync(struct dm_dirty_log *log,
+ region_t region, int in_sync)
+{
+ struct log_c *lc = log->context;
+ struct {
+ region_t r;
+ int64_t i;
+ } pkg;
+
+ pkg.r = region;
+ pkg.i = (int64_t)in_sync;
+
+ (void) userspace_do_request(lc, lc->uuid, DM_ULOG_SET_REGION_SYNC,
+ (char *)&pkg, sizeof(pkg), NULL, NULL);
+
+ /*
+ * It would be nice to be able to report failures.
+ * However, it is easy enough to detect and resolve.
+ */
+ return;
+}
+
+/*
+ * userspace_get_sync_count
+ *
+ * If there is any sort of failure when consulting the server,
+ * we assume that the sync count is zero.
+ *
+ * Returns: sync count on success, 0 on failure
+ */
+static region_t userspace_get_sync_count(struct dm_dirty_log *log)
+{
+ int r;
+ size_t rdata_size;
+ uint64_t sync_count;
+ struct log_c *lc = log->context;
+
+ rdata_size = sizeof(sync_count);
+ r = userspace_do_request(lc, lc->uuid, DM_ULOG_GET_SYNC_COUNT,
+ NULL, 0, (char *)&sync_count, &rdata_size);
+
+ if (r)
+ return 0;
+
+ if (sync_count >= lc->region_count)
+ lc->in_sync_hint = lc->region_count;
+
+ return (region_t)sync_count;
+}
+
+/*
+ * userspace_status
+ *
+ * Returns: amount of space consumed
+ */
+static int userspace_status(struct dm_dirty_log *log, status_type_t status_type,
+ char *result, unsigned int maxlen)
+{
+ int r = 0;
+ char *table_args;
+ size_t sz = (size_t)maxlen;
+ struct log_c *lc = log->context;
+
+ switch (status_type) {
+ case STATUSTYPE_INFO:
+ r = userspace_do_request(lc, lc->uuid, DM_ULOG_STATUS_INFO,
+ NULL, 0, result, &sz);
+
+ if (r) {
+ sz = 0;
+ DMEMIT("%s 1 COM_FAILURE", log->type->name);
+ }
+ break;
+ case STATUSTYPE_TABLE:
+ sz = 0;
+ table_args = strchr(lc->usr_argv_str, ' ');
+ BUG_ON(!table_args); /* There will always be a ' ' */
+ table_args++;
+
+ DMEMIT("%s %u %s ", log->type->name, lc->usr_argc, lc->uuid);
+ if (lc->integrated_flush)
+ DMEMIT("integrated_flush ");
+ DMEMIT("%s ", table_args);
+ break;
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+ return (r) ? 0 : (int)sz;
+}
+
+/*
+ * userspace_is_remote_recovering
+ *
+ * Returns: 1 if region recovering, 0 otherwise
+ */
+static int userspace_is_remote_recovering(struct dm_dirty_log *log,
+ region_t region)
+{
+ int r;
+ uint64_t region64 = region;
+ struct log_c *lc = log->context;
+ static unsigned long limit;
+ struct {
+ int64_t is_recovering;
+ uint64_t in_sync_hint;
+ } pkg;
+ size_t rdata_size = sizeof(pkg);
+
+ /*
+ * Once the mirror has been reported to be in-sync,
+ * it will never again ask for recovery work. So,
+ * we can safely say there is not a remote machine
+ * recovering if the device is in-sync. (in_sync_hint
+ * must be reset at resume time.)
+ */
+ if (region < lc->in_sync_hint)
+ return 0;
+ else if (time_after(limit, jiffies))
+ return 1;
+
+ limit = jiffies + (HZ / 4);
+ r = userspace_do_request(lc, lc->uuid, DM_ULOG_IS_REMOTE_RECOVERING,
+ (char *)&region64, sizeof(region64),
+ (char *)&pkg, &rdata_size);
+ if (r)
+ return 1;
+
+ lc->in_sync_hint = pkg.in_sync_hint;
+
+ return (int)pkg.is_recovering;
+}
+
+static struct dm_dirty_log_type _userspace_type = {
+ .name = "userspace",
+ .module = THIS_MODULE,
+ .ctr = userspace_ctr,
+ .dtr = userspace_dtr,
+ .presuspend = userspace_presuspend,
+ .postsuspend = userspace_postsuspend,
+ .resume = userspace_resume,
+ .get_region_size = userspace_get_region_size,
+ .is_clean = userspace_is_clean,
+ .in_sync = userspace_in_sync,
+ .flush = userspace_flush,
+ .mark_region = userspace_mark_region,
+ .clear_region = userspace_clear_region,
+ .get_resync_work = userspace_get_resync_work,
+ .set_region_sync = userspace_set_region_sync,
+ .get_sync_count = userspace_get_sync_count,
+ .status = userspace_status,
+ .is_remote_recovering = userspace_is_remote_recovering,
+};
+
+static int __init userspace_dirty_log_init(void)
+{
+ int r = 0;
+
+ _flush_entry_cache = KMEM_CACHE(dm_dirty_log_flush_entry, 0);
+ if (!_flush_entry_cache) {
+ DMWARN("Unable to create flush_entry_cache: No memory.");
+ return -ENOMEM;
+ }
+
+ r = dm_ulog_tfr_init();
+ if (r) {
+ DMWARN("Unable to initialize userspace log communications");
+ kmem_cache_destroy(_flush_entry_cache);
+ return r;
+ }
+
+ r = dm_dirty_log_type_register(&_userspace_type);
+ if (r) {
+ DMWARN("Couldn't register userspace dirty log type");
+ dm_ulog_tfr_exit();
+ kmem_cache_destroy(_flush_entry_cache);
+ return r;
+ }
+
+ DMINFO("version " DM_LOG_USERSPACE_VSN " loaded");
+ return 0;
+}
+
+static void __exit userspace_dirty_log_exit(void)
+{
+ dm_dirty_log_type_unregister(&_userspace_type);
+ dm_ulog_tfr_exit();
+ kmem_cache_destroy(_flush_entry_cache);
+
+ DMINFO("version " DM_LOG_USERSPACE_VSN " unloaded");
+ return;
+}
+
+module_init(userspace_dirty_log_init);
+module_exit(userspace_dirty_log_exit);
+
+MODULE_DESCRIPTION(DM_NAME " userspace dirty log link");
+MODULE_AUTHOR("Jonathan Brassow <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-log-userspace-transfer.c b/drivers/md/dm-log-userspace-transfer.c
new file mode 100644
index 000000000..ee5586e8e
--- /dev/null
+++ b/drivers/md/dm-log-userspace-transfer.c
@@ -0,0 +1,286 @@
+/*
+ * Copyright (C) 2006-2009 Red Hat, Inc.
+ *
+ * This file is released under the LGPL.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <net/sock.h>
+#include <linux/workqueue.h>
+#include <linux/connector.h>
+#include <linux/device-mapper.h>
+#include <linux/dm-log-userspace.h>
+
+#include "dm-log-userspace-transfer.h"
+
+static uint32_t dm_ulog_seq;
+
+/*
+ * Netlink/Connector is an unreliable protocol. How long should
+ * we wait for a response before assuming it was lost and retrying?
+ * (If we do receive a response after this time, it will be discarded
+ * and the response to the resent request will be waited for.
+ */
+#define DM_ULOG_RETRY_TIMEOUT (15 * HZ)
+
+/*
+ * Pre-allocated space for speed
+ */
+#define DM_ULOG_PREALLOCED_SIZE 512
+static struct cn_msg *prealloced_cn_msg;
+static struct dm_ulog_request *prealloced_ulog_tfr;
+
+static struct cb_id ulog_cn_id = {
+ .idx = CN_IDX_DM,
+ .val = CN_VAL_DM_USERSPACE_LOG
+};
+
+static DEFINE_MUTEX(dm_ulog_lock);
+
+struct receiving_pkg {
+ struct list_head list;
+ struct completion complete;
+
+ uint32_t seq;
+
+ int error;
+ size_t *data_size;
+ char *data;
+};
+
+static DEFINE_SPINLOCK(receiving_list_lock);
+static struct list_head receiving_list;
+
+static int dm_ulog_sendto_server(struct dm_ulog_request *tfr)
+{
+ int r;
+ struct cn_msg *msg = prealloced_cn_msg;
+
+ memset(msg, 0, sizeof(struct cn_msg));
+
+ msg->id.idx = ulog_cn_id.idx;
+ msg->id.val = ulog_cn_id.val;
+ msg->ack = 0;
+ msg->seq = tfr->seq;
+ msg->len = sizeof(struct dm_ulog_request) + tfr->data_size;
+
+ r = cn_netlink_send(msg, 0, 0, gfp_any());
+
+ return r;
+}
+
+/*
+ * Parameters for this function can be either msg or tfr, but not
+ * both. This function fills in the reply for a waiting request.
+ * If just msg is given, then the reply is simply an ACK from userspace
+ * that the request was received.
+ *
+ * Returns: 0 on success, -ENOENT on failure
+ */
+static int fill_pkg(struct cn_msg *msg, struct dm_ulog_request *tfr)
+{
+ uint32_t rtn_seq = (msg) ? msg->seq : (tfr) ? tfr->seq : 0;
+ struct receiving_pkg *pkg;
+
+ /*
+ * The 'receiving_pkg' entries in this list are statically
+ * allocated on the stack in 'dm_consult_userspace'.
+ * Each process that is waiting for a reply from the user
+ * space server will have an entry in this list.
+ *
+ * We are safe to do it this way because the stack space
+ * is unique to each process, but still addressable by
+ * other processes.
+ */
+ list_for_each_entry(pkg, &receiving_list, list) {
+ if (rtn_seq != pkg->seq)
+ continue;
+
+ if (msg) {
+ pkg->error = -msg->ack;
+ /*
+ * If we are trying again, we will need to know our
+ * storage capacity. Otherwise, along with the
+ * error code, we make explicit that we have no data.
+ */
+ if (pkg->error != -EAGAIN)
+ *(pkg->data_size) = 0;
+ } else if (tfr->data_size > *(pkg->data_size)) {
+ DMERR("Insufficient space to receive package [%u] (%u vs %zu)",
+ tfr->request_type, tfr->data_size, *(pkg->data_size));
+
+ *(pkg->data_size) = 0;
+ pkg->error = -ENOSPC;
+ } else {
+ pkg->error = tfr->error;
+ memcpy(pkg->data, tfr->data, tfr->data_size);
+ *(pkg->data_size) = tfr->data_size;
+ }
+ complete(&pkg->complete);
+ return 0;
+ }
+
+ return -ENOENT;
+}
+
+/*
+ * This is the connector callback that delivers data
+ * that was sent from userspace.
+ */
+static void cn_ulog_callback(struct cn_msg *msg, struct netlink_skb_parms *nsp)
+{
+ struct dm_ulog_request *tfr = (struct dm_ulog_request *)(msg + 1);
+
+ if (!capable(CAP_SYS_ADMIN))
+ return;
+
+ spin_lock(&receiving_list_lock);
+ if (msg->len == 0)
+ fill_pkg(msg, NULL);
+ else if (msg->len < sizeof(*tfr))
+ DMERR("Incomplete message received (expected %u, got %u): [%u]",
+ (unsigned int)sizeof(*tfr), msg->len, msg->seq);
+ else
+ fill_pkg(NULL, tfr);
+ spin_unlock(&receiving_list_lock);
+}
+
+/**
+ * dm_consult_userspace
+ * @uuid: log's universal unique identifier (must be DM_UUID_LEN in size)
+ * @luid: log's local unique identifier
+ * @request_type: found in include/linux/dm-log-userspace.h
+ * @data: data to tx to the server
+ * @data_size: size of data in bytes
+ * @rdata: place to put return data from server
+ * @rdata_size: value-result (amount of space given/amount of space used)
+ *
+ * rdata_size is undefined on failure.
+ *
+ * Memory used to communicate with userspace is zero'ed
+ * before populating to ensure that no unwanted bits leak
+ * from kernel space to user-space. All userspace log communications
+ * between kernel and user space go through this function.
+ *
+ * Returns: 0 on success, -EXXX on failure
+ **/
+int dm_consult_userspace(const char *uuid, uint64_t luid, int request_type,
+ char *data, size_t data_size,
+ char *rdata, size_t *rdata_size)
+{
+ int r = 0;
+ unsigned long tmo;
+ size_t dummy = 0;
+ int overhead_size = sizeof(struct dm_ulog_request) + sizeof(struct cn_msg);
+ struct dm_ulog_request *tfr = prealloced_ulog_tfr;
+ struct receiving_pkg pkg;
+
+ /*
+ * Given the space needed to hold the 'struct cn_msg' and
+ * 'struct dm_ulog_request' - do we have enough payload
+ * space remaining?
+ */
+ if (data_size > (DM_ULOG_PREALLOCED_SIZE - overhead_size)) {
+ DMINFO("Size of tfr exceeds preallocated size");
+ return -EINVAL;
+ }
+
+ if (!rdata_size)
+ rdata_size = &dummy;
+resend:
+ /*
+ * We serialize the sending of requests so we can
+ * use the preallocated space.
+ */
+ mutex_lock(&dm_ulog_lock);
+
+ memset(tfr, 0, DM_ULOG_PREALLOCED_SIZE - sizeof(struct cn_msg));
+ memcpy(tfr->uuid, uuid, DM_UUID_LEN);
+ tfr->version = DM_ULOG_REQUEST_VERSION;
+ tfr->luid = luid;
+ tfr->seq = dm_ulog_seq++;
+
+ /*
+ * Must be valid request type (all other bits set to
+ * zero). This reserves other bits for possible future
+ * use.
+ */
+ tfr->request_type = request_type & DM_ULOG_REQUEST_MASK;
+
+ tfr->data_size = data_size;
+ if (data && data_size)
+ memcpy(tfr->data, data, data_size);
+
+ memset(&pkg, 0, sizeof(pkg));
+ init_completion(&pkg.complete);
+ pkg.seq = tfr->seq;
+ pkg.data_size = rdata_size;
+ pkg.data = rdata;
+ spin_lock(&receiving_list_lock);
+ list_add(&(pkg.list), &receiving_list);
+ spin_unlock(&receiving_list_lock);
+
+ r = dm_ulog_sendto_server(tfr);
+
+ mutex_unlock(&dm_ulog_lock);
+
+ if (r) {
+ DMERR("Unable to send log request [%u] to userspace: %d",
+ request_type, r);
+ spin_lock(&receiving_list_lock);
+ list_del_init(&(pkg.list));
+ spin_unlock(&receiving_list_lock);
+
+ goto out;
+ }
+
+ tmo = wait_for_completion_timeout(&(pkg.complete), DM_ULOG_RETRY_TIMEOUT);
+ spin_lock(&receiving_list_lock);
+ list_del_init(&(pkg.list));
+ spin_unlock(&receiving_list_lock);
+ if (!tmo) {
+ DMWARN("[%s] Request timed out: [%u/%u] - retrying",
+ (strlen(uuid) > 8) ?
+ (uuid + (strlen(uuid) - 8)) : (uuid),
+ request_type, pkg.seq);
+ goto resend;
+ }
+
+ r = pkg.error;
+ if (r == -EAGAIN)
+ goto resend;
+
+out:
+ return r;
+}
+
+int dm_ulog_tfr_init(void)
+{
+ int r;
+ void *prealloced;
+
+ INIT_LIST_HEAD(&receiving_list);
+
+ prealloced = kmalloc(DM_ULOG_PREALLOCED_SIZE, GFP_KERNEL);
+ if (!prealloced)
+ return -ENOMEM;
+
+ prealloced_cn_msg = prealloced;
+ prealloced_ulog_tfr = prealloced + sizeof(struct cn_msg);
+
+ r = cn_add_callback(&ulog_cn_id, "dmlogusr", cn_ulog_callback);
+ if (r) {
+ kfree(prealloced_cn_msg);
+ return r;
+ }
+
+ return 0;
+}
+
+void dm_ulog_tfr_exit(void)
+{
+ cn_del_callback(&ulog_cn_id);
+ kfree(prealloced_cn_msg);
+}
diff --git a/drivers/md/dm-log-userspace-transfer.h b/drivers/md/dm-log-userspace-transfer.h
new file mode 100644
index 000000000..04ee874f9
--- /dev/null
+++ b/drivers/md/dm-log-userspace-transfer.h
@@ -0,0 +1,18 @@
+/*
+ * Copyright (C) 2006-2009 Red Hat, Inc.
+ *
+ * This file is released under the LGPL.
+ */
+
+#ifndef __DM_LOG_USERSPACE_TRANSFER_H__
+#define __DM_LOG_USERSPACE_TRANSFER_H__
+
+#define DM_MSG_PREFIX "dm-log-userspace"
+
+int dm_ulog_tfr_init(void);
+void dm_ulog_tfr_exit(void);
+int dm_consult_userspace(const char *uuid, uint64_t luid, int request_type,
+ char *data, size_t data_size,
+ char *rdata, size_t *rdata_size);
+
+#endif /* __DM_LOG_USERSPACE_TRANSFER_H__ */
diff --git a/drivers/md/dm-log-writes.c b/drivers/md/dm-log-writes.c
new file mode 100644
index 000000000..efdfb2e18
--- /dev/null
+++ b/drivers/md/dm-log-writes.c
@@ -0,0 +1,960 @@
+/*
+ * Copyright (C) 2014 Facebook. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/device-mapper.h>
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/blkdev.h>
+#include <linux/bio.h>
+#include <linux/dax.h>
+#include <linux/slab.h>
+#include <linux/kthread.h>
+#include <linux/freezer.h>
+#include <linux/uio.h>
+
+#define DM_MSG_PREFIX "log-writes"
+
+/*
+ * This target will sequentially log all writes to the target device onto the
+ * log device. This is helpful for replaying writes to check for fs consistency
+ * at all times. This target provides a mechanism to mark specific events to
+ * check data at a later time. So for example you would:
+ *
+ * write data
+ * fsync
+ * dmsetup message /dev/whatever mark mymark
+ * unmount /mnt/test
+ *
+ * Then replay the log up to mymark and check the contents of the replay to
+ * verify it matches what was written.
+ *
+ * We log writes only after they have been flushed, this makes the log describe
+ * close to the order in which the data hits the actual disk, not its cache. So
+ * for example the following sequence (W means write, C means complete)
+ *
+ * Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd
+ *
+ * Would result in the log looking like this:
+ *
+ * c,a,b,flush,fuad,<other writes>,<next flush>
+ *
+ * This is meant to help expose problems where file systems do not properly wait
+ * on data being written before invoking a FLUSH. FUA bypasses cache so once it
+ * completes it is added to the log as it should be on disk.
+ *
+ * We treat DISCARDs as if they don't bypass cache so that they are logged in
+ * order of completion along with the normal writes. If we didn't do it this
+ * way we would process all the discards first and then write all the data, when
+ * in fact we want to do the data and the discard in the order that they
+ * completed.
+ */
+#define LOG_FLUSH_FLAG (1 << 0)
+#define LOG_FUA_FLAG (1 << 1)
+#define LOG_DISCARD_FLAG (1 << 2)
+#define LOG_MARK_FLAG (1 << 3)
+#define LOG_METADATA_FLAG (1 << 4)
+
+#define WRITE_LOG_VERSION 1ULL
+#define WRITE_LOG_MAGIC 0x6a736677736872ULL
+#define WRITE_LOG_SUPER_SECTOR 0
+
+/*
+ * The disk format for this is braindead simple.
+ *
+ * At byte 0 we have our super, followed by the following sequence for
+ * nr_entries:
+ *
+ * [ 1 sector ][ entry->nr_sectors ]
+ * [log_write_entry][ data written ]
+ *
+ * The log_write_entry takes up a full sector so we can have arbitrary length
+ * marks and it leaves us room for extra content in the future.
+ */
+
+/*
+ * Basic info about the log for userspace.
+ */
+struct log_write_super {
+ __le64 magic;
+ __le64 version;
+ __le64 nr_entries;
+ __le32 sectorsize;
+};
+
+/*
+ * sector - the sector we wrote.
+ * nr_sectors - the number of sectors we wrote.
+ * flags - flags for this log entry.
+ * data_len - the size of the data in this log entry, this is for private log
+ * entry stuff, the MARK data provided by userspace for example.
+ */
+struct log_write_entry {
+ __le64 sector;
+ __le64 nr_sectors;
+ __le64 flags;
+ __le64 data_len;
+};
+
+struct log_writes_c {
+ struct dm_dev *dev;
+ struct dm_dev *logdev;
+ u64 logged_entries;
+ u32 sectorsize;
+ u32 sectorshift;
+ atomic_t io_blocks;
+ atomic_t pending_blocks;
+ sector_t next_sector;
+ sector_t end_sector;
+ bool logging_enabled;
+ bool device_supports_discard;
+ spinlock_t blocks_lock;
+ struct list_head unflushed_blocks;
+ struct list_head logging_blocks;
+ wait_queue_head_t wait;
+ struct task_struct *log_kthread;
+ struct completion super_done;
+};
+
+struct pending_block {
+ int vec_cnt;
+ u64 flags;
+ sector_t sector;
+ sector_t nr_sectors;
+ char *data;
+ u32 datalen;
+ struct list_head list;
+ struct bio_vec vecs[];
+};
+
+struct per_bio_data {
+ struct pending_block *block;
+};
+
+static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc,
+ sector_t sectors)
+{
+ return sectors >> (lc->sectorshift - SECTOR_SHIFT);
+}
+
+static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc,
+ sector_t sectors)
+{
+ return sectors << (lc->sectorshift - SECTOR_SHIFT);
+}
+
+static void put_pending_block(struct log_writes_c *lc)
+{
+ if (atomic_dec_and_test(&lc->pending_blocks)) {
+ smp_mb__after_atomic();
+ if (waitqueue_active(&lc->wait))
+ wake_up(&lc->wait);
+ }
+}
+
+static void put_io_block(struct log_writes_c *lc)
+{
+ if (atomic_dec_and_test(&lc->io_blocks)) {
+ smp_mb__after_atomic();
+ if (waitqueue_active(&lc->wait))
+ wake_up(&lc->wait);
+ }
+}
+
+static void log_end_io(struct bio *bio)
+{
+ struct log_writes_c *lc = bio->bi_private;
+
+ if (bio->bi_status) {
+ unsigned long flags;
+
+ DMERR("Error writing log block, error=%d", bio->bi_status);
+ spin_lock_irqsave(&lc->blocks_lock, flags);
+ lc->logging_enabled = false;
+ spin_unlock_irqrestore(&lc->blocks_lock, flags);
+ }
+
+ bio_free_pages(bio);
+ put_io_block(lc);
+ bio_put(bio);
+}
+
+static void log_end_super(struct bio *bio)
+{
+ struct log_writes_c *lc = bio->bi_private;
+
+ complete(&lc->super_done);
+ log_end_io(bio);
+}
+
+/*
+ * Meant to be called if there is an error, it will free all the pages
+ * associated with the block.
+ */
+static void free_pending_block(struct log_writes_c *lc,
+ struct pending_block *block)
+{
+ int i;
+
+ for (i = 0; i < block->vec_cnt; i++) {
+ if (block->vecs[i].bv_page)
+ __free_page(block->vecs[i].bv_page);
+ }
+ kfree(block->data);
+ kfree(block);
+ put_pending_block(lc);
+}
+
+static int write_metadata(struct log_writes_c *lc, void *entry,
+ size_t entrylen, void *data, size_t datalen,
+ sector_t sector)
+{
+ struct bio *bio;
+ struct page *page;
+ void *ptr;
+ size_t ret;
+
+ bio = bio_alloc(lc->logdev->bdev, 1, REQ_OP_WRITE, GFP_KERNEL);
+ bio->bi_iter.bi_size = 0;
+ bio->bi_iter.bi_sector = sector;
+ bio->bi_end_io = (sector == WRITE_LOG_SUPER_SECTOR) ?
+ log_end_super : log_end_io;
+ bio->bi_private = lc;
+
+ page = alloc_page(GFP_KERNEL);
+ if (!page) {
+ DMERR("Couldn't alloc log page");
+ bio_put(bio);
+ goto error;
+ }
+
+ ptr = kmap_atomic(page);
+ memcpy(ptr, entry, entrylen);
+ if (datalen)
+ memcpy(ptr + entrylen, data, datalen);
+ memset(ptr + entrylen + datalen, 0,
+ lc->sectorsize - entrylen - datalen);
+ kunmap_atomic(ptr);
+
+ ret = bio_add_page(bio, page, lc->sectorsize, 0);
+ if (ret != lc->sectorsize) {
+ DMERR("Couldn't add page to the log block");
+ goto error_bio;
+ }
+ submit_bio(bio);
+ return 0;
+error_bio:
+ bio_put(bio);
+ __free_page(page);
+error:
+ put_io_block(lc);
+ return -1;
+}
+
+static int write_inline_data(struct log_writes_c *lc, void *entry,
+ size_t entrylen, void *data, size_t datalen,
+ sector_t sector)
+{
+ int bio_pages, pg_datalen, pg_sectorlen, i;
+ struct page *page;
+ struct bio *bio;
+ size_t ret;
+ void *ptr;
+
+ while (datalen) {
+ bio_pages = bio_max_segs(DIV_ROUND_UP(datalen, PAGE_SIZE));
+
+ atomic_inc(&lc->io_blocks);
+
+ bio = bio_alloc(lc->logdev->bdev, bio_pages, REQ_OP_WRITE,
+ GFP_KERNEL);
+ bio->bi_iter.bi_size = 0;
+ bio->bi_iter.bi_sector = sector;
+ bio->bi_end_io = log_end_io;
+ bio->bi_private = lc;
+
+ for (i = 0; i < bio_pages; i++) {
+ pg_datalen = min_t(int, datalen, PAGE_SIZE);
+ pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize);
+
+ page = alloc_page(GFP_KERNEL);
+ if (!page) {
+ DMERR("Couldn't alloc inline data page");
+ goto error_bio;
+ }
+
+ ptr = kmap_atomic(page);
+ memcpy(ptr, data, pg_datalen);
+ if (pg_sectorlen > pg_datalen)
+ memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen);
+ kunmap_atomic(ptr);
+
+ ret = bio_add_page(bio, page, pg_sectorlen, 0);
+ if (ret != pg_sectorlen) {
+ DMERR("Couldn't add page of inline data");
+ __free_page(page);
+ goto error_bio;
+ }
+
+ datalen -= pg_datalen;
+ data += pg_datalen;
+ }
+ submit_bio(bio);
+
+ sector += bio_pages * PAGE_SECTORS;
+ }
+ return 0;
+error_bio:
+ bio_free_pages(bio);
+ bio_put(bio);
+ put_io_block(lc);
+ return -1;
+}
+
+static int log_one_block(struct log_writes_c *lc,
+ struct pending_block *block, sector_t sector)
+{
+ struct bio *bio;
+ struct log_write_entry entry;
+ size_t metadatalen, ret;
+ int i;
+
+ entry.sector = cpu_to_le64(block->sector);
+ entry.nr_sectors = cpu_to_le64(block->nr_sectors);
+ entry.flags = cpu_to_le64(block->flags);
+ entry.data_len = cpu_to_le64(block->datalen);
+
+ metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0;
+ if (write_metadata(lc, &entry, sizeof(entry), block->data,
+ metadatalen, sector)) {
+ free_pending_block(lc, block);
+ return -1;
+ }
+
+ sector += dev_to_bio_sectors(lc, 1);
+
+ if (block->datalen && metadatalen == 0) {
+ if (write_inline_data(lc, &entry, sizeof(entry), block->data,
+ block->datalen, sector)) {
+ free_pending_block(lc, block);
+ return -1;
+ }
+ /* we don't support both inline data & bio data */
+ goto out;
+ }
+
+ if (!block->vec_cnt)
+ goto out;
+
+ atomic_inc(&lc->io_blocks);
+ bio = bio_alloc(lc->logdev->bdev, bio_max_segs(block->vec_cnt),
+ REQ_OP_WRITE, GFP_KERNEL);
+ bio->bi_iter.bi_size = 0;
+ bio->bi_iter.bi_sector = sector;
+ bio->bi_end_io = log_end_io;
+ bio->bi_private = lc;
+
+ for (i = 0; i < block->vec_cnt; i++) {
+ /*
+ * The page offset is always 0 because we allocate a new page
+ * for every bvec in the original bio for simplicity sake.
+ */
+ ret = bio_add_page(bio, block->vecs[i].bv_page,
+ block->vecs[i].bv_len, 0);
+ if (ret != block->vecs[i].bv_len) {
+ atomic_inc(&lc->io_blocks);
+ submit_bio(bio);
+ bio = bio_alloc(lc->logdev->bdev,
+ bio_max_segs(block->vec_cnt - i),
+ REQ_OP_WRITE, GFP_KERNEL);
+ bio->bi_iter.bi_size = 0;
+ bio->bi_iter.bi_sector = sector;
+ bio->bi_end_io = log_end_io;
+ bio->bi_private = lc;
+
+ ret = bio_add_page(bio, block->vecs[i].bv_page,
+ block->vecs[i].bv_len, 0);
+ if (ret != block->vecs[i].bv_len) {
+ DMERR("Couldn't add page on new bio?");
+ bio_put(bio);
+ goto error;
+ }
+ }
+ sector += block->vecs[i].bv_len >> SECTOR_SHIFT;
+ }
+ submit_bio(bio);
+out:
+ kfree(block->data);
+ kfree(block);
+ put_pending_block(lc);
+ return 0;
+error:
+ free_pending_block(lc, block);
+ put_io_block(lc);
+ return -1;
+}
+
+static int log_super(struct log_writes_c *lc)
+{
+ struct log_write_super super;
+
+ super.magic = cpu_to_le64(WRITE_LOG_MAGIC);
+ super.version = cpu_to_le64(WRITE_LOG_VERSION);
+ super.nr_entries = cpu_to_le64(lc->logged_entries);
+ super.sectorsize = cpu_to_le32(lc->sectorsize);
+
+ if (write_metadata(lc, &super, sizeof(super), NULL, 0,
+ WRITE_LOG_SUPER_SECTOR)) {
+ DMERR("Couldn't write super");
+ return -1;
+ }
+
+ /*
+ * Super sector should be writen in-order, otherwise the
+ * nr_entries could be rewritten incorrectly by an old bio.
+ */
+ wait_for_completion_io(&lc->super_done);
+
+ return 0;
+}
+
+static inline sector_t logdev_last_sector(struct log_writes_c *lc)
+{
+ return bdev_nr_sectors(lc->logdev->bdev);
+}
+
+static int log_writes_kthread(void *arg)
+{
+ struct log_writes_c *lc = (struct log_writes_c *)arg;
+ sector_t sector = 0;
+
+ while (!kthread_should_stop()) {
+ bool super = false;
+ bool logging_enabled;
+ struct pending_block *block = NULL;
+ int ret;
+
+ spin_lock_irq(&lc->blocks_lock);
+ if (!list_empty(&lc->logging_blocks)) {
+ block = list_first_entry(&lc->logging_blocks,
+ struct pending_block, list);
+ list_del_init(&block->list);
+ if (!lc->logging_enabled)
+ goto next;
+
+ sector = lc->next_sector;
+ if (!(block->flags & LOG_DISCARD_FLAG))
+ lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors);
+ lc->next_sector += dev_to_bio_sectors(lc, 1);
+
+ /*
+ * Apparently the size of the device may not be known
+ * right away, so handle this properly.
+ */
+ if (!lc->end_sector)
+ lc->end_sector = logdev_last_sector(lc);
+ if (lc->end_sector &&
+ lc->next_sector >= lc->end_sector) {
+ DMERR("Ran out of space on the logdev");
+ lc->logging_enabled = false;
+ goto next;
+ }
+ lc->logged_entries++;
+ atomic_inc(&lc->io_blocks);
+
+ super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG));
+ if (super)
+ atomic_inc(&lc->io_blocks);
+ }
+next:
+ logging_enabled = lc->logging_enabled;
+ spin_unlock_irq(&lc->blocks_lock);
+ if (block) {
+ if (logging_enabled) {
+ ret = log_one_block(lc, block, sector);
+ if (!ret && super)
+ ret = log_super(lc);
+ if (ret) {
+ spin_lock_irq(&lc->blocks_lock);
+ lc->logging_enabled = false;
+ spin_unlock_irq(&lc->blocks_lock);
+ }
+ } else
+ free_pending_block(lc, block);
+ continue;
+ }
+
+ if (!try_to_freeze()) {
+ set_current_state(TASK_INTERRUPTIBLE);
+ if (!kthread_should_stop() &&
+ list_empty(&lc->logging_blocks))
+ schedule();
+ __set_current_state(TASK_RUNNING);
+ }
+ }
+ return 0;
+}
+
+/*
+ * Construct a log-writes mapping:
+ * log-writes <dev_path> <log_dev_path>
+ */
+static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ struct log_writes_c *lc;
+ struct dm_arg_set as;
+ const char *devname, *logdevname;
+ int ret;
+
+ as.argc = argc;
+ as.argv = argv;
+
+ if (argc < 2) {
+ ti->error = "Invalid argument count";
+ return -EINVAL;
+ }
+
+ lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL);
+ if (!lc) {
+ ti->error = "Cannot allocate context";
+ return -ENOMEM;
+ }
+ spin_lock_init(&lc->blocks_lock);
+ INIT_LIST_HEAD(&lc->unflushed_blocks);
+ INIT_LIST_HEAD(&lc->logging_blocks);
+ init_waitqueue_head(&lc->wait);
+ init_completion(&lc->super_done);
+ atomic_set(&lc->io_blocks, 0);
+ atomic_set(&lc->pending_blocks, 0);
+
+ devname = dm_shift_arg(&as);
+ ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev);
+ if (ret) {
+ ti->error = "Device lookup failed";
+ goto bad;
+ }
+
+ logdevname = dm_shift_arg(&as);
+ ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table),
+ &lc->logdev);
+ if (ret) {
+ ti->error = "Log device lookup failed";
+ dm_put_device(ti, lc->dev);
+ goto bad;
+ }
+
+ lc->sectorsize = bdev_logical_block_size(lc->dev->bdev);
+ lc->sectorshift = ilog2(lc->sectorsize);
+ lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write");
+ if (IS_ERR(lc->log_kthread)) {
+ ret = PTR_ERR(lc->log_kthread);
+ ti->error = "Couldn't alloc kthread";
+ dm_put_device(ti, lc->dev);
+ dm_put_device(ti, lc->logdev);
+ goto bad;
+ }
+
+ /*
+ * next_sector is in 512b sectors to correspond to what bi_sector expects.
+ * The super starts at sector 0, and the next_sector is the next logical
+ * one based on the sectorsize of the device.
+ */
+ lc->next_sector = lc->sectorsize >> SECTOR_SHIFT;
+ lc->logging_enabled = true;
+ lc->end_sector = logdev_last_sector(lc);
+ lc->device_supports_discard = true;
+
+ ti->num_flush_bios = 1;
+ ti->flush_supported = true;
+ ti->num_discard_bios = 1;
+ ti->discards_supported = true;
+ ti->per_io_data_size = sizeof(struct per_bio_data);
+ ti->private = lc;
+ return 0;
+
+bad:
+ kfree(lc);
+ return ret;
+}
+
+static int log_mark(struct log_writes_c *lc, char *data)
+{
+ struct pending_block *block;
+ size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry);
+
+ block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
+ if (!block) {
+ DMERR("Error allocating pending block");
+ return -ENOMEM;
+ }
+
+ block->data = kstrndup(data, maxsize - 1, GFP_KERNEL);
+ if (!block->data) {
+ DMERR("Error copying mark data");
+ kfree(block);
+ return -ENOMEM;
+ }
+ atomic_inc(&lc->pending_blocks);
+ block->datalen = strlen(block->data);
+ block->flags |= LOG_MARK_FLAG;
+ spin_lock_irq(&lc->blocks_lock);
+ list_add_tail(&block->list, &lc->logging_blocks);
+ spin_unlock_irq(&lc->blocks_lock);
+ wake_up_process(lc->log_kthread);
+ return 0;
+}
+
+static void log_writes_dtr(struct dm_target *ti)
+{
+ struct log_writes_c *lc = ti->private;
+
+ spin_lock_irq(&lc->blocks_lock);
+ list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks);
+ spin_unlock_irq(&lc->blocks_lock);
+
+ /*
+ * This is just nice to have since it'll update the super to include the
+ * unflushed blocks, if it fails we don't really care.
+ */
+ log_mark(lc, "dm-log-writes-end");
+ wake_up_process(lc->log_kthread);
+ wait_event(lc->wait, !atomic_read(&lc->io_blocks) &&
+ !atomic_read(&lc->pending_blocks));
+ kthread_stop(lc->log_kthread);
+
+ WARN_ON(!list_empty(&lc->logging_blocks));
+ WARN_ON(!list_empty(&lc->unflushed_blocks));
+ dm_put_device(ti, lc->dev);
+ dm_put_device(ti, lc->logdev);
+ kfree(lc);
+}
+
+static void normal_map_bio(struct dm_target *ti, struct bio *bio)
+{
+ struct log_writes_c *lc = ti->private;
+
+ bio_set_dev(bio, lc->dev->bdev);
+}
+
+static int log_writes_map(struct dm_target *ti, struct bio *bio)
+{
+ struct log_writes_c *lc = ti->private;
+ struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
+ struct pending_block *block;
+ struct bvec_iter iter;
+ struct bio_vec bv;
+ size_t alloc_size;
+ int i = 0;
+ bool flush_bio = (bio->bi_opf & REQ_PREFLUSH);
+ bool fua_bio = (bio->bi_opf & REQ_FUA);
+ bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD);
+ bool meta_bio = (bio->bi_opf & REQ_META);
+
+ pb->block = NULL;
+
+ /* Don't bother doing anything if logging has been disabled */
+ if (!lc->logging_enabled)
+ goto map_bio;
+
+ /*
+ * Map reads as normal.
+ */
+ if (bio_data_dir(bio) == READ)
+ goto map_bio;
+
+ /* No sectors and not a flush? Don't care */
+ if (!bio_sectors(bio) && !flush_bio)
+ goto map_bio;
+
+ /*
+ * Discards will have bi_size set but there's no actual data, so just
+ * allocate the size of the pending block.
+ */
+ if (discard_bio)
+ alloc_size = sizeof(struct pending_block);
+ else
+ alloc_size = struct_size(block, vecs, bio_segments(bio));
+
+ block = kzalloc(alloc_size, GFP_NOIO);
+ if (!block) {
+ DMERR("Error allocating pending block");
+ spin_lock_irq(&lc->blocks_lock);
+ lc->logging_enabled = false;
+ spin_unlock_irq(&lc->blocks_lock);
+ return DM_MAPIO_KILL;
+ }
+ INIT_LIST_HEAD(&block->list);
+ pb->block = block;
+ atomic_inc(&lc->pending_blocks);
+
+ if (flush_bio)
+ block->flags |= LOG_FLUSH_FLAG;
+ if (fua_bio)
+ block->flags |= LOG_FUA_FLAG;
+ if (discard_bio)
+ block->flags |= LOG_DISCARD_FLAG;
+ if (meta_bio)
+ block->flags |= LOG_METADATA_FLAG;
+
+ block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector);
+ block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio));
+
+ /* We don't need the data, just submit */
+ if (discard_bio) {
+ WARN_ON(flush_bio || fua_bio);
+ if (lc->device_supports_discard)
+ goto map_bio;
+ bio_endio(bio);
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ /* Flush bio, splice the unflushed blocks onto this list and submit */
+ if (flush_bio && !bio_sectors(bio)) {
+ spin_lock_irq(&lc->blocks_lock);
+ list_splice_init(&lc->unflushed_blocks, &block->list);
+ spin_unlock_irq(&lc->blocks_lock);
+ goto map_bio;
+ }
+
+ /*
+ * We will write this bio somewhere else way later so we need to copy
+ * the actual contents into new pages so we know the data will always be
+ * there.
+ *
+ * We do this because this could be a bio from O_DIRECT in which case we
+ * can't just hold onto the page until some later point, we have to
+ * manually copy the contents.
+ */
+ bio_for_each_segment(bv, bio, iter) {
+ struct page *page;
+ void *dst;
+
+ page = alloc_page(GFP_NOIO);
+ if (!page) {
+ DMERR("Error allocing page");
+ free_pending_block(lc, block);
+ spin_lock_irq(&lc->blocks_lock);
+ lc->logging_enabled = false;
+ spin_unlock_irq(&lc->blocks_lock);
+ return DM_MAPIO_KILL;
+ }
+
+ dst = kmap_atomic(page);
+ memcpy_from_bvec(dst, &bv);
+ kunmap_atomic(dst);
+ block->vecs[i].bv_page = page;
+ block->vecs[i].bv_len = bv.bv_len;
+ block->vec_cnt++;
+ i++;
+ }
+
+ /* Had a flush with data in it, weird */
+ if (flush_bio) {
+ spin_lock_irq(&lc->blocks_lock);
+ list_splice_init(&lc->unflushed_blocks, &block->list);
+ spin_unlock_irq(&lc->blocks_lock);
+ }
+map_bio:
+ normal_map_bio(ti, bio);
+ return DM_MAPIO_REMAPPED;
+}
+
+static int normal_end_io(struct dm_target *ti, struct bio *bio,
+ blk_status_t *error)
+{
+ struct log_writes_c *lc = ti->private;
+ struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
+
+ if (bio_data_dir(bio) == WRITE && pb->block) {
+ struct pending_block *block = pb->block;
+ unsigned long flags;
+
+ spin_lock_irqsave(&lc->blocks_lock, flags);
+ if (block->flags & LOG_FLUSH_FLAG) {
+ list_splice_tail_init(&block->list, &lc->logging_blocks);
+ list_add_tail(&block->list, &lc->logging_blocks);
+ wake_up_process(lc->log_kthread);
+ } else if (block->flags & LOG_FUA_FLAG) {
+ list_add_tail(&block->list, &lc->logging_blocks);
+ wake_up_process(lc->log_kthread);
+ } else
+ list_add_tail(&block->list, &lc->unflushed_blocks);
+ spin_unlock_irqrestore(&lc->blocks_lock, flags);
+ }
+
+ return DM_ENDIO_DONE;
+}
+
+/*
+ * INFO format: <logged entries> <highest allocated sector>
+ */
+static void log_writes_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result,
+ unsigned int maxlen)
+{
+ unsigned int sz = 0;
+ struct log_writes_c *lc = ti->private;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ DMEMIT("%llu %llu", lc->logged_entries,
+ (unsigned long long)lc->next_sector - 1);
+ if (!lc->logging_enabled)
+ DMEMIT(" logging_disabled");
+ break;
+
+ case STATUSTYPE_TABLE:
+ DMEMIT("%s %s", lc->dev->name, lc->logdev->name);
+ break;
+
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+}
+
+static int log_writes_prepare_ioctl(struct dm_target *ti,
+ struct block_device **bdev)
+{
+ struct log_writes_c *lc = ti->private;
+ struct dm_dev *dev = lc->dev;
+
+ *bdev = dev->bdev;
+ /*
+ * Only pass ioctls through if the device sizes match exactly.
+ */
+ if (ti->len != bdev_nr_sectors(dev->bdev))
+ return 1;
+ return 0;
+}
+
+static int log_writes_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn,
+ void *data)
+{
+ struct log_writes_c *lc = ti->private;
+
+ return fn(ti, lc->dev, 0, ti->len, data);
+}
+
+/*
+ * Messages supported:
+ * mark <mark data> - specify the marked data.
+ */
+static int log_writes_message(struct dm_target *ti, unsigned int argc, char **argv,
+ char *result, unsigned int maxlen)
+{
+ int r = -EINVAL;
+ struct log_writes_c *lc = ti->private;
+
+ if (argc != 2) {
+ DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc);
+ return r;
+ }
+
+ if (!strcasecmp(argv[0], "mark"))
+ r = log_mark(lc, argv[1]);
+ else
+ DMWARN("Unrecognised log writes target message received: %s", argv[0]);
+
+ return r;
+}
+
+static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+ struct log_writes_c *lc = ti->private;
+
+ if (!bdev_max_discard_sectors(lc->dev->bdev)) {
+ lc->device_supports_discard = false;
+ limits->discard_granularity = lc->sectorsize;
+ limits->max_discard_sectors = (UINT_MAX >> SECTOR_SHIFT);
+ }
+ limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev);
+ limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev);
+ limits->io_min = limits->physical_block_size;
+ limits->dma_alignment = limits->logical_block_size - 1;
+}
+
+#if IS_ENABLED(CONFIG_FS_DAX)
+static struct dax_device *log_writes_dax_pgoff(struct dm_target *ti,
+ pgoff_t *pgoff)
+{
+ struct log_writes_c *lc = ti->private;
+
+ *pgoff += (get_start_sect(lc->dev->bdev) >> PAGE_SECTORS_SHIFT);
+ return lc->dev->dax_dev;
+}
+
+static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
+ long nr_pages, enum dax_access_mode mode, void **kaddr,
+ pfn_t *pfn)
+{
+ struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
+
+ return dax_direct_access(dax_dev, pgoff, nr_pages, mode, kaddr, pfn);
+}
+
+static int log_writes_dax_zero_page_range(struct dm_target *ti, pgoff_t pgoff,
+ size_t nr_pages)
+{
+ struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
+
+ return dax_zero_page_range(dax_dev, pgoff, nr_pages << PAGE_SHIFT);
+}
+
+static size_t log_writes_dax_recovery_write(struct dm_target *ti,
+ pgoff_t pgoff, void *addr, size_t bytes, struct iov_iter *i)
+{
+ struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
+
+ return dax_recovery_write(dax_dev, pgoff, addr, bytes, i);
+}
+
+#else
+#define log_writes_dax_direct_access NULL
+#define log_writes_dax_zero_page_range NULL
+#define log_writes_dax_recovery_write NULL
+#endif
+
+static struct target_type log_writes_target = {
+ .name = "log-writes",
+ .version = {1, 1, 0},
+ .module = THIS_MODULE,
+ .ctr = log_writes_ctr,
+ .dtr = log_writes_dtr,
+ .map = log_writes_map,
+ .end_io = normal_end_io,
+ .status = log_writes_status,
+ .prepare_ioctl = log_writes_prepare_ioctl,
+ .message = log_writes_message,
+ .iterate_devices = log_writes_iterate_devices,
+ .io_hints = log_writes_io_hints,
+ .direct_access = log_writes_dax_direct_access,
+ .dax_zero_page_range = log_writes_dax_zero_page_range,
+ .dax_recovery_write = log_writes_dax_recovery_write,
+};
+
+static int __init dm_log_writes_init(void)
+{
+ int r = dm_register_target(&log_writes_target);
+
+ if (r < 0)
+ DMERR("register failed %d", r);
+
+ return r;
+}
+
+static void __exit dm_log_writes_exit(void)
+{
+ dm_unregister_target(&log_writes_target);
+}
+
+module_init(dm_log_writes_init);
+module_exit(dm_log_writes_exit);
+
+MODULE_DESCRIPTION(DM_NAME " log writes target");
+MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-log.c b/drivers/md/dm-log.c
new file mode 100644
index 000000000..05141eea1
--- /dev/null
+++ b/drivers/md/dm-log.c
@@ -0,0 +1,896 @@
+/*
+ * Copyright (C) 2003 Sistina Software
+ * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the LGPL.
+ */
+
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/vmalloc.h>
+#include <linux/dm-io.h>
+#include <linux/dm-dirty-log.h>
+
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "dirty region log"
+
+static LIST_HEAD(_log_types);
+static DEFINE_SPINLOCK(_lock);
+
+static struct dm_dirty_log_type *__find_dirty_log_type(const char *name)
+{
+ struct dm_dirty_log_type *log_type;
+
+ list_for_each_entry(log_type, &_log_types, list)
+ if (!strcmp(name, log_type->name))
+ return log_type;
+
+ return NULL;
+}
+
+static struct dm_dirty_log_type *_get_dirty_log_type(const char *name)
+{
+ struct dm_dirty_log_type *log_type;
+
+ spin_lock(&_lock);
+
+ log_type = __find_dirty_log_type(name);
+ if (log_type && !try_module_get(log_type->module))
+ log_type = NULL;
+
+ spin_unlock(&_lock);
+
+ return log_type;
+}
+
+/*
+ * get_type
+ * @type_name
+ *
+ * Attempt to retrieve the dm_dirty_log_type by name. If not already
+ * available, attempt to load the appropriate module.
+ *
+ * Log modules are named "dm-log-" followed by the 'type_name'.
+ * Modules may contain multiple types.
+ * This function will first try the module "dm-log-<type_name>",
+ * then truncate 'type_name' on the last '-' and try again.
+ *
+ * For example, if type_name was "clustered-disk", it would search
+ * 'dm-log-clustered-disk' then 'dm-log-clustered'.
+ *
+ * Returns: dirty_log_type* on success, NULL on failure
+ */
+static struct dm_dirty_log_type *get_type(const char *type_name)
+{
+ char *p, *type_name_dup;
+ struct dm_dirty_log_type *log_type;
+
+ if (!type_name)
+ return NULL;
+
+ log_type = _get_dirty_log_type(type_name);
+ if (log_type)
+ return log_type;
+
+ type_name_dup = kstrdup(type_name, GFP_KERNEL);
+ if (!type_name_dup) {
+ DMWARN("No memory left to attempt log module load for \"%s\"",
+ type_name);
+ return NULL;
+ }
+
+ while (request_module("dm-log-%s", type_name_dup) ||
+ !(log_type = _get_dirty_log_type(type_name))) {
+ p = strrchr(type_name_dup, '-');
+ if (!p)
+ break;
+ p[0] = '\0';
+ }
+
+ if (!log_type)
+ DMWARN("Module for logging type \"%s\" not found.", type_name);
+
+ kfree(type_name_dup);
+
+ return log_type;
+}
+
+static void put_type(struct dm_dirty_log_type *type)
+{
+ if (!type)
+ return;
+
+ spin_lock(&_lock);
+ if (!__find_dirty_log_type(type->name))
+ goto out;
+
+ module_put(type->module);
+
+out:
+ spin_unlock(&_lock);
+}
+
+int dm_dirty_log_type_register(struct dm_dirty_log_type *type)
+{
+ int r = 0;
+
+ spin_lock(&_lock);
+ if (!__find_dirty_log_type(type->name))
+ list_add(&type->list, &_log_types);
+ else
+ r = -EEXIST;
+ spin_unlock(&_lock);
+
+ return r;
+}
+EXPORT_SYMBOL(dm_dirty_log_type_register);
+
+int dm_dirty_log_type_unregister(struct dm_dirty_log_type *type)
+{
+ spin_lock(&_lock);
+
+ if (!__find_dirty_log_type(type->name)) {
+ spin_unlock(&_lock);
+ return -EINVAL;
+ }
+
+ list_del(&type->list);
+
+ spin_unlock(&_lock);
+
+ return 0;
+}
+EXPORT_SYMBOL(dm_dirty_log_type_unregister);
+
+struct dm_dirty_log *dm_dirty_log_create(const char *type_name,
+ struct dm_target *ti,
+ int (*flush_callback_fn)(struct dm_target *ti),
+ unsigned int argc, char **argv)
+{
+ struct dm_dirty_log_type *type;
+ struct dm_dirty_log *log;
+
+ log = kmalloc(sizeof(*log), GFP_KERNEL);
+ if (!log)
+ return NULL;
+
+ type = get_type(type_name);
+ if (!type) {
+ kfree(log);
+ return NULL;
+ }
+
+ log->flush_callback_fn = flush_callback_fn;
+ log->type = type;
+ if (type->ctr(log, ti, argc, argv)) {
+ kfree(log);
+ put_type(type);
+ return NULL;
+ }
+
+ return log;
+}
+EXPORT_SYMBOL(dm_dirty_log_create);
+
+void dm_dirty_log_destroy(struct dm_dirty_log *log)
+{
+ log->type->dtr(log);
+ put_type(log->type);
+ kfree(log);
+}
+EXPORT_SYMBOL(dm_dirty_log_destroy);
+
+/*-----------------------------------------------------------------
+ * Persistent and core logs share a lot of their implementation.
+ * FIXME: need a reload method to be called from a resume
+ *---------------------------------------------------------------*/
+/*
+ * Magic for persistent mirrors: "MiRr"
+ */
+#define MIRROR_MAGIC 0x4D695272
+
+/*
+ * The on-disk version of the metadata.
+ */
+#define MIRROR_DISK_VERSION 2
+#define LOG_OFFSET 2
+
+struct log_header_disk {
+ __le32 magic;
+
+ /*
+ * Simple, incrementing version. no backward
+ * compatibility.
+ */
+ __le32 version;
+ __le64 nr_regions;
+} __packed;
+
+struct log_header_core {
+ uint32_t magic;
+ uint32_t version;
+ uint64_t nr_regions;
+};
+
+struct log_c {
+ struct dm_target *ti;
+ int touched_dirtied;
+ int touched_cleaned;
+ int flush_failed;
+ uint32_t region_size;
+ unsigned int region_count;
+ region_t sync_count;
+
+ unsigned int bitset_uint32_count;
+ uint32_t *clean_bits;
+ uint32_t *sync_bits;
+ uint32_t *recovering_bits; /* FIXME: this seems excessive */
+
+ int sync_search;
+
+ /* Resync flag */
+ enum sync {
+ DEFAULTSYNC, /* Synchronize if necessary */
+ NOSYNC, /* Devices known to be already in sync */
+ FORCESYNC, /* Force a sync to happen */
+ } sync;
+
+ struct dm_io_request io_req;
+
+ /*
+ * Disk log fields
+ */
+ int log_dev_failed;
+ int log_dev_flush_failed;
+ struct dm_dev *log_dev;
+ struct log_header_core header;
+
+ struct dm_io_region header_location;
+ struct log_header_disk *disk_header;
+};
+
+/*
+ * The touched member needs to be updated every time we access
+ * one of the bitsets.
+ */
+static inline int log_test_bit(uint32_t *bs, unsigned int bit)
+{
+ return test_bit_le(bit, bs) ? 1 : 0;
+}
+
+static inline void log_set_bit(struct log_c *l,
+ uint32_t *bs, unsigned int bit)
+{
+ __set_bit_le(bit, bs);
+ l->touched_cleaned = 1;
+}
+
+static inline void log_clear_bit(struct log_c *l,
+ uint32_t *bs, unsigned int bit)
+{
+ __clear_bit_le(bit, bs);
+ l->touched_dirtied = 1;
+}
+
+/*----------------------------------------------------------------
+ * Header IO
+ *--------------------------------------------------------------*/
+static void header_to_disk(struct log_header_core *core, struct log_header_disk *disk)
+{
+ disk->magic = cpu_to_le32(core->magic);
+ disk->version = cpu_to_le32(core->version);
+ disk->nr_regions = cpu_to_le64(core->nr_regions);
+}
+
+static void header_from_disk(struct log_header_core *core, struct log_header_disk *disk)
+{
+ core->magic = le32_to_cpu(disk->magic);
+ core->version = le32_to_cpu(disk->version);
+ core->nr_regions = le64_to_cpu(disk->nr_regions);
+}
+
+static int rw_header(struct log_c *lc, enum req_op op)
+{
+ lc->io_req.bi_opf = op;
+
+ return dm_io(&lc->io_req, 1, &lc->header_location, NULL);
+}
+
+static int flush_header(struct log_c *lc)
+{
+ struct dm_io_region null_location = {
+ .bdev = lc->header_location.bdev,
+ .sector = 0,
+ .count = 0,
+ };
+
+ lc->io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
+
+ return dm_io(&lc->io_req, 1, &null_location, NULL);
+}
+
+static int read_header(struct log_c *log)
+{
+ int r;
+
+ r = rw_header(log, REQ_OP_READ);
+ if (r)
+ return r;
+
+ header_from_disk(&log->header, log->disk_header);
+
+ /* New log required? */
+ if (log->sync != DEFAULTSYNC || log->header.magic != MIRROR_MAGIC) {
+ log->header.magic = MIRROR_MAGIC;
+ log->header.version = MIRROR_DISK_VERSION;
+ log->header.nr_regions = 0;
+ }
+
+#ifdef __LITTLE_ENDIAN
+ if (log->header.version == 1)
+ log->header.version = 2;
+#endif
+
+ if (log->header.version != MIRROR_DISK_VERSION) {
+ DMWARN("incompatible disk log version");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int _check_region_size(struct dm_target *ti, uint32_t region_size)
+{
+ if (region_size < 2 || region_size > ti->len)
+ return 0;
+
+ if (!is_power_of_2(region_size))
+ return 0;
+
+ return 1;
+}
+
+/*----------------------------------------------------------------
+ * core log constructor/destructor
+ *
+ * argv contains region_size followed optionally by [no]sync
+ *--------------------------------------------------------------*/
+#define BYTE_SHIFT 3
+static int create_log_context(struct dm_dirty_log *log, struct dm_target *ti,
+ unsigned int argc, char **argv,
+ struct dm_dev *dev)
+{
+ enum sync sync = DEFAULTSYNC;
+
+ struct log_c *lc;
+ uint32_t region_size;
+ unsigned int region_count;
+ size_t bitset_size, buf_size;
+ int r;
+ char dummy;
+
+ if (argc < 1 || argc > 2) {
+ DMWARN("wrong number of arguments to dirty region log");
+ return -EINVAL;
+ }
+
+ if (argc > 1) {
+ if (!strcmp(argv[1], "sync"))
+ sync = FORCESYNC;
+ else if (!strcmp(argv[1], "nosync"))
+ sync = NOSYNC;
+ else {
+ DMWARN("unrecognised sync argument to dirty region log: %s", argv[1]);
+ return -EINVAL;
+ }
+ }
+
+ if (sscanf(argv[0], "%u%c", &region_size, &dummy) != 1 ||
+ !_check_region_size(ti, region_size)) {
+ DMWARN("invalid region size %s", argv[0]);
+ return -EINVAL;
+ }
+
+ region_count = dm_sector_div_up(ti->len, region_size);
+
+ lc = kmalloc(sizeof(*lc), GFP_KERNEL);
+ if (!lc) {
+ DMWARN("couldn't allocate core log");
+ return -ENOMEM;
+ }
+
+ lc->ti = ti;
+ lc->touched_dirtied = 0;
+ lc->touched_cleaned = 0;
+ lc->flush_failed = 0;
+ lc->region_size = region_size;
+ lc->region_count = region_count;
+ lc->sync = sync;
+
+ /*
+ * Work out how many "unsigned long"s we need to hold the bitset.
+ */
+ bitset_size = dm_round_up(region_count, BITS_PER_LONG);
+ bitset_size >>= BYTE_SHIFT;
+
+ lc->bitset_uint32_count = bitset_size / sizeof(*lc->clean_bits);
+
+ /*
+ * Disk log?
+ */
+ if (!dev) {
+ lc->clean_bits = vmalloc(bitset_size);
+ if (!lc->clean_bits) {
+ DMWARN("couldn't allocate clean bitset");
+ kfree(lc);
+ return -ENOMEM;
+ }
+ lc->disk_header = NULL;
+ } else {
+ lc->log_dev = dev;
+ lc->log_dev_failed = 0;
+ lc->log_dev_flush_failed = 0;
+ lc->header_location.bdev = lc->log_dev->bdev;
+ lc->header_location.sector = 0;
+
+ /*
+ * Buffer holds both header and bitset.
+ */
+ buf_size =
+ dm_round_up((LOG_OFFSET << SECTOR_SHIFT) + bitset_size,
+ bdev_logical_block_size(lc->header_location.
+ bdev));
+
+ if (buf_size > bdev_nr_bytes(dev->bdev)) {
+ DMWARN("log device %s too small: need %llu bytes",
+ dev->name, (unsigned long long)buf_size);
+ kfree(lc);
+ return -EINVAL;
+ }
+
+ lc->header_location.count = buf_size >> SECTOR_SHIFT;
+
+ lc->io_req.mem.type = DM_IO_VMA;
+ lc->io_req.notify.fn = NULL;
+ lc->io_req.client = dm_io_client_create();
+ if (IS_ERR(lc->io_req.client)) {
+ r = PTR_ERR(lc->io_req.client);
+ DMWARN("couldn't allocate disk io client");
+ kfree(lc);
+ return r;
+ }
+
+ lc->disk_header = vmalloc(buf_size);
+ if (!lc->disk_header) {
+ DMWARN("couldn't allocate disk log buffer");
+ dm_io_client_destroy(lc->io_req.client);
+ kfree(lc);
+ return -ENOMEM;
+ }
+
+ lc->io_req.mem.ptr.vma = lc->disk_header;
+ lc->clean_bits = (void *)lc->disk_header +
+ (LOG_OFFSET << SECTOR_SHIFT);
+ }
+
+ memset(lc->clean_bits, -1, bitset_size);
+
+ lc->sync_bits = vmalloc(bitset_size);
+ if (!lc->sync_bits) {
+ DMWARN("couldn't allocate sync bitset");
+ if (!dev)
+ vfree(lc->clean_bits);
+ else
+ dm_io_client_destroy(lc->io_req.client);
+ vfree(lc->disk_header);
+ kfree(lc);
+ return -ENOMEM;
+ }
+ memset(lc->sync_bits, (sync == NOSYNC) ? -1 : 0, bitset_size);
+ lc->sync_count = (sync == NOSYNC) ? region_count : 0;
+
+ lc->recovering_bits = vzalloc(bitset_size);
+ if (!lc->recovering_bits) {
+ DMWARN("couldn't allocate sync bitset");
+ vfree(lc->sync_bits);
+ if (!dev)
+ vfree(lc->clean_bits);
+ else
+ dm_io_client_destroy(lc->io_req.client);
+ vfree(lc->disk_header);
+ kfree(lc);
+ return -ENOMEM;
+ }
+ lc->sync_search = 0;
+ log->context = lc;
+
+ return 0;
+}
+
+static int core_ctr(struct dm_dirty_log *log, struct dm_target *ti,
+ unsigned int argc, char **argv)
+{
+ return create_log_context(log, ti, argc, argv, NULL);
+}
+
+static void destroy_log_context(struct log_c *lc)
+{
+ vfree(lc->sync_bits);
+ vfree(lc->recovering_bits);
+ kfree(lc);
+}
+
+static void core_dtr(struct dm_dirty_log *log)
+{
+ struct log_c *lc = (struct log_c *) log->context;
+
+ vfree(lc->clean_bits);
+ destroy_log_context(lc);
+}
+
+/*----------------------------------------------------------------
+ * disk log constructor/destructor
+ *
+ * argv contains log_device region_size followed optionally by [no]sync
+ *--------------------------------------------------------------*/
+static int disk_ctr(struct dm_dirty_log *log, struct dm_target *ti,
+ unsigned int argc, char **argv)
+{
+ int r;
+ struct dm_dev *dev;
+
+ if (argc < 2 || argc > 3) {
+ DMWARN("wrong number of arguments to disk dirty region log");
+ return -EINVAL;
+ }
+
+ r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &dev);
+ if (r)
+ return r;
+
+ r = create_log_context(log, ti, argc - 1, argv + 1, dev);
+ if (r) {
+ dm_put_device(ti, dev);
+ return r;
+ }
+
+ return 0;
+}
+
+static void disk_dtr(struct dm_dirty_log *log)
+{
+ struct log_c *lc = (struct log_c *) log->context;
+
+ dm_put_device(lc->ti, lc->log_dev);
+ vfree(lc->disk_header);
+ dm_io_client_destroy(lc->io_req.client);
+ destroy_log_context(lc);
+}
+
+static void fail_log_device(struct log_c *lc)
+{
+ if (lc->log_dev_failed)
+ return;
+
+ lc->log_dev_failed = 1;
+ dm_table_event(lc->ti->table);
+}
+
+static int disk_resume(struct dm_dirty_log *log)
+{
+ int r;
+ unsigned int i;
+ struct log_c *lc = (struct log_c *) log->context;
+ size_t size = lc->bitset_uint32_count * sizeof(uint32_t);
+
+ /* read the disk header */
+ r = read_header(lc);
+ if (r) {
+ DMWARN("%s: Failed to read header on dirty region log device",
+ lc->log_dev->name);
+ fail_log_device(lc);
+ /*
+ * If the log device cannot be read, we must assume
+ * all regions are out-of-sync. If we simply return
+ * here, the state will be uninitialized and could
+ * lead us to return 'in-sync' status for regions
+ * that are actually 'out-of-sync'.
+ */
+ lc->header.nr_regions = 0;
+ }
+
+ /* set or clear any new bits -- device has grown */
+ if (lc->sync == NOSYNC)
+ for (i = lc->header.nr_regions; i < lc->region_count; i++)
+ /* FIXME: amazingly inefficient */
+ log_set_bit(lc, lc->clean_bits, i);
+ else
+ for (i = lc->header.nr_regions; i < lc->region_count; i++)
+ /* FIXME: amazingly inefficient */
+ log_clear_bit(lc, lc->clean_bits, i);
+
+ /* clear any old bits -- device has shrunk */
+ for (i = lc->region_count; i % BITS_PER_LONG; i++)
+ log_clear_bit(lc, lc->clean_bits, i);
+
+ /* copy clean across to sync */
+ memcpy(lc->sync_bits, lc->clean_bits, size);
+ lc->sync_count = memweight(lc->clean_bits,
+ lc->bitset_uint32_count * sizeof(uint32_t));
+ lc->sync_search = 0;
+
+ /* set the correct number of regions in the header */
+ lc->header.nr_regions = lc->region_count;
+
+ header_to_disk(&lc->header, lc->disk_header);
+
+ /* write the new header */
+ r = rw_header(lc, REQ_OP_WRITE);
+ if (!r) {
+ r = flush_header(lc);
+ if (r)
+ lc->log_dev_flush_failed = 1;
+ }
+ if (r) {
+ DMWARN("%s: Failed to write header on dirty region log device",
+ lc->log_dev->name);
+ fail_log_device(lc);
+ }
+
+ return r;
+}
+
+static uint32_t core_get_region_size(struct dm_dirty_log *log)
+{
+ struct log_c *lc = (struct log_c *) log->context;
+ return lc->region_size;
+}
+
+static int core_resume(struct dm_dirty_log *log)
+{
+ struct log_c *lc = (struct log_c *) log->context;
+ lc->sync_search = 0;
+ return 0;
+}
+
+static int core_is_clean(struct dm_dirty_log *log, region_t region)
+{
+ struct log_c *lc = (struct log_c *) log->context;
+ return log_test_bit(lc->clean_bits, region);
+}
+
+static int core_in_sync(struct dm_dirty_log *log, region_t region, int block)
+{
+ struct log_c *lc = (struct log_c *) log->context;
+ return log_test_bit(lc->sync_bits, region);
+}
+
+static int core_flush(struct dm_dirty_log *log)
+{
+ /* no op */
+ return 0;
+}
+
+static int disk_flush(struct dm_dirty_log *log)
+{
+ int r, i;
+ struct log_c *lc = log->context;
+
+ /* only write if the log has changed */
+ if (!lc->touched_cleaned && !lc->touched_dirtied)
+ return 0;
+
+ if (lc->touched_cleaned && log->flush_callback_fn &&
+ log->flush_callback_fn(lc->ti)) {
+ /*
+ * At this point it is impossible to determine which
+ * regions are clean and which are dirty (without
+ * re-reading the log off disk). So mark all of them
+ * dirty.
+ */
+ lc->flush_failed = 1;
+ for (i = 0; i < lc->region_count; i++)
+ log_clear_bit(lc, lc->clean_bits, i);
+ }
+
+ r = rw_header(lc, REQ_OP_WRITE);
+ if (r)
+ fail_log_device(lc);
+ else {
+ if (lc->touched_dirtied) {
+ r = flush_header(lc);
+ if (r) {
+ lc->log_dev_flush_failed = 1;
+ fail_log_device(lc);
+ } else
+ lc->touched_dirtied = 0;
+ }
+ lc->touched_cleaned = 0;
+ }
+
+ return r;
+}
+
+static void core_mark_region(struct dm_dirty_log *log, region_t region)
+{
+ struct log_c *lc = (struct log_c *) log->context;
+ log_clear_bit(lc, lc->clean_bits, region);
+}
+
+static void core_clear_region(struct dm_dirty_log *log, region_t region)
+{
+ struct log_c *lc = (struct log_c *) log->context;
+ if (likely(!lc->flush_failed))
+ log_set_bit(lc, lc->clean_bits, region);
+}
+
+static int core_get_resync_work(struct dm_dirty_log *log, region_t *region)
+{
+ struct log_c *lc = (struct log_c *) log->context;
+
+ if (lc->sync_search >= lc->region_count)
+ return 0;
+
+ do {
+ *region = find_next_zero_bit_le(lc->sync_bits,
+ lc->region_count,
+ lc->sync_search);
+ lc->sync_search = *region + 1;
+
+ if (*region >= lc->region_count)
+ return 0;
+
+ } while (log_test_bit(lc->recovering_bits, *region));
+
+ log_set_bit(lc, lc->recovering_bits, *region);
+ return 1;
+}
+
+static void core_set_region_sync(struct dm_dirty_log *log, region_t region,
+ int in_sync)
+{
+ struct log_c *lc = (struct log_c *) log->context;
+
+ log_clear_bit(lc, lc->recovering_bits, region);
+ if (in_sync) {
+ log_set_bit(lc, lc->sync_bits, region);
+ lc->sync_count++;
+ } else if (log_test_bit(lc->sync_bits, region)) {
+ lc->sync_count--;
+ log_clear_bit(lc, lc->sync_bits, region);
+ }
+}
+
+static region_t core_get_sync_count(struct dm_dirty_log *log)
+{
+ struct log_c *lc = (struct log_c *) log->context;
+
+ return lc->sync_count;
+}
+
+#define DMEMIT_SYNC \
+ if (lc->sync != DEFAULTSYNC) \
+ DMEMIT("%ssync ", lc->sync == NOSYNC ? "no" : "")
+
+static int core_status(struct dm_dirty_log *log, status_type_t status,
+ char *result, unsigned int maxlen)
+{
+ int sz = 0;
+ struct log_c *lc = log->context;
+
+ switch(status) {
+ case STATUSTYPE_INFO:
+ DMEMIT("1 %s", log->type->name);
+ break;
+
+ case STATUSTYPE_TABLE:
+ DMEMIT("%s %u %u ", log->type->name,
+ lc->sync == DEFAULTSYNC ? 1 : 2, lc->region_size);
+ DMEMIT_SYNC;
+ break;
+
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+
+ return sz;
+}
+
+static int disk_status(struct dm_dirty_log *log, status_type_t status,
+ char *result, unsigned int maxlen)
+{
+ int sz = 0;
+ struct log_c *lc = log->context;
+
+ switch(status) {
+ case STATUSTYPE_INFO:
+ DMEMIT("3 %s %s %c", log->type->name, lc->log_dev->name,
+ lc->log_dev_flush_failed ? 'F' :
+ lc->log_dev_failed ? 'D' :
+ 'A');
+ break;
+
+ case STATUSTYPE_TABLE:
+ DMEMIT("%s %u %s %u ", log->type->name,
+ lc->sync == DEFAULTSYNC ? 2 : 3, lc->log_dev->name,
+ lc->region_size);
+ DMEMIT_SYNC;
+ break;
+
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+
+ return sz;
+}
+
+static struct dm_dirty_log_type _core_type = {
+ .name = "core",
+ .module = THIS_MODULE,
+ .ctr = core_ctr,
+ .dtr = core_dtr,
+ .resume = core_resume,
+ .get_region_size = core_get_region_size,
+ .is_clean = core_is_clean,
+ .in_sync = core_in_sync,
+ .flush = core_flush,
+ .mark_region = core_mark_region,
+ .clear_region = core_clear_region,
+ .get_resync_work = core_get_resync_work,
+ .set_region_sync = core_set_region_sync,
+ .get_sync_count = core_get_sync_count,
+ .status = core_status,
+};
+
+static struct dm_dirty_log_type _disk_type = {
+ .name = "disk",
+ .module = THIS_MODULE,
+ .ctr = disk_ctr,
+ .dtr = disk_dtr,
+ .postsuspend = disk_flush,
+ .resume = disk_resume,
+ .get_region_size = core_get_region_size,
+ .is_clean = core_is_clean,
+ .in_sync = core_in_sync,
+ .flush = disk_flush,
+ .mark_region = core_mark_region,
+ .clear_region = core_clear_region,
+ .get_resync_work = core_get_resync_work,
+ .set_region_sync = core_set_region_sync,
+ .get_sync_count = core_get_sync_count,
+ .status = disk_status,
+};
+
+static int __init dm_dirty_log_init(void)
+{
+ int r;
+
+ r = dm_dirty_log_type_register(&_core_type);
+ if (r)
+ DMWARN("couldn't register core log");
+
+ r = dm_dirty_log_type_register(&_disk_type);
+ if (r) {
+ DMWARN("couldn't register disk type");
+ dm_dirty_log_type_unregister(&_core_type);
+ }
+
+ return r;
+}
+
+static void __exit dm_dirty_log_exit(void)
+{
+ dm_dirty_log_type_unregister(&_disk_type);
+ dm_dirty_log_type_unregister(&_core_type);
+}
+
+module_init(dm_dirty_log_init);
+module_exit(dm_dirty_log_exit);
+
+MODULE_DESCRIPTION(DM_NAME " dirty region log");
+MODULE_AUTHOR("Joe Thornber, Heinz Mauelshagen <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-mpath.c b/drivers/md/dm-mpath.c
new file mode 100644
index 000000000..66032ab3c
--- /dev/null
+++ b/drivers/md/dm-mpath.c
@@ -0,0 +1,2256 @@
+/*
+ * Copyright (C) 2003 Sistina Software Limited.
+ * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/device-mapper.h>
+
+#include "dm-rq.h"
+#include "dm-bio-record.h"
+#include "dm-path-selector.h"
+#include "dm-uevent.h"
+
+#include <linux/blkdev.h>
+#include <linux/ctype.h>
+#include <linux/init.h>
+#include <linux/mempool.h>
+#include <linux/module.h>
+#include <linux/pagemap.h>
+#include <linux/slab.h>
+#include <linux/time.h>
+#include <linux/timer.h>
+#include <linux/workqueue.h>
+#include <linux/delay.h>
+#include <scsi/scsi_dh.h>
+#include <linux/atomic.h>
+#include <linux/blk-mq.h>
+
+#define DM_MSG_PREFIX "multipath"
+#define DM_PG_INIT_DELAY_MSECS 2000
+#define DM_PG_INIT_DELAY_DEFAULT ((unsigned int) -1)
+#define QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT 0
+
+static unsigned long queue_if_no_path_timeout_secs = QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT;
+
+/* Path properties */
+struct pgpath {
+ struct list_head list;
+
+ struct priority_group *pg; /* Owning PG */
+ unsigned int fail_count; /* Cumulative failure count */
+
+ struct dm_path path;
+ struct delayed_work activate_path;
+
+ bool is_active:1; /* Path status */
+};
+
+#define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
+
+/*
+ * Paths are grouped into Priority Groups and numbered from 1 upwards.
+ * Each has a path selector which controls which path gets used.
+ */
+struct priority_group {
+ struct list_head list;
+
+ struct multipath *m; /* Owning multipath instance */
+ struct path_selector ps;
+
+ unsigned int pg_num; /* Reference number */
+ unsigned int nr_pgpaths; /* Number of paths in PG */
+ struct list_head pgpaths;
+
+ bool bypassed:1; /* Temporarily bypass this PG? */
+};
+
+/* Multipath context */
+struct multipath {
+ unsigned long flags; /* Multipath state flags */
+
+ spinlock_t lock;
+ enum dm_queue_mode queue_mode;
+
+ struct pgpath *current_pgpath;
+ struct priority_group *current_pg;
+ struct priority_group *next_pg; /* Switch to this PG if set */
+
+ atomic_t nr_valid_paths; /* Total number of usable paths */
+ unsigned int nr_priority_groups;
+ struct list_head priority_groups;
+
+ const char *hw_handler_name;
+ char *hw_handler_params;
+ wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */
+ unsigned int pg_init_retries; /* Number of times to retry pg_init */
+ unsigned int pg_init_delay_msecs; /* Number of msecs before pg_init retry */
+ atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */
+ atomic_t pg_init_count; /* Number of times pg_init called */
+
+ struct mutex work_mutex;
+ struct work_struct trigger_event;
+ struct dm_target *ti;
+
+ struct work_struct process_queued_bios;
+ struct bio_list queued_bios;
+
+ struct timer_list nopath_timer; /* Timeout for queue_if_no_path */
+};
+
+/*
+ * Context information attached to each io we process.
+ */
+struct dm_mpath_io {
+ struct pgpath *pgpath;
+ size_t nr_bytes;
+ u64 start_time_ns;
+};
+
+typedef int (*action_fn) (struct pgpath *pgpath);
+
+static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
+static void trigger_event(struct work_struct *work);
+static void activate_or_offline_path(struct pgpath *pgpath);
+static void activate_path_work(struct work_struct *work);
+static void process_queued_bios(struct work_struct *work);
+static void queue_if_no_path_timeout_work(struct timer_list *t);
+
+/*-----------------------------------------------
+ * Multipath state flags.
+ *-----------------------------------------------*/
+
+#define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */
+#define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */
+#define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */
+#define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3 /* If there's already a hw_handler present, don't change it. */
+#define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */
+#define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */
+#define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */
+
+static bool mpath_double_check_test_bit(int MPATHF_bit, struct multipath *m)
+{
+ bool r = test_bit(MPATHF_bit, &m->flags);
+
+ if (r) {
+ unsigned long flags;
+ spin_lock_irqsave(&m->lock, flags);
+ r = test_bit(MPATHF_bit, &m->flags);
+ spin_unlock_irqrestore(&m->lock, flags);
+ }
+
+ return r;
+}
+
+/*-----------------------------------------------
+ * Allocation routines
+ *-----------------------------------------------*/
+
+static struct pgpath *alloc_pgpath(void)
+{
+ struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
+
+ if (!pgpath)
+ return NULL;
+
+ pgpath->is_active = true;
+
+ return pgpath;
+}
+
+static void free_pgpath(struct pgpath *pgpath)
+{
+ kfree(pgpath);
+}
+
+static struct priority_group *alloc_priority_group(void)
+{
+ struct priority_group *pg;
+
+ pg = kzalloc(sizeof(*pg), GFP_KERNEL);
+
+ if (pg)
+ INIT_LIST_HEAD(&pg->pgpaths);
+
+ return pg;
+}
+
+static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
+{
+ struct pgpath *pgpath, *tmp;
+
+ list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
+ list_del(&pgpath->list);
+ dm_put_device(ti, pgpath->path.dev);
+ free_pgpath(pgpath);
+ }
+}
+
+static void free_priority_group(struct priority_group *pg,
+ struct dm_target *ti)
+{
+ struct path_selector *ps = &pg->ps;
+
+ if (ps->type) {
+ ps->type->destroy(ps);
+ dm_put_path_selector(ps->type);
+ }
+
+ free_pgpaths(&pg->pgpaths, ti);
+ kfree(pg);
+}
+
+static struct multipath *alloc_multipath(struct dm_target *ti)
+{
+ struct multipath *m;
+
+ m = kzalloc(sizeof(*m), GFP_KERNEL);
+ if (m) {
+ INIT_LIST_HEAD(&m->priority_groups);
+ spin_lock_init(&m->lock);
+ atomic_set(&m->nr_valid_paths, 0);
+ INIT_WORK(&m->trigger_event, trigger_event);
+ mutex_init(&m->work_mutex);
+
+ m->queue_mode = DM_TYPE_NONE;
+
+ m->ti = ti;
+ ti->private = m;
+
+ timer_setup(&m->nopath_timer, queue_if_no_path_timeout_work, 0);
+ }
+
+ return m;
+}
+
+static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
+{
+ if (m->queue_mode == DM_TYPE_NONE) {
+ m->queue_mode = DM_TYPE_REQUEST_BASED;
+ } else if (m->queue_mode == DM_TYPE_BIO_BASED) {
+ INIT_WORK(&m->process_queued_bios, process_queued_bios);
+ /*
+ * bio-based doesn't support any direct scsi_dh management;
+ * it just discovers if a scsi_dh is attached.
+ */
+ set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
+ }
+
+ dm_table_set_type(ti->table, m->queue_mode);
+
+ /*
+ * Init fields that are only used when a scsi_dh is attached
+ * - must do this unconditionally (really doesn't hurt non-SCSI uses)
+ */
+ set_bit(MPATHF_QUEUE_IO, &m->flags);
+ atomic_set(&m->pg_init_in_progress, 0);
+ atomic_set(&m->pg_init_count, 0);
+ m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
+ init_waitqueue_head(&m->pg_init_wait);
+
+ return 0;
+}
+
+static void free_multipath(struct multipath *m)
+{
+ struct priority_group *pg, *tmp;
+
+ list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
+ list_del(&pg->list);
+ free_priority_group(pg, m->ti);
+ }
+
+ kfree(m->hw_handler_name);
+ kfree(m->hw_handler_params);
+ mutex_destroy(&m->work_mutex);
+ kfree(m);
+}
+
+static struct dm_mpath_io *get_mpio(union map_info *info)
+{
+ return info->ptr;
+}
+
+static size_t multipath_per_bio_data_size(void)
+{
+ return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
+}
+
+static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
+{
+ return dm_per_bio_data(bio, multipath_per_bio_data_size());
+}
+
+static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio)
+{
+ /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
+ void *bio_details = mpio + 1;
+ return bio_details;
+}
+
+static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p)
+{
+ struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
+ struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio);
+
+ mpio->nr_bytes = bio->bi_iter.bi_size;
+ mpio->pgpath = NULL;
+ mpio->start_time_ns = 0;
+ *mpio_p = mpio;
+
+ dm_bio_record(bio_details, bio);
+}
+
+/*-----------------------------------------------
+ * Path selection
+ *-----------------------------------------------*/
+
+static int __pg_init_all_paths(struct multipath *m)
+{
+ struct pgpath *pgpath;
+ unsigned long pg_init_delay = 0;
+
+ lockdep_assert_held(&m->lock);
+
+ if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
+ return 0;
+
+ atomic_inc(&m->pg_init_count);
+ clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
+
+ /* Check here to reset pg_init_required */
+ if (!m->current_pg)
+ return 0;
+
+ if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
+ pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
+ m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
+ list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
+ /* Skip failed paths */
+ if (!pgpath->is_active)
+ continue;
+ if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
+ pg_init_delay))
+ atomic_inc(&m->pg_init_in_progress);
+ }
+ return atomic_read(&m->pg_init_in_progress);
+}
+
+static int pg_init_all_paths(struct multipath *m)
+{
+ int ret;
+ unsigned long flags;
+
+ spin_lock_irqsave(&m->lock, flags);
+ ret = __pg_init_all_paths(m);
+ spin_unlock_irqrestore(&m->lock, flags);
+
+ return ret;
+}
+
+static void __switch_pg(struct multipath *m, struct priority_group *pg)
+{
+ lockdep_assert_held(&m->lock);
+
+ m->current_pg = pg;
+
+ /* Must we initialise the PG first, and queue I/O till it's ready? */
+ if (m->hw_handler_name) {
+ set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
+ set_bit(MPATHF_QUEUE_IO, &m->flags);
+ } else {
+ clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
+ clear_bit(MPATHF_QUEUE_IO, &m->flags);
+ }
+
+ atomic_set(&m->pg_init_count, 0);
+}
+
+static struct pgpath *choose_path_in_pg(struct multipath *m,
+ struct priority_group *pg,
+ size_t nr_bytes)
+{
+ unsigned long flags;
+ struct dm_path *path;
+ struct pgpath *pgpath;
+
+ path = pg->ps.type->select_path(&pg->ps, nr_bytes);
+ if (!path)
+ return ERR_PTR(-ENXIO);
+
+ pgpath = path_to_pgpath(path);
+
+ if (unlikely(READ_ONCE(m->current_pg) != pg)) {
+ /* Only update current_pgpath if pg changed */
+ spin_lock_irqsave(&m->lock, flags);
+ m->current_pgpath = pgpath;
+ __switch_pg(m, pg);
+ spin_unlock_irqrestore(&m->lock, flags);
+ }
+
+ return pgpath;
+}
+
+static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
+{
+ unsigned long flags;
+ struct priority_group *pg;
+ struct pgpath *pgpath;
+ unsigned int bypassed = 1;
+
+ if (!atomic_read(&m->nr_valid_paths)) {
+ spin_lock_irqsave(&m->lock, flags);
+ clear_bit(MPATHF_QUEUE_IO, &m->flags);
+ spin_unlock_irqrestore(&m->lock, flags);
+ goto failed;
+ }
+
+ /* Were we instructed to switch PG? */
+ if (READ_ONCE(m->next_pg)) {
+ spin_lock_irqsave(&m->lock, flags);
+ pg = m->next_pg;
+ if (!pg) {
+ spin_unlock_irqrestore(&m->lock, flags);
+ goto check_current_pg;
+ }
+ m->next_pg = NULL;
+ spin_unlock_irqrestore(&m->lock, flags);
+ pgpath = choose_path_in_pg(m, pg, nr_bytes);
+ if (!IS_ERR_OR_NULL(pgpath))
+ return pgpath;
+ }
+
+ /* Don't change PG until it has no remaining paths */
+check_current_pg:
+ pg = READ_ONCE(m->current_pg);
+ if (pg) {
+ pgpath = choose_path_in_pg(m, pg, nr_bytes);
+ if (!IS_ERR_OR_NULL(pgpath))
+ return pgpath;
+ }
+
+ /*
+ * Loop through priority groups until we find a valid path.
+ * First time we skip PGs marked 'bypassed'.
+ * Second time we only try the ones we skipped, but set
+ * pg_init_delay_retry so we do not hammer controllers.
+ */
+ do {
+ list_for_each_entry(pg, &m->priority_groups, list) {
+ if (pg->bypassed == !!bypassed)
+ continue;
+ pgpath = choose_path_in_pg(m, pg, nr_bytes);
+ if (!IS_ERR_OR_NULL(pgpath)) {
+ if (!bypassed) {
+ spin_lock_irqsave(&m->lock, flags);
+ set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
+ spin_unlock_irqrestore(&m->lock, flags);
+ }
+ return pgpath;
+ }
+ }
+ } while (bypassed--);
+
+failed:
+ spin_lock_irqsave(&m->lock, flags);
+ m->current_pgpath = NULL;
+ m->current_pg = NULL;
+ spin_unlock_irqrestore(&m->lock, flags);
+
+ return NULL;
+}
+
+/*
+ * dm_report_EIO() is a macro instead of a function to make pr_debug_ratelimited()
+ * report the function name and line number of the function from which
+ * it has been invoked.
+ */
+#define dm_report_EIO(m) \
+do { \
+ DMDEBUG_LIMIT("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d", \
+ dm_table_device_name((m)->ti->table), \
+ test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \
+ test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \
+ dm_noflush_suspending((m)->ti)); \
+} while (0)
+
+/*
+ * Check whether bios must be queued in the device-mapper core rather
+ * than here in the target.
+ */
+static bool __must_push_back(struct multipath *m)
+{
+ return dm_noflush_suspending(m->ti);
+}
+
+static bool must_push_back_rq(struct multipath *m)
+{
+ unsigned long flags;
+ bool ret;
+
+ spin_lock_irqsave(&m->lock, flags);
+ ret = (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) || __must_push_back(m));
+ spin_unlock_irqrestore(&m->lock, flags);
+
+ return ret;
+}
+
+/*
+ * Map cloned requests (request-based multipath)
+ */
+static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
+ union map_info *map_context,
+ struct request **__clone)
+{
+ struct multipath *m = ti->private;
+ size_t nr_bytes = blk_rq_bytes(rq);
+ struct pgpath *pgpath;
+ struct block_device *bdev;
+ struct dm_mpath_io *mpio = get_mpio(map_context);
+ struct request_queue *q;
+ struct request *clone;
+
+ /* Do we need to select a new pgpath? */
+ pgpath = READ_ONCE(m->current_pgpath);
+ if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m))
+ pgpath = choose_pgpath(m, nr_bytes);
+
+ if (!pgpath) {
+ if (must_push_back_rq(m))
+ return DM_MAPIO_DELAY_REQUEUE;
+ dm_report_EIO(m); /* Failed */
+ return DM_MAPIO_KILL;
+ } else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) ||
+ mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) {
+ pg_init_all_paths(m);
+ return DM_MAPIO_DELAY_REQUEUE;
+ }
+
+ mpio->pgpath = pgpath;
+ mpio->nr_bytes = nr_bytes;
+
+ bdev = pgpath->path.dev->bdev;
+ q = bdev_get_queue(bdev);
+ clone = blk_mq_alloc_request(q, rq->cmd_flags | REQ_NOMERGE,
+ BLK_MQ_REQ_NOWAIT);
+ if (IS_ERR(clone)) {
+ /* EBUSY, ENODEV or EWOULDBLOCK: requeue */
+ if (blk_queue_dying(q)) {
+ atomic_inc(&m->pg_init_in_progress);
+ activate_or_offline_path(pgpath);
+ return DM_MAPIO_DELAY_REQUEUE;
+ }
+
+ /*
+ * blk-mq's SCHED_RESTART can cover this requeue, so we
+ * needn't deal with it by DELAY_REQUEUE. More importantly,
+ * we have to return DM_MAPIO_REQUEUE so that blk-mq can
+ * get the queue busy feedback (via BLK_STS_RESOURCE),
+ * otherwise I/O merging can suffer.
+ */
+ return DM_MAPIO_REQUEUE;
+ }
+ clone->bio = clone->biotail = NULL;
+ clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
+ *__clone = clone;
+
+ if (pgpath->pg->ps.type->start_io)
+ pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
+ &pgpath->path,
+ nr_bytes);
+ return DM_MAPIO_REMAPPED;
+}
+
+static void multipath_release_clone(struct request *clone,
+ union map_info *map_context)
+{
+ if (unlikely(map_context)) {
+ /*
+ * non-NULL map_context means caller is still map
+ * method; must undo multipath_clone_and_map()
+ */
+ struct dm_mpath_io *mpio = get_mpio(map_context);
+ struct pgpath *pgpath = mpio->pgpath;
+
+ if (pgpath && pgpath->pg->ps.type->end_io)
+ pgpath->pg->ps.type->end_io(&pgpath->pg->ps,
+ &pgpath->path,
+ mpio->nr_bytes,
+ clone->io_start_time_ns);
+ }
+
+ blk_mq_free_request(clone);
+}
+
+/*
+ * Map cloned bios (bio-based multipath)
+ */
+
+static void __multipath_queue_bio(struct multipath *m, struct bio *bio)
+{
+ /* Queue for the daemon to resubmit */
+ bio_list_add(&m->queued_bios, bio);
+ if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
+ queue_work(kmultipathd, &m->process_queued_bios);
+}
+
+static void multipath_queue_bio(struct multipath *m, struct bio *bio)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&m->lock, flags);
+ __multipath_queue_bio(m, bio);
+ spin_unlock_irqrestore(&m->lock, flags);
+}
+
+static struct pgpath *__map_bio(struct multipath *m, struct bio *bio)
+{
+ struct pgpath *pgpath;
+ unsigned long flags;
+
+ /* Do we need to select a new pgpath? */
+ pgpath = READ_ONCE(m->current_pgpath);
+ if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m))
+ pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
+
+ if (!pgpath) {
+ spin_lock_irqsave(&m->lock, flags);
+ if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
+ __multipath_queue_bio(m, bio);
+ pgpath = ERR_PTR(-EAGAIN);
+ }
+ spin_unlock_irqrestore(&m->lock, flags);
+
+ } else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) ||
+ mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) {
+ multipath_queue_bio(m, bio);
+ pg_init_all_paths(m);
+ return ERR_PTR(-EAGAIN);
+ }
+
+ return pgpath;
+}
+
+static int __multipath_map_bio(struct multipath *m, struct bio *bio,
+ struct dm_mpath_io *mpio)
+{
+ struct pgpath *pgpath = __map_bio(m, bio);
+
+ if (IS_ERR(pgpath))
+ return DM_MAPIO_SUBMITTED;
+
+ if (!pgpath) {
+ if (__must_push_back(m))
+ return DM_MAPIO_REQUEUE;
+ dm_report_EIO(m);
+ return DM_MAPIO_KILL;
+ }
+
+ mpio->pgpath = pgpath;
+
+ if (dm_ps_use_hr_timer(pgpath->pg->ps.type))
+ mpio->start_time_ns = ktime_get_ns();
+
+ bio->bi_status = 0;
+ bio_set_dev(bio, pgpath->path.dev->bdev);
+ bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
+
+ if (pgpath->pg->ps.type->start_io)
+ pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
+ &pgpath->path,
+ mpio->nr_bytes);
+ return DM_MAPIO_REMAPPED;
+}
+
+static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
+{
+ struct multipath *m = ti->private;
+ struct dm_mpath_io *mpio = NULL;
+
+ multipath_init_per_bio_data(bio, &mpio);
+ return __multipath_map_bio(m, bio, mpio);
+}
+
+static void process_queued_io_list(struct multipath *m)
+{
+ if (m->queue_mode == DM_TYPE_REQUEST_BASED)
+ dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
+ else if (m->queue_mode == DM_TYPE_BIO_BASED)
+ queue_work(kmultipathd, &m->process_queued_bios);
+}
+
+static void process_queued_bios(struct work_struct *work)
+{
+ int r;
+ unsigned long flags;
+ struct bio *bio;
+ struct bio_list bios;
+ struct blk_plug plug;
+ struct multipath *m =
+ container_of(work, struct multipath, process_queued_bios);
+
+ bio_list_init(&bios);
+
+ spin_lock_irqsave(&m->lock, flags);
+
+ if (bio_list_empty(&m->queued_bios)) {
+ spin_unlock_irqrestore(&m->lock, flags);
+ return;
+ }
+
+ bio_list_merge(&bios, &m->queued_bios);
+ bio_list_init(&m->queued_bios);
+
+ spin_unlock_irqrestore(&m->lock, flags);
+
+ blk_start_plug(&plug);
+ while ((bio = bio_list_pop(&bios))) {
+ struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
+ dm_bio_restore(get_bio_details_from_mpio(mpio), bio);
+ r = __multipath_map_bio(m, bio, mpio);
+ switch (r) {
+ case DM_MAPIO_KILL:
+ bio->bi_status = BLK_STS_IOERR;
+ bio_endio(bio);
+ break;
+ case DM_MAPIO_REQUEUE:
+ bio->bi_status = BLK_STS_DM_REQUEUE;
+ bio_endio(bio);
+ break;
+ case DM_MAPIO_REMAPPED:
+ submit_bio_noacct(bio);
+ break;
+ case DM_MAPIO_SUBMITTED:
+ break;
+ default:
+ WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
+ }
+ }
+ blk_finish_plug(&plug);
+}
+
+/*
+ * If we run out of usable paths, should we queue I/O or error it?
+ */
+static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
+ bool save_old_value, const char *caller)
+{
+ unsigned long flags;
+ bool queue_if_no_path_bit, saved_queue_if_no_path_bit;
+ const char *dm_dev_name = dm_table_device_name(m->ti->table);
+
+ DMDEBUG("%s: %s caller=%s queue_if_no_path=%d save_old_value=%d",
+ dm_dev_name, __func__, caller, queue_if_no_path, save_old_value);
+
+ spin_lock_irqsave(&m->lock, flags);
+
+ queue_if_no_path_bit = test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags);
+ saved_queue_if_no_path_bit = test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
+
+ if (save_old_value) {
+ if (unlikely(!queue_if_no_path_bit && saved_queue_if_no_path_bit)) {
+ DMERR("%s: QIFNP disabled but saved as enabled, saving again loses state, not saving!",
+ dm_dev_name);
+ } else
+ assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path_bit);
+ } else if (!queue_if_no_path && saved_queue_if_no_path_bit) {
+ /* due to "fail_if_no_path" message, need to honor it. */
+ clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
+ }
+ assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path);
+
+ DMDEBUG("%s: after %s changes; QIFNP = %d; SQIFNP = %d; DNFS = %d",
+ dm_dev_name, __func__,
+ test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags),
+ test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags),
+ dm_noflush_suspending(m->ti));
+
+ spin_unlock_irqrestore(&m->lock, flags);
+
+ if (!queue_if_no_path) {
+ dm_table_run_md_queue_async(m->ti->table);
+ process_queued_io_list(m);
+ }
+
+ return 0;
+}
+
+/*
+ * If the queue_if_no_path timeout fires, turn off queue_if_no_path and
+ * process any queued I/O.
+ */
+static void queue_if_no_path_timeout_work(struct timer_list *t)
+{
+ struct multipath *m = from_timer(m, t, nopath_timer);
+
+ DMWARN("queue_if_no_path timeout on %s, failing queued IO",
+ dm_table_device_name(m->ti->table));
+ queue_if_no_path(m, false, false, __func__);
+}
+
+/*
+ * Enable the queue_if_no_path timeout if necessary.
+ * Called with m->lock held.
+ */
+static void enable_nopath_timeout(struct multipath *m)
+{
+ unsigned long queue_if_no_path_timeout =
+ READ_ONCE(queue_if_no_path_timeout_secs) * HZ;
+
+ lockdep_assert_held(&m->lock);
+
+ if (queue_if_no_path_timeout > 0 &&
+ atomic_read(&m->nr_valid_paths) == 0 &&
+ test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
+ mod_timer(&m->nopath_timer,
+ jiffies + queue_if_no_path_timeout);
+ }
+}
+
+static void disable_nopath_timeout(struct multipath *m)
+{
+ del_timer_sync(&m->nopath_timer);
+}
+
+/*
+ * An event is triggered whenever a path is taken out of use.
+ * Includes path failure and PG bypass.
+ */
+static void trigger_event(struct work_struct *work)
+{
+ struct multipath *m =
+ container_of(work, struct multipath, trigger_event);
+
+ dm_table_event(m->ti->table);
+}
+
+/*-----------------------------------------------------------------
+ * Constructor/argument parsing:
+ * <#multipath feature args> [<arg>]*
+ * <#hw_handler args> [hw_handler [<arg>]*]
+ * <#priority groups>
+ * <initial priority group>
+ * [<selector> <#selector args> [<arg>]*
+ * <#paths> <#per-path selector args>
+ * [<path> [<arg>]* ]+ ]+
+ *---------------------------------------------------------------*/
+static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
+ struct dm_target *ti)
+{
+ int r;
+ struct path_selector_type *pst;
+ unsigned int ps_argc;
+
+ static const struct dm_arg _args[] = {
+ {0, 1024, "invalid number of path selector args"},
+ };
+
+ pst = dm_get_path_selector(dm_shift_arg(as));
+ if (!pst) {
+ ti->error = "unknown path selector type";
+ return -EINVAL;
+ }
+
+ r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
+ if (r) {
+ dm_put_path_selector(pst);
+ return -EINVAL;
+ }
+
+ r = pst->create(&pg->ps, ps_argc, as->argv);
+ if (r) {
+ dm_put_path_selector(pst);
+ ti->error = "path selector constructor failed";
+ return r;
+ }
+
+ pg->ps.type = pst;
+ dm_consume_args(as, ps_argc);
+
+ return 0;
+}
+
+static int setup_scsi_dh(struct block_device *bdev, struct multipath *m,
+ const char **attached_handler_name, char **error)
+{
+ struct request_queue *q = bdev_get_queue(bdev);
+ int r;
+
+ if (mpath_double_check_test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, m)) {
+retain:
+ if (*attached_handler_name) {
+ /*
+ * Clear any hw_handler_params associated with a
+ * handler that isn't already attached.
+ */
+ if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) {
+ kfree(m->hw_handler_params);
+ m->hw_handler_params = NULL;
+ }
+
+ /*
+ * Reset hw_handler_name to match the attached handler
+ *
+ * NB. This modifies the table line to show the actual
+ * handler instead of the original table passed in.
+ */
+ kfree(m->hw_handler_name);
+ m->hw_handler_name = *attached_handler_name;
+ *attached_handler_name = NULL;
+ }
+ }
+
+ if (m->hw_handler_name) {
+ r = scsi_dh_attach(q, m->hw_handler_name);
+ if (r == -EBUSY) {
+ DMINFO("retaining handler on device %pg", bdev);
+ goto retain;
+ }
+ if (r < 0) {
+ *error = "error attaching hardware handler";
+ return r;
+ }
+
+ if (m->hw_handler_params) {
+ r = scsi_dh_set_params(q, m->hw_handler_params);
+ if (r < 0) {
+ *error = "unable to set hardware handler parameters";
+ return r;
+ }
+ }
+ }
+
+ return 0;
+}
+
+static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
+ struct dm_target *ti)
+{
+ int r;
+ struct pgpath *p;
+ struct multipath *m = ti->private;
+ struct request_queue *q;
+ const char *attached_handler_name = NULL;
+
+ /* we need at least a path arg */
+ if (as->argc < 1) {
+ ti->error = "no device given";
+ return ERR_PTR(-EINVAL);
+ }
+
+ p = alloc_pgpath();
+ if (!p)
+ return ERR_PTR(-ENOMEM);
+
+ r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
+ &p->path.dev);
+ if (r) {
+ ti->error = "error getting device";
+ goto bad;
+ }
+
+ q = bdev_get_queue(p->path.dev->bdev);
+ attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
+ if (attached_handler_name || m->hw_handler_name) {
+ INIT_DELAYED_WORK(&p->activate_path, activate_path_work);
+ r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error);
+ kfree(attached_handler_name);
+ if (r) {
+ dm_put_device(ti, p->path.dev);
+ goto bad;
+ }
+ }
+
+ r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
+ if (r) {
+ dm_put_device(ti, p->path.dev);
+ goto bad;
+ }
+
+ return p;
+ bad:
+ free_pgpath(p);
+ return ERR_PTR(r);
+}
+
+static struct priority_group *parse_priority_group(struct dm_arg_set *as,
+ struct multipath *m)
+{
+ static const struct dm_arg _args[] = {
+ {1, 1024, "invalid number of paths"},
+ {0, 1024, "invalid number of selector args"}
+ };
+
+ int r;
+ unsigned int i, nr_selector_args, nr_args;
+ struct priority_group *pg;
+ struct dm_target *ti = m->ti;
+
+ if (as->argc < 2) {
+ as->argc = 0;
+ ti->error = "not enough priority group arguments";
+ return ERR_PTR(-EINVAL);
+ }
+
+ pg = alloc_priority_group();
+ if (!pg) {
+ ti->error = "couldn't allocate priority group";
+ return ERR_PTR(-ENOMEM);
+ }
+ pg->m = m;
+
+ r = parse_path_selector(as, pg, ti);
+ if (r)
+ goto bad;
+
+ /*
+ * read the paths
+ */
+ r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
+ if (r)
+ goto bad;
+
+ r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
+ if (r)
+ goto bad;
+
+ nr_args = 1 + nr_selector_args;
+ for (i = 0; i < pg->nr_pgpaths; i++) {
+ struct pgpath *pgpath;
+ struct dm_arg_set path_args;
+
+ if (as->argc < nr_args) {
+ ti->error = "not enough path parameters";
+ r = -EINVAL;
+ goto bad;
+ }
+
+ path_args.argc = nr_args;
+ path_args.argv = as->argv;
+
+ pgpath = parse_path(&path_args, &pg->ps, ti);
+ if (IS_ERR(pgpath)) {
+ r = PTR_ERR(pgpath);
+ goto bad;
+ }
+
+ pgpath->pg = pg;
+ list_add_tail(&pgpath->list, &pg->pgpaths);
+ dm_consume_args(as, nr_args);
+ }
+
+ return pg;
+
+ bad:
+ free_priority_group(pg, ti);
+ return ERR_PTR(r);
+}
+
+static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
+{
+ unsigned int hw_argc;
+ int ret;
+ struct dm_target *ti = m->ti;
+
+ static const struct dm_arg _args[] = {
+ {0, 1024, "invalid number of hardware handler args"},
+ };
+
+ if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
+ return -EINVAL;
+
+ if (!hw_argc)
+ return 0;
+
+ if (m->queue_mode == DM_TYPE_BIO_BASED) {
+ dm_consume_args(as, hw_argc);
+ DMERR("bio-based multipath doesn't allow hardware handler args");
+ return 0;
+ }
+
+ m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
+ if (!m->hw_handler_name)
+ return -EINVAL;
+
+ if (hw_argc > 1) {
+ char *p;
+ int i, j, len = 4;
+
+ for (i = 0; i <= hw_argc - 2; i++)
+ len += strlen(as->argv[i]) + 1;
+ p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
+ if (!p) {
+ ti->error = "memory allocation failed";
+ ret = -ENOMEM;
+ goto fail;
+ }
+ j = sprintf(p, "%d", hw_argc - 1);
+ for (i = 0, p += j + 1; i <= hw_argc - 2; i++, p += j + 1)
+ j = sprintf(p, "%s", as->argv[i]);
+ }
+ dm_consume_args(as, hw_argc - 1);
+
+ return 0;
+fail:
+ kfree(m->hw_handler_name);
+ m->hw_handler_name = NULL;
+ return ret;
+}
+
+static int parse_features(struct dm_arg_set *as, struct multipath *m)
+{
+ int r;
+ unsigned int argc;
+ struct dm_target *ti = m->ti;
+ const char *arg_name;
+
+ static const struct dm_arg _args[] = {
+ {0, 8, "invalid number of feature args"},
+ {1, 50, "pg_init_retries must be between 1 and 50"},
+ {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
+ };
+
+ r = dm_read_arg_group(_args, as, &argc, &ti->error);
+ if (r)
+ return -EINVAL;
+
+ if (!argc)
+ return 0;
+
+ do {
+ arg_name = dm_shift_arg(as);
+ argc--;
+
+ if (!strcasecmp(arg_name, "queue_if_no_path")) {
+ r = queue_if_no_path(m, true, false, __func__);
+ continue;
+ }
+
+ if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
+ set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
+ continue;
+ }
+
+ if (!strcasecmp(arg_name, "pg_init_retries") &&
+ (argc >= 1)) {
+ r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
+ argc--;
+ continue;
+ }
+
+ if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
+ (argc >= 1)) {
+ r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
+ argc--;
+ continue;
+ }
+
+ if (!strcasecmp(arg_name, "queue_mode") &&
+ (argc >= 1)) {
+ const char *queue_mode_name = dm_shift_arg(as);
+
+ if (!strcasecmp(queue_mode_name, "bio"))
+ m->queue_mode = DM_TYPE_BIO_BASED;
+ else if (!strcasecmp(queue_mode_name, "rq") ||
+ !strcasecmp(queue_mode_name, "mq"))
+ m->queue_mode = DM_TYPE_REQUEST_BASED;
+ else {
+ ti->error = "Unknown 'queue_mode' requested";
+ r = -EINVAL;
+ }
+ argc--;
+ continue;
+ }
+
+ ti->error = "Unrecognised multipath feature request";
+ r = -EINVAL;
+ } while (argc && !r);
+
+ return r;
+}
+
+static int multipath_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ /* target arguments */
+ static const struct dm_arg _args[] = {
+ {0, 1024, "invalid number of priority groups"},
+ {0, 1024, "invalid initial priority group number"},
+ };
+
+ int r;
+ struct multipath *m;
+ struct dm_arg_set as;
+ unsigned int pg_count = 0;
+ unsigned int next_pg_num;
+ unsigned long flags;
+
+ as.argc = argc;
+ as.argv = argv;
+
+ m = alloc_multipath(ti);
+ if (!m) {
+ ti->error = "can't allocate multipath";
+ return -EINVAL;
+ }
+
+ r = parse_features(&as, m);
+ if (r)
+ goto bad;
+
+ r = alloc_multipath_stage2(ti, m);
+ if (r)
+ goto bad;
+
+ r = parse_hw_handler(&as, m);
+ if (r)
+ goto bad;
+
+ r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
+ if (r)
+ goto bad;
+
+ r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
+ if (r)
+ goto bad;
+
+ if ((!m->nr_priority_groups && next_pg_num) ||
+ (m->nr_priority_groups && !next_pg_num)) {
+ ti->error = "invalid initial priority group";
+ r = -EINVAL;
+ goto bad;
+ }
+
+ /* parse the priority groups */
+ while (as.argc) {
+ struct priority_group *pg;
+ unsigned int nr_valid_paths = atomic_read(&m->nr_valid_paths);
+
+ pg = parse_priority_group(&as, m);
+ if (IS_ERR(pg)) {
+ r = PTR_ERR(pg);
+ goto bad;
+ }
+
+ nr_valid_paths += pg->nr_pgpaths;
+ atomic_set(&m->nr_valid_paths, nr_valid_paths);
+
+ list_add_tail(&pg->list, &m->priority_groups);
+ pg_count++;
+ pg->pg_num = pg_count;
+ if (!--next_pg_num)
+ m->next_pg = pg;
+ }
+
+ if (pg_count != m->nr_priority_groups) {
+ ti->error = "priority group count mismatch";
+ r = -EINVAL;
+ goto bad;
+ }
+
+ spin_lock_irqsave(&m->lock, flags);
+ enable_nopath_timeout(m);
+ spin_unlock_irqrestore(&m->lock, flags);
+
+ ti->num_flush_bios = 1;
+ ti->num_discard_bios = 1;
+ ti->num_write_zeroes_bios = 1;
+ if (m->queue_mode == DM_TYPE_BIO_BASED)
+ ti->per_io_data_size = multipath_per_bio_data_size();
+ else
+ ti->per_io_data_size = sizeof(struct dm_mpath_io);
+
+ return 0;
+
+ bad:
+ free_multipath(m);
+ return r;
+}
+
+static void multipath_wait_for_pg_init_completion(struct multipath *m)
+{
+ DEFINE_WAIT(wait);
+
+ while (1) {
+ prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
+
+ if (!atomic_read(&m->pg_init_in_progress))
+ break;
+
+ io_schedule();
+ }
+ finish_wait(&m->pg_init_wait, &wait);
+}
+
+static void flush_multipath_work(struct multipath *m)
+{
+ if (m->hw_handler_name) {
+ unsigned long flags;
+
+ if (!atomic_read(&m->pg_init_in_progress))
+ goto skip;
+
+ spin_lock_irqsave(&m->lock, flags);
+ if (atomic_read(&m->pg_init_in_progress) &&
+ !test_and_set_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) {
+ spin_unlock_irqrestore(&m->lock, flags);
+
+ flush_workqueue(kmpath_handlerd);
+ multipath_wait_for_pg_init_completion(m);
+
+ spin_lock_irqsave(&m->lock, flags);
+ clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
+ }
+ spin_unlock_irqrestore(&m->lock, flags);
+ }
+skip:
+ if (m->queue_mode == DM_TYPE_BIO_BASED)
+ flush_work(&m->process_queued_bios);
+ flush_work(&m->trigger_event);
+}
+
+static void multipath_dtr(struct dm_target *ti)
+{
+ struct multipath *m = ti->private;
+
+ disable_nopath_timeout(m);
+ flush_multipath_work(m);
+ free_multipath(m);
+}
+
+/*
+ * Take a path out of use.
+ */
+static int fail_path(struct pgpath *pgpath)
+{
+ unsigned long flags;
+ struct multipath *m = pgpath->pg->m;
+
+ spin_lock_irqsave(&m->lock, flags);
+
+ if (!pgpath->is_active)
+ goto out;
+
+ DMWARN("%s: Failing path %s.",
+ dm_table_device_name(m->ti->table),
+ pgpath->path.dev->name);
+
+ pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
+ pgpath->is_active = false;
+ pgpath->fail_count++;
+
+ atomic_dec(&m->nr_valid_paths);
+
+ if (pgpath == m->current_pgpath)
+ m->current_pgpath = NULL;
+
+ dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
+ pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
+
+ schedule_work(&m->trigger_event);
+
+ enable_nopath_timeout(m);
+
+out:
+ spin_unlock_irqrestore(&m->lock, flags);
+
+ return 0;
+}
+
+/*
+ * Reinstate a previously-failed path
+ */
+static int reinstate_path(struct pgpath *pgpath)
+{
+ int r = 0, run_queue = 0;
+ unsigned long flags;
+ struct multipath *m = pgpath->pg->m;
+ unsigned int nr_valid_paths;
+
+ spin_lock_irqsave(&m->lock, flags);
+
+ if (pgpath->is_active)
+ goto out;
+
+ DMWARN("%s: Reinstating path %s.",
+ dm_table_device_name(m->ti->table),
+ pgpath->path.dev->name);
+
+ r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
+ if (r)
+ goto out;
+
+ pgpath->is_active = true;
+
+ nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
+ if (nr_valid_paths == 1) {
+ m->current_pgpath = NULL;
+ run_queue = 1;
+ } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
+ if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
+ atomic_inc(&m->pg_init_in_progress);
+ }
+
+ dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
+ pgpath->path.dev->name, nr_valid_paths);
+
+ schedule_work(&m->trigger_event);
+
+out:
+ spin_unlock_irqrestore(&m->lock, flags);
+ if (run_queue) {
+ dm_table_run_md_queue_async(m->ti->table);
+ process_queued_io_list(m);
+ }
+
+ if (pgpath->is_active)
+ disable_nopath_timeout(m);
+
+ return r;
+}
+
+/*
+ * Fail or reinstate all paths that match the provided struct dm_dev.
+ */
+static int action_dev(struct multipath *m, struct dm_dev *dev,
+ action_fn action)
+{
+ int r = -EINVAL;
+ struct pgpath *pgpath;
+ struct priority_group *pg;
+
+ list_for_each_entry(pg, &m->priority_groups, list) {
+ list_for_each_entry(pgpath, &pg->pgpaths, list) {
+ if (pgpath->path.dev == dev)
+ r = action(pgpath);
+ }
+ }
+
+ return r;
+}
+
+/*
+ * Temporarily try to avoid having to use the specified PG
+ */
+static void bypass_pg(struct multipath *m, struct priority_group *pg,
+ bool bypassed)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&m->lock, flags);
+
+ pg->bypassed = bypassed;
+ m->current_pgpath = NULL;
+ m->current_pg = NULL;
+
+ spin_unlock_irqrestore(&m->lock, flags);
+
+ schedule_work(&m->trigger_event);
+}
+
+/*
+ * Switch to using the specified PG from the next I/O that gets mapped
+ */
+static int switch_pg_num(struct multipath *m, const char *pgstr)
+{
+ struct priority_group *pg;
+ unsigned int pgnum;
+ unsigned long flags;
+ char dummy;
+
+ if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
+ !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
+ DMWARN("invalid PG number supplied to switch_pg_num");
+ return -EINVAL;
+ }
+
+ spin_lock_irqsave(&m->lock, flags);
+ list_for_each_entry(pg, &m->priority_groups, list) {
+ pg->bypassed = false;
+ if (--pgnum)
+ continue;
+
+ m->current_pgpath = NULL;
+ m->current_pg = NULL;
+ m->next_pg = pg;
+ }
+ spin_unlock_irqrestore(&m->lock, flags);
+
+ schedule_work(&m->trigger_event);
+ return 0;
+}
+
+/*
+ * Set/clear bypassed status of a PG.
+ * PGs are numbered upwards from 1 in the order they were declared.
+ */
+static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
+{
+ struct priority_group *pg;
+ unsigned int pgnum;
+ char dummy;
+
+ if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
+ !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
+ DMWARN("invalid PG number supplied to bypass_pg");
+ return -EINVAL;
+ }
+
+ list_for_each_entry(pg, &m->priority_groups, list) {
+ if (!--pgnum)
+ break;
+ }
+
+ bypass_pg(m, pg, bypassed);
+ return 0;
+}
+
+/*
+ * Should we retry pg_init immediately?
+ */
+static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
+{
+ unsigned long flags;
+ bool limit_reached = false;
+
+ spin_lock_irqsave(&m->lock, flags);
+
+ if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
+ !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
+ set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
+ else
+ limit_reached = true;
+
+ spin_unlock_irqrestore(&m->lock, flags);
+
+ return limit_reached;
+}
+
+static void pg_init_done(void *data, int errors)
+{
+ struct pgpath *pgpath = data;
+ struct priority_group *pg = pgpath->pg;
+ struct multipath *m = pg->m;
+ unsigned long flags;
+ bool delay_retry = false;
+
+ /* device or driver problems */
+ switch (errors) {
+ case SCSI_DH_OK:
+ break;
+ case SCSI_DH_NOSYS:
+ if (!m->hw_handler_name) {
+ errors = 0;
+ break;
+ }
+ DMERR("Could not failover the device: Handler scsi_dh_%s "
+ "Error %d.", m->hw_handler_name, errors);
+ /*
+ * Fail path for now, so we do not ping pong
+ */
+ fail_path(pgpath);
+ break;
+ case SCSI_DH_DEV_TEMP_BUSY:
+ /*
+ * Probably doing something like FW upgrade on the
+ * controller so try the other pg.
+ */
+ bypass_pg(m, pg, true);
+ break;
+ case SCSI_DH_RETRY:
+ /* Wait before retrying. */
+ delay_retry = true;
+ fallthrough;
+ case SCSI_DH_IMM_RETRY:
+ case SCSI_DH_RES_TEMP_UNAVAIL:
+ if (pg_init_limit_reached(m, pgpath))
+ fail_path(pgpath);
+ errors = 0;
+ break;
+ case SCSI_DH_DEV_OFFLINED:
+ default:
+ /*
+ * We probably do not want to fail the path for a device
+ * error, but this is what the old dm did. In future
+ * patches we can do more advanced handling.
+ */
+ fail_path(pgpath);
+ }
+
+ spin_lock_irqsave(&m->lock, flags);
+ if (errors) {
+ if (pgpath == m->current_pgpath) {
+ DMERR("Could not failover device. Error %d.", errors);
+ m->current_pgpath = NULL;
+ m->current_pg = NULL;
+ }
+ } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
+ pg->bypassed = false;
+
+ if (atomic_dec_return(&m->pg_init_in_progress) > 0)
+ /* Activations of other paths are still on going */
+ goto out;
+
+ if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
+ if (delay_retry)
+ set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
+ else
+ clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
+
+ if (__pg_init_all_paths(m))
+ goto out;
+ }
+ clear_bit(MPATHF_QUEUE_IO, &m->flags);
+
+ process_queued_io_list(m);
+
+ /*
+ * Wake up any thread waiting to suspend.
+ */
+ wake_up(&m->pg_init_wait);
+
+out:
+ spin_unlock_irqrestore(&m->lock, flags);
+}
+
+static void activate_or_offline_path(struct pgpath *pgpath)
+{
+ struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
+
+ if (pgpath->is_active && !blk_queue_dying(q))
+ scsi_dh_activate(q, pg_init_done, pgpath);
+ else
+ pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
+}
+
+static void activate_path_work(struct work_struct *work)
+{
+ struct pgpath *pgpath =
+ container_of(work, struct pgpath, activate_path.work);
+
+ activate_or_offline_path(pgpath);
+}
+
+static int multipath_end_io(struct dm_target *ti, struct request *clone,
+ blk_status_t error, union map_info *map_context)
+{
+ struct dm_mpath_io *mpio = get_mpio(map_context);
+ struct pgpath *pgpath = mpio->pgpath;
+ int r = DM_ENDIO_DONE;
+
+ /*
+ * We don't queue any clone request inside the multipath target
+ * during end I/O handling, since those clone requests don't have
+ * bio clones. If we queue them inside the multipath target,
+ * we need to make bio clones, that requires memory allocation.
+ * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
+ * don't have bio clones.)
+ * Instead of queueing the clone request here, we queue the original
+ * request into dm core, which will remake a clone request and
+ * clone bios for it and resubmit it later.
+ */
+ if (error && blk_path_error(error)) {
+ struct multipath *m = ti->private;
+
+ if (error == BLK_STS_RESOURCE)
+ r = DM_ENDIO_DELAY_REQUEUE;
+ else
+ r = DM_ENDIO_REQUEUE;
+
+ if (pgpath)
+ fail_path(pgpath);
+
+ if (!atomic_read(&m->nr_valid_paths) &&
+ !must_push_back_rq(m)) {
+ if (error == BLK_STS_IOERR)
+ dm_report_EIO(m);
+ /* complete with the original error */
+ r = DM_ENDIO_DONE;
+ }
+ }
+
+ if (pgpath) {
+ struct path_selector *ps = &pgpath->pg->ps;
+
+ if (ps->type->end_io)
+ ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes,
+ clone->io_start_time_ns);
+ }
+
+ return r;
+}
+
+static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
+ blk_status_t *error)
+{
+ struct multipath *m = ti->private;
+ struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
+ struct pgpath *pgpath = mpio->pgpath;
+ unsigned long flags;
+ int r = DM_ENDIO_DONE;
+
+ if (!*error || !blk_path_error(*error))
+ goto done;
+
+ if (pgpath)
+ fail_path(pgpath);
+
+ if (!atomic_read(&m->nr_valid_paths)) {
+ spin_lock_irqsave(&m->lock, flags);
+ if (!test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
+ if (__must_push_back(m)) {
+ r = DM_ENDIO_REQUEUE;
+ } else {
+ dm_report_EIO(m);
+ *error = BLK_STS_IOERR;
+ }
+ spin_unlock_irqrestore(&m->lock, flags);
+ goto done;
+ }
+ spin_unlock_irqrestore(&m->lock, flags);
+ }
+
+ multipath_queue_bio(m, clone);
+ r = DM_ENDIO_INCOMPLETE;
+done:
+ if (pgpath) {
+ struct path_selector *ps = &pgpath->pg->ps;
+
+ if (ps->type->end_io)
+ ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes,
+ (mpio->start_time_ns ?:
+ dm_start_time_ns_from_clone(clone)));
+ }
+
+ return r;
+}
+
+/*
+ * Suspend with flush can't complete until all the I/O is processed
+ * so if the last path fails we must error any remaining I/O.
+ * - Note that if the freeze_bdev fails while suspending, the
+ * queue_if_no_path state is lost - userspace should reset it.
+ * Otherwise, during noflush suspend, queue_if_no_path will not change.
+ */
+static void multipath_presuspend(struct dm_target *ti)
+{
+ struct multipath *m = ti->private;
+
+ /* FIXME: bio-based shouldn't need to always disable queue_if_no_path */
+ if (m->queue_mode == DM_TYPE_BIO_BASED || !dm_noflush_suspending(m->ti))
+ queue_if_no_path(m, false, true, __func__);
+}
+
+static void multipath_postsuspend(struct dm_target *ti)
+{
+ struct multipath *m = ti->private;
+
+ mutex_lock(&m->work_mutex);
+ flush_multipath_work(m);
+ mutex_unlock(&m->work_mutex);
+}
+
+/*
+ * Restore the queue_if_no_path setting.
+ */
+static void multipath_resume(struct dm_target *ti)
+{
+ struct multipath *m = ti->private;
+ unsigned long flags;
+
+ spin_lock_irqsave(&m->lock, flags);
+ if (test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)) {
+ set_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags);
+ clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
+ }
+
+ DMDEBUG("%s: %s finished; QIFNP = %d; SQIFNP = %d",
+ dm_table_device_name(m->ti->table), __func__,
+ test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags),
+ test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
+
+ spin_unlock_irqrestore(&m->lock, flags);
+}
+
+/*
+ * Info output has the following format:
+ * num_multipath_feature_args [multipath_feature_args]*
+ * num_handler_status_args [handler_status_args]*
+ * num_groups init_group_number
+ * [A|D|E num_ps_status_args [ps_status_args]*
+ * num_paths num_selector_args
+ * [path_dev A|F fail_count [selector_args]* ]+ ]+
+ *
+ * Table output has the following format (identical to the constructor string):
+ * num_feature_args [features_args]*
+ * num_handler_args hw_handler [hw_handler_args]*
+ * num_groups init_group_number
+ * [priority selector-name num_ps_args [ps_args]*
+ * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
+ */
+static void multipath_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ int sz = 0, pg_counter, pgpath_counter;
+ unsigned long flags;
+ struct multipath *m = ti->private;
+ struct priority_group *pg;
+ struct pgpath *p;
+ unsigned int pg_num;
+ char state;
+
+ spin_lock_irqsave(&m->lock, flags);
+
+ /* Features */
+ if (type == STATUSTYPE_INFO)
+ DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
+ atomic_read(&m->pg_init_count));
+ else {
+ DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
+ (m->pg_init_retries > 0) * 2 +
+ (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
+ test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
+ (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
+
+ if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
+ DMEMIT("queue_if_no_path ");
+ if (m->pg_init_retries)
+ DMEMIT("pg_init_retries %u ", m->pg_init_retries);
+ if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
+ DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
+ if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
+ DMEMIT("retain_attached_hw_handler ");
+ if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
+ switch(m->queue_mode) {
+ case DM_TYPE_BIO_BASED:
+ DMEMIT("queue_mode bio ");
+ break;
+ default:
+ WARN_ON_ONCE(true);
+ break;
+ }
+ }
+ }
+
+ if (!m->hw_handler_name || type == STATUSTYPE_INFO)
+ DMEMIT("0 ");
+ else
+ DMEMIT("1 %s ", m->hw_handler_name);
+
+ DMEMIT("%u ", m->nr_priority_groups);
+
+ if (m->next_pg)
+ pg_num = m->next_pg->pg_num;
+ else if (m->current_pg)
+ pg_num = m->current_pg->pg_num;
+ else
+ pg_num = (m->nr_priority_groups ? 1 : 0);
+
+ DMEMIT("%u ", pg_num);
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ list_for_each_entry(pg, &m->priority_groups, list) {
+ if (pg->bypassed)
+ state = 'D'; /* Disabled */
+ else if (pg == m->current_pg)
+ state = 'A'; /* Currently Active */
+ else
+ state = 'E'; /* Enabled */
+
+ DMEMIT("%c ", state);
+
+ if (pg->ps.type->status)
+ sz += pg->ps.type->status(&pg->ps, NULL, type,
+ result + sz,
+ maxlen - sz);
+ else
+ DMEMIT("0 ");
+
+ DMEMIT("%u %u ", pg->nr_pgpaths,
+ pg->ps.type->info_args);
+
+ list_for_each_entry(p, &pg->pgpaths, list) {
+ DMEMIT("%s %s %u ", p->path.dev->name,
+ p->is_active ? "A" : "F",
+ p->fail_count);
+ if (pg->ps.type->status)
+ sz += pg->ps.type->status(&pg->ps,
+ &p->path, type, result + sz,
+ maxlen - sz);
+ }
+ }
+ break;
+
+ case STATUSTYPE_TABLE:
+ list_for_each_entry(pg, &m->priority_groups, list) {
+ DMEMIT("%s ", pg->ps.type->name);
+
+ if (pg->ps.type->status)
+ sz += pg->ps.type->status(&pg->ps, NULL, type,
+ result + sz,
+ maxlen - sz);
+ else
+ DMEMIT("0 ");
+
+ DMEMIT("%u %u ", pg->nr_pgpaths,
+ pg->ps.type->table_args);
+
+ list_for_each_entry(p, &pg->pgpaths, list) {
+ DMEMIT("%s ", p->path.dev->name);
+ if (pg->ps.type->status)
+ sz += pg->ps.type->status(&pg->ps,
+ &p->path, type, result + sz,
+ maxlen - sz);
+ }
+ }
+ break;
+
+ case STATUSTYPE_IMA:
+ sz = 0; /*reset the result pointer*/
+
+ DMEMIT_TARGET_NAME_VERSION(ti->type);
+ DMEMIT(",nr_priority_groups=%u", m->nr_priority_groups);
+
+ pg_counter = 0;
+ list_for_each_entry(pg, &m->priority_groups, list) {
+ if (pg->bypassed)
+ state = 'D'; /* Disabled */
+ else if (pg == m->current_pg)
+ state = 'A'; /* Currently Active */
+ else
+ state = 'E'; /* Enabled */
+ DMEMIT(",pg_state_%d=%c", pg_counter, state);
+ DMEMIT(",nr_pgpaths_%d=%u", pg_counter, pg->nr_pgpaths);
+ DMEMIT(",path_selector_name_%d=%s", pg_counter, pg->ps.type->name);
+
+ pgpath_counter = 0;
+ list_for_each_entry(p, &pg->pgpaths, list) {
+ DMEMIT(",path_name_%d_%d=%s,is_active_%d_%d=%c,fail_count_%d_%d=%u",
+ pg_counter, pgpath_counter, p->path.dev->name,
+ pg_counter, pgpath_counter, p->is_active ? 'A' : 'F',
+ pg_counter, pgpath_counter, p->fail_count);
+ if (pg->ps.type->status) {
+ DMEMIT(",path_selector_status_%d_%d=",
+ pg_counter, pgpath_counter);
+ sz += pg->ps.type->status(&pg->ps, &p->path,
+ type, result + sz,
+ maxlen - sz);
+ }
+ pgpath_counter++;
+ }
+ pg_counter++;
+ }
+ DMEMIT(";");
+ break;
+ }
+
+ spin_unlock_irqrestore(&m->lock, flags);
+}
+
+static int multipath_message(struct dm_target *ti, unsigned int argc, char **argv,
+ char *result, unsigned int maxlen)
+{
+ int r = -EINVAL;
+ struct dm_dev *dev;
+ struct multipath *m = ti->private;
+ action_fn action;
+ unsigned long flags;
+
+ mutex_lock(&m->work_mutex);
+
+ if (dm_suspended(ti)) {
+ r = -EBUSY;
+ goto out;
+ }
+
+ if (argc == 1) {
+ if (!strcasecmp(argv[0], "queue_if_no_path")) {
+ r = queue_if_no_path(m, true, false, __func__);
+ spin_lock_irqsave(&m->lock, flags);
+ enable_nopath_timeout(m);
+ spin_unlock_irqrestore(&m->lock, flags);
+ goto out;
+ } else if (!strcasecmp(argv[0], "fail_if_no_path")) {
+ r = queue_if_no_path(m, false, false, __func__);
+ disable_nopath_timeout(m);
+ goto out;
+ }
+ }
+
+ if (argc != 2) {
+ DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
+ goto out;
+ }
+
+ if (!strcasecmp(argv[0], "disable_group")) {
+ r = bypass_pg_num(m, argv[1], true);
+ goto out;
+ } else if (!strcasecmp(argv[0], "enable_group")) {
+ r = bypass_pg_num(m, argv[1], false);
+ goto out;
+ } else if (!strcasecmp(argv[0], "switch_group")) {
+ r = switch_pg_num(m, argv[1]);
+ goto out;
+ } else if (!strcasecmp(argv[0], "reinstate_path"))
+ action = reinstate_path;
+ else if (!strcasecmp(argv[0], "fail_path"))
+ action = fail_path;
+ else {
+ DMWARN("Unrecognised multipath message received: %s", argv[0]);
+ goto out;
+ }
+
+ r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
+ if (r) {
+ DMWARN("message: error getting device %s",
+ argv[1]);
+ goto out;
+ }
+
+ r = action_dev(m, dev, action);
+
+ dm_put_device(ti, dev);
+
+out:
+ mutex_unlock(&m->work_mutex);
+ return r;
+}
+
+static int multipath_prepare_ioctl(struct dm_target *ti,
+ struct block_device **bdev)
+{
+ struct multipath *m = ti->private;
+ struct pgpath *pgpath;
+ unsigned long flags;
+ int r;
+
+ pgpath = READ_ONCE(m->current_pgpath);
+ if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m))
+ pgpath = choose_pgpath(m, 0);
+
+ if (pgpath) {
+ if (!mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) {
+ *bdev = pgpath->path.dev->bdev;
+ r = 0;
+ } else {
+ /* pg_init has not started or completed */
+ r = -ENOTCONN;
+ }
+ } else {
+ /* No path is available */
+ r = -EIO;
+ spin_lock_irqsave(&m->lock, flags);
+ if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
+ r = -ENOTCONN;
+ spin_unlock_irqrestore(&m->lock, flags);
+ }
+
+ if (r == -ENOTCONN) {
+ if (!READ_ONCE(m->current_pg)) {
+ /* Path status changed, redo selection */
+ (void) choose_pgpath(m, 0);
+ }
+ spin_lock_irqsave(&m->lock, flags);
+ if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
+ (void) __pg_init_all_paths(m);
+ spin_unlock_irqrestore(&m->lock, flags);
+ dm_table_run_md_queue_async(m->ti->table);
+ process_queued_io_list(m);
+ }
+
+ /*
+ * Only pass ioctls through if the device sizes match exactly.
+ */
+ if (!r && ti->len != bdev_nr_sectors((*bdev)))
+ return 1;
+ return r;
+}
+
+static int multipath_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ struct multipath *m = ti->private;
+ struct priority_group *pg;
+ struct pgpath *p;
+ int ret = 0;
+
+ list_for_each_entry(pg, &m->priority_groups, list) {
+ list_for_each_entry(p, &pg->pgpaths, list) {
+ ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
+ if (ret)
+ goto out;
+ }
+ }
+
+out:
+ return ret;
+}
+
+static int pgpath_busy(struct pgpath *pgpath)
+{
+ struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
+
+ return blk_lld_busy(q);
+}
+
+/*
+ * We return "busy", only when we can map I/Os but underlying devices
+ * are busy (so even if we map I/Os now, the I/Os will wait on
+ * the underlying queue).
+ * In other words, if we want to kill I/Os or queue them inside us
+ * due to map unavailability, we don't return "busy". Otherwise,
+ * dm core won't give us the I/Os and we can't do what we want.
+ */
+static int multipath_busy(struct dm_target *ti)
+{
+ bool busy = false, has_active = false;
+ struct multipath *m = ti->private;
+ struct priority_group *pg, *next_pg;
+ struct pgpath *pgpath;
+
+ /* pg_init in progress */
+ if (atomic_read(&m->pg_init_in_progress))
+ return true;
+
+ /* no paths available, for blk-mq: rely on IO mapping to delay requeue */
+ if (!atomic_read(&m->nr_valid_paths)) {
+ unsigned long flags;
+ spin_lock_irqsave(&m->lock, flags);
+ if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
+ spin_unlock_irqrestore(&m->lock, flags);
+ return (m->queue_mode != DM_TYPE_REQUEST_BASED);
+ }
+ spin_unlock_irqrestore(&m->lock, flags);
+ }
+
+ /* Guess which priority_group will be used at next mapping time */
+ pg = READ_ONCE(m->current_pg);
+ next_pg = READ_ONCE(m->next_pg);
+ if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
+ pg = next_pg;
+
+ if (!pg) {
+ /*
+ * We don't know which pg will be used at next mapping time.
+ * We don't call choose_pgpath() here to avoid to trigger
+ * pg_init just by busy checking.
+ * So we don't know whether underlying devices we will be using
+ * at next mapping time are busy or not. Just try mapping.
+ */
+ return busy;
+ }
+
+ /*
+ * If there is one non-busy active path at least, the path selector
+ * will be able to select it. So we consider such a pg as not busy.
+ */
+ busy = true;
+ list_for_each_entry(pgpath, &pg->pgpaths, list) {
+ if (pgpath->is_active) {
+ has_active = true;
+ if (!pgpath_busy(pgpath)) {
+ busy = false;
+ break;
+ }
+ }
+ }
+
+ if (!has_active) {
+ /*
+ * No active path in this pg, so this pg won't be used and
+ * the current_pg will be changed at next mapping time.
+ * We need to try mapping to determine it.
+ */
+ busy = false;
+ }
+
+ return busy;
+}
+
+/*-----------------------------------------------------------------
+ * Module setup
+ *---------------------------------------------------------------*/
+static struct target_type multipath_target = {
+ .name = "multipath",
+ .version = {1, 14, 0},
+ .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE |
+ DM_TARGET_PASSES_INTEGRITY,
+ .module = THIS_MODULE,
+ .ctr = multipath_ctr,
+ .dtr = multipath_dtr,
+ .clone_and_map_rq = multipath_clone_and_map,
+ .release_clone_rq = multipath_release_clone,
+ .rq_end_io = multipath_end_io,
+ .map = multipath_map_bio,
+ .end_io = multipath_end_io_bio,
+ .presuspend = multipath_presuspend,
+ .postsuspend = multipath_postsuspend,
+ .resume = multipath_resume,
+ .status = multipath_status,
+ .message = multipath_message,
+ .prepare_ioctl = multipath_prepare_ioctl,
+ .iterate_devices = multipath_iterate_devices,
+ .busy = multipath_busy,
+};
+
+static int __init dm_multipath_init(void)
+{
+ int r;
+
+ kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
+ if (!kmultipathd) {
+ DMERR("failed to create workqueue kmpathd");
+ r = -ENOMEM;
+ goto bad_alloc_kmultipathd;
+ }
+
+ /*
+ * A separate workqueue is used to handle the device handlers
+ * to avoid overloading existing workqueue. Overloading the
+ * old workqueue would also create a bottleneck in the
+ * path of the storage hardware device activation.
+ */
+ kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
+ WQ_MEM_RECLAIM);
+ if (!kmpath_handlerd) {
+ DMERR("failed to create workqueue kmpath_handlerd");
+ r = -ENOMEM;
+ goto bad_alloc_kmpath_handlerd;
+ }
+
+ r = dm_register_target(&multipath_target);
+ if (r < 0) {
+ DMERR("request-based register failed %d", r);
+ r = -EINVAL;
+ goto bad_register_target;
+ }
+
+ return 0;
+
+bad_register_target:
+ destroy_workqueue(kmpath_handlerd);
+bad_alloc_kmpath_handlerd:
+ destroy_workqueue(kmultipathd);
+bad_alloc_kmultipathd:
+ return r;
+}
+
+static void __exit dm_multipath_exit(void)
+{
+ destroy_workqueue(kmpath_handlerd);
+ destroy_workqueue(kmultipathd);
+
+ dm_unregister_target(&multipath_target);
+}
+
+module_init(dm_multipath_init);
+module_exit(dm_multipath_exit);
+
+module_param_named(queue_if_no_path_timeout_secs,
+ queue_if_no_path_timeout_secs, ulong, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(queue_if_no_path_timeout_secs, "No available paths queue IO timeout in seconds");
+
+MODULE_DESCRIPTION(DM_NAME " multipath target");
+MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-mpath.h b/drivers/md/dm-mpath.h
new file mode 100644
index 000000000..5343698fe
--- /dev/null
+++ b/drivers/md/dm-mpath.h
@@ -0,0 +1,22 @@
+/*
+ * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ *
+ * Multipath.
+ */
+
+#ifndef DM_MPATH_H
+#define DM_MPATH_H
+
+struct dm_dev;
+
+struct dm_path {
+ struct dm_dev *dev; /* Read-only */
+ void *pscontext; /* For path-selector use */
+};
+
+/* Callback for hwh_pg_init_fn to use when complete */
+void dm_pg_init_complete(struct dm_path *path, unsigned int err_flags);
+
+#endif
diff --git a/drivers/md/dm-path-selector.c b/drivers/md/dm-path-selector.c
new file mode 100644
index 000000000..fa0ccc585
--- /dev/null
+++ b/drivers/md/dm-path-selector.c
@@ -0,0 +1,140 @@
+/*
+ * Copyright (C) 2003 Sistina Software.
+ * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
+ *
+ * Module Author: Heinz Mauelshagen
+ *
+ * This file is released under the GPL.
+ *
+ * Path selector registration.
+ */
+
+#include <linux/device-mapper.h>
+#include <linux/module.h>
+
+#include "dm-path-selector.h"
+
+#include <linux/slab.h>
+
+struct ps_internal {
+ struct path_selector_type pst;
+ struct list_head list;
+};
+
+#define pst_to_psi(__pst) container_of((__pst), struct ps_internal, pst)
+
+static LIST_HEAD(_path_selectors);
+static DECLARE_RWSEM(_ps_lock);
+
+static struct ps_internal *__find_path_selector_type(const char *name)
+{
+ struct ps_internal *psi;
+
+ list_for_each_entry(psi, &_path_selectors, list) {
+ if (!strcmp(name, psi->pst.name))
+ return psi;
+ }
+
+ return NULL;
+}
+
+static struct ps_internal *get_path_selector(const char *name)
+{
+ struct ps_internal *psi;
+
+ down_read(&_ps_lock);
+ psi = __find_path_selector_type(name);
+ if (psi && !try_module_get(psi->pst.module))
+ psi = NULL;
+ up_read(&_ps_lock);
+
+ return psi;
+}
+
+struct path_selector_type *dm_get_path_selector(const char *name)
+{
+ struct ps_internal *psi;
+
+ if (!name)
+ return NULL;
+
+ psi = get_path_selector(name);
+ if (!psi) {
+ request_module("dm-%s", name);
+ psi = get_path_selector(name);
+ }
+
+ return psi ? &psi->pst : NULL;
+}
+
+void dm_put_path_selector(struct path_selector_type *pst)
+{
+ struct ps_internal *psi;
+
+ if (!pst)
+ return;
+
+ down_read(&_ps_lock);
+ psi = __find_path_selector_type(pst->name);
+ if (!psi)
+ goto out;
+
+ module_put(psi->pst.module);
+out:
+ up_read(&_ps_lock);
+}
+
+static struct ps_internal *_alloc_path_selector(struct path_selector_type *pst)
+{
+ struct ps_internal *psi = kzalloc(sizeof(*psi), GFP_KERNEL);
+
+ if (psi)
+ psi->pst = *pst;
+
+ return psi;
+}
+
+int dm_register_path_selector(struct path_selector_type *pst)
+{
+ int r = 0;
+ struct ps_internal *psi = _alloc_path_selector(pst);
+
+ if (!psi)
+ return -ENOMEM;
+
+ down_write(&_ps_lock);
+
+ if (__find_path_selector_type(pst->name)) {
+ kfree(psi);
+ r = -EEXIST;
+ } else
+ list_add(&psi->list, &_path_selectors);
+
+ up_write(&_ps_lock);
+
+ return r;
+}
+
+int dm_unregister_path_selector(struct path_selector_type *pst)
+{
+ struct ps_internal *psi;
+
+ down_write(&_ps_lock);
+
+ psi = __find_path_selector_type(pst->name);
+ if (!psi) {
+ up_write(&_ps_lock);
+ return -EINVAL;
+ }
+
+ list_del(&psi->list);
+
+ up_write(&_ps_lock);
+
+ kfree(psi);
+
+ return 0;
+}
+
+EXPORT_SYMBOL_GPL(dm_register_path_selector);
+EXPORT_SYMBOL_GPL(dm_unregister_path_selector);
diff --git a/drivers/md/dm-path-selector.h b/drivers/md/dm-path-selector.h
new file mode 100644
index 000000000..0f2b37af8
--- /dev/null
+++ b/drivers/md/dm-path-selector.h
@@ -0,0 +1,107 @@
+/*
+ * Copyright (C) 2003 Sistina Software.
+ * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
+ *
+ * Module Author: Heinz Mauelshagen
+ *
+ * This file is released under the GPL.
+ *
+ * Path-Selector registration.
+ */
+
+#ifndef DM_PATH_SELECTOR_H
+#define DM_PATH_SELECTOR_H
+
+#include <linux/device-mapper.h>
+
+#include "dm-mpath.h"
+
+/*
+ * We provide an abstraction for the code that chooses which path
+ * to send some io down.
+ */
+struct path_selector_type;
+struct path_selector {
+ struct path_selector_type *type;
+ void *context;
+};
+
+/*
+ * If a path selector uses this flag, a high resolution timer is used
+ * (via ktime_get_ns) to account for IO start time in BIO-based mpath.
+ * This improves performance of some path selectors (i.e. HST), in
+ * exchange for slightly higher overhead when submitting the BIO.
+ * The extra cost is usually offset by improved path selection for
+ * some benchmarks.
+ *
+ * This has no effect for request-based mpath, since it already uses a
+ * higher precision timer by default.
+ */
+#define DM_PS_USE_HR_TIMER 0x00000001
+#define dm_ps_use_hr_timer(type) ((type)->features & DM_PS_USE_HR_TIMER)
+
+/* Information about a path selector type */
+struct path_selector_type {
+ char *name;
+ struct module *module;
+
+ unsigned int features;
+ unsigned int table_args;
+ unsigned int info_args;
+
+ /*
+ * Constructs a path selector object, takes custom arguments
+ */
+ int (*create) (struct path_selector *ps, unsigned int argc, char **argv);
+ void (*destroy) (struct path_selector *ps);
+
+ /*
+ * Add an opaque path object, along with some selector specific
+ * path args (eg, path priority).
+ */
+ int (*add_path) (struct path_selector *ps, struct dm_path *path,
+ int argc, char **argv, char **error);
+
+ /*
+ * Chooses a path for this io, if no paths are available then
+ * NULL will be returned.
+ */
+ struct dm_path *(*select_path) (struct path_selector *ps,
+ size_t nr_bytes);
+
+ /*
+ * Notify the selector that a path has failed.
+ */
+ void (*fail_path) (struct path_selector *ps, struct dm_path *p);
+
+ /*
+ * Ask selector to reinstate a path.
+ */
+ int (*reinstate_path) (struct path_selector *ps, struct dm_path *p);
+
+ /*
+ * Table content based on parameters added in ps_add_path_fn
+ * or path selector status
+ */
+ int (*status) (struct path_selector *ps, struct dm_path *path,
+ status_type_t type, char *result, unsigned int maxlen);
+
+ int (*start_io) (struct path_selector *ps, struct dm_path *path,
+ size_t nr_bytes);
+ int (*end_io) (struct path_selector *ps, struct dm_path *path,
+ size_t nr_bytes, u64 start_time);
+};
+
+/* Register a path selector */
+int dm_register_path_selector(struct path_selector_type *type);
+
+/* Unregister a path selector */
+int dm_unregister_path_selector(struct path_selector_type *type);
+
+/* Returns a registered path selector type */
+struct path_selector_type *dm_get_path_selector(const char *name);
+
+/* Releases a path selector */
+void dm_put_path_selector(struct path_selector_type *pst);
+
+#endif
diff --git a/drivers/md/dm-ps-historical-service-time.c b/drivers/md/dm-ps-historical-service-time.c
new file mode 100644
index 000000000..1d82c95d3
--- /dev/null
+++ b/drivers/md/dm-ps-historical-service-time.c
@@ -0,0 +1,565 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Historical Service Time
+ *
+ * Keeps a time-weighted exponential moving average of the historical
+ * service time. Estimates future service time based on the historical
+ * service time and the number of outstanding requests.
+ *
+ * Marks paths stale if they have not finished within hst *
+ * num_paths. If a path is stale and unused, we will send a single
+ * request to probe in case the path has improved. This situation
+ * generally arises if the path is so much worse than others that it
+ * will never have the best estimated service time, or if the entire
+ * multipath device is unused. If a path is stale and in use, limit the
+ * number of requests it can receive with the assumption that the path
+ * has become degraded.
+ *
+ * To avoid repeatedly calculating exponents for time weighting, times
+ * are split into HST_WEIGHT_COUNT buckets each (1 >> HST_BUCKET_SHIFT)
+ * ns, and the weighting is pre-calculated.
+ *
+ */
+
+#include "dm.h"
+#include "dm-path-selector.h"
+
+#include <linux/blkdev.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+
+
+#define DM_MSG_PREFIX "multipath historical-service-time"
+#define HST_MIN_IO 1
+#define HST_VERSION "0.1.1"
+
+#define HST_FIXED_SHIFT 10 /* 10 bits of decimal precision */
+#define HST_FIXED_MAX (ULLONG_MAX >> HST_FIXED_SHIFT)
+#define HST_FIXED_1 (1 << HST_FIXED_SHIFT)
+#define HST_FIXED_95 972
+#define HST_MAX_INFLIGHT HST_FIXED_1
+#define HST_BUCKET_SHIFT 24 /* Buckets are ~ 16ms */
+#define HST_WEIGHT_COUNT 64ULL
+
+struct selector {
+ struct list_head valid_paths;
+ struct list_head failed_paths;
+ int valid_count;
+ spinlock_t lock;
+
+ unsigned int weights[HST_WEIGHT_COUNT];
+ unsigned int threshold_multiplier;
+};
+
+struct path_info {
+ struct list_head list;
+ struct dm_path *path;
+ unsigned int repeat_count;
+
+ spinlock_t lock;
+
+ u64 historical_service_time; /* Fixed point */
+
+ u64 stale_after;
+ u64 last_finish;
+
+ u64 outstanding;
+};
+
+/**
+ * fixed_power - compute: x^n, in O(log n) time
+ *
+ * @x: base of the power
+ * @frac_bits: fractional bits of @x
+ * @n: power to raise @x to.
+ *
+ * By exploiting the relation between the definition of the natural power
+ * function: x^n := x*x*...*x (x multiplied by itself for n times), and
+ * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
+ * (where: n_i \elem {0, 1}, the binary vector representing n),
+ * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
+ * of course trivially computable in O(log_2 n), the length of our binary
+ * vector.
+ *
+ * (see: kernel/sched/loadavg.c)
+ */
+static u64 fixed_power(u64 x, unsigned int frac_bits, unsigned int n)
+{
+ unsigned long result = 1UL << frac_bits;
+
+ if (n) {
+ for (;;) {
+ if (n & 1) {
+ result *= x;
+ result += 1UL << (frac_bits - 1);
+ result >>= frac_bits;
+ }
+ n >>= 1;
+ if (!n)
+ break;
+ x *= x;
+ x += 1UL << (frac_bits - 1);
+ x >>= frac_bits;
+ }
+ }
+
+ return result;
+}
+
+/*
+ * Calculate the next value of an exponential moving average
+ * a_1 = a_0 * e + a * (1 - e)
+ *
+ * @last: [0, ULLONG_MAX >> HST_FIXED_SHIFT]
+ * @next: [0, ULLONG_MAX >> HST_FIXED_SHIFT]
+ * @weight: [0, HST_FIXED_1]
+ *
+ * Note:
+ * To account for multiple periods in the same calculation,
+ * a_n = a_0 * e^n + a * (1 - e^n),
+ * so call fixed_ema(last, next, pow(weight, N))
+ */
+static u64 fixed_ema(u64 last, u64 next, u64 weight)
+{
+ last *= weight;
+ last += next * (HST_FIXED_1 - weight);
+ last += 1ULL << (HST_FIXED_SHIFT - 1);
+ return last >> HST_FIXED_SHIFT;
+}
+
+static struct selector *alloc_selector(void)
+{
+ struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL);
+
+ if (s) {
+ INIT_LIST_HEAD(&s->valid_paths);
+ INIT_LIST_HEAD(&s->failed_paths);
+ spin_lock_init(&s->lock);
+ s->valid_count = 0;
+ }
+
+ return s;
+}
+
+/*
+ * Get the weight for a given time span.
+ */
+static u64 hst_weight(struct path_selector *ps, u64 delta)
+{
+ struct selector *s = ps->context;
+ int bucket = clamp(delta >> HST_BUCKET_SHIFT, 0ULL,
+ HST_WEIGHT_COUNT - 1);
+
+ return s->weights[bucket];
+}
+
+/*
+ * Set up the weights array.
+ *
+ * weights[len-1] = 0
+ * weights[n] = base ^ (n + 1)
+ */
+static void hst_set_weights(struct path_selector *ps, unsigned int base)
+{
+ struct selector *s = ps->context;
+ int i;
+
+ if (base >= HST_FIXED_1)
+ return;
+
+ for (i = 0; i < HST_WEIGHT_COUNT - 1; i++)
+ s->weights[i] = fixed_power(base, HST_FIXED_SHIFT, i + 1);
+ s->weights[HST_WEIGHT_COUNT - 1] = 0;
+}
+
+static int hst_create(struct path_selector *ps, unsigned int argc, char **argv)
+{
+ struct selector *s;
+ unsigned int base_weight = HST_FIXED_95;
+ unsigned int threshold_multiplier = 0;
+ char dummy;
+
+ /*
+ * Arguments: [<base_weight> [<threshold_multiplier>]]
+ * <base_weight>: Base weight for ema [0, 1024) 10-bit fixed point. A
+ * value of 0 will completely ignore any history.
+ * If not given, default (HST_FIXED_95) is used.
+ * <threshold_multiplier>: Minimum threshold multiplier for paths to
+ * be considered different. That is, a path is
+ * considered different iff (p1 > N * p2) where p1
+ * is the path with higher service time. A threshold
+ * of 1 or 0 has no effect. Defaults to 0.
+ */
+ if (argc > 2)
+ return -EINVAL;
+
+ if (argc && (sscanf(argv[0], "%u%c", &base_weight, &dummy) != 1 ||
+ base_weight >= HST_FIXED_1)) {
+ return -EINVAL;
+ }
+
+ if (argc > 1 && (sscanf(argv[1], "%u%c",
+ &threshold_multiplier, &dummy) != 1)) {
+ return -EINVAL;
+ }
+
+ s = alloc_selector();
+ if (!s)
+ return -ENOMEM;
+
+ ps->context = s;
+
+ hst_set_weights(ps, base_weight);
+ s->threshold_multiplier = threshold_multiplier;
+ return 0;
+}
+
+static void free_paths(struct list_head *paths)
+{
+ struct path_info *pi, *next;
+
+ list_for_each_entry_safe(pi, next, paths, list) {
+ list_del(&pi->list);
+ kfree(pi);
+ }
+}
+
+static void hst_destroy(struct path_selector *ps)
+{
+ struct selector *s = ps->context;
+
+ free_paths(&s->valid_paths);
+ free_paths(&s->failed_paths);
+ kfree(s);
+ ps->context = NULL;
+}
+
+static int hst_status(struct path_selector *ps, struct dm_path *path,
+ status_type_t type, char *result, unsigned int maxlen)
+{
+ unsigned int sz = 0;
+ struct path_info *pi;
+
+ if (!path) {
+ struct selector *s = ps->context;
+
+ DMEMIT("2 %u %u ", s->weights[0], s->threshold_multiplier);
+ } else {
+ pi = path->pscontext;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ DMEMIT("%llu %llu %llu ", pi->historical_service_time,
+ pi->outstanding, pi->stale_after);
+ break;
+ case STATUSTYPE_TABLE:
+ DMEMIT("0 ");
+ break;
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+ }
+
+ return sz;
+}
+
+static int hst_add_path(struct path_selector *ps, struct dm_path *path,
+ int argc, char **argv, char **error)
+{
+ struct selector *s = ps->context;
+ struct path_info *pi;
+ unsigned int repeat_count = HST_MIN_IO;
+ char dummy;
+ unsigned long flags;
+
+ /*
+ * Arguments: [<repeat_count>]
+ * <repeat_count>: The number of I/Os before switching path.
+ * If not given, default (HST_MIN_IO) is used.
+ */
+ if (argc > 1) {
+ *error = "historical-service-time ps: incorrect number of arguments";
+ return -EINVAL;
+ }
+
+ if (argc && (sscanf(argv[0], "%u%c", &repeat_count, &dummy) != 1)) {
+ *error = "historical-service-time ps: invalid repeat count";
+ return -EINVAL;
+ }
+
+ /* allocate the path */
+ pi = kmalloc(sizeof(*pi), GFP_KERNEL);
+ if (!pi) {
+ *error = "historical-service-time ps: Error allocating path context";
+ return -ENOMEM;
+ }
+
+ pi->path = path;
+ pi->repeat_count = repeat_count;
+
+ pi->historical_service_time = HST_FIXED_1;
+
+ spin_lock_init(&pi->lock);
+ pi->outstanding = 0;
+
+ pi->stale_after = 0;
+ pi->last_finish = 0;
+
+ path->pscontext = pi;
+
+ spin_lock_irqsave(&s->lock, flags);
+ list_add_tail(&pi->list, &s->valid_paths);
+ s->valid_count++;
+ spin_unlock_irqrestore(&s->lock, flags);
+
+ return 0;
+}
+
+static void hst_fail_path(struct path_selector *ps, struct dm_path *path)
+{
+ struct selector *s = ps->context;
+ struct path_info *pi = path->pscontext;
+ unsigned long flags;
+
+ spin_lock_irqsave(&s->lock, flags);
+ list_move(&pi->list, &s->failed_paths);
+ s->valid_count--;
+ spin_unlock_irqrestore(&s->lock, flags);
+}
+
+static int hst_reinstate_path(struct path_selector *ps, struct dm_path *path)
+{
+ struct selector *s = ps->context;
+ struct path_info *pi = path->pscontext;
+ unsigned long flags;
+
+ spin_lock_irqsave(&s->lock, flags);
+ list_move_tail(&pi->list, &s->valid_paths);
+ s->valid_count++;
+ spin_unlock_irqrestore(&s->lock, flags);
+
+ return 0;
+}
+
+static void hst_fill_compare(struct path_info *pi, u64 *hst,
+ u64 *out, u64 *stale)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&pi->lock, flags);
+ *hst = pi->historical_service_time;
+ *out = pi->outstanding;
+ *stale = pi->stale_after;
+ spin_unlock_irqrestore(&pi->lock, flags);
+}
+
+/*
+ * Compare the estimated service time of 2 paths, pi1 and pi2,
+ * for the incoming I/O.
+ *
+ * Returns:
+ * < 0 : pi1 is better
+ * 0 : no difference between pi1 and pi2
+ * > 0 : pi2 is better
+ *
+ */
+static long long hst_compare(struct path_info *pi1, struct path_info *pi2,
+ u64 time_now, struct path_selector *ps)
+{
+ struct selector *s = ps->context;
+ u64 hst1, hst2;
+ long long out1, out2, stale1, stale2;
+ int pi2_better, over_threshold;
+
+ hst_fill_compare(pi1, &hst1, &out1, &stale1);
+ hst_fill_compare(pi2, &hst2, &out2, &stale2);
+
+ /* Check here if estimated latency for two paths are too similar.
+ * If this is the case, we skip extra calculation and just compare
+ * outstanding requests. In this case, any unloaded paths will
+ * be preferred.
+ */
+ if (hst1 > hst2)
+ over_threshold = hst1 > (s->threshold_multiplier * hst2);
+ else
+ over_threshold = hst2 > (s->threshold_multiplier * hst1);
+
+ if (!over_threshold)
+ return out1 - out2;
+
+ /*
+ * If an unloaded path is stale, choose it. If both paths are unloaded,
+ * choose path that is the most stale.
+ * (If one path is loaded, choose the other)
+ */
+ if ((!out1 && stale1 < time_now) || (!out2 && stale2 < time_now) ||
+ (!out1 && !out2))
+ return (!out2 * stale1) - (!out1 * stale2);
+
+ /* Compare estimated service time. If outstanding is the same, we
+ * don't need to multiply
+ */
+ if (out1 == out2) {
+ pi2_better = hst1 > hst2;
+ } else {
+ /* Potential overflow with out >= 1024 */
+ if (unlikely(out1 >= HST_MAX_INFLIGHT ||
+ out2 >= HST_MAX_INFLIGHT)) {
+ /* If over 1023 in-flights, we may overflow if hst
+ * is at max. (With this shift we still overflow at
+ * 1048576 in-flights, which is high enough).
+ */
+ hst1 >>= HST_FIXED_SHIFT;
+ hst2 >>= HST_FIXED_SHIFT;
+ }
+ pi2_better = (1 + out1) * hst1 > (1 + out2) * hst2;
+ }
+
+ /* In the case that the 'winner' is stale, limit to equal usage. */
+ if (pi2_better) {
+ if (stale2 < time_now)
+ return out1 - out2;
+ return 1;
+ }
+ if (stale1 < time_now)
+ return out1 - out2;
+ return -1;
+}
+
+static struct dm_path *hst_select_path(struct path_selector *ps,
+ size_t nr_bytes)
+{
+ struct selector *s = ps->context;
+ struct path_info *pi = NULL, *best = NULL;
+ u64 time_now = ktime_get_ns();
+ struct dm_path *ret = NULL;
+ unsigned long flags;
+
+ spin_lock_irqsave(&s->lock, flags);
+ if (list_empty(&s->valid_paths))
+ goto out;
+
+ list_for_each_entry(pi, &s->valid_paths, list) {
+ if (!best || (hst_compare(pi, best, time_now, ps) < 0))
+ best = pi;
+ }
+
+ if (!best)
+ goto out;
+
+ /* Move last used path to end (least preferred in case of ties) */
+ list_move_tail(&best->list, &s->valid_paths);
+
+ ret = best->path;
+
+out:
+ spin_unlock_irqrestore(&s->lock, flags);
+ return ret;
+}
+
+static int hst_start_io(struct path_selector *ps, struct dm_path *path,
+ size_t nr_bytes)
+{
+ struct path_info *pi = path->pscontext;
+ unsigned long flags;
+
+ spin_lock_irqsave(&pi->lock, flags);
+ pi->outstanding++;
+ spin_unlock_irqrestore(&pi->lock, flags);
+
+ return 0;
+}
+
+static u64 path_service_time(struct path_info *pi, u64 start_time)
+{
+ u64 now = ktime_get_ns();
+
+ /* if a previous disk request has finished after this IO was
+ * sent to the hardware, pretend the submission happened
+ * serially.
+ */
+ if (time_after64(pi->last_finish, start_time))
+ start_time = pi->last_finish;
+
+ pi->last_finish = now;
+ if (time_before64(now, start_time))
+ return 0;
+
+ return now - start_time;
+}
+
+static int hst_end_io(struct path_selector *ps, struct dm_path *path,
+ size_t nr_bytes, u64 start_time)
+{
+ struct path_info *pi = path->pscontext;
+ struct selector *s = ps->context;
+ unsigned long flags;
+ u64 st;
+
+ spin_lock_irqsave(&pi->lock, flags);
+
+ st = path_service_time(pi, start_time);
+ pi->outstanding--;
+ pi->historical_service_time =
+ fixed_ema(pi->historical_service_time,
+ min(st * HST_FIXED_1, HST_FIXED_MAX),
+ hst_weight(ps, st));
+
+ /*
+ * On request end, mark path as fresh. If a path hasn't
+ * finished any requests within the fresh period, the estimated
+ * service time is considered too optimistic and we limit the
+ * maximum requests on that path.
+ */
+ pi->stale_after = pi->last_finish +
+ (s->valid_count * (pi->historical_service_time >> HST_FIXED_SHIFT));
+
+ spin_unlock_irqrestore(&pi->lock, flags);
+
+ return 0;
+}
+
+static struct path_selector_type hst_ps = {
+ .name = "historical-service-time",
+ .module = THIS_MODULE,
+ .features = DM_PS_USE_HR_TIMER,
+ .table_args = 1,
+ .info_args = 3,
+ .create = hst_create,
+ .destroy = hst_destroy,
+ .status = hst_status,
+ .add_path = hst_add_path,
+ .fail_path = hst_fail_path,
+ .reinstate_path = hst_reinstate_path,
+ .select_path = hst_select_path,
+ .start_io = hst_start_io,
+ .end_io = hst_end_io,
+};
+
+static int __init dm_hst_init(void)
+{
+ int r = dm_register_path_selector(&hst_ps);
+
+ if (r < 0)
+ DMERR("register failed %d", r);
+
+ DMINFO("version " HST_VERSION " loaded");
+
+ return r;
+}
+
+static void __exit dm_hst_exit(void)
+{
+ int r = dm_unregister_path_selector(&hst_ps);
+
+ if (r < 0)
+ DMERR("unregister failed %d", r);
+}
+
+module_init(dm_hst_init);
+module_exit(dm_hst_exit);
+
+MODULE_DESCRIPTION(DM_NAME " measured service time oriented path selector");
+MODULE_AUTHOR("Khazhismel Kumykov <khazhy@google.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-ps-io-affinity.c b/drivers/md/dm-ps-io-affinity.c
new file mode 100644
index 000000000..76ce4ce87
--- /dev/null
+++ b/drivers/md/dm-ps-io-affinity.c
@@ -0,0 +1,274 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2020 Oracle Corporation
+ *
+ * Module Author: Mike Christie
+ */
+#include "dm-path-selector.h"
+
+#include <linux/device-mapper.h>
+#include <linux/module.h>
+
+#define DM_MSG_PREFIX "multipath io-affinity"
+
+struct path_info {
+ struct dm_path *path;
+ cpumask_var_t cpumask;
+ refcount_t refcount;
+ bool failed;
+};
+
+struct selector {
+ struct path_info **path_map;
+ cpumask_var_t path_mask;
+ atomic_t map_misses;
+};
+
+static void ioa_free_path(struct selector *s, unsigned int cpu)
+{
+ struct path_info *pi = s->path_map[cpu];
+
+ if (!pi)
+ return;
+
+ if (refcount_dec_and_test(&pi->refcount)) {
+ cpumask_clear_cpu(cpu, s->path_mask);
+ free_cpumask_var(pi->cpumask);
+ kfree(pi);
+
+ s->path_map[cpu] = NULL;
+ }
+}
+
+static int ioa_add_path(struct path_selector *ps, struct dm_path *path,
+ int argc, char **argv, char **error)
+{
+ struct selector *s = ps->context;
+ struct path_info *pi = NULL;
+ unsigned int cpu;
+ int ret;
+
+ if (argc != 1) {
+ *error = "io-affinity ps: invalid number of arguments";
+ return -EINVAL;
+ }
+
+ pi = kzalloc(sizeof(*pi), GFP_KERNEL);
+ if (!pi) {
+ *error = "io-affinity ps: Error allocating path context";
+ return -ENOMEM;
+ }
+
+ pi->path = path;
+ path->pscontext = pi;
+ refcount_set(&pi->refcount, 1);
+
+ if (!zalloc_cpumask_var(&pi->cpumask, GFP_KERNEL)) {
+ *error = "io-affinity ps: Error allocating cpumask context";
+ ret = -ENOMEM;
+ goto free_pi;
+ }
+
+ ret = cpumask_parse(argv[0], pi->cpumask);
+ if (ret) {
+ *error = "io-affinity ps: invalid cpumask";
+ ret = -EINVAL;
+ goto free_mask;
+ }
+
+ for_each_cpu(cpu, pi->cpumask) {
+ if (cpu >= nr_cpu_ids) {
+ DMWARN_LIMIT("Ignoring mapping for CPU %u. Max CPU is %u",
+ cpu, nr_cpu_ids);
+ break;
+ }
+
+ if (s->path_map[cpu]) {
+ DMWARN("CPU mapping for %u exists. Ignoring.", cpu);
+ continue;
+ }
+
+ cpumask_set_cpu(cpu, s->path_mask);
+ s->path_map[cpu] = pi;
+ refcount_inc(&pi->refcount);
+ }
+
+ if (refcount_dec_and_test(&pi->refcount)) {
+ *error = "io-affinity ps: No new/valid CPU mapping found";
+ ret = -EINVAL;
+ goto free_mask;
+ }
+
+ return 0;
+
+free_mask:
+ free_cpumask_var(pi->cpumask);
+free_pi:
+ kfree(pi);
+ return ret;
+}
+
+static int ioa_create(struct path_selector *ps, unsigned int argc, char **argv)
+{
+ struct selector *s;
+
+ s = kmalloc(sizeof(*s), GFP_KERNEL);
+ if (!s)
+ return -ENOMEM;
+
+ s->path_map = kzalloc(nr_cpu_ids * sizeof(struct path_info *),
+ GFP_KERNEL);
+ if (!s->path_map)
+ goto free_selector;
+
+ if (!zalloc_cpumask_var(&s->path_mask, GFP_KERNEL))
+ goto free_map;
+
+ atomic_set(&s->map_misses, 0);
+ ps->context = s;
+ return 0;
+
+free_map:
+ kfree(s->path_map);
+free_selector:
+ kfree(s);
+ return -ENOMEM;
+}
+
+static void ioa_destroy(struct path_selector *ps)
+{
+ struct selector *s = ps->context;
+ unsigned int cpu;
+
+ for_each_cpu(cpu, s->path_mask)
+ ioa_free_path(s, cpu);
+
+ free_cpumask_var(s->path_mask);
+ kfree(s->path_map);
+ kfree(s);
+
+ ps->context = NULL;
+}
+
+static int ioa_status(struct path_selector *ps, struct dm_path *path,
+ status_type_t type, char *result, unsigned int maxlen)
+{
+ struct selector *s = ps->context;
+ struct path_info *pi;
+ int sz = 0;
+
+ if (!path) {
+ DMEMIT("0 ");
+ return sz;
+ }
+
+ switch(type) {
+ case STATUSTYPE_INFO:
+ DMEMIT("%d ", atomic_read(&s->map_misses));
+ break;
+ case STATUSTYPE_TABLE:
+ pi = path->pscontext;
+ DMEMIT("%*pb ", cpumask_pr_args(pi->cpumask));
+ break;
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+
+ return sz;
+}
+
+static void ioa_fail_path(struct path_selector *ps, struct dm_path *p)
+{
+ struct path_info *pi = p->pscontext;
+
+ pi->failed = true;
+}
+
+static int ioa_reinstate_path(struct path_selector *ps, struct dm_path *p)
+{
+ struct path_info *pi = p->pscontext;
+
+ pi->failed = false;
+ return 0;
+}
+
+static struct dm_path *ioa_select_path(struct path_selector *ps,
+ size_t nr_bytes)
+{
+ unsigned int cpu, node;
+ struct selector *s = ps->context;
+ const struct cpumask *cpumask;
+ struct path_info *pi;
+ int i;
+
+ cpu = get_cpu();
+
+ pi = s->path_map[cpu];
+ if (pi && !pi->failed)
+ goto done;
+
+ /*
+ * Perf is not optimal, but we at least try the local node then just
+ * try not to fail.
+ */
+ if (!pi)
+ atomic_inc(&s->map_misses);
+
+ node = cpu_to_node(cpu);
+ cpumask = cpumask_of_node(node);
+ for_each_cpu(i, cpumask) {
+ pi = s->path_map[i];
+ if (pi && !pi->failed)
+ goto done;
+ }
+
+ for_each_cpu(i, s->path_mask) {
+ pi = s->path_map[i];
+ if (pi && !pi->failed)
+ goto done;
+ }
+ pi = NULL;
+
+done:
+ put_cpu();
+ return pi ? pi->path : NULL;
+}
+
+static struct path_selector_type ioa_ps = {
+ .name = "io-affinity",
+ .module = THIS_MODULE,
+ .table_args = 1,
+ .info_args = 1,
+ .create = ioa_create,
+ .destroy = ioa_destroy,
+ .status = ioa_status,
+ .add_path = ioa_add_path,
+ .fail_path = ioa_fail_path,
+ .reinstate_path = ioa_reinstate_path,
+ .select_path = ioa_select_path,
+};
+
+static int __init dm_ioa_init(void)
+{
+ int ret = dm_register_path_selector(&ioa_ps);
+
+ if (ret < 0)
+ DMERR("register failed %d", ret);
+ return ret;
+}
+
+static void __exit dm_ioa_exit(void)
+{
+ int ret = dm_unregister_path_selector(&ioa_ps);
+
+ if (ret < 0)
+ DMERR("unregister failed %d", ret);
+}
+
+module_init(dm_ioa_init);
+module_exit(dm_ioa_exit);
+
+MODULE_DESCRIPTION(DM_NAME " multipath path selector that selects paths based on the CPU IO is being executed on");
+MODULE_AUTHOR("Mike Christie <michael.christie@oracle.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-ps-queue-length.c b/drivers/md/dm-ps-queue-length.c
new file mode 100644
index 000000000..6fbec9fc2
--- /dev/null
+++ b/drivers/md/dm-ps-queue-length.c
@@ -0,0 +1,286 @@
+/*
+ * Copyright (C) 2004-2005 IBM Corp. All Rights Reserved.
+ * Copyright (C) 2006-2009 NEC Corporation.
+ *
+ * dm-queue-length.c
+ *
+ * Module Author: Stefan Bader, IBM
+ * Modified by: Kiyoshi Ueda, NEC
+ *
+ * This file is released under the GPL.
+ *
+ * queue-length path selector - choose a path with the least number of
+ * in-flight I/Os.
+ */
+
+#include "dm.h"
+#include "dm-path-selector.h"
+
+#include <linux/slab.h>
+#include <linux/ctype.h>
+#include <linux/errno.h>
+#include <linux/module.h>
+#include <linux/atomic.h>
+
+#define DM_MSG_PREFIX "multipath queue-length"
+#define QL_MIN_IO 1
+#define QL_VERSION "0.2.0"
+
+struct selector {
+ struct list_head valid_paths;
+ struct list_head failed_paths;
+ spinlock_t lock;
+};
+
+struct path_info {
+ struct list_head list;
+ struct dm_path *path;
+ unsigned int repeat_count;
+ atomic_t qlen; /* the number of in-flight I/Os */
+};
+
+static struct selector *alloc_selector(void)
+{
+ struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL);
+
+ if (s) {
+ INIT_LIST_HEAD(&s->valid_paths);
+ INIT_LIST_HEAD(&s->failed_paths);
+ spin_lock_init(&s->lock);
+ }
+
+ return s;
+}
+
+static int ql_create(struct path_selector *ps, unsigned int argc, char **argv)
+{
+ struct selector *s = alloc_selector();
+
+ if (!s)
+ return -ENOMEM;
+
+ ps->context = s;
+ return 0;
+}
+
+static void ql_free_paths(struct list_head *paths)
+{
+ struct path_info *pi, *next;
+
+ list_for_each_entry_safe(pi, next, paths, list) {
+ list_del(&pi->list);
+ kfree(pi);
+ }
+}
+
+static void ql_destroy(struct path_selector *ps)
+{
+ struct selector *s = ps->context;
+
+ ql_free_paths(&s->valid_paths);
+ ql_free_paths(&s->failed_paths);
+ kfree(s);
+ ps->context = NULL;
+}
+
+static int ql_status(struct path_selector *ps, struct dm_path *path,
+ status_type_t type, char *result, unsigned int maxlen)
+{
+ unsigned int sz = 0;
+ struct path_info *pi;
+
+ /* When called with NULL path, return selector status/args. */
+ if (!path)
+ DMEMIT("0 ");
+ else {
+ pi = path->pscontext;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ DMEMIT("%d ", atomic_read(&pi->qlen));
+ break;
+ case STATUSTYPE_TABLE:
+ DMEMIT("%u ", pi->repeat_count);
+ break;
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+ }
+
+ return sz;
+}
+
+static int ql_add_path(struct path_selector *ps, struct dm_path *path,
+ int argc, char **argv, char **error)
+{
+ struct selector *s = ps->context;
+ struct path_info *pi;
+ unsigned int repeat_count = QL_MIN_IO;
+ char dummy;
+ unsigned long flags;
+
+ /*
+ * Arguments: [<repeat_count>]
+ * <repeat_count>: The number of I/Os before switching path.
+ * If not given, default (QL_MIN_IO) is used.
+ */
+ if (argc > 1) {
+ *error = "queue-length ps: incorrect number of arguments";
+ return -EINVAL;
+ }
+
+ if ((argc == 1) && (sscanf(argv[0], "%u%c", &repeat_count, &dummy) != 1)) {
+ *error = "queue-length ps: invalid repeat count";
+ return -EINVAL;
+ }
+
+ if (repeat_count > 1) {
+ DMWARN_LIMIT("repeat_count > 1 is deprecated, using 1 instead");
+ repeat_count = 1;
+ }
+
+ /* Allocate the path information structure */
+ pi = kmalloc(sizeof(*pi), GFP_KERNEL);
+ if (!pi) {
+ *error = "queue-length ps: Error allocating path information";
+ return -ENOMEM;
+ }
+
+ pi->path = path;
+ pi->repeat_count = repeat_count;
+ atomic_set(&pi->qlen, 0);
+
+ path->pscontext = pi;
+
+ spin_lock_irqsave(&s->lock, flags);
+ list_add_tail(&pi->list, &s->valid_paths);
+ spin_unlock_irqrestore(&s->lock, flags);
+
+ return 0;
+}
+
+static void ql_fail_path(struct path_selector *ps, struct dm_path *path)
+{
+ struct selector *s = ps->context;
+ struct path_info *pi = path->pscontext;
+ unsigned long flags;
+
+ spin_lock_irqsave(&s->lock, flags);
+ list_move(&pi->list, &s->failed_paths);
+ spin_unlock_irqrestore(&s->lock, flags);
+}
+
+static int ql_reinstate_path(struct path_selector *ps, struct dm_path *path)
+{
+ struct selector *s = ps->context;
+ struct path_info *pi = path->pscontext;
+ unsigned long flags;
+
+ spin_lock_irqsave(&s->lock, flags);
+ list_move_tail(&pi->list, &s->valid_paths);
+ spin_unlock_irqrestore(&s->lock, flags);
+
+ return 0;
+}
+
+/*
+ * Select a path having the minimum number of in-flight I/Os
+ */
+static struct dm_path *ql_select_path(struct path_selector *ps, size_t nr_bytes)
+{
+ struct selector *s = ps->context;
+ struct path_info *pi = NULL, *best = NULL;
+ struct dm_path *ret = NULL;
+ unsigned long flags;
+
+ spin_lock_irqsave(&s->lock, flags);
+ if (list_empty(&s->valid_paths))
+ goto out;
+
+ list_for_each_entry(pi, &s->valid_paths, list) {
+ if (!best ||
+ (atomic_read(&pi->qlen) < atomic_read(&best->qlen)))
+ best = pi;
+
+ if (!atomic_read(&best->qlen))
+ break;
+ }
+
+ if (!best)
+ goto out;
+
+ /* Move most recently used to least preferred to evenly balance. */
+ list_move_tail(&best->list, &s->valid_paths);
+
+ ret = best->path;
+out:
+ spin_unlock_irqrestore(&s->lock, flags);
+ return ret;
+}
+
+static int ql_start_io(struct path_selector *ps, struct dm_path *path,
+ size_t nr_bytes)
+{
+ struct path_info *pi = path->pscontext;
+
+ atomic_inc(&pi->qlen);
+
+ return 0;
+}
+
+static int ql_end_io(struct path_selector *ps, struct dm_path *path,
+ size_t nr_bytes, u64 start_time)
+{
+ struct path_info *pi = path->pscontext;
+
+ atomic_dec(&pi->qlen);
+
+ return 0;
+}
+
+static struct path_selector_type ql_ps = {
+ .name = "queue-length",
+ .module = THIS_MODULE,
+ .table_args = 1,
+ .info_args = 1,
+ .create = ql_create,
+ .destroy = ql_destroy,
+ .status = ql_status,
+ .add_path = ql_add_path,
+ .fail_path = ql_fail_path,
+ .reinstate_path = ql_reinstate_path,
+ .select_path = ql_select_path,
+ .start_io = ql_start_io,
+ .end_io = ql_end_io,
+};
+
+static int __init dm_ql_init(void)
+{
+ int r = dm_register_path_selector(&ql_ps);
+
+ if (r < 0)
+ DMERR("register failed %d", r);
+
+ DMINFO("version " QL_VERSION " loaded");
+
+ return r;
+}
+
+static void __exit dm_ql_exit(void)
+{
+ int r = dm_unregister_path_selector(&ql_ps);
+
+ if (r < 0)
+ DMERR("unregister failed %d", r);
+}
+
+module_init(dm_ql_init);
+module_exit(dm_ql_exit);
+
+MODULE_AUTHOR("Stefan Bader <Stefan.Bader at de.ibm.com>");
+MODULE_DESCRIPTION(
+ "(C) Copyright IBM Corp. 2004,2005 All Rights Reserved.\n"
+ DM_NAME " path selector to balance the number of in-flight I/Os"
+);
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-ps-round-robin.c b/drivers/md/dm-ps-round-robin.c
new file mode 100644
index 000000000..1d07392b5
--- /dev/null
+++ b/drivers/md/dm-ps-round-robin.c
@@ -0,0 +1,240 @@
+/*
+ * Copyright (C) 2003 Sistina Software.
+ * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
+ *
+ * Module Author: Heinz Mauelshagen
+ *
+ * This file is released under the GPL.
+ *
+ * Round-robin path selector.
+ */
+
+#include <linux/device-mapper.h>
+
+#include "dm-path-selector.h"
+
+#include <linux/slab.h>
+#include <linux/module.h>
+
+#define DM_MSG_PREFIX "multipath round-robin"
+#define RR_MIN_IO 1
+#define RR_VERSION "1.2.0"
+
+/*-----------------------------------------------------------------
+ * Path-handling code, paths are held in lists
+ *---------------------------------------------------------------*/
+struct path_info {
+ struct list_head list;
+ struct dm_path *path;
+ unsigned int repeat_count;
+};
+
+static void free_paths(struct list_head *paths)
+{
+ struct path_info *pi, *next;
+
+ list_for_each_entry_safe(pi, next, paths, list) {
+ list_del(&pi->list);
+ kfree(pi);
+ }
+}
+
+/*-----------------------------------------------------------------
+ * Round-robin selector
+ *---------------------------------------------------------------*/
+
+struct selector {
+ struct list_head valid_paths;
+ struct list_head invalid_paths;
+ spinlock_t lock;
+};
+
+static struct selector *alloc_selector(void)
+{
+ struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL);
+
+ if (s) {
+ INIT_LIST_HEAD(&s->valid_paths);
+ INIT_LIST_HEAD(&s->invalid_paths);
+ spin_lock_init(&s->lock);
+ }
+
+ return s;
+}
+
+static int rr_create(struct path_selector *ps, unsigned int argc, char **argv)
+{
+ struct selector *s;
+
+ s = alloc_selector();
+ if (!s)
+ return -ENOMEM;
+
+ ps->context = s;
+ return 0;
+}
+
+static void rr_destroy(struct path_selector *ps)
+{
+ struct selector *s = ps->context;
+
+ free_paths(&s->valid_paths);
+ free_paths(&s->invalid_paths);
+ kfree(s);
+ ps->context = NULL;
+}
+
+static int rr_status(struct path_selector *ps, struct dm_path *path,
+ status_type_t type, char *result, unsigned int maxlen)
+{
+ struct path_info *pi;
+ int sz = 0;
+
+ if (!path)
+ DMEMIT("0 ");
+ else {
+ switch(type) {
+ case STATUSTYPE_INFO:
+ break;
+ case STATUSTYPE_TABLE:
+ pi = path->pscontext;
+ DMEMIT("%u ", pi->repeat_count);
+ break;
+
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+ }
+
+ return sz;
+}
+
+/*
+ * Called during initialisation to register each path with an
+ * optional repeat_count.
+ */
+static int rr_add_path(struct path_selector *ps, struct dm_path *path,
+ int argc, char **argv, char **error)
+{
+ struct selector *s = ps->context;
+ struct path_info *pi;
+ unsigned int repeat_count = RR_MIN_IO;
+ char dummy;
+ unsigned long flags;
+
+ if (argc > 1) {
+ *error = "round-robin ps: incorrect number of arguments";
+ return -EINVAL;
+ }
+
+ /* First path argument is number of I/Os before switching path */
+ if ((argc == 1) && (sscanf(argv[0], "%u%c", &repeat_count, &dummy) != 1)) {
+ *error = "round-robin ps: invalid repeat count";
+ return -EINVAL;
+ }
+
+ if (repeat_count > 1) {
+ DMWARN_LIMIT("repeat_count > 1 is deprecated, using 1 instead");
+ repeat_count = 1;
+ }
+
+ /* allocate the path */
+ pi = kmalloc(sizeof(*pi), GFP_KERNEL);
+ if (!pi) {
+ *error = "round-robin ps: Error allocating path context";
+ return -ENOMEM;
+ }
+
+ pi->path = path;
+ pi->repeat_count = repeat_count;
+
+ path->pscontext = pi;
+
+ spin_lock_irqsave(&s->lock, flags);
+ list_add_tail(&pi->list, &s->valid_paths);
+ spin_unlock_irqrestore(&s->lock, flags);
+
+ return 0;
+}
+
+static void rr_fail_path(struct path_selector *ps, struct dm_path *p)
+{
+ unsigned long flags;
+ struct selector *s = ps->context;
+ struct path_info *pi = p->pscontext;
+
+ spin_lock_irqsave(&s->lock, flags);
+ list_move(&pi->list, &s->invalid_paths);
+ spin_unlock_irqrestore(&s->lock, flags);
+}
+
+static int rr_reinstate_path(struct path_selector *ps, struct dm_path *p)
+{
+ unsigned long flags;
+ struct selector *s = ps->context;
+ struct path_info *pi = p->pscontext;
+
+ spin_lock_irqsave(&s->lock, flags);
+ list_move(&pi->list, &s->valid_paths);
+ spin_unlock_irqrestore(&s->lock, flags);
+
+ return 0;
+}
+
+static struct dm_path *rr_select_path(struct path_selector *ps, size_t nr_bytes)
+{
+ unsigned long flags;
+ struct selector *s = ps->context;
+ struct path_info *pi = NULL;
+
+ spin_lock_irqsave(&s->lock, flags);
+ if (!list_empty(&s->valid_paths)) {
+ pi = list_entry(s->valid_paths.next, struct path_info, list);
+ list_move_tail(&pi->list, &s->valid_paths);
+ }
+ spin_unlock_irqrestore(&s->lock, flags);
+
+ return pi ? pi->path : NULL;
+}
+
+static struct path_selector_type rr_ps = {
+ .name = "round-robin",
+ .module = THIS_MODULE,
+ .table_args = 1,
+ .info_args = 0,
+ .create = rr_create,
+ .destroy = rr_destroy,
+ .status = rr_status,
+ .add_path = rr_add_path,
+ .fail_path = rr_fail_path,
+ .reinstate_path = rr_reinstate_path,
+ .select_path = rr_select_path,
+};
+
+static int __init dm_rr_init(void)
+{
+ int r = dm_register_path_selector(&rr_ps);
+
+ if (r < 0)
+ DMERR("register failed %d", r);
+
+ DMINFO("version " RR_VERSION " loaded");
+
+ return r;
+}
+
+static void __exit dm_rr_exit(void)
+{
+ int r = dm_unregister_path_selector(&rr_ps);
+
+ if (r < 0)
+ DMERR("unregister failed %d", r);
+}
+
+module_init(dm_rr_init);
+module_exit(dm_rr_exit);
+
+MODULE_DESCRIPTION(DM_NAME " round-robin multipath path selector");
+MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-ps-service-time.c b/drivers/md/dm-ps-service-time.c
new file mode 100644
index 000000000..eba2293be
--- /dev/null
+++ b/drivers/md/dm-ps-service-time.c
@@ -0,0 +1,364 @@
+/*
+ * Copyright (C) 2007-2009 NEC Corporation. All Rights Reserved.
+ *
+ * Module Author: Kiyoshi Ueda
+ *
+ * This file is released under the GPL.
+ *
+ * Throughput oriented path selector.
+ */
+
+#include "dm.h"
+#include "dm-path-selector.h"
+
+#include <linux/slab.h>
+#include <linux/module.h>
+
+#define DM_MSG_PREFIX "multipath service-time"
+#define ST_MIN_IO 1
+#define ST_MAX_RELATIVE_THROUGHPUT 100
+#define ST_MAX_RELATIVE_THROUGHPUT_SHIFT 7
+#define ST_MAX_INFLIGHT_SIZE ((size_t)-1 >> ST_MAX_RELATIVE_THROUGHPUT_SHIFT)
+#define ST_VERSION "0.3.0"
+
+struct selector {
+ struct list_head valid_paths;
+ struct list_head failed_paths;
+ spinlock_t lock;
+};
+
+struct path_info {
+ struct list_head list;
+ struct dm_path *path;
+ unsigned int repeat_count;
+ unsigned int relative_throughput;
+ atomic_t in_flight_size; /* Total size of in-flight I/Os */
+};
+
+static struct selector *alloc_selector(void)
+{
+ struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL);
+
+ if (s) {
+ INIT_LIST_HEAD(&s->valid_paths);
+ INIT_LIST_HEAD(&s->failed_paths);
+ spin_lock_init(&s->lock);
+ }
+
+ return s;
+}
+
+static int st_create(struct path_selector *ps, unsigned int argc, char **argv)
+{
+ struct selector *s = alloc_selector();
+
+ if (!s)
+ return -ENOMEM;
+
+ ps->context = s;
+ return 0;
+}
+
+static void free_paths(struct list_head *paths)
+{
+ struct path_info *pi, *next;
+
+ list_for_each_entry_safe(pi, next, paths, list) {
+ list_del(&pi->list);
+ kfree(pi);
+ }
+}
+
+static void st_destroy(struct path_selector *ps)
+{
+ struct selector *s = ps->context;
+
+ free_paths(&s->valid_paths);
+ free_paths(&s->failed_paths);
+ kfree(s);
+ ps->context = NULL;
+}
+
+static int st_status(struct path_selector *ps, struct dm_path *path,
+ status_type_t type, char *result, unsigned int maxlen)
+{
+ unsigned int sz = 0;
+ struct path_info *pi;
+
+ if (!path)
+ DMEMIT("0 ");
+ else {
+ pi = path->pscontext;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ DMEMIT("%d %u ", atomic_read(&pi->in_flight_size),
+ pi->relative_throughput);
+ break;
+ case STATUSTYPE_TABLE:
+ DMEMIT("%u %u ", pi->repeat_count,
+ pi->relative_throughput);
+ break;
+ case STATUSTYPE_IMA:
+ result[0] = '\0';
+ break;
+ }
+ }
+
+ return sz;
+}
+
+static int st_add_path(struct path_selector *ps, struct dm_path *path,
+ int argc, char **argv, char **error)
+{
+ struct selector *s = ps->context;
+ struct path_info *pi;
+ unsigned int repeat_count = ST_MIN_IO;
+ unsigned int relative_throughput = 1;
+ char dummy;
+ unsigned long flags;
+
+ /*
+ * Arguments: [<repeat_count> [<relative_throughput>]]
+ * <repeat_count>: The number of I/Os before switching path.
+ * If not given, default (ST_MIN_IO) is used.
+ * <relative_throughput>: The relative throughput value of
+ * the path among all paths in the path-group.
+ * The valid range: 0-<ST_MAX_RELATIVE_THROUGHPUT>
+ * If not given, minimum value '1' is used.
+ * If '0' is given, the path isn't selected while
+ * other paths having a positive value are available.
+ */
+ if (argc > 2) {
+ *error = "service-time ps: incorrect number of arguments";
+ return -EINVAL;
+ }
+
+ if (argc && (sscanf(argv[0], "%u%c", &repeat_count, &dummy) != 1)) {
+ *error = "service-time ps: invalid repeat count";
+ return -EINVAL;
+ }
+
+ if (repeat_count > 1) {
+ DMWARN_LIMIT("repeat_count > 1 is deprecated, using 1 instead");
+ repeat_count = 1;
+ }
+
+ if ((argc == 2) &&
+ (sscanf(argv[1], "%u%c", &relative_throughput, &dummy) != 1 ||
+ relative_throughput > ST_MAX_RELATIVE_THROUGHPUT)) {
+ *error = "service-time ps: invalid relative_throughput value";
+ return -EINVAL;
+ }
+
+ /* allocate the path */
+ pi = kmalloc(sizeof(*pi), GFP_KERNEL);
+ if (!pi) {
+ *error = "service-time ps: Error allocating path context";
+ return -ENOMEM;
+ }
+
+ pi->path = path;
+ pi->repeat_count = repeat_count;
+ pi->relative_throughput = relative_throughput;
+ atomic_set(&pi->in_flight_size, 0);
+
+ path->pscontext = pi;
+
+ spin_lock_irqsave(&s->lock, flags);
+ list_add_tail(&pi->list, &s->valid_paths);
+ spin_unlock_irqrestore(&s->lock, flags);
+
+ return 0;
+}
+
+static void st_fail_path(struct path_selector *ps, struct dm_path *path)
+{
+ struct selector *s = ps->context;
+ struct path_info *pi = path->pscontext;
+ unsigned long flags;
+
+ spin_lock_irqsave(&s->lock, flags);
+ list_move(&pi->list, &s->failed_paths);
+ spin_unlock_irqrestore(&s->lock, flags);
+}
+
+static int st_reinstate_path(struct path_selector *ps, struct dm_path *path)
+{
+ struct selector *s = ps->context;
+ struct path_info *pi = path->pscontext;
+ unsigned long flags;
+
+ spin_lock_irqsave(&s->lock, flags);
+ list_move_tail(&pi->list, &s->valid_paths);
+ spin_unlock_irqrestore(&s->lock, flags);
+
+ return 0;
+}
+
+/*
+ * Compare the estimated service time of 2 paths, pi1 and pi2,
+ * for the incoming I/O.
+ *
+ * Returns:
+ * < 0 : pi1 is better
+ * 0 : no difference between pi1 and pi2
+ * > 0 : pi2 is better
+ *
+ * Description:
+ * Basically, the service time is estimated by:
+ * ('pi->in-flight-size' + 'incoming') / 'pi->relative_throughput'
+ * To reduce the calculation, some optimizations are made.
+ * (See comments inline)
+ */
+static int st_compare_load(struct path_info *pi1, struct path_info *pi2,
+ size_t incoming)
+{
+ size_t sz1, sz2, st1, st2;
+
+ sz1 = atomic_read(&pi1->in_flight_size);
+ sz2 = atomic_read(&pi2->in_flight_size);
+
+ /*
+ * Case 1: Both have same throughput value. Choose less loaded path.
+ */
+ if (pi1->relative_throughput == pi2->relative_throughput)
+ return sz1 - sz2;
+
+ /*
+ * Case 2a: Both have same load. Choose higher throughput path.
+ * Case 2b: One path has no throughput value. Choose the other one.
+ */
+ if (sz1 == sz2 ||
+ !pi1->relative_throughput || !pi2->relative_throughput)
+ return pi2->relative_throughput - pi1->relative_throughput;
+
+ /*
+ * Case 3: Calculate service time. Choose faster path.
+ * Service time using pi1:
+ * st1 = (sz1 + incoming) / pi1->relative_throughput
+ * Service time using pi2:
+ * st2 = (sz2 + incoming) / pi2->relative_throughput
+ *
+ * To avoid the division, transform the expression to use
+ * multiplication.
+ * Because ->relative_throughput > 0 here, if st1 < st2,
+ * the expressions below are the same meaning:
+ * (sz1 + incoming) / pi1->relative_throughput <
+ * (sz2 + incoming) / pi2->relative_throughput
+ * (sz1 + incoming) * pi2->relative_throughput <
+ * (sz2 + incoming) * pi1->relative_throughput
+ * So use the later one.
+ */
+ sz1 += incoming;
+ sz2 += incoming;
+ if (unlikely(sz1 >= ST_MAX_INFLIGHT_SIZE ||
+ sz2 >= ST_MAX_INFLIGHT_SIZE)) {
+ /*
+ * Size may be too big for multiplying pi->relative_throughput
+ * and overflow.
+ * To avoid the overflow and mis-selection, shift down both.
+ */
+ sz1 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
+ sz2 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
+ }
+ st1 = sz1 * pi2->relative_throughput;
+ st2 = sz2 * pi1->relative_throughput;
+ if (st1 != st2)
+ return st1 - st2;
+
+ /*
+ * Case 4: Service time is equal. Choose higher throughput path.
+ */
+ return pi2->relative_throughput - pi1->relative_throughput;
+}
+
+static struct dm_path *st_select_path(struct path_selector *ps, size_t nr_bytes)
+{
+ struct selector *s = ps->context;
+ struct path_info *pi = NULL, *best = NULL;
+ struct dm_path *ret = NULL;
+ unsigned long flags;
+
+ spin_lock_irqsave(&s->lock, flags);
+ if (list_empty(&s->valid_paths))
+ goto out;
+
+ list_for_each_entry(pi, &s->valid_paths, list)
+ if (!best || (st_compare_load(pi, best, nr_bytes) < 0))
+ best = pi;
+
+ if (!best)
+ goto out;
+
+ /* Move most recently used to least preferred to evenly balance. */
+ list_move_tail(&best->list, &s->valid_paths);
+
+ ret = best->path;
+out:
+ spin_unlock_irqrestore(&s->lock, flags);
+ return ret;
+}
+
+static int st_start_io(struct path_selector *ps, struct dm_path *path,
+ size_t nr_bytes)
+{
+ struct path_info *pi = path->pscontext;
+
+ atomic_add(nr_bytes, &pi->in_flight_size);
+
+ return 0;
+}
+
+static int st_end_io(struct path_selector *ps, struct dm_path *path,
+ size_t nr_bytes, u64 start_time)
+{
+ struct path_info *pi = path->pscontext;
+
+ atomic_sub(nr_bytes, &pi->in_flight_size);
+
+ return 0;
+}
+
+static struct path_selector_type st_ps = {
+ .name = "service-time",
+ .module = THIS_MODULE,
+ .table_args = 2,
+ .info_args = 2,
+ .create = st_create,
+ .destroy = st_destroy,
+ .status = st_status,
+ .add_path = st_add_path,
+ .fail_path = st_fail_path,
+ .reinstate_path = st_reinstate_path,
+ .select_path = st_select_path,
+ .start_io = st_start_io,
+ .end_io = st_end_io,
+};
+
+static int __init dm_st_init(void)
+{
+ int r = dm_register_path_selector(&st_ps);
+
+ if (r < 0)
+ DMERR("register failed %d", r);
+
+ DMINFO("version " ST_VERSION " loaded");
+
+ return r;
+}
+
+static void __exit dm_st_exit(void)
+{
+ int r = dm_unregister_path_selector(&st_ps);
+
+ if (r < 0)
+ DMERR("unregister failed %d", r);
+}
+
+module_init(dm_st_init);
+module_exit(dm_st_exit);
+
+MODULE_DESCRIPTION(DM_NAME " throughput oriented path selector");
+MODULE_AUTHOR("Kiyoshi Ueda <k-ueda@ct.jp.nec.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-raid.c b/drivers/md/dm-raid.c
new file mode 100644
index 000000000..4b7528dc2
--- /dev/null
+++ b/drivers/md/dm-raid.c
@@ -0,0 +1,4112 @@
+/*
+ * Copyright (C) 2010-2011 Neil Brown
+ * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/slab.h>
+#include <linux/module.h>
+
+#include "md.h"
+#include "raid1.h"
+#include "raid5.h"
+#include "raid10.h"
+#include "md-bitmap.h"
+
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "raid"
+#define MAX_RAID_DEVICES 253 /* md-raid kernel limit */
+
+/*
+ * Minimum sectors of free reshape space per raid device
+ */
+#define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
+
+/*
+ * Minimum journal space 4 MiB in sectors.
+ */
+#define MIN_RAID456_JOURNAL_SPACE (4*2048)
+
+static bool devices_handle_discard_safely = false;
+
+/*
+ * The following flags are used by dm-raid.c to set up the array state.
+ * They must be cleared before md_run is called.
+ */
+#define FirstUse 10 /* rdev flag */
+
+struct raid_dev {
+ /*
+ * Two DM devices, one to hold metadata and one to hold the
+ * actual data/parity. The reason for this is to not confuse
+ * ti->len and give more flexibility in altering size and
+ * characteristics.
+ *
+ * While it is possible for this device to be associated
+ * with a different physical device than the data_dev, it
+ * is intended for it to be the same.
+ * |--------- Physical Device ---------|
+ * |- meta_dev -|------ data_dev ------|
+ */
+ struct dm_dev *meta_dev;
+ struct dm_dev *data_dev;
+ struct md_rdev rdev;
+};
+
+/*
+ * Bits for establishing rs->ctr_flags
+ *
+ * 1 = no flag value
+ * 2 = flag with value
+ */
+#define __CTR_FLAG_SYNC 0 /* 1 */ /* Not with raid0! */
+#define __CTR_FLAG_NOSYNC 1 /* 1 */ /* Not with raid0! */
+#define __CTR_FLAG_REBUILD 2 /* 2 */ /* Not with raid0! */
+#define __CTR_FLAG_DAEMON_SLEEP 3 /* 2 */ /* Not with raid0! */
+#define __CTR_FLAG_MIN_RECOVERY_RATE 4 /* 2 */ /* Not with raid0! */
+#define __CTR_FLAG_MAX_RECOVERY_RATE 5 /* 2 */ /* Not with raid0! */
+#define __CTR_FLAG_MAX_WRITE_BEHIND 6 /* 2 */ /* Only with raid1! */
+#define __CTR_FLAG_WRITE_MOSTLY 7 /* 2 */ /* Only with raid1! */
+#define __CTR_FLAG_STRIPE_CACHE 8 /* 2 */ /* Only with raid4/5/6! */
+#define __CTR_FLAG_REGION_SIZE 9 /* 2 */ /* Not with raid0! */
+#define __CTR_FLAG_RAID10_COPIES 10 /* 2 */ /* Only with raid10 */
+#define __CTR_FLAG_RAID10_FORMAT 11 /* 2 */ /* Only with raid10 */
+/* New for v1.9.0 */
+#define __CTR_FLAG_DELTA_DISKS 12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
+#define __CTR_FLAG_DATA_OFFSET 13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
+#define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
+
+/* New for v1.10.0 */
+#define __CTR_FLAG_JOURNAL_DEV 15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
+
+/* New for v1.11.1 */
+#define __CTR_FLAG_JOURNAL_MODE 16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
+
+/*
+ * Flags for rs->ctr_flags field.
+ */
+#define CTR_FLAG_SYNC (1 << __CTR_FLAG_SYNC)
+#define CTR_FLAG_NOSYNC (1 << __CTR_FLAG_NOSYNC)
+#define CTR_FLAG_REBUILD (1 << __CTR_FLAG_REBUILD)
+#define CTR_FLAG_DAEMON_SLEEP (1 << __CTR_FLAG_DAEMON_SLEEP)
+#define CTR_FLAG_MIN_RECOVERY_RATE (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
+#define CTR_FLAG_MAX_RECOVERY_RATE (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
+#define CTR_FLAG_MAX_WRITE_BEHIND (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
+#define CTR_FLAG_WRITE_MOSTLY (1 << __CTR_FLAG_WRITE_MOSTLY)
+#define CTR_FLAG_STRIPE_CACHE (1 << __CTR_FLAG_STRIPE_CACHE)
+#define CTR_FLAG_REGION_SIZE (1 << __CTR_FLAG_REGION_SIZE)
+#define CTR_FLAG_RAID10_COPIES (1 << __CTR_FLAG_RAID10_COPIES)
+#define CTR_FLAG_RAID10_FORMAT (1 << __CTR_FLAG_RAID10_FORMAT)
+#define CTR_FLAG_DELTA_DISKS (1 << __CTR_FLAG_DELTA_DISKS)
+#define CTR_FLAG_DATA_OFFSET (1 << __CTR_FLAG_DATA_OFFSET)
+#define CTR_FLAG_RAID10_USE_NEAR_SETS (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
+#define CTR_FLAG_JOURNAL_DEV (1 << __CTR_FLAG_JOURNAL_DEV)
+#define CTR_FLAG_JOURNAL_MODE (1 << __CTR_FLAG_JOURNAL_MODE)
+
+/*
+ * Definitions of various constructor flags to
+ * be used in checks of valid / invalid flags
+ * per raid level.
+ */
+/* Define all any sync flags */
+#define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
+
+/* Define flags for options without argument (e.g. 'nosync') */
+#define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \
+ CTR_FLAG_RAID10_USE_NEAR_SETS)
+
+/* Define flags for options with one argument (e.g. 'delta_disks +2') */
+#define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
+ CTR_FLAG_WRITE_MOSTLY | \
+ CTR_FLAG_DAEMON_SLEEP | \
+ CTR_FLAG_MIN_RECOVERY_RATE | \
+ CTR_FLAG_MAX_RECOVERY_RATE | \
+ CTR_FLAG_MAX_WRITE_BEHIND | \
+ CTR_FLAG_STRIPE_CACHE | \
+ CTR_FLAG_REGION_SIZE | \
+ CTR_FLAG_RAID10_COPIES | \
+ CTR_FLAG_RAID10_FORMAT | \
+ CTR_FLAG_DELTA_DISKS | \
+ CTR_FLAG_DATA_OFFSET | \
+ CTR_FLAG_JOURNAL_DEV | \
+ CTR_FLAG_JOURNAL_MODE)
+
+/* Valid options definitions per raid level... */
+
+/* "raid0" does only accept data offset */
+#define RAID0_VALID_FLAGS (CTR_FLAG_DATA_OFFSET)
+
+/* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
+#define RAID1_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
+ CTR_FLAG_REBUILD | \
+ CTR_FLAG_WRITE_MOSTLY | \
+ CTR_FLAG_DAEMON_SLEEP | \
+ CTR_FLAG_MIN_RECOVERY_RATE | \
+ CTR_FLAG_MAX_RECOVERY_RATE | \
+ CTR_FLAG_MAX_WRITE_BEHIND | \
+ CTR_FLAG_REGION_SIZE | \
+ CTR_FLAG_DELTA_DISKS | \
+ CTR_FLAG_DATA_OFFSET)
+
+/* "raid10" does not accept any raid1 or stripe cache options */
+#define RAID10_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
+ CTR_FLAG_REBUILD | \
+ CTR_FLAG_DAEMON_SLEEP | \
+ CTR_FLAG_MIN_RECOVERY_RATE | \
+ CTR_FLAG_MAX_RECOVERY_RATE | \
+ CTR_FLAG_REGION_SIZE | \
+ CTR_FLAG_RAID10_COPIES | \
+ CTR_FLAG_RAID10_FORMAT | \
+ CTR_FLAG_DELTA_DISKS | \
+ CTR_FLAG_DATA_OFFSET | \
+ CTR_FLAG_RAID10_USE_NEAR_SETS)
+
+/*
+ * "raid4/5/6" do not accept any raid1 or raid10 specific options
+ *
+ * "raid6" does not accept "nosync", because it is not guaranteed
+ * that both parity and q-syndrome are being written properly with
+ * any writes
+ */
+#define RAID45_VALID_FLAGS (CTR_FLAGS_ANY_SYNC | \
+ CTR_FLAG_REBUILD | \
+ CTR_FLAG_DAEMON_SLEEP | \
+ CTR_FLAG_MIN_RECOVERY_RATE | \
+ CTR_FLAG_MAX_RECOVERY_RATE | \
+ CTR_FLAG_STRIPE_CACHE | \
+ CTR_FLAG_REGION_SIZE | \
+ CTR_FLAG_DELTA_DISKS | \
+ CTR_FLAG_DATA_OFFSET | \
+ CTR_FLAG_JOURNAL_DEV | \
+ CTR_FLAG_JOURNAL_MODE)
+
+#define RAID6_VALID_FLAGS (CTR_FLAG_SYNC | \
+ CTR_FLAG_REBUILD | \
+ CTR_FLAG_DAEMON_SLEEP | \
+ CTR_FLAG_MIN_RECOVERY_RATE | \
+ CTR_FLAG_MAX_RECOVERY_RATE | \
+ CTR_FLAG_STRIPE_CACHE | \
+ CTR_FLAG_REGION_SIZE | \
+ CTR_FLAG_DELTA_DISKS | \
+ CTR_FLAG_DATA_OFFSET | \
+ CTR_FLAG_JOURNAL_DEV | \
+ CTR_FLAG_JOURNAL_MODE)
+/* ...valid options definitions per raid level */
+
+/*
+ * Flags for rs->runtime_flags field
+ * (RT_FLAG prefix meaning "runtime flag")
+ *
+ * These are all internal and used to define runtime state,
+ * e.g. to prevent another resume from preresume processing
+ * the raid set all over again.
+ */
+#define RT_FLAG_RS_PRERESUMED 0
+#define RT_FLAG_RS_RESUMED 1
+#define RT_FLAG_RS_BITMAP_LOADED 2
+#define RT_FLAG_UPDATE_SBS 3
+#define RT_FLAG_RESHAPE_RS 4
+#define RT_FLAG_RS_SUSPENDED 5
+#define RT_FLAG_RS_IN_SYNC 6
+#define RT_FLAG_RS_RESYNCING 7
+#define RT_FLAG_RS_GROW 8
+
+/* Array elements of 64 bit needed for rebuild/failed disk bits */
+#define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
+
+/*
+ * raid set level, layout and chunk sectors backup/restore
+ */
+struct rs_layout {
+ int new_level;
+ int new_layout;
+ int new_chunk_sectors;
+};
+
+struct raid_set {
+ struct dm_target *ti;
+
+ uint32_t stripe_cache_entries;
+ unsigned long ctr_flags;
+ unsigned long runtime_flags;
+
+ uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
+
+ int raid_disks;
+ int delta_disks;
+ int data_offset;
+ int raid10_copies;
+ int requested_bitmap_chunk_sectors;
+
+ struct mddev md;
+ struct raid_type *raid_type;
+
+ sector_t array_sectors;
+ sector_t dev_sectors;
+
+ /* Optional raid4/5/6 journal device */
+ struct journal_dev {
+ struct dm_dev *dev;
+ struct md_rdev rdev;
+ int mode;
+ } journal_dev;
+
+ struct raid_dev dev[];
+};
+
+static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
+{
+ struct mddev *mddev = &rs->md;
+
+ l->new_level = mddev->new_level;
+ l->new_layout = mddev->new_layout;
+ l->new_chunk_sectors = mddev->new_chunk_sectors;
+}
+
+static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
+{
+ struct mddev *mddev = &rs->md;
+
+ mddev->new_level = l->new_level;
+ mddev->new_layout = l->new_layout;
+ mddev->new_chunk_sectors = l->new_chunk_sectors;
+}
+
+/* raid10 algorithms (i.e. formats) */
+#define ALGORITHM_RAID10_DEFAULT 0
+#define ALGORITHM_RAID10_NEAR 1
+#define ALGORITHM_RAID10_OFFSET 2
+#define ALGORITHM_RAID10_FAR 3
+
+/* Supported raid types and properties. */
+static struct raid_type {
+ const char *name; /* RAID algorithm. */
+ const char *descr; /* Descriptor text for logging. */
+ const unsigned int parity_devs; /* # of parity devices. */
+ const unsigned int minimal_devs;/* minimal # of devices in set. */
+ const unsigned int level; /* RAID level. */
+ const unsigned int algorithm; /* RAID algorithm. */
+} raid_types[] = {
+ {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */},
+ {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */},
+ {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR},
+ {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET},
+ {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR},
+ {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT},
+ {"raid4", "raid4 (dedicated first parity disk)", 1, 2, 5, ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
+ {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N},
+ {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
+ {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
+ {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
+ {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
+ {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
+ {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
+ {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE},
+ {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6},
+ {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6},
+ {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6},
+ {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6},
+ {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6}
+};
+
+/* True, if @v is in inclusive range [@min, @max] */
+static bool __within_range(long v, long min, long max)
+{
+ return v >= min && v <= max;
+}
+
+/* All table line arguments are defined here */
+static struct arg_name_flag {
+ const unsigned long flag;
+ const char *name;
+} __arg_name_flags[] = {
+ { CTR_FLAG_SYNC, "sync"},
+ { CTR_FLAG_NOSYNC, "nosync"},
+ { CTR_FLAG_REBUILD, "rebuild"},
+ { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
+ { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
+ { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
+ { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
+ { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
+ { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
+ { CTR_FLAG_REGION_SIZE, "region_size"},
+ { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
+ { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
+ { CTR_FLAG_DATA_OFFSET, "data_offset"},
+ { CTR_FLAG_DELTA_DISKS, "delta_disks"},
+ { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
+ { CTR_FLAG_JOURNAL_DEV, "journal_dev" },
+ { CTR_FLAG_JOURNAL_MODE, "journal_mode" },
+};
+
+/* Return argument name string for given @flag */
+static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
+{
+ if (hweight32(flag) == 1) {
+ struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
+
+ while (anf-- > __arg_name_flags)
+ if (flag & anf->flag)
+ return anf->name;
+
+ } else
+ DMERR("%s called with more than one flag!", __func__);
+
+ return NULL;
+}
+
+/* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
+static struct {
+ const int mode;
+ const char *param;
+} _raid456_journal_mode[] = {
+ { R5C_JOURNAL_MODE_WRITE_THROUGH , "writethrough" },
+ { R5C_JOURNAL_MODE_WRITE_BACK , "writeback" }
+};
+
+/* Return MD raid4/5/6 journal mode for dm @journal_mode one */
+static int dm_raid_journal_mode_to_md(const char *mode)
+{
+ int m = ARRAY_SIZE(_raid456_journal_mode);
+
+ while (m--)
+ if (!strcasecmp(mode, _raid456_journal_mode[m].param))
+ return _raid456_journal_mode[m].mode;
+
+ return -EINVAL;
+}
+
+/* Return dm-raid raid4/5/6 journal mode string for @mode */
+static const char *md_journal_mode_to_dm_raid(const int mode)
+{
+ int m = ARRAY_SIZE(_raid456_journal_mode);
+
+ while (m--)
+ if (mode == _raid456_journal_mode[m].mode)
+ return _raid456_journal_mode[m].param;
+
+ return "unknown";
+}
+
+/*
+ * Bool helpers to test for various raid levels of a raid set.
+ * It's level as reported by the superblock rather than
+ * the requested raid_type passed to the constructor.
+ */
+/* Return true, if raid set in @rs is raid0 */
+static bool rs_is_raid0(struct raid_set *rs)
+{
+ return !rs->md.level;
+}
+
+/* Return true, if raid set in @rs is raid1 */
+static bool rs_is_raid1(struct raid_set *rs)
+{
+ return rs->md.level == 1;
+}
+
+/* Return true, if raid set in @rs is raid10 */
+static bool rs_is_raid10(struct raid_set *rs)
+{
+ return rs->md.level == 10;
+}
+
+/* Return true, if raid set in @rs is level 6 */
+static bool rs_is_raid6(struct raid_set *rs)
+{
+ return rs->md.level == 6;
+}
+
+/* Return true, if raid set in @rs is level 4, 5 or 6 */
+static bool rs_is_raid456(struct raid_set *rs)
+{
+ return __within_range(rs->md.level, 4, 6);
+}
+
+/* Return true, if raid set in @rs is reshapable */
+static bool __is_raid10_far(int layout);
+static bool rs_is_reshapable(struct raid_set *rs)
+{
+ return rs_is_raid456(rs) ||
+ (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
+}
+
+/* Return true, if raid set in @rs is recovering */
+static bool rs_is_recovering(struct raid_set *rs)
+{
+ return rs->md.recovery_cp < rs->md.dev_sectors;
+}
+
+/* Return true, if raid set in @rs is reshaping */
+static bool rs_is_reshaping(struct raid_set *rs)
+{
+ return rs->md.reshape_position != MaxSector;
+}
+
+/*
+ * bool helpers to test for various raid levels of a raid type @rt
+ */
+
+/* Return true, if raid type in @rt is raid0 */
+static bool rt_is_raid0(struct raid_type *rt)
+{
+ return !rt->level;
+}
+
+/* Return true, if raid type in @rt is raid1 */
+static bool rt_is_raid1(struct raid_type *rt)
+{
+ return rt->level == 1;
+}
+
+/* Return true, if raid type in @rt is raid10 */
+static bool rt_is_raid10(struct raid_type *rt)
+{
+ return rt->level == 10;
+}
+
+/* Return true, if raid type in @rt is raid4/5 */
+static bool rt_is_raid45(struct raid_type *rt)
+{
+ return __within_range(rt->level, 4, 5);
+}
+
+/* Return true, if raid type in @rt is raid6 */
+static bool rt_is_raid6(struct raid_type *rt)
+{
+ return rt->level == 6;
+}
+
+/* Return true, if raid type in @rt is raid4/5/6 */
+static bool rt_is_raid456(struct raid_type *rt)
+{
+ return __within_range(rt->level, 4, 6);
+}
+/* END: raid level bools */
+
+/* Return valid ctr flags for the raid level of @rs */
+static unsigned long __valid_flags(struct raid_set *rs)
+{
+ if (rt_is_raid0(rs->raid_type))
+ return RAID0_VALID_FLAGS;
+ else if (rt_is_raid1(rs->raid_type))
+ return RAID1_VALID_FLAGS;
+ else if (rt_is_raid10(rs->raid_type))
+ return RAID10_VALID_FLAGS;
+ else if (rt_is_raid45(rs->raid_type))
+ return RAID45_VALID_FLAGS;
+ else if (rt_is_raid6(rs->raid_type))
+ return RAID6_VALID_FLAGS;
+
+ return 0;
+}
+
+/*
+ * Check for valid flags set on @rs
+ *
+ * Has to be called after parsing of the ctr flags!
+ */
+static int rs_check_for_valid_flags(struct raid_set *rs)
+{
+ if (rs->ctr_flags & ~__valid_flags(rs)) {
+ rs->ti->error = "Invalid flags combination";
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/* MD raid10 bit definitions and helpers */
+#define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */
+#define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
+#define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */
+#define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */
+
+/* Return md raid10 near copies for @layout */
+static unsigned int __raid10_near_copies(int layout)
+{
+ return layout & 0xFF;
+}
+
+/* Return md raid10 far copies for @layout */
+static unsigned int __raid10_far_copies(int layout)
+{
+ return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
+}
+
+/* Return true if md raid10 offset for @layout */
+static bool __is_raid10_offset(int layout)
+{
+ return !!(layout & RAID10_OFFSET);
+}
+
+/* Return true if md raid10 near for @layout */
+static bool __is_raid10_near(int layout)
+{
+ return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
+}
+
+/* Return true if md raid10 far for @layout */
+static bool __is_raid10_far(int layout)
+{
+ return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
+}
+
+/* Return md raid10 layout string for @layout */
+static const char *raid10_md_layout_to_format(int layout)
+{
+ /*
+ * Bit 16 stands for "offset"
+ * (i.e. adjacent stripes hold copies)
+ *
+ * Refer to MD's raid10.c for details
+ */
+ if (__is_raid10_offset(layout))
+ return "offset";
+
+ if (__raid10_near_copies(layout) > 1)
+ return "near";
+
+ if (__raid10_far_copies(layout) > 1)
+ return "far";
+
+ return "unknown";
+}
+
+/* Return md raid10 algorithm for @name */
+static int raid10_name_to_format(const char *name)
+{
+ if (!strcasecmp(name, "near"))
+ return ALGORITHM_RAID10_NEAR;
+ else if (!strcasecmp(name, "offset"))
+ return ALGORITHM_RAID10_OFFSET;
+ else if (!strcasecmp(name, "far"))
+ return ALGORITHM_RAID10_FAR;
+
+ return -EINVAL;
+}
+
+/* Return md raid10 copies for @layout */
+static unsigned int raid10_md_layout_to_copies(int layout)
+{
+ return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
+}
+
+/* Return md raid10 format id for @format string */
+static int raid10_format_to_md_layout(struct raid_set *rs,
+ unsigned int algorithm,
+ unsigned int copies)
+{
+ unsigned int n = 1, f = 1, r = 0;
+
+ /*
+ * MD resilienece flaw:
+ *
+ * enabling use_far_sets for far/offset formats causes copies
+ * to be colocated on the same devs together with their origins!
+ *
+ * -> disable it for now in the definition above
+ */
+ if (algorithm == ALGORITHM_RAID10_DEFAULT ||
+ algorithm == ALGORITHM_RAID10_NEAR)
+ n = copies;
+
+ else if (algorithm == ALGORITHM_RAID10_OFFSET) {
+ f = copies;
+ r = RAID10_OFFSET;
+ if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
+ r |= RAID10_USE_FAR_SETS;
+
+ } else if (algorithm == ALGORITHM_RAID10_FAR) {
+ f = copies;
+ if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
+ r |= RAID10_USE_FAR_SETS;
+
+ } else
+ return -EINVAL;
+
+ return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
+}
+/* END: MD raid10 bit definitions and helpers */
+
+/* Check for any of the raid10 algorithms */
+static bool __got_raid10(struct raid_type *rtp, const int layout)
+{
+ if (rtp->level == 10) {
+ switch (rtp->algorithm) {
+ case ALGORITHM_RAID10_DEFAULT:
+ case ALGORITHM_RAID10_NEAR:
+ return __is_raid10_near(layout);
+ case ALGORITHM_RAID10_OFFSET:
+ return __is_raid10_offset(layout);
+ case ALGORITHM_RAID10_FAR:
+ return __is_raid10_far(layout);
+ default:
+ break;
+ }
+ }
+
+ return false;
+}
+
+/* Return raid_type for @name */
+static struct raid_type *get_raid_type(const char *name)
+{
+ struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
+
+ while (rtp-- > raid_types)
+ if (!strcasecmp(rtp->name, name))
+ return rtp;
+
+ return NULL;
+}
+
+/* Return raid_type for @name based derived from @level and @layout */
+static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
+{
+ struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
+
+ while (rtp-- > raid_types) {
+ /* RAID10 special checks based on @layout flags/properties */
+ if (rtp->level == level &&
+ (__got_raid10(rtp, layout) || rtp->algorithm == layout))
+ return rtp;
+ }
+
+ return NULL;
+}
+
+/* Adjust rdev sectors */
+static void rs_set_rdev_sectors(struct raid_set *rs)
+{
+ struct mddev *mddev = &rs->md;
+ struct md_rdev *rdev;
+
+ /*
+ * raid10 sets rdev->sector to the device size, which
+ * is unintended in case of out-of-place reshaping
+ */
+ rdev_for_each(rdev, mddev)
+ if (!test_bit(Journal, &rdev->flags))
+ rdev->sectors = mddev->dev_sectors;
+}
+
+/*
+ * Change bdev capacity of @rs in case of a disk add/remove reshape
+ */
+static void rs_set_capacity(struct raid_set *rs)
+{
+ struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
+
+ set_capacity_and_notify(gendisk, rs->md.array_sectors);
+}
+
+/*
+ * Set the mddev properties in @rs to the current
+ * ones retrieved from the freshest superblock
+ */
+static void rs_set_cur(struct raid_set *rs)
+{
+ struct mddev *mddev = &rs->md;
+
+ mddev->new_level = mddev->level;
+ mddev->new_layout = mddev->layout;
+ mddev->new_chunk_sectors = mddev->chunk_sectors;
+}
+
+/*
+ * Set the mddev properties in @rs to the new
+ * ones requested by the ctr
+ */
+static void rs_set_new(struct raid_set *rs)
+{
+ struct mddev *mddev = &rs->md;
+
+ mddev->level = mddev->new_level;
+ mddev->layout = mddev->new_layout;
+ mddev->chunk_sectors = mddev->new_chunk_sectors;
+ mddev->raid_disks = rs->raid_disks;
+ mddev->delta_disks = 0;
+}
+
+static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
+ unsigned int raid_devs)
+{
+ unsigned int i;
+ struct raid_set *rs;
+
+ if (raid_devs <= raid_type->parity_devs) {
+ ti->error = "Insufficient number of devices";
+ return ERR_PTR(-EINVAL);
+ }
+
+ rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL);
+ if (!rs) {
+ ti->error = "Cannot allocate raid context";
+ return ERR_PTR(-ENOMEM);
+ }
+
+ mddev_init(&rs->md);
+
+ rs->raid_disks = raid_devs;
+ rs->delta_disks = 0;
+
+ rs->ti = ti;
+ rs->raid_type = raid_type;
+ rs->stripe_cache_entries = 256;
+ rs->md.raid_disks = raid_devs;
+ rs->md.level = raid_type->level;
+ rs->md.new_level = rs->md.level;
+ rs->md.layout = raid_type->algorithm;
+ rs->md.new_layout = rs->md.layout;
+ rs->md.delta_disks = 0;
+ rs->md.recovery_cp = MaxSector;
+
+ for (i = 0; i < raid_devs; i++)
+ md_rdev_init(&rs->dev[i].rdev);
+
+ /*
+ * Remaining items to be initialized by further RAID params:
+ * rs->md.persistent
+ * rs->md.external
+ * rs->md.chunk_sectors
+ * rs->md.new_chunk_sectors
+ * rs->md.dev_sectors
+ */
+
+ return rs;
+}
+
+/* Free all @rs allocations */
+static void raid_set_free(struct raid_set *rs)
+{
+ int i;
+
+ if (rs->journal_dev.dev) {
+ md_rdev_clear(&rs->journal_dev.rdev);
+ dm_put_device(rs->ti, rs->journal_dev.dev);
+ }
+
+ for (i = 0; i < rs->raid_disks; i++) {
+ if (rs->dev[i].meta_dev)
+ dm_put_device(rs->ti, rs->dev[i].meta_dev);
+ md_rdev_clear(&rs->dev[i].rdev);
+ if (rs->dev[i].data_dev)
+ dm_put_device(rs->ti, rs->dev[i].data_dev);
+ }
+
+ kfree(rs);
+}
+
+/*
+ * For every device we have two words
+ * <meta_dev>: meta device name or '-' if missing
+ * <data_dev>: data device name or '-' if missing
+ *
+ * The following are permitted:
+ * - -
+ * - <data_dev>
+ * <meta_dev> <data_dev>
+ *
+ * The following is not allowed:
+ * <meta_dev> -
+ *
+ * This code parses those words. If there is a failure,
+ * the caller must use raid_set_free() to unwind the operations.
+ */
+static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
+{
+ int i;
+ int rebuild = 0;
+ int metadata_available = 0;
+ int r = 0;
+ const char *arg;
+
+ /* Put off the number of raid devices argument to get to dev pairs */
+ arg = dm_shift_arg(as);
+ if (!arg)
+ return -EINVAL;
+
+ for (i = 0; i < rs->raid_disks; i++) {
+ rs->dev[i].rdev.raid_disk = i;
+
+ rs->dev[i].meta_dev = NULL;
+ rs->dev[i].data_dev = NULL;
+
+ /*
+ * There are no offsets initially.
+ * Out of place reshape will set them accordingly.
+ */
+ rs->dev[i].rdev.data_offset = 0;
+ rs->dev[i].rdev.new_data_offset = 0;
+ rs->dev[i].rdev.mddev = &rs->md;
+
+ arg = dm_shift_arg(as);
+ if (!arg)
+ return -EINVAL;
+
+ if (strcmp(arg, "-")) {
+ r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
+ &rs->dev[i].meta_dev);
+ if (r) {
+ rs->ti->error = "RAID metadata device lookup failure";
+ return r;
+ }
+
+ rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
+ if (!rs->dev[i].rdev.sb_page) {
+ rs->ti->error = "Failed to allocate superblock page";
+ return -ENOMEM;
+ }
+ }
+
+ arg = dm_shift_arg(as);
+ if (!arg)
+ return -EINVAL;
+
+ if (!strcmp(arg, "-")) {
+ if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
+ (!rs->dev[i].rdev.recovery_offset)) {
+ rs->ti->error = "Drive designated for rebuild not specified";
+ return -EINVAL;
+ }
+
+ if (rs->dev[i].meta_dev) {
+ rs->ti->error = "No data device supplied with metadata device";
+ return -EINVAL;
+ }
+
+ continue;
+ }
+
+ r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
+ &rs->dev[i].data_dev);
+ if (r) {
+ rs->ti->error = "RAID device lookup failure";
+ return r;
+ }
+
+ if (rs->dev[i].meta_dev) {
+ metadata_available = 1;
+ rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
+ }
+ rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
+ list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
+ if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
+ rebuild++;
+ }
+
+ if (rs->journal_dev.dev)
+ list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
+
+ if (metadata_available) {
+ rs->md.external = 0;
+ rs->md.persistent = 1;
+ rs->md.major_version = 2;
+ } else if (rebuild && !rs->md.recovery_cp) {
+ /*
+ * Without metadata, we will not be able to tell if the array
+ * is in-sync or not - we must assume it is not. Therefore,
+ * it is impossible to rebuild a drive.
+ *
+ * Even if there is metadata, the on-disk information may
+ * indicate that the array is not in-sync and it will then
+ * fail at that time.
+ *
+ * User could specify 'nosync' option if desperate.
+ */
+ rs->ti->error = "Unable to rebuild drive while array is not in-sync";
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/*
+ * validate_region_size
+ * @rs
+ * @region_size: region size in sectors. If 0, pick a size (4MiB default).
+ *
+ * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
+ * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
+ *
+ * Returns: 0 on success, -EINVAL on failure.
+ */
+static int validate_region_size(struct raid_set *rs, unsigned long region_size)
+{
+ unsigned long min_region_size = rs->ti->len / (1 << 21);
+
+ if (rs_is_raid0(rs))
+ return 0;
+
+ if (!region_size) {
+ /*
+ * Choose a reasonable default. All figures in sectors.
+ */
+ if (min_region_size > (1 << 13)) {
+ /* If not a power of 2, make it the next power of 2 */
+ region_size = roundup_pow_of_two(min_region_size);
+ DMINFO("Choosing default region size of %lu sectors",
+ region_size);
+ } else {
+ DMINFO("Choosing default region size of 4MiB");
+ region_size = 1 << 13; /* sectors */
+ }
+ } else {
+ /*
+ * Validate user-supplied value.
+ */
+ if (region_size > rs->ti->len) {
+ rs->ti->error = "Supplied region size is too large";
+ return -EINVAL;
+ }
+
+ if (region_size < min_region_size) {
+ DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
+ region_size, min_region_size);
+ rs->ti->error = "Supplied region size is too small";
+ return -EINVAL;
+ }
+
+ if (!is_power_of_2(region_size)) {
+ rs->ti->error = "Region size is not a power of 2";
+ return -EINVAL;
+ }
+
+ if (region_size < rs->md.chunk_sectors) {
+ rs->ti->error = "Region size is smaller than the chunk size";
+ return -EINVAL;
+ }
+ }
+
+ /*
+ * Convert sectors to bytes.
+ */
+ rs->md.bitmap_info.chunksize = to_bytes(region_size);
+
+ return 0;
+}
+
+/*
+ * validate_raid_redundancy
+ * @rs
+ *
+ * Determine if there are enough devices in the array that haven't
+ * failed (or are being rebuilt) to form a usable array.
+ *
+ * Returns: 0 on success, -EINVAL on failure.
+ */
+static int validate_raid_redundancy(struct raid_set *rs)
+{
+ unsigned int i, rebuild_cnt = 0;
+ unsigned int rebuilds_per_group = 0, copies, raid_disks;
+ unsigned int group_size, last_group_start;
+
+ for (i = 0; i < rs->raid_disks; i++)
+ if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) &&
+ ((!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
+ !rs->dev[i].rdev.sb_page)))
+ rebuild_cnt++;
+
+ switch (rs->md.level) {
+ case 0:
+ break;
+ case 1:
+ if (rebuild_cnt >= rs->md.raid_disks)
+ goto too_many;
+ break;
+ case 4:
+ case 5:
+ case 6:
+ if (rebuild_cnt > rs->raid_type->parity_devs)
+ goto too_many;
+ break;
+ case 10:
+ copies = raid10_md_layout_to_copies(rs->md.new_layout);
+ if (copies < 2) {
+ DMERR("Bogus raid10 data copies < 2!");
+ return -EINVAL;
+ }
+
+ if (rebuild_cnt < copies)
+ break;
+
+ /*
+ * It is possible to have a higher rebuild count for RAID10,
+ * as long as the failed devices occur in different mirror
+ * groups (i.e. different stripes).
+ *
+ * When checking "near" format, make sure no adjacent devices
+ * have failed beyond what can be handled. In addition to the
+ * simple case where the number of devices is a multiple of the
+ * number of copies, we must also handle cases where the number
+ * of devices is not a multiple of the number of copies.
+ * E.g. dev1 dev2 dev3 dev4 dev5
+ * A A B B C
+ * C D D E E
+ */
+ raid_disks = min(rs->raid_disks, rs->md.raid_disks);
+ if (__is_raid10_near(rs->md.new_layout)) {
+ for (i = 0; i < raid_disks; i++) {
+ if (!(i % copies))
+ rebuilds_per_group = 0;
+ if ((!rs->dev[i].rdev.sb_page ||
+ !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
+ (++rebuilds_per_group >= copies))
+ goto too_many;
+ }
+ break;
+ }
+
+ /*
+ * When checking "far" and "offset" formats, we need to ensure
+ * that the device that holds its copy is not also dead or
+ * being rebuilt. (Note that "far" and "offset" formats only
+ * support two copies right now. These formats also only ever
+ * use the 'use_far_sets' variant.)
+ *
+ * This check is somewhat complicated by the need to account
+ * for arrays that are not a multiple of (far) copies. This
+ * results in the need to treat the last (potentially larger)
+ * set differently.
+ */
+ group_size = (raid_disks / copies);
+ last_group_start = (raid_disks / group_size) - 1;
+ last_group_start *= group_size;
+ for (i = 0; i < raid_disks; i++) {
+ if (!(i % copies) && !(i > last_group_start))
+ rebuilds_per_group = 0;
+ if ((!rs->dev[i].rdev.sb_page ||
+ !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
+ (++rebuilds_per_group >= copies))
+ goto too_many;
+ }
+ break;
+ default:
+ if (rebuild_cnt)
+ return -EINVAL;
+ }
+
+ return 0;
+
+too_many:
+ return -EINVAL;
+}
+
+/*
+ * Possible arguments are...
+ * <chunk_size> [optional_args]
+ *
+ * Argument definitions
+ * <chunk_size> The number of sectors per disk that
+ * will form the "stripe"
+ * [[no]sync] Force or prevent recovery of the
+ * entire array
+ * [rebuild <idx>] Rebuild the drive indicated by the index
+ * [daemon_sleep <ms>] Time between bitmap daemon work to
+ * clear bits
+ * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
+ * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
+ * [write_mostly <idx>] Indicate a write mostly drive via index
+ * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
+ * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
+ * [region_size <sectors>] Defines granularity of bitmap
+ * [journal_dev <dev>] raid4/5/6 journaling deviice
+ * (i.e. write hole closing log)
+ *
+ * RAID10-only options:
+ * [raid10_copies <# copies>] Number of copies. (Default: 2)
+ * [raid10_format <near|far|offset>] Layout algorithm. (Default: near)
+ */
+static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
+ unsigned int num_raid_params)
+{
+ int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
+ unsigned int raid10_copies = 2;
+ unsigned int i, write_mostly = 0;
+ unsigned int region_size = 0;
+ sector_t max_io_len;
+ const char *arg, *key;
+ struct raid_dev *rd;
+ struct raid_type *rt = rs->raid_type;
+
+ arg = dm_shift_arg(as);
+ num_raid_params--; /* Account for chunk_size argument */
+
+ if (kstrtoint(arg, 10, &value) < 0) {
+ rs->ti->error = "Bad numerical argument given for chunk_size";
+ return -EINVAL;
+ }
+
+ /*
+ * First, parse the in-order required arguments
+ * "chunk_size" is the only argument of this type.
+ */
+ if (rt_is_raid1(rt)) {
+ if (value)
+ DMERR("Ignoring chunk size parameter for RAID 1");
+ value = 0;
+ } else if (!is_power_of_2(value)) {
+ rs->ti->error = "Chunk size must be a power of 2";
+ return -EINVAL;
+ } else if (value < 8) {
+ rs->ti->error = "Chunk size value is too small";
+ return -EINVAL;
+ }
+
+ rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
+
+ /*
+ * We set each individual device as In_sync with a completed
+ * 'recovery_offset'. If there has been a device failure or
+ * replacement then one of the following cases applies:
+ *
+ * 1) User specifies 'rebuild'.
+ * - Device is reset when param is read.
+ * 2) A new device is supplied.
+ * - No matching superblock found, resets device.
+ * 3) Device failure was transient and returns on reload.
+ * - Failure noticed, resets device for bitmap replay.
+ * 4) Device hadn't completed recovery after previous failure.
+ * - Superblock is read and overrides recovery_offset.
+ *
+ * What is found in the superblocks of the devices is always
+ * authoritative, unless 'rebuild' or '[no]sync' was specified.
+ */
+ for (i = 0; i < rs->raid_disks; i++) {
+ set_bit(In_sync, &rs->dev[i].rdev.flags);
+ rs->dev[i].rdev.recovery_offset = MaxSector;
+ }
+
+ /*
+ * Second, parse the unordered optional arguments
+ */
+ for (i = 0; i < num_raid_params; i++) {
+ key = dm_shift_arg(as);
+ if (!key) {
+ rs->ti->error = "Not enough raid parameters given";
+ return -EINVAL;
+ }
+
+ if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
+ if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
+ rs->ti->error = "Only one 'nosync' argument allowed";
+ return -EINVAL;
+ }
+ continue;
+ }
+ if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
+ if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
+ rs->ti->error = "Only one 'sync' argument allowed";
+ return -EINVAL;
+ }
+ continue;
+ }
+ if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
+ if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
+ rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
+ return -EINVAL;
+ }
+ continue;
+ }
+
+ arg = dm_shift_arg(as);
+ i++; /* Account for the argument pairs */
+ if (!arg) {
+ rs->ti->error = "Wrong number of raid parameters given";
+ return -EINVAL;
+ }
+
+ /*
+ * Parameters that take a string value are checked here.
+ */
+ /* "raid10_format {near|offset|far} */
+ if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
+ if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
+ rs->ti->error = "Only one 'raid10_format' argument pair allowed";
+ return -EINVAL;
+ }
+ if (!rt_is_raid10(rt)) {
+ rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
+ return -EINVAL;
+ }
+ raid10_format = raid10_name_to_format(arg);
+ if (raid10_format < 0) {
+ rs->ti->error = "Invalid 'raid10_format' value given";
+ return raid10_format;
+ }
+ continue;
+ }
+
+ /* "journal_dev <dev>" */
+ if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
+ int r;
+ struct md_rdev *jdev;
+
+ if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
+ rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
+ return -EINVAL;
+ }
+ if (!rt_is_raid456(rt)) {
+ rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
+ return -EINVAL;
+ }
+ r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
+ &rs->journal_dev.dev);
+ if (r) {
+ rs->ti->error = "raid4/5/6 journal device lookup failure";
+ return r;
+ }
+ jdev = &rs->journal_dev.rdev;
+ md_rdev_init(jdev);
+ jdev->mddev = &rs->md;
+ jdev->bdev = rs->journal_dev.dev->bdev;
+ jdev->sectors = bdev_nr_sectors(jdev->bdev);
+ if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
+ rs->ti->error = "No space for raid4/5/6 journal";
+ return -ENOSPC;
+ }
+ rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
+ set_bit(Journal, &jdev->flags);
+ continue;
+ }
+
+ /* "journal_mode <mode>" ("journal_dev" mandatory!) */
+ if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
+ int r;
+
+ if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
+ rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
+ return -EINVAL;
+ }
+ if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
+ rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
+ return -EINVAL;
+ }
+ r = dm_raid_journal_mode_to_md(arg);
+ if (r < 0) {
+ rs->ti->error = "Invalid 'journal_mode' argument";
+ return r;
+ }
+ rs->journal_dev.mode = r;
+ continue;
+ }
+
+ /*
+ * Parameters with number values from here on.
+ */
+ if (kstrtoint(arg, 10, &value) < 0) {
+ rs->ti->error = "Bad numerical argument given in raid params";
+ return -EINVAL;
+ }
+
+ if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
+ /*
+ * "rebuild" is being passed in by userspace to provide
+ * indexes of replaced devices and to set up additional
+ * devices on raid level takeover.
+ */
+ if (!__within_range(value, 0, rs->raid_disks - 1)) {
+ rs->ti->error = "Invalid rebuild index given";
+ return -EINVAL;
+ }
+
+ if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
+ rs->ti->error = "rebuild for this index already given";
+ return -EINVAL;
+ }
+
+ rd = rs->dev + value;
+ clear_bit(In_sync, &rd->rdev.flags);
+ clear_bit(Faulty, &rd->rdev.flags);
+ rd->rdev.recovery_offset = 0;
+ set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
+ } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
+ if (!rt_is_raid1(rt)) {
+ rs->ti->error = "write_mostly option is only valid for RAID1";
+ return -EINVAL;
+ }
+
+ if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
+ rs->ti->error = "Invalid write_mostly index given";
+ return -EINVAL;
+ }
+
+ write_mostly++;
+ set_bit(WriteMostly, &rs->dev[value].rdev.flags);
+ set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
+ } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
+ if (!rt_is_raid1(rt)) {
+ rs->ti->error = "max_write_behind option is only valid for RAID1";
+ return -EINVAL;
+ }
+
+ if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
+ rs->ti->error = "Only one max_write_behind argument pair allowed";
+ return -EINVAL;
+ }
+
+ /*
+ * In device-mapper, we specify things in sectors, but
+ * MD records this value in kB
+ */
+ if (value < 0 || value / 2 > COUNTER_MAX) {
+ rs->ti->error = "Max write-behind limit out of range";
+ return -EINVAL;
+ }
+
+ rs->md.bitmap_info.max_write_behind = value / 2;
+ } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
+ if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
+ rs->ti->error = "Only one daemon_sleep argument pair allowed";
+ return -EINVAL;
+ }
+ if (value < 0) {
+ rs->ti->error = "daemon sleep period out of range";
+ return -EINVAL;
+ }
+ rs->md.bitmap_info.daemon_sleep = value;
+ } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
+ /* Userspace passes new data_offset after having extended the data image LV */
+ if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
+ rs->ti->error = "Only one data_offset argument pair allowed";
+ return -EINVAL;
+ }
+ /* Ensure sensible data offset */
+ if (value < 0 ||
+ (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
+ rs->ti->error = "Bogus data_offset value";
+ return -EINVAL;
+ }
+ rs->data_offset = value;
+ } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
+ /* Define the +/-# of disks to add to/remove from the given raid set */
+ if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
+ rs->ti->error = "Only one delta_disks argument pair allowed";
+ return -EINVAL;
+ }
+ /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
+ if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
+ rs->ti->error = "Too many delta_disk requested";
+ return -EINVAL;
+ }
+
+ rs->delta_disks = value;
+ } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
+ if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
+ rs->ti->error = "Only one stripe_cache argument pair allowed";
+ return -EINVAL;
+ }
+
+ if (!rt_is_raid456(rt)) {
+ rs->ti->error = "Inappropriate argument: stripe_cache";
+ return -EINVAL;
+ }
+
+ if (value < 0) {
+ rs->ti->error = "Bogus stripe cache entries value";
+ return -EINVAL;
+ }
+ rs->stripe_cache_entries = value;
+ } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
+ if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
+ rs->ti->error = "Only one min_recovery_rate argument pair allowed";
+ return -EINVAL;
+ }
+
+ if (value < 0) {
+ rs->ti->error = "min_recovery_rate out of range";
+ return -EINVAL;
+ }
+ rs->md.sync_speed_min = value;
+ } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
+ if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
+ rs->ti->error = "Only one max_recovery_rate argument pair allowed";
+ return -EINVAL;
+ }
+
+ if (value < 0) {
+ rs->ti->error = "max_recovery_rate out of range";
+ return -EINVAL;
+ }
+ rs->md.sync_speed_max = value;
+ } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
+ if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
+ rs->ti->error = "Only one region_size argument pair allowed";
+ return -EINVAL;
+ }
+
+ region_size = value;
+ rs->requested_bitmap_chunk_sectors = value;
+ } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
+ if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
+ rs->ti->error = "Only one raid10_copies argument pair allowed";
+ return -EINVAL;
+ }
+
+ if (!__within_range(value, 2, rs->md.raid_disks)) {
+ rs->ti->error = "Bad value for 'raid10_copies'";
+ return -EINVAL;
+ }
+
+ raid10_copies = value;
+ } else {
+ DMERR("Unable to parse RAID parameter: %s", key);
+ rs->ti->error = "Unable to parse RAID parameter";
+ return -EINVAL;
+ }
+ }
+
+ if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
+ test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
+ rs->ti->error = "sync and nosync are mutually exclusive";
+ return -EINVAL;
+ }
+
+ if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
+ (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
+ test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
+ rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
+ return -EINVAL;
+ }
+
+ if (write_mostly >= rs->md.raid_disks) {
+ rs->ti->error = "Can't set all raid1 devices to write_mostly";
+ return -EINVAL;
+ }
+
+ if (rs->md.sync_speed_max &&
+ rs->md.sync_speed_min > rs->md.sync_speed_max) {
+ rs->ti->error = "Bogus recovery rates";
+ return -EINVAL;
+ }
+
+ if (validate_region_size(rs, region_size))
+ return -EINVAL;
+
+ if (rs->md.chunk_sectors)
+ max_io_len = rs->md.chunk_sectors;
+ else
+ max_io_len = region_size;
+
+ if (dm_set_target_max_io_len(rs->ti, max_io_len))
+ return -EINVAL;
+
+ if (rt_is_raid10(rt)) {
+ if (raid10_copies > rs->md.raid_disks) {
+ rs->ti->error = "Not enough devices to satisfy specification";
+ return -EINVAL;
+ }
+
+ rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
+ if (rs->md.new_layout < 0) {
+ rs->ti->error = "Error getting raid10 format";
+ return rs->md.new_layout;
+ }
+
+ rt = get_raid_type_by_ll(10, rs->md.new_layout);
+ if (!rt) {
+ rs->ti->error = "Failed to recognize new raid10 layout";
+ return -EINVAL;
+ }
+
+ if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
+ rt->algorithm == ALGORITHM_RAID10_NEAR) &&
+ test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
+ rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
+ return -EINVAL;
+ }
+ }
+
+ rs->raid10_copies = raid10_copies;
+
+ /* Assume there are no metadata devices until the drives are parsed */
+ rs->md.persistent = 0;
+ rs->md.external = 1;
+
+ /* Check, if any invalid ctr arguments have been passed in for the raid level */
+ return rs_check_for_valid_flags(rs);
+}
+
+/* Set raid4/5/6 cache size */
+static int rs_set_raid456_stripe_cache(struct raid_set *rs)
+{
+ int r;
+ struct r5conf *conf;
+ struct mddev *mddev = &rs->md;
+ uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
+ uint32_t nr_stripes = rs->stripe_cache_entries;
+
+ if (!rt_is_raid456(rs->raid_type)) {
+ rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
+ return -EINVAL;
+ }
+
+ if (nr_stripes < min_stripes) {
+ DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
+ nr_stripes, min_stripes);
+ nr_stripes = min_stripes;
+ }
+
+ conf = mddev->private;
+ if (!conf) {
+ rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
+ return -EINVAL;
+ }
+
+ /* Try setting number of stripes in raid456 stripe cache */
+ if (conf->min_nr_stripes != nr_stripes) {
+ r = raid5_set_cache_size(mddev, nr_stripes);
+ if (r) {
+ rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
+ return r;
+ }
+
+ DMINFO("%u stripe cache entries", nr_stripes);
+ }
+
+ return 0;
+}
+
+/* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
+static unsigned int mddev_data_stripes(struct raid_set *rs)
+{
+ return rs->md.raid_disks - rs->raid_type->parity_devs;
+}
+
+/* Return # of data stripes of @rs (i.e. as of ctr) */
+static unsigned int rs_data_stripes(struct raid_set *rs)
+{
+ return rs->raid_disks - rs->raid_type->parity_devs;
+}
+
+/*
+ * Retrieve rdev->sectors from any valid raid device of @rs
+ * to allow userpace to pass in arbitray "- -" device tupples.
+ */
+static sector_t __rdev_sectors(struct raid_set *rs)
+{
+ int i;
+
+ for (i = 0; i < rs->raid_disks; i++) {
+ struct md_rdev *rdev = &rs->dev[i].rdev;
+
+ if (!test_bit(Journal, &rdev->flags) &&
+ rdev->bdev && rdev->sectors)
+ return rdev->sectors;
+ }
+
+ return 0;
+}
+
+/* Check that calculated dev_sectors fits all component devices. */
+static int _check_data_dev_sectors(struct raid_set *rs)
+{
+ sector_t ds = ~0;
+ struct md_rdev *rdev;
+
+ rdev_for_each(rdev, &rs->md)
+ if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
+ ds = min(ds, bdev_nr_sectors(rdev->bdev));
+ if (ds < rs->md.dev_sectors) {
+ rs->ti->error = "Component device(s) too small";
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+/* Calculate the sectors per device and per array used for @rs */
+static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev)
+{
+ int delta_disks;
+ unsigned int data_stripes;
+ sector_t array_sectors = sectors, dev_sectors = sectors;
+ struct mddev *mddev = &rs->md;
+
+ if (use_mddev) {
+ delta_disks = mddev->delta_disks;
+ data_stripes = mddev_data_stripes(rs);
+ } else {
+ delta_disks = rs->delta_disks;
+ data_stripes = rs_data_stripes(rs);
+ }
+
+ /* Special raid1 case w/o delta_disks support (yet) */
+ if (rt_is_raid1(rs->raid_type))
+ ;
+ else if (rt_is_raid10(rs->raid_type)) {
+ if (rs->raid10_copies < 2 ||
+ delta_disks < 0) {
+ rs->ti->error = "Bogus raid10 data copies or delta disks";
+ return -EINVAL;
+ }
+
+ dev_sectors *= rs->raid10_copies;
+ if (sector_div(dev_sectors, data_stripes))
+ goto bad;
+
+ array_sectors = (data_stripes + delta_disks) * dev_sectors;
+ if (sector_div(array_sectors, rs->raid10_copies))
+ goto bad;
+
+ } else if (sector_div(dev_sectors, data_stripes))
+ goto bad;
+
+ else
+ /* Striped layouts */
+ array_sectors = (data_stripes + delta_disks) * dev_sectors;
+
+ mddev->array_sectors = array_sectors;
+ mddev->dev_sectors = dev_sectors;
+ rs_set_rdev_sectors(rs);
+
+ return _check_data_dev_sectors(rs);
+bad:
+ rs->ti->error = "Target length not divisible by number of data devices";
+ return -EINVAL;
+}
+
+/* Setup recovery on @rs */
+static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
+{
+ /* raid0 does not recover */
+ if (rs_is_raid0(rs))
+ rs->md.recovery_cp = MaxSector;
+ /*
+ * A raid6 set has to be recovered either
+ * completely or for the grown part to
+ * ensure proper parity and Q-Syndrome
+ */
+ else if (rs_is_raid6(rs))
+ rs->md.recovery_cp = dev_sectors;
+ /*
+ * Other raid set types may skip recovery
+ * depending on the 'nosync' flag.
+ */
+ else
+ rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
+ ? MaxSector : dev_sectors;
+}
+
+static void do_table_event(struct work_struct *ws)
+{
+ struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
+
+ smp_rmb(); /* Make sure we access most actual mddev properties */
+ if (!rs_is_reshaping(rs)) {
+ if (rs_is_raid10(rs))
+ rs_set_rdev_sectors(rs);
+ rs_set_capacity(rs);
+ }
+ dm_table_event(rs->ti->table);
+}
+
+/*
+ * Make sure a valid takover (level switch) is being requested on @rs
+ *
+ * Conversions of raid sets from one MD personality to another
+ * have to conform to restrictions which are enforced here.
+ */
+static int rs_check_takeover(struct raid_set *rs)
+{
+ struct mddev *mddev = &rs->md;
+ unsigned int near_copies;
+
+ if (rs->md.degraded) {
+ rs->ti->error = "Can't takeover degraded raid set";
+ return -EPERM;
+ }
+
+ if (rs_is_reshaping(rs)) {
+ rs->ti->error = "Can't takeover reshaping raid set";
+ return -EPERM;
+ }
+
+ switch (mddev->level) {
+ case 0:
+ /* raid0 -> raid1/5 with one disk */
+ if ((mddev->new_level == 1 || mddev->new_level == 5) &&
+ mddev->raid_disks == 1)
+ return 0;
+
+ /* raid0 -> raid10 */
+ if (mddev->new_level == 10 &&
+ !(rs->raid_disks % mddev->raid_disks))
+ return 0;
+
+ /* raid0 with multiple disks -> raid4/5/6 */
+ if (__within_range(mddev->new_level, 4, 6) &&
+ mddev->new_layout == ALGORITHM_PARITY_N &&
+ mddev->raid_disks > 1)
+ return 0;
+
+ break;
+
+ case 10:
+ /* Can't takeover raid10_offset! */
+ if (__is_raid10_offset(mddev->layout))
+ break;
+
+ near_copies = __raid10_near_copies(mddev->layout);
+
+ /* raid10* -> raid0 */
+ if (mddev->new_level == 0) {
+ /* Can takeover raid10_near with raid disks divisable by data copies! */
+ if (near_copies > 1 &&
+ !(mddev->raid_disks % near_copies)) {
+ mddev->raid_disks /= near_copies;
+ mddev->delta_disks = mddev->raid_disks;
+ return 0;
+ }
+
+ /* Can takeover raid10_far */
+ if (near_copies == 1 &&
+ __raid10_far_copies(mddev->layout) > 1)
+ return 0;
+
+ break;
+ }
+
+ /* raid10_{near,far} -> raid1 */
+ if (mddev->new_level == 1 &&
+ max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
+ return 0;
+
+ /* raid10_{near,far} with 2 disks -> raid4/5 */
+ if (__within_range(mddev->new_level, 4, 5) &&
+ mddev->raid_disks == 2)
+ return 0;
+ break;
+
+ case 1:
+ /* raid1 with 2 disks -> raid4/5 */
+ if (__within_range(mddev->new_level, 4, 5) &&
+ mddev->raid_disks == 2) {
+ mddev->degraded = 1;
+ return 0;
+ }
+
+ /* raid1 -> raid0 */
+ if (mddev->new_level == 0 &&
+ mddev->raid_disks == 1)
+ return 0;
+
+ /* raid1 -> raid10 */
+ if (mddev->new_level == 10)
+ return 0;
+ break;
+
+ case 4:
+ /* raid4 -> raid0 */
+ if (mddev->new_level == 0)
+ return 0;
+
+ /* raid4 -> raid1/5 with 2 disks */
+ if ((mddev->new_level == 1 || mddev->new_level == 5) &&
+ mddev->raid_disks == 2)
+ return 0;
+
+ /* raid4 -> raid5/6 with parity N */
+ if (__within_range(mddev->new_level, 5, 6) &&
+ mddev->layout == ALGORITHM_PARITY_N)
+ return 0;
+ break;
+
+ case 5:
+ /* raid5 with parity N -> raid0 */
+ if (mddev->new_level == 0 &&
+ mddev->layout == ALGORITHM_PARITY_N)
+ return 0;
+
+ /* raid5 with parity N -> raid4 */
+ if (mddev->new_level == 4 &&
+ mddev->layout == ALGORITHM_PARITY_N)
+ return 0;
+
+ /* raid5 with 2 disks -> raid1/4/10 */
+ if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
+ mddev->raid_disks == 2)
+ return 0;
+
+ /* raid5_* -> raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
+ if (mddev->new_level == 6 &&
+ ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
+ __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
+ return 0;
+ break;
+
+ case 6:
+ /* raid6 with parity N -> raid0 */
+ if (mddev->new_level == 0 &&
+ mddev->layout == ALGORITHM_PARITY_N)
+ return 0;
+
+ /* raid6 with parity N -> raid4 */
+ if (mddev->new_level == 4 &&
+ mddev->layout == ALGORITHM_PARITY_N)
+ return 0;
+
+ /* raid6_*_n with Q-Syndrome N -> raid5_* */
+ if (mddev->new_level == 5 &&
+ ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
+ __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
+ return 0;
+ break;
+
+ default:
+ break;
+ }
+
+ rs->ti->error = "takeover not possible";
+ return -EINVAL;
+}
+
+/* True if @rs requested to be taken over */
+static bool rs_takeover_requested(struct raid_set *rs)
+{
+ return rs->md.new_level != rs->md.level;
+}
+
+/* True if layout is set to reshape. */
+static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev)
+{
+ return (use_mddev ? rs->md.delta_disks : rs->delta_disks) ||
+ rs->md.new_layout != rs->md.layout ||
+ rs->md.new_chunk_sectors != rs->md.chunk_sectors;
+}
+
+/* True if @rs is requested to reshape by ctr */
+static bool rs_reshape_requested(struct raid_set *rs)
+{
+ bool change;
+ struct mddev *mddev = &rs->md;
+
+ if (rs_takeover_requested(rs))
+ return false;
+
+ if (rs_is_raid0(rs))
+ return false;
+
+ change = rs_is_layout_change(rs, false);
+
+ /* Historical case to support raid1 reshape without delta disks */
+ if (rs_is_raid1(rs)) {
+ if (rs->delta_disks)
+ return !!rs->delta_disks;
+
+ return !change &&
+ mddev->raid_disks != rs->raid_disks;
+ }
+
+ if (rs_is_raid10(rs))
+ return change &&
+ !__is_raid10_far(mddev->new_layout) &&
+ rs->delta_disks >= 0;
+
+ return change;
+}
+
+/* Features */
+#define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */
+
+/* State flags for sb->flags */
+#define SB_FLAG_RESHAPE_ACTIVE 0x1
+#define SB_FLAG_RESHAPE_BACKWARDS 0x2
+
+/*
+ * This structure is never routinely used by userspace, unlike md superblocks.
+ * Devices with this superblock should only ever be accessed via device-mapper.
+ */
+#define DM_RAID_MAGIC 0x64526D44
+struct dm_raid_superblock {
+ __le32 magic; /* "DmRd" */
+ __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
+
+ __le32 num_devices; /* Number of devices in this raid set. (Max 64) */
+ __le32 array_position; /* The position of this drive in the raid set */
+
+ __le64 events; /* Incremented by md when superblock updated */
+ __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */
+ /* indicate failures (see extension below) */
+
+ /*
+ * This offset tracks the progress of the repair or replacement of
+ * an individual drive.
+ */
+ __le64 disk_recovery_offset;
+
+ /*
+ * This offset tracks the progress of the initial raid set
+ * synchronisation/parity calculation.
+ */
+ __le64 array_resync_offset;
+
+ /*
+ * raid characteristics
+ */
+ __le32 level;
+ __le32 layout;
+ __le32 stripe_sectors;
+
+ /********************************************************************
+ * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
+ *
+ * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
+ */
+
+ __le32 flags; /* Flags defining array states for reshaping */
+
+ /*
+ * This offset tracks the progress of a raid
+ * set reshape in order to be able to restart it
+ */
+ __le64 reshape_position;
+
+ /*
+ * These define the properties of the array in case of an interrupted reshape
+ */
+ __le32 new_level;
+ __le32 new_layout;
+ __le32 new_stripe_sectors;
+ __le32 delta_disks;
+
+ __le64 array_sectors; /* Array size in sectors */
+
+ /*
+ * Sector offsets to data on devices (reshaping).
+ * Needed to support out of place reshaping, thus
+ * not writing over any stripes whilst converting
+ * them from old to new layout
+ */
+ __le64 data_offset;
+ __le64 new_data_offset;
+
+ __le64 sectors; /* Used device size in sectors */
+
+ /*
+ * Additonal Bit field of devices indicating failures to support
+ * up to 256 devices with the 1.9.0 on-disk metadata format
+ */
+ __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
+
+ __le32 incompat_features; /* Used to indicate any incompatible features */
+
+ /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
+} __packed;
+
+/*
+ * Check for reshape constraints on raid set @rs:
+ *
+ * - reshape function non-existent
+ * - degraded set
+ * - ongoing recovery
+ * - ongoing reshape
+ *
+ * Returns 0 if none or -EPERM if given constraint
+ * and error message reference in @errmsg
+ */
+static int rs_check_reshape(struct raid_set *rs)
+{
+ struct mddev *mddev = &rs->md;
+
+ if (!mddev->pers || !mddev->pers->check_reshape)
+ rs->ti->error = "Reshape not supported";
+ else if (mddev->degraded)
+ rs->ti->error = "Can't reshape degraded raid set";
+ else if (rs_is_recovering(rs))
+ rs->ti->error = "Convert request on recovering raid set prohibited";
+ else if (rs_is_reshaping(rs))
+ rs->ti->error = "raid set already reshaping!";
+ else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
+ rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
+ else
+ return 0;
+
+ return -EPERM;
+}
+
+static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
+{
+ BUG_ON(!rdev->sb_page);
+
+ if (rdev->sb_loaded && !force_reload)
+ return 0;
+
+ rdev->sb_loaded = 0;
+
+ if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) {
+ DMERR("Failed to read superblock of device at position %d",
+ rdev->raid_disk);
+ md_error(rdev->mddev, rdev);
+ set_bit(Faulty, &rdev->flags);
+ return -EIO;
+ }
+
+ rdev->sb_loaded = 1;
+
+ return 0;
+}
+
+static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
+{
+ failed_devices[0] = le64_to_cpu(sb->failed_devices);
+ memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
+
+ if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
+ int i = ARRAY_SIZE(sb->extended_failed_devices);
+
+ while (i--)
+ failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
+ }
+}
+
+static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
+{
+ int i = ARRAY_SIZE(sb->extended_failed_devices);
+
+ sb->failed_devices = cpu_to_le64(failed_devices[0]);
+ while (i--)
+ sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
+}
+
+/*
+ * Synchronize the superblock members with the raid set properties
+ *
+ * All superblock data is little endian.
+ */
+static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
+{
+ bool update_failed_devices = false;
+ unsigned int i;
+ uint64_t failed_devices[DISKS_ARRAY_ELEMS];
+ struct dm_raid_superblock *sb;
+ struct raid_set *rs = container_of(mddev, struct raid_set, md);
+
+ /* No metadata device, no superblock */
+ if (!rdev->meta_bdev)
+ return;
+
+ BUG_ON(!rdev->sb_page);
+
+ sb = page_address(rdev->sb_page);
+
+ sb_retrieve_failed_devices(sb, failed_devices);
+
+ for (i = 0; i < rs->raid_disks; i++)
+ if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
+ update_failed_devices = true;
+ set_bit(i, (void *) failed_devices);
+ }
+
+ if (update_failed_devices)
+ sb_update_failed_devices(sb, failed_devices);
+
+ sb->magic = cpu_to_le32(DM_RAID_MAGIC);
+ sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
+
+ sb->num_devices = cpu_to_le32(mddev->raid_disks);
+ sb->array_position = cpu_to_le32(rdev->raid_disk);
+
+ sb->events = cpu_to_le64(mddev->events);
+
+ sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
+ sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
+
+ sb->level = cpu_to_le32(mddev->level);
+ sb->layout = cpu_to_le32(mddev->layout);
+ sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
+
+ /********************************************************************
+ * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
+ *
+ * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
+ */
+ sb->new_level = cpu_to_le32(mddev->new_level);
+ sb->new_layout = cpu_to_le32(mddev->new_layout);
+ sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
+
+ sb->delta_disks = cpu_to_le32(mddev->delta_disks);
+
+ smp_rmb(); /* Make sure we access most recent reshape position */
+ sb->reshape_position = cpu_to_le64(mddev->reshape_position);
+ if (le64_to_cpu(sb->reshape_position) != MaxSector) {
+ /* Flag ongoing reshape */
+ sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
+
+ if (mddev->delta_disks < 0 || mddev->reshape_backwards)
+ sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
+ } else {
+ /* Clear reshape flags */
+ sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
+ }
+
+ sb->array_sectors = cpu_to_le64(mddev->array_sectors);
+ sb->data_offset = cpu_to_le64(rdev->data_offset);
+ sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
+ sb->sectors = cpu_to_le64(rdev->sectors);
+ sb->incompat_features = cpu_to_le32(0);
+
+ /* Zero out the rest of the payload after the size of the superblock */
+ memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
+}
+
+/*
+ * super_load
+ *
+ * This function creates a superblock if one is not found on the device
+ * and will decide which superblock to use if there's a choice.
+ *
+ * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
+ */
+static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
+{
+ int r;
+ struct dm_raid_superblock *sb;
+ struct dm_raid_superblock *refsb;
+ uint64_t events_sb, events_refsb;
+
+ r = read_disk_sb(rdev, rdev->sb_size, false);
+ if (r)
+ return r;
+
+ sb = page_address(rdev->sb_page);
+
+ /*
+ * Two cases that we want to write new superblocks and rebuild:
+ * 1) New device (no matching magic number)
+ * 2) Device specified for rebuild (!In_sync w/ offset == 0)
+ */
+ if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
+ (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
+ super_sync(rdev->mddev, rdev);
+
+ set_bit(FirstUse, &rdev->flags);
+ sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
+
+ /* Force writing of superblocks to disk */
+ set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
+
+ /* Any superblock is better than none, choose that if given */
+ return refdev ? 0 : 1;
+ }
+
+ if (!refdev)
+ return 1;
+
+ events_sb = le64_to_cpu(sb->events);
+
+ refsb = page_address(refdev->sb_page);
+ events_refsb = le64_to_cpu(refsb->events);
+
+ return (events_sb > events_refsb) ? 1 : 0;
+}
+
+static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
+{
+ int role;
+ unsigned int d;
+ struct mddev *mddev = &rs->md;
+ uint64_t events_sb;
+ uint64_t failed_devices[DISKS_ARRAY_ELEMS];
+ struct dm_raid_superblock *sb;
+ uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
+ struct md_rdev *r;
+ struct dm_raid_superblock *sb2;
+
+ sb = page_address(rdev->sb_page);
+ events_sb = le64_to_cpu(sb->events);
+
+ /*
+ * Initialise to 1 if this is a new superblock.
+ */
+ mddev->events = events_sb ? : 1;
+
+ mddev->reshape_position = MaxSector;
+
+ mddev->raid_disks = le32_to_cpu(sb->num_devices);
+ mddev->level = le32_to_cpu(sb->level);
+ mddev->layout = le32_to_cpu(sb->layout);
+ mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
+
+ /*
+ * Reshaping is supported, e.g. reshape_position is valid
+ * in superblock and superblock content is authoritative.
+ */
+ if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
+ /* Superblock is authoritative wrt given raid set layout! */
+ mddev->new_level = le32_to_cpu(sb->new_level);
+ mddev->new_layout = le32_to_cpu(sb->new_layout);
+ mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
+ mddev->delta_disks = le32_to_cpu(sb->delta_disks);
+ mddev->array_sectors = le64_to_cpu(sb->array_sectors);
+
+ /* raid was reshaping and got interrupted */
+ if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
+ if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
+ DMERR("Reshape requested but raid set is still reshaping");
+ return -EINVAL;
+ }
+
+ if (mddev->delta_disks < 0 ||
+ (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
+ mddev->reshape_backwards = 1;
+ else
+ mddev->reshape_backwards = 0;
+
+ mddev->reshape_position = le64_to_cpu(sb->reshape_position);
+ rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
+ }
+
+ } else {
+ /*
+ * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
+ */
+ struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
+ struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
+
+ if (rs_takeover_requested(rs)) {
+ if (rt_cur && rt_new)
+ DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
+ rt_cur->name, rt_new->name);
+ else
+ DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
+ return -EINVAL;
+ } else if (rs_reshape_requested(rs)) {
+ DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
+ if (mddev->layout != mddev->new_layout) {
+ if (rt_cur && rt_new)
+ DMERR(" current layout %s vs new layout %s",
+ rt_cur->name, rt_new->name);
+ else
+ DMERR(" current layout 0x%X vs new layout 0x%X",
+ le32_to_cpu(sb->layout), mddev->new_layout);
+ }
+ if (mddev->chunk_sectors != mddev->new_chunk_sectors)
+ DMERR(" current stripe sectors %u vs new stripe sectors %u",
+ mddev->chunk_sectors, mddev->new_chunk_sectors);
+ if (rs->delta_disks)
+ DMERR(" current %u disks vs new %u disks",
+ mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
+ if (rs_is_raid10(rs)) {
+ DMERR(" Old layout: %s w/ %u copies",
+ raid10_md_layout_to_format(mddev->layout),
+ raid10_md_layout_to_copies(mddev->layout));
+ DMERR(" New layout: %s w/ %u copies",
+ raid10_md_layout_to_format(mddev->new_layout),
+ raid10_md_layout_to_copies(mddev->new_layout));
+ }
+ return -EINVAL;
+ }
+
+ DMINFO("Discovered old metadata format; upgrading to extended metadata format");
+ }
+
+ if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
+ mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
+
+ /*
+ * During load, we set FirstUse if a new superblock was written.
+ * There are two reasons we might not have a superblock:
+ * 1) The raid set is brand new - in which case, all of the
+ * devices must have their In_sync bit set. Also,
+ * recovery_cp must be 0, unless forced.
+ * 2) This is a new device being added to an old raid set
+ * and the new device needs to be rebuilt - in which
+ * case the In_sync bit will /not/ be set and
+ * recovery_cp must be MaxSector.
+ * 3) This is/are a new device(s) being added to an old
+ * raid set during takeover to a higher raid level
+ * to provide capacity for redundancy or during reshape
+ * to add capacity to grow the raid set.
+ */
+ d = 0;
+ rdev_for_each(r, mddev) {
+ if (test_bit(Journal, &rdev->flags))
+ continue;
+
+ if (test_bit(FirstUse, &r->flags))
+ new_devs++;
+
+ if (!test_bit(In_sync, &r->flags)) {
+ DMINFO("Device %d specified for rebuild; clearing superblock",
+ r->raid_disk);
+ rebuilds++;
+
+ if (test_bit(FirstUse, &r->flags))
+ rebuild_and_new++;
+ }
+
+ d++;
+ }
+
+ if (new_devs == rs->raid_disks || !rebuilds) {
+ /* Replace a broken device */
+ if (new_devs == rs->raid_disks) {
+ DMINFO("Superblocks created for new raid set");
+ set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
+ } else if (new_devs != rebuilds &&
+ new_devs != rs->delta_disks) {
+ DMERR("New device injected into existing raid set without "
+ "'delta_disks' or 'rebuild' parameter specified");
+ return -EINVAL;
+ }
+ } else if (new_devs && new_devs != rebuilds) {
+ DMERR("%u 'rebuild' devices cannot be injected into"
+ " a raid set with %u other first-time devices",
+ rebuilds, new_devs);
+ return -EINVAL;
+ } else if (rebuilds) {
+ if (rebuild_and_new && rebuilds != rebuild_and_new) {
+ DMERR("new device%s provided without 'rebuild'",
+ new_devs > 1 ? "s" : "");
+ return -EINVAL;
+ } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
+ DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
+ (unsigned long long) mddev->recovery_cp);
+ return -EINVAL;
+ } else if (rs_is_reshaping(rs)) {
+ DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
+ (unsigned long long) mddev->reshape_position);
+ return -EINVAL;
+ }
+ }
+
+ /*
+ * Now we set the Faulty bit for those devices that are
+ * recorded in the superblock as failed.
+ */
+ sb_retrieve_failed_devices(sb, failed_devices);
+ rdev_for_each(r, mddev) {
+ if (test_bit(Journal, &rdev->flags) ||
+ !r->sb_page)
+ continue;
+ sb2 = page_address(r->sb_page);
+ sb2->failed_devices = 0;
+ memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
+
+ /*
+ * Check for any device re-ordering.
+ */
+ if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
+ role = le32_to_cpu(sb2->array_position);
+ if (role < 0)
+ continue;
+
+ if (role != r->raid_disk) {
+ if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
+ if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
+ rs->raid_disks % rs->raid10_copies) {
+ rs->ti->error =
+ "Cannot change raid10 near set to odd # of devices!";
+ return -EINVAL;
+ }
+
+ sb2->array_position = cpu_to_le32(r->raid_disk);
+
+ } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
+ !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
+ !rt_is_raid1(rs->raid_type)) {
+ rs->ti->error = "Cannot change device positions in raid set";
+ return -EINVAL;
+ }
+
+ DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
+ }
+
+ /*
+ * Partial recovery is performed on
+ * returning failed devices.
+ */
+ if (test_bit(role, (void *) failed_devices))
+ set_bit(Faulty, &r->flags);
+ }
+ }
+
+ return 0;
+}
+
+static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
+{
+ struct mddev *mddev = &rs->md;
+ struct dm_raid_superblock *sb;
+
+ if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
+ return 0;
+
+ sb = page_address(rdev->sb_page);
+
+ /*
+ * If mddev->events is not set, we know we have not yet initialized
+ * the array.
+ */
+ if (!mddev->events && super_init_validation(rs, rdev))
+ return -EINVAL;
+
+ if (le32_to_cpu(sb->compat_features) &&
+ le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
+ rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
+ return -EINVAL;
+ }
+
+ if (sb->incompat_features) {
+ rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
+ return -EINVAL;
+ }
+
+ /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */
+ mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096);
+ mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
+
+ if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
+ /*
+ * Retrieve rdev size stored in superblock to be prepared for shrink.
+ * Check extended superblock members are present otherwise the size
+ * will not be set!
+ */
+ if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
+ rdev->sectors = le64_to_cpu(sb->sectors);
+
+ rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
+ if (rdev->recovery_offset == MaxSector)
+ set_bit(In_sync, &rdev->flags);
+ /*
+ * If no reshape in progress -> we're recovering single
+ * disk(s) and have to set the device(s) to out-of-sync
+ */
+ else if (!rs_is_reshaping(rs))
+ clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
+ }
+
+ /*
+ * If a device comes back, set it as not In_sync and no longer faulty.
+ */
+ if (test_and_clear_bit(Faulty, &rdev->flags)) {
+ rdev->recovery_offset = 0;
+ clear_bit(In_sync, &rdev->flags);
+ rdev->saved_raid_disk = rdev->raid_disk;
+ }
+
+ /* Reshape support -> restore repective data offsets */
+ rdev->data_offset = le64_to_cpu(sb->data_offset);
+ rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
+
+ return 0;
+}
+
+/*
+ * Analyse superblocks and select the freshest.
+ */
+static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
+{
+ int r;
+ struct md_rdev *rdev, *freshest;
+ struct mddev *mddev = &rs->md;
+
+ freshest = NULL;
+ rdev_for_each(rdev, mddev) {
+ if (test_bit(Journal, &rdev->flags))
+ continue;
+
+ if (!rdev->meta_bdev)
+ continue;
+
+ /* Set superblock offset/size for metadata device. */
+ rdev->sb_start = 0;
+ rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
+ if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
+ DMERR("superblock size of a logical block is no longer valid");
+ return -EINVAL;
+ }
+
+ /*
+ * Skipping super_load due to CTR_FLAG_SYNC will cause
+ * the array to undergo initialization again as
+ * though it were new. This is the intended effect
+ * of the "sync" directive.
+ *
+ * With reshaping capability added, we must ensure that
+ * the "sync" directive is disallowed during the reshape.
+ */
+ if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
+ continue;
+
+ r = super_load(rdev, freshest);
+
+ switch (r) {
+ case 1:
+ freshest = rdev;
+ break;
+ case 0:
+ break;
+ default:
+ /* This is a failure to read the superblock from the metadata device. */
+ /*
+ * We have to keep any raid0 data/metadata device pairs or
+ * the MD raid0 personality will fail to start the array.
+ */
+ if (rs_is_raid0(rs))
+ continue;
+
+ /*
+ * We keep the dm_devs to be able to emit the device tuple
+ * properly on the table line in raid_status() (rather than
+ * mistakenly acting as if '- -' got passed into the constructor).
+ *
+ * The rdev has to stay on the same_set list to allow for
+ * the attempt to restore faulty devices on second resume.
+ */
+ rdev->raid_disk = rdev->saved_raid_disk = -1;
+ break;
+ }
+ }
+
+ if (!freshest)
+ return 0;
+
+ /*
+ * Validation of the freshest device provides the source of
+ * validation for the remaining devices.
+ */
+ rs->ti->error = "Unable to assemble array: Invalid superblocks";
+ if (super_validate(rs, freshest))
+ return -EINVAL;
+
+ if (validate_raid_redundancy(rs)) {
+ rs->ti->error = "Insufficient redundancy to activate array";
+ return -EINVAL;
+ }
+
+ rdev_for_each(rdev, mddev)
+ if (!test_bit(Journal, &rdev->flags) &&
+ rdev != freshest &&
+ super_validate(rs, rdev))
+ return -EINVAL;
+ return 0;
+}
+
+/*
+ * Adjust data_offset and new_data_offset on all disk members of @rs
+ * for out of place reshaping if requested by constructor
+ *
+ * We need free space at the beginning of each raid disk for forward
+ * and at the end for backward reshapes which userspace has to provide
+ * via remapping/reordering of space.
+ */
+static int rs_adjust_data_offsets(struct raid_set *rs)
+{
+ sector_t data_offset = 0, new_data_offset = 0;
+ struct md_rdev *rdev;
+
+ /* Constructor did not request data offset change */
+ if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
+ if (!rs_is_reshapable(rs))
+ goto out;
+
+ return 0;
+ }
+
+ /* HM FIXME: get In_Sync raid_dev? */
+ rdev = &rs->dev[0].rdev;
+
+ if (rs->delta_disks < 0) {
+ /*
+ * Removing disks (reshaping backwards):
+ *
+ * - before reshape: data is at offset 0 and free space
+ * is at end of each component LV
+ *
+ * - after reshape: data is at offset rs->data_offset != 0 on each component LV
+ */
+ data_offset = 0;
+ new_data_offset = rs->data_offset;
+
+ } else if (rs->delta_disks > 0) {
+ /*
+ * Adding disks (reshaping forwards):
+ *
+ * - before reshape: data is at offset rs->data_offset != 0 and
+ * free space is at begin of each component LV
+ *
+ * - after reshape: data is at offset 0 on each component LV
+ */
+ data_offset = rs->data_offset;
+ new_data_offset = 0;
+
+ } else {
+ /*
+ * User space passes in 0 for data offset after having removed reshape space
+ *
+ * - or - (data offset != 0)
+ *
+ * Changing RAID layout or chunk size -> toggle offsets
+ *
+ * - before reshape: data is at offset rs->data_offset 0 and
+ * free space is at end of each component LV
+ * -or-
+ * data is at offset rs->data_offset != 0 and
+ * free space is at begin of each component LV
+ *
+ * - after reshape: data is at offset 0 if it was at offset != 0
+ * or at offset != 0 if it was at offset 0
+ * on each component LV
+ *
+ */
+ data_offset = rs->data_offset ? rdev->data_offset : 0;
+ new_data_offset = data_offset ? 0 : rs->data_offset;
+ set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
+ }
+
+ /*
+ * Make sure we got a minimum amount of free sectors per device
+ */
+ if (rs->data_offset &&
+ bdev_nr_sectors(rdev->bdev) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
+ rs->ti->error = data_offset ? "No space for forward reshape" :
+ "No space for backward reshape";
+ return -ENOSPC;
+ }
+out:
+ /*
+ * Raise recovery_cp in case data_offset != 0 to
+ * avoid false recovery positives in the constructor.
+ */
+ if (rs->md.recovery_cp < rs->md.dev_sectors)
+ rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
+
+ /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
+ rdev_for_each(rdev, &rs->md) {
+ if (!test_bit(Journal, &rdev->flags)) {
+ rdev->data_offset = data_offset;
+ rdev->new_data_offset = new_data_offset;
+ }
+ }
+
+ return 0;
+}
+
+/* Userpace reordered disks -> adjust raid_disk indexes in @rs */
+static void __reorder_raid_disk_indexes(struct raid_set *rs)
+{
+ int i = 0;
+ struct md_rdev *rdev;
+
+ rdev_for_each(rdev, &rs->md) {
+ if (!test_bit(Journal, &rdev->flags)) {
+ rdev->raid_disk = i++;
+ rdev->saved_raid_disk = rdev->new_raid_disk = -1;
+ }
+ }
+}
+
+/*
+ * Setup @rs for takeover by a different raid level
+ */
+static int rs_setup_takeover(struct raid_set *rs)
+{
+ struct mddev *mddev = &rs->md;
+ struct md_rdev *rdev;
+ unsigned int d = mddev->raid_disks = rs->raid_disks;
+ sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
+
+ if (rt_is_raid10(rs->raid_type)) {
+ if (rs_is_raid0(rs)) {
+ /* Userpace reordered disks -> adjust raid_disk indexes */
+ __reorder_raid_disk_indexes(rs);
+
+ /* raid0 -> raid10_far layout */
+ mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
+ rs->raid10_copies);
+ } else if (rs_is_raid1(rs))
+ /* raid1 -> raid10_near layout */
+ mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
+ rs->raid_disks);
+ else
+ return -EINVAL;
+
+ }
+
+ clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
+ mddev->recovery_cp = MaxSector;
+
+ while (d--) {
+ rdev = &rs->dev[d].rdev;
+
+ if (test_bit(d, (void *) rs->rebuild_disks)) {
+ clear_bit(In_sync, &rdev->flags);
+ clear_bit(Faulty, &rdev->flags);
+ mddev->recovery_cp = rdev->recovery_offset = 0;
+ /* Bitmap has to be created when we do an "up" takeover */
+ set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
+ }
+
+ rdev->new_data_offset = new_data_offset;
+ }
+
+ return 0;
+}
+
+/* Prepare @rs for reshape */
+static int rs_prepare_reshape(struct raid_set *rs)
+{
+ bool reshape;
+ struct mddev *mddev = &rs->md;
+
+ if (rs_is_raid10(rs)) {
+ if (rs->raid_disks != mddev->raid_disks &&
+ __is_raid10_near(mddev->layout) &&
+ rs->raid10_copies &&
+ rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
+ /*
+ * raid disk have to be multiple of data copies to allow this conversion,
+ *
+ * This is actually not a reshape it is a
+ * rebuild of any additional mirrors per group
+ */
+ if (rs->raid_disks % rs->raid10_copies) {
+ rs->ti->error = "Can't reshape raid10 mirror groups";
+ return -EINVAL;
+ }
+
+ /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
+ __reorder_raid_disk_indexes(rs);
+ mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
+ rs->raid10_copies);
+ mddev->new_layout = mddev->layout;
+ reshape = false;
+ } else
+ reshape = true;
+
+ } else if (rs_is_raid456(rs))
+ reshape = true;
+
+ else if (rs_is_raid1(rs)) {
+ if (rs->delta_disks) {
+ /* Process raid1 via delta_disks */
+ mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
+ reshape = true;
+ } else {
+ /* Process raid1 without delta_disks */
+ mddev->raid_disks = rs->raid_disks;
+ reshape = false;
+ }
+ } else {
+ rs->ti->error = "Called with bogus raid type";
+ return -EINVAL;
+ }
+
+ if (reshape) {
+ set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
+ set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
+ } else if (mddev->raid_disks < rs->raid_disks)
+ /* Create new superblocks and bitmaps, if any new disks */
+ set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
+
+ return 0;
+}
+
+/* Get reshape sectors from data_offsets or raid set */
+static sector_t _get_reshape_sectors(struct raid_set *rs)
+{
+ struct md_rdev *rdev;
+ sector_t reshape_sectors = 0;
+
+ rdev_for_each(rdev, &rs->md)
+ if (!test_bit(Journal, &rdev->flags)) {
+ reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
+ rdev->data_offset - rdev->new_data_offset :
+ rdev->new_data_offset - rdev->data_offset;
+ break;
+ }
+
+ return max(reshape_sectors, (sector_t) rs->data_offset);
+}
+
+/*
+ * Reshape:
+ * - change raid layout
+ * - change chunk size
+ * - add disks
+ * - remove disks
+ */
+static int rs_setup_reshape(struct raid_set *rs)
+{
+ int r = 0;
+ unsigned int cur_raid_devs, d;
+ sector_t reshape_sectors = _get_reshape_sectors(rs);
+ struct mddev *mddev = &rs->md;
+ struct md_rdev *rdev;
+
+ mddev->delta_disks = rs->delta_disks;
+ cur_raid_devs = mddev->raid_disks;
+
+ /* Ignore impossible layout change whilst adding/removing disks */
+ if (mddev->delta_disks &&
+ mddev->layout != mddev->new_layout) {
+ DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
+ mddev->new_layout = mddev->layout;
+ }
+
+ /*
+ * Adjust array size:
+ *
+ * - in case of adding disk(s), array size has
+ * to grow after the disk adding reshape,
+ * which'll hapen in the event handler;
+ * reshape will happen forward, so space has to
+ * be available at the beginning of each disk
+ *
+ * - in case of removing disk(s), array size
+ * has to shrink before starting the reshape,
+ * which'll happen here;
+ * reshape will happen backward, so space has to
+ * be available at the end of each disk
+ *
+ * - data_offset and new_data_offset are
+ * adjusted for aforementioned out of place
+ * reshaping based on userspace passing in
+ * the "data_offset <sectors>" key/value
+ * pair via the constructor
+ */
+
+ /* Add disk(s) */
+ if (rs->delta_disks > 0) {
+ /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
+ for (d = cur_raid_devs; d < rs->raid_disks; d++) {
+ rdev = &rs->dev[d].rdev;
+ clear_bit(In_sync, &rdev->flags);
+
+ /*
+ * save_raid_disk needs to be -1, or recovery_offset will be set to 0
+ * by md, which'll store that erroneously in the superblock on reshape
+ */
+ rdev->saved_raid_disk = -1;
+ rdev->raid_disk = d;
+
+ rdev->sectors = mddev->dev_sectors;
+ rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
+ }
+
+ mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
+
+ /* Remove disk(s) */
+ } else if (rs->delta_disks < 0) {
+ r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true);
+ mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
+
+ /* Change layout and/or chunk size */
+ } else {
+ /*
+ * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
+ *
+ * keeping number of disks and do layout change ->
+ *
+ * toggle reshape_backward depending on data_offset:
+ *
+ * - free space upfront -> reshape forward
+ *
+ * - free space at the end -> reshape backward
+ *
+ *
+ * This utilizes free reshape space avoiding the need
+ * for userspace to move (parts of) LV segments in
+ * case of layout/chunksize change (for disk
+ * adding/removing reshape space has to be at
+ * the proper address (see above with delta_disks):
+ *
+ * add disk(s) -> begin
+ * remove disk(s)-> end
+ */
+ mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
+ }
+
+ /*
+ * Adjust device size for forward reshape
+ * because md_finish_reshape() reduces it.
+ */
+ if (!mddev->reshape_backwards)
+ rdev_for_each(rdev, &rs->md)
+ if (!test_bit(Journal, &rdev->flags))
+ rdev->sectors += reshape_sectors;
+
+ return r;
+}
+
+/*
+ * If the md resync thread has updated superblock with max reshape position
+ * at the end of a reshape but not (yet) reset the layout configuration
+ * changes -> reset the latter.
+ */
+static void rs_reset_inconclusive_reshape(struct raid_set *rs)
+{
+ if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) {
+ rs_set_cur(rs);
+ rs->md.delta_disks = 0;
+ rs->md.reshape_backwards = 0;
+ }
+}
+
+/*
+ * Enable/disable discard support on RAID set depending on
+ * RAID level and discard properties of underlying RAID members.
+ */
+static void configure_discard_support(struct raid_set *rs)
+{
+ int i;
+ bool raid456;
+ struct dm_target *ti = rs->ti;
+
+ /*
+ * XXX: RAID level 4,5,6 require zeroing for safety.
+ */
+ raid456 = rs_is_raid456(rs);
+
+ for (i = 0; i < rs->raid_disks; i++) {
+ if (!rs->dev[i].rdev.bdev ||
+ !bdev_max_discard_sectors(rs->dev[i].rdev.bdev))
+ return;
+
+ if (raid456) {
+ if (!devices_handle_discard_safely) {
+ DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
+ DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
+ return;
+ }
+ }
+ }
+
+ ti->num_discard_bios = 1;
+}
+
+/*
+ * Construct a RAID0/1/10/4/5/6 mapping:
+ * Args:
+ * <raid_type> <#raid_params> <raid_params>{0,} \
+ * <#raid_devs> [<meta_dev1> <dev1>]{1,}
+ *
+ * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
+ * details on possible <raid_params>.
+ *
+ * Userspace is free to initialize the metadata devices, hence the superblocks to
+ * enforce recreation based on the passed in table parameters.
+ *
+ */
+static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ int r;
+ bool resize = false;
+ struct raid_type *rt;
+ unsigned int num_raid_params, num_raid_devs;
+ sector_t sb_array_sectors, rdev_sectors, reshape_sectors;
+ struct raid_set *rs = NULL;
+ const char *arg;
+ struct rs_layout rs_layout;
+ struct dm_arg_set as = { argc, argv }, as_nrd;
+ struct dm_arg _args[] = {
+ { 0, as.argc, "Cannot understand number of raid parameters" },
+ { 1, 254, "Cannot understand number of raid devices parameters" }
+ };
+
+ arg = dm_shift_arg(&as);
+ if (!arg) {
+ ti->error = "No arguments";
+ return -EINVAL;
+ }
+
+ rt = get_raid_type(arg);
+ if (!rt) {
+ ti->error = "Unrecognised raid_type";
+ return -EINVAL;
+ }
+
+ /* Must have <#raid_params> */
+ if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
+ return -EINVAL;
+
+ /* number of raid device tupples <meta_dev data_dev> */
+ as_nrd = as;
+ dm_consume_args(&as_nrd, num_raid_params);
+ _args[1].max = (as_nrd.argc - 1) / 2;
+ if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
+ return -EINVAL;
+
+ if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
+ ti->error = "Invalid number of supplied raid devices";
+ return -EINVAL;
+ }
+
+ rs = raid_set_alloc(ti, rt, num_raid_devs);
+ if (IS_ERR(rs))
+ return PTR_ERR(rs);
+
+ r = parse_raid_params(rs, &as, num_raid_params);
+ if (r)
+ goto bad;
+
+ r = parse_dev_params(rs, &as);
+ if (r)
+ goto bad;
+
+ rs->md.sync_super = super_sync;
+
+ /*
+ * Calculate ctr requested array and device sizes to allow
+ * for superblock analysis needing device sizes defined.
+ *
+ * Any existing superblock will overwrite the array and device sizes
+ */
+ r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
+ if (r)
+ goto bad;
+
+ /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */
+ rs->array_sectors = rs->md.array_sectors;
+ rs->dev_sectors = rs->md.dev_sectors;
+
+ /*
+ * Backup any new raid set level, layout, ...
+ * requested to be able to compare to superblock
+ * members for conversion decisions.
+ */
+ rs_config_backup(rs, &rs_layout);
+
+ r = analyse_superblocks(ti, rs);
+ if (r)
+ goto bad;
+
+ /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */
+ sb_array_sectors = rs->md.array_sectors;
+ rdev_sectors = __rdev_sectors(rs);
+ if (!rdev_sectors) {
+ ti->error = "Invalid rdev size";
+ r = -EINVAL;
+ goto bad;
+ }
+
+
+ reshape_sectors = _get_reshape_sectors(rs);
+ if (rs->dev_sectors != rdev_sectors) {
+ resize = (rs->dev_sectors != rdev_sectors - reshape_sectors);
+ if (rs->dev_sectors > rdev_sectors - reshape_sectors)
+ set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
+ }
+
+ INIT_WORK(&rs->md.event_work, do_table_event);
+ ti->private = rs;
+ ti->num_flush_bios = 1;
+ ti->needs_bio_set_dev = true;
+
+ /* Restore any requested new layout for conversion decision */
+ rs_config_restore(rs, &rs_layout);
+
+ /*
+ * Now that we have any superblock metadata available,
+ * check for new, recovering, reshaping, to be taken over,
+ * to be reshaped or an existing, unchanged raid set to
+ * run in sequence.
+ */
+ if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
+ /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
+ if (rs_is_raid6(rs) &&
+ test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
+ ti->error = "'nosync' not allowed for new raid6 set";
+ r = -EINVAL;
+ goto bad;
+ }
+ rs_setup_recovery(rs, 0);
+ set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
+ rs_set_new(rs);
+ } else if (rs_is_recovering(rs)) {
+ /* A recovering raid set may be resized */
+ goto size_check;
+ } else if (rs_is_reshaping(rs)) {
+ /* Have to reject size change request during reshape */
+ if (resize) {
+ ti->error = "Can't resize a reshaping raid set";
+ r = -EPERM;
+ goto bad;
+ }
+ /* skip setup rs */
+ } else if (rs_takeover_requested(rs)) {
+ if (rs_is_reshaping(rs)) {
+ ti->error = "Can't takeover a reshaping raid set";
+ r = -EPERM;
+ goto bad;
+ }
+
+ /* We can't takeover a journaled raid4/5/6 */
+ if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
+ ti->error = "Can't takeover a journaled raid4/5/6 set";
+ r = -EPERM;
+ goto bad;
+ }
+
+ /*
+ * If a takeover is needed, userspace sets any additional
+ * devices to rebuild and we can check for a valid request here.
+ *
+ * If acceptible, set the level to the new requested
+ * one, prohibit requesting recovery, allow the raid
+ * set to run and store superblocks during resume.
+ */
+ r = rs_check_takeover(rs);
+ if (r)
+ goto bad;
+
+ r = rs_setup_takeover(rs);
+ if (r)
+ goto bad;
+
+ set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
+ /* Takeover ain't recovery, so disable recovery */
+ rs_setup_recovery(rs, MaxSector);
+ rs_set_new(rs);
+ } else if (rs_reshape_requested(rs)) {
+ /* Only request grow on raid set size extensions, not on reshapes. */
+ clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
+
+ /*
+ * No need to check for 'ongoing' takeover here, because takeover
+ * is an instant operation as oposed to an ongoing reshape.
+ */
+
+ /* We can't reshape a journaled raid4/5/6 */
+ if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
+ ti->error = "Can't reshape a journaled raid4/5/6 set";
+ r = -EPERM;
+ goto bad;
+ }
+
+ /* Out-of-place space has to be available to allow for a reshape unless raid1! */
+ if (reshape_sectors || rs_is_raid1(rs)) {
+ /*
+ * We can only prepare for a reshape here, because the
+ * raid set needs to run to provide the repective reshape
+ * check functions via its MD personality instance.
+ *
+ * So do the reshape check after md_run() succeeded.
+ */
+ r = rs_prepare_reshape(rs);
+ if (r)
+ goto bad;
+
+ /* Reshaping ain't recovery, so disable recovery */
+ rs_setup_recovery(rs, MaxSector);
+ }
+ rs_set_cur(rs);
+ } else {
+size_check:
+ /* May not set recovery when a device rebuild is requested */
+ if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
+ clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
+ set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
+ rs_setup_recovery(rs, MaxSector);
+ } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
+ /*
+ * Set raid set to current size, i.e. size as of
+ * superblocks to grow to larger size in preresume.
+ */
+ r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false);
+ if (r)
+ goto bad;
+
+ rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors);
+ } else {
+ /* This is no size change or it is shrinking, update size and record in superblocks */
+ r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
+ if (r)
+ goto bad;
+
+ if (sb_array_sectors > rs->array_sectors)
+ set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
+ }
+ rs_set_cur(rs);
+ }
+
+ /* If constructor requested it, change data and new_data offsets */
+ r = rs_adjust_data_offsets(rs);
+ if (r)
+ goto bad;
+
+ /* Catch any inconclusive reshape superblock content. */
+ rs_reset_inconclusive_reshape(rs);
+
+ /* Start raid set read-only and assumed clean to change in raid_resume() */
+ rs->md.ro = 1;
+ rs->md.in_sync = 1;
+
+ /* Keep array frozen until resume. */
+ set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
+
+ /* Has to be held on running the array */
+ mddev_lock_nointr(&rs->md);
+ r = md_run(&rs->md);
+ rs->md.in_sync = 0; /* Assume already marked dirty */
+ if (r) {
+ ti->error = "Failed to run raid array";
+ mddev_unlock(&rs->md);
+ goto bad;
+ }
+
+ r = md_start(&rs->md);
+ if (r) {
+ ti->error = "Failed to start raid array";
+ goto bad_unlock;
+ }
+
+ /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */
+ if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
+ r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
+ if (r) {
+ ti->error = "Failed to set raid4/5/6 journal mode";
+ goto bad_unlock;
+ }
+ }
+
+ mddev_suspend(&rs->md);
+ set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
+
+ /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
+ if (rs_is_raid456(rs)) {
+ r = rs_set_raid456_stripe_cache(rs);
+ if (r)
+ goto bad_unlock;
+ }
+
+ /* Now do an early reshape check */
+ if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
+ r = rs_check_reshape(rs);
+ if (r)
+ goto bad_unlock;
+
+ /* Restore new, ctr requested layout to perform check */
+ rs_config_restore(rs, &rs_layout);
+
+ if (rs->md.pers->start_reshape) {
+ r = rs->md.pers->check_reshape(&rs->md);
+ if (r) {
+ ti->error = "Reshape check failed";
+ goto bad_unlock;
+ }
+ }
+ }
+
+ /* Disable/enable discard support on raid set. */
+ configure_discard_support(rs);
+
+ mddev_unlock(&rs->md);
+ return 0;
+
+bad_unlock:
+ md_stop(&rs->md);
+ mddev_unlock(&rs->md);
+bad:
+ raid_set_free(rs);
+
+ return r;
+}
+
+static void raid_dtr(struct dm_target *ti)
+{
+ struct raid_set *rs = ti->private;
+
+ mddev_lock_nointr(&rs->md);
+ md_stop(&rs->md);
+ mddev_unlock(&rs->md);
+ raid_set_free(rs);
+}
+
+static int raid_map(struct dm_target *ti, struct bio *bio)
+{
+ struct raid_set *rs = ti->private;
+ struct mddev *mddev = &rs->md;
+
+ /*
+ * If we're reshaping to add disk(s)), ti->len and
+ * mddev->array_sectors will differ during the process
+ * (ti->len > mddev->array_sectors), so we have to requeue
+ * bios with addresses > mddev->array_sectors here or
+ * there will occur accesses past EOD of the component
+ * data images thus erroring the raid set.
+ */
+ if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
+ return DM_MAPIO_REQUEUE;
+
+ md_handle_request(mddev, bio);
+
+ return DM_MAPIO_SUBMITTED;
+}
+
+/* Return sync state string for @state */
+enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle };
+static const char *sync_str(enum sync_state state)
+{
+ /* Has to be in above sync_state order! */
+ static const char *sync_strs[] = {
+ "frozen",
+ "reshape",
+ "resync",
+ "check",
+ "repair",
+ "recover",
+ "idle"
+ };
+
+ return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef";
+};
+
+/* Return enum sync_state for @mddev derived from @recovery flags */
+static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery)
+{
+ if (test_bit(MD_RECOVERY_FROZEN, &recovery))
+ return st_frozen;
+
+ /* The MD sync thread can be done with io or be interrupted but still be running */
+ if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
+ (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
+ (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
+ if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
+ return st_reshape;
+
+ if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
+ if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
+ return st_resync;
+ if (test_bit(MD_RECOVERY_CHECK, &recovery))
+ return st_check;
+ return st_repair;
+ }
+
+ if (test_bit(MD_RECOVERY_RECOVER, &recovery))
+ return st_recover;
+
+ if (mddev->reshape_position != MaxSector)
+ return st_reshape;
+ }
+
+ return st_idle;
+}
+
+/*
+ * Return status string for @rdev
+ *
+ * Status characters:
+ *
+ * 'D' = Dead/Failed raid set component or raid4/5/6 journal device
+ * 'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
+ * 'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
+ * '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
+ */
+static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
+{
+ if (!rdev->bdev)
+ return "-";
+ else if (test_bit(Faulty, &rdev->flags))
+ return "D";
+ else if (test_bit(Journal, &rdev->flags))
+ return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
+ else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
+ (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
+ !test_bit(In_sync, &rdev->flags)))
+ return "a";
+ else
+ return "A";
+}
+
+/* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
+static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
+ enum sync_state state, sector_t resync_max_sectors)
+{
+ sector_t r;
+ struct mddev *mddev = &rs->md;
+
+ clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
+ clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
+
+ if (rs_is_raid0(rs)) {
+ r = resync_max_sectors;
+ set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
+
+ } else {
+ if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery))
+ r = mddev->recovery_cp;
+ else
+ r = mddev->curr_resync_completed;
+
+ if (state == st_idle && r >= resync_max_sectors) {
+ /*
+ * Sync complete.
+ */
+ /* In case we have finished recovering, the array is in sync. */
+ if (test_bit(MD_RECOVERY_RECOVER, &recovery))
+ set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
+
+ } else if (state == st_recover)
+ /*
+ * In case we are recovering, the array is not in sync
+ * and health chars should show the recovering legs.
+ *
+ * Already retrieved recovery offset from curr_resync_completed above.
+ */
+ ;
+
+ else if (state == st_resync || state == st_reshape)
+ /*
+ * If "resync/reshape" is occurring, the raid set
+ * is or may be out of sync hence the health
+ * characters shall be 'a'.
+ */
+ set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
+
+ else if (state == st_check || state == st_repair)
+ /*
+ * If "check" or "repair" is occurring, the raid set has
+ * undergone an initial sync and the health characters
+ * should not be 'a' anymore.
+ */
+ set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
+
+ else if (test_bit(MD_RECOVERY_NEEDED, &recovery))
+ /*
+ * We are idle and recovery is needed, prevent 'A' chars race
+ * caused by components still set to in-sync by constructor.
+ */
+ set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
+
+ else {
+ /*
+ * We are idle and the raid set may be doing an initial
+ * sync, or it may be rebuilding individual components.
+ * If all the devices are In_sync, then it is the raid set
+ * that is being initialized.
+ */
+ struct md_rdev *rdev;
+
+ set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
+ rdev_for_each(rdev, mddev)
+ if (!test_bit(Journal, &rdev->flags) &&
+ !test_bit(In_sync, &rdev->flags)) {
+ clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
+ break;
+ }
+ }
+ }
+
+ return min(r, resync_max_sectors);
+}
+
+/* Helper to return @dev name or "-" if !@dev */
+static const char *__get_dev_name(struct dm_dev *dev)
+{
+ return dev ? dev->name : "-";
+}
+
+static void raid_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ struct raid_set *rs = ti->private;
+ struct mddev *mddev = &rs->md;
+ struct r5conf *conf = rs_is_raid456(rs) ? mddev->private : NULL;
+ int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
+ unsigned long recovery;
+ unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
+ unsigned int sz = 0;
+ unsigned int rebuild_writemostly_count = 0;
+ sector_t progress, resync_max_sectors, resync_mismatches;
+ enum sync_state state;
+ struct raid_type *rt;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ /* *Should* always succeed */
+ rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
+ if (!rt)
+ return;
+
+ DMEMIT("%s %d ", rt->name, mddev->raid_disks);
+
+ /* Access most recent mddev properties for status output */
+ smp_rmb();
+ /* Get sensible max sectors even if raid set not yet started */
+ resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
+ mddev->resync_max_sectors : mddev->dev_sectors;
+ recovery = rs->md.recovery;
+ state = decipher_sync_action(mddev, recovery);
+ progress = rs_get_progress(rs, recovery, state, resync_max_sectors);
+ resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
+ atomic64_read(&mddev->resync_mismatches) : 0;
+
+ /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
+ for (i = 0; i < rs->raid_disks; i++)
+ DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
+
+ /*
+ * In-sync/Reshape ratio:
+ * The in-sync ratio shows the progress of:
+ * - Initializing the raid set
+ * - Rebuilding a subset of devices of the raid set
+ * The user can distinguish between the two by referring
+ * to the status characters.
+ *
+ * The reshape ratio shows the progress of
+ * changing the raid layout or the number of
+ * disks of a raid set
+ */
+ DMEMIT(" %llu/%llu", (unsigned long long) progress,
+ (unsigned long long) resync_max_sectors);
+
+ /*
+ * v1.5.0+:
+ *
+ * Sync action:
+ * See Documentation/admin-guide/device-mapper/dm-raid.rst for
+ * information on each of these states.
+ */
+ DMEMIT(" %s", sync_str(state));
+
+ /*
+ * v1.5.0+:
+ *
+ * resync_mismatches/mismatch_cnt
+ * This field shows the number of discrepancies found when
+ * performing a "check" of the raid set.
+ */
+ DMEMIT(" %llu", (unsigned long long) resync_mismatches);
+
+ /*
+ * v1.9.0+:
+ *
+ * data_offset (needed for out of space reshaping)
+ * This field shows the data offset into the data
+ * image LV where the first stripes data starts.
+ *
+ * We keep data_offset equal on all raid disks of the set,
+ * so retrieving it from the first raid disk is sufficient.
+ */
+ DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
+
+ /*
+ * v1.10.0+:
+ */
+ DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
+ __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
+ break;
+
+ case STATUSTYPE_TABLE:
+ /* Report the table line string you would use to construct this raid set */
+
+ /*
+ * Count any rebuild or writemostly argument pairs and subtract the
+ * hweight count being added below of any rebuild and writemostly ctr flags.
+ */
+ for (i = 0; i < rs->raid_disks; i++) {
+ rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) +
+ (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0);
+ }
+ rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) +
+ (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0);
+ /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */
+ raid_param_cnt += rebuild_writemostly_count +
+ hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
+ hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
+ /* Emit table line */
+ /* This has to be in the documented order for userspace! */
+ DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
+ if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
+ DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
+ if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
+ DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
+ if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags))
+ for (i = 0; i < rs->raid_disks; i++)
+ if (test_bit(i, (void *) rs->rebuild_disks))
+ DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i);
+ if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
+ DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
+ mddev->bitmap_info.daemon_sleep);
+ if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
+ DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
+ mddev->sync_speed_min);
+ if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
+ DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
+ mddev->sync_speed_max);
+ if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags))
+ for (i = 0; i < rs->raid_disks; i++)
+ if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
+ DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
+ rs->dev[i].rdev.raid_disk);
+ if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
+ DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
+ mddev->bitmap_info.max_write_behind);
+ if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
+ DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
+ max_nr_stripes);
+ if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
+ DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
+ (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
+ if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
+ DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
+ raid10_md_layout_to_copies(mddev->layout));
+ if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
+ DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
+ raid10_md_layout_to_format(mddev->layout));
+ if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
+ DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
+ max(rs->delta_disks, mddev->delta_disks));
+ if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
+ DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
+ (unsigned long long) rs->data_offset);
+ if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
+ DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
+ __get_dev_name(rs->journal_dev.dev));
+ if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
+ DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
+ md_journal_mode_to_dm_raid(rs->journal_dev.mode));
+ DMEMIT(" %d", rs->raid_disks);
+ for (i = 0; i < rs->raid_disks; i++)
+ DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
+ __get_dev_name(rs->dev[i].data_dev));
+ break;
+
+ case STATUSTYPE_IMA:
+ rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
+ if (!rt)
+ return;
+
+ DMEMIT_TARGET_NAME_VERSION(ti->type);
+ DMEMIT(",raid_type=%s,raid_disks=%d", rt->name, mddev->raid_disks);
+
+ /* Access most recent mddev properties for status output */
+ smp_rmb();
+ recovery = rs->md.recovery;
+ state = decipher_sync_action(mddev, recovery);
+ DMEMIT(",raid_state=%s", sync_str(state));
+
+ for (i = 0; i < rs->raid_disks; i++) {
+ DMEMIT(",raid_device_%d_status=", i);
+ DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
+ }
+
+ if (rt_is_raid456(rt)) {
+ DMEMIT(",journal_dev_mode=");
+ switch (rs->journal_dev.mode) {
+ case R5C_JOURNAL_MODE_WRITE_THROUGH:
+ DMEMIT("%s",
+ _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_THROUGH].param);
+ break;
+ case R5C_JOURNAL_MODE_WRITE_BACK:
+ DMEMIT("%s",
+ _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_BACK].param);
+ break;
+ default:
+ DMEMIT("invalid");
+ break;
+ }
+ }
+ DMEMIT(";");
+ break;
+ }
+}
+
+static int raid_message(struct dm_target *ti, unsigned int argc, char **argv,
+ char *result, unsigned int maxlen)
+{
+ struct raid_set *rs = ti->private;
+ struct mddev *mddev = &rs->md;
+
+ if (!mddev->pers || !mddev->pers->sync_request)
+ return -EINVAL;
+
+ if (!strcasecmp(argv[0], "frozen"))
+ set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+ else
+ clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+
+ if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
+ if (mddev->sync_thread) {
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ md_unregister_thread(&mddev->sync_thread);
+ md_reap_sync_thread(mddev);
+ }
+ } else if (decipher_sync_action(mddev, mddev->recovery) != st_idle)
+ return -EBUSY;
+ else if (!strcasecmp(argv[0], "resync"))
+ ; /* MD_RECOVERY_NEEDED set below */
+ else if (!strcasecmp(argv[0], "recover"))
+ set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
+ else {
+ if (!strcasecmp(argv[0], "check")) {
+ set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
+ set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
+ set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+ } else if (!strcasecmp(argv[0], "repair")) {
+ set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
+ set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+ } else
+ return -EINVAL;
+ }
+ if (mddev->ro == 2) {
+ /* A write to sync_action is enough to justify
+ * canceling read-auto mode
+ */
+ mddev->ro = 0;
+ if (!mddev->suspended && mddev->sync_thread)
+ md_wakeup_thread(mddev->sync_thread);
+ }
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ if (!mddev->suspended && mddev->thread)
+ md_wakeup_thread(mddev->thread);
+
+ return 0;
+}
+
+static int raid_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ struct raid_set *rs = ti->private;
+ unsigned int i;
+ int r = 0;
+
+ for (i = 0; !r && i < rs->raid_disks; i++) {
+ if (rs->dev[i].data_dev) {
+ r = fn(ti, rs->dev[i].data_dev,
+ 0, /* No offset on data devs */
+ rs->md.dev_sectors, data);
+ }
+ }
+
+ return r;
+}
+
+static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+ struct raid_set *rs = ti->private;
+ unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors);
+
+ blk_limits_io_min(limits, chunk_size_bytes);
+ blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs));
+}
+
+static void raid_postsuspend(struct dm_target *ti)
+{
+ struct raid_set *rs = ti->private;
+
+ if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
+ /* Writes have to be stopped before suspending to avoid deadlocks. */
+ if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery))
+ md_stop_writes(&rs->md);
+
+ mddev_lock_nointr(&rs->md);
+ mddev_suspend(&rs->md);
+ mddev_unlock(&rs->md);
+ }
+}
+
+static void attempt_restore_of_faulty_devices(struct raid_set *rs)
+{
+ int i;
+ uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
+ unsigned long flags;
+ bool cleared = false;
+ struct dm_raid_superblock *sb;
+ struct mddev *mddev = &rs->md;
+ struct md_rdev *r;
+
+ /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
+ if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
+ return;
+
+ memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
+
+ for (i = 0; i < rs->raid_disks; i++) {
+ r = &rs->dev[i].rdev;
+ /* HM FIXME: enhance journal device recovery processing */
+ if (test_bit(Journal, &r->flags))
+ continue;
+
+ if (test_bit(Faulty, &r->flags) &&
+ r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
+ DMINFO("Faulty %s device #%d has readable super block."
+ " Attempting to revive it.",
+ rs->raid_type->name, i);
+
+ /*
+ * Faulty bit may be set, but sometimes the array can
+ * be suspended before the personalities can respond
+ * by removing the device from the array (i.e. calling
+ * 'hot_remove_disk'). If they haven't yet removed
+ * the failed device, its 'raid_disk' number will be
+ * '>= 0' - meaning we must call this function
+ * ourselves.
+ */
+ flags = r->flags;
+ clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
+ if (r->raid_disk >= 0) {
+ if (mddev->pers->hot_remove_disk(mddev, r)) {
+ /* Failed to revive this device, try next */
+ r->flags = flags;
+ continue;
+ }
+ } else
+ r->raid_disk = r->saved_raid_disk = i;
+
+ clear_bit(Faulty, &r->flags);
+ clear_bit(WriteErrorSeen, &r->flags);
+
+ if (mddev->pers->hot_add_disk(mddev, r)) {
+ /* Failed to revive this device, try next */
+ r->raid_disk = r->saved_raid_disk = -1;
+ r->flags = flags;
+ } else {
+ clear_bit(In_sync, &r->flags);
+ r->recovery_offset = 0;
+ set_bit(i, (void *) cleared_failed_devices);
+ cleared = true;
+ }
+ }
+ }
+
+ /* If any failed devices could be cleared, update all sbs failed_devices bits */
+ if (cleared) {
+ uint64_t failed_devices[DISKS_ARRAY_ELEMS];
+
+ rdev_for_each(r, &rs->md) {
+ if (test_bit(Journal, &r->flags))
+ continue;
+
+ sb = page_address(r->sb_page);
+ sb_retrieve_failed_devices(sb, failed_devices);
+
+ for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
+ failed_devices[i] &= ~cleared_failed_devices[i];
+
+ sb_update_failed_devices(sb, failed_devices);
+ }
+ }
+}
+
+static int __load_dirty_region_bitmap(struct raid_set *rs)
+{
+ int r = 0;
+
+ /* Try loading the bitmap unless "raid0", which does not have one */
+ if (!rs_is_raid0(rs) &&
+ !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
+ r = md_bitmap_load(&rs->md);
+ if (r)
+ DMERR("Failed to load bitmap");
+ }
+
+ return r;
+}
+
+/* Enforce updating all superblocks */
+static void rs_update_sbs(struct raid_set *rs)
+{
+ struct mddev *mddev = &rs->md;
+ int ro = mddev->ro;
+
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+ mddev->ro = 0;
+ md_update_sb(mddev, 1);
+ mddev->ro = ro;
+}
+
+/*
+ * Reshape changes raid algorithm of @rs to new one within personality
+ * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
+ * disks from a raid set thus growing/shrinking it or resizes the set
+ *
+ * Call mddev_lock_nointr() before!
+ */
+static int rs_start_reshape(struct raid_set *rs)
+{
+ int r;
+ struct mddev *mddev = &rs->md;
+ struct md_personality *pers = mddev->pers;
+
+ /* Don't allow the sync thread to work until the table gets reloaded. */
+ set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
+
+ r = rs_setup_reshape(rs);
+ if (r)
+ return r;
+
+ /*
+ * Check any reshape constraints enforced by the personalility
+ *
+ * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
+ */
+ r = pers->check_reshape(mddev);
+ if (r) {
+ rs->ti->error = "pers->check_reshape() failed";
+ return r;
+ }
+
+ /*
+ * Personality may not provide start reshape method in which
+ * case check_reshape above has already covered everything
+ */
+ if (pers->start_reshape) {
+ r = pers->start_reshape(mddev);
+ if (r) {
+ rs->ti->error = "pers->start_reshape() failed";
+ return r;
+ }
+ }
+
+ /*
+ * Now reshape got set up, update superblocks to
+ * reflect the fact so that a table reload will
+ * access proper superblock content in the ctr.
+ */
+ rs_update_sbs(rs);
+
+ return 0;
+}
+
+static int raid_preresume(struct dm_target *ti)
+{
+ int r;
+ struct raid_set *rs = ti->private;
+ struct mddev *mddev = &rs->md;
+
+ /* This is a resume after a suspend of the set -> it's already started. */
+ if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
+ return 0;
+
+ /*
+ * The superblocks need to be updated on disk if the
+ * array is new or new devices got added (thus zeroed
+ * out by userspace) or __load_dirty_region_bitmap
+ * will overwrite them in core with old data or fail.
+ */
+ if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
+ rs_update_sbs(rs);
+
+ /* Load the bitmap from disk unless raid0 */
+ r = __load_dirty_region_bitmap(rs);
+ if (r)
+ return r;
+
+ /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */
+ if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
+ mddev->array_sectors = rs->array_sectors;
+ mddev->dev_sectors = rs->dev_sectors;
+ rs_set_rdev_sectors(rs);
+ rs_set_capacity(rs);
+ }
+
+ /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */
+ if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
+ (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) ||
+ (rs->requested_bitmap_chunk_sectors &&
+ mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) {
+ int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize;
+
+ r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0);
+ if (r)
+ DMERR("Failed to resize bitmap");
+ }
+
+ /* Check for any resize/reshape on @rs and adjust/initiate */
+ /* Be prepared for mddev_resume() in raid_resume() */
+ set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+ if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
+ set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
+ mddev->resync_min = mddev->recovery_cp;
+ if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags))
+ mddev->resync_max_sectors = mddev->dev_sectors;
+ }
+
+ /* Check for any reshape request unless new raid set */
+ if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
+ /* Initiate a reshape. */
+ rs_set_rdev_sectors(rs);
+ mddev_lock_nointr(mddev);
+ r = rs_start_reshape(rs);
+ mddev_unlock(mddev);
+ if (r)
+ DMWARN("Failed to check/start reshape, continuing without change");
+ r = 0;
+ }
+
+ return r;
+}
+
+static void raid_resume(struct dm_target *ti)
+{
+ struct raid_set *rs = ti->private;
+ struct mddev *mddev = &rs->md;
+
+ if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
+ /*
+ * A secondary resume while the device is active.
+ * Take this opportunity to check whether any failed
+ * devices are reachable again.
+ */
+ attempt_restore_of_faulty_devices(rs);
+ }
+
+ if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
+ /* Only reduce raid set size before running a disk removing reshape. */
+ if (mddev->delta_disks < 0)
+ rs_set_capacity(rs);
+
+ mddev_lock_nointr(mddev);
+ clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+ mddev->ro = 0;
+ mddev->in_sync = 0;
+ mddev_resume(mddev);
+ mddev_unlock(mddev);
+ }
+}
+
+static struct target_type raid_target = {
+ .name = "raid",
+ .version = {1, 15, 1},
+ .module = THIS_MODULE,
+ .ctr = raid_ctr,
+ .dtr = raid_dtr,
+ .map = raid_map,
+ .status = raid_status,
+ .message = raid_message,
+ .iterate_devices = raid_iterate_devices,
+ .io_hints = raid_io_hints,
+ .postsuspend = raid_postsuspend,
+ .preresume = raid_preresume,
+ .resume = raid_resume,
+};
+
+static int __init dm_raid_init(void)
+{
+ DMINFO("Loading target version %u.%u.%u",
+ raid_target.version[0],
+ raid_target.version[1],
+ raid_target.version[2]);
+ return dm_register_target(&raid_target);
+}
+
+static void __exit dm_raid_exit(void)
+{
+ dm_unregister_target(&raid_target);
+}
+
+module_init(dm_raid_init);
+module_exit(dm_raid_exit);
+
+module_param(devices_handle_discard_safely, bool, 0644);
+MODULE_PARM_DESC(devices_handle_discard_safely,
+ "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
+
+MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
+MODULE_ALIAS("dm-raid0");
+MODULE_ALIAS("dm-raid1");
+MODULE_ALIAS("dm-raid10");
+MODULE_ALIAS("dm-raid4");
+MODULE_ALIAS("dm-raid5");
+MODULE_ALIAS("dm-raid6");
+MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
+MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-raid1.c b/drivers/md/dm-raid1.c
new file mode 100644
index 000000000..c38e63706
--- /dev/null
+++ b/drivers/md/dm-raid1.c
@@ -0,0 +1,1511 @@
+/*
+ * Copyright (C) 2003 Sistina Software Limited.
+ * Copyright (C) 2005-2008 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-bio-record.h"
+
+#include <linux/init.h>
+#include <linux/mempool.h>
+#include <linux/module.h>
+#include <linux/pagemap.h>
+#include <linux/slab.h>
+#include <linux/workqueue.h>
+#include <linux/device-mapper.h>
+#include <linux/dm-io.h>
+#include <linux/dm-dirty-log.h>
+#include <linux/dm-kcopyd.h>
+#include <linux/dm-region-hash.h>
+
+#define DM_MSG_PREFIX "raid1"
+
+#define MAX_RECOVERY 1 /* Maximum number of regions recovered in parallel. */
+
+#define MAX_NR_MIRRORS (DM_KCOPYD_MAX_REGIONS + 1)
+
+#define DM_RAID1_HANDLE_ERRORS 0x01
+#define DM_RAID1_KEEP_LOG 0x02
+#define errors_handled(p) ((p)->features & DM_RAID1_HANDLE_ERRORS)
+#define keep_log(p) ((p)->features & DM_RAID1_KEEP_LOG)
+
+static DECLARE_WAIT_QUEUE_HEAD(_kmirrord_recovery_stopped);
+
+/*-----------------------------------------------------------------
+ * Mirror set structures.
+ *---------------------------------------------------------------*/
+enum dm_raid1_error {
+ DM_RAID1_WRITE_ERROR,
+ DM_RAID1_FLUSH_ERROR,
+ DM_RAID1_SYNC_ERROR,
+ DM_RAID1_READ_ERROR
+};
+
+struct mirror {
+ struct mirror_set *ms;
+ atomic_t error_count;
+ unsigned long error_type;
+ struct dm_dev *dev;
+ sector_t offset;
+};
+
+struct mirror_set {
+ struct dm_target *ti;
+ struct list_head list;
+
+ uint64_t features;
+
+ spinlock_t lock; /* protects the lists */
+ struct bio_list reads;
+ struct bio_list writes;
+ struct bio_list failures;
+ struct bio_list holds; /* bios are waiting until suspend */
+
+ struct dm_region_hash *rh;
+ struct dm_kcopyd_client *kcopyd_client;
+ struct dm_io_client *io_client;
+
+ /* recovery */
+ region_t nr_regions;
+ int in_sync;
+ int log_failure;
+ int leg_failure;
+ atomic_t suspend;
+
+ atomic_t default_mirror; /* Default mirror */
+
+ struct workqueue_struct *kmirrord_wq;
+ struct work_struct kmirrord_work;
+ struct timer_list timer;
+ unsigned long timer_pending;
+
+ struct work_struct trigger_event;
+
+ unsigned int nr_mirrors;
+ struct mirror mirror[];
+};
+
+DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(raid1_resync_throttle,
+ "A percentage of time allocated for raid resynchronization");
+
+static void wakeup_mirrord(void *context)
+{
+ struct mirror_set *ms = context;
+
+ queue_work(ms->kmirrord_wq, &ms->kmirrord_work);
+}
+
+static void delayed_wake_fn(struct timer_list *t)
+{
+ struct mirror_set *ms = from_timer(ms, t, timer);
+
+ clear_bit(0, &ms->timer_pending);
+ wakeup_mirrord(ms);
+}
+
+static void delayed_wake(struct mirror_set *ms)
+{
+ if (test_and_set_bit(0, &ms->timer_pending))
+ return;
+
+ ms->timer.expires = jiffies + HZ / 5;
+ add_timer(&ms->timer);
+}
+
+static void wakeup_all_recovery_waiters(void *context)
+{
+ wake_up_all(&_kmirrord_recovery_stopped);
+}
+
+static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw)
+{
+ unsigned long flags;
+ int should_wake = 0;
+ struct bio_list *bl;
+
+ bl = (rw == WRITE) ? &ms->writes : &ms->reads;
+ spin_lock_irqsave(&ms->lock, flags);
+ should_wake = !(bl->head);
+ bio_list_add(bl, bio);
+ spin_unlock_irqrestore(&ms->lock, flags);
+
+ if (should_wake)
+ wakeup_mirrord(ms);
+}
+
+static void dispatch_bios(void *context, struct bio_list *bio_list)
+{
+ struct mirror_set *ms = context;
+ struct bio *bio;
+
+ while ((bio = bio_list_pop(bio_list)))
+ queue_bio(ms, bio, WRITE);
+}
+
+struct dm_raid1_bio_record {
+ struct mirror *m;
+ /* if details->bi_bdev == NULL, details were not saved */
+ struct dm_bio_details details;
+ region_t write_region;
+};
+
+/*
+ * Every mirror should look like this one.
+ */
+#define DEFAULT_MIRROR 0
+
+/*
+ * This is yucky. We squirrel the mirror struct away inside
+ * bi_next for read/write buffers. This is safe since the bh
+ * doesn't get submitted to the lower levels of block layer.
+ */
+static struct mirror *bio_get_m(struct bio *bio)
+{
+ return (struct mirror *) bio->bi_next;
+}
+
+static void bio_set_m(struct bio *bio, struct mirror *m)
+{
+ bio->bi_next = (struct bio *) m;
+}
+
+static struct mirror *get_default_mirror(struct mirror_set *ms)
+{
+ return &ms->mirror[atomic_read(&ms->default_mirror)];
+}
+
+static void set_default_mirror(struct mirror *m)
+{
+ struct mirror_set *ms = m->ms;
+ struct mirror *m0 = &(ms->mirror[0]);
+
+ atomic_set(&ms->default_mirror, m - m0);
+}
+
+static struct mirror *get_valid_mirror(struct mirror_set *ms)
+{
+ struct mirror *m;
+
+ for (m = ms->mirror; m < ms->mirror + ms->nr_mirrors; m++)
+ if (!atomic_read(&m->error_count))
+ return m;
+
+ return NULL;
+}
+
+/* fail_mirror
+ * @m: mirror device to fail
+ * @error_type: one of the enum's, DM_RAID1_*_ERROR
+ *
+ * If errors are being handled, record the type of
+ * error encountered for this device. If this type
+ * of error has already been recorded, we can return;
+ * otherwise, we must signal userspace by triggering
+ * an event. Additionally, if the device is the
+ * primary device, we must choose a new primary, but
+ * only if the mirror is in-sync.
+ *
+ * This function must not block.
+ */
+static void fail_mirror(struct mirror *m, enum dm_raid1_error error_type)
+{
+ struct mirror_set *ms = m->ms;
+ struct mirror *new;
+
+ ms->leg_failure = 1;
+
+ /*
+ * error_count is used for nothing more than a
+ * simple way to tell if a device has encountered
+ * errors.
+ */
+ atomic_inc(&m->error_count);
+
+ if (test_and_set_bit(error_type, &m->error_type))
+ return;
+
+ if (!errors_handled(ms))
+ return;
+
+ if (m != get_default_mirror(ms))
+ goto out;
+
+ if (!ms->in_sync && !keep_log(ms)) {
+ /*
+ * Better to issue requests to same failing device
+ * than to risk returning corrupt data.
+ */
+ DMERR("Primary mirror (%s) failed while out-of-sync: Reads may fail.",
+ m->dev->name);
+ goto out;
+ }
+
+ new = get_valid_mirror(ms);
+ if (new)
+ set_default_mirror(new);
+ else
+ DMWARN("All sides of mirror have failed.");
+
+out:
+ schedule_work(&ms->trigger_event);
+}
+
+static int mirror_flush(struct dm_target *ti)
+{
+ struct mirror_set *ms = ti->private;
+ unsigned long error_bits;
+
+ unsigned int i;
+ struct dm_io_region io[MAX_NR_MIRRORS];
+ struct mirror *m;
+ struct dm_io_request io_req = {
+ .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
+ .mem.type = DM_IO_KMEM,
+ .mem.ptr.addr = NULL,
+ .client = ms->io_client,
+ };
+
+ for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++) {
+ io[i].bdev = m->dev->bdev;
+ io[i].sector = 0;
+ io[i].count = 0;
+ }
+
+ error_bits = -1;
+ dm_io(&io_req, ms->nr_mirrors, io, &error_bits);
+ if (unlikely(error_bits != 0)) {
+ for (i = 0; i < ms->nr_mirrors; i++)
+ if (test_bit(i, &error_bits))
+ fail_mirror(ms->mirror + i,
+ DM_RAID1_FLUSH_ERROR);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/*-----------------------------------------------------------------
+ * Recovery.
+ *
+ * When a mirror is first activated we may find that some regions
+ * are in the no-sync state. We have to recover these by
+ * recopying from the default mirror to all the others.
+ *---------------------------------------------------------------*/
+static void recovery_complete(int read_err, unsigned long write_err,
+ void *context)
+{
+ struct dm_region *reg = context;
+ struct mirror_set *ms = dm_rh_region_context(reg);
+ int m, bit = 0;
+
+ if (read_err) {
+ /* Read error means the failure of default mirror. */
+ DMERR_LIMIT("Unable to read primary mirror during recovery");
+ fail_mirror(get_default_mirror(ms), DM_RAID1_SYNC_ERROR);
+ }
+
+ if (write_err) {
+ DMERR_LIMIT("Write error during recovery (error = 0x%lx)",
+ write_err);
+ /*
+ * Bits correspond to devices (excluding default mirror).
+ * The default mirror cannot change during recovery.
+ */
+ for (m = 0; m < ms->nr_mirrors; m++) {
+ if (&ms->mirror[m] == get_default_mirror(ms))
+ continue;
+ if (test_bit(bit, &write_err))
+ fail_mirror(ms->mirror + m,
+ DM_RAID1_SYNC_ERROR);
+ bit++;
+ }
+ }
+
+ dm_rh_recovery_end(reg, !(read_err || write_err));
+}
+
+static void recover(struct mirror_set *ms, struct dm_region *reg)
+{
+ unsigned int i;
+ struct dm_io_region from, to[DM_KCOPYD_MAX_REGIONS], *dest;
+ struct mirror *m;
+ unsigned long flags = 0;
+ region_t key = dm_rh_get_region_key(reg);
+ sector_t region_size = dm_rh_get_region_size(ms->rh);
+
+ /* fill in the source */
+ m = get_default_mirror(ms);
+ from.bdev = m->dev->bdev;
+ from.sector = m->offset + dm_rh_region_to_sector(ms->rh, key);
+ if (key == (ms->nr_regions - 1)) {
+ /*
+ * The final region may be smaller than
+ * region_size.
+ */
+ from.count = ms->ti->len & (region_size - 1);
+ if (!from.count)
+ from.count = region_size;
+ } else
+ from.count = region_size;
+
+ /* fill in the destinations */
+ for (i = 0, dest = to; i < ms->nr_mirrors; i++) {
+ if (&ms->mirror[i] == get_default_mirror(ms))
+ continue;
+
+ m = ms->mirror + i;
+ dest->bdev = m->dev->bdev;
+ dest->sector = m->offset + dm_rh_region_to_sector(ms->rh, key);
+ dest->count = from.count;
+ dest++;
+ }
+
+ /* hand to kcopyd */
+ if (!errors_handled(ms))
+ flags |= BIT(DM_KCOPYD_IGNORE_ERROR);
+
+ dm_kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to,
+ flags, recovery_complete, reg);
+}
+
+static void reset_ms_flags(struct mirror_set *ms)
+{
+ unsigned int m;
+
+ ms->leg_failure = 0;
+ for (m = 0; m < ms->nr_mirrors; m++) {
+ atomic_set(&(ms->mirror[m].error_count), 0);
+ ms->mirror[m].error_type = 0;
+ }
+}
+
+static void do_recovery(struct mirror_set *ms)
+{
+ struct dm_region *reg;
+ struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
+
+ /*
+ * Start quiescing some regions.
+ */
+ dm_rh_recovery_prepare(ms->rh);
+
+ /*
+ * Copy any already quiesced regions.
+ */
+ while ((reg = dm_rh_recovery_start(ms->rh)))
+ recover(ms, reg);
+
+ /*
+ * Update the in sync flag.
+ */
+ if (!ms->in_sync &&
+ (log->type->get_sync_count(log) == ms->nr_regions)) {
+ /* the sync is complete */
+ dm_table_event(ms->ti->table);
+ ms->in_sync = 1;
+ reset_ms_flags(ms);
+ }
+}
+
+/*-----------------------------------------------------------------
+ * Reads
+ *---------------------------------------------------------------*/
+static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector)
+{
+ struct mirror *m = get_default_mirror(ms);
+
+ do {
+ if (likely(!atomic_read(&m->error_count)))
+ return m;
+
+ if (m-- == ms->mirror)
+ m += ms->nr_mirrors;
+ } while (m != get_default_mirror(ms));
+
+ return NULL;
+}
+
+static int default_ok(struct mirror *m)
+{
+ struct mirror *default_mirror = get_default_mirror(m->ms);
+
+ return !atomic_read(&default_mirror->error_count);
+}
+
+static int mirror_available(struct mirror_set *ms, struct bio *bio)
+{
+ struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
+ region_t region = dm_rh_bio_to_region(ms->rh, bio);
+
+ if (log->type->in_sync(log, region, 0))
+ return choose_mirror(ms, bio->bi_iter.bi_sector) ? 1 : 0;
+
+ return 0;
+}
+
+/*
+ * remap a buffer to a particular mirror.
+ */
+static sector_t map_sector(struct mirror *m, struct bio *bio)
+{
+ if (unlikely(!bio->bi_iter.bi_size))
+ return 0;
+ return m->offset + dm_target_offset(m->ms->ti, bio->bi_iter.bi_sector);
+}
+
+static void map_bio(struct mirror *m, struct bio *bio)
+{
+ bio_set_dev(bio, m->dev->bdev);
+ bio->bi_iter.bi_sector = map_sector(m, bio);
+}
+
+static void map_region(struct dm_io_region *io, struct mirror *m,
+ struct bio *bio)
+{
+ io->bdev = m->dev->bdev;
+ io->sector = map_sector(m, bio);
+ io->count = bio_sectors(bio);
+}
+
+static void hold_bio(struct mirror_set *ms, struct bio *bio)
+{
+ /*
+ * Lock is required to avoid race condition during suspend
+ * process.
+ */
+ spin_lock_irq(&ms->lock);
+
+ if (atomic_read(&ms->suspend)) {
+ spin_unlock_irq(&ms->lock);
+
+ /*
+ * If device is suspended, complete the bio.
+ */
+ if (dm_noflush_suspending(ms->ti))
+ bio->bi_status = BLK_STS_DM_REQUEUE;
+ else
+ bio->bi_status = BLK_STS_IOERR;
+
+ bio_endio(bio);
+ return;
+ }
+
+ /*
+ * Hold bio until the suspend is complete.
+ */
+ bio_list_add(&ms->holds, bio);
+ spin_unlock_irq(&ms->lock);
+}
+
+/*-----------------------------------------------------------------
+ * Reads
+ *---------------------------------------------------------------*/
+static void read_callback(unsigned long error, void *context)
+{
+ struct bio *bio = context;
+ struct mirror *m;
+
+ m = bio_get_m(bio);
+ bio_set_m(bio, NULL);
+
+ if (likely(!error)) {
+ bio_endio(bio);
+ return;
+ }
+
+ fail_mirror(m, DM_RAID1_READ_ERROR);
+
+ if (likely(default_ok(m)) || mirror_available(m->ms, bio)) {
+ DMWARN_LIMIT("Read failure on mirror device %s. Trying alternative device.",
+ m->dev->name);
+ queue_bio(m->ms, bio, bio_data_dir(bio));
+ return;
+ }
+
+ DMERR_LIMIT("Read failure on mirror device %s. Failing I/O.",
+ m->dev->name);
+ bio_io_error(bio);
+}
+
+/* Asynchronous read. */
+static void read_async_bio(struct mirror *m, struct bio *bio)
+{
+ struct dm_io_region io;
+ struct dm_io_request io_req = {
+ .bi_opf = REQ_OP_READ,
+ .mem.type = DM_IO_BIO,
+ .mem.ptr.bio = bio,
+ .notify.fn = read_callback,
+ .notify.context = bio,
+ .client = m->ms->io_client,
+ };
+
+ map_region(&io, m, bio);
+ bio_set_m(bio, m);
+ BUG_ON(dm_io(&io_req, 1, &io, NULL));
+}
+
+static inline int region_in_sync(struct mirror_set *ms, region_t region,
+ int may_block)
+{
+ int state = dm_rh_get_state(ms->rh, region, may_block);
+ return state == DM_RH_CLEAN || state == DM_RH_DIRTY;
+}
+
+static void do_reads(struct mirror_set *ms, struct bio_list *reads)
+{
+ region_t region;
+ struct bio *bio;
+ struct mirror *m;
+
+ while ((bio = bio_list_pop(reads))) {
+ region = dm_rh_bio_to_region(ms->rh, bio);
+ m = get_default_mirror(ms);
+
+ /*
+ * We can only read balance if the region is in sync.
+ */
+ if (likely(region_in_sync(ms, region, 1)))
+ m = choose_mirror(ms, bio->bi_iter.bi_sector);
+ else if (m && atomic_read(&m->error_count))
+ m = NULL;
+
+ if (likely(m))
+ read_async_bio(m, bio);
+ else
+ bio_io_error(bio);
+ }
+}
+
+/*-----------------------------------------------------------------
+ * Writes.
+ *
+ * We do different things with the write io depending on the
+ * state of the region that it's in:
+ *
+ * SYNC: increment pending, use kcopyd to write to *all* mirrors
+ * RECOVERING: delay the io until recovery completes
+ * NOSYNC: increment pending, just write to the default mirror
+ *---------------------------------------------------------------*/
+
+
+static void write_callback(unsigned long error, void *context)
+{
+ unsigned int i;
+ struct bio *bio = (struct bio *) context;
+ struct mirror_set *ms;
+ int should_wake = 0;
+ unsigned long flags;
+
+ ms = bio_get_m(bio)->ms;
+ bio_set_m(bio, NULL);
+
+ /*
+ * NOTE: We don't decrement the pending count here,
+ * instead it is done by the targets endio function.
+ * This way we handle both writes to SYNC and NOSYNC
+ * regions with the same code.
+ */
+ if (likely(!error)) {
+ bio_endio(bio);
+ return;
+ }
+
+ /*
+ * If the bio is discard, return an error, but do not
+ * degrade the array.
+ */
+ if (bio_op(bio) == REQ_OP_DISCARD) {
+ bio->bi_status = BLK_STS_NOTSUPP;
+ bio_endio(bio);
+ return;
+ }
+
+ for (i = 0; i < ms->nr_mirrors; i++)
+ if (test_bit(i, &error))
+ fail_mirror(ms->mirror + i, DM_RAID1_WRITE_ERROR);
+
+ /*
+ * Need to raise event. Since raising
+ * events can block, we need to do it in
+ * the main thread.
+ */
+ spin_lock_irqsave(&ms->lock, flags);
+ if (!ms->failures.head)
+ should_wake = 1;
+ bio_list_add(&ms->failures, bio);
+ spin_unlock_irqrestore(&ms->lock, flags);
+ if (should_wake)
+ wakeup_mirrord(ms);
+}
+
+static void do_write(struct mirror_set *ms, struct bio *bio)
+{
+ unsigned int i;
+ struct dm_io_region io[MAX_NR_MIRRORS], *dest = io;
+ struct mirror *m;
+ blk_opf_t op_flags = bio->bi_opf & (REQ_FUA | REQ_PREFLUSH);
+ struct dm_io_request io_req = {
+ .bi_opf = REQ_OP_WRITE | op_flags,
+ .mem.type = DM_IO_BIO,
+ .mem.ptr.bio = bio,
+ .notify.fn = write_callback,
+ .notify.context = bio,
+ .client = ms->io_client,
+ };
+
+ if (bio_op(bio) == REQ_OP_DISCARD) {
+ io_req.bi_opf = REQ_OP_DISCARD | op_flags;
+ io_req.mem.type = DM_IO_KMEM;
+ io_req.mem.ptr.addr = NULL;
+ }
+
+ for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++)
+ map_region(dest++, m, bio);
+
+ /*
+ * Use default mirror because we only need it to retrieve the reference
+ * to the mirror set in write_callback().
+ */
+ bio_set_m(bio, get_default_mirror(ms));
+
+ BUG_ON(dm_io(&io_req, ms->nr_mirrors, io, NULL));
+}
+
+static void do_writes(struct mirror_set *ms, struct bio_list *writes)
+{
+ int state;
+ struct bio *bio;
+ struct bio_list sync, nosync, recover, *this_list = NULL;
+ struct bio_list requeue;
+ struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
+ region_t region;
+
+ if (!writes->head)
+ return;
+
+ /*
+ * Classify each write.
+ */
+ bio_list_init(&sync);
+ bio_list_init(&nosync);
+ bio_list_init(&recover);
+ bio_list_init(&requeue);
+
+ while ((bio = bio_list_pop(writes))) {
+ if ((bio->bi_opf & REQ_PREFLUSH) ||
+ (bio_op(bio) == REQ_OP_DISCARD)) {
+ bio_list_add(&sync, bio);
+ continue;
+ }
+
+ region = dm_rh_bio_to_region(ms->rh, bio);
+
+ if (log->type->is_remote_recovering &&
+ log->type->is_remote_recovering(log, region)) {
+ bio_list_add(&requeue, bio);
+ continue;
+ }
+
+ state = dm_rh_get_state(ms->rh, region, 1);
+ switch (state) {
+ case DM_RH_CLEAN:
+ case DM_RH_DIRTY:
+ this_list = &sync;
+ break;
+
+ case DM_RH_NOSYNC:
+ this_list = &nosync;
+ break;
+
+ case DM_RH_RECOVERING:
+ this_list = &recover;
+ break;
+ }
+
+ bio_list_add(this_list, bio);
+ }
+
+ /*
+ * Add bios that are delayed due to remote recovery
+ * back on to the write queue
+ */
+ if (unlikely(requeue.head)) {
+ spin_lock_irq(&ms->lock);
+ bio_list_merge(&ms->writes, &requeue);
+ spin_unlock_irq(&ms->lock);
+ delayed_wake(ms);
+ }
+
+ /*
+ * Increment the pending counts for any regions that will
+ * be written to (writes to recover regions are going to
+ * be delayed).
+ */
+ dm_rh_inc_pending(ms->rh, &sync);
+ dm_rh_inc_pending(ms->rh, &nosync);
+
+ /*
+ * If the flush fails on a previous call and succeeds here,
+ * we must not reset the log_failure variable. We need
+ * userspace interaction to do that.
+ */
+ ms->log_failure = dm_rh_flush(ms->rh) ? 1 : ms->log_failure;
+
+ /*
+ * Dispatch io.
+ */
+ if (unlikely(ms->log_failure) && errors_handled(ms)) {
+ spin_lock_irq(&ms->lock);
+ bio_list_merge(&ms->failures, &sync);
+ spin_unlock_irq(&ms->lock);
+ wakeup_mirrord(ms);
+ } else
+ while ((bio = bio_list_pop(&sync)))
+ do_write(ms, bio);
+
+ while ((bio = bio_list_pop(&recover)))
+ dm_rh_delay(ms->rh, bio);
+
+ while ((bio = bio_list_pop(&nosync))) {
+ if (unlikely(ms->leg_failure) && errors_handled(ms) && !keep_log(ms)) {
+ spin_lock_irq(&ms->lock);
+ bio_list_add(&ms->failures, bio);
+ spin_unlock_irq(&ms->lock);
+ wakeup_mirrord(ms);
+ } else {
+ map_bio(get_default_mirror(ms), bio);
+ submit_bio_noacct(bio);
+ }
+ }
+}
+
+static void do_failures(struct mirror_set *ms, struct bio_list *failures)
+{
+ struct bio *bio;
+
+ if (likely(!failures->head))
+ return;
+
+ /*
+ * If the log has failed, unattempted writes are being
+ * put on the holds list. We can't issue those writes
+ * until a log has been marked, so we must store them.
+ *
+ * If a 'noflush' suspend is in progress, we can requeue
+ * the I/O's to the core. This give userspace a chance
+ * to reconfigure the mirror, at which point the core
+ * will reissue the writes. If the 'noflush' flag is
+ * not set, we have no choice but to return errors.
+ *
+ * Some writes on the failures list may have been
+ * submitted before the log failure and represent a
+ * failure to write to one of the devices. It is ok
+ * for us to treat them the same and requeue them
+ * as well.
+ */
+ while ((bio = bio_list_pop(failures))) {
+ if (!ms->log_failure) {
+ ms->in_sync = 0;
+ dm_rh_mark_nosync(ms->rh, bio);
+ }
+
+ /*
+ * If all the legs are dead, fail the I/O.
+ * If the device has failed and keep_log is enabled,
+ * fail the I/O.
+ *
+ * If we have been told to handle errors, and keep_log
+ * isn't enabled, hold the bio and wait for userspace to
+ * deal with the problem.
+ *
+ * Otherwise pretend that the I/O succeeded. (This would
+ * be wrong if the failed leg returned after reboot and
+ * got replicated back to the good legs.)
+ */
+ if (unlikely(!get_valid_mirror(ms) || (keep_log(ms) && ms->log_failure)))
+ bio_io_error(bio);
+ else if (errors_handled(ms) && !keep_log(ms))
+ hold_bio(ms, bio);
+ else
+ bio_endio(bio);
+ }
+}
+
+static void trigger_event(struct work_struct *work)
+{
+ struct mirror_set *ms =
+ container_of(work, struct mirror_set, trigger_event);
+
+ dm_table_event(ms->ti->table);
+}
+
+/*-----------------------------------------------------------------
+ * kmirrord
+ *---------------------------------------------------------------*/
+static void do_mirror(struct work_struct *work)
+{
+ struct mirror_set *ms = container_of(work, struct mirror_set,
+ kmirrord_work);
+ struct bio_list reads, writes, failures;
+ unsigned long flags;
+
+ spin_lock_irqsave(&ms->lock, flags);
+ reads = ms->reads;
+ writes = ms->writes;
+ failures = ms->failures;
+ bio_list_init(&ms->reads);
+ bio_list_init(&ms->writes);
+ bio_list_init(&ms->failures);
+ spin_unlock_irqrestore(&ms->lock, flags);
+
+ dm_rh_update_states(ms->rh, errors_handled(ms));
+ do_recovery(ms);
+ do_reads(ms, &reads);
+ do_writes(ms, &writes);
+ do_failures(ms, &failures);
+}
+
+/*-----------------------------------------------------------------
+ * Target functions
+ *---------------------------------------------------------------*/
+static struct mirror_set *alloc_context(unsigned int nr_mirrors,
+ uint32_t region_size,
+ struct dm_target *ti,
+ struct dm_dirty_log *dl)
+{
+ struct mirror_set *ms =
+ kzalloc(struct_size(ms, mirror, nr_mirrors), GFP_KERNEL);
+
+ if (!ms) {
+ ti->error = "Cannot allocate mirror context";
+ return NULL;
+ }
+
+ spin_lock_init(&ms->lock);
+ bio_list_init(&ms->reads);
+ bio_list_init(&ms->writes);
+ bio_list_init(&ms->failures);
+ bio_list_init(&ms->holds);
+
+ ms->ti = ti;
+ ms->nr_mirrors = nr_mirrors;
+ ms->nr_regions = dm_sector_div_up(ti->len, region_size);
+ ms->in_sync = 0;
+ ms->log_failure = 0;
+ ms->leg_failure = 0;
+ atomic_set(&ms->suspend, 0);
+ atomic_set(&ms->default_mirror, DEFAULT_MIRROR);
+
+ ms->io_client = dm_io_client_create();
+ if (IS_ERR(ms->io_client)) {
+ ti->error = "Error creating dm_io client";
+ kfree(ms);
+ return NULL;
+ }
+
+ ms->rh = dm_region_hash_create(ms, dispatch_bios, wakeup_mirrord,
+ wakeup_all_recovery_waiters,
+ ms->ti->begin, MAX_RECOVERY,
+ dl, region_size, ms->nr_regions);
+ if (IS_ERR(ms->rh)) {
+ ti->error = "Error creating dirty region hash";
+ dm_io_client_destroy(ms->io_client);
+ kfree(ms);
+ return NULL;
+ }
+
+ return ms;
+}
+
+static void free_context(struct mirror_set *ms, struct dm_target *ti,
+ unsigned int m)
+{
+ while (m--)
+ dm_put_device(ti, ms->mirror[m].dev);
+
+ dm_io_client_destroy(ms->io_client);
+ dm_region_hash_destroy(ms->rh);
+ kfree(ms);
+}
+
+static int get_mirror(struct mirror_set *ms, struct dm_target *ti,
+ unsigned int mirror, char **argv)
+{
+ unsigned long long offset;
+ char dummy;
+ int ret;
+
+ if (sscanf(argv[1], "%llu%c", &offset, &dummy) != 1 ||
+ offset != (sector_t)offset) {
+ ti->error = "Invalid offset";
+ return -EINVAL;
+ }
+
+ ret = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table),
+ &ms->mirror[mirror].dev);
+ if (ret) {
+ ti->error = "Device lookup failure";
+ return ret;
+ }
+
+ ms->mirror[mirror].ms = ms;
+ atomic_set(&(ms->mirror[mirror].error_count), 0);
+ ms->mirror[mirror].error_type = 0;
+ ms->mirror[mirror].offset = offset;
+
+ return 0;
+}
+
+/*
+ * Create dirty log: log_type #log_params <log_params>
+ */
+static struct dm_dirty_log *create_dirty_log(struct dm_target *ti,
+ unsigned int argc, char **argv,
+ unsigned int *args_used)
+{
+ unsigned int param_count;
+ struct dm_dirty_log *dl;
+ char dummy;
+
+ if (argc < 2) {
+ ti->error = "Insufficient mirror log arguments";
+ return NULL;
+ }
+
+ if (sscanf(argv[1], "%u%c", &param_count, &dummy) != 1) {
+ ti->error = "Invalid mirror log argument count";
+ return NULL;
+ }
+
+ *args_used = 2 + param_count;
+
+ if (argc < *args_used) {
+ ti->error = "Insufficient mirror log arguments";
+ return NULL;
+ }
+
+ dl = dm_dirty_log_create(argv[0], ti, mirror_flush, param_count,
+ argv + 2);
+ if (!dl) {
+ ti->error = "Error creating mirror dirty log";
+ return NULL;
+ }
+
+ return dl;
+}
+
+static int parse_features(struct mirror_set *ms, unsigned int argc, char **argv,
+ unsigned int *args_used)
+{
+ unsigned int num_features;
+ struct dm_target *ti = ms->ti;
+ char dummy;
+ int i;
+
+ *args_used = 0;
+
+ if (!argc)
+ return 0;
+
+ if (sscanf(argv[0], "%u%c", &num_features, &dummy) != 1) {
+ ti->error = "Invalid number of features";
+ return -EINVAL;
+ }
+
+ argc--;
+ argv++;
+ (*args_used)++;
+
+ if (num_features > argc) {
+ ti->error = "Not enough arguments to support feature count";
+ return -EINVAL;
+ }
+
+ for (i = 0; i < num_features; i++) {
+ if (!strcmp("handle_errors", argv[0]))
+ ms->features |= DM_RAID1_HANDLE_ERRORS;
+ else if (!strcmp("keep_log", argv[0]))
+ ms->features |= DM_RAID1_KEEP_LOG;
+ else {
+ ti->error = "Unrecognised feature requested";
+ return -EINVAL;
+ }
+
+ argc--;
+ argv++;
+ (*args_used)++;
+ }
+ if (!errors_handled(ms) && keep_log(ms)) {
+ ti->error = "keep_log feature requires the handle_errors feature";
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/*
+ * Construct a mirror mapping:
+ *
+ * log_type #log_params <log_params>
+ * #mirrors [mirror_path offset]{2,}
+ * [#features <features>]
+ *
+ * log_type is "core" or "disk"
+ * #log_params is between 1 and 3
+ *
+ * If present, supported features are "handle_errors" and "keep_log".
+ */
+static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ int r;
+ unsigned int nr_mirrors, m, args_used;
+ struct mirror_set *ms;
+ struct dm_dirty_log *dl;
+ char dummy;
+
+ dl = create_dirty_log(ti, argc, argv, &args_used);
+ if (!dl)
+ return -EINVAL;
+
+ argv += args_used;
+ argc -= args_used;
+
+ if (!argc || sscanf(argv[0], "%u%c", &nr_mirrors, &dummy) != 1 ||
+ nr_mirrors < 2 || nr_mirrors > MAX_NR_MIRRORS) {
+ ti->error = "Invalid number of mirrors";
+ dm_dirty_log_destroy(dl);
+ return -EINVAL;
+ }
+
+ argv++, argc--;
+
+ if (argc < nr_mirrors * 2) {
+ ti->error = "Too few mirror arguments";
+ dm_dirty_log_destroy(dl);
+ return -EINVAL;
+ }
+
+ ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl);
+ if (!ms) {
+ dm_dirty_log_destroy(dl);
+ return -ENOMEM;
+ }
+
+ /* Get the mirror parameter sets */
+ for (m = 0; m < nr_mirrors; m++) {
+ r = get_mirror(ms, ti, m, argv);
+ if (r) {
+ free_context(ms, ti, m);
+ return r;
+ }
+ argv += 2;
+ argc -= 2;
+ }
+
+ ti->private = ms;
+
+ r = dm_set_target_max_io_len(ti, dm_rh_get_region_size(ms->rh));
+ if (r)
+ goto err_free_context;
+
+ ti->num_flush_bios = 1;
+ ti->num_discard_bios = 1;
+ ti->per_io_data_size = sizeof(struct dm_raid1_bio_record);
+
+ ms->kmirrord_wq = alloc_workqueue("kmirrord", WQ_MEM_RECLAIM, 0);
+ if (!ms->kmirrord_wq) {
+ DMERR("couldn't start kmirrord");
+ r = -ENOMEM;
+ goto err_free_context;
+ }
+ INIT_WORK(&ms->kmirrord_work, do_mirror);
+ timer_setup(&ms->timer, delayed_wake_fn, 0);
+ ms->timer_pending = 0;
+ INIT_WORK(&ms->trigger_event, trigger_event);
+
+ r = parse_features(ms, argc, argv, &args_used);
+ if (r)
+ goto err_destroy_wq;
+
+ argv += args_used;
+ argc -= args_used;
+
+ /*
+ * Any read-balancing addition depends on the
+ * DM_RAID1_HANDLE_ERRORS flag being present.
+ * This is because the decision to balance depends
+ * on the sync state of a region. If the above
+ * flag is not present, we ignore errors; and
+ * the sync state may be inaccurate.
+ */
+
+ if (argc) {
+ ti->error = "Too many mirror arguments";
+ r = -EINVAL;
+ goto err_destroy_wq;
+ }
+
+ ms->kcopyd_client = dm_kcopyd_client_create(&dm_kcopyd_throttle);
+ if (IS_ERR(ms->kcopyd_client)) {
+ r = PTR_ERR(ms->kcopyd_client);
+ goto err_destroy_wq;
+ }
+
+ wakeup_mirrord(ms);
+ return 0;
+
+err_destroy_wq:
+ destroy_workqueue(ms->kmirrord_wq);
+err_free_context:
+ free_context(ms, ti, ms->nr_mirrors);
+ return r;
+}
+
+static void mirror_dtr(struct dm_target *ti)
+{
+ struct mirror_set *ms = (struct mirror_set *) ti->private;
+
+ del_timer_sync(&ms->timer);
+ flush_workqueue(ms->kmirrord_wq);
+ flush_work(&ms->trigger_event);
+ dm_kcopyd_client_destroy(ms->kcopyd_client);
+ destroy_workqueue(ms->kmirrord_wq);
+ free_context(ms, ti, ms->nr_mirrors);
+}
+
+/*
+ * Mirror mapping function
+ */
+static int mirror_map(struct dm_target *ti, struct bio *bio)
+{
+ int r, rw = bio_data_dir(bio);
+ struct mirror *m;
+ struct mirror_set *ms = ti->private;
+ struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
+ struct dm_raid1_bio_record *bio_record =
+ dm_per_bio_data(bio, sizeof(struct dm_raid1_bio_record));
+
+ bio_record->details.bi_bdev = NULL;
+
+ if (rw == WRITE) {
+ /* Save region for mirror_end_io() handler */
+ bio_record->write_region = dm_rh_bio_to_region(ms->rh, bio);
+ queue_bio(ms, bio, rw);
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ r = log->type->in_sync(log, dm_rh_bio_to_region(ms->rh, bio), 0);
+ if (r < 0 && r != -EWOULDBLOCK)
+ return DM_MAPIO_KILL;
+
+ /*
+ * If region is not in-sync queue the bio.
+ */
+ if (!r || (r == -EWOULDBLOCK)) {
+ if (bio->bi_opf & REQ_RAHEAD)
+ return DM_MAPIO_KILL;
+
+ queue_bio(ms, bio, rw);
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ /*
+ * The region is in-sync and we can perform reads directly.
+ * Store enough information so we can retry if it fails.
+ */
+ m = choose_mirror(ms, bio->bi_iter.bi_sector);
+ if (unlikely(!m))
+ return DM_MAPIO_KILL;
+
+ dm_bio_record(&bio_record->details, bio);
+ bio_record->m = m;
+
+ map_bio(m, bio);
+
+ return DM_MAPIO_REMAPPED;
+}
+
+static int mirror_end_io(struct dm_target *ti, struct bio *bio,
+ blk_status_t *error)
+{
+ int rw = bio_data_dir(bio);
+ struct mirror_set *ms = (struct mirror_set *) ti->private;
+ struct mirror *m = NULL;
+ struct dm_bio_details *bd = NULL;
+ struct dm_raid1_bio_record *bio_record =
+ dm_per_bio_data(bio, sizeof(struct dm_raid1_bio_record));
+
+ /*
+ * We need to dec pending if this was a write.
+ */
+ if (rw == WRITE) {
+ if (!(bio->bi_opf & REQ_PREFLUSH) &&
+ bio_op(bio) != REQ_OP_DISCARD)
+ dm_rh_dec(ms->rh, bio_record->write_region);
+ return DM_ENDIO_DONE;
+ }
+
+ if (*error == BLK_STS_NOTSUPP)
+ goto out;
+
+ if (bio->bi_opf & REQ_RAHEAD)
+ goto out;
+
+ if (unlikely(*error)) {
+ if (!bio_record->details.bi_bdev) {
+ /*
+ * There wasn't enough memory to record necessary
+ * information for a retry or there was no other
+ * mirror in-sync.
+ */
+ DMERR_LIMIT("Mirror read failed.");
+ return DM_ENDIO_DONE;
+ }
+
+ m = bio_record->m;
+
+ DMERR("Mirror read failed from %s. Trying alternative device.",
+ m->dev->name);
+
+ fail_mirror(m, DM_RAID1_READ_ERROR);
+
+ /*
+ * A failed read is requeued for another attempt using an intact
+ * mirror.
+ */
+ if (default_ok(m) || mirror_available(ms, bio)) {
+ bd = &bio_record->details;
+
+ dm_bio_restore(bd, bio);
+ bio_record->details.bi_bdev = NULL;
+ bio->bi_status = 0;
+
+ queue_bio(ms, bio, rw);
+ return DM_ENDIO_INCOMPLETE;
+ }
+ DMERR("All replicated volumes dead, failing I/O");
+ }
+
+out:
+ bio_record->details.bi_bdev = NULL;
+
+ return DM_ENDIO_DONE;
+}
+
+static void mirror_presuspend(struct dm_target *ti)
+{
+ struct mirror_set *ms = (struct mirror_set *) ti->private;
+ struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
+
+ struct bio_list holds;
+ struct bio *bio;
+
+ atomic_set(&ms->suspend, 1);
+
+ /*
+ * Process bios in the hold list to start recovery waiting
+ * for bios in the hold list. After the process, no bio has
+ * a chance to be added in the hold list because ms->suspend
+ * is set.
+ */
+ spin_lock_irq(&ms->lock);
+ holds = ms->holds;
+ bio_list_init(&ms->holds);
+ spin_unlock_irq(&ms->lock);
+
+ while ((bio = bio_list_pop(&holds)))
+ hold_bio(ms, bio);
+
+ /*
+ * We must finish up all the work that we've
+ * generated (i.e. recovery work).
+ */
+ dm_rh_stop_recovery(ms->rh);
+
+ wait_event(_kmirrord_recovery_stopped,
+ !dm_rh_recovery_in_flight(ms->rh));
+
+ if (log->type->presuspend && log->type->presuspend(log))
+ /* FIXME: need better error handling */
+ DMWARN("log presuspend failed");
+
+ /*
+ * Now that recovery is complete/stopped and the
+ * delayed bios are queued, we need to wait for
+ * the worker thread to complete. This way,
+ * we know that all of our I/O has been pushed.
+ */
+ flush_workqueue(ms->kmirrord_wq);
+}
+
+static void mirror_postsuspend(struct dm_target *ti)
+{
+ struct mirror_set *ms = ti->private;
+ struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
+
+ if (log->type->postsuspend && log->type->postsuspend(log))
+ /* FIXME: need better error handling */
+ DMWARN("log postsuspend failed");
+}
+
+static void mirror_resume(struct dm_target *ti)
+{
+ struct mirror_set *ms = ti->private;
+ struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
+
+ atomic_set(&ms->suspend, 0);
+ if (log->type->resume && log->type->resume(log))
+ /* FIXME: need better error handling */
+ DMWARN("log resume failed");
+ dm_rh_start_recovery(ms->rh);
+}
+
+/*
+ * device_status_char
+ * @m: mirror device/leg we want the status of
+ *
+ * We return one character representing the most severe error
+ * we have encountered.
+ * A => Alive - No failures
+ * D => Dead - A write failure occurred leaving mirror out-of-sync
+ * S => Sync - A sychronization failure occurred, mirror out-of-sync
+ * R => Read - A read failure occurred, mirror data unaffected
+ *
+ * Returns: <char>
+ */
+static char device_status_char(struct mirror *m)
+{
+ if (!atomic_read(&(m->error_count)))
+ return 'A';
+
+ return (test_bit(DM_RAID1_FLUSH_ERROR, &(m->error_type))) ? 'F' :
+ (test_bit(DM_RAID1_WRITE_ERROR, &(m->error_type))) ? 'D' :
+ (test_bit(DM_RAID1_SYNC_ERROR, &(m->error_type))) ? 'S' :
+ (test_bit(DM_RAID1_READ_ERROR, &(m->error_type))) ? 'R' : 'U';
+}
+
+
+static void mirror_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ unsigned int m, sz = 0;
+ int num_feature_args = 0;
+ struct mirror_set *ms = (struct mirror_set *) ti->private;
+ struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
+ char buffer[MAX_NR_MIRRORS + 1];
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ DMEMIT("%d ", ms->nr_mirrors);
+ for (m = 0; m < ms->nr_mirrors; m++) {
+ DMEMIT("%s ", ms->mirror[m].dev->name);
+ buffer[m] = device_status_char(&(ms->mirror[m]));
+ }
+ buffer[m] = '\0';
+
+ DMEMIT("%llu/%llu 1 %s ",
+ (unsigned long long)log->type->get_sync_count(log),
+ (unsigned long long)ms->nr_regions, buffer);
+
+ sz += log->type->status(log, type, result+sz, maxlen-sz);
+
+ break;
+
+ case STATUSTYPE_TABLE:
+ sz = log->type->status(log, type, result, maxlen);
+
+ DMEMIT("%d", ms->nr_mirrors);
+ for (m = 0; m < ms->nr_mirrors; m++)
+ DMEMIT(" %s %llu", ms->mirror[m].dev->name,
+ (unsigned long long)ms->mirror[m].offset);
+
+ num_feature_args += !!errors_handled(ms);
+ num_feature_args += !!keep_log(ms);
+ if (num_feature_args) {
+ DMEMIT(" %d", num_feature_args);
+ if (errors_handled(ms))
+ DMEMIT(" handle_errors");
+ if (keep_log(ms))
+ DMEMIT(" keep_log");
+ }
+
+ break;
+
+ case STATUSTYPE_IMA:
+ DMEMIT_TARGET_NAME_VERSION(ti->type);
+ DMEMIT(",nr_mirrors=%d", ms->nr_mirrors);
+ for (m = 0; m < ms->nr_mirrors; m++) {
+ DMEMIT(",mirror_device_%d=%s", m, ms->mirror[m].dev->name);
+ DMEMIT(",mirror_device_%d_status=%c",
+ m, device_status_char(&(ms->mirror[m])));
+ }
+
+ DMEMIT(",handle_errors=%c", errors_handled(ms) ? 'y' : 'n');
+ DMEMIT(",keep_log=%c", keep_log(ms) ? 'y' : 'n');
+
+ DMEMIT(",log_type_status=");
+ sz += log->type->status(log, type, result+sz, maxlen-sz);
+ DMEMIT(";");
+ break;
+ }
+}
+
+static int mirror_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ struct mirror_set *ms = ti->private;
+ int ret = 0;
+ unsigned int i;
+
+ for (i = 0; !ret && i < ms->nr_mirrors; i++)
+ ret = fn(ti, ms->mirror[i].dev,
+ ms->mirror[i].offset, ti->len, data);
+
+ return ret;
+}
+
+static struct target_type mirror_target = {
+ .name = "mirror",
+ .version = {1, 14, 0},
+ .module = THIS_MODULE,
+ .ctr = mirror_ctr,
+ .dtr = mirror_dtr,
+ .map = mirror_map,
+ .end_io = mirror_end_io,
+ .presuspend = mirror_presuspend,
+ .postsuspend = mirror_postsuspend,
+ .resume = mirror_resume,
+ .status = mirror_status,
+ .iterate_devices = mirror_iterate_devices,
+};
+
+static int __init dm_mirror_init(void)
+{
+ int r;
+
+ r = dm_register_target(&mirror_target);
+ if (r < 0) {
+ DMERR("Failed to register mirror target");
+ goto bad_target;
+ }
+
+ return 0;
+
+bad_target:
+ return r;
+}
+
+static void __exit dm_mirror_exit(void)
+{
+ dm_unregister_target(&mirror_target);
+}
+
+/* Module hooks */
+module_init(dm_mirror_init);
+module_exit(dm_mirror_exit);
+
+MODULE_DESCRIPTION(DM_NAME " mirror target");
+MODULE_AUTHOR("Joe Thornber");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-region-hash.c b/drivers/md/dm-region-hash.c
new file mode 100644
index 000000000..adbdb4b67
--- /dev/null
+++ b/drivers/md/dm-region-hash.c
@@ -0,0 +1,724 @@
+/*
+ * Copyright (C) 2003 Sistina Software Limited.
+ * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/dm-dirty-log.h>
+#include <linux/dm-region-hash.h>
+
+#include <linux/ctype.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+
+#include "dm.h"
+
+#define DM_MSG_PREFIX "region hash"
+
+/*-----------------------------------------------------------------
+ * Region hash
+ *
+ * The mirror splits itself up into discrete regions. Each
+ * region can be in one of three states: clean, dirty,
+ * nosync. There is no need to put clean regions in the hash.
+ *
+ * In addition to being present in the hash table a region _may_
+ * be present on one of three lists.
+ *
+ * clean_regions: Regions on this list have no io pending to
+ * them, they are in sync, we are no longer interested in them,
+ * they are dull. dm_rh_update_states() will remove them from the
+ * hash table.
+ *
+ * quiesced_regions: These regions have been spun down, ready
+ * for recovery. rh_recovery_start() will remove regions from
+ * this list and hand them to kmirrord, which will schedule the
+ * recovery io with kcopyd.
+ *
+ * recovered_regions: Regions that kcopyd has successfully
+ * recovered. dm_rh_update_states() will now schedule any delayed
+ * io, up the recovery_count, and remove the region from the
+ * hash.
+ *
+ * There are 2 locks:
+ * A rw spin lock 'hash_lock' protects just the hash table,
+ * this is never held in write mode from interrupt context,
+ * which I believe means that we only have to disable irqs when
+ * doing a write lock.
+ *
+ * An ordinary spin lock 'region_lock' that protects the three
+ * lists in the region_hash, with the 'state', 'list' and
+ * 'delayed_bios' fields of the regions. This is used from irq
+ * context, so all other uses will have to suspend local irqs.
+ *---------------------------------------------------------------*/
+struct dm_region_hash {
+ uint32_t region_size;
+ unsigned int region_shift;
+
+ /* holds persistent region state */
+ struct dm_dirty_log *log;
+
+ /* hash table */
+ rwlock_t hash_lock;
+ unsigned int mask;
+ unsigned int nr_buckets;
+ unsigned int prime;
+ unsigned int shift;
+ struct list_head *buckets;
+
+ /*
+ * If there was a flush failure no regions can be marked clean.
+ */
+ int flush_failure;
+
+ unsigned int max_recovery; /* Max # of regions to recover in parallel */
+
+ spinlock_t region_lock;
+ atomic_t recovery_in_flight;
+ struct list_head clean_regions;
+ struct list_head quiesced_regions;
+ struct list_head recovered_regions;
+ struct list_head failed_recovered_regions;
+ struct semaphore recovery_count;
+
+ mempool_t region_pool;
+
+ void *context;
+ sector_t target_begin;
+
+ /* Callback function to schedule bios writes */
+ void (*dispatch_bios)(void *context, struct bio_list *bios);
+
+ /* Callback function to wakeup callers worker thread. */
+ void (*wakeup_workers)(void *context);
+
+ /* Callback function to wakeup callers recovery waiters. */
+ void (*wakeup_all_recovery_waiters)(void *context);
+};
+
+struct dm_region {
+ struct dm_region_hash *rh; /* FIXME: can we get rid of this ? */
+ region_t key;
+ int state;
+
+ struct list_head hash_list;
+ struct list_head list;
+
+ atomic_t pending;
+ struct bio_list delayed_bios;
+};
+
+/*
+ * Conversion fns
+ */
+static region_t dm_rh_sector_to_region(struct dm_region_hash *rh, sector_t sector)
+{
+ return sector >> rh->region_shift;
+}
+
+sector_t dm_rh_region_to_sector(struct dm_region_hash *rh, region_t region)
+{
+ return region << rh->region_shift;
+}
+EXPORT_SYMBOL_GPL(dm_rh_region_to_sector);
+
+region_t dm_rh_bio_to_region(struct dm_region_hash *rh, struct bio *bio)
+{
+ return dm_rh_sector_to_region(rh, bio->bi_iter.bi_sector -
+ rh->target_begin);
+}
+EXPORT_SYMBOL_GPL(dm_rh_bio_to_region);
+
+void *dm_rh_region_context(struct dm_region *reg)
+{
+ return reg->rh->context;
+}
+EXPORT_SYMBOL_GPL(dm_rh_region_context);
+
+region_t dm_rh_get_region_key(struct dm_region *reg)
+{
+ return reg->key;
+}
+EXPORT_SYMBOL_GPL(dm_rh_get_region_key);
+
+sector_t dm_rh_get_region_size(struct dm_region_hash *rh)
+{
+ return rh->region_size;
+}
+EXPORT_SYMBOL_GPL(dm_rh_get_region_size);
+
+/*
+ * FIXME: shall we pass in a structure instead of all these args to
+ * dm_region_hash_create()????
+ */
+#define RH_HASH_MULT 2654435387U
+#define RH_HASH_SHIFT 12
+
+#define MIN_REGIONS 64
+struct dm_region_hash *dm_region_hash_create(
+ void *context, void (*dispatch_bios)(void *context,
+ struct bio_list *bios),
+ void (*wakeup_workers)(void *context),
+ void (*wakeup_all_recovery_waiters)(void *context),
+ sector_t target_begin, unsigned int max_recovery,
+ struct dm_dirty_log *log, uint32_t region_size,
+ region_t nr_regions)
+{
+ struct dm_region_hash *rh;
+ unsigned int nr_buckets, max_buckets;
+ size_t i;
+ int ret;
+
+ /*
+ * Calculate a suitable number of buckets for our hash
+ * table.
+ */
+ max_buckets = nr_regions >> 6;
+ for (nr_buckets = 128u; nr_buckets < max_buckets; nr_buckets <<= 1)
+ ;
+ nr_buckets >>= 1;
+
+ rh = kzalloc(sizeof(*rh), GFP_KERNEL);
+ if (!rh) {
+ DMERR("unable to allocate region hash memory");
+ return ERR_PTR(-ENOMEM);
+ }
+
+ rh->context = context;
+ rh->dispatch_bios = dispatch_bios;
+ rh->wakeup_workers = wakeup_workers;
+ rh->wakeup_all_recovery_waiters = wakeup_all_recovery_waiters;
+ rh->target_begin = target_begin;
+ rh->max_recovery = max_recovery;
+ rh->log = log;
+ rh->region_size = region_size;
+ rh->region_shift = __ffs(region_size);
+ rwlock_init(&rh->hash_lock);
+ rh->mask = nr_buckets - 1;
+ rh->nr_buckets = nr_buckets;
+
+ rh->shift = RH_HASH_SHIFT;
+ rh->prime = RH_HASH_MULT;
+
+ rh->buckets = vmalloc(array_size(nr_buckets, sizeof(*rh->buckets)));
+ if (!rh->buckets) {
+ DMERR("unable to allocate region hash bucket memory");
+ kfree(rh);
+ return ERR_PTR(-ENOMEM);
+ }
+
+ for (i = 0; i < nr_buckets; i++)
+ INIT_LIST_HEAD(rh->buckets + i);
+
+ spin_lock_init(&rh->region_lock);
+ sema_init(&rh->recovery_count, 0);
+ atomic_set(&rh->recovery_in_flight, 0);
+ INIT_LIST_HEAD(&rh->clean_regions);
+ INIT_LIST_HEAD(&rh->quiesced_regions);
+ INIT_LIST_HEAD(&rh->recovered_regions);
+ INIT_LIST_HEAD(&rh->failed_recovered_regions);
+ rh->flush_failure = 0;
+
+ ret = mempool_init_kmalloc_pool(&rh->region_pool, MIN_REGIONS,
+ sizeof(struct dm_region));
+ if (ret) {
+ vfree(rh->buckets);
+ kfree(rh);
+ rh = ERR_PTR(-ENOMEM);
+ }
+
+ return rh;
+}
+EXPORT_SYMBOL_GPL(dm_region_hash_create);
+
+void dm_region_hash_destroy(struct dm_region_hash *rh)
+{
+ unsigned int h;
+ struct dm_region *reg, *nreg;
+
+ BUG_ON(!list_empty(&rh->quiesced_regions));
+ for (h = 0; h < rh->nr_buckets; h++) {
+ list_for_each_entry_safe(reg, nreg, rh->buckets + h,
+ hash_list) {
+ BUG_ON(atomic_read(&reg->pending));
+ mempool_free(reg, &rh->region_pool);
+ }
+ }
+
+ if (rh->log)
+ dm_dirty_log_destroy(rh->log);
+
+ mempool_exit(&rh->region_pool);
+ vfree(rh->buckets);
+ kfree(rh);
+}
+EXPORT_SYMBOL_GPL(dm_region_hash_destroy);
+
+struct dm_dirty_log *dm_rh_dirty_log(struct dm_region_hash *rh)
+{
+ return rh->log;
+}
+EXPORT_SYMBOL_GPL(dm_rh_dirty_log);
+
+static unsigned int rh_hash(struct dm_region_hash *rh, region_t region)
+{
+ return (unsigned int) ((region * rh->prime) >> rh->shift) & rh->mask;
+}
+
+static struct dm_region *__rh_lookup(struct dm_region_hash *rh, region_t region)
+{
+ struct dm_region *reg;
+ struct list_head *bucket = rh->buckets + rh_hash(rh, region);
+
+ list_for_each_entry(reg, bucket, hash_list)
+ if (reg->key == region)
+ return reg;
+
+ return NULL;
+}
+
+static void __rh_insert(struct dm_region_hash *rh, struct dm_region *reg)
+{
+ list_add(&reg->hash_list, rh->buckets + rh_hash(rh, reg->key));
+}
+
+static struct dm_region *__rh_alloc(struct dm_region_hash *rh, region_t region)
+{
+ struct dm_region *reg, *nreg;
+
+ nreg = mempool_alloc(&rh->region_pool, GFP_ATOMIC);
+ if (unlikely(!nreg))
+ nreg = kmalloc(sizeof(*nreg), GFP_NOIO | __GFP_NOFAIL);
+
+ nreg->state = rh->log->type->in_sync(rh->log, region, 1) ?
+ DM_RH_CLEAN : DM_RH_NOSYNC;
+ nreg->rh = rh;
+ nreg->key = region;
+ INIT_LIST_HEAD(&nreg->list);
+ atomic_set(&nreg->pending, 0);
+ bio_list_init(&nreg->delayed_bios);
+
+ write_lock_irq(&rh->hash_lock);
+ reg = __rh_lookup(rh, region);
+ if (reg)
+ /* We lost the race. */
+ mempool_free(nreg, &rh->region_pool);
+ else {
+ __rh_insert(rh, nreg);
+ if (nreg->state == DM_RH_CLEAN) {
+ spin_lock(&rh->region_lock);
+ list_add(&nreg->list, &rh->clean_regions);
+ spin_unlock(&rh->region_lock);
+ }
+
+ reg = nreg;
+ }
+ write_unlock_irq(&rh->hash_lock);
+
+ return reg;
+}
+
+static struct dm_region *__rh_find(struct dm_region_hash *rh, region_t region)
+{
+ struct dm_region *reg;
+
+ reg = __rh_lookup(rh, region);
+ if (!reg) {
+ read_unlock(&rh->hash_lock);
+ reg = __rh_alloc(rh, region);
+ read_lock(&rh->hash_lock);
+ }
+
+ return reg;
+}
+
+int dm_rh_get_state(struct dm_region_hash *rh, region_t region, int may_block)
+{
+ int r;
+ struct dm_region *reg;
+
+ read_lock(&rh->hash_lock);
+ reg = __rh_lookup(rh, region);
+ read_unlock(&rh->hash_lock);
+
+ if (reg)
+ return reg->state;
+
+ /*
+ * The region wasn't in the hash, so we fall back to the
+ * dirty log.
+ */
+ r = rh->log->type->in_sync(rh->log, region, may_block);
+
+ /*
+ * Any error from the dirty log (eg. -EWOULDBLOCK) gets
+ * taken as a DM_RH_NOSYNC
+ */
+ return r == 1 ? DM_RH_CLEAN : DM_RH_NOSYNC;
+}
+EXPORT_SYMBOL_GPL(dm_rh_get_state);
+
+static void complete_resync_work(struct dm_region *reg, int success)
+{
+ struct dm_region_hash *rh = reg->rh;
+
+ rh->log->type->set_region_sync(rh->log, reg->key, success);
+
+ /*
+ * Dispatch the bios before we call 'wake_up_all'.
+ * This is important because if we are suspending,
+ * we want to know that recovery is complete and
+ * the work queue is flushed. If we wake_up_all
+ * before we dispatch_bios (queue bios and call wake()),
+ * then we risk suspending before the work queue
+ * has been properly flushed.
+ */
+ rh->dispatch_bios(rh->context, &reg->delayed_bios);
+ if (atomic_dec_and_test(&rh->recovery_in_flight))
+ rh->wakeup_all_recovery_waiters(rh->context);
+ up(&rh->recovery_count);
+}
+
+/* dm_rh_mark_nosync
+ * @ms
+ * @bio
+ *
+ * The bio was written on some mirror(s) but failed on other mirror(s).
+ * We can successfully endio the bio but should avoid the region being
+ * marked clean by setting the state DM_RH_NOSYNC.
+ *
+ * This function is _not_ safe in interrupt context!
+ */
+void dm_rh_mark_nosync(struct dm_region_hash *rh, struct bio *bio)
+{
+ unsigned long flags;
+ struct dm_dirty_log *log = rh->log;
+ struct dm_region *reg;
+ region_t region = dm_rh_bio_to_region(rh, bio);
+ int recovering = 0;
+
+ if (bio->bi_opf & REQ_PREFLUSH) {
+ rh->flush_failure = 1;
+ return;
+ }
+
+ if (bio_op(bio) == REQ_OP_DISCARD)
+ return;
+
+ /* We must inform the log that the sync count has changed. */
+ log->type->set_region_sync(log, region, 0);
+
+ read_lock(&rh->hash_lock);
+ reg = __rh_find(rh, region);
+ read_unlock(&rh->hash_lock);
+
+ /* region hash entry should exist because write was in-flight */
+ BUG_ON(!reg);
+ BUG_ON(!list_empty(&reg->list));
+
+ spin_lock_irqsave(&rh->region_lock, flags);
+ /*
+ * Possible cases:
+ * 1) DM_RH_DIRTY
+ * 2) DM_RH_NOSYNC: was dirty, other preceding writes failed
+ * 3) DM_RH_RECOVERING: flushing pending writes
+ * Either case, the region should have not been connected to list.
+ */
+ recovering = (reg->state == DM_RH_RECOVERING);
+ reg->state = DM_RH_NOSYNC;
+ BUG_ON(!list_empty(&reg->list));
+ spin_unlock_irqrestore(&rh->region_lock, flags);
+
+ if (recovering)
+ complete_resync_work(reg, 0);
+}
+EXPORT_SYMBOL_GPL(dm_rh_mark_nosync);
+
+void dm_rh_update_states(struct dm_region_hash *rh, int errors_handled)
+{
+ struct dm_region *reg, *next;
+
+ LIST_HEAD(clean);
+ LIST_HEAD(recovered);
+ LIST_HEAD(failed_recovered);
+
+ /*
+ * Quickly grab the lists.
+ */
+ write_lock_irq(&rh->hash_lock);
+ spin_lock(&rh->region_lock);
+ if (!list_empty(&rh->clean_regions)) {
+ list_splice_init(&rh->clean_regions, &clean);
+
+ list_for_each_entry(reg, &clean, list)
+ list_del(&reg->hash_list);
+ }
+
+ if (!list_empty(&rh->recovered_regions)) {
+ list_splice_init(&rh->recovered_regions, &recovered);
+
+ list_for_each_entry(reg, &recovered, list)
+ list_del(&reg->hash_list);
+ }
+
+ if (!list_empty(&rh->failed_recovered_regions)) {
+ list_splice_init(&rh->failed_recovered_regions,
+ &failed_recovered);
+
+ list_for_each_entry(reg, &failed_recovered, list)
+ list_del(&reg->hash_list);
+ }
+
+ spin_unlock(&rh->region_lock);
+ write_unlock_irq(&rh->hash_lock);
+
+ /*
+ * All the regions on the recovered and clean lists have
+ * now been pulled out of the system, so no need to do
+ * any more locking.
+ */
+ list_for_each_entry_safe(reg, next, &recovered, list) {
+ rh->log->type->clear_region(rh->log, reg->key);
+ complete_resync_work(reg, 1);
+ mempool_free(reg, &rh->region_pool);
+ }
+
+ list_for_each_entry_safe(reg, next, &failed_recovered, list) {
+ complete_resync_work(reg, errors_handled ? 0 : 1);
+ mempool_free(reg, &rh->region_pool);
+ }
+
+ list_for_each_entry_safe(reg, next, &clean, list) {
+ rh->log->type->clear_region(rh->log, reg->key);
+ mempool_free(reg, &rh->region_pool);
+ }
+
+ rh->log->type->flush(rh->log);
+}
+EXPORT_SYMBOL_GPL(dm_rh_update_states);
+
+static void rh_inc(struct dm_region_hash *rh, region_t region)
+{
+ struct dm_region *reg;
+
+ read_lock(&rh->hash_lock);
+ reg = __rh_find(rh, region);
+
+ spin_lock_irq(&rh->region_lock);
+ atomic_inc(&reg->pending);
+
+ if (reg->state == DM_RH_CLEAN) {
+ reg->state = DM_RH_DIRTY;
+ list_del_init(&reg->list); /* take off the clean list */
+ spin_unlock_irq(&rh->region_lock);
+
+ rh->log->type->mark_region(rh->log, reg->key);
+ } else
+ spin_unlock_irq(&rh->region_lock);
+
+
+ read_unlock(&rh->hash_lock);
+}
+
+void dm_rh_inc_pending(struct dm_region_hash *rh, struct bio_list *bios)
+{
+ struct bio *bio;
+
+ for (bio = bios->head; bio; bio = bio->bi_next) {
+ if (bio->bi_opf & REQ_PREFLUSH || bio_op(bio) == REQ_OP_DISCARD)
+ continue;
+ rh_inc(rh, dm_rh_bio_to_region(rh, bio));
+ }
+}
+EXPORT_SYMBOL_GPL(dm_rh_inc_pending);
+
+void dm_rh_dec(struct dm_region_hash *rh, region_t region)
+{
+ unsigned long flags;
+ struct dm_region *reg;
+ int should_wake = 0;
+
+ read_lock(&rh->hash_lock);
+ reg = __rh_lookup(rh, region);
+ read_unlock(&rh->hash_lock);
+
+ spin_lock_irqsave(&rh->region_lock, flags);
+ if (atomic_dec_and_test(&reg->pending)) {
+ /*
+ * There is no pending I/O for this region.
+ * We can move the region to corresponding list for next action.
+ * At this point, the region is not yet connected to any list.
+ *
+ * If the state is DM_RH_NOSYNC, the region should be kept off
+ * from clean list.
+ * The hash entry for DM_RH_NOSYNC will remain in memory
+ * until the region is recovered or the map is reloaded.
+ */
+
+ /* do nothing for DM_RH_NOSYNC */
+ if (unlikely(rh->flush_failure)) {
+ /*
+ * If a write flush failed some time ago, we
+ * don't know whether or not this write made it
+ * to the disk, so we must resync the device.
+ */
+ reg->state = DM_RH_NOSYNC;
+ } else if (reg->state == DM_RH_RECOVERING) {
+ list_add_tail(&reg->list, &rh->quiesced_regions);
+ } else if (reg->state == DM_RH_DIRTY) {
+ reg->state = DM_RH_CLEAN;
+ list_add(&reg->list, &rh->clean_regions);
+ }
+ should_wake = 1;
+ }
+ spin_unlock_irqrestore(&rh->region_lock, flags);
+
+ if (should_wake)
+ rh->wakeup_workers(rh->context);
+}
+EXPORT_SYMBOL_GPL(dm_rh_dec);
+
+/*
+ * Starts quiescing a region in preparation for recovery.
+ */
+static int __rh_recovery_prepare(struct dm_region_hash *rh)
+{
+ int r;
+ region_t region;
+ struct dm_region *reg;
+
+ /*
+ * Ask the dirty log what's next.
+ */
+ r = rh->log->type->get_resync_work(rh->log, &region);
+ if (r <= 0)
+ return r;
+
+ /*
+ * Get this region, and start it quiescing by setting the
+ * recovering flag.
+ */
+ read_lock(&rh->hash_lock);
+ reg = __rh_find(rh, region);
+ read_unlock(&rh->hash_lock);
+
+ spin_lock_irq(&rh->region_lock);
+ reg->state = DM_RH_RECOVERING;
+
+ /* Already quiesced ? */
+ if (atomic_read(&reg->pending))
+ list_del_init(&reg->list);
+ else
+ list_move(&reg->list, &rh->quiesced_regions);
+
+ spin_unlock_irq(&rh->region_lock);
+
+ return 1;
+}
+
+void dm_rh_recovery_prepare(struct dm_region_hash *rh)
+{
+ /* Extra reference to avoid race with dm_rh_stop_recovery */
+ atomic_inc(&rh->recovery_in_flight);
+
+ while (!down_trylock(&rh->recovery_count)) {
+ atomic_inc(&rh->recovery_in_flight);
+ if (__rh_recovery_prepare(rh) <= 0) {
+ atomic_dec(&rh->recovery_in_flight);
+ up(&rh->recovery_count);
+ break;
+ }
+ }
+
+ /* Drop the extra reference */
+ if (atomic_dec_and_test(&rh->recovery_in_flight))
+ rh->wakeup_all_recovery_waiters(rh->context);
+}
+EXPORT_SYMBOL_GPL(dm_rh_recovery_prepare);
+
+/*
+ * Returns any quiesced regions.
+ */
+struct dm_region *dm_rh_recovery_start(struct dm_region_hash *rh)
+{
+ struct dm_region *reg = NULL;
+
+ spin_lock_irq(&rh->region_lock);
+ if (!list_empty(&rh->quiesced_regions)) {
+ reg = list_entry(rh->quiesced_regions.next,
+ struct dm_region, list);
+ list_del_init(&reg->list); /* remove from the quiesced list */
+ }
+ spin_unlock_irq(&rh->region_lock);
+
+ return reg;
+}
+EXPORT_SYMBOL_GPL(dm_rh_recovery_start);
+
+void dm_rh_recovery_end(struct dm_region *reg, int success)
+{
+ struct dm_region_hash *rh = reg->rh;
+
+ spin_lock_irq(&rh->region_lock);
+ if (success)
+ list_add(&reg->list, &reg->rh->recovered_regions);
+ else
+ list_add(&reg->list, &reg->rh->failed_recovered_regions);
+
+ spin_unlock_irq(&rh->region_lock);
+
+ rh->wakeup_workers(rh->context);
+}
+EXPORT_SYMBOL_GPL(dm_rh_recovery_end);
+
+/* Return recovery in flight count. */
+int dm_rh_recovery_in_flight(struct dm_region_hash *rh)
+{
+ return atomic_read(&rh->recovery_in_flight);
+}
+EXPORT_SYMBOL_GPL(dm_rh_recovery_in_flight);
+
+int dm_rh_flush(struct dm_region_hash *rh)
+{
+ return rh->log->type->flush(rh->log);
+}
+EXPORT_SYMBOL_GPL(dm_rh_flush);
+
+void dm_rh_delay(struct dm_region_hash *rh, struct bio *bio)
+{
+ struct dm_region *reg;
+
+ read_lock(&rh->hash_lock);
+ reg = __rh_find(rh, dm_rh_bio_to_region(rh, bio));
+ bio_list_add(&reg->delayed_bios, bio);
+ read_unlock(&rh->hash_lock);
+}
+EXPORT_SYMBOL_GPL(dm_rh_delay);
+
+void dm_rh_stop_recovery(struct dm_region_hash *rh)
+{
+ int i;
+
+ /* wait for any recovering regions */
+ for (i = 0; i < rh->max_recovery; i++)
+ down(&rh->recovery_count);
+}
+EXPORT_SYMBOL_GPL(dm_rh_stop_recovery);
+
+void dm_rh_start_recovery(struct dm_region_hash *rh)
+{
+ int i;
+
+ for (i = 0; i < rh->max_recovery; i++)
+ up(&rh->recovery_count);
+
+ rh->wakeup_workers(rh->context);
+}
+EXPORT_SYMBOL_GPL(dm_rh_start_recovery);
+
+MODULE_DESCRIPTION(DM_NAME " region hash");
+MODULE_AUTHOR("Joe Thornber/Heinz Mauelshagen <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-rq.c b/drivers/md/dm-rq.c
new file mode 100644
index 000000000..80f46e01b
--- /dev/null
+++ b/drivers/md/dm-rq.c
@@ -0,0 +1,596 @@
+/*
+ * Copyright (C) 2016 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-core.h"
+#include "dm-rq.h"
+
+#include <linux/blk-mq.h>
+
+#define DM_MSG_PREFIX "core-rq"
+
+/*
+ * One of these is allocated per request.
+ */
+struct dm_rq_target_io {
+ struct mapped_device *md;
+ struct dm_target *ti;
+ struct request *orig, *clone;
+ struct kthread_work work;
+ blk_status_t error;
+ union map_info info;
+ struct dm_stats_aux stats_aux;
+ unsigned long duration_jiffies;
+ unsigned int n_sectors;
+ unsigned int completed;
+};
+
+#define DM_MQ_NR_HW_QUEUES 1
+#define DM_MQ_QUEUE_DEPTH 2048
+static unsigned int dm_mq_nr_hw_queues = DM_MQ_NR_HW_QUEUES;
+static unsigned int dm_mq_queue_depth = DM_MQ_QUEUE_DEPTH;
+
+/*
+ * Request-based DM's mempools' reserved IOs set by the user.
+ */
+#define RESERVED_REQUEST_BASED_IOS 256
+static unsigned int reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
+
+unsigned int dm_get_reserved_rq_based_ios(void)
+{
+ return __dm_get_module_param(&reserved_rq_based_ios,
+ RESERVED_REQUEST_BASED_IOS, DM_RESERVED_MAX_IOS);
+}
+
+static unsigned int dm_get_blk_mq_nr_hw_queues(void)
+{
+ return __dm_get_module_param(&dm_mq_nr_hw_queues, 1, 32);
+}
+
+static unsigned int dm_get_blk_mq_queue_depth(void)
+{
+ return __dm_get_module_param(&dm_mq_queue_depth,
+ DM_MQ_QUEUE_DEPTH, BLK_MQ_MAX_DEPTH);
+}
+
+int dm_request_based(struct mapped_device *md)
+{
+ return queue_is_mq(md->queue);
+}
+
+void dm_start_queue(struct request_queue *q)
+{
+ blk_mq_unquiesce_queue(q);
+ blk_mq_kick_requeue_list(q);
+}
+
+void dm_stop_queue(struct request_queue *q)
+{
+ blk_mq_quiesce_queue(q);
+}
+
+/*
+ * Partial completion handling for request-based dm
+ */
+static void end_clone_bio(struct bio *clone)
+{
+ struct dm_rq_clone_bio_info *info =
+ container_of(clone, struct dm_rq_clone_bio_info, clone);
+ struct dm_rq_target_io *tio = info->tio;
+ unsigned int nr_bytes = info->orig->bi_iter.bi_size;
+ blk_status_t error = clone->bi_status;
+ bool is_last = !clone->bi_next;
+
+ bio_put(clone);
+
+ if (tio->error)
+ /*
+ * An error has already been detected on the request.
+ * Once error occurred, just let clone->end_io() handle
+ * the remainder.
+ */
+ return;
+ else if (error) {
+ /*
+ * Don't notice the error to the upper layer yet.
+ * The error handling decision is made by the target driver,
+ * when the request is completed.
+ */
+ tio->error = error;
+ goto exit;
+ }
+
+ /*
+ * I/O for the bio successfully completed.
+ * Notice the data completion to the upper layer.
+ */
+ tio->completed += nr_bytes;
+
+ /*
+ * Update the original request.
+ * Do not use blk_mq_end_request() here, because it may complete
+ * the original request before the clone, and break the ordering.
+ */
+ if (is_last)
+ exit:
+ blk_update_request(tio->orig, BLK_STS_OK, tio->completed);
+}
+
+static struct dm_rq_target_io *tio_from_request(struct request *rq)
+{
+ return blk_mq_rq_to_pdu(rq);
+}
+
+static void rq_end_stats(struct mapped_device *md, struct request *orig)
+{
+ if (unlikely(dm_stats_used(&md->stats))) {
+ struct dm_rq_target_io *tio = tio_from_request(orig);
+ tio->duration_jiffies = jiffies - tio->duration_jiffies;
+ dm_stats_account_io(&md->stats, rq_data_dir(orig),
+ blk_rq_pos(orig), tio->n_sectors, true,
+ tio->duration_jiffies, &tio->stats_aux);
+ }
+}
+
+/*
+ * Don't touch any member of the md after calling this function because
+ * the md may be freed in dm_put() at the end of this function.
+ * Or do dm_get() before calling this function and dm_put() later.
+ */
+static void rq_completed(struct mapped_device *md)
+{
+ /*
+ * dm_put() must be at the end of this function. See the comment above
+ */
+ dm_put(md);
+}
+
+/*
+ * Complete the clone and the original request.
+ * Must be called without clone's queue lock held,
+ * see end_clone_request() for more details.
+ */
+static void dm_end_request(struct request *clone, blk_status_t error)
+{
+ struct dm_rq_target_io *tio = clone->end_io_data;
+ struct mapped_device *md = tio->md;
+ struct request *rq = tio->orig;
+
+ blk_rq_unprep_clone(clone);
+ tio->ti->type->release_clone_rq(clone, NULL);
+
+ rq_end_stats(md, rq);
+ blk_mq_end_request(rq, error);
+ rq_completed(md);
+}
+
+static void __dm_mq_kick_requeue_list(struct request_queue *q, unsigned long msecs)
+{
+ blk_mq_delay_kick_requeue_list(q, msecs);
+}
+
+void dm_mq_kick_requeue_list(struct mapped_device *md)
+{
+ __dm_mq_kick_requeue_list(md->queue, 0);
+}
+EXPORT_SYMBOL(dm_mq_kick_requeue_list);
+
+static void dm_mq_delay_requeue_request(struct request *rq, unsigned long msecs)
+{
+ blk_mq_requeue_request(rq, false);
+ __dm_mq_kick_requeue_list(rq->q, msecs);
+}
+
+static void dm_requeue_original_request(struct dm_rq_target_io *tio, bool delay_requeue)
+{
+ struct mapped_device *md = tio->md;
+ struct request *rq = tio->orig;
+ unsigned long delay_ms = delay_requeue ? 100 : 0;
+
+ rq_end_stats(md, rq);
+ if (tio->clone) {
+ blk_rq_unprep_clone(tio->clone);
+ tio->ti->type->release_clone_rq(tio->clone, NULL);
+ }
+
+ dm_mq_delay_requeue_request(rq, delay_ms);
+ rq_completed(md);
+}
+
+static void dm_done(struct request *clone, blk_status_t error, bool mapped)
+{
+ int r = DM_ENDIO_DONE;
+ struct dm_rq_target_io *tio = clone->end_io_data;
+ dm_request_endio_fn rq_end_io = NULL;
+
+ if (tio->ti) {
+ rq_end_io = tio->ti->type->rq_end_io;
+
+ if (mapped && rq_end_io)
+ r = rq_end_io(tio->ti, clone, error, &tio->info);
+ }
+
+ if (unlikely(error == BLK_STS_TARGET)) {
+ if (req_op(clone) == REQ_OP_DISCARD &&
+ !clone->q->limits.max_discard_sectors)
+ disable_discard(tio->md);
+ else if (req_op(clone) == REQ_OP_WRITE_ZEROES &&
+ !clone->q->limits.max_write_zeroes_sectors)
+ disable_write_zeroes(tio->md);
+ }
+
+ switch (r) {
+ case DM_ENDIO_DONE:
+ /* The target wants to complete the I/O */
+ dm_end_request(clone, error);
+ break;
+ case DM_ENDIO_INCOMPLETE:
+ /* The target will handle the I/O */
+ return;
+ case DM_ENDIO_REQUEUE:
+ /* The target wants to requeue the I/O */
+ dm_requeue_original_request(tio, false);
+ break;
+ case DM_ENDIO_DELAY_REQUEUE:
+ /* The target wants to requeue the I/O after a delay */
+ dm_requeue_original_request(tio, true);
+ break;
+ default:
+ DMCRIT("unimplemented target endio return value: %d", r);
+ BUG();
+ }
+}
+
+/*
+ * Request completion handler for request-based dm
+ */
+static void dm_softirq_done(struct request *rq)
+{
+ bool mapped = true;
+ struct dm_rq_target_io *tio = tio_from_request(rq);
+ struct request *clone = tio->clone;
+
+ if (!clone) {
+ struct mapped_device *md = tio->md;
+
+ rq_end_stats(md, rq);
+ blk_mq_end_request(rq, tio->error);
+ rq_completed(md);
+ return;
+ }
+
+ if (rq->rq_flags & RQF_FAILED)
+ mapped = false;
+
+ dm_done(clone, tio->error, mapped);
+}
+
+/*
+ * Complete the clone and the original request with the error status
+ * through softirq context.
+ */
+static void dm_complete_request(struct request *rq, blk_status_t error)
+{
+ struct dm_rq_target_io *tio = tio_from_request(rq);
+
+ tio->error = error;
+ if (likely(!blk_should_fake_timeout(rq->q)))
+ blk_mq_complete_request(rq);
+}
+
+/*
+ * Complete the not-mapped clone and the original request with the error status
+ * through softirq context.
+ * Target's rq_end_io() function isn't called.
+ * This may be used when the target's clone_and_map_rq() function fails.
+ */
+static void dm_kill_unmapped_request(struct request *rq, blk_status_t error)
+{
+ rq->rq_flags |= RQF_FAILED;
+ dm_complete_request(rq, error);
+}
+
+static enum rq_end_io_ret end_clone_request(struct request *clone,
+ blk_status_t error)
+{
+ struct dm_rq_target_io *tio = clone->end_io_data;
+
+ dm_complete_request(tio->orig, error);
+ return RQ_END_IO_NONE;
+}
+
+static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
+ void *data)
+{
+ struct dm_rq_target_io *tio = data;
+ struct dm_rq_clone_bio_info *info =
+ container_of(bio, struct dm_rq_clone_bio_info, clone);
+
+ info->orig = bio_orig;
+ info->tio = tio;
+ bio->bi_end_io = end_clone_bio;
+
+ return 0;
+}
+
+static int setup_clone(struct request *clone, struct request *rq,
+ struct dm_rq_target_io *tio, gfp_t gfp_mask)
+{
+ int r;
+
+ r = blk_rq_prep_clone(clone, rq, &tio->md->mempools->bs, gfp_mask,
+ dm_rq_bio_constructor, tio);
+ if (r)
+ return r;
+
+ clone->end_io = end_clone_request;
+ clone->end_io_data = tio;
+
+ tio->clone = clone;
+
+ return 0;
+}
+
+static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
+ struct mapped_device *md)
+{
+ tio->md = md;
+ tio->ti = NULL;
+ tio->clone = NULL;
+ tio->orig = rq;
+ tio->error = 0;
+ tio->completed = 0;
+ /*
+ * Avoid initializing info for blk-mq; it passes
+ * target-specific data through info.ptr
+ * (see: dm_mq_init_request)
+ */
+ if (!md->init_tio_pdu)
+ memset(&tio->info, 0, sizeof(tio->info));
+}
+
+/*
+ * Returns:
+ * DM_MAPIO_* : the request has been processed as indicated
+ * DM_MAPIO_REQUEUE : the original request needs to be immediately requeued
+ * < 0 : the request was completed due to failure
+ */
+static int map_request(struct dm_rq_target_io *tio)
+{
+ int r;
+ struct dm_target *ti = tio->ti;
+ struct mapped_device *md = tio->md;
+ struct request *rq = tio->orig;
+ struct request *clone = NULL;
+ blk_status_t ret;
+
+ r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
+ switch (r) {
+ case DM_MAPIO_SUBMITTED:
+ /* The target has taken the I/O to submit by itself later */
+ break;
+ case DM_MAPIO_REMAPPED:
+ if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
+ /* -ENOMEM */
+ ti->type->release_clone_rq(clone, &tio->info);
+ return DM_MAPIO_REQUEUE;
+ }
+
+ /* The target has remapped the I/O so dispatch it */
+ trace_block_rq_remap(clone, disk_devt(dm_disk(md)),
+ blk_rq_pos(rq));
+ ret = blk_insert_cloned_request(clone);
+ switch (ret) {
+ case BLK_STS_OK:
+ break;
+ case BLK_STS_RESOURCE:
+ case BLK_STS_DEV_RESOURCE:
+ blk_rq_unprep_clone(clone);
+ blk_mq_cleanup_rq(clone);
+ tio->ti->type->release_clone_rq(clone, &tio->info);
+ tio->clone = NULL;
+ return DM_MAPIO_REQUEUE;
+ default:
+ /* must complete clone in terms of original request */
+ dm_complete_request(rq, ret);
+ }
+ break;
+ case DM_MAPIO_REQUEUE:
+ /* The target wants to requeue the I/O */
+ break;
+ case DM_MAPIO_DELAY_REQUEUE:
+ /* The target wants to requeue the I/O after a delay */
+ dm_requeue_original_request(tio, true);
+ break;
+ case DM_MAPIO_KILL:
+ /* The target wants to complete the I/O */
+ dm_kill_unmapped_request(rq, BLK_STS_IOERR);
+ break;
+ default:
+ DMCRIT("unimplemented target map return value: %d", r);
+ BUG();
+ }
+
+ return r;
+}
+
+/* DEPRECATED: previously used for request-based merge heuristic in dm_request_fn() */
+ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
+{
+ return sprintf(buf, "%u\n", 0);
+}
+
+ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
+ const char *buf, size_t count)
+{
+ return count;
+}
+
+static void dm_start_request(struct mapped_device *md, struct request *orig)
+{
+ blk_mq_start_request(orig);
+
+ if (unlikely(dm_stats_used(&md->stats))) {
+ struct dm_rq_target_io *tio = tio_from_request(orig);
+ tio->duration_jiffies = jiffies;
+ tio->n_sectors = blk_rq_sectors(orig);
+ dm_stats_account_io(&md->stats, rq_data_dir(orig),
+ blk_rq_pos(orig), tio->n_sectors, false, 0,
+ &tio->stats_aux);
+ }
+
+ /*
+ * Hold the md reference here for the in-flight I/O.
+ * We can't rely on the reference count by device opener,
+ * because the device may be closed during the request completion
+ * when all bios are completed.
+ * See the comment in rq_completed() too.
+ */
+ dm_get(md);
+}
+
+static int dm_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
+ unsigned int hctx_idx, unsigned int numa_node)
+{
+ struct mapped_device *md = set->driver_data;
+ struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
+
+ /*
+ * Must initialize md member of tio, otherwise it won't
+ * be available in dm_mq_queue_rq.
+ */
+ tio->md = md;
+
+ if (md->init_tio_pdu) {
+ /* target-specific per-io data is immediately after the tio */
+ tio->info.ptr = tio + 1;
+ }
+
+ return 0;
+}
+
+static blk_status_t dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
+ const struct blk_mq_queue_data *bd)
+{
+ struct request *rq = bd->rq;
+ struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
+ struct mapped_device *md = tio->md;
+ struct dm_target *ti = md->immutable_target;
+
+ /*
+ * blk-mq's unquiesce may come from outside events, such as
+ * elevator switch, updating nr_requests or others, and request may
+ * come during suspend, so simply ask for blk-mq to requeue it.
+ */
+ if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)))
+ return BLK_STS_RESOURCE;
+
+ if (unlikely(!ti)) {
+ int srcu_idx;
+ struct dm_table *map;
+
+ map = dm_get_live_table(md, &srcu_idx);
+ if (unlikely(!map)) {
+ dm_put_live_table(md, srcu_idx);
+ return BLK_STS_RESOURCE;
+ }
+ ti = dm_table_find_target(map, 0);
+ dm_put_live_table(md, srcu_idx);
+ }
+
+ if (ti->type->busy && ti->type->busy(ti))
+ return BLK_STS_RESOURCE;
+
+ dm_start_request(md, rq);
+
+ /* Init tio using md established in .init_request */
+ init_tio(tio, rq, md);
+
+ /*
+ * Establish tio->ti before calling map_request().
+ */
+ tio->ti = ti;
+
+ /* Direct call is fine since .queue_rq allows allocations */
+ if (map_request(tio) == DM_MAPIO_REQUEUE) {
+ /* Undo dm_start_request() before requeuing */
+ rq_end_stats(md, rq);
+ rq_completed(md);
+ return BLK_STS_RESOURCE;
+ }
+
+ return BLK_STS_OK;
+}
+
+static const struct blk_mq_ops dm_mq_ops = {
+ .queue_rq = dm_mq_queue_rq,
+ .complete = dm_softirq_done,
+ .init_request = dm_mq_init_request,
+};
+
+int dm_mq_init_request_queue(struct mapped_device *md, struct dm_table *t)
+{
+ struct dm_target *immutable_tgt;
+ int err;
+
+ md->tag_set = kzalloc_node(sizeof(struct blk_mq_tag_set), GFP_KERNEL, md->numa_node_id);
+ if (!md->tag_set)
+ return -ENOMEM;
+
+ md->tag_set->ops = &dm_mq_ops;
+ md->tag_set->queue_depth = dm_get_blk_mq_queue_depth();
+ md->tag_set->numa_node = md->numa_node_id;
+ md->tag_set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING;
+ md->tag_set->nr_hw_queues = dm_get_blk_mq_nr_hw_queues();
+ md->tag_set->driver_data = md;
+
+ md->tag_set->cmd_size = sizeof(struct dm_rq_target_io);
+ immutable_tgt = dm_table_get_immutable_target(t);
+ if (immutable_tgt && immutable_tgt->per_io_data_size) {
+ /* any target-specific per-io data is immediately after the tio */
+ md->tag_set->cmd_size += immutable_tgt->per_io_data_size;
+ md->init_tio_pdu = true;
+ }
+
+ err = blk_mq_alloc_tag_set(md->tag_set);
+ if (err)
+ goto out_kfree_tag_set;
+
+ err = blk_mq_init_allocated_queue(md->tag_set, md->queue);
+ if (err)
+ goto out_tag_set;
+ return 0;
+
+out_tag_set:
+ blk_mq_free_tag_set(md->tag_set);
+out_kfree_tag_set:
+ kfree(md->tag_set);
+ md->tag_set = NULL;
+
+ return err;
+}
+
+void dm_mq_cleanup_mapped_device(struct mapped_device *md)
+{
+ if (md->tag_set) {
+ blk_mq_free_tag_set(md->tag_set);
+ kfree(md->tag_set);
+ md->tag_set = NULL;
+ }
+}
+
+module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
+
+/* Unused, but preserved for userspace compatibility */
+static bool use_blk_mq = true;
+module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
+
+module_param(dm_mq_nr_hw_queues, uint, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(dm_mq_nr_hw_queues, "Number of hardware queues for request-based dm-mq devices");
+
+module_param(dm_mq_queue_depth, uint, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(dm_mq_queue_depth, "Queue depth for request-based dm-mq devices");
diff --git a/drivers/md/dm-rq.h b/drivers/md/dm-rq.h
new file mode 100644
index 000000000..2c97ad145
--- /dev/null
+++ b/drivers/md/dm-rq.h
@@ -0,0 +1,47 @@
+/*
+ * Internal header file for device mapper
+ *
+ * Copyright (C) 2016 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the LGPL.
+ */
+
+#ifndef DM_RQ_INTERNAL_H
+#define DM_RQ_INTERNAL_H
+
+#include <linux/bio.h>
+#include <linux/kthread.h>
+
+#include "dm-stats.h"
+
+struct mapped_device;
+
+/*
+ * For request-based dm - the bio clones we allocate are embedded in these
+ * structs.
+ *
+ * We allocate these with bio_alloc_bioset, using the front_pad parameter when
+ * the bioset is created - this means the bio has to come at the end of the
+ * struct.
+ */
+struct dm_rq_clone_bio_info {
+ struct bio *orig;
+ struct dm_rq_target_io *tio;
+ struct bio clone;
+};
+
+int dm_mq_init_request_queue(struct mapped_device *md, struct dm_table *t);
+void dm_mq_cleanup_mapped_device(struct mapped_device *md);
+
+void dm_start_queue(struct request_queue *q);
+void dm_stop_queue(struct request_queue *q);
+
+void dm_mq_kick_requeue_list(struct mapped_device *md);
+
+unsigned int dm_get_reserved_rq_based_ios(void);
+
+ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf);
+ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
+ const char *buf, size_t count);
+
+#endif
diff --git a/drivers/md/dm-snap-persistent.c b/drivers/md/dm-snap-persistent.c
new file mode 100644
index 000000000..80b95746a
--- /dev/null
+++ b/drivers/md/dm-snap-persistent.c
@@ -0,0 +1,972 @@
+/*
+ * Copyright (C) 2001-2002 Sistina Software (UK) Limited.
+ * Copyright (C) 2006-2008 Red Hat GmbH
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-exception-store.h"
+
+#include <linux/ctype.h>
+#include <linux/mm.h>
+#include <linux/pagemap.h>
+#include <linux/vmalloc.h>
+#include <linux/export.h>
+#include <linux/slab.h>
+#include <linux/dm-io.h>
+#include <linux/dm-bufio.h>
+
+#define DM_MSG_PREFIX "persistent snapshot"
+#define DM_CHUNK_SIZE_DEFAULT_SECTORS 32U /* 16KB */
+
+#define DM_PREFETCH_CHUNKS 12
+
+/*-----------------------------------------------------------------
+ * Persistent snapshots, by persistent we mean that the snapshot
+ * will survive a reboot.
+ *---------------------------------------------------------------*/
+
+/*
+ * We need to store a record of which parts of the origin have
+ * been copied to the snapshot device. The snapshot code
+ * requires that we copy exception chunks to chunk aligned areas
+ * of the COW store. It makes sense therefore, to store the
+ * metadata in chunk size blocks.
+ *
+ * There is no backward or forward compatibility implemented,
+ * snapshots with different disk versions than the kernel will
+ * not be usable. It is expected that "lvcreate" will blank out
+ * the start of a fresh COW device before calling the snapshot
+ * constructor.
+ *
+ * The first chunk of the COW device just contains the header.
+ * After this there is a chunk filled with exception metadata,
+ * followed by as many exception chunks as can fit in the
+ * metadata areas.
+ *
+ * All on disk structures are in little-endian format. The end
+ * of the exceptions info is indicated by an exception with a
+ * new_chunk of 0, which is invalid since it would point to the
+ * header chunk.
+ */
+
+/*
+ * Magic for persistent snapshots: "SnAp" - Feeble isn't it.
+ */
+#define SNAP_MAGIC 0x70416e53
+
+/*
+ * The on-disk version of the metadata.
+ */
+#define SNAPSHOT_DISK_VERSION 1
+
+#define NUM_SNAPSHOT_HDR_CHUNKS 1
+
+struct disk_header {
+ __le32 magic;
+
+ /*
+ * Is this snapshot valid. There is no way of recovering
+ * an invalid snapshot.
+ */
+ __le32 valid;
+
+ /*
+ * Simple, incrementing version. no backward
+ * compatibility.
+ */
+ __le32 version;
+
+ /* In sectors */
+ __le32 chunk_size;
+} __packed;
+
+struct disk_exception {
+ __le64 old_chunk;
+ __le64 new_chunk;
+} __packed;
+
+struct core_exception {
+ uint64_t old_chunk;
+ uint64_t new_chunk;
+};
+
+struct commit_callback {
+ void (*callback)(void *, int success);
+ void *context;
+};
+
+/*
+ * The top level structure for a persistent exception store.
+ */
+struct pstore {
+ struct dm_exception_store *store;
+ int version;
+ int valid;
+ uint32_t exceptions_per_area;
+
+ /*
+ * Now that we have an asynchronous kcopyd there is no
+ * need for large chunk sizes, so it wont hurt to have a
+ * whole chunks worth of metadata in memory at once.
+ */
+ void *area;
+
+ /*
+ * An area of zeros used to clear the next area.
+ */
+ void *zero_area;
+
+ /*
+ * An area used for header. The header can be written
+ * concurrently with metadata (when invalidating the snapshot),
+ * so it needs a separate buffer.
+ */
+ void *header_area;
+
+ /*
+ * Used to keep track of which metadata area the data in
+ * 'chunk' refers to.
+ */
+ chunk_t current_area;
+
+ /*
+ * The next free chunk for an exception.
+ *
+ * When creating exceptions, all the chunks here and above are
+ * free. It holds the next chunk to be allocated. On rare
+ * occasions (e.g. after a system crash) holes can be left in
+ * the exception store because chunks can be committed out of
+ * order.
+ *
+ * When merging exceptions, it does not necessarily mean all the
+ * chunks here and above are free. It holds the value it would
+ * have held if all chunks had been committed in order of
+ * allocation. Consequently the value may occasionally be
+ * slightly too low, but since it's only used for 'status' and
+ * it can never reach its minimum value too early this doesn't
+ * matter.
+ */
+
+ chunk_t next_free;
+
+ /*
+ * The index of next free exception in the current
+ * metadata area.
+ */
+ uint32_t current_committed;
+
+ atomic_t pending_count;
+ uint32_t callback_count;
+ struct commit_callback *callbacks;
+ struct dm_io_client *io_client;
+
+ struct workqueue_struct *metadata_wq;
+};
+
+static int alloc_area(struct pstore *ps)
+{
+ int r = -ENOMEM;
+ size_t len;
+
+ len = ps->store->chunk_size << SECTOR_SHIFT;
+
+ /*
+ * Allocate the chunk_size block of memory that will hold
+ * a single metadata area.
+ */
+ ps->area = vmalloc(len);
+ if (!ps->area)
+ goto err_area;
+
+ ps->zero_area = vzalloc(len);
+ if (!ps->zero_area)
+ goto err_zero_area;
+
+ ps->header_area = vmalloc(len);
+ if (!ps->header_area)
+ goto err_header_area;
+
+ return 0;
+
+err_header_area:
+ vfree(ps->zero_area);
+
+err_zero_area:
+ vfree(ps->area);
+
+err_area:
+ return r;
+}
+
+static void free_area(struct pstore *ps)
+{
+ vfree(ps->area);
+ ps->area = NULL;
+ vfree(ps->zero_area);
+ ps->zero_area = NULL;
+ vfree(ps->header_area);
+ ps->header_area = NULL;
+}
+
+struct mdata_req {
+ struct dm_io_region *where;
+ struct dm_io_request *io_req;
+ struct work_struct work;
+ int result;
+};
+
+static void do_metadata(struct work_struct *work)
+{
+ struct mdata_req *req = container_of(work, struct mdata_req, work);
+
+ req->result = dm_io(req->io_req, 1, req->where, NULL);
+}
+
+/*
+ * Read or write a chunk aligned and sized block of data from a device.
+ */
+static int chunk_io(struct pstore *ps, void *area, chunk_t chunk, blk_opf_t opf,
+ int metadata)
+{
+ struct dm_io_region where = {
+ .bdev = dm_snap_cow(ps->store->snap)->bdev,
+ .sector = ps->store->chunk_size * chunk,
+ .count = ps->store->chunk_size,
+ };
+ struct dm_io_request io_req = {
+ .bi_opf = opf,
+ .mem.type = DM_IO_VMA,
+ .mem.ptr.vma = area,
+ .client = ps->io_client,
+ .notify.fn = NULL,
+ };
+ struct mdata_req req;
+
+ if (!metadata)
+ return dm_io(&io_req, 1, &where, NULL);
+
+ req.where = &where;
+ req.io_req = &io_req;
+
+ /*
+ * Issue the synchronous I/O from a different thread
+ * to avoid submit_bio_noacct recursion.
+ */
+ INIT_WORK_ONSTACK(&req.work, do_metadata);
+ queue_work(ps->metadata_wq, &req.work);
+ flush_workqueue(ps->metadata_wq);
+ destroy_work_on_stack(&req.work);
+
+ return req.result;
+}
+
+/*
+ * Convert a metadata area index to a chunk index.
+ */
+static chunk_t area_location(struct pstore *ps, chunk_t area)
+{
+ return NUM_SNAPSHOT_HDR_CHUNKS + ((ps->exceptions_per_area + 1) * area);
+}
+
+static void skip_metadata(struct pstore *ps)
+{
+ uint32_t stride = ps->exceptions_per_area + 1;
+ chunk_t next_free = ps->next_free;
+ if (sector_div(next_free, stride) == NUM_SNAPSHOT_HDR_CHUNKS)
+ ps->next_free++;
+}
+
+/*
+ * Read or write a metadata area. Remembering to skip the first
+ * chunk which holds the header.
+ */
+static int area_io(struct pstore *ps, blk_opf_t opf)
+{
+ chunk_t chunk = area_location(ps, ps->current_area);
+
+ return chunk_io(ps, ps->area, chunk, opf, 0);
+}
+
+static void zero_memory_area(struct pstore *ps)
+{
+ memset(ps->area, 0, ps->store->chunk_size << SECTOR_SHIFT);
+}
+
+static int zero_disk_area(struct pstore *ps, chunk_t area)
+{
+ return chunk_io(ps, ps->zero_area, area_location(ps, area),
+ REQ_OP_WRITE, 0);
+}
+
+static int read_header(struct pstore *ps, int *new_snapshot)
+{
+ int r;
+ struct disk_header *dh;
+ unsigned int chunk_size;
+ int chunk_size_supplied = 1;
+ char *chunk_err;
+
+ /*
+ * Use default chunk size (or logical_block_size, if larger)
+ * if none supplied
+ */
+ if (!ps->store->chunk_size) {
+ ps->store->chunk_size = max(DM_CHUNK_SIZE_DEFAULT_SECTORS,
+ bdev_logical_block_size(dm_snap_cow(ps->store->snap)->
+ bdev) >> 9);
+ ps->store->chunk_mask = ps->store->chunk_size - 1;
+ ps->store->chunk_shift = __ffs(ps->store->chunk_size);
+ chunk_size_supplied = 0;
+ }
+
+ ps->io_client = dm_io_client_create();
+ if (IS_ERR(ps->io_client))
+ return PTR_ERR(ps->io_client);
+
+ r = alloc_area(ps);
+ if (r)
+ return r;
+
+ r = chunk_io(ps, ps->header_area, 0, REQ_OP_READ, 1);
+ if (r)
+ goto bad;
+
+ dh = ps->header_area;
+
+ if (le32_to_cpu(dh->magic) == 0) {
+ *new_snapshot = 1;
+ return 0;
+ }
+
+ if (le32_to_cpu(dh->magic) != SNAP_MAGIC) {
+ DMWARN("Invalid or corrupt snapshot");
+ r = -ENXIO;
+ goto bad;
+ }
+
+ *new_snapshot = 0;
+ ps->valid = le32_to_cpu(dh->valid);
+ ps->version = le32_to_cpu(dh->version);
+ chunk_size = le32_to_cpu(dh->chunk_size);
+
+ if (ps->store->chunk_size == chunk_size)
+ return 0;
+
+ if (chunk_size_supplied)
+ DMWARN("chunk size %u in device metadata overrides table chunk size of %u.",
+ chunk_size, ps->store->chunk_size);
+
+ /* We had a bogus chunk_size. Fix stuff up. */
+ free_area(ps);
+
+ r = dm_exception_store_set_chunk_size(ps->store, chunk_size,
+ &chunk_err);
+ if (r) {
+ DMERR("invalid on-disk chunk size %u: %s.",
+ chunk_size, chunk_err);
+ return r;
+ }
+
+ r = alloc_area(ps);
+ return r;
+
+bad:
+ free_area(ps);
+ return r;
+}
+
+static int write_header(struct pstore *ps)
+{
+ struct disk_header *dh;
+
+ memset(ps->header_area, 0, ps->store->chunk_size << SECTOR_SHIFT);
+
+ dh = ps->header_area;
+ dh->magic = cpu_to_le32(SNAP_MAGIC);
+ dh->valid = cpu_to_le32(ps->valid);
+ dh->version = cpu_to_le32(ps->version);
+ dh->chunk_size = cpu_to_le32(ps->store->chunk_size);
+
+ return chunk_io(ps, ps->header_area, 0, REQ_OP_WRITE, 1);
+}
+
+/*
+ * Access functions for the disk exceptions, these do the endian conversions.
+ */
+static struct disk_exception *get_exception(struct pstore *ps, void *ps_area,
+ uint32_t index)
+{
+ BUG_ON(index >= ps->exceptions_per_area);
+
+ return ((struct disk_exception *) ps_area) + index;
+}
+
+static void read_exception(struct pstore *ps, void *ps_area,
+ uint32_t index, struct core_exception *result)
+{
+ struct disk_exception *de = get_exception(ps, ps_area, index);
+
+ /* copy it */
+ result->old_chunk = le64_to_cpu(de->old_chunk);
+ result->new_chunk = le64_to_cpu(de->new_chunk);
+}
+
+static void write_exception(struct pstore *ps,
+ uint32_t index, struct core_exception *e)
+{
+ struct disk_exception *de = get_exception(ps, ps->area, index);
+
+ /* copy it */
+ de->old_chunk = cpu_to_le64(e->old_chunk);
+ de->new_chunk = cpu_to_le64(e->new_chunk);
+}
+
+static void clear_exception(struct pstore *ps, uint32_t index)
+{
+ struct disk_exception *de = get_exception(ps, ps->area, index);
+
+ /* clear it */
+ de->old_chunk = 0;
+ de->new_chunk = 0;
+}
+
+/*
+ * Registers the exceptions that are present in the current area.
+ * 'full' is filled in to indicate if the area has been
+ * filled.
+ */
+static int insert_exceptions(struct pstore *ps, void *ps_area,
+ int (*callback)(void *callback_context,
+ chunk_t old, chunk_t new),
+ void *callback_context,
+ int *full)
+{
+ int r;
+ unsigned int i;
+ struct core_exception e;
+
+ /* presume the area is full */
+ *full = 1;
+
+ for (i = 0; i < ps->exceptions_per_area; i++) {
+ read_exception(ps, ps_area, i, &e);
+
+ /*
+ * If the new_chunk is pointing at the start of
+ * the COW device, where the first metadata area
+ * is we know that we've hit the end of the
+ * exceptions. Therefore the area is not full.
+ */
+ if (e.new_chunk == 0LL) {
+ ps->current_committed = i;
+ *full = 0;
+ break;
+ }
+
+ /*
+ * Keep track of the start of the free chunks.
+ */
+ if (ps->next_free <= e.new_chunk)
+ ps->next_free = e.new_chunk + 1;
+
+ /*
+ * Otherwise we add the exception to the snapshot.
+ */
+ r = callback(callback_context, e.old_chunk, e.new_chunk);
+ if (r)
+ return r;
+ }
+
+ return 0;
+}
+
+static int read_exceptions(struct pstore *ps,
+ int (*callback)(void *callback_context, chunk_t old,
+ chunk_t new),
+ void *callback_context)
+{
+ int r, full = 1;
+ struct dm_bufio_client *client;
+ chunk_t prefetch_area = 0;
+
+ client = dm_bufio_client_create(dm_snap_cow(ps->store->snap)->bdev,
+ ps->store->chunk_size << SECTOR_SHIFT,
+ 1, 0, NULL, NULL, 0);
+
+ if (IS_ERR(client))
+ return PTR_ERR(client);
+
+ /*
+ * Setup for one current buffer + desired readahead buffers.
+ */
+ dm_bufio_set_minimum_buffers(client, 1 + DM_PREFETCH_CHUNKS);
+
+ /*
+ * Keeping reading chunks and inserting exceptions until
+ * we find a partially full area.
+ */
+ for (ps->current_area = 0; full; ps->current_area++) {
+ struct dm_buffer *bp;
+ void *area;
+ chunk_t chunk;
+
+ if (unlikely(prefetch_area < ps->current_area))
+ prefetch_area = ps->current_area;
+
+ if (DM_PREFETCH_CHUNKS) do {
+ chunk_t pf_chunk = area_location(ps, prefetch_area);
+ if (unlikely(pf_chunk >= dm_bufio_get_device_size(client)))
+ break;
+ dm_bufio_prefetch(client, pf_chunk, 1);
+ prefetch_area++;
+ if (unlikely(!prefetch_area))
+ break;
+ } while (prefetch_area <= ps->current_area + DM_PREFETCH_CHUNKS);
+
+ chunk = area_location(ps, ps->current_area);
+
+ area = dm_bufio_read(client, chunk, &bp);
+ if (IS_ERR(area)) {
+ r = PTR_ERR(area);
+ goto ret_destroy_bufio;
+ }
+
+ r = insert_exceptions(ps, area, callback, callback_context,
+ &full);
+
+ if (!full)
+ memcpy(ps->area, area, ps->store->chunk_size << SECTOR_SHIFT);
+
+ dm_bufio_release(bp);
+
+ dm_bufio_forget(client, chunk);
+
+ if (unlikely(r))
+ goto ret_destroy_bufio;
+ }
+
+ ps->current_area--;
+
+ skip_metadata(ps);
+
+ r = 0;
+
+ret_destroy_bufio:
+ dm_bufio_client_destroy(client);
+
+ return r;
+}
+
+static struct pstore *get_info(struct dm_exception_store *store)
+{
+ return (struct pstore *) store->context;
+}
+
+static void persistent_usage(struct dm_exception_store *store,
+ sector_t *total_sectors,
+ sector_t *sectors_allocated,
+ sector_t *metadata_sectors)
+{
+ struct pstore *ps = get_info(store);
+
+ *sectors_allocated = ps->next_free * store->chunk_size;
+ *total_sectors = get_dev_size(dm_snap_cow(store->snap)->bdev);
+
+ /*
+ * First chunk is the fixed header.
+ * Then there are (ps->current_area + 1) metadata chunks, each one
+ * separated from the next by ps->exceptions_per_area data chunks.
+ */
+ *metadata_sectors = (ps->current_area + 1 + NUM_SNAPSHOT_HDR_CHUNKS) *
+ store->chunk_size;
+}
+
+static void persistent_dtr(struct dm_exception_store *store)
+{
+ struct pstore *ps = get_info(store);
+
+ destroy_workqueue(ps->metadata_wq);
+
+ /* Created in read_header */
+ if (ps->io_client)
+ dm_io_client_destroy(ps->io_client);
+ free_area(ps);
+
+ /* Allocated in persistent_read_metadata */
+ kvfree(ps->callbacks);
+
+ kfree(ps);
+}
+
+static int persistent_read_metadata(struct dm_exception_store *store,
+ int (*callback)(void *callback_context,
+ chunk_t old, chunk_t new),
+ void *callback_context)
+{
+ int r, new_snapshot;
+ struct pstore *ps = get_info(store);
+
+ /*
+ * Read the snapshot header.
+ */
+ r = read_header(ps, &new_snapshot);
+ if (r)
+ return r;
+
+ /*
+ * Now we know correct chunk_size, complete the initialisation.
+ */
+ ps->exceptions_per_area = (ps->store->chunk_size << SECTOR_SHIFT) /
+ sizeof(struct disk_exception);
+ ps->callbacks = kvcalloc(ps->exceptions_per_area,
+ sizeof(*ps->callbacks), GFP_KERNEL);
+ if (!ps->callbacks)
+ return -ENOMEM;
+
+ /*
+ * Do we need to setup a new snapshot ?
+ */
+ if (new_snapshot) {
+ r = write_header(ps);
+ if (r) {
+ DMWARN("write_header failed");
+ return r;
+ }
+
+ ps->current_area = 0;
+ zero_memory_area(ps);
+ r = zero_disk_area(ps, 0);
+ if (r)
+ DMWARN("zero_disk_area(0) failed");
+ return r;
+ }
+ /*
+ * Sanity checks.
+ */
+ if (ps->version != SNAPSHOT_DISK_VERSION) {
+ DMWARN("unable to handle snapshot disk version %d",
+ ps->version);
+ return -EINVAL;
+ }
+
+ /*
+ * Metadata are valid, but snapshot is invalidated
+ */
+ if (!ps->valid)
+ return 1;
+
+ /*
+ * Read the metadata.
+ */
+ r = read_exceptions(ps, callback, callback_context);
+
+ return r;
+}
+
+static int persistent_prepare_exception(struct dm_exception_store *store,
+ struct dm_exception *e)
+{
+ struct pstore *ps = get_info(store);
+ sector_t size = get_dev_size(dm_snap_cow(store->snap)->bdev);
+
+ /* Is there enough room ? */
+ if (size < ((ps->next_free + 1) * store->chunk_size))
+ return -ENOSPC;
+
+ e->new_chunk = ps->next_free;
+
+ /*
+ * Move onto the next free pending, making sure to take
+ * into account the location of the metadata chunks.
+ */
+ ps->next_free++;
+ skip_metadata(ps);
+
+ atomic_inc(&ps->pending_count);
+ return 0;
+}
+
+static void persistent_commit_exception(struct dm_exception_store *store,
+ struct dm_exception *e, int valid,
+ void (*callback) (void *, int success),
+ void *callback_context)
+{
+ unsigned int i;
+ struct pstore *ps = get_info(store);
+ struct core_exception ce;
+ struct commit_callback *cb;
+
+ if (!valid)
+ ps->valid = 0;
+
+ ce.old_chunk = e->old_chunk;
+ ce.new_chunk = e->new_chunk;
+ write_exception(ps, ps->current_committed++, &ce);
+
+ /*
+ * Add the callback to the back of the array. This code
+ * is the only place where the callback array is
+ * manipulated, and we know that it will never be called
+ * multiple times concurrently.
+ */
+ cb = ps->callbacks + ps->callback_count++;
+ cb->callback = callback;
+ cb->context = callback_context;
+
+ /*
+ * If there are exceptions in flight and we have not yet
+ * filled this metadata area there's nothing more to do.
+ */
+ if (!atomic_dec_and_test(&ps->pending_count) &&
+ (ps->current_committed != ps->exceptions_per_area))
+ return;
+
+ /*
+ * If we completely filled the current area, then wipe the next one.
+ */
+ if ((ps->current_committed == ps->exceptions_per_area) &&
+ zero_disk_area(ps, ps->current_area + 1))
+ ps->valid = 0;
+
+ /*
+ * Commit exceptions to disk.
+ */
+ if (ps->valid && area_io(ps, REQ_OP_WRITE | REQ_PREFLUSH | REQ_FUA |
+ REQ_SYNC))
+ ps->valid = 0;
+
+ /*
+ * Advance to the next area if this one is full.
+ */
+ if (ps->current_committed == ps->exceptions_per_area) {
+ ps->current_committed = 0;
+ ps->current_area++;
+ zero_memory_area(ps);
+ }
+
+ for (i = 0; i < ps->callback_count; i++) {
+ cb = ps->callbacks + i;
+ cb->callback(cb->context, ps->valid);
+ }
+
+ ps->callback_count = 0;
+}
+
+static int persistent_prepare_merge(struct dm_exception_store *store,
+ chunk_t *last_old_chunk,
+ chunk_t *last_new_chunk)
+{
+ struct pstore *ps = get_info(store);
+ struct core_exception ce;
+ int nr_consecutive;
+ int r;
+
+ /*
+ * When current area is empty, move back to preceding area.
+ */
+ if (!ps->current_committed) {
+ /*
+ * Have we finished?
+ */
+ if (!ps->current_area)
+ return 0;
+
+ ps->current_area--;
+ r = area_io(ps, REQ_OP_READ);
+ if (r < 0)
+ return r;
+ ps->current_committed = ps->exceptions_per_area;
+ }
+
+ read_exception(ps, ps->area, ps->current_committed - 1, &ce);
+ *last_old_chunk = ce.old_chunk;
+ *last_new_chunk = ce.new_chunk;
+
+ /*
+ * Find number of consecutive chunks within the current area,
+ * working backwards.
+ */
+ for (nr_consecutive = 1; nr_consecutive < ps->current_committed;
+ nr_consecutive++) {
+ read_exception(ps, ps->area,
+ ps->current_committed - 1 - nr_consecutive, &ce);
+ if (ce.old_chunk != *last_old_chunk - nr_consecutive ||
+ ce.new_chunk != *last_new_chunk - nr_consecutive)
+ break;
+ }
+
+ return nr_consecutive;
+}
+
+static int persistent_commit_merge(struct dm_exception_store *store,
+ int nr_merged)
+{
+ int r, i;
+ struct pstore *ps = get_info(store);
+
+ BUG_ON(nr_merged > ps->current_committed);
+
+ for (i = 0; i < nr_merged; i++)
+ clear_exception(ps, ps->current_committed - 1 - i);
+
+ r = area_io(ps, REQ_OP_WRITE | REQ_PREFLUSH | REQ_FUA);
+ if (r < 0)
+ return r;
+
+ ps->current_committed -= nr_merged;
+
+ /*
+ * At this stage, only persistent_usage() uses ps->next_free, so
+ * we make no attempt to keep ps->next_free strictly accurate
+ * as exceptions may have been committed out-of-order originally.
+ * Once a snapshot has become merging, we set it to the value it
+ * would have held had all the exceptions been committed in order.
+ *
+ * ps->current_area does not get reduced by prepare_merge() until
+ * after commit_merge() has removed the nr_merged previous exceptions.
+ */
+ ps->next_free = area_location(ps, ps->current_area) +
+ ps->current_committed + 1;
+
+ return 0;
+}
+
+static void persistent_drop_snapshot(struct dm_exception_store *store)
+{
+ struct pstore *ps = get_info(store);
+
+ ps->valid = 0;
+ if (write_header(ps))
+ DMWARN("write header failed");
+}
+
+static int persistent_ctr(struct dm_exception_store *store, char *options)
+{
+ struct pstore *ps;
+ int r;
+
+ /* allocate the pstore */
+ ps = kzalloc(sizeof(*ps), GFP_KERNEL);
+ if (!ps)
+ return -ENOMEM;
+
+ ps->store = store;
+ ps->valid = 1;
+ ps->version = SNAPSHOT_DISK_VERSION;
+ ps->area = NULL;
+ ps->zero_area = NULL;
+ ps->header_area = NULL;
+ ps->next_free = NUM_SNAPSHOT_HDR_CHUNKS + 1; /* header and 1st area */
+ ps->current_committed = 0;
+
+ ps->callback_count = 0;
+ atomic_set(&ps->pending_count, 0);
+ ps->callbacks = NULL;
+
+ ps->metadata_wq = alloc_workqueue("ksnaphd", WQ_MEM_RECLAIM, 0);
+ if (!ps->metadata_wq) {
+ DMERR("couldn't start header metadata update thread");
+ r = -ENOMEM;
+ goto err_workqueue;
+ }
+
+ if (options) {
+ char overflow = toupper(options[0]);
+ if (overflow == 'O')
+ store->userspace_supports_overflow = true;
+ else {
+ DMERR("Unsupported persistent store option: %s", options);
+ r = -EINVAL;
+ goto err_options;
+ }
+ }
+
+ store->context = ps;
+
+ return 0;
+
+err_options:
+ destroy_workqueue(ps->metadata_wq);
+err_workqueue:
+ kfree(ps);
+
+ return r;
+}
+
+static unsigned int persistent_status(struct dm_exception_store *store,
+ status_type_t status, char *result,
+ unsigned int maxlen)
+{
+ unsigned int sz = 0;
+
+ switch (status) {
+ case STATUSTYPE_INFO:
+ break;
+ case STATUSTYPE_TABLE:
+ DMEMIT(" %s %llu", store->userspace_supports_overflow ? "PO" : "P",
+ (unsigned long long)store->chunk_size);
+ break;
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+
+ return sz;
+}
+
+static struct dm_exception_store_type _persistent_type = {
+ .name = "persistent",
+ .module = THIS_MODULE,
+ .ctr = persistent_ctr,
+ .dtr = persistent_dtr,
+ .read_metadata = persistent_read_metadata,
+ .prepare_exception = persistent_prepare_exception,
+ .commit_exception = persistent_commit_exception,
+ .prepare_merge = persistent_prepare_merge,
+ .commit_merge = persistent_commit_merge,
+ .drop_snapshot = persistent_drop_snapshot,
+ .usage = persistent_usage,
+ .status = persistent_status,
+};
+
+static struct dm_exception_store_type _persistent_compat_type = {
+ .name = "P",
+ .module = THIS_MODULE,
+ .ctr = persistent_ctr,
+ .dtr = persistent_dtr,
+ .read_metadata = persistent_read_metadata,
+ .prepare_exception = persistent_prepare_exception,
+ .commit_exception = persistent_commit_exception,
+ .prepare_merge = persistent_prepare_merge,
+ .commit_merge = persistent_commit_merge,
+ .drop_snapshot = persistent_drop_snapshot,
+ .usage = persistent_usage,
+ .status = persistent_status,
+};
+
+int dm_persistent_snapshot_init(void)
+{
+ int r;
+
+ r = dm_exception_store_type_register(&_persistent_type);
+ if (r) {
+ DMERR("Unable to register persistent exception store type");
+ return r;
+ }
+
+ r = dm_exception_store_type_register(&_persistent_compat_type);
+ if (r) {
+ DMERR("Unable to register old-style persistent exception store type");
+ dm_exception_store_type_unregister(&_persistent_type);
+ return r;
+ }
+
+ return r;
+}
+
+void dm_persistent_snapshot_exit(void)
+{
+ dm_exception_store_type_unregister(&_persistent_type);
+ dm_exception_store_type_unregister(&_persistent_compat_type);
+}
diff --git a/drivers/md/dm-snap-transient.c b/drivers/md/dm-snap-transient.c
new file mode 100644
index 000000000..11de107f5
--- /dev/null
+++ b/drivers/md/dm-snap-transient.c
@@ -0,0 +1,155 @@
+/*
+ * Copyright (C) 2001-2002 Sistina Software (UK) Limited.
+ * Copyright (C) 2006-2008 Red Hat GmbH
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-exception-store.h"
+
+#include <linux/mm.h>
+#include <linux/pagemap.h>
+#include <linux/vmalloc.h>
+#include <linux/export.h>
+#include <linux/slab.h>
+#include <linux/dm-io.h>
+
+#define DM_MSG_PREFIX "transient snapshot"
+
+/*-----------------------------------------------------------------
+ * Implementation of the store for non-persistent snapshots.
+ *---------------------------------------------------------------*/
+struct transient_c {
+ sector_t next_free;
+};
+
+static void transient_dtr(struct dm_exception_store *store)
+{
+ kfree(store->context);
+}
+
+static int transient_read_metadata(struct dm_exception_store *store,
+ int (*callback)(void *callback_context,
+ chunk_t old, chunk_t new),
+ void *callback_context)
+{
+ return 0;
+}
+
+static int transient_prepare_exception(struct dm_exception_store *store,
+ struct dm_exception *e)
+{
+ struct transient_c *tc = store->context;
+ sector_t size = get_dev_size(dm_snap_cow(store->snap)->bdev);
+
+ if (size < (tc->next_free + store->chunk_size))
+ return -1;
+
+ e->new_chunk = sector_to_chunk(store, tc->next_free);
+ tc->next_free += store->chunk_size;
+
+ return 0;
+}
+
+static void transient_commit_exception(struct dm_exception_store *store,
+ struct dm_exception *e, int valid,
+ void (*callback) (void *, int success),
+ void *callback_context)
+{
+ /* Just succeed */
+ callback(callback_context, valid);
+}
+
+static void transient_usage(struct dm_exception_store *store,
+ sector_t *total_sectors,
+ sector_t *sectors_allocated,
+ sector_t *metadata_sectors)
+{
+ *sectors_allocated = ((struct transient_c *) store->context)->next_free;
+ *total_sectors = get_dev_size(dm_snap_cow(store->snap)->bdev);
+ *metadata_sectors = 0;
+}
+
+static int transient_ctr(struct dm_exception_store *store, char *options)
+{
+ struct transient_c *tc;
+
+ tc = kmalloc(sizeof(struct transient_c), GFP_KERNEL);
+ if (!tc)
+ return -ENOMEM;
+
+ tc->next_free = 0;
+ store->context = tc;
+
+ return 0;
+}
+
+static unsigned int transient_status(struct dm_exception_store *store,
+ status_type_t status, char *result,
+ unsigned int maxlen)
+{
+ unsigned int sz = 0;
+
+ switch (status) {
+ case STATUSTYPE_INFO:
+ break;
+ case STATUSTYPE_TABLE:
+ DMEMIT(" N %llu", (unsigned long long)store->chunk_size);
+ break;
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+
+ return sz;
+}
+
+static struct dm_exception_store_type _transient_type = {
+ .name = "transient",
+ .module = THIS_MODULE,
+ .ctr = transient_ctr,
+ .dtr = transient_dtr,
+ .read_metadata = transient_read_metadata,
+ .prepare_exception = transient_prepare_exception,
+ .commit_exception = transient_commit_exception,
+ .usage = transient_usage,
+ .status = transient_status,
+};
+
+static struct dm_exception_store_type _transient_compat_type = {
+ .name = "N",
+ .module = THIS_MODULE,
+ .ctr = transient_ctr,
+ .dtr = transient_dtr,
+ .read_metadata = transient_read_metadata,
+ .prepare_exception = transient_prepare_exception,
+ .commit_exception = transient_commit_exception,
+ .usage = transient_usage,
+ .status = transient_status,
+};
+
+int dm_transient_snapshot_init(void)
+{
+ int r;
+
+ r = dm_exception_store_type_register(&_transient_type);
+ if (r) {
+ DMWARN("Unable to register transient exception store type");
+ return r;
+ }
+
+ r = dm_exception_store_type_register(&_transient_compat_type);
+ if (r) {
+ DMWARN("Unable to register old-style transient exception store type");
+ dm_exception_store_type_unregister(&_transient_type);
+ return r;
+ }
+
+ return r;
+}
+
+void dm_transient_snapshot_exit(void)
+{
+ dm_exception_store_type_unregister(&_transient_type);
+ dm_exception_store_type_unregister(&_transient_compat_type);
+}
diff --git a/drivers/md/dm-snap.c b/drivers/md/dm-snap.c
new file mode 100644
index 000000000..b748901a4
--- /dev/null
+++ b/drivers/md/dm-snap.c
@@ -0,0 +1,2866 @@
+/*
+ * Copyright (C) 2001-2002 Sistina Software (UK) Limited.
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/blkdev.h>
+#include <linux/device-mapper.h>
+#include <linux/delay.h>
+#include <linux/fs.h>
+#include <linux/init.h>
+#include <linux/kdev_t.h>
+#include <linux/list.h>
+#include <linux/list_bl.h>
+#include <linux/mempool.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/log2.h>
+#include <linux/dm-kcopyd.h>
+
+#include "dm.h"
+
+#include "dm-exception-store.h"
+
+#define DM_MSG_PREFIX "snapshots"
+
+static const char dm_snapshot_merge_target_name[] = "snapshot-merge";
+
+#define dm_target_is_snapshot_merge(ti) \
+ ((ti)->type->name == dm_snapshot_merge_target_name)
+
+/*
+ * The size of the mempool used to track chunks in use.
+ */
+#define MIN_IOS 256
+
+#define DM_TRACKED_CHUNK_HASH_SIZE 16
+#define DM_TRACKED_CHUNK_HASH(x) ((unsigned long)(x) & \
+ (DM_TRACKED_CHUNK_HASH_SIZE - 1))
+
+struct dm_exception_table {
+ uint32_t hash_mask;
+ unsigned int hash_shift;
+ struct hlist_bl_head *table;
+};
+
+struct dm_snapshot {
+ struct rw_semaphore lock;
+
+ struct dm_dev *origin;
+ struct dm_dev *cow;
+
+ struct dm_target *ti;
+
+ /* List of snapshots per Origin */
+ struct list_head list;
+
+ /*
+ * You can't use a snapshot if this is 0 (e.g. if full).
+ * A snapshot-merge target never clears this.
+ */
+ int valid;
+
+ /*
+ * The snapshot overflowed because of a write to the snapshot device.
+ * We don't have to invalidate the snapshot in this case, but we need
+ * to prevent further writes.
+ */
+ int snapshot_overflowed;
+
+ /* Origin writes don't trigger exceptions until this is set */
+ int active;
+
+ atomic_t pending_exceptions_count;
+
+ spinlock_t pe_allocation_lock;
+
+ /* Protected by "pe_allocation_lock" */
+ sector_t exception_start_sequence;
+
+ /* Protected by kcopyd single-threaded callback */
+ sector_t exception_complete_sequence;
+
+ /*
+ * A list of pending exceptions that completed out of order.
+ * Protected by kcopyd single-threaded callback.
+ */
+ struct rb_root out_of_order_tree;
+
+ mempool_t pending_pool;
+
+ struct dm_exception_table pending;
+ struct dm_exception_table complete;
+
+ /*
+ * pe_lock protects all pending_exception operations and access
+ * as well as the snapshot_bios list.
+ */
+ spinlock_t pe_lock;
+
+ /* Chunks with outstanding reads */
+ spinlock_t tracked_chunk_lock;
+ struct hlist_head tracked_chunk_hash[DM_TRACKED_CHUNK_HASH_SIZE];
+
+ /* The on disk metadata handler */
+ struct dm_exception_store *store;
+
+ unsigned int in_progress;
+ struct wait_queue_head in_progress_wait;
+
+ struct dm_kcopyd_client *kcopyd_client;
+
+ /* Wait for events based on state_bits */
+ unsigned long state_bits;
+
+ /* Range of chunks currently being merged. */
+ chunk_t first_merging_chunk;
+ int num_merging_chunks;
+
+ /*
+ * The merge operation failed if this flag is set.
+ * Failure modes are handled as follows:
+ * - I/O error reading the header
+ * => don't load the target; abort.
+ * - Header does not have "valid" flag set
+ * => use the origin; forget about the snapshot.
+ * - I/O error when reading exceptions
+ * => don't load the target; abort.
+ * (We can't use the intermediate origin state.)
+ * - I/O error while merging
+ * => stop merging; set merge_failed; process I/O normally.
+ */
+ bool merge_failed:1;
+
+ bool discard_zeroes_cow:1;
+ bool discard_passdown_origin:1;
+
+ /*
+ * Incoming bios that overlap with chunks being merged must wait
+ * for them to be committed.
+ */
+ struct bio_list bios_queued_during_merge;
+};
+
+/*
+ * state_bits:
+ * RUNNING_MERGE - Merge operation is in progress.
+ * SHUTDOWN_MERGE - Set to signal that merge needs to be stopped;
+ * cleared afterwards.
+ */
+#define RUNNING_MERGE 0
+#define SHUTDOWN_MERGE 1
+
+/*
+ * Maximum number of chunks being copied on write.
+ *
+ * The value was decided experimentally as a trade-off between memory
+ * consumption, stalling the kernel's workqueues and maintaining a high enough
+ * throughput.
+ */
+#define DEFAULT_COW_THRESHOLD 2048
+
+static unsigned int cow_threshold = DEFAULT_COW_THRESHOLD;
+module_param_named(snapshot_cow_threshold, cow_threshold, uint, 0644);
+MODULE_PARM_DESC(snapshot_cow_threshold, "Maximum number of chunks being copied on write");
+
+DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
+ "A percentage of time allocated for copy on write");
+
+struct dm_dev *dm_snap_origin(struct dm_snapshot *s)
+{
+ return s->origin;
+}
+EXPORT_SYMBOL(dm_snap_origin);
+
+struct dm_dev *dm_snap_cow(struct dm_snapshot *s)
+{
+ return s->cow;
+}
+EXPORT_SYMBOL(dm_snap_cow);
+
+static sector_t chunk_to_sector(struct dm_exception_store *store,
+ chunk_t chunk)
+{
+ return chunk << store->chunk_shift;
+}
+
+static int bdev_equal(struct block_device *lhs, struct block_device *rhs)
+{
+ /*
+ * There is only ever one instance of a particular block
+ * device so we can compare pointers safely.
+ */
+ return lhs == rhs;
+}
+
+struct dm_snap_pending_exception {
+ struct dm_exception e;
+
+ /*
+ * Origin buffers waiting for this to complete are held
+ * in a bio list
+ */
+ struct bio_list origin_bios;
+ struct bio_list snapshot_bios;
+
+ /* Pointer back to snapshot context */
+ struct dm_snapshot *snap;
+
+ /*
+ * 1 indicates the exception has already been sent to
+ * kcopyd.
+ */
+ int started;
+
+ /* There was copying error. */
+ int copy_error;
+
+ /* A sequence number, it is used for in-order completion. */
+ sector_t exception_sequence;
+
+ struct rb_node out_of_order_node;
+
+ /*
+ * For writing a complete chunk, bypassing the copy.
+ */
+ struct bio *full_bio;
+ bio_end_io_t *full_bio_end_io;
+};
+
+/*
+ * Hash table mapping origin volumes to lists of snapshots and
+ * a lock to protect it
+ */
+static struct kmem_cache *exception_cache;
+static struct kmem_cache *pending_cache;
+
+struct dm_snap_tracked_chunk {
+ struct hlist_node node;
+ chunk_t chunk;
+};
+
+static void init_tracked_chunk(struct bio *bio)
+{
+ struct dm_snap_tracked_chunk *c = dm_per_bio_data(bio, sizeof(struct dm_snap_tracked_chunk));
+ INIT_HLIST_NODE(&c->node);
+}
+
+static bool is_bio_tracked(struct bio *bio)
+{
+ struct dm_snap_tracked_chunk *c = dm_per_bio_data(bio, sizeof(struct dm_snap_tracked_chunk));
+ return !hlist_unhashed(&c->node);
+}
+
+static void track_chunk(struct dm_snapshot *s, struct bio *bio, chunk_t chunk)
+{
+ struct dm_snap_tracked_chunk *c = dm_per_bio_data(bio, sizeof(struct dm_snap_tracked_chunk));
+
+ c->chunk = chunk;
+
+ spin_lock_irq(&s->tracked_chunk_lock);
+ hlist_add_head(&c->node,
+ &s->tracked_chunk_hash[DM_TRACKED_CHUNK_HASH(chunk)]);
+ spin_unlock_irq(&s->tracked_chunk_lock);
+}
+
+static void stop_tracking_chunk(struct dm_snapshot *s, struct bio *bio)
+{
+ struct dm_snap_tracked_chunk *c = dm_per_bio_data(bio, sizeof(struct dm_snap_tracked_chunk));
+ unsigned long flags;
+
+ spin_lock_irqsave(&s->tracked_chunk_lock, flags);
+ hlist_del(&c->node);
+ spin_unlock_irqrestore(&s->tracked_chunk_lock, flags);
+}
+
+static int __chunk_is_tracked(struct dm_snapshot *s, chunk_t chunk)
+{
+ struct dm_snap_tracked_chunk *c;
+ int found = 0;
+
+ spin_lock_irq(&s->tracked_chunk_lock);
+
+ hlist_for_each_entry(c,
+ &s->tracked_chunk_hash[DM_TRACKED_CHUNK_HASH(chunk)], node) {
+ if (c->chunk == chunk) {
+ found = 1;
+ break;
+ }
+ }
+
+ spin_unlock_irq(&s->tracked_chunk_lock);
+
+ return found;
+}
+
+/*
+ * This conflicting I/O is extremely improbable in the caller,
+ * so msleep(1) is sufficient and there is no need for a wait queue.
+ */
+static void __check_for_conflicting_io(struct dm_snapshot *s, chunk_t chunk)
+{
+ while (__chunk_is_tracked(s, chunk))
+ msleep(1);
+}
+
+/*
+ * One of these per registered origin, held in the snapshot_origins hash
+ */
+struct origin {
+ /* The origin device */
+ struct block_device *bdev;
+
+ struct list_head hash_list;
+
+ /* List of snapshots for this origin */
+ struct list_head snapshots;
+};
+
+/*
+ * This structure is allocated for each origin target
+ */
+struct dm_origin {
+ struct dm_dev *dev;
+ struct dm_target *ti;
+ unsigned int split_boundary;
+ struct list_head hash_list;
+};
+
+/*
+ * Size of the hash table for origin volumes. If we make this
+ * the size of the minors list then it should be nearly perfect
+ */
+#define ORIGIN_HASH_SIZE 256
+#define ORIGIN_MASK 0xFF
+static struct list_head *_origins;
+static struct list_head *_dm_origins;
+static struct rw_semaphore _origins_lock;
+
+static DECLARE_WAIT_QUEUE_HEAD(_pending_exceptions_done);
+static DEFINE_SPINLOCK(_pending_exceptions_done_spinlock);
+static uint64_t _pending_exceptions_done_count;
+
+static int init_origin_hash(void)
+{
+ int i;
+
+ _origins = kmalloc_array(ORIGIN_HASH_SIZE, sizeof(struct list_head),
+ GFP_KERNEL);
+ if (!_origins) {
+ DMERR("unable to allocate memory for _origins");
+ return -ENOMEM;
+ }
+ for (i = 0; i < ORIGIN_HASH_SIZE; i++)
+ INIT_LIST_HEAD(_origins + i);
+
+ _dm_origins = kmalloc_array(ORIGIN_HASH_SIZE,
+ sizeof(struct list_head),
+ GFP_KERNEL);
+ if (!_dm_origins) {
+ DMERR("unable to allocate memory for _dm_origins");
+ kfree(_origins);
+ return -ENOMEM;
+ }
+ for (i = 0; i < ORIGIN_HASH_SIZE; i++)
+ INIT_LIST_HEAD(_dm_origins + i);
+
+ init_rwsem(&_origins_lock);
+
+ return 0;
+}
+
+static void exit_origin_hash(void)
+{
+ kfree(_origins);
+ kfree(_dm_origins);
+}
+
+static unsigned int origin_hash(struct block_device *bdev)
+{
+ return bdev->bd_dev & ORIGIN_MASK;
+}
+
+static struct origin *__lookup_origin(struct block_device *origin)
+{
+ struct list_head *ol;
+ struct origin *o;
+
+ ol = &_origins[origin_hash(origin)];
+ list_for_each_entry(o, ol, hash_list)
+ if (bdev_equal(o->bdev, origin))
+ return o;
+
+ return NULL;
+}
+
+static void __insert_origin(struct origin *o)
+{
+ struct list_head *sl = &_origins[origin_hash(o->bdev)];
+ list_add_tail(&o->hash_list, sl);
+}
+
+static struct dm_origin *__lookup_dm_origin(struct block_device *origin)
+{
+ struct list_head *ol;
+ struct dm_origin *o;
+
+ ol = &_dm_origins[origin_hash(origin)];
+ list_for_each_entry(o, ol, hash_list)
+ if (bdev_equal(o->dev->bdev, origin))
+ return o;
+
+ return NULL;
+}
+
+static void __insert_dm_origin(struct dm_origin *o)
+{
+ struct list_head *sl = &_dm_origins[origin_hash(o->dev->bdev)];
+ list_add_tail(&o->hash_list, sl);
+}
+
+static void __remove_dm_origin(struct dm_origin *o)
+{
+ list_del(&o->hash_list);
+}
+
+/*
+ * _origins_lock must be held when calling this function.
+ * Returns number of snapshots registered using the supplied cow device, plus:
+ * snap_src - a snapshot suitable for use as a source of exception handover
+ * snap_dest - a snapshot capable of receiving exception handover.
+ * snap_merge - an existing snapshot-merge target linked to the same origin.
+ * There can be at most one snapshot-merge target. The parameter is optional.
+ *
+ * Possible return values and states of snap_src and snap_dest.
+ * 0: NULL, NULL - first new snapshot
+ * 1: snap_src, NULL - normal snapshot
+ * 2: snap_src, snap_dest - waiting for handover
+ * 2: snap_src, NULL - handed over, waiting for old to be deleted
+ * 1: NULL, snap_dest - source got destroyed without handover
+ */
+static int __find_snapshots_sharing_cow(struct dm_snapshot *snap,
+ struct dm_snapshot **snap_src,
+ struct dm_snapshot **snap_dest,
+ struct dm_snapshot **snap_merge)
+{
+ struct dm_snapshot *s;
+ struct origin *o;
+ int count = 0;
+ int active;
+
+ o = __lookup_origin(snap->origin->bdev);
+ if (!o)
+ goto out;
+
+ list_for_each_entry(s, &o->snapshots, list) {
+ if (dm_target_is_snapshot_merge(s->ti) && snap_merge)
+ *snap_merge = s;
+ if (!bdev_equal(s->cow->bdev, snap->cow->bdev))
+ continue;
+
+ down_read(&s->lock);
+ active = s->active;
+ up_read(&s->lock);
+
+ if (active) {
+ if (snap_src)
+ *snap_src = s;
+ } else if (snap_dest)
+ *snap_dest = s;
+
+ count++;
+ }
+
+out:
+ return count;
+}
+
+/*
+ * On success, returns 1 if this snapshot is a handover destination,
+ * otherwise returns 0.
+ */
+static int __validate_exception_handover(struct dm_snapshot *snap)
+{
+ struct dm_snapshot *snap_src = NULL, *snap_dest = NULL;
+ struct dm_snapshot *snap_merge = NULL;
+
+ /* Does snapshot need exceptions handed over to it? */
+ if ((__find_snapshots_sharing_cow(snap, &snap_src, &snap_dest,
+ &snap_merge) == 2) ||
+ snap_dest) {
+ snap->ti->error = "Snapshot cow pairing for exception table handover failed";
+ return -EINVAL;
+ }
+
+ /*
+ * If no snap_src was found, snap cannot become a handover
+ * destination.
+ */
+ if (!snap_src)
+ return 0;
+
+ /*
+ * Non-snapshot-merge handover?
+ */
+ if (!dm_target_is_snapshot_merge(snap->ti))
+ return 1;
+
+ /*
+ * Do not allow more than one merging snapshot.
+ */
+ if (snap_merge) {
+ snap->ti->error = "A snapshot is already merging.";
+ return -EINVAL;
+ }
+
+ if (!snap_src->store->type->prepare_merge ||
+ !snap_src->store->type->commit_merge) {
+ snap->ti->error = "Snapshot exception store does not support snapshot-merge.";
+ return -EINVAL;
+ }
+
+ return 1;
+}
+
+static void __insert_snapshot(struct origin *o, struct dm_snapshot *s)
+{
+ struct dm_snapshot *l;
+
+ /* Sort the list according to chunk size, largest-first smallest-last */
+ list_for_each_entry(l, &o->snapshots, list)
+ if (l->store->chunk_size < s->store->chunk_size)
+ break;
+ list_add_tail(&s->list, &l->list);
+}
+
+/*
+ * Make a note of the snapshot and its origin so we can look it
+ * up when the origin has a write on it.
+ *
+ * Also validate snapshot exception store handovers.
+ * On success, returns 1 if this registration is a handover destination,
+ * otherwise returns 0.
+ */
+static int register_snapshot(struct dm_snapshot *snap)
+{
+ struct origin *o, *new_o = NULL;
+ struct block_device *bdev = snap->origin->bdev;
+ int r = 0;
+
+ new_o = kmalloc(sizeof(*new_o), GFP_KERNEL);
+ if (!new_o)
+ return -ENOMEM;
+
+ down_write(&_origins_lock);
+
+ r = __validate_exception_handover(snap);
+ if (r < 0) {
+ kfree(new_o);
+ goto out;
+ }
+
+ o = __lookup_origin(bdev);
+ if (o)
+ kfree(new_o);
+ else {
+ /* New origin */
+ o = new_o;
+
+ /* Initialise the struct */
+ INIT_LIST_HEAD(&o->snapshots);
+ o->bdev = bdev;
+
+ __insert_origin(o);
+ }
+
+ __insert_snapshot(o, snap);
+
+out:
+ up_write(&_origins_lock);
+
+ return r;
+}
+
+/*
+ * Move snapshot to correct place in list according to chunk size.
+ */
+static void reregister_snapshot(struct dm_snapshot *s)
+{
+ struct block_device *bdev = s->origin->bdev;
+
+ down_write(&_origins_lock);
+
+ list_del(&s->list);
+ __insert_snapshot(__lookup_origin(bdev), s);
+
+ up_write(&_origins_lock);
+}
+
+static void unregister_snapshot(struct dm_snapshot *s)
+{
+ struct origin *o;
+
+ down_write(&_origins_lock);
+ o = __lookup_origin(s->origin->bdev);
+
+ list_del(&s->list);
+ if (o && list_empty(&o->snapshots)) {
+ list_del(&o->hash_list);
+ kfree(o);
+ }
+
+ up_write(&_origins_lock);
+}
+
+/*
+ * Implementation of the exception hash tables.
+ * The lowest hash_shift bits of the chunk number are ignored, allowing
+ * some consecutive chunks to be grouped together.
+ */
+static uint32_t exception_hash(struct dm_exception_table *et, chunk_t chunk);
+
+/* Lock to protect access to the completed and pending exception hash tables. */
+struct dm_exception_table_lock {
+ struct hlist_bl_head *complete_slot;
+ struct hlist_bl_head *pending_slot;
+};
+
+static void dm_exception_table_lock_init(struct dm_snapshot *s, chunk_t chunk,
+ struct dm_exception_table_lock *lock)
+{
+ struct dm_exception_table *complete = &s->complete;
+ struct dm_exception_table *pending = &s->pending;
+
+ lock->complete_slot = &complete->table[exception_hash(complete, chunk)];
+ lock->pending_slot = &pending->table[exception_hash(pending, chunk)];
+}
+
+static void dm_exception_table_lock(struct dm_exception_table_lock *lock)
+{
+ hlist_bl_lock(lock->complete_slot);
+ hlist_bl_lock(lock->pending_slot);
+}
+
+static void dm_exception_table_unlock(struct dm_exception_table_lock *lock)
+{
+ hlist_bl_unlock(lock->pending_slot);
+ hlist_bl_unlock(lock->complete_slot);
+}
+
+static int dm_exception_table_init(struct dm_exception_table *et,
+ uint32_t size, unsigned int hash_shift)
+{
+ unsigned int i;
+
+ et->hash_shift = hash_shift;
+ et->hash_mask = size - 1;
+ et->table = kvmalloc_array(size, sizeof(struct hlist_bl_head),
+ GFP_KERNEL);
+ if (!et->table)
+ return -ENOMEM;
+
+ for (i = 0; i < size; i++)
+ INIT_HLIST_BL_HEAD(et->table + i);
+
+ return 0;
+}
+
+static void dm_exception_table_exit(struct dm_exception_table *et,
+ struct kmem_cache *mem)
+{
+ struct hlist_bl_head *slot;
+ struct dm_exception *ex;
+ struct hlist_bl_node *pos, *n;
+ int i, size;
+
+ size = et->hash_mask + 1;
+ for (i = 0; i < size; i++) {
+ slot = et->table + i;
+
+ hlist_bl_for_each_entry_safe(ex, pos, n, slot, hash_list)
+ kmem_cache_free(mem, ex);
+ }
+
+ kvfree(et->table);
+}
+
+static uint32_t exception_hash(struct dm_exception_table *et, chunk_t chunk)
+{
+ return (chunk >> et->hash_shift) & et->hash_mask;
+}
+
+static void dm_remove_exception(struct dm_exception *e)
+{
+ hlist_bl_del(&e->hash_list);
+}
+
+/*
+ * Return the exception data for a sector, or NULL if not
+ * remapped.
+ */
+static struct dm_exception *dm_lookup_exception(struct dm_exception_table *et,
+ chunk_t chunk)
+{
+ struct hlist_bl_head *slot;
+ struct hlist_bl_node *pos;
+ struct dm_exception *e;
+
+ slot = &et->table[exception_hash(et, chunk)];
+ hlist_bl_for_each_entry(e, pos, slot, hash_list)
+ if (chunk >= e->old_chunk &&
+ chunk <= e->old_chunk + dm_consecutive_chunk_count(e))
+ return e;
+
+ return NULL;
+}
+
+static struct dm_exception *alloc_completed_exception(gfp_t gfp)
+{
+ struct dm_exception *e;
+
+ e = kmem_cache_alloc(exception_cache, gfp);
+ if (!e && gfp == GFP_NOIO)
+ e = kmem_cache_alloc(exception_cache, GFP_ATOMIC);
+
+ return e;
+}
+
+static void free_completed_exception(struct dm_exception *e)
+{
+ kmem_cache_free(exception_cache, e);
+}
+
+static struct dm_snap_pending_exception *alloc_pending_exception(struct dm_snapshot *s)
+{
+ struct dm_snap_pending_exception *pe = mempool_alloc(&s->pending_pool,
+ GFP_NOIO);
+
+ atomic_inc(&s->pending_exceptions_count);
+ pe->snap = s;
+
+ return pe;
+}
+
+static void free_pending_exception(struct dm_snap_pending_exception *pe)
+{
+ struct dm_snapshot *s = pe->snap;
+
+ mempool_free(pe, &s->pending_pool);
+ smp_mb__before_atomic();
+ atomic_dec(&s->pending_exceptions_count);
+}
+
+static void dm_insert_exception(struct dm_exception_table *eh,
+ struct dm_exception *new_e)
+{
+ struct hlist_bl_head *l;
+ struct hlist_bl_node *pos;
+ struct dm_exception *e = NULL;
+
+ l = &eh->table[exception_hash(eh, new_e->old_chunk)];
+
+ /* Add immediately if this table doesn't support consecutive chunks */
+ if (!eh->hash_shift)
+ goto out;
+
+ /* List is ordered by old_chunk */
+ hlist_bl_for_each_entry(e, pos, l, hash_list) {
+ /* Insert after an existing chunk? */
+ if (new_e->old_chunk == (e->old_chunk +
+ dm_consecutive_chunk_count(e) + 1) &&
+ new_e->new_chunk == (dm_chunk_number(e->new_chunk) +
+ dm_consecutive_chunk_count(e) + 1)) {
+ dm_consecutive_chunk_count_inc(e);
+ free_completed_exception(new_e);
+ return;
+ }
+
+ /* Insert before an existing chunk? */
+ if (new_e->old_chunk == (e->old_chunk - 1) &&
+ new_e->new_chunk == (dm_chunk_number(e->new_chunk) - 1)) {
+ dm_consecutive_chunk_count_inc(e);
+ e->old_chunk--;
+ e->new_chunk--;
+ free_completed_exception(new_e);
+ return;
+ }
+
+ if (new_e->old_chunk < e->old_chunk)
+ break;
+ }
+
+out:
+ if (!e) {
+ /*
+ * Either the table doesn't support consecutive chunks or slot
+ * l is empty.
+ */
+ hlist_bl_add_head(&new_e->hash_list, l);
+ } else if (new_e->old_chunk < e->old_chunk) {
+ /* Add before an existing exception */
+ hlist_bl_add_before(&new_e->hash_list, &e->hash_list);
+ } else {
+ /* Add to l's tail: e is the last exception in this slot */
+ hlist_bl_add_behind(&new_e->hash_list, &e->hash_list);
+ }
+}
+
+/*
+ * Callback used by the exception stores to load exceptions when
+ * initialising.
+ */
+static int dm_add_exception(void *context, chunk_t old, chunk_t new)
+{
+ struct dm_exception_table_lock lock;
+ struct dm_snapshot *s = context;
+ struct dm_exception *e;
+
+ e = alloc_completed_exception(GFP_KERNEL);
+ if (!e)
+ return -ENOMEM;
+
+ e->old_chunk = old;
+
+ /* Consecutive_count is implicitly initialised to zero */
+ e->new_chunk = new;
+
+ /*
+ * Although there is no need to lock access to the exception tables
+ * here, if we don't then hlist_bl_add_head(), called by
+ * dm_insert_exception(), will complain about accessing the
+ * corresponding list without locking it first.
+ */
+ dm_exception_table_lock_init(s, old, &lock);
+
+ dm_exception_table_lock(&lock);
+ dm_insert_exception(&s->complete, e);
+ dm_exception_table_unlock(&lock);
+
+ return 0;
+}
+
+/*
+ * Return a minimum chunk size of all snapshots that have the specified origin.
+ * Return zero if the origin has no snapshots.
+ */
+static uint32_t __minimum_chunk_size(struct origin *o)
+{
+ struct dm_snapshot *snap;
+ unsigned int chunk_size = rounddown_pow_of_two(UINT_MAX);
+
+ if (o)
+ list_for_each_entry(snap, &o->snapshots, list)
+ chunk_size = min_not_zero(chunk_size,
+ snap->store->chunk_size);
+
+ return (uint32_t) chunk_size;
+}
+
+/*
+ * Hard coded magic.
+ */
+static int calc_max_buckets(void)
+{
+ /* use a fixed size of 2MB */
+ unsigned long mem = 2 * 1024 * 1024;
+ mem /= sizeof(struct hlist_bl_head);
+
+ return mem;
+}
+
+/*
+ * Allocate room for a suitable hash table.
+ */
+static int init_hash_tables(struct dm_snapshot *s)
+{
+ sector_t hash_size, cow_dev_size, max_buckets;
+
+ /*
+ * Calculate based on the size of the original volume or
+ * the COW volume...
+ */
+ cow_dev_size = get_dev_size(s->cow->bdev);
+ max_buckets = calc_max_buckets();
+
+ hash_size = cow_dev_size >> s->store->chunk_shift;
+ hash_size = min(hash_size, max_buckets);
+
+ if (hash_size < 64)
+ hash_size = 64;
+ hash_size = rounddown_pow_of_two(hash_size);
+ if (dm_exception_table_init(&s->complete, hash_size,
+ DM_CHUNK_CONSECUTIVE_BITS))
+ return -ENOMEM;
+
+ /*
+ * Allocate hash table for in-flight exceptions
+ * Make this smaller than the real hash table
+ */
+ hash_size >>= 3;
+ if (hash_size < 64)
+ hash_size = 64;
+
+ if (dm_exception_table_init(&s->pending, hash_size, 0)) {
+ dm_exception_table_exit(&s->complete, exception_cache);
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static void merge_shutdown(struct dm_snapshot *s)
+{
+ clear_bit_unlock(RUNNING_MERGE, &s->state_bits);
+ smp_mb__after_atomic();
+ wake_up_bit(&s->state_bits, RUNNING_MERGE);
+}
+
+static struct bio *__release_queued_bios_after_merge(struct dm_snapshot *s)
+{
+ s->first_merging_chunk = 0;
+ s->num_merging_chunks = 0;
+
+ return bio_list_get(&s->bios_queued_during_merge);
+}
+
+/*
+ * Remove one chunk from the index of completed exceptions.
+ */
+static int __remove_single_exception_chunk(struct dm_snapshot *s,
+ chunk_t old_chunk)
+{
+ struct dm_exception *e;
+
+ e = dm_lookup_exception(&s->complete, old_chunk);
+ if (!e) {
+ DMERR("Corruption detected: exception for block %llu is on disk but not in memory",
+ (unsigned long long)old_chunk);
+ return -EINVAL;
+ }
+
+ /*
+ * If this is the only chunk using this exception, remove exception.
+ */
+ if (!dm_consecutive_chunk_count(e)) {
+ dm_remove_exception(e);
+ free_completed_exception(e);
+ return 0;
+ }
+
+ /*
+ * The chunk may be either at the beginning or the end of a
+ * group of consecutive chunks - never in the middle. We are
+ * removing chunks in the opposite order to that in which they
+ * were added, so this should always be true.
+ * Decrement the consecutive chunk counter and adjust the
+ * starting point if necessary.
+ */
+ if (old_chunk == e->old_chunk) {
+ e->old_chunk++;
+ e->new_chunk++;
+ } else if (old_chunk != e->old_chunk +
+ dm_consecutive_chunk_count(e)) {
+ DMERR("Attempt to merge block %llu from the middle of a chunk range [%llu - %llu]",
+ (unsigned long long)old_chunk,
+ (unsigned long long)e->old_chunk,
+ (unsigned long long)
+ e->old_chunk + dm_consecutive_chunk_count(e));
+ return -EINVAL;
+ }
+
+ dm_consecutive_chunk_count_dec(e);
+
+ return 0;
+}
+
+static void flush_bios(struct bio *bio);
+
+static int remove_single_exception_chunk(struct dm_snapshot *s)
+{
+ struct bio *b = NULL;
+ int r;
+ chunk_t old_chunk = s->first_merging_chunk + s->num_merging_chunks - 1;
+
+ down_write(&s->lock);
+
+ /*
+ * Process chunks (and associated exceptions) in reverse order
+ * so that dm_consecutive_chunk_count_dec() accounting works.
+ */
+ do {
+ r = __remove_single_exception_chunk(s, old_chunk);
+ if (r)
+ goto out;
+ } while (old_chunk-- > s->first_merging_chunk);
+
+ b = __release_queued_bios_after_merge(s);
+
+out:
+ up_write(&s->lock);
+ if (b)
+ flush_bios(b);
+
+ return r;
+}
+
+static int origin_write_extent(struct dm_snapshot *merging_snap,
+ sector_t sector, unsigned int chunk_size);
+
+static void merge_callback(int read_err, unsigned long write_err,
+ void *context);
+
+static uint64_t read_pending_exceptions_done_count(void)
+{
+ uint64_t pending_exceptions_done;
+
+ spin_lock(&_pending_exceptions_done_spinlock);
+ pending_exceptions_done = _pending_exceptions_done_count;
+ spin_unlock(&_pending_exceptions_done_spinlock);
+
+ return pending_exceptions_done;
+}
+
+static void increment_pending_exceptions_done_count(void)
+{
+ spin_lock(&_pending_exceptions_done_spinlock);
+ _pending_exceptions_done_count++;
+ spin_unlock(&_pending_exceptions_done_spinlock);
+
+ wake_up_all(&_pending_exceptions_done);
+}
+
+static void snapshot_merge_next_chunks(struct dm_snapshot *s)
+{
+ int i, linear_chunks;
+ chunk_t old_chunk, new_chunk;
+ struct dm_io_region src, dest;
+ sector_t io_size;
+ uint64_t previous_count;
+
+ BUG_ON(!test_bit(RUNNING_MERGE, &s->state_bits));
+ if (unlikely(test_bit(SHUTDOWN_MERGE, &s->state_bits)))
+ goto shut;
+
+ /*
+ * valid flag never changes during merge, so no lock required.
+ */
+ if (!s->valid) {
+ DMERR("Snapshot is invalid: can't merge");
+ goto shut;
+ }
+
+ linear_chunks = s->store->type->prepare_merge(s->store, &old_chunk,
+ &new_chunk);
+ if (linear_chunks <= 0) {
+ if (linear_chunks < 0) {
+ DMERR("Read error in exception store: shutting down merge");
+ down_write(&s->lock);
+ s->merge_failed = true;
+ up_write(&s->lock);
+ }
+ goto shut;
+ }
+
+ /* Adjust old_chunk and new_chunk to reflect start of linear region */
+ old_chunk = old_chunk + 1 - linear_chunks;
+ new_chunk = new_chunk + 1 - linear_chunks;
+
+ /*
+ * Use one (potentially large) I/O to copy all 'linear_chunks'
+ * from the exception store to the origin
+ */
+ io_size = linear_chunks * s->store->chunk_size;
+
+ dest.bdev = s->origin->bdev;
+ dest.sector = chunk_to_sector(s->store, old_chunk);
+ dest.count = min(io_size, get_dev_size(dest.bdev) - dest.sector);
+
+ src.bdev = s->cow->bdev;
+ src.sector = chunk_to_sector(s->store, new_chunk);
+ src.count = dest.count;
+
+ /*
+ * Reallocate any exceptions needed in other snapshots then
+ * wait for the pending exceptions to complete.
+ * Each time any pending exception (globally on the system)
+ * completes we are woken and repeat the process to find out
+ * if we can proceed. While this may not seem a particularly
+ * efficient algorithm, it is not expected to have any
+ * significant impact on performance.
+ */
+ previous_count = read_pending_exceptions_done_count();
+ while (origin_write_extent(s, dest.sector, io_size)) {
+ wait_event(_pending_exceptions_done,
+ (read_pending_exceptions_done_count() !=
+ previous_count));
+ /* Retry after the wait, until all exceptions are done. */
+ previous_count = read_pending_exceptions_done_count();
+ }
+
+ down_write(&s->lock);
+ s->first_merging_chunk = old_chunk;
+ s->num_merging_chunks = linear_chunks;
+ up_write(&s->lock);
+
+ /* Wait until writes to all 'linear_chunks' drain */
+ for (i = 0; i < linear_chunks; i++)
+ __check_for_conflicting_io(s, old_chunk + i);
+
+ dm_kcopyd_copy(s->kcopyd_client, &src, 1, &dest, 0, merge_callback, s);
+ return;
+
+shut:
+ merge_shutdown(s);
+}
+
+static void error_bios(struct bio *bio);
+
+static void merge_callback(int read_err, unsigned long write_err, void *context)
+{
+ struct dm_snapshot *s = context;
+ struct bio *b = NULL;
+
+ if (read_err || write_err) {
+ if (read_err)
+ DMERR("Read error: shutting down merge.");
+ else
+ DMERR("Write error: shutting down merge.");
+ goto shut;
+ }
+
+ if (blkdev_issue_flush(s->origin->bdev) < 0) {
+ DMERR("Flush after merge failed: shutting down merge");
+ goto shut;
+ }
+
+ if (s->store->type->commit_merge(s->store,
+ s->num_merging_chunks) < 0) {
+ DMERR("Write error in exception store: shutting down merge");
+ goto shut;
+ }
+
+ if (remove_single_exception_chunk(s) < 0)
+ goto shut;
+
+ snapshot_merge_next_chunks(s);
+
+ return;
+
+shut:
+ down_write(&s->lock);
+ s->merge_failed = true;
+ b = __release_queued_bios_after_merge(s);
+ up_write(&s->lock);
+ error_bios(b);
+
+ merge_shutdown(s);
+}
+
+static void start_merge(struct dm_snapshot *s)
+{
+ if (!test_and_set_bit(RUNNING_MERGE, &s->state_bits))
+ snapshot_merge_next_chunks(s);
+}
+
+/*
+ * Stop the merging process and wait until it finishes.
+ */
+static void stop_merge(struct dm_snapshot *s)
+{
+ set_bit(SHUTDOWN_MERGE, &s->state_bits);
+ wait_on_bit(&s->state_bits, RUNNING_MERGE, TASK_UNINTERRUPTIBLE);
+ clear_bit(SHUTDOWN_MERGE, &s->state_bits);
+}
+
+static int parse_snapshot_features(struct dm_arg_set *as, struct dm_snapshot *s,
+ struct dm_target *ti)
+{
+ int r;
+ unsigned int argc;
+ const char *arg_name;
+
+ static const struct dm_arg _args[] = {
+ {0, 2, "Invalid number of feature arguments"},
+ };
+
+ /*
+ * No feature arguments supplied.
+ */
+ if (!as->argc)
+ return 0;
+
+ r = dm_read_arg_group(_args, as, &argc, &ti->error);
+ if (r)
+ return -EINVAL;
+
+ while (argc && !r) {
+ arg_name = dm_shift_arg(as);
+ argc--;
+
+ if (!strcasecmp(arg_name, "discard_zeroes_cow"))
+ s->discard_zeroes_cow = true;
+
+ else if (!strcasecmp(arg_name, "discard_passdown_origin"))
+ s->discard_passdown_origin = true;
+
+ else {
+ ti->error = "Unrecognised feature requested";
+ r = -EINVAL;
+ break;
+ }
+ }
+
+ if (!s->discard_zeroes_cow && s->discard_passdown_origin) {
+ /*
+ * TODO: really these are disjoint.. but ti->num_discard_bios
+ * and dm_bio_get_target_bio_nr() require rigid constraints.
+ */
+ ti->error = "discard_passdown_origin feature depends on discard_zeroes_cow";
+ r = -EINVAL;
+ }
+
+ return r;
+}
+
+/*
+ * Construct a snapshot mapping:
+ * <origin_dev> <COW-dev> <p|po|n> <chunk-size> [<# feature args> [<arg>]*]
+ */
+static int snapshot_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ struct dm_snapshot *s;
+ struct dm_arg_set as;
+ int i;
+ int r = -EINVAL;
+ char *origin_path, *cow_path;
+ dev_t origin_dev, cow_dev;
+ unsigned int args_used, num_flush_bios = 1;
+ fmode_t origin_mode = FMODE_READ;
+
+ if (argc < 4) {
+ ti->error = "requires 4 or more arguments";
+ r = -EINVAL;
+ goto bad;
+ }
+
+ if (dm_target_is_snapshot_merge(ti)) {
+ num_flush_bios = 2;
+ origin_mode = FMODE_WRITE;
+ }
+
+ s = kzalloc(sizeof(*s), GFP_KERNEL);
+ if (!s) {
+ ti->error = "Cannot allocate private snapshot structure";
+ r = -ENOMEM;
+ goto bad;
+ }
+
+ as.argc = argc;
+ as.argv = argv;
+ dm_consume_args(&as, 4);
+ r = parse_snapshot_features(&as, s, ti);
+ if (r)
+ goto bad_features;
+
+ origin_path = argv[0];
+ argv++;
+ argc--;
+
+ r = dm_get_device(ti, origin_path, origin_mode, &s->origin);
+ if (r) {
+ ti->error = "Cannot get origin device";
+ goto bad_origin;
+ }
+ origin_dev = s->origin->bdev->bd_dev;
+
+ cow_path = argv[0];
+ argv++;
+ argc--;
+
+ cow_dev = dm_get_dev_t(cow_path);
+ if (cow_dev && cow_dev == origin_dev) {
+ ti->error = "COW device cannot be the same as origin device";
+ r = -EINVAL;
+ goto bad_cow;
+ }
+
+ r = dm_get_device(ti, cow_path, dm_table_get_mode(ti->table), &s->cow);
+ if (r) {
+ ti->error = "Cannot get COW device";
+ goto bad_cow;
+ }
+
+ r = dm_exception_store_create(ti, argc, argv, s, &args_used, &s->store);
+ if (r) {
+ ti->error = "Couldn't create exception store";
+ r = -EINVAL;
+ goto bad_store;
+ }
+
+ argv += args_used;
+ argc -= args_used;
+
+ s->ti = ti;
+ s->valid = 1;
+ s->snapshot_overflowed = 0;
+ s->active = 0;
+ atomic_set(&s->pending_exceptions_count, 0);
+ spin_lock_init(&s->pe_allocation_lock);
+ s->exception_start_sequence = 0;
+ s->exception_complete_sequence = 0;
+ s->out_of_order_tree = RB_ROOT;
+ init_rwsem(&s->lock);
+ INIT_LIST_HEAD(&s->list);
+ spin_lock_init(&s->pe_lock);
+ s->state_bits = 0;
+ s->merge_failed = false;
+ s->first_merging_chunk = 0;
+ s->num_merging_chunks = 0;
+ bio_list_init(&s->bios_queued_during_merge);
+
+ /* Allocate hash table for COW data */
+ if (init_hash_tables(s)) {
+ ti->error = "Unable to allocate hash table space";
+ r = -ENOMEM;
+ goto bad_hash_tables;
+ }
+
+ init_waitqueue_head(&s->in_progress_wait);
+
+ s->kcopyd_client = dm_kcopyd_client_create(&dm_kcopyd_throttle);
+ if (IS_ERR(s->kcopyd_client)) {
+ r = PTR_ERR(s->kcopyd_client);
+ ti->error = "Could not create kcopyd client";
+ goto bad_kcopyd;
+ }
+
+ r = mempool_init_slab_pool(&s->pending_pool, MIN_IOS, pending_cache);
+ if (r) {
+ ti->error = "Could not allocate mempool for pending exceptions";
+ goto bad_pending_pool;
+ }
+
+ for (i = 0; i < DM_TRACKED_CHUNK_HASH_SIZE; i++)
+ INIT_HLIST_HEAD(&s->tracked_chunk_hash[i]);
+
+ spin_lock_init(&s->tracked_chunk_lock);
+
+ ti->private = s;
+ ti->num_flush_bios = num_flush_bios;
+ if (s->discard_zeroes_cow)
+ ti->num_discard_bios = (s->discard_passdown_origin ? 2 : 1);
+ ti->per_io_data_size = sizeof(struct dm_snap_tracked_chunk);
+
+ /* Add snapshot to the list of snapshots for this origin */
+ /* Exceptions aren't triggered till snapshot_resume() is called */
+ r = register_snapshot(s);
+ if (r == -ENOMEM) {
+ ti->error = "Snapshot origin struct allocation failed";
+ goto bad_load_and_register;
+ } else if (r < 0) {
+ /* invalid handover, register_snapshot has set ti->error */
+ goto bad_load_and_register;
+ }
+
+ /*
+ * Metadata must only be loaded into one table at once, so skip this
+ * if metadata will be handed over during resume.
+ * Chunk size will be set during the handover - set it to zero to
+ * ensure it's ignored.
+ */
+ if (r > 0) {
+ s->store->chunk_size = 0;
+ return 0;
+ }
+
+ r = s->store->type->read_metadata(s->store, dm_add_exception,
+ (void *)s);
+ if (r < 0) {
+ ti->error = "Failed to read snapshot metadata";
+ goto bad_read_metadata;
+ } else if (r > 0) {
+ s->valid = 0;
+ DMWARN("Snapshot is marked invalid.");
+ }
+
+ if (!s->store->chunk_size) {
+ ti->error = "Chunk size not set";
+ r = -EINVAL;
+ goto bad_read_metadata;
+ }
+
+ r = dm_set_target_max_io_len(ti, s->store->chunk_size);
+ if (r)
+ goto bad_read_metadata;
+
+ return 0;
+
+bad_read_metadata:
+ unregister_snapshot(s);
+bad_load_and_register:
+ mempool_exit(&s->pending_pool);
+bad_pending_pool:
+ dm_kcopyd_client_destroy(s->kcopyd_client);
+bad_kcopyd:
+ dm_exception_table_exit(&s->pending, pending_cache);
+ dm_exception_table_exit(&s->complete, exception_cache);
+bad_hash_tables:
+ dm_exception_store_destroy(s->store);
+bad_store:
+ dm_put_device(ti, s->cow);
+bad_cow:
+ dm_put_device(ti, s->origin);
+bad_origin:
+bad_features:
+ kfree(s);
+bad:
+ return r;
+}
+
+static void __free_exceptions(struct dm_snapshot *s)
+{
+ dm_kcopyd_client_destroy(s->kcopyd_client);
+ s->kcopyd_client = NULL;
+
+ dm_exception_table_exit(&s->pending, pending_cache);
+ dm_exception_table_exit(&s->complete, exception_cache);
+}
+
+static void __handover_exceptions(struct dm_snapshot *snap_src,
+ struct dm_snapshot *snap_dest)
+{
+ union {
+ struct dm_exception_table table_swap;
+ struct dm_exception_store *store_swap;
+ } u;
+
+ /*
+ * Swap all snapshot context information between the two instances.
+ */
+ u.table_swap = snap_dest->complete;
+ snap_dest->complete = snap_src->complete;
+ snap_src->complete = u.table_swap;
+
+ u.store_swap = snap_dest->store;
+ snap_dest->store = snap_src->store;
+ snap_dest->store->userspace_supports_overflow = u.store_swap->userspace_supports_overflow;
+ snap_src->store = u.store_swap;
+
+ snap_dest->store->snap = snap_dest;
+ snap_src->store->snap = snap_src;
+
+ snap_dest->ti->max_io_len = snap_dest->store->chunk_size;
+ snap_dest->valid = snap_src->valid;
+ snap_dest->snapshot_overflowed = snap_src->snapshot_overflowed;
+
+ /*
+ * Set source invalid to ensure it receives no further I/O.
+ */
+ snap_src->valid = 0;
+}
+
+static void snapshot_dtr(struct dm_target *ti)
+{
+#ifdef CONFIG_DM_DEBUG
+ int i;
+#endif
+ struct dm_snapshot *s = ti->private;
+ struct dm_snapshot *snap_src = NULL, *snap_dest = NULL;
+
+ down_read(&_origins_lock);
+ /* Check whether exception handover must be cancelled */
+ (void) __find_snapshots_sharing_cow(s, &snap_src, &snap_dest, NULL);
+ if (snap_src && snap_dest && (s == snap_src)) {
+ down_write(&snap_dest->lock);
+ snap_dest->valid = 0;
+ up_write(&snap_dest->lock);
+ DMERR("Cancelling snapshot handover.");
+ }
+ up_read(&_origins_lock);
+
+ if (dm_target_is_snapshot_merge(ti))
+ stop_merge(s);
+
+ /* Prevent further origin writes from using this snapshot. */
+ /* After this returns there can be no new kcopyd jobs. */
+ unregister_snapshot(s);
+
+ while (atomic_read(&s->pending_exceptions_count))
+ msleep(1);
+ /*
+ * Ensure instructions in mempool_exit aren't reordered
+ * before atomic_read.
+ */
+ smp_mb();
+
+#ifdef CONFIG_DM_DEBUG
+ for (i = 0; i < DM_TRACKED_CHUNK_HASH_SIZE; i++)
+ BUG_ON(!hlist_empty(&s->tracked_chunk_hash[i]));
+#endif
+
+ __free_exceptions(s);
+
+ mempool_exit(&s->pending_pool);
+
+ dm_exception_store_destroy(s->store);
+
+ dm_put_device(ti, s->cow);
+
+ dm_put_device(ti, s->origin);
+
+ WARN_ON(s->in_progress);
+
+ kfree(s);
+}
+
+static void account_start_copy(struct dm_snapshot *s)
+{
+ spin_lock(&s->in_progress_wait.lock);
+ s->in_progress++;
+ spin_unlock(&s->in_progress_wait.lock);
+}
+
+static void account_end_copy(struct dm_snapshot *s)
+{
+ spin_lock(&s->in_progress_wait.lock);
+ BUG_ON(!s->in_progress);
+ s->in_progress--;
+ if (likely(s->in_progress <= cow_threshold) &&
+ unlikely(waitqueue_active(&s->in_progress_wait)))
+ wake_up_locked(&s->in_progress_wait);
+ spin_unlock(&s->in_progress_wait.lock);
+}
+
+static bool wait_for_in_progress(struct dm_snapshot *s, bool unlock_origins)
+{
+ if (unlikely(s->in_progress > cow_threshold)) {
+ spin_lock(&s->in_progress_wait.lock);
+ if (likely(s->in_progress > cow_threshold)) {
+ /*
+ * NOTE: this throttle doesn't account for whether
+ * the caller is servicing an IO that will trigger a COW
+ * so excess throttling may result for chunks not required
+ * to be COW'd. But if cow_threshold was reached, extra
+ * throttling is unlikely to negatively impact performance.
+ */
+ DECLARE_WAITQUEUE(wait, current);
+ __add_wait_queue(&s->in_progress_wait, &wait);
+ __set_current_state(TASK_UNINTERRUPTIBLE);
+ spin_unlock(&s->in_progress_wait.lock);
+ if (unlock_origins)
+ up_read(&_origins_lock);
+ io_schedule();
+ remove_wait_queue(&s->in_progress_wait, &wait);
+ return false;
+ }
+ spin_unlock(&s->in_progress_wait.lock);
+ }
+ return true;
+}
+
+/*
+ * Flush a list of buffers.
+ */
+static void flush_bios(struct bio *bio)
+{
+ struct bio *n;
+
+ while (bio) {
+ n = bio->bi_next;
+ bio->bi_next = NULL;
+ submit_bio_noacct(bio);
+ bio = n;
+ }
+}
+
+static int do_origin(struct dm_dev *origin, struct bio *bio, bool limit);
+
+/*
+ * Flush a list of buffers.
+ */
+static void retry_origin_bios(struct dm_snapshot *s, struct bio *bio)
+{
+ struct bio *n;
+ int r;
+
+ while (bio) {
+ n = bio->bi_next;
+ bio->bi_next = NULL;
+ r = do_origin(s->origin, bio, false);
+ if (r == DM_MAPIO_REMAPPED)
+ submit_bio_noacct(bio);
+ bio = n;
+ }
+}
+
+/*
+ * Error a list of buffers.
+ */
+static void error_bios(struct bio *bio)
+{
+ struct bio *n;
+
+ while (bio) {
+ n = bio->bi_next;
+ bio->bi_next = NULL;
+ bio_io_error(bio);
+ bio = n;
+ }
+}
+
+static void __invalidate_snapshot(struct dm_snapshot *s, int err)
+{
+ if (!s->valid)
+ return;
+
+ if (err == -EIO)
+ DMERR("Invalidating snapshot: Error reading/writing.");
+ else if (err == -ENOMEM)
+ DMERR("Invalidating snapshot: Unable to allocate exception.");
+
+ if (s->store->type->drop_snapshot)
+ s->store->type->drop_snapshot(s->store);
+
+ s->valid = 0;
+
+ dm_table_event(s->ti->table);
+}
+
+static void invalidate_snapshot(struct dm_snapshot *s, int err)
+{
+ down_write(&s->lock);
+ __invalidate_snapshot(s, err);
+ up_write(&s->lock);
+}
+
+static void pending_complete(void *context, int success)
+{
+ struct dm_snap_pending_exception *pe = context;
+ struct dm_exception *e;
+ struct dm_snapshot *s = pe->snap;
+ struct bio *origin_bios = NULL;
+ struct bio *snapshot_bios = NULL;
+ struct bio *full_bio = NULL;
+ struct dm_exception_table_lock lock;
+ int error = 0;
+
+ dm_exception_table_lock_init(s, pe->e.old_chunk, &lock);
+
+ if (!success) {
+ /* Read/write error - snapshot is unusable */
+ invalidate_snapshot(s, -EIO);
+ error = 1;
+
+ dm_exception_table_lock(&lock);
+ goto out;
+ }
+
+ e = alloc_completed_exception(GFP_NOIO);
+ if (!e) {
+ invalidate_snapshot(s, -ENOMEM);
+ error = 1;
+
+ dm_exception_table_lock(&lock);
+ goto out;
+ }
+ *e = pe->e;
+
+ down_read(&s->lock);
+ dm_exception_table_lock(&lock);
+ if (!s->valid) {
+ up_read(&s->lock);
+ free_completed_exception(e);
+ error = 1;
+
+ goto out;
+ }
+
+ /*
+ * Add a proper exception. After inserting the completed exception all
+ * subsequent snapshot reads to this chunk will be redirected to the
+ * COW device. This ensures that we do not starve. Moreover, as long
+ * as the pending exception exists, neither origin writes nor snapshot
+ * merging can overwrite the chunk in origin.
+ */
+ dm_insert_exception(&s->complete, e);
+ up_read(&s->lock);
+
+ /* Wait for conflicting reads to drain */
+ if (__chunk_is_tracked(s, pe->e.old_chunk)) {
+ dm_exception_table_unlock(&lock);
+ __check_for_conflicting_io(s, pe->e.old_chunk);
+ dm_exception_table_lock(&lock);
+ }
+
+out:
+ /* Remove the in-flight exception from the list */
+ dm_remove_exception(&pe->e);
+
+ dm_exception_table_unlock(&lock);
+
+ snapshot_bios = bio_list_get(&pe->snapshot_bios);
+ origin_bios = bio_list_get(&pe->origin_bios);
+ full_bio = pe->full_bio;
+ if (full_bio)
+ full_bio->bi_end_io = pe->full_bio_end_io;
+ increment_pending_exceptions_done_count();
+
+ /* Submit any pending write bios */
+ if (error) {
+ if (full_bio)
+ bio_io_error(full_bio);
+ error_bios(snapshot_bios);
+ } else {
+ if (full_bio)
+ bio_endio(full_bio);
+ flush_bios(snapshot_bios);
+ }
+
+ retry_origin_bios(s, origin_bios);
+
+ free_pending_exception(pe);
+}
+
+static void complete_exception(struct dm_snap_pending_exception *pe)
+{
+ struct dm_snapshot *s = pe->snap;
+
+ /* Update the metadata if we are persistent */
+ s->store->type->commit_exception(s->store, &pe->e, !pe->copy_error,
+ pending_complete, pe);
+}
+
+/*
+ * Called when the copy I/O has finished. kcopyd actually runs
+ * this code so don't block.
+ */
+static void copy_callback(int read_err, unsigned long write_err, void *context)
+{
+ struct dm_snap_pending_exception *pe = context;
+ struct dm_snapshot *s = pe->snap;
+
+ pe->copy_error = read_err || write_err;
+
+ if (pe->exception_sequence == s->exception_complete_sequence) {
+ struct rb_node *next;
+
+ s->exception_complete_sequence++;
+ complete_exception(pe);
+
+ next = rb_first(&s->out_of_order_tree);
+ while (next) {
+ pe = rb_entry(next, struct dm_snap_pending_exception,
+ out_of_order_node);
+ if (pe->exception_sequence != s->exception_complete_sequence)
+ break;
+ next = rb_next(next);
+ s->exception_complete_sequence++;
+ rb_erase(&pe->out_of_order_node, &s->out_of_order_tree);
+ complete_exception(pe);
+ cond_resched();
+ }
+ } else {
+ struct rb_node *parent = NULL;
+ struct rb_node **p = &s->out_of_order_tree.rb_node;
+ struct dm_snap_pending_exception *pe2;
+
+ while (*p) {
+ pe2 = rb_entry(*p, struct dm_snap_pending_exception, out_of_order_node);
+ parent = *p;
+
+ BUG_ON(pe->exception_sequence == pe2->exception_sequence);
+ if (pe->exception_sequence < pe2->exception_sequence)
+ p = &((*p)->rb_left);
+ else
+ p = &((*p)->rb_right);
+ }
+
+ rb_link_node(&pe->out_of_order_node, parent, p);
+ rb_insert_color(&pe->out_of_order_node, &s->out_of_order_tree);
+ }
+ account_end_copy(s);
+}
+
+/*
+ * Dispatches the copy operation to kcopyd.
+ */
+static void start_copy(struct dm_snap_pending_exception *pe)
+{
+ struct dm_snapshot *s = pe->snap;
+ struct dm_io_region src, dest;
+ struct block_device *bdev = s->origin->bdev;
+ sector_t dev_size;
+
+ dev_size = get_dev_size(bdev);
+
+ src.bdev = bdev;
+ src.sector = chunk_to_sector(s->store, pe->e.old_chunk);
+ src.count = min((sector_t)s->store->chunk_size, dev_size - src.sector);
+
+ dest.bdev = s->cow->bdev;
+ dest.sector = chunk_to_sector(s->store, pe->e.new_chunk);
+ dest.count = src.count;
+
+ /* Hand over to kcopyd */
+ account_start_copy(s);
+ dm_kcopyd_copy(s->kcopyd_client, &src, 1, &dest, 0, copy_callback, pe);
+}
+
+static void full_bio_end_io(struct bio *bio)
+{
+ void *callback_data = bio->bi_private;
+
+ dm_kcopyd_do_callback(callback_data, 0, bio->bi_status ? 1 : 0);
+}
+
+static void start_full_bio(struct dm_snap_pending_exception *pe,
+ struct bio *bio)
+{
+ struct dm_snapshot *s = pe->snap;
+ void *callback_data;
+
+ pe->full_bio = bio;
+ pe->full_bio_end_io = bio->bi_end_io;
+
+ account_start_copy(s);
+ callback_data = dm_kcopyd_prepare_callback(s->kcopyd_client,
+ copy_callback, pe);
+
+ bio->bi_end_io = full_bio_end_io;
+ bio->bi_private = callback_data;
+
+ submit_bio_noacct(bio);
+}
+
+static struct dm_snap_pending_exception *
+__lookup_pending_exception(struct dm_snapshot *s, chunk_t chunk)
+{
+ struct dm_exception *e = dm_lookup_exception(&s->pending, chunk);
+
+ if (!e)
+ return NULL;
+
+ return container_of(e, struct dm_snap_pending_exception, e);
+}
+
+/*
+ * Inserts a pending exception into the pending table.
+ *
+ * NOTE: a write lock must be held on the chunk's pending exception table slot
+ * before calling this.
+ */
+static struct dm_snap_pending_exception *
+__insert_pending_exception(struct dm_snapshot *s,
+ struct dm_snap_pending_exception *pe, chunk_t chunk)
+{
+ pe->e.old_chunk = chunk;
+ bio_list_init(&pe->origin_bios);
+ bio_list_init(&pe->snapshot_bios);
+ pe->started = 0;
+ pe->full_bio = NULL;
+
+ spin_lock(&s->pe_allocation_lock);
+ if (s->store->type->prepare_exception(s->store, &pe->e)) {
+ spin_unlock(&s->pe_allocation_lock);
+ free_pending_exception(pe);
+ return NULL;
+ }
+
+ pe->exception_sequence = s->exception_start_sequence++;
+ spin_unlock(&s->pe_allocation_lock);
+
+ dm_insert_exception(&s->pending, &pe->e);
+
+ return pe;
+}
+
+/*
+ * Looks to see if this snapshot already has a pending exception
+ * for this chunk, otherwise it allocates a new one and inserts
+ * it into the pending table.
+ *
+ * NOTE: a write lock must be held on the chunk's pending exception table slot
+ * before calling this.
+ */
+static struct dm_snap_pending_exception *
+__find_pending_exception(struct dm_snapshot *s,
+ struct dm_snap_pending_exception *pe, chunk_t chunk)
+{
+ struct dm_snap_pending_exception *pe2;
+
+ pe2 = __lookup_pending_exception(s, chunk);
+ if (pe2) {
+ free_pending_exception(pe);
+ return pe2;
+ }
+
+ return __insert_pending_exception(s, pe, chunk);
+}
+
+static void remap_exception(struct dm_snapshot *s, struct dm_exception *e,
+ struct bio *bio, chunk_t chunk)
+{
+ bio_set_dev(bio, s->cow->bdev);
+ bio->bi_iter.bi_sector =
+ chunk_to_sector(s->store, dm_chunk_number(e->new_chunk) +
+ (chunk - e->old_chunk)) +
+ (bio->bi_iter.bi_sector & s->store->chunk_mask);
+}
+
+static void zero_callback(int read_err, unsigned long write_err, void *context)
+{
+ struct bio *bio = context;
+ struct dm_snapshot *s = bio->bi_private;
+
+ account_end_copy(s);
+ bio->bi_status = write_err ? BLK_STS_IOERR : 0;
+ bio_endio(bio);
+}
+
+static void zero_exception(struct dm_snapshot *s, struct dm_exception *e,
+ struct bio *bio, chunk_t chunk)
+{
+ struct dm_io_region dest;
+
+ dest.bdev = s->cow->bdev;
+ dest.sector = bio->bi_iter.bi_sector;
+ dest.count = s->store->chunk_size;
+
+ account_start_copy(s);
+ WARN_ON_ONCE(bio->bi_private);
+ bio->bi_private = s;
+ dm_kcopyd_zero(s->kcopyd_client, 1, &dest, 0, zero_callback, bio);
+}
+
+static bool io_overlaps_chunk(struct dm_snapshot *s, struct bio *bio)
+{
+ return bio->bi_iter.bi_size ==
+ (s->store->chunk_size << SECTOR_SHIFT);
+}
+
+static int snapshot_map(struct dm_target *ti, struct bio *bio)
+{
+ struct dm_exception *e;
+ struct dm_snapshot *s = ti->private;
+ int r = DM_MAPIO_REMAPPED;
+ chunk_t chunk;
+ struct dm_snap_pending_exception *pe = NULL;
+ struct dm_exception_table_lock lock;
+
+ init_tracked_chunk(bio);
+
+ if (bio->bi_opf & REQ_PREFLUSH) {
+ bio_set_dev(bio, s->cow->bdev);
+ return DM_MAPIO_REMAPPED;
+ }
+
+ chunk = sector_to_chunk(s->store, bio->bi_iter.bi_sector);
+ dm_exception_table_lock_init(s, chunk, &lock);
+
+ /* Full snapshots are not usable */
+ /* To get here the table must be live so s->active is always set. */
+ if (!s->valid)
+ return DM_MAPIO_KILL;
+
+ if (bio_data_dir(bio) == WRITE) {
+ while (unlikely(!wait_for_in_progress(s, false)))
+ ; /* wait_for_in_progress() has slept */
+ }
+
+ down_read(&s->lock);
+ dm_exception_table_lock(&lock);
+
+ if (!s->valid || (unlikely(s->snapshot_overflowed) &&
+ bio_data_dir(bio) == WRITE)) {
+ r = DM_MAPIO_KILL;
+ goto out_unlock;
+ }
+
+ if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
+ if (s->discard_passdown_origin && dm_bio_get_target_bio_nr(bio)) {
+ /*
+ * passdown discard to origin (without triggering
+ * snapshot exceptions via do_origin; doing so would
+ * defeat the goal of freeing space in origin that is
+ * implied by the "discard_passdown_origin" feature)
+ */
+ bio_set_dev(bio, s->origin->bdev);
+ track_chunk(s, bio, chunk);
+ goto out_unlock;
+ }
+ /* discard to snapshot (target_bio_nr == 0) zeroes exceptions */
+ }
+
+ /* If the block is already remapped - use that, else remap it */
+ e = dm_lookup_exception(&s->complete, chunk);
+ if (e) {
+ remap_exception(s, e, bio, chunk);
+ if (unlikely(bio_op(bio) == REQ_OP_DISCARD) &&
+ io_overlaps_chunk(s, bio)) {
+ dm_exception_table_unlock(&lock);
+ up_read(&s->lock);
+ zero_exception(s, e, bio, chunk);
+ r = DM_MAPIO_SUBMITTED; /* discard is not issued */
+ goto out;
+ }
+ goto out_unlock;
+ }
+
+ if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
+ /*
+ * If no exception exists, complete discard immediately
+ * otherwise it'll trigger copy-out.
+ */
+ bio_endio(bio);
+ r = DM_MAPIO_SUBMITTED;
+ goto out_unlock;
+ }
+
+ /*
+ * Write to snapshot - higher level takes care of RW/RO
+ * flags so we should only get this if we are
+ * writable.
+ */
+ if (bio_data_dir(bio) == WRITE) {
+ pe = __lookup_pending_exception(s, chunk);
+ if (!pe) {
+ dm_exception_table_unlock(&lock);
+ pe = alloc_pending_exception(s);
+ dm_exception_table_lock(&lock);
+
+ e = dm_lookup_exception(&s->complete, chunk);
+ if (e) {
+ free_pending_exception(pe);
+ remap_exception(s, e, bio, chunk);
+ goto out_unlock;
+ }
+
+ pe = __find_pending_exception(s, pe, chunk);
+ if (!pe) {
+ dm_exception_table_unlock(&lock);
+ up_read(&s->lock);
+
+ down_write(&s->lock);
+
+ if (s->store->userspace_supports_overflow) {
+ if (s->valid && !s->snapshot_overflowed) {
+ s->snapshot_overflowed = 1;
+ DMERR("Snapshot overflowed: Unable to allocate exception.");
+ }
+ } else
+ __invalidate_snapshot(s, -ENOMEM);
+ up_write(&s->lock);
+
+ r = DM_MAPIO_KILL;
+ goto out;
+ }
+ }
+
+ remap_exception(s, &pe->e, bio, chunk);
+
+ r = DM_MAPIO_SUBMITTED;
+
+ if (!pe->started && io_overlaps_chunk(s, bio)) {
+ pe->started = 1;
+
+ dm_exception_table_unlock(&lock);
+ up_read(&s->lock);
+
+ start_full_bio(pe, bio);
+ goto out;
+ }
+
+ bio_list_add(&pe->snapshot_bios, bio);
+
+ if (!pe->started) {
+ /* this is protected by the exception table lock */
+ pe->started = 1;
+
+ dm_exception_table_unlock(&lock);
+ up_read(&s->lock);
+
+ start_copy(pe);
+ goto out;
+ }
+ } else {
+ bio_set_dev(bio, s->origin->bdev);
+ track_chunk(s, bio, chunk);
+ }
+
+out_unlock:
+ dm_exception_table_unlock(&lock);
+ up_read(&s->lock);
+out:
+ return r;
+}
+
+/*
+ * A snapshot-merge target behaves like a combination of a snapshot
+ * target and a snapshot-origin target. It only generates new
+ * exceptions in other snapshots and not in the one that is being
+ * merged.
+ *
+ * For each chunk, if there is an existing exception, it is used to
+ * redirect I/O to the cow device. Otherwise I/O is sent to the origin,
+ * which in turn might generate exceptions in other snapshots.
+ * If merging is currently taking place on the chunk in question, the
+ * I/O is deferred by adding it to s->bios_queued_during_merge.
+ */
+static int snapshot_merge_map(struct dm_target *ti, struct bio *bio)
+{
+ struct dm_exception *e;
+ struct dm_snapshot *s = ti->private;
+ int r = DM_MAPIO_REMAPPED;
+ chunk_t chunk;
+
+ init_tracked_chunk(bio);
+
+ if (bio->bi_opf & REQ_PREFLUSH) {
+ if (!dm_bio_get_target_bio_nr(bio))
+ bio_set_dev(bio, s->origin->bdev);
+ else
+ bio_set_dev(bio, s->cow->bdev);
+ return DM_MAPIO_REMAPPED;
+ }
+
+ if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
+ /* Once merging, discards no longer effect change */
+ bio_endio(bio);
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ chunk = sector_to_chunk(s->store, bio->bi_iter.bi_sector);
+
+ down_write(&s->lock);
+
+ /* Full merging snapshots are redirected to the origin */
+ if (!s->valid)
+ goto redirect_to_origin;
+
+ /* If the block is already remapped - use that */
+ e = dm_lookup_exception(&s->complete, chunk);
+ if (e) {
+ /* Queue writes overlapping with chunks being merged */
+ if (bio_data_dir(bio) == WRITE &&
+ chunk >= s->first_merging_chunk &&
+ chunk < (s->first_merging_chunk +
+ s->num_merging_chunks)) {
+ bio_set_dev(bio, s->origin->bdev);
+ bio_list_add(&s->bios_queued_during_merge, bio);
+ r = DM_MAPIO_SUBMITTED;
+ goto out_unlock;
+ }
+
+ remap_exception(s, e, bio, chunk);
+
+ if (bio_data_dir(bio) == WRITE)
+ track_chunk(s, bio, chunk);
+ goto out_unlock;
+ }
+
+redirect_to_origin:
+ bio_set_dev(bio, s->origin->bdev);
+
+ if (bio_data_dir(bio) == WRITE) {
+ up_write(&s->lock);
+ return do_origin(s->origin, bio, false);
+ }
+
+out_unlock:
+ up_write(&s->lock);
+
+ return r;
+}
+
+static int snapshot_end_io(struct dm_target *ti, struct bio *bio,
+ blk_status_t *error)
+{
+ struct dm_snapshot *s = ti->private;
+
+ if (is_bio_tracked(bio))
+ stop_tracking_chunk(s, bio);
+
+ return DM_ENDIO_DONE;
+}
+
+static void snapshot_merge_presuspend(struct dm_target *ti)
+{
+ struct dm_snapshot *s = ti->private;
+
+ stop_merge(s);
+}
+
+static int snapshot_preresume(struct dm_target *ti)
+{
+ int r = 0;
+ struct dm_snapshot *s = ti->private;
+ struct dm_snapshot *snap_src = NULL, *snap_dest = NULL;
+
+ down_read(&_origins_lock);
+ (void) __find_snapshots_sharing_cow(s, &snap_src, &snap_dest, NULL);
+ if (snap_src && snap_dest) {
+ down_read(&snap_src->lock);
+ if (s == snap_src) {
+ DMERR("Unable to resume snapshot source until handover completes.");
+ r = -EINVAL;
+ } else if (!dm_suspended(snap_src->ti)) {
+ DMERR("Unable to perform snapshot handover until source is suspended.");
+ r = -EINVAL;
+ }
+ up_read(&snap_src->lock);
+ }
+ up_read(&_origins_lock);
+
+ return r;
+}
+
+static void snapshot_resume(struct dm_target *ti)
+{
+ struct dm_snapshot *s = ti->private;
+ struct dm_snapshot *snap_src = NULL, *snap_dest = NULL, *snap_merging = NULL;
+ struct dm_origin *o;
+ struct mapped_device *origin_md = NULL;
+ bool must_restart_merging = false;
+
+ down_read(&_origins_lock);
+
+ o = __lookup_dm_origin(s->origin->bdev);
+ if (o)
+ origin_md = dm_table_get_md(o->ti->table);
+ if (!origin_md) {
+ (void) __find_snapshots_sharing_cow(s, NULL, NULL, &snap_merging);
+ if (snap_merging)
+ origin_md = dm_table_get_md(snap_merging->ti->table);
+ }
+ if (origin_md == dm_table_get_md(ti->table))
+ origin_md = NULL;
+ if (origin_md) {
+ if (dm_hold(origin_md))
+ origin_md = NULL;
+ }
+
+ up_read(&_origins_lock);
+
+ if (origin_md) {
+ dm_internal_suspend_fast(origin_md);
+ if (snap_merging && test_bit(RUNNING_MERGE, &snap_merging->state_bits)) {
+ must_restart_merging = true;
+ stop_merge(snap_merging);
+ }
+ }
+
+ down_read(&_origins_lock);
+
+ (void) __find_snapshots_sharing_cow(s, &snap_src, &snap_dest, NULL);
+ if (snap_src && snap_dest) {
+ down_write(&snap_src->lock);
+ down_write_nested(&snap_dest->lock, SINGLE_DEPTH_NESTING);
+ __handover_exceptions(snap_src, snap_dest);
+ up_write(&snap_dest->lock);
+ up_write(&snap_src->lock);
+ }
+
+ up_read(&_origins_lock);
+
+ if (origin_md) {
+ if (must_restart_merging)
+ start_merge(snap_merging);
+ dm_internal_resume_fast(origin_md);
+ dm_put(origin_md);
+ }
+
+ /* Now we have correct chunk size, reregister */
+ reregister_snapshot(s);
+
+ down_write(&s->lock);
+ s->active = 1;
+ up_write(&s->lock);
+}
+
+static uint32_t get_origin_minimum_chunksize(struct block_device *bdev)
+{
+ uint32_t min_chunksize;
+
+ down_read(&_origins_lock);
+ min_chunksize = __minimum_chunk_size(__lookup_origin(bdev));
+ up_read(&_origins_lock);
+
+ return min_chunksize;
+}
+
+static void snapshot_merge_resume(struct dm_target *ti)
+{
+ struct dm_snapshot *s = ti->private;
+
+ /*
+ * Handover exceptions from existing snapshot.
+ */
+ snapshot_resume(ti);
+
+ /*
+ * snapshot-merge acts as an origin, so set ti->max_io_len
+ */
+ ti->max_io_len = get_origin_minimum_chunksize(s->origin->bdev);
+
+ start_merge(s);
+}
+
+static void snapshot_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ unsigned int sz = 0;
+ struct dm_snapshot *snap = ti->private;
+ unsigned int num_features;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+
+ down_write(&snap->lock);
+
+ if (!snap->valid)
+ DMEMIT("Invalid");
+ else if (snap->merge_failed)
+ DMEMIT("Merge failed");
+ else if (snap->snapshot_overflowed)
+ DMEMIT("Overflow");
+ else {
+ if (snap->store->type->usage) {
+ sector_t total_sectors, sectors_allocated,
+ metadata_sectors;
+ snap->store->type->usage(snap->store,
+ &total_sectors,
+ &sectors_allocated,
+ &metadata_sectors);
+ DMEMIT("%llu/%llu %llu",
+ (unsigned long long)sectors_allocated,
+ (unsigned long long)total_sectors,
+ (unsigned long long)metadata_sectors);
+ }
+ else
+ DMEMIT("Unknown");
+ }
+
+ up_write(&snap->lock);
+
+ break;
+
+ case STATUSTYPE_TABLE:
+ /*
+ * kdevname returns a static pointer so we need
+ * to make private copies if the output is to
+ * make sense.
+ */
+ DMEMIT("%s %s", snap->origin->name, snap->cow->name);
+ sz += snap->store->type->status(snap->store, type, result + sz,
+ maxlen - sz);
+ num_features = snap->discard_zeroes_cow + snap->discard_passdown_origin;
+ if (num_features) {
+ DMEMIT(" %u", num_features);
+ if (snap->discard_zeroes_cow)
+ DMEMIT(" discard_zeroes_cow");
+ if (snap->discard_passdown_origin)
+ DMEMIT(" discard_passdown_origin");
+ }
+ break;
+
+ case STATUSTYPE_IMA:
+ DMEMIT_TARGET_NAME_VERSION(ti->type);
+ DMEMIT(",snap_origin_name=%s", snap->origin->name);
+ DMEMIT(",snap_cow_name=%s", snap->cow->name);
+ DMEMIT(",snap_valid=%c", snap->valid ? 'y' : 'n');
+ DMEMIT(",snap_merge_failed=%c", snap->merge_failed ? 'y' : 'n');
+ DMEMIT(",snapshot_overflowed=%c", snap->snapshot_overflowed ? 'y' : 'n');
+ DMEMIT(";");
+ break;
+ }
+}
+
+static int snapshot_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ struct dm_snapshot *snap = ti->private;
+ int r;
+
+ r = fn(ti, snap->origin, 0, ti->len, data);
+
+ if (!r)
+ r = fn(ti, snap->cow, 0, get_dev_size(snap->cow->bdev), data);
+
+ return r;
+}
+
+static void snapshot_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+ struct dm_snapshot *snap = ti->private;
+
+ if (snap->discard_zeroes_cow) {
+ struct dm_snapshot *snap_src = NULL, *snap_dest = NULL;
+
+ down_read(&_origins_lock);
+
+ (void) __find_snapshots_sharing_cow(snap, &snap_src, &snap_dest, NULL);
+ if (snap_src && snap_dest)
+ snap = snap_src;
+
+ /* All discards are split on chunk_size boundary */
+ limits->discard_granularity = snap->store->chunk_size;
+ limits->max_discard_sectors = snap->store->chunk_size;
+
+ up_read(&_origins_lock);
+ }
+}
+
+/*-----------------------------------------------------------------
+ * Origin methods
+ *---------------------------------------------------------------*/
+
+/*
+ * If no exceptions need creating, DM_MAPIO_REMAPPED is returned and any
+ * supplied bio was ignored. The caller may submit it immediately.
+ * (No remapping actually occurs as the origin is always a direct linear
+ * map.)
+ *
+ * If further exceptions are required, DM_MAPIO_SUBMITTED is returned
+ * and any supplied bio is added to a list to be submitted once all
+ * the necessary exceptions exist.
+ */
+static int __origin_write(struct list_head *snapshots, sector_t sector,
+ struct bio *bio)
+{
+ int r = DM_MAPIO_REMAPPED;
+ struct dm_snapshot *snap;
+ struct dm_exception *e;
+ struct dm_snap_pending_exception *pe, *pe2;
+ struct dm_snap_pending_exception *pe_to_start_now = NULL;
+ struct dm_snap_pending_exception *pe_to_start_last = NULL;
+ struct dm_exception_table_lock lock;
+ chunk_t chunk;
+
+ /* Do all the snapshots on this origin */
+ list_for_each_entry(snap, snapshots, list) {
+ /*
+ * Don't make new exceptions in a merging snapshot
+ * because it has effectively been deleted
+ */
+ if (dm_target_is_snapshot_merge(snap->ti))
+ continue;
+
+ /* Nothing to do if writing beyond end of snapshot */
+ if (sector >= dm_table_get_size(snap->ti->table))
+ continue;
+
+ /*
+ * Remember, different snapshots can have
+ * different chunk sizes.
+ */
+ chunk = sector_to_chunk(snap->store, sector);
+ dm_exception_table_lock_init(snap, chunk, &lock);
+
+ down_read(&snap->lock);
+ dm_exception_table_lock(&lock);
+
+ /* Only deal with valid and active snapshots */
+ if (!snap->valid || !snap->active)
+ goto next_snapshot;
+
+ pe = __lookup_pending_exception(snap, chunk);
+ if (!pe) {
+ /*
+ * Check exception table to see if block is already
+ * remapped in this snapshot and trigger an exception
+ * if not.
+ */
+ e = dm_lookup_exception(&snap->complete, chunk);
+ if (e)
+ goto next_snapshot;
+
+ dm_exception_table_unlock(&lock);
+ pe = alloc_pending_exception(snap);
+ dm_exception_table_lock(&lock);
+
+ pe2 = __lookup_pending_exception(snap, chunk);
+
+ if (!pe2) {
+ e = dm_lookup_exception(&snap->complete, chunk);
+ if (e) {
+ free_pending_exception(pe);
+ goto next_snapshot;
+ }
+
+ pe = __insert_pending_exception(snap, pe, chunk);
+ if (!pe) {
+ dm_exception_table_unlock(&lock);
+ up_read(&snap->lock);
+
+ invalidate_snapshot(snap, -ENOMEM);
+ continue;
+ }
+ } else {
+ free_pending_exception(pe);
+ pe = pe2;
+ }
+ }
+
+ r = DM_MAPIO_SUBMITTED;
+
+ /*
+ * If an origin bio was supplied, queue it to wait for the
+ * completion of this exception, and start this one last,
+ * at the end of the function.
+ */
+ if (bio) {
+ bio_list_add(&pe->origin_bios, bio);
+ bio = NULL;
+
+ if (!pe->started) {
+ pe->started = 1;
+ pe_to_start_last = pe;
+ }
+ }
+
+ if (!pe->started) {
+ pe->started = 1;
+ pe_to_start_now = pe;
+ }
+
+next_snapshot:
+ dm_exception_table_unlock(&lock);
+ up_read(&snap->lock);
+
+ if (pe_to_start_now) {
+ start_copy(pe_to_start_now);
+ pe_to_start_now = NULL;
+ }
+ }
+
+ /*
+ * Submit the exception against which the bio is queued last,
+ * to give the other exceptions a head start.
+ */
+ if (pe_to_start_last)
+ start_copy(pe_to_start_last);
+
+ return r;
+}
+
+/*
+ * Called on a write from the origin driver.
+ */
+static int do_origin(struct dm_dev *origin, struct bio *bio, bool limit)
+{
+ struct origin *o;
+ int r = DM_MAPIO_REMAPPED;
+
+again:
+ down_read(&_origins_lock);
+ o = __lookup_origin(origin->bdev);
+ if (o) {
+ if (limit) {
+ struct dm_snapshot *s;
+ list_for_each_entry(s, &o->snapshots, list)
+ if (unlikely(!wait_for_in_progress(s, true)))
+ goto again;
+ }
+
+ r = __origin_write(&o->snapshots, bio->bi_iter.bi_sector, bio);
+ }
+ up_read(&_origins_lock);
+
+ return r;
+}
+
+/*
+ * Trigger exceptions in all non-merging snapshots.
+ *
+ * The chunk size of the merging snapshot may be larger than the chunk
+ * size of some other snapshot so we may need to reallocate multiple
+ * chunks in other snapshots.
+ *
+ * We scan all the overlapping exceptions in the other snapshots.
+ * Returns 1 if anything was reallocated and must be waited for,
+ * otherwise returns 0.
+ *
+ * size must be a multiple of merging_snap's chunk_size.
+ */
+static int origin_write_extent(struct dm_snapshot *merging_snap,
+ sector_t sector, unsigned int size)
+{
+ int must_wait = 0;
+ sector_t n;
+ struct origin *o;
+
+ /*
+ * The origin's __minimum_chunk_size() got stored in max_io_len
+ * by snapshot_merge_resume().
+ */
+ down_read(&_origins_lock);
+ o = __lookup_origin(merging_snap->origin->bdev);
+ for (n = 0; n < size; n += merging_snap->ti->max_io_len)
+ if (__origin_write(&o->snapshots, sector + n, NULL) ==
+ DM_MAPIO_SUBMITTED)
+ must_wait = 1;
+ up_read(&_origins_lock);
+
+ return must_wait;
+}
+
+/*
+ * Origin: maps a linear range of a device, with hooks for snapshotting.
+ */
+
+/*
+ * Construct an origin mapping: <dev_path>
+ * The context for an origin is merely a 'struct dm_dev *'
+ * pointing to the real device.
+ */
+static int origin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ int r;
+ struct dm_origin *o;
+
+ if (argc != 1) {
+ ti->error = "origin: incorrect number of arguments";
+ return -EINVAL;
+ }
+
+ o = kmalloc(sizeof(struct dm_origin), GFP_KERNEL);
+ if (!o) {
+ ti->error = "Cannot allocate private origin structure";
+ r = -ENOMEM;
+ goto bad_alloc;
+ }
+
+ r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &o->dev);
+ if (r) {
+ ti->error = "Cannot get target device";
+ goto bad_open;
+ }
+
+ o->ti = ti;
+ ti->private = o;
+ ti->num_flush_bios = 1;
+
+ return 0;
+
+bad_open:
+ kfree(o);
+bad_alloc:
+ return r;
+}
+
+static void origin_dtr(struct dm_target *ti)
+{
+ struct dm_origin *o = ti->private;
+
+ dm_put_device(ti, o->dev);
+ kfree(o);
+}
+
+static int origin_map(struct dm_target *ti, struct bio *bio)
+{
+ struct dm_origin *o = ti->private;
+ unsigned int available_sectors;
+
+ bio_set_dev(bio, o->dev->bdev);
+
+ if (unlikely(bio->bi_opf & REQ_PREFLUSH))
+ return DM_MAPIO_REMAPPED;
+
+ if (bio_data_dir(bio) != WRITE)
+ return DM_MAPIO_REMAPPED;
+
+ available_sectors = o->split_boundary -
+ ((unsigned int)bio->bi_iter.bi_sector & (o->split_boundary - 1));
+
+ if (bio_sectors(bio) > available_sectors)
+ dm_accept_partial_bio(bio, available_sectors);
+
+ /* Only tell snapshots if this is a write */
+ return do_origin(o->dev, bio, true);
+}
+
+/*
+ * Set the target "max_io_len" field to the minimum of all the snapshots'
+ * chunk sizes.
+ */
+static void origin_resume(struct dm_target *ti)
+{
+ struct dm_origin *o = ti->private;
+
+ o->split_boundary = get_origin_minimum_chunksize(o->dev->bdev);
+
+ down_write(&_origins_lock);
+ __insert_dm_origin(o);
+ up_write(&_origins_lock);
+}
+
+static void origin_postsuspend(struct dm_target *ti)
+{
+ struct dm_origin *o = ti->private;
+
+ down_write(&_origins_lock);
+ __remove_dm_origin(o);
+ up_write(&_origins_lock);
+}
+
+static void origin_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ struct dm_origin *o = ti->private;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ result[0] = '\0';
+ break;
+
+ case STATUSTYPE_TABLE:
+ snprintf(result, maxlen, "%s", o->dev->name);
+ break;
+ case STATUSTYPE_IMA:
+ result[0] = '\0';
+ break;
+ }
+}
+
+static int origin_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ struct dm_origin *o = ti->private;
+
+ return fn(ti, o->dev, 0, ti->len, data);
+}
+
+static struct target_type origin_target = {
+ .name = "snapshot-origin",
+ .version = {1, 9, 0},
+ .module = THIS_MODULE,
+ .ctr = origin_ctr,
+ .dtr = origin_dtr,
+ .map = origin_map,
+ .resume = origin_resume,
+ .postsuspend = origin_postsuspend,
+ .status = origin_status,
+ .iterate_devices = origin_iterate_devices,
+};
+
+static struct target_type snapshot_target = {
+ .name = "snapshot",
+ .version = {1, 16, 0},
+ .module = THIS_MODULE,
+ .ctr = snapshot_ctr,
+ .dtr = snapshot_dtr,
+ .map = snapshot_map,
+ .end_io = snapshot_end_io,
+ .preresume = snapshot_preresume,
+ .resume = snapshot_resume,
+ .status = snapshot_status,
+ .iterate_devices = snapshot_iterate_devices,
+ .io_hints = snapshot_io_hints,
+};
+
+static struct target_type merge_target = {
+ .name = dm_snapshot_merge_target_name,
+ .version = {1, 5, 0},
+ .module = THIS_MODULE,
+ .ctr = snapshot_ctr,
+ .dtr = snapshot_dtr,
+ .map = snapshot_merge_map,
+ .end_io = snapshot_end_io,
+ .presuspend = snapshot_merge_presuspend,
+ .preresume = snapshot_preresume,
+ .resume = snapshot_merge_resume,
+ .status = snapshot_status,
+ .iterate_devices = snapshot_iterate_devices,
+ .io_hints = snapshot_io_hints,
+};
+
+static int __init dm_snapshot_init(void)
+{
+ int r;
+
+ r = dm_exception_store_init();
+ if (r) {
+ DMERR("Failed to initialize exception stores");
+ return r;
+ }
+
+ r = init_origin_hash();
+ if (r) {
+ DMERR("init_origin_hash failed.");
+ goto bad_origin_hash;
+ }
+
+ exception_cache = KMEM_CACHE(dm_exception, 0);
+ if (!exception_cache) {
+ DMERR("Couldn't create exception cache.");
+ r = -ENOMEM;
+ goto bad_exception_cache;
+ }
+
+ pending_cache = KMEM_CACHE(dm_snap_pending_exception, 0);
+ if (!pending_cache) {
+ DMERR("Couldn't create pending cache.");
+ r = -ENOMEM;
+ goto bad_pending_cache;
+ }
+
+ r = dm_register_target(&snapshot_target);
+ if (r < 0) {
+ DMERR("snapshot target register failed %d", r);
+ goto bad_register_snapshot_target;
+ }
+
+ r = dm_register_target(&origin_target);
+ if (r < 0) {
+ DMERR("Origin target register failed %d", r);
+ goto bad_register_origin_target;
+ }
+
+ r = dm_register_target(&merge_target);
+ if (r < 0) {
+ DMERR("Merge target register failed %d", r);
+ goto bad_register_merge_target;
+ }
+
+ return 0;
+
+bad_register_merge_target:
+ dm_unregister_target(&origin_target);
+bad_register_origin_target:
+ dm_unregister_target(&snapshot_target);
+bad_register_snapshot_target:
+ kmem_cache_destroy(pending_cache);
+bad_pending_cache:
+ kmem_cache_destroy(exception_cache);
+bad_exception_cache:
+ exit_origin_hash();
+bad_origin_hash:
+ dm_exception_store_exit();
+
+ return r;
+}
+
+static void __exit dm_snapshot_exit(void)
+{
+ dm_unregister_target(&snapshot_target);
+ dm_unregister_target(&origin_target);
+ dm_unregister_target(&merge_target);
+
+ exit_origin_hash();
+ kmem_cache_destroy(pending_cache);
+ kmem_cache_destroy(exception_cache);
+
+ dm_exception_store_exit();
+}
+
+/* Module hooks */
+module_init(dm_snapshot_init);
+module_exit(dm_snapshot_exit);
+
+MODULE_DESCRIPTION(DM_NAME " snapshot target");
+MODULE_AUTHOR("Joe Thornber");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("dm-snapshot-origin");
+MODULE_ALIAS("dm-snapshot-merge");
diff --git a/drivers/md/dm-stats.c b/drivers/md/dm-stats.c
new file mode 100644
index 000000000..7eeb3c2a2
--- /dev/null
+++ b/drivers/md/dm-stats.c
@@ -0,0 +1,1249 @@
+// SPDX-License-Identifier: GPL-2.0
+#include <linux/errno.h>
+#include <linux/numa.h>
+#include <linux/slab.h>
+#include <linux/rculist.h>
+#include <linux/threads.h>
+#include <linux/preempt.h>
+#include <linux/irqflags.h>
+#include <linux/vmalloc.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/device-mapper.h>
+
+#include "dm-core.h"
+#include "dm-stats.h"
+
+#define DM_MSG_PREFIX "stats"
+
+static int dm_stat_need_rcu_barrier;
+
+/*
+ * Using 64-bit values to avoid overflow (which is a
+ * problem that block/genhd.c's IO accounting has).
+ */
+struct dm_stat_percpu {
+ unsigned long long sectors[2];
+ unsigned long long ios[2];
+ unsigned long long merges[2];
+ unsigned long long ticks[2];
+ unsigned long long io_ticks[2];
+ unsigned long long io_ticks_total;
+ unsigned long long time_in_queue;
+ unsigned long long *histogram;
+};
+
+struct dm_stat_shared {
+ atomic_t in_flight[2];
+ unsigned long long stamp;
+ struct dm_stat_percpu tmp;
+};
+
+struct dm_stat {
+ struct list_head list_entry;
+ int id;
+ unsigned int stat_flags;
+ size_t n_entries;
+ sector_t start;
+ sector_t end;
+ sector_t step;
+ unsigned int n_histogram_entries;
+ unsigned long long *histogram_boundaries;
+ const char *program_id;
+ const char *aux_data;
+ struct rcu_head rcu_head;
+ size_t shared_alloc_size;
+ size_t percpu_alloc_size;
+ size_t histogram_alloc_size;
+ struct dm_stat_percpu *stat_percpu[NR_CPUS];
+ struct dm_stat_shared stat_shared[];
+};
+
+#define STAT_PRECISE_TIMESTAMPS 1
+
+struct dm_stats_last_position {
+ sector_t last_sector;
+ unsigned int last_rw;
+};
+
+/*
+ * A typo on the command line could possibly make the kernel run out of memory
+ * and crash. To prevent the crash we account all used memory. We fail if we
+ * exhaust 1/4 of all memory or 1/2 of vmalloc space.
+ */
+#define DM_STATS_MEMORY_FACTOR 4
+#define DM_STATS_VMALLOC_FACTOR 2
+
+static DEFINE_SPINLOCK(shared_memory_lock);
+
+static unsigned long shared_memory_amount;
+
+static bool __check_shared_memory(size_t alloc_size)
+{
+ size_t a;
+
+ a = shared_memory_amount + alloc_size;
+ if (a < shared_memory_amount)
+ return false;
+ if (a >> PAGE_SHIFT > totalram_pages() / DM_STATS_MEMORY_FACTOR)
+ return false;
+#ifdef CONFIG_MMU
+ if (a > (VMALLOC_END - VMALLOC_START) / DM_STATS_VMALLOC_FACTOR)
+ return false;
+#endif
+ return true;
+}
+
+static bool check_shared_memory(size_t alloc_size)
+{
+ bool ret;
+
+ spin_lock_irq(&shared_memory_lock);
+
+ ret = __check_shared_memory(alloc_size);
+
+ spin_unlock_irq(&shared_memory_lock);
+
+ return ret;
+}
+
+static bool claim_shared_memory(size_t alloc_size)
+{
+ spin_lock_irq(&shared_memory_lock);
+
+ if (!__check_shared_memory(alloc_size)) {
+ spin_unlock_irq(&shared_memory_lock);
+ return false;
+ }
+
+ shared_memory_amount += alloc_size;
+
+ spin_unlock_irq(&shared_memory_lock);
+
+ return true;
+}
+
+static void free_shared_memory(size_t alloc_size)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&shared_memory_lock, flags);
+
+ if (WARN_ON_ONCE(shared_memory_amount < alloc_size)) {
+ spin_unlock_irqrestore(&shared_memory_lock, flags);
+ DMCRIT("Memory usage accounting bug.");
+ return;
+ }
+
+ shared_memory_amount -= alloc_size;
+
+ spin_unlock_irqrestore(&shared_memory_lock, flags);
+}
+
+static void *dm_kvzalloc(size_t alloc_size, int node)
+{
+ void *p;
+
+ if (!claim_shared_memory(alloc_size))
+ return NULL;
+
+ p = kvzalloc_node(alloc_size, GFP_KERNEL | __GFP_NOMEMALLOC, node);
+ if (p)
+ return p;
+
+ free_shared_memory(alloc_size);
+
+ return NULL;
+}
+
+static void dm_kvfree(void *ptr, size_t alloc_size)
+{
+ if (!ptr)
+ return;
+
+ free_shared_memory(alloc_size);
+
+ kvfree(ptr);
+}
+
+static void dm_stat_free(struct rcu_head *head)
+{
+ int cpu;
+ struct dm_stat *s = container_of(head, struct dm_stat, rcu_head);
+
+ kfree(s->histogram_boundaries);
+ kfree(s->program_id);
+ kfree(s->aux_data);
+ for_each_possible_cpu(cpu) {
+ dm_kvfree(s->stat_percpu[cpu][0].histogram, s->histogram_alloc_size);
+ dm_kvfree(s->stat_percpu[cpu], s->percpu_alloc_size);
+ }
+ dm_kvfree(s->stat_shared[0].tmp.histogram, s->histogram_alloc_size);
+ dm_kvfree(s, s->shared_alloc_size);
+}
+
+static int dm_stat_in_flight(struct dm_stat_shared *shared)
+{
+ return atomic_read(&shared->in_flight[READ]) +
+ atomic_read(&shared->in_flight[WRITE]);
+}
+
+int dm_stats_init(struct dm_stats *stats)
+{
+ int cpu;
+ struct dm_stats_last_position *last;
+
+ mutex_init(&stats->mutex);
+ INIT_LIST_HEAD(&stats->list);
+ stats->precise_timestamps = false;
+ stats->last = alloc_percpu(struct dm_stats_last_position);
+ if (!stats->last)
+ return -ENOMEM;
+
+ for_each_possible_cpu(cpu) {
+ last = per_cpu_ptr(stats->last, cpu);
+ last->last_sector = (sector_t)ULLONG_MAX;
+ last->last_rw = UINT_MAX;
+ }
+
+ return 0;
+}
+
+void dm_stats_cleanup(struct dm_stats *stats)
+{
+ size_t ni;
+ struct dm_stat *s;
+ struct dm_stat_shared *shared;
+
+ while (!list_empty(&stats->list)) {
+ s = container_of(stats->list.next, struct dm_stat, list_entry);
+ list_del(&s->list_entry);
+ for (ni = 0; ni < s->n_entries; ni++) {
+ shared = &s->stat_shared[ni];
+ if (WARN_ON(dm_stat_in_flight(shared))) {
+ DMCRIT("leaked in-flight counter at index %lu "
+ "(start %llu, end %llu, step %llu): reads %d, writes %d",
+ (unsigned long)ni,
+ (unsigned long long)s->start,
+ (unsigned long long)s->end,
+ (unsigned long long)s->step,
+ atomic_read(&shared->in_flight[READ]),
+ atomic_read(&shared->in_flight[WRITE]));
+ }
+ cond_resched();
+ }
+ dm_stat_free(&s->rcu_head);
+ }
+ free_percpu(stats->last);
+ mutex_destroy(&stats->mutex);
+}
+
+static void dm_stats_recalc_precise_timestamps(struct dm_stats *stats)
+{
+ struct list_head *l;
+ struct dm_stat *tmp_s;
+ bool precise_timestamps = false;
+
+ list_for_each(l, &stats->list) {
+ tmp_s = container_of(l, struct dm_stat, list_entry);
+ if (tmp_s->stat_flags & STAT_PRECISE_TIMESTAMPS) {
+ precise_timestamps = true;
+ break;
+ }
+ }
+ stats->precise_timestamps = precise_timestamps;
+}
+
+static int dm_stats_create(struct dm_stats *stats, sector_t start, sector_t end,
+ sector_t step, unsigned int stat_flags,
+ unsigned int n_histogram_entries,
+ unsigned long long *histogram_boundaries,
+ const char *program_id, const char *aux_data,
+ void (*suspend_callback)(struct mapped_device *),
+ void (*resume_callback)(struct mapped_device *),
+ struct mapped_device *md)
+{
+ struct list_head *l;
+ struct dm_stat *s, *tmp_s;
+ sector_t n_entries;
+ size_t ni;
+ size_t shared_alloc_size;
+ size_t percpu_alloc_size;
+ size_t histogram_alloc_size;
+ struct dm_stat_percpu *p;
+ int cpu;
+ int ret_id;
+ int r;
+
+ if (end < start || !step)
+ return -EINVAL;
+
+ n_entries = end - start;
+ if (dm_sector_div64(n_entries, step))
+ n_entries++;
+
+ if (n_entries != (size_t)n_entries || !(size_t)(n_entries + 1))
+ return -EOVERFLOW;
+
+ shared_alloc_size = struct_size(s, stat_shared, n_entries);
+ if ((shared_alloc_size - sizeof(struct dm_stat)) / sizeof(struct dm_stat_shared) != n_entries)
+ return -EOVERFLOW;
+
+ percpu_alloc_size = (size_t)n_entries * sizeof(struct dm_stat_percpu);
+ if (percpu_alloc_size / sizeof(struct dm_stat_percpu) != n_entries)
+ return -EOVERFLOW;
+
+ histogram_alloc_size = (n_histogram_entries + 1) * (size_t)n_entries * sizeof(unsigned long long);
+ if (histogram_alloc_size / (n_histogram_entries + 1) != (size_t)n_entries * sizeof(unsigned long long))
+ return -EOVERFLOW;
+
+ if (!check_shared_memory(shared_alloc_size + histogram_alloc_size +
+ num_possible_cpus() * (percpu_alloc_size + histogram_alloc_size)))
+ return -ENOMEM;
+
+ s = dm_kvzalloc(shared_alloc_size, NUMA_NO_NODE);
+ if (!s)
+ return -ENOMEM;
+
+ s->stat_flags = stat_flags;
+ s->n_entries = n_entries;
+ s->start = start;
+ s->end = end;
+ s->step = step;
+ s->shared_alloc_size = shared_alloc_size;
+ s->percpu_alloc_size = percpu_alloc_size;
+ s->histogram_alloc_size = histogram_alloc_size;
+
+ s->n_histogram_entries = n_histogram_entries;
+ s->histogram_boundaries = kmemdup(histogram_boundaries,
+ s->n_histogram_entries * sizeof(unsigned long long), GFP_KERNEL);
+ if (!s->histogram_boundaries) {
+ r = -ENOMEM;
+ goto out;
+ }
+
+ s->program_id = kstrdup(program_id, GFP_KERNEL);
+ if (!s->program_id) {
+ r = -ENOMEM;
+ goto out;
+ }
+ s->aux_data = kstrdup(aux_data, GFP_KERNEL);
+ if (!s->aux_data) {
+ r = -ENOMEM;
+ goto out;
+ }
+
+ for (ni = 0; ni < n_entries; ni++) {
+ atomic_set(&s->stat_shared[ni].in_flight[READ], 0);
+ atomic_set(&s->stat_shared[ni].in_flight[WRITE], 0);
+ cond_resched();
+ }
+
+ if (s->n_histogram_entries) {
+ unsigned long long *hi;
+ hi = dm_kvzalloc(s->histogram_alloc_size, NUMA_NO_NODE);
+ if (!hi) {
+ r = -ENOMEM;
+ goto out;
+ }
+ for (ni = 0; ni < n_entries; ni++) {
+ s->stat_shared[ni].tmp.histogram = hi;
+ hi += s->n_histogram_entries + 1;
+ cond_resched();
+ }
+ }
+
+ for_each_possible_cpu(cpu) {
+ p = dm_kvzalloc(percpu_alloc_size, cpu_to_node(cpu));
+ if (!p) {
+ r = -ENOMEM;
+ goto out;
+ }
+ s->stat_percpu[cpu] = p;
+ if (s->n_histogram_entries) {
+ unsigned long long *hi;
+ hi = dm_kvzalloc(s->histogram_alloc_size, cpu_to_node(cpu));
+ if (!hi) {
+ r = -ENOMEM;
+ goto out;
+ }
+ for (ni = 0; ni < n_entries; ni++) {
+ p[ni].histogram = hi;
+ hi += s->n_histogram_entries + 1;
+ cond_resched();
+ }
+ }
+ }
+
+ /*
+ * Suspend/resume to make sure there is no i/o in flight,
+ * so that newly created statistics will be exact.
+ *
+ * (note: we couldn't suspend earlier because we must not
+ * allocate memory while suspended)
+ */
+ suspend_callback(md);
+
+ mutex_lock(&stats->mutex);
+ s->id = 0;
+ list_for_each(l, &stats->list) {
+ tmp_s = container_of(l, struct dm_stat, list_entry);
+ if (WARN_ON(tmp_s->id < s->id)) {
+ r = -EINVAL;
+ goto out_unlock_resume;
+ }
+ if (tmp_s->id > s->id)
+ break;
+ if (unlikely(s->id == INT_MAX)) {
+ r = -ENFILE;
+ goto out_unlock_resume;
+ }
+ s->id++;
+ }
+ ret_id = s->id;
+ list_add_tail_rcu(&s->list_entry, l);
+
+ dm_stats_recalc_precise_timestamps(stats);
+
+ if (!static_key_enabled(&stats_enabled.key))
+ static_branch_enable(&stats_enabled);
+
+ mutex_unlock(&stats->mutex);
+
+ resume_callback(md);
+
+ return ret_id;
+
+out_unlock_resume:
+ mutex_unlock(&stats->mutex);
+ resume_callback(md);
+out:
+ dm_stat_free(&s->rcu_head);
+ return r;
+}
+
+static struct dm_stat *__dm_stats_find(struct dm_stats *stats, int id)
+{
+ struct dm_stat *s;
+
+ list_for_each_entry(s, &stats->list, list_entry) {
+ if (s->id > id)
+ break;
+ if (s->id == id)
+ return s;
+ }
+
+ return NULL;
+}
+
+static int dm_stats_delete(struct dm_stats *stats, int id)
+{
+ struct dm_stat *s;
+ int cpu;
+
+ mutex_lock(&stats->mutex);
+
+ s = __dm_stats_find(stats, id);
+ if (!s) {
+ mutex_unlock(&stats->mutex);
+ return -ENOENT;
+ }
+
+ list_del_rcu(&s->list_entry);
+
+ dm_stats_recalc_precise_timestamps(stats);
+
+ mutex_unlock(&stats->mutex);
+
+ /*
+ * vfree can't be called from RCU callback
+ */
+ for_each_possible_cpu(cpu)
+ if (is_vmalloc_addr(s->stat_percpu) ||
+ is_vmalloc_addr(s->stat_percpu[cpu][0].histogram))
+ goto do_sync_free;
+ if (is_vmalloc_addr(s) ||
+ is_vmalloc_addr(s->stat_shared[0].tmp.histogram)) {
+do_sync_free:
+ synchronize_rcu_expedited();
+ dm_stat_free(&s->rcu_head);
+ } else {
+ WRITE_ONCE(dm_stat_need_rcu_barrier, 1);
+ call_rcu(&s->rcu_head, dm_stat_free);
+ }
+ return 0;
+}
+
+static int dm_stats_list(struct dm_stats *stats, const char *program,
+ char *result, unsigned int maxlen)
+{
+ struct dm_stat *s;
+ sector_t len;
+ unsigned int sz = 0;
+
+ /*
+ * Output format:
+ * <region_id>: <start_sector>+<length> <step> <program_id> <aux_data>
+ */
+
+ mutex_lock(&stats->mutex);
+ list_for_each_entry(s, &stats->list, list_entry) {
+ if (!program || !strcmp(program, s->program_id)) {
+ len = s->end - s->start;
+ DMEMIT("%d: %llu+%llu %llu %s %s", s->id,
+ (unsigned long long)s->start,
+ (unsigned long long)len,
+ (unsigned long long)s->step,
+ s->program_id,
+ s->aux_data);
+ if (s->stat_flags & STAT_PRECISE_TIMESTAMPS)
+ DMEMIT(" precise_timestamps");
+ if (s->n_histogram_entries) {
+ unsigned int i;
+ DMEMIT(" histogram:");
+ for (i = 0; i < s->n_histogram_entries; i++) {
+ if (i)
+ DMEMIT(",");
+ DMEMIT("%llu", s->histogram_boundaries[i]);
+ }
+ }
+ DMEMIT("\n");
+ }
+ cond_resched();
+ }
+ mutex_unlock(&stats->mutex);
+
+ return 1;
+}
+
+static void dm_stat_round(struct dm_stat *s, struct dm_stat_shared *shared,
+ struct dm_stat_percpu *p)
+{
+ /*
+ * This is racy, but so is part_round_stats_single.
+ */
+ unsigned long long now, difference;
+ unsigned int in_flight_read, in_flight_write;
+
+ if (likely(!(s->stat_flags & STAT_PRECISE_TIMESTAMPS)))
+ now = jiffies;
+ else
+ now = ktime_to_ns(ktime_get());
+
+ difference = now - shared->stamp;
+ if (!difference)
+ return;
+
+ in_flight_read = (unsigned int)atomic_read(&shared->in_flight[READ]);
+ in_flight_write = (unsigned int)atomic_read(&shared->in_flight[WRITE]);
+ if (in_flight_read)
+ p->io_ticks[READ] += difference;
+ if (in_flight_write)
+ p->io_ticks[WRITE] += difference;
+ if (in_flight_read + in_flight_write) {
+ p->io_ticks_total += difference;
+ p->time_in_queue += (in_flight_read + in_flight_write) * difference;
+ }
+ shared->stamp = now;
+}
+
+static void dm_stat_for_entry(struct dm_stat *s, size_t entry,
+ int idx, sector_t len,
+ struct dm_stats_aux *stats_aux, bool end,
+ unsigned long duration_jiffies)
+{
+ struct dm_stat_shared *shared = &s->stat_shared[entry];
+ struct dm_stat_percpu *p;
+
+ /*
+ * For strict correctness we should use local_irq_save/restore
+ * instead of preempt_disable/enable.
+ *
+ * preempt_disable/enable is racy if the driver finishes bios
+ * from non-interrupt context as well as from interrupt context
+ * or from more different interrupts.
+ *
+ * On 64-bit architectures the race only results in not counting some
+ * events, so it is acceptable. On 32-bit architectures the race could
+ * cause the counter going off by 2^32, so we need to do proper locking
+ * there.
+ *
+ * part_stat_lock()/part_stat_unlock() have this race too.
+ */
+#if BITS_PER_LONG == 32
+ unsigned long flags;
+ local_irq_save(flags);
+#else
+ preempt_disable();
+#endif
+ p = &s->stat_percpu[smp_processor_id()][entry];
+
+ if (!end) {
+ dm_stat_round(s, shared, p);
+ atomic_inc(&shared->in_flight[idx]);
+ } else {
+ unsigned long long duration;
+ dm_stat_round(s, shared, p);
+ atomic_dec(&shared->in_flight[idx]);
+ p->sectors[idx] += len;
+ p->ios[idx] += 1;
+ p->merges[idx] += stats_aux->merged;
+ if (!(s->stat_flags & STAT_PRECISE_TIMESTAMPS)) {
+ p->ticks[idx] += duration_jiffies;
+ duration = jiffies_to_msecs(duration_jiffies);
+ } else {
+ p->ticks[idx] += stats_aux->duration_ns;
+ duration = stats_aux->duration_ns;
+ }
+ if (s->n_histogram_entries) {
+ unsigned int lo = 0, hi = s->n_histogram_entries + 1;
+ while (lo + 1 < hi) {
+ unsigned int mid = (lo + hi) / 2;
+ if (s->histogram_boundaries[mid - 1] > duration) {
+ hi = mid;
+ } else {
+ lo = mid;
+ }
+
+ }
+ p->histogram[lo]++;
+ }
+ }
+
+#if BITS_PER_LONG == 32
+ local_irq_restore(flags);
+#else
+ preempt_enable();
+#endif
+}
+
+static void __dm_stat_bio(struct dm_stat *s, int bi_rw,
+ sector_t bi_sector, sector_t end_sector,
+ bool end, unsigned long duration_jiffies,
+ struct dm_stats_aux *stats_aux)
+{
+ sector_t rel_sector, offset, todo, fragment_len;
+ size_t entry;
+
+ if (end_sector <= s->start || bi_sector >= s->end)
+ return;
+ if (unlikely(bi_sector < s->start)) {
+ rel_sector = 0;
+ todo = end_sector - s->start;
+ } else {
+ rel_sector = bi_sector - s->start;
+ todo = end_sector - bi_sector;
+ }
+ if (unlikely(end_sector > s->end))
+ todo -= (end_sector - s->end);
+
+ offset = dm_sector_div64(rel_sector, s->step);
+ entry = rel_sector;
+ do {
+ if (WARN_ON_ONCE(entry >= s->n_entries)) {
+ DMCRIT("Invalid area access in region id %d", s->id);
+ return;
+ }
+ fragment_len = todo;
+ if (fragment_len > s->step - offset)
+ fragment_len = s->step - offset;
+ dm_stat_for_entry(s, entry, bi_rw, fragment_len,
+ stats_aux, end, duration_jiffies);
+ todo -= fragment_len;
+ entry++;
+ offset = 0;
+ } while (unlikely(todo != 0));
+}
+
+void dm_stats_account_io(struct dm_stats *stats, unsigned long bi_rw,
+ sector_t bi_sector, unsigned int bi_sectors, bool end,
+ unsigned long start_time,
+ struct dm_stats_aux *stats_aux)
+{
+ struct dm_stat *s;
+ sector_t end_sector;
+ struct dm_stats_last_position *last;
+ bool got_precise_time;
+ unsigned long duration_jiffies = 0;
+
+ if (unlikely(!bi_sectors))
+ return;
+
+ end_sector = bi_sector + bi_sectors;
+
+ if (!end) {
+ /*
+ * A race condition can at worst result in the merged flag being
+ * misrepresented, so we don't have to disable preemption here.
+ */
+ last = raw_cpu_ptr(stats->last);
+ stats_aux->merged =
+ (bi_sector == (READ_ONCE(last->last_sector) &&
+ ((bi_rw == WRITE) ==
+ (READ_ONCE(last->last_rw) == WRITE))
+ ));
+ WRITE_ONCE(last->last_sector, end_sector);
+ WRITE_ONCE(last->last_rw, bi_rw);
+ } else
+ duration_jiffies = jiffies - start_time;
+
+ rcu_read_lock();
+
+ got_precise_time = false;
+ list_for_each_entry_rcu(s, &stats->list, list_entry) {
+ if (s->stat_flags & STAT_PRECISE_TIMESTAMPS && !got_precise_time) {
+ /* start (!end) duration_ns is set by DM core's alloc_io() */
+ if (end)
+ stats_aux->duration_ns = ktime_to_ns(ktime_get()) - stats_aux->duration_ns;
+ got_precise_time = true;
+ }
+ __dm_stat_bio(s, bi_rw, bi_sector, end_sector, end, duration_jiffies, stats_aux);
+ }
+
+ rcu_read_unlock();
+}
+
+static void __dm_stat_init_temporary_percpu_totals(struct dm_stat_shared *shared,
+ struct dm_stat *s, size_t x)
+{
+ int cpu;
+ struct dm_stat_percpu *p;
+
+ local_irq_disable();
+ p = &s->stat_percpu[smp_processor_id()][x];
+ dm_stat_round(s, shared, p);
+ local_irq_enable();
+
+ shared->tmp.sectors[READ] = 0;
+ shared->tmp.sectors[WRITE] = 0;
+ shared->tmp.ios[READ] = 0;
+ shared->tmp.ios[WRITE] = 0;
+ shared->tmp.merges[READ] = 0;
+ shared->tmp.merges[WRITE] = 0;
+ shared->tmp.ticks[READ] = 0;
+ shared->tmp.ticks[WRITE] = 0;
+ shared->tmp.io_ticks[READ] = 0;
+ shared->tmp.io_ticks[WRITE] = 0;
+ shared->tmp.io_ticks_total = 0;
+ shared->tmp.time_in_queue = 0;
+
+ if (s->n_histogram_entries)
+ memset(shared->tmp.histogram, 0, (s->n_histogram_entries + 1) * sizeof(unsigned long long));
+
+ for_each_possible_cpu(cpu) {
+ p = &s->stat_percpu[cpu][x];
+ shared->tmp.sectors[READ] += READ_ONCE(p->sectors[READ]);
+ shared->tmp.sectors[WRITE] += READ_ONCE(p->sectors[WRITE]);
+ shared->tmp.ios[READ] += READ_ONCE(p->ios[READ]);
+ shared->tmp.ios[WRITE] += READ_ONCE(p->ios[WRITE]);
+ shared->tmp.merges[READ] += READ_ONCE(p->merges[READ]);
+ shared->tmp.merges[WRITE] += READ_ONCE(p->merges[WRITE]);
+ shared->tmp.ticks[READ] += READ_ONCE(p->ticks[READ]);
+ shared->tmp.ticks[WRITE] += READ_ONCE(p->ticks[WRITE]);
+ shared->tmp.io_ticks[READ] += READ_ONCE(p->io_ticks[READ]);
+ shared->tmp.io_ticks[WRITE] += READ_ONCE(p->io_ticks[WRITE]);
+ shared->tmp.io_ticks_total += READ_ONCE(p->io_ticks_total);
+ shared->tmp.time_in_queue += READ_ONCE(p->time_in_queue);
+ if (s->n_histogram_entries) {
+ unsigned int i;
+ for (i = 0; i < s->n_histogram_entries + 1; i++)
+ shared->tmp.histogram[i] += READ_ONCE(p->histogram[i]);
+ }
+ }
+}
+
+static void __dm_stat_clear(struct dm_stat *s, size_t idx_start, size_t idx_end,
+ bool init_tmp_percpu_totals)
+{
+ size_t x;
+ struct dm_stat_shared *shared;
+ struct dm_stat_percpu *p;
+
+ for (x = idx_start; x < idx_end; x++) {
+ shared = &s->stat_shared[x];
+ if (init_tmp_percpu_totals)
+ __dm_stat_init_temporary_percpu_totals(shared, s, x);
+ local_irq_disable();
+ p = &s->stat_percpu[smp_processor_id()][x];
+ p->sectors[READ] -= shared->tmp.sectors[READ];
+ p->sectors[WRITE] -= shared->tmp.sectors[WRITE];
+ p->ios[READ] -= shared->tmp.ios[READ];
+ p->ios[WRITE] -= shared->tmp.ios[WRITE];
+ p->merges[READ] -= shared->tmp.merges[READ];
+ p->merges[WRITE] -= shared->tmp.merges[WRITE];
+ p->ticks[READ] -= shared->tmp.ticks[READ];
+ p->ticks[WRITE] -= shared->tmp.ticks[WRITE];
+ p->io_ticks[READ] -= shared->tmp.io_ticks[READ];
+ p->io_ticks[WRITE] -= shared->tmp.io_ticks[WRITE];
+ p->io_ticks_total -= shared->tmp.io_ticks_total;
+ p->time_in_queue -= shared->tmp.time_in_queue;
+ local_irq_enable();
+ if (s->n_histogram_entries) {
+ unsigned int i;
+ for (i = 0; i < s->n_histogram_entries + 1; i++) {
+ local_irq_disable();
+ p = &s->stat_percpu[smp_processor_id()][x];
+ p->histogram[i] -= shared->tmp.histogram[i];
+ local_irq_enable();
+ }
+ }
+ cond_resched();
+ }
+}
+
+static int dm_stats_clear(struct dm_stats *stats, int id)
+{
+ struct dm_stat *s;
+
+ mutex_lock(&stats->mutex);
+
+ s = __dm_stats_find(stats, id);
+ if (!s) {
+ mutex_unlock(&stats->mutex);
+ return -ENOENT;
+ }
+
+ __dm_stat_clear(s, 0, s->n_entries, true);
+
+ mutex_unlock(&stats->mutex);
+
+ return 1;
+}
+
+/*
+ * This is like jiffies_to_msec, but works for 64-bit values.
+ */
+static unsigned long long dm_jiffies_to_msec64(struct dm_stat *s, unsigned long long j)
+{
+ unsigned long long result;
+ unsigned int mult;
+
+ if (s->stat_flags & STAT_PRECISE_TIMESTAMPS)
+ return j;
+
+ result = 0;
+ if (j)
+ result = jiffies_to_msecs(j & 0x3fffff);
+ if (j >= 1 << 22) {
+ mult = jiffies_to_msecs(1 << 22);
+ result += (unsigned long long)mult * (unsigned long long)jiffies_to_msecs((j >> 22) & 0x3fffff);
+ }
+ if (j >= 1ULL << 44)
+ result += (unsigned long long)mult * (unsigned long long)mult * (unsigned long long)jiffies_to_msecs(j >> 44);
+
+ return result;
+}
+
+static int dm_stats_print(struct dm_stats *stats, int id,
+ size_t idx_start, size_t idx_len,
+ bool clear, char *result, unsigned int maxlen)
+{
+ unsigned int sz = 0;
+ struct dm_stat *s;
+ size_t x;
+ sector_t start, end, step;
+ size_t idx_end;
+ struct dm_stat_shared *shared;
+
+ /*
+ * Output format:
+ * <start_sector>+<length> counters
+ */
+
+ mutex_lock(&stats->mutex);
+
+ s = __dm_stats_find(stats, id);
+ if (!s) {
+ mutex_unlock(&stats->mutex);
+ return -ENOENT;
+ }
+
+ idx_end = idx_start + idx_len;
+ if (idx_end < idx_start ||
+ idx_end > s->n_entries)
+ idx_end = s->n_entries;
+
+ if (idx_start > idx_end)
+ idx_start = idx_end;
+
+ step = s->step;
+ start = s->start + (step * idx_start);
+
+ for (x = idx_start; x < idx_end; x++, start = end) {
+ shared = &s->stat_shared[x];
+ end = start + step;
+ if (unlikely(end > s->end))
+ end = s->end;
+
+ __dm_stat_init_temporary_percpu_totals(shared, s, x);
+
+ DMEMIT("%llu+%llu %llu %llu %llu %llu %llu %llu %llu %llu %d %llu %llu %llu %llu",
+ (unsigned long long)start,
+ (unsigned long long)step,
+ shared->tmp.ios[READ],
+ shared->tmp.merges[READ],
+ shared->tmp.sectors[READ],
+ dm_jiffies_to_msec64(s, shared->tmp.ticks[READ]),
+ shared->tmp.ios[WRITE],
+ shared->tmp.merges[WRITE],
+ shared->tmp.sectors[WRITE],
+ dm_jiffies_to_msec64(s, shared->tmp.ticks[WRITE]),
+ dm_stat_in_flight(shared),
+ dm_jiffies_to_msec64(s, shared->tmp.io_ticks_total),
+ dm_jiffies_to_msec64(s, shared->tmp.time_in_queue),
+ dm_jiffies_to_msec64(s, shared->tmp.io_ticks[READ]),
+ dm_jiffies_to_msec64(s, shared->tmp.io_ticks[WRITE]));
+ if (s->n_histogram_entries) {
+ unsigned int i;
+ for (i = 0; i < s->n_histogram_entries + 1; i++) {
+ DMEMIT("%s%llu", !i ? " " : ":", shared->tmp.histogram[i]);
+ }
+ }
+ DMEMIT("\n");
+
+ if (unlikely(sz + 1 >= maxlen))
+ goto buffer_overflow;
+
+ cond_resched();
+ }
+
+ if (clear)
+ __dm_stat_clear(s, idx_start, idx_end, false);
+
+buffer_overflow:
+ mutex_unlock(&stats->mutex);
+
+ return 1;
+}
+
+static int dm_stats_set_aux(struct dm_stats *stats, int id, const char *aux_data)
+{
+ struct dm_stat *s;
+ const char *new_aux_data;
+
+ mutex_lock(&stats->mutex);
+
+ s = __dm_stats_find(stats, id);
+ if (!s) {
+ mutex_unlock(&stats->mutex);
+ return -ENOENT;
+ }
+
+ new_aux_data = kstrdup(aux_data, GFP_KERNEL);
+ if (!new_aux_data) {
+ mutex_unlock(&stats->mutex);
+ return -ENOMEM;
+ }
+
+ kfree(s->aux_data);
+ s->aux_data = new_aux_data;
+
+ mutex_unlock(&stats->mutex);
+
+ return 0;
+}
+
+static int parse_histogram(const char *h, unsigned int *n_histogram_entries,
+ unsigned long long **histogram_boundaries)
+{
+ const char *q;
+ unsigned int n;
+ unsigned long long last;
+
+ *n_histogram_entries = 1;
+ for (q = h; *q; q++)
+ if (*q == ',')
+ (*n_histogram_entries)++;
+
+ *histogram_boundaries = kmalloc_array(*n_histogram_entries,
+ sizeof(unsigned long long),
+ GFP_KERNEL);
+ if (!*histogram_boundaries)
+ return -ENOMEM;
+
+ n = 0;
+ last = 0;
+ while (1) {
+ unsigned long long hi;
+ int s;
+ char ch;
+ s = sscanf(h, "%llu%c", &hi, &ch);
+ if (!s || (s == 2 && ch != ','))
+ return -EINVAL;
+ if (hi <= last)
+ return -EINVAL;
+ last = hi;
+ (*histogram_boundaries)[n] = hi;
+ if (s == 1)
+ return 0;
+ h = strchr(h, ',') + 1;
+ n++;
+ }
+}
+
+static int message_stats_create(struct mapped_device *md,
+ unsigned int argc, char **argv,
+ char *result, unsigned int maxlen)
+{
+ int r;
+ int id;
+ char dummy;
+ unsigned long long start, end, len, step;
+ unsigned int divisor;
+ const char *program_id, *aux_data;
+ unsigned int stat_flags = 0;
+
+ unsigned int n_histogram_entries = 0;
+ unsigned long long *histogram_boundaries = NULL;
+
+ struct dm_arg_set as, as_backup;
+ const char *a;
+ unsigned int feature_args;
+
+ /*
+ * Input format:
+ * <range> <step> [<extra_parameters> <parameters>] [<program_id> [<aux_data>]]
+ */
+
+ if (argc < 3)
+ goto ret_einval;
+
+ as.argc = argc;
+ as.argv = argv;
+ dm_consume_args(&as, 1);
+
+ a = dm_shift_arg(&as);
+ if (!strcmp(a, "-")) {
+ start = 0;
+ len = dm_get_size(md);
+ if (!len)
+ len = 1;
+ } else if (sscanf(a, "%llu+%llu%c", &start, &len, &dummy) != 2 ||
+ start != (sector_t)start || len != (sector_t)len)
+ goto ret_einval;
+
+ end = start + len;
+ if (start >= end)
+ goto ret_einval;
+
+ a = dm_shift_arg(&as);
+ if (sscanf(a, "/%u%c", &divisor, &dummy) == 1) {
+ if (!divisor)
+ return -EINVAL;
+ step = end - start;
+ if (do_div(step, divisor))
+ step++;
+ if (!step)
+ step = 1;
+ } else if (sscanf(a, "%llu%c", &step, &dummy) != 1 ||
+ step != (sector_t)step || !step)
+ goto ret_einval;
+
+ as_backup = as;
+ a = dm_shift_arg(&as);
+ if (a && sscanf(a, "%u%c", &feature_args, &dummy) == 1) {
+ while (feature_args--) {
+ a = dm_shift_arg(&as);
+ if (!a)
+ goto ret_einval;
+ if (!strcasecmp(a, "precise_timestamps"))
+ stat_flags |= STAT_PRECISE_TIMESTAMPS;
+ else if (!strncasecmp(a, "histogram:", 10)) {
+ if (n_histogram_entries)
+ goto ret_einval;
+ if ((r = parse_histogram(a + 10, &n_histogram_entries, &histogram_boundaries)))
+ goto ret;
+ } else
+ goto ret_einval;
+ }
+ } else {
+ as = as_backup;
+ }
+
+ program_id = "-";
+ aux_data = "-";
+
+ a = dm_shift_arg(&as);
+ if (a)
+ program_id = a;
+
+ a = dm_shift_arg(&as);
+ if (a)
+ aux_data = a;
+
+ if (as.argc)
+ goto ret_einval;
+
+ /*
+ * If a buffer overflow happens after we created the region,
+ * it's too late (the userspace would retry with a larger
+ * buffer, but the region id that caused the overflow is already
+ * leaked). So we must detect buffer overflow in advance.
+ */
+ snprintf(result, maxlen, "%d", INT_MAX);
+ if (dm_message_test_buffer_overflow(result, maxlen)) {
+ r = 1;
+ goto ret;
+ }
+
+ id = dm_stats_create(dm_get_stats(md), start, end, step, stat_flags,
+ n_histogram_entries, histogram_boundaries, program_id, aux_data,
+ dm_internal_suspend_fast, dm_internal_resume_fast, md);
+ if (id < 0) {
+ r = id;
+ goto ret;
+ }
+
+ snprintf(result, maxlen, "%d", id);
+
+ r = 1;
+ goto ret;
+
+ret_einval:
+ r = -EINVAL;
+ret:
+ kfree(histogram_boundaries);
+ return r;
+}
+
+static int message_stats_delete(struct mapped_device *md,
+ unsigned int argc, char **argv)
+{
+ int id;
+ char dummy;
+
+ if (argc != 2)
+ return -EINVAL;
+
+ if (sscanf(argv[1], "%d%c", &id, &dummy) != 1 || id < 0)
+ return -EINVAL;
+
+ return dm_stats_delete(dm_get_stats(md), id);
+}
+
+static int message_stats_clear(struct mapped_device *md,
+ unsigned int argc, char **argv)
+{
+ int id;
+ char dummy;
+
+ if (argc != 2)
+ return -EINVAL;
+
+ if (sscanf(argv[1], "%d%c", &id, &dummy) != 1 || id < 0)
+ return -EINVAL;
+
+ return dm_stats_clear(dm_get_stats(md), id);
+}
+
+static int message_stats_list(struct mapped_device *md,
+ unsigned int argc, char **argv,
+ char *result, unsigned int maxlen)
+{
+ int r;
+ const char *program = NULL;
+
+ if (argc < 1 || argc > 2)
+ return -EINVAL;
+
+ if (argc > 1) {
+ program = kstrdup(argv[1], GFP_KERNEL);
+ if (!program)
+ return -ENOMEM;
+ }
+
+ r = dm_stats_list(dm_get_stats(md), program, result, maxlen);
+
+ kfree(program);
+
+ return r;
+}
+
+static int message_stats_print(struct mapped_device *md,
+ unsigned int argc, char **argv, bool clear,
+ char *result, unsigned int maxlen)
+{
+ int id;
+ char dummy;
+ unsigned long idx_start = 0, idx_len = ULONG_MAX;
+
+ if (argc != 2 && argc != 4)
+ return -EINVAL;
+
+ if (sscanf(argv[1], "%d%c", &id, &dummy) != 1 || id < 0)
+ return -EINVAL;
+
+ if (argc > 3) {
+ if (strcmp(argv[2], "-") &&
+ sscanf(argv[2], "%lu%c", &idx_start, &dummy) != 1)
+ return -EINVAL;
+ if (strcmp(argv[3], "-") &&
+ sscanf(argv[3], "%lu%c", &idx_len, &dummy) != 1)
+ return -EINVAL;
+ }
+
+ return dm_stats_print(dm_get_stats(md), id, idx_start, idx_len, clear,
+ result, maxlen);
+}
+
+static int message_stats_set_aux(struct mapped_device *md,
+ unsigned int argc, char **argv)
+{
+ int id;
+ char dummy;
+
+ if (argc != 3)
+ return -EINVAL;
+
+ if (sscanf(argv[1], "%d%c", &id, &dummy) != 1 || id < 0)
+ return -EINVAL;
+
+ return dm_stats_set_aux(dm_get_stats(md), id, argv[2]);
+}
+
+int dm_stats_message(struct mapped_device *md, unsigned int argc, char **argv,
+ char *result, unsigned int maxlen)
+{
+ int r;
+
+ /* All messages here must start with '@' */
+ if (!strcasecmp(argv[0], "@stats_create"))
+ r = message_stats_create(md, argc, argv, result, maxlen);
+ else if (!strcasecmp(argv[0], "@stats_delete"))
+ r = message_stats_delete(md, argc, argv);
+ else if (!strcasecmp(argv[0], "@stats_clear"))
+ r = message_stats_clear(md, argc, argv);
+ else if (!strcasecmp(argv[0], "@stats_list"))
+ r = message_stats_list(md, argc, argv, result, maxlen);
+ else if (!strcasecmp(argv[0], "@stats_print"))
+ r = message_stats_print(md, argc, argv, false, result, maxlen);
+ else if (!strcasecmp(argv[0], "@stats_print_clear"))
+ r = message_stats_print(md, argc, argv, true, result, maxlen);
+ else if (!strcasecmp(argv[0], "@stats_set_aux"))
+ r = message_stats_set_aux(md, argc, argv);
+ else
+ return 2; /* this wasn't a stats message */
+
+ if (r == -EINVAL)
+ DMCRIT("Invalid parameters for message %s", argv[0]);
+
+ return r;
+}
+
+int __init dm_statistics_init(void)
+{
+ shared_memory_amount = 0;
+ dm_stat_need_rcu_barrier = 0;
+ return 0;
+}
+
+void dm_statistics_exit(void)
+{
+ if (dm_stat_need_rcu_barrier)
+ rcu_barrier();
+ if (WARN_ON(shared_memory_amount))
+ DMCRIT("shared_memory_amount leaked: %lu", shared_memory_amount);
+}
+
+module_param_named(stats_current_allocated_bytes, shared_memory_amount, ulong, S_IRUGO);
+MODULE_PARM_DESC(stats_current_allocated_bytes, "Memory currently used by statistics");
diff --git a/drivers/md/dm-stats.h b/drivers/md/dm-stats.h
new file mode 100644
index 000000000..c6728c8b4
--- /dev/null
+++ b/drivers/md/dm-stats.h
@@ -0,0 +1,48 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef DM_STATS_H
+#define DM_STATS_H
+
+#include <linux/types.h>
+#include <linux/mutex.h>
+#include <linux/list.h>
+
+int dm_statistics_init(void);
+void dm_statistics_exit(void);
+
+struct dm_stats {
+ struct mutex mutex;
+ struct list_head list; /* list of struct dm_stat */
+ struct dm_stats_last_position __percpu *last;
+ bool precise_timestamps;
+};
+
+struct dm_stats_aux {
+ bool merged;
+ unsigned long long duration_ns;
+};
+
+int dm_stats_init(struct dm_stats *st);
+void dm_stats_cleanup(struct dm_stats *st);
+
+struct mapped_device;
+
+int dm_stats_message(struct mapped_device *md, unsigned int argc, char **argv,
+ char *result, unsigned int maxlen);
+
+void dm_stats_account_io(struct dm_stats *stats, unsigned long bi_rw,
+ sector_t bi_sector, unsigned int bi_sectors, bool end,
+ unsigned long start_time,
+ struct dm_stats_aux *aux);
+
+static inline bool dm_stats_used(struct dm_stats *st)
+{
+ return !list_empty(&st->list);
+}
+
+static inline void dm_stats_record_start(struct dm_stats *stats, struct dm_stats_aux *aux)
+{
+ if (unlikely(stats->precise_timestamps))
+ aux->duration_ns = ktime_to_ns(ktime_get());
+}
+
+#endif
diff --git a/drivers/md/dm-stripe.c b/drivers/md/dm-stripe.c
new file mode 100644
index 000000000..547aefe85
--- /dev/null
+++ b/drivers/md/dm-stripe.c
@@ -0,0 +1,495 @@
+/*
+ * Copyright (C) 2001-2003 Sistina Software (UK) Limited.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm.h"
+#include <linux/device-mapper.h>
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/blkdev.h>
+#include <linux/bio.h>
+#include <linux/dax.h>
+#include <linux/slab.h>
+#include <linux/log2.h>
+
+#define DM_MSG_PREFIX "striped"
+#define DM_IO_ERROR_THRESHOLD 15
+
+struct stripe {
+ struct dm_dev *dev;
+ sector_t physical_start;
+
+ atomic_t error_count;
+};
+
+struct stripe_c {
+ uint32_t stripes;
+ int stripes_shift;
+
+ /* The size of this target / num. stripes */
+ sector_t stripe_width;
+
+ uint32_t chunk_size;
+ int chunk_size_shift;
+
+ /* Needed for handling events */
+ struct dm_target *ti;
+
+ /* Work struct used for triggering events*/
+ struct work_struct trigger_event;
+
+ struct stripe stripe[];
+};
+
+/*
+ * An event is triggered whenever a drive
+ * drops out of a stripe volume.
+ */
+static void trigger_event(struct work_struct *work)
+{
+ struct stripe_c *sc = container_of(work, struct stripe_c,
+ trigger_event);
+ dm_table_event(sc->ti->table);
+}
+
+/*
+ * Parse a single <dev> <sector> pair
+ */
+static int get_stripe(struct dm_target *ti, struct stripe_c *sc,
+ unsigned int stripe, char **argv)
+{
+ unsigned long long start;
+ char dummy;
+ int ret;
+
+ if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1)
+ return -EINVAL;
+
+ ret = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table),
+ &sc->stripe[stripe].dev);
+ if (ret)
+ return ret;
+
+ sc->stripe[stripe].physical_start = start;
+
+ return 0;
+}
+
+/*
+ * Construct a striped mapping.
+ * <number of stripes> <chunk size> [<dev_path> <offset>]+
+ */
+static int stripe_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ struct stripe_c *sc;
+ sector_t width, tmp_len;
+ uint32_t stripes;
+ uint32_t chunk_size;
+ int r;
+ unsigned int i;
+
+ if (argc < 2) {
+ ti->error = "Not enough arguments";
+ return -EINVAL;
+ }
+
+ if (kstrtouint(argv[0], 10, &stripes) || !stripes) {
+ ti->error = "Invalid stripe count";
+ return -EINVAL;
+ }
+
+ if (kstrtouint(argv[1], 10, &chunk_size) || !chunk_size) {
+ ti->error = "Invalid chunk_size";
+ return -EINVAL;
+ }
+
+ width = ti->len;
+ if (sector_div(width, stripes)) {
+ ti->error = "Target length not divisible by number of stripes";
+ return -EINVAL;
+ }
+
+ tmp_len = width;
+ if (sector_div(tmp_len, chunk_size)) {
+ ti->error = "Target length not divisible by chunk size";
+ return -EINVAL;
+ }
+
+ /*
+ * Do we have enough arguments for that many stripes ?
+ */
+ if (argc != (2 + 2 * stripes)) {
+ ti->error = "Not enough destinations specified";
+ return -EINVAL;
+ }
+
+ sc = kmalloc(struct_size(sc, stripe, stripes), GFP_KERNEL);
+ if (!sc) {
+ ti->error = "Memory allocation for striped context failed";
+ return -ENOMEM;
+ }
+
+ INIT_WORK(&sc->trigger_event, trigger_event);
+
+ /* Set pointer to dm target; used in trigger_event */
+ sc->ti = ti;
+ sc->stripes = stripes;
+ sc->stripe_width = width;
+
+ if (stripes & (stripes - 1))
+ sc->stripes_shift = -1;
+ else
+ sc->stripes_shift = __ffs(stripes);
+
+ r = dm_set_target_max_io_len(ti, chunk_size);
+ if (r) {
+ kfree(sc);
+ return r;
+ }
+
+ ti->num_flush_bios = stripes;
+ ti->num_discard_bios = stripes;
+ ti->num_secure_erase_bios = stripes;
+ ti->num_write_zeroes_bios = stripes;
+
+ sc->chunk_size = chunk_size;
+ if (chunk_size & (chunk_size - 1))
+ sc->chunk_size_shift = -1;
+ else
+ sc->chunk_size_shift = __ffs(chunk_size);
+
+ /*
+ * Get the stripe destinations.
+ */
+ for (i = 0; i < stripes; i++) {
+ argv += 2;
+
+ r = get_stripe(ti, sc, i, argv);
+ if (r < 0) {
+ ti->error = "Couldn't parse stripe destination";
+ while (i--)
+ dm_put_device(ti, sc->stripe[i].dev);
+ kfree(sc);
+ return r;
+ }
+ atomic_set(&(sc->stripe[i].error_count), 0);
+ }
+
+ ti->private = sc;
+
+ return 0;
+}
+
+static void stripe_dtr(struct dm_target *ti)
+{
+ unsigned int i;
+ struct stripe_c *sc = (struct stripe_c *) ti->private;
+
+ for (i = 0; i < sc->stripes; i++)
+ dm_put_device(ti, sc->stripe[i].dev);
+
+ flush_work(&sc->trigger_event);
+ kfree(sc);
+}
+
+static void stripe_map_sector(struct stripe_c *sc, sector_t sector,
+ uint32_t *stripe, sector_t *result)
+{
+ sector_t chunk = dm_target_offset(sc->ti, sector);
+ sector_t chunk_offset;
+
+ if (sc->chunk_size_shift < 0)
+ chunk_offset = sector_div(chunk, sc->chunk_size);
+ else {
+ chunk_offset = chunk & (sc->chunk_size - 1);
+ chunk >>= sc->chunk_size_shift;
+ }
+
+ if (sc->stripes_shift < 0)
+ *stripe = sector_div(chunk, sc->stripes);
+ else {
+ *stripe = chunk & (sc->stripes - 1);
+ chunk >>= sc->stripes_shift;
+ }
+
+ if (sc->chunk_size_shift < 0)
+ chunk *= sc->chunk_size;
+ else
+ chunk <<= sc->chunk_size_shift;
+
+ *result = chunk + chunk_offset;
+}
+
+static void stripe_map_range_sector(struct stripe_c *sc, sector_t sector,
+ uint32_t target_stripe, sector_t *result)
+{
+ uint32_t stripe;
+
+ stripe_map_sector(sc, sector, &stripe, result);
+ if (stripe == target_stripe)
+ return;
+
+ /* round down */
+ sector = *result;
+ if (sc->chunk_size_shift < 0)
+ *result -= sector_div(sector, sc->chunk_size);
+ else
+ *result = sector & ~(sector_t)(sc->chunk_size - 1);
+
+ if (target_stripe < stripe)
+ *result += sc->chunk_size; /* next chunk */
+}
+
+static int stripe_map_range(struct stripe_c *sc, struct bio *bio,
+ uint32_t target_stripe)
+{
+ sector_t begin, end;
+
+ stripe_map_range_sector(sc, bio->bi_iter.bi_sector,
+ target_stripe, &begin);
+ stripe_map_range_sector(sc, bio_end_sector(bio),
+ target_stripe, &end);
+ if (begin < end) {
+ bio_set_dev(bio, sc->stripe[target_stripe].dev->bdev);
+ bio->bi_iter.bi_sector = begin +
+ sc->stripe[target_stripe].physical_start;
+ bio->bi_iter.bi_size = to_bytes(end - begin);
+ return DM_MAPIO_REMAPPED;
+ } else {
+ /* The range doesn't map to the target stripe */
+ bio_endio(bio);
+ return DM_MAPIO_SUBMITTED;
+ }
+}
+
+static int stripe_map(struct dm_target *ti, struct bio *bio)
+{
+ struct stripe_c *sc = ti->private;
+ uint32_t stripe;
+ unsigned int target_bio_nr;
+
+ if (bio->bi_opf & REQ_PREFLUSH) {
+ target_bio_nr = dm_bio_get_target_bio_nr(bio);
+ BUG_ON(target_bio_nr >= sc->stripes);
+ bio_set_dev(bio, sc->stripe[target_bio_nr].dev->bdev);
+ return DM_MAPIO_REMAPPED;
+ }
+ if (unlikely(bio_op(bio) == REQ_OP_DISCARD) ||
+ unlikely(bio_op(bio) == REQ_OP_SECURE_ERASE) ||
+ unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES)) {
+ target_bio_nr = dm_bio_get_target_bio_nr(bio);
+ BUG_ON(target_bio_nr >= sc->stripes);
+ return stripe_map_range(sc, bio, target_bio_nr);
+ }
+
+ stripe_map_sector(sc, bio->bi_iter.bi_sector,
+ &stripe, &bio->bi_iter.bi_sector);
+
+ bio->bi_iter.bi_sector += sc->stripe[stripe].physical_start;
+ bio_set_dev(bio, sc->stripe[stripe].dev->bdev);
+
+ return DM_MAPIO_REMAPPED;
+}
+
+#if IS_ENABLED(CONFIG_FS_DAX)
+static struct dax_device *stripe_dax_pgoff(struct dm_target *ti, pgoff_t *pgoff)
+{
+ struct stripe_c *sc = ti->private;
+ struct block_device *bdev;
+ sector_t dev_sector;
+ uint32_t stripe;
+
+ stripe_map_sector(sc, *pgoff * PAGE_SECTORS, &stripe, &dev_sector);
+ dev_sector += sc->stripe[stripe].physical_start;
+ bdev = sc->stripe[stripe].dev->bdev;
+
+ *pgoff = (get_start_sect(bdev) + dev_sector) >> PAGE_SECTORS_SHIFT;
+ return sc->stripe[stripe].dev->dax_dev;
+}
+
+static long stripe_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
+ long nr_pages, enum dax_access_mode mode, void **kaddr,
+ pfn_t *pfn)
+{
+ struct dax_device *dax_dev = stripe_dax_pgoff(ti, &pgoff);
+
+ return dax_direct_access(dax_dev, pgoff, nr_pages, mode, kaddr, pfn);
+}
+
+static int stripe_dax_zero_page_range(struct dm_target *ti, pgoff_t pgoff,
+ size_t nr_pages)
+{
+ struct dax_device *dax_dev = stripe_dax_pgoff(ti, &pgoff);
+
+ return dax_zero_page_range(dax_dev, pgoff, nr_pages);
+}
+
+static size_t stripe_dax_recovery_write(struct dm_target *ti, pgoff_t pgoff,
+ void *addr, size_t bytes, struct iov_iter *i)
+{
+ struct dax_device *dax_dev = stripe_dax_pgoff(ti, &pgoff);
+
+ return dax_recovery_write(dax_dev, pgoff, addr, bytes, i);
+}
+
+#else
+#define stripe_dax_direct_access NULL
+#define stripe_dax_zero_page_range NULL
+#define stripe_dax_recovery_write NULL
+#endif
+
+/*
+ * Stripe status:
+ *
+ * INFO
+ * #stripes [stripe_name <stripe_name>] [group word count]
+ * [error count 'A|D' <error count 'A|D'>]
+ *
+ * TABLE
+ * #stripes [stripe chunk size]
+ * [stripe_name physical_start <stripe_name physical_start>]
+ *
+ */
+
+static void stripe_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ struct stripe_c *sc = (struct stripe_c *) ti->private;
+ unsigned int sz = 0;
+ unsigned int i;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ DMEMIT("%d ", sc->stripes);
+ for (i = 0; i < sc->stripes; i++) {
+ DMEMIT("%s ", sc->stripe[i].dev->name);
+ }
+ DMEMIT("1 ");
+ for (i = 0; i < sc->stripes; i++) {
+ DMEMIT("%c", atomic_read(&(sc->stripe[i].error_count)) ?
+ 'D' : 'A');
+ }
+ break;
+
+ case STATUSTYPE_TABLE:
+ DMEMIT("%d %llu", sc->stripes,
+ (unsigned long long)sc->chunk_size);
+ for (i = 0; i < sc->stripes; i++)
+ DMEMIT(" %s %llu", sc->stripe[i].dev->name,
+ (unsigned long long)sc->stripe[i].physical_start);
+ break;
+
+ case STATUSTYPE_IMA:
+ DMEMIT_TARGET_NAME_VERSION(ti->type);
+ DMEMIT(",stripes=%d,chunk_size=%llu", sc->stripes,
+ (unsigned long long)sc->chunk_size);
+
+ for (i = 0; i < sc->stripes; i++) {
+ DMEMIT(",stripe_%d_device_name=%s", i, sc->stripe[i].dev->name);
+ DMEMIT(",stripe_%d_physical_start=%llu", i,
+ (unsigned long long)sc->stripe[i].physical_start);
+ DMEMIT(",stripe_%d_status=%c", i,
+ atomic_read(&(sc->stripe[i].error_count)) ? 'D' : 'A');
+ }
+ DMEMIT(";");
+ break;
+ }
+}
+
+static int stripe_end_io(struct dm_target *ti, struct bio *bio,
+ blk_status_t *error)
+{
+ unsigned int i;
+ char major_minor[16];
+ struct stripe_c *sc = ti->private;
+
+ if (!*error)
+ return DM_ENDIO_DONE; /* I/O complete */
+
+ if (bio->bi_opf & REQ_RAHEAD)
+ return DM_ENDIO_DONE;
+
+ if (*error == BLK_STS_NOTSUPP)
+ return DM_ENDIO_DONE;
+
+ memset(major_minor, 0, sizeof(major_minor));
+ sprintf(major_minor, "%d:%d", MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)));
+
+ /*
+ * Test to see which stripe drive triggered the event
+ * and increment error count for all stripes on that device.
+ * If the error count for a given device exceeds the threshold
+ * value we will no longer trigger any further events.
+ */
+ for (i = 0; i < sc->stripes; i++)
+ if (!strcmp(sc->stripe[i].dev->name, major_minor)) {
+ atomic_inc(&(sc->stripe[i].error_count));
+ if (atomic_read(&(sc->stripe[i].error_count)) <
+ DM_IO_ERROR_THRESHOLD)
+ schedule_work(&sc->trigger_event);
+ }
+
+ return DM_ENDIO_DONE;
+}
+
+static int stripe_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ struct stripe_c *sc = ti->private;
+ int ret = 0;
+ unsigned int i = 0;
+
+ do {
+ ret = fn(ti, sc->stripe[i].dev,
+ sc->stripe[i].physical_start,
+ sc->stripe_width, data);
+ } while (!ret && ++i < sc->stripes);
+
+ return ret;
+}
+
+static void stripe_io_hints(struct dm_target *ti,
+ struct queue_limits *limits)
+{
+ struct stripe_c *sc = ti->private;
+ unsigned int chunk_size = sc->chunk_size << SECTOR_SHIFT;
+
+ blk_limits_io_min(limits, chunk_size);
+ blk_limits_io_opt(limits, chunk_size * sc->stripes);
+}
+
+static struct target_type stripe_target = {
+ .name = "striped",
+ .version = {1, 6, 0},
+ .features = DM_TARGET_PASSES_INTEGRITY | DM_TARGET_NOWAIT,
+ .module = THIS_MODULE,
+ .ctr = stripe_ctr,
+ .dtr = stripe_dtr,
+ .map = stripe_map,
+ .end_io = stripe_end_io,
+ .status = stripe_status,
+ .iterate_devices = stripe_iterate_devices,
+ .io_hints = stripe_io_hints,
+ .direct_access = stripe_dax_direct_access,
+ .dax_zero_page_range = stripe_dax_zero_page_range,
+ .dax_recovery_write = stripe_dax_recovery_write,
+};
+
+int __init dm_stripe_init(void)
+{
+ int r;
+
+ r = dm_register_target(&stripe_target);
+ if (r < 0)
+ DMWARN("target registration failed");
+
+ return r;
+}
+
+void dm_stripe_exit(void)
+{
+ dm_unregister_target(&stripe_target);
+}
diff --git a/drivers/md/dm-switch.c b/drivers/md/dm-switch.c
new file mode 100644
index 000000000..f734b5a09
--- /dev/null
+++ b/drivers/md/dm-switch.c
@@ -0,0 +1,592 @@
+/*
+ * Copyright (C) 2010-2012 by Dell Inc. All rights reserved.
+ * Copyright (C) 2011-2013 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ *
+ * dm-switch is a device-mapper target that maps IO to underlying block
+ * devices efficiently when there are a large number of fixed-sized
+ * address regions but there is no simple pattern to allow for a compact
+ * mapping representation such as dm-stripe.
+ */
+
+#include <linux/device-mapper.h>
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/vmalloc.h>
+
+#define DM_MSG_PREFIX "switch"
+
+/*
+ * One region_table_slot_t holds <region_entries_per_slot> region table
+ * entries each of which is <region_table_entry_bits> in size.
+ */
+typedef unsigned long region_table_slot_t;
+
+/*
+ * A device with the offset to its start sector.
+ */
+struct switch_path {
+ struct dm_dev *dmdev;
+ sector_t start;
+};
+
+/*
+ * Context block for a dm switch device.
+ */
+struct switch_ctx {
+ struct dm_target *ti;
+
+ unsigned int nr_paths; /* Number of paths in path_list. */
+
+ unsigned int region_size; /* Region size in 512-byte sectors */
+ unsigned long nr_regions; /* Number of regions making up the device */
+ signed char region_size_bits; /* log2 of region_size or -1 */
+
+ unsigned char region_table_entry_bits; /* Number of bits in one region table entry */
+ unsigned char region_entries_per_slot; /* Number of entries in one region table slot */
+ signed char region_entries_per_slot_bits; /* log2 of region_entries_per_slot or -1 */
+
+ region_table_slot_t *region_table; /* Region table */
+
+ /*
+ * Array of dm devices to switch between.
+ */
+ struct switch_path path_list[];
+};
+
+static struct switch_ctx *alloc_switch_ctx(struct dm_target *ti, unsigned int nr_paths,
+ unsigned int region_size)
+{
+ struct switch_ctx *sctx;
+
+ sctx = kzalloc(struct_size(sctx, path_list, nr_paths), GFP_KERNEL);
+ if (!sctx)
+ return NULL;
+
+ sctx->ti = ti;
+ sctx->region_size = region_size;
+
+ ti->private = sctx;
+
+ return sctx;
+}
+
+static int alloc_region_table(struct dm_target *ti, unsigned int nr_paths)
+{
+ struct switch_ctx *sctx = ti->private;
+ sector_t nr_regions = ti->len;
+ sector_t nr_slots;
+
+ if (!(sctx->region_size & (sctx->region_size - 1)))
+ sctx->region_size_bits = __ffs(sctx->region_size);
+ else
+ sctx->region_size_bits = -1;
+
+ sctx->region_table_entry_bits = 1;
+ while (sctx->region_table_entry_bits < sizeof(region_table_slot_t) * 8 &&
+ (region_table_slot_t)1 << sctx->region_table_entry_bits < nr_paths)
+ sctx->region_table_entry_bits++;
+
+ sctx->region_entries_per_slot = (sizeof(region_table_slot_t) * 8) / sctx->region_table_entry_bits;
+ if (!(sctx->region_entries_per_slot & (sctx->region_entries_per_slot - 1)))
+ sctx->region_entries_per_slot_bits = __ffs(sctx->region_entries_per_slot);
+ else
+ sctx->region_entries_per_slot_bits = -1;
+
+ if (sector_div(nr_regions, sctx->region_size))
+ nr_regions++;
+
+ if (nr_regions >= ULONG_MAX) {
+ ti->error = "Region table too large";
+ return -EINVAL;
+ }
+ sctx->nr_regions = nr_regions;
+
+ nr_slots = nr_regions;
+ if (sector_div(nr_slots, sctx->region_entries_per_slot))
+ nr_slots++;
+
+ if (nr_slots > ULONG_MAX / sizeof(region_table_slot_t)) {
+ ti->error = "Region table too large";
+ return -EINVAL;
+ }
+
+ sctx->region_table = vmalloc(array_size(nr_slots,
+ sizeof(region_table_slot_t)));
+ if (!sctx->region_table) {
+ ti->error = "Cannot allocate region table";
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static void switch_get_position(struct switch_ctx *sctx, unsigned long region_nr,
+ unsigned long *region_index, unsigned int *bit)
+{
+ if (sctx->region_entries_per_slot_bits >= 0) {
+ *region_index = region_nr >> sctx->region_entries_per_slot_bits;
+ *bit = region_nr & (sctx->region_entries_per_slot - 1);
+ } else {
+ *region_index = region_nr / sctx->region_entries_per_slot;
+ *bit = region_nr % sctx->region_entries_per_slot;
+ }
+
+ *bit *= sctx->region_table_entry_bits;
+}
+
+static unsigned int switch_region_table_read(struct switch_ctx *sctx, unsigned long region_nr)
+{
+ unsigned long region_index;
+ unsigned int bit;
+
+ switch_get_position(sctx, region_nr, &region_index, &bit);
+
+ return (READ_ONCE(sctx->region_table[region_index]) >> bit) &
+ ((1 << sctx->region_table_entry_bits) - 1);
+}
+
+/*
+ * Find which path to use at given offset.
+ */
+static unsigned int switch_get_path_nr(struct switch_ctx *sctx, sector_t offset)
+{
+ unsigned int path_nr;
+ sector_t p;
+
+ p = offset;
+ if (sctx->region_size_bits >= 0)
+ p >>= sctx->region_size_bits;
+ else
+ sector_div(p, sctx->region_size);
+
+ path_nr = switch_region_table_read(sctx, p);
+
+ /* This can only happen if the processor uses non-atomic stores. */
+ if (unlikely(path_nr >= sctx->nr_paths))
+ path_nr = 0;
+
+ return path_nr;
+}
+
+static void switch_region_table_write(struct switch_ctx *sctx, unsigned long region_nr,
+ unsigned int value)
+{
+ unsigned long region_index;
+ unsigned int bit;
+ region_table_slot_t pte;
+
+ switch_get_position(sctx, region_nr, &region_index, &bit);
+
+ pte = sctx->region_table[region_index];
+ pte &= ~((((region_table_slot_t)1 << sctx->region_table_entry_bits) - 1) << bit);
+ pte |= (region_table_slot_t)value << bit;
+ sctx->region_table[region_index] = pte;
+}
+
+/*
+ * Fill the region table with an initial round robin pattern.
+ */
+static void initialise_region_table(struct switch_ctx *sctx)
+{
+ unsigned int path_nr = 0;
+ unsigned long region_nr;
+
+ for (region_nr = 0; region_nr < sctx->nr_regions; region_nr++) {
+ switch_region_table_write(sctx, region_nr, path_nr);
+ if (++path_nr >= sctx->nr_paths)
+ path_nr = 0;
+ }
+}
+
+static int parse_path(struct dm_arg_set *as, struct dm_target *ti)
+{
+ struct switch_ctx *sctx = ti->private;
+ unsigned long long start;
+ int r;
+
+ r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
+ &sctx->path_list[sctx->nr_paths].dmdev);
+ if (r) {
+ ti->error = "Device lookup failed";
+ return r;
+ }
+
+ if (kstrtoull(dm_shift_arg(as), 10, &start) || start != (sector_t)start) {
+ ti->error = "Invalid device starting offset";
+ dm_put_device(ti, sctx->path_list[sctx->nr_paths].dmdev);
+ return -EINVAL;
+ }
+
+ sctx->path_list[sctx->nr_paths].start = start;
+
+ sctx->nr_paths++;
+
+ return 0;
+}
+
+/*
+ * Destructor: Don't free the dm_target, just the ti->private data (if any).
+ */
+static void switch_dtr(struct dm_target *ti)
+{
+ struct switch_ctx *sctx = ti->private;
+
+ while (sctx->nr_paths--)
+ dm_put_device(ti, sctx->path_list[sctx->nr_paths].dmdev);
+
+ vfree(sctx->region_table);
+ kfree(sctx);
+}
+
+/*
+ * Constructor arguments:
+ * <num_paths> <region_size> <num_optional_args> [<optional_args>...]
+ * [<dev_path> <offset>]+
+ *
+ * Optional args are to allow for future extension: currently this
+ * parameter must be 0.
+ */
+static int switch_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ static const struct dm_arg _args[] = {
+ {1, (KMALLOC_MAX_SIZE - sizeof(struct switch_ctx)) / sizeof(struct switch_path), "Invalid number of paths"},
+ {1, UINT_MAX, "Invalid region size"},
+ {0, 0, "Invalid number of optional args"},
+ };
+
+ struct switch_ctx *sctx;
+ struct dm_arg_set as;
+ unsigned int nr_paths, region_size, nr_optional_args;
+ int r;
+
+ as.argc = argc;
+ as.argv = argv;
+
+ r = dm_read_arg(_args, &as, &nr_paths, &ti->error);
+ if (r)
+ return -EINVAL;
+
+ r = dm_read_arg(_args + 1, &as, &region_size, &ti->error);
+ if (r)
+ return r;
+
+ r = dm_read_arg_group(_args + 2, &as, &nr_optional_args, &ti->error);
+ if (r)
+ return r;
+ /* parse optional arguments here, if we add any */
+
+ if (as.argc != nr_paths * 2) {
+ ti->error = "Incorrect number of path arguments";
+ return -EINVAL;
+ }
+
+ sctx = alloc_switch_ctx(ti, nr_paths, region_size);
+ if (!sctx) {
+ ti->error = "Cannot allocate redirection context";
+ return -ENOMEM;
+ }
+
+ r = dm_set_target_max_io_len(ti, region_size);
+ if (r)
+ goto error;
+
+ while (as.argc) {
+ r = parse_path(&as, ti);
+ if (r)
+ goto error;
+ }
+
+ r = alloc_region_table(ti, nr_paths);
+ if (r)
+ goto error;
+
+ initialise_region_table(sctx);
+
+ /* For UNMAP, sending the request down any path is sufficient */
+ ti->num_discard_bios = 1;
+
+ return 0;
+
+error:
+ switch_dtr(ti);
+
+ return r;
+}
+
+static int switch_map(struct dm_target *ti, struct bio *bio)
+{
+ struct switch_ctx *sctx = ti->private;
+ sector_t offset = dm_target_offset(ti, bio->bi_iter.bi_sector);
+ unsigned int path_nr = switch_get_path_nr(sctx, offset);
+
+ bio_set_dev(bio, sctx->path_list[path_nr].dmdev->bdev);
+ bio->bi_iter.bi_sector = sctx->path_list[path_nr].start + offset;
+
+ return DM_MAPIO_REMAPPED;
+}
+
+/*
+ * We need to parse hex numbers in the message as quickly as possible.
+ *
+ * This table-based hex parser improves performance.
+ * It improves a time to load 1000000 entries compared to the condition-based
+ * parser.
+ * table-based parser condition-based parser
+ * PA-RISC 0.29s 0.31s
+ * Opteron 0.0495s 0.0498s
+ */
+static const unsigned char hex_table[256] = {
+255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 255, 255, 255, 255, 255, 255,
+255, 10, 11, 12, 13, 14, 15, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+255, 10, 11, 12, 13, 14, 15, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
+255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255
+};
+
+static __always_inline unsigned long parse_hex(const char **string)
+{
+ unsigned char d;
+ unsigned long r = 0;
+
+ while ((d = hex_table[(unsigned char)**string]) < 16) {
+ r = (r << 4) | d;
+ (*string)++;
+ }
+
+ return r;
+}
+
+static int process_set_region_mappings(struct switch_ctx *sctx,
+ unsigned int argc, char **argv)
+{
+ unsigned int i;
+ unsigned long region_index = 0;
+
+ for (i = 1; i < argc; i++) {
+ unsigned long path_nr;
+ const char *string = argv[i];
+
+ if ((*string & 0xdf) == 'R') {
+ unsigned long cycle_length, num_write;
+
+ string++;
+ if (unlikely(*string == ',')) {
+ DMWARN("invalid set_region_mappings argument: '%s'", argv[i]);
+ return -EINVAL;
+ }
+ cycle_length = parse_hex(&string);
+ if (unlikely(*string != ',')) {
+ DMWARN("invalid set_region_mappings argument: '%s'", argv[i]);
+ return -EINVAL;
+ }
+ string++;
+ if (unlikely(!*string)) {
+ DMWARN("invalid set_region_mappings argument: '%s'", argv[i]);
+ return -EINVAL;
+ }
+ num_write = parse_hex(&string);
+ if (unlikely(*string)) {
+ DMWARN("invalid set_region_mappings argument: '%s'", argv[i]);
+ return -EINVAL;
+ }
+
+ if (unlikely(!cycle_length) || unlikely(cycle_length - 1 > region_index)) {
+ DMWARN("invalid set_region_mappings cycle length: %lu > %lu",
+ cycle_length - 1, region_index);
+ return -EINVAL;
+ }
+ if (unlikely(region_index + num_write < region_index) ||
+ unlikely(region_index + num_write >= sctx->nr_regions)) {
+ DMWARN("invalid set_region_mappings region number: %lu + %lu >= %lu",
+ region_index, num_write, sctx->nr_regions);
+ return -EINVAL;
+ }
+
+ while (num_write--) {
+ region_index++;
+ path_nr = switch_region_table_read(sctx, region_index - cycle_length);
+ switch_region_table_write(sctx, region_index, path_nr);
+ }
+
+ continue;
+ }
+
+ if (*string == ':')
+ region_index++;
+ else {
+ region_index = parse_hex(&string);
+ if (unlikely(*string != ':')) {
+ DMWARN("invalid set_region_mappings argument: '%s'", argv[i]);
+ return -EINVAL;
+ }
+ }
+
+ string++;
+ if (unlikely(!*string)) {
+ DMWARN("invalid set_region_mappings argument: '%s'", argv[i]);
+ return -EINVAL;
+ }
+
+ path_nr = parse_hex(&string);
+ if (unlikely(*string)) {
+ DMWARN("invalid set_region_mappings argument: '%s'", argv[i]);
+ return -EINVAL;
+ }
+ if (unlikely(region_index >= sctx->nr_regions)) {
+ DMWARN("invalid set_region_mappings region number: %lu >= %lu", region_index, sctx->nr_regions);
+ return -EINVAL;
+ }
+ if (unlikely(path_nr >= sctx->nr_paths)) {
+ DMWARN("invalid set_region_mappings device: %lu >= %u", path_nr, sctx->nr_paths);
+ return -EINVAL;
+ }
+
+ switch_region_table_write(sctx, region_index, path_nr);
+ }
+
+ return 0;
+}
+
+/*
+ * Messages are processed one-at-a-time.
+ *
+ * Only set_region_mappings is supported.
+ */
+static int switch_message(struct dm_target *ti, unsigned int argc, char **argv,
+ char *result, unsigned int maxlen)
+{
+ static DEFINE_MUTEX(message_mutex);
+
+ struct switch_ctx *sctx = ti->private;
+ int r = -EINVAL;
+
+ mutex_lock(&message_mutex);
+
+ if (!strcasecmp(argv[0], "set_region_mappings"))
+ r = process_set_region_mappings(sctx, argc, argv);
+ else
+ DMWARN("Unrecognised message received.");
+
+ mutex_unlock(&message_mutex);
+
+ return r;
+}
+
+static void switch_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ struct switch_ctx *sctx = ti->private;
+ unsigned int sz = 0;
+ int path_nr;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ result[0] = '\0';
+ break;
+
+ case STATUSTYPE_TABLE:
+ DMEMIT("%u %u 0", sctx->nr_paths, sctx->region_size);
+ for (path_nr = 0; path_nr < sctx->nr_paths; path_nr++)
+ DMEMIT(" %s %llu", sctx->path_list[path_nr].dmdev->name,
+ (unsigned long long)sctx->path_list[path_nr].start);
+ break;
+
+ case STATUSTYPE_IMA:
+ result[0] = '\0';
+ break;
+ }
+}
+
+/*
+ * Switch ioctl:
+ *
+ * Passthrough all ioctls to the path for sector 0
+ */
+static int switch_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
+{
+ struct switch_ctx *sctx = ti->private;
+ unsigned int path_nr;
+
+ path_nr = switch_get_path_nr(sctx, 0);
+
+ *bdev = sctx->path_list[path_nr].dmdev->bdev;
+
+ /*
+ * Only pass ioctls through if the device sizes match exactly.
+ */
+ if (ti->len + sctx->path_list[path_nr].start !=
+ bdev_nr_sectors((*bdev)))
+ return 1;
+ return 0;
+}
+
+static int switch_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ struct switch_ctx *sctx = ti->private;
+ int path_nr;
+ int r;
+
+ for (path_nr = 0; path_nr < sctx->nr_paths; path_nr++) {
+ r = fn(ti, sctx->path_list[path_nr].dmdev,
+ sctx->path_list[path_nr].start, ti->len, data);
+ if (r)
+ return r;
+ }
+
+ return 0;
+}
+
+static struct target_type switch_target = {
+ .name = "switch",
+ .version = {1, 1, 0},
+ .features = DM_TARGET_NOWAIT,
+ .module = THIS_MODULE,
+ .ctr = switch_ctr,
+ .dtr = switch_dtr,
+ .map = switch_map,
+ .message = switch_message,
+ .status = switch_status,
+ .prepare_ioctl = switch_prepare_ioctl,
+ .iterate_devices = switch_iterate_devices,
+};
+
+static int __init dm_switch_init(void)
+{
+ int r;
+
+ r = dm_register_target(&switch_target);
+ if (r < 0)
+ DMERR("dm_register_target() failed %d", r);
+
+ return r;
+}
+
+static void __exit dm_switch_exit(void)
+{
+ dm_unregister_target(&switch_target);
+}
+
+module_init(dm_switch_init);
+module_exit(dm_switch_exit);
+
+MODULE_DESCRIPTION(DM_NAME " dynamic path switching target");
+MODULE_AUTHOR("Kevin D. O'Kelley <Kevin_OKelley@dell.com>");
+MODULE_AUTHOR("Narendran Ganapathy <Narendran_Ganapathy@dell.com>");
+MODULE_AUTHOR("Jim Ramsay <Jim_Ramsay@dell.com>");
+MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-sysfs.c b/drivers/md/dm-sysfs.c
new file mode 100644
index 000000000..e28c92478
--- /dev/null
+++ b/drivers/md/dm-sysfs.c
@@ -0,0 +1,147 @@
+/*
+ * Copyright (C) 2008 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/sysfs.h>
+#include <linux/dm-ioctl.h>
+#include "dm-core.h"
+#include "dm-rq.h"
+
+struct dm_sysfs_attr {
+ struct attribute attr;
+ ssize_t (*show)(struct mapped_device *, char *);
+ ssize_t (*store)(struct mapped_device *, const char *, size_t count);
+};
+
+#define DM_ATTR_RO(_name) \
+struct dm_sysfs_attr dm_attr_##_name = \
+ __ATTR(_name, S_IRUGO, dm_attr_##_name##_show, NULL)
+
+static ssize_t dm_attr_show(struct kobject *kobj, struct attribute *attr,
+ char *page)
+{
+ struct dm_sysfs_attr *dm_attr;
+ struct mapped_device *md;
+ ssize_t ret;
+
+ dm_attr = container_of(attr, struct dm_sysfs_attr, attr);
+ if (!dm_attr->show)
+ return -EIO;
+
+ md = dm_get_from_kobject(kobj);
+ if (!md)
+ return -EINVAL;
+
+ ret = dm_attr->show(md, page);
+ dm_put(md);
+
+ return ret;
+}
+
+#define DM_ATTR_RW(_name) \
+struct dm_sysfs_attr dm_attr_##_name = \
+ __ATTR(_name, S_IRUGO | S_IWUSR, dm_attr_##_name##_show, dm_attr_##_name##_store)
+
+static ssize_t dm_attr_store(struct kobject *kobj, struct attribute *attr,
+ const char *page, size_t count)
+{
+ struct dm_sysfs_attr *dm_attr;
+ struct mapped_device *md;
+ ssize_t ret;
+
+ dm_attr = container_of(attr, struct dm_sysfs_attr, attr);
+ if (!dm_attr->store)
+ return -EIO;
+
+ md = dm_get_from_kobject(kobj);
+ if (!md)
+ return -EINVAL;
+
+ ret = dm_attr->store(md, page, count);
+ dm_put(md);
+
+ return ret;
+}
+
+static ssize_t dm_attr_name_show(struct mapped_device *md, char *buf)
+{
+ if (dm_copy_name_and_uuid(md, buf, NULL))
+ return -EIO;
+
+ strcat(buf, "\n");
+ return strlen(buf);
+}
+
+static ssize_t dm_attr_uuid_show(struct mapped_device *md, char *buf)
+{
+ if (dm_copy_name_and_uuid(md, NULL, buf))
+ return -EIO;
+
+ strcat(buf, "\n");
+ return strlen(buf);
+}
+
+static ssize_t dm_attr_suspended_show(struct mapped_device *md, char *buf)
+{
+ sprintf(buf, "%d\n", dm_suspended_md(md));
+
+ return strlen(buf);
+}
+
+static ssize_t dm_attr_use_blk_mq_show(struct mapped_device *md, char *buf)
+{
+ /* Purely for userspace compatibility */
+ sprintf(buf, "%d\n", true);
+
+ return strlen(buf);
+}
+
+static DM_ATTR_RO(name);
+static DM_ATTR_RO(uuid);
+static DM_ATTR_RO(suspended);
+static DM_ATTR_RO(use_blk_mq);
+static DM_ATTR_RW(rq_based_seq_io_merge_deadline);
+
+static struct attribute *dm_attrs[] = {
+ &dm_attr_name.attr,
+ &dm_attr_uuid.attr,
+ &dm_attr_suspended.attr,
+ &dm_attr_use_blk_mq.attr,
+ &dm_attr_rq_based_seq_io_merge_deadline.attr,
+ NULL,
+};
+ATTRIBUTE_GROUPS(dm);
+
+static const struct sysfs_ops dm_sysfs_ops = {
+ .show = dm_attr_show,
+ .store = dm_attr_store,
+};
+
+static struct kobj_type dm_ktype = {
+ .sysfs_ops = &dm_sysfs_ops,
+ .default_groups = dm_groups,
+ .release = dm_kobject_release,
+};
+
+/*
+ * Initialize kobj
+ * because nobody using md yet, no need to call explicit dm_get/put
+ */
+int dm_sysfs_init(struct mapped_device *md)
+{
+ return kobject_init_and_add(dm_kobject(md), &dm_ktype,
+ &disk_to_dev(dm_disk(md))->kobj,
+ "%s", "dm");
+}
+
+/*
+ * Remove kobj, called after all references removed
+ */
+void dm_sysfs_exit(struct mapped_device *md)
+{
+ struct kobject *kobj = dm_kobject(md);
+ kobject_put(kobj);
+ wait_for_completion(dm_get_completion_from_kobject(kobj));
+}
diff --git a/drivers/md/dm-table.c b/drivers/md/dm-table.c
new file mode 100644
index 000000000..dac6a5f25
--- /dev/null
+++ b/drivers/md/dm-table.c
@@ -0,0 +1,2163 @@
+/*
+ * Copyright (C) 2001 Sistina Software (UK) Limited.
+ * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-core.h"
+#include "dm-rq.h"
+
+#include <linux/module.h>
+#include <linux/vmalloc.h>
+#include <linux/blkdev.h>
+#include <linux/blk-integrity.h>
+#include <linux/namei.h>
+#include <linux/ctype.h>
+#include <linux/string.h>
+#include <linux/slab.h>
+#include <linux/interrupt.h>
+#include <linux/mutex.h>
+#include <linux/delay.h>
+#include <linux/atomic.h>
+#include <linux/blk-mq.h>
+#include <linux/mount.h>
+#include <linux/dax.h>
+
+#define DM_MSG_PREFIX "table"
+
+#define NODE_SIZE L1_CACHE_BYTES
+#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
+#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
+
+/*
+ * Similar to ceiling(log_size(n))
+ */
+static unsigned int int_log(unsigned int n, unsigned int base)
+{
+ int result = 0;
+
+ while (n > 1) {
+ n = dm_div_up(n, base);
+ result++;
+ }
+
+ return result;
+}
+
+/*
+ * Calculate the index of the child node of the n'th node k'th key.
+ */
+static inline unsigned int get_child(unsigned int n, unsigned int k)
+{
+ return (n * CHILDREN_PER_NODE) + k;
+}
+
+/*
+ * Return the n'th node of level l from table t.
+ */
+static inline sector_t *get_node(struct dm_table *t,
+ unsigned int l, unsigned int n)
+{
+ return t->index[l] + (n * KEYS_PER_NODE);
+}
+
+/*
+ * Return the highest key that you could lookup from the n'th
+ * node on level l of the btree.
+ */
+static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
+{
+ for (; l < t->depth - 1; l++)
+ n = get_child(n, CHILDREN_PER_NODE - 1);
+
+ if (n >= t->counts[l])
+ return (sector_t) - 1;
+
+ return get_node(t, l, n)[KEYS_PER_NODE - 1];
+}
+
+/*
+ * Fills in a level of the btree based on the highs of the level
+ * below it.
+ */
+static int setup_btree_index(unsigned int l, struct dm_table *t)
+{
+ unsigned int n, k;
+ sector_t *node;
+
+ for (n = 0U; n < t->counts[l]; n++) {
+ node = get_node(t, l, n);
+
+ for (k = 0U; k < KEYS_PER_NODE; k++)
+ node[k] = high(t, l + 1, get_child(n, k));
+ }
+
+ return 0;
+}
+
+/*
+ * highs, and targets are managed as dynamic arrays during a
+ * table load.
+ */
+static int alloc_targets(struct dm_table *t, unsigned int num)
+{
+ sector_t *n_highs;
+ struct dm_target *n_targets;
+
+ /*
+ * Allocate both the target array and offset array at once.
+ */
+ n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
+ GFP_KERNEL);
+ if (!n_highs)
+ return -ENOMEM;
+
+ n_targets = (struct dm_target *) (n_highs + num);
+
+ memset(n_highs, -1, sizeof(*n_highs) * num);
+ kvfree(t->highs);
+
+ t->num_allocated = num;
+ t->highs = n_highs;
+ t->targets = n_targets;
+
+ return 0;
+}
+
+int dm_table_create(struct dm_table **result, fmode_t mode,
+ unsigned int num_targets, struct mapped_device *md)
+{
+ struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
+
+ if (!t)
+ return -ENOMEM;
+
+ INIT_LIST_HEAD(&t->devices);
+ init_rwsem(&t->devices_lock);
+
+ if (!num_targets)
+ num_targets = KEYS_PER_NODE;
+
+ num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
+
+ if (!num_targets) {
+ kfree(t);
+ return -ENOMEM;
+ }
+
+ if (alloc_targets(t, num_targets)) {
+ kfree(t);
+ return -ENOMEM;
+ }
+
+ t->type = DM_TYPE_NONE;
+ t->mode = mode;
+ t->md = md;
+ *result = t;
+ return 0;
+}
+
+static void free_devices(struct list_head *devices, struct mapped_device *md)
+{
+ struct list_head *tmp, *next;
+
+ list_for_each_safe(tmp, next, devices) {
+ struct dm_dev_internal *dd =
+ list_entry(tmp, struct dm_dev_internal, list);
+ DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
+ dm_device_name(md), dd->dm_dev->name);
+ dm_put_table_device(md, dd->dm_dev);
+ kfree(dd);
+ }
+}
+
+static void dm_table_destroy_crypto_profile(struct dm_table *t);
+
+void dm_table_destroy(struct dm_table *t)
+{
+ if (!t)
+ return;
+
+ /* free the indexes */
+ if (t->depth >= 2)
+ kvfree(t->index[t->depth - 2]);
+
+ /* free the targets */
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ if (ti->type->dtr)
+ ti->type->dtr(ti);
+
+ dm_put_target_type(ti->type);
+ }
+
+ kvfree(t->highs);
+
+ /* free the device list */
+ free_devices(&t->devices, t->md);
+
+ dm_free_md_mempools(t->mempools);
+
+ dm_table_destroy_crypto_profile(t);
+
+ kfree(t);
+}
+
+/*
+ * See if we've already got a device in the list.
+ */
+static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
+{
+ struct dm_dev_internal *dd;
+
+ list_for_each_entry(dd, l, list)
+ if (dd->dm_dev->bdev->bd_dev == dev)
+ return dd;
+
+ return NULL;
+}
+
+/*
+ * If possible, this checks an area of a destination device is invalid.
+ */
+static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ struct queue_limits *limits = data;
+ struct block_device *bdev = dev->bdev;
+ sector_t dev_size = bdev_nr_sectors(bdev);
+ unsigned short logical_block_size_sectors =
+ limits->logical_block_size >> SECTOR_SHIFT;
+
+ if (!dev_size)
+ return 0;
+
+ if ((start >= dev_size) || (start + len > dev_size)) {
+ DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
+ dm_device_name(ti->table->md), bdev,
+ (unsigned long long)start,
+ (unsigned long long)len,
+ (unsigned long long)dev_size);
+ return 1;
+ }
+
+ /*
+ * If the target is mapped to zoned block device(s), check
+ * that the zones are not partially mapped.
+ */
+ if (bdev_is_zoned(bdev)) {
+ unsigned int zone_sectors = bdev_zone_sectors(bdev);
+
+ if (start & (zone_sectors - 1)) {
+ DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
+ dm_device_name(ti->table->md),
+ (unsigned long long)start,
+ zone_sectors, bdev);
+ return 1;
+ }
+
+ /*
+ * Note: The last zone of a zoned block device may be smaller
+ * than other zones. So for a target mapping the end of a
+ * zoned block device with such a zone, len would not be zone
+ * aligned. We do not allow such last smaller zone to be part
+ * of the mapping here to ensure that mappings with multiple
+ * devices do not end up with a smaller zone in the middle of
+ * the sector range.
+ */
+ if (len & (zone_sectors - 1)) {
+ DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
+ dm_device_name(ti->table->md),
+ (unsigned long long)len,
+ zone_sectors, bdev);
+ return 1;
+ }
+ }
+
+ if (logical_block_size_sectors <= 1)
+ return 0;
+
+ if (start & (logical_block_size_sectors - 1)) {
+ DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
+ dm_device_name(ti->table->md),
+ (unsigned long long)start,
+ limits->logical_block_size, bdev);
+ return 1;
+ }
+
+ if (len & (logical_block_size_sectors - 1)) {
+ DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
+ dm_device_name(ti->table->md),
+ (unsigned long long)len,
+ limits->logical_block_size, bdev);
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * This upgrades the mode on an already open dm_dev, being
+ * careful to leave things as they were if we fail to reopen the
+ * device and not to touch the existing bdev field in case
+ * it is accessed concurrently.
+ */
+static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
+ struct mapped_device *md)
+{
+ int r;
+ struct dm_dev *old_dev, *new_dev;
+
+ old_dev = dd->dm_dev;
+
+ r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
+ dd->dm_dev->mode | new_mode, &new_dev);
+ if (r)
+ return r;
+
+ dd->dm_dev = new_dev;
+ dm_put_table_device(md, old_dev);
+
+ return 0;
+}
+
+/*
+ * Convert the path to a device
+ */
+dev_t dm_get_dev_t(const char *path)
+{
+ dev_t dev;
+
+ if (lookup_bdev(path, &dev))
+ dev = name_to_dev_t(path);
+ return dev;
+}
+EXPORT_SYMBOL_GPL(dm_get_dev_t);
+
+/*
+ * Add a device to the list, or just increment the usage count if
+ * it's already present.
+ */
+int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
+ struct dm_dev **result)
+{
+ int r;
+ dev_t dev;
+ unsigned int major, minor;
+ char dummy;
+ struct dm_dev_internal *dd;
+ struct dm_table *t = ti->table;
+
+ BUG_ON(!t);
+
+ if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
+ /* Extract the major/minor numbers */
+ dev = MKDEV(major, minor);
+ if (MAJOR(dev) != major || MINOR(dev) != minor)
+ return -EOVERFLOW;
+ } else {
+ dev = dm_get_dev_t(path);
+ if (!dev)
+ return -ENODEV;
+ }
+
+ down_write(&t->devices_lock);
+
+ dd = find_device(&t->devices, dev);
+ if (!dd) {
+ dd = kmalloc(sizeof(*dd), GFP_KERNEL);
+ if (!dd) {
+ r = -ENOMEM;
+ goto unlock_ret_r;
+ }
+
+ if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
+ kfree(dd);
+ goto unlock_ret_r;
+ }
+
+ refcount_set(&dd->count, 1);
+ list_add(&dd->list, &t->devices);
+ goto out;
+
+ } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
+ r = upgrade_mode(dd, mode, t->md);
+ if (r)
+ goto unlock_ret_r;
+ }
+ refcount_inc(&dd->count);
+out:
+ up_write(&t->devices_lock);
+ *result = dd->dm_dev;
+ return 0;
+
+unlock_ret_r:
+ up_write(&t->devices_lock);
+ return r;
+}
+EXPORT_SYMBOL(dm_get_device);
+
+static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ struct queue_limits *limits = data;
+ struct block_device *bdev = dev->bdev;
+ struct request_queue *q = bdev_get_queue(bdev);
+
+ if (unlikely(!q)) {
+ DMWARN("%s: Cannot set limits for nonexistent device %pg",
+ dm_device_name(ti->table->md), bdev);
+ return 0;
+ }
+
+ if (blk_stack_limits(limits, &q->limits,
+ get_start_sect(bdev) + start) < 0)
+ DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
+ "physical_block_size=%u, logical_block_size=%u, "
+ "alignment_offset=%u, start=%llu",
+ dm_device_name(ti->table->md), bdev,
+ q->limits.physical_block_size,
+ q->limits.logical_block_size,
+ q->limits.alignment_offset,
+ (unsigned long long) start << SECTOR_SHIFT);
+ return 0;
+}
+
+/*
+ * Decrement a device's use count and remove it if necessary.
+ */
+void dm_put_device(struct dm_target *ti, struct dm_dev *d)
+{
+ int found = 0;
+ struct dm_table *t = ti->table;
+ struct list_head *devices = &t->devices;
+ struct dm_dev_internal *dd;
+
+ down_write(&t->devices_lock);
+
+ list_for_each_entry(dd, devices, list) {
+ if (dd->dm_dev == d) {
+ found = 1;
+ break;
+ }
+ }
+ if (!found) {
+ DMERR("%s: device %s not in table devices list",
+ dm_device_name(t->md), d->name);
+ goto unlock_ret;
+ }
+ if (refcount_dec_and_test(&dd->count)) {
+ dm_put_table_device(t->md, d);
+ list_del(&dd->list);
+ kfree(dd);
+ }
+
+unlock_ret:
+ up_write(&t->devices_lock);
+}
+EXPORT_SYMBOL(dm_put_device);
+
+/*
+ * Checks to see if the target joins onto the end of the table.
+ */
+static int adjoin(struct dm_table *t, struct dm_target *ti)
+{
+ struct dm_target *prev;
+
+ if (!t->num_targets)
+ return !ti->begin;
+
+ prev = &t->targets[t->num_targets - 1];
+ return (ti->begin == (prev->begin + prev->len));
+}
+
+/*
+ * Used to dynamically allocate the arg array.
+ *
+ * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
+ * process messages even if some device is suspended. These messages have a
+ * small fixed number of arguments.
+ *
+ * On the other hand, dm-switch needs to process bulk data using messages and
+ * excessive use of GFP_NOIO could cause trouble.
+ */
+static char **realloc_argv(unsigned int *size, char **old_argv)
+{
+ char **argv;
+ unsigned int new_size;
+ gfp_t gfp;
+
+ if (*size) {
+ new_size = *size * 2;
+ gfp = GFP_KERNEL;
+ } else {
+ new_size = 8;
+ gfp = GFP_NOIO;
+ }
+ argv = kmalloc_array(new_size, sizeof(*argv), gfp);
+ if (argv && old_argv) {
+ memcpy(argv, old_argv, *size * sizeof(*argv));
+ *size = new_size;
+ }
+
+ kfree(old_argv);
+ return argv;
+}
+
+/*
+ * Destructively splits up the argument list to pass to ctr.
+ */
+int dm_split_args(int *argc, char ***argvp, char *input)
+{
+ char *start, *end = input, *out, **argv = NULL;
+ unsigned int array_size = 0;
+
+ *argc = 0;
+
+ if (!input) {
+ *argvp = NULL;
+ return 0;
+ }
+
+ argv = realloc_argv(&array_size, argv);
+ if (!argv)
+ return -ENOMEM;
+
+ while (1) {
+ /* Skip whitespace */
+ start = skip_spaces(end);
+
+ if (!*start)
+ break; /* success, we hit the end */
+
+ /* 'out' is used to remove any back-quotes */
+ end = out = start;
+ while (*end) {
+ /* Everything apart from '\0' can be quoted */
+ if (*end == '\\' && *(end + 1)) {
+ *out++ = *(end + 1);
+ end += 2;
+ continue;
+ }
+
+ if (isspace(*end))
+ break; /* end of token */
+
+ *out++ = *end++;
+ }
+
+ /* have we already filled the array ? */
+ if ((*argc + 1) > array_size) {
+ argv = realloc_argv(&array_size, argv);
+ if (!argv)
+ return -ENOMEM;
+ }
+
+ /* we know this is whitespace */
+ if (*end)
+ end++;
+
+ /* terminate the string and put it in the array */
+ *out = '\0';
+ argv[*argc] = start;
+ (*argc)++;
+ }
+
+ *argvp = argv;
+ return 0;
+}
+
+/*
+ * Impose necessary and sufficient conditions on a devices's table such
+ * that any incoming bio which respects its logical_block_size can be
+ * processed successfully. If it falls across the boundary between
+ * two or more targets, the size of each piece it gets split into must
+ * be compatible with the logical_block_size of the target processing it.
+ */
+static int validate_hardware_logical_block_alignment(struct dm_table *t,
+ struct queue_limits *limits)
+{
+ /*
+ * This function uses arithmetic modulo the logical_block_size
+ * (in units of 512-byte sectors).
+ */
+ unsigned short device_logical_block_size_sects =
+ limits->logical_block_size >> SECTOR_SHIFT;
+
+ /*
+ * Offset of the start of the next table entry, mod logical_block_size.
+ */
+ unsigned short next_target_start = 0;
+
+ /*
+ * Given an aligned bio that extends beyond the end of a
+ * target, how many sectors must the next target handle?
+ */
+ unsigned short remaining = 0;
+
+ struct dm_target *ti;
+ struct queue_limits ti_limits;
+ unsigned int i;
+
+ /*
+ * Check each entry in the table in turn.
+ */
+ for (i = 0; i < t->num_targets; i++) {
+ ti = dm_table_get_target(t, i);
+
+ blk_set_stacking_limits(&ti_limits);
+
+ /* combine all target devices' limits */
+ if (ti->type->iterate_devices)
+ ti->type->iterate_devices(ti, dm_set_device_limits,
+ &ti_limits);
+
+ /*
+ * If the remaining sectors fall entirely within this
+ * table entry are they compatible with its logical_block_size?
+ */
+ if (remaining < ti->len &&
+ remaining & ((ti_limits.logical_block_size >>
+ SECTOR_SHIFT) - 1))
+ break; /* Error */
+
+ next_target_start =
+ (unsigned short) ((next_target_start + ti->len) &
+ (device_logical_block_size_sects - 1));
+ remaining = next_target_start ?
+ device_logical_block_size_sects - next_target_start : 0;
+ }
+
+ if (remaining) {
+ DMERR("%s: table line %u (start sect %llu len %llu) "
+ "not aligned to h/w logical block size %u",
+ dm_device_name(t->md), i,
+ (unsigned long long) ti->begin,
+ (unsigned long long) ti->len,
+ limits->logical_block_size);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+int dm_table_add_target(struct dm_table *t, const char *type,
+ sector_t start, sector_t len, char *params)
+{
+ int r = -EINVAL, argc;
+ char **argv;
+ struct dm_target *ti;
+
+ if (t->singleton) {
+ DMERR("%s: target type %s must appear alone in table",
+ dm_device_name(t->md), t->targets->type->name);
+ return -EINVAL;
+ }
+
+ BUG_ON(t->num_targets >= t->num_allocated);
+
+ ti = t->targets + t->num_targets;
+ memset(ti, 0, sizeof(*ti));
+
+ if (!len) {
+ DMERR("%s: zero-length target", dm_device_name(t->md));
+ return -EINVAL;
+ }
+
+ ti->type = dm_get_target_type(type);
+ if (!ti->type) {
+ DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
+ return -EINVAL;
+ }
+
+ if (dm_target_needs_singleton(ti->type)) {
+ if (t->num_targets) {
+ ti->error = "singleton target type must appear alone in table";
+ goto bad;
+ }
+ t->singleton = true;
+ }
+
+ if (dm_target_always_writeable(ti->type) && !(t->mode & FMODE_WRITE)) {
+ ti->error = "target type may not be included in a read-only table";
+ goto bad;
+ }
+
+ if (t->immutable_target_type) {
+ if (t->immutable_target_type != ti->type) {
+ ti->error = "immutable target type cannot be mixed with other target types";
+ goto bad;
+ }
+ } else if (dm_target_is_immutable(ti->type)) {
+ if (t->num_targets) {
+ ti->error = "immutable target type cannot be mixed with other target types";
+ goto bad;
+ }
+ t->immutable_target_type = ti->type;
+ }
+
+ if (dm_target_has_integrity(ti->type))
+ t->integrity_added = 1;
+
+ ti->table = t;
+ ti->begin = start;
+ ti->len = len;
+ ti->error = "Unknown error";
+
+ /*
+ * Does this target adjoin the previous one ?
+ */
+ if (!adjoin(t, ti)) {
+ ti->error = "Gap in table";
+ goto bad;
+ }
+
+ r = dm_split_args(&argc, &argv, params);
+ if (r) {
+ ti->error = "couldn't split parameters";
+ goto bad;
+ }
+
+ r = ti->type->ctr(ti, argc, argv);
+ kfree(argv);
+ if (r)
+ goto bad;
+
+ t->highs[t->num_targets++] = ti->begin + ti->len - 1;
+
+ if (!ti->num_discard_bios && ti->discards_supported)
+ DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
+ dm_device_name(t->md), type);
+
+ if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
+ static_branch_enable(&swap_bios_enabled);
+
+ return 0;
+
+ bad:
+ DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
+ dm_put_target_type(ti->type);
+ return r;
+}
+
+/*
+ * Target argument parsing helpers.
+ */
+static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
+ unsigned int *value, char **error, unsigned int grouped)
+{
+ const char *arg_str = dm_shift_arg(arg_set);
+ char dummy;
+
+ if (!arg_str ||
+ (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
+ (*value < arg->min) ||
+ (*value > arg->max) ||
+ (grouped && arg_set->argc < *value)) {
+ *error = arg->error;
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
+ unsigned int *value, char **error)
+{
+ return validate_next_arg(arg, arg_set, value, error, 0);
+}
+EXPORT_SYMBOL(dm_read_arg);
+
+int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
+ unsigned int *value, char **error)
+{
+ return validate_next_arg(arg, arg_set, value, error, 1);
+}
+EXPORT_SYMBOL(dm_read_arg_group);
+
+const char *dm_shift_arg(struct dm_arg_set *as)
+{
+ char *r;
+
+ if (as->argc) {
+ as->argc--;
+ r = *as->argv;
+ as->argv++;
+ return r;
+ }
+
+ return NULL;
+}
+EXPORT_SYMBOL(dm_shift_arg);
+
+void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
+{
+ BUG_ON(as->argc < num_args);
+ as->argc -= num_args;
+ as->argv += num_args;
+}
+EXPORT_SYMBOL(dm_consume_args);
+
+static bool __table_type_bio_based(enum dm_queue_mode table_type)
+{
+ return (table_type == DM_TYPE_BIO_BASED ||
+ table_type == DM_TYPE_DAX_BIO_BASED);
+}
+
+static bool __table_type_request_based(enum dm_queue_mode table_type)
+{
+ return table_type == DM_TYPE_REQUEST_BASED;
+}
+
+void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
+{
+ t->type = type;
+}
+EXPORT_SYMBOL_GPL(dm_table_set_type);
+
+/* validate the dax capability of the target device span */
+static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ if (dev->dax_dev)
+ return false;
+
+ DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
+ return true;
+}
+
+/* Check devices support synchronous DAX */
+static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
+}
+
+static bool dm_table_supports_dax(struct dm_table *t,
+ iterate_devices_callout_fn iterate_fn)
+{
+ /* Ensure that all targets support DAX. */
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ if (!ti->type->direct_access)
+ return false;
+
+ if (!ti->type->iterate_devices ||
+ ti->type->iterate_devices(ti, iterate_fn, NULL))
+ return false;
+ }
+
+ return true;
+}
+
+static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ struct block_device *bdev = dev->bdev;
+ struct request_queue *q = bdev_get_queue(bdev);
+
+ /* request-based cannot stack on partitions! */
+ if (bdev_is_partition(bdev))
+ return false;
+
+ return queue_is_mq(q);
+}
+
+static int dm_table_determine_type(struct dm_table *t)
+{
+ unsigned int bio_based = 0, request_based = 0, hybrid = 0;
+ struct dm_target *ti;
+ struct list_head *devices = dm_table_get_devices(t);
+ enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
+
+ if (t->type != DM_TYPE_NONE) {
+ /* target already set the table's type */
+ if (t->type == DM_TYPE_BIO_BASED) {
+ /* possibly upgrade to a variant of bio-based */
+ goto verify_bio_based;
+ }
+ BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
+ goto verify_rq_based;
+ }
+
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ ti = dm_table_get_target(t, i);
+ if (dm_target_hybrid(ti))
+ hybrid = 1;
+ else if (dm_target_request_based(ti))
+ request_based = 1;
+ else
+ bio_based = 1;
+
+ if (bio_based && request_based) {
+ DMERR("Inconsistent table: different target types can't be mixed up");
+ return -EINVAL;
+ }
+ }
+
+ if (hybrid && !bio_based && !request_based) {
+ /*
+ * The targets can work either way.
+ * Determine the type from the live device.
+ * Default to bio-based if device is new.
+ */
+ if (__table_type_request_based(live_md_type))
+ request_based = 1;
+ else
+ bio_based = 1;
+ }
+
+ if (bio_based) {
+verify_bio_based:
+ /* We must use this table as bio-based */
+ t->type = DM_TYPE_BIO_BASED;
+ if (dm_table_supports_dax(t, device_not_dax_capable) ||
+ (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
+ t->type = DM_TYPE_DAX_BIO_BASED;
+ }
+ return 0;
+ }
+
+ BUG_ON(!request_based); /* No targets in this table */
+
+ t->type = DM_TYPE_REQUEST_BASED;
+
+verify_rq_based:
+ /*
+ * Request-based dm supports only tables that have a single target now.
+ * To support multiple targets, request splitting support is needed,
+ * and that needs lots of changes in the block-layer.
+ * (e.g. request completion process for partial completion.)
+ */
+ if (t->num_targets > 1) {
+ DMERR("request-based DM doesn't support multiple targets");
+ return -EINVAL;
+ }
+
+ if (list_empty(devices)) {
+ int srcu_idx;
+ struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
+
+ /* inherit live table's type */
+ if (live_table)
+ t->type = live_table->type;
+ dm_put_live_table(t->md, srcu_idx);
+ return 0;
+ }
+
+ ti = dm_table_get_immutable_target(t);
+ if (!ti) {
+ DMERR("table load rejected: immutable target is required");
+ return -EINVAL;
+ } else if (ti->max_io_len) {
+ DMERR("table load rejected: immutable target that splits IO is not supported");
+ return -EINVAL;
+ }
+
+ /* Non-request-stackable devices can't be used for request-based dm */
+ if (!ti->type->iterate_devices ||
+ !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
+ DMERR("table load rejected: including non-request-stackable devices");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+enum dm_queue_mode dm_table_get_type(struct dm_table *t)
+{
+ return t->type;
+}
+
+struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
+{
+ return t->immutable_target_type;
+}
+
+struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
+{
+ /* Immutable target is implicitly a singleton */
+ if (t->num_targets > 1 ||
+ !dm_target_is_immutable(t->targets[0].type))
+ return NULL;
+
+ return t->targets;
+}
+
+struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
+{
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ if (dm_target_is_wildcard(ti->type))
+ return ti;
+ }
+
+ return NULL;
+}
+
+bool dm_table_bio_based(struct dm_table *t)
+{
+ return __table_type_bio_based(dm_table_get_type(t));
+}
+
+bool dm_table_request_based(struct dm_table *t)
+{
+ return __table_type_request_based(dm_table_get_type(t));
+}
+
+static bool dm_table_supports_poll(struct dm_table *t);
+
+static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
+{
+ enum dm_queue_mode type = dm_table_get_type(t);
+ unsigned int per_io_data_size = 0, front_pad, io_front_pad;
+ unsigned int min_pool_size = 0, pool_size;
+ struct dm_md_mempools *pools;
+
+ if (unlikely(type == DM_TYPE_NONE)) {
+ DMERR("no table type is set, can't allocate mempools");
+ return -EINVAL;
+ }
+
+ pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
+ if (!pools)
+ return -ENOMEM;
+
+ if (type == DM_TYPE_REQUEST_BASED) {
+ pool_size = dm_get_reserved_rq_based_ios();
+ front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
+ goto init_bs;
+ }
+
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
+ min_pool_size = max(min_pool_size, ti->num_flush_bios);
+ }
+ pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
+ front_pad = roundup(per_io_data_size,
+ __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
+
+ io_front_pad = roundup(per_io_data_size,
+ __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
+ if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
+ dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
+ goto out_free_pools;
+ if (t->integrity_supported &&
+ bioset_integrity_create(&pools->io_bs, pool_size))
+ goto out_free_pools;
+init_bs:
+ if (bioset_init(&pools->bs, pool_size, front_pad, 0))
+ goto out_free_pools;
+ if (t->integrity_supported &&
+ bioset_integrity_create(&pools->bs, pool_size))
+ goto out_free_pools;
+
+ t->mempools = pools;
+ return 0;
+
+out_free_pools:
+ dm_free_md_mempools(pools);
+ return -ENOMEM;
+}
+
+static int setup_indexes(struct dm_table *t)
+{
+ int i;
+ unsigned int total = 0;
+ sector_t *indexes;
+
+ /* allocate the space for *all* the indexes */
+ for (i = t->depth - 2; i >= 0; i--) {
+ t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
+ total += t->counts[i];
+ }
+
+ indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
+ if (!indexes)
+ return -ENOMEM;
+
+ /* set up internal nodes, bottom-up */
+ for (i = t->depth - 2; i >= 0; i--) {
+ t->index[i] = indexes;
+ indexes += (KEYS_PER_NODE * t->counts[i]);
+ setup_btree_index(i, t);
+ }
+
+ return 0;
+}
+
+/*
+ * Builds the btree to index the map.
+ */
+static int dm_table_build_index(struct dm_table *t)
+{
+ int r = 0;
+ unsigned int leaf_nodes;
+
+ /* how many indexes will the btree have ? */
+ leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
+ t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
+
+ /* leaf layer has already been set up */
+ t->counts[t->depth - 1] = leaf_nodes;
+ t->index[t->depth - 1] = t->highs;
+
+ if (t->depth >= 2)
+ r = setup_indexes(t);
+
+ return r;
+}
+
+static bool integrity_profile_exists(struct gendisk *disk)
+{
+ return !!blk_get_integrity(disk);
+}
+
+/*
+ * Get a disk whose integrity profile reflects the table's profile.
+ * Returns NULL if integrity support was inconsistent or unavailable.
+ */
+static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
+{
+ struct list_head *devices = dm_table_get_devices(t);
+ struct dm_dev_internal *dd = NULL;
+ struct gendisk *prev_disk = NULL, *template_disk = NULL;
+
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ if (!dm_target_passes_integrity(ti->type))
+ goto no_integrity;
+ }
+
+ list_for_each_entry(dd, devices, list) {
+ template_disk = dd->dm_dev->bdev->bd_disk;
+ if (!integrity_profile_exists(template_disk))
+ goto no_integrity;
+ else if (prev_disk &&
+ blk_integrity_compare(prev_disk, template_disk) < 0)
+ goto no_integrity;
+ prev_disk = template_disk;
+ }
+
+ return template_disk;
+
+no_integrity:
+ if (prev_disk)
+ DMWARN("%s: integrity not set: %s and %s profile mismatch",
+ dm_device_name(t->md),
+ prev_disk->disk_name,
+ template_disk->disk_name);
+ return NULL;
+}
+
+/*
+ * Register the mapped device for blk_integrity support if the
+ * underlying devices have an integrity profile. But all devices may
+ * not have matching profiles (checking all devices isn't reliable
+ * during table load because this table may use other DM device(s) which
+ * must be resumed before they will have an initialized integity
+ * profile). Consequently, stacked DM devices force a 2 stage integrity
+ * profile validation: First pass during table load, final pass during
+ * resume.
+ */
+static int dm_table_register_integrity(struct dm_table *t)
+{
+ struct mapped_device *md = t->md;
+ struct gendisk *template_disk = NULL;
+
+ /* If target handles integrity itself do not register it here. */
+ if (t->integrity_added)
+ return 0;
+
+ template_disk = dm_table_get_integrity_disk(t);
+ if (!template_disk)
+ return 0;
+
+ if (!integrity_profile_exists(dm_disk(md))) {
+ t->integrity_supported = true;
+ /*
+ * Register integrity profile during table load; we can do
+ * this because the final profile must match during resume.
+ */
+ blk_integrity_register(dm_disk(md),
+ blk_get_integrity(template_disk));
+ return 0;
+ }
+
+ /*
+ * If DM device already has an initialized integrity
+ * profile the new profile should not conflict.
+ */
+ if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
+ DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
+ dm_device_name(t->md),
+ template_disk->disk_name);
+ return 1;
+ }
+
+ /* Preserve existing integrity profile */
+ t->integrity_supported = true;
+ return 0;
+}
+
+#ifdef CONFIG_BLK_INLINE_ENCRYPTION
+
+struct dm_crypto_profile {
+ struct blk_crypto_profile profile;
+ struct mapped_device *md;
+};
+
+static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ const struct blk_crypto_key *key = data;
+
+ blk_crypto_evict_key(dev->bdev, key);
+ return 0;
+}
+
+/*
+ * When an inline encryption key is evicted from a device-mapper device, evict
+ * it from all the underlying devices.
+ */
+static int dm_keyslot_evict(struct blk_crypto_profile *profile,
+ const struct blk_crypto_key *key, unsigned int slot)
+{
+ struct mapped_device *md =
+ container_of(profile, struct dm_crypto_profile, profile)->md;
+ struct dm_table *t;
+ int srcu_idx;
+
+ t = dm_get_live_table(md, &srcu_idx);
+ if (!t)
+ return 0;
+
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ if (!ti->type->iterate_devices)
+ continue;
+ ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
+ (void *)key);
+ }
+
+ dm_put_live_table(md, srcu_idx);
+ return 0;
+}
+
+static int
+device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ struct blk_crypto_profile *parent = data;
+ struct blk_crypto_profile *child =
+ bdev_get_queue(dev->bdev)->crypto_profile;
+
+ blk_crypto_intersect_capabilities(parent, child);
+ return 0;
+}
+
+void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
+{
+ struct dm_crypto_profile *dmcp = container_of(profile,
+ struct dm_crypto_profile,
+ profile);
+
+ if (!profile)
+ return;
+
+ blk_crypto_profile_destroy(profile);
+ kfree(dmcp);
+}
+
+static void dm_table_destroy_crypto_profile(struct dm_table *t)
+{
+ dm_destroy_crypto_profile(t->crypto_profile);
+ t->crypto_profile = NULL;
+}
+
+/*
+ * Constructs and initializes t->crypto_profile with a crypto profile that
+ * represents the common set of crypto capabilities of the devices described by
+ * the dm_table. However, if the constructed crypto profile doesn't support all
+ * crypto capabilities that are supported by the current mapped_device, it
+ * returns an error instead, since we don't support removing crypto capabilities
+ * on table changes. Finally, if the constructed crypto profile is "empty" (has
+ * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
+ */
+static int dm_table_construct_crypto_profile(struct dm_table *t)
+{
+ struct dm_crypto_profile *dmcp;
+ struct blk_crypto_profile *profile;
+ unsigned int i;
+ bool empty_profile = true;
+
+ dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
+ if (!dmcp)
+ return -ENOMEM;
+ dmcp->md = t->md;
+
+ profile = &dmcp->profile;
+ blk_crypto_profile_init(profile, 0);
+ profile->ll_ops.keyslot_evict = dm_keyslot_evict;
+ profile->max_dun_bytes_supported = UINT_MAX;
+ memset(profile->modes_supported, 0xFF,
+ sizeof(profile->modes_supported));
+
+ for (i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ if (!dm_target_passes_crypto(ti->type)) {
+ blk_crypto_intersect_capabilities(profile, NULL);
+ break;
+ }
+ if (!ti->type->iterate_devices)
+ continue;
+ ti->type->iterate_devices(ti,
+ device_intersect_crypto_capabilities,
+ profile);
+ }
+
+ if (t->md->queue &&
+ !blk_crypto_has_capabilities(profile,
+ t->md->queue->crypto_profile)) {
+ DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
+ dm_destroy_crypto_profile(profile);
+ return -EINVAL;
+ }
+
+ /*
+ * If the new profile doesn't actually support any crypto capabilities,
+ * we may as well represent it with a NULL profile.
+ */
+ for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
+ if (profile->modes_supported[i]) {
+ empty_profile = false;
+ break;
+ }
+ }
+
+ if (empty_profile) {
+ dm_destroy_crypto_profile(profile);
+ profile = NULL;
+ }
+
+ /*
+ * t->crypto_profile is only set temporarily while the table is being
+ * set up, and it gets set to NULL after the profile has been
+ * transferred to the request_queue.
+ */
+ t->crypto_profile = profile;
+
+ return 0;
+}
+
+static void dm_update_crypto_profile(struct request_queue *q,
+ struct dm_table *t)
+{
+ if (!t->crypto_profile)
+ return;
+
+ /* Make the crypto profile less restrictive. */
+ if (!q->crypto_profile) {
+ blk_crypto_register(t->crypto_profile, q);
+ } else {
+ blk_crypto_update_capabilities(q->crypto_profile,
+ t->crypto_profile);
+ dm_destroy_crypto_profile(t->crypto_profile);
+ }
+ t->crypto_profile = NULL;
+}
+
+#else /* CONFIG_BLK_INLINE_ENCRYPTION */
+
+static int dm_table_construct_crypto_profile(struct dm_table *t)
+{
+ return 0;
+}
+
+void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
+{
+}
+
+static void dm_table_destroy_crypto_profile(struct dm_table *t)
+{
+}
+
+static void dm_update_crypto_profile(struct request_queue *q,
+ struct dm_table *t)
+{
+}
+
+#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
+
+/*
+ * Prepares the table for use by building the indices,
+ * setting the type, and allocating mempools.
+ */
+int dm_table_complete(struct dm_table *t)
+{
+ int r;
+
+ r = dm_table_determine_type(t);
+ if (r) {
+ DMERR("unable to determine table type");
+ return r;
+ }
+
+ r = dm_table_build_index(t);
+ if (r) {
+ DMERR("unable to build btrees");
+ return r;
+ }
+
+ r = dm_table_register_integrity(t);
+ if (r) {
+ DMERR("could not register integrity profile.");
+ return r;
+ }
+
+ r = dm_table_construct_crypto_profile(t);
+ if (r) {
+ DMERR("could not construct crypto profile.");
+ return r;
+ }
+
+ r = dm_table_alloc_md_mempools(t, t->md);
+ if (r)
+ DMERR("unable to allocate mempools");
+
+ return r;
+}
+
+static DEFINE_MUTEX(_event_lock);
+void dm_table_event_callback(struct dm_table *t,
+ void (*fn)(void *), void *context)
+{
+ mutex_lock(&_event_lock);
+ t->event_fn = fn;
+ t->event_context = context;
+ mutex_unlock(&_event_lock);
+}
+
+void dm_table_event(struct dm_table *t)
+{
+ mutex_lock(&_event_lock);
+ if (t->event_fn)
+ t->event_fn(t->event_context);
+ mutex_unlock(&_event_lock);
+}
+EXPORT_SYMBOL(dm_table_event);
+
+inline sector_t dm_table_get_size(struct dm_table *t)
+{
+ return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
+}
+EXPORT_SYMBOL(dm_table_get_size);
+
+/*
+ * Search the btree for the correct target.
+ *
+ * Caller should check returned pointer for NULL
+ * to trap I/O beyond end of device.
+ */
+struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
+{
+ unsigned int l, n = 0, k = 0;
+ sector_t *node;
+
+ if (unlikely(sector >= dm_table_get_size(t)))
+ return NULL;
+
+ for (l = 0; l < t->depth; l++) {
+ n = get_child(n, k);
+ node = get_node(t, l, n);
+
+ for (k = 0; k < KEYS_PER_NODE; k++)
+ if (node[k] >= sector)
+ break;
+ }
+
+ return &t->targets[(KEYS_PER_NODE * n) + k];
+}
+
+static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ struct request_queue *q = bdev_get_queue(dev->bdev);
+
+ return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
+}
+
+/*
+ * type->iterate_devices() should be called when the sanity check needs to
+ * iterate and check all underlying data devices. iterate_devices() will
+ * iterate all underlying data devices until it encounters a non-zero return
+ * code, returned by whether the input iterate_devices_callout_fn, or
+ * iterate_devices() itself internally.
+ *
+ * For some target type (e.g. dm-stripe), one call of iterate_devices() may
+ * iterate multiple underlying devices internally, in which case a non-zero
+ * return code returned by iterate_devices_callout_fn will stop the iteration
+ * in advance.
+ *
+ * Cases requiring _any_ underlying device supporting some kind of attribute,
+ * should use the iteration structure like dm_table_any_dev_attr(), or call
+ * it directly. @func should handle semantics of positive examples, e.g.
+ * capable of something.
+ *
+ * Cases requiring _all_ underlying devices supporting some kind of attribute,
+ * should use the iteration structure like dm_table_supports_nowait() or
+ * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
+ * uses an @anti_func that handle semantics of counter examples, e.g. not
+ * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
+ */
+static bool dm_table_any_dev_attr(struct dm_table *t,
+ iterate_devices_callout_fn func, void *data)
+{
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ if (ti->type->iterate_devices &&
+ ti->type->iterate_devices(ti, func, data))
+ return true;
+ }
+
+ return false;
+}
+
+static int count_device(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ unsigned int *num_devices = data;
+
+ (*num_devices)++;
+
+ return 0;
+}
+
+static bool dm_table_supports_poll(struct dm_table *t)
+{
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ if (!ti->type->iterate_devices ||
+ ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
+ return false;
+ }
+
+ return true;
+}
+
+/*
+ * Check whether a table has no data devices attached using each
+ * target's iterate_devices method.
+ * Returns false if the result is unknown because a target doesn't
+ * support iterate_devices.
+ */
+bool dm_table_has_no_data_devices(struct dm_table *t)
+{
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+ unsigned int num_devices = 0;
+
+ if (!ti->type->iterate_devices)
+ return false;
+
+ ti->type->iterate_devices(ti, count_device, &num_devices);
+ if (num_devices)
+ return false;
+ }
+
+ return true;
+}
+
+static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ struct request_queue *q = bdev_get_queue(dev->bdev);
+ enum blk_zoned_model *zoned_model = data;
+
+ return blk_queue_zoned_model(q) != *zoned_model;
+}
+
+/*
+ * Check the device zoned model based on the target feature flag. If the target
+ * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
+ * also accepted but all devices must have the same zoned model. If the target
+ * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
+ * zoned model with all zoned devices having the same zone size.
+ */
+static bool dm_table_supports_zoned_model(struct dm_table *t,
+ enum blk_zoned_model zoned_model)
+{
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ if (dm_target_supports_zoned_hm(ti->type)) {
+ if (!ti->type->iterate_devices ||
+ ti->type->iterate_devices(ti, device_not_zoned_model,
+ &zoned_model))
+ return false;
+ } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
+ if (zoned_model == BLK_ZONED_HM)
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ unsigned int *zone_sectors = data;
+
+ if (!bdev_is_zoned(dev->bdev))
+ return 0;
+ return bdev_zone_sectors(dev->bdev) != *zone_sectors;
+}
+
+/*
+ * Check consistency of zoned model and zone sectors across all targets. For
+ * zone sectors, if the destination device is a zoned block device, it shall
+ * have the specified zone_sectors.
+ */
+static int validate_hardware_zoned_model(struct dm_table *t,
+ enum blk_zoned_model zoned_model,
+ unsigned int zone_sectors)
+{
+ if (zoned_model == BLK_ZONED_NONE)
+ return 0;
+
+ if (!dm_table_supports_zoned_model(t, zoned_model)) {
+ DMERR("%s: zoned model is not consistent across all devices",
+ dm_device_name(t->md));
+ return -EINVAL;
+ }
+
+ /* Check zone size validity and compatibility */
+ if (!zone_sectors || !is_power_of_2(zone_sectors))
+ return -EINVAL;
+
+ if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
+ DMERR("%s: zone sectors is not consistent across all zoned devices",
+ dm_device_name(t->md));
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/*
+ * Establish the new table's queue_limits and validate them.
+ */
+int dm_calculate_queue_limits(struct dm_table *t,
+ struct queue_limits *limits)
+{
+ struct queue_limits ti_limits;
+ enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
+ unsigned int zone_sectors = 0;
+
+ blk_set_stacking_limits(limits);
+
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ blk_set_stacking_limits(&ti_limits);
+
+ if (!ti->type->iterate_devices)
+ goto combine_limits;
+
+ /*
+ * Combine queue limits of all the devices this target uses.
+ */
+ ti->type->iterate_devices(ti, dm_set_device_limits,
+ &ti_limits);
+
+ if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
+ /*
+ * After stacking all limits, validate all devices
+ * in table support this zoned model and zone sectors.
+ */
+ zoned_model = ti_limits.zoned;
+ zone_sectors = ti_limits.chunk_sectors;
+ }
+
+ /* Set I/O hints portion of queue limits */
+ if (ti->type->io_hints)
+ ti->type->io_hints(ti, &ti_limits);
+
+ /*
+ * Check each device area is consistent with the target's
+ * overall queue limits.
+ */
+ if (ti->type->iterate_devices(ti, device_area_is_invalid,
+ &ti_limits))
+ return -EINVAL;
+
+combine_limits:
+ /*
+ * Merge this target's queue limits into the overall limits
+ * for the table.
+ */
+ if (blk_stack_limits(limits, &ti_limits, 0) < 0)
+ DMWARN("%s: adding target device (start sect %llu len %llu) "
+ "caused an alignment inconsistency",
+ dm_device_name(t->md),
+ (unsigned long long) ti->begin,
+ (unsigned long long) ti->len);
+ }
+
+ /*
+ * Verify that the zoned model and zone sectors, as determined before
+ * any .io_hints override, are the same across all devices in the table.
+ * - this is especially relevant if .io_hints is emulating a disk-managed
+ * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
+ * BUT...
+ */
+ if (limits->zoned != BLK_ZONED_NONE) {
+ /*
+ * ...IF the above limits stacking determined a zoned model
+ * validate that all of the table's devices conform to it.
+ */
+ zoned_model = limits->zoned;
+ zone_sectors = limits->chunk_sectors;
+ }
+ if (validate_hardware_zoned_model(t, zoned_model, zone_sectors))
+ return -EINVAL;
+
+ return validate_hardware_logical_block_alignment(t, limits);
+}
+
+/*
+ * Verify that all devices have an integrity profile that matches the
+ * DM device's registered integrity profile. If the profiles don't
+ * match then unregister the DM device's integrity profile.
+ */
+static void dm_table_verify_integrity(struct dm_table *t)
+{
+ struct gendisk *template_disk = NULL;
+
+ if (t->integrity_added)
+ return;
+
+ if (t->integrity_supported) {
+ /*
+ * Verify that the original integrity profile
+ * matches all the devices in this table.
+ */
+ template_disk = dm_table_get_integrity_disk(t);
+ if (template_disk &&
+ blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
+ return;
+ }
+
+ if (integrity_profile_exists(dm_disk(t->md))) {
+ DMWARN("%s: unable to establish an integrity profile",
+ dm_device_name(t->md));
+ blk_integrity_unregister(dm_disk(t->md));
+ }
+}
+
+static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ unsigned long flush = (unsigned long) data;
+ struct request_queue *q = bdev_get_queue(dev->bdev);
+
+ return (q->queue_flags & flush);
+}
+
+static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
+{
+ /*
+ * Require at least one underlying device to support flushes.
+ * t->devices includes internal dm devices such as mirror logs
+ * so we need to use iterate_devices here, which targets
+ * supporting flushes must provide.
+ */
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ if (!ti->num_flush_bios)
+ continue;
+
+ if (ti->flush_supported)
+ return true;
+
+ if (ti->type->iterate_devices &&
+ ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
+ return true;
+ }
+
+ return false;
+}
+
+static int device_dax_write_cache_enabled(struct dm_target *ti,
+ struct dm_dev *dev, sector_t start,
+ sector_t len, void *data)
+{
+ struct dax_device *dax_dev = dev->dax_dev;
+
+ if (!dax_dev)
+ return false;
+
+ if (dax_write_cache_enabled(dax_dev))
+ return true;
+ return false;
+}
+
+static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ return !bdev_nonrot(dev->bdev);
+}
+
+static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ struct request_queue *q = bdev_get_queue(dev->bdev);
+
+ return !blk_queue_add_random(q);
+}
+
+static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ struct request_queue *q = bdev_get_queue(dev->bdev);
+
+ return !q->limits.max_write_zeroes_sectors;
+}
+
+static bool dm_table_supports_write_zeroes(struct dm_table *t)
+{
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ if (!ti->num_write_zeroes_bios)
+ return false;
+
+ if (!ti->type->iterate_devices ||
+ ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
+ return false;
+ }
+
+ return true;
+}
+
+static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ return !bdev_nowait(dev->bdev);
+}
+
+static bool dm_table_supports_nowait(struct dm_table *t)
+{
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ if (!dm_target_supports_nowait(ti->type))
+ return false;
+
+ if (!ti->type->iterate_devices ||
+ ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
+ return false;
+ }
+
+ return true;
+}
+
+static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ return !bdev_max_discard_sectors(dev->bdev);
+}
+
+static bool dm_table_supports_discards(struct dm_table *t)
+{
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ if (!ti->num_discard_bios)
+ return false;
+
+ /*
+ * Either the target provides discard support (as implied by setting
+ * 'discards_supported') or it relies on _all_ data devices having
+ * discard support.
+ */
+ if (!ti->discards_supported &&
+ (!ti->type->iterate_devices ||
+ ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
+ return false;
+ }
+
+ return true;
+}
+
+static int device_not_secure_erase_capable(struct dm_target *ti,
+ struct dm_dev *dev, sector_t start,
+ sector_t len, void *data)
+{
+ return !bdev_max_secure_erase_sectors(dev->bdev);
+}
+
+static bool dm_table_supports_secure_erase(struct dm_table *t)
+{
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ if (!ti->num_secure_erase_bios)
+ return false;
+
+ if (!ti->type->iterate_devices ||
+ ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
+ return false;
+ }
+
+ return true;
+}
+
+static int device_requires_stable_pages(struct dm_target *ti,
+ struct dm_dev *dev, sector_t start,
+ sector_t len, void *data)
+{
+ return bdev_stable_writes(dev->bdev);
+}
+
+int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
+ struct queue_limits *limits)
+{
+ bool wc = false, fua = false;
+ int r;
+
+ /*
+ * Copy table's limits to the DM device's request_queue
+ */
+ q->limits = *limits;
+
+ if (dm_table_supports_nowait(t))
+ blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
+ else
+ blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
+
+ if (!dm_table_supports_discards(t)) {
+ q->limits.max_discard_sectors = 0;
+ q->limits.max_hw_discard_sectors = 0;
+ q->limits.discard_granularity = 0;
+ q->limits.discard_alignment = 0;
+ q->limits.discard_misaligned = 0;
+ }
+
+ if (!dm_table_supports_secure_erase(t))
+ q->limits.max_secure_erase_sectors = 0;
+
+ if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
+ wc = true;
+ if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
+ fua = true;
+ }
+ blk_queue_write_cache(q, wc, fua);
+
+ if (dm_table_supports_dax(t, device_not_dax_capable)) {
+ blk_queue_flag_set(QUEUE_FLAG_DAX, q);
+ if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
+ set_dax_synchronous(t->md->dax_dev);
+ }
+ else
+ blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
+
+ if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
+ dax_write_cache(t->md->dax_dev, true);
+
+ /* Ensure that all underlying devices are non-rotational. */
+ if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
+ blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
+ else
+ blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
+
+ if (!dm_table_supports_write_zeroes(t))
+ q->limits.max_write_zeroes_sectors = 0;
+
+ dm_table_verify_integrity(t);
+
+ /*
+ * Some devices don't use blk_integrity but still want stable pages
+ * because they do their own checksumming.
+ * If any underlying device requires stable pages, a table must require
+ * them as well. Only targets that support iterate_devices are considered:
+ * don't want error, zero, etc to require stable pages.
+ */
+ if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
+ blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
+ else
+ blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
+
+ /*
+ * Determine whether or not this queue's I/O timings contribute
+ * to the entropy pool, Only request-based targets use this.
+ * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
+ * have it set.
+ */
+ if (blk_queue_add_random(q) &&
+ dm_table_any_dev_attr(t, device_is_not_random, NULL))
+ blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
+
+ /*
+ * For a zoned target, setup the zones related queue attributes
+ * and resources necessary for zone append emulation if necessary.
+ */
+ if (blk_queue_is_zoned(q)) {
+ r = dm_set_zones_restrictions(t, q);
+ if (r)
+ return r;
+ if (!static_key_enabled(&zoned_enabled.key))
+ static_branch_enable(&zoned_enabled);
+ }
+
+ dm_update_crypto_profile(q, t);
+ disk_update_readahead(t->md->disk);
+
+ /*
+ * Check for request-based device is left to
+ * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
+ *
+ * For bio-based device, only set QUEUE_FLAG_POLL when all
+ * underlying devices supporting polling.
+ */
+ if (__table_type_bio_based(t->type)) {
+ if (dm_table_supports_poll(t))
+ blk_queue_flag_set(QUEUE_FLAG_POLL, q);
+ else
+ blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
+ }
+
+ return 0;
+}
+
+struct list_head *dm_table_get_devices(struct dm_table *t)
+{
+ return &t->devices;
+}
+
+fmode_t dm_table_get_mode(struct dm_table *t)
+{
+ return t->mode;
+}
+EXPORT_SYMBOL(dm_table_get_mode);
+
+enum suspend_mode {
+ PRESUSPEND,
+ PRESUSPEND_UNDO,
+ POSTSUSPEND,
+};
+
+static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
+{
+ lockdep_assert_held(&t->md->suspend_lock);
+
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ switch (mode) {
+ case PRESUSPEND:
+ if (ti->type->presuspend)
+ ti->type->presuspend(ti);
+ break;
+ case PRESUSPEND_UNDO:
+ if (ti->type->presuspend_undo)
+ ti->type->presuspend_undo(ti);
+ break;
+ case POSTSUSPEND:
+ if (ti->type->postsuspend)
+ ti->type->postsuspend(ti);
+ break;
+ }
+ }
+}
+
+void dm_table_presuspend_targets(struct dm_table *t)
+{
+ if (!t)
+ return;
+
+ suspend_targets(t, PRESUSPEND);
+}
+
+void dm_table_presuspend_undo_targets(struct dm_table *t)
+{
+ if (!t)
+ return;
+
+ suspend_targets(t, PRESUSPEND_UNDO);
+}
+
+void dm_table_postsuspend_targets(struct dm_table *t)
+{
+ if (!t)
+ return;
+
+ suspend_targets(t, POSTSUSPEND);
+}
+
+int dm_table_resume_targets(struct dm_table *t)
+{
+ unsigned int i;
+ int r = 0;
+
+ lockdep_assert_held(&t->md->suspend_lock);
+
+ for (i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ if (!ti->type->preresume)
+ continue;
+
+ r = ti->type->preresume(ti);
+ if (r) {
+ DMERR("%s: %s: preresume failed, error = %d",
+ dm_device_name(t->md), ti->type->name, r);
+ return r;
+ }
+ }
+
+ for (i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ if (ti->type->resume)
+ ti->type->resume(ti);
+ }
+
+ return 0;
+}
+
+struct mapped_device *dm_table_get_md(struct dm_table *t)
+{
+ return t->md;
+}
+EXPORT_SYMBOL(dm_table_get_md);
+
+const char *dm_table_device_name(struct dm_table *t)
+{
+ return dm_device_name(t->md);
+}
+EXPORT_SYMBOL_GPL(dm_table_device_name);
+
+void dm_table_run_md_queue_async(struct dm_table *t)
+{
+ if (!dm_table_request_based(t))
+ return;
+
+ if (t->md->queue)
+ blk_mq_run_hw_queues(t->md->queue, true);
+}
+EXPORT_SYMBOL(dm_table_run_md_queue_async);
+
diff --git a/drivers/md/dm-target.c b/drivers/md/dm-target.c
new file mode 100644
index 000000000..8cd5184e6
--- /dev/null
+++ b/drivers/md/dm-target.c
@@ -0,0 +1,175 @@
+/*
+ * Copyright (C) 2001 Sistina Software (UK) Limited
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-core.h"
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/kmod.h>
+#include <linux/bio.h>
+#include <linux/dax.h>
+
+#define DM_MSG_PREFIX "target"
+
+static LIST_HEAD(_targets);
+static DECLARE_RWSEM(_lock);
+
+static inline struct target_type *__find_target_type(const char *name)
+{
+ struct target_type *tt;
+
+ list_for_each_entry(tt, &_targets, list)
+ if (!strcmp(name, tt->name))
+ return tt;
+
+ return NULL;
+}
+
+static struct target_type *get_target_type(const char *name)
+{
+ struct target_type *tt;
+
+ down_read(&_lock);
+
+ tt = __find_target_type(name);
+ if (tt && !try_module_get(tt->module))
+ tt = NULL;
+
+ up_read(&_lock);
+ return tt;
+}
+
+static void load_module(const char *name)
+{
+ request_module("dm-%s", name);
+}
+
+struct target_type *dm_get_target_type(const char *name)
+{
+ struct target_type *tt = get_target_type(name);
+
+ if (!tt) {
+ load_module(name);
+ tt = get_target_type(name);
+ }
+
+ return tt;
+}
+
+void dm_put_target_type(struct target_type *tt)
+{
+ down_read(&_lock);
+ module_put(tt->module);
+ up_read(&_lock);
+}
+
+int dm_target_iterate(void (*iter_func)(struct target_type *tt,
+ void *param), void *param)
+{
+ struct target_type *tt;
+
+ down_read(&_lock);
+ list_for_each_entry(tt, &_targets, list)
+ iter_func(tt, param);
+ up_read(&_lock);
+
+ return 0;
+}
+
+int dm_register_target(struct target_type *tt)
+{
+ int rv = 0;
+
+ down_write(&_lock);
+ if (__find_target_type(tt->name))
+ rv = -EEXIST;
+ else
+ list_add(&tt->list, &_targets);
+
+ up_write(&_lock);
+ return rv;
+}
+
+void dm_unregister_target(struct target_type *tt)
+{
+ down_write(&_lock);
+ if (!__find_target_type(tt->name)) {
+ DMCRIT("Unregistering unrecognised target: %s", tt->name);
+ BUG();
+ }
+
+ list_del(&tt->list);
+
+ up_write(&_lock);
+}
+
+/*
+ * io-err: always fails an io, useful for bringing
+ * up LVs that have holes in them.
+ */
+static int io_err_ctr(struct dm_target *tt, unsigned int argc, char **args)
+{
+ /*
+ * Return error for discards instead of -EOPNOTSUPP
+ */
+ tt->num_discard_bios = 1;
+
+ return 0;
+}
+
+static void io_err_dtr(struct dm_target *tt)
+{
+ /* empty */
+}
+
+static int io_err_map(struct dm_target *tt, struct bio *bio)
+{
+ return DM_MAPIO_KILL;
+}
+
+static int io_err_clone_and_map_rq(struct dm_target *ti, struct request *rq,
+ union map_info *map_context,
+ struct request **clone)
+{
+ return DM_MAPIO_KILL;
+}
+
+static void io_err_release_clone_rq(struct request *clone,
+ union map_info *map_context)
+{
+}
+
+static long io_err_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
+ long nr_pages, enum dax_access_mode mode, void **kaddr,
+ pfn_t *pfn)
+{
+ return -EIO;
+}
+
+static struct target_type error_target = {
+ .name = "error",
+ .version = {1, 5, 0},
+ .features = DM_TARGET_WILDCARD,
+ .ctr = io_err_ctr,
+ .dtr = io_err_dtr,
+ .map = io_err_map,
+ .clone_and_map_rq = io_err_clone_and_map_rq,
+ .release_clone_rq = io_err_release_clone_rq,
+ .direct_access = io_err_dax_direct_access,
+};
+
+int __init dm_target_init(void)
+{
+ return dm_register_target(&error_target);
+}
+
+void dm_target_exit(void)
+{
+ dm_unregister_target(&error_target);
+}
+
+EXPORT_SYMBOL(dm_register_target);
+EXPORT_SYMBOL(dm_unregister_target);
diff --git a/drivers/md/dm-thin-metadata.c b/drivers/md/dm-thin-metadata.c
new file mode 100644
index 000000000..bb0e0a270
--- /dev/null
+++ b/drivers/md/dm-thin-metadata.c
@@ -0,0 +1,2154 @@
+/*
+ * Copyright (C) 2011-2012 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-thin-metadata.h"
+#include "persistent-data/dm-btree.h"
+#include "persistent-data/dm-space-map.h"
+#include "persistent-data/dm-space-map-disk.h"
+#include "persistent-data/dm-transaction-manager.h"
+
+#include <linux/list.h>
+#include <linux/device-mapper.h>
+#include <linux/workqueue.h>
+
+/*--------------------------------------------------------------------------
+ * As far as the metadata goes, there is:
+ *
+ * - A superblock in block zero, taking up fewer than 512 bytes for
+ * atomic writes.
+ *
+ * - A space map managing the metadata blocks.
+ *
+ * - A space map managing the data blocks.
+ *
+ * - A btree mapping our internal thin dev ids onto struct disk_device_details.
+ *
+ * - A hierarchical btree, with 2 levels which effectively maps (thin
+ * dev id, virtual block) -> block_time. Block time is a 64-bit
+ * field holding the time in the low 24 bits, and block in the top 40
+ * bits.
+ *
+ * BTrees consist solely of btree_nodes, that fill a block. Some are
+ * internal nodes, as such their values are a __le64 pointing to other
+ * nodes. Leaf nodes can store data of any reasonable size (ie. much
+ * smaller than the block size). The nodes consist of the header,
+ * followed by an array of keys, followed by an array of values. We have
+ * to binary search on the keys so they're all held together to help the
+ * cpu cache.
+ *
+ * Space maps have 2 btrees:
+ *
+ * - One maps a uint64_t onto a struct index_entry. Which points to a
+ * bitmap block, and has some details about how many free entries there
+ * are etc.
+ *
+ * - The bitmap blocks have a header (for the checksum). Then the rest
+ * of the block is pairs of bits. With the meaning being:
+ *
+ * 0 - ref count is 0
+ * 1 - ref count is 1
+ * 2 - ref count is 2
+ * 3 - ref count is higher than 2
+ *
+ * - If the count is higher than 2 then the ref count is entered in a
+ * second btree that directly maps the block_address to a uint32_t ref
+ * count.
+ *
+ * The space map metadata variant doesn't have a bitmaps btree. Instead
+ * it has one single blocks worth of index_entries. This avoids
+ * recursive issues with the bitmap btree needing to allocate space in
+ * order to insert. With a small data block size such as 64k the
+ * metadata support data devices that are hundreds of terrabytes.
+ *
+ * The space maps allocate space linearly from front to back. Space that
+ * is freed in a transaction is never recycled within that transaction.
+ * To try and avoid fragmenting _free_ space the allocator always goes
+ * back and fills in gaps.
+ *
+ * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
+ * from the block manager.
+ *--------------------------------------------------------------------------*/
+
+#define DM_MSG_PREFIX "thin metadata"
+
+#define THIN_SUPERBLOCK_MAGIC 27022010
+#define THIN_SUPERBLOCK_LOCATION 0
+#define THIN_VERSION 2
+#define SECTOR_TO_BLOCK_SHIFT 3
+
+/*
+ * For btree insert:
+ * 3 for btree insert +
+ * 2 for btree lookup used within space map
+ * For btree remove:
+ * 2 for shadow spine +
+ * 4 for rebalance 3 child node
+ */
+#define THIN_MAX_CONCURRENT_LOCKS 6
+
+/* This should be plenty */
+#define SPACE_MAP_ROOT_SIZE 128
+
+/*
+ * Little endian on-disk superblock and device details.
+ */
+struct thin_disk_superblock {
+ __le32 csum; /* Checksum of superblock except for this field. */
+ __le32 flags;
+ __le64 blocknr; /* This block number, dm_block_t. */
+
+ __u8 uuid[16];
+ __le64 magic;
+ __le32 version;
+ __le32 time;
+
+ __le64 trans_id;
+
+ /*
+ * Root held by userspace transactions.
+ */
+ __le64 held_root;
+
+ __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
+ __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
+
+ /*
+ * 2-level btree mapping (dev_id, (dev block, time)) -> data block
+ */
+ __le64 data_mapping_root;
+
+ /*
+ * Device detail root mapping dev_id -> device_details
+ */
+ __le64 device_details_root;
+
+ __le32 data_block_size; /* In 512-byte sectors. */
+
+ __le32 metadata_block_size; /* In 512-byte sectors. */
+ __le64 metadata_nr_blocks;
+
+ __le32 compat_flags;
+ __le32 compat_ro_flags;
+ __le32 incompat_flags;
+} __packed;
+
+struct disk_device_details {
+ __le64 mapped_blocks;
+ __le64 transaction_id; /* When created. */
+ __le32 creation_time;
+ __le32 snapshotted_time;
+} __packed;
+
+struct dm_pool_metadata {
+ struct hlist_node hash;
+
+ struct block_device *bdev;
+ struct dm_block_manager *bm;
+ struct dm_space_map *metadata_sm;
+ struct dm_space_map *data_sm;
+ struct dm_transaction_manager *tm;
+ struct dm_transaction_manager *nb_tm;
+
+ /*
+ * Two-level btree.
+ * First level holds thin_dev_t.
+ * Second level holds mappings.
+ */
+ struct dm_btree_info info;
+
+ /*
+ * Non-blocking version of the above.
+ */
+ struct dm_btree_info nb_info;
+
+ /*
+ * Just the top level for deleting whole devices.
+ */
+ struct dm_btree_info tl_info;
+
+ /*
+ * Just the bottom level for creating new devices.
+ */
+ struct dm_btree_info bl_info;
+
+ /*
+ * Describes the device details btree.
+ */
+ struct dm_btree_info details_info;
+
+ struct rw_semaphore root_lock;
+ uint32_t time;
+ dm_block_t root;
+ dm_block_t details_root;
+ struct list_head thin_devices;
+ uint64_t trans_id;
+ unsigned long flags;
+ sector_t data_block_size;
+
+ /*
+ * Pre-commit callback.
+ *
+ * This allows the thin provisioning target to run a callback before
+ * the metadata are committed.
+ */
+ dm_pool_pre_commit_fn pre_commit_fn;
+ void *pre_commit_context;
+
+ /*
+ * We reserve a section of the metadata for commit overhead.
+ * All reported space does *not* include this.
+ */
+ dm_block_t metadata_reserve;
+
+ /*
+ * Set if a transaction has to be aborted but the attempt to roll back
+ * to the previous (good) transaction failed. The only pool metadata
+ * operation possible in this state is the closing of the device.
+ */
+ bool fail_io:1;
+
+ /*
+ * Set once a thin-pool has been accessed through one of the interfaces
+ * that imply the pool is in-service (e.g. thin devices created/deleted,
+ * thin-pool message, metadata snapshots, etc).
+ */
+ bool in_service:1;
+
+ /*
+ * Reading the space map roots can fail, so we read it into these
+ * buffers before the superblock is locked and updated.
+ */
+ __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
+ __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
+};
+
+struct dm_thin_device {
+ struct list_head list;
+ struct dm_pool_metadata *pmd;
+ dm_thin_id id;
+
+ int open_count;
+ bool changed:1;
+ bool aborted_with_changes:1;
+ uint64_t mapped_blocks;
+ uint64_t transaction_id;
+ uint32_t creation_time;
+ uint32_t snapshotted_time;
+};
+
+/*----------------------------------------------------------------
+ * superblock validator
+ *--------------------------------------------------------------*/
+
+#define SUPERBLOCK_CSUM_XOR 160774
+
+static void sb_prepare_for_write(struct dm_block_validator *v,
+ struct dm_block *b,
+ size_t block_size)
+{
+ struct thin_disk_superblock *disk_super = dm_block_data(b);
+
+ disk_super->blocknr = cpu_to_le64(dm_block_location(b));
+ disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
+ block_size - sizeof(__le32),
+ SUPERBLOCK_CSUM_XOR));
+}
+
+static int sb_check(struct dm_block_validator *v,
+ struct dm_block *b,
+ size_t block_size)
+{
+ struct thin_disk_superblock *disk_super = dm_block_data(b);
+ __le32 csum_le;
+
+ if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
+ DMERR("sb_check failed: blocknr %llu: wanted %llu",
+ le64_to_cpu(disk_super->blocknr),
+ (unsigned long long)dm_block_location(b));
+ return -ENOTBLK;
+ }
+
+ if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
+ DMERR("sb_check failed: magic %llu: wanted %llu",
+ le64_to_cpu(disk_super->magic),
+ (unsigned long long)THIN_SUPERBLOCK_MAGIC);
+ return -EILSEQ;
+ }
+
+ csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
+ block_size - sizeof(__le32),
+ SUPERBLOCK_CSUM_XOR));
+ if (csum_le != disk_super->csum) {
+ DMERR("sb_check failed: csum %u: wanted %u",
+ le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
+ return -EILSEQ;
+ }
+
+ return 0;
+}
+
+static struct dm_block_validator sb_validator = {
+ .name = "superblock",
+ .prepare_for_write = sb_prepare_for_write,
+ .check = sb_check
+};
+
+/*----------------------------------------------------------------
+ * Methods for the btree value types
+ *--------------------------------------------------------------*/
+
+static uint64_t pack_block_time(dm_block_t b, uint32_t t)
+{
+ return (b << 24) | t;
+}
+
+static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
+{
+ *b = v >> 24;
+ *t = v & ((1 << 24) - 1);
+}
+
+/*
+ * It's more efficient to call dm_sm_{inc,dec}_blocks as few times as
+ * possible. 'with_runs' reads contiguous runs of blocks, and calls the
+ * given sm function.
+ */
+typedef int (*run_fn)(struct dm_space_map *, dm_block_t, dm_block_t);
+
+static void with_runs(struct dm_space_map *sm, const __le64 *value_le, unsigned int count, run_fn fn)
+{
+ uint64_t b, begin, end;
+ uint32_t t;
+ bool in_run = false;
+ unsigned int i;
+
+ for (i = 0; i < count; i++, value_le++) {
+ /* We know value_le is 8 byte aligned */
+ unpack_block_time(le64_to_cpu(*value_le), &b, &t);
+
+ if (in_run) {
+ if (b == end) {
+ end++;
+ } else {
+ fn(sm, begin, end);
+ begin = b;
+ end = b + 1;
+ }
+ } else {
+ in_run = true;
+ begin = b;
+ end = b + 1;
+ }
+ }
+
+ if (in_run)
+ fn(sm, begin, end);
+}
+
+static void data_block_inc(void *context, const void *value_le, unsigned int count)
+{
+ with_runs((struct dm_space_map *) context,
+ (const __le64 *) value_le, count, dm_sm_inc_blocks);
+}
+
+static void data_block_dec(void *context, const void *value_le, unsigned int count)
+{
+ with_runs((struct dm_space_map *) context,
+ (const __le64 *) value_le, count, dm_sm_dec_blocks);
+}
+
+static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
+{
+ __le64 v1_le, v2_le;
+ uint64_t b1, b2;
+ uint32_t t;
+
+ memcpy(&v1_le, value1_le, sizeof(v1_le));
+ memcpy(&v2_le, value2_le, sizeof(v2_le));
+ unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
+ unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
+
+ return b1 == b2;
+}
+
+static void subtree_inc(void *context, const void *value, unsigned int count)
+{
+ struct dm_btree_info *info = context;
+ const __le64 *root_le = value;
+ unsigned int i;
+
+ for (i = 0; i < count; i++, root_le++)
+ dm_tm_inc(info->tm, le64_to_cpu(*root_le));
+}
+
+static void subtree_dec(void *context, const void *value, unsigned int count)
+{
+ struct dm_btree_info *info = context;
+ const __le64 *root_le = value;
+ unsigned int i;
+
+ for (i = 0; i < count; i++, root_le++)
+ if (dm_btree_del(info, le64_to_cpu(*root_le)))
+ DMERR("btree delete failed");
+}
+
+static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
+{
+ __le64 v1_le, v2_le;
+ memcpy(&v1_le, value1_le, sizeof(v1_le));
+ memcpy(&v2_le, value2_le, sizeof(v2_le));
+
+ return v1_le == v2_le;
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Variant that is used for in-core only changes or code that
+ * shouldn't put the pool in service on its own (e.g. commit).
+ */
+static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
+ __acquires(pmd->root_lock)
+{
+ down_write(&pmd->root_lock);
+}
+
+static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
+{
+ pmd_write_lock_in_core(pmd);
+ if (unlikely(!pmd->in_service))
+ pmd->in_service = true;
+}
+
+static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
+ __releases(pmd->root_lock)
+{
+ up_write(&pmd->root_lock);
+}
+
+/*----------------------------------------------------------------*/
+
+static int superblock_lock_zero(struct dm_pool_metadata *pmd,
+ struct dm_block **sblock)
+{
+ return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
+ &sb_validator, sblock);
+}
+
+static int superblock_lock(struct dm_pool_metadata *pmd,
+ struct dm_block **sblock)
+{
+ return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
+ &sb_validator, sblock);
+}
+
+static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
+{
+ int r;
+ unsigned int i;
+ struct dm_block *b;
+ __le64 *data_le, zero = cpu_to_le64(0);
+ unsigned int block_size = dm_bm_block_size(bm) / sizeof(__le64);
+
+ /*
+ * We can't use a validator here - it may be all zeroes.
+ */
+ r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
+ if (r)
+ return r;
+
+ data_le = dm_block_data(b);
+ *result = 1;
+ for (i = 0; i < block_size; i++) {
+ if (data_le[i] != zero) {
+ *result = 0;
+ break;
+ }
+ }
+
+ dm_bm_unlock(b);
+
+ return 0;
+}
+
+static void __setup_btree_details(struct dm_pool_metadata *pmd)
+{
+ pmd->info.tm = pmd->tm;
+ pmd->info.levels = 2;
+ pmd->info.value_type.context = pmd->data_sm;
+ pmd->info.value_type.size = sizeof(__le64);
+ pmd->info.value_type.inc = data_block_inc;
+ pmd->info.value_type.dec = data_block_dec;
+ pmd->info.value_type.equal = data_block_equal;
+
+ memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
+ pmd->nb_info.tm = pmd->nb_tm;
+
+ pmd->tl_info.tm = pmd->tm;
+ pmd->tl_info.levels = 1;
+ pmd->tl_info.value_type.context = &pmd->bl_info;
+ pmd->tl_info.value_type.size = sizeof(__le64);
+ pmd->tl_info.value_type.inc = subtree_inc;
+ pmd->tl_info.value_type.dec = subtree_dec;
+ pmd->tl_info.value_type.equal = subtree_equal;
+
+ pmd->bl_info.tm = pmd->tm;
+ pmd->bl_info.levels = 1;
+ pmd->bl_info.value_type.context = pmd->data_sm;
+ pmd->bl_info.value_type.size = sizeof(__le64);
+ pmd->bl_info.value_type.inc = data_block_inc;
+ pmd->bl_info.value_type.dec = data_block_dec;
+ pmd->bl_info.value_type.equal = data_block_equal;
+
+ pmd->details_info.tm = pmd->tm;
+ pmd->details_info.levels = 1;
+ pmd->details_info.value_type.context = NULL;
+ pmd->details_info.value_type.size = sizeof(struct disk_device_details);
+ pmd->details_info.value_type.inc = NULL;
+ pmd->details_info.value_type.dec = NULL;
+ pmd->details_info.value_type.equal = NULL;
+}
+
+static int save_sm_roots(struct dm_pool_metadata *pmd)
+{
+ int r;
+ size_t len;
+
+ r = dm_sm_root_size(pmd->metadata_sm, &len);
+ if (r < 0)
+ return r;
+
+ r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
+ if (r < 0)
+ return r;
+
+ r = dm_sm_root_size(pmd->data_sm, &len);
+ if (r < 0)
+ return r;
+
+ return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
+}
+
+static void copy_sm_roots(struct dm_pool_metadata *pmd,
+ struct thin_disk_superblock *disk)
+{
+ memcpy(&disk->metadata_space_map_root,
+ &pmd->metadata_space_map_root,
+ sizeof(pmd->metadata_space_map_root));
+
+ memcpy(&disk->data_space_map_root,
+ &pmd->data_space_map_root,
+ sizeof(pmd->data_space_map_root));
+}
+
+static int __write_initial_superblock(struct dm_pool_metadata *pmd)
+{
+ int r;
+ struct dm_block *sblock;
+ struct thin_disk_superblock *disk_super;
+ sector_t bdev_size = bdev_nr_sectors(pmd->bdev);
+
+ if (bdev_size > THIN_METADATA_MAX_SECTORS)
+ bdev_size = THIN_METADATA_MAX_SECTORS;
+
+ r = dm_sm_commit(pmd->data_sm);
+ if (r < 0)
+ return r;
+
+ r = dm_tm_pre_commit(pmd->tm);
+ if (r < 0)
+ return r;
+
+ r = save_sm_roots(pmd);
+ if (r < 0)
+ return r;
+
+ r = superblock_lock_zero(pmd, &sblock);
+ if (r)
+ return r;
+
+ disk_super = dm_block_data(sblock);
+ disk_super->flags = 0;
+ memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
+ disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
+ disk_super->version = cpu_to_le32(THIN_VERSION);
+ disk_super->time = 0;
+ disk_super->trans_id = 0;
+ disk_super->held_root = 0;
+
+ copy_sm_roots(pmd, disk_super);
+
+ disk_super->data_mapping_root = cpu_to_le64(pmd->root);
+ disk_super->device_details_root = cpu_to_le64(pmd->details_root);
+ disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
+ disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
+ disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
+
+ return dm_tm_commit(pmd->tm, sblock);
+}
+
+static int __format_metadata(struct dm_pool_metadata *pmd)
+{
+ int r;
+
+ r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
+ &pmd->tm, &pmd->metadata_sm);
+ if (r < 0) {
+ pmd->tm = NULL;
+ pmd->metadata_sm = NULL;
+ DMERR("tm_create_with_sm failed");
+ return r;
+ }
+
+ pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
+ if (IS_ERR(pmd->data_sm)) {
+ DMERR("sm_disk_create failed");
+ r = PTR_ERR(pmd->data_sm);
+ pmd->data_sm = NULL;
+ goto bad_cleanup_tm;
+ }
+
+ pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
+ if (!pmd->nb_tm) {
+ DMERR("could not create non-blocking clone tm");
+ r = -ENOMEM;
+ goto bad_cleanup_data_sm;
+ }
+
+ __setup_btree_details(pmd);
+
+ r = dm_btree_empty(&pmd->info, &pmd->root);
+ if (r < 0)
+ goto bad_cleanup_nb_tm;
+
+ r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
+ if (r < 0) {
+ DMERR("couldn't create devices root");
+ goto bad_cleanup_nb_tm;
+ }
+
+ r = __write_initial_superblock(pmd);
+ if (r)
+ goto bad_cleanup_nb_tm;
+
+ return 0;
+
+bad_cleanup_nb_tm:
+ dm_tm_destroy(pmd->nb_tm);
+ pmd->nb_tm = NULL;
+bad_cleanup_data_sm:
+ dm_sm_destroy(pmd->data_sm);
+ pmd->data_sm = NULL;
+bad_cleanup_tm:
+ dm_tm_destroy(pmd->tm);
+ pmd->tm = NULL;
+ dm_sm_destroy(pmd->metadata_sm);
+ pmd->metadata_sm = NULL;
+
+ return r;
+}
+
+static int __check_incompat_features(struct thin_disk_superblock *disk_super,
+ struct dm_pool_metadata *pmd)
+{
+ uint32_t features;
+
+ features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
+ if (features) {
+ DMERR("could not access metadata due to unsupported optional features (%lx).",
+ (unsigned long)features);
+ return -EINVAL;
+ }
+
+ /*
+ * Check for read-only metadata to skip the following RDWR checks.
+ */
+ if (bdev_read_only(pmd->bdev))
+ return 0;
+
+ features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
+ if (features) {
+ DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
+ (unsigned long)features);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int __open_metadata(struct dm_pool_metadata *pmd)
+{
+ int r;
+ struct dm_block *sblock;
+ struct thin_disk_superblock *disk_super;
+
+ r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
+ &sb_validator, &sblock);
+ if (r < 0) {
+ DMERR("couldn't read superblock");
+ return r;
+ }
+
+ disk_super = dm_block_data(sblock);
+
+ /* Verify the data block size hasn't changed */
+ if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
+ DMERR("changing the data block size (from %u to %llu) is not supported",
+ le32_to_cpu(disk_super->data_block_size),
+ (unsigned long long)pmd->data_block_size);
+ r = -EINVAL;
+ goto bad_unlock_sblock;
+ }
+
+ r = __check_incompat_features(disk_super, pmd);
+ if (r < 0)
+ goto bad_unlock_sblock;
+
+ r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
+ disk_super->metadata_space_map_root,
+ sizeof(disk_super->metadata_space_map_root),
+ &pmd->tm, &pmd->metadata_sm);
+ if (r < 0) {
+ pmd->tm = NULL;
+ pmd->metadata_sm = NULL;
+ DMERR("tm_open_with_sm failed");
+ goto bad_unlock_sblock;
+ }
+
+ pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
+ sizeof(disk_super->data_space_map_root));
+ if (IS_ERR(pmd->data_sm)) {
+ DMERR("sm_disk_open failed");
+ r = PTR_ERR(pmd->data_sm);
+ pmd->data_sm = NULL;
+ goto bad_cleanup_tm;
+ }
+
+ pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
+ if (!pmd->nb_tm) {
+ DMERR("could not create non-blocking clone tm");
+ r = -ENOMEM;
+ goto bad_cleanup_data_sm;
+ }
+
+ /*
+ * For pool metadata opening process, root setting is redundant
+ * because it will be set again in __begin_transaction(). But dm
+ * pool aborting process really needs to get last transaction's
+ * root to avoid accessing broken btree.
+ */
+ pmd->root = le64_to_cpu(disk_super->data_mapping_root);
+ pmd->details_root = le64_to_cpu(disk_super->device_details_root);
+
+ __setup_btree_details(pmd);
+ dm_bm_unlock(sblock);
+
+ return 0;
+
+bad_cleanup_data_sm:
+ dm_sm_destroy(pmd->data_sm);
+ pmd->data_sm = NULL;
+bad_cleanup_tm:
+ dm_tm_destroy(pmd->tm);
+ pmd->tm = NULL;
+ dm_sm_destroy(pmd->metadata_sm);
+ pmd->metadata_sm = NULL;
+bad_unlock_sblock:
+ dm_bm_unlock(sblock);
+
+ return r;
+}
+
+static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
+{
+ int r, unformatted;
+
+ r = __superblock_all_zeroes(pmd->bm, &unformatted);
+ if (r)
+ return r;
+
+ if (unformatted)
+ return format_device ? __format_metadata(pmd) : -EPERM;
+
+ return __open_metadata(pmd);
+}
+
+static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
+{
+ int r;
+
+ pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
+ THIN_MAX_CONCURRENT_LOCKS);
+ if (IS_ERR(pmd->bm)) {
+ DMERR("could not create block manager");
+ r = PTR_ERR(pmd->bm);
+ pmd->bm = NULL;
+ return r;
+ }
+
+ r = __open_or_format_metadata(pmd, format_device);
+ if (r) {
+ dm_block_manager_destroy(pmd->bm);
+ pmd->bm = NULL;
+ }
+
+ return r;
+}
+
+static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd,
+ bool destroy_bm)
+{
+ dm_sm_destroy(pmd->data_sm);
+ pmd->data_sm = NULL;
+ dm_sm_destroy(pmd->metadata_sm);
+ pmd->metadata_sm = NULL;
+ dm_tm_destroy(pmd->nb_tm);
+ pmd->nb_tm = NULL;
+ dm_tm_destroy(pmd->tm);
+ pmd->tm = NULL;
+ if (destroy_bm)
+ dm_block_manager_destroy(pmd->bm);
+}
+
+static int __begin_transaction(struct dm_pool_metadata *pmd)
+{
+ int r;
+ struct thin_disk_superblock *disk_super;
+ struct dm_block *sblock;
+
+ /*
+ * We re-read the superblock every time. Shouldn't need to do this
+ * really.
+ */
+ r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
+ &sb_validator, &sblock);
+ if (r)
+ return r;
+
+ disk_super = dm_block_data(sblock);
+ pmd->time = le32_to_cpu(disk_super->time);
+ pmd->root = le64_to_cpu(disk_super->data_mapping_root);
+ pmd->details_root = le64_to_cpu(disk_super->device_details_root);
+ pmd->trans_id = le64_to_cpu(disk_super->trans_id);
+ pmd->flags = le32_to_cpu(disk_super->flags);
+ pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
+
+ dm_bm_unlock(sblock);
+ return 0;
+}
+
+static int __write_changed_details(struct dm_pool_metadata *pmd)
+{
+ int r;
+ struct dm_thin_device *td, *tmp;
+ struct disk_device_details details;
+ uint64_t key;
+
+ list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
+ if (!td->changed)
+ continue;
+
+ key = td->id;
+
+ details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
+ details.transaction_id = cpu_to_le64(td->transaction_id);
+ details.creation_time = cpu_to_le32(td->creation_time);
+ details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
+ __dm_bless_for_disk(&details);
+
+ r = dm_btree_insert(&pmd->details_info, pmd->details_root,
+ &key, &details, &pmd->details_root);
+ if (r)
+ return r;
+
+ if (td->open_count)
+ td->changed = false;
+ else {
+ list_del(&td->list);
+ kfree(td);
+ }
+ }
+
+ return 0;
+}
+
+static int __commit_transaction(struct dm_pool_metadata *pmd)
+{
+ int r;
+ struct thin_disk_superblock *disk_super;
+ struct dm_block *sblock;
+
+ /*
+ * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
+ */
+ BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
+ BUG_ON(!rwsem_is_locked(&pmd->root_lock));
+
+ if (unlikely(!pmd->in_service))
+ return 0;
+
+ if (pmd->pre_commit_fn) {
+ r = pmd->pre_commit_fn(pmd->pre_commit_context);
+ if (r < 0) {
+ DMERR("pre-commit callback failed");
+ return r;
+ }
+ }
+
+ r = __write_changed_details(pmd);
+ if (r < 0)
+ return r;
+
+ r = dm_sm_commit(pmd->data_sm);
+ if (r < 0)
+ return r;
+
+ r = dm_tm_pre_commit(pmd->tm);
+ if (r < 0)
+ return r;
+
+ r = save_sm_roots(pmd);
+ if (r < 0)
+ return r;
+
+ r = superblock_lock(pmd, &sblock);
+ if (r)
+ return r;
+
+ disk_super = dm_block_data(sblock);
+ disk_super->time = cpu_to_le32(pmd->time);
+ disk_super->data_mapping_root = cpu_to_le64(pmd->root);
+ disk_super->device_details_root = cpu_to_le64(pmd->details_root);
+ disk_super->trans_id = cpu_to_le64(pmd->trans_id);
+ disk_super->flags = cpu_to_le32(pmd->flags);
+
+ copy_sm_roots(pmd, disk_super);
+
+ return dm_tm_commit(pmd->tm, sblock);
+}
+
+static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
+{
+ int r;
+ dm_block_t total;
+ dm_block_t max_blocks = 4096; /* 16M */
+
+ r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
+ if (r) {
+ DMERR("could not get size of metadata device");
+ pmd->metadata_reserve = max_blocks;
+ } else
+ pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
+}
+
+struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
+ sector_t data_block_size,
+ bool format_device)
+{
+ int r;
+ struct dm_pool_metadata *pmd;
+
+ pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
+ if (!pmd) {
+ DMERR("could not allocate metadata struct");
+ return ERR_PTR(-ENOMEM);
+ }
+
+ init_rwsem(&pmd->root_lock);
+ pmd->time = 0;
+ INIT_LIST_HEAD(&pmd->thin_devices);
+ pmd->fail_io = false;
+ pmd->in_service = false;
+ pmd->bdev = bdev;
+ pmd->data_block_size = data_block_size;
+ pmd->pre_commit_fn = NULL;
+ pmd->pre_commit_context = NULL;
+
+ r = __create_persistent_data_objects(pmd, format_device);
+ if (r) {
+ kfree(pmd);
+ return ERR_PTR(r);
+ }
+
+ r = __begin_transaction(pmd);
+ if (r < 0) {
+ if (dm_pool_metadata_close(pmd) < 0)
+ DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
+ return ERR_PTR(r);
+ }
+
+ __set_metadata_reserve(pmd);
+
+ return pmd;
+}
+
+int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
+{
+ int r;
+ unsigned int open_devices = 0;
+ struct dm_thin_device *td, *tmp;
+
+ down_read(&pmd->root_lock);
+ list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
+ if (td->open_count)
+ open_devices++;
+ else {
+ list_del(&td->list);
+ kfree(td);
+ }
+ }
+ up_read(&pmd->root_lock);
+
+ if (open_devices) {
+ DMERR("attempt to close pmd when %u device(s) are still open",
+ open_devices);
+ return -EBUSY;
+ }
+
+ pmd_write_lock_in_core(pmd);
+ if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
+ r = __commit_transaction(pmd);
+ if (r < 0)
+ DMWARN("%s: __commit_transaction() failed, error = %d",
+ __func__, r);
+ }
+ pmd_write_unlock(pmd);
+ __destroy_persistent_data_objects(pmd, true);
+
+ kfree(pmd);
+ return 0;
+}
+
+/*
+ * __open_device: Returns @td corresponding to device with id @dev,
+ * creating it if @create is set and incrementing @td->open_count.
+ * On failure, @td is undefined.
+ */
+static int __open_device(struct dm_pool_metadata *pmd,
+ dm_thin_id dev, int create,
+ struct dm_thin_device **td)
+{
+ int r, changed = 0;
+ struct dm_thin_device *td2;
+ uint64_t key = dev;
+ struct disk_device_details details_le;
+
+ /*
+ * If the device is already open, return it.
+ */
+ list_for_each_entry(td2, &pmd->thin_devices, list)
+ if (td2->id == dev) {
+ /*
+ * May not create an already-open device.
+ */
+ if (create)
+ return -EEXIST;
+
+ td2->open_count++;
+ *td = td2;
+ return 0;
+ }
+
+ /*
+ * Check the device exists.
+ */
+ r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
+ &key, &details_le);
+ if (r) {
+ if (r != -ENODATA || !create)
+ return r;
+
+ /*
+ * Create new device.
+ */
+ changed = 1;
+ details_le.mapped_blocks = 0;
+ details_le.transaction_id = cpu_to_le64(pmd->trans_id);
+ details_le.creation_time = cpu_to_le32(pmd->time);
+ details_le.snapshotted_time = cpu_to_le32(pmd->time);
+ }
+
+ *td = kmalloc(sizeof(**td), GFP_NOIO);
+ if (!*td)
+ return -ENOMEM;
+
+ (*td)->pmd = pmd;
+ (*td)->id = dev;
+ (*td)->open_count = 1;
+ (*td)->changed = changed;
+ (*td)->aborted_with_changes = false;
+ (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
+ (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
+ (*td)->creation_time = le32_to_cpu(details_le.creation_time);
+ (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
+
+ list_add(&(*td)->list, &pmd->thin_devices);
+
+ return 0;
+}
+
+static void __close_device(struct dm_thin_device *td)
+{
+ --td->open_count;
+}
+
+static int __create_thin(struct dm_pool_metadata *pmd,
+ dm_thin_id dev)
+{
+ int r;
+ dm_block_t dev_root;
+ uint64_t key = dev;
+ struct dm_thin_device *td;
+ __le64 value;
+
+ r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
+ &key, NULL);
+ if (!r)
+ return -EEXIST;
+
+ /*
+ * Create an empty btree for the mappings.
+ */
+ r = dm_btree_empty(&pmd->bl_info, &dev_root);
+ if (r)
+ return r;
+
+ /*
+ * Insert it into the main mapping tree.
+ */
+ value = cpu_to_le64(dev_root);
+ __dm_bless_for_disk(&value);
+ r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
+ if (r) {
+ dm_btree_del(&pmd->bl_info, dev_root);
+ return r;
+ }
+
+ r = __open_device(pmd, dev, 1, &td);
+ if (r) {
+ dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
+ dm_btree_del(&pmd->bl_info, dev_root);
+ return r;
+ }
+ __close_device(td);
+
+ return r;
+}
+
+int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
+{
+ int r = -EINVAL;
+
+ pmd_write_lock(pmd);
+ if (!pmd->fail_io)
+ r = __create_thin(pmd, dev);
+ pmd_write_unlock(pmd);
+
+ return r;
+}
+
+static int __set_snapshot_details(struct dm_pool_metadata *pmd,
+ struct dm_thin_device *snap,
+ dm_thin_id origin, uint32_t time)
+{
+ int r;
+ struct dm_thin_device *td;
+
+ r = __open_device(pmd, origin, 0, &td);
+ if (r)
+ return r;
+
+ td->changed = true;
+ td->snapshotted_time = time;
+
+ snap->mapped_blocks = td->mapped_blocks;
+ snap->snapshotted_time = time;
+ __close_device(td);
+
+ return 0;
+}
+
+static int __create_snap(struct dm_pool_metadata *pmd,
+ dm_thin_id dev, dm_thin_id origin)
+{
+ int r;
+ dm_block_t origin_root;
+ uint64_t key = origin, dev_key = dev;
+ struct dm_thin_device *td;
+ __le64 value;
+
+ /* check this device is unused */
+ r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
+ &dev_key, NULL);
+ if (!r)
+ return -EEXIST;
+
+ /* find the mapping tree for the origin */
+ r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
+ if (r)
+ return r;
+ origin_root = le64_to_cpu(value);
+
+ /* clone the origin, an inc will do */
+ dm_tm_inc(pmd->tm, origin_root);
+
+ /* insert into the main mapping tree */
+ value = cpu_to_le64(origin_root);
+ __dm_bless_for_disk(&value);
+ key = dev;
+ r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
+ if (r) {
+ dm_tm_dec(pmd->tm, origin_root);
+ return r;
+ }
+
+ pmd->time++;
+
+ r = __open_device(pmd, dev, 1, &td);
+ if (r)
+ goto bad;
+
+ r = __set_snapshot_details(pmd, td, origin, pmd->time);
+ __close_device(td);
+
+ if (r)
+ goto bad;
+
+ return 0;
+
+bad:
+ dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
+ dm_btree_remove(&pmd->details_info, pmd->details_root,
+ &key, &pmd->details_root);
+ return r;
+}
+
+int dm_pool_create_snap(struct dm_pool_metadata *pmd,
+ dm_thin_id dev,
+ dm_thin_id origin)
+{
+ int r = -EINVAL;
+
+ pmd_write_lock(pmd);
+ if (!pmd->fail_io)
+ r = __create_snap(pmd, dev, origin);
+ pmd_write_unlock(pmd);
+
+ return r;
+}
+
+static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
+{
+ int r;
+ uint64_t key = dev;
+ struct dm_thin_device *td;
+
+ /* TODO: failure should mark the transaction invalid */
+ r = __open_device(pmd, dev, 0, &td);
+ if (r)
+ return r;
+
+ if (td->open_count > 1) {
+ __close_device(td);
+ return -EBUSY;
+ }
+
+ list_del(&td->list);
+ kfree(td);
+ r = dm_btree_remove(&pmd->details_info, pmd->details_root,
+ &key, &pmd->details_root);
+ if (r)
+ return r;
+
+ r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
+ if (r)
+ return r;
+
+ return 0;
+}
+
+int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
+ dm_thin_id dev)
+{
+ int r = -EINVAL;
+
+ pmd_write_lock(pmd);
+ if (!pmd->fail_io)
+ r = __delete_device(pmd, dev);
+ pmd_write_unlock(pmd);
+
+ return r;
+}
+
+int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
+ uint64_t current_id,
+ uint64_t new_id)
+{
+ int r = -EINVAL;
+
+ pmd_write_lock(pmd);
+
+ if (pmd->fail_io)
+ goto out;
+
+ if (pmd->trans_id != current_id) {
+ DMERR("mismatched transaction id");
+ goto out;
+ }
+
+ pmd->trans_id = new_id;
+ r = 0;
+
+out:
+ pmd_write_unlock(pmd);
+
+ return r;
+}
+
+int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
+ uint64_t *result)
+{
+ int r = -EINVAL;
+
+ down_read(&pmd->root_lock);
+ if (!pmd->fail_io) {
+ *result = pmd->trans_id;
+ r = 0;
+ }
+ up_read(&pmd->root_lock);
+
+ return r;
+}
+
+static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
+{
+ int r, inc;
+ struct thin_disk_superblock *disk_super;
+ struct dm_block *copy, *sblock;
+ dm_block_t held_root;
+
+ /*
+ * We commit to ensure the btree roots which we increment in a
+ * moment are up to date.
+ */
+ r = __commit_transaction(pmd);
+ if (r < 0) {
+ DMWARN("%s: __commit_transaction() failed, error = %d",
+ __func__, r);
+ return r;
+ }
+
+ /*
+ * Copy the superblock.
+ */
+ dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
+ r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
+ &sb_validator, &copy, &inc);
+ if (r)
+ return r;
+
+ BUG_ON(!inc);
+
+ held_root = dm_block_location(copy);
+ disk_super = dm_block_data(copy);
+
+ if (le64_to_cpu(disk_super->held_root)) {
+ DMWARN("Pool metadata snapshot already exists: release this before taking another.");
+
+ dm_tm_dec(pmd->tm, held_root);
+ dm_tm_unlock(pmd->tm, copy);
+ return -EBUSY;
+ }
+
+ /*
+ * Wipe the spacemap since we're not publishing this.
+ */
+ memset(&disk_super->data_space_map_root, 0,
+ sizeof(disk_super->data_space_map_root));
+ memset(&disk_super->metadata_space_map_root, 0,
+ sizeof(disk_super->metadata_space_map_root));
+
+ /*
+ * Increment the data structures that need to be preserved.
+ */
+ dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
+ dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
+ dm_tm_unlock(pmd->tm, copy);
+
+ /*
+ * Write the held root into the superblock.
+ */
+ r = superblock_lock(pmd, &sblock);
+ if (r) {
+ dm_tm_dec(pmd->tm, held_root);
+ return r;
+ }
+
+ disk_super = dm_block_data(sblock);
+ disk_super->held_root = cpu_to_le64(held_root);
+ dm_bm_unlock(sblock);
+ return 0;
+}
+
+int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
+{
+ int r = -EINVAL;
+
+ pmd_write_lock(pmd);
+ if (!pmd->fail_io)
+ r = __reserve_metadata_snap(pmd);
+ pmd_write_unlock(pmd);
+
+ return r;
+}
+
+static int __release_metadata_snap(struct dm_pool_metadata *pmd)
+{
+ int r;
+ struct thin_disk_superblock *disk_super;
+ struct dm_block *sblock, *copy;
+ dm_block_t held_root;
+
+ r = superblock_lock(pmd, &sblock);
+ if (r)
+ return r;
+
+ disk_super = dm_block_data(sblock);
+ held_root = le64_to_cpu(disk_super->held_root);
+ disk_super->held_root = cpu_to_le64(0);
+
+ dm_bm_unlock(sblock);
+
+ if (!held_root) {
+ DMWARN("No pool metadata snapshot found: nothing to release.");
+ return -EINVAL;
+ }
+
+ r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
+ if (r)
+ return r;
+
+ disk_super = dm_block_data(copy);
+ dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
+ dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
+ dm_sm_dec_block(pmd->metadata_sm, held_root);
+
+ dm_tm_unlock(pmd->tm, copy);
+
+ return 0;
+}
+
+int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
+{
+ int r = -EINVAL;
+
+ pmd_write_lock(pmd);
+ if (!pmd->fail_io)
+ r = __release_metadata_snap(pmd);
+ pmd_write_unlock(pmd);
+
+ return r;
+}
+
+static int __get_metadata_snap(struct dm_pool_metadata *pmd,
+ dm_block_t *result)
+{
+ int r;
+ struct thin_disk_superblock *disk_super;
+ struct dm_block *sblock;
+
+ r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
+ &sb_validator, &sblock);
+ if (r)
+ return r;
+
+ disk_super = dm_block_data(sblock);
+ *result = le64_to_cpu(disk_super->held_root);
+
+ dm_bm_unlock(sblock);
+
+ return 0;
+}
+
+int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
+ dm_block_t *result)
+{
+ int r = -EINVAL;
+
+ down_read(&pmd->root_lock);
+ if (!pmd->fail_io)
+ r = __get_metadata_snap(pmd, result);
+ up_read(&pmd->root_lock);
+
+ return r;
+}
+
+int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
+ struct dm_thin_device **td)
+{
+ int r = -EINVAL;
+
+ pmd_write_lock_in_core(pmd);
+ if (!pmd->fail_io)
+ r = __open_device(pmd, dev, 0, td);
+ pmd_write_unlock(pmd);
+
+ return r;
+}
+
+int dm_pool_close_thin_device(struct dm_thin_device *td)
+{
+ pmd_write_lock_in_core(td->pmd);
+ __close_device(td);
+ pmd_write_unlock(td->pmd);
+
+ return 0;
+}
+
+dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
+{
+ return td->id;
+}
+
+/*
+ * Check whether @time (of block creation) is older than @td's last snapshot.
+ * If so then the associated block is shared with the last snapshot device.
+ * Any block on a device created *after* the device last got snapshotted is
+ * necessarily not shared.
+ */
+static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
+{
+ return td->snapshotted_time > time;
+}
+
+static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
+ struct dm_thin_lookup_result *result)
+{
+ uint64_t block_time = 0;
+ dm_block_t exception_block;
+ uint32_t exception_time;
+
+ block_time = le64_to_cpu(value);
+ unpack_block_time(block_time, &exception_block, &exception_time);
+ result->block = exception_block;
+ result->shared = __snapshotted_since(td, exception_time);
+}
+
+static int __find_block(struct dm_thin_device *td, dm_block_t block,
+ int can_issue_io, struct dm_thin_lookup_result *result)
+{
+ int r;
+ __le64 value;
+ struct dm_pool_metadata *pmd = td->pmd;
+ dm_block_t keys[2] = { td->id, block };
+ struct dm_btree_info *info;
+
+ if (can_issue_io) {
+ info = &pmd->info;
+ } else
+ info = &pmd->nb_info;
+
+ r = dm_btree_lookup(info, pmd->root, keys, &value);
+ if (!r)
+ unpack_lookup_result(td, value, result);
+
+ return r;
+}
+
+int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
+ int can_issue_io, struct dm_thin_lookup_result *result)
+{
+ int r;
+ struct dm_pool_metadata *pmd = td->pmd;
+
+ down_read(&pmd->root_lock);
+ if (pmd->fail_io) {
+ up_read(&pmd->root_lock);
+ return -EINVAL;
+ }
+
+ r = __find_block(td, block, can_issue_io, result);
+
+ up_read(&pmd->root_lock);
+ return r;
+}
+
+static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
+ dm_block_t *vblock,
+ struct dm_thin_lookup_result *result)
+{
+ int r;
+ __le64 value;
+ struct dm_pool_metadata *pmd = td->pmd;
+ dm_block_t keys[2] = { td->id, block };
+
+ r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
+ if (!r)
+ unpack_lookup_result(td, value, result);
+
+ return r;
+}
+
+static int __find_mapped_range(struct dm_thin_device *td,
+ dm_block_t begin, dm_block_t end,
+ dm_block_t *thin_begin, dm_block_t *thin_end,
+ dm_block_t *pool_begin, bool *maybe_shared)
+{
+ int r;
+ dm_block_t pool_end;
+ struct dm_thin_lookup_result lookup;
+
+ if (end < begin)
+ return -ENODATA;
+
+ r = __find_next_mapped_block(td, begin, &begin, &lookup);
+ if (r)
+ return r;
+
+ if (begin >= end)
+ return -ENODATA;
+
+ *thin_begin = begin;
+ *pool_begin = lookup.block;
+ *maybe_shared = lookup.shared;
+
+ begin++;
+ pool_end = *pool_begin + 1;
+ while (begin != end) {
+ r = __find_block(td, begin, true, &lookup);
+ if (r) {
+ if (r == -ENODATA)
+ break;
+ else
+ return r;
+ }
+
+ if ((lookup.block != pool_end) ||
+ (lookup.shared != *maybe_shared))
+ break;
+
+ pool_end++;
+ begin++;
+ }
+
+ *thin_end = begin;
+ return 0;
+}
+
+int dm_thin_find_mapped_range(struct dm_thin_device *td,
+ dm_block_t begin, dm_block_t end,
+ dm_block_t *thin_begin, dm_block_t *thin_end,
+ dm_block_t *pool_begin, bool *maybe_shared)
+{
+ int r = -EINVAL;
+ struct dm_pool_metadata *pmd = td->pmd;
+
+ down_read(&pmd->root_lock);
+ if (!pmd->fail_io) {
+ r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
+ pool_begin, maybe_shared);
+ }
+ up_read(&pmd->root_lock);
+
+ return r;
+}
+
+static int __insert(struct dm_thin_device *td, dm_block_t block,
+ dm_block_t data_block)
+{
+ int r, inserted;
+ __le64 value;
+ struct dm_pool_metadata *pmd = td->pmd;
+ dm_block_t keys[2] = { td->id, block };
+
+ value = cpu_to_le64(pack_block_time(data_block, pmd->time));
+ __dm_bless_for_disk(&value);
+
+ r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
+ &pmd->root, &inserted);
+ if (r)
+ return r;
+
+ td->changed = true;
+ if (inserted)
+ td->mapped_blocks++;
+
+ return 0;
+}
+
+int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
+ dm_block_t data_block)
+{
+ int r = -EINVAL;
+
+ pmd_write_lock(td->pmd);
+ if (!td->pmd->fail_io)
+ r = __insert(td, block, data_block);
+ pmd_write_unlock(td->pmd);
+
+ return r;
+}
+
+static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
+{
+ int r;
+ unsigned int count, total_count = 0;
+ struct dm_pool_metadata *pmd = td->pmd;
+ dm_block_t keys[1] = { td->id };
+ __le64 value;
+ dm_block_t mapping_root;
+
+ /*
+ * Find the mapping tree
+ */
+ r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
+ if (r)
+ return r;
+
+ /*
+ * Remove from the mapping tree, taking care to inc the
+ * ref count so it doesn't get deleted.
+ */
+ mapping_root = le64_to_cpu(value);
+ dm_tm_inc(pmd->tm, mapping_root);
+ r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
+ if (r)
+ return r;
+
+ /*
+ * Remove leaves stops at the first unmapped entry, so we have to
+ * loop round finding mapped ranges.
+ */
+ while (begin < end) {
+ r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
+ if (r == -ENODATA)
+ break;
+
+ if (r)
+ return r;
+
+ if (begin >= end)
+ break;
+
+ r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
+ if (r)
+ return r;
+
+ total_count += count;
+ }
+
+ td->mapped_blocks -= total_count;
+ td->changed = true;
+
+ /*
+ * Reinsert the mapping tree.
+ */
+ value = cpu_to_le64(mapping_root);
+ __dm_bless_for_disk(&value);
+ return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
+}
+
+int dm_thin_remove_range(struct dm_thin_device *td,
+ dm_block_t begin, dm_block_t end)
+{
+ int r = -EINVAL;
+
+ pmd_write_lock(td->pmd);
+ if (!td->pmd->fail_io)
+ r = __remove_range(td, begin, end);
+ pmd_write_unlock(td->pmd);
+
+ return r;
+}
+
+int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
+{
+ int r = -EINVAL;
+ uint32_t ref_count;
+
+ down_read(&pmd->root_lock);
+ if (!pmd->fail_io) {
+ r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
+ if (!r)
+ *result = (ref_count > 1);
+ }
+ up_read(&pmd->root_lock);
+
+ return r;
+}
+
+int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
+{
+ int r = -EINVAL;
+
+ pmd_write_lock(pmd);
+ if (!pmd->fail_io)
+ r = dm_sm_inc_blocks(pmd->data_sm, b, e);
+ pmd_write_unlock(pmd);
+
+ return r;
+}
+
+int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
+{
+ int r = -EINVAL;
+
+ pmd_write_lock(pmd);
+ if (!pmd->fail_io)
+ r = dm_sm_dec_blocks(pmd->data_sm, b, e);
+ pmd_write_unlock(pmd);
+
+ return r;
+}
+
+bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
+{
+ int r;
+
+ down_read(&td->pmd->root_lock);
+ r = td->changed;
+ up_read(&td->pmd->root_lock);
+
+ return r;
+}
+
+bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
+{
+ bool r = false;
+ struct dm_thin_device *td, *tmp;
+
+ down_read(&pmd->root_lock);
+ list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
+ if (td->changed) {
+ r = td->changed;
+ break;
+ }
+ }
+ up_read(&pmd->root_lock);
+
+ return r;
+}
+
+bool dm_thin_aborted_changes(struct dm_thin_device *td)
+{
+ bool r;
+
+ down_read(&td->pmd->root_lock);
+ r = td->aborted_with_changes;
+ up_read(&td->pmd->root_lock);
+
+ return r;
+}
+
+int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
+{
+ int r = -EINVAL;
+
+ pmd_write_lock(pmd);
+ if (!pmd->fail_io)
+ r = dm_sm_new_block(pmd->data_sm, result);
+ pmd_write_unlock(pmd);
+
+ return r;
+}
+
+int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
+{
+ int r = -EINVAL;
+
+ /*
+ * Care is taken to not have commit be what
+ * triggers putting the thin-pool in-service.
+ */
+ pmd_write_lock_in_core(pmd);
+ if (pmd->fail_io)
+ goto out;
+
+ r = __commit_transaction(pmd);
+ if (r < 0)
+ goto out;
+
+ /*
+ * Open the next transaction.
+ */
+ r = __begin_transaction(pmd);
+out:
+ pmd_write_unlock(pmd);
+ return r;
+}
+
+static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
+{
+ struct dm_thin_device *td;
+
+ list_for_each_entry(td, &pmd->thin_devices, list)
+ td->aborted_with_changes = td->changed;
+}
+
+int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
+{
+ int r = -EINVAL;
+
+ /* fail_io is double-checked with pmd->root_lock held below */
+ if (unlikely(pmd->fail_io))
+ return r;
+
+ pmd_write_lock(pmd);
+ if (pmd->fail_io) {
+ pmd_write_unlock(pmd);
+ return r;
+ }
+ __set_abort_with_changes_flags(pmd);
+
+ /* destroy data_sm/metadata_sm/nb_tm/tm */
+ __destroy_persistent_data_objects(pmd, false);
+
+ /* reset bm */
+ dm_block_manager_reset(pmd->bm);
+
+ /* rebuild data_sm/metadata_sm/nb_tm/tm */
+ r = __open_or_format_metadata(pmd, false);
+ if (r)
+ pmd->fail_io = true;
+ pmd_write_unlock(pmd);
+ return r;
+}
+
+int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
+{
+ int r = -EINVAL;
+
+ down_read(&pmd->root_lock);
+ if (!pmd->fail_io)
+ r = dm_sm_get_nr_free(pmd->data_sm, result);
+ up_read(&pmd->root_lock);
+
+ return r;
+}
+
+int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
+ dm_block_t *result)
+{
+ int r = -EINVAL;
+
+ down_read(&pmd->root_lock);
+ if (!pmd->fail_io)
+ r = dm_sm_get_nr_free(pmd->metadata_sm, result);
+
+ if (!r) {
+ if (*result < pmd->metadata_reserve)
+ *result = 0;
+ else
+ *result -= pmd->metadata_reserve;
+ }
+ up_read(&pmd->root_lock);
+
+ return r;
+}
+
+int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
+ dm_block_t *result)
+{
+ int r = -EINVAL;
+
+ down_read(&pmd->root_lock);
+ if (!pmd->fail_io)
+ r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
+ up_read(&pmd->root_lock);
+
+ return r;
+}
+
+int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
+{
+ int r = -EINVAL;
+
+ down_read(&pmd->root_lock);
+ if (!pmd->fail_io)
+ r = dm_sm_get_nr_blocks(pmd->data_sm, result);
+ up_read(&pmd->root_lock);
+
+ return r;
+}
+
+int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
+{
+ int r = -EINVAL;
+ struct dm_pool_metadata *pmd = td->pmd;
+
+ down_read(&pmd->root_lock);
+ if (!pmd->fail_io) {
+ *result = td->mapped_blocks;
+ r = 0;
+ }
+ up_read(&pmd->root_lock);
+
+ return r;
+}
+
+static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
+{
+ int r;
+ __le64 value_le;
+ dm_block_t thin_root;
+ struct dm_pool_metadata *pmd = td->pmd;
+
+ r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
+ if (r)
+ return r;
+
+ thin_root = le64_to_cpu(value_le);
+
+ return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
+}
+
+int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
+ dm_block_t *result)
+{
+ int r = -EINVAL;
+ struct dm_pool_metadata *pmd = td->pmd;
+
+ down_read(&pmd->root_lock);
+ if (!pmd->fail_io)
+ r = __highest_block(td, result);
+ up_read(&pmd->root_lock);
+
+ return r;
+}
+
+static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
+{
+ int r;
+ dm_block_t old_count;
+
+ r = dm_sm_get_nr_blocks(sm, &old_count);
+ if (r)
+ return r;
+
+ if (new_count == old_count)
+ return 0;
+
+ if (new_count < old_count) {
+ DMERR("cannot reduce size of space map");
+ return -EINVAL;
+ }
+
+ return dm_sm_extend(sm, new_count - old_count);
+}
+
+int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
+{
+ int r = -EINVAL;
+
+ pmd_write_lock(pmd);
+ if (!pmd->fail_io)
+ r = __resize_space_map(pmd->data_sm, new_count);
+ pmd_write_unlock(pmd);
+
+ return r;
+}
+
+int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
+{
+ int r = -EINVAL;
+
+ pmd_write_lock(pmd);
+ if (!pmd->fail_io) {
+ r = __resize_space_map(pmd->metadata_sm, new_count);
+ if (!r)
+ __set_metadata_reserve(pmd);
+ }
+ pmd_write_unlock(pmd);
+
+ return r;
+}
+
+void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
+{
+ pmd_write_lock_in_core(pmd);
+ dm_bm_set_read_only(pmd->bm);
+ pmd_write_unlock(pmd);
+}
+
+void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
+{
+ pmd_write_lock_in_core(pmd);
+ dm_bm_set_read_write(pmd->bm);
+ pmd_write_unlock(pmd);
+}
+
+int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
+ dm_block_t threshold,
+ dm_sm_threshold_fn fn,
+ void *context)
+{
+ int r = -EINVAL;
+
+ pmd_write_lock_in_core(pmd);
+ if (!pmd->fail_io) {
+ r = dm_sm_register_threshold_callback(pmd->metadata_sm,
+ threshold, fn, context);
+ }
+ pmd_write_unlock(pmd);
+
+ return r;
+}
+
+void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
+ dm_pool_pre_commit_fn fn,
+ void *context)
+{
+ pmd_write_lock_in_core(pmd);
+ pmd->pre_commit_fn = fn;
+ pmd->pre_commit_context = context;
+ pmd_write_unlock(pmd);
+}
+
+int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
+{
+ int r = -EINVAL;
+ struct dm_block *sblock;
+ struct thin_disk_superblock *disk_super;
+
+ pmd_write_lock(pmd);
+ if (pmd->fail_io)
+ goto out;
+
+ pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
+
+ r = superblock_lock(pmd, &sblock);
+ if (r) {
+ DMERR("couldn't lock superblock");
+ goto out;
+ }
+
+ disk_super = dm_block_data(sblock);
+ disk_super->flags = cpu_to_le32(pmd->flags);
+
+ dm_bm_unlock(sblock);
+out:
+ pmd_write_unlock(pmd);
+ return r;
+}
+
+bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
+{
+ bool needs_check;
+
+ down_read(&pmd->root_lock);
+ needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
+ up_read(&pmd->root_lock);
+
+ return needs_check;
+}
+
+void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
+{
+ down_read(&pmd->root_lock);
+ if (!pmd->fail_io)
+ dm_tm_issue_prefetches(pmd->tm);
+ up_read(&pmd->root_lock);
+}
diff --git a/drivers/md/dm-thin-metadata.h b/drivers/md/dm-thin-metadata.h
new file mode 100644
index 000000000..4d7a2caf2
--- /dev/null
+++ b/drivers/md/dm-thin-metadata.h
@@ -0,0 +1,241 @@
+/*
+ * Copyright (C) 2010-2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_THIN_METADATA_H
+#define DM_THIN_METADATA_H
+
+#include "persistent-data/dm-block-manager.h"
+#include "persistent-data/dm-space-map.h"
+#include "persistent-data/dm-space-map-metadata.h"
+
+#define THIN_METADATA_BLOCK_SIZE DM_SM_METADATA_BLOCK_SIZE
+
+/*
+ * The metadata device is currently limited in size.
+ */
+#define THIN_METADATA_MAX_SECTORS DM_SM_METADATA_MAX_SECTORS
+
+/*
+ * A metadata device larger than 16GB triggers a warning.
+ */
+#define THIN_METADATA_MAX_SECTORS_WARNING (16 * (1024 * 1024 * 1024 >> SECTOR_SHIFT))
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Thin metadata superblock flags.
+ */
+#define THIN_METADATA_NEEDS_CHECK_FLAG (1 << 0)
+
+struct dm_pool_metadata;
+struct dm_thin_device;
+
+/*
+ * Device identifier
+ */
+typedef uint64_t dm_thin_id;
+
+/*
+ * Reopens or creates a new, empty metadata volume.
+ */
+struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
+ sector_t data_block_size,
+ bool format_device);
+
+int dm_pool_metadata_close(struct dm_pool_metadata *pmd);
+
+/*
+ * Compat feature flags. Any incompat flags beyond the ones
+ * specified below will prevent use of the thin metadata.
+ */
+#define THIN_FEATURE_COMPAT_SUPP 0UL
+#define THIN_FEATURE_COMPAT_RO_SUPP 0UL
+#define THIN_FEATURE_INCOMPAT_SUPP 0UL
+
+/*
+ * Device creation/deletion.
+ */
+int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev);
+
+/*
+ * An internal snapshot.
+ *
+ * You can only snapshot a quiesced origin i.e. one that is either
+ * suspended or not instanced at all.
+ */
+int dm_pool_create_snap(struct dm_pool_metadata *pmd, dm_thin_id dev,
+ dm_thin_id origin);
+
+/*
+ * Deletes a virtual device from the metadata. It _is_ safe to call this
+ * when that device is open. Operations on that device will just start
+ * failing. You still need to call close() on the device.
+ */
+int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
+ dm_thin_id dev);
+
+/*
+ * Commits _all_ metadata changes: device creation, deletion, mapping
+ * updates.
+ */
+int dm_pool_commit_metadata(struct dm_pool_metadata *pmd);
+
+/*
+ * Discards all uncommitted changes. Rereads the superblock, rolling back
+ * to the last good transaction. Thin devices remain open.
+ * dm_thin_aborted_changes() tells you if they had uncommitted changes.
+ *
+ * If this call fails it's only useful to call dm_pool_metadata_close().
+ * All other methods will fail with -EINVAL.
+ */
+int dm_pool_abort_metadata(struct dm_pool_metadata *pmd);
+
+/*
+ * Set/get userspace transaction id.
+ */
+int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
+ uint64_t current_id,
+ uint64_t new_id);
+
+int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
+ uint64_t *result);
+
+/*
+ * Hold/get root for userspace transaction.
+ *
+ * The metadata snapshot is a copy of the current superblock (minus the
+ * space maps). Userland can access the data structures for READ
+ * operations only. A small performance hit is incurred by providing this
+ * copy of the metadata to userland due to extra copy-on-write operations
+ * on the metadata nodes. Release this as soon as you finish with it.
+ */
+int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd);
+int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd);
+
+int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
+ dm_block_t *result);
+
+/*
+ * Actions on a single virtual device.
+ */
+
+/*
+ * Opening the same device more than once will fail with -EBUSY.
+ */
+int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
+ struct dm_thin_device **td);
+
+int dm_pool_close_thin_device(struct dm_thin_device *td);
+
+dm_thin_id dm_thin_dev_id(struct dm_thin_device *td);
+
+struct dm_thin_lookup_result {
+ dm_block_t block;
+ bool shared:1;
+};
+
+/*
+ * Returns:
+ * -EWOULDBLOCK iff @can_issue_io is set and would issue IO
+ * -ENODATA iff that mapping is not present.
+ * 0 success
+ */
+int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
+ int can_issue_io, struct dm_thin_lookup_result *result);
+
+/*
+ * Retrieve the next run of contiguously mapped blocks. Useful for working
+ * out where to break up IO. Returns 0 on success, < 0 on error.
+ */
+int dm_thin_find_mapped_range(struct dm_thin_device *td,
+ dm_block_t begin, dm_block_t end,
+ dm_block_t *thin_begin, dm_block_t *thin_end,
+ dm_block_t *pool_begin, bool *maybe_shared);
+
+/*
+ * Obtain an unused block.
+ */
+int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result);
+
+/*
+ * Insert or remove block.
+ */
+int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
+ dm_block_t data_block);
+
+int dm_thin_remove_range(struct dm_thin_device *td,
+ dm_block_t begin, dm_block_t end);
+
+/*
+ * Queries.
+ */
+bool dm_thin_changed_this_transaction(struct dm_thin_device *td);
+
+bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd);
+
+bool dm_thin_aborted_changes(struct dm_thin_device *td);
+
+int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
+ dm_block_t *highest_mapped);
+
+int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result);
+
+int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd,
+ dm_block_t *result);
+
+int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
+ dm_block_t *result);
+
+int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
+ dm_block_t *result);
+
+int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result);
+
+int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result);
+
+int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e);
+int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e);
+
+/*
+ * Returns -ENOSPC if the new size is too small and already allocated
+ * blocks would be lost.
+ */
+int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_size);
+int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_size);
+
+/*
+ * Flicks the underlying block manager into read only mode, so you know
+ * that nothing is changing.
+ */
+void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd);
+void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd);
+
+int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
+ dm_block_t threshold,
+ dm_sm_threshold_fn fn,
+ void *context);
+
+/*
+ * Updates the superblock immediately.
+ */
+int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd);
+bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd);
+
+/*
+ * Issue any prefetches that may be useful.
+ */
+void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd);
+
+/* Pre-commit callback */
+typedef int (*dm_pool_pre_commit_fn)(void *context);
+
+void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
+ dm_pool_pre_commit_fn fn,
+ void *context);
+
+/*----------------------------------------------------------------*/
+
+#endif
diff --git a/drivers/md/dm-thin.c b/drivers/md/dm-thin.c
new file mode 100644
index 000000000..601f9e4e6
--- /dev/null
+++ b/drivers/md/dm-thin.c
@@ -0,0 +1,4529 @@
+/*
+ * Copyright (C) 2011-2012 Red Hat UK.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-thin-metadata.h"
+#include "dm-bio-prison-v1.h"
+#include "dm.h"
+
+#include <linux/device-mapper.h>
+#include <linux/dm-io.h>
+#include <linux/dm-kcopyd.h>
+#include <linux/jiffies.h>
+#include <linux/log2.h>
+#include <linux/list.h>
+#include <linux/rculist.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/sort.h>
+#include <linux/rbtree.h>
+
+#define DM_MSG_PREFIX "thin"
+
+/*
+ * Tunable constants
+ */
+#define ENDIO_HOOK_POOL_SIZE 1024
+#define MAPPING_POOL_SIZE 1024
+#define COMMIT_PERIOD HZ
+#define NO_SPACE_TIMEOUT_SECS 60
+
+static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
+
+DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
+ "A percentage of time allocated for copy on write");
+
+/*
+ * The block size of the device holding pool data must be
+ * between 64KB and 1GB.
+ */
+#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
+#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
+
+/*
+ * Device id is restricted to 24 bits.
+ */
+#define MAX_DEV_ID ((1 << 24) - 1)
+
+/*
+ * How do we handle breaking sharing of data blocks?
+ * =================================================
+ *
+ * We use a standard copy-on-write btree to store the mappings for the
+ * devices (note I'm talking about copy-on-write of the metadata here, not
+ * the data). When you take an internal snapshot you clone the root node
+ * of the origin btree. After this there is no concept of an origin or a
+ * snapshot. They are just two device trees that happen to point to the
+ * same data blocks.
+ *
+ * When we get a write in we decide if it's to a shared data block using
+ * some timestamp magic. If it is, we have to break sharing.
+ *
+ * Let's say we write to a shared block in what was the origin. The
+ * steps are:
+ *
+ * i) plug io further to this physical block. (see bio_prison code).
+ *
+ * ii) quiesce any read io to that shared data block. Obviously
+ * including all devices that share this block. (see dm_deferred_set code)
+ *
+ * iii) copy the data block to a newly allocate block. This step can be
+ * missed out if the io covers the block. (schedule_copy).
+ *
+ * iv) insert the new mapping into the origin's btree
+ * (process_prepared_mapping). This act of inserting breaks some
+ * sharing of btree nodes between the two devices. Breaking sharing only
+ * effects the btree of that specific device. Btrees for the other
+ * devices that share the block never change. The btree for the origin
+ * device as it was after the last commit is untouched, ie. we're using
+ * persistent data structures in the functional programming sense.
+ *
+ * v) unplug io to this physical block, including the io that triggered
+ * the breaking of sharing.
+ *
+ * Steps (ii) and (iii) occur in parallel.
+ *
+ * The metadata _doesn't_ need to be committed before the io continues. We
+ * get away with this because the io is always written to a _new_ block.
+ * If there's a crash, then:
+ *
+ * - The origin mapping will point to the old origin block (the shared
+ * one). This will contain the data as it was before the io that triggered
+ * the breaking of sharing came in.
+ *
+ * - The snap mapping still points to the old block. As it would after
+ * the commit.
+ *
+ * The downside of this scheme is the timestamp magic isn't perfect, and
+ * will continue to think that data block in the snapshot device is shared
+ * even after the write to the origin has broken sharing. I suspect data
+ * blocks will typically be shared by many different devices, so we're
+ * breaking sharing n + 1 times, rather than n, where n is the number of
+ * devices that reference this data block. At the moment I think the
+ * benefits far, far outweigh the disadvantages.
+ */
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Key building.
+ */
+enum lock_space {
+ VIRTUAL,
+ PHYSICAL
+};
+
+static void build_key(struct dm_thin_device *td, enum lock_space ls,
+ dm_block_t b, dm_block_t e, struct dm_cell_key *key)
+{
+ key->virtual = (ls == VIRTUAL);
+ key->dev = dm_thin_dev_id(td);
+ key->block_begin = b;
+ key->block_end = e;
+}
+
+static void build_data_key(struct dm_thin_device *td, dm_block_t b,
+ struct dm_cell_key *key)
+{
+ build_key(td, PHYSICAL, b, b + 1llu, key);
+}
+
+static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
+ struct dm_cell_key *key)
+{
+ build_key(td, VIRTUAL, b, b + 1llu, key);
+}
+
+/*----------------------------------------------------------------*/
+
+#define THROTTLE_THRESHOLD (1 * HZ)
+
+struct throttle {
+ struct rw_semaphore lock;
+ unsigned long threshold;
+ bool throttle_applied;
+};
+
+static void throttle_init(struct throttle *t)
+{
+ init_rwsem(&t->lock);
+ t->throttle_applied = false;
+}
+
+static void throttle_work_start(struct throttle *t)
+{
+ t->threshold = jiffies + THROTTLE_THRESHOLD;
+}
+
+static void throttle_work_update(struct throttle *t)
+{
+ if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
+ down_write(&t->lock);
+ t->throttle_applied = true;
+ }
+}
+
+static void throttle_work_complete(struct throttle *t)
+{
+ if (t->throttle_applied) {
+ t->throttle_applied = false;
+ up_write(&t->lock);
+ }
+}
+
+static void throttle_lock(struct throttle *t)
+{
+ down_read(&t->lock);
+}
+
+static void throttle_unlock(struct throttle *t)
+{
+ up_read(&t->lock);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * A pool device ties together a metadata device and a data device. It
+ * also provides the interface for creating and destroying internal
+ * devices.
+ */
+struct dm_thin_new_mapping;
+
+/*
+ * The pool runs in various modes. Ordered in degraded order for comparisons.
+ */
+enum pool_mode {
+ PM_WRITE, /* metadata may be changed */
+ PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
+
+ /*
+ * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
+ */
+ PM_OUT_OF_METADATA_SPACE,
+ PM_READ_ONLY, /* metadata may not be changed */
+
+ PM_FAIL, /* all I/O fails */
+};
+
+struct pool_features {
+ enum pool_mode mode;
+
+ bool zero_new_blocks:1;
+ bool discard_enabled:1;
+ bool discard_passdown:1;
+ bool error_if_no_space:1;
+};
+
+struct thin_c;
+typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
+typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
+typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
+
+#define CELL_SORT_ARRAY_SIZE 8192
+
+struct pool {
+ struct list_head list;
+ struct dm_target *ti; /* Only set if a pool target is bound */
+
+ struct mapped_device *pool_md;
+ struct block_device *data_dev;
+ struct block_device *md_dev;
+ struct dm_pool_metadata *pmd;
+
+ dm_block_t low_water_blocks;
+ uint32_t sectors_per_block;
+ int sectors_per_block_shift;
+
+ struct pool_features pf;
+ bool low_water_triggered:1; /* A dm event has been sent */
+ bool suspended:1;
+ bool out_of_data_space:1;
+
+ struct dm_bio_prison *prison;
+ struct dm_kcopyd_client *copier;
+
+ struct work_struct worker;
+ struct workqueue_struct *wq;
+ struct throttle throttle;
+ struct delayed_work waker;
+ struct delayed_work no_space_timeout;
+
+ unsigned long last_commit_jiffies;
+ unsigned int ref_count;
+
+ spinlock_t lock;
+ struct bio_list deferred_flush_bios;
+ struct bio_list deferred_flush_completions;
+ struct list_head prepared_mappings;
+ struct list_head prepared_discards;
+ struct list_head prepared_discards_pt2;
+ struct list_head active_thins;
+
+ struct dm_deferred_set *shared_read_ds;
+ struct dm_deferred_set *all_io_ds;
+
+ struct dm_thin_new_mapping *next_mapping;
+
+ process_bio_fn process_bio;
+ process_bio_fn process_discard;
+
+ process_cell_fn process_cell;
+ process_cell_fn process_discard_cell;
+
+ process_mapping_fn process_prepared_mapping;
+ process_mapping_fn process_prepared_discard;
+ process_mapping_fn process_prepared_discard_pt2;
+
+ struct dm_bio_prison_cell **cell_sort_array;
+
+ mempool_t mapping_pool;
+};
+
+static void metadata_operation_failed(struct pool *pool, const char *op, int r);
+
+static enum pool_mode get_pool_mode(struct pool *pool)
+{
+ return pool->pf.mode;
+}
+
+static void notify_of_pool_mode_change(struct pool *pool)
+{
+ const char *descs[] = {
+ "write",
+ "out-of-data-space",
+ "read-only",
+ "read-only",
+ "fail"
+ };
+ const char *extra_desc = NULL;
+ enum pool_mode mode = get_pool_mode(pool);
+
+ if (mode == PM_OUT_OF_DATA_SPACE) {
+ if (!pool->pf.error_if_no_space)
+ extra_desc = " (queue IO)";
+ else
+ extra_desc = " (error IO)";
+ }
+
+ dm_table_event(pool->ti->table);
+ DMINFO("%s: switching pool to %s%s mode",
+ dm_device_name(pool->pool_md),
+ descs[(int)mode], extra_desc ? : "");
+}
+
+/*
+ * Target context for a pool.
+ */
+struct pool_c {
+ struct dm_target *ti;
+ struct pool *pool;
+ struct dm_dev *data_dev;
+ struct dm_dev *metadata_dev;
+
+ dm_block_t low_water_blocks;
+ struct pool_features requested_pf; /* Features requested during table load */
+ struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
+};
+
+/*
+ * Target context for a thin.
+ */
+struct thin_c {
+ struct list_head list;
+ struct dm_dev *pool_dev;
+ struct dm_dev *origin_dev;
+ sector_t origin_size;
+ dm_thin_id dev_id;
+
+ struct pool *pool;
+ struct dm_thin_device *td;
+ struct mapped_device *thin_md;
+
+ bool requeue_mode:1;
+ spinlock_t lock;
+ struct list_head deferred_cells;
+ struct bio_list deferred_bio_list;
+ struct bio_list retry_on_resume_list;
+ struct rb_root sort_bio_list; /* sorted list of deferred bios */
+
+ /*
+ * Ensures the thin is not destroyed until the worker has finished
+ * iterating the active_thins list.
+ */
+ refcount_t refcount;
+ struct completion can_destroy;
+};
+
+/*----------------------------------------------------------------*/
+
+static bool block_size_is_power_of_two(struct pool *pool)
+{
+ return pool->sectors_per_block_shift >= 0;
+}
+
+static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
+{
+ return block_size_is_power_of_two(pool) ?
+ (b << pool->sectors_per_block_shift) :
+ (b * pool->sectors_per_block);
+}
+
+/*----------------------------------------------------------------*/
+
+struct discard_op {
+ struct thin_c *tc;
+ struct blk_plug plug;
+ struct bio *parent_bio;
+ struct bio *bio;
+};
+
+static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
+{
+ BUG_ON(!parent);
+
+ op->tc = tc;
+ blk_start_plug(&op->plug);
+ op->parent_bio = parent;
+ op->bio = NULL;
+}
+
+static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
+{
+ struct thin_c *tc = op->tc;
+ sector_t s = block_to_sectors(tc->pool, data_b);
+ sector_t len = block_to_sectors(tc->pool, data_e - data_b);
+
+ return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio);
+}
+
+static void end_discard(struct discard_op *op, int r)
+{
+ if (op->bio) {
+ /*
+ * Even if one of the calls to issue_discard failed, we
+ * need to wait for the chain to complete.
+ */
+ bio_chain(op->bio, op->parent_bio);
+ bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
+ submit_bio(op->bio);
+ }
+
+ blk_finish_plug(&op->plug);
+
+ /*
+ * Even if r is set, there could be sub discards in flight that we
+ * need to wait for.
+ */
+ if (r && !op->parent_bio->bi_status)
+ op->parent_bio->bi_status = errno_to_blk_status(r);
+ bio_endio(op->parent_bio);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * wake_worker() is used when new work is queued and when pool_resume is
+ * ready to continue deferred IO processing.
+ */
+static void wake_worker(struct pool *pool)
+{
+ queue_work(pool->wq, &pool->worker);
+}
+
+/*----------------------------------------------------------------*/
+
+static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
+ struct dm_bio_prison_cell **cell_result)
+{
+ int r;
+ struct dm_bio_prison_cell *cell_prealloc;
+
+ /*
+ * Allocate a cell from the prison's mempool.
+ * This might block but it can't fail.
+ */
+ cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
+
+ r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
+ if (r)
+ /*
+ * We reused an old cell; we can get rid of
+ * the new one.
+ */
+ dm_bio_prison_free_cell(pool->prison, cell_prealloc);
+
+ return r;
+}
+
+static void cell_release(struct pool *pool,
+ struct dm_bio_prison_cell *cell,
+ struct bio_list *bios)
+{
+ dm_cell_release(pool->prison, cell, bios);
+ dm_bio_prison_free_cell(pool->prison, cell);
+}
+
+static void cell_visit_release(struct pool *pool,
+ void (*fn)(void *, struct dm_bio_prison_cell *),
+ void *context,
+ struct dm_bio_prison_cell *cell)
+{
+ dm_cell_visit_release(pool->prison, fn, context, cell);
+ dm_bio_prison_free_cell(pool->prison, cell);
+}
+
+static void cell_release_no_holder(struct pool *pool,
+ struct dm_bio_prison_cell *cell,
+ struct bio_list *bios)
+{
+ dm_cell_release_no_holder(pool->prison, cell, bios);
+ dm_bio_prison_free_cell(pool->prison, cell);
+}
+
+static void cell_error_with_code(struct pool *pool,
+ struct dm_bio_prison_cell *cell, blk_status_t error_code)
+{
+ dm_cell_error(pool->prison, cell, error_code);
+ dm_bio_prison_free_cell(pool->prison, cell);
+}
+
+static blk_status_t get_pool_io_error_code(struct pool *pool)
+{
+ return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
+}
+
+static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
+{
+ cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
+}
+
+static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
+{
+ cell_error_with_code(pool, cell, 0);
+}
+
+static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
+{
+ cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * A global list of pools that uses a struct mapped_device as a key.
+ */
+static struct dm_thin_pool_table {
+ struct mutex mutex;
+ struct list_head pools;
+} dm_thin_pool_table;
+
+static void pool_table_init(void)
+{
+ mutex_init(&dm_thin_pool_table.mutex);
+ INIT_LIST_HEAD(&dm_thin_pool_table.pools);
+}
+
+static void pool_table_exit(void)
+{
+ mutex_destroy(&dm_thin_pool_table.mutex);
+}
+
+static void __pool_table_insert(struct pool *pool)
+{
+ BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
+ list_add(&pool->list, &dm_thin_pool_table.pools);
+}
+
+static void __pool_table_remove(struct pool *pool)
+{
+ BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
+ list_del(&pool->list);
+}
+
+static struct pool *__pool_table_lookup(struct mapped_device *md)
+{
+ struct pool *pool = NULL, *tmp;
+
+ BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
+
+ list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
+ if (tmp->pool_md == md) {
+ pool = tmp;
+ break;
+ }
+ }
+
+ return pool;
+}
+
+static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
+{
+ struct pool *pool = NULL, *tmp;
+
+ BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
+
+ list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
+ if (tmp->md_dev == md_dev) {
+ pool = tmp;
+ break;
+ }
+ }
+
+ return pool;
+}
+
+/*----------------------------------------------------------------*/
+
+struct dm_thin_endio_hook {
+ struct thin_c *tc;
+ struct dm_deferred_entry *shared_read_entry;
+ struct dm_deferred_entry *all_io_entry;
+ struct dm_thin_new_mapping *overwrite_mapping;
+ struct rb_node rb_node;
+ struct dm_bio_prison_cell *cell;
+};
+
+static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
+{
+ bio_list_merge(bios, master);
+ bio_list_init(master);
+}
+
+static void error_bio_list(struct bio_list *bios, blk_status_t error)
+{
+ struct bio *bio;
+
+ while ((bio = bio_list_pop(bios))) {
+ bio->bi_status = error;
+ bio_endio(bio);
+ }
+}
+
+static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
+ blk_status_t error)
+{
+ struct bio_list bios;
+
+ bio_list_init(&bios);
+
+ spin_lock_irq(&tc->lock);
+ __merge_bio_list(&bios, master);
+ spin_unlock_irq(&tc->lock);
+
+ error_bio_list(&bios, error);
+}
+
+static void requeue_deferred_cells(struct thin_c *tc)
+{
+ struct pool *pool = tc->pool;
+ struct list_head cells;
+ struct dm_bio_prison_cell *cell, *tmp;
+
+ INIT_LIST_HEAD(&cells);
+
+ spin_lock_irq(&tc->lock);
+ list_splice_init(&tc->deferred_cells, &cells);
+ spin_unlock_irq(&tc->lock);
+
+ list_for_each_entry_safe(cell, tmp, &cells, user_list)
+ cell_requeue(pool, cell);
+}
+
+static void requeue_io(struct thin_c *tc)
+{
+ struct bio_list bios;
+
+ bio_list_init(&bios);
+
+ spin_lock_irq(&tc->lock);
+ __merge_bio_list(&bios, &tc->deferred_bio_list);
+ __merge_bio_list(&bios, &tc->retry_on_resume_list);
+ spin_unlock_irq(&tc->lock);
+
+ error_bio_list(&bios, BLK_STS_DM_REQUEUE);
+ requeue_deferred_cells(tc);
+}
+
+static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
+{
+ struct thin_c *tc;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(tc, &pool->active_thins, list)
+ error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
+ rcu_read_unlock();
+}
+
+static void error_retry_list(struct pool *pool)
+{
+ error_retry_list_with_code(pool, get_pool_io_error_code(pool));
+}
+
+/*
+ * This section of code contains the logic for processing a thin device's IO.
+ * Much of the code depends on pool object resources (lists, workqueues, etc)
+ * but most is exclusively called from the thin target rather than the thin-pool
+ * target.
+ */
+
+static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
+{
+ struct pool *pool = tc->pool;
+ sector_t block_nr = bio->bi_iter.bi_sector;
+
+ if (block_size_is_power_of_two(pool))
+ block_nr >>= pool->sectors_per_block_shift;
+ else
+ (void) sector_div(block_nr, pool->sectors_per_block);
+
+ return block_nr;
+}
+
+/*
+ * Returns the _complete_ blocks that this bio covers.
+ */
+static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
+ dm_block_t *begin, dm_block_t *end)
+{
+ struct pool *pool = tc->pool;
+ sector_t b = bio->bi_iter.bi_sector;
+ sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
+
+ b += pool->sectors_per_block - 1ull; /* so we round up */
+
+ if (block_size_is_power_of_two(pool)) {
+ b >>= pool->sectors_per_block_shift;
+ e >>= pool->sectors_per_block_shift;
+ } else {
+ (void) sector_div(b, pool->sectors_per_block);
+ (void) sector_div(e, pool->sectors_per_block);
+ }
+
+ if (e < b)
+ /* Can happen if the bio is within a single block. */
+ e = b;
+
+ *begin = b;
+ *end = e;
+}
+
+static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
+{
+ struct pool *pool = tc->pool;
+ sector_t bi_sector = bio->bi_iter.bi_sector;
+
+ bio_set_dev(bio, tc->pool_dev->bdev);
+ if (block_size_is_power_of_two(pool))
+ bio->bi_iter.bi_sector =
+ (block << pool->sectors_per_block_shift) |
+ (bi_sector & (pool->sectors_per_block - 1));
+ else
+ bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
+ sector_div(bi_sector, pool->sectors_per_block);
+}
+
+static void remap_to_origin(struct thin_c *tc, struct bio *bio)
+{
+ bio_set_dev(bio, tc->origin_dev->bdev);
+}
+
+static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
+{
+ return op_is_flush(bio->bi_opf) &&
+ dm_thin_changed_this_transaction(tc->td);
+}
+
+static void inc_all_io_entry(struct pool *pool, struct bio *bio)
+{
+ struct dm_thin_endio_hook *h;
+
+ if (bio_op(bio) == REQ_OP_DISCARD)
+ return;
+
+ h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
+ h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
+}
+
+static void issue(struct thin_c *tc, struct bio *bio)
+{
+ struct pool *pool = tc->pool;
+
+ if (!bio_triggers_commit(tc, bio)) {
+ dm_submit_bio_remap(bio, NULL);
+ return;
+ }
+
+ /*
+ * Complete bio with an error if earlier I/O caused changes to
+ * the metadata that can't be committed e.g, due to I/O errors
+ * on the metadata device.
+ */
+ if (dm_thin_aborted_changes(tc->td)) {
+ bio_io_error(bio);
+ return;
+ }
+
+ /*
+ * Batch together any bios that trigger commits and then issue a
+ * single commit for them in process_deferred_bios().
+ */
+ spin_lock_irq(&pool->lock);
+ bio_list_add(&pool->deferred_flush_bios, bio);
+ spin_unlock_irq(&pool->lock);
+}
+
+static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
+{
+ remap_to_origin(tc, bio);
+ issue(tc, bio);
+}
+
+static void remap_and_issue(struct thin_c *tc, struct bio *bio,
+ dm_block_t block)
+{
+ remap(tc, bio, block);
+ issue(tc, bio);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Bio endio functions.
+ */
+struct dm_thin_new_mapping {
+ struct list_head list;
+
+ bool pass_discard:1;
+ bool maybe_shared:1;
+
+ /*
+ * Track quiescing, copying and zeroing preparation actions. When this
+ * counter hits zero the block is prepared and can be inserted into the
+ * btree.
+ */
+ atomic_t prepare_actions;
+
+ blk_status_t status;
+ struct thin_c *tc;
+ dm_block_t virt_begin, virt_end;
+ dm_block_t data_block;
+ struct dm_bio_prison_cell *cell;
+
+ /*
+ * If the bio covers the whole area of a block then we can avoid
+ * zeroing or copying. Instead this bio is hooked. The bio will
+ * still be in the cell, so care has to be taken to avoid issuing
+ * the bio twice.
+ */
+ struct bio *bio;
+ bio_end_io_t *saved_bi_end_io;
+};
+
+static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
+{
+ struct pool *pool = m->tc->pool;
+
+ if (atomic_dec_and_test(&m->prepare_actions)) {
+ list_add_tail(&m->list, &pool->prepared_mappings);
+ wake_worker(pool);
+ }
+}
+
+static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
+{
+ unsigned long flags;
+ struct pool *pool = m->tc->pool;
+
+ spin_lock_irqsave(&pool->lock, flags);
+ __complete_mapping_preparation(m);
+ spin_unlock_irqrestore(&pool->lock, flags);
+}
+
+static void copy_complete(int read_err, unsigned long write_err, void *context)
+{
+ struct dm_thin_new_mapping *m = context;
+
+ m->status = read_err || write_err ? BLK_STS_IOERR : 0;
+ complete_mapping_preparation(m);
+}
+
+static void overwrite_endio(struct bio *bio)
+{
+ struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
+ struct dm_thin_new_mapping *m = h->overwrite_mapping;
+
+ bio->bi_end_io = m->saved_bi_end_io;
+
+ m->status = bio->bi_status;
+ complete_mapping_preparation(m);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Workqueue.
+ */
+
+/*
+ * Prepared mapping jobs.
+ */
+
+/*
+ * This sends the bios in the cell, except the original holder, back
+ * to the deferred_bios list.
+ */
+static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
+{
+ struct pool *pool = tc->pool;
+ unsigned long flags;
+ int has_work;
+
+ spin_lock_irqsave(&tc->lock, flags);
+ cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
+ has_work = !bio_list_empty(&tc->deferred_bio_list);
+ spin_unlock_irqrestore(&tc->lock, flags);
+
+ if (has_work)
+ wake_worker(pool);
+}
+
+static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
+
+struct remap_info {
+ struct thin_c *tc;
+ struct bio_list defer_bios;
+ struct bio_list issue_bios;
+};
+
+static void __inc_remap_and_issue_cell(void *context,
+ struct dm_bio_prison_cell *cell)
+{
+ struct remap_info *info = context;
+ struct bio *bio;
+
+ while ((bio = bio_list_pop(&cell->bios))) {
+ if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
+ bio_list_add(&info->defer_bios, bio);
+ else {
+ inc_all_io_entry(info->tc->pool, bio);
+
+ /*
+ * We can't issue the bios with the bio prison lock
+ * held, so we add them to a list to issue on
+ * return from this function.
+ */
+ bio_list_add(&info->issue_bios, bio);
+ }
+ }
+}
+
+static void inc_remap_and_issue_cell(struct thin_c *tc,
+ struct dm_bio_prison_cell *cell,
+ dm_block_t block)
+{
+ struct bio *bio;
+ struct remap_info info;
+
+ info.tc = tc;
+ bio_list_init(&info.defer_bios);
+ bio_list_init(&info.issue_bios);
+
+ /*
+ * We have to be careful to inc any bios we're about to issue
+ * before the cell is released, and avoid a race with new bios
+ * being added to the cell.
+ */
+ cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
+ &info, cell);
+
+ while ((bio = bio_list_pop(&info.defer_bios)))
+ thin_defer_bio(tc, bio);
+
+ while ((bio = bio_list_pop(&info.issue_bios)))
+ remap_and_issue(info.tc, bio, block);
+}
+
+static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
+{
+ cell_error(m->tc->pool, m->cell);
+ list_del(&m->list);
+ mempool_free(m, &m->tc->pool->mapping_pool);
+}
+
+static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
+{
+ struct pool *pool = tc->pool;
+
+ /*
+ * If the bio has the REQ_FUA flag set we must commit the metadata
+ * before signaling its completion.
+ */
+ if (!bio_triggers_commit(tc, bio)) {
+ bio_endio(bio);
+ return;
+ }
+
+ /*
+ * Complete bio with an error if earlier I/O caused changes to the
+ * metadata that can't be committed, e.g, due to I/O errors on the
+ * metadata device.
+ */
+ if (dm_thin_aborted_changes(tc->td)) {
+ bio_io_error(bio);
+ return;
+ }
+
+ /*
+ * Batch together any bios that trigger commits and then issue a
+ * single commit for them in process_deferred_bios().
+ */
+ spin_lock_irq(&pool->lock);
+ bio_list_add(&pool->deferred_flush_completions, bio);
+ spin_unlock_irq(&pool->lock);
+}
+
+static void process_prepared_mapping(struct dm_thin_new_mapping *m)
+{
+ struct thin_c *tc = m->tc;
+ struct pool *pool = tc->pool;
+ struct bio *bio = m->bio;
+ int r;
+
+ if (m->status) {
+ cell_error(pool, m->cell);
+ goto out;
+ }
+
+ /*
+ * Commit the prepared block into the mapping btree.
+ * Any I/O for this block arriving after this point will get
+ * remapped to it directly.
+ */
+ r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
+ if (r) {
+ metadata_operation_failed(pool, "dm_thin_insert_block", r);
+ cell_error(pool, m->cell);
+ goto out;
+ }
+
+ /*
+ * Release any bios held while the block was being provisioned.
+ * If we are processing a write bio that completely covers the block,
+ * we already processed it so can ignore it now when processing
+ * the bios in the cell.
+ */
+ if (bio) {
+ inc_remap_and_issue_cell(tc, m->cell, m->data_block);
+ complete_overwrite_bio(tc, bio);
+ } else {
+ inc_all_io_entry(tc->pool, m->cell->holder);
+ remap_and_issue(tc, m->cell->holder, m->data_block);
+ inc_remap_and_issue_cell(tc, m->cell, m->data_block);
+ }
+
+out:
+ list_del(&m->list);
+ mempool_free(m, &pool->mapping_pool);
+}
+
+/*----------------------------------------------------------------*/
+
+static void free_discard_mapping(struct dm_thin_new_mapping *m)
+{
+ struct thin_c *tc = m->tc;
+ if (m->cell)
+ cell_defer_no_holder(tc, m->cell);
+ mempool_free(m, &tc->pool->mapping_pool);
+}
+
+static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
+{
+ bio_io_error(m->bio);
+ free_discard_mapping(m);
+}
+
+static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
+{
+ bio_endio(m->bio);
+ free_discard_mapping(m);
+}
+
+static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
+{
+ int r;
+ struct thin_c *tc = m->tc;
+
+ r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
+ if (r) {
+ metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
+ bio_io_error(m->bio);
+ } else
+ bio_endio(m->bio);
+
+ cell_defer_no_holder(tc, m->cell);
+ mempool_free(m, &tc->pool->mapping_pool);
+}
+
+/*----------------------------------------------------------------*/
+
+static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
+ struct bio *discard_parent)
+{
+ /*
+ * We've already unmapped this range of blocks, but before we
+ * passdown we have to check that these blocks are now unused.
+ */
+ int r = 0;
+ bool shared = true;
+ struct thin_c *tc = m->tc;
+ struct pool *pool = tc->pool;
+ dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
+ struct discard_op op;
+
+ begin_discard(&op, tc, discard_parent);
+ while (b != end) {
+ /* find start of unmapped run */
+ for (; b < end; b++) {
+ r = dm_pool_block_is_shared(pool->pmd, b, &shared);
+ if (r)
+ goto out;
+
+ if (!shared)
+ break;
+ }
+
+ if (b == end)
+ break;
+
+ /* find end of run */
+ for (e = b + 1; e != end; e++) {
+ r = dm_pool_block_is_shared(pool->pmd, e, &shared);
+ if (r)
+ goto out;
+
+ if (shared)
+ break;
+ }
+
+ r = issue_discard(&op, b, e);
+ if (r)
+ goto out;
+
+ b = e;
+ }
+out:
+ end_discard(&op, r);
+}
+
+static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
+{
+ unsigned long flags;
+ struct pool *pool = m->tc->pool;
+
+ spin_lock_irqsave(&pool->lock, flags);
+ list_add_tail(&m->list, &pool->prepared_discards_pt2);
+ spin_unlock_irqrestore(&pool->lock, flags);
+ wake_worker(pool);
+}
+
+static void passdown_endio(struct bio *bio)
+{
+ /*
+ * It doesn't matter if the passdown discard failed, we still want
+ * to unmap (we ignore err).
+ */
+ queue_passdown_pt2(bio->bi_private);
+ bio_put(bio);
+}
+
+static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
+{
+ int r;
+ struct thin_c *tc = m->tc;
+ struct pool *pool = tc->pool;
+ struct bio *discard_parent;
+ dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
+
+ /*
+ * Only this thread allocates blocks, so we can be sure that the
+ * newly unmapped blocks will not be allocated before the end of
+ * the function.
+ */
+ r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
+ if (r) {
+ metadata_operation_failed(pool, "dm_thin_remove_range", r);
+ bio_io_error(m->bio);
+ cell_defer_no_holder(tc, m->cell);
+ mempool_free(m, &pool->mapping_pool);
+ return;
+ }
+
+ /*
+ * Increment the unmapped blocks. This prevents a race between the
+ * passdown io and reallocation of freed blocks.
+ */
+ r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
+ if (r) {
+ metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
+ bio_io_error(m->bio);
+ cell_defer_no_holder(tc, m->cell);
+ mempool_free(m, &pool->mapping_pool);
+ return;
+ }
+
+ discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
+ discard_parent->bi_end_io = passdown_endio;
+ discard_parent->bi_private = m;
+ if (m->maybe_shared)
+ passdown_double_checking_shared_status(m, discard_parent);
+ else {
+ struct discard_op op;
+
+ begin_discard(&op, tc, discard_parent);
+ r = issue_discard(&op, m->data_block, data_end);
+ end_discard(&op, r);
+ }
+}
+
+static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
+{
+ int r;
+ struct thin_c *tc = m->tc;
+ struct pool *pool = tc->pool;
+
+ /*
+ * The passdown has completed, so now we can decrement all those
+ * unmapped blocks.
+ */
+ r = dm_pool_dec_data_range(pool->pmd, m->data_block,
+ m->data_block + (m->virt_end - m->virt_begin));
+ if (r) {
+ metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
+ bio_io_error(m->bio);
+ } else
+ bio_endio(m->bio);
+
+ cell_defer_no_holder(tc, m->cell);
+ mempool_free(m, &pool->mapping_pool);
+}
+
+static void process_prepared(struct pool *pool, struct list_head *head,
+ process_mapping_fn *fn)
+{
+ struct list_head maps;
+ struct dm_thin_new_mapping *m, *tmp;
+
+ INIT_LIST_HEAD(&maps);
+ spin_lock_irq(&pool->lock);
+ list_splice_init(head, &maps);
+ spin_unlock_irq(&pool->lock);
+
+ list_for_each_entry_safe(m, tmp, &maps, list)
+ (*fn)(m);
+}
+
+/*
+ * Deferred bio jobs.
+ */
+static int io_overlaps_block(struct pool *pool, struct bio *bio)
+{
+ return bio->bi_iter.bi_size ==
+ (pool->sectors_per_block << SECTOR_SHIFT);
+}
+
+static int io_overwrites_block(struct pool *pool, struct bio *bio)
+{
+ return (bio_data_dir(bio) == WRITE) &&
+ io_overlaps_block(pool, bio);
+}
+
+static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
+ bio_end_io_t *fn)
+{
+ *save = bio->bi_end_io;
+ bio->bi_end_io = fn;
+}
+
+static int ensure_next_mapping(struct pool *pool)
+{
+ if (pool->next_mapping)
+ return 0;
+
+ pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
+
+ return pool->next_mapping ? 0 : -ENOMEM;
+}
+
+static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
+{
+ struct dm_thin_new_mapping *m = pool->next_mapping;
+
+ BUG_ON(!pool->next_mapping);
+
+ memset(m, 0, sizeof(struct dm_thin_new_mapping));
+ INIT_LIST_HEAD(&m->list);
+ m->bio = NULL;
+
+ pool->next_mapping = NULL;
+
+ return m;
+}
+
+static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
+ sector_t begin, sector_t end)
+{
+ struct dm_io_region to;
+
+ to.bdev = tc->pool_dev->bdev;
+ to.sector = begin;
+ to.count = end - begin;
+
+ dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
+}
+
+static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
+ dm_block_t data_begin,
+ struct dm_thin_new_mapping *m)
+{
+ struct pool *pool = tc->pool;
+ struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
+
+ h->overwrite_mapping = m;
+ m->bio = bio;
+ save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
+ inc_all_io_entry(pool, bio);
+ remap_and_issue(tc, bio, data_begin);
+}
+
+/*
+ * A partial copy also needs to zero the uncopied region.
+ */
+static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
+ struct dm_dev *origin, dm_block_t data_origin,
+ dm_block_t data_dest,
+ struct dm_bio_prison_cell *cell, struct bio *bio,
+ sector_t len)
+{
+ struct pool *pool = tc->pool;
+ struct dm_thin_new_mapping *m = get_next_mapping(pool);
+
+ m->tc = tc;
+ m->virt_begin = virt_block;
+ m->virt_end = virt_block + 1u;
+ m->data_block = data_dest;
+ m->cell = cell;
+
+ /*
+ * quiesce action + copy action + an extra reference held for the
+ * duration of this function (we may need to inc later for a
+ * partial zero).
+ */
+ atomic_set(&m->prepare_actions, 3);
+
+ if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
+ complete_mapping_preparation(m); /* already quiesced */
+
+ /*
+ * IO to pool_dev remaps to the pool target's data_dev.
+ *
+ * If the whole block of data is being overwritten, we can issue the
+ * bio immediately. Otherwise we use kcopyd to clone the data first.
+ */
+ if (io_overwrites_block(pool, bio))
+ remap_and_issue_overwrite(tc, bio, data_dest, m);
+ else {
+ struct dm_io_region from, to;
+
+ from.bdev = origin->bdev;
+ from.sector = data_origin * pool->sectors_per_block;
+ from.count = len;
+
+ to.bdev = tc->pool_dev->bdev;
+ to.sector = data_dest * pool->sectors_per_block;
+ to.count = len;
+
+ dm_kcopyd_copy(pool->copier, &from, 1, &to,
+ 0, copy_complete, m);
+
+ /*
+ * Do we need to zero a tail region?
+ */
+ if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
+ atomic_inc(&m->prepare_actions);
+ ll_zero(tc, m,
+ data_dest * pool->sectors_per_block + len,
+ (data_dest + 1) * pool->sectors_per_block);
+ }
+ }
+
+ complete_mapping_preparation(m); /* drop our ref */
+}
+
+static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
+ dm_block_t data_origin, dm_block_t data_dest,
+ struct dm_bio_prison_cell *cell, struct bio *bio)
+{
+ schedule_copy(tc, virt_block, tc->pool_dev,
+ data_origin, data_dest, cell, bio,
+ tc->pool->sectors_per_block);
+}
+
+static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
+ dm_block_t data_block, struct dm_bio_prison_cell *cell,
+ struct bio *bio)
+{
+ struct pool *pool = tc->pool;
+ struct dm_thin_new_mapping *m = get_next_mapping(pool);
+
+ atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
+ m->tc = tc;
+ m->virt_begin = virt_block;
+ m->virt_end = virt_block + 1u;
+ m->data_block = data_block;
+ m->cell = cell;
+
+ /*
+ * If the whole block of data is being overwritten or we are not
+ * zeroing pre-existing data, we can issue the bio immediately.
+ * Otherwise we use kcopyd to zero the data first.
+ */
+ if (pool->pf.zero_new_blocks) {
+ if (io_overwrites_block(pool, bio))
+ remap_and_issue_overwrite(tc, bio, data_block, m);
+ else
+ ll_zero(tc, m, data_block * pool->sectors_per_block,
+ (data_block + 1) * pool->sectors_per_block);
+ } else
+ process_prepared_mapping(m);
+}
+
+static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
+ dm_block_t data_dest,
+ struct dm_bio_prison_cell *cell, struct bio *bio)
+{
+ struct pool *pool = tc->pool;
+ sector_t virt_block_begin = virt_block * pool->sectors_per_block;
+ sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
+
+ if (virt_block_end <= tc->origin_size)
+ schedule_copy(tc, virt_block, tc->origin_dev,
+ virt_block, data_dest, cell, bio,
+ pool->sectors_per_block);
+
+ else if (virt_block_begin < tc->origin_size)
+ schedule_copy(tc, virt_block, tc->origin_dev,
+ virt_block, data_dest, cell, bio,
+ tc->origin_size - virt_block_begin);
+
+ else
+ schedule_zero(tc, virt_block, data_dest, cell, bio);
+}
+
+static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
+
+static void requeue_bios(struct pool *pool);
+
+static bool is_read_only_pool_mode(enum pool_mode mode)
+{
+ return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
+}
+
+static bool is_read_only(struct pool *pool)
+{
+ return is_read_only_pool_mode(get_pool_mode(pool));
+}
+
+static void check_for_metadata_space(struct pool *pool)
+{
+ int r;
+ const char *ooms_reason = NULL;
+ dm_block_t nr_free;
+
+ r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
+ if (r)
+ ooms_reason = "Could not get free metadata blocks";
+ else if (!nr_free)
+ ooms_reason = "No free metadata blocks";
+
+ if (ooms_reason && !is_read_only(pool)) {
+ DMERR("%s", ooms_reason);
+ set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
+ }
+}
+
+static void check_for_data_space(struct pool *pool)
+{
+ int r;
+ dm_block_t nr_free;
+
+ if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
+ return;
+
+ r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
+ if (r)
+ return;
+
+ if (nr_free) {
+ set_pool_mode(pool, PM_WRITE);
+ requeue_bios(pool);
+ }
+}
+
+/*
+ * A non-zero return indicates read_only or fail_io mode.
+ * Many callers don't care about the return value.
+ */
+static int commit(struct pool *pool)
+{
+ int r;
+
+ if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
+ return -EINVAL;
+
+ r = dm_pool_commit_metadata(pool->pmd);
+ if (r)
+ metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
+ else {
+ check_for_metadata_space(pool);
+ check_for_data_space(pool);
+ }
+
+ return r;
+}
+
+static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
+{
+ if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
+ DMWARN("%s: reached low water mark for data device: sending event.",
+ dm_device_name(pool->pool_md));
+ spin_lock_irq(&pool->lock);
+ pool->low_water_triggered = true;
+ spin_unlock_irq(&pool->lock);
+ dm_table_event(pool->ti->table);
+ }
+}
+
+static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
+{
+ int r;
+ dm_block_t free_blocks;
+ struct pool *pool = tc->pool;
+
+ if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
+ return -EINVAL;
+
+ r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
+ if (r) {
+ metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
+ return r;
+ }
+
+ check_low_water_mark(pool, free_blocks);
+
+ if (!free_blocks) {
+ /*
+ * Try to commit to see if that will free up some
+ * more space.
+ */
+ r = commit(pool);
+ if (r)
+ return r;
+
+ r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
+ if (r) {
+ metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
+ return r;
+ }
+
+ if (!free_blocks) {
+ set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
+ return -ENOSPC;
+ }
+ }
+
+ r = dm_pool_alloc_data_block(pool->pmd, result);
+ if (r) {
+ if (r == -ENOSPC)
+ set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
+ else
+ metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
+ return r;
+ }
+
+ r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
+ if (r) {
+ metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
+ return r;
+ }
+
+ if (!free_blocks) {
+ /* Let's commit before we use up the metadata reserve. */
+ r = commit(pool);
+ if (r)
+ return r;
+ }
+
+ return 0;
+}
+
+/*
+ * If we have run out of space, queue bios until the device is
+ * resumed, presumably after having been reloaded with more space.
+ */
+static void retry_on_resume(struct bio *bio)
+{
+ struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
+ struct thin_c *tc = h->tc;
+
+ spin_lock_irq(&tc->lock);
+ bio_list_add(&tc->retry_on_resume_list, bio);
+ spin_unlock_irq(&tc->lock);
+}
+
+static blk_status_t should_error_unserviceable_bio(struct pool *pool)
+{
+ enum pool_mode m = get_pool_mode(pool);
+
+ switch (m) {
+ case PM_WRITE:
+ /* Shouldn't get here */
+ DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
+ return BLK_STS_IOERR;
+
+ case PM_OUT_OF_DATA_SPACE:
+ return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
+
+ case PM_OUT_OF_METADATA_SPACE:
+ case PM_READ_ONLY:
+ case PM_FAIL:
+ return BLK_STS_IOERR;
+ default:
+ /* Shouldn't get here */
+ DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
+ return BLK_STS_IOERR;
+ }
+}
+
+static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
+{
+ blk_status_t error = should_error_unserviceable_bio(pool);
+
+ if (error) {
+ bio->bi_status = error;
+ bio_endio(bio);
+ } else
+ retry_on_resume(bio);
+}
+
+static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
+{
+ struct bio *bio;
+ struct bio_list bios;
+ blk_status_t error;
+
+ error = should_error_unserviceable_bio(pool);
+ if (error) {
+ cell_error_with_code(pool, cell, error);
+ return;
+ }
+
+ bio_list_init(&bios);
+ cell_release(pool, cell, &bios);
+
+ while ((bio = bio_list_pop(&bios)))
+ retry_on_resume(bio);
+}
+
+static void process_discard_cell_no_passdown(struct thin_c *tc,
+ struct dm_bio_prison_cell *virt_cell)
+{
+ struct pool *pool = tc->pool;
+ struct dm_thin_new_mapping *m = get_next_mapping(pool);
+
+ /*
+ * We don't need to lock the data blocks, since there's no
+ * passdown. We only lock data blocks for allocation and breaking sharing.
+ */
+ m->tc = tc;
+ m->virt_begin = virt_cell->key.block_begin;
+ m->virt_end = virt_cell->key.block_end;
+ m->cell = virt_cell;
+ m->bio = virt_cell->holder;
+
+ if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
+ pool->process_prepared_discard(m);
+}
+
+static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
+ struct bio *bio)
+{
+ struct pool *pool = tc->pool;
+
+ int r;
+ bool maybe_shared;
+ struct dm_cell_key data_key;
+ struct dm_bio_prison_cell *data_cell;
+ struct dm_thin_new_mapping *m;
+ dm_block_t virt_begin, virt_end, data_begin;
+
+ while (begin != end) {
+ r = ensure_next_mapping(pool);
+ if (r)
+ /* we did our best */
+ return;
+
+ r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
+ &data_begin, &maybe_shared);
+ if (r)
+ /*
+ * Silently fail, letting any mappings we've
+ * created complete.
+ */
+ break;
+
+ build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
+ if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
+ /* contention, we'll give up with this range */
+ begin = virt_end;
+ continue;
+ }
+
+ /*
+ * IO may still be going to the destination block. We must
+ * quiesce before we can do the removal.
+ */
+ m = get_next_mapping(pool);
+ m->tc = tc;
+ m->maybe_shared = maybe_shared;
+ m->virt_begin = virt_begin;
+ m->virt_end = virt_end;
+ m->data_block = data_begin;
+ m->cell = data_cell;
+ m->bio = bio;
+
+ /*
+ * The parent bio must not complete before sub discard bios are
+ * chained to it (see end_discard's bio_chain)!
+ *
+ * This per-mapping bi_remaining increment is paired with
+ * the implicit decrement that occurs via bio_endio() in
+ * end_discard().
+ */
+ bio_inc_remaining(bio);
+ if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
+ pool->process_prepared_discard(m);
+
+ begin = virt_end;
+ }
+}
+
+static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
+{
+ struct bio *bio = virt_cell->holder;
+ struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
+
+ /*
+ * The virt_cell will only get freed once the origin bio completes.
+ * This means it will remain locked while all the individual
+ * passdown bios are in flight.
+ */
+ h->cell = virt_cell;
+ break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
+
+ /*
+ * We complete the bio now, knowing that the bi_remaining field
+ * will prevent completion until the sub range discards have
+ * completed.
+ */
+ bio_endio(bio);
+}
+
+static void process_discard_bio(struct thin_c *tc, struct bio *bio)
+{
+ dm_block_t begin, end;
+ struct dm_cell_key virt_key;
+ struct dm_bio_prison_cell *virt_cell;
+
+ get_bio_block_range(tc, bio, &begin, &end);
+ if (begin == end) {
+ /*
+ * The discard covers less than a block.
+ */
+ bio_endio(bio);
+ return;
+ }
+
+ build_key(tc->td, VIRTUAL, begin, end, &virt_key);
+ if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
+ /*
+ * Potential starvation issue: We're relying on the
+ * fs/application being well behaved, and not trying to
+ * send IO to a region at the same time as discarding it.
+ * If they do this persistently then it's possible this
+ * cell will never be granted.
+ */
+ return;
+
+ tc->pool->process_discard_cell(tc, virt_cell);
+}
+
+static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
+ struct dm_cell_key *key,
+ struct dm_thin_lookup_result *lookup_result,
+ struct dm_bio_prison_cell *cell)
+{
+ int r;
+ dm_block_t data_block;
+ struct pool *pool = tc->pool;
+
+ r = alloc_data_block(tc, &data_block);
+ switch (r) {
+ case 0:
+ schedule_internal_copy(tc, block, lookup_result->block,
+ data_block, cell, bio);
+ break;
+
+ case -ENOSPC:
+ retry_bios_on_resume(pool, cell);
+ break;
+
+ default:
+ DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
+ __func__, r);
+ cell_error(pool, cell);
+ break;
+ }
+}
+
+static void __remap_and_issue_shared_cell(void *context,
+ struct dm_bio_prison_cell *cell)
+{
+ struct remap_info *info = context;
+ struct bio *bio;
+
+ while ((bio = bio_list_pop(&cell->bios))) {
+ if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
+ bio_op(bio) == REQ_OP_DISCARD)
+ bio_list_add(&info->defer_bios, bio);
+ else {
+ struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
+
+ h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
+ inc_all_io_entry(info->tc->pool, bio);
+ bio_list_add(&info->issue_bios, bio);
+ }
+ }
+}
+
+static void remap_and_issue_shared_cell(struct thin_c *tc,
+ struct dm_bio_prison_cell *cell,
+ dm_block_t block)
+{
+ struct bio *bio;
+ struct remap_info info;
+
+ info.tc = tc;
+ bio_list_init(&info.defer_bios);
+ bio_list_init(&info.issue_bios);
+
+ cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
+ &info, cell);
+
+ while ((bio = bio_list_pop(&info.defer_bios)))
+ thin_defer_bio(tc, bio);
+
+ while ((bio = bio_list_pop(&info.issue_bios)))
+ remap_and_issue(tc, bio, block);
+}
+
+static void process_shared_bio(struct thin_c *tc, struct bio *bio,
+ dm_block_t block,
+ struct dm_thin_lookup_result *lookup_result,
+ struct dm_bio_prison_cell *virt_cell)
+{
+ struct dm_bio_prison_cell *data_cell;
+ struct pool *pool = tc->pool;
+ struct dm_cell_key key;
+
+ /*
+ * If cell is already occupied, then sharing is already in the process
+ * of being broken so we have nothing further to do here.
+ */
+ build_data_key(tc->td, lookup_result->block, &key);
+ if (bio_detain(pool, &key, bio, &data_cell)) {
+ cell_defer_no_holder(tc, virt_cell);
+ return;
+ }
+
+ if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
+ break_sharing(tc, bio, block, &key, lookup_result, data_cell);
+ cell_defer_no_holder(tc, virt_cell);
+ } else {
+ struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
+
+ h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
+ inc_all_io_entry(pool, bio);
+ remap_and_issue(tc, bio, lookup_result->block);
+
+ remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
+ remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
+ }
+}
+
+static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
+ struct dm_bio_prison_cell *cell)
+{
+ int r;
+ dm_block_t data_block;
+ struct pool *pool = tc->pool;
+
+ /*
+ * Remap empty bios (flushes) immediately, without provisioning.
+ */
+ if (!bio->bi_iter.bi_size) {
+ inc_all_io_entry(pool, bio);
+ cell_defer_no_holder(tc, cell);
+
+ remap_and_issue(tc, bio, 0);
+ return;
+ }
+
+ /*
+ * Fill read bios with zeroes and complete them immediately.
+ */
+ if (bio_data_dir(bio) == READ) {
+ zero_fill_bio(bio);
+ cell_defer_no_holder(tc, cell);
+ bio_endio(bio);
+ return;
+ }
+
+ r = alloc_data_block(tc, &data_block);
+ switch (r) {
+ case 0:
+ if (tc->origin_dev)
+ schedule_external_copy(tc, block, data_block, cell, bio);
+ else
+ schedule_zero(tc, block, data_block, cell, bio);
+ break;
+
+ case -ENOSPC:
+ retry_bios_on_resume(pool, cell);
+ break;
+
+ default:
+ DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
+ __func__, r);
+ cell_error(pool, cell);
+ break;
+ }
+}
+
+static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
+{
+ int r;
+ struct pool *pool = tc->pool;
+ struct bio *bio = cell->holder;
+ dm_block_t block = get_bio_block(tc, bio);
+ struct dm_thin_lookup_result lookup_result;
+
+ if (tc->requeue_mode) {
+ cell_requeue(pool, cell);
+ return;
+ }
+
+ r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
+ switch (r) {
+ case 0:
+ if (lookup_result.shared)
+ process_shared_bio(tc, bio, block, &lookup_result, cell);
+ else {
+ inc_all_io_entry(pool, bio);
+ remap_and_issue(tc, bio, lookup_result.block);
+ inc_remap_and_issue_cell(tc, cell, lookup_result.block);
+ }
+ break;
+
+ case -ENODATA:
+ if (bio_data_dir(bio) == READ && tc->origin_dev) {
+ inc_all_io_entry(pool, bio);
+ cell_defer_no_holder(tc, cell);
+
+ if (bio_end_sector(bio) <= tc->origin_size)
+ remap_to_origin_and_issue(tc, bio);
+
+ else if (bio->bi_iter.bi_sector < tc->origin_size) {
+ zero_fill_bio(bio);
+ bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
+ remap_to_origin_and_issue(tc, bio);
+
+ } else {
+ zero_fill_bio(bio);
+ bio_endio(bio);
+ }
+ } else
+ provision_block(tc, bio, block, cell);
+ break;
+
+ default:
+ DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
+ __func__, r);
+ cell_defer_no_holder(tc, cell);
+ bio_io_error(bio);
+ break;
+ }
+}
+
+static void process_bio(struct thin_c *tc, struct bio *bio)
+{
+ struct pool *pool = tc->pool;
+ dm_block_t block = get_bio_block(tc, bio);
+ struct dm_bio_prison_cell *cell;
+ struct dm_cell_key key;
+
+ /*
+ * If cell is already occupied, then the block is already
+ * being provisioned so we have nothing further to do here.
+ */
+ build_virtual_key(tc->td, block, &key);
+ if (bio_detain(pool, &key, bio, &cell))
+ return;
+
+ process_cell(tc, cell);
+}
+
+static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
+ struct dm_bio_prison_cell *cell)
+{
+ int r;
+ int rw = bio_data_dir(bio);
+ dm_block_t block = get_bio_block(tc, bio);
+ struct dm_thin_lookup_result lookup_result;
+
+ r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
+ switch (r) {
+ case 0:
+ if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
+ handle_unserviceable_bio(tc->pool, bio);
+ if (cell)
+ cell_defer_no_holder(tc, cell);
+ } else {
+ inc_all_io_entry(tc->pool, bio);
+ remap_and_issue(tc, bio, lookup_result.block);
+ if (cell)
+ inc_remap_and_issue_cell(tc, cell, lookup_result.block);
+ }
+ break;
+
+ case -ENODATA:
+ if (cell)
+ cell_defer_no_holder(tc, cell);
+ if (rw != READ) {
+ handle_unserviceable_bio(tc->pool, bio);
+ break;
+ }
+
+ if (tc->origin_dev) {
+ inc_all_io_entry(tc->pool, bio);
+ remap_to_origin_and_issue(tc, bio);
+ break;
+ }
+
+ zero_fill_bio(bio);
+ bio_endio(bio);
+ break;
+
+ default:
+ DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
+ __func__, r);
+ if (cell)
+ cell_defer_no_holder(tc, cell);
+ bio_io_error(bio);
+ break;
+ }
+}
+
+static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
+{
+ __process_bio_read_only(tc, bio, NULL);
+}
+
+static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
+{
+ __process_bio_read_only(tc, cell->holder, cell);
+}
+
+static void process_bio_success(struct thin_c *tc, struct bio *bio)
+{
+ bio_endio(bio);
+}
+
+static void process_bio_fail(struct thin_c *tc, struct bio *bio)
+{
+ bio_io_error(bio);
+}
+
+static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
+{
+ cell_success(tc->pool, cell);
+}
+
+static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
+{
+ cell_error(tc->pool, cell);
+}
+
+/*
+ * FIXME: should we also commit due to size of transaction, measured in
+ * metadata blocks?
+ */
+static int need_commit_due_to_time(struct pool *pool)
+{
+ return !time_in_range(jiffies, pool->last_commit_jiffies,
+ pool->last_commit_jiffies + COMMIT_PERIOD);
+}
+
+#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
+#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
+
+static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
+{
+ struct rb_node **rbp, *parent;
+ struct dm_thin_endio_hook *pbd;
+ sector_t bi_sector = bio->bi_iter.bi_sector;
+
+ rbp = &tc->sort_bio_list.rb_node;
+ parent = NULL;
+ while (*rbp) {
+ parent = *rbp;
+ pbd = thin_pbd(parent);
+
+ if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
+ rbp = &(*rbp)->rb_left;
+ else
+ rbp = &(*rbp)->rb_right;
+ }
+
+ pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
+ rb_link_node(&pbd->rb_node, parent, rbp);
+ rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
+}
+
+static void __extract_sorted_bios(struct thin_c *tc)
+{
+ struct rb_node *node;
+ struct dm_thin_endio_hook *pbd;
+ struct bio *bio;
+
+ for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
+ pbd = thin_pbd(node);
+ bio = thin_bio(pbd);
+
+ bio_list_add(&tc->deferred_bio_list, bio);
+ rb_erase(&pbd->rb_node, &tc->sort_bio_list);
+ }
+
+ WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
+}
+
+static void __sort_thin_deferred_bios(struct thin_c *tc)
+{
+ struct bio *bio;
+ struct bio_list bios;
+
+ bio_list_init(&bios);
+ bio_list_merge(&bios, &tc->deferred_bio_list);
+ bio_list_init(&tc->deferred_bio_list);
+
+ /* Sort deferred_bio_list using rb-tree */
+ while ((bio = bio_list_pop(&bios)))
+ __thin_bio_rb_add(tc, bio);
+
+ /*
+ * Transfer the sorted bios in sort_bio_list back to
+ * deferred_bio_list to allow lockless submission of
+ * all bios.
+ */
+ __extract_sorted_bios(tc);
+}
+
+static void process_thin_deferred_bios(struct thin_c *tc)
+{
+ struct pool *pool = tc->pool;
+ struct bio *bio;
+ struct bio_list bios;
+ struct blk_plug plug;
+ unsigned int count = 0;
+
+ if (tc->requeue_mode) {
+ error_thin_bio_list(tc, &tc->deferred_bio_list,
+ BLK_STS_DM_REQUEUE);
+ return;
+ }
+
+ bio_list_init(&bios);
+
+ spin_lock_irq(&tc->lock);
+
+ if (bio_list_empty(&tc->deferred_bio_list)) {
+ spin_unlock_irq(&tc->lock);
+ return;
+ }
+
+ __sort_thin_deferred_bios(tc);
+
+ bio_list_merge(&bios, &tc->deferred_bio_list);
+ bio_list_init(&tc->deferred_bio_list);
+
+ spin_unlock_irq(&tc->lock);
+
+ blk_start_plug(&plug);
+ while ((bio = bio_list_pop(&bios))) {
+ /*
+ * If we've got no free new_mapping structs, and processing
+ * this bio might require one, we pause until there are some
+ * prepared mappings to process.
+ */
+ if (ensure_next_mapping(pool)) {
+ spin_lock_irq(&tc->lock);
+ bio_list_add(&tc->deferred_bio_list, bio);
+ bio_list_merge(&tc->deferred_bio_list, &bios);
+ spin_unlock_irq(&tc->lock);
+ break;
+ }
+
+ if (bio_op(bio) == REQ_OP_DISCARD)
+ pool->process_discard(tc, bio);
+ else
+ pool->process_bio(tc, bio);
+
+ if ((count++ & 127) == 0) {
+ throttle_work_update(&pool->throttle);
+ dm_pool_issue_prefetches(pool->pmd);
+ }
+ cond_resched();
+ }
+ blk_finish_plug(&plug);
+}
+
+static int cmp_cells(const void *lhs, const void *rhs)
+{
+ struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
+ struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
+
+ BUG_ON(!lhs_cell->holder);
+ BUG_ON(!rhs_cell->holder);
+
+ if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
+ return -1;
+
+ if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
+ return 1;
+
+ return 0;
+}
+
+static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
+{
+ unsigned int count = 0;
+ struct dm_bio_prison_cell *cell, *tmp;
+
+ list_for_each_entry_safe(cell, tmp, cells, user_list) {
+ if (count >= CELL_SORT_ARRAY_SIZE)
+ break;
+
+ pool->cell_sort_array[count++] = cell;
+ list_del(&cell->user_list);
+ }
+
+ sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
+
+ return count;
+}
+
+static void process_thin_deferred_cells(struct thin_c *tc)
+{
+ struct pool *pool = tc->pool;
+ struct list_head cells;
+ struct dm_bio_prison_cell *cell;
+ unsigned int i, j, count;
+
+ INIT_LIST_HEAD(&cells);
+
+ spin_lock_irq(&tc->lock);
+ list_splice_init(&tc->deferred_cells, &cells);
+ spin_unlock_irq(&tc->lock);
+
+ if (list_empty(&cells))
+ return;
+
+ do {
+ count = sort_cells(tc->pool, &cells);
+
+ for (i = 0; i < count; i++) {
+ cell = pool->cell_sort_array[i];
+ BUG_ON(!cell->holder);
+
+ /*
+ * If we've got no free new_mapping structs, and processing
+ * this bio might require one, we pause until there are some
+ * prepared mappings to process.
+ */
+ if (ensure_next_mapping(pool)) {
+ for (j = i; j < count; j++)
+ list_add(&pool->cell_sort_array[j]->user_list, &cells);
+
+ spin_lock_irq(&tc->lock);
+ list_splice(&cells, &tc->deferred_cells);
+ spin_unlock_irq(&tc->lock);
+ return;
+ }
+
+ if (bio_op(cell->holder) == REQ_OP_DISCARD)
+ pool->process_discard_cell(tc, cell);
+ else
+ pool->process_cell(tc, cell);
+ }
+ cond_resched();
+ } while (!list_empty(&cells));
+}
+
+static void thin_get(struct thin_c *tc);
+static void thin_put(struct thin_c *tc);
+
+/*
+ * We can't hold rcu_read_lock() around code that can block. So we
+ * find a thin with the rcu lock held; bump a refcount; then drop
+ * the lock.
+ */
+static struct thin_c *get_first_thin(struct pool *pool)
+{
+ struct thin_c *tc = NULL;
+
+ rcu_read_lock();
+ if (!list_empty(&pool->active_thins)) {
+ tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
+ thin_get(tc);
+ }
+ rcu_read_unlock();
+
+ return tc;
+}
+
+static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
+{
+ struct thin_c *old_tc = tc;
+
+ rcu_read_lock();
+ list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
+ thin_get(tc);
+ thin_put(old_tc);
+ rcu_read_unlock();
+ return tc;
+ }
+ thin_put(old_tc);
+ rcu_read_unlock();
+
+ return NULL;
+}
+
+static void process_deferred_bios(struct pool *pool)
+{
+ struct bio *bio;
+ struct bio_list bios, bio_completions;
+ struct thin_c *tc;
+
+ tc = get_first_thin(pool);
+ while (tc) {
+ process_thin_deferred_cells(tc);
+ process_thin_deferred_bios(tc);
+ tc = get_next_thin(pool, tc);
+ }
+
+ /*
+ * If there are any deferred flush bios, we must commit the metadata
+ * before issuing them or signaling their completion.
+ */
+ bio_list_init(&bios);
+ bio_list_init(&bio_completions);
+
+ spin_lock_irq(&pool->lock);
+ bio_list_merge(&bios, &pool->deferred_flush_bios);
+ bio_list_init(&pool->deferred_flush_bios);
+
+ bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
+ bio_list_init(&pool->deferred_flush_completions);
+ spin_unlock_irq(&pool->lock);
+
+ if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
+ !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
+ return;
+
+ if (commit(pool)) {
+ bio_list_merge(&bios, &bio_completions);
+
+ while ((bio = bio_list_pop(&bios)))
+ bio_io_error(bio);
+ return;
+ }
+ pool->last_commit_jiffies = jiffies;
+
+ while ((bio = bio_list_pop(&bio_completions)))
+ bio_endio(bio);
+
+ while ((bio = bio_list_pop(&bios))) {
+ /*
+ * The data device was flushed as part of metadata commit,
+ * so complete redundant flushes immediately.
+ */
+ if (bio->bi_opf & REQ_PREFLUSH)
+ bio_endio(bio);
+ else
+ dm_submit_bio_remap(bio, NULL);
+ }
+}
+
+static void do_worker(struct work_struct *ws)
+{
+ struct pool *pool = container_of(ws, struct pool, worker);
+
+ throttle_work_start(&pool->throttle);
+ dm_pool_issue_prefetches(pool->pmd);
+ throttle_work_update(&pool->throttle);
+ process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
+ throttle_work_update(&pool->throttle);
+ process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
+ throttle_work_update(&pool->throttle);
+ process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
+ throttle_work_update(&pool->throttle);
+ process_deferred_bios(pool);
+ throttle_work_complete(&pool->throttle);
+}
+
+/*
+ * We want to commit periodically so that not too much
+ * unwritten data builds up.
+ */
+static void do_waker(struct work_struct *ws)
+{
+ struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
+ wake_worker(pool);
+ queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
+}
+
+/*
+ * We're holding onto IO to allow userland time to react. After the
+ * timeout either the pool will have been resized (and thus back in
+ * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
+ */
+static void do_no_space_timeout(struct work_struct *ws)
+{
+ struct pool *pool = container_of(to_delayed_work(ws), struct pool,
+ no_space_timeout);
+
+ if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
+ pool->pf.error_if_no_space = true;
+ notify_of_pool_mode_change(pool);
+ error_retry_list_with_code(pool, BLK_STS_NOSPC);
+ }
+}
+
+/*----------------------------------------------------------------*/
+
+struct pool_work {
+ struct work_struct worker;
+ struct completion complete;
+};
+
+static struct pool_work *to_pool_work(struct work_struct *ws)
+{
+ return container_of(ws, struct pool_work, worker);
+}
+
+static void pool_work_complete(struct pool_work *pw)
+{
+ complete(&pw->complete);
+}
+
+static void pool_work_wait(struct pool_work *pw, struct pool *pool,
+ void (*fn)(struct work_struct *))
+{
+ INIT_WORK_ONSTACK(&pw->worker, fn);
+ init_completion(&pw->complete);
+ queue_work(pool->wq, &pw->worker);
+ wait_for_completion(&pw->complete);
+}
+
+/*----------------------------------------------------------------*/
+
+struct noflush_work {
+ struct pool_work pw;
+ struct thin_c *tc;
+};
+
+static struct noflush_work *to_noflush(struct work_struct *ws)
+{
+ return container_of(to_pool_work(ws), struct noflush_work, pw);
+}
+
+static void do_noflush_start(struct work_struct *ws)
+{
+ struct noflush_work *w = to_noflush(ws);
+ w->tc->requeue_mode = true;
+ requeue_io(w->tc);
+ pool_work_complete(&w->pw);
+}
+
+static void do_noflush_stop(struct work_struct *ws)
+{
+ struct noflush_work *w = to_noflush(ws);
+ w->tc->requeue_mode = false;
+ pool_work_complete(&w->pw);
+}
+
+static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
+{
+ struct noflush_work w;
+
+ w.tc = tc;
+ pool_work_wait(&w.pw, tc->pool, fn);
+}
+
+/*----------------------------------------------------------------*/
+
+static bool passdown_enabled(struct pool_c *pt)
+{
+ return pt->adjusted_pf.discard_passdown;
+}
+
+static void set_discard_callbacks(struct pool *pool)
+{
+ struct pool_c *pt = pool->ti->private;
+
+ if (passdown_enabled(pt)) {
+ pool->process_discard_cell = process_discard_cell_passdown;
+ pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
+ pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
+ } else {
+ pool->process_discard_cell = process_discard_cell_no_passdown;
+ pool->process_prepared_discard = process_prepared_discard_no_passdown;
+ }
+}
+
+static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
+{
+ struct pool_c *pt = pool->ti->private;
+ bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
+ enum pool_mode old_mode = get_pool_mode(pool);
+ unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
+
+ /*
+ * Never allow the pool to transition to PM_WRITE mode if user
+ * intervention is required to verify metadata and data consistency.
+ */
+ if (new_mode == PM_WRITE && needs_check) {
+ DMERR("%s: unable to switch pool to write mode until repaired.",
+ dm_device_name(pool->pool_md));
+ if (old_mode != new_mode)
+ new_mode = old_mode;
+ else
+ new_mode = PM_READ_ONLY;
+ }
+ /*
+ * If we were in PM_FAIL mode, rollback of metadata failed. We're
+ * not going to recover without a thin_repair. So we never let the
+ * pool move out of the old mode.
+ */
+ if (old_mode == PM_FAIL)
+ new_mode = old_mode;
+
+ switch (new_mode) {
+ case PM_FAIL:
+ dm_pool_metadata_read_only(pool->pmd);
+ pool->process_bio = process_bio_fail;
+ pool->process_discard = process_bio_fail;
+ pool->process_cell = process_cell_fail;
+ pool->process_discard_cell = process_cell_fail;
+ pool->process_prepared_mapping = process_prepared_mapping_fail;
+ pool->process_prepared_discard = process_prepared_discard_fail;
+
+ error_retry_list(pool);
+ break;
+
+ case PM_OUT_OF_METADATA_SPACE:
+ case PM_READ_ONLY:
+ dm_pool_metadata_read_only(pool->pmd);
+ pool->process_bio = process_bio_read_only;
+ pool->process_discard = process_bio_success;
+ pool->process_cell = process_cell_read_only;
+ pool->process_discard_cell = process_cell_success;
+ pool->process_prepared_mapping = process_prepared_mapping_fail;
+ pool->process_prepared_discard = process_prepared_discard_success;
+
+ error_retry_list(pool);
+ break;
+
+ case PM_OUT_OF_DATA_SPACE:
+ /*
+ * Ideally we'd never hit this state; the low water mark
+ * would trigger userland to extend the pool before we
+ * completely run out of data space. However, many small
+ * IOs to unprovisioned space can consume data space at an
+ * alarming rate. Adjust your low water mark if you're
+ * frequently seeing this mode.
+ */
+ pool->out_of_data_space = true;
+ pool->process_bio = process_bio_read_only;
+ pool->process_discard = process_discard_bio;
+ pool->process_cell = process_cell_read_only;
+ pool->process_prepared_mapping = process_prepared_mapping;
+ set_discard_callbacks(pool);
+
+ if (!pool->pf.error_if_no_space && no_space_timeout)
+ queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
+ break;
+
+ case PM_WRITE:
+ if (old_mode == PM_OUT_OF_DATA_SPACE)
+ cancel_delayed_work_sync(&pool->no_space_timeout);
+ pool->out_of_data_space = false;
+ pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
+ dm_pool_metadata_read_write(pool->pmd);
+ pool->process_bio = process_bio;
+ pool->process_discard = process_discard_bio;
+ pool->process_cell = process_cell;
+ pool->process_prepared_mapping = process_prepared_mapping;
+ set_discard_callbacks(pool);
+ break;
+ }
+
+ pool->pf.mode = new_mode;
+ /*
+ * The pool mode may have changed, sync it so bind_control_target()
+ * doesn't cause an unexpected mode transition on resume.
+ */
+ pt->adjusted_pf.mode = new_mode;
+
+ if (old_mode != new_mode)
+ notify_of_pool_mode_change(pool);
+}
+
+static void abort_transaction(struct pool *pool)
+{
+ const char *dev_name = dm_device_name(pool->pool_md);
+
+ DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
+ if (dm_pool_abort_metadata(pool->pmd)) {
+ DMERR("%s: failed to abort metadata transaction", dev_name);
+ set_pool_mode(pool, PM_FAIL);
+ }
+
+ if (dm_pool_metadata_set_needs_check(pool->pmd)) {
+ DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
+ set_pool_mode(pool, PM_FAIL);
+ }
+}
+
+static void metadata_operation_failed(struct pool *pool, const char *op, int r)
+{
+ DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
+ dm_device_name(pool->pool_md), op, r);
+
+ abort_transaction(pool);
+ set_pool_mode(pool, PM_READ_ONLY);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Mapping functions.
+ */
+
+/*
+ * Called only while mapping a thin bio to hand it over to the workqueue.
+ */
+static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
+{
+ struct pool *pool = tc->pool;
+
+ spin_lock_irq(&tc->lock);
+ bio_list_add(&tc->deferred_bio_list, bio);
+ spin_unlock_irq(&tc->lock);
+
+ wake_worker(pool);
+}
+
+static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
+{
+ struct pool *pool = tc->pool;
+
+ throttle_lock(&pool->throttle);
+ thin_defer_bio(tc, bio);
+ throttle_unlock(&pool->throttle);
+}
+
+static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
+{
+ struct pool *pool = tc->pool;
+
+ throttle_lock(&pool->throttle);
+ spin_lock_irq(&tc->lock);
+ list_add_tail(&cell->user_list, &tc->deferred_cells);
+ spin_unlock_irq(&tc->lock);
+ throttle_unlock(&pool->throttle);
+
+ wake_worker(pool);
+}
+
+static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
+{
+ struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
+
+ h->tc = tc;
+ h->shared_read_entry = NULL;
+ h->all_io_entry = NULL;
+ h->overwrite_mapping = NULL;
+ h->cell = NULL;
+}
+
+/*
+ * Non-blocking function called from the thin target's map function.
+ */
+static int thin_bio_map(struct dm_target *ti, struct bio *bio)
+{
+ int r;
+ struct thin_c *tc = ti->private;
+ dm_block_t block = get_bio_block(tc, bio);
+ struct dm_thin_device *td = tc->td;
+ struct dm_thin_lookup_result result;
+ struct dm_bio_prison_cell *virt_cell, *data_cell;
+ struct dm_cell_key key;
+
+ thin_hook_bio(tc, bio);
+
+ if (tc->requeue_mode) {
+ bio->bi_status = BLK_STS_DM_REQUEUE;
+ bio_endio(bio);
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ if (get_pool_mode(tc->pool) == PM_FAIL) {
+ bio_io_error(bio);
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
+ thin_defer_bio_with_throttle(tc, bio);
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ /*
+ * We must hold the virtual cell before doing the lookup, otherwise
+ * there's a race with discard.
+ */
+ build_virtual_key(tc->td, block, &key);
+ if (bio_detain(tc->pool, &key, bio, &virt_cell))
+ return DM_MAPIO_SUBMITTED;
+
+ r = dm_thin_find_block(td, block, 0, &result);
+
+ /*
+ * Note that we defer readahead too.
+ */
+ switch (r) {
+ case 0:
+ if (unlikely(result.shared)) {
+ /*
+ * We have a race condition here between the
+ * result.shared value returned by the lookup and
+ * snapshot creation, which may cause new
+ * sharing.
+ *
+ * To avoid this always quiesce the origin before
+ * taking the snap. You want to do this anyway to
+ * ensure a consistent application view
+ * (i.e. lockfs).
+ *
+ * More distant ancestors are irrelevant. The
+ * shared flag will be set in their case.
+ */
+ thin_defer_cell(tc, virt_cell);
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ build_data_key(tc->td, result.block, &key);
+ if (bio_detain(tc->pool, &key, bio, &data_cell)) {
+ cell_defer_no_holder(tc, virt_cell);
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ inc_all_io_entry(tc->pool, bio);
+ cell_defer_no_holder(tc, data_cell);
+ cell_defer_no_holder(tc, virt_cell);
+
+ remap(tc, bio, result.block);
+ return DM_MAPIO_REMAPPED;
+
+ case -ENODATA:
+ case -EWOULDBLOCK:
+ thin_defer_cell(tc, virt_cell);
+ return DM_MAPIO_SUBMITTED;
+
+ default:
+ /*
+ * Must always call bio_io_error on failure.
+ * dm_thin_find_block can fail with -EINVAL if the
+ * pool is switched to fail-io mode.
+ */
+ bio_io_error(bio);
+ cell_defer_no_holder(tc, virt_cell);
+ return DM_MAPIO_SUBMITTED;
+ }
+}
+
+static void requeue_bios(struct pool *pool)
+{
+ struct thin_c *tc;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(tc, &pool->active_thins, list) {
+ spin_lock_irq(&tc->lock);
+ bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
+ bio_list_init(&tc->retry_on_resume_list);
+ spin_unlock_irq(&tc->lock);
+ }
+ rcu_read_unlock();
+}
+
+/*----------------------------------------------------------------
+ * Binding of control targets to a pool object
+ *--------------------------------------------------------------*/
+static bool is_factor(sector_t block_size, uint32_t n)
+{
+ return !sector_div(block_size, n);
+}
+
+/*
+ * If discard_passdown was enabled verify that the data device
+ * supports discards. Disable discard_passdown if not.
+ */
+static void disable_passdown_if_not_supported(struct pool_c *pt)
+{
+ struct pool *pool = pt->pool;
+ struct block_device *data_bdev = pt->data_dev->bdev;
+ struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
+ const char *reason = NULL;
+
+ if (!pt->adjusted_pf.discard_passdown)
+ return;
+
+ if (!bdev_max_discard_sectors(pt->data_dev->bdev))
+ reason = "discard unsupported";
+
+ else if (data_limits->max_discard_sectors < pool->sectors_per_block)
+ reason = "max discard sectors smaller than a block";
+
+ if (reason) {
+ DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
+ pt->adjusted_pf.discard_passdown = false;
+ }
+}
+
+static int bind_control_target(struct pool *pool, struct dm_target *ti)
+{
+ struct pool_c *pt = ti->private;
+
+ /*
+ * We want to make sure that a pool in PM_FAIL mode is never upgraded.
+ */
+ enum pool_mode old_mode = get_pool_mode(pool);
+ enum pool_mode new_mode = pt->adjusted_pf.mode;
+
+ /*
+ * Don't change the pool's mode until set_pool_mode() below.
+ * Otherwise the pool's process_* function pointers may
+ * not match the desired pool mode.
+ */
+ pt->adjusted_pf.mode = old_mode;
+
+ pool->ti = ti;
+ pool->pf = pt->adjusted_pf;
+ pool->low_water_blocks = pt->low_water_blocks;
+
+ set_pool_mode(pool, new_mode);
+
+ return 0;
+}
+
+static void unbind_control_target(struct pool *pool, struct dm_target *ti)
+{
+ if (pool->ti == ti)
+ pool->ti = NULL;
+}
+
+/*----------------------------------------------------------------
+ * Pool creation
+ *--------------------------------------------------------------*/
+/* Initialize pool features. */
+static void pool_features_init(struct pool_features *pf)
+{
+ pf->mode = PM_WRITE;
+ pf->zero_new_blocks = true;
+ pf->discard_enabled = true;
+ pf->discard_passdown = true;
+ pf->error_if_no_space = false;
+}
+
+static void __pool_destroy(struct pool *pool)
+{
+ __pool_table_remove(pool);
+
+ vfree(pool->cell_sort_array);
+ if (dm_pool_metadata_close(pool->pmd) < 0)
+ DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
+
+ dm_bio_prison_destroy(pool->prison);
+ dm_kcopyd_client_destroy(pool->copier);
+
+ cancel_delayed_work_sync(&pool->waker);
+ cancel_delayed_work_sync(&pool->no_space_timeout);
+ if (pool->wq)
+ destroy_workqueue(pool->wq);
+
+ if (pool->next_mapping)
+ mempool_free(pool->next_mapping, &pool->mapping_pool);
+ mempool_exit(&pool->mapping_pool);
+ dm_deferred_set_destroy(pool->shared_read_ds);
+ dm_deferred_set_destroy(pool->all_io_ds);
+ kfree(pool);
+}
+
+static struct kmem_cache *_new_mapping_cache;
+
+static struct pool *pool_create(struct mapped_device *pool_md,
+ struct block_device *metadata_dev,
+ struct block_device *data_dev,
+ unsigned long block_size,
+ int read_only, char **error)
+{
+ int r;
+ void *err_p;
+ struct pool *pool;
+ struct dm_pool_metadata *pmd;
+ bool format_device = read_only ? false : true;
+
+ pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
+ if (IS_ERR(pmd)) {
+ *error = "Error creating metadata object";
+ return (struct pool *)pmd;
+ }
+
+ pool = kzalloc(sizeof(*pool), GFP_KERNEL);
+ if (!pool) {
+ *error = "Error allocating memory for pool";
+ err_p = ERR_PTR(-ENOMEM);
+ goto bad_pool;
+ }
+
+ pool->pmd = pmd;
+ pool->sectors_per_block = block_size;
+ if (block_size & (block_size - 1))
+ pool->sectors_per_block_shift = -1;
+ else
+ pool->sectors_per_block_shift = __ffs(block_size);
+ pool->low_water_blocks = 0;
+ pool_features_init(&pool->pf);
+ pool->prison = dm_bio_prison_create();
+ if (!pool->prison) {
+ *error = "Error creating pool's bio prison";
+ err_p = ERR_PTR(-ENOMEM);
+ goto bad_prison;
+ }
+
+ pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
+ if (IS_ERR(pool->copier)) {
+ r = PTR_ERR(pool->copier);
+ *error = "Error creating pool's kcopyd client";
+ err_p = ERR_PTR(r);
+ goto bad_kcopyd_client;
+ }
+
+ /*
+ * Create singlethreaded workqueue that will service all devices
+ * that use this metadata.
+ */
+ pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
+ if (!pool->wq) {
+ *error = "Error creating pool's workqueue";
+ err_p = ERR_PTR(-ENOMEM);
+ goto bad_wq;
+ }
+
+ throttle_init(&pool->throttle);
+ INIT_WORK(&pool->worker, do_worker);
+ INIT_DELAYED_WORK(&pool->waker, do_waker);
+ INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
+ spin_lock_init(&pool->lock);
+ bio_list_init(&pool->deferred_flush_bios);
+ bio_list_init(&pool->deferred_flush_completions);
+ INIT_LIST_HEAD(&pool->prepared_mappings);
+ INIT_LIST_HEAD(&pool->prepared_discards);
+ INIT_LIST_HEAD(&pool->prepared_discards_pt2);
+ INIT_LIST_HEAD(&pool->active_thins);
+ pool->low_water_triggered = false;
+ pool->suspended = true;
+ pool->out_of_data_space = false;
+
+ pool->shared_read_ds = dm_deferred_set_create();
+ if (!pool->shared_read_ds) {
+ *error = "Error creating pool's shared read deferred set";
+ err_p = ERR_PTR(-ENOMEM);
+ goto bad_shared_read_ds;
+ }
+
+ pool->all_io_ds = dm_deferred_set_create();
+ if (!pool->all_io_ds) {
+ *error = "Error creating pool's all io deferred set";
+ err_p = ERR_PTR(-ENOMEM);
+ goto bad_all_io_ds;
+ }
+
+ pool->next_mapping = NULL;
+ r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
+ _new_mapping_cache);
+ if (r) {
+ *error = "Error creating pool's mapping mempool";
+ err_p = ERR_PTR(r);
+ goto bad_mapping_pool;
+ }
+
+ pool->cell_sort_array =
+ vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
+ sizeof(*pool->cell_sort_array)));
+ if (!pool->cell_sort_array) {
+ *error = "Error allocating cell sort array";
+ err_p = ERR_PTR(-ENOMEM);
+ goto bad_sort_array;
+ }
+
+ pool->ref_count = 1;
+ pool->last_commit_jiffies = jiffies;
+ pool->pool_md = pool_md;
+ pool->md_dev = metadata_dev;
+ pool->data_dev = data_dev;
+ __pool_table_insert(pool);
+
+ return pool;
+
+bad_sort_array:
+ mempool_exit(&pool->mapping_pool);
+bad_mapping_pool:
+ dm_deferred_set_destroy(pool->all_io_ds);
+bad_all_io_ds:
+ dm_deferred_set_destroy(pool->shared_read_ds);
+bad_shared_read_ds:
+ destroy_workqueue(pool->wq);
+bad_wq:
+ dm_kcopyd_client_destroy(pool->copier);
+bad_kcopyd_client:
+ dm_bio_prison_destroy(pool->prison);
+bad_prison:
+ kfree(pool);
+bad_pool:
+ if (dm_pool_metadata_close(pmd))
+ DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
+
+ return err_p;
+}
+
+static void __pool_inc(struct pool *pool)
+{
+ BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
+ pool->ref_count++;
+}
+
+static void __pool_dec(struct pool *pool)
+{
+ BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
+ BUG_ON(!pool->ref_count);
+ if (!--pool->ref_count)
+ __pool_destroy(pool);
+}
+
+static struct pool *__pool_find(struct mapped_device *pool_md,
+ struct block_device *metadata_dev,
+ struct block_device *data_dev,
+ unsigned long block_size, int read_only,
+ char **error, int *created)
+{
+ struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
+
+ if (pool) {
+ if (pool->pool_md != pool_md) {
+ *error = "metadata device already in use by a pool";
+ return ERR_PTR(-EBUSY);
+ }
+ if (pool->data_dev != data_dev) {
+ *error = "data device already in use by a pool";
+ return ERR_PTR(-EBUSY);
+ }
+ __pool_inc(pool);
+
+ } else {
+ pool = __pool_table_lookup(pool_md);
+ if (pool) {
+ if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
+ *error = "different pool cannot replace a pool";
+ return ERR_PTR(-EINVAL);
+ }
+ __pool_inc(pool);
+
+ } else {
+ pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
+ *created = 1;
+ }
+ }
+
+ return pool;
+}
+
+/*----------------------------------------------------------------
+ * Pool target methods
+ *--------------------------------------------------------------*/
+static void pool_dtr(struct dm_target *ti)
+{
+ struct pool_c *pt = ti->private;
+
+ mutex_lock(&dm_thin_pool_table.mutex);
+
+ unbind_control_target(pt->pool, ti);
+ __pool_dec(pt->pool);
+ dm_put_device(ti, pt->metadata_dev);
+ dm_put_device(ti, pt->data_dev);
+ kfree(pt);
+
+ mutex_unlock(&dm_thin_pool_table.mutex);
+}
+
+static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
+ struct dm_target *ti)
+{
+ int r;
+ unsigned int argc;
+ const char *arg_name;
+
+ static const struct dm_arg _args[] = {
+ {0, 4, "Invalid number of pool feature arguments"},
+ };
+
+ /*
+ * No feature arguments supplied.
+ */
+ if (!as->argc)
+ return 0;
+
+ r = dm_read_arg_group(_args, as, &argc, &ti->error);
+ if (r)
+ return -EINVAL;
+
+ while (argc && !r) {
+ arg_name = dm_shift_arg(as);
+ argc--;
+
+ if (!strcasecmp(arg_name, "skip_block_zeroing"))
+ pf->zero_new_blocks = false;
+
+ else if (!strcasecmp(arg_name, "ignore_discard"))
+ pf->discard_enabled = false;
+
+ else if (!strcasecmp(arg_name, "no_discard_passdown"))
+ pf->discard_passdown = false;
+
+ else if (!strcasecmp(arg_name, "read_only"))
+ pf->mode = PM_READ_ONLY;
+
+ else if (!strcasecmp(arg_name, "error_if_no_space"))
+ pf->error_if_no_space = true;
+
+ else {
+ ti->error = "Unrecognised pool feature requested";
+ r = -EINVAL;
+ break;
+ }
+ }
+
+ return r;
+}
+
+static void metadata_low_callback(void *context)
+{
+ struct pool *pool = context;
+
+ DMWARN("%s: reached low water mark for metadata device: sending event.",
+ dm_device_name(pool->pool_md));
+
+ dm_table_event(pool->ti->table);
+}
+
+/*
+ * We need to flush the data device **before** committing the metadata.
+ *
+ * This ensures that the data blocks of any newly inserted mappings are
+ * properly written to non-volatile storage and won't be lost in case of a
+ * crash.
+ *
+ * Failure to do so can result in data corruption in the case of internal or
+ * external snapshots and in the case of newly provisioned blocks, when block
+ * zeroing is enabled.
+ */
+static int metadata_pre_commit_callback(void *context)
+{
+ struct pool *pool = context;
+
+ return blkdev_issue_flush(pool->data_dev);
+}
+
+static sector_t get_dev_size(struct block_device *bdev)
+{
+ return bdev_nr_sectors(bdev);
+}
+
+static void warn_if_metadata_device_too_big(struct block_device *bdev)
+{
+ sector_t metadata_dev_size = get_dev_size(bdev);
+
+ if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
+ DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
+ bdev, THIN_METADATA_MAX_SECTORS);
+}
+
+static sector_t get_metadata_dev_size(struct block_device *bdev)
+{
+ sector_t metadata_dev_size = get_dev_size(bdev);
+
+ if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
+ metadata_dev_size = THIN_METADATA_MAX_SECTORS;
+
+ return metadata_dev_size;
+}
+
+static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
+{
+ sector_t metadata_dev_size = get_metadata_dev_size(bdev);
+
+ sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
+
+ return metadata_dev_size;
+}
+
+/*
+ * When a metadata threshold is crossed a dm event is triggered, and
+ * userland should respond by growing the metadata device. We could let
+ * userland set the threshold, like we do with the data threshold, but I'm
+ * not sure they know enough to do this well.
+ */
+static dm_block_t calc_metadata_threshold(struct pool_c *pt)
+{
+ /*
+ * 4M is ample for all ops with the possible exception of thin
+ * device deletion which is harmless if it fails (just retry the
+ * delete after you've grown the device).
+ */
+ dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
+ return min((dm_block_t)1024ULL /* 4M */, quarter);
+}
+
+/*
+ * thin-pool <metadata dev> <data dev>
+ * <data block size (sectors)>
+ * <low water mark (blocks)>
+ * [<#feature args> [<arg>]*]
+ *
+ * Optional feature arguments are:
+ * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
+ * ignore_discard: disable discard
+ * no_discard_passdown: don't pass discards down to the data device
+ * read_only: Don't allow any changes to be made to the pool metadata.
+ * error_if_no_space: error IOs, instead of queueing, if no space.
+ */
+static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ int r, pool_created = 0;
+ struct pool_c *pt;
+ struct pool *pool;
+ struct pool_features pf;
+ struct dm_arg_set as;
+ struct dm_dev *data_dev;
+ unsigned long block_size;
+ dm_block_t low_water_blocks;
+ struct dm_dev *metadata_dev;
+ fmode_t metadata_mode;
+
+ /*
+ * FIXME Remove validation from scope of lock.
+ */
+ mutex_lock(&dm_thin_pool_table.mutex);
+
+ if (argc < 4) {
+ ti->error = "Invalid argument count";
+ r = -EINVAL;
+ goto out_unlock;
+ }
+
+ as.argc = argc;
+ as.argv = argv;
+
+ /* make sure metadata and data are different devices */
+ if (!strcmp(argv[0], argv[1])) {
+ ti->error = "Error setting metadata or data device";
+ r = -EINVAL;
+ goto out_unlock;
+ }
+
+ /*
+ * Set default pool features.
+ */
+ pool_features_init(&pf);
+
+ dm_consume_args(&as, 4);
+ r = parse_pool_features(&as, &pf, ti);
+ if (r)
+ goto out_unlock;
+
+ metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
+ r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
+ if (r) {
+ ti->error = "Error opening metadata block device";
+ goto out_unlock;
+ }
+ warn_if_metadata_device_too_big(metadata_dev->bdev);
+
+ r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
+ if (r) {
+ ti->error = "Error getting data device";
+ goto out_metadata;
+ }
+
+ if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
+ block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
+ block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
+ block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
+ ti->error = "Invalid block size";
+ r = -EINVAL;
+ goto out;
+ }
+
+ if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
+ ti->error = "Invalid low water mark";
+ r = -EINVAL;
+ goto out;
+ }
+
+ pt = kzalloc(sizeof(*pt), GFP_KERNEL);
+ if (!pt) {
+ r = -ENOMEM;
+ goto out;
+ }
+
+ pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
+ block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
+ if (IS_ERR(pool)) {
+ r = PTR_ERR(pool);
+ goto out_free_pt;
+ }
+
+ /*
+ * 'pool_created' reflects whether this is the first table load.
+ * Top level discard support is not allowed to be changed after
+ * initial load. This would require a pool reload to trigger thin
+ * device changes.
+ */
+ if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
+ ti->error = "Discard support cannot be disabled once enabled";
+ r = -EINVAL;
+ goto out_flags_changed;
+ }
+
+ pt->pool = pool;
+ pt->ti = ti;
+ pt->metadata_dev = metadata_dev;
+ pt->data_dev = data_dev;
+ pt->low_water_blocks = low_water_blocks;
+ pt->adjusted_pf = pt->requested_pf = pf;
+ ti->num_flush_bios = 1;
+ ti->limit_swap_bios = true;
+
+ /*
+ * Only need to enable discards if the pool should pass
+ * them down to the data device. The thin device's discard
+ * processing will cause mappings to be removed from the btree.
+ */
+ if (pf.discard_enabled && pf.discard_passdown) {
+ ti->num_discard_bios = 1;
+
+ /*
+ * Setting 'discards_supported' circumvents the normal
+ * stacking of discard limits (this keeps the pool and
+ * thin devices' discard limits consistent).
+ */
+ ti->discards_supported = true;
+ }
+ ti->private = pt;
+
+ r = dm_pool_register_metadata_threshold(pt->pool->pmd,
+ calc_metadata_threshold(pt),
+ metadata_low_callback,
+ pool);
+ if (r) {
+ ti->error = "Error registering metadata threshold";
+ goto out_flags_changed;
+ }
+
+ dm_pool_register_pre_commit_callback(pool->pmd,
+ metadata_pre_commit_callback, pool);
+
+ mutex_unlock(&dm_thin_pool_table.mutex);
+
+ return 0;
+
+out_flags_changed:
+ __pool_dec(pool);
+out_free_pt:
+ kfree(pt);
+out:
+ dm_put_device(ti, data_dev);
+out_metadata:
+ dm_put_device(ti, metadata_dev);
+out_unlock:
+ mutex_unlock(&dm_thin_pool_table.mutex);
+
+ return r;
+}
+
+static int pool_map(struct dm_target *ti, struct bio *bio)
+{
+ int r;
+ struct pool_c *pt = ti->private;
+ struct pool *pool = pt->pool;
+
+ /*
+ * As this is a singleton target, ti->begin is always zero.
+ */
+ spin_lock_irq(&pool->lock);
+ bio_set_dev(bio, pt->data_dev->bdev);
+ r = DM_MAPIO_REMAPPED;
+ spin_unlock_irq(&pool->lock);
+
+ return r;
+}
+
+static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
+{
+ int r;
+ struct pool_c *pt = ti->private;
+ struct pool *pool = pt->pool;
+ sector_t data_size = ti->len;
+ dm_block_t sb_data_size;
+
+ *need_commit = false;
+
+ (void) sector_div(data_size, pool->sectors_per_block);
+
+ r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
+ if (r) {
+ DMERR("%s: failed to retrieve data device size",
+ dm_device_name(pool->pool_md));
+ return r;
+ }
+
+ if (data_size < sb_data_size) {
+ DMERR("%s: pool target (%llu blocks) too small: expected %llu",
+ dm_device_name(pool->pool_md),
+ (unsigned long long)data_size, sb_data_size);
+ return -EINVAL;
+
+ } else if (data_size > sb_data_size) {
+ if (dm_pool_metadata_needs_check(pool->pmd)) {
+ DMERR("%s: unable to grow the data device until repaired.",
+ dm_device_name(pool->pool_md));
+ return 0;
+ }
+
+ if (sb_data_size)
+ DMINFO("%s: growing the data device from %llu to %llu blocks",
+ dm_device_name(pool->pool_md),
+ sb_data_size, (unsigned long long)data_size);
+ r = dm_pool_resize_data_dev(pool->pmd, data_size);
+ if (r) {
+ metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
+ return r;
+ }
+
+ *need_commit = true;
+ }
+
+ return 0;
+}
+
+static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
+{
+ int r;
+ struct pool_c *pt = ti->private;
+ struct pool *pool = pt->pool;
+ dm_block_t metadata_dev_size, sb_metadata_dev_size;
+
+ *need_commit = false;
+
+ metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
+
+ r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
+ if (r) {
+ DMERR("%s: failed to retrieve metadata device size",
+ dm_device_name(pool->pool_md));
+ return r;
+ }
+
+ if (metadata_dev_size < sb_metadata_dev_size) {
+ DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
+ dm_device_name(pool->pool_md),
+ metadata_dev_size, sb_metadata_dev_size);
+ return -EINVAL;
+
+ } else if (metadata_dev_size > sb_metadata_dev_size) {
+ if (dm_pool_metadata_needs_check(pool->pmd)) {
+ DMERR("%s: unable to grow the metadata device until repaired.",
+ dm_device_name(pool->pool_md));
+ return 0;
+ }
+
+ warn_if_metadata_device_too_big(pool->md_dev);
+ DMINFO("%s: growing the metadata device from %llu to %llu blocks",
+ dm_device_name(pool->pool_md),
+ sb_metadata_dev_size, metadata_dev_size);
+
+ if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
+ set_pool_mode(pool, PM_WRITE);
+
+ r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
+ if (r) {
+ metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
+ return r;
+ }
+
+ *need_commit = true;
+ }
+
+ return 0;
+}
+
+/*
+ * Retrieves the number of blocks of the data device from
+ * the superblock and compares it to the actual device size,
+ * thus resizing the data device in case it has grown.
+ *
+ * This both copes with opening preallocated data devices in the ctr
+ * being followed by a resume
+ * -and-
+ * calling the resume method individually after userspace has
+ * grown the data device in reaction to a table event.
+ */
+static int pool_preresume(struct dm_target *ti)
+{
+ int r;
+ bool need_commit1, need_commit2;
+ struct pool_c *pt = ti->private;
+ struct pool *pool = pt->pool;
+
+ /*
+ * Take control of the pool object.
+ */
+ r = bind_control_target(pool, ti);
+ if (r)
+ goto out;
+
+ r = maybe_resize_data_dev(ti, &need_commit1);
+ if (r)
+ goto out;
+
+ r = maybe_resize_metadata_dev(ti, &need_commit2);
+ if (r)
+ goto out;
+
+ if (need_commit1 || need_commit2)
+ (void) commit(pool);
+out:
+ /*
+ * When a thin-pool is PM_FAIL, it cannot be rebuilt if
+ * bio is in deferred list. Therefore need to return 0
+ * to allow pool_resume() to flush IO.
+ */
+ if (r && get_pool_mode(pool) == PM_FAIL)
+ r = 0;
+
+ return r;
+}
+
+static void pool_suspend_active_thins(struct pool *pool)
+{
+ struct thin_c *tc;
+
+ /* Suspend all active thin devices */
+ tc = get_first_thin(pool);
+ while (tc) {
+ dm_internal_suspend_noflush(tc->thin_md);
+ tc = get_next_thin(pool, tc);
+ }
+}
+
+static void pool_resume_active_thins(struct pool *pool)
+{
+ struct thin_c *tc;
+
+ /* Resume all active thin devices */
+ tc = get_first_thin(pool);
+ while (tc) {
+ dm_internal_resume(tc->thin_md);
+ tc = get_next_thin(pool, tc);
+ }
+}
+
+static void pool_resume(struct dm_target *ti)
+{
+ struct pool_c *pt = ti->private;
+ struct pool *pool = pt->pool;
+
+ /*
+ * Must requeue active_thins' bios and then resume
+ * active_thins _before_ clearing 'suspend' flag.
+ */
+ requeue_bios(pool);
+ pool_resume_active_thins(pool);
+
+ spin_lock_irq(&pool->lock);
+ pool->low_water_triggered = false;
+ pool->suspended = false;
+ spin_unlock_irq(&pool->lock);
+
+ do_waker(&pool->waker.work);
+}
+
+static void pool_presuspend(struct dm_target *ti)
+{
+ struct pool_c *pt = ti->private;
+ struct pool *pool = pt->pool;
+
+ spin_lock_irq(&pool->lock);
+ pool->suspended = true;
+ spin_unlock_irq(&pool->lock);
+
+ pool_suspend_active_thins(pool);
+}
+
+static void pool_presuspend_undo(struct dm_target *ti)
+{
+ struct pool_c *pt = ti->private;
+ struct pool *pool = pt->pool;
+
+ pool_resume_active_thins(pool);
+
+ spin_lock_irq(&pool->lock);
+ pool->suspended = false;
+ spin_unlock_irq(&pool->lock);
+}
+
+static void pool_postsuspend(struct dm_target *ti)
+{
+ struct pool_c *pt = ti->private;
+ struct pool *pool = pt->pool;
+
+ cancel_delayed_work_sync(&pool->waker);
+ cancel_delayed_work_sync(&pool->no_space_timeout);
+ flush_workqueue(pool->wq);
+ (void) commit(pool);
+}
+
+static int check_arg_count(unsigned int argc, unsigned int args_required)
+{
+ if (argc != args_required) {
+ DMWARN("Message received with %u arguments instead of %u.",
+ argc, args_required);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
+{
+ if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
+ *dev_id <= MAX_DEV_ID)
+ return 0;
+
+ if (warning)
+ DMWARN("Message received with invalid device id: %s", arg);
+
+ return -EINVAL;
+}
+
+static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
+{
+ dm_thin_id dev_id;
+ int r;
+
+ r = check_arg_count(argc, 2);
+ if (r)
+ return r;
+
+ r = read_dev_id(argv[1], &dev_id, 1);
+ if (r)
+ return r;
+
+ r = dm_pool_create_thin(pool->pmd, dev_id);
+ if (r) {
+ DMWARN("Creation of new thinly-provisioned device with id %s failed.",
+ argv[1]);
+ return r;
+ }
+
+ return 0;
+}
+
+static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
+{
+ dm_thin_id dev_id;
+ dm_thin_id origin_dev_id;
+ int r;
+
+ r = check_arg_count(argc, 3);
+ if (r)
+ return r;
+
+ r = read_dev_id(argv[1], &dev_id, 1);
+ if (r)
+ return r;
+
+ r = read_dev_id(argv[2], &origin_dev_id, 1);
+ if (r)
+ return r;
+
+ r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
+ if (r) {
+ DMWARN("Creation of new snapshot %s of device %s failed.",
+ argv[1], argv[2]);
+ return r;
+ }
+
+ return 0;
+}
+
+static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
+{
+ dm_thin_id dev_id;
+ int r;
+
+ r = check_arg_count(argc, 2);
+ if (r)
+ return r;
+
+ r = read_dev_id(argv[1], &dev_id, 1);
+ if (r)
+ return r;
+
+ r = dm_pool_delete_thin_device(pool->pmd, dev_id);
+ if (r)
+ DMWARN("Deletion of thin device %s failed.", argv[1]);
+
+ return r;
+}
+
+static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
+{
+ dm_thin_id old_id, new_id;
+ int r;
+
+ r = check_arg_count(argc, 3);
+ if (r)
+ return r;
+
+ if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
+ DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
+ return -EINVAL;
+ }
+
+ if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
+ DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
+ return -EINVAL;
+ }
+
+ r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
+ if (r) {
+ DMWARN("Failed to change transaction id from %s to %s.",
+ argv[1], argv[2]);
+ return r;
+ }
+
+ return 0;
+}
+
+static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
+{
+ int r;
+
+ r = check_arg_count(argc, 1);
+ if (r)
+ return r;
+
+ (void) commit(pool);
+
+ r = dm_pool_reserve_metadata_snap(pool->pmd);
+ if (r)
+ DMWARN("reserve_metadata_snap message failed.");
+
+ return r;
+}
+
+static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
+{
+ int r;
+
+ r = check_arg_count(argc, 1);
+ if (r)
+ return r;
+
+ r = dm_pool_release_metadata_snap(pool->pmd);
+ if (r)
+ DMWARN("release_metadata_snap message failed.");
+
+ return r;
+}
+
+/*
+ * Messages supported:
+ * create_thin <dev_id>
+ * create_snap <dev_id> <origin_id>
+ * delete <dev_id>
+ * set_transaction_id <current_trans_id> <new_trans_id>
+ * reserve_metadata_snap
+ * release_metadata_snap
+ */
+static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
+ char *result, unsigned int maxlen)
+{
+ int r = -EINVAL;
+ struct pool_c *pt = ti->private;
+ struct pool *pool = pt->pool;
+
+ if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
+ DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
+ dm_device_name(pool->pool_md));
+ return -EOPNOTSUPP;
+ }
+
+ if (!strcasecmp(argv[0], "create_thin"))
+ r = process_create_thin_mesg(argc, argv, pool);
+
+ else if (!strcasecmp(argv[0], "create_snap"))
+ r = process_create_snap_mesg(argc, argv, pool);
+
+ else if (!strcasecmp(argv[0], "delete"))
+ r = process_delete_mesg(argc, argv, pool);
+
+ else if (!strcasecmp(argv[0], "set_transaction_id"))
+ r = process_set_transaction_id_mesg(argc, argv, pool);
+
+ else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
+ r = process_reserve_metadata_snap_mesg(argc, argv, pool);
+
+ else if (!strcasecmp(argv[0], "release_metadata_snap"))
+ r = process_release_metadata_snap_mesg(argc, argv, pool);
+
+ else
+ DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
+
+ if (!r)
+ (void) commit(pool);
+
+ return r;
+}
+
+static void emit_flags(struct pool_features *pf, char *result,
+ unsigned int sz, unsigned int maxlen)
+{
+ unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
+ !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
+ pf->error_if_no_space;
+ DMEMIT("%u ", count);
+
+ if (!pf->zero_new_blocks)
+ DMEMIT("skip_block_zeroing ");
+
+ if (!pf->discard_enabled)
+ DMEMIT("ignore_discard ");
+
+ if (!pf->discard_passdown)
+ DMEMIT("no_discard_passdown ");
+
+ if (pf->mode == PM_READ_ONLY)
+ DMEMIT("read_only ");
+
+ if (pf->error_if_no_space)
+ DMEMIT("error_if_no_space ");
+}
+
+/*
+ * Status line is:
+ * <transaction id> <used metadata sectors>/<total metadata sectors>
+ * <used data sectors>/<total data sectors> <held metadata root>
+ * <pool mode> <discard config> <no space config> <needs_check>
+ */
+static void pool_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ int r;
+ unsigned int sz = 0;
+ uint64_t transaction_id;
+ dm_block_t nr_free_blocks_data;
+ dm_block_t nr_free_blocks_metadata;
+ dm_block_t nr_blocks_data;
+ dm_block_t nr_blocks_metadata;
+ dm_block_t held_root;
+ enum pool_mode mode;
+ char buf[BDEVNAME_SIZE];
+ char buf2[BDEVNAME_SIZE];
+ struct pool_c *pt = ti->private;
+ struct pool *pool = pt->pool;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ if (get_pool_mode(pool) == PM_FAIL) {
+ DMEMIT("Fail");
+ break;
+ }
+
+ /* Commit to ensure statistics aren't out-of-date */
+ if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
+ (void) commit(pool);
+
+ r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
+ if (r) {
+ DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
+ dm_device_name(pool->pool_md), r);
+ goto err;
+ }
+
+ r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
+ if (r) {
+ DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
+ dm_device_name(pool->pool_md), r);
+ goto err;
+ }
+
+ r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
+ if (r) {
+ DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
+ dm_device_name(pool->pool_md), r);
+ goto err;
+ }
+
+ r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
+ if (r) {
+ DMERR("%s: dm_pool_get_free_block_count returned %d",
+ dm_device_name(pool->pool_md), r);
+ goto err;
+ }
+
+ r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
+ if (r) {
+ DMERR("%s: dm_pool_get_data_dev_size returned %d",
+ dm_device_name(pool->pool_md), r);
+ goto err;
+ }
+
+ r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
+ if (r) {
+ DMERR("%s: dm_pool_get_metadata_snap returned %d",
+ dm_device_name(pool->pool_md), r);
+ goto err;
+ }
+
+ DMEMIT("%llu %llu/%llu %llu/%llu ",
+ (unsigned long long)transaction_id,
+ (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
+ (unsigned long long)nr_blocks_metadata,
+ (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
+ (unsigned long long)nr_blocks_data);
+
+ if (held_root)
+ DMEMIT("%llu ", held_root);
+ else
+ DMEMIT("- ");
+
+ mode = get_pool_mode(pool);
+ if (mode == PM_OUT_OF_DATA_SPACE)
+ DMEMIT("out_of_data_space ");
+ else if (is_read_only_pool_mode(mode))
+ DMEMIT("ro ");
+ else
+ DMEMIT("rw ");
+
+ if (!pool->pf.discard_enabled)
+ DMEMIT("ignore_discard ");
+ else if (pool->pf.discard_passdown)
+ DMEMIT("discard_passdown ");
+ else
+ DMEMIT("no_discard_passdown ");
+
+ if (pool->pf.error_if_no_space)
+ DMEMIT("error_if_no_space ");
+ else
+ DMEMIT("queue_if_no_space ");
+
+ if (dm_pool_metadata_needs_check(pool->pmd))
+ DMEMIT("needs_check ");
+ else
+ DMEMIT("- ");
+
+ DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
+
+ break;
+
+ case STATUSTYPE_TABLE:
+ DMEMIT("%s %s %lu %llu ",
+ format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
+ format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
+ (unsigned long)pool->sectors_per_block,
+ (unsigned long long)pt->low_water_blocks);
+ emit_flags(&pt->requested_pf, result, sz, maxlen);
+ break;
+
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+ return;
+
+err:
+ DMEMIT("Error");
+}
+
+static int pool_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ struct pool_c *pt = ti->private;
+
+ return fn(ti, pt->data_dev, 0, ti->len, data);
+}
+
+static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+ struct pool_c *pt = ti->private;
+ struct pool *pool = pt->pool;
+ sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
+
+ /*
+ * If max_sectors is smaller than pool->sectors_per_block adjust it
+ * to the highest possible power-of-2 factor of pool->sectors_per_block.
+ * This is especially beneficial when the pool's data device is a RAID
+ * device that has a full stripe width that matches pool->sectors_per_block
+ * -- because even though partial RAID stripe-sized IOs will be issued to a
+ * single RAID stripe; when aggregated they will end on a full RAID stripe
+ * boundary.. which avoids additional partial RAID stripe writes cascading
+ */
+ if (limits->max_sectors < pool->sectors_per_block) {
+ while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
+ if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
+ limits->max_sectors--;
+ limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
+ }
+ }
+
+ /*
+ * If the system-determined stacked limits are compatible with the
+ * pool's blocksize (io_opt is a factor) do not override them.
+ */
+ if (io_opt_sectors < pool->sectors_per_block ||
+ !is_factor(io_opt_sectors, pool->sectors_per_block)) {
+ if (is_factor(pool->sectors_per_block, limits->max_sectors))
+ blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
+ else
+ blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
+ blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
+ }
+
+ /*
+ * pt->adjusted_pf is a staging area for the actual features to use.
+ * They get transferred to the live pool in bind_control_target()
+ * called from pool_preresume().
+ */
+ if (!pt->adjusted_pf.discard_enabled) {
+ /*
+ * Must explicitly disallow stacking discard limits otherwise the
+ * block layer will stack them if pool's data device has support.
+ */
+ limits->discard_granularity = 0;
+ return;
+ }
+
+ disable_passdown_if_not_supported(pt);
+
+ /*
+ * The pool uses the same discard limits as the underlying data
+ * device. DM core has already set this up.
+ */
+}
+
+static struct target_type pool_target = {
+ .name = "thin-pool",
+ .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
+ DM_TARGET_IMMUTABLE,
+ .version = {1, 22, 0},
+ .module = THIS_MODULE,
+ .ctr = pool_ctr,
+ .dtr = pool_dtr,
+ .map = pool_map,
+ .presuspend = pool_presuspend,
+ .presuspend_undo = pool_presuspend_undo,
+ .postsuspend = pool_postsuspend,
+ .preresume = pool_preresume,
+ .resume = pool_resume,
+ .message = pool_message,
+ .status = pool_status,
+ .iterate_devices = pool_iterate_devices,
+ .io_hints = pool_io_hints,
+};
+
+/*----------------------------------------------------------------
+ * Thin target methods
+ *--------------------------------------------------------------*/
+static void thin_get(struct thin_c *tc)
+{
+ refcount_inc(&tc->refcount);
+}
+
+static void thin_put(struct thin_c *tc)
+{
+ if (refcount_dec_and_test(&tc->refcount))
+ complete(&tc->can_destroy);
+}
+
+static void thin_dtr(struct dm_target *ti)
+{
+ struct thin_c *tc = ti->private;
+
+ spin_lock_irq(&tc->pool->lock);
+ list_del_rcu(&tc->list);
+ spin_unlock_irq(&tc->pool->lock);
+ synchronize_rcu();
+
+ thin_put(tc);
+ wait_for_completion(&tc->can_destroy);
+
+ mutex_lock(&dm_thin_pool_table.mutex);
+
+ __pool_dec(tc->pool);
+ dm_pool_close_thin_device(tc->td);
+ dm_put_device(ti, tc->pool_dev);
+ if (tc->origin_dev)
+ dm_put_device(ti, tc->origin_dev);
+ kfree(tc);
+
+ mutex_unlock(&dm_thin_pool_table.mutex);
+}
+
+/*
+ * Thin target parameters:
+ *
+ * <pool_dev> <dev_id> [origin_dev]
+ *
+ * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
+ * dev_id: the internal device identifier
+ * origin_dev: a device external to the pool that should act as the origin
+ *
+ * If the pool device has discards disabled, they get disabled for the thin
+ * device as well.
+ */
+static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ int r;
+ struct thin_c *tc;
+ struct dm_dev *pool_dev, *origin_dev;
+ struct mapped_device *pool_md;
+
+ mutex_lock(&dm_thin_pool_table.mutex);
+
+ if (argc != 2 && argc != 3) {
+ ti->error = "Invalid argument count";
+ r = -EINVAL;
+ goto out_unlock;
+ }
+
+ tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
+ if (!tc) {
+ ti->error = "Out of memory";
+ r = -ENOMEM;
+ goto out_unlock;
+ }
+ tc->thin_md = dm_table_get_md(ti->table);
+ spin_lock_init(&tc->lock);
+ INIT_LIST_HEAD(&tc->deferred_cells);
+ bio_list_init(&tc->deferred_bio_list);
+ bio_list_init(&tc->retry_on_resume_list);
+ tc->sort_bio_list = RB_ROOT;
+
+ if (argc == 3) {
+ if (!strcmp(argv[0], argv[2])) {
+ ti->error = "Error setting origin device";
+ r = -EINVAL;
+ goto bad_origin_dev;
+ }
+
+ r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
+ if (r) {
+ ti->error = "Error opening origin device";
+ goto bad_origin_dev;
+ }
+ tc->origin_dev = origin_dev;
+ }
+
+ r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
+ if (r) {
+ ti->error = "Error opening pool device";
+ goto bad_pool_dev;
+ }
+ tc->pool_dev = pool_dev;
+
+ if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
+ ti->error = "Invalid device id";
+ r = -EINVAL;
+ goto bad_common;
+ }
+
+ pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
+ if (!pool_md) {
+ ti->error = "Couldn't get pool mapped device";
+ r = -EINVAL;
+ goto bad_common;
+ }
+
+ tc->pool = __pool_table_lookup(pool_md);
+ if (!tc->pool) {
+ ti->error = "Couldn't find pool object";
+ r = -EINVAL;
+ goto bad_pool_lookup;
+ }
+ __pool_inc(tc->pool);
+
+ if (get_pool_mode(tc->pool) == PM_FAIL) {
+ ti->error = "Couldn't open thin device, Pool is in fail mode";
+ r = -EINVAL;
+ goto bad_pool;
+ }
+
+ r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
+ if (r) {
+ ti->error = "Couldn't open thin internal device";
+ goto bad_pool;
+ }
+
+ r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
+ if (r)
+ goto bad;
+
+ ti->num_flush_bios = 1;
+ ti->limit_swap_bios = true;
+ ti->flush_supported = true;
+ ti->accounts_remapped_io = true;
+ ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
+
+ /* In case the pool supports discards, pass them on. */
+ if (tc->pool->pf.discard_enabled) {
+ ti->discards_supported = true;
+ ti->num_discard_bios = 1;
+ }
+
+ mutex_unlock(&dm_thin_pool_table.mutex);
+
+ spin_lock_irq(&tc->pool->lock);
+ if (tc->pool->suspended) {
+ spin_unlock_irq(&tc->pool->lock);
+ mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
+ ti->error = "Unable to activate thin device while pool is suspended";
+ r = -EINVAL;
+ goto bad;
+ }
+ refcount_set(&tc->refcount, 1);
+ init_completion(&tc->can_destroy);
+ list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
+ spin_unlock_irq(&tc->pool->lock);
+ /*
+ * This synchronize_rcu() call is needed here otherwise we risk a
+ * wake_worker() call finding no bios to process (because the newly
+ * added tc isn't yet visible). So this reduces latency since we
+ * aren't then dependent on the periodic commit to wake_worker().
+ */
+ synchronize_rcu();
+
+ dm_put(pool_md);
+
+ return 0;
+
+bad:
+ dm_pool_close_thin_device(tc->td);
+bad_pool:
+ __pool_dec(tc->pool);
+bad_pool_lookup:
+ dm_put(pool_md);
+bad_common:
+ dm_put_device(ti, tc->pool_dev);
+bad_pool_dev:
+ if (tc->origin_dev)
+ dm_put_device(ti, tc->origin_dev);
+bad_origin_dev:
+ kfree(tc);
+out_unlock:
+ mutex_unlock(&dm_thin_pool_table.mutex);
+
+ return r;
+}
+
+static int thin_map(struct dm_target *ti, struct bio *bio)
+{
+ bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
+
+ return thin_bio_map(ti, bio);
+}
+
+static int thin_endio(struct dm_target *ti, struct bio *bio,
+ blk_status_t *err)
+{
+ unsigned long flags;
+ struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
+ struct list_head work;
+ struct dm_thin_new_mapping *m, *tmp;
+ struct pool *pool = h->tc->pool;
+
+ if (h->shared_read_entry) {
+ INIT_LIST_HEAD(&work);
+ dm_deferred_entry_dec(h->shared_read_entry, &work);
+
+ spin_lock_irqsave(&pool->lock, flags);
+ list_for_each_entry_safe(m, tmp, &work, list) {
+ list_del(&m->list);
+ __complete_mapping_preparation(m);
+ }
+ spin_unlock_irqrestore(&pool->lock, flags);
+ }
+
+ if (h->all_io_entry) {
+ INIT_LIST_HEAD(&work);
+ dm_deferred_entry_dec(h->all_io_entry, &work);
+ if (!list_empty(&work)) {
+ spin_lock_irqsave(&pool->lock, flags);
+ list_for_each_entry_safe(m, tmp, &work, list)
+ list_add_tail(&m->list, &pool->prepared_discards);
+ spin_unlock_irqrestore(&pool->lock, flags);
+ wake_worker(pool);
+ }
+ }
+
+ if (h->cell)
+ cell_defer_no_holder(h->tc, h->cell);
+
+ return DM_ENDIO_DONE;
+}
+
+static void thin_presuspend(struct dm_target *ti)
+{
+ struct thin_c *tc = ti->private;
+
+ if (dm_noflush_suspending(ti))
+ noflush_work(tc, do_noflush_start);
+}
+
+static void thin_postsuspend(struct dm_target *ti)
+{
+ struct thin_c *tc = ti->private;
+
+ /*
+ * The dm_noflush_suspending flag has been cleared by now, so
+ * unfortunately we must always run this.
+ */
+ noflush_work(tc, do_noflush_stop);
+}
+
+static int thin_preresume(struct dm_target *ti)
+{
+ struct thin_c *tc = ti->private;
+
+ if (tc->origin_dev)
+ tc->origin_size = get_dev_size(tc->origin_dev->bdev);
+
+ return 0;
+}
+
+/*
+ * <nr mapped sectors> <highest mapped sector>
+ */
+static void thin_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ int r;
+ ssize_t sz = 0;
+ dm_block_t mapped, highest;
+ char buf[BDEVNAME_SIZE];
+ struct thin_c *tc = ti->private;
+
+ if (get_pool_mode(tc->pool) == PM_FAIL) {
+ DMEMIT("Fail");
+ return;
+ }
+
+ if (!tc->td)
+ DMEMIT("-");
+ else {
+ switch (type) {
+ case STATUSTYPE_INFO:
+ r = dm_thin_get_mapped_count(tc->td, &mapped);
+ if (r) {
+ DMERR("dm_thin_get_mapped_count returned %d", r);
+ goto err;
+ }
+
+ r = dm_thin_get_highest_mapped_block(tc->td, &highest);
+ if (r < 0) {
+ DMERR("dm_thin_get_highest_mapped_block returned %d", r);
+ goto err;
+ }
+
+ DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
+ if (r)
+ DMEMIT("%llu", ((highest + 1) *
+ tc->pool->sectors_per_block) - 1);
+ else
+ DMEMIT("-");
+ break;
+
+ case STATUSTYPE_TABLE:
+ DMEMIT("%s %lu",
+ format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
+ (unsigned long) tc->dev_id);
+ if (tc->origin_dev)
+ DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
+ break;
+
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+ }
+
+ return;
+
+err:
+ DMEMIT("Error");
+}
+
+static int thin_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ sector_t blocks;
+ struct thin_c *tc = ti->private;
+ struct pool *pool = tc->pool;
+
+ /*
+ * We can't call dm_pool_get_data_dev_size() since that blocks. So
+ * we follow a more convoluted path through to the pool's target.
+ */
+ if (!pool->ti)
+ return 0; /* nothing is bound */
+
+ blocks = pool->ti->len;
+ (void) sector_div(blocks, pool->sectors_per_block);
+ if (blocks)
+ return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
+
+ return 0;
+}
+
+static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+ struct thin_c *tc = ti->private;
+ struct pool *pool = tc->pool;
+
+ if (!pool->pf.discard_enabled)
+ return;
+
+ limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
+ limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
+}
+
+static struct target_type thin_target = {
+ .name = "thin",
+ .version = {1, 22, 0},
+ .module = THIS_MODULE,
+ .ctr = thin_ctr,
+ .dtr = thin_dtr,
+ .map = thin_map,
+ .end_io = thin_endio,
+ .preresume = thin_preresume,
+ .presuspend = thin_presuspend,
+ .postsuspend = thin_postsuspend,
+ .status = thin_status,
+ .iterate_devices = thin_iterate_devices,
+ .io_hints = thin_io_hints,
+};
+
+/*----------------------------------------------------------------*/
+
+static int __init dm_thin_init(void)
+{
+ int r = -ENOMEM;
+
+ pool_table_init();
+
+ _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
+ if (!_new_mapping_cache)
+ return r;
+
+ r = dm_register_target(&thin_target);
+ if (r)
+ goto bad_new_mapping_cache;
+
+ r = dm_register_target(&pool_target);
+ if (r)
+ goto bad_thin_target;
+
+ return 0;
+
+bad_thin_target:
+ dm_unregister_target(&thin_target);
+bad_new_mapping_cache:
+ kmem_cache_destroy(_new_mapping_cache);
+
+ return r;
+}
+
+static void dm_thin_exit(void)
+{
+ dm_unregister_target(&thin_target);
+ dm_unregister_target(&pool_target);
+
+ kmem_cache_destroy(_new_mapping_cache);
+
+ pool_table_exit();
+}
+
+module_init(dm_thin_init);
+module_exit(dm_thin_exit);
+
+module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
+
+MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
+MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-uevent.c b/drivers/md/dm-uevent.c
new file mode 100644
index 000000000..a02b3f6ea
--- /dev/null
+++ b/drivers/md/dm-uevent.c
@@ -0,0 +1,206 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Device Mapper Uevent Support (dm-uevent)
+ *
+ * Copyright IBM Corporation, 2007
+ * Author: Mike Anderson <andmike@linux.vnet.ibm.com>
+ */
+#include <linux/list.h>
+#include <linux/slab.h>
+#include <linux/kobject.h>
+#include <linux/dm-ioctl.h>
+#include <linux/export.h>
+
+#include "dm.h"
+#include "dm-uevent.h"
+
+#define DM_MSG_PREFIX "uevent"
+
+static const struct {
+ enum dm_uevent_type type;
+ enum kobject_action action;
+ char *name;
+} _dm_uevent_type_names[] = {
+ {DM_UEVENT_PATH_FAILED, KOBJ_CHANGE, "PATH_FAILED"},
+ {DM_UEVENT_PATH_REINSTATED, KOBJ_CHANGE, "PATH_REINSTATED"},
+};
+
+static struct kmem_cache *_dm_event_cache;
+
+struct dm_uevent {
+ struct mapped_device *md;
+ enum kobject_action action;
+ struct kobj_uevent_env ku_env;
+ struct list_head elist;
+ char name[DM_NAME_LEN];
+ char uuid[DM_UUID_LEN];
+};
+
+static void dm_uevent_free(struct dm_uevent *event)
+{
+ kmem_cache_free(_dm_event_cache, event);
+}
+
+static struct dm_uevent *dm_uevent_alloc(struct mapped_device *md)
+{
+ struct dm_uevent *event;
+
+ event = kmem_cache_zalloc(_dm_event_cache, GFP_ATOMIC);
+ if (!event)
+ return NULL;
+
+ INIT_LIST_HEAD(&event->elist);
+ event->md = md;
+
+ return event;
+}
+
+static struct dm_uevent *dm_build_path_uevent(struct mapped_device *md,
+ struct dm_target *ti,
+ enum kobject_action action,
+ const char *dm_action,
+ const char *path,
+ unsigned int nr_valid_paths)
+{
+ struct dm_uevent *event;
+
+ event = dm_uevent_alloc(md);
+ if (!event) {
+ DMERR("%s: dm_uevent_alloc() failed", __func__);
+ goto err_nomem;
+ }
+
+ event->action = action;
+
+ if (add_uevent_var(&event->ku_env, "DM_TARGET=%s", ti->type->name)) {
+ DMERR("%s: add_uevent_var() for DM_TARGET failed",
+ __func__);
+ goto err_add;
+ }
+
+ if (add_uevent_var(&event->ku_env, "DM_ACTION=%s", dm_action)) {
+ DMERR("%s: add_uevent_var() for DM_ACTION failed",
+ __func__);
+ goto err_add;
+ }
+
+ if (add_uevent_var(&event->ku_env, "DM_SEQNUM=%u",
+ dm_next_uevent_seq(md))) {
+ DMERR("%s: add_uevent_var() for DM_SEQNUM failed",
+ __func__);
+ goto err_add;
+ }
+
+ if (add_uevent_var(&event->ku_env, "DM_PATH=%s", path)) {
+ DMERR("%s: add_uevent_var() for DM_PATH failed", __func__);
+ goto err_add;
+ }
+
+ if (add_uevent_var(&event->ku_env, "DM_NR_VALID_PATHS=%d",
+ nr_valid_paths)) {
+ DMERR("%s: add_uevent_var() for DM_NR_VALID_PATHS failed",
+ __func__);
+ goto err_add;
+ }
+
+ return event;
+
+err_add:
+ dm_uevent_free(event);
+err_nomem:
+ return ERR_PTR(-ENOMEM);
+}
+
+/**
+ * dm_send_uevents - send uevents for given list
+ *
+ * @events: list of events to send
+ * @kobj: kobject generating event
+ *
+ */
+void dm_send_uevents(struct list_head *events, struct kobject *kobj)
+{
+ int r;
+ struct dm_uevent *event, *next;
+
+ list_for_each_entry_safe(event, next, events, elist) {
+ list_del_init(&event->elist);
+
+ /*
+ * When a device is being removed this copy fails and we
+ * discard these unsent events.
+ */
+ if (dm_copy_name_and_uuid(event->md, event->name,
+ event->uuid)) {
+ DMINFO("%s: skipping sending uevent for lost device",
+ __func__);
+ goto uevent_free;
+ }
+
+ if (add_uevent_var(&event->ku_env, "DM_NAME=%s", event->name)) {
+ DMERR("%s: add_uevent_var() for DM_NAME failed",
+ __func__);
+ goto uevent_free;
+ }
+
+ if (add_uevent_var(&event->ku_env, "DM_UUID=%s", event->uuid)) {
+ DMERR("%s: add_uevent_var() for DM_UUID failed",
+ __func__);
+ goto uevent_free;
+ }
+
+ r = kobject_uevent_env(kobj, event->action, event->ku_env.envp);
+ if (r)
+ DMERR("%s: kobject_uevent_env failed", __func__);
+uevent_free:
+ dm_uevent_free(event);
+ }
+}
+EXPORT_SYMBOL_GPL(dm_send_uevents);
+
+/**
+ * dm_path_uevent - called to create a new path event and queue it
+ *
+ * @event_type: path event type enum
+ * @ti: pointer to a dm_target
+ * @path: string containing pathname
+ * @nr_valid_paths: number of valid paths remaining
+ *
+ */
+void dm_path_uevent(enum dm_uevent_type event_type, struct dm_target *ti,
+ const char *path, unsigned int nr_valid_paths)
+{
+ struct mapped_device *md = dm_table_get_md(ti->table);
+ struct dm_uevent *event;
+
+ if (event_type >= ARRAY_SIZE(_dm_uevent_type_names)) {
+ DMERR("%s: Invalid event_type %d", __func__, event_type);
+ return;
+ }
+
+ event = dm_build_path_uevent(md, ti,
+ _dm_uevent_type_names[event_type].action,
+ _dm_uevent_type_names[event_type].name,
+ path, nr_valid_paths);
+ if (IS_ERR(event))
+ return;
+
+ dm_uevent_add(md, &event->elist);
+}
+EXPORT_SYMBOL_GPL(dm_path_uevent);
+
+int dm_uevent_init(void)
+{
+ _dm_event_cache = KMEM_CACHE(dm_uevent, 0);
+ if (!_dm_event_cache)
+ return -ENOMEM;
+
+ DMINFO("version 1.0.3");
+
+ return 0;
+}
+
+void dm_uevent_exit(void)
+{
+ kmem_cache_destroy(_dm_event_cache);
+}
diff --git a/drivers/md/dm-uevent.h b/drivers/md/dm-uevent.h
new file mode 100644
index 000000000..12a5d4fb7
--- /dev/null
+++ b/drivers/md/dm-uevent.h
@@ -0,0 +1,46 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * Device Mapper Uevent Support
+ *
+ * Copyright IBM Corporation, 2007
+ * Author: Mike Anderson <andmike@linux.vnet.ibm.com>
+ */
+#ifndef DM_UEVENT_H
+#define DM_UEVENT_H
+
+enum dm_uevent_type {
+ DM_UEVENT_PATH_FAILED,
+ DM_UEVENT_PATH_REINSTATED,
+};
+
+#ifdef CONFIG_DM_UEVENT
+
+extern int dm_uevent_init(void);
+extern void dm_uevent_exit(void);
+extern void dm_send_uevents(struct list_head *events, struct kobject *kobj);
+extern void dm_path_uevent(enum dm_uevent_type event_type,
+ struct dm_target *ti, const char *path,
+ unsigned int nr_valid_paths);
+
+#else
+
+static inline int dm_uevent_init(void)
+{
+ return 0;
+}
+static inline void dm_uevent_exit(void)
+{
+}
+static inline void dm_send_uevents(struct list_head *events,
+ struct kobject *kobj)
+{
+}
+static inline void dm_path_uevent(enum dm_uevent_type event_type,
+ struct dm_target *ti, const char *path,
+ unsigned int nr_valid_paths)
+{
+}
+
+#endif /* CONFIG_DM_UEVENT */
+
+#endif /* DM_UEVENT_H */
diff --git a/drivers/md/dm-unstripe.c b/drivers/md/dm-unstripe.c
new file mode 100644
index 000000000..fdc8921e5
--- /dev/null
+++ b/drivers/md/dm-unstripe.c
@@ -0,0 +1,211 @@
+/*
+ * Copyright (C) 2017 Intel Corporation.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm.h"
+
+#include <linux/module.h>
+
+struct unstripe_c {
+ struct dm_dev *dev;
+ sector_t physical_start;
+
+ uint32_t stripes;
+
+ uint32_t unstripe;
+ sector_t unstripe_width;
+ sector_t unstripe_offset;
+
+ uint32_t chunk_size;
+ u8 chunk_shift;
+};
+
+#define DM_MSG_PREFIX "unstriped"
+
+static void cleanup_unstripe(struct unstripe_c *uc, struct dm_target *ti)
+{
+ if (uc->dev)
+ dm_put_device(ti, uc->dev);
+ kfree(uc);
+}
+
+/*
+ * Contruct an unstriped mapping.
+ * <number of stripes> <chunk size> <stripe #> <dev_path> <offset>
+ */
+static int unstripe_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ struct unstripe_c *uc;
+ sector_t tmp_len;
+ unsigned long long start;
+ char dummy;
+
+ if (argc != 5) {
+ ti->error = "Invalid number of arguments";
+ return -EINVAL;
+ }
+
+ uc = kzalloc(sizeof(*uc), GFP_KERNEL);
+ if (!uc) {
+ ti->error = "Memory allocation for unstriped context failed";
+ return -ENOMEM;
+ }
+
+ if (kstrtouint(argv[0], 10, &uc->stripes) || !uc->stripes) {
+ ti->error = "Invalid stripe count";
+ goto err;
+ }
+
+ if (kstrtouint(argv[1], 10, &uc->chunk_size) || !uc->chunk_size) {
+ ti->error = "Invalid chunk_size";
+ goto err;
+ }
+
+ if (kstrtouint(argv[2], 10, &uc->unstripe)) {
+ ti->error = "Invalid stripe number";
+ goto err;
+ }
+
+ if (uc->unstripe > uc->stripes && uc->stripes > 1) {
+ ti->error = "Please provide stripe between [0, # of stripes]";
+ goto err;
+ }
+
+ if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &uc->dev)) {
+ ti->error = "Couldn't get striped device";
+ goto err;
+ }
+
+ if (sscanf(argv[4], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
+ ti->error = "Invalid striped device offset";
+ goto err;
+ }
+ uc->physical_start = start;
+
+ uc->unstripe_offset = uc->unstripe * uc->chunk_size;
+ uc->unstripe_width = (uc->stripes - 1) * uc->chunk_size;
+ uc->chunk_shift = is_power_of_2(uc->chunk_size) ? fls(uc->chunk_size) - 1 : 0;
+
+ tmp_len = ti->len;
+ if (sector_div(tmp_len, uc->chunk_size)) {
+ ti->error = "Target length not divisible by chunk size";
+ goto err;
+ }
+
+ if (dm_set_target_max_io_len(ti, uc->chunk_size)) {
+ ti->error = "Failed to set max io len";
+ goto err;
+ }
+
+ ti->private = uc;
+ return 0;
+err:
+ cleanup_unstripe(uc, ti);
+ return -EINVAL;
+}
+
+static void unstripe_dtr(struct dm_target *ti)
+{
+ struct unstripe_c *uc = ti->private;
+
+ cleanup_unstripe(uc, ti);
+}
+
+static sector_t map_to_core(struct dm_target *ti, struct bio *bio)
+{
+ struct unstripe_c *uc = ti->private;
+ sector_t sector = bio->bi_iter.bi_sector;
+ sector_t tmp_sector = sector;
+
+ /* Shift us up to the right "row" on the stripe */
+ if (uc->chunk_shift)
+ tmp_sector >>= uc->chunk_shift;
+ else
+ sector_div(tmp_sector, uc->chunk_size);
+
+ sector += uc->unstripe_width * tmp_sector;
+
+ /* Account for what stripe we're operating on */
+ return sector + uc->unstripe_offset;
+}
+
+static int unstripe_map(struct dm_target *ti, struct bio *bio)
+{
+ struct unstripe_c *uc = ti->private;
+
+ bio_set_dev(bio, uc->dev->bdev);
+ bio->bi_iter.bi_sector = map_to_core(ti, bio) + uc->physical_start;
+
+ return DM_MAPIO_REMAPPED;
+}
+
+static void unstripe_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ struct unstripe_c *uc = ti->private;
+ unsigned int sz = 0;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ break;
+
+ case STATUSTYPE_TABLE:
+ DMEMIT("%d %llu %d %s %llu",
+ uc->stripes, (unsigned long long)uc->chunk_size, uc->unstripe,
+ uc->dev->name, (unsigned long long)uc->physical_start);
+ break;
+
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+}
+
+static int unstripe_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ struct unstripe_c *uc = ti->private;
+
+ return fn(ti, uc->dev, uc->physical_start, ti->len, data);
+}
+
+static void unstripe_io_hints(struct dm_target *ti,
+ struct queue_limits *limits)
+{
+ struct unstripe_c *uc = ti->private;
+
+ limits->chunk_sectors = uc->chunk_size;
+}
+
+static struct target_type unstripe_target = {
+ .name = "unstriped",
+ .version = {1, 1, 0},
+ .features = DM_TARGET_NOWAIT,
+ .module = THIS_MODULE,
+ .ctr = unstripe_ctr,
+ .dtr = unstripe_dtr,
+ .map = unstripe_map,
+ .status = unstripe_status,
+ .iterate_devices = unstripe_iterate_devices,
+ .io_hints = unstripe_io_hints,
+};
+
+static int __init dm_unstripe_init(void)
+{
+ return dm_register_target(&unstripe_target);
+}
+
+static void __exit dm_unstripe_exit(void)
+{
+ dm_unregister_target(&unstripe_target);
+}
+
+module_init(dm_unstripe_init);
+module_exit(dm_unstripe_exit);
+
+MODULE_DESCRIPTION(DM_NAME " unstriped target");
+MODULE_ALIAS("dm-unstriped");
+MODULE_AUTHOR("Scott Bauer <scott.bauer@intel.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-verity-fec.c b/drivers/md/dm-verity-fec.c
new file mode 100644
index 000000000..0304e36af
--- /dev/null
+++ b/drivers/md/dm-verity-fec.c
@@ -0,0 +1,823 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Copyright (C) 2015 Google, Inc.
+ *
+ * Author: Sami Tolvanen <samitolvanen@google.com>
+ */
+
+#include "dm-verity-fec.h"
+#include <linux/math64.h>
+
+#define DM_MSG_PREFIX "verity-fec"
+
+/*
+ * If error correction has been configured, returns true.
+ */
+bool verity_fec_is_enabled(struct dm_verity *v)
+{
+ return v->fec && v->fec->dev;
+}
+
+/*
+ * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
+ * length fields.
+ */
+static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
+{
+ return (struct dm_verity_fec_io *)
+ ((char *)io + io->v->ti->per_io_data_size - sizeof(struct dm_verity_fec_io));
+}
+
+/*
+ * Return an interleaved offset for a byte in RS block.
+ */
+static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
+{
+ u32 mod;
+
+ mod = do_div(offset, v->fec->rsn);
+ return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
+}
+
+/*
+ * Decode an RS block using Reed-Solomon.
+ */
+static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
+ u8 *data, u8 *fec, int neras)
+{
+ int i;
+ uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
+
+ for (i = 0; i < v->fec->roots; i++)
+ par[i] = fec[i];
+
+ return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
+ fio->erasures, 0, NULL);
+}
+
+/*
+ * Read error-correcting codes for the requested RS block. Returns a pointer
+ * to the data block. Caller is responsible for releasing buf.
+ */
+static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
+ unsigned int *offset, struct dm_buffer **buf)
+{
+ u64 position, block, rem;
+ u8 *res;
+
+ position = (index + rsb) * v->fec->roots;
+ block = div64_u64_rem(position, v->fec->io_size, &rem);
+ *offset = (unsigned int)rem;
+
+ res = dm_bufio_read(v->fec->bufio, block, buf);
+ if (IS_ERR(res)) {
+ DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
+ v->data_dev->name, (unsigned long long)rsb,
+ (unsigned long long)block, PTR_ERR(res));
+ *buf = NULL;
+ }
+
+ return res;
+}
+
+/* Loop over each preallocated buffer slot. */
+#define fec_for_each_prealloc_buffer(__i) \
+ for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
+
+/* Loop over each extra buffer slot. */
+#define fec_for_each_extra_buffer(io, __i) \
+ for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
+
+/* Loop over each allocated buffer. */
+#define fec_for_each_buffer(io, __i) \
+ for (__i = 0; __i < (io)->nbufs; __i++)
+
+/* Loop over each RS block in each allocated buffer. */
+#define fec_for_each_buffer_rs_block(io, __i, __j) \
+ fec_for_each_buffer(io, __i) \
+ for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
+
+/*
+ * Return a pointer to the current RS block when called inside
+ * fec_for_each_buffer_rs_block.
+ */
+static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
+ struct dm_verity_fec_io *fio,
+ unsigned int i, unsigned int j)
+{
+ return &fio->bufs[i][j * v->fec->rsn];
+}
+
+/*
+ * Return an index to the current RS block when called inside
+ * fec_for_each_buffer_rs_block.
+ */
+static inline unsigned int fec_buffer_rs_index(unsigned int i, unsigned int j)
+{
+ return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
+}
+
+/*
+ * Decode all RS blocks from buffers and copy corrected bytes into fio->output
+ * starting from block_offset.
+ */
+static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio,
+ u64 rsb, int byte_index, unsigned int block_offset,
+ int neras)
+{
+ int r, corrected = 0, res;
+ struct dm_buffer *buf;
+ unsigned int n, i, offset;
+ u8 *par, *block;
+
+ par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
+ if (IS_ERR(par))
+ return PTR_ERR(par);
+
+ /*
+ * Decode the RS blocks we have in bufs. Each RS block results in
+ * one corrected target byte and consumes fec->roots parity bytes.
+ */
+ fec_for_each_buffer_rs_block(fio, n, i) {
+ block = fec_buffer_rs_block(v, fio, n, i);
+ res = fec_decode_rs8(v, fio, block, &par[offset], neras);
+ if (res < 0) {
+ r = res;
+ goto error;
+ }
+
+ corrected += res;
+ fio->output[block_offset] = block[byte_index];
+
+ block_offset++;
+ if (block_offset >= 1 << v->data_dev_block_bits)
+ goto done;
+
+ /* read the next block when we run out of parity bytes */
+ offset += v->fec->roots;
+ if (offset >= v->fec->io_size) {
+ dm_bufio_release(buf);
+
+ par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
+ if (IS_ERR(par))
+ return PTR_ERR(par);
+ }
+ }
+done:
+ r = corrected;
+error:
+ dm_bufio_release(buf);
+
+ if (r < 0 && neras)
+ DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
+ v->data_dev->name, (unsigned long long)rsb, r);
+ else if (r > 0)
+ DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
+ v->data_dev->name, (unsigned long long)rsb, r);
+
+ return r;
+}
+
+/*
+ * Locate data block erasures using verity hashes.
+ */
+static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
+ u8 *want_digest, u8 *data)
+{
+ if (unlikely(verity_hash(v, verity_io_hash_req(v, io),
+ data, 1 << v->data_dev_block_bits,
+ verity_io_real_digest(v, io), true)))
+ return 0;
+
+ return memcmp(verity_io_real_digest(v, io), want_digest,
+ v->digest_size) != 0;
+}
+
+/*
+ * Read data blocks that are part of the RS block and deinterleave as much as
+ * fits into buffers. Check for erasure locations if @neras is non-NULL.
+ */
+static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
+ u64 rsb, u64 target, unsigned int block_offset,
+ int *neras)
+{
+ bool is_zero;
+ int i, j, target_index = -1;
+ struct dm_buffer *buf;
+ struct dm_bufio_client *bufio;
+ struct dm_verity_fec_io *fio = fec_io(io);
+ u64 block, ileaved;
+ u8 *bbuf, *rs_block;
+ u8 want_digest[HASH_MAX_DIGESTSIZE];
+ unsigned int n, k;
+
+ if (neras)
+ *neras = 0;
+
+ if (WARN_ON(v->digest_size > sizeof(want_digest)))
+ return -EINVAL;
+
+ /*
+ * read each of the rsn data blocks that are part of the RS block, and
+ * interleave contents to available bufs
+ */
+ for (i = 0; i < v->fec->rsn; i++) {
+ ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
+
+ /*
+ * target is the data block we want to correct, target_index is
+ * the index of this block within the rsn RS blocks
+ */
+ if (ileaved == target)
+ target_index = i;
+
+ block = ileaved >> v->data_dev_block_bits;
+ bufio = v->fec->data_bufio;
+
+ if (block >= v->data_blocks) {
+ block -= v->data_blocks;
+
+ /*
+ * blocks outside the area were assumed to contain
+ * zeros when encoding data was generated
+ */
+ if (unlikely(block >= v->fec->hash_blocks))
+ continue;
+
+ block += v->hash_start;
+ bufio = v->bufio;
+ }
+
+ bbuf = dm_bufio_read(bufio, block, &buf);
+ if (IS_ERR(bbuf)) {
+ DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
+ v->data_dev->name,
+ (unsigned long long)rsb,
+ (unsigned long long)block, PTR_ERR(bbuf));
+
+ /* assume the block is corrupted */
+ if (neras && *neras <= v->fec->roots)
+ fio->erasures[(*neras)++] = i;
+
+ continue;
+ }
+
+ /* locate erasures if the block is on the data device */
+ if (bufio == v->fec->data_bufio &&
+ verity_hash_for_block(v, io, block, want_digest,
+ &is_zero) == 0) {
+ /* skip known zero blocks entirely */
+ if (is_zero)
+ goto done;
+
+ /*
+ * skip if we have already found the theoretical
+ * maximum number (i.e. fec->roots) of erasures
+ */
+ if (neras && *neras <= v->fec->roots &&
+ fec_is_erasure(v, io, want_digest, bbuf))
+ fio->erasures[(*neras)++] = i;
+ }
+
+ /*
+ * deinterleave and copy the bytes that fit into bufs,
+ * starting from block_offset
+ */
+ fec_for_each_buffer_rs_block(fio, n, j) {
+ k = fec_buffer_rs_index(n, j) + block_offset;
+
+ if (k >= 1 << v->data_dev_block_bits)
+ goto done;
+
+ rs_block = fec_buffer_rs_block(v, fio, n, j);
+ rs_block[i] = bbuf[k];
+ }
+done:
+ dm_bufio_release(buf);
+ }
+
+ return target_index;
+}
+
+/*
+ * Allocate RS control structure and FEC buffers from preallocated mempools,
+ * and attempt to allocate as many extra buffers as available.
+ */
+static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
+{
+ unsigned int n;
+
+ if (!fio->rs)
+ fio->rs = mempool_alloc(&v->fec->rs_pool, GFP_NOIO);
+
+ fec_for_each_prealloc_buffer(n) {
+ if (fio->bufs[n])
+ continue;
+
+ fio->bufs[n] = mempool_alloc(&v->fec->prealloc_pool, GFP_NOWAIT);
+ if (unlikely(!fio->bufs[n])) {
+ DMERR("failed to allocate FEC buffer");
+ return -ENOMEM;
+ }
+ }
+
+ /* try to allocate the maximum number of buffers */
+ fec_for_each_extra_buffer(fio, n) {
+ if (fio->bufs[n])
+ continue;
+
+ fio->bufs[n] = mempool_alloc(&v->fec->extra_pool, GFP_NOWAIT);
+ /* we can manage with even one buffer if necessary */
+ if (unlikely(!fio->bufs[n]))
+ break;
+ }
+ fio->nbufs = n;
+
+ if (!fio->output)
+ fio->output = mempool_alloc(&v->fec->output_pool, GFP_NOIO);
+
+ return 0;
+}
+
+/*
+ * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
+ * zeroed before deinterleaving.
+ */
+static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
+{
+ unsigned int n;
+
+ fec_for_each_buffer(fio, n)
+ memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
+
+ memset(fio->erasures, 0, sizeof(fio->erasures));
+}
+
+/*
+ * Decode all RS blocks in a single data block and return the target block
+ * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
+ * hashes to locate erasures.
+ */
+static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
+ struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
+ bool use_erasures)
+{
+ int r, neras = 0;
+ unsigned int pos;
+
+ r = fec_alloc_bufs(v, fio);
+ if (unlikely(r < 0))
+ return r;
+
+ for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
+ fec_init_bufs(v, fio);
+
+ r = fec_read_bufs(v, io, rsb, offset, pos,
+ use_erasures ? &neras : NULL);
+ if (unlikely(r < 0))
+ return r;
+
+ r = fec_decode_bufs(v, fio, rsb, r, pos, neras);
+ if (r < 0)
+ return r;
+
+ pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
+ }
+
+ /* Always re-validate the corrected block against the expected hash */
+ r = verity_hash(v, verity_io_hash_req(v, io), fio->output,
+ 1 << v->data_dev_block_bits,
+ verity_io_real_digest(v, io), true);
+ if (unlikely(r < 0))
+ return r;
+
+ if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
+ v->digest_size)) {
+ DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
+ v->data_dev->name, (unsigned long long)rsb, neras);
+ return -EILSEQ;
+ }
+
+ return 0;
+}
+
+static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
+ size_t len)
+{
+ struct dm_verity_fec_io *fio = fec_io(io);
+
+ memcpy(data, &fio->output[fio->output_pos], len);
+ fio->output_pos += len;
+
+ return 0;
+}
+
+/*
+ * Correct errors in a block. Copies corrected block to dest if non-NULL,
+ * otherwise to a bio_vec starting from iter.
+ */
+int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
+ enum verity_block_type type, sector_t block, u8 *dest,
+ struct bvec_iter *iter)
+{
+ int r;
+ struct dm_verity_fec_io *fio = fec_io(io);
+ u64 offset, res, rsb;
+
+ if (!verity_fec_is_enabled(v))
+ return -EOPNOTSUPP;
+
+ if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) {
+ DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name);
+ return -EIO;
+ }
+
+ fio->level++;
+
+ if (type == DM_VERITY_BLOCK_TYPE_METADATA)
+ block = block - v->hash_start + v->data_blocks;
+
+ /*
+ * For RS(M, N), the continuous FEC data is divided into blocks of N
+ * bytes. Since block size may not be divisible by N, the last block
+ * is zero padded when decoding.
+ *
+ * Each byte of the block is covered by a different RS(M, N) code,
+ * and each code is interleaved over N blocks to make it less likely
+ * that bursty corruption will leave us in unrecoverable state.
+ */
+
+ offset = block << v->data_dev_block_bits;
+ res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);
+
+ /*
+ * The base RS block we can feed to the interleaver to find out all
+ * blocks required for decoding.
+ */
+ rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
+
+ /*
+ * Locating erasures is slow, so attempt to recover the block without
+ * them first. Do a second attempt with erasures if the corruption is
+ * bad enough.
+ */
+ r = fec_decode_rsb(v, io, fio, rsb, offset, false);
+ if (r < 0) {
+ r = fec_decode_rsb(v, io, fio, rsb, offset, true);
+ if (r < 0)
+ goto done;
+ }
+
+ if (dest)
+ memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
+ else if (iter) {
+ fio->output_pos = 0;
+ r = verity_for_bv_block(v, io, iter, fec_bv_copy);
+ }
+
+done:
+ fio->level--;
+ return r;
+}
+
+/*
+ * Clean up per-bio data.
+ */
+void verity_fec_finish_io(struct dm_verity_io *io)
+{
+ unsigned int n;
+ struct dm_verity_fec *f = io->v->fec;
+ struct dm_verity_fec_io *fio = fec_io(io);
+
+ if (!verity_fec_is_enabled(io->v))
+ return;
+
+ mempool_free(fio->rs, &f->rs_pool);
+
+ fec_for_each_prealloc_buffer(n)
+ mempool_free(fio->bufs[n], &f->prealloc_pool);
+
+ fec_for_each_extra_buffer(fio, n)
+ mempool_free(fio->bufs[n], &f->extra_pool);
+
+ mempool_free(fio->output, &f->output_pool);
+}
+
+/*
+ * Initialize per-bio data.
+ */
+void verity_fec_init_io(struct dm_verity_io *io)
+{
+ struct dm_verity_fec_io *fio = fec_io(io);
+
+ if (!verity_fec_is_enabled(io->v))
+ return;
+
+ fio->rs = NULL;
+ memset(fio->bufs, 0, sizeof(fio->bufs));
+ fio->nbufs = 0;
+ fio->output = NULL;
+ fio->level = 0;
+}
+
+/*
+ * Append feature arguments and values to the status table.
+ */
+unsigned int verity_fec_status_table(struct dm_verity *v, unsigned int sz,
+ char *result, unsigned int maxlen)
+{
+ if (!verity_fec_is_enabled(v))
+ return sz;
+
+ DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
+ DM_VERITY_OPT_FEC_BLOCKS " %llu "
+ DM_VERITY_OPT_FEC_START " %llu "
+ DM_VERITY_OPT_FEC_ROOTS " %d",
+ v->fec->dev->name,
+ (unsigned long long)v->fec->blocks,
+ (unsigned long long)v->fec->start,
+ v->fec->roots);
+
+ return sz;
+}
+
+void verity_fec_dtr(struct dm_verity *v)
+{
+ struct dm_verity_fec *f = v->fec;
+
+ if (!verity_fec_is_enabled(v))
+ goto out;
+
+ mempool_exit(&f->rs_pool);
+ mempool_exit(&f->prealloc_pool);
+ mempool_exit(&f->extra_pool);
+ mempool_exit(&f->output_pool);
+ kmem_cache_destroy(f->cache);
+
+ if (f->data_bufio)
+ dm_bufio_client_destroy(f->data_bufio);
+ if (f->bufio)
+ dm_bufio_client_destroy(f->bufio);
+
+ if (f->dev)
+ dm_put_device(v->ti, f->dev);
+out:
+ kfree(f);
+ v->fec = NULL;
+}
+
+static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
+{
+ struct dm_verity *v = (struct dm_verity *)pool_data;
+
+ return init_rs_gfp(8, 0x11d, 0, 1, v->fec->roots, gfp_mask);
+}
+
+static void fec_rs_free(void *element, void *pool_data)
+{
+ struct rs_control *rs = (struct rs_control *)element;
+
+ if (rs)
+ free_rs(rs);
+}
+
+bool verity_is_fec_opt_arg(const char *arg_name)
+{
+ return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
+ !strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
+ !strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
+ !strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
+}
+
+int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
+ unsigned int *argc, const char *arg_name)
+{
+ int r;
+ struct dm_target *ti = v->ti;
+ const char *arg_value;
+ unsigned long long num_ll;
+ unsigned char num_c;
+ char dummy;
+
+ if (!*argc) {
+ ti->error = "FEC feature arguments require a value";
+ return -EINVAL;
+ }
+
+ arg_value = dm_shift_arg(as);
+ (*argc)--;
+
+ if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
+ r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev);
+ if (r) {
+ ti->error = "FEC device lookup failed";
+ return r;
+ }
+
+ } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
+ if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
+ ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
+ >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
+ ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
+ return -EINVAL;
+ }
+ v->fec->blocks = num_ll;
+
+ } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
+ if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
+ ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
+ (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
+ ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
+ return -EINVAL;
+ }
+ v->fec->start = num_ll;
+
+ } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
+ if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
+ num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
+ num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
+ ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
+ return -EINVAL;
+ }
+ v->fec->roots = num_c;
+
+ } else {
+ ti->error = "Unrecognized verity FEC feature request";
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/*
+ * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
+ */
+int verity_fec_ctr_alloc(struct dm_verity *v)
+{
+ struct dm_verity_fec *f;
+
+ f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
+ if (!f) {
+ v->ti->error = "Cannot allocate FEC structure";
+ return -ENOMEM;
+ }
+ v->fec = f;
+
+ return 0;
+}
+
+/*
+ * Validate arguments and preallocate memory. Must be called after arguments
+ * have been parsed using verity_fec_parse_opt_args.
+ */
+int verity_fec_ctr(struct dm_verity *v)
+{
+ struct dm_verity_fec *f = v->fec;
+ struct dm_target *ti = v->ti;
+ u64 hash_blocks, fec_blocks;
+ int ret;
+
+ if (!verity_fec_is_enabled(v)) {
+ verity_fec_dtr(v);
+ return 0;
+ }
+
+ /*
+ * FEC is computed over data blocks, possible metadata, and
+ * hash blocks. In other words, FEC covers total of fec_blocks
+ * blocks consisting of the following:
+ *
+ * data blocks | hash blocks | metadata (optional)
+ *
+ * We allow metadata after hash blocks to support a use case
+ * where all data is stored on the same device and FEC covers
+ * the entire area.
+ *
+ * If metadata is included, we require it to be available on the
+ * hash device after the hash blocks.
+ */
+
+ hash_blocks = v->hash_blocks - v->hash_start;
+
+ /*
+ * Require matching block sizes for data and hash devices for
+ * simplicity.
+ */
+ if (v->data_dev_block_bits != v->hash_dev_block_bits) {
+ ti->error = "Block sizes must match to use FEC";
+ return -EINVAL;
+ }
+
+ if (!f->roots) {
+ ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
+ return -EINVAL;
+ }
+ f->rsn = DM_VERITY_FEC_RSM - f->roots;
+
+ if (!f->blocks) {
+ ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
+ return -EINVAL;
+ }
+
+ f->rounds = f->blocks;
+ if (sector_div(f->rounds, f->rsn))
+ f->rounds++;
+
+ /*
+ * Due to optional metadata, f->blocks can be larger than
+ * data_blocks and hash_blocks combined.
+ */
+ if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
+ ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
+ return -EINVAL;
+ }
+
+ /*
+ * Metadata is accessed through the hash device, so we require
+ * it to be large enough.
+ */
+ f->hash_blocks = f->blocks - v->data_blocks;
+ if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
+ ti->error = "Hash device is too small for "
+ DM_VERITY_OPT_FEC_BLOCKS;
+ return -E2BIG;
+ }
+
+ if ((f->roots << SECTOR_SHIFT) & ((1 << v->data_dev_block_bits) - 1))
+ f->io_size = 1 << v->data_dev_block_bits;
+ else
+ f->io_size = v->fec->roots << SECTOR_SHIFT;
+
+ f->bufio = dm_bufio_client_create(f->dev->bdev,
+ f->io_size,
+ 1, 0, NULL, NULL, 0);
+ if (IS_ERR(f->bufio)) {
+ ti->error = "Cannot initialize FEC bufio client";
+ return PTR_ERR(f->bufio);
+ }
+
+ dm_bufio_set_sector_offset(f->bufio, f->start << (v->data_dev_block_bits - SECTOR_SHIFT));
+
+ fec_blocks = div64_u64(f->rounds * f->roots, v->fec->roots << SECTOR_SHIFT);
+ if (dm_bufio_get_device_size(f->bufio) < fec_blocks) {
+ ti->error = "FEC device is too small";
+ return -E2BIG;
+ }
+
+ f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
+ 1 << v->data_dev_block_bits,
+ 1, 0, NULL, NULL, 0);
+ if (IS_ERR(f->data_bufio)) {
+ ti->error = "Cannot initialize FEC data bufio client";
+ return PTR_ERR(f->data_bufio);
+ }
+
+ if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
+ ti->error = "Data device is too small";
+ return -E2BIG;
+ }
+
+ /* Preallocate an rs_control structure for each worker thread */
+ ret = mempool_init(&f->rs_pool, num_online_cpus(), fec_rs_alloc,
+ fec_rs_free, (void *) v);
+ if (ret) {
+ ti->error = "Cannot allocate RS pool";
+ return ret;
+ }
+
+ f->cache = kmem_cache_create("dm_verity_fec_buffers",
+ f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
+ 0, 0, NULL);
+ if (!f->cache) {
+ ti->error = "Cannot create FEC buffer cache";
+ return -ENOMEM;
+ }
+
+ /* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
+ ret = mempool_init_slab_pool(&f->prealloc_pool, num_online_cpus() *
+ DM_VERITY_FEC_BUF_PREALLOC,
+ f->cache);
+ if (ret) {
+ ti->error = "Cannot allocate FEC buffer prealloc pool";
+ return ret;
+ }
+
+ ret = mempool_init_slab_pool(&f->extra_pool, 0, f->cache);
+ if (ret) {
+ ti->error = "Cannot allocate FEC buffer extra pool";
+ return ret;
+ }
+
+ /* Preallocate an output buffer for each thread */
+ ret = mempool_init_kmalloc_pool(&f->output_pool, num_online_cpus(),
+ 1 << v->data_dev_block_bits);
+ if (ret) {
+ ti->error = "Cannot allocate FEC output pool";
+ return ret;
+ }
+
+ /* Reserve space for our per-bio data */
+ ti->per_io_data_size += sizeof(struct dm_verity_fec_io);
+
+ return 0;
+}
diff --git a/drivers/md/dm-verity-fec.h b/drivers/md/dm-verity-fec.h
new file mode 100644
index 000000000..8454070d2
--- /dev/null
+++ b/drivers/md/dm-verity-fec.h
@@ -0,0 +1,153 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * Copyright (C) 2015 Google, Inc.
+ *
+ * Author: Sami Tolvanen <samitolvanen@google.com>
+ */
+
+#ifndef DM_VERITY_FEC_H
+#define DM_VERITY_FEC_H
+
+#include "dm-verity.h"
+#include <linux/rslib.h>
+
+/* Reed-Solomon(M, N) parameters */
+#define DM_VERITY_FEC_RSM 255
+#define DM_VERITY_FEC_MAX_RSN 253
+#define DM_VERITY_FEC_MIN_RSN 231 /* ~10% space overhead */
+
+/* buffers for deinterleaving and decoding */
+#define DM_VERITY_FEC_BUF_PREALLOC 1 /* buffers to preallocate */
+#define DM_VERITY_FEC_BUF_RS_BITS 4 /* 1 << RS blocks per buffer */
+/* we need buffers for at most 1 << block size RS blocks */
+#define DM_VERITY_FEC_BUF_MAX \
+ (1 << (PAGE_SHIFT - DM_VERITY_FEC_BUF_RS_BITS))
+
+/* maximum recursion level for verity_fec_decode */
+#define DM_VERITY_FEC_MAX_RECURSION 4
+
+#define DM_VERITY_OPT_FEC_DEV "use_fec_from_device"
+#define DM_VERITY_OPT_FEC_BLOCKS "fec_blocks"
+#define DM_VERITY_OPT_FEC_START "fec_start"
+#define DM_VERITY_OPT_FEC_ROOTS "fec_roots"
+
+/* configuration */
+struct dm_verity_fec {
+ struct dm_dev *dev; /* parity data device */
+ struct dm_bufio_client *data_bufio; /* for data dev access */
+ struct dm_bufio_client *bufio; /* for parity data access */
+ size_t io_size; /* IO size for roots */
+ sector_t start; /* parity data start in blocks */
+ sector_t blocks; /* number of blocks covered */
+ sector_t rounds; /* number of interleaving rounds */
+ sector_t hash_blocks; /* blocks covered after v->hash_start */
+ unsigned char roots; /* number of parity bytes, M-N of RS(M, N) */
+ unsigned char rsn; /* N of RS(M, N) */
+ mempool_t rs_pool; /* mempool for fio->rs */
+ mempool_t prealloc_pool; /* mempool for preallocated buffers */
+ mempool_t extra_pool; /* mempool for extra buffers */
+ mempool_t output_pool; /* mempool for output */
+ struct kmem_cache *cache; /* cache for buffers */
+};
+
+/* per-bio data */
+struct dm_verity_fec_io {
+ struct rs_control *rs; /* Reed-Solomon state */
+ int erasures[DM_VERITY_FEC_MAX_RSN]; /* erasures for decode_rs8 */
+ u8 *bufs[DM_VERITY_FEC_BUF_MAX]; /* bufs for deinterleaving */
+ unsigned int nbufs; /* number of buffers allocated */
+ u8 *output; /* buffer for corrected output */
+ size_t output_pos;
+ unsigned int level; /* recursion level */
+};
+
+#ifdef CONFIG_DM_VERITY_FEC
+
+/* each feature parameter requires a value */
+#define DM_VERITY_OPTS_FEC 8
+
+extern bool verity_fec_is_enabled(struct dm_verity *v);
+
+extern int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
+ enum verity_block_type type, sector_t block,
+ u8 *dest, struct bvec_iter *iter);
+
+extern unsigned int verity_fec_status_table(struct dm_verity *v, unsigned int sz,
+ char *result, unsigned int maxlen);
+
+extern void verity_fec_finish_io(struct dm_verity_io *io);
+extern void verity_fec_init_io(struct dm_verity_io *io);
+
+extern bool verity_is_fec_opt_arg(const char *arg_name);
+extern int verity_fec_parse_opt_args(struct dm_arg_set *as,
+ struct dm_verity *v, unsigned int *argc,
+ const char *arg_name);
+
+extern void verity_fec_dtr(struct dm_verity *v);
+
+extern int verity_fec_ctr_alloc(struct dm_verity *v);
+extern int verity_fec_ctr(struct dm_verity *v);
+
+#else /* !CONFIG_DM_VERITY_FEC */
+
+#define DM_VERITY_OPTS_FEC 0
+
+static inline bool verity_fec_is_enabled(struct dm_verity *v)
+{
+ return false;
+}
+
+static inline int verity_fec_decode(struct dm_verity *v,
+ struct dm_verity_io *io,
+ enum verity_block_type type,
+ sector_t block, u8 *dest,
+ struct bvec_iter *iter)
+{
+ return -EOPNOTSUPP;
+}
+
+static inline unsigned int verity_fec_status_table(struct dm_verity *v,
+ unsigned int sz, char *result,
+ unsigned int maxlen)
+{
+ return sz;
+}
+
+static inline void verity_fec_finish_io(struct dm_verity_io *io)
+{
+}
+
+static inline void verity_fec_init_io(struct dm_verity_io *io)
+{
+}
+
+static inline bool verity_is_fec_opt_arg(const char *arg_name)
+{
+ return false;
+}
+
+static inline int verity_fec_parse_opt_args(struct dm_arg_set *as,
+ struct dm_verity *v,
+ unsigned int *argc,
+ const char *arg_name)
+{
+ return -EINVAL;
+}
+
+static inline void verity_fec_dtr(struct dm_verity *v)
+{
+}
+
+static inline int verity_fec_ctr_alloc(struct dm_verity *v)
+{
+ return 0;
+}
+
+static inline int verity_fec_ctr(struct dm_verity *v)
+{
+ return 0;
+}
+
+#endif /* CONFIG_DM_VERITY_FEC */
+
+#endif /* DM_VERITY_FEC_H */
diff --git a/drivers/md/dm-verity-loadpin.c b/drivers/md/dm-verity-loadpin.c
new file mode 100644
index 000000000..0666699b6
--- /dev/null
+++ b/drivers/md/dm-verity-loadpin.c
@@ -0,0 +1,86 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+#include <linux/list.h>
+#include <linux/kernel.h>
+#include <linux/dm-verity-loadpin.h>
+
+#include "dm.h"
+#include "dm-core.h"
+#include "dm-verity.h"
+
+#define DM_MSG_PREFIX "verity-loadpin"
+
+LIST_HEAD(dm_verity_loadpin_trusted_root_digests);
+
+static bool is_trusted_verity_target(struct dm_target *ti)
+{
+ int verity_mode;
+ u8 *root_digest;
+ unsigned int digest_size;
+ struct dm_verity_loadpin_trusted_root_digest *trd;
+ bool trusted = false;
+
+ if (!dm_is_verity_target(ti))
+ return false;
+
+ verity_mode = dm_verity_get_mode(ti);
+
+ if ((verity_mode != DM_VERITY_MODE_EIO) &&
+ (verity_mode != DM_VERITY_MODE_RESTART) &&
+ (verity_mode != DM_VERITY_MODE_PANIC))
+ return false;
+
+ if (dm_verity_get_root_digest(ti, &root_digest, &digest_size))
+ return false;
+
+ list_for_each_entry(trd, &dm_verity_loadpin_trusted_root_digests, node) {
+ if ((trd->len == digest_size) &&
+ !memcmp(trd->data, root_digest, digest_size)) {
+ trusted = true;
+ break;
+ }
+ }
+
+ kfree(root_digest);
+
+ return trusted;
+}
+
+/*
+ * Determines whether the file system of a superblock is located on
+ * a verity device that is trusted by LoadPin.
+ */
+bool dm_verity_loadpin_is_bdev_trusted(struct block_device *bdev)
+{
+ struct mapped_device *md;
+ struct dm_table *table;
+ struct dm_target *ti;
+ int srcu_idx;
+ bool trusted = false;
+
+ if (bdev == NULL)
+ return false;
+
+ if (list_empty(&dm_verity_loadpin_trusted_root_digests))
+ return false;
+
+ md = dm_get_md(bdev->bd_dev);
+ if (!md)
+ return false;
+
+ table = dm_get_live_table(md, &srcu_idx);
+
+ if (table->num_targets != 1)
+ goto out;
+
+ ti = dm_table_get_target(table, 0);
+
+ if (is_trusted_verity_target(ti))
+ trusted = true;
+
+out:
+ dm_put_live_table(md, srcu_idx);
+ dm_put(md);
+
+ return trusted;
+}
diff --git a/drivers/md/dm-verity-target.c b/drivers/md/dm-verity-target.c
new file mode 100644
index 000000000..24df610a2
--- /dev/null
+++ b/drivers/md/dm-verity-target.c
@@ -0,0 +1,1530 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012 Red Hat, Inc.
+ *
+ * Author: Mikulas Patocka <mpatocka@redhat.com>
+ *
+ * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
+ *
+ * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
+ * default prefetch value. Data are read in "prefetch_cluster" chunks from the
+ * hash device. Setting this greatly improves performance when data and hash
+ * are on the same disk on different partitions on devices with poor random
+ * access behavior.
+ */
+
+#include "dm-verity.h"
+#include "dm-verity-fec.h"
+#include "dm-verity-verify-sig.h"
+#include <linux/module.h>
+#include <linux/reboot.h>
+#include <linux/scatterlist.h>
+#include <linux/string.h>
+#include <linux/jump_label.h>
+
+#define DM_MSG_PREFIX "verity"
+
+#define DM_VERITY_ENV_LENGTH 42
+#define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR"
+
+#define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
+
+#define DM_VERITY_MAX_CORRUPTED_ERRS 100
+
+#define DM_VERITY_OPT_LOGGING "ignore_corruption"
+#define DM_VERITY_OPT_RESTART "restart_on_corruption"
+#define DM_VERITY_OPT_PANIC "panic_on_corruption"
+#define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks"
+#define DM_VERITY_OPT_AT_MOST_ONCE "check_at_most_once"
+#define DM_VERITY_OPT_TASKLET_VERIFY "try_verify_in_tasklet"
+
+#define DM_VERITY_OPTS_MAX (4 + DM_VERITY_OPTS_FEC + \
+ DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
+
+static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
+
+module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
+
+static DEFINE_STATIC_KEY_FALSE(use_tasklet_enabled);
+
+struct dm_verity_prefetch_work {
+ struct work_struct work;
+ struct dm_verity *v;
+ sector_t block;
+ unsigned int n_blocks;
+};
+
+/*
+ * Auxiliary structure appended to each dm-bufio buffer. If the value
+ * hash_verified is nonzero, hash of the block has been verified.
+ *
+ * The variable hash_verified is set to 0 when allocating the buffer, then
+ * it can be changed to 1 and it is never reset to 0 again.
+ *
+ * There is no lock around this value, a race condition can at worst cause
+ * that multiple processes verify the hash of the same buffer simultaneously
+ * and write 1 to hash_verified simultaneously.
+ * This condition is harmless, so we don't need locking.
+ */
+struct buffer_aux {
+ int hash_verified;
+};
+
+/*
+ * Initialize struct buffer_aux for a freshly created buffer.
+ */
+static void dm_bufio_alloc_callback(struct dm_buffer *buf)
+{
+ struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
+
+ aux->hash_verified = 0;
+}
+
+/*
+ * Translate input sector number to the sector number on the target device.
+ */
+static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
+{
+ return v->data_start + dm_target_offset(v->ti, bi_sector);
+}
+
+/*
+ * Return hash position of a specified block at a specified tree level
+ * (0 is the lowest level).
+ * The lowest "hash_per_block_bits"-bits of the result denote hash position
+ * inside a hash block. The remaining bits denote location of the hash block.
+ */
+static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
+ int level)
+{
+ return block >> (level * v->hash_per_block_bits);
+}
+
+static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
+ const u8 *data, size_t len,
+ struct crypto_wait *wait)
+{
+ struct scatterlist sg;
+
+ if (likely(!is_vmalloc_addr(data))) {
+ sg_init_one(&sg, data, len);
+ ahash_request_set_crypt(req, &sg, NULL, len);
+ return crypto_wait_req(crypto_ahash_update(req), wait);
+ } else {
+ do {
+ int r;
+ size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
+ flush_kernel_vmap_range((void *)data, this_step);
+ sg_init_table(&sg, 1);
+ sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
+ ahash_request_set_crypt(req, &sg, NULL, this_step);
+ r = crypto_wait_req(crypto_ahash_update(req), wait);
+ if (unlikely(r))
+ return r;
+ data += this_step;
+ len -= this_step;
+ } while (len);
+ return 0;
+ }
+}
+
+/*
+ * Wrapper for crypto_ahash_init, which handles verity salting.
+ */
+static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
+ struct crypto_wait *wait, bool may_sleep)
+{
+ int r;
+
+ ahash_request_set_tfm(req, v->tfm);
+ ahash_request_set_callback(req,
+ may_sleep ? CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG : 0,
+ crypto_req_done, (void *)wait);
+ crypto_init_wait(wait);
+
+ r = crypto_wait_req(crypto_ahash_init(req), wait);
+
+ if (unlikely(r < 0)) {
+ if (r != -ENOMEM)
+ DMERR("crypto_ahash_init failed: %d", r);
+ return r;
+ }
+
+ if (likely(v->salt_size && (v->version >= 1)))
+ r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
+
+ return r;
+}
+
+static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
+ u8 *digest, struct crypto_wait *wait)
+{
+ int r;
+
+ if (unlikely(v->salt_size && (!v->version))) {
+ r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
+
+ if (r < 0) {
+ DMERR("verity_hash_final failed updating salt: %d", r);
+ goto out;
+ }
+ }
+
+ ahash_request_set_crypt(req, NULL, digest, 0);
+ r = crypto_wait_req(crypto_ahash_final(req), wait);
+out:
+ return r;
+}
+
+int verity_hash(struct dm_verity *v, struct ahash_request *req,
+ const u8 *data, size_t len, u8 *digest, bool may_sleep)
+{
+ int r;
+ struct crypto_wait wait;
+
+ r = verity_hash_init(v, req, &wait, may_sleep);
+ if (unlikely(r < 0))
+ goto out;
+
+ r = verity_hash_update(v, req, data, len, &wait);
+ if (unlikely(r < 0))
+ goto out;
+
+ r = verity_hash_final(v, req, digest, &wait);
+
+out:
+ return r;
+}
+
+static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
+ sector_t *hash_block, unsigned int *offset)
+{
+ sector_t position = verity_position_at_level(v, block, level);
+ unsigned int idx;
+
+ *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
+
+ if (!offset)
+ return;
+
+ idx = position & ((1 << v->hash_per_block_bits) - 1);
+ if (!v->version)
+ *offset = idx * v->digest_size;
+ else
+ *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
+}
+
+/*
+ * Handle verification errors.
+ */
+static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
+ unsigned long long block)
+{
+ char verity_env[DM_VERITY_ENV_LENGTH];
+ char *envp[] = { verity_env, NULL };
+ const char *type_str = "";
+ struct mapped_device *md = dm_table_get_md(v->ti->table);
+
+ /* Corruption should be visible in device status in all modes */
+ v->hash_failed = true;
+
+ if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
+ goto out;
+
+ v->corrupted_errs++;
+
+ switch (type) {
+ case DM_VERITY_BLOCK_TYPE_DATA:
+ type_str = "data";
+ break;
+ case DM_VERITY_BLOCK_TYPE_METADATA:
+ type_str = "metadata";
+ break;
+ default:
+ BUG();
+ }
+
+ DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
+ type_str, block);
+
+ if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
+ DMERR("%s: reached maximum errors", v->data_dev->name);
+
+ snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
+ DM_VERITY_ENV_VAR_NAME, type, block);
+
+ kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
+
+out:
+ if (v->mode == DM_VERITY_MODE_LOGGING)
+ return 0;
+
+ if (v->mode == DM_VERITY_MODE_RESTART)
+ kernel_restart("dm-verity device corrupted");
+
+ if (v->mode == DM_VERITY_MODE_PANIC)
+ panic("dm-verity device corrupted");
+
+ return 1;
+}
+
+/*
+ * Verify hash of a metadata block pertaining to the specified data block
+ * ("block" argument) at a specified level ("level" argument).
+ *
+ * On successful return, verity_io_want_digest(v, io) contains the hash value
+ * for a lower tree level or for the data block (if we're at the lowest level).
+ *
+ * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
+ * If "skip_unverified" is false, unverified buffer is hashed and verified
+ * against current value of verity_io_want_digest(v, io).
+ */
+static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
+ sector_t block, int level, bool skip_unverified,
+ u8 *want_digest)
+{
+ struct dm_buffer *buf;
+ struct buffer_aux *aux;
+ u8 *data;
+ int r;
+ sector_t hash_block;
+ unsigned int offset;
+
+ verity_hash_at_level(v, block, level, &hash_block, &offset);
+
+ if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
+ data = dm_bufio_get(v->bufio, hash_block, &buf);
+ if (data == NULL) {
+ /*
+ * In tasklet and the hash was not in the bufio cache.
+ * Return early and resume execution from a work-queue
+ * to read the hash from disk.
+ */
+ return -EAGAIN;
+ }
+ } else
+ data = dm_bufio_read(v->bufio, hash_block, &buf);
+
+ if (IS_ERR(data))
+ return PTR_ERR(data);
+
+ aux = dm_bufio_get_aux_data(buf);
+
+ if (!aux->hash_verified) {
+ if (skip_unverified) {
+ r = 1;
+ goto release_ret_r;
+ }
+
+ r = verity_hash(v, verity_io_hash_req(v, io),
+ data, 1 << v->hash_dev_block_bits,
+ verity_io_real_digest(v, io), !io->in_tasklet);
+ if (unlikely(r < 0))
+ goto release_ret_r;
+
+ if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
+ v->digest_size) == 0))
+ aux->hash_verified = 1;
+ else if (static_branch_unlikely(&use_tasklet_enabled) &&
+ io->in_tasklet) {
+ /*
+ * Error handling code (FEC included) cannot be run in a
+ * tasklet since it may sleep, so fallback to work-queue.
+ */
+ r = -EAGAIN;
+ goto release_ret_r;
+ }
+ else if (verity_fec_decode(v, io,
+ DM_VERITY_BLOCK_TYPE_METADATA,
+ hash_block, data, NULL) == 0)
+ aux->hash_verified = 1;
+ else if (verity_handle_err(v,
+ DM_VERITY_BLOCK_TYPE_METADATA,
+ hash_block)) {
+ r = -EIO;
+ goto release_ret_r;
+ }
+ }
+
+ data += offset;
+ memcpy(want_digest, data, v->digest_size);
+ r = 0;
+
+release_ret_r:
+ dm_bufio_release(buf);
+ return r;
+}
+
+/*
+ * Find a hash for a given block, write it to digest and verify the integrity
+ * of the hash tree if necessary.
+ */
+int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
+ sector_t block, u8 *digest, bool *is_zero)
+{
+ int r = 0, i;
+
+ if (likely(v->levels)) {
+ /*
+ * First, we try to get the requested hash for
+ * the current block. If the hash block itself is
+ * verified, zero is returned. If it isn't, this
+ * function returns 1 and we fall back to whole
+ * chain verification.
+ */
+ r = verity_verify_level(v, io, block, 0, true, digest);
+ if (likely(r <= 0))
+ goto out;
+ }
+
+ memcpy(digest, v->root_digest, v->digest_size);
+
+ for (i = v->levels - 1; i >= 0; i--) {
+ r = verity_verify_level(v, io, block, i, false, digest);
+ if (unlikely(r))
+ goto out;
+ }
+out:
+ if (!r && v->zero_digest)
+ *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
+ else
+ *is_zero = false;
+
+ return r;
+}
+
+/*
+ * Calculates the digest for the given bio
+ */
+static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
+ struct bvec_iter *iter, struct crypto_wait *wait)
+{
+ unsigned int todo = 1 << v->data_dev_block_bits;
+ struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
+ struct scatterlist sg;
+ struct ahash_request *req = verity_io_hash_req(v, io);
+
+ do {
+ int r;
+ unsigned int len;
+ struct bio_vec bv = bio_iter_iovec(bio, *iter);
+
+ sg_init_table(&sg, 1);
+
+ len = bv.bv_len;
+
+ if (likely(len >= todo))
+ len = todo;
+ /*
+ * Operating on a single page at a time looks suboptimal
+ * until you consider the typical block size is 4,096B.
+ * Going through this loops twice should be very rare.
+ */
+ sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
+ ahash_request_set_crypt(req, &sg, NULL, len);
+ r = crypto_wait_req(crypto_ahash_update(req), wait);
+
+ if (unlikely(r < 0)) {
+ DMERR("verity_for_io_block crypto op failed: %d", r);
+ return r;
+ }
+
+ bio_advance_iter(bio, iter, len);
+ todo -= len;
+ } while (todo);
+
+ return 0;
+}
+
+/*
+ * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
+ * starting from iter.
+ */
+int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
+ struct bvec_iter *iter,
+ int (*process)(struct dm_verity *v,
+ struct dm_verity_io *io, u8 *data,
+ size_t len))
+{
+ unsigned int todo = 1 << v->data_dev_block_bits;
+ struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
+
+ do {
+ int r;
+ u8 *page;
+ unsigned int len;
+ struct bio_vec bv = bio_iter_iovec(bio, *iter);
+
+ page = bvec_kmap_local(&bv);
+ len = bv.bv_len;
+
+ if (likely(len >= todo))
+ len = todo;
+
+ r = process(v, io, page, len);
+ kunmap_local(page);
+
+ if (r < 0)
+ return r;
+
+ bio_advance_iter(bio, iter, len);
+ todo -= len;
+ } while (todo);
+
+ return 0;
+}
+
+static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
+ u8 *data, size_t len)
+{
+ memset(data, 0, len);
+ return 0;
+}
+
+/*
+ * Moves the bio iter one data block forward.
+ */
+static inline void verity_bv_skip_block(struct dm_verity *v,
+ struct dm_verity_io *io,
+ struct bvec_iter *iter)
+{
+ struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
+
+ bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
+}
+
+/*
+ * Verify one "dm_verity_io" structure.
+ */
+static int verity_verify_io(struct dm_verity_io *io)
+{
+ bool is_zero;
+ struct dm_verity *v = io->v;
+#if defined(CONFIG_DM_VERITY_FEC)
+ struct bvec_iter start;
+#endif
+ struct bvec_iter iter_copy;
+ struct bvec_iter *iter;
+ struct crypto_wait wait;
+ struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
+ unsigned int b;
+
+ if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
+ /*
+ * Copy the iterator in case we need to restart
+ * verification in a work-queue.
+ */
+ iter_copy = io->iter;
+ iter = &iter_copy;
+ } else
+ iter = &io->iter;
+
+ for (b = 0; b < io->n_blocks; b++) {
+ int r;
+ sector_t cur_block = io->block + b;
+ struct ahash_request *req = verity_io_hash_req(v, io);
+
+ if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
+ likely(test_bit(cur_block, v->validated_blocks))) {
+ verity_bv_skip_block(v, io, iter);
+ continue;
+ }
+
+ r = verity_hash_for_block(v, io, cur_block,
+ verity_io_want_digest(v, io),
+ &is_zero);
+ if (unlikely(r < 0))
+ return r;
+
+ if (is_zero) {
+ /*
+ * If we expect a zero block, don't validate, just
+ * return zeros.
+ */
+ r = verity_for_bv_block(v, io, iter,
+ verity_bv_zero);
+ if (unlikely(r < 0))
+ return r;
+
+ continue;
+ }
+
+ r = verity_hash_init(v, req, &wait, !io->in_tasklet);
+ if (unlikely(r < 0))
+ return r;
+
+#if defined(CONFIG_DM_VERITY_FEC)
+ if (verity_fec_is_enabled(v))
+ start = *iter;
+#endif
+ r = verity_for_io_block(v, io, iter, &wait);
+ if (unlikely(r < 0))
+ return r;
+
+ r = verity_hash_final(v, req, verity_io_real_digest(v, io),
+ &wait);
+ if (unlikely(r < 0))
+ return r;
+
+ if (likely(memcmp(verity_io_real_digest(v, io),
+ verity_io_want_digest(v, io), v->digest_size) == 0)) {
+ if (v->validated_blocks)
+ set_bit(cur_block, v->validated_blocks);
+ continue;
+ } else if (static_branch_unlikely(&use_tasklet_enabled) &&
+ io->in_tasklet) {
+ /*
+ * Error handling code (FEC included) cannot be run in a
+ * tasklet since it may sleep, so fallback to work-queue.
+ */
+ return -EAGAIN;
+#if defined(CONFIG_DM_VERITY_FEC)
+ } else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
+ cur_block, NULL, &start) == 0) {
+ continue;
+#endif
+ } else {
+ if (bio->bi_status) {
+ /*
+ * Error correction failed; Just return error
+ */
+ return -EIO;
+ }
+ if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
+ cur_block))
+ return -EIO;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Skip verity work in response to I/O error when system is shutting down.
+ */
+static inline bool verity_is_system_shutting_down(void)
+{
+ return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
+ || system_state == SYSTEM_RESTART;
+}
+
+/*
+ * End one "io" structure with a given error.
+ */
+static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
+{
+ struct dm_verity *v = io->v;
+ struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
+
+ bio->bi_end_io = io->orig_bi_end_io;
+ bio->bi_status = status;
+
+ if (!static_branch_unlikely(&use_tasklet_enabled) || !io->in_tasklet)
+ verity_fec_finish_io(io);
+
+ bio_endio(bio);
+}
+
+static void verity_work(struct work_struct *w)
+{
+ struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
+
+ io->in_tasklet = false;
+
+ verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
+}
+
+static void verity_tasklet(unsigned long data)
+{
+ struct dm_verity_io *io = (struct dm_verity_io *)data;
+ int err;
+
+ io->in_tasklet = true;
+ err = verity_verify_io(io);
+ if (err == -EAGAIN || err == -ENOMEM) {
+ /* fallback to retrying with work-queue */
+ INIT_WORK(&io->work, verity_work);
+ queue_work(io->v->verify_wq, &io->work);
+ return;
+ }
+
+ verity_finish_io(io, errno_to_blk_status(err));
+}
+
+static void verity_end_io(struct bio *bio)
+{
+ struct dm_verity_io *io = bio->bi_private;
+
+ if (bio->bi_status &&
+ (!verity_fec_is_enabled(io->v) ||
+ verity_is_system_shutting_down() ||
+ (bio->bi_opf & REQ_RAHEAD))) {
+ verity_finish_io(io, bio->bi_status);
+ return;
+ }
+
+ if (static_branch_unlikely(&use_tasklet_enabled) && io->v->use_tasklet) {
+ tasklet_init(&io->tasklet, verity_tasklet, (unsigned long)io);
+ tasklet_schedule(&io->tasklet);
+ } else {
+ INIT_WORK(&io->work, verity_work);
+ queue_work(io->v->verify_wq, &io->work);
+ }
+}
+
+/*
+ * Prefetch buffers for the specified io.
+ * The root buffer is not prefetched, it is assumed that it will be cached
+ * all the time.
+ */
+static void verity_prefetch_io(struct work_struct *work)
+{
+ struct dm_verity_prefetch_work *pw =
+ container_of(work, struct dm_verity_prefetch_work, work);
+ struct dm_verity *v = pw->v;
+ int i;
+
+ for (i = v->levels - 2; i >= 0; i--) {
+ sector_t hash_block_start;
+ sector_t hash_block_end;
+ verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
+ verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
+ if (!i) {
+ unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster);
+
+ cluster >>= v->data_dev_block_bits;
+ if (unlikely(!cluster))
+ goto no_prefetch_cluster;
+
+ if (unlikely(cluster & (cluster - 1)))
+ cluster = 1 << __fls(cluster);
+
+ hash_block_start &= ~(sector_t)(cluster - 1);
+ hash_block_end |= cluster - 1;
+ if (unlikely(hash_block_end >= v->hash_blocks))
+ hash_block_end = v->hash_blocks - 1;
+ }
+no_prefetch_cluster:
+ dm_bufio_prefetch(v->bufio, hash_block_start,
+ hash_block_end - hash_block_start + 1);
+ }
+
+ kfree(pw);
+}
+
+static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
+{
+ sector_t block = io->block;
+ unsigned int n_blocks = io->n_blocks;
+ struct dm_verity_prefetch_work *pw;
+
+ if (v->validated_blocks) {
+ while (n_blocks && test_bit(block, v->validated_blocks)) {
+ block++;
+ n_blocks--;
+ }
+ while (n_blocks && test_bit(block + n_blocks - 1,
+ v->validated_blocks))
+ n_blocks--;
+ if (!n_blocks)
+ return;
+ }
+
+ pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
+ GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
+
+ if (!pw)
+ return;
+
+ INIT_WORK(&pw->work, verity_prefetch_io);
+ pw->v = v;
+ pw->block = block;
+ pw->n_blocks = n_blocks;
+ queue_work(v->verify_wq, &pw->work);
+}
+
+/*
+ * Bio map function. It allocates dm_verity_io structure and bio vector and
+ * fills them. Then it issues prefetches and the I/O.
+ */
+static int verity_map(struct dm_target *ti, struct bio *bio)
+{
+ struct dm_verity *v = ti->private;
+ struct dm_verity_io *io;
+
+ bio_set_dev(bio, v->data_dev->bdev);
+ bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
+
+ if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
+ ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
+ DMERR_LIMIT("unaligned io");
+ return DM_MAPIO_KILL;
+ }
+
+ if (bio_end_sector(bio) >>
+ (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
+ DMERR_LIMIT("io out of range");
+ return DM_MAPIO_KILL;
+ }
+
+ if (bio_data_dir(bio) == WRITE)
+ return DM_MAPIO_KILL;
+
+ io = dm_per_bio_data(bio, ti->per_io_data_size);
+ io->v = v;
+ io->orig_bi_end_io = bio->bi_end_io;
+ io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
+ io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
+
+ bio->bi_end_io = verity_end_io;
+ bio->bi_private = io;
+ io->iter = bio->bi_iter;
+
+ verity_fec_init_io(io);
+
+ verity_submit_prefetch(v, io);
+
+ submit_bio_noacct(bio);
+
+ return DM_MAPIO_SUBMITTED;
+}
+
+/*
+ * Status: V (valid) or C (corruption found)
+ */
+static void verity_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ struct dm_verity *v = ti->private;
+ unsigned int args = 0;
+ unsigned int sz = 0;
+ unsigned int x;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ DMEMIT("%c", v->hash_failed ? 'C' : 'V');
+ break;
+ case STATUSTYPE_TABLE:
+ DMEMIT("%u %s %s %u %u %llu %llu %s ",
+ v->version,
+ v->data_dev->name,
+ v->hash_dev->name,
+ 1 << v->data_dev_block_bits,
+ 1 << v->hash_dev_block_bits,
+ (unsigned long long)v->data_blocks,
+ (unsigned long long)v->hash_start,
+ v->alg_name
+ );
+ for (x = 0; x < v->digest_size; x++)
+ DMEMIT("%02x", v->root_digest[x]);
+ DMEMIT(" ");
+ if (!v->salt_size)
+ DMEMIT("-");
+ else
+ for (x = 0; x < v->salt_size; x++)
+ DMEMIT("%02x", v->salt[x]);
+ if (v->mode != DM_VERITY_MODE_EIO)
+ args++;
+ if (verity_fec_is_enabled(v))
+ args += DM_VERITY_OPTS_FEC;
+ if (v->zero_digest)
+ args++;
+ if (v->validated_blocks)
+ args++;
+ if (v->use_tasklet)
+ args++;
+ if (v->signature_key_desc)
+ args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
+ if (!args)
+ return;
+ DMEMIT(" %u", args);
+ if (v->mode != DM_VERITY_MODE_EIO) {
+ DMEMIT(" ");
+ switch (v->mode) {
+ case DM_VERITY_MODE_LOGGING:
+ DMEMIT(DM_VERITY_OPT_LOGGING);
+ break;
+ case DM_VERITY_MODE_RESTART:
+ DMEMIT(DM_VERITY_OPT_RESTART);
+ break;
+ case DM_VERITY_MODE_PANIC:
+ DMEMIT(DM_VERITY_OPT_PANIC);
+ break;
+ default:
+ BUG();
+ }
+ }
+ if (v->zero_digest)
+ DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
+ if (v->validated_blocks)
+ DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
+ if (v->use_tasklet)
+ DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
+ sz = verity_fec_status_table(v, sz, result, maxlen);
+ if (v->signature_key_desc)
+ DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
+ " %s", v->signature_key_desc);
+ break;
+
+ case STATUSTYPE_IMA:
+ DMEMIT_TARGET_NAME_VERSION(ti->type);
+ DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
+ DMEMIT(",verity_version=%u", v->version);
+ DMEMIT(",data_device_name=%s", v->data_dev->name);
+ DMEMIT(",hash_device_name=%s", v->hash_dev->name);
+ DMEMIT(",verity_algorithm=%s", v->alg_name);
+
+ DMEMIT(",root_digest=");
+ for (x = 0; x < v->digest_size; x++)
+ DMEMIT("%02x", v->root_digest[x]);
+
+ DMEMIT(",salt=");
+ if (!v->salt_size)
+ DMEMIT("-");
+ else
+ for (x = 0; x < v->salt_size; x++)
+ DMEMIT("%02x", v->salt[x]);
+
+ DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
+ DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
+ if (v->signature_key_desc)
+ DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
+
+ if (v->mode != DM_VERITY_MODE_EIO) {
+ DMEMIT(",verity_mode=");
+ switch (v->mode) {
+ case DM_VERITY_MODE_LOGGING:
+ DMEMIT(DM_VERITY_OPT_LOGGING);
+ break;
+ case DM_VERITY_MODE_RESTART:
+ DMEMIT(DM_VERITY_OPT_RESTART);
+ break;
+ case DM_VERITY_MODE_PANIC:
+ DMEMIT(DM_VERITY_OPT_PANIC);
+ break;
+ default:
+ DMEMIT("invalid");
+ }
+ }
+ DMEMIT(";");
+ break;
+ }
+}
+
+static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
+{
+ struct dm_verity *v = ti->private;
+
+ *bdev = v->data_dev->bdev;
+
+ if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev))
+ return 1;
+ return 0;
+}
+
+static int verity_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ struct dm_verity *v = ti->private;
+
+ return fn(ti, v->data_dev, v->data_start, ti->len, data);
+}
+
+static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+ struct dm_verity *v = ti->private;
+
+ if (limits->logical_block_size < 1 << v->data_dev_block_bits)
+ limits->logical_block_size = 1 << v->data_dev_block_bits;
+
+ if (limits->physical_block_size < 1 << v->data_dev_block_bits)
+ limits->physical_block_size = 1 << v->data_dev_block_bits;
+
+ blk_limits_io_min(limits, limits->logical_block_size);
+}
+
+static void verity_dtr(struct dm_target *ti)
+{
+ struct dm_verity *v = ti->private;
+
+ if (v->verify_wq)
+ destroy_workqueue(v->verify_wq);
+
+ if (v->bufio)
+ dm_bufio_client_destroy(v->bufio);
+
+ kvfree(v->validated_blocks);
+ kfree(v->salt);
+ kfree(v->root_digest);
+ kfree(v->zero_digest);
+
+ if (v->tfm)
+ crypto_free_ahash(v->tfm);
+
+ kfree(v->alg_name);
+
+ if (v->hash_dev)
+ dm_put_device(ti, v->hash_dev);
+
+ if (v->data_dev)
+ dm_put_device(ti, v->data_dev);
+
+ verity_fec_dtr(v);
+
+ kfree(v->signature_key_desc);
+
+ if (v->use_tasklet)
+ static_branch_dec(&use_tasklet_enabled);
+
+ kfree(v);
+}
+
+static int verity_alloc_most_once(struct dm_verity *v)
+{
+ struct dm_target *ti = v->ti;
+
+ /* the bitset can only handle INT_MAX blocks */
+ if (v->data_blocks > INT_MAX) {
+ ti->error = "device too large to use check_at_most_once";
+ return -E2BIG;
+ }
+
+ v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
+ sizeof(unsigned long),
+ GFP_KERNEL);
+ if (!v->validated_blocks) {
+ ti->error = "failed to allocate bitset for check_at_most_once";
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static int verity_alloc_zero_digest(struct dm_verity *v)
+{
+ int r = -ENOMEM;
+ struct ahash_request *req;
+ u8 *zero_data;
+
+ v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
+
+ if (!v->zero_digest)
+ return r;
+
+ req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
+
+ if (!req)
+ return r; /* verity_dtr will free zero_digest */
+
+ zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
+
+ if (!zero_data)
+ goto out;
+
+ r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
+ v->zero_digest, true);
+
+out:
+ kfree(req);
+ kfree(zero_data);
+
+ return r;
+}
+
+static inline bool verity_is_verity_mode(const char *arg_name)
+{
+ return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
+ !strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
+ !strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
+}
+
+static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
+{
+ if (v->mode)
+ return -EINVAL;
+
+ if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
+ v->mode = DM_VERITY_MODE_LOGGING;
+ else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
+ v->mode = DM_VERITY_MODE_RESTART;
+ else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
+ v->mode = DM_VERITY_MODE_PANIC;
+
+ return 0;
+}
+
+static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
+ struct dm_verity_sig_opts *verify_args,
+ bool only_modifier_opts)
+{
+ int r = 0;
+ unsigned int argc;
+ struct dm_target *ti = v->ti;
+ const char *arg_name;
+
+ static const struct dm_arg _args[] = {
+ {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
+ };
+
+ r = dm_read_arg_group(_args, as, &argc, &ti->error);
+ if (r)
+ return -EINVAL;
+
+ if (!argc)
+ return 0;
+
+ do {
+ arg_name = dm_shift_arg(as);
+ argc--;
+
+ if (verity_is_verity_mode(arg_name)) {
+ if (only_modifier_opts)
+ continue;
+ r = verity_parse_verity_mode(v, arg_name);
+ if (r) {
+ ti->error = "Conflicting error handling parameters";
+ return r;
+ }
+ continue;
+
+ } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
+ if (only_modifier_opts)
+ continue;
+ r = verity_alloc_zero_digest(v);
+ if (r) {
+ ti->error = "Cannot allocate zero digest";
+ return r;
+ }
+ continue;
+
+ } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
+ if (only_modifier_opts)
+ continue;
+ r = verity_alloc_most_once(v);
+ if (r)
+ return r;
+ continue;
+
+ } else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
+ v->use_tasklet = true;
+ static_branch_inc(&use_tasklet_enabled);
+ continue;
+
+ } else if (verity_is_fec_opt_arg(arg_name)) {
+ if (only_modifier_opts)
+ continue;
+ r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
+ if (r)
+ return r;
+ continue;
+
+ } else if (verity_verify_is_sig_opt_arg(arg_name)) {
+ if (only_modifier_opts)
+ continue;
+ r = verity_verify_sig_parse_opt_args(as, v,
+ verify_args,
+ &argc, arg_name);
+ if (r)
+ return r;
+ continue;
+
+ } else if (only_modifier_opts) {
+ /*
+ * Ignore unrecognized opt, could easily be an extra
+ * argument to an option whose parsing was skipped.
+ * Normal parsing (@only_modifier_opts=false) will
+ * properly parse all options (and their extra args).
+ */
+ continue;
+ }
+
+ DMERR("Unrecognized verity feature request: %s", arg_name);
+ ti->error = "Unrecognized verity feature request";
+ return -EINVAL;
+ } while (argc && !r);
+
+ return r;
+}
+
+/*
+ * Target parameters:
+ * <version> The current format is version 1.
+ * Vsn 0 is compatible with original Chromium OS releases.
+ * <data device>
+ * <hash device>
+ * <data block size>
+ * <hash block size>
+ * <the number of data blocks>
+ * <hash start block>
+ * <algorithm>
+ * <digest>
+ * <salt> Hex string or "-" if no salt.
+ */
+static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ struct dm_verity *v;
+ struct dm_verity_sig_opts verify_args = {0};
+ struct dm_arg_set as;
+ unsigned int num;
+ unsigned int wq_flags;
+ unsigned long long num_ll;
+ int r;
+ int i;
+ sector_t hash_position;
+ char dummy;
+ char *root_hash_digest_to_validate;
+
+ v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
+ if (!v) {
+ ti->error = "Cannot allocate verity structure";
+ return -ENOMEM;
+ }
+ ti->private = v;
+ v->ti = ti;
+
+ r = verity_fec_ctr_alloc(v);
+ if (r)
+ goto bad;
+
+ if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
+ ti->error = "Device must be readonly";
+ r = -EINVAL;
+ goto bad;
+ }
+
+ if (argc < 10) {
+ ti->error = "Not enough arguments";
+ r = -EINVAL;
+ goto bad;
+ }
+
+ /* Parse optional parameters that modify primary args */
+ if (argc > 10) {
+ as.argc = argc - 10;
+ as.argv = argv + 10;
+ r = verity_parse_opt_args(&as, v, &verify_args, true);
+ if (r < 0)
+ goto bad;
+ }
+
+ if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
+ num > 1) {
+ ti->error = "Invalid version";
+ r = -EINVAL;
+ goto bad;
+ }
+ v->version = num;
+
+ r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
+ if (r) {
+ ti->error = "Data device lookup failed";
+ goto bad;
+ }
+
+ r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
+ if (r) {
+ ti->error = "Hash device lookup failed";
+ goto bad;
+ }
+
+ if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
+ !num || (num & (num - 1)) ||
+ num < bdev_logical_block_size(v->data_dev->bdev) ||
+ num > PAGE_SIZE) {
+ ti->error = "Invalid data device block size";
+ r = -EINVAL;
+ goto bad;
+ }
+ v->data_dev_block_bits = __ffs(num);
+
+ if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
+ !num || (num & (num - 1)) ||
+ num < bdev_logical_block_size(v->hash_dev->bdev) ||
+ num > INT_MAX) {
+ ti->error = "Invalid hash device block size";
+ r = -EINVAL;
+ goto bad;
+ }
+ v->hash_dev_block_bits = __ffs(num);
+
+ if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
+ (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
+ >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
+ ti->error = "Invalid data blocks";
+ r = -EINVAL;
+ goto bad;
+ }
+ v->data_blocks = num_ll;
+
+ if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
+ ti->error = "Data device is too small";
+ r = -EINVAL;
+ goto bad;
+ }
+
+ if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
+ (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
+ >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
+ ti->error = "Invalid hash start";
+ r = -EINVAL;
+ goto bad;
+ }
+ v->hash_start = num_ll;
+
+ v->alg_name = kstrdup(argv[7], GFP_KERNEL);
+ if (!v->alg_name) {
+ ti->error = "Cannot allocate algorithm name";
+ r = -ENOMEM;
+ goto bad;
+ }
+
+ v->tfm = crypto_alloc_ahash(v->alg_name, 0,
+ v->use_tasklet ? CRYPTO_ALG_ASYNC : 0);
+ if (IS_ERR(v->tfm)) {
+ ti->error = "Cannot initialize hash function";
+ r = PTR_ERR(v->tfm);
+ v->tfm = NULL;
+ goto bad;
+ }
+
+ /*
+ * dm-verity performance can vary greatly depending on which hash
+ * algorithm implementation is used. Help people debug performance
+ * problems by logging the ->cra_driver_name.
+ */
+ DMINFO("%s using implementation \"%s\"", v->alg_name,
+ crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
+
+ v->digest_size = crypto_ahash_digestsize(v->tfm);
+ if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
+ ti->error = "Digest size too big";
+ r = -EINVAL;
+ goto bad;
+ }
+ v->ahash_reqsize = sizeof(struct ahash_request) +
+ crypto_ahash_reqsize(v->tfm);
+
+ v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
+ if (!v->root_digest) {
+ ti->error = "Cannot allocate root digest";
+ r = -ENOMEM;
+ goto bad;
+ }
+ if (strlen(argv[8]) != v->digest_size * 2 ||
+ hex2bin(v->root_digest, argv[8], v->digest_size)) {
+ ti->error = "Invalid root digest";
+ r = -EINVAL;
+ goto bad;
+ }
+ root_hash_digest_to_validate = argv[8];
+
+ if (strcmp(argv[9], "-")) {
+ v->salt_size = strlen(argv[9]) / 2;
+ v->salt = kmalloc(v->salt_size, GFP_KERNEL);
+ if (!v->salt) {
+ ti->error = "Cannot allocate salt";
+ r = -ENOMEM;
+ goto bad;
+ }
+ if (strlen(argv[9]) != v->salt_size * 2 ||
+ hex2bin(v->salt, argv[9], v->salt_size)) {
+ ti->error = "Invalid salt";
+ r = -EINVAL;
+ goto bad;
+ }
+ }
+
+ argv += 10;
+ argc -= 10;
+
+ /* Optional parameters */
+ if (argc) {
+ as.argc = argc;
+ as.argv = argv;
+ r = verity_parse_opt_args(&as, v, &verify_args, false);
+ if (r < 0)
+ goto bad;
+ }
+
+ /* Root hash signature is a optional parameter*/
+ r = verity_verify_root_hash(root_hash_digest_to_validate,
+ strlen(root_hash_digest_to_validate),
+ verify_args.sig,
+ verify_args.sig_size);
+ if (r < 0) {
+ ti->error = "Root hash verification failed";
+ goto bad;
+ }
+ v->hash_per_block_bits =
+ __fls((1 << v->hash_dev_block_bits) / v->digest_size);
+
+ v->levels = 0;
+ if (v->data_blocks)
+ while (v->hash_per_block_bits * v->levels < 64 &&
+ (unsigned long long)(v->data_blocks - 1) >>
+ (v->hash_per_block_bits * v->levels))
+ v->levels++;
+
+ if (v->levels > DM_VERITY_MAX_LEVELS) {
+ ti->error = "Too many tree levels";
+ r = -E2BIG;
+ goto bad;
+ }
+
+ hash_position = v->hash_start;
+ for (i = v->levels - 1; i >= 0; i--) {
+ sector_t s;
+ v->hash_level_block[i] = hash_position;
+ s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
+ >> ((i + 1) * v->hash_per_block_bits);
+ if (hash_position + s < hash_position) {
+ ti->error = "Hash device offset overflow";
+ r = -E2BIG;
+ goto bad;
+ }
+ hash_position += s;
+ }
+ v->hash_blocks = hash_position;
+
+ v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
+ 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
+ dm_bufio_alloc_callback, NULL,
+ v->use_tasklet ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
+ if (IS_ERR(v->bufio)) {
+ ti->error = "Cannot initialize dm-bufio";
+ r = PTR_ERR(v->bufio);
+ v->bufio = NULL;
+ goto bad;
+ }
+
+ if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
+ ti->error = "Hash device is too small";
+ r = -E2BIG;
+ goto bad;
+ }
+
+ /* WQ_UNBOUND greatly improves performance when running on ramdisk */
+ wq_flags = WQ_MEM_RECLAIM | WQ_UNBOUND;
+ /*
+ * Using WQ_HIGHPRI improves throughput and completion latency by
+ * reducing wait times when reading from a dm-verity device.
+ *
+ * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
+ * allows verify_wq to preempt softirq since verification in tasklet
+ * will fall-back to using it for error handling (or if the bufio cache
+ * doesn't have required hashes).
+ */
+ wq_flags |= WQ_HIGHPRI;
+ v->verify_wq = alloc_workqueue("kverityd", wq_flags, num_online_cpus());
+ if (!v->verify_wq) {
+ ti->error = "Cannot allocate workqueue";
+ r = -ENOMEM;
+ goto bad;
+ }
+
+ ti->per_io_data_size = sizeof(struct dm_verity_io) +
+ v->ahash_reqsize + v->digest_size * 2;
+
+ r = verity_fec_ctr(v);
+ if (r)
+ goto bad;
+
+ ti->per_io_data_size = roundup(ti->per_io_data_size,
+ __alignof__(struct dm_verity_io));
+
+ verity_verify_sig_opts_cleanup(&verify_args);
+
+ return 0;
+
+bad:
+
+ verity_verify_sig_opts_cleanup(&verify_args);
+ verity_dtr(ti);
+
+ return r;
+}
+
+/*
+ * Check whether a DM target is a verity target.
+ */
+bool dm_is_verity_target(struct dm_target *ti)
+{
+ return ti->type->module == THIS_MODULE;
+}
+
+/*
+ * Get the verity mode (error behavior) of a verity target.
+ *
+ * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
+ * target.
+ */
+int dm_verity_get_mode(struct dm_target *ti)
+{
+ struct dm_verity *v = ti->private;
+
+ if (!dm_is_verity_target(ti))
+ return -EINVAL;
+
+ return v->mode;
+}
+
+/*
+ * Get the root digest of a verity target.
+ *
+ * Returns a copy of the root digest, the caller is responsible for
+ * freeing the memory of the digest.
+ */
+int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
+{
+ struct dm_verity *v = ti->private;
+
+ if (!dm_is_verity_target(ti))
+ return -EINVAL;
+
+ *root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
+ if (*root_digest == NULL)
+ return -ENOMEM;
+
+ *digest_size = v->digest_size;
+
+ return 0;
+}
+
+static struct target_type verity_target = {
+ .name = "verity",
+ .features = DM_TARGET_IMMUTABLE,
+ .version = {1, 9, 0},
+ .module = THIS_MODULE,
+ .ctr = verity_ctr,
+ .dtr = verity_dtr,
+ .map = verity_map,
+ .status = verity_status,
+ .prepare_ioctl = verity_prepare_ioctl,
+ .iterate_devices = verity_iterate_devices,
+ .io_hints = verity_io_hints,
+};
+
+static int __init dm_verity_init(void)
+{
+ int r;
+
+ r = dm_register_target(&verity_target);
+ if (r < 0)
+ DMERR("register failed %d", r);
+
+ return r;
+}
+
+static void __exit dm_verity_exit(void)
+{
+ dm_unregister_target(&verity_target);
+}
+
+module_init(dm_verity_init);
+module_exit(dm_verity_exit);
+
+MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
+MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
+MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
+MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-verity-verify-sig.c b/drivers/md/dm-verity-verify-sig.c
new file mode 100644
index 000000000..db61a1f43
--- /dev/null
+++ b/drivers/md/dm-verity-verify-sig.c
@@ -0,0 +1,138 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2019 Microsoft Corporation.
+ *
+ * Author: Jaskaran Singh Khurana <jaskarankhurana@linux.microsoft.com>
+ *
+ */
+#include <linux/device-mapper.h>
+#include <linux/verification.h>
+#include <keys/user-type.h>
+#include <linux/module.h>
+#include "dm-verity.h"
+#include "dm-verity-verify-sig.h"
+
+#define DM_VERITY_VERIFY_ERR(s) DM_VERITY_ROOT_HASH_VERIFICATION " " s
+
+static bool require_signatures;
+module_param(require_signatures, bool, 0444);
+MODULE_PARM_DESC(require_signatures,
+ "Verify the roothash of dm-verity hash tree");
+
+#define DM_VERITY_IS_SIG_FORCE_ENABLED() \
+ (require_signatures != false)
+
+bool verity_verify_is_sig_opt_arg(const char *arg_name)
+{
+ return (!strcasecmp(arg_name,
+ DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY));
+}
+
+static int verity_verify_get_sig_from_key(const char *key_desc,
+ struct dm_verity_sig_opts *sig_opts)
+{
+ struct key *key;
+ const struct user_key_payload *ukp;
+ int ret = 0;
+
+ key = request_key(&key_type_user,
+ key_desc, NULL);
+ if (IS_ERR(key))
+ return PTR_ERR(key);
+
+ down_read(&key->sem);
+
+ ukp = user_key_payload_locked(key);
+ if (!ukp) {
+ ret = -EKEYREVOKED;
+ goto end;
+ }
+
+ sig_opts->sig = kmalloc(ukp->datalen, GFP_KERNEL);
+ if (!sig_opts->sig) {
+ ret = -ENOMEM;
+ goto end;
+ }
+ sig_opts->sig_size = ukp->datalen;
+
+ memcpy(sig_opts->sig, ukp->data, sig_opts->sig_size);
+
+end:
+ up_read(&key->sem);
+ key_put(key);
+
+ return ret;
+}
+
+int verity_verify_sig_parse_opt_args(struct dm_arg_set *as,
+ struct dm_verity *v,
+ struct dm_verity_sig_opts *sig_opts,
+ unsigned int *argc,
+ const char *arg_name)
+{
+ struct dm_target *ti = v->ti;
+ int ret = 0;
+ const char *sig_key = NULL;
+
+ if (!*argc) {
+ ti->error = DM_VERITY_VERIFY_ERR("Signature key not specified");
+ return -EINVAL;
+ }
+
+ sig_key = dm_shift_arg(as);
+ (*argc)--;
+
+ ret = verity_verify_get_sig_from_key(sig_key, sig_opts);
+ if (ret < 0)
+ ti->error = DM_VERITY_VERIFY_ERR("Invalid key specified");
+
+ v->signature_key_desc = kstrdup(sig_key, GFP_KERNEL);
+ if (!v->signature_key_desc)
+ return -ENOMEM;
+
+ return ret;
+}
+
+/*
+ * verify_verify_roothash - Verify the root hash of the verity hash device
+ * using builtin trusted keys.
+ *
+ * @root_hash: For verity, the roothash/data to be verified.
+ * @root_hash_len: Size of the roothash/data to be verified.
+ * @sig_data: The trusted signature that verifies the roothash/data.
+ * @sig_len: Size of the signature.
+ *
+ */
+int verity_verify_root_hash(const void *root_hash, size_t root_hash_len,
+ const void *sig_data, size_t sig_len)
+{
+ int ret;
+
+ if (!root_hash || root_hash_len == 0)
+ return -EINVAL;
+
+ if (!sig_data || sig_len == 0) {
+ if (DM_VERITY_IS_SIG_FORCE_ENABLED())
+ return -ENOKEY;
+ else
+ return 0;
+ }
+
+ ret = verify_pkcs7_signature(root_hash, root_hash_len, sig_data,
+ sig_len,
+#ifdef CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG_SECONDARY_KEYRING
+ VERIFY_USE_SECONDARY_KEYRING,
+#else
+ NULL,
+#endif
+ VERIFYING_UNSPECIFIED_SIGNATURE, NULL, NULL);
+
+ return ret;
+}
+
+void verity_verify_sig_opts_cleanup(struct dm_verity_sig_opts *sig_opts)
+{
+ kfree(sig_opts->sig);
+ sig_opts->sig = NULL;
+ sig_opts->sig_size = 0;
+}
diff --git a/drivers/md/dm-verity-verify-sig.h b/drivers/md/dm-verity-verify-sig.h
new file mode 100644
index 000000000..3987c7141
--- /dev/null
+++ b/drivers/md/dm-verity-verify-sig.h
@@ -0,0 +1,60 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2019 Microsoft Corporation.
+ *
+ * Author: Jaskaran Singh Khurana <jaskarankhurana@linux.microsoft.com>
+ *
+ */
+#ifndef DM_VERITY_SIG_VERIFICATION_H
+#define DM_VERITY_SIG_VERIFICATION_H
+
+#define DM_VERITY_ROOT_HASH_VERIFICATION "DM Verity Sig Verification"
+#define DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY "root_hash_sig_key_desc"
+
+struct dm_verity_sig_opts {
+ unsigned int sig_size;
+ u8 *sig;
+};
+
+#ifdef CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG
+
+#define DM_VERITY_ROOT_HASH_VERIFICATION_OPTS 2
+
+int verity_verify_root_hash(const void *data, size_t data_len,
+ const void *sig_data, size_t sig_len);
+bool verity_verify_is_sig_opt_arg(const char *arg_name);
+
+int verity_verify_sig_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
+ struct dm_verity_sig_opts *sig_opts,
+ unsigned int *argc, const char *arg_name);
+
+void verity_verify_sig_opts_cleanup(struct dm_verity_sig_opts *sig_opts);
+
+#else
+
+#define DM_VERITY_ROOT_HASH_VERIFICATION_OPTS 0
+
+static inline int verity_verify_root_hash(const void *data, size_t data_len,
+ const void *sig_data, size_t sig_len)
+{
+ return 0;
+}
+
+static inline bool verity_verify_is_sig_opt_arg(const char *arg_name)
+{
+ return false;
+}
+
+static inline int verity_verify_sig_parse_opt_args(struct dm_arg_set *as,
+ struct dm_verity *v, struct dm_verity_sig_opts *sig_opts,
+ unsigned int *argc, const char *arg_name)
+{
+ return -EINVAL;
+}
+
+static inline void verity_verify_sig_opts_cleanup(struct dm_verity_sig_opts *sig_opts)
+{
+}
+
+#endif /* CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG */
+#endif /* DM_VERITY_SIG_VERIFICATION_H */
diff --git a/drivers/md/dm-verity.h b/drivers/md/dm-verity.h
new file mode 100644
index 000000000..f9d522c87
--- /dev/null
+++ b/drivers/md/dm-verity.h
@@ -0,0 +1,135 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2012 Red Hat, Inc.
+ * Copyright (C) 2015 Google, Inc.
+ *
+ * Author: Mikulas Patocka <mpatocka@redhat.com>
+ *
+ * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
+ */
+
+#ifndef DM_VERITY_H
+#define DM_VERITY_H
+
+#include <linux/dm-bufio.h>
+#include <linux/device-mapper.h>
+#include <linux/interrupt.h>
+#include <crypto/hash.h>
+
+#define DM_VERITY_MAX_LEVELS 63
+
+enum verity_mode {
+ DM_VERITY_MODE_EIO,
+ DM_VERITY_MODE_LOGGING,
+ DM_VERITY_MODE_RESTART,
+ DM_VERITY_MODE_PANIC
+};
+
+enum verity_block_type {
+ DM_VERITY_BLOCK_TYPE_DATA,
+ DM_VERITY_BLOCK_TYPE_METADATA
+};
+
+struct dm_verity_fec;
+
+struct dm_verity {
+ struct dm_dev *data_dev;
+ struct dm_dev *hash_dev;
+ struct dm_target *ti;
+ struct dm_bufio_client *bufio;
+ char *alg_name;
+ struct crypto_ahash *tfm;
+ u8 *root_digest; /* digest of the root block */
+ u8 *salt; /* salt: its size is salt_size */
+ u8 *zero_digest; /* digest for a zero block */
+ unsigned int salt_size;
+ sector_t data_start; /* data offset in 512-byte sectors */
+ sector_t hash_start; /* hash start in blocks */
+ sector_t data_blocks; /* the number of data blocks */
+ sector_t hash_blocks; /* the number of hash blocks */
+ unsigned char data_dev_block_bits; /* log2(data blocksize) */
+ unsigned char hash_dev_block_bits; /* log2(hash blocksize) */
+ unsigned char hash_per_block_bits; /* log2(hashes in hash block) */
+ unsigned char levels; /* the number of tree levels */
+ unsigned char version;
+ bool hash_failed:1; /* set if hash of any block failed */
+ bool use_tasklet:1; /* try to verify in tasklet before work-queue */
+ unsigned int digest_size; /* digest size for the current hash algorithm */
+ unsigned int ahash_reqsize;/* the size of temporary space for crypto */
+ enum verity_mode mode; /* mode for handling verification errors */
+ unsigned int corrupted_errs;/* Number of errors for corrupted blocks */
+
+ struct workqueue_struct *verify_wq;
+
+ /* starting blocks for each tree level. 0 is the lowest level. */
+ sector_t hash_level_block[DM_VERITY_MAX_LEVELS];
+
+ struct dm_verity_fec *fec; /* forward error correction */
+ unsigned long *validated_blocks; /* bitset blocks validated */
+
+ char *signature_key_desc; /* signature keyring reference */
+};
+
+struct dm_verity_io {
+ struct dm_verity *v;
+
+ /* original value of bio->bi_end_io */
+ bio_end_io_t *orig_bi_end_io;
+
+ sector_t block;
+ unsigned int n_blocks;
+ bool in_tasklet;
+
+ struct bvec_iter iter;
+
+ struct work_struct work;
+ struct tasklet_struct tasklet;
+
+ /*
+ * Three variably-size fields follow this struct:
+ *
+ * u8 hash_req[v->ahash_reqsize];
+ * u8 real_digest[v->digest_size];
+ * u8 want_digest[v->digest_size];
+ *
+ * To access them use: verity_io_hash_req(), verity_io_real_digest()
+ * and verity_io_want_digest().
+ */
+};
+
+static inline struct ahash_request *verity_io_hash_req(struct dm_verity *v,
+ struct dm_verity_io *io)
+{
+ return (struct ahash_request *)(io + 1);
+}
+
+static inline u8 *verity_io_real_digest(struct dm_verity *v,
+ struct dm_verity_io *io)
+{
+ return (u8 *)(io + 1) + v->ahash_reqsize;
+}
+
+static inline u8 *verity_io_want_digest(struct dm_verity *v,
+ struct dm_verity_io *io)
+{
+ return (u8 *)(io + 1) + v->ahash_reqsize + v->digest_size;
+}
+
+extern int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
+ struct bvec_iter *iter,
+ int (*process)(struct dm_verity *v,
+ struct dm_verity_io *io,
+ u8 *data, size_t len));
+
+extern int verity_hash(struct dm_verity *v, struct ahash_request *req,
+ const u8 *data, size_t len, u8 *digest, bool may_sleep);
+
+extern int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
+ sector_t block, u8 *digest, bool *is_zero);
+
+extern bool dm_is_verity_target(struct dm_target *ti);
+extern int dm_verity_get_mode(struct dm_target *ti);
+extern int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest,
+ unsigned int *digest_size);
+
+#endif /* DM_VERITY_H */
diff --git a/drivers/md/dm-writecache.c b/drivers/md/dm-writecache.c
new file mode 100644
index 000000000..c6ff43a8f
--- /dev/null
+++ b/drivers/md/dm-writecache.c
@@ -0,0 +1,2775 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2018 Red Hat. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/device-mapper.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/vmalloc.h>
+#include <linux/kthread.h>
+#include <linux/dm-io.h>
+#include <linux/dm-kcopyd.h>
+#include <linux/dax.h>
+#include <linux/pfn_t.h>
+#include <linux/libnvdimm.h>
+#include <linux/delay.h>
+#include "dm-io-tracker.h"
+
+#define DM_MSG_PREFIX "writecache"
+
+#define HIGH_WATERMARK 50
+#define LOW_WATERMARK 45
+#define MAX_WRITEBACK_JOBS min(0x10000000 / PAGE_SIZE, totalram_pages() / 16)
+#define ENDIO_LATENCY 16
+#define WRITEBACK_LATENCY 64
+#define AUTOCOMMIT_BLOCKS_SSD 65536
+#define AUTOCOMMIT_BLOCKS_PMEM 64
+#define AUTOCOMMIT_MSEC 1000
+#define MAX_AGE_DIV 16
+#define MAX_AGE_UNSPECIFIED -1UL
+#define PAUSE_WRITEBACK (HZ * 3)
+
+#define BITMAP_GRANULARITY 65536
+#if BITMAP_GRANULARITY < PAGE_SIZE
+#undef BITMAP_GRANULARITY
+#define BITMAP_GRANULARITY PAGE_SIZE
+#endif
+
+#if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_FS_DAX)
+#define DM_WRITECACHE_HAS_PMEM
+#endif
+
+#ifdef DM_WRITECACHE_HAS_PMEM
+#define pmem_assign(dest, src) \
+do { \
+ typeof(dest) uniq = (src); \
+ memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \
+} while (0)
+#else
+#define pmem_assign(dest, src) ((dest) = (src))
+#endif
+
+#if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM)
+#define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
+#endif
+
+#define MEMORY_SUPERBLOCK_MAGIC 0x23489321
+#define MEMORY_SUPERBLOCK_VERSION 1
+
+struct wc_memory_entry {
+ __le64 original_sector;
+ __le64 seq_count;
+};
+
+struct wc_memory_superblock {
+ union {
+ struct {
+ __le32 magic;
+ __le32 version;
+ __le32 block_size;
+ __le32 pad;
+ __le64 n_blocks;
+ __le64 seq_count;
+ };
+ __le64 padding[8];
+ };
+ struct wc_memory_entry entries[];
+};
+
+struct wc_entry {
+ struct rb_node rb_node;
+ struct list_head lru;
+ unsigned short wc_list_contiguous;
+ bool write_in_progress
+#if BITS_PER_LONG == 64
+ : 1
+#endif
+ ;
+ unsigned long index
+#if BITS_PER_LONG == 64
+ : 47
+#endif
+ ;
+ unsigned long age;
+#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
+ uint64_t original_sector;
+ uint64_t seq_count;
+#endif
+};
+
+#ifdef DM_WRITECACHE_HAS_PMEM
+#define WC_MODE_PMEM(wc) ((wc)->pmem_mode)
+#define WC_MODE_FUA(wc) ((wc)->writeback_fua)
+#else
+#define WC_MODE_PMEM(wc) false
+#define WC_MODE_FUA(wc) false
+#endif
+#define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc))
+
+struct dm_writecache {
+ struct mutex lock;
+ struct list_head lru;
+ union {
+ struct list_head freelist;
+ struct {
+ struct rb_root freetree;
+ struct wc_entry *current_free;
+ };
+ };
+ struct rb_root tree;
+
+ size_t freelist_size;
+ size_t writeback_size;
+ size_t freelist_high_watermark;
+ size_t freelist_low_watermark;
+ unsigned long max_age;
+ unsigned long pause;
+
+ unsigned int uncommitted_blocks;
+ unsigned int autocommit_blocks;
+ unsigned int max_writeback_jobs;
+
+ int error;
+
+ unsigned long autocommit_jiffies;
+ struct timer_list autocommit_timer;
+ struct wait_queue_head freelist_wait;
+
+ struct timer_list max_age_timer;
+
+ atomic_t bio_in_progress[2];
+ struct wait_queue_head bio_in_progress_wait[2];
+
+ struct dm_target *ti;
+ struct dm_dev *dev;
+ struct dm_dev *ssd_dev;
+ sector_t start_sector;
+ void *memory_map;
+ uint64_t memory_map_size;
+ size_t metadata_sectors;
+ size_t n_blocks;
+ uint64_t seq_count;
+ sector_t data_device_sectors;
+ void *block_start;
+ struct wc_entry *entries;
+ unsigned int block_size;
+ unsigned char block_size_bits;
+
+ bool pmem_mode:1;
+ bool writeback_fua:1;
+
+ bool overwrote_committed:1;
+ bool memory_vmapped:1;
+
+ bool start_sector_set:1;
+ bool high_wm_percent_set:1;
+ bool low_wm_percent_set:1;
+ bool max_writeback_jobs_set:1;
+ bool autocommit_blocks_set:1;
+ bool autocommit_time_set:1;
+ bool max_age_set:1;
+ bool writeback_fua_set:1;
+ bool flush_on_suspend:1;
+ bool cleaner:1;
+ bool cleaner_set:1;
+ bool metadata_only:1;
+ bool pause_set:1;
+
+ unsigned int high_wm_percent_value;
+ unsigned int low_wm_percent_value;
+ unsigned int autocommit_time_value;
+ unsigned int max_age_value;
+ unsigned int pause_value;
+
+ unsigned int writeback_all;
+ struct workqueue_struct *writeback_wq;
+ struct work_struct writeback_work;
+ struct work_struct flush_work;
+
+ struct dm_io_tracker iot;
+
+ struct dm_io_client *dm_io;
+
+ raw_spinlock_t endio_list_lock;
+ struct list_head endio_list;
+ struct task_struct *endio_thread;
+
+ struct task_struct *flush_thread;
+ struct bio_list flush_list;
+
+ struct dm_kcopyd_client *dm_kcopyd;
+ unsigned long *dirty_bitmap;
+ unsigned int dirty_bitmap_size;
+
+ struct bio_set bio_set;
+ mempool_t copy_pool;
+
+ struct {
+ unsigned long long reads;
+ unsigned long long read_hits;
+ unsigned long long writes;
+ unsigned long long write_hits_uncommitted;
+ unsigned long long write_hits_committed;
+ unsigned long long writes_around;
+ unsigned long long writes_allocate;
+ unsigned long long writes_blocked_on_freelist;
+ unsigned long long flushes;
+ unsigned long long discards;
+ } stats;
+};
+
+#define WB_LIST_INLINE 16
+
+struct writeback_struct {
+ struct list_head endio_entry;
+ struct dm_writecache *wc;
+ struct wc_entry **wc_list;
+ unsigned int wc_list_n;
+ struct wc_entry *wc_list_inline[WB_LIST_INLINE];
+ struct bio bio;
+};
+
+struct copy_struct {
+ struct list_head endio_entry;
+ struct dm_writecache *wc;
+ struct wc_entry *e;
+ unsigned int n_entries;
+ int error;
+};
+
+DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
+ "A percentage of time allocated for data copying");
+
+static void wc_lock(struct dm_writecache *wc)
+{
+ mutex_lock(&wc->lock);
+}
+
+static void wc_unlock(struct dm_writecache *wc)
+{
+ mutex_unlock(&wc->lock);
+}
+
+#ifdef DM_WRITECACHE_HAS_PMEM
+static int persistent_memory_claim(struct dm_writecache *wc)
+{
+ int r;
+ loff_t s;
+ long p, da;
+ pfn_t pfn;
+ int id;
+ struct page **pages;
+ sector_t offset;
+
+ wc->memory_vmapped = false;
+
+ s = wc->memory_map_size;
+ p = s >> PAGE_SHIFT;
+ if (!p) {
+ r = -EINVAL;
+ goto err1;
+ }
+ if (p != s >> PAGE_SHIFT) {
+ r = -EOVERFLOW;
+ goto err1;
+ }
+
+ offset = get_start_sect(wc->ssd_dev->bdev);
+ if (offset & (PAGE_SIZE / 512 - 1)) {
+ r = -EINVAL;
+ goto err1;
+ }
+ offset >>= PAGE_SHIFT - 9;
+
+ id = dax_read_lock();
+
+ da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, DAX_ACCESS,
+ &wc->memory_map, &pfn);
+ if (da < 0) {
+ wc->memory_map = NULL;
+ r = da;
+ goto err2;
+ }
+ if (!pfn_t_has_page(pfn)) {
+ wc->memory_map = NULL;
+ r = -EOPNOTSUPP;
+ goto err2;
+ }
+ if (da != p) {
+ long i;
+ wc->memory_map = NULL;
+ pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
+ if (!pages) {
+ r = -ENOMEM;
+ goto err2;
+ }
+ i = 0;
+ do {
+ long daa;
+ daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i,
+ p - i, DAX_ACCESS, NULL, &pfn);
+ if (daa <= 0) {
+ r = daa ? daa : -EINVAL;
+ goto err3;
+ }
+ if (!pfn_t_has_page(pfn)) {
+ r = -EOPNOTSUPP;
+ goto err3;
+ }
+ while (daa-- && i < p) {
+ pages[i++] = pfn_t_to_page(pfn);
+ pfn.val++;
+ if (!(i & 15))
+ cond_resched();
+ }
+ } while (i < p);
+ wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
+ if (!wc->memory_map) {
+ r = -ENOMEM;
+ goto err3;
+ }
+ kvfree(pages);
+ wc->memory_vmapped = true;
+ }
+
+ dax_read_unlock(id);
+
+ wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
+ wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
+
+ return 0;
+err3:
+ kvfree(pages);
+err2:
+ dax_read_unlock(id);
+err1:
+ return r;
+}
+#else
+static int persistent_memory_claim(struct dm_writecache *wc)
+{
+ return -EOPNOTSUPP;
+}
+#endif
+
+static void persistent_memory_release(struct dm_writecache *wc)
+{
+ if (wc->memory_vmapped)
+ vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
+}
+
+static struct page *persistent_memory_page(void *addr)
+{
+ if (is_vmalloc_addr(addr))
+ return vmalloc_to_page(addr);
+ else
+ return virt_to_page(addr);
+}
+
+static unsigned int persistent_memory_page_offset(void *addr)
+{
+ return (unsigned long)addr & (PAGE_SIZE - 1);
+}
+
+static void persistent_memory_flush_cache(void *ptr, size_t size)
+{
+ if (is_vmalloc_addr(ptr))
+ flush_kernel_vmap_range(ptr, size);
+}
+
+static void persistent_memory_invalidate_cache(void *ptr, size_t size)
+{
+ if (is_vmalloc_addr(ptr))
+ invalidate_kernel_vmap_range(ptr, size);
+}
+
+static struct wc_memory_superblock *sb(struct dm_writecache *wc)
+{
+ return wc->memory_map;
+}
+
+static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
+{
+ return &sb(wc)->entries[e->index];
+}
+
+static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
+{
+ return (char *)wc->block_start + (e->index << wc->block_size_bits);
+}
+
+static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
+{
+ return wc->start_sector + wc->metadata_sectors +
+ ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
+}
+
+static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
+{
+#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
+ return e->original_sector;
+#else
+ return le64_to_cpu(memory_entry(wc, e)->original_sector);
+#endif
+}
+
+static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
+{
+#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
+ return e->seq_count;
+#else
+ return le64_to_cpu(memory_entry(wc, e)->seq_count);
+#endif
+}
+
+static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
+{
+#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
+ e->seq_count = -1;
+#endif
+ pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
+}
+
+static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
+ uint64_t original_sector, uint64_t seq_count)
+{
+ struct wc_memory_entry me;
+#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
+ e->original_sector = original_sector;
+ e->seq_count = seq_count;
+#endif
+ me.original_sector = cpu_to_le64(original_sector);
+ me.seq_count = cpu_to_le64(seq_count);
+ pmem_assign(*memory_entry(wc, e), me);
+}
+
+#define writecache_error(wc, err, msg, arg...) \
+do { \
+ if (!cmpxchg(&(wc)->error, 0, err)) \
+ DMERR(msg, ##arg); \
+ wake_up(&(wc)->freelist_wait); \
+} while (0)
+
+#define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error)))
+
+static void writecache_flush_all_metadata(struct dm_writecache *wc)
+{
+ if (!WC_MODE_PMEM(wc))
+ memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
+}
+
+static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
+{
+ if (!WC_MODE_PMEM(wc))
+ __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
+ wc->dirty_bitmap);
+}
+
+static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
+
+struct io_notify {
+ struct dm_writecache *wc;
+ struct completion c;
+ atomic_t count;
+};
+
+static void writecache_notify_io(unsigned long error, void *context)
+{
+ struct io_notify *endio = context;
+
+ if (unlikely(error != 0))
+ writecache_error(endio->wc, -EIO, "error writing metadata");
+ BUG_ON(atomic_read(&endio->count) <= 0);
+ if (atomic_dec_and_test(&endio->count))
+ complete(&endio->c);
+}
+
+static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
+{
+ wait_event(wc->bio_in_progress_wait[direction],
+ !atomic_read(&wc->bio_in_progress[direction]));
+}
+
+static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
+{
+ struct dm_io_region region;
+ struct dm_io_request req;
+ struct io_notify endio = {
+ wc,
+ COMPLETION_INITIALIZER_ONSTACK(endio.c),
+ ATOMIC_INIT(1),
+ };
+ unsigned int bitmap_bits = wc->dirty_bitmap_size * 8;
+ unsigned int i = 0;
+
+ while (1) {
+ unsigned int j;
+ i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
+ if (unlikely(i == bitmap_bits))
+ break;
+ j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
+
+ region.bdev = wc->ssd_dev->bdev;
+ region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
+ region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
+
+ if (unlikely(region.sector >= wc->metadata_sectors))
+ break;
+ if (unlikely(region.sector + region.count > wc->metadata_sectors))
+ region.count = wc->metadata_sectors - region.sector;
+
+ region.sector += wc->start_sector;
+ atomic_inc(&endio.count);
+ req.bi_opf = REQ_OP_WRITE | REQ_SYNC;
+ req.mem.type = DM_IO_VMA;
+ req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
+ req.client = wc->dm_io;
+ req.notify.fn = writecache_notify_io;
+ req.notify.context = &endio;
+
+ /* writing via async dm-io (implied by notify.fn above) won't return an error */
+ (void) dm_io(&req, 1, &region, NULL);
+ i = j;
+ }
+
+ writecache_notify_io(0, &endio);
+ wait_for_completion_io(&endio.c);
+
+ if (wait_for_ios)
+ writecache_wait_for_ios(wc, WRITE);
+
+ writecache_disk_flush(wc, wc->ssd_dev);
+
+ memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
+}
+
+static void ssd_commit_superblock(struct dm_writecache *wc)
+{
+ int r;
+ struct dm_io_region region;
+ struct dm_io_request req;
+
+ region.bdev = wc->ssd_dev->bdev;
+ region.sector = 0;
+ region.count = max(4096U, wc->block_size) >> SECTOR_SHIFT;
+
+ if (unlikely(region.sector + region.count > wc->metadata_sectors))
+ region.count = wc->metadata_sectors - region.sector;
+
+ region.sector += wc->start_sector;
+
+ req.bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_FUA;
+ req.mem.type = DM_IO_VMA;
+ req.mem.ptr.vma = (char *)wc->memory_map;
+ req.client = wc->dm_io;
+ req.notify.fn = NULL;
+ req.notify.context = NULL;
+
+ r = dm_io(&req, 1, &region, NULL);
+ if (unlikely(r))
+ writecache_error(wc, r, "error writing superblock");
+}
+
+static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
+{
+ if (WC_MODE_PMEM(wc))
+ pmem_wmb();
+ else
+ ssd_commit_flushed(wc, wait_for_ios);
+}
+
+static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
+{
+ int r;
+ struct dm_io_region region;
+ struct dm_io_request req;
+
+ region.bdev = dev->bdev;
+ region.sector = 0;
+ region.count = 0;
+ req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
+ req.mem.type = DM_IO_KMEM;
+ req.mem.ptr.addr = NULL;
+ req.client = wc->dm_io;
+ req.notify.fn = NULL;
+
+ r = dm_io(&req, 1, &region, NULL);
+ if (unlikely(r))
+ writecache_error(wc, r, "error flushing metadata: %d", r);
+}
+
+#define WFE_RETURN_FOLLOWING 1
+#define WFE_LOWEST_SEQ 2
+
+static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
+ uint64_t block, int flags)
+{
+ struct wc_entry *e;
+ struct rb_node *node = wc->tree.rb_node;
+
+ if (unlikely(!node))
+ return NULL;
+
+ while (1) {
+ e = container_of(node, struct wc_entry, rb_node);
+ if (read_original_sector(wc, e) == block)
+ break;
+
+ node = (read_original_sector(wc, e) >= block ?
+ e->rb_node.rb_left : e->rb_node.rb_right);
+ if (unlikely(!node)) {
+ if (!(flags & WFE_RETURN_FOLLOWING))
+ return NULL;
+ if (read_original_sector(wc, e) >= block) {
+ return e;
+ } else {
+ node = rb_next(&e->rb_node);
+ if (unlikely(!node))
+ return NULL;
+ e = container_of(node, struct wc_entry, rb_node);
+ return e;
+ }
+ }
+ }
+
+ while (1) {
+ struct wc_entry *e2;
+ if (flags & WFE_LOWEST_SEQ)
+ node = rb_prev(&e->rb_node);
+ else
+ node = rb_next(&e->rb_node);
+ if (unlikely(!node))
+ return e;
+ e2 = container_of(node, struct wc_entry, rb_node);
+ if (read_original_sector(wc, e2) != block)
+ return e;
+ e = e2;
+ }
+}
+
+static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
+{
+ struct wc_entry *e;
+ struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
+
+ while (*node) {
+ e = container_of(*node, struct wc_entry, rb_node);
+ parent = &e->rb_node;
+ if (read_original_sector(wc, e) > read_original_sector(wc, ins))
+ node = &parent->rb_left;
+ else
+ node = &parent->rb_right;
+ }
+ rb_link_node(&ins->rb_node, parent, node);
+ rb_insert_color(&ins->rb_node, &wc->tree);
+ list_add(&ins->lru, &wc->lru);
+ ins->age = jiffies;
+}
+
+static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
+{
+ list_del(&e->lru);
+ rb_erase(&e->rb_node, &wc->tree);
+}
+
+static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
+{
+ if (WC_MODE_SORT_FREELIST(wc)) {
+ struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
+ if (unlikely(!*node))
+ wc->current_free = e;
+ while (*node) {
+ parent = *node;
+ if (&e->rb_node < *node)
+ node = &parent->rb_left;
+ else
+ node = &parent->rb_right;
+ }
+ rb_link_node(&e->rb_node, parent, node);
+ rb_insert_color(&e->rb_node, &wc->freetree);
+ } else {
+ list_add_tail(&e->lru, &wc->freelist);
+ }
+ wc->freelist_size++;
+}
+
+static inline void writecache_verify_watermark(struct dm_writecache *wc)
+{
+ if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
+ queue_work(wc->writeback_wq, &wc->writeback_work);
+}
+
+static void writecache_max_age_timer(struct timer_list *t)
+{
+ struct dm_writecache *wc = from_timer(wc, t, max_age_timer);
+
+ if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
+ queue_work(wc->writeback_wq, &wc->writeback_work);
+ mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
+ }
+}
+
+static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
+{
+ struct wc_entry *e;
+
+ if (WC_MODE_SORT_FREELIST(wc)) {
+ struct rb_node *next;
+ if (unlikely(!wc->current_free))
+ return NULL;
+ e = wc->current_free;
+ if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
+ return NULL;
+ next = rb_next(&e->rb_node);
+ rb_erase(&e->rb_node, &wc->freetree);
+ if (unlikely(!next))
+ next = rb_first(&wc->freetree);
+ wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
+ } else {
+ if (unlikely(list_empty(&wc->freelist)))
+ return NULL;
+ e = container_of(wc->freelist.next, struct wc_entry, lru);
+ if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
+ return NULL;
+ list_del(&e->lru);
+ }
+ wc->freelist_size--;
+
+ writecache_verify_watermark(wc);
+
+ return e;
+}
+
+static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
+{
+ writecache_unlink(wc, e);
+ writecache_add_to_freelist(wc, e);
+ clear_seq_count(wc, e);
+ writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
+ if (unlikely(waitqueue_active(&wc->freelist_wait)))
+ wake_up(&wc->freelist_wait);
+}
+
+static void writecache_wait_on_freelist(struct dm_writecache *wc)
+{
+ DEFINE_WAIT(wait);
+
+ prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
+ wc_unlock(wc);
+ io_schedule();
+ finish_wait(&wc->freelist_wait, &wait);
+ wc_lock(wc);
+}
+
+static void writecache_poison_lists(struct dm_writecache *wc)
+{
+ /*
+ * Catch incorrect access to these values while the device is suspended.
+ */
+ memset(&wc->tree, -1, sizeof wc->tree);
+ wc->lru.next = LIST_POISON1;
+ wc->lru.prev = LIST_POISON2;
+ wc->freelist.next = LIST_POISON1;
+ wc->freelist.prev = LIST_POISON2;
+}
+
+static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
+{
+ writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
+ if (WC_MODE_PMEM(wc))
+ writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
+}
+
+static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
+{
+ return read_seq_count(wc, e) < wc->seq_count;
+}
+
+static void writecache_flush(struct dm_writecache *wc)
+{
+ struct wc_entry *e, *e2;
+ bool need_flush_after_free;
+
+ wc->uncommitted_blocks = 0;
+ del_timer(&wc->autocommit_timer);
+
+ if (list_empty(&wc->lru))
+ return;
+
+ e = container_of(wc->lru.next, struct wc_entry, lru);
+ if (writecache_entry_is_committed(wc, e)) {
+ if (wc->overwrote_committed) {
+ writecache_wait_for_ios(wc, WRITE);
+ writecache_disk_flush(wc, wc->ssd_dev);
+ wc->overwrote_committed = false;
+ }
+ return;
+ }
+ while (1) {
+ writecache_flush_entry(wc, e);
+ if (unlikely(e->lru.next == &wc->lru))
+ break;
+ e2 = container_of(e->lru.next, struct wc_entry, lru);
+ if (writecache_entry_is_committed(wc, e2))
+ break;
+ e = e2;
+ cond_resched();
+ }
+ writecache_commit_flushed(wc, true);
+
+ wc->seq_count++;
+ pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
+ if (WC_MODE_PMEM(wc))
+ writecache_commit_flushed(wc, false);
+ else
+ ssd_commit_superblock(wc);
+
+ wc->overwrote_committed = false;
+
+ need_flush_after_free = false;
+ while (1) {
+ /* Free another committed entry with lower seq-count */
+ struct rb_node *rb_node = rb_prev(&e->rb_node);
+
+ if (rb_node) {
+ e2 = container_of(rb_node, struct wc_entry, rb_node);
+ if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
+ likely(!e2->write_in_progress)) {
+ writecache_free_entry(wc, e2);
+ need_flush_after_free = true;
+ }
+ }
+ if (unlikely(e->lru.prev == &wc->lru))
+ break;
+ e = container_of(e->lru.prev, struct wc_entry, lru);
+ cond_resched();
+ }
+
+ if (need_flush_after_free)
+ writecache_commit_flushed(wc, false);
+}
+
+static void writecache_flush_work(struct work_struct *work)
+{
+ struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
+
+ wc_lock(wc);
+ writecache_flush(wc);
+ wc_unlock(wc);
+}
+
+static void writecache_autocommit_timer(struct timer_list *t)
+{
+ struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
+ if (!writecache_has_error(wc))
+ queue_work(wc->writeback_wq, &wc->flush_work);
+}
+
+static void writecache_schedule_autocommit(struct dm_writecache *wc)
+{
+ if (!timer_pending(&wc->autocommit_timer))
+ mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
+}
+
+static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
+{
+ struct wc_entry *e;
+ bool discarded_something = false;
+
+ e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
+ if (unlikely(!e))
+ return;
+
+ while (read_original_sector(wc, e) < end) {
+ struct rb_node *node = rb_next(&e->rb_node);
+
+ if (likely(!e->write_in_progress)) {
+ if (!discarded_something) {
+ if (!WC_MODE_PMEM(wc)) {
+ writecache_wait_for_ios(wc, READ);
+ writecache_wait_for_ios(wc, WRITE);
+ }
+ discarded_something = true;
+ }
+ if (!writecache_entry_is_committed(wc, e))
+ wc->uncommitted_blocks--;
+ writecache_free_entry(wc, e);
+ }
+
+ if (unlikely(!node))
+ break;
+
+ e = container_of(node, struct wc_entry, rb_node);
+ }
+
+ if (discarded_something)
+ writecache_commit_flushed(wc, false);
+}
+
+static bool writecache_wait_for_writeback(struct dm_writecache *wc)
+{
+ if (wc->writeback_size) {
+ writecache_wait_on_freelist(wc);
+ return true;
+ }
+ return false;
+}
+
+static void writecache_suspend(struct dm_target *ti)
+{
+ struct dm_writecache *wc = ti->private;
+ bool flush_on_suspend;
+
+ del_timer_sync(&wc->autocommit_timer);
+ del_timer_sync(&wc->max_age_timer);
+
+ wc_lock(wc);
+ writecache_flush(wc);
+ flush_on_suspend = wc->flush_on_suspend;
+ if (flush_on_suspend) {
+ wc->flush_on_suspend = false;
+ wc->writeback_all++;
+ queue_work(wc->writeback_wq, &wc->writeback_work);
+ }
+ wc_unlock(wc);
+
+ drain_workqueue(wc->writeback_wq);
+
+ wc_lock(wc);
+ if (flush_on_suspend)
+ wc->writeback_all--;
+ while (writecache_wait_for_writeback(wc));
+
+ if (WC_MODE_PMEM(wc))
+ persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
+
+ writecache_poison_lists(wc);
+
+ wc_unlock(wc);
+}
+
+static int writecache_alloc_entries(struct dm_writecache *wc)
+{
+ size_t b;
+
+ if (wc->entries)
+ return 0;
+ wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
+ if (!wc->entries)
+ return -ENOMEM;
+ for (b = 0; b < wc->n_blocks; b++) {
+ struct wc_entry *e = &wc->entries[b];
+ e->index = b;
+ e->write_in_progress = false;
+ cond_resched();
+ }
+
+ return 0;
+}
+
+static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
+{
+ struct dm_io_region region;
+ struct dm_io_request req;
+
+ region.bdev = wc->ssd_dev->bdev;
+ region.sector = wc->start_sector;
+ region.count = n_sectors;
+ req.bi_opf = REQ_OP_READ | REQ_SYNC;
+ req.mem.type = DM_IO_VMA;
+ req.mem.ptr.vma = (char *)wc->memory_map;
+ req.client = wc->dm_io;
+ req.notify.fn = NULL;
+
+ return dm_io(&req, 1, &region, NULL);
+}
+
+static void writecache_resume(struct dm_target *ti)
+{
+ struct dm_writecache *wc = ti->private;
+ size_t b;
+ bool need_flush = false;
+ __le64 sb_seq_count;
+ int r;
+
+ wc_lock(wc);
+
+ wc->data_device_sectors = bdev_nr_sectors(wc->dev->bdev);
+
+ if (WC_MODE_PMEM(wc)) {
+ persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
+ } else {
+ r = writecache_read_metadata(wc, wc->metadata_sectors);
+ if (r) {
+ size_t sb_entries_offset;
+ writecache_error(wc, r, "unable to read metadata: %d", r);
+ sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
+ memset((char *)wc->memory_map + sb_entries_offset, -1,
+ (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
+ }
+ }
+
+ wc->tree = RB_ROOT;
+ INIT_LIST_HEAD(&wc->lru);
+ if (WC_MODE_SORT_FREELIST(wc)) {
+ wc->freetree = RB_ROOT;
+ wc->current_free = NULL;
+ } else {
+ INIT_LIST_HEAD(&wc->freelist);
+ }
+ wc->freelist_size = 0;
+
+ r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count,
+ sizeof(uint64_t));
+ if (r) {
+ writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
+ sb_seq_count = cpu_to_le64(0);
+ }
+ wc->seq_count = le64_to_cpu(sb_seq_count);
+
+#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
+ for (b = 0; b < wc->n_blocks; b++) {
+ struct wc_entry *e = &wc->entries[b];
+ struct wc_memory_entry wme;
+ if (writecache_has_error(wc)) {
+ e->original_sector = -1;
+ e->seq_count = -1;
+ continue;
+ }
+ r = copy_mc_to_kernel(&wme, memory_entry(wc, e),
+ sizeof(struct wc_memory_entry));
+ if (r) {
+ writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
+ (unsigned long)b, r);
+ e->original_sector = -1;
+ e->seq_count = -1;
+ } else {
+ e->original_sector = le64_to_cpu(wme.original_sector);
+ e->seq_count = le64_to_cpu(wme.seq_count);
+ }
+ cond_resched();
+ }
+#endif
+ for (b = 0; b < wc->n_blocks; b++) {
+ struct wc_entry *e = &wc->entries[b];
+ if (!writecache_entry_is_committed(wc, e)) {
+ if (read_seq_count(wc, e) != -1) {
+erase_this:
+ clear_seq_count(wc, e);
+ need_flush = true;
+ }
+ writecache_add_to_freelist(wc, e);
+ } else {
+ struct wc_entry *old;
+
+ old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
+ if (!old) {
+ writecache_insert_entry(wc, e);
+ } else {
+ if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
+ writecache_error(wc, -EINVAL,
+ "two identical entries, position %llu, sector %llu, sequence %llu",
+ (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
+ (unsigned long long)read_seq_count(wc, e));
+ }
+ if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
+ goto erase_this;
+ } else {
+ writecache_free_entry(wc, old);
+ writecache_insert_entry(wc, e);
+ need_flush = true;
+ }
+ }
+ }
+ cond_resched();
+ }
+
+ if (need_flush) {
+ writecache_flush_all_metadata(wc);
+ writecache_commit_flushed(wc, false);
+ }
+
+ writecache_verify_watermark(wc);
+
+ if (wc->max_age != MAX_AGE_UNSPECIFIED)
+ mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
+
+ wc_unlock(wc);
+}
+
+static int process_flush_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
+{
+ if (argc != 1)
+ return -EINVAL;
+
+ wc_lock(wc);
+ if (dm_suspended(wc->ti)) {
+ wc_unlock(wc);
+ return -EBUSY;
+ }
+ if (writecache_has_error(wc)) {
+ wc_unlock(wc);
+ return -EIO;
+ }
+
+ writecache_flush(wc);
+ wc->writeback_all++;
+ queue_work(wc->writeback_wq, &wc->writeback_work);
+ wc_unlock(wc);
+
+ flush_workqueue(wc->writeback_wq);
+
+ wc_lock(wc);
+ wc->writeback_all--;
+ if (writecache_has_error(wc)) {
+ wc_unlock(wc);
+ return -EIO;
+ }
+ wc_unlock(wc);
+
+ return 0;
+}
+
+static int process_flush_on_suspend_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
+{
+ if (argc != 1)
+ return -EINVAL;
+
+ wc_lock(wc);
+ wc->flush_on_suspend = true;
+ wc_unlock(wc);
+
+ return 0;
+}
+
+static void activate_cleaner(struct dm_writecache *wc)
+{
+ wc->flush_on_suspend = true;
+ wc->cleaner = true;
+ wc->freelist_high_watermark = wc->n_blocks;
+ wc->freelist_low_watermark = wc->n_blocks;
+}
+
+static int process_cleaner_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
+{
+ if (argc != 1)
+ return -EINVAL;
+
+ wc_lock(wc);
+ activate_cleaner(wc);
+ if (!dm_suspended(wc->ti))
+ writecache_verify_watermark(wc);
+ wc_unlock(wc);
+
+ return 0;
+}
+
+static int process_clear_stats_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
+{
+ if (argc != 1)
+ return -EINVAL;
+
+ wc_lock(wc);
+ memset(&wc->stats, 0, sizeof wc->stats);
+ wc_unlock(wc);
+
+ return 0;
+}
+
+static int writecache_message(struct dm_target *ti, unsigned int argc, char **argv,
+ char *result, unsigned int maxlen)
+{
+ int r = -EINVAL;
+ struct dm_writecache *wc = ti->private;
+
+ if (!strcasecmp(argv[0], "flush"))
+ r = process_flush_mesg(argc, argv, wc);
+ else if (!strcasecmp(argv[0], "flush_on_suspend"))
+ r = process_flush_on_suspend_mesg(argc, argv, wc);
+ else if (!strcasecmp(argv[0], "cleaner"))
+ r = process_cleaner_mesg(argc, argv, wc);
+ else if (!strcasecmp(argv[0], "clear_stats"))
+ r = process_clear_stats_mesg(argc, argv, wc);
+ else
+ DMERR("unrecognised message received: %s", argv[0]);
+
+ return r;
+}
+
+static void memcpy_flushcache_optimized(void *dest, void *source, size_t size)
+{
+ /*
+ * clflushopt performs better with block size 1024, 2048, 4096
+ * non-temporal stores perform better with block size 512
+ *
+ * block size 512 1024 2048 4096
+ * movnti 496 MB/s 642 MB/s 725 MB/s 744 MB/s
+ * clflushopt 373 MB/s 688 MB/s 1.1 GB/s 1.2 GB/s
+ *
+ * We see that movnti performs better for 512-byte blocks, and
+ * clflushopt performs better for 1024-byte and larger blocks. So, we
+ * prefer clflushopt for sizes >= 768.
+ *
+ * NOTE: this happens to be the case now (with dm-writecache's single
+ * threaded model) but re-evaluate this once memcpy_flushcache() is
+ * enabled to use movdir64b which might invalidate this performance
+ * advantage seen with cache-allocating-writes plus flushing.
+ */
+#ifdef CONFIG_X86
+ if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
+ likely(boot_cpu_data.x86_clflush_size == 64) &&
+ likely(size >= 768)) {
+ do {
+ memcpy((void *)dest, (void *)source, 64);
+ clflushopt((void *)dest);
+ dest += 64;
+ source += 64;
+ size -= 64;
+ } while (size >= 64);
+ return;
+ }
+#endif
+ memcpy_flushcache(dest, source, size);
+}
+
+static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
+{
+ void *buf;
+ unsigned int size;
+ int rw = bio_data_dir(bio);
+ unsigned int remaining_size = wc->block_size;
+
+ do {
+ struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
+ buf = bvec_kmap_local(&bv);
+ size = bv.bv_len;
+ if (unlikely(size > remaining_size))
+ size = remaining_size;
+
+ if (rw == READ) {
+ int r;
+ r = copy_mc_to_kernel(buf, data, size);
+ flush_dcache_page(bio_page(bio));
+ if (unlikely(r)) {
+ writecache_error(wc, r, "hardware memory error when reading data: %d", r);
+ bio->bi_status = BLK_STS_IOERR;
+ }
+ } else {
+ flush_dcache_page(bio_page(bio));
+ memcpy_flushcache_optimized(data, buf, size);
+ }
+
+ kunmap_local(buf);
+
+ data = (char *)data + size;
+ remaining_size -= size;
+ bio_advance(bio, size);
+ } while (unlikely(remaining_size));
+}
+
+static int writecache_flush_thread(void *data)
+{
+ struct dm_writecache *wc = data;
+
+ while (1) {
+ struct bio *bio;
+
+ wc_lock(wc);
+ bio = bio_list_pop(&wc->flush_list);
+ if (!bio) {
+ set_current_state(TASK_INTERRUPTIBLE);
+ wc_unlock(wc);
+
+ if (unlikely(kthread_should_stop())) {
+ set_current_state(TASK_RUNNING);
+ break;
+ }
+
+ schedule();
+ continue;
+ }
+
+ if (bio_op(bio) == REQ_OP_DISCARD) {
+ writecache_discard(wc, bio->bi_iter.bi_sector,
+ bio_end_sector(bio));
+ wc_unlock(wc);
+ bio_set_dev(bio, wc->dev->bdev);
+ submit_bio_noacct(bio);
+ } else {
+ writecache_flush(wc);
+ wc_unlock(wc);
+ if (writecache_has_error(wc))
+ bio->bi_status = BLK_STS_IOERR;
+ bio_endio(bio);
+ }
+ }
+
+ return 0;
+}
+
+static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
+{
+ if (bio_list_empty(&wc->flush_list))
+ wake_up_process(wc->flush_thread);
+ bio_list_add(&wc->flush_list, bio);
+}
+
+enum wc_map_op {
+ WC_MAP_SUBMIT,
+ WC_MAP_REMAP,
+ WC_MAP_REMAP_ORIGIN,
+ WC_MAP_RETURN,
+ WC_MAP_ERROR,
+};
+
+static void writecache_map_remap_origin(struct dm_writecache *wc, struct bio *bio,
+ struct wc_entry *e)
+{
+ if (e) {
+ sector_t next_boundary =
+ read_original_sector(wc, e) - bio->bi_iter.bi_sector;
+ if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT)
+ dm_accept_partial_bio(bio, next_boundary);
+ }
+}
+
+static enum wc_map_op writecache_map_read(struct dm_writecache *wc, struct bio *bio)
+{
+ enum wc_map_op map_op;
+ struct wc_entry *e;
+
+read_next_block:
+ wc->stats.reads++;
+ e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
+ if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
+ wc->stats.read_hits++;
+ if (WC_MODE_PMEM(wc)) {
+ bio_copy_block(wc, bio, memory_data(wc, e));
+ if (bio->bi_iter.bi_size)
+ goto read_next_block;
+ map_op = WC_MAP_SUBMIT;
+ } else {
+ dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
+ bio_set_dev(bio, wc->ssd_dev->bdev);
+ bio->bi_iter.bi_sector = cache_sector(wc, e);
+ if (!writecache_entry_is_committed(wc, e))
+ writecache_wait_for_ios(wc, WRITE);
+ map_op = WC_MAP_REMAP;
+ }
+ } else {
+ writecache_map_remap_origin(wc, bio, e);
+ wc->stats.reads += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
+ map_op = WC_MAP_REMAP_ORIGIN;
+ }
+
+ return map_op;
+}
+
+static void writecache_bio_copy_ssd(struct dm_writecache *wc, struct bio *bio,
+ struct wc_entry *e, bool search_used)
+{
+ unsigned int bio_size = wc->block_size;
+ sector_t start_cache_sec = cache_sector(wc, e);
+ sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
+
+ while (bio_size < bio->bi_iter.bi_size) {
+ if (!search_used) {
+ struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
+ if (!f)
+ break;
+ write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
+ (bio_size >> SECTOR_SHIFT), wc->seq_count);
+ writecache_insert_entry(wc, f);
+ wc->uncommitted_blocks++;
+ } else {
+ struct wc_entry *f;
+ struct rb_node *next = rb_next(&e->rb_node);
+ if (!next)
+ break;
+ f = container_of(next, struct wc_entry, rb_node);
+ if (f != e + 1)
+ break;
+ if (read_original_sector(wc, f) !=
+ read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
+ break;
+ if (unlikely(f->write_in_progress))
+ break;
+ if (writecache_entry_is_committed(wc, f))
+ wc->overwrote_committed = true;
+ e = f;
+ }
+ bio_size += wc->block_size;
+ current_cache_sec += wc->block_size >> SECTOR_SHIFT;
+ }
+
+ bio_set_dev(bio, wc->ssd_dev->bdev);
+ bio->bi_iter.bi_sector = start_cache_sec;
+ dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);
+
+ wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
+ wc->stats.writes_allocate += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
+
+ if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
+ wc->uncommitted_blocks = 0;
+ queue_work(wc->writeback_wq, &wc->flush_work);
+ } else {
+ writecache_schedule_autocommit(wc);
+ }
+}
+
+static enum wc_map_op writecache_map_write(struct dm_writecache *wc, struct bio *bio)
+{
+ struct wc_entry *e;
+
+ do {
+ bool found_entry = false;
+ bool search_used = false;
+ if (writecache_has_error(wc)) {
+ wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
+ return WC_MAP_ERROR;
+ }
+ e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
+ if (e) {
+ if (!writecache_entry_is_committed(wc, e)) {
+ wc->stats.write_hits_uncommitted++;
+ search_used = true;
+ goto bio_copy;
+ }
+ wc->stats.write_hits_committed++;
+ if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
+ wc->overwrote_committed = true;
+ search_used = true;
+ goto bio_copy;
+ }
+ found_entry = true;
+ } else {
+ if (unlikely(wc->cleaner) ||
+ (wc->metadata_only && !(bio->bi_opf & REQ_META)))
+ goto direct_write;
+ }
+ e = writecache_pop_from_freelist(wc, (sector_t)-1);
+ if (unlikely(!e)) {
+ if (!WC_MODE_PMEM(wc) && !found_entry) {
+direct_write:
+ e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
+ writecache_map_remap_origin(wc, bio, e);
+ wc->stats.writes_around += bio->bi_iter.bi_size >> wc->block_size_bits;
+ wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
+ return WC_MAP_REMAP_ORIGIN;
+ }
+ wc->stats.writes_blocked_on_freelist++;
+ writecache_wait_on_freelist(wc);
+ continue;
+ }
+ write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
+ writecache_insert_entry(wc, e);
+ wc->uncommitted_blocks++;
+ wc->stats.writes_allocate++;
+bio_copy:
+ if (WC_MODE_PMEM(wc)) {
+ bio_copy_block(wc, bio, memory_data(wc, e));
+ wc->stats.writes++;
+ } else {
+ writecache_bio_copy_ssd(wc, bio, e, search_used);
+ return WC_MAP_REMAP;
+ }
+ } while (bio->bi_iter.bi_size);
+
+ if (unlikely(bio->bi_opf & REQ_FUA || wc->uncommitted_blocks >= wc->autocommit_blocks))
+ writecache_flush(wc);
+ else
+ writecache_schedule_autocommit(wc);
+
+ return WC_MAP_SUBMIT;
+}
+
+static enum wc_map_op writecache_map_flush(struct dm_writecache *wc, struct bio *bio)
+{
+ if (writecache_has_error(wc))
+ return WC_MAP_ERROR;
+
+ if (WC_MODE_PMEM(wc)) {
+ wc->stats.flushes++;
+ writecache_flush(wc);
+ if (writecache_has_error(wc))
+ return WC_MAP_ERROR;
+ else if (unlikely(wc->cleaner) || unlikely(wc->metadata_only))
+ return WC_MAP_REMAP_ORIGIN;
+ return WC_MAP_SUBMIT;
+ }
+ /* SSD: */
+ if (dm_bio_get_target_bio_nr(bio))
+ return WC_MAP_REMAP_ORIGIN;
+ wc->stats.flushes++;
+ writecache_offload_bio(wc, bio);
+ return WC_MAP_RETURN;
+}
+
+static enum wc_map_op writecache_map_discard(struct dm_writecache *wc, struct bio *bio)
+{
+ wc->stats.discards += bio->bi_iter.bi_size >> wc->block_size_bits;
+
+ if (writecache_has_error(wc))
+ return WC_MAP_ERROR;
+
+ if (WC_MODE_PMEM(wc)) {
+ writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
+ return WC_MAP_REMAP_ORIGIN;
+ }
+ /* SSD: */
+ writecache_offload_bio(wc, bio);
+ return WC_MAP_RETURN;
+}
+
+static int writecache_map(struct dm_target *ti, struct bio *bio)
+{
+ struct dm_writecache *wc = ti->private;
+ enum wc_map_op map_op;
+
+ bio->bi_private = NULL;
+
+ wc_lock(wc);
+
+ if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
+ map_op = writecache_map_flush(wc, bio);
+ goto done;
+ }
+
+ bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
+
+ if (unlikely((((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
+ (wc->block_size / 512 - 1)) != 0)) {
+ DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
+ (unsigned long long)bio->bi_iter.bi_sector,
+ bio->bi_iter.bi_size, wc->block_size);
+ map_op = WC_MAP_ERROR;
+ goto done;
+ }
+
+ if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
+ map_op = writecache_map_discard(wc, bio);
+ goto done;
+ }
+
+ if (bio_data_dir(bio) == READ)
+ map_op = writecache_map_read(wc, bio);
+ else
+ map_op = writecache_map_write(wc, bio);
+done:
+ switch (map_op) {
+ case WC_MAP_REMAP_ORIGIN:
+ if (likely(wc->pause != 0)) {
+ if (bio_op(bio) == REQ_OP_WRITE) {
+ dm_iot_io_begin(&wc->iot, 1);
+ bio->bi_private = (void *)2;
+ }
+ }
+ bio_set_dev(bio, wc->dev->bdev);
+ wc_unlock(wc);
+ return DM_MAPIO_REMAPPED;
+
+ case WC_MAP_REMAP:
+ /* make sure that writecache_end_io decrements bio_in_progress: */
+ bio->bi_private = (void *)1;
+ atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
+ wc_unlock(wc);
+ return DM_MAPIO_REMAPPED;
+
+ case WC_MAP_SUBMIT:
+ wc_unlock(wc);
+ bio_endio(bio);
+ return DM_MAPIO_SUBMITTED;
+
+ case WC_MAP_RETURN:
+ wc_unlock(wc);
+ return DM_MAPIO_SUBMITTED;
+
+ case WC_MAP_ERROR:
+ wc_unlock(wc);
+ bio_io_error(bio);
+ return DM_MAPIO_SUBMITTED;
+
+ default:
+ BUG();
+ wc_unlock(wc);
+ return DM_MAPIO_KILL;
+ }
+}
+
+static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
+{
+ struct dm_writecache *wc = ti->private;
+
+ if (bio->bi_private == (void *)1) {
+ int dir = bio_data_dir(bio);
+ if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
+ if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
+ wake_up(&wc->bio_in_progress_wait[dir]);
+ } else if (bio->bi_private == (void *)2) {
+ dm_iot_io_end(&wc->iot, 1);
+ }
+ return 0;
+}
+
+static int writecache_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ struct dm_writecache *wc = ti->private;
+
+ return fn(ti, wc->dev, 0, ti->len, data);
+}
+
+static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+ struct dm_writecache *wc = ti->private;
+
+ if (limits->logical_block_size < wc->block_size)
+ limits->logical_block_size = wc->block_size;
+
+ if (limits->physical_block_size < wc->block_size)
+ limits->physical_block_size = wc->block_size;
+
+ if (limits->io_min < wc->block_size)
+ limits->io_min = wc->block_size;
+}
+
+
+static void writecache_writeback_endio(struct bio *bio)
+{
+ struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
+ struct dm_writecache *wc = wb->wc;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
+ if (unlikely(list_empty(&wc->endio_list)))
+ wake_up_process(wc->endio_thread);
+ list_add_tail(&wb->endio_entry, &wc->endio_list);
+ raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
+}
+
+static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
+{
+ struct copy_struct *c = ptr;
+ struct dm_writecache *wc = c->wc;
+
+ c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
+
+ raw_spin_lock_irq(&wc->endio_list_lock);
+ if (unlikely(list_empty(&wc->endio_list)))
+ wake_up_process(wc->endio_thread);
+ list_add_tail(&c->endio_entry, &wc->endio_list);
+ raw_spin_unlock_irq(&wc->endio_list_lock);
+}
+
+static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
+{
+ unsigned int i;
+ struct writeback_struct *wb;
+ struct wc_entry *e;
+ unsigned long n_walked = 0;
+
+ do {
+ wb = list_entry(list->next, struct writeback_struct, endio_entry);
+ list_del(&wb->endio_entry);
+
+ if (unlikely(wb->bio.bi_status != BLK_STS_OK))
+ writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
+ "write error %d", wb->bio.bi_status);
+ i = 0;
+ do {
+ e = wb->wc_list[i];
+ BUG_ON(!e->write_in_progress);
+ e->write_in_progress = false;
+ INIT_LIST_HEAD(&e->lru);
+ if (!writecache_has_error(wc))
+ writecache_free_entry(wc, e);
+ BUG_ON(!wc->writeback_size);
+ wc->writeback_size--;
+ n_walked++;
+ if (unlikely(n_walked >= ENDIO_LATENCY)) {
+ writecache_commit_flushed(wc, false);
+ wc_unlock(wc);
+ wc_lock(wc);
+ n_walked = 0;
+ }
+ } while (++i < wb->wc_list_n);
+
+ if (wb->wc_list != wb->wc_list_inline)
+ kfree(wb->wc_list);
+ bio_put(&wb->bio);
+ } while (!list_empty(list));
+}
+
+static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
+{
+ struct copy_struct *c;
+ struct wc_entry *e;
+
+ do {
+ c = list_entry(list->next, struct copy_struct, endio_entry);
+ list_del(&c->endio_entry);
+
+ if (unlikely(c->error))
+ writecache_error(wc, c->error, "copy error");
+
+ e = c->e;
+ do {
+ BUG_ON(!e->write_in_progress);
+ e->write_in_progress = false;
+ INIT_LIST_HEAD(&e->lru);
+ if (!writecache_has_error(wc))
+ writecache_free_entry(wc, e);
+
+ BUG_ON(!wc->writeback_size);
+ wc->writeback_size--;
+ e++;
+ } while (--c->n_entries);
+ mempool_free(c, &wc->copy_pool);
+ } while (!list_empty(list));
+}
+
+static int writecache_endio_thread(void *data)
+{
+ struct dm_writecache *wc = data;
+
+ while (1) {
+ struct list_head list;
+
+ raw_spin_lock_irq(&wc->endio_list_lock);
+ if (!list_empty(&wc->endio_list))
+ goto pop_from_list;
+ set_current_state(TASK_INTERRUPTIBLE);
+ raw_spin_unlock_irq(&wc->endio_list_lock);
+
+ if (unlikely(kthread_should_stop())) {
+ set_current_state(TASK_RUNNING);
+ break;
+ }
+
+ schedule();
+
+ continue;
+
+pop_from_list:
+ list = wc->endio_list;
+ list.next->prev = list.prev->next = &list;
+ INIT_LIST_HEAD(&wc->endio_list);
+ raw_spin_unlock_irq(&wc->endio_list_lock);
+
+ if (!WC_MODE_FUA(wc))
+ writecache_disk_flush(wc, wc->dev);
+
+ wc_lock(wc);
+
+ if (WC_MODE_PMEM(wc)) {
+ __writecache_endio_pmem(wc, &list);
+ } else {
+ __writecache_endio_ssd(wc, &list);
+ writecache_wait_for_ios(wc, READ);
+ }
+
+ writecache_commit_flushed(wc, false);
+
+ wc_unlock(wc);
+ }
+
+ return 0;
+}
+
+static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e)
+{
+ struct dm_writecache *wc = wb->wc;
+ unsigned int block_size = wc->block_size;
+ void *address = memory_data(wc, e);
+
+ persistent_memory_flush_cache(address, block_size);
+
+ if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors))
+ return true;
+
+ return bio_add_page(&wb->bio, persistent_memory_page(address),
+ block_size, persistent_memory_page_offset(address)) != 0;
+}
+
+struct writeback_list {
+ struct list_head list;
+ size_t size;
+};
+
+static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
+{
+ if (unlikely(wc->max_writeback_jobs)) {
+ if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
+ wc_lock(wc);
+ while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
+ writecache_wait_on_freelist(wc);
+ wc_unlock(wc);
+ }
+ }
+ cond_resched();
+}
+
+static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
+{
+ struct wc_entry *e, *f;
+ struct bio *bio;
+ struct writeback_struct *wb;
+ unsigned int max_pages;
+
+ while (wbl->size) {
+ wbl->size--;
+ e = container_of(wbl->list.prev, struct wc_entry, lru);
+ list_del(&e->lru);
+
+ max_pages = e->wc_list_contiguous;
+
+ bio = bio_alloc_bioset(wc->dev->bdev, max_pages, REQ_OP_WRITE,
+ GFP_NOIO, &wc->bio_set);
+ wb = container_of(bio, struct writeback_struct, bio);
+ wb->wc = wc;
+ bio->bi_end_io = writecache_writeback_endio;
+ bio->bi_iter.bi_sector = read_original_sector(wc, e);
+ if (max_pages <= WB_LIST_INLINE ||
+ unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
+ GFP_NOIO | __GFP_NORETRY |
+ __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
+ wb->wc_list = wb->wc_list_inline;
+ max_pages = WB_LIST_INLINE;
+ }
+
+ BUG_ON(!wc_add_block(wb, e));
+
+ wb->wc_list[0] = e;
+ wb->wc_list_n = 1;
+
+ while (wbl->size && wb->wc_list_n < max_pages) {
+ f = container_of(wbl->list.prev, struct wc_entry, lru);
+ if (read_original_sector(wc, f) !=
+ read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
+ break;
+ if (!wc_add_block(wb, f))
+ break;
+ wbl->size--;
+ list_del(&f->lru);
+ wb->wc_list[wb->wc_list_n++] = f;
+ e = f;
+ }
+ if (WC_MODE_FUA(wc))
+ bio->bi_opf |= REQ_FUA;
+ if (writecache_has_error(wc)) {
+ bio->bi_status = BLK_STS_IOERR;
+ bio_endio(bio);
+ } else if (unlikely(!bio_sectors(bio))) {
+ bio->bi_status = BLK_STS_OK;
+ bio_endio(bio);
+ } else {
+ submit_bio(bio);
+ }
+
+ __writeback_throttle(wc, wbl);
+ }
+}
+
+static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
+{
+ struct wc_entry *e, *f;
+ struct dm_io_region from, to;
+ struct copy_struct *c;
+
+ while (wbl->size) {
+ unsigned int n_sectors;
+
+ wbl->size--;
+ e = container_of(wbl->list.prev, struct wc_entry, lru);
+ list_del(&e->lru);
+
+ n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
+
+ from.bdev = wc->ssd_dev->bdev;
+ from.sector = cache_sector(wc, e);
+ from.count = n_sectors;
+ to.bdev = wc->dev->bdev;
+ to.sector = read_original_sector(wc, e);
+ to.count = n_sectors;
+
+ c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
+ c->wc = wc;
+ c->e = e;
+ c->n_entries = e->wc_list_contiguous;
+
+ while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
+ wbl->size--;
+ f = container_of(wbl->list.prev, struct wc_entry, lru);
+ BUG_ON(f != e + 1);
+ list_del(&f->lru);
+ e = f;
+ }
+
+ if (unlikely(to.sector + to.count > wc->data_device_sectors)) {
+ if (to.sector >= wc->data_device_sectors) {
+ writecache_copy_endio(0, 0, c);
+ continue;
+ }
+ from.count = to.count = wc->data_device_sectors - to.sector;
+ }
+
+ dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
+
+ __writeback_throttle(wc, wbl);
+ }
+}
+
+static void writecache_writeback(struct work_struct *work)
+{
+ struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
+ struct blk_plug plug;
+ struct wc_entry *f, *g, *e = NULL;
+ struct rb_node *node, *next_node;
+ struct list_head skipped;
+ struct writeback_list wbl;
+ unsigned long n_walked;
+
+ if (!WC_MODE_PMEM(wc)) {
+ /* Wait for any active kcopyd work on behalf of ssd writeback */
+ dm_kcopyd_client_flush(wc->dm_kcopyd);
+ }
+
+ if (likely(wc->pause != 0)) {
+ while (1) {
+ unsigned long idle;
+ if (unlikely(wc->cleaner) || unlikely(wc->writeback_all) ||
+ unlikely(dm_suspended(wc->ti)))
+ break;
+ idle = dm_iot_idle_time(&wc->iot);
+ if (idle >= wc->pause)
+ break;
+ idle = wc->pause - idle;
+ if (idle > HZ)
+ idle = HZ;
+ schedule_timeout_idle(idle);
+ }
+ }
+
+ wc_lock(wc);
+restart:
+ if (writecache_has_error(wc)) {
+ wc_unlock(wc);
+ return;
+ }
+
+ if (unlikely(wc->writeback_all)) {
+ if (writecache_wait_for_writeback(wc))
+ goto restart;
+ }
+
+ if (wc->overwrote_committed) {
+ writecache_wait_for_ios(wc, WRITE);
+ }
+
+ n_walked = 0;
+ INIT_LIST_HEAD(&skipped);
+ INIT_LIST_HEAD(&wbl.list);
+ wbl.size = 0;
+ while (!list_empty(&wc->lru) &&
+ (wc->writeback_all ||
+ wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
+ (jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
+ wc->max_age - wc->max_age / MAX_AGE_DIV))) {
+
+ n_walked++;
+ if (unlikely(n_walked > WRITEBACK_LATENCY) &&
+ likely(!wc->writeback_all)) {
+ if (likely(!dm_suspended(wc->ti)))
+ queue_work(wc->writeback_wq, &wc->writeback_work);
+ break;
+ }
+
+ if (unlikely(wc->writeback_all)) {
+ if (unlikely(!e)) {
+ writecache_flush(wc);
+ e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
+ } else
+ e = g;
+ } else
+ e = container_of(wc->lru.prev, struct wc_entry, lru);
+ BUG_ON(e->write_in_progress);
+ if (unlikely(!writecache_entry_is_committed(wc, e))) {
+ writecache_flush(wc);
+ }
+ node = rb_prev(&e->rb_node);
+ if (node) {
+ f = container_of(node, struct wc_entry, rb_node);
+ if (unlikely(read_original_sector(wc, f) ==
+ read_original_sector(wc, e))) {
+ BUG_ON(!f->write_in_progress);
+ list_move(&e->lru, &skipped);
+ cond_resched();
+ continue;
+ }
+ }
+ wc->writeback_size++;
+ list_move(&e->lru, &wbl.list);
+ wbl.size++;
+ e->write_in_progress = true;
+ e->wc_list_contiguous = 1;
+
+ f = e;
+
+ while (1) {
+ next_node = rb_next(&f->rb_node);
+ if (unlikely(!next_node))
+ break;
+ g = container_of(next_node, struct wc_entry, rb_node);
+ if (unlikely(read_original_sector(wc, g) ==
+ read_original_sector(wc, f))) {
+ f = g;
+ continue;
+ }
+ if (read_original_sector(wc, g) !=
+ read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
+ break;
+ if (unlikely(g->write_in_progress))
+ break;
+ if (unlikely(!writecache_entry_is_committed(wc, g)))
+ break;
+
+ if (!WC_MODE_PMEM(wc)) {
+ if (g != f + 1)
+ break;
+ }
+
+ n_walked++;
+ //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
+ // break;
+
+ wc->writeback_size++;
+ list_move(&g->lru, &wbl.list);
+ wbl.size++;
+ g->write_in_progress = true;
+ g->wc_list_contiguous = BIO_MAX_VECS;
+ f = g;
+ e->wc_list_contiguous++;
+ if (unlikely(e->wc_list_contiguous == BIO_MAX_VECS)) {
+ if (unlikely(wc->writeback_all)) {
+ next_node = rb_next(&f->rb_node);
+ if (likely(next_node))
+ g = container_of(next_node, struct wc_entry, rb_node);
+ }
+ break;
+ }
+ }
+ cond_resched();
+ }
+
+ if (!list_empty(&skipped)) {
+ list_splice_tail(&skipped, &wc->lru);
+ /*
+ * If we didn't do any progress, we must wait until some
+ * writeback finishes to avoid burning CPU in a loop
+ */
+ if (unlikely(!wbl.size))
+ writecache_wait_for_writeback(wc);
+ }
+
+ wc_unlock(wc);
+
+ blk_start_plug(&plug);
+
+ if (WC_MODE_PMEM(wc))
+ __writecache_writeback_pmem(wc, &wbl);
+ else
+ __writecache_writeback_ssd(wc, &wbl);
+
+ blk_finish_plug(&plug);
+
+ if (unlikely(wc->writeback_all)) {
+ wc_lock(wc);
+ while (writecache_wait_for_writeback(wc));
+ wc_unlock(wc);
+ }
+}
+
+static int calculate_memory_size(uint64_t device_size, unsigned int block_size,
+ size_t *n_blocks_p, size_t *n_metadata_blocks_p)
+{
+ uint64_t n_blocks, offset;
+ struct wc_entry e;
+
+ n_blocks = device_size;
+ do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
+
+ while (1) {
+ if (!n_blocks)
+ return -ENOSPC;
+ /* Verify the following entries[n_blocks] won't overflow */
+ if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
+ sizeof(struct wc_memory_entry)))
+ return -EFBIG;
+ offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
+ offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
+ if (offset + n_blocks * block_size <= device_size)
+ break;
+ n_blocks--;
+ }
+
+ /* check if the bit field overflows */
+ e.index = n_blocks;
+ if (e.index != n_blocks)
+ return -EFBIG;
+
+ if (n_blocks_p)
+ *n_blocks_p = n_blocks;
+ if (n_metadata_blocks_p)
+ *n_metadata_blocks_p = offset >> __ffs(block_size);
+ return 0;
+}
+
+static int init_memory(struct dm_writecache *wc)
+{
+ size_t b;
+ int r;
+
+ r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
+ if (r)
+ return r;
+
+ r = writecache_alloc_entries(wc);
+ if (r)
+ return r;
+
+ for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
+ pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
+ pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
+ pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
+ pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
+ pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
+
+ for (b = 0; b < wc->n_blocks; b++) {
+ write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
+ cond_resched();
+ }
+
+ writecache_flush_all_metadata(wc);
+ writecache_commit_flushed(wc, false);
+ pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
+ writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
+ writecache_commit_flushed(wc, false);
+
+ return 0;
+}
+
+static void writecache_dtr(struct dm_target *ti)
+{
+ struct dm_writecache *wc = ti->private;
+
+ if (!wc)
+ return;
+
+ if (wc->endio_thread)
+ kthread_stop(wc->endio_thread);
+
+ if (wc->flush_thread)
+ kthread_stop(wc->flush_thread);
+
+ bioset_exit(&wc->bio_set);
+
+ mempool_exit(&wc->copy_pool);
+
+ if (wc->writeback_wq)
+ destroy_workqueue(wc->writeback_wq);
+
+ if (wc->dev)
+ dm_put_device(ti, wc->dev);
+
+ if (wc->ssd_dev)
+ dm_put_device(ti, wc->ssd_dev);
+
+ vfree(wc->entries);
+
+ if (wc->memory_map) {
+ if (WC_MODE_PMEM(wc))
+ persistent_memory_release(wc);
+ else
+ vfree(wc->memory_map);
+ }
+
+ if (wc->dm_kcopyd)
+ dm_kcopyd_client_destroy(wc->dm_kcopyd);
+
+ if (wc->dm_io)
+ dm_io_client_destroy(wc->dm_io);
+
+ vfree(wc->dirty_bitmap);
+
+ kfree(wc);
+}
+
+static int writecache_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ struct dm_writecache *wc;
+ struct dm_arg_set as;
+ const char *string;
+ unsigned int opt_params;
+ size_t offset, data_size;
+ int i, r;
+ char dummy;
+ int high_wm_percent = HIGH_WATERMARK;
+ int low_wm_percent = LOW_WATERMARK;
+ uint64_t x;
+ struct wc_memory_superblock s;
+
+ static struct dm_arg _args[] = {
+ {0, 18, "Invalid number of feature args"},
+ };
+
+ as.argc = argc;
+ as.argv = argv;
+
+ wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
+ if (!wc) {
+ ti->error = "Cannot allocate writecache structure";
+ r = -ENOMEM;
+ goto bad;
+ }
+ ti->private = wc;
+ wc->ti = ti;
+
+ mutex_init(&wc->lock);
+ wc->max_age = MAX_AGE_UNSPECIFIED;
+ writecache_poison_lists(wc);
+ init_waitqueue_head(&wc->freelist_wait);
+ timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
+ timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
+
+ for (i = 0; i < 2; i++) {
+ atomic_set(&wc->bio_in_progress[i], 0);
+ init_waitqueue_head(&wc->bio_in_progress_wait[i]);
+ }
+
+ wc->dm_io = dm_io_client_create();
+ if (IS_ERR(wc->dm_io)) {
+ r = PTR_ERR(wc->dm_io);
+ ti->error = "Unable to allocate dm-io client";
+ wc->dm_io = NULL;
+ goto bad;
+ }
+
+ wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
+ if (!wc->writeback_wq) {
+ r = -ENOMEM;
+ ti->error = "Could not allocate writeback workqueue";
+ goto bad;
+ }
+ INIT_WORK(&wc->writeback_work, writecache_writeback);
+ INIT_WORK(&wc->flush_work, writecache_flush_work);
+
+ dm_iot_init(&wc->iot);
+
+ raw_spin_lock_init(&wc->endio_list_lock);
+ INIT_LIST_HEAD(&wc->endio_list);
+ wc->endio_thread = kthread_run(writecache_endio_thread, wc, "writecache_endio");
+ if (IS_ERR(wc->endio_thread)) {
+ r = PTR_ERR(wc->endio_thread);
+ wc->endio_thread = NULL;
+ ti->error = "Couldn't spawn endio thread";
+ goto bad;
+ }
+
+ /*
+ * Parse the mode (pmem or ssd)
+ */
+ string = dm_shift_arg(&as);
+ if (!string)
+ goto bad_arguments;
+
+ if (!strcasecmp(string, "s")) {
+ wc->pmem_mode = false;
+ } else if (!strcasecmp(string, "p")) {
+#ifdef DM_WRITECACHE_HAS_PMEM
+ wc->pmem_mode = true;
+ wc->writeback_fua = true;
+#else
+ /*
+ * If the architecture doesn't support persistent memory or
+ * the kernel doesn't support any DAX drivers, this driver can
+ * only be used in SSD-only mode.
+ */
+ r = -EOPNOTSUPP;
+ ti->error = "Persistent memory or DAX not supported on this system";
+ goto bad;
+#endif
+ } else {
+ goto bad_arguments;
+ }
+
+ if (WC_MODE_PMEM(wc)) {
+ r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
+ offsetof(struct writeback_struct, bio),
+ BIOSET_NEED_BVECS);
+ if (r) {
+ ti->error = "Could not allocate bio set";
+ goto bad;
+ }
+ } else {
+ wc->pause = PAUSE_WRITEBACK;
+ r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
+ if (r) {
+ ti->error = "Could not allocate mempool";
+ goto bad;
+ }
+ }
+
+ /*
+ * Parse the origin data device
+ */
+ string = dm_shift_arg(&as);
+ if (!string)
+ goto bad_arguments;
+ r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
+ if (r) {
+ ti->error = "Origin data device lookup failed";
+ goto bad;
+ }
+
+ /*
+ * Parse cache data device (be it pmem or ssd)
+ */
+ string = dm_shift_arg(&as);
+ if (!string)
+ goto bad_arguments;
+
+ r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
+ if (r) {
+ ti->error = "Cache data device lookup failed";
+ goto bad;
+ }
+ wc->memory_map_size = bdev_nr_bytes(wc->ssd_dev->bdev);
+
+ /*
+ * Parse the cache block size
+ */
+ string = dm_shift_arg(&as);
+ if (!string)
+ goto bad_arguments;
+ if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
+ wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
+ (wc->block_size & (wc->block_size - 1))) {
+ r = -EINVAL;
+ ti->error = "Invalid block size";
+ goto bad;
+ }
+ if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
+ wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
+ r = -EINVAL;
+ ti->error = "Block size is smaller than device logical block size";
+ goto bad;
+ }
+ wc->block_size_bits = __ffs(wc->block_size);
+
+ wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
+ wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
+ wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
+
+ /*
+ * Parse optional arguments
+ */
+ r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
+ if (r)
+ goto bad;
+
+ while (opt_params) {
+ string = dm_shift_arg(&as), opt_params--;
+ if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
+ unsigned long long start_sector;
+ string = dm_shift_arg(&as), opt_params--;
+ if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
+ goto invalid_optional;
+ wc->start_sector = start_sector;
+ wc->start_sector_set = true;
+ if (wc->start_sector != start_sector ||
+ wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
+ goto invalid_optional;
+ } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
+ string = dm_shift_arg(&as), opt_params--;
+ if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
+ goto invalid_optional;
+ if (high_wm_percent < 0 || high_wm_percent > 100)
+ goto invalid_optional;
+ wc->high_wm_percent_value = high_wm_percent;
+ wc->high_wm_percent_set = true;
+ } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
+ string = dm_shift_arg(&as), opt_params--;
+ if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
+ goto invalid_optional;
+ if (low_wm_percent < 0 || low_wm_percent > 100)
+ goto invalid_optional;
+ wc->low_wm_percent_value = low_wm_percent;
+ wc->low_wm_percent_set = true;
+ } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
+ string = dm_shift_arg(&as), opt_params--;
+ if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
+ goto invalid_optional;
+ wc->max_writeback_jobs_set = true;
+ } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
+ string = dm_shift_arg(&as), opt_params--;
+ if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
+ goto invalid_optional;
+ wc->autocommit_blocks_set = true;
+ } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
+ unsigned int autocommit_msecs;
+ string = dm_shift_arg(&as), opt_params--;
+ if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
+ goto invalid_optional;
+ if (autocommit_msecs > 3600000)
+ goto invalid_optional;
+ wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
+ wc->autocommit_time_value = autocommit_msecs;
+ wc->autocommit_time_set = true;
+ } else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
+ unsigned int max_age_msecs;
+ string = dm_shift_arg(&as), opt_params--;
+ if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
+ goto invalid_optional;
+ if (max_age_msecs > 86400000)
+ goto invalid_optional;
+ wc->max_age = msecs_to_jiffies(max_age_msecs);
+ wc->max_age_set = true;
+ wc->max_age_value = max_age_msecs;
+ } else if (!strcasecmp(string, "cleaner")) {
+ wc->cleaner_set = true;
+ wc->cleaner = true;
+ } else if (!strcasecmp(string, "fua")) {
+ if (WC_MODE_PMEM(wc)) {
+ wc->writeback_fua = true;
+ wc->writeback_fua_set = true;
+ } else goto invalid_optional;
+ } else if (!strcasecmp(string, "nofua")) {
+ if (WC_MODE_PMEM(wc)) {
+ wc->writeback_fua = false;
+ wc->writeback_fua_set = true;
+ } else goto invalid_optional;
+ } else if (!strcasecmp(string, "metadata_only")) {
+ wc->metadata_only = true;
+ } else if (!strcasecmp(string, "pause_writeback") && opt_params >= 1) {
+ unsigned int pause_msecs;
+ if (WC_MODE_PMEM(wc))
+ goto invalid_optional;
+ string = dm_shift_arg(&as), opt_params--;
+ if (sscanf(string, "%u%c", &pause_msecs, &dummy) != 1)
+ goto invalid_optional;
+ if (pause_msecs > 60000)
+ goto invalid_optional;
+ wc->pause = msecs_to_jiffies(pause_msecs);
+ wc->pause_set = true;
+ wc->pause_value = pause_msecs;
+ } else {
+invalid_optional:
+ r = -EINVAL;
+ ti->error = "Invalid optional argument";
+ goto bad;
+ }
+ }
+
+ if (high_wm_percent < low_wm_percent) {
+ r = -EINVAL;
+ ti->error = "High watermark must be greater than or equal to low watermark";
+ goto bad;
+ }
+
+ if (WC_MODE_PMEM(wc)) {
+ if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
+ r = -EOPNOTSUPP;
+ ti->error = "Asynchronous persistent memory not supported as pmem cache";
+ goto bad;
+ }
+
+ r = persistent_memory_claim(wc);
+ if (r) {
+ ti->error = "Unable to map persistent memory for cache";
+ goto bad;
+ }
+ } else {
+ size_t n_blocks, n_metadata_blocks;
+ uint64_t n_bitmap_bits;
+
+ wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
+
+ bio_list_init(&wc->flush_list);
+ wc->flush_thread = kthread_run(writecache_flush_thread, wc, "dm_writecache_flush");
+ if (IS_ERR(wc->flush_thread)) {
+ r = PTR_ERR(wc->flush_thread);
+ wc->flush_thread = NULL;
+ ti->error = "Couldn't spawn flush thread";
+ goto bad;
+ }
+
+ r = calculate_memory_size(wc->memory_map_size, wc->block_size,
+ &n_blocks, &n_metadata_blocks);
+ if (r) {
+ ti->error = "Invalid device size";
+ goto bad;
+ }
+
+ n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
+ BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
+ /* this is limitation of test_bit functions */
+ if (n_bitmap_bits > 1U << 31) {
+ r = -EFBIG;
+ ti->error = "Invalid device size";
+ goto bad;
+ }
+
+ wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
+ if (!wc->memory_map) {
+ r = -ENOMEM;
+ ti->error = "Unable to allocate memory for metadata";
+ goto bad;
+ }
+
+ wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
+ if (IS_ERR(wc->dm_kcopyd)) {
+ r = PTR_ERR(wc->dm_kcopyd);
+ ti->error = "Unable to allocate dm-kcopyd client";
+ wc->dm_kcopyd = NULL;
+ goto bad;
+ }
+
+ wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
+ wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
+ BITS_PER_LONG * sizeof(unsigned long);
+ wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
+ if (!wc->dirty_bitmap) {
+ r = -ENOMEM;
+ ti->error = "Unable to allocate dirty bitmap";
+ goto bad;
+ }
+
+ r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
+ if (r) {
+ ti->error = "Unable to read first block of metadata";
+ goto bad;
+ }
+ }
+
+ r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock));
+ if (r) {
+ ti->error = "Hardware memory error when reading superblock";
+ goto bad;
+ }
+ if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
+ r = init_memory(wc);
+ if (r) {
+ ti->error = "Unable to initialize device";
+ goto bad;
+ }
+ r = copy_mc_to_kernel(&s, sb(wc),
+ sizeof(struct wc_memory_superblock));
+ if (r) {
+ ti->error = "Hardware memory error when reading superblock";
+ goto bad;
+ }
+ }
+
+ if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
+ ti->error = "Invalid magic in the superblock";
+ r = -EINVAL;
+ goto bad;
+ }
+
+ if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
+ ti->error = "Invalid version in the superblock";
+ r = -EINVAL;
+ goto bad;
+ }
+
+ if (le32_to_cpu(s.block_size) != wc->block_size) {
+ ti->error = "Block size does not match superblock";
+ r = -EINVAL;
+ goto bad;
+ }
+
+ wc->n_blocks = le64_to_cpu(s.n_blocks);
+
+ offset = wc->n_blocks * sizeof(struct wc_memory_entry);
+ if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
+overflow:
+ ti->error = "Overflow in size calculation";
+ r = -EINVAL;
+ goto bad;
+ }
+ offset += sizeof(struct wc_memory_superblock);
+ if (offset < sizeof(struct wc_memory_superblock))
+ goto overflow;
+ offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
+ data_size = wc->n_blocks * (size_t)wc->block_size;
+ if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
+ (offset + data_size < offset))
+ goto overflow;
+ if (offset + data_size > wc->memory_map_size) {
+ ti->error = "Memory area is too small";
+ r = -EINVAL;
+ goto bad;
+ }
+
+ wc->metadata_sectors = offset >> SECTOR_SHIFT;
+ wc->block_start = (char *)sb(wc) + offset;
+
+ x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
+ x += 50;
+ do_div(x, 100);
+ wc->freelist_high_watermark = x;
+ x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
+ x += 50;
+ do_div(x, 100);
+ wc->freelist_low_watermark = x;
+
+ if (wc->cleaner)
+ activate_cleaner(wc);
+
+ r = writecache_alloc_entries(wc);
+ if (r) {
+ ti->error = "Cannot allocate memory";
+ goto bad;
+ }
+
+ ti->num_flush_bios = WC_MODE_PMEM(wc) ? 1 : 2;
+ ti->flush_supported = true;
+ ti->num_discard_bios = 1;
+
+ if (WC_MODE_PMEM(wc))
+ persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
+
+ return 0;
+
+bad_arguments:
+ r = -EINVAL;
+ ti->error = "Bad arguments";
+bad:
+ writecache_dtr(ti);
+ return r;
+}
+
+static void writecache_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result, unsigned int maxlen)
+{
+ struct dm_writecache *wc = ti->private;
+ unsigned int extra_args;
+ unsigned int sz = 0;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ DMEMIT("%ld %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu",
+ writecache_has_error(wc),
+ (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
+ (unsigned long long)wc->writeback_size,
+ wc->stats.reads,
+ wc->stats.read_hits,
+ wc->stats.writes,
+ wc->stats.write_hits_uncommitted,
+ wc->stats.write_hits_committed,
+ wc->stats.writes_around,
+ wc->stats.writes_allocate,
+ wc->stats.writes_blocked_on_freelist,
+ wc->stats.flushes,
+ wc->stats.discards);
+ break;
+ case STATUSTYPE_TABLE:
+ DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
+ wc->dev->name, wc->ssd_dev->name, wc->block_size);
+ extra_args = 0;
+ if (wc->start_sector_set)
+ extra_args += 2;
+ if (wc->high_wm_percent_set)
+ extra_args += 2;
+ if (wc->low_wm_percent_set)
+ extra_args += 2;
+ if (wc->max_writeback_jobs_set)
+ extra_args += 2;
+ if (wc->autocommit_blocks_set)
+ extra_args += 2;
+ if (wc->autocommit_time_set)
+ extra_args += 2;
+ if (wc->max_age_set)
+ extra_args += 2;
+ if (wc->cleaner_set)
+ extra_args++;
+ if (wc->writeback_fua_set)
+ extra_args++;
+ if (wc->metadata_only)
+ extra_args++;
+ if (wc->pause_set)
+ extra_args += 2;
+
+ DMEMIT("%u", extra_args);
+ if (wc->start_sector_set)
+ DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
+ if (wc->high_wm_percent_set)
+ DMEMIT(" high_watermark %u", wc->high_wm_percent_value);
+ if (wc->low_wm_percent_set)
+ DMEMIT(" low_watermark %u", wc->low_wm_percent_value);
+ if (wc->max_writeback_jobs_set)
+ DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
+ if (wc->autocommit_blocks_set)
+ DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
+ if (wc->autocommit_time_set)
+ DMEMIT(" autocommit_time %u", wc->autocommit_time_value);
+ if (wc->max_age_set)
+ DMEMIT(" max_age %u", wc->max_age_value);
+ if (wc->cleaner_set)
+ DMEMIT(" cleaner");
+ if (wc->writeback_fua_set)
+ DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
+ if (wc->metadata_only)
+ DMEMIT(" metadata_only");
+ if (wc->pause_set)
+ DMEMIT(" pause_writeback %u", wc->pause_value);
+ break;
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+}
+
+static struct target_type writecache_target = {
+ .name = "writecache",
+ .version = {1, 6, 0},
+ .module = THIS_MODULE,
+ .ctr = writecache_ctr,
+ .dtr = writecache_dtr,
+ .status = writecache_status,
+ .postsuspend = writecache_suspend,
+ .resume = writecache_resume,
+ .message = writecache_message,
+ .map = writecache_map,
+ .end_io = writecache_end_io,
+ .iterate_devices = writecache_iterate_devices,
+ .io_hints = writecache_io_hints,
+};
+
+static int __init dm_writecache_init(void)
+{
+ int r;
+
+ r = dm_register_target(&writecache_target);
+ if (r < 0) {
+ DMERR("register failed %d", r);
+ return r;
+ }
+
+ return 0;
+}
+
+static void __exit dm_writecache_exit(void)
+{
+ dm_unregister_target(&writecache_target);
+}
+
+module_init(dm_writecache_init);
+module_exit(dm_writecache_exit);
+
+MODULE_DESCRIPTION(DM_NAME " writecache target");
+MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-zero.c b/drivers/md/dm-zero.c
new file mode 100644
index 000000000..faa1dbffc
--- /dev/null
+++ b/drivers/md/dm-zero.c
@@ -0,0 +1,88 @@
+/*
+ * Copyright (C) 2003 Jana Saout <jana@saout.de>
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/device-mapper.h>
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/bio.h>
+
+#define DM_MSG_PREFIX "zero"
+
+/*
+ * Construct a dummy mapping that only returns zeros
+ */
+static int zero_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ if (argc != 0) {
+ ti->error = "No arguments required";
+ return -EINVAL;
+ }
+
+ /*
+ * Silently drop discards, avoiding -EOPNOTSUPP.
+ */
+ ti->num_discard_bios = 1;
+
+ return 0;
+}
+
+/*
+ * Return zeros only on reads
+ */
+static int zero_map(struct dm_target *ti, struct bio *bio)
+{
+ switch (bio_op(bio)) {
+ case REQ_OP_READ:
+ if (bio->bi_opf & REQ_RAHEAD) {
+ /* readahead of null bytes only wastes buffer cache */
+ return DM_MAPIO_KILL;
+ }
+ zero_fill_bio(bio);
+ break;
+ case REQ_OP_WRITE:
+ /* writes get silently dropped */
+ break;
+ default:
+ return DM_MAPIO_KILL;
+ }
+
+ bio_endio(bio);
+
+ /* accepted bio, don't make new request */
+ return DM_MAPIO_SUBMITTED;
+}
+
+static struct target_type zero_target = {
+ .name = "zero",
+ .version = {1, 1, 0},
+ .features = DM_TARGET_NOWAIT,
+ .module = THIS_MODULE,
+ .ctr = zero_ctr,
+ .map = zero_map,
+};
+
+static int __init dm_zero_init(void)
+{
+ int r = dm_register_target(&zero_target);
+
+ if (r < 0)
+ DMERR("register failed %d", r);
+
+ return r;
+}
+
+static void __exit dm_zero_exit(void)
+{
+ dm_unregister_target(&zero_target);
+}
+
+module_init(dm_zero_init)
+module_exit(dm_zero_exit)
+
+MODULE_AUTHOR("Jana Saout <jana@saout.de>");
+MODULE_DESCRIPTION(DM_NAME " dummy target returning zeros");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-zone.c b/drivers/md/dm-zone.c
new file mode 100644
index 000000000..3dafc0e8b
--- /dev/null
+++ b/drivers/md/dm-zone.c
@@ -0,0 +1,648 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2021 Western Digital Corporation or its affiliates.
+ */
+
+#include <linux/blkdev.h>
+#include <linux/mm.h>
+#include <linux/sched/mm.h>
+#include <linux/slab.h>
+
+#include "dm-core.h"
+
+#define DM_MSG_PREFIX "zone"
+
+#define DM_ZONE_INVALID_WP_OFST UINT_MAX
+
+/*
+ * For internal zone reports bypassing the top BIO submission path.
+ */
+static int dm_blk_do_report_zones(struct mapped_device *md, struct dm_table *t,
+ sector_t sector, unsigned int nr_zones,
+ report_zones_cb cb, void *data)
+{
+ struct gendisk *disk = md->disk;
+ int ret;
+ struct dm_report_zones_args args = {
+ .next_sector = sector,
+ .orig_data = data,
+ .orig_cb = cb,
+ };
+
+ do {
+ struct dm_target *tgt;
+
+ tgt = dm_table_find_target(t, args.next_sector);
+ if (WARN_ON_ONCE(!tgt->type->report_zones))
+ return -EIO;
+
+ args.tgt = tgt;
+ ret = tgt->type->report_zones(tgt, &args,
+ nr_zones - args.zone_idx);
+ if (ret < 0)
+ return ret;
+ } while (args.zone_idx < nr_zones &&
+ args.next_sector < get_capacity(disk));
+
+ return args.zone_idx;
+}
+
+/*
+ * User facing dm device block device report zone operation. This calls the
+ * report_zones operation for each target of a device table. This operation is
+ * generally implemented by targets using dm_report_zones().
+ */
+int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
+ unsigned int nr_zones, report_zones_cb cb, void *data)
+{
+ struct mapped_device *md = disk->private_data;
+ struct dm_table *map;
+ int srcu_idx, ret;
+
+ if (dm_suspended_md(md))
+ return -EAGAIN;
+
+ map = dm_get_live_table(md, &srcu_idx);
+ if (!map)
+ return -EIO;
+
+ ret = dm_blk_do_report_zones(md, map, sector, nr_zones, cb, data);
+
+ dm_put_live_table(md, srcu_idx);
+
+ return ret;
+}
+
+static int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx,
+ void *data)
+{
+ struct dm_report_zones_args *args = data;
+ sector_t sector_diff = args->tgt->begin - args->start;
+
+ /*
+ * Ignore zones beyond the target range.
+ */
+ if (zone->start >= args->start + args->tgt->len)
+ return 0;
+
+ /*
+ * Remap the start sector and write pointer position of the zone
+ * to match its position in the target range.
+ */
+ zone->start += sector_diff;
+ if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
+ if (zone->cond == BLK_ZONE_COND_FULL)
+ zone->wp = zone->start + zone->len;
+ else if (zone->cond == BLK_ZONE_COND_EMPTY)
+ zone->wp = zone->start;
+ else
+ zone->wp += sector_diff;
+ }
+
+ args->next_sector = zone->start + zone->len;
+ return args->orig_cb(zone, args->zone_idx++, args->orig_data);
+}
+
+/*
+ * Helper for drivers of zoned targets to implement struct target_type
+ * report_zones operation.
+ */
+int dm_report_zones(struct block_device *bdev, sector_t start, sector_t sector,
+ struct dm_report_zones_args *args, unsigned int nr_zones)
+{
+ /*
+ * Set the target mapping start sector first so that
+ * dm_report_zones_cb() can correctly remap zone information.
+ */
+ args->start = start;
+
+ return blkdev_report_zones(bdev, sector, nr_zones,
+ dm_report_zones_cb, args);
+}
+EXPORT_SYMBOL_GPL(dm_report_zones);
+
+bool dm_is_zone_write(struct mapped_device *md, struct bio *bio)
+{
+ struct request_queue *q = md->queue;
+
+ if (!blk_queue_is_zoned(q))
+ return false;
+
+ switch (bio_op(bio)) {
+ case REQ_OP_WRITE_ZEROES:
+ case REQ_OP_WRITE:
+ return !op_is_flush(bio->bi_opf) && bio_sectors(bio);
+ default:
+ return false;
+ }
+}
+
+void dm_cleanup_zoned_dev(struct mapped_device *md)
+{
+ if (md->disk) {
+ kfree(md->disk->conv_zones_bitmap);
+ md->disk->conv_zones_bitmap = NULL;
+ kfree(md->disk->seq_zones_wlock);
+ md->disk->seq_zones_wlock = NULL;
+ }
+
+ kvfree(md->zwp_offset);
+ md->zwp_offset = NULL;
+ md->nr_zones = 0;
+}
+
+static unsigned int dm_get_zone_wp_offset(struct blk_zone *zone)
+{
+ switch (zone->cond) {
+ case BLK_ZONE_COND_IMP_OPEN:
+ case BLK_ZONE_COND_EXP_OPEN:
+ case BLK_ZONE_COND_CLOSED:
+ return zone->wp - zone->start;
+ case BLK_ZONE_COND_FULL:
+ return zone->len;
+ case BLK_ZONE_COND_EMPTY:
+ case BLK_ZONE_COND_NOT_WP:
+ case BLK_ZONE_COND_OFFLINE:
+ case BLK_ZONE_COND_READONLY:
+ default:
+ /*
+ * Conventional, offline and read-only zones do not have a valid
+ * write pointer. Use 0 as for an empty zone.
+ */
+ return 0;
+ }
+}
+
+static int dm_zone_revalidate_cb(struct blk_zone *zone, unsigned int idx,
+ void *data)
+{
+ struct mapped_device *md = data;
+ struct gendisk *disk = md->disk;
+
+ switch (zone->type) {
+ case BLK_ZONE_TYPE_CONVENTIONAL:
+ if (!disk->conv_zones_bitmap) {
+ disk->conv_zones_bitmap =
+ kcalloc(BITS_TO_LONGS(disk->nr_zones),
+ sizeof(unsigned long), GFP_NOIO);
+ if (!disk->conv_zones_bitmap)
+ return -ENOMEM;
+ }
+ set_bit(idx, disk->conv_zones_bitmap);
+ break;
+ case BLK_ZONE_TYPE_SEQWRITE_REQ:
+ case BLK_ZONE_TYPE_SEQWRITE_PREF:
+ if (!disk->seq_zones_wlock) {
+ disk->seq_zones_wlock =
+ kcalloc(BITS_TO_LONGS(disk->nr_zones),
+ sizeof(unsigned long), GFP_NOIO);
+ if (!disk->seq_zones_wlock)
+ return -ENOMEM;
+ }
+ if (!md->zwp_offset) {
+ md->zwp_offset =
+ kvcalloc(disk->nr_zones, sizeof(unsigned int),
+ GFP_KERNEL);
+ if (!md->zwp_offset)
+ return -ENOMEM;
+ }
+ md->zwp_offset[idx] = dm_get_zone_wp_offset(zone);
+
+ break;
+ default:
+ DMERR("Invalid zone type 0x%x at sectors %llu",
+ (int)zone->type, zone->start);
+ return -ENODEV;
+ }
+
+ return 0;
+}
+
+/*
+ * Revalidate the zones of a mapped device to initialize resource necessary
+ * for zone append emulation. Note that we cannot simply use the block layer
+ * blk_revalidate_disk_zones() function here as the mapped device is suspended
+ * (this is called from __bind() context).
+ */
+static int dm_revalidate_zones(struct mapped_device *md, struct dm_table *t)
+{
+ struct gendisk *disk = md->disk;
+ unsigned int noio_flag;
+ int ret;
+
+ /*
+ * Check if something changed. If yes, cleanup the current resources
+ * and reallocate everything.
+ */
+ if (!disk->nr_zones || disk->nr_zones != md->nr_zones)
+ dm_cleanup_zoned_dev(md);
+ if (md->nr_zones)
+ return 0;
+
+ /*
+ * Scan all zones to initialize everything. Ensure that all vmalloc
+ * operations in this context are done as if GFP_NOIO was specified.
+ */
+ noio_flag = memalloc_noio_save();
+ ret = dm_blk_do_report_zones(md, t, 0, disk->nr_zones,
+ dm_zone_revalidate_cb, md);
+ memalloc_noio_restore(noio_flag);
+ if (ret < 0)
+ goto err;
+ if (ret != disk->nr_zones) {
+ ret = -EIO;
+ goto err;
+ }
+
+ md->nr_zones = disk->nr_zones;
+
+ return 0;
+
+err:
+ DMERR("Revalidate zones failed %d", ret);
+ dm_cleanup_zoned_dev(md);
+ return ret;
+}
+
+static int device_not_zone_append_capable(struct dm_target *ti,
+ struct dm_dev *dev, sector_t start,
+ sector_t len, void *data)
+{
+ return !bdev_is_zoned(dev->bdev);
+}
+
+static bool dm_table_supports_zone_append(struct dm_table *t)
+{
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ if (ti->emulate_zone_append)
+ return false;
+
+ if (!ti->type->iterate_devices ||
+ ti->type->iterate_devices(ti, device_not_zone_append_capable, NULL))
+ return false;
+ }
+
+ return true;
+}
+
+int dm_set_zones_restrictions(struct dm_table *t, struct request_queue *q)
+{
+ struct mapped_device *md = t->md;
+
+ /*
+ * For a zoned target, the number of zones should be updated for the
+ * correct value to be exposed in sysfs queue/nr_zones.
+ */
+ WARN_ON_ONCE(queue_is_mq(q));
+ md->disk->nr_zones = bdev_nr_zones(md->disk->part0);
+
+ /* Check if zone append is natively supported */
+ if (dm_table_supports_zone_append(t)) {
+ clear_bit(DMF_EMULATE_ZONE_APPEND, &md->flags);
+ dm_cleanup_zoned_dev(md);
+ return 0;
+ }
+
+ /*
+ * Mark the mapped device as needing zone append emulation and
+ * initialize the emulation resources once the capacity is set.
+ */
+ set_bit(DMF_EMULATE_ZONE_APPEND, &md->flags);
+ if (!get_capacity(md->disk))
+ return 0;
+
+ return dm_revalidate_zones(md, t);
+}
+
+static int dm_update_zone_wp_offset_cb(struct blk_zone *zone, unsigned int idx,
+ void *data)
+{
+ unsigned int *wp_offset = data;
+
+ *wp_offset = dm_get_zone_wp_offset(zone);
+
+ return 0;
+}
+
+static int dm_update_zone_wp_offset(struct mapped_device *md, unsigned int zno,
+ unsigned int *wp_ofst)
+{
+ sector_t sector = zno * bdev_zone_sectors(md->disk->part0);
+ unsigned int noio_flag;
+ struct dm_table *t;
+ int srcu_idx, ret;
+
+ t = dm_get_live_table(md, &srcu_idx);
+ if (!t)
+ return -EIO;
+
+ /*
+ * Ensure that all memory allocations in this context are done as if
+ * GFP_NOIO was specified.
+ */
+ noio_flag = memalloc_noio_save();
+ ret = dm_blk_do_report_zones(md, t, sector, 1,
+ dm_update_zone_wp_offset_cb, wp_ofst);
+ memalloc_noio_restore(noio_flag);
+
+ dm_put_live_table(md, srcu_idx);
+
+ if (ret != 1)
+ return -EIO;
+
+ return 0;
+}
+
+struct orig_bio_details {
+ enum req_op op;
+ unsigned int nr_sectors;
+};
+
+/*
+ * First phase of BIO mapping for targets with zone append emulation:
+ * check all BIO that change a zone writer pointer and change zone
+ * append operations into regular write operations.
+ */
+static bool dm_zone_map_bio_begin(struct mapped_device *md,
+ unsigned int zno, struct bio *clone)
+{
+ sector_t zsectors = bdev_zone_sectors(md->disk->part0);
+ unsigned int zwp_offset = READ_ONCE(md->zwp_offset[zno]);
+
+ /*
+ * If the target zone is in an error state, recover by inspecting the
+ * zone to get its current write pointer position. Note that since the
+ * target zone is already locked, a BIO issuing context should never
+ * see the zone write in the DM_ZONE_UPDATING_WP_OFST state.
+ */
+ if (zwp_offset == DM_ZONE_INVALID_WP_OFST) {
+ if (dm_update_zone_wp_offset(md, zno, &zwp_offset))
+ return false;
+ WRITE_ONCE(md->zwp_offset[zno], zwp_offset);
+ }
+
+ switch (bio_op(clone)) {
+ case REQ_OP_ZONE_RESET:
+ case REQ_OP_ZONE_FINISH:
+ return true;
+ case REQ_OP_WRITE_ZEROES:
+ case REQ_OP_WRITE:
+ /* Writes must be aligned to the zone write pointer */
+ if ((clone->bi_iter.bi_sector & (zsectors - 1)) != zwp_offset)
+ return false;
+ break;
+ case REQ_OP_ZONE_APPEND:
+ /*
+ * Change zone append operations into a non-mergeable regular
+ * writes directed at the current write pointer position of the
+ * target zone.
+ */
+ clone->bi_opf = REQ_OP_WRITE | REQ_NOMERGE |
+ (clone->bi_opf & (~REQ_OP_MASK));
+ clone->bi_iter.bi_sector += zwp_offset;
+ break;
+ default:
+ DMWARN_LIMIT("Invalid BIO operation");
+ return false;
+ }
+
+ /* Cannot write to a full zone */
+ if (zwp_offset >= zsectors)
+ return false;
+
+ return true;
+}
+
+/*
+ * Second phase of BIO mapping for targets with zone append emulation:
+ * update the zone write pointer offset array to account for the additional
+ * data written to a zone. Note that at this point, the remapped clone BIO
+ * may already have completed, so we do not touch it.
+ */
+static blk_status_t dm_zone_map_bio_end(struct mapped_device *md, unsigned int zno,
+ struct orig_bio_details *orig_bio_details,
+ unsigned int nr_sectors)
+{
+ unsigned int zwp_offset = READ_ONCE(md->zwp_offset[zno]);
+
+ /* The clone BIO may already have been completed and failed */
+ if (zwp_offset == DM_ZONE_INVALID_WP_OFST)
+ return BLK_STS_IOERR;
+
+ /* Update the zone wp offset */
+ switch (orig_bio_details->op) {
+ case REQ_OP_ZONE_RESET:
+ WRITE_ONCE(md->zwp_offset[zno], 0);
+ return BLK_STS_OK;
+ case REQ_OP_ZONE_FINISH:
+ WRITE_ONCE(md->zwp_offset[zno],
+ bdev_zone_sectors(md->disk->part0));
+ return BLK_STS_OK;
+ case REQ_OP_WRITE_ZEROES:
+ case REQ_OP_WRITE:
+ WRITE_ONCE(md->zwp_offset[zno], zwp_offset + nr_sectors);
+ return BLK_STS_OK;
+ case REQ_OP_ZONE_APPEND:
+ /*
+ * Check that the target did not truncate the write operation
+ * emulating a zone append.
+ */
+ if (nr_sectors != orig_bio_details->nr_sectors) {
+ DMWARN_LIMIT("Truncated write for zone append");
+ return BLK_STS_IOERR;
+ }
+ WRITE_ONCE(md->zwp_offset[zno], zwp_offset + nr_sectors);
+ return BLK_STS_OK;
+ default:
+ DMWARN_LIMIT("Invalid BIO operation");
+ return BLK_STS_IOERR;
+ }
+}
+
+static inline void dm_zone_lock(struct gendisk *disk, unsigned int zno,
+ struct bio *clone)
+{
+ if (WARN_ON_ONCE(bio_flagged(clone, BIO_ZONE_WRITE_LOCKED)))
+ return;
+
+ wait_on_bit_lock_io(disk->seq_zones_wlock, zno, TASK_UNINTERRUPTIBLE);
+ bio_set_flag(clone, BIO_ZONE_WRITE_LOCKED);
+}
+
+static inline void dm_zone_unlock(struct gendisk *disk, unsigned int zno,
+ struct bio *clone)
+{
+ if (!bio_flagged(clone, BIO_ZONE_WRITE_LOCKED))
+ return;
+
+ WARN_ON_ONCE(!test_bit(zno, disk->seq_zones_wlock));
+ clear_bit_unlock(zno, disk->seq_zones_wlock);
+ smp_mb__after_atomic();
+ wake_up_bit(disk->seq_zones_wlock, zno);
+
+ bio_clear_flag(clone, BIO_ZONE_WRITE_LOCKED);
+}
+
+static bool dm_need_zone_wp_tracking(struct bio *bio)
+{
+ /*
+ * Special processing is not needed for operations that do not need the
+ * zone write lock, that is, all operations that target conventional
+ * zones and all operations that do not modify directly a sequential
+ * zone write pointer.
+ */
+ if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
+ return false;
+ switch (bio_op(bio)) {
+ case REQ_OP_WRITE_ZEROES:
+ case REQ_OP_WRITE:
+ case REQ_OP_ZONE_RESET:
+ case REQ_OP_ZONE_FINISH:
+ case REQ_OP_ZONE_APPEND:
+ return bio_zone_is_seq(bio);
+ default:
+ return false;
+ }
+}
+
+/*
+ * Special IO mapping for targets needing zone append emulation.
+ */
+int dm_zone_map_bio(struct dm_target_io *tio)
+{
+ struct dm_io *io = tio->io;
+ struct dm_target *ti = tio->ti;
+ struct mapped_device *md = io->md;
+ struct bio *clone = &tio->clone;
+ struct orig_bio_details orig_bio_details;
+ unsigned int zno;
+ blk_status_t sts;
+ int r;
+
+ /*
+ * IOs that do not change a zone write pointer do not need
+ * any additional special processing.
+ */
+ if (!dm_need_zone_wp_tracking(clone))
+ return ti->type->map(ti, clone);
+
+ /* Lock the target zone */
+ zno = bio_zone_no(clone);
+ dm_zone_lock(md->disk, zno, clone);
+
+ orig_bio_details.nr_sectors = bio_sectors(clone);
+ orig_bio_details.op = bio_op(clone);
+
+ /*
+ * Check that the bio and the target zone write pointer offset are
+ * both valid, and if the bio is a zone append, remap it to a write.
+ */
+ if (!dm_zone_map_bio_begin(md, zno, clone)) {
+ dm_zone_unlock(md->disk, zno, clone);
+ return DM_MAPIO_KILL;
+ }
+
+ /* Let the target do its work */
+ r = ti->type->map(ti, clone);
+ switch (r) {
+ case DM_MAPIO_SUBMITTED:
+ /*
+ * The target submitted the clone BIO. The target zone will
+ * be unlocked on completion of the clone.
+ */
+ sts = dm_zone_map_bio_end(md, zno, &orig_bio_details,
+ *tio->len_ptr);
+ break;
+ case DM_MAPIO_REMAPPED:
+ /*
+ * The target only remapped the clone BIO. In case of error,
+ * unlock the target zone here as the clone will not be
+ * submitted.
+ */
+ sts = dm_zone_map_bio_end(md, zno, &orig_bio_details,
+ *tio->len_ptr);
+ if (sts != BLK_STS_OK)
+ dm_zone_unlock(md->disk, zno, clone);
+ break;
+ case DM_MAPIO_REQUEUE:
+ case DM_MAPIO_KILL:
+ default:
+ dm_zone_unlock(md->disk, zno, clone);
+ sts = BLK_STS_IOERR;
+ break;
+ }
+
+ if (sts != BLK_STS_OK)
+ return DM_MAPIO_KILL;
+
+ return r;
+}
+
+/*
+ * IO completion callback called from clone_endio().
+ */
+void dm_zone_endio(struct dm_io *io, struct bio *clone)
+{
+ struct mapped_device *md = io->md;
+ struct gendisk *disk = md->disk;
+ struct bio *orig_bio = io->orig_bio;
+ unsigned int zwp_offset;
+ unsigned int zno;
+
+ /*
+ * For targets that do not emulate zone append, we only need to
+ * handle native zone-append bios.
+ */
+ if (!dm_emulate_zone_append(md)) {
+ /*
+ * Get the offset within the zone of the written sector
+ * and add that to the original bio sector position.
+ */
+ if (clone->bi_status == BLK_STS_OK &&
+ bio_op(clone) == REQ_OP_ZONE_APPEND) {
+ sector_t mask =
+ (sector_t)bdev_zone_sectors(disk->part0) - 1;
+
+ orig_bio->bi_iter.bi_sector +=
+ clone->bi_iter.bi_sector & mask;
+ }
+
+ return;
+ }
+
+ /*
+ * For targets that do emulate zone append, if the clone BIO does not
+ * own the target zone write lock, we have nothing to do.
+ */
+ if (!bio_flagged(clone, BIO_ZONE_WRITE_LOCKED))
+ return;
+
+ zno = bio_zone_no(orig_bio);
+
+ if (clone->bi_status != BLK_STS_OK) {
+ /*
+ * BIOs that modify a zone write pointer may leave the zone
+ * in an unknown state in case of failure (e.g. the write
+ * pointer was only partially advanced). In this case, set
+ * the target zone write pointer as invalid unless it is
+ * already being updated.
+ */
+ WRITE_ONCE(md->zwp_offset[zno], DM_ZONE_INVALID_WP_OFST);
+ } else if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
+ /*
+ * Get the written sector for zone append operation that were
+ * emulated using regular write operations.
+ */
+ zwp_offset = READ_ONCE(md->zwp_offset[zno]);
+ if (WARN_ON_ONCE(zwp_offset < bio_sectors(orig_bio)))
+ WRITE_ONCE(md->zwp_offset[zno],
+ DM_ZONE_INVALID_WP_OFST);
+ else
+ orig_bio->bi_iter.bi_sector +=
+ zwp_offset - bio_sectors(orig_bio);
+ }
+
+ dm_zone_unlock(disk, zno, clone);
+}
diff --git a/drivers/md/dm-zoned-metadata.c b/drivers/md/dm-zoned-metadata.c
new file mode 100644
index 000000000..0548b5d92
--- /dev/null
+++ b/drivers/md/dm-zoned-metadata.c
@@ -0,0 +1,3046 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2017 Western Digital Corporation or its affiliates.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-zoned.h"
+
+#include <linux/module.h>
+#include <linux/crc32.h>
+#include <linux/sched/mm.h>
+
+#define DM_MSG_PREFIX "zoned metadata"
+
+/*
+ * Metadata version.
+ */
+#define DMZ_META_VER 2
+
+/*
+ * On-disk super block magic.
+ */
+#define DMZ_MAGIC ((((unsigned int)('D')) << 24) | \
+ (((unsigned int)('Z')) << 16) | \
+ (((unsigned int)('B')) << 8) | \
+ ((unsigned int)('D')))
+
+/*
+ * On disk super block.
+ * This uses only 512 B but uses on disk a full 4KB block. This block is
+ * followed on disk by the mapping table of chunks to zones and the bitmap
+ * blocks indicating zone block validity.
+ * The overall resulting metadata format is:
+ * (1) Super block (1 block)
+ * (2) Chunk mapping table (nr_map_blocks)
+ * (3) Bitmap blocks (nr_bitmap_blocks)
+ * All metadata blocks are stored in conventional zones, starting from
+ * the first conventional zone found on disk.
+ */
+struct dmz_super {
+ /* Magic number */
+ __le32 magic; /* 4 */
+
+ /* Metadata version number */
+ __le32 version; /* 8 */
+
+ /* Generation number */
+ __le64 gen; /* 16 */
+
+ /* This block number */
+ __le64 sb_block; /* 24 */
+
+ /* The number of metadata blocks, including this super block */
+ __le32 nr_meta_blocks; /* 28 */
+
+ /* The number of sequential zones reserved for reclaim */
+ __le32 nr_reserved_seq; /* 32 */
+
+ /* The number of entries in the mapping table */
+ __le32 nr_chunks; /* 36 */
+
+ /* The number of blocks used for the chunk mapping table */
+ __le32 nr_map_blocks; /* 40 */
+
+ /* The number of blocks used for the block bitmaps */
+ __le32 nr_bitmap_blocks; /* 44 */
+
+ /* Checksum */
+ __le32 crc; /* 48 */
+
+ /* DM-Zoned label */
+ u8 dmz_label[32]; /* 80 */
+
+ /* DM-Zoned UUID */
+ u8 dmz_uuid[16]; /* 96 */
+
+ /* Device UUID */
+ u8 dev_uuid[16]; /* 112 */
+
+ /* Padding to full 512B sector */
+ u8 reserved[400]; /* 512 */
+};
+
+/*
+ * Chunk mapping entry: entries are indexed by chunk number
+ * and give the zone ID (dzone_id) mapping the chunk on disk.
+ * This zone may be sequential or random. If it is a sequential
+ * zone, a second zone (bzone_id) used as a write buffer may
+ * also be specified. This second zone will always be a randomly
+ * writeable zone.
+ */
+struct dmz_map {
+ __le32 dzone_id;
+ __le32 bzone_id;
+};
+
+/*
+ * Chunk mapping table metadata: 512 8-bytes entries per 4KB block.
+ */
+#define DMZ_MAP_ENTRIES (DMZ_BLOCK_SIZE / sizeof(struct dmz_map))
+#define DMZ_MAP_ENTRIES_SHIFT (ilog2(DMZ_MAP_ENTRIES))
+#define DMZ_MAP_ENTRIES_MASK (DMZ_MAP_ENTRIES - 1)
+#define DMZ_MAP_UNMAPPED UINT_MAX
+
+/*
+ * Meta data block descriptor (for cached metadata blocks).
+ */
+struct dmz_mblock {
+ struct rb_node node;
+ struct list_head link;
+ sector_t no;
+ unsigned int ref;
+ unsigned long state;
+ struct page *page;
+ void *data;
+};
+
+/*
+ * Metadata block state flags.
+ */
+enum {
+ DMZ_META_DIRTY,
+ DMZ_META_READING,
+ DMZ_META_WRITING,
+ DMZ_META_ERROR,
+};
+
+/*
+ * Super block information (one per metadata set).
+ */
+struct dmz_sb {
+ sector_t block;
+ struct dmz_dev *dev;
+ struct dmz_mblock *mblk;
+ struct dmz_super *sb;
+ struct dm_zone *zone;
+};
+
+/*
+ * In-memory metadata.
+ */
+struct dmz_metadata {
+ struct dmz_dev *dev;
+ unsigned int nr_devs;
+
+ char devname[BDEVNAME_SIZE];
+ char label[BDEVNAME_SIZE];
+ uuid_t uuid;
+
+ sector_t zone_bitmap_size;
+ unsigned int zone_nr_bitmap_blocks;
+ unsigned int zone_bits_per_mblk;
+
+ sector_t zone_nr_blocks;
+ sector_t zone_nr_blocks_shift;
+
+ sector_t zone_nr_sectors;
+ sector_t zone_nr_sectors_shift;
+
+ unsigned int nr_bitmap_blocks;
+ unsigned int nr_map_blocks;
+
+ unsigned int nr_zones;
+ unsigned int nr_useable_zones;
+ unsigned int nr_meta_blocks;
+ unsigned int nr_meta_zones;
+ unsigned int nr_data_zones;
+ unsigned int nr_cache_zones;
+ unsigned int nr_rnd_zones;
+ unsigned int nr_reserved_seq;
+ unsigned int nr_chunks;
+
+ /* Zone information array */
+ struct xarray zones;
+
+ struct dmz_sb sb[2];
+ unsigned int mblk_primary;
+ unsigned int sb_version;
+ u64 sb_gen;
+ unsigned int min_nr_mblks;
+ unsigned int max_nr_mblks;
+ atomic_t nr_mblks;
+ struct rw_semaphore mblk_sem;
+ struct mutex mblk_flush_lock;
+ spinlock_t mblk_lock;
+ struct rb_root mblk_rbtree;
+ struct list_head mblk_lru_list;
+ struct list_head mblk_dirty_list;
+ struct shrinker mblk_shrinker;
+
+ /* Zone allocation management */
+ struct mutex map_lock;
+ struct dmz_mblock **map_mblk;
+
+ unsigned int nr_cache;
+ atomic_t unmap_nr_cache;
+ struct list_head unmap_cache_list;
+ struct list_head map_cache_list;
+
+ atomic_t nr_reserved_seq_zones;
+ struct list_head reserved_seq_zones_list;
+
+ wait_queue_head_t free_wq;
+};
+
+#define dmz_zmd_info(zmd, format, args...) \
+ DMINFO("(%s): " format, (zmd)->label, ## args)
+
+#define dmz_zmd_err(zmd, format, args...) \
+ DMERR("(%s): " format, (zmd)->label, ## args)
+
+#define dmz_zmd_warn(zmd, format, args...) \
+ DMWARN("(%s): " format, (zmd)->label, ## args)
+
+#define dmz_zmd_debug(zmd, format, args...) \
+ DMDEBUG("(%s): " format, (zmd)->label, ## args)
+/*
+ * Various accessors
+ */
+static unsigned int dmz_dev_zone_id(struct dmz_metadata *zmd, struct dm_zone *zone)
+{
+ if (WARN_ON(!zone))
+ return 0;
+
+ return zone->id - zone->dev->zone_offset;
+}
+
+sector_t dmz_start_sect(struct dmz_metadata *zmd, struct dm_zone *zone)
+{
+ unsigned int zone_id = dmz_dev_zone_id(zmd, zone);
+
+ return (sector_t)zone_id << zmd->zone_nr_sectors_shift;
+}
+
+sector_t dmz_start_block(struct dmz_metadata *zmd, struct dm_zone *zone)
+{
+ unsigned int zone_id = dmz_dev_zone_id(zmd, zone);
+
+ return (sector_t)zone_id << zmd->zone_nr_blocks_shift;
+}
+
+unsigned int dmz_zone_nr_blocks(struct dmz_metadata *zmd)
+{
+ return zmd->zone_nr_blocks;
+}
+
+unsigned int dmz_zone_nr_blocks_shift(struct dmz_metadata *zmd)
+{
+ return zmd->zone_nr_blocks_shift;
+}
+
+unsigned int dmz_zone_nr_sectors(struct dmz_metadata *zmd)
+{
+ return zmd->zone_nr_sectors;
+}
+
+unsigned int dmz_zone_nr_sectors_shift(struct dmz_metadata *zmd)
+{
+ return zmd->zone_nr_sectors_shift;
+}
+
+unsigned int dmz_nr_zones(struct dmz_metadata *zmd)
+{
+ return zmd->nr_zones;
+}
+
+unsigned int dmz_nr_chunks(struct dmz_metadata *zmd)
+{
+ return zmd->nr_chunks;
+}
+
+unsigned int dmz_nr_rnd_zones(struct dmz_metadata *zmd, int idx)
+{
+ return zmd->dev[idx].nr_rnd;
+}
+
+unsigned int dmz_nr_unmap_rnd_zones(struct dmz_metadata *zmd, int idx)
+{
+ return atomic_read(&zmd->dev[idx].unmap_nr_rnd);
+}
+
+unsigned int dmz_nr_cache_zones(struct dmz_metadata *zmd)
+{
+ return zmd->nr_cache;
+}
+
+unsigned int dmz_nr_unmap_cache_zones(struct dmz_metadata *zmd)
+{
+ return atomic_read(&zmd->unmap_nr_cache);
+}
+
+unsigned int dmz_nr_seq_zones(struct dmz_metadata *zmd, int idx)
+{
+ return zmd->dev[idx].nr_seq;
+}
+
+unsigned int dmz_nr_unmap_seq_zones(struct dmz_metadata *zmd, int idx)
+{
+ return atomic_read(&zmd->dev[idx].unmap_nr_seq);
+}
+
+static struct dm_zone *dmz_get(struct dmz_metadata *zmd, unsigned int zone_id)
+{
+ return xa_load(&zmd->zones, zone_id);
+}
+
+static struct dm_zone *dmz_insert(struct dmz_metadata *zmd,
+ unsigned int zone_id, struct dmz_dev *dev)
+{
+ struct dm_zone *zone = kzalloc(sizeof(struct dm_zone), GFP_KERNEL);
+
+ if (!zone)
+ return ERR_PTR(-ENOMEM);
+
+ if (xa_insert(&zmd->zones, zone_id, zone, GFP_KERNEL)) {
+ kfree(zone);
+ return ERR_PTR(-EBUSY);
+ }
+
+ INIT_LIST_HEAD(&zone->link);
+ atomic_set(&zone->refcount, 0);
+ zone->id = zone_id;
+ zone->chunk = DMZ_MAP_UNMAPPED;
+ zone->dev = dev;
+
+ return zone;
+}
+
+const char *dmz_metadata_label(struct dmz_metadata *zmd)
+{
+ return (const char *)zmd->label;
+}
+
+bool dmz_check_dev(struct dmz_metadata *zmd)
+{
+ unsigned int i;
+
+ for (i = 0; i < zmd->nr_devs; i++) {
+ if (!dmz_check_bdev(&zmd->dev[i]))
+ return false;
+ }
+ return true;
+}
+
+bool dmz_dev_is_dying(struct dmz_metadata *zmd)
+{
+ unsigned int i;
+
+ for (i = 0; i < zmd->nr_devs; i++) {
+ if (dmz_bdev_is_dying(&zmd->dev[i]))
+ return true;
+ }
+ return false;
+}
+
+/*
+ * Lock/unlock mapping table.
+ * The map lock also protects all the zone lists.
+ */
+void dmz_lock_map(struct dmz_metadata *zmd)
+{
+ mutex_lock(&zmd->map_lock);
+}
+
+void dmz_unlock_map(struct dmz_metadata *zmd)
+{
+ mutex_unlock(&zmd->map_lock);
+}
+
+/*
+ * Lock/unlock metadata access. This is a "read" lock on a semaphore
+ * that prevents metadata flush from running while metadata are being
+ * modified. The actual metadata write mutual exclusion is achieved with
+ * the map lock and zone state management (active and reclaim state are
+ * mutually exclusive).
+ */
+void dmz_lock_metadata(struct dmz_metadata *zmd)
+{
+ down_read(&zmd->mblk_sem);
+}
+
+void dmz_unlock_metadata(struct dmz_metadata *zmd)
+{
+ up_read(&zmd->mblk_sem);
+}
+
+/*
+ * Lock/unlock flush: prevent concurrent executions
+ * of dmz_flush_metadata as well as metadata modification in reclaim
+ * while flush is being executed.
+ */
+void dmz_lock_flush(struct dmz_metadata *zmd)
+{
+ mutex_lock(&zmd->mblk_flush_lock);
+}
+
+void dmz_unlock_flush(struct dmz_metadata *zmd)
+{
+ mutex_unlock(&zmd->mblk_flush_lock);
+}
+
+/*
+ * Allocate a metadata block.
+ */
+static struct dmz_mblock *dmz_alloc_mblock(struct dmz_metadata *zmd,
+ sector_t mblk_no)
+{
+ struct dmz_mblock *mblk = NULL;
+
+ /* See if we can reuse cached blocks */
+ if (zmd->max_nr_mblks && atomic_read(&zmd->nr_mblks) > zmd->max_nr_mblks) {
+ spin_lock(&zmd->mblk_lock);
+ mblk = list_first_entry_or_null(&zmd->mblk_lru_list,
+ struct dmz_mblock, link);
+ if (mblk) {
+ list_del_init(&mblk->link);
+ rb_erase(&mblk->node, &zmd->mblk_rbtree);
+ mblk->no = mblk_no;
+ }
+ spin_unlock(&zmd->mblk_lock);
+ if (mblk)
+ return mblk;
+ }
+
+ /* Allocate a new block */
+ mblk = kmalloc(sizeof(struct dmz_mblock), GFP_NOIO);
+ if (!mblk)
+ return NULL;
+
+ mblk->page = alloc_page(GFP_NOIO);
+ if (!mblk->page) {
+ kfree(mblk);
+ return NULL;
+ }
+
+ RB_CLEAR_NODE(&mblk->node);
+ INIT_LIST_HEAD(&mblk->link);
+ mblk->ref = 0;
+ mblk->state = 0;
+ mblk->no = mblk_no;
+ mblk->data = page_address(mblk->page);
+
+ atomic_inc(&zmd->nr_mblks);
+
+ return mblk;
+}
+
+/*
+ * Free a metadata block.
+ */
+static void dmz_free_mblock(struct dmz_metadata *zmd, struct dmz_mblock *mblk)
+{
+ __free_pages(mblk->page, 0);
+ kfree(mblk);
+
+ atomic_dec(&zmd->nr_mblks);
+}
+
+/*
+ * Insert a metadata block in the rbtree.
+ */
+static void dmz_insert_mblock(struct dmz_metadata *zmd, struct dmz_mblock *mblk)
+{
+ struct rb_root *root = &zmd->mblk_rbtree;
+ struct rb_node **new = &(root->rb_node), *parent = NULL;
+ struct dmz_mblock *b;
+
+ /* Figure out where to put the new node */
+ while (*new) {
+ b = container_of(*new, struct dmz_mblock, node);
+ parent = *new;
+ new = (b->no < mblk->no) ? &((*new)->rb_left) : &((*new)->rb_right);
+ }
+
+ /* Add new node and rebalance tree */
+ rb_link_node(&mblk->node, parent, new);
+ rb_insert_color(&mblk->node, root);
+}
+
+/*
+ * Lookup a metadata block in the rbtree. If the block is found, increment
+ * its reference count.
+ */
+static struct dmz_mblock *dmz_get_mblock_fast(struct dmz_metadata *zmd,
+ sector_t mblk_no)
+{
+ struct rb_root *root = &zmd->mblk_rbtree;
+ struct rb_node *node = root->rb_node;
+ struct dmz_mblock *mblk;
+
+ while (node) {
+ mblk = container_of(node, struct dmz_mblock, node);
+ if (mblk->no == mblk_no) {
+ /*
+ * If this is the first reference to the block,
+ * remove it from the LRU list.
+ */
+ mblk->ref++;
+ if (mblk->ref == 1 &&
+ !test_bit(DMZ_META_DIRTY, &mblk->state))
+ list_del_init(&mblk->link);
+ return mblk;
+ }
+ node = (mblk->no < mblk_no) ? node->rb_left : node->rb_right;
+ }
+
+ return NULL;
+}
+
+/*
+ * Metadata block BIO end callback.
+ */
+static void dmz_mblock_bio_end_io(struct bio *bio)
+{
+ struct dmz_mblock *mblk = bio->bi_private;
+ int flag;
+
+ if (bio->bi_status)
+ set_bit(DMZ_META_ERROR, &mblk->state);
+
+ if (bio_op(bio) == REQ_OP_WRITE)
+ flag = DMZ_META_WRITING;
+ else
+ flag = DMZ_META_READING;
+
+ clear_bit_unlock(flag, &mblk->state);
+ smp_mb__after_atomic();
+ wake_up_bit(&mblk->state, flag);
+
+ bio_put(bio);
+}
+
+/*
+ * Read an uncached metadata block from disk and add it to the cache.
+ */
+static struct dmz_mblock *dmz_get_mblock_slow(struct dmz_metadata *zmd,
+ sector_t mblk_no)
+{
+ struct dmz_mblock *mblk, *m;
+ sector_t block = zmd->sb[zmd->mblk_primary].block + mblk_no;
+ struct dmz_dev *dev = zmd->sb[zmd->mblk_primary].dev;
+ struct bio *bio;
+
+ if (dmz_bdev_is_dying(dev))
+ return ERR_PTR(-EIO);
+
+ /* Get a new block and a BIO to read it */
+ mblk = dmz_alloc_mblock(zmd, mblk_no);
+ if (!mblk)
+ return ERR_PTR(-ENOMEM);
+
+ bio = bio_alloc(dev->bdev, 1, REQ_OP_READ | REQ_META | REQ_PRIO,
+ GFP_NOIO);
+
+ spin_lock(&zmd->mblk_lock);
+
+ /*
+ * Make sure that another context did not start reading
+ * the block already.
+ */
+ m = dmz_get_mblock_fast(zmd, mblk_no);
+ if (m) {
+ spin_unlock(&zmd->mblk_lock);
+ dmz_free_mblock(zmd, mblk);
+ bio_put(bio);
+ return m;
+ }
+
+ mblk->ref++;
+ set_bit(DMZ_META_READING, &mblk->state);
+ dmz_insert_mblock(zmd, mblk);
+
+ spin_unlock(&zmd->mblk_lock);
+
+ /* Submit read BIO */
+ bio->bi_iter.bi_sector = dmz_blk2sect(block);
+ bio->bi_private = mblk;
+ bio->bi_end_io = dmz_mblock_bio_end_io;
+ bio_add_page(bio, mblk->page, DMZ_BLOCK_SIZE, 0);
+ submit_bio(bio);
+
+ return mblk;
+}
+
+/*
+ * Free metadata blocks.
+ */
+static unsigned long dmz_shrink_mblock_cache(struct dmz_metadata *zmd,
+ unsigned long limit)
+{
+ struct dmz_mblock *mblk;
+ unsigned long count = 0;
+
+ if (!zmd->max_nr_mblks)
+ return 0;
+
+ while (!list_empty(&zmd->mblk_lru_list) &&
+ atomic_read(&zmd->nr_mblks) > zmd->min_nr_mblks &&
+ count < limit) {
+ mblk = list_first_entry(&zmd->mblk_lru_list,
+ struct dmz_mblock, link);
+ list_del_init(&mblk->link);
+ rb_erase(&mblk->node, &zmd->mblk_rbtree);
+ dmz_free_mblock(zmd, mblk);
+ count++;
+ }
+
+ return count;
+}
+
+/*
+ * For mblock shrinker: get the number of unused metadata blocks in the cache.
+ */
+static unsigned long dmz_mblock_shrinker_count(struct shrinker *shrink,
+ struct shrink_control *sc)
+{
+ struct dmz_metadata *zmd = container_of(shrink, struct dmz_metadata, mblk_shrinker);
+
+ return atomic_read(&zmd->nr_mblks);
+}
+
+/*
+ * For mblock shrinker: scan unused metadata blocks and shrink the cache.
+ */
+static unsigned long dmz_mblock_shrinker_scan(struct shrinker *shrink,
+ struct shrink_control *sc)
+{
+ struct dmz_metadata *zmd = container_of(shrink, struct dmz_metadata, mblk_shrinker);
+ unsigned long count;
+
+ spin_lock(&zmd->mblk_lock);
+ count = dmz_shrink_mblock_cache(zmd, sc->nr_to_scan);
+ spin_unlock(&zmd->mblk_lock);
+
+ return count ? count : SHRINK_STOP;
+}
+
+/*
+ * Release a metadata block.
+ */
+static void dmz_release_mblock(struct dmz_metadata *zmd,
+ struct dmz_mblock *mblk)
+{
+
+ if (!mblk)
+ return;
+
+ spin_lock(&zmd->mblk_lock);
+
+ mblk->ref--;
+ if (mblk->ref == 0) {
+ if (test_bit(DMZ_META_ERROR, &mblk->state)) {
+ rb_erase(&mblk->node, &zmd->mblk_rbtree);
+ dmz_free_mblock(zmd, mblk);
+ } else if (!test_bit(DMZ_META_DIRTY, &mblk->state)) {
+ list_add_tail(&mblk->link, &zmd->mblk_lru_list);
+ dmz_shrink_mblock_cache(zmd, 1);
+ }
+ }
+
+ spin_unlock(&zmd->mblk_lock);
+}
+
+/*
+ * Get a metadata block from the rbtree. If the block
+ * is not present, read it from disk.
+ */
+static struct dmz_mblock *dmz_get_mblock(struct dmz_metadata *zmd,
+ sector_t mblk_no)
+{
+ struct dmz_mblock *mblk;
+ struct dmz_dev *dev = zmd->sb[zmd->mblk_primary].dev;
+
+ /* Check rbtree */
+ spin_lock(&zmd->mblk_lock);
+ mblk = dmz_get_mblock_fast(zmd, mblk_no);
+ spin_unlock(&zmd->mblk_lock);
+
+ if (!mblk) {
+ /* Cache miss: read the block from disk */
+ mblk = dmz_get_mblock_slow(zmd, mblk_no);
+ if (IS_ERR(mblk))
+ return mblk;
+ }
+
+ /* Wait for on-going read I/O and check for error */
+ wait_on_bit_io(&mblk->state, DMZ_META_READING,
+ TASK_UNINTERRUPTIBLE);
+ if (test_bit(DMZ_META_ERROR, &mblk->state)) {
+ dmz_release_mblock(zmd, mblk);
+ dmz_check_bdev(dev);
+ return ERR_PTR(-EIO);
+ }
+
+ return mblk;
+}
+
+/*
+ * Mark a metadata block dirty.
+ */
+static void dmz_dirty_mblock(struct dmz_metadata *zmd, struct dmz_mblock *mblk)
+{
+ spin_lock(&zmd->mblk_lock);
+ if (!test_and_set_bit(DMZ_META_DIRTY, &mblk->state))
+ list_add_tail(&mblk->link, &zmd->mblk_dirty_list);
+ spin_unlock(&zmd->mblk_lock);
+}
+
+/*
+ * Issue a metadata block write BIO.
+ */
+static int dmz_write_mblock(struct dmz_metadata *zmd, struct dmz_mblock *mblk,
+ unsigned int set)
+{
+ struct dmz_dev *dev = zmd->sb[set].dev;
+ sector_t block = zmd->sb[set].block + mblk->no;
+ struct bio *bio;
+
+ if (dmz_bdev_is_dying(dev))
+ return -EIO;
+
+ bio = bio_alloc(dev->bdev, 1, REQ_OP_WRITE | REQ_META | REQ_PRIO,
+ GFP_NOIO);
+
+ set_bit(DMZ_META_WRITING, &mblk->state);
+
+ bio->bi_iter.bi_sector = dmz_blk2sect(block);
+ bio->bi_private = mblk;
+ bio->bi_end_io = dmz_mblock_bio_end_io;
+ bio_add_page(bio, mblk->page, DMZ_BLOCK_SIZE, 0);
+ submit_bio(bio);
+
+ return 0;
+}
+
+/*
+ * Read/write a metadata block.
+ */
+static int dmz_rdwr_block(struct dmz_dev *dev, enum req_op op,
+ sector_t block, struct page *page)
+{
+ struct bio *bio;
+ int ret;
+
+ if (WARN_ON(!dev))
+ return -EIO;
+
+ if (dmz_bdev_is_dying(dev))
+ return -EIO;
+
+ bio = bio_alloc(dev->bdev, 1, op | REQ_SYNC | REQ_META | REQ_PRIO,
+ GFP_NOIO);
+ bio->bi_iter.bi_sector = dmz_blk2sect(block);
+ bio_add_page(bio, page, DMZ_BLOCK_SIZE, 0);
+ ret = submit_bio_wait(bio);
+ bio_put(bio);
+
+ if (ret)
+ dmz_check_bdev(dev);
+ return ret;
+}
+
+/*
+ * Write super block of the specified metadata set.
+ */
+static int dmz_write_sb(struct dmz_metadata *zmd, unsigned int set)
+{
+ struct dmz_mblock *mblk = zmd->sb[set].mblk;
+ struct dmz_super *sb = zmd->sb[set].sb;
+ struct dmz_dev *dev = zmd->sb[set].dev;
+ sector_t sb_block;
+ u64 sb_gen = zmd->sb_gen + 1;
+ int ret;
+
+ sb->magic = cpu_to_le32(DMZ_MAGIC);
+
+ sb->version = cpu_to_le32(zmd->sb_version);
+ if (zmd->sb_version > 1) {
+ BUILD_BUG_ON(UUID_SIZE != 16);
+ export_uuid(sb->dmz_uuid, &zmd->uuid);
+ memcpy(sb->dmz_label, zmd->label, BDEVNAME_SIZE);
+ export_uuid(sb->dev_uuid, &dev->uuid);
+ }
+
+ sb->gen = cpu_to_le64(sb_gen);
+
+ /*
+ * The metadata always references the absolute block address,
+ * ie relative to the entire block range, not the per-device
+ * block address.
+ */
+ sb_block = zmd->sb[set].zone->id << zmd->zone_nr_blocks_shift;
+ sb->sb_block = cpu_to_le64(sb_block);
+ sb->nr_meta_blocks = cpu_to_le32(zmd->nr_meta_blocks);
+ sb->nr_reserved_seq = cpu_to_le32(zmd->nr_reserved_seq);
+ sb->nr_chunks = cpu_to_le32(zmd->nr_chunks);
+
+ sb->nr_map_blocks = cpu_to_le32(zmd->nr_map_blocks);
+ sb->nr_bitmap_blocks = cpu_to_le32(zmd->nr_bitmap_blocks);
+
+ sb->crc = 0;
+ sb->crc = cpu_to_le32(crc32_le(sb_gen, (unsigned char *)sb, DMZ_BLOCK_SIZE));
+
+ ret = dmz_rdwr_block(dev, REQ_OP_WRITE, zmd->sb[set].block,
+ mblk->page);
+ if (ret == 0)
+ ret = blkdev_issue_flush(dev->bdev);
+
+ return ret;
+}
+
+/*
+ * Write dirty metadata blocks to the specified set.
+ */
+static int dmz_write_dirty_mblocks(struct dmz_metadata *zmd,
+ struct list_head *write_list,
+ unsigned int set)
+{
+ struct dmz_mblock *mblk;
+ struct dmz_dev *dev = zmd->sb[set].dev;
+ struct blk_plug plug;
+ int ret = 0, nr_mblks_submitted = 0;
+
+ /* Issue writes */
+ blk_start_plug(&plug);
+ list_for_each_entry(mblk, write_list, link) {
+ ret = dmz_write_mblock(zmd, mblk, set);
+ if (ret)
+ break;
+ nr_mblks_submitted++;
+ }
+ blk_finish_plug(&plug);
+
+ /* Wait for completion */
+ list_for_each_entry(mblk, write_list, link) {
+ if (!nr_mblks_submitted)
+ break;
+ wait_on_bit_io(&mblk->state, DMZ_META_WRITING,
+ TASK_UNINTERRUPTIBLE);
+ if (test_bit(DMZ_META_ERROR, &mblk->state)) {
+ clear_bit(DMZ_META_ERROR, &mblk->state);
+ dmz_check_bdev(dev);
+ ret = -EIO;
+ }
+ nr_mblks_submitted--;
+ }
+
+ /* Flush drive cache (this will also sync data) */
+ if (ret == 0)
+ ret = blkdev_issue_flush(dev->bdev);
+
+ return ret;
+}
+
+/*
+ * Log dirty metadata blocks.
+ */
+static int dmz_log_dirty_mblocks(struct dmz_metadata *zmd,
+ struct list_head *write_list)
+{
+ unsigned int log_set = zmd->mblk_primary ^ 0x1;
+ int ret;
+
+ /* Write dirty blocks to the log */
+ ret = dmz_write_dirty_mblocks(zmd, write_list, log_set);
+ if (ret)
+ return ret;
+
+ /*
+ * No error so far: now validate the log by updating the
+ * log index super block generation.
+ */
+ ret = dmz_write_sb(zmd, log_set);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+/*
+ * Flush dirty metadata blocks.
+ */
+int dmz_flush_metadata(struct dmz_metadata *zmd)
+{
+ struct dmz_mblock *mblk;
+ struct list_head write_list;
+ struct dmz_dev *dev;
+ int ret;
+
+ if (WARN_ON(!zmd))
+ return 0;
+
+ INIT_LIST_HEAD(&write_list);
+
+ /*
+ * Make sure that metadata blocks are stable before logging: take
+ * the write lock on the metadata semaphore to prevent target BIOs
+ * from modifying metadata.
+ */
+ down_write(&zmd->mblk_sem);
+ dev = zmd->sb[zmd->mblk_primary].dev;
+
+ /*
+ * This is called from the target flush work and reclaim work.
+ * Concurrent execution is not allowed.
+ */
+ dmz_lock_flush(zmd);
+
+ if (dmz_bdev_is_dying(dev)) {
+ ret = -EIO;
+ goto out;
+ }
+
+ /* Get dirty blocks */
+ spin_lock(&zmd->mblk_lock);
+ list_splice_init(&zmd->mblk_dirty_list, &write_list);
+ spin_unlock(&zmd->mblk_lock);
+
+ /* If there are no dirty metadata blocks, just flush the device cache */
+ if (list_empty(&write_list)) {
+ ret = blkdev_issue_flush(dev->bdev);
+ goto err;
+ }
+
+ /*
+ * The primary metadata set is still clean. Keep it this way until
+ * all updates are successful in the secondary set. That is, use
+ * the secondary set as a log.
+ */
+ ret = dmz_log_dirty_mblocks(zmd, &write_list);
+ if (ret)
+ goto err;
+
+ /*
+ * The log is on disk. It is now safe to update in place
+ * in the primary metadata set.
+ */
+ ret = dmz_write_dirty_mblocks(zmd, &write_list, zmd->mblk_primary);
+ if (ret)
+ goto err;
+
+ ret = dmz_write_sb(zmd, zmd->mblk_primary);
+ if (ret)
+ goto err;
+
+ while (!list_empty(&write_list)) {
+ mblk = list_first_entry(&write_list, struct dmz_mblock, link);
+ list_del_init(&mblk->link);
+
+ spin_lock(&zmd->mblk_lock);
+ clear_bit(DMZ_META_DIRTY, &mblk->state);
+ if (mblk->ref == 0)
+ list_add_tail(&mblk->link, &zmd->mblk_lru_list);
+ spin_unlock(&zmd->mblk_lock);
+ }
+
+ zmd->sb_gen++;
+out:
+ dmz_unlock_flush(zmd);
+ up_write(&zmd->mblk_sem);
+
+ return ret;
+
+err:
+ if (!list_empty(&write_list)) {
+ spin_lock(&zmd->mblk_lock);
+ list_splice(&write_list, &zmd->mblk_dirty_list);
+ spin_unlock(&zmd->mblk_lock);
+ }
+ if (!dmz_check_bdev(dev))
+ ret = -EIO;
+ goto out;
+}
+
+/*
+ * Check super block.
+ */
+static int dmz_check_sb(struct dmz_metadata *zmd, struct dmz_sb *dsb,
+ bool tertiary)
+{
+ struct dmz_super *sb = dsb->sb;
+ struct dmz_dev *dev = dsb->dev;
+ unsigned int nr_meta_zones, nr_data_zones;
+ u32 crc, stored_crc;
+ u64 gen, sb_block;
+
+ if (le32_to_cpu(sb->magic) != DMZ_MAGIC) {
+ dmz_dev_err(dev, "Invalid meta magic (needed 0x%08x, got 0x%08x)",
+ DMZ_MAGIC, le32_to_cpu(sb->magic));
+ return -ENXIO;
+ }
+
+ zmd->sb_version = le32_to_cpu(sb->version);
+ if (zmd->sb_version > DMZ_META_VER) {
+ dmz_dev_err(dev, "Invalid meta version (needed %d, got %d)",
+ DMZ_META_VER, zmd->sb_version);
+ return -EINVAL;
+ }
+ if (zmd->sb_version < 2 && tertiary) {
+ dmz_dev_err(dev, "Tertiary superblocks are not supported");
+ return -EINVAL;
+ }
+
+ gen = le64_to_cpu(sb->gen);
+ stored_crc = le32_to_cpu(sb->crc);
+ sb->crc = 0;
+ crc = crc32_le(gen, (unsigned char *)sb, DMZ_BLOCK_SIZE);
+ if (crc != stored_crc) {
+ dmz_dev_err(dev, "Invalid checksum (needed 0x%08x, got 0x%08x)",
+ crc, stored_crc);
+ return -ENXIO;
+ }
+
+ sb_block = le64_to_cpu(sb->sb_block);
+ if (sb_block != (u64)dsb->zone->id << zmd->zone_nr_blocks_shift) {
+ dmz_dev_err(dev, "Invalid superblock position (is %llu expected %llu)",
+ sb_block, (u64)dsb->zone->id << zmd->zone_nr_blocks_shift);
+ return -EINVAL;
+ }
+ if (zmd->sb_version > 1) {
+ uuid_t sb_uuid;
+
+ import_uuid(&sb_uuid, sb->dmz_uuid);
+ if (uuid_is_null(&sb_uuid)) {
+ dmz_dev_err(dev, "NULL DM-Zoned uuid");
+ return -ENXIO;
+ } else if (uuid_is_null(&zmd->uuid)) {
+ uuid_copy(&zmd->uuid, &sb_uuid);
+ } else if (!uuid_equal(&zmd->uuid, &sb_uuid)) {
+ dmz_dev_err(dev, "mismatching DM-Zoned uuid, is %pUl expected %pUl",
+ &sb_uuid, &zmd->uuid);
+ return -ENXIO;
+ }
+ if (!strlen(zmd->label))
+ memcpy(zmd->label, sb->dmz_label, BDEVNAME_SIZE);
+ else if (memcmp(zmd->label, sb->dmz_label, BDEVNAME_SIZE)) {
+ dmz_dev_err(dev, "mismatching DM-Zoned label, is %s expected %s",
+ sb->dmz_label, zmd->label);
+ return -ENXIO;
+ }
+ import_uuid(&dev->uuid, sb->dev_uuid);
+ if (uuid_is_null(&dev->uuid)) {
+ dmz_dev_err(dev, "NULL device uuid");
+ return -ENXIO;
+ }
+
+ if (tertiary) {
+ /*
+ * Generation number should be 0, but it doesn't
+ * really matter if it isn't.
+ */
+ if (gen != 0)
+ dmz_dev_warn(dev, "Invalid generation %llu",
+ gen);
+ return 0;
+ }
+ }
+
+ nr_meta_zones = (le32_to_cpu(sb->nr_meta_blocks) + zmd->zone_nr_blocks - 1)
+ >> zmd->zone_nr_blocks_shift;
+ if (!nr_meta_zones ||
+ (zmd->nr_devs <= 1 && nr_meta_zones >= zmd->nr_rnd_zones) ||
+ (zmd->nr_devs > 1 && nr_meta_zones >= zmd->nr_cache_zones)) {
+ dmz_dev_err(dev, "Invalid number of metadata blocks");
+ return -ENXIO;
+ }
+
+ if (!le32_to_cpu(sb->nr_reserved_seq) ||
+ le32_to_cpu(sb->nr_reserved_seq) >= (zmd->nr_useable_zones - nr_meta_zones)) {
+ dmz_dev_err(dev, "Invalid number of reserved sequential zones");
+ return -ENXIO;
+ }
+
+ nr_data_zones = zmd->nr_useable_zones -
+ (nr_meta_zones * 2 + le32_to_cpu(sb->nr_reserved_seq));
+ if (le32_to_cpu(sb->nr_chunks) > nr_data_zones) {
+ dmz_dev_err(dev, "Invalid number of chunks %u / %u",
+ le32_to_cpu(sb->nr_chunks), nr_data_zones);
+ return -ENXIO;
+ }
+
+ /* OK */
+ zmd->nr_meta_blocks = le32_to_cpu(sb->nr_meta_blocks);
+ zmd->nr_reserved_seq = le32_to_cpu(sb->nr_reserved_seq);
+ zmd->nr_chunks = le32_to_cpu(sb->nr_chunks);
+ zmd->nr_map_blocks = le32_to_cpu(sb->nr_map_blocks);
+ zmd->nr_bitmap_blocks = le32_to_cpu(sb->nr_bitmap_blocks);
+ zmd->nr_meta_zones = nr_meta_zones;
+ zmd->nr_data_zones = nr_data_zones;
+
+ return 0;
+}
+
+/*
+ * Read the first or second super block from disk.
+ */
+static int dmz_read_sb(struct dmz_metadata *zmd, struct dmz_sb *sb, int set)
+{
+ dmz_zmd_debug(zmd, "read superblock set %d dev %pg block %llu",
+ set, sb->dev->bdev, sb->block);
+
+ return dmz_rdwr_block(sb->dev, REQ_OP_READ,
+ sb->block, sb->mblk->page);
+}
+
+/*
+ * Determine the position of the secondary super blocks on disk.
+ * This is used only if a corruption of the primary super block
+ * is detected.
+ */
+static int dmz_lookup_secondary_sb(struct dmz_metadata *zmd)
+{
+ unsigned int zone_nr_blocks = zmd->zone_nr_blocks;
+ struct dmz_mblock *mblk;
+ unsigned int zone_id = zmd->sb[0].zone->id;
+ int i;
+
+ /* Allocate a block */
+ mblk = dmz_alloc_mblock(zmd, 0);
+ if (!mblk)
+ return -ENOMEM;
+
+ zmd->sb[1].mblk = mblk;
+ zmd->sb[1].sb = mblk->data;
+
+ /* Bad first super block: search for the second one */
+ zmd->sb[1].block = zmd->sb[0].block + zone_nr_blocks;
+ zmd->sb[1].zone = dmz_get(zmd, zone_id + 1);
+ zmd->sb[1].dev = zmd->sb[0].dev;
+ for (i = 1; i < zmd->nr_rnd_zones; i++) {
+ if (dmz_read_sb(zmd, &zmd->sb[1], 1) != 0)
+ break;
+ if (le32_to_cpu(zmd->sb[1].sb->magic) == DMZ_MAGIC)
+ return 0;
+ zmd->sb[1].block += zone_nr_blocks;
+ zmd->sb[1].zone = dmz_get(zmd, zone_id + i);
+ }
+
+ dmz_free_mblock(zmd, mblk);
+ zmd->sb[1].mblk = NULL;
+ zmd->sb[1].zone = NULL;
+ zmd->sb[1].dev = NULL;
+
+ return -EIO;
+}
+
+/*
+ * Read a super block from disk.
+ */
+static int dmz_get_sb(struct dmz_metadata *zmd, struct dmz_sb *sb, int set)
+{
+ struct dmz_mblock *mblk;
+ int ret;
+
+ /* Allocate a block */
+ mblk = dmz_alloc_mblock(zmd, 0);
+ if (!mblk)
+ return -ENOMEM;
+
+ sb->mblk = mblk;
+ sb->sb = mblk->data;
+
+ /* Read super block */
+ ret = dmz_read_sb(zmd, sb, set);
+ if (ret) {
+ dmz_free_mblock(zmd, mblk);
+ sb->mblk = NULL;
+ return ret;
+ }
+
+ return 0;
+}
+
+/*
+ * Recover a metadata set.
+ */
+static int dmz_recover_mblocks(struct dmz_metadata *zmd, unsigned int dst_set)
+{
+ unsigned int src_set = dst_set ^ 0x1;
+ struct page *page;
+ int i, ret;
+
+ dmz_dev_warn(zmd->sb[dst_set].dev,
+ "Metadata set %u invalid: recovering", dst_set);
+
+ if (dst_set == 0)
+ zmd->sb[0].block = dmz_start_block(zmd, zmd->sb[0].zone);
+ else
+ zmd->sb[1].block = dmz_start_block(zmd, zmd->sb[1].zone);
+
+ page = alloc_page(GFP_NOIO);
+ if (!page)
+ return -ENOMEM;
+
+ /* Copy metadata blocks */
+ for (i = 1; i < zmd->nr_meta_blocks; i++) {
+ ret = dmz_rdwr_block(zmd->sb[src_set].dev, REQ_OP_READ,
+ zmd->sb[src_set].block + i, page);
+ if (ret)
+ goto out;
+ ret = dmz_rdwr_block(zmd->sb[dst_set].dev, REQ_OP_WRITE,
+ zmd->sb[dst_set].block + i, page);
+ if (ret)
+ goto out;
+ }
+
+ /* Finalize with the super block */
+ if (!zmd->sb[dst_set].mblk) {
+ zmd->sb[dst_set].mblk = dmz_alloc_mblock(zmd, 0);
+ if (!zmd->sb[dst_set].mblk) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ zmd->sb[dst_set].sb = zmd->sb[dst_set].mblk->data;
+ }
+
+ ret = dmz_write_sb(zmd, dst_set);
+out:
+ __free_pages(page, 0);
+
+ return ret;
+}
+
+/*
+ * Get super block from disk.
+ */
+static int dmz_load_sb(struct dmz_metadata *zmd)
+{
+ bool sb_good[2] = {false, false};
+ u64 sb_gen[2] = {0, 0};
+ int ret;
+
+ if (!zmd->sb[0].zone) {
+ dmz_zmd_err(zmd, "Primary super block zone not set");
+ return -ENXIO;
+ }
+
+ /* Read and check the primary super block */
+ zmd->sb[0].block = dmz_start_block(zmd, zmd->sb[0].zone);
+ zmd->sb[0].dev = zmd->sb[0].zone->dev;
+ ret = dmz_get_sb(zmd, &zmd->sb[0], 0);
+ if (ret) {
+ dmz_dev_err(zmd->sb[0].dev, "Read primary super block failed");
+ return ret;
+ }
+
+ ret = dmz_check_sb(zmd, &zmd->sb[0], false);
+
+ /* Read and check secondary super block */
+ if (ret == 0) {
+ sb_good[0] = true;
+ if (!zmd->sb[1].zone) {
+ unsigned int zone_id =
+ zmd->sb[0].zone->id + zmd->nr_meta_zones;
+
+ zmd->sb[1].zone = dmz_get(zmd, zone_id);
+ }
+ zmd->sb[1].block = dmz_start_block(zmd, zmd->sb[1].zone);
+ zmd->sb[1].dev = zmd->sb[0].dev;
+ ret = dmz_get_sb(zmd, &zmd->sb[1], 1);
+ } else
+ ret = dmz_lookup_secondary_sb(zmd);
+
+ if (ret) {
+ dmz_dev_err(zmd->sb[1].dev, "Read secondary super block failed");
+ return ret;
+ }
+
+ ret = dmz_check_sb(zmd, &zmd->sb[1], false);
+ if (ret == 0)
+ sb_good[1] = true;
+
+ /* Use highest generation sb first */
+ if (!sb_good[0] && !sb_good[1]) {
+ dmz_zmd_err(zmd, "No valid super block found");
+ return -EIO;
+ }
+
+ if (sb_good[0])
+ sb_gen[0] = le64_to_cpu(zmd->sb[0].sb->gen);
+ else {
+ ret = dmz_recover_mblocks(zmd, 0);
+ if (ret) {
+ dmz_dev_err(zmd->sb[0].dev,
+ "Recovery of superblock 0 failed");
+ return -EIO;
+ }
+ }
+
+ if (sb_good[1])
+ sb_gen[1] = le64_to_cpu(zmd->sb[1].sb->gen);
+ else {
+ ret = dmz_recover_mblocks(zmd, 1);
+
+ if (ret) {
+ dmz_dev_err(zmd->sb[1].dev,
+ "Recovery of superblock 1 failed");
+ return -EIO;
+ }
+ }
+
+ if (sb_gen[0] >= sb_gen[1]) {
+ zmd->sb_gen = sb_gen[0];
+ zmd->mblk_primary = 0;
+ } else {
+ zmd->sb_gen = sb_gen[1];
+ zmd->mblk_primary = 1;
+ }
+
+ dmz_dev_debug(zmd->sb[zmd->mblk_primary].dev,
+ "Using super block %u (gen %llu)",
+ zmd->mblk_primary, zmd->sb_gen);
+
+ if (zmd->sb_version > 1) {
+ int i;
+ struct dmz_sb *sb;
+
+ sb = kzalloc(sizeof(struct dmz_sb), GFP_KERNEL);
+ if (!sb)
+ return -ENOMEM;
+ for (i = 1; i < zmd->nr_devs; i++) {
+ sb->block = 0;
+ sb->zone = dmz_get(zmd, zmd->dev[i].zone_offset);
+ sb->dev = &zmd->dev[i];
+ if (!dmz_is_meta(sb->zone)) {
+ dmz_dev_err(sb->dev,
+ "Tertiary super block zone %u not marked as metadata zone",
+ sb->zone->id);
+ ret = -EINVAL;
+ goto out_kfree;
+ }
+ ret = dmz_get_sb(zmd, sb, i + 1);
+ if (ret) {
+ dmz_dev_err(sb->dev,
+ "Read tertiary super block failed");
+ dmz_free_mblock(zmd, sb->mblk);
+ goto out_kfree;
+ }
+ ret = dmz_check_sb(zmd, sb, true);
+ dmz_free_mblock(zmd, sb->mblk);
+ if (ret == -EINVAL)
+ goto out_kfree;
+ }
+ out_kfree:
+ kfree(sb);
+ }
+ return ret;
+}
+
+/*
+ * Initialize a zone descriptor.
+ */
+static int dmz_init_zone(struct blk_zone *blkz, unsigned int num, void *data)
+{
+ struct dmz_dev *dev = data;
+ struct dmz_metadata *zmd = dev->metadata;
+ int idx = num + dev->zone_offset;
+ struct dm_zone *zone;
+
+ zone = dmz_insert(zmd, idx, dev);
+ if (IS_ERR(zone))
+ return PTR_ERR(zone);
+
+ if (blkz->len != zmd->zone_nr_sectors) {
+ if (zmd->sb_version > 1) {
+ /* Ignore the eventual runt (smaller) zone */
+ set_bit(DMZ_OFFLINE, &zone->flags);
+ return 0;
+ } else if (blkz->start + blkz->len == dev->capacity)
+ return 0;
+ return -ENXIO;
+ }
+
+ /*
+ * Devices that have zones with a capacity smaller than the zone size
+ * (e.g. NVMe zoned namespaces) are not supported.
+ */
+ if (blkz->capacity != blkz->len)
+ return -ENXIO;
+
+ switch (blkz->type) {
+ case BLK_ZONE_TYPE_CONVENTIONAL:
+ set_bit(DMZ_RND, &zone->flags);
+ break;
+ case BLK_ZONE_TYPE_SEQWRITE_REQ:
+ case BLK_ZONE_TYPE_SEQWRITE_PREF:
+ set_bit(DMZ_SEQ, &zone->flags);
+ break;
+ default:
+ return -ENXIO;
+ }
+
+ if (dmz_is_rnd(zone))
+ zone->wp_block = 0;
+ else
+ zone->wp_block = dmz_sect2blk(blkz->wp - blkz->start);
+
+ if (blkz->cond == BLK_ZONE_COND_OFFLINE)
+ set_bit(DMZ_OFFLINE, &zone->flags);
+ else if (blkz->cond == BLK_ZONE_COND_READONLY)
+ set_bit(DMZ_READ_ONLY, &zone->flags);
+ else {
+ zmd->nr_useable_zones++;
+ if (dmz_is_rnd(zone)) {
+ zmd->nr_rnd_zones++;
+ if (zmd->nr_devs == 1 && !zmd->sb[0].zone) {
+ /* Primary super block zone */
+ zmd->sb[0].zone = zone;
+ }
+ }
+ if (zmd->nr_devs > 1 && num == 0) {
+ /*
+ * Tertiary superblock zones are always at the
+ * start of the zoned devices, so mark them
+ * as metadata zone.
+ */
+ set_bit(DMZ_META, &zone->flags);
+ }
+ }
+ return 0;
+}
+
+static int dmz_emulate_zones(struct dmz_metadata *zmd, struct dmz_dev *dev)
+{
+ int idx;
+ sector_t zone_offset = 0;
+
+ for(idx = 0; idx < dev->nr_zones; idx++) {
+ struct dm_zone *zone;
+
+ zone = dmz_insert(zmd, idx, dev);
+ if (IS_ERR(zone))
+ return PTR_ERR(zone);
+ set_bit(DMZ_CACHE, &zone->flags);
+ zone->wp_block = 0;
+ zmd->nr_cache_zones++;
+ zmd->nr_useable_zones++;
+ if (dev->capacity - zone_offset < zmd->zone_nr_sectors) {
+ /* Disable runt zone */
+ set_bit(DMZ_OFFLINE, &zone->flags);
+ break;
+ }
+ zone_offset += zmd->zone_nr_sectors;
+ }
+ return 0;
+}
+
+/*
+ * Free zones descriptors.
+ */
+static void dmz_drop_zones(struct dmz_metadata *zmd)
+{
+ int idx;
+
+ for(idx = 0; idx < zmd->nr_zones; idx++) {
+ struct dm_zone *zone = xa_load(&zmd->zones, idx);
+
+ kfree(zone);
+ xa_erase(&zmd->zones, idx);
+ }
+ xa_destroy(&zmd->zones);
+}
+
+/*
+ * Allocate and initialize zone descriptors using the zone
+ * information from disk.
+ */
+static int dmz_init_zones(struct dmz_metadata *zmd)
+{
+ int i, ret;
+ struct dmz_dev *zoned_dev = &zmd->dev[0];
+
+ /* Init */
+ zmd->zone_nr_sectors = zmd->dev[0].zone_nr_sectors;
+ zmd->zone_nr_sectors_shift = ilog2(zmd->zone_nr_sectors);
+ zmd->zone_nr_blocks = dmz_sect2blk(zmd->zone_nr_sectors);
+ zmd->zone_nr_blocks_shift = ilog2(zmd->zone_nr_blocks);
+ zmd->zone_bitmap_size = zmd->zone_nr_blocks >> 3;
+ zmd->zone_nr_bitmap_blocks =
+ max_t(sector_t, 1, zmd->zone_bitmap_size >> DMZ_BLOCK_SHIFT);
+ zmd->zone_bits_per_mblk = min_t(sector_t, zmd->zone_nr_blocks,
+ DMZ_BLOCK_SIZE_BITS);
+
+ /* Allocate zone array */
+ zmd->nr_zones = 0;
+ for (i = 0; i < zmd->nr_devs; i++) {
+ struct dmz_dev *dev = &zmd->dev[i];
+
+ dev->metadata = zmd;
+ zmd->nr_zones += dev->nr_zones;
+
+ atomic_set(&dev->unmap_nr_rnd, 0);
+ INIT_LIST_HEAD(&dev->unmap_rnd_list);
+ INIT_LIST_HEAD(&dev->map_rnd_list);
+
+ atomic_set(&dev->unmap_nr_seq, 0);
+ INIT_LIST_HEAD(&dev->unmap_seq_list);
+ INIT_LIST_HEAD(&dev->map_seq_list);
+ }
+
+ if (!zmd->nr_zones) {
+ DMERR("(%s): No zones found", zmd->devname);
+ return -ENXIO;
+ }
+ xa_init(&zmd->zones);
+
+ DMDEBUG("(%s): Using %zu B for zone information",
+ zmd->devname, sizeof(struct dm_zone) * zmd->nr_zones);
+
+ if (zmd->nr_devs > 1) {
+ ret = dmz_emulate_zones(zmd, &zmd->dev[0]);
+ if (ret < 0) {
+ DMDEBUG("(%s): Failed to emulate zones, error %d",
+ zmd->devname, ret);
+ dmz_drop_zones(zmd);
+ return ret;
+ }
+
+ /*
+ * Primary superblock zone is always at zone 0 when multiple
+ * drives are present.
+ */
+ zmd->sb[0].zone = dmz_get(zmd, 0);
+
+ for (i = 1; i < zmd->nr_devs; i++) {
+ zoned_dev = &zmd->dev[i];
+
+ ret = blkdev_report_zones(zoned_dev->bdev, 0,
+ BLK_ALL_ZONES,
+ dmz_init_zone, zoned_dev);
+ if (ret < 0) {
+ DMDEBUG("(%s): Failed to report zones, error %d",
+ zmd->devname, ret);
+ dmz_drop_zones(zmd);
+ return ret;
+ }
+ }
+ return 0;
+ }
+
+ /*
+ * Get zone information and initialize zone descriptors. At the same
+ * time, determine where the super block should be: first block of the
+ * first randomly writable zone.
+ */
+ ret = blkdev_report_zones(zoned_dev->bdev, 0, BLK_ALL_ZONES,
+ dmz_init_zone, zoned_dev);
+ if (ret < 0) {
+ DMDEBUG("(%s): Failed to report zones, error %d",
+ zmd->devname, ret);
+ dmz_drop_zones(zmd);
+ return ret;
+ }
+
+ return 0;
+}
+
+static int dmz_update_zone_cb(struct blk_zone *blkz, unsigned int idx,
+ void *data)
+{
+ struct dm_zone *zone = data;
+
+ clear_bit(DMZ_OFFLINE, &zone->flags);
+ clear_bit(DMZ_READ_ONLY, &zone->flags);
+ if (blkz->cond == BLK_ZONE_COND_OFFLINE)
+ set_bit(DMZ_OFFLINE, &zone->flags);
+ else if (blkz->cond == BLK_ZONE_COND_READONLY)
+ set_bit(DMZ_READ_ONLY, &zone->flags);
+
+ if (dmz_is_seq(zone))
+ zone->wp_block = dmz_sect2blk(blkz->wp - blkz->start);
+ else
+ zone->wp_block = 0;
+ return 0;
+}
+
+/*
+ * Update a zone information.
+ */
+static int dmz_update_zone(struct dmz_metadata *zmd, struct dm_zone *zone)
+{
+ struct dmz_dev *dev = zone->dev;
+ unsigned int noio_flag;
+ int ret;
+
+ if (dev->flags & DMZ_BDEV_REGULAR)
+ return 0;
+
+ /*
+ * Get zone information from disk. Since blkdev_report_zones() uses
+ * GFP_KERNEL by default for memory allocations, set the per-task
+ * PF_MEMALLOC_NOIO flag so that all allocations are done as if
+ * GFP_NOIO was specified.
+ */
+ noio_flag = memalloc_noio_save();
+ ret = blkdev_report_zones(dev->bdev, dmz_start_sect(zmd, zone), 1,
+ dmz_update_zone_cb, zone);
+ memalloc_noio_restore(noio_flag);
+
+ if (ret == 0)
+ ret = -EIO;
+ if (ret < 0) {
+ dmz_dev_err(dev, "Get zone %u report failed",
+ zone->id);
+ dmz_check_bdev(dev);
+ return ret;
+ }
+
+ return 0;
+}
+
+/*
+ * Check a zone write pointer position when the zone is marked
+ * with the sequential write error flag.
+ */
+static int dmz_handle_seq_write_err(struct dmz_metadata *zmd,
+ struct dm_zone *zone)
+{
+ struct dmz_dev *dev = zone->dev;
+ unsigned int wp = 0;
+ int ret;
+
+ wp = zone->wp_block;
+ ret = dmz_update_zone(zmd, zone);
+ if (ret)
+ return ret;
+
+ dmz_dev_warn(dev, "Processing zone %u write error (zone wp %u/%u)",
+ zone->id, zone->wp_block, wp);
+
+ if (zone->wp_block < wp) {
+ dmz_invalidate_blocks(zmd, zone, zone->wp_block,
+ wp - zone->wp_block);
+ }
+
+ return 0;
+}
+
+/*
+ * Reset a zone write pointer.
+ */
+static int dmz_reset_zone(struct dmz_metadata *zmd, struct dm_zone *zone)
+{
+ int ret;
+
+ /*
+ * Ignore offline zones, read only zones,
+ * and conventional zones.
+ */
+ if (dmz_is_offline(zone) ||
+ dmz_is_readonly(zone) ||
+ dmz_is_rnd(zone))
+ return 0;
+
+ if (!dmz_is_empty(zone) || dmz_seq_write_err(zone)) {
+ struct dmz_dev *dev = zone->dev;
+
+ ret = blkdev_zone_mgmt(dev->bdev, REQ_OP_ZONE_RESET,
+ dmz_start_sect(zmd, zone),
+ zmd->zone_nr_sectors, GFP_NOIO);
+ if (ret) {
+ dmz_dev_err(dev, "Reset zone %u failed %d",
+ zone->id, ret);
+ return ret;
+ }
+ }
+
+ /* Clear write error bit and rewind write pointer position */
+ clear_bit(DMZ_SEQ_WRITE_ERR, &zone->flags);
+ zone->wp_block = 0;
+
+ return 0;
+}
+
+static void dmz_get_zone_weight(struct dmz_metadata *zmd, struct dm_zone *zone);
+
+/*
+ * Initialize chunk mapping.
+ */
+static int dmz_load_mapping(struct dmz_metadata *zmd)
+{
+ struct dm_zone *dzone, *bzone;
+ struct dmz_mblock *dmap_mblk = NULL;
+ struct dmz_map *dmap;
+ unsigned int i = 0, e = 0, chunk = 0;
+ unsigned int dzone_id;
+ unsigned int bzone_id;
+
+ /* Metadata block array for the chunk mapping table */
+ zmd->map_mblk = kcalloc(zmd->nr_map_blocks,
+ sizeof(struct dmz_mblk *), GFP_KERNEL);
+ if (!zmd->map_mblk)
+ return -ENOMEM;
+
+ /* Get chunk mapping table blocks and initialize zone mapping */
+ while (chunk < zmd->nr_chunks) {
+ if (!dmap_mblk) {
+ /* Get mapping block */
+ dmap_mblk = dmz_get_mblock(zmd, i + 1);
+ if (IS_ERR(dmap_mblk))
+ return PTR_ERR(dmap_mblk);
+ zmd->map_mblk[i] = dmap_mblk;
+ dmap = (struct dmz_map *) dmap_mblk->data;
+ i++;
+ e = 0;
+ }
+
+ /* Check data zone */
+ dzone_id = le32_to_cpu(dmap[e].dzone_id);
+ if (dzone_id == DMZ_MAP_UNMAPPED)
+ goto next;
+
+ if (dzone_id >= zmd->nr_zones) {
+ dmz_zmd_err(zmd, "Chunk %u mapping: invalid data zone ID %u",
+ chunk, dzone_id);
+ return -EIO;
+ }
+
+ dzone = dmz_get(zmd, dzone_id);
+ if (!dzone) {
+ dmz_zmd_err(zmd, "Chunk %u mapping: data zone %u not present",
+ chunk, dzone_id);
+ return -EIO;
+ }
+ set_bit(DMZ_DATA, &dzone->flags);
+ dzone->chunk = chunk;
+ dmz_get_zone_weight(zmd, dzone);
+
+ if (dmz_is_cache(dzone))
+ list_add_tail(&dzone->link, &zmd->map_cache_list);
+ else if (dmz_is_rnd(dzone))
+ list_add_tail(&dzone->link, &dzone->dev->map_rnd_list);
+ else
+ list_add_tail(&dzone->link, &dzone->dev->map_seq_list);
+
+ /* Check buffer zone */
+ bzone_id = le32_to_cpu(dmap[e].bzone_id);
+ if (bzone_id == DMZ_MAP_UNMAPPED)
+ goto next;
+
+ if (bzone_id >= zmd->nr_zones) {
+ dmz_zmd_err(zmd, "Chunk %u mapping: invalid buffer zone ID %u",
+ chunk, bzone_id);
+ return -EIO;
+ }
+
+ bzone = dmz_get(zmd, bzone_id);
+ if (!bzone) {
+ dmz_zmd_err(zmd, "Chunk %u mapping: buffer zone %u not present",
+ chunk, bzone_id);
+ return -EIO;
+ }
+ if (!dmz_is_rnd(bzone) && !dmz_is_cache(bzone)) {
+ dmz_zmd_err(zmd, "Chunk %u mapping: invalid buffer zone %u",
+ chunk, bzone_id);
+ return -EIO;
+ }
+
+ set_bit(DMZ_DATA, &bzone->flags);
+ set_bit(DMZ_BUF, &bzone->flags);
+ bzone->chunk = chunk;
+ bzone->bzone = dzone;
+ dzone->bzone = bzone;
+ dmz_get_zone_weight(zmd, bzone);
+ if (dmz_is_cache(bzone))
+ list_add_tail(&bzone->link, &zmd->map_cache_list);
+ else
+ list_add_tail(&bzone->link, &bzone->dev->map_rnd_list);
+next:
+ chunk++;
+ e++;
+ if (e >= DMZ_MAP_ENTRIES)
+ dmap_mblk = NULL;
+ }
+
+ /*
+ * At this point, only meta zones and mapped data zones were
+ * fully initialized. All remaining zones are unmapped data
+ * zones. Finish initializing those here.
+ */
+ for (i = 0; i < zmd->nr_zones; i++) {
+ dzone = dmz_get(zmd, i);
+ if (!dzone)
+ continue;
+ if (dmz_is_meta(dzone))
+ continue;
+ if (dmz_is_offline(dzone))
+ continue;
+
+ if (dmz_is_cache(dzone))
+ zmd->nr_cache++;
+ else if (dmz_is_rnd(dzone))
+ dzone->dev->nr_rnd++;
+ else
+ dzone->dev->nr_seq++;
+
+ if (dmz_is_data(dzone)) {
+ /* Already initialized */
+ continue;
+ }
+
+ /* Unmapped data zone */
+ set_bit(DMZ_DATA, &dzone->flags);
+ dzone->chunk = DMZ_MAP_UNMAPPED;
+ if (dmz_is_cache(dzone)) {
+ list_add_tail(&dzone->link, &zmd->unmap_cache_list);
+ atomic_inc(&zmd->unmap_nr_cache);
+ } else if (dmz_is_rnd(dzone)) {
+ list_add_tail(&dzone->link,
+ &dzone->dev->unmap_rnd_list);
+ atomic_inc(&dzone->dev->unmap_nr_rnd);
+ } else if (atomic_read(&zmd->nr_reserved_seq_zones) < zmd->nr_reserved_seq) {
+ list_add_tail(&dzone->link, &zmd->reserved_seq_zones_list);
+ set_bit(DMZ_RESERVED, &dzone->flags);
+ atomic_inc(&zmd->nr_reserved_seq_zones);
+ dzone->dev->nr_seq--;
+ } else {
+ list_add_tail(&dzone->link,
+ &dzone->dev->unmap_seq_list);
+ atomic_inc(&dzone->dev->unmap_nr_seq);
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Set a data chunk mapping.
+ */
+static void dmz_set_chunk_mapping(struct dmz_metadata *zmd, unsigned int chunk,
+ unsigned int dzone_id, unsigned int bzone_id)
+{
+ struct dmz_mblock *dmap_mblk = zmd->map_mblk[chunk >> DMZ_MAP_ENTRIES_SHIFT];
+ struct dmz_map *dmap = (struct dmz_map *) dmap_mblk->data;
+ int map_idx = chunk & DMZ_MAP_ENTRIES_MASK;
+
+ dmap[map_idx].dzone_id = cpu_to_le32(dzone_id);
+ dmap[map_idx].bzone_id = cpu_to_le32(bzone_id);
+ dmz_dirty_mblock(zmd, dmap_mblk);
+}
+
+/*
+ * The list of mapped zones is maintained in LRU order.
+ * This rotates a zone at the end of its map list.
+ */
+static void __dmz_lru_zone(struct dmz_metadata *zmd, struct dm_zone *zone)
+{
+ if (list_empty(&zone->link))
+ return;
+
+ list_del_init(&zone->link);
+ if (dmz_is_seq(zone)) {
+ /* LRU rotate sequential zone */
+ list_add_tail(&zone->link, &zone->dev->map_seq_list);
+ } else if (dmz_is_cache(zone)) {
+ /* LRU rotate cache zone */
+ list_add_tail(&zone->link, &zmd->map_cache_list);
+ } else {
+ /* LRU rotate random zone */
+ list_add_tail(&zone->link, &zone->dev->map_rnd_list);
+ }
+}
+
+/*
+ * The list of mapped random zones is maintained
+ * in LRU order. This rotates a zone at the end of the list.
+ */
+static void dmz_lru_zone(struct dmz_metadata *zmd, struct dm_zone *zone)
+{
+ __dmz_lru_zone(zmd, zone);
+ if (zone->bzone)
+ __dmz_lru_zone(zmd, zone->bzone);
+}
+
+/*
+ * Wait for any zone to be freed.
+ */
+static void dmz_wait_for_free_zones(struct dmz_metadata *zmd)
+{
+ DEFINE_WAIT(wait);
+
+ prepare_to_wait(&zmd->free_wq, &wait, TASK_UNINTERRUPTIBLE);
+ dmz_unlock_map(zmd);
+ dmz_unlock_metadata(zmd);
+
+ io_schedule_timeout(HZ);
+
+ dmz_lock_metadata(zmd);
+ dmz_lock_map(zmd);
+ finish_wait(&zmd->free_wq, &wait);
+}
+
+/*
+ * Lock a zone for reclaim (set the zone RECLAIM bit).
+ * Returns false if the zone cannot be locked or if it is already locked
+ * and 1 otherwise.
+ */
+int dmz_lock_zone_reclaim(struct dm_zone *zone)
+{
+ /* Active zones cannot be reclaimed */
+ if (dmz_is_active(zone))
+ return 0;
+
+ return !test_and_set_bit(DMZ_RECLAIM, &zone->flags);
+}
+
+/*
+ * Clear a zone reclaim flag.
+ */
+void dmz_unlock_zone_reclaim(struct dm_zone *zone)
+{
+ WARN_ON(dmz_is_active(zone));
+ WARN_ON(!dmz_in_reclaim(zone));
+
+ clear_bit_unlock(DMZ_RECLAIM, &zone->flags);
+ smp_mb__after_atomic();
+ wake_up_bit(&zone->flags, DMZ_RECLAIM);
+}
+
+/*
+ * Wait for a zone reclaim to complete.
+ */
+static void dmz_wait_for_reclaim(struct dmz_metadata *zmd, struct dm_zone *zone)
+{
+ dmz_unlock_map(zmd);
+ dmz_unlock_metadata(zmd);
+ set_bit(DMZ_RECLAIM_TERMINATE, &zone->flags);
+ wait_on_bit_timeout(&zone->flags, DMZ_RECLAIM, TASK_UNINTERRUPTIBLE, HZ);
+ clear_bit(DMZ_RECLAIM_TERMINATE, &zone->flags);
+ dmz_lock_metadata(zmd);
+ dmz_lock_map(zmd);
+}
+
+/*
+ * Select a cache or random write zone for reclaim.
+ */
+static struct dm_zone *dmz_get_rnd_zone_for_reclaim(struct dmz_metadata *zmd,
+ unsigned int idx, bool idle)
+{
+ struct dm_zone *dzone = NULL;
+ struct dm_zone *zone, *maxw_z = NULL;
+ struct list_head *zone_list;
+
+ /* If we have cache zones select from the cache zone list */
+ if (zmd->nr_cache) {
+ zone_list = &zmd->map_cache_list;
+ /* Try to relaim random zones, too, when idle */
+ if (idle && list_empty(zone_list))
+ zone_list = &zmd->dev[idx].map_rnd_list;
+ } else
+ zone_list = &zmd->dev[idx].map_rnd_list;
+
+ /*
+ * Find the buffer zone with the heaviest weight or the first (oldest)
+ * data zone that can be reclaimed.
+ */
+ list_for_each_entry(zone, zone_list, link) {
+ if (dmz_is_buf(zone)) {
+ dzone = zone->bzone;
+ if (dmz_is_rnd(dzone) && dzone->dev->dev_idx != idx)
+ continue;
+ if (!maxw_z || maxw_z->weight < dzone->weight)
+ maxw_z = dzone;
+ } else {
+ dzone = zone;
+ if (dmz_lock_zone_reclaim(dzone))
+ return dzone;
+ }
+ }
+
+ if (maxw_z && dmz_lock_zone_reclaim(maxw_z))
+ return maxw_z;
+
+ /*
+ * If we come here, none of the zones inspected could be locked for
+ * reclaim. Try again, being more aggressive, that is, find the
+ * first zone that can be reclaimed regardless of its weitght.
+ */
+ list_for_each_entry(zone, zone_list, link) {
+ if (dmz_is_buf(zone)) {
+ dzone = zone->bzone;
+ if (dmz_is_rnd(dzone) && dzone->dev->dev_idx != idx)
+ continue;
+ } else
+ dzone = zone;
+ if (dmz_lock_zone_reclaim(dzone))
+ return dzone;
+ }
+
+ return NULL;
+}
+
+/*
+ * Select a buffered sequential zone for reclaim.
+ */
+static struct dm_zone *dmz_get_seq_zone_for_reclaim(struct dmz_metadata *zmd,
+ unsigned int idx)
+{
+ struct dm_zone *zone;
+
+ list_for_each_entry(zone, &zmd->dev[idx].map_seq_list, link) {
+ if (!zone->bzone)
+ continue;
+ if (dmz_lock_zone_reclaim(zone))
+ return zone;
+ }
+
+ return NULL;
+}
+
+/*
+ * Select a zone for reclaim.
+ */
+struct dm_zone *dmz_get_zone_for_reclaim(struct dmz_metadata *zmd,
+ unsigned int dev_idx, bool idle)
+{
+ struct dm_zone *zone = NULL;
+
+ /*
+ * Search for a zone candidate to reclaim: 2 cases are possible.
+ * (1) There is no free sequential zones. Then a random data zone
+ * cannot be reclaimed. So choose a sequential zone to reclaim so
+ * that afterward a random zone can be reclaimed.
+ * (2) At least one free sequential zone is available, then choose
+ * the oldest random zone (data or buffer) that can be locked.
+ */
+ dmz_lock_map(zmd);
+ if (list_empty(&zmd->reserved_seq_zones_list))
+ zone = dmz_get_seq_zone_for_reclaim(zmd, dev_idx);
+ if (!zone)
+ zone = dmz_get_rnd_zone_for_reclaim(zmd, dev_idx, idle);
+ dmz_unlock_map(zmd);
+
+ return zone;
+}
+
+/*
+ * Get the zone mapping a chunk, if the chunk is mapped already.
+ * If no mapping exist and the operation is WRITE, a zone is
+ * allocated and used to map the chunk.
+ * The zone returned will be set to the active state.
+ */
+struct dm_zone *dmz_get_chunk_mapping(struct dmz_metadata *zmd,
+ unsigned int chunk, enum req_op op)
+{
+ struct dmz_mblock *dmap_mblk = zmd->map_mblk[chunk >> DMZ_MAP_ENTRIES_SHIFT];
+ struct dmz_map *dmap = (struct dmz_map *) dmap_mblk->data;
+ int dmap_idx = chunk & DMZ_MAP_ENTRIES_MASK;
+ unsigned int dzone_id;
+ struct dm_zone *dzone = NULL;
+ int ret = 0;
+ int alloc_flags = zmd->nr_cache ? DMZ_ALLOC_CACHE : DMZ_ALLOC_RND;
+
+ dmz_lock_map(zmd);
+again:
+ /* Get the chunk mapping */
+ dzone_id = le32_to_cpu(dmap[dmap_idx].dzone_id);
+ if (dzone_id == DMZ_MAP_UNMAPPED) {
+ /*
+ * Read or discard in unmapped chunks are fine. But for
+ * writes, we need a mapping, so get one.
+ */
+ if (op != REQ_OP_WRITE)
+ goto out;
+
+ /* Allocate a random zone */
+ dzone = dmz_alloc_zone(zmd, 0, alloc_flags);
+ if (!dzone) {
+ if (dmz_dev_is_dying(zmd)) {
+ dzone = ERR_PTR(-EIO);
+ goto out;
+ }
+ dmz_wait_for_free_zones(zmd);
+ goto again;
+ }
+
+ dmz_map_zone(zmd, dzone, chunk);
+
+ } else {
+ /* The chunk is already mapped: get the mapping zone */
+ dzone = dmz_get(zmd, dzone_id);
+ if (!dzone) {
+ dzone = ERR_PTR(-EIO);
+ goto out;
+ }
+ if (dzone->chunk != chunk) {
+ dzone = ERR_PTR(-EIO);
+ goto out;
+ }
+
+ /* Repair write pointer if the sequential dzone has error */
+ if (dmz_seq_write_err(dzone)) {
+ ret = dmz_handle_seq_write_err(zmd, dzone);
+ if (ret) {
+ dzone = ERR_PTR(-EIO);
+ goto out;
+ }
+ clear_bit(DMZ_SEQ_WRITE_ERR, &dzone->flags);
+ }
+ }
+
+ /*
+ * If the zone is being reclaimed, the chunk mapping may change
+ * to a different zone. So wait for reclaim and retry. Otherwise,
+ * activate the zone (this will prevent reclaim from touching it).
+ */
+ if (dmz_in_reclaim(dzone)) {
+ dmz_wait_for_reclaim(zmd, dzone);
+ goto again;
+ }
+ dmz_activate_zone(dzone);
+ dmz_lru_zone(zmd, dzone);
+out:
+ dmz_unlock_map(zmd);
+
+ return dzone;
+}
+
+/*
+ * Write and discard change the block validity of data zones and their buffer
+ * zones. Check here that valid blocks are still present. If all blocks are
+ * invalid, the zones can be unmapped on the fly without waiting for reclaim
+ * to do it.
+ */
+void dmz_put_chunk_mapping(struct dmz_metadata *zmd, struct dm_zone *dzone)
+{
+ struct dm_zone *bzone;
+
+ dmz_lock_map(zmd);
+
+ bzone = dzone->bzone;
+ if (bzone) {
+ if (dmz_weight(bzone))
+ dmz_lru_zone(zmd, bzone);
+ else {
+ /* Empty buffer zone: reclaim it */
+ dmz_unmap_zone(zmd, bzone);
+ dmz_free_zone(zmd, bzone);
+ bzone = NULL;
+ }
+ }
+
+ /* Deactivate the data zone */
+ dmz_deactivate_zone(dzone);
+ if (dmz_is_active(dzone) || bzone || dmz_weight(dzone))
+ dmz_lru_zone(zmd, dzone);
+ else {
+ /* Unbuffered inactive empty data zone: reclaim it */
+ dmz_unmap_zone(zmd, dzone);
+ dmz_free_zone(zmd, dzone);
+ }
+
+ dmz_unlock_map(zmd);
+}
+
+/*
+ * Allocate and map a random zone to buffer a chunk
+ * already mapped to a sequential zone.
+ */
+struct dm_zone *dmz_get_chunk_buffer(struct dmz_metadata *zmd,
+ struct dm_zone *dzone)
+{
+ struct dm_zone *bzone;
+ int alloc_flags = zmd->nr_cache ? DMZ_ALLOC_CACHE : DMZ_ALLOC_RND;
+
+ dmz_lock_map(zmd);
+again:
+ bzone = dzone->bzone;
+ if (bzone)
+ goto out;
+
+ /* Allocate a random zone */
+ bzone = dmz_alloc_zone(zmd, 0, alloc_flags);
+ if (!bzone) {
+ if (dmz_dev_is_dying(zmd)) {
+ bzone = ERR_PTR(-EIO);
+ goto out;
+ }
+ dmz_wait_for_free_zones(zmd);
+ goto again;
+ }
+
+ /* Update the chunk mapping */
+ dmz_set_chunk_mapping(zmd, dzone->chunk, dzone->id, bzone->id);
+
+ set_bit(DMZ_BUF, &bzone->flags);
+ bzone->chunk = dzone->chunk;
+ bzone->bzone = dzone;
+ dzone->bzone = bzone;
+ if (dmz_is_cache(bzone))
+ list_add_tail(&bzone->link, &zmd->map_cache_list);
+ else
+ list_add_tail(&bzone->link, &bzone->dev->map_rnd_list);
+out:
+ dmz_unlock_map(zmd);
+
+ return bzone;
+}
+
+/*
+ * Get an unmapped (free) zone.
+ * This must be called with the mapping lock held.
+ */
+struct dm_zone *dmz_alloc_zone(struct dmz_metadata *zmd, unsigned int dev_idx,
+ unsigned long flags)
+{
+ struct list_head *list;
+ struct dm_zone *zone;
+ int i;
+
+ /* Schedule reclaim to ensure free zones are available */
+ if (!(flags & DMZ_ALLOC_RECLAIM)) {
+ for (i = 0; i < zmd->nr_devs; i++)
+ dmz_schedule_reclaim(zmd->dev[i].reclaim);
+ }
+
+ i = 0;
+again:
+ if (flags & DMZ_ALLOC_CACHE)
+ list = &zmd->unmap_cache_list;
+ else if (flags & DMZ_ALLOC_RND)
+ list = &zmd->dev[dev_idx].unmap_rnd_list;
+ else
+ list = &zmd->dev[dev_idx].unmap_seq_list;
+
+ if (list_empty(list)) {
+ /*
+ * No free zone: return NULL if this is for not reclaim.
+ */
+ if (!(flags & DMZ_ALLOC_RECLAIM))
+ return NULL;
+ /*
+ * Try to allocate from other devices
+ */
+ if (i < zmd->nr_devs) {
+ dev_idx = (dev_idx + 1) % zmd->nr_devs;
+ i++;
+ goto again;
+ }
+
+ /*
+ * Fallback to the reserved sequential zones
+ */
+ zone = list_first_entry_or_null(&zmd->reserved_seq_zones_list,
+ struct dm_zone, link);
+ if (zone) {
+ list_del_init(&zone->link);
+ atomic_dec(&zmd->nr_reserved_seq_zones);
+ }
+ return zone;
+ }
+
+ zone = list_first_entry(list, struct dm_zone, link);
+ list_del_init(&zone->link);
+
+ if (dmz_is_cache(zone))
+ atomic_dec(&zmd->unmap_nr_cache);
+ else if (dmz_is_rnd(zone))
+ atomic_dec(&zone->dev->unmap_nr_rnd);
+ else
+ atomic_dec(&zone->dev->unmap_nr_seq);
+
+ if (dmz_is_offline(zone)) {
+ dmz_zmd_warn(zmd, "Zone %u is offline", zone->id);
+ zone = NULL;
+ goto again;
+ }
+ if (dmz_is_meta(zone)) {
+ dmz_zmd_warn(zmd, "Zone %u has metadata", zone->id);
+ zone = NULL;
+ goto again;
+ }
+ return zone;
+}
+
+/*
+ * Free a zone.
+ * This must be called with the mapping lock held.
+ */
+void dmz_free_zone(struct dmz_metadata *zmd, struct dm_zone *zone)
+{
+ /* If this is a sequential zone, reset it */
+ if (dmz_is_seq(zone))
+ dmz_reset_zone(zmd, zone);
+
+ /* Return the zone to its type unmap list */
+ if (dmz_is_cache(zone)) {
+ list_add_tail(&zone->link, &zmd->unmap_cache_list);
+ atomic_inc(&zmd->unmap_nr_cache);
+ } else if (dmz_is_rnd(zone)) {
+ list_add_tail(&zone->link, &zone->dev->unmap_rnd_list);
+ atomic_inc(&zone->dev->unmap_nr_rnd);
+ } else if (dmz_is_reserved(zone)) {
+ list_add_tail(&zone->link, &zmd->reserved_seq_zones_list);
+ atomic_inc(&zmd->nr_reserved_seq_zones);
+ } else {
+ list_add_tail(&zone->link, &zone->dev->unmap_seq_list);
+ atomic_inc(&zone->dev->unmap_nr_seq);
+ }
+
+ wake_up_all(&zmd->free_wq);
+}
+
+/*
+ * Map a chunk to a zone.
+ * This must be called with the mapping lock held.
+ */
+void dmz_map_zone(struct dmz_metadata *zmd, struct dm_zone *dzone,
+ unsigned int chunk)
+{
+ /* Set the chunk mapping */
+ dmz_set_chunk_mapping(zmd, chunk, dzone->id,
+ DMZ_MAP_UNMAPPED);
+ dzone->chunk = chunk;
+ if (dmz_is_cache(dzone))
+ list_add_tail(&dzone->link, &zmd->map_cache_list);
+ else if (dmz_is_rnd(dzone))
+ list_add_tail(&dzone->link, &dzone->dev->map_rnd_list);
+ else
+ list_add_tail(&dzone->link, &dzone->dev->map_seq_list);
+}
+
+/*
+ * Unmap a zone.
+ * This must be called with the mapping lock held.
+ */
+void dmz_unmap_zone(struct dmz_metadata *zmd, struct dm_zone *zone)
+{
+ unsigned int chunk = zone->chunk;
+ unsigned int dzone_id;
+
+ if (chunk == DMZ_MAP_UNMAPPED) {
+ /* Already unmapped */
+ return;
+ }
+
+ if (test_and_clear_bit(DMZ_BUF, &zone->flags)) {
+ /*
+ * Unmapping the chunk buffer zone: clear only
+ * the chunk buffer mapping
+ */
+ dzone_id = zone->bzone->id;
+ zone->bzone->bzone = NULL;
+ zone->bzone = NULL;
+
+ } else {
+ /*
+ * Unmapping the chunk data zone: the zone must
+ * not be buffered.
+ */
+ if (WARN_ON(zone->bzone)) {
+ zone->bzone->bzone = NULL;
+ zone->bzone = NULL;
+ }
+ dzone_id = DMZ_MAP_UNMAPPED;
+ }
+
+ dmz_set_chunk_mapping(zmd, chunk, dzone_id, DMZ_MAP_UNMAPPED);
+
+ zone->chunk = DMZ_MAP_UNMAPPED;
+ list_del_init(&zone->link);
+}
+
+/*
+ * Set @nr_bits bits in @bitmap starting from @bit.
+ * Return the number of bits changed from 0 to 1.
+ */
+static unsigned int dmz_set_bits(unsigned long *bitmap,
+ unsigned int bit, unsigned int nr_bits)
+{
+ unsigned long *addr;
+ unsigned int end = bit + nr_bits;
+ unsigned int n = 0;
+
+ while (bit < end) {
+ if (((bit & (BITS_PER_LONG - 1)) == 0) &&
+ ((end - bit) >= BITS_PER_LONG)) {
+ /* Try to set the whole word at once */
+ addr = bitmap + BIT_WORD(bit);
+ if (*addr == 0) {
+ *addr = ULONG_MAX;
+ n += BITS_PER_LONG;
+ bit += BITS_PER_LONG;
+ continue;
+ }
+ }
+
+ if (!test_and_set_bit(bit, bitmap))
+ n++;
+ bit++;
+ }
+
+ return n;
+}
+
+/*
+ * Get the bitmap block storing the bit for chunk_block in zone.
+ */
+static struct dmz_mblock *dmz_get_bitmap(struct dmz_metadata *zmd,
+ struct dm_zone *zone,
+ sector_t chunk_block)
+{
+ sector_t bitmap_block = 1 + zmd->nr_map_blocks +
+ (sector_t)(zone->id * zmd->zone_nr_bitmap_blocks) +
+ (chunk_block >> DMZ_BLOCK_SHIFT_BITS);
+
+ return dmz_get_mblock(zmd, bitmap_block);
+}
+
+/*
+ * Copy the valid blocks bitmap of from_zone to the bitmap of to_zone.
+ */
+int dmz_copy_valid_blocks(struct dmz_metadata *zmd, struct dm_zone *from_zone,
+ struct dm_zone *to_zone)
+{
+ struct dmz_mblock *from_mblk, *to_mblk;
+ sector_t chunk_block = 0;
+
+ /* Get the zones bitmap blocks */
+ while (chunk_block < zmd->zone_nr_blocks) {
+ from_mblk = dmz_get_bitmap(zmd, from_zone, chunk_block);
+ if (IS_ERR(from_mblk))
+ return PTR_ERR(from_mblk);
+ to_mblk = dmz_get_bitmap(zmd, to_zone, chunk_block);
+ if (IS_ERR(to_mblk)) {
+ dmz_release_mblock(zmd, from_mblk);
+ return PTR_ERR(to_mblk);
+ }
+
+ memcpy(to_mblk->data, from_mblk->data, DMZ_BLOCK_SIZE);
+ dmz_dirty_mblock(zmd, to_mblk);
+
+ dmz_release_mblock(zmd, to_mblk);
+ dmz_release_mblock(zmd, from_mblk);
+
+ chunk_block += zmd->zone_bits_per_mblk;
+ }
+
+ to_zone->weight = from_zone->weight;
+
+ return 0;
+}
+
+/*
+ * Merge the valid blocks bitmap of from_zone into the bitmap of to_zone,
+ * starting from chunk_block.
+ */
+int dmz_merge_valid_blocks(struct dmz_metadata *zmd, struct dm_zone *from_zone,
+ struct dm_zone *to_zone, sector_t chunk_block)
+{
+ unsigned int nr_blocks;
+ int ret;
+
+ /* Get the zones bitmap blocks */
+ while (chunk_block < zmd->zone_nr_blocks) {
+ /* Get a valid region from the source zone */
+ ret = dmz_first_valid_block(zmd, from_zone, &chunk_block);
+ if (ret <= 0)
+ return ret;
+
+ nr_blocks = ret;
+ ret = dmz_validate_blocks(zmd, to_zone, chunk_block, nr_blocks);
+ if (ret)
+ return ret;
+
+ chunk_block += nr_blocks;
+ }
+
+ return 0;
+}
+
+/*
+ * Validate all the blocks in the range [block..block+nr_blocks-1].
+ */
+int dmz_validate_blocks(struct dmz_metadata *zmd, struct dm_zone *zone,
+ sector_t chunk_block, unsigned int nr_blocks)
+{
+ unsigned int count, bit, nr_bits;
+ unsigned int zone_nr_blocks = zmd->zone_nr_blocks;
+ struct dmz_mblock *mblk;
+ unsigned int n = 0;
+
+ dmz_zmd_debug(zmd, "=> VALIDATE zone %u, block %llu, %u blocks",
+ zone->id, (unsigned long long)chunk_block,
+ nr_blocks);
+
+ WARN_ON(chunk_block + nr_blocks > zone_nr_blocks);
+
+ while (nr_blocks) {
+ /* Get bitmap block */
+ mblk = dmz_get_bitmap(zmd, zone, chunk_block);
+ if (IS_ERR(mblk))
+ return PTR_ERR(mblk);
+
+ /* Set bits */
+ bit = chunk_block & DMZ_BLOCK_MASK_BITS;
+ nr_bits = min(nr_blocks, zmd->zone_bits_per_mblk - bit);
+
+ count = dmz_set_bits((unsigned long *)mblk->data, bit, nr_bits);
+ if (count) {
+ dmz_dirty_mblock(zmd, mblk);
+ n += count;
+ }
+ dmz_release_mblock(zmd, mblk);
+
+ nr_blocks -= nr_bits;
+ chunk_block += nr_bits;
+ }
+
+ if (likely(zone->weight + n <= zone_nr_blocks))
+ zone->weight += n;
+ else {
+ dmz_zmd_warn(zmd, "Zone %u: weight %u should be <= %u",
+ zone->id, zone->weight,
+ zone_nr_blocks - n);
+ zone->weight = zone_nr_blocks;
+ }
+
+ return 0;
+}
+
+/*
+ * Clear nr_bits bits in bitmap starting from bit.
+ * Return the number of bits cleared.
+ */
+static int dmz_clear_bits(unsigned long *bitmap, int bit, int nr_bits)
+{
+ unsigned long *addr;
+ int end = bit + nr_bits;
+ int n = 0;
+
+ while (bit < end) {
+ if (((bit & (BITS_PER_LONG - 1)) == 0) &&
+ ((end - bit) >= BITS_PER_LONG)) {
+ /* Try to clear whole word at once */
+ addr = bitmap + BIT_WORD(bit);
+ if (*addr == ULONG_MAX) {
+ *addr = 0;
+ n += BITS_PER_LONG;
+ bit += BITS_PER_LONG;
+ continue;
+ }
+ }
+
+ if (test_and_clear_bit(bit, bitmap))
+ n++;
+ bit++;
+ }
+
+ return n;
+}
+
+/*
+ * Invalidate all the blocks in the range [block..block+nr_blocks-1].
+ */
+int dmz_invalidate_blocks(struct dmz_metadata *zmd, struct dm_zone *zone,
+ sector_t chunk_block, unsigned int nr_blocks)
+{
+ unsigned int count, bit, nr_bits;
+ struct dmz_mblock *mblk;
+ unsigned int n = 0;
+
+ dmz_zmd_debug(zmd, "=> INVALIDATE zone %u, block %llu, %u blocks",
+ zone->id, (u64)chunk_block, nr_blocks);
+
+ WARN_ON(chunk_block + nr_blocks > zmd->zone_nr_blocks);
+
+ while (nr_blocks) {
+ /* Get bitmap block */
+ mblk = dmz_get_bitmap(zmd, zone, chunk_block);
+ if (IS_ERR(mblk))
+ return PTR_ERR(mblk);
+
+ /* Clear bits */
+ bit = chunk_block & DMZ_BLOCK_MASK_BITS;
+ nr_bits = min(nr_blocks, zmd->zone_bits_per_mblk - bit);
+
+ count = dmz_clear_bits((unsigned long *)mblk->data,
+ bit, nr_bits);
+ if (count) {
+ dmz_dirty_mblock(zmd, mblk);
+ n += count;
+ }
+ dmz_release_mblock(zmd, mblk);
+
+ nr_blocks -= nr_bits;
+ chunk_block += nr_bits;
+ }
+
+ if (zone->weight >= n)
+ zone->weight -= n;
+ else {
+ dmz_zmd_warn(zmd, "Zone %u: weight %u should be >= %u",
+ zone->id, zone->weight, n);
+ zone->weight = 0;
+ }
+
+ return 0;
+}
+
+/*
+ * Get a block bit value.
+ */
+static int dmz_test_block(struct dmz_metadata *zmd, struct dm_zone *zone,
+ sector_t chunk_block)
+{
+ struct dmz_mblock *mblk;
+ int ret;
+
+ WARN_ON(chunk_block >= zmd->zone_nr_blocks);
+
+ /* Get bitmap block */
+ mblk = dmz_get_bitmap(zmd, zone, chunk_block);
+ if (IS_ERR(mblk))
+ return PTR_ERR(mblk);
+
+ /* Get offset */
+ ret = test_bit(chunk_block & DMZ_BLOCK_MASK_BITS,
+ (unsigned long *) mblk->data) != 0;
+
+ dmz_release_mblock(zmd, mblk);
+
+ return ret;
+}
+
+/*
+ * Return the number of blocks from chunk_block to the first block with a bit
+ * value specified by set. Search at most nr_blocks blocks from chunk_block.
+ */
+static int dmz_to_next_set_block(struct dmz_metadata *zmd, struct dm_zone *zone,
+ sector_t chunk_block, unsigned int nr_blocks,
+ int set)
+{
+ struct dmz_mblock *mblk;
+ unsigned int bit, set_bit, nr_bits;
+ unsigned int zone_bits = zmd->zone_bits_per_mblk;
+ unsigned long *bitmap;
+ int n = 0;
+
+ WARN_ON(chunk_block + nr_blocks > zmd->zone_nr_blocks);
+
+ while (nr_blocks) {
+ /* Get bitmap block */
+ mblk = dmz_get_bitmap(zmd, zone, chunk_block);
+ if (IS_ERR(mblk))
+ return PTR_ERR(mblk);
+
+ /* Get offset */
+ bitmap = (unsigned long *) mblk->data;
+ bit = chunk_block & DMZ_BLOCK_MASK_BITS;
+ nr_bits = min(nr_blocks, zone_bits - bit);
+ if (set)
+ set_bit = find_next_bit(bitmap, zone_bits, bit);
+ else
+ set_bit = find_next_zero_bit(bitmap, zone_bits, bit);
+ dmz_release_mblock(zmd, mblk);
+
+ n += set_bit - bit;
+ if (set_bit < zone_bits)
+ break;
+
+ nr_blocks -= nr_bits;
+ chunk_block += nr_bits;
+ }
+
+ return n;
+}
+
+/*
+ * Test if chunk_block is valid. If it is, the number of consecutive
+ * valid blocks from chunk_block will be returned.
+ */
+int dmz_block_valid(struct dmz_metadata *zmd, struct dm_zone *zone,
+ sector_t chunk_block)
+{
+ int valid;
+
+ valid = dmz_test_block(zmd, zone, chunk_block);
+ if (valid <= 0)
+ return valid;
+
+ /* The block is valid: get the number of valid blocks from block */
+ return dmz_to_next_set_block(zmd, zone, chunk_block,
+ zmd->zone_nr_blocks - chunk_block, 0);
+}
+
+/*
+ * Find the first valid block from @chunk_block in @zone.
+ * If such a block is found, its number is returned using
+ * @chunk_block and the total number of valid blocks from @chunk_block
+ * is returned.
+ */
+int dmz_first_valid_block(struct dmz_metadata *zmd, struct dm_zone *zone,
+ sector_t *chunk_block)
+{
+ sector_t start_block = *chunk_block;
+ int ret;
+
+ ret = dmz_to_next_set_block(zmd, zone, start_block,
+ zmd->zone_nr_blocks - start_block, 1);
+ if (ret < 0)
+ return ret;
+
+ start_block += ret;
+ *chunk_block = start_block;
+
+ return dmz_to_next_set_block(zmd, zone, start_block,
+ zmd->zone_nr_blocks - start_block, 0);
+}
+
+/*
+ * Count the number of bits set starting from bit up to bit + nr_bits - 1.
+ */
+static int dmz_count_bits(void *bitmap, int bit, int nr_bits)
+{
+ unsigned long *addr;
+ int end = bit + nr_bits;
+ int n = 0;
+
+ while (bit < end) {
+ if (((bit & (BITS_PER_LONG - 1)) == 0) &&
+ ((end - bit) >= BITS_PER_LONG)) {
+ addr = (unsigned long *)bitmap + BIT_WORD(bit);
+ if (*addr == ULONG_MAX) {
+ n += BITS_PER_LONG;
+ bit += BITS_PER_LONG;
+ continue;
+ }
+ }
+
+ if (test_bit(bit, bitmap))
+ n++;
+ bit++;
+ }
+
+ return n;
+}
+
+/*
+ * Get a zone weight.
+ */
+static void dmz_get_zone_weight(struct dmz_metadata *zmd, struct dm_zone *zone)
+{
+ struct dmz_mblock *mblk;
+ sector_t chunk_block = 0;
+ unsigned int bit, nr_bits;
+ unsigned int nr_blocks = zmd->zone_nr_blocks;
+ void *bitmap;
+ int n = 0;
+
+ while (nr_blocks) {
+ /* Get bitmap block */
+ mblk = dmz_get_bitmap(zmd, zone, chunk_block);
+ if (IS_ERR(mblk)) {
+ n = 0;
+ break;
+ }
+
+ /* Count bits in this block */
+ bitmap = mblk->data;
+ bit = chunk_block & DMZ_BLOCK_MASK_BITS;
+ nr_bits = min(nr_blocks, zmd->zone_bits_per_mblk - bit);
+ n += dmz_count_bits(bitmap, bit, nr_bits);
+
+ dmz_release_mblock(zmd, mblk);
+
+ nr_blocks -= nr_bits;
+ chunk_block += nr_bits;
+ }
+
+ zone->weight = n;
+}
+
+/*
+ * Cleanup the zoned metadata resources.
+ */
+static void dmz_cleanup_metadata(struct dmz_metadata *zmd)
+{
+ struct rb_root *root;
+ struct dmz_mblock *mblk, *next;
+ int i;
+
+ /* Release zone mapping resources */
+ if (zmd->map_mblk) {
+ for (i = 0; i < zmd->nr_map_blocks; i++)
+ dmz_release_mblock(zmd, zmd->map_mblk[i]);
+ kfree(zmd->map_mblk);
+ zmd->map_mblk = NULL;
+ }
+
+ /* Release super blocks */
+ for (i = 0; i < 2; i++) {
+ if (zmd->sb[i].mblk) {
+ dmz_free_mblock(zmd, zmd->sb[i].mblk);
+ zmd->sb[i].mblk = NULL;
+ }
+ }
+
+ /* Free cached blocks */
+ while (!list_empty(&zmd->mblk_dirty_list)) {
+ mblk = list_first_entry(&zmd->mblk_dirty_list,
+ struct dmz_mblock, link);
+ dmz_zmd_warn(zmd, "mblock %llu still in dirty list (ref %u)",
+ (u64)mblk->no, mblk->ref);
+ list_del_init(&mblk->link);
+ rb_erase(&mblk->node, &zmd->mblk_rbtree);
+ dmz_free_mblock(zmd, mblk);
+ }
+
+ while (!list_empty(&zmd->mblk_lru_list)) {
+ mblk = list_first_entry(&zmd->mblk_lru_list,
+ struct dmz_mblock, link);
+ list_del_init(&mblk->link);
+ rb_erase(&mblk->node, &zmd->mblk_rbtree);
+ dmz_free_mblock(zmd, mblk);
+ }
+
+ /* Sanity checks: the mblock rbtree should now be empty */
+ root = &zmd->mblk_rbtree;
+ rbtree_postorder_for_each_entry_safe(mblk, next, root, node) {
+ dmz_zmd_warn(zmd, "mblock %llu ref %u still in rbtree",
+ (u64)mblk->no, mblk->ref);
+ mblk->ref = 0;
+ dmz_free_mblock(zmd, mblk);
+ }
+
+ /* Free the zone descriptors */
+ dmz_drop_zones(zmd);
+
+ mutex_destroy(&zmd->mblk_flush_lock);
+ mutex_destroy(&zmd->map_lock);
+}
+
+static void dmz_print_dev(struct dmz_metadata *zmd, int num)
+{
+ struct dmz_dev *dev = &zmd->dev[num];
+
+ if (bdev_zoned_model(dev->bdev) == BLK_ZONED_NONE)
+ dmz_dev_info(dev, "Regular block device");
+ else
+ dmz_dev_info(dev, "Host-%s zoned block device",
+ bdev_zoned_model(dev->bdev) == BLK_ZONED_HA ?
+ "aware" : "managed");
+ if (zmd->sb_version > 1) {
+ sector_t sector_offset =
+ dev->zone_offset << zmd->zone_nr_sectors_shift;
+
+ dmz_dev_info(dev, " %llu 512-byte logical sectors (offset %llu)",
+ (u64)dev->capacity, (u64)sector_offset);
+ dmz_dev_info(dev, " %u zones of %llu 512-byte logical sectors (offset %llu)",
+ dev->nr_zones, (u64)zmd->zone_nr_sectors,
+ (u64)dev->zone_offset);
+ } else {
+ dmz_dev_info(dev, " %llu 512-byte logical sectors",
+ (u64)dev->capacity);
+ dmz_dev_info(dev, " %u zones of %llu 512-byte logical sectors",
+ dev->nr_zones, (u64)zmd->zone_nr_sectors);
+ }
+}
+
+/*
+ * Initialize the zoned metadata.
+ */
+int dmz_ctr_metadata(struct dmz_dev *dev, int num_dev,
+ struct dmz_metadata **metadata,
+ const char *devname)
+{
+ struct dmz_metadata *zmd;
+ unsigned int i;
+ struct dm_zone *zone;
+ int ret;
+
+ zmd = kzalloc(sizeof(struct dmz_metadata), GFP_KERNEL);
+ if (!zmd)
+ return -ENOMEM;
+
+ strcpy(zmd->devname, devname);
+ zmd->dev = dev;
+ zmd->nr_devs = num_dev;
+ zmd->mblk_rbtree = RB_ROOT;
+ init_rwsem(&zmd->mblk_sem);
+ mutex_init(&zmd->mblk_flush_lock);
+ spin_lock_init(&zmd->mblk_lock);
+ INIT_LIST_HEAD(&zmd->mblk_lru_list);
+ INIT_LIST_HEAD(&zmd->mblk_dirty_list);
+
+ mutex_init(&zmd->map_lock);
+
+ atomic_set(&zmd->unmap_nr_cache, 0);
+ INIT_LIST_HEAD(&zmd->unmap_cache_list);
+ INIT_LIST_HEAD(&zmd->map_cache_list);
+
+ atomic_set(&zmd->nr_reserved_seq_zones, 0);
+ INIT_LIST_HEAD(&zmd->reserved_seq_zones_list);
+
+ init_waitqueue_head(&zmd->free_wq);
+
+ /* Initialize zone descriptors */
+ ret = dmz_init_zones(zmd);
+ if (ret)
+ goto err;
+
+ /* Get super block */
+ ret = dmz_load_sb(zmd);
+ if (ret)
+ goto err;
+
+ /* Set metadata zones starting from sb_zone */
+ for (i = 0; i < zmd->nr_meta_zones << 1; i++) {
+ zone = dmz_get(zmd, zmd->sb[0].zone->id + i);
+ if (!zone) {
+ dmz_zmd_err(zmd,
+ "metadata zone %u not present", i);
+ ret = -ENXIO;
+ goto err;
+ }
+ if (!dmz_is_rnd(zone) && !dmz_is_cache(zone)) {
+ dmz_zmd_err(zmd,
+ "metadata zone %d is not random", i);
+ ret = -ENXIO;
+ goto err;
+ }
+ set_bit(DMZ_META, &zone->flags);
+ }
+ /* Load mapping table */
+ ret = dmz_load_mapping(zmd);
+ if (ret)
+ goto err;
+
+ /*
+ * Cache size boundaries: allow at least 2 super blocks, the chunk map
+ * blocks and enough blocks to be able to cache the bitmap blocks of
+ * up to 16 zones when idle (min_nr_mblks). Otherwise, if busy, allow
+ * the cache to add 512 more metadata blocks.
+ */
+ zmd->min_nr_mblks = 2 + zmd->nr_map_blocks + zmd->zone_nr_bitmap_blocks * 16;
+ zmd->max_nr_mblks = zmd->min_nr_mblks + 512;
+ zmd->mblk_shrinker.count_objects = dmz_mblock_shrinker_count;
+ zmd->mblk_shrinker.scan_objects = dmz_mblock_shrinker_scan;
+ zmd->mblk_shrinker.seeks = DEFAULT_SEEKS;
+
+ /* Metadata cache shrinker */
+ ret = register_shrinker(&zmd->mblk_shrinker, "dm-zoned-meta:(%u:%u)",
+ MAJOR(dev->bdev->bd_dev),
+ MINOR(dev->bdev->bd_dev));
+ if (ret) {
+ dmz_zmd_err(zmd, "Register metadata cache shrinker failed");
+ goto err;
+ }
+
+ dmz_zmd_info(zmd, "DM-Zoned metadata version %d", zmd->sb_version);
+ for (i = 0; i < zmd->nr_devs; i++)
+ dmz_print_dev(zmd, i);
+
+ dmz_zmd_info(zmd, " %u zones of %llu 512-byte logical sectors",
+ zmd->nr_zones, (u64)zmd->zone_nr_sectors);
+ dmz_zmd_debug(zmd, " %u metadata zones",
+ zmd->nr_meta_zones * 2);
+ dmz_zmd_debug(zmd, " %u data zones for %u chunks",
+ zmd->nr_data_zones, zmd->nr_chunks);
+ dmz_zmd_debug(zmd, " %u cache zones (%u unmapped)",
+ zmd->nr_cache, atomic_read(&zmd->unmap_nr_cache));
+ for (i = 0; i < zmd->nr_devs; i++) {
+ dmz_zmd_debug(zmd, " %u random zones (%u unmapped)",
+ dmz_nr_rnd_zones(zmd, i),
+ dmz_nr_unmap_rnd_zones(zmd, i));
+ dmz_zmd_debug(zmd, " %u sequential zones (%u unmapped)",
+ dmz_nr_seq_zones(zmd, i),
+ dmz_nr_unmap_seq_zones(zmd, i));
+ }
+ dmz_zmd_debug(zmd, " %u reserved sequential data zones",
+ zmd->nr_reserved_seq);
+ dmz_zmd_debug(zmd, "Format:");
+ dmz_zmd_debug(zmd, "%u metadata blocks per set (%u max cache)",
+ zmd->nr_meta_blocks, zmd->max_nr_mblks);
+ dmz_zmd_debug(zmd, " %u data zone mapping blocks",
+ zmd->nr_map_blocks);
+ dmz_zmd_debug(zmd, " %u bitmap blocks",
+ zmd->nr_bitmap_blocks);
+
+ *metadata = zmd;
+
+ return 0;
+err:
+ dmz_cleanup_metadata(zmd);
+ kfree(zmd);
+ *metadata = NULL;
+
+ return ret;
+}
+
+/*
+ * Cleanup the zoned metadata resources.
+ */
+void dmz_dtr_metadata(struct dmz_metadata *zmd)
+{
+ unregister_shrinker(&zmd->mblk_shrinker);
+ dmz_cleanup_metadata(zmd);
+ kfree(zmd);
+}
+
+/*
+ * Check zone information on resume.
+ */
+int dmz_resume_metadata(struct dmz_metadata *zmd)
+{
+ struct dm_zone *zone;
+ sector_t wp_block;
+ unsigned int i;
+ int ret;
+
+ /* Check zones */
+ for (i = 0; i < zmd->nr_zones; i++) {
+ zone = dmz_get(zmd, i);
+ if (!zone) {
+ dmz_zmd_err(zmd, "Unable to get zone %u", i);
+ return -EIO;
+ }
+ wp_block = zone->wp_block;
+
+ ret = dmz_update_zone(zmd, zone);
+ if (ret) {
+ dmz_zmd_err(zmd, "Broken zone %u", i);
+ return ret;
+ }
+
+ if (dmz_is_offline(zone)) {
+ dmz_zmd_warn(zmd, "Zone %u is offline", i);
+ continue;
+ }
+
+ /* Check write pointer */
+ if (!dmz_is_seq(zone))
+ zone->wp_block = 0;
+ else if (zone->wp_block != wp_block) {
+ dmz_zmd_err(zmd, "Zone %u: Invalid wp (%llu / %llu)",
+ i, (u64)zone->wp_block, (u64)wp_block);
+ zone->wp_block = wp_block;
+ dmz_invalidate_blocks(zmd, zone, zone->wp_block,
+ zmd->zone_nr_blocks - zone->wp_block);
+ }
+ }
+
+ return 0;
+}
diff --git a/drivers/md/dm-zoned-reclaim.c b/drivers/md/dm-zoned-reclaim.c
new file mode 100644
index 000000000..d58db9a27
--- /dev/null
+++ b/drivers/md/dm-zoned-reclaim.c
@@ -0,0 +1,640 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2017 Western Digital Corporation or its affiliates.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-zoned.h"
+
+#include <linux/module.h>
+
+#define DM_MSG_PREFIX "zoned reclaim"
+
+struct dmz_reclaim {
+ struct dmz_metadata *metadata;
+
+ struct delayed_work work;
+ struct workqueue_struct *wq;
+
+ struct dm_kcopyd_client *kc;
+ struct dm_kcopyd_throttle kc_throttle;
+ int kc_err;
+
+ int dev_idx;
+
+ unsigned long flags;
+
+ /* Last target access time */
+ unsigned long atime;
+};
+
+/*
+ * Reclaim state flags.
+ */
+enum {
+ DMZ_RECLAIM_KCOPY,
+};
+
+/*
+ * Number of seconds of target BIO inactivity to consider the target idle.
+ */
+#define DMZ_IDLE_PERIOD (10UL * HZ)
+
+/*
+ * Percentage of unmapped (free) random zones below which reclaim starts
+ * even if the target is busy.
+ */
+#define DMZ_RECLAIM_LOW_UNMAP_ZONES 30
+
+/*
+ * Percentage of unmapped (free) random zones above which reclaim will
+ * stop if the target is busy.
+ */
+#define DMZ_RECLAIM_HIGH_UNMAP_ZONES 50
+
+/*
+ * Align a sequential zone write pointer to chunk_block.
+ */
+static int dmz_reclaim_align_wp(struct dmz_reclaim *zrc, struct dm_zone *zone,
+ sector_t block)
+{
+ struct dmz_metadata *zmd = zrc->metadata;
+ struct dmz_dev *dev = zone->dev;
+ sector_t wp_block = zone->wp_block;
+ unsigned int nr_blocks;
+ int ret;
+
+ if (wp_block == block)
+ return 0;
+
+ if (wp_block > block)
+ return -EIO;
+
+ /*
+ * Zeroout the space between the write
+ * pointer and the requested position.
+ */
+ nr_blocks = block - wp_block;
+ ret = blkdev_issue_zeroout(dev->bdev,
+ dmz_start_sect(zmd, zone) + dmz_blk2sect(wp_block),
+ dmz_blk2sect(nr_blocks), GFP_NOIO, 0);
+ if (ret) {
+ dmz_dev_err(dev,
+ "Align zone %u wp %llu to %llu (wp+%u) blocks failed %d",
+ zone->id, (unsigned long long)wp_block,
+ (unsigned long long)block, nr_blocks, ret);
+ dmz_check_bdev(dev);
+ return ret;
+ }
+
+ zone->wp_block = block;
+
+ return 0;
+}
+
+/*
+ * dm_kcopyd_copy end notification.
+ */
+static void dmz_reclaim_kcopy_end(int read_err, unsigned long write_err,
+ void *context)
+{
+ struct dmz_reclaim *zrc = context;
+
+ if (read_err || write_err)
+ zrc->kc_err = -EIO;
+ else
+ zrc->kc_err = 0;
+
+ clear_bit_unlock(DMZ_RECLAIM_KCOPY, &zrc->flags);
+ smp_mb__after_atomic();
+ wake_up_bit(&zrc->flags, DMZ_RECLAIM_KCOPY);
+}
+
+/*
+ * Copy valid blocks of src_zone into dst_zone.
+ */
+static int dmz_reclaim_copy(struct dmz_reclaim *zrc,
+ struct dm_zone *src_zone, struct dm_zone *dst_zone)
+{
+ struct dmz_metadata *zmd = zrc->metadata;
+ struct dm_io_region src, dst;
+ sector_t block = 0, end_block;
+ sector_t nr_blocks;
+ sector_t src_zone_block;
+ sector_t dst_zone_block;
+ unsigned long flags = 0;
+ int ret;
+
+ if (dmz_is_seq(src_zone))
+ end_block = src_zone->wp_block;
+ else
+ end_block = dmz_zone_nr_blocks(zmd);
+ src_zone_block = dmz_start_block(zmd, src_zone);
+ dst_zone_block = dmz_start_block(zmd, dst_zone);
+
+ if (dmz_is_seq(dst_zone))
+ flags |= BIT(DM_KCOPYD_WRITE_SEQ);
+
+ while (block < end_block) {
+ if (src_zone->dev->flags & DMZ_BDEV_DYING)
+ return -EIO;
+ if (dst_zone->dev->flags & DMZ_BDEV_DYING)
+ return -EIO;
+
+ if (dmz_reclaim_should_terminate(src_zone))
+ return -EINTR;
+
+ /* Get a valid region from the source zone */
+ ret = dmz_first_valid_block(zmd, src_zone, &block);
+ if (ret <= 0)
+ return ret;
+ nr_blocks = ret;
+
+ /*
+ * If we are writing in a sequential zone, we must make sure
+ * that writes are sequential. So Zeroout any eventual hole
+ * between writes.
+ */
+ if (dmz_is_seq(dst_zone)) {
+ ret = dmz_reclaim_align_wp(zrc, dst_zone, block);
+ if (ret)
+ return ret;
+ }
+
+ src.bdev = src_zone->dev->bdev;
+ src.sector = dmz_blk2sect(src_zone_block + block);
+ src.count = dmz_blk2sect(nr_blocks);
+
+ dst.bdev = dst_zone->dev->bdev;
+ dst.sector = dmz_blk2sect(dst_zone_block + block);
+ dst.count = src.count;
+
+ /* Copy the valid region */
+ set_bit(DMZ_RECLAIM_KCOPY, &zrc->flags);
+ dm_kcopyd_copy(zrc->kc, &src, 1, &dst, flags,
+ dmz_reclaim_kcopy_end, zrc);
+
+ /* Wait for copy to complete */
+ wait_on_bit_io(&zrc->flags, DMZ_RECLAIM_KCOPY,
+ TASK_UNINTERRUPTIBLE);
+ if (zrc->kc_err)
+ return zrc->kc_err;
+
+ block += nr_blocks;
+ if (dmz_is_seq(dst_zone))
+ dst_zone->wp_block = block;
+ }
+
+ return 0;
+}
+
+/*
+ * Move valid blocks of dzone buffer zone into dzone (after its write pointer)
+ * and free the buffer zone.
+ */
+static int dmz_reclaim_buf(struct dmz_reclaim *zrc, struct dm_zone *dzone)
+{
+ struct dm_zone *bzone = dzone->bzone;
+ sector_t chunk_block = dzone->wp_block;
+ struct dmz_metadata *zmd = zrc->metadata;
+ int ret;
+
+ DMDEBUG("(%s/%u): Chunk %u, move buf zone %u (weight %u) to data zone %u (weight %u)",
+ dmz_metadata_label(zmd), zrc->dev_idx,
+ dzone->chunk, bzone->id, dmz_weight(bzone),
+ dzone->id, dmz_weight(dzone));
+
+ /* Flush data zone into the buffer zone */
+ ret = dmz_reclaim_copy(zrc, bzone, dzone);
+ if (ret < 0)
+ return ret;
+
+ dmz_lock_flush(zmd);
+
+ /* Validate copied blocks */
+ ret = dmz_merge_valid_blocks(zmd, bzone, dzone, chunk_block);
+ if (ret == 0) {
+ /* Free the buffer zone */
+ dmz_invalidate_blocks(zmd, bzone, 0, dmz_zone_nr_blocks(zmd));
+ dmz_lock_map(zmd);
+ dmz_unmap_zone(zmd, bzone);
+ dmz_unlock_zone_reclaim(dzone);
+ dmz_free_zone(zmd, bzone);
+ dmz_unlock_map(zmd);
+ }
+
+ dmz_unlock_flush(zmd);
+
+ return ret;
+}
+
+/*
+ * Merge valid blocks of dzone into its buffer zone and free dzone.
+ */
+static int dmz_reclaim_seq_data(struct dmz_reclaim *zrc, struct dm_zone *dzone)
+{
+ unsigned int chunk = dzone->chunk;
+ struct dm_zone *bzone = dzone->bzone;
+ struct dmz_metadata *zmd = zrc->metadata;
+ int ret = 0;
+
+ DMDEBUG("(%s/%u): Chunk %u, move data zone %u (weight %u) to buf zone %u (weight %u)",
+ dmz_metadata_label(zmd), zrc->dev_idx,
+ chunk, dzone->id, dmz_weight(dzone),
+ bzone->id, dmz_weight(bzone));
+
+ /* Flush data zone into the buffer zone */
+ ret = dmz_reclaim_copy(zrc, dzone, bzone);
+ if (ret < 0)
+ return ret;
+
+ dmz_lock_flush(zmd);
+
+ /* Validate copied blocks */
+ ret = dmz_merge_valid_blocks(zmd, dzone, bzone, 0);
+ if (ret == 0) {
+ /*
+ * Free the data zone and remap the chunk to
+ * the buffer zone.
+ */
+ dmz_invalidate_blocks(zmd, dzone, 0, dmz_zone_nr_blocks(zmd));
+ dmz_lock_map(zmd);
+ dmz_unmap_zone(zmd, bzone);
+ dmz_unmap_zone(zmd, dzone);
+ dmz_unlock_zone_reclaim(dzone);
+ dmz_free_zone(zmd, dzone);
+ dmz_map_zone(zmd, bzone, chunk);
+ dmz_unlock_map(zmd);
+ }
+
+ dmz_unlock_flush(zmd);
+
+ return ret;
+}
+
+/*
+ * Move valid blocks of the random data zone dzone into a free sequential zone.
+ * Once blocks are moved, remap the zone chunk to the sequential zone.
+ */
+static int dmz_reclaim_rnd_data(struct dmz_reclaim *zrc, struct dm_zone *dzone)
+{
+ unsigned int chunk = dzone->chunk;
+ struct dm_zone *szone = NULL;
+ struct dmz_metadata *zmd = zrc->metadata;
+ int ret;
+ int alloc_flags = DMZ_ALLOC_SEQ;
+
+ /* Get a free random or sequential zone */
+ dmz_lock_map(zmd);
+again:
+ szone = dmz_alloc_zone(zmd, zrc->dev_idx,
+ alloc_flags | DMZ_ALLOC_RECLAIM);
+ if (!szone && alloc_flags == DMZ_ALLOC_SEQ && dmz_nr_cache_zones(zmd)) {
+ alloc_flags = DMZ_ALLOC_RND;
+ goto again;
+ }
+ dmz_unlock_map(zmd);
+ if (!szone)
+ return -ENOSPC;
+
+ DMDEBUG("(%s/%u): Chunk %u, move %s zone %u (weight %u) to %s zone %u",
+ dmz_metadata_label(zmd), zrc->dev_idx, chunk,
+ dmz_is_cache(dzone) ? "cache" : "rnd",
+ dzone->id, dmz_weight(dzone),
+ dmz_is_rnd(szone) ? "rnd" : "seq", szone->id);
+
+ /* Flush the random data zone into the sequential zone */
+ ret = dmz_reclaim_copy(zrc, dzone, szone);
+
+ dmz_lock_flush(zmd);
+
+ if (ret == 0) {
+ /* Validate copied blocks */
+ ret = dmz_copy_valid_blocks(zmd, dzone, szone);
+ }
+ if (ret) {
+ /* Free the sequential zone */
+ dmz_lock_map(zmd);
+ dmz_free_zone(zmd, szone);
+ dmz_unlock_map(zmd);
+ } else {
+ /* Free the data zone and remap the chunk */
+ dmz_invalidate_blocks(zmd, dzone, 0, dmz_zone_nr_blocks(zmd));
+ dmz_lock_map(zmd);
+ dmz_unmap_zone(zmd, dzone);
+ dmz_unlock_zone_reclaim(dzone);
+ dmz_free_zone(zmd, dzone);
+ dmz_map_zone(zmd, szone, chunk);
+ dmz_unlock_map(zmd);
+ }
+
+ dmz_unlock_flush(zmd);
+
+ return ret;
+}
+
+/*
+ * Reclaim an empty zone.
+ */
+static void dmz_reclaim_empty(struct dmz_reclaim *zrc, struct dm_zone *dzone)
+{
+ struct dmz_metadata *zmd = zrc->metadata;
+
+ dmz_lock_flush(zmd);
+ dmz_lock_map(zmd);
+ dmz_unmap_zone(zmd, dzone);
+ dmz_unlock_zone_reclaim(dzone);
+ dmz_free_zone(zmd, dzone);
+ dmz_unlock_map(zmd);
+ dmz_unlock_flush(zmd);
+}
+
+/*
+ * Test if the target device is idle.
+ */
+static inline int dmz_target_idle(struct dmz_reclaim *zrc)
+{
+ return time_is_before_jiffies(zrc->atime + DMZ_IDLE_PERIOD);
+}
+
+/*
+ * Find a candidate zone for reclaim and process it.
+ */
+static int dmz_do_reclaim(struct dmz_reclaim *zrc)
+{
+ struct dmz_metadata *zmd = zrc->metadata;
+ struct dm_zone *dzone;
+ struct dm_zone *rzone;
+ unsigned long start;
+ int ret;
+
+ /* Get a data zone */
+ dzone = dmz_get_zone_for_reclaim(zmd, zrc->dev_idx,
+ dmz_target_idle(zrc));
+ if (!dzone) {
+ DMDEBUG("(%s/%u): No zone found to reclaim",
+ dmz_metadata_label(zmd), zrc->dev_idx);
+ return -EBUSY;
+ }
+ rzone = dzone;
+
+ start = jiffies;
+ if (dmz_is_cache(dzone) || dmz_is_rnd(dzone)) {
+ if (!dmz_weight(dzone)) {
+ /* Empty zone */
+ dmz_reclaim_empty(zrc, dzone);
+ ret = 0;
+ } else {
+ /*
+ * Reclaim the random data zone by moving its
+ * valid data blocks to a free sequential zone.
+ */
+ ret = dmz_reclaim_rnd_data(zrc, dzone);
+ }
+ } else {
+ struct dm_zone *bzone = dzone->bzone;
+ sector_t chunk_block = 0;
+
+ ret = dmz_first_valid_block(zmd, bzone, &chunk_block);
+ if (ret < 0)
+ goto out;
+
+ if (ret == 0 || chunk_block >= dzone->wp_block) {
+ /*
+ * The buffer zone is empty or its valid blocks are
+ * after the data zone write pointer.
+ */
+ ret = dmz_reclaim_buf(zrc, dzone);
+ rzone = bzone;
+ } else {
+ /*
+ * Reclaim the data zone by merging it into the
+ * buffer zone so that the buffer zone itself can
+ * be later reclaimed.
+ */
+ ret = dmz_reclaim_seq_data(zrc, dzone);
+ }
+ }
+out:
+ if (ret) {
+ if (ret == -EINTR)
+ DMDEBUG("(%s/%u): reclaim zone %u interrupted",
+ dmz_metadata_label(zmd), zrc->dev_idx,
+ rzone->id);
+ else
+ DMDEBUG("(%s/%u): Failed to reclaim zone %u, err %d",
+ dmz_metadata_label(zmd), zrc->dev_idx,
+ rzone->id, ret);
+ dmz_unlock_zone_reclaim(dzone);
+ return ret;
+ }
+
+ ret = dmz_flush_metadata(zrc->metadata);
+ if (ret) {
+ DMDEBUG("(%s/%u): Metadata flush for zone %u failed, err %d",
+ dmz_metadata_label(zmd), zrc->dev_idx, rzone->id, ret);
+ return ret;
+ }
+
+ DMDEBUG("(%s/%u): Reclaimed zone %u in %u ms",
+ dmz_metadata_label(zmd), zrc->dev_idx,
+ rzone->id, jiffies_to_msecs(jiffies - start));
+ return 0;
+}
+
+static unsigned int dmz_reclaim_percentage(struct dmz_reclaim *zrc)
+{
+ struct dmz_metadata *zmd = zrc->metadata;
+ unsigned int nr_cache = dmz_nr_cache_zones(zmd);
+ unsigned int nr_unmap, nr_zones;
+
+ if (nr_cache) {
+ nr_zones = nr_cache;
+ nr_unmap = dmz_nr_unmap_cache_zones(zmd);
+ } else {
+ nr_zones = dmz_nr_rnd_zones(zmd, zrc->dev_idx);
+ nr_unmap = dmz_nr_unmap_rnd_zones(zmd, zrc->dev_idx);
+ }
+ if (nr_unmap <= 1)
+ return 0;
+ return nr_unmap * 100 / nr_zones;
+}
+
+/*
+ * Test if reclaim is necessary.
+ */
+static bool dmz_should_reclaim(struct dmz_reclaim *zrc, unsigned int p_unmap)
+{
+ unsigned int nr_reclaim;
+
+ nr_reclaim = dmz_nr_rnd_zones(zrc->metadata, zrc->dev_idx);
+
+ if (dmz_nr_cache_zones(zrc->metadata)) {
+ /*
+ * The first device in a multi-device
+ * setup only contains cache zones, so
+ * never start reclaim there.
+ */
+ if (zrc->dev_idx == 0)
+ return false;
+ nr_reclaim += dmz_nr_cache_zones(zrc->metadata);
+ }
+
+ /* Reclaim when idle */
+ if (dmz_target_idle(zrc) && nr_reclaim)
+ return true;
+
+ /* If there are still plenty of cache zones, do not reclaim */
+ if (p_unmap >= DMZ_RECLAIM_HIGH_UNMAP_ZONES)
+ return false;
+
+ /*
+ * If the percentage of unmapped cache zones is low,
+ * reclaim even if the target is busy.
+ */
+ return p_unmap <= DMZ_RECLAIM_LOW_UNMAP_ZONES;
+}
+
+/*
+ * Reclaim work function.
+ */
+static void dmz_reclaim_work(struct work_struct *work)
+{
+ struct dmz_reclaim *zrc = container_of(work, struct dmz_reclaim, work.work);
+ struct dmz_metadata *zmd = zrc->metadata;
+ unsigned int p_unmap;
+ int ret;
+
+ if (dmz_dev_is_dying(zmd))
+ return;
+
+ p_unmap = dmz_reclaim_percentage(zrc);
+ if (!dmz_should_reclaim(zrc, p_unmap)) {
+ mod_delayed_work(zrc->wq, &zrc->work, DMZ_IDLE_PERIOD);
+ return;
+ }
+
+ /*
+ * We need to start reclaiming random zones: set up zone copy
+ * throttling to either go fast if we are very low on random zones
+ * and slower if there are still some free random zones to avoid
+ * as much as possible to negatively impact the user workload.
+ */
+ if (dmz_target_idle(zrc) || p_unmap < DMZ_RECLAIM_LOW_UNMAP_ZONES / 2) {
+ /* Idle or very low percentage: go fast */
+ zrc->kc_throttle.throttle = 100;
+ } else {
+ /* Busy but we still have some random zone: throttle */
+ zrc->kc_throttle.throttle = min(75U, 100U - p_unmap / 2);
+ }
+
+ DMDEBUG("(%s/%u): Reclaim (%u): %s, %u%% free zones (%u/%u cache %u/%u random)",
+ dmz_metadata_label(zmd), zrc->dev_idx,
+ zrc->kc_throttle.throttle,
+ (dmz_target_idle(zrc) ? "Idle" : "Busy"),
+ p_unmap, dmz_nr_unmap_cache_zones(zmd),
+ dmz_nr_cache_zones(zmd),
+ dmz_nr_unmap_rnd_zones(zmd, zrc->dev_idx),
+ dmz_nr_rnd_zones(zmd, zrc->dev_idx));
+
+ ret = dmz_do_reclaim(zrc);
+ if (ret && ret != -EINTR) {
+ if (!dmz_check_dev(zmd))
+ return;
+ }
+
+ dmz_schedule_reclaim(zrc);
+}
+
+/*
+ * Initialize reclaim.
+ */
+int dmz_ctr_reclaim(struct dmz_metadata *zmd,
+ struct dmz_reclaim **reclaim, int idx)
+{
+ struct dmz_reclaim *zrc;
+ int ret;
+
+ zrc = kzalloc(sizeof(struct dmz_reclaim), GFP_KERNEL);
+ if (!zrc)
+ return -ENOMEM;
+
+ zrc->metadata = zmd;
+ zrc->atime = jiffies;
+ zrc->dev_idx = idx;
+
+ /* Reclaim kcopyd client */
+ zrc->kc = dm_kcopyd_client_create(&zrc->kc_throttle);
+ if (IS_ERR(zrc->kc)) {
+ ret = PTR_ERR(zrc->kc);
+ zrc->kc = NULL;
+ goto err;
+ }
+
+ /* Reclaim work */
+ INIT_DELAYED_WORK(&zrc->work, dmz_reclaim_work);
+ zrc->wq = alloc_ordered_workqueue("dmz_rwq_%s_%d", WQ_MEM_RECLAIM,
+ dmz_metadata_label(zmd), idx);
+ if (!zrc->wq) {
+ ret = -ENOMEM;
+ goto err;
+ }
+
+ *reclaim = zrc;
+ queue_delayed_work(zrc->wq, &zrc->work, 0);
+
+ return 0;
+err:
+ if (zrc->kc)
+ dm_kcopyd_client_destroy(zrc->kc);
+ kfree(zrc);
+
+ return ret;
+}
+
+/*
+ * Terminate reclaim.
+ */
+void dmz_dtr_reclaim(struct dmz_reclaim *zrc)
+{
+ cancel_delayed_work_sync(&zrc->work);
+ destroy_workqueue(zrc->wq);
+ dm_kcopyd_client_destroy(zrc->kc);
+ kfree(zrc);
+}
+
+/*
+ * Suspend reclaim.
+ */
+void dmz_suspend_reclaim(struct dmz_reclaim *zrc)
+{
+ cancel_delayed_work_sync(&zrc->work);
+}
+
+/*
+ * Resume reclaim.
+ */
+void dmz_resume_reclaim(struct dmz_reclaim *zrc)
+{
+ queue_delayed_work(zrc->wq, &zrc->work, DMZ_IDLE_PERIOD);
+}
+
+/*
+ * BIO accounting.
+ */
+void dmz_reclaim_bio_acc(struct dmz_reclaim *zrc)
+{
+ zrc->atime = jiffies;
+}
+
+/*
+ * Start reclaim if necessary.
+ */
+void dmz_schedule_reclaim(struct dmz_reclaim *zrc)
+{
+ unsigned int p_unmap = dmz_reclaim_percentage(zrc);
+
+ if (dmz_should_reclaim(zrc, p_unmap))
+ mod_delayed_work(zrc->wq, &zrc->work, 0);
+}
diff --git a/drivers/md/dm-zoned-target.c b/drivers/md/dm-zoned-target.c
new file mode 100644
index 000000000..4abe1e2f8
--- /dev/null
+++ b/drivers/md/dm-zoned-target.c
@@ -0,0 +1,1173 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2017 Western Digital Corporation or its affiliates.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-zoned.h"
+
+#include <linux/module.h>
+
+#define DM_MSG_PREFIX "zoned"
+
+#define DMZ_MIN_BIOS 8192
+
+/*
+ * Zone BIO context.
+ */
+struct dmz_bioctx {
+ struct dmz_dev *dev;
+ struct dm_zone *zone;
+ struct bio *bio;
+ refcount_t ref;
+};
+
+/*
+ * Chunk work descriptor.
+ */
+struct dm_chunk_work {
+ struct work_struct work;
+ refcount_t refcount;
+ struct dmz_target *target;
+ unsigned int chunk;
+ struct bio_list bio_list;
+};
+
+/*
+ * Target descriptor.
+ */
+struct dmz_target {
+ struct dm_dev **ddev;
+ unsigned int nr_ddevs;
+
+ unsigned int flags;
+
+ /* Zoned block device information */
+ struct dmz_dev *dev;
+
+ /* For metadata handling */
+ struct dmz_metadata *metadata;
+
+ /* For chunk work */
+ struct radix_tree_root chunk_rxtree;
+ struct workqueue_struct *chunk_wq;
+ struct mutex chunk_lock;
+
+ /* For cloned BIOs to zones */
+ struct bio_set bio_set;
+
+ /* For flush */
+ spinlock_t flush_lock;
+ struct bio_list flush_list;
+ struct delayed_work flush_work;
+ struct workqueue_struct *flush_wq;
+};
+
+/*
+ * Flush intervals (seconds).
+ */
+#define DMZ_FLUSH_PERIOD (10 * HZ)
+
+/*
+ * Target BIO completion.
+ */
+static inline void dmz_bio_endio(struct bio *bio, blk_status_t status)
+{
+ struct dmz_bioctx *bioctx =
+ dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
+
+ if (status != BLK_STS_OK && bio->bi_status == BLK_STS_OK)
+ bio->bi_status = status;
+ if (bioctx->dev && bio->bi_status != BLK_STS_OK)
+ bioctx->dev->flags |= DMZ_CHECK_BDEV;
+
+ if (refcount_dec_and_test(&bioctx->ref)) {
+ struct dm_zone *zone = bioctx->zone;
+
+ if (zone) {
+ if (bio->bi_status != BLK_STS_OK &&
+ bio_op(bio) == REQ_OP_WRITE &&
+ dmz_is_seq(zone))
+ set_bit(DMZ_SEQ_WRITE_ERR, &zone->flags);
+ dmz_deactivate_zone(zone);
+ }
+ bio_endio(bio);
+ }
+}
+
+/*
+ * Completion callback for an internally cloned target BIO. This terminates the
+ * target BIO when there are no more references to its context.
+ */
+static void dmz_clone_endio(struct bio *clone)
+{
+ struct dmz_bioctx *bioctx = clone->bi_private;
+ blk_status_t status = clone->bi_status;
+
+ bio_put(clone);
+ dmz_bio_endio(bioctx->bio, status);
+}
+
+/*
+ * Issue a clone of a target BIO. The clone may only partially process the
+ * original target BIO.
+ */
+static int dmz_submit_bio(struct dmz_target *dmz, struct dm_zone *zone,
+ struct bio *bio, sector_t chunk_block,
+ unsigned int nr_blocks)
+{
+ struct dmz_bioctx *bioctx =
+ dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
+ struct dmz_dev *dev = zone->dev;
+ struct bio *clone;
+
+ if (dev->flags & DMZ_BDEV_DYING)
+ return -EIO;
+
+ clone = bio_alloc_clone(dev->bdev, bio, GFP_NOIO, &dmz->bio_set);
+ if (!clone)
+ return -ENOMEM;
+
+ bioctx->dev = dev;
+ clone->bi_iter.bi_sector =
+ dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block);
+ clone->bi_iter.bi_size = dmz_blk2sect(nr_blocks) << SECTOR_SHIFT;
+ clone->bi_end_io = dmz_clone_endio;
+ clone->bi_private = bioctx;
+
+ bio_advance(bio, clone->bi_iter.bi_size);
+
+ refcount_inc(&bioctx->ref);
+ submit_bio_noacct(clone);
+
+ if (bio_op(bio) == REQ_OP_WRITE && dmz_is_seq(zone))
+ zone->wp_block += nr_blocks;
+
+ return 0;
+}
+
+/*
+ * Zero out pages of discarded blocks accessed by a read BIO.
+ */
+static void dmz_handle_read_zero(struct dmz_target *dmz, struct bio *bio,
+ sector_t chunk_block, unsigned int nr_blocks)
+{
+ unsigned int size = nr_blocks << DMZ_BLOCK_SHIFT;
+
+ /* Clear nr_blocks */
+ swap(bio->bi_iter.bi_size, size);
+ zero_fill_bio(bio);
+ swap(bio->bi_iter.bi_size, size);
+
+ bio_advance(bio, size);
+}
+
+/*
+ * Process a read BIO.
+ */
+static int dmz_handle_read(struct dmz_target *dmz, struct dm_zone *zone,
+ struct bio *bio)
+{
+ struct dmz_metadata *zmd = dmz->metadata;
+ sector_t chunk_block = dmz_chunk_block(zmd, dmz_bio_block(bio));
+ unsigned int nr_blocks = dmz_bio_blocks(bio);
+ sector_t end_block = chunk_block + nr_blocks;
+ struct dm_zone *rzone, *bzone;
+ int ret;
+
+ /* Read into unmapped chunks need only zeroing the BIO buffer */
+ if (!zone) {
+ zero_fill_bio(bio);
+ return 0;
+ }
+
+ DMDEBUG("(%s): READ chunk %llu -> %s zone %u, block %llu, %u blocks",
+ dmz_metadata_label(zmd),
+ (unsigned long long)dmz_bio_chunk(zmd, bio),
+ (dmz_is_rnd(zone) ? "RND" :
+ (dmz_is_cache(zone) ? "CACHE" : "SEQ")),
+ zone->id,
+ (unsigned long long)chunk_block, nr_blocks);
+
+ /* Check block validity to determine the read location */
+ bzone = zone->bzone;
+ while (chunk_block < end_block) {
+ nr_blocks = 0;
+ if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
+ chunk_block < zone->wp_block) {
+ /* Test block validity in the data zone */
+ ret = dmz_block_valid(zmd, zone, chunk_block);
+ if (ret < 0)
+ return ret;
+ if (ret > 0) {
+ /* Read data zone blocks */
+ nr_blocks = ret;
+ rzone = zone;
+ }
+ }
+
+ /*
+ * No valid blocks found in the data zone.
+ * Check the buffer zone, if there is one.
+ */
+ if (!nr_blocks && bzone) {
+ ret = dmz_block_valid(zmd, bzone, chunk_block);
+ if (ret < 0)
+ return ret;
+ if (ret > 0) {
+ /* Read buffer zone blocks */
+ nr_blocks = ret;
+ rzone = bzone;
+ }
+ }
+
+ if (nr_blocks) {
+ /* Valid blocks found: read them */
+ nr_blocks = min_t(unsigned int, nr_blocks,
+ end_block - chunk_block);
+ ret = dmz_submit_bio(dmz, rzone, bio,
+ chunk_block, nr_blocks);
+ if (ret)
+ return ret;
+ chunk_block += nr_blocks;
+ } else {
+ /* No valid block: zeroout the current BIO block */
+ dmz_handle_read_zero(dmz, bio, chunk_block, 1);
+ chunk_block++;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Write blocks directly in a data zone, at the write pointer.
+ * If a buffer zone is assigned, invalidate the blocks written
+ * in place.
+ */
+static int dmz_handle_direct_write(struct dmz_target *dmz,
+ struct dm_zone *zone, struct bio *bio,
+ sector_t chunk_block,
+ unsigned int nr_blocks)
+{
+ struct dmz_metadata *zmd = dmz->metadata;
+ struct dm_zone *bzone = zone->bzone;
+ int ret;
+
+ if (dmz_is_readonly(zone))
+ return -EROFS;
+
+ /* Submit write */
+ ret = dmz_submit_bio(dmz, zone, bio, chunk_block, nr_blocks);
+ if (ret)
+ return ret;
+
+ /*
+ * Validate the blocks in the data zone and invalidate
+ * in the buffer zone, if there is one.
+ */
+ ret = dmz_validate_blocks(zmd, zone, chunk_block, nr_blocks);
+ if (ret == 0 && bzone)
+ ret = dmz_invalidate_blocks(zmd, bzone, chunk_block, nr_blocks);
+
+ return ret;
+}
+
+/*
+ * Write blocks in the buffer zone of @zone.
+ * If no buffer zone is assigned yet, get one.
+ * Called with @zone write locked.
+ */
+static int dmz_handle_buffered_write(struct dmz_target *dmz,
+ struct dm_zone *zone, struct bio *bio,
+ sector_t chunk_block,
+ unsigned int nr_blocks)
+{
+ struct dmz_metadata *zmd = dmz->metadata;
+ struct dm_zone *bzone;
+ int ret;
+
+ /* Get the buffer zone. One will be allocated if needed */
+ bzone = dmz_get_chunk_buffer(zmd, zone);
+ if (IS_ERR(bzone))
+ return PTR_ERR(bzone);
+
+ if (dmz_is_readonly(bzone))
+ return -EROFS;
+
+ /* Submit write */
+ ret = dmz_submit_bio(dmz, bzone, bio, chunk_block, nr_blocks);
+ if (ret)
+ return ret;
+
+ /*
+ * Validate the blocks in the buffer zone
+ * and invalidate in the data zone.
+ */
+ ret = dmz_validate_blocks(zmd, bzone, chunk_block, nr_blocks);
+ if (ret == 0 && chunk_block < zone->wp_block)
+ ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
+
+ return ret;
+}
+
+/*
+ * Process a write BIO.
+ */
+static int dmz_handle_write(struct dmz_target *dmz, struct dm_zone *zone,
+ struct bio *bio)
+{
+ struct dmz_metadata *zmd = dmz->metadata;
+ sector_t chunk_block = dmz_chunk_block(zmd, dmz_bio_block(bio));
+ unsigned int nr_blocks = dmz_bio_blocks(bio);
+
+ if (!zone)
+ return -ENOSPC;
+
+ DMDEBUG("(%s): WRITE chunk %llu -> %s zone %u, block %llu, %u blocks",
+ dmz_metadata_label(zmd),
+ (unsigned long long)dmz_bio_chunk(zmd, bio),
+ (dmz_is_rnd(zone) ? "RND" :
+ (dmz_is_cache(zone) ? "CACHE" : "SEQ")),
+ zone->id,
+ (unsigned long long)chunk_block, nr_blocks);
+
+ if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
+ chunk_block == zone->wp_block) {
+ /*
+ * zone is a random zone or it is a sequential zone
+ * and the BIO is aligned to the zone write pointer:
+ * direct write the zone.
+ */
+ return dmz_handle_direct_write(dmz, zone, bio,
+ chunk_block, nr_blocks);
+ }
+
+ /*
+ * This is an unaligned write in a sequential zone:
+ * use buffered write.
+ */
+ return dmz_handle_buffered_write(dmz, zone, bio, chunk_block, nr_blocks);
+}
+
+/*
+ * Process a discard BIO.
+ */
+static int dmz_handle_discard(struct dmz_target *dmz, struct dm_zone *zone,
+ struct bio *bio)
+{
+ struct dmz_metadata *zmd = dmz->metadata;
+ sector_t block = dmz_bio_block(bio);
+ unsigned int nr_blocks = dmz_bio_blocks(bio);
+ sector_t chunk_block = dmz_chunk_block(zmd, block);
+ int ret = 0;
+
+ /* For unmapped chunks, there is nothing to do */
+ if (!zone)
+ return 0;
+
+ if (dmz_is_readonly(zone))
+ return -EROFS;
+
+ DMDEBUG("(%s): DISCARD chunk %llu -> zone %u, block %llu, %u blocks",
+ dmz_metadata_label(dmz->metadata),
+ (unsigned long long)dmz_bio_chunk(zmd, bio),
+ zone->id,
+ (unsigned long long)chunk_block, nr_blocks);
+
+ /*
+ * Invalidate blocks in the data zone and its
+ * buffer zone if one is mapped.
+ */
+ if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
+ chunk_block < zone->wp_block)
+ ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
+ if (ret == 0 && zone->bzone)
+ ret = dmz_invalidate_blocks(zmd, zone->bzone,
+ chunk_block, nr_blocks);
+ return ret;
+}
+
+/*
+ * Process a BIO.
+ */
+static void dmz_handle_bio(struct dmz_target *dmz, struct dm_chunk_work *cw,
+ struct bio *bio)
+{
+ struct dmz_bioctx *bioctx =
+ dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
+ struct dmz_metadata *zmd = dmz->metadata;
+ struct dm_zone *zone;
+ int ret;
+
+ dmz_lock_metadata(zmd);
+
+ /*
+ * Get the data zone mapping the chunk. There may be no
+ * mapping for read and discard. If a mapping is obtained,
+ + the zone returned will be set to active state.
+ */
+ zone = dmz_get_chunk_mapping(zmd, dmz_bio_chunk(zmd, bio),
+ bio_op(bio));
+ if (IS_ERR(zone)) {
+ ret = PTR_ERR(zone);
+ goto out;
+ }
+
+ /* Process the BIO */
+ if (zone) {
+ dmz_activate_zone(zone);
+ bioctx->zone = zone;
+ dmz_reclaim_bio_acc(zone->dev->reclaim);
+ }
+
+ switch (bio_op(bio)) {
+ case REQ_OP_READ:
+ ret = dmz_handle_read(dmz, zone, bio);
+ break;
+ case REQ_OP_WRITE:
+ ret = dmz_handle_write(dmz, zone, bio);
+ break;
+ case REQ_OP_DISCARD:
+ case REQ_OP_WRITE_ZEROES:
+ ret = dmz_handle_discard(dmz, zone, bio);
+ break;
+ default:
+ DMERR("(%s): Unsupported BIO operation 0x%x",
+ dmz_metadata_label(dmz->metadata), bio_op(bio));
+ ret = -EIO;
+ }
+
+ /*
+ * Release the chunk mapping. This will check that the mapping
+ * is still valid, that is, that the zone used still has valid blocks.
+ */
+ if (zone)
+ dmz_put_chunk_mapping(zmd, zone);
+out:
+ dmz_bio_endio(bio, errno_to_blk_status(ret));
+
+ dmz_unlock_metadata(zmd);
+}
+
+/*
+ * Increment a chunk reference counter.
+ */
+static inline void dmz_get_chunk_work(struct dm_chunk_work *cw)
+{
+ refcount_inc(&cw->refcount);
+}
+
+/*
+ * Decrement a chunk work reference count and
+ * free it if it becomes 0.
+ */
+static void dmz_put_chunk_work(struct dm_chunk_work *cw)
+{
+ if (refcount_dec_and_test(&cw->refcount)) {
+ WARN_ON(!bio_list_empty(&cw->bio_list));
+ radix_tree_delete(&cw->target->chunk_rxtree, cw->chunk);
+ kfree(cw);
+ }
+}
+
+/*
+ * Chunk BIO work function.
+ */
+static void dmz_chunk_work(struct work_struct *work)
+{
+ struct dm_chunk_work *cw = container_of(work, struct dm_chunk_work, work);
+ struct dmz_target *dmz = cw->target;
+ struct bio *bio;
+
+ mutex_lock(&dmz->chunk_lock);
+
+ /* Process the chunk BIOs */
+ while ((bio = bio_list_pop(&cw->bio_list))) {
+ mutex_unlock(&dmz->chunk_lock);
+ dmz_handle_bio(dmz, cw, bio);
+ mutex_lock(&dmz->chunk_lock);
+ dmz_put_chunk_work(cw);
+ }
+
+ /* Queueing the work incremented the work refcount */
+ dmz_put_chunk_work(cw);
+
+ mutex_unlock(&dmz->chunk_lock);
+}
+
+/*
+ * Flush work.
+ */
+static void dmz_flush_work(struct work_struct *work)
+{
+ struct dmz_target *dmz = container_of(work, struct dmz_target, flush_work.work);
+ struct bio *bio;
+ int ret;
+
+ /* Flush dirty metadata blocks */
+ ret = dmz_flush_metadata(dmz->metadata);
+ if (ret)
+ DMDEBUG("(%s): Metadata flush failed, rc=%d",
+ dmz_metadata_label(dmz->metadata), ret);
+
+ /* Process queued flush requests */
+ while (1) {
+ spin_lock(&dmz->flush_lock);
+ bio = bio_list_pop(&dmz->flush_list);
+ spin_unlock(&dmz->flush_lock);
+
+ if (!bio)
+ break;
+
+ dmz_bio_endio(bio, errno_to_blk_status(ret));
+ }
+
+ queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
+}
+
+/*
+ * Get a chunk work and start it to process a new BIO.
+ * If the BIO chunk has no work yet, create one.
+ */
+static int dmz_queue_chunk_work(struct dmz_target *dmz, struct bio *bio)
+{
+ unsigned int chunk = dmz_bio_chunk(dmz->metadata, bio);
+ struct dm_chunk_work *cw;
+ int ret = 0;
+
+ mutex_lock(&dmz->chunk_lock);
+
+ /* Get the BIO chunk work. If one is not active yet, create one */
+ cw = radix_tree_lookup(&dmz->chunk_rxtree, chunk);
+ if (cw) {
+ dmz_get_chunk_work(cw);
+ } else {
+ /* Create a new chunk work */
+ cw = kmalloc(sizeof(struct dm_chunk_work), GFP_NOIO);
+ if (unlikely(!cw)) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ INIT_WORK(&cw->work, dmz_chunk_work);
+ refcount_set(&cw->refcount, 1);
+ cw->target = dmz;
+ cw->chunk = chunk;
+ bio_list_init(&cw->bio_list);
+
+ ret = radix_tree_insert(&dmz->chunk_rxtree, chunk, cw);
+ if (unlikely(ret)) {
+ kfree(cw);
+ goto out;
+ }
+ }
+
+ bio_list_add(&cw->bio_list, bio);
+
+ if (queue_work(dmz->chunk_wq, &cw->work))
+ dmz_get_chunk_work(cw);
+out:
+ mutex_unlock(&dmz->chunk_lock);
+ return ret;
+}
+
+/*
+ * Check if the backing device is being removed. If it's on the way out,
+ * start failing I/O. Reclaim and metadata components also call this
+ * function to cleanly abort operation in the event of such failure.
+ */
+bool dmz_bdev_is_dying(struct dmz_dev *dmz_dev)
+{
+ if (dmz_dev->flags & DMZ_BDEV_DYING)
+ return true;
+
+ if (dmz_dev->flags & DMZ_CHECK_BDEV)
+ return !dmz_check_bdev(dmz_dev);
+
+ if (blk_queue_dying(bdev_get_queue(dmz_dev->bdev))) {
+ dmz_dev_warn(dmz_dev, "Backing device queue dying");
+ dmz_dev->flags |= DMZ_BDEV_DYING;
+ }
+
+ return dmz_dev->flags & DMZ_BDEV_DYING;
+}
+
+/*
+ * Check the backing device availability. This detects such events as
+ * backing device going offline due to errors, media removals, etc.
+ * This check is less efficient than dmz_bdev_is_dying() and should
+ * only be performed as a part of error handling.
+ */
+bool dmz_check_bdev(struct dmz_dev *dmz_dev)
+{
+ struct gendisk *disk;
+
+ dmz_dev->flags &= ~DMZ_CHECK_BDEV;
+
+ if (dmz_bdev_is_dying(dmz_dev))
+ return false;
+
+ disk = dmz_dev->bdev->bd_disk;
+ if (disk->fops->check_events &&
+ disk->fops->check_events(disk, 0) & DISK_EVENT_MEDIA_CHANGE) {
+ dmz_dev_warn(dmz_dev, "Backing device offline");
+ dmz_dev->flags |= DMZ_BDEV_DYING;
+ }
+
+ return !(dmz_dev->flags & DMZ_BDEV_DYING);
+}
+
+/*
+ * Process a new BIO.
+ */
+static int dmz_map(struct dm_target *ti, struct bio *bio)
+{
+ struct dmz_target *dmz = ti->private;
+ struct dmz_metadata *zmd = dmz->metadata;
+ struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
+ sector_t sector = bio->bi_iter.bi_sector;
+ unsigned int nr_sectors = bio_sectors(bio);
+ sector_t chunk_sector;
+ int ret;
+
+ if (dmz_dev_is_dying(zmd))
+ return DM_MAPIO_KILL;
+
+ DMDEBUG("(%s): BIO op %d sector %llu + %u => chunk %llu, block %llu, %u blocks",
+ dmz_metadata_label(zmd),
+ bio_op(bio), (unsigned long long)sector, nr_sectors,
+ (unsigned long long)dmz_bio_chunk(zmd, bio),
+ (unsigned long long)dmz_chunk_block(zmd, dmz_bio_block(bio)),
+ (unsigned int)dmz_bio_blocks(bio));
+
+ if (!nr_sectors && bio_op(bio) != REQ_OP_WRITE)
+ return DM_MAPIO_REMAPPED;
+
+ /* The BIO should be block aligned */
+ if ((nr_sectors & DMZ_BLOCK_SECTORS_MASK) || (sector & DMZ_BLOCK_SECTORS_MASK))
+ return DM_MAPIO_KILL;
+
+ /* Initialize the BIO context */
+ bioctx->dev = NULL;
+ bioctx->zone = NULL;
+ bioctx->bio = bio;
+ refcount_set(&bioctx->ref, 1);
+
+ /* Set the BIO pending in the flush list */
+ if (!nr_sectors && bio_op(bio) == REQ_OP_WRITE) {
+ spin_lock(&dmz->flush_lock);
+ bio_list_add(&dmz->flush_list, bio);
+ spin_unlock(&dmz->flush_lock);
+ mod_delayed_work(dmz->flush_wq, &dmz->flush_work, 0);
+ return DM_MAPIO_SUBMITTED;
+ }
+
+ /* Split zone BIOs to fit entirely into a zone */
+ chunk_sector = sector & (dmz_zone_nr_sectors(zmd) - 1);
+ if (chunk_sector + nr_sectors > dmz_zone_nr_sectors(zmd))
+ dm_accept_partial_bio(bio, dmz_zone_nr_sectors(zmd) - chunk_sector);
+
+ /* Now ready to handle this BIO */
+ ret = dmz_queue_chunk_work(dmz, bio);
+ if (ret) {
+ DMDEBUG("(%s): BIO op %d, can't process chunk %llu, err %i",
+ dmz_metadata_label(zmd),
+ bio_op(bio), (u64)dmz_bio_chunk(zmd, bio),
+ ret);
+ return DM_MAPIO_REQUEUE;
+ }
+
+ return DM_MAPIO_SUBMITTED;
+}
+
+/*
+ * Get zoned device information.
+ */
+static int dmz_get_zoned_device(struct dm_target *ti, char *path,
+ int idx, int nr_devs)
+{
+ struct dmz_target *dmz = ti->private;
+ struct dm_dev *ddev;
+ struct dmz_dev *dev;
+ int ret;
+ struct block_device *bdev;
+
+ /* Get the target device */
+ ret = dm_get_device(ti, path, dm_table_get_mode(ti->table), &ddev);
+ if (ret) {
+ ti->error = "Get target device failed";
+ return ret;
+ }
+
+ bdev = ddev->bdev;
+ if (bdev_zoned_model(bdev) == BLK_ZONED_NONE) {
+ if (nr_devs == 1) {
+ ti->error = "Invalid regular device";
+ goto err;
+ }
+ if (idx != 0) {
+ ti->error = "First device must be a regular device";
+ goto err;
+ }
+ if (dmz->ddev[0]) {
+ ti->error = "Too many regular devices";
+ goto err;
+ }
+ dev = &dmz->dev[idx];
+ dev->flags = DMZ_BDEV_REGULAR;
+ } else {
+ if (dmz->ddev[idx]) {
+ ti->error = "Too many zoned devices";
+ goto err;
+ }
+ if (nr_devs > 1 && idx == 0) {
+ ti->error = "First device must be a regular device";
+ goto err;
+ }
+ dev = &dmz->dev[idx];
+ }
+ dev->bdev = bdev;
+ dev->dev_idx = idx;
+
+ dev->capacity = bdev_nr_sectors(bdev);
+ if (ti->begin) {
+ ti->error = "Partial mapping is not supported";
+ goto err;
+ }
+
+ dmz->ddev[idx] = ddev;
+
+ return 0;
+err:
+ dm_put_device(ti, ddev);
+ return -EINVAL;
+}
+
+/*
+ * Cleanup zoned device information.
+ */
+static void dmz_put_zoned_devices(struct dm_target *ti)
+{
+ struct dmz_target *dmz = ti->private;
+ int i;
+
+ for (i = 0; i < dmz->nr_ddevs; i++)
+ if (dmz->ddev[i])
+ dm_put_device(ti, dmz->ddev[i]);
+
+ kfree(dmz->ddev);
+}
+
+static int dmz_fixup_devices(struct dm_target *ti)
+{
+ struct dmz_target *dmz = ti->private;
+ struct dmz_dev *reg_dev = NULL;
+ sector_t zone_nr_sectors = 0;
+ int i;
+
+ /*
+ * When we have more than on devices, the first one must be a
+ * regular block device and the others zoned block devices.
+ */
+ if (dmz->nr_ddevs > 1) {
+ reg_dev = &dmz->dev[0];
+ if (!(reg_dev->flags & DMZ_BDEV_REGULAR)) {
+ ti->error = "Primary disk is not a regular device";
+ return -EINVAL;
+ }
+ for (i = 1; i < dmz->nr_ddevs; i++) {
+ struct dmz_dev *zoned_dev = &dmz->dev[i];
+ struct block_device *bdev = zoned_dev->bdev;
+
+ if (zoned_dev->flags & DMZ_BDEV_REGULAR) {
+ ti->error = "Secondary disk is not a zoned device";
+ return -EINVAL;
+ }
+ if (zone_nr_sectors &&
+ zone_nr_sectors != bdev_zone_sectors(bdev)) {
+ ti->error = "Zone nr sectors mismatch";
+ return -EINVAL;
+ }
+ zone_nr_sectors = bdev_zone_sectors(bdev);
+ zoned_dev->zone_nr_sectors = zone_nr_sectors;
+ zoned_dev->nr_zones = bdev_nr_zones(bdev);
+ }
+ } else {
+ struct dmz_dev *zoned_dev = &dmz->dev[0];
+ struct block_device *bdev = zoned_dev->bdev;
+
+ if (zoned_dev->flags & DMZ_BDEV_REGULAR) {
+ ti->error = "Disk is not a zoned device";
+ return -EINVAL;
+ }
+ zoned_dev->zone_nr_sectors = bdev_zone_sectors(bdev);
+ zoned_dev->nr_zones = bdev_nr_zones(bdev);
+ }
+
+ if (reg_dev) {
+ sector_t zone_offset;
+
+ reg_dev->zone_nr_sectors = zone_nr_sectors;
+ reg_dev->nr_zones =
+ DIV_ROUND_UP_SECTOR_T(reg_dev->capacity,
+ reg_dev->zone_nr_sectors);
+ reg_dev->zone_offset = 0;
+ zone_offset = reg_dev->nr_zones;
+ for (i = 1; i < dmz->nr_ddevs; i++) {
+ dmz->dev[i].zone_offset = zone_offset;
+ zone_offset += dmz->dev[i].nr_zones;
+ }
+ }
+ return 0;
+}
+
+/*
+ * Setup target.
+ */
+static int dmz_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+ struct dmz_target *dmz;
+ int ret, i;
+
+ /* Check arguments */
+ if (argc < 1) {
+ ti->error = "Invalid argument count";
+ return -EINVAL;
+ }
+
+ /* Allocate and initialize the target descriptor */
+ dmz = kzalloc(sizeof(struct dmz_target), GFP_KERNEL);
+ if (!dmz) {
+ ti->error = "Unable to allocate the zoned target descriptor";
+ return -ENOMEM;
+ }
+ dmz->dev = kcalloc(argc, sizeof(struct dmz_dev), GFP_KERNEL);
+ if (!dmz->dev) {
+ ti->error = "Unable to allocate the zoned device descriptors";
+ kfree(dmz);
+ return -ENOMEM;
+ }
+ dmz->ddev = kcalloc(argc, sizeof(struct dm_dev *), GFP_KERNEL);
+ if (!dmz->ddev) {
+ ti->error = "Unable to allocate the dm device descriptors";
+ ret = -ENOMEM;
+ goto err;
+ }
+ dmz->nr_ddevs = argc;
+
+ ti->private = dmz;
+
+ /* Get the target zoned block device */
+ for (i = 0; i < argc; i++) {
+ ret = dmz_get_zoned_device(ti, argv[i], i, argc);
+ if (ret)
+ goto err_dev;
+ }
+ ret = dmz_fixup_devices(ti);
+ if (ret)
+ goto err_dev;
+
+ /* Initialize metadata */
+ ret = dmz_ctr_metadata(dmz->dev, argc, &dmz->metadata,
+ dm_table_device_name(ti->table));
+ if (ret) {
+ ti->error = "Metadata initialization failed";
+ goto err_dev;
+ }
+
+ /* Set target (no write same support) */
+ ti->max_io_len = dmz_zone_nr_sectors(dmz->metadata);
+ ti->num_flush_bios = 1;
+ ti->num_discard_bios = 1;
+ ti->num_write_zeroes_bios = 1;
+ ti->per_io_data_size = sizeof(struct dmz_bioctx);
+ ti->flush_supported = true;
+ ti->discards_supported = true;
+
+ /* The exposed capacity is the number of chunks that can be mapped */
+ ti->len = (sector_t)dmz_nr_chunks(dmz->metadata) <<
+ dmz_zone_nr_sectors_shift(dmz->metadata);
+
+ /* Zone BIO */
+ ret = bioset_init(&dmz->bio_set, DMZ_MIN_BIOS, 0, 0);
+ if (ret) {
+ ti->error = "Create BIO set failed";
+ goto err_meta;
+ }
+
+ /* Chunk BIO work */
+ mutex_init(&dmz->chunk_lock);
+ INIT_RADIX_TREE(&dmz->chunk_rxtree, GFP_NOIO);
+ dmz->chunk_wq = alloc_workqueue("dmz_cwq_%s",
+ WQ_MEM_RECLAIM | WQ_UNBOUND, 0,
+ dmz_metadata_label(dmz->metadata));
+ if (!dmz->chunk_wq) {
+ ti->error = "Create chunk workqueue failed";
+ ret = -ENOMEM;
+ goto err_bio;
+ }
+
+ /* Flush work */
+ spin_lock_init(&dmz->flush_lock);
+ bio_list_init(&dmz->flush_list);
+ INIT_DELAYED_WORK(&dmz->flush_work, dmz_flush_work);
+ dmz->flush_wq = alloc_ordered_workqueue("dmz_fwq_%s", WQ_MEM_RECLAIM,
+ dmz_metadata_label(dmz->metadata));
+ if (!dmz->flush_wq) {
+ ti->error = "Create flush workqueue failed";
+ ret = -ENOMEM;
+ goto err_cwq;
+ }
+ mod_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
+
+ /* Initialize reclaim */
+ for (i = 0; i < dmz->nr_ddevs; i++) {
+ ret = dmz_ctr_reclaim(dmz->metadata, &dmz->dev[i].reclaim, i);
+ if (ret) {
+ ti->error = "Zone reclaim initialization failed";
+ goto err_fwq;
+ }
+ }
+
+ DMINFO("(%s): Target device: %llu 512-byte logical sectors (%llu blocks)",
+ dmz_metadata_label(dmz->metadata),
+ (unsigned long long)ti->len,
+ (unsigned long long)dmz_sect2blk(ti->len));
+
+ return 0;
+err_fwq:
+ destroy_workqueue(dmz->flush_wq);
+err_cwq:
+ destroy_workqueue(dmz->chunk_wq);
+err_bio:
+ mutex_destroy(&dmz->chunk_lock);
+ bioset_exit(&dmz->bio_set);
+err_meta:
+ dmz_dtr_metadata(dmz->metadata);
+err_dev:
+ dmz_put_zoned_devices(ti);
+err:
+ kfree(dmz->dev);
+ kfree(dmz);
+
+ return ret;
+}
+
+/*
+ * Cleanup target.
+ */
+static void dmz_dtr(struct dm_target *ti)
+{
+ struct dmz_target *dmz = ti->private;
+ int i;
+
+ destroy_workqueue(dmz->chunk_wq);
+
+ for (i = 0; i < dmz->nr_ddevs; i++)
+ dmz_dtr_reclaim(dmz->dev[i].reclaim);
+
+ cancel_delayed_work_sync(&dmz->flush_work);
+ destroy_workqueue(dmz->flush_wq);
+
+ (void) dmz_flush_metadata(dmz->metadata);
+
+ dmz_dtr_metadata(dmz->metadata);
+
+ bioset_exit(&dmz->bio_set);
+
+ dmz_put_zoned_devices(ti);
+
+ mutex_destroy(&dmz->chunk_lock);
+
+ kfree(dmz->dev);
+ kfree(dmz);
+}
+
+/*
+ * Setup target request queue limits.
+ */
+static void dmz_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+ struct dmz_target *dmz = ti->private;
+ unsigned int chunk_sectors = dmz_zone_nr_sectors(dmz->metadata);
+
+ limits->logical_block_size = DMZ_BLOCK_SIZE;
+ limits->physical_block_size = DMZ_BLOCK_SIZE;
+
+ blk_limits_io_min(limits, DMZ_BLOCK_SIZE);
+ blk_limits_io_opt(limits, DMZ_BLOCK_SIZE);
+
+ limits->discard_alignment = 0;
+ limits->discard_granularity = DMZ_BLOCK_SIZE;
+ limits->max_discard_sectors = chunk_sectors;
+ limits->max_hw_discard_sectors = chunk_sectors;
+ limits->max_write_zeroes_sectors = chunk_sectors;
+
+ /* FS hint to try to align to the device zone size */
+ limits->chunk_sectors = chunk_sectors;
+ limits->max_sectors = chunk_sectors;
+
+ /* We are exposing a drive-managed zoned block device */
+ limits->zoned = BLK_ZONED_NONE;
+}
+
+/*
+ * Pass on ioctl to the backend device.
+ */
+static int dmz_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
+{
+ struct dmz_target *dmz = ti->private;
+ struct dmz_dev *dev = &dmz->dev[0];
+
+ if (!dmz_check_bdev(dev))
+ return -EIO;
+
+ *bdev = dev->bdev;
+
+ return 0;
+}
+
+/*
+ * Stop works on suspend.
+ */
+static void dmz_suspend(struct dm_target *ti)
+{
+ struct dmz_target *dmz = ti->private;
+ int i;
+
+ flush_workqueue(dmz->chunk_wq);
+ for (i = 0; i < dmz->nr_ddevs; i++)
+ dmz_suspend_reclaim(dmz->dev[i].reclaim);
+ cancel_delayed_work_sync(&dmz->flush_work);
+}
+
+/*
+ * Restart works on resume or if suspend failed.
+ */
+static void dmz_resume(struct dm_target *ti)
+{
+ struct dmz_target *dmz = ti->private;
+ int i;
+
+ queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
+ for (i = 0; i < dmz->nr_ddevs; i++)
+ dmz_resume_reclaim(dmz->dev[i].reclaim);
+}
+
+static int dmz_iterate_devices(struct dm_target *ti,
+ iterate_devices_callout_fn fn, void *data)
+{
+ struct dmz_target *dmz = ti->private;
+ unsigned int zone_nr_sectors = dmz_zone_nr_sectors(dmz->metadata);
+ sector_t capacity;
+ int i, r;
+
+ for (i = 0; i < dmz->nr_ddevs; i++) {
+ capacity = dmz->dev[i].capacity & ~(zone_nr_sectors - 1);
+ r = fn(ti, dmz->ddev[i], 0, capacity, data);
+ if (r)
+ break;
+ }
+ return r;
+}
+
+static void dmz_status(struct dm_target *ti, status_type_t type,
+ unsigned int status_flags, char *result,
+ unsigned int maxlen)
+{
+ struct dmz_target *dmz = ti->private;
+ ssize_t sz = 0;
+ char buf[BDEVNAME_SIZE];
+ struct dmz_dev *dev;
+ int i;
+
+ switch (type) {
+ case STATUSTYPE_INFO:
+ DMEMIT("%u zones %u/%u cache",
+ dmz_nr_zones(dmz->metadata),
+ dmz_nr_unmap_cache_zones(dmz->metadata),
+ dmz_nr_cache_zones(dmz->metadata));
+ for (i = 0; i < dmz->nr_ddevs; i++) {
+ /*
+ * For a multi-device setup the first device
+ * contains only cache zones.
+ */
+ if ((i == 0) &&
+ (dmz_nr_cache_zones(dmz->metadata) > 0))
+ continue;
+ DMEMIT(" %u/%u random %u/%u sequential",
+ dmz_nr_unmap_rnd_zones(dmz->metadata, i),
+ dmz_nr_rnd_zones(dmz->metadata, i),
+ dmz_nr_unmap_seq_zones(dmz->metadata, i),
+ dmz_nr_seq_zones(dmz->metadata, i));
+ }
+ break;
+ case STATUSTYPE_TABLE:
+ dev = &dmz->dev[0];
+ format_dev_t(buf, dev->bdev->bd_dev);
+ DMEMIT("%s", buf);
+ for (i = 1; i < dmz->nr_ddevs; i++) {
+ dev = &dmz->dev[i];
+ format_dev_t(buf, dev->bdev->bd_dev);
+ DMEMIT(" %s", buf);
+ }
+ break;
+ case STATUSTYPE_IMA:
+ *result = '\0';
+ break;
+ }
+ return;
+}
+
+static int dmz_message(struct dm_target *ti, unsigned int argc, char **argv,
+ char *result, unsigned int maxlen)
+{
+ struct dmz_target *dmz = ti->private;
+ int r = -EINVAL;
+
+ if (!strcasecmp(argv[0], "reclaim")) {
+ int i;
+
+ for (i = 0; i < dmz->nr_ddevs; i++)
+ dmz_schedule_reclaim(dmz->dev[i].reclaim);
+ r = 0;
+ } else
+ DMERR("unrecognized message %s", argv[0]);
+ return r;
+}
+
+static struct target_type dmz_type = {
+ .name = "zoned",
+ .version = {2, 0, 0},
+ .features = DM_TARGET_SINGLETON | DM_TARGET_MIXED_ZONED_MODEL,
+ .module = THIS_MODULE,
+ .ctr = dmz_ctr,
+ .dtr = dmz_dtr,
+ .map = dmz_map,
+ .io_hints = dmz_io_hints,
+ .prepare_ioctl = dmz_prepare_ioctl,
+ .postsuspend = dmz_suspend,
+ .resume = dmz_resume,
+ .iterate_devices = dmz_iterate_devices,
+ .status = dmz_status,
+ .message = dmz_message,
+};
+
+static int __init dmz_init(void)
+{
+ return dm_register_target(&dmz_type);
+}
+
+static void __exit dmz_exit(void)
+{
+ dm_unregister_target(&dmz_type);
+}
+
+module_init(dmz_init);
+module_exit(dmz_exit);
+
+MODULE_DESCRIPTION(DM_NAME " target for zoned block devices");
+MODULE_AUTHOR("Damien Le Moal <damien.lemoal@wdc.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm-zoned.h b/drivers/md/dm-zoned.h
new file mode 100644
index 000000000..265494d3f
--- /dev/null
+++ b/drivers/md/dm-zoned.h
@@ -0,0 +1,303 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Copyright (C) 2017 Western Digital Corporation or its affiliates.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_ZONED_H
+#define DM_ZONED_H
+
+#include <linux/types.h>
+#include <linux/blkdev.h>
+#include <linux/device-mapper.h>
+#include <linux/dm-kcopyd.h>
+#include <linux/list.h>
+#include <linux/spinlock.h>
+#include <linux/mutex.h>
+#include <linux/workqueue.h>
+#include <linux/rwsem.h>
+#include <linux/rbtree.h>
+#include <linux/radix-tree.h>
+#include <linux/shrinker.h>
+
+/*
+ * dm-zoned creates block devices with 4KB blocks, always.
+ */
+#define DMZ_BLOCK_SHIFT 12
+#define DMZ_BLOCK_SIZE (1 << DMZ_BLOCK_SHIFT)
+#define DMZ_BLOCK_MASK (DMZ_BLOCK_SIZE - 1)
+
+#define DMZ_BLOCK_SHIFT_BITS (DMZ_BLOCK_SHIFT + 3)
+#define DMZ_BLOCK_SIZE_BITS (1 << DMZ_BLOCK_SHIFT_BITS)
+#define DMZ_BLOCK_MASK_BITS (DMZ_BLOCK_SIZE_BITS - 1)
+
+#define DMZ_BLOCK_SECTORS_SHIFT (DMZ_BLOCK_SHIFT - SECTOR_SHIFT)
+#define DMZ_BLOCK_SECTORS (DMZ_BLOCK_SIZE >> SECTOR_SHIFT)
+#define DMZ_BLOCK_SECTORS_MASK (DMZ_BLOCK_SECTORS - 1)
+
+/*
+ * 4KB block <-> 512B sector conversion.
+ */
+#define dmz_blk2sect(b) ((sector_t)(b) << DMZ_BLOCK_SECTORS_SHIFT)
+#define dmz_sect2blk(s) ((sector_t)(s) >> DMZ_BLOCK_SECTORS_SHIFT)
+
+#define dmz_bio_block(bio) dmz_sect2blk((bio)->bi_iter.bi_sector)
+#define dmz_bio_blocks(bio) dmz_sect2blk(bio_sectors(bio))
+
+struct dmz_metadata;
+struct dmz_reclaim;
+
+/*
+ * Zoned block device information.
+ */
+struct dmz_dev {
+ struct block_device *bdev;
+ struct dmz_metadata *metadata;
+ struct dmz_reclaim *reclaim;
+
+ uuid_t uuid;
+
+ sector_t capacity;
+
+ unsigned int dev_idx;
+
+ unsigned int nr_zones;
+ unsigned int zone_offset;
+
+ unsigned int flags;
+
+ sector_t zone_nr_sectors;
+
+ unsigned int nr_rnd;
+ atomic_t unmap_nr_rnd;
+ struct list_head unmap_rnd_list;
+ struct list_head map_rnd_list;
+
+ unsigned int nr_seq;
+ atomic_t unmap_nr_seq;
+ struct list_head unmap_seq_list;
+ struct list_head map_seq_list;
+};
+
+#define dmz_bio_chunk(zmd, bio) ((bio)->bi_iter.bi_sector >> \
+ dmz_zone_nr_sectors_shift(zmd))
+#define dmz_chunk_block(zmd, b) ((b) & (dmz_zone_nr_blocks(zmd) - 1))
+
+/* Device flags. */
+#define DMZ_BDEV_DYING (1 << 0)
+#define DMZ_CHECK_BDEV (2 << 0)
+#define DMZ_BDEV_REGULAR (4 << 0)
+
+/*
+ * Zone descriptor.
+ */
+struct dm_zone {
+ /* For listing the zone depending on its state */
+ struct list_head link;
+
+ /* Device containing this zone */
+ struct dmz_dev *dev;
+
+ /* Zone type and state */
+ unsigned long flags;
+
+ /* Zone activation reference count */
+ atomic_t refcount;
+
+ /* Zone id */
+ unsigned int id;
+
+ /* Zone write pointer block (relative to the zone start block) */
+ unsigned int wp_block;
+
+ /* Zone weight (number of valid blocks in the zone) */
+ unsigned int weight;
+
+ /* The chunk that the zone maps */
+ unsigned int chunk;
+
+ /*
+ * For a sequential data zone, pointer to the random zone
+ * used as a buffer for processing unaligned writes.
+ * For a buffer zone, this points back to the data zone.
+ */
+ struct dm_zone *bzone;
+};
+
+/*
+ * Zone flags.
+ */
+enum {
+ /* Zone write type */
+ DMZ_CACHE,
+ DMZ_RND,
+ DMZ_SEQ,
+
+ /* Zone critical condition */
+ DMZ_OFFLINE,
+ DMZ_READ_ONLY,
+
+ /* How the zone is being used */
+ DMZ_META,
+ DMZ_DATA,
+ DMZ_BUF,
+ DMZ_RESERVED,
+
+ /* Zone internal state */
+ DMZ_RECLAIM,
+ DMZ_SEQ_WRITE_ERR,
+ DMZ_RECLAIM_TERMINATE,
+};
+
+/*
+ * Zone data accessors.
+ */
+#define dmz_is_cache(z) test_bit(DMZ_CACHE, &(z)->flags)
+#define dmz_is_rnd(z) test_bit(DMZ_RND, &(z)->flags)
+#define dmz_is_seq(z) test_bit(DMZ_SEQ, &(z)->flags)
+#define dmz_is_empty(z) ((z)->wp_block == 0)
+#define dmz_is_offline(z) test_bit(DMZ_OFFLINE, &(z)->flags)
+#define dmz_is_readonly(z) test_bit(DMZ_READ_ONLY, &(z)->flags)
+#define dmz_in_reclaim(z) test_bit(DMZ_RECLAIM, &(z)->flags)
+#define dmz_is_reserved(z) test_bit(DMZ_RESERVED, &(z)->flags)
+#define dmz_seq_write_err(z) test_bit(DMZ_SEQ_WRITE_ERR, &(z)->flags)
+#define dmz_reclaim_should_terminate(z) \
+ test_bit(DMZ_RECLAIM_TERMINATE, &(z)->flags)
+
+#define dmz_is_meta(z) test_bit(DMZ_META, &(z)->flags)
+#define dmz_is_buf(z) test_bit(DMZ_BUF, &(z)->flags)
+#define dmz_is_data(z) test_bit(DMZ_DATA, &(z)->flags)
+
+#define dmz_weight(z) ((z)->weight)
+
+/*
+ * Message functions.
+ */
+#define dmz_dev_info(dev, format, args...) \
+ DMINFO("(%pg): " format, (dev)->bdev, ## args)
+
+#define dmz_dev_err(dev, format, args...) \
+ DMERR("(%pg): " format, (dev)->bdev, ## args)
+
+#define dmz_dev_warn(dev, format, args...) \
+ DMWARN("(%pg): " format, (dev)->bdev, ## args)
+
+#define dmz_dev_debug(dev, format, args...) \
+ DMDEBUG("(%pg): " format, (dev)->bdev, ## args)
+
+/*
+ * Functions defined in dm-zoned-metadata.c
+ */
+int dmz_ctr_metadata(struct dmz_dev *dev, int num_dev,
+ struct dmz_metadata **zmd, const char *devname);
+void dmz_dtr_metadata(struct dmz_metadata *zmd);
+int dmz_resume_metadata(struct dmz_metadata *zmd);
+
+void dmz_lock_map(struct dmz_metadata *zmd);
+void dmz_unlock_map(struct dmz_metadata *zmd);
+void dmz_lock_metadata(struct dmz_metadata *zmd);
+void dmz_unlock_metadata(struct dmz_metadata *zmd);
+void dmz_lock_flush(struct dmz_metadata *zmd);
+void dmz_unlock_flush(struct dmz_metadata *zmd);
+int dmz_flush_metadata(struct dmz_metadata *zmd);
+const char *dmz_metadata_label(struct dmz_metadata *zmd);
+
+sector_t dmz_start_sect(struct dmz_metadata *zmd, struct dm_zone *zone);
+sector_t dmz_start_block(struct dmz_metadata *zmd, struct dm_zone *zone);
+unsigned int dmz_nr_chunks(struct dmz_metadata *zmd);
+
+bool dmz_check_dev(struct dmz_metadata *zmd);
+bool dmz_dev_is_dying(struct dmz_metadata *zmd);
+
+#define DMZ_ALLOC_RND 0x01
+#define DMZ_ALLOC_CACHE 0x02
+#define DMZ_ALLOC_SEQ 0x04
+#define DMZ_ALLOC_RECLAIM 0x10
+
+struct dm_zone *dmz_alloc_zone(struct dmz_metadata *zmd,
+ unsigned int dev_idx, unsigned long flags);
+void dmz_free_zone(struct dmz_metadata *zmd, struct dm_zone *zone);
+
+void dmz_map_zone(struct dmz_metadata *zmd, struct dm_zone *zone,
+ unsigned int chunk);
+void dmz_unmap_zone(struct dmz_metadata *zmd, struct dm_zone *zone);
+unsigned int dmz_nr_zones(struct dmz_metadata *zmd);
+unsigned int dmz_nr_cache_zones(struct dmz_metadata *zmd);
+unsigned int dmz_nr_unmap_cache_zones(struct dmz_metadata *zmd);
+unsigned int dmz_nr_rnd_zones(struct dmz_metadata *zmd, int idx);
+unsigned int dmz_nr_unmap_rnd_zones(struct dmz_metadata *zmd, int idx);
+unsigned int dmz_nr_seq_zones(struct dmz_metadata *zmd, int idx);
+unsigned int dmz_nr_unmap_seq_zones(struct dmz_metadata *zmd, int idx);
+unsigned int dmz_zone_nr_blocks(struct dmz_metadata *zmd);
+unsigned int dmz_zone_nr_blocks_shift(struct dmz_metadata *zmd);
+unsigned int dmz_zone_nr_sectors(struct dmz_metadata *zmd);
+unsigned int dmz_zone_nr_sectors_shift(struct dmz_metadata *zmd);
+
+/*
+ * Activate a zone (increment its reference count).
+ */
+static inline void dmz_activate_zone(struct dm_zone *zone)
+{
+ atomic_inc(&zone->refcount);
+}
+
+int dmz_lock_zone_reclaim(struct dm_zone *zone);
+void dmz_unlock_zone_reclaim(struct dm_zone *zone);
+struct dm_zone *dmz_get_zone_for_reclaim(struct dmz_metadata *zmd,
+ unsigned int dev_idx, bool idle);
+
+struct dm_zone *dmz_get_chunk_mapping(struct dmz_metadata *zmd,
+ unsigned int chunk, enum req_op op);
+void dmz_put_chunk_mapping(struct dmz_metadata *zmd, struct dm_zone *zone);
+struct dm_zone *dmz_get_chunk_buffer(struct dmz_metadata *zmd,
+ struct dm_zone *dzone);
+
+int dmz_validate_blocks(struct dmz_metadata *zmd, struct dm_zone *zone,
+ sector_t chunk_block, unsigned int nr_blocks);
+int dmz_invalidate_blocks(struct dmz_metadata *zmd, struct dm_zone *zone,
+ sector_t chunk_block, unsigned int nr_blocks);
+int dmz_block_valid(struct dmz_metadata *zmd, struct dm_zone *zone,
+ sector_t chunk_block);
+int dmz_first_valid_block(struct dmz_metadata *zmd, struct dm_zone *zone,
+ sector_t *chunk_block);
+int dmz_copy_valid_blocks(struct dmz_metadata *zmd, struct dm_zone *from_zone,
+ struct dm_zone *to_zone);
+int dmz_merge_valid_blocks(struct dmz_metadata *zmd, struct dm_zone *from_zone,
+ struct dm_zone *to_zone, sector_t chunk_block);
+
+/*
+ * Functions defined in dm-zoned-reclaim.c
+ */
+int dmz_ctr_reclaim(struct dmz_metadata *zmd, struct dmz_reclaim **zrc, int idx);
+void dmz_dtr_reclaim(struct dmz_reclaim *zrc);
+void dmz_suspend_reclaim(struct dmz_reclaim *zrc);
+void dmz_resume_reclaim(struct dmz_reclaim *zrc);
+void dmz_reclaim_bio_acc(struct dmz_reclaim *zrc);
+void dmz_schedule_reclaim(struct dmz_reclaim *zrc);
+
+/*
+ * Functions defined in dm-zoned-target.c
+ */
+bool dmz_bdev_is_dying(struct dmz_dev *dmz_dev);
+bool dmz_check_bdev(struct dmz_dev *dmz_dev);
+
+/*
+ * Deactivate a zone. This decrement the zone reference counter
+ * indicating that all BIOs to the zone have completed when the count is 0.
+ */
+static inline void dmz_deactivate_zone(struct dm_zone *zone)
+{
+ dmz_reclaim_bio_acc(zone->dev->reclaim);
+ atomic_dec(&zone->refcount);
+}
+
+/*
+ * Test if a zone is active, that is, has a refcount > 0.
+ */
+static inline bool dmz_is_active(struct dm_zone *zone)
+{
+ return atomic_read(&zone->refcount);
+}
+
+#endif /* DM_ZONED_H */
diff --git a/drivers/md/dm.c b/drivers/md/dm.c
new file mode 100644
index 000000000..0ec85d159
--- /dev/null
+++ b/drivers/md/dm.c
@@ -0,0 +1,3397 @@
+/*
+ * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
+ * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-core.h"
+#include "dm-rq.h"
+#include "dm-uevent.h"
+#include "dm-ima.h"
+
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/sched/mm.h>
+#include <linux/sched/signal.h>
+#include <linux/blkpg.h>
+#include <linux/bio.h>
+#include <linux/mempool.h>
+#include <linux/dax.h>
+#include <linux/slab.h>
+#include <linux/idr.h>
+#include <linux/uio.h>
+#include <linux/hdreg.h>
+#include <linux/delay.h>
+#include <linux/wait.h>
+#include <linux/pr.h>
+#include <linux/refcount.h>
+#include <linux/part_stat.h>
+#include <linux/blk-crypto.h>
+#include <linux/blk-crypto-profile.h>
+
+#define DM_MSG_PREFIX "core"
+
+/*
+ * Cookies are numeric values sent with CHANGE and REMOVE
+ * uevents while resuming, removing or renaming the device.
+ */
+#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
+#define DM_COOKIE_LENGTH 24
+
+/*
+ * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
+ * dm_io into one list, and reuse bio->bi_private as the list head. Before
+ * ending this fs bio, we will recover its ->bi_private.
+ */
+#define REQ_DM_POLL_LIST REQ_DRV
+
+static const char *_name = DM_NAME;
+
+static unsigned int major = 0;
+static unsigned int _major = 0;
+
+static DEFINE_IDR(_minor_idr);
+
+static DEFINE_SPINLOCK(_minor_lock);
+
+static void do_deferred_remove(struct work_struct *w);
+
+static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
+
+static struct workqueue_struct *deferred_remove_workqueue;
+
+atomic_t dm_global_event_nr = ATOMIC_INIT(0);
+DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
+
+void dm_issue_global_event(void)
+{
+ atomic_inc(&dm_global_event_nr);
+ wake_up(&dm_global_eventq);
+}
+
+DEFINE_STATIC_KEY_FALSE(stats_enabled);
+DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
+DEFINE_STATIC_KEY_FALSE(zoned_enabled);
+
+/*
+ * One of these is allocated (on-stack) per original bio.
+ */
+struct clone_info {
+ struct dm_table *map;
+ struct bio *bio;
+ struct dm_io *io;
+ sector_t sector;
+ unsigned int sector_count;
+ bool is_abnormal_io:1;
+ bool submit_as_polled:1;
+};
+
+static inline struct dm_target_io *clone_to_tio(struct bio *clone)
+{
+ return container_of(clone, struct dm_target_io, clone);
+}
+
+void *dm_per_bio_data(struct bio *bio, size_t data_size)
+{
+ if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
+ return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
+ return (char *)bio - DM_IO_BIO_OFFSET - data_size;
+}
+EXPORT_SYMBOL_GPL(dm_per_bio_data);
+
+struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
+{
+ struct dm_io *io = (struct dm_io *)((char *)data + data_size);
+ if (io->magic == DM_IO_MAGIC)
+ return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
+ BUG_ON(io->magic != DM_TIO_MAGIC);
+ return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
+}
+EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
+
+unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
+{
+ return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
+}
+EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
+
+#define MINOR_ALLOCED ((void *)-1)
+
+#define DM_NUMA_NODE NUMA_NO_NODE
+static int dm_numa_node = DM_NUMA_NODE;
+
+#define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
+static int swap_bios = DEFAULT_SWAP_BIOS;
+static int get_swap_bios(void)
+{
+ int latch = READ_ONCE(swap_bios);
+ if (unlikely(latch <= 0))
+ latch = DEFAULT_SWAP_BIOS;
+ return latch;
+}
+
+struct table_device {
+ struct list_head list;
+ refcount_t count;
+ struct dm_dev dm_dev;
+};
+
+/*
+ * Bio-based DM's mempools' reserved IOs set by the user.
+ */
+#define RESERVED_BIO_BASED_IOS 16
+static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
+
+static int __dm_get_module_param_int(int *module_param, int min, int max)
+{
+ int param = READ_ONCE(*module_param);
+ int modified_param = 0;
+ bool modified = true;
+
+ if (param < min)
+ modified_param = min;
+ else if (param > max)
+ modified_param = max;
+ else
+ modified = false;
+
+ if (modified) {
+ (void)cmpxchg(module_param, param, modified_param);
+ param = modified_param;
+ }
+
+ return param;
+}
+
+unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
+{
+ unsigned int param = READ_ONCE(*module_param);
+ unsigned int modified_param = 0;
+
+ if (!param)
+ modified_param = def;
+ else if (param > max)
+ modified_param = max;
+
+ if (modified_param) {
+ (void)cmpxchg(module_param, param, modified_param);
+ param = modified_param;
+ }
+
+ return param;
+}
+
+unsigned int dm_get_reserved_bio_based_ios(void)
+{
+ return __dm_get_module_param(&reserved_bio_based_ios,
+ RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
+}
+EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
+
+static unsigned int dm_get_numa_node(void)
+{
+ return __dm_get_module_param_int(&dm_numa_node,
+ DM_NUMA_NODE, num_online_nodes() - 1);
+}
+
+static int __init local_init(void)
+{
+ int r;
+
+ r = dm_uevent_init();
+ if (r)
+ return r;
+
+ deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
+ if (!deferred_remove_workqueue) {
+ r = -ENOMEM;
+ goto out_uevent_exit;
+ }
+
+ _major = major;
+ r = register_blkdev(_major, _name);
+ if (r < 0)
+ goto out_free_workqueue;
+
+ if (!_major)
+ _major = r;
+
+ return 0;
+
+out_free_workqueue:
+ destroy_workqueue(deferred_remove_workqueue);
+out_uevent_exit:
+ dm_uevent_exit();
+
+ return r;
+}
+
+static void local_exit(void)
+{
+ destroy_workqueue(deferred_remove_workqueue);
+
+ unregister_blkdev(_major, _name);
+ dm_uevent_exit();
+
+ _major = 0;
+
+ DMINFO("cleaned up");
+}
+
+static int (*_inits[])(void) __initdata = {
+ local_init,
+ dm_target_init,
+ dm_linear_init,
+ dm_stripe_init,
+ dm_io_init,
+ dm_kcopyd_init,
+ dm_interface_init,
+ dm_statistics_init,
+};
+
+static void (*_exits[])(void) = {
+ local_exit,
+ dm_target_exit,
+ dm_linear_exit,
+ dm_stripe_exit,
+ dm_io_exit,
+ dm_kcopyd_exit,
+ dm_interface_exit,
+ dm_statistics_exit,
+};
+
+static int __init dm_init(void)
+{
+ const int count = ARRAY_SIZE(_inits);
+ int r, i;
+
+#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
+ DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
+ " Duplicate IMA measurements will not be recorded in the IMA log.");
+#endif
+
+ for (i = 0; i < count; i++) {
+ r = _inits[i]();
+ if (r)
+ goto bad;
+ }
+
+ return 0;
+bad:
+ while (i--)
+ _exits[i]();
+
+ return r;
+}
+
+static void __exit dm_exit(void)
+{
+ int i = ARRAY_SIZE(_exits);
+
+ while (i--)
+ _exits[i]();
+
+ /*
+ * Should be empty by this point.
+ */
+ idr_destroy(&_minor_idr);
+}
+
+/*
+ * Block device functions
+ */
+int dm_deleting_md(struct mapped_device *md)
+{
+ return test_bit(DMF_DELETING, &md->flags);
+}
+
+static int dm_blk_open(struct block_device *bdev, fmode_t mode)
+{
+ struct mapped_device *md;
+
+ spin_lock(&_minor_lock);
+
+ md = bdev->bd_disk->private_data;
+ if (!md)
+ goto out;
+
+ if (test_bit(DMF_FREEING, &md->flags) ||
+ dm_deleting_md(md)) {
+ md = NULL;
+ goto out;
+ }
+
+ dm_get(md);
+ atomic_inc(&md->open_count);
+out:
+ spin_unlock(&_minor_lock);
+
+ return md ? 0 : -ENXIO;
+}
+
+static void dm_blk_close(struct gendisk *disk, fmode_t mode)
+{
+ struct mapped_device *md;
+
+ spin_lock(&_minor_lock);
+
+ md = disk->private_data;
+ if (WARN_ON(!md))
+ goto out;
+
+ if (atomic_dec_and_test(&md->open_count) &&
+ (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
+ queue_work(deferred_remove_workqueue, &deferred_remove_work);
+
+ dm_put(md);
+out:
+ spin_unlock(&_minor_lock);
+}
+
+int dm_open_count(struct mapped_device *md)
+{
+ return atomic_read(&md->open_count);
+}
+
+/*
+ * Guarantees nothing is using the device before it's deleted.
+ */
+int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
+{
+ int r = 0;
+
+ spin_lock(&_minor_lock);
+
+ if (dm_open_count(md)) {
+ r = -EBUSY;
+ if (mark_deferred)
+ set_bit(DMF_DEFERRED_REMOVE, &md->flags);
+ } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
+ r = -EEXIST;
+ else
+ set_bit(DMF_DELETING, &md->flags);
+
+ spin_unlock(&_minor_lock);
+
+ return r;
+}
+
+int dm_cancel_deferred_remove(struct mapped_device *md)
+{
+ int r = 0;
+
+ spin_lock(&_minor_lock);
+
+ if (test_bit(DMF_DELETING, &md->flags))
+ r = -EBUSY;
+ else
+ clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
+
+ spin_unlock(&_minor_lock);
+
+ return r;
+}
+
+static void do_deferred_remove(struct work_struct *w)
+{
+ dm_deferred_remove();
+}
+
+static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
+{
+ struct mapped_device *md = bdev->bd_disk->private_data;
+
+ return dm_get_geometry(md, geo);
+}
+
+static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
+ struct block_device **bdev)
+{
+ struct dm_target *ti;
+ struct dm_table *map;
+ int r;
+
+retry:
+ r = -ENOTTY;
+ map = dm_get_live_table(md, srcu_idx);
+ if (!map || !dm_table_get_size(map))
+ return r;
+
+ /* We only support devices that have a single target */
+ if (map->num_targets != 1)
+ return r;
+
+ ti = dm_table_get_target(map, 0);
+ if (!ti->type->prepare_ioctl)
+ return r;
+
+ if (dm_suspended_md(md))
+ return -EAGAIN;
+
+ r = ti->type->prepare_ioctl(ti, bdev);
+ if (r == -ENOTCONN && !fatal_signal_pending(current)) {
+ dm_put_live_table(md, *srcu_idx);
+ msleep(10);
+ goto retry;
+ }
+
+ return r;
+}
+
+static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
+{
+ dm_put_live_table(md, srcu_idx);
+}
+
+static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
+ unsigned int cmd, unsigned long arg)
+{
+ struct mapped_device *md = bdev->bd_disk->private_data;
+ int r, srcu_idx;
+
+ r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
+ if (r < 0)
+ goto out;
+
+ if (r > 0) {
+ /*
+ * Target determined this ioctl is being issued against a
+ * subset of the parent bdev; require extra privileges.
+ */
+ if (!capable(CAP_SYS_RAWIO)) {
+ DMDEBUG_LIMIT(
+ "%s: sending ioctl %x to DM device without required privilege.",
+ current->comm, cmd);
+ r = -ENOIOCTLCMD;
+ goto out;
+ }
+ }
+
+ if (!bdev->bd_disk->fops->ioctl)
+ r = -ENOTTY;
+ else
+ r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
+out:
+ dm_unprepare_ioctl(md, srcu_idx);
+ return r;
+}
+
+u64 dm_start_time_ns_from_clone(struct bio *bio)
+{
+ return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
+}
+EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
+
+static bool bio_is_flush_with_data(struct bio *bio)
+{
+ return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
+}
+
+static void dm_io_acct(struct dm_io *io, bool end)
+{
+ struct dm_stats_aux *stats_aux = &io->stats_aux;
+ unsigned long start_time = io->start_time;
+ struct mapped_device *md = io->md;
+ struct bio *bio = io->orig_bio;
+ unsigned int sectors;
+
+ /*
+ * If REQ_PREFLUSH set, don't account payload, it will be
+ * submitted (and accounted) after this flush completes.
+ */
+ if (bio_is_flush_with_data(bio))
+ sectors = 0;
+ else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
+ sectors = bio_sectors(bio);
+ else
+ sectors = io->sectors;
+
+ if (!end)
+ bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
+ start_time);
+ else
+ bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
+
+ if (static_branch_unlikely(&stats_enabled) &&
+ unlikely(dm_stats_used(&md->stats))) {
+ sector_t sector;
+
+ if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
+ sector = bio->bi_iter.bi_sector;
+ else
+ sector = bio_end_sector(bio) - io->sector_offset;
+
+ dm_stats_account_io(&md->stats, bio_data_dir(bio),
+ sector, sectors,
+ end, start_time, stats_aux);
+ }
+}
+
+static void __dm_start_io_acct(struct dm_io *io)
+{
+ dm_io_acct(io, false);
+}
+
+static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
+{
+ /*
+ * Ensure IO accounting is only ever started once.
+ */
+ if (dm_io_flagged(io, DM_IO_ACCOUNTED))
+ return;
+
+ /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
+ if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
+ dm_io_set_flag(io, DM_IO_ACCOUNTED);
+ } else {
+ unsigned long flags;
+ /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
+ spin_lock_irqsave(&io->lock, flags);
+ if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
+ spin_unlock_irqrestore(&io->lock, flags);
+ return;
+ }
+ dm_io_set_flag(io, DM_IO_ACCOUNTED);
+ spin_unlock_irqrestore(&io->lock, flags);
+ }
+
+ __dm_start_io_acct(io);
+}
+
+static void dm_end_io_acct(struct dm_io *io)
+{
+ dm_io_acct(io, true);
+}
+
+static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
+{
+ struct dm_io *io;
+ struct dm_target_io *tio;
+ struct bio *clone;
+
+ clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
+ tio = clone_to_tio(clone);
+ tio->flags = 0;
+ dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
+ tio->io = NULL;
+
+ io = container_of(tio, struct dm_io, tio);
+ io->magic = DM_IO_MAGIC;
+ io->status = BLK_STS_OK;
+
+ /* one ref is for submission, the other is for completion */
+ atomic_set(&io->io_count, 2);
+ this_cpu_inc(*md->pending_io);
+ io->orig_bio = bio;
+ io->md = md;
+ spin_lock_init(&io->lock);
+ io->start_time = jiffies;
+ io->flags = 0;
+
+ if (static_branch_unlikely(&stats_enabled))
+ dm_stats_record_start(&md->stats, &io->stats_aux);
+
+ return io;
+}
+
+static void free_io(struct dm_io *io)
+{
+ bio_put(&io->tio.clone);
+}
+
+static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
+ unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
+{
+ struct mapped_device *md = ci->io->md;
+ struct dm_target_io *tio;
+ struct bio *clone;
+
+ if (!ci->io->tio.io) {
+ /* the dm_target_io embedded in ci->io is available */
+ tio = &ci->io->tio;
+ /* alloc_io() already initialized embedded clone */
+ clone = &tio->clone;
+ } else {
+ clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
+ &md->mempools->bs);
+ if (!clone)
+ return NULL;
+
+ /* REQ_DM_POLL_LIST shouldn't be inherited */
+ clone->bi_opf &= ~REQ_DM_POLL_LIST;
+
+ tio = clone_to_tio(clone);
+ tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
+ }
+
+ tio->magic = DM_TIO_MAGIC;
+ tio->io = ci->io;
+ tio->ti = ti;
+ tio->target_bio_nr = target_bio_nr;
+ tio->len_ptr = len;
+ tio->old_sector = 0;
+
+ /* Set default bdev, but target must bio_set_dev() before issuing IO */
+ clone->bi_bdev = md->disk->part0;
+ if (unlikely(ti->needs_bio_set_dev))
+ bio_set_dev(clone, md->disk->part0);
+
+ if (len) {
+ clone->bi_iter.bi_size = to_bytes(*len);
+ if (bio_integrity(clone))
+ bio_integrity_trim(clone);
+ }
+
+ return clone;
+}
+
+static void free_tio(struct bio *clone)
+{
+ if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
+ return;
+ bio_put(clone);
+}
+
+/*
+ * Add the bio to the list of deferred io.
+ */
+static void queue_io(struct mapped_device *md, struct bio *bio)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&md->deferred_lock, flags);
+ bio_list_add(&md->deferred, bio);
+ spin_unlock_irqrestore(&md->deferred_lock, flags);
+ queue_work(md->wq, &md->work);
+}
+
+/*
+ * Everyone (including functions in this file), should use this
+ * function to access the md->map field, and make sure they call
+ * dm_put_live_table() when finished.
+ */
+struct dm_table *dm_get_live_table(struct mapped_device *md,
+ int *srcu_idx) __acquires(md->io_barrier)
+{
+ *srcu_idx = srcu_read_lock(&md->io_barrier);
+
+ return srcu_dereference(md->map, &md->io_barrier);
+}
+
+void dm_put_live_table(struct mapped_device *md,
+ int srcu_idx) __releases(md->io_barrier)
+{
+ srcu_read_unlock(&md->io_barrier, srcu_idx);
+}
+
+void dm_sync_table(struct mapped_device *md)
+{
+ synchronize_srcu(&md->io_barrier);
+ synchronize_rcu_expedited();
+}
+
+/*
+ * A fast alternative to dm_get_live_table/dm_put_live_table.
+ * The caller must not block between these two functions.
+ */
+static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
+{
+ rcu_read_lock();
+ return rcu_dereference(md->map);
+}
+
+static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
+{
+ rcu_read_unlock();
+}
+
+static char *_dm_claim_ptr = "I belong to device-mapper";
+
+/*
+ * Open a table device so we can use it as a map destination.
+ */
+static struct table_device *open_table_device(struct mapped_device *md,
+ dev_t dev, fmode_t mode)
+{
+ struct table_device *td;
+ struct block_device *bdev;
+ u64 part_off;
+ int r;
+
+ td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
+ if (!td)
+ return ERR_PTR(-ENOMEM);
+ refcount_set(&td->count, 1);
+
+ bdev = blkdev_get_by_dev(dev, mode | FMODE_EXCL, _dm_claim_ptr);
+ if (IS_ERR(bdev)) {
+ r = PTR_ERR(bdev);
+ goto out_free_td;
+ }
+
+ /*
+ * We can be called before the dm disk is added. In that case we can't
+ * register the holder relation here. It will be done once add_disk was
+ * called.
+ */
+ if (md->disk->slave_dir) {
+ r = bd_link_disk_holder(bdev, md->disk);
+ if (r)
+ goto out_blkdev_put;
+ }
+
+ td->dm_dev.mode = mode;
+ td->dm_dev.bdev = bdev;
+ td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
+ format_dev_t(td->dm_dev.name, dev);
+ list_add(&td->list, &md->table_devices);
+ return td;
+
+out_blkdev_put:
+ blkdev_put(bdev, mode | FMODE_EXCL);
+out_free_td:
+ kfree(td);
+ return ERR_PTR(r);
+}
+
+/*
+ * Close a table device that we've been using.
+ */
+static void close_table_device(struct table_device *td, struct mapped_device *md)
+{
+ if (md->disk->slave_dir)
+ bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
+ blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
+ put_dax(td->dm_dev.dax_dev);
+ list_del(&td->list);
+ kfree(td);
+}
+
+static struct table_device *find_table_device(struct list_head *l, dev_t dev,
+ fmode_t mode)
+{
+ struct table_device *td;
+
+ list_for_each_entry(td, l, list)
+ if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
+ return td;
+
+ return NULL;
+}
+
+int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
+ struct dm_dev **result)
+{
+ struct table_device *td;
+
+ mutex_lock(&md->table_devices_lock);
+ td = find_table_device(&md->table_devices, dev, mode);
+ if (!td) {
+ td = open_table_device(md, dev, mode);
+ if (IS_ERR(td)) {
+ mutex_unlock(&md->table_devices_lock);
+ return PTR_ERR(td);
+ }
+ } else {
+ refcount_inc(&td->count);
+ }
+ mutex_unlock(&md->table_devices_lock);
+
+ *result = &td->dm_dev;
+ return 0;
+}
+
+void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
+{
+ struct table_device *td = container_of(d, struct table_device, dm_dev);
+
+ mutex_lock(&md->table_devices_lock);
+ if (refcount_dec_and_test(&td->count))
+ close_table_device(td, md);
+ mutex_unlock(&md->table_devices_lock);
+}
+
+static void free_table_devices(struct list_head *devices)
+{
+ struct list_head *tmp, *next;
+
+ list_for_each_safe(tmp, next, devices) {
+ struct table_device *td = list_entry(tmp, struct table_device, list);
+
+ DMWARN("dm_destroy: %s still exists with %d references",
+ td->dm_dev.name, refcount_read(&td->count));
+ kfree(td);
+ }
+}
+
+/*
+ * Get the geometry associated with a dm device
+ */
+int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
+{
+ *geo = md->geometry;
+
+ return 0;
+}
+
+/*
+ * Set the geometry of a device.
+ */
+int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
+{
+ sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
+
+ if (geo->start > sz) {
+ DMERR("Start sector is beyond the geometry limits.");
+ return -EINVAL;
+ }
+
+ md->geometry = *geo;
+
+ return 0;
+}
+
+static int __noflush_suspending(struct mapped_device *md)
+{
+ return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
+}
+
+static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
+{
+ struct mapped_device *md = io->md;
+
+ if (first_stage) {
+ struct dm_io *next = md->requeue_list;
+
+ md->requeue_list = io;
+ io->next = next;
+ } else {
+ bio_list_add_head(&md->deferred, io->orig_bio);
+ }
+}
+
+static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
+{
+ if (first_stage)
+ queue_work(md->wq, &md->requeue_work);
+ else
+ queue_work(md->wq, &md->work);
+}
+
+/*
+ * Return true if the dm_io's original bio is requeued.
+ * io->status is updated with error if requeue disallowed.
+ */
+static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
+{
+ struct bio *bio = io->orig_bio;
+ bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
+ bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
+ (bio->bi_opf & REQ_POLLED));
+ struct mapped_device *md = io->md;
+ bool requeued = false;
+
+ if (handle_requeue || handle_polled_eagain) {
+ unsigned long flags;
+
+ if (bio->bi_opf & REQ_POLLED) {
+ /*
+ * Upper layer won't help us poll split bio
+ * (io->orig_bio may only reflect a subset of the
+ * pre-split original) so clear REQ_POLLED.
+ */
+ bio_clear_polled(bio);
+ }
+
+ /*
+ * Target requested pushing back the I/O or
+ * polled IO hit BLK_STS_AGAIN.
+ */
+ spin_lock_irqsave(&md->deferred_lock, flags);
+ if ((__noflush_suspending(md) &&
+ !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
+ handle_polled_eagain || first_stage) {
+ dm_requeue_add_io(io, first_stage);
+ requeued = true;
+ } else {
+ /*
+ * noflush suspend was interrupted or this is
+ * a write to a zoned target.
+ */
+ io->status = BLK_STS_IOERR;
+ }
+ spin_unlock_irqrestore(&md->deferred_lock, flags);
+ }
+
+ if (requeued)
+ dm_kick_requeue(md, first_stage);
+
+ return requeued;
+}
+
+static void __dm_io_complete(struct dm_io *io, bool first_stage)
+{
+ struct bio *bio = io->orig_bio;
+ struct mapped_device *md = io->md;
+ blk_status_t io_error;
+ bool requeued;
+
+ requeued = dm_handle_requeue(io, first_stage);
+ if (requeued && first_stage)
+ return;
+
+ io_error = io->status;
+ if (dm_io_flagged(io, DM_IO_ACCOUNTED))
+ dm_end_io_acct(io);
+ else if (!io_error) {
+ /*
+ * Must handle target that DM_MAPIO_SUBMITTED only to
+ * then bio_endio() rather than dm_submit_bio_remap()
+ */
+ __dm_start_io_acct(io);
+ dm_end_io_acct(io);
+ }
+ free_io(io);
+ smp_wmb();
+ this_cpu_dec(*md->pending_io);
+
+ /* nudge anyone waiting on suspend queue */
+ if (unlikely(wq_has_sleeper(&md->wait)))
+ wake_up(&md->wait);
+
+ /* Return early if the original bio was requeued */
+ if (requeued)
+ return;
+
+ if (bio_is_flush_with_data(bio)) {
+ /*
+ * Preflush done for flush with data, reissue
+ * without REQ_PREFLUSH.
+ */
+ bio->bi_opf &= ~REQ_PREFLUSH;
+ queue_io(md, bio);
+ } else {
+ /* done with normal IO or empty flush */
+ if (io_error)
+ bio->bi_status = io_error;
+ bio_endio(bio);
+ }
+}
+
+static void dm_wq_requeue_work(struct work_struct *work)
+{
+ struct mapped_device *md = container_of(work, struct mapped_device,
+ requeue_work);
+ unsigned long flags;
+ struct dm_io *io;
+
+ /* reuse deferred lock to simplify dm_handle_requeue */
+ spin_lock_irqsave(&md->deferred_lock, flags);
+ io = md->requeue_list;
+ md->requeue_list = NULL;
+ spin_unlock_irqrestore(&md->deferred_lock, flags);
+
+ while (io) {
+ struct dm_io *next = io->next;
+
+ dm_io_rewind(io, &md->disk->bio_split);
+
+ io->next = NULL;
+ __dm_io_complete(io, false);
+ io = next;
+ cond_resched();
+ }
+}
+
+/*
+ * Two staged requeue:
+ *
+ * 1) io->orig_bio points to the real original bio, and the part mapped to
+ * this io must be requeued, instead of other parts of the original bio.
+ *
+ * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
+ */
+static void dm_io_complete(struct dm_io *io)
+{
+ bool first_requeue;
+
+ /*
+ * Only dm_io that has been split needs two stage requeue, otherwise
+ * we may run into long bio clone chain during suspend and OOM could
+ * be triggered.
+ *
+ * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
+ * also aren't handled via the first stage requeue.
+ */
+ if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
+ first_requeue = true;
+ else
+ first_requeue = false;
+
+ __dm_io_complete(io, first_requeue);
+}
+
+/*
+ * Decrements the number of outstanding ios that a bio has been
+ * cloned into, completing the original io if necc.
+ */
+static inline void __dm_io_dec_pending(struct dm_io *io)
+{
+ if (atomic_dec_and_test(&io->io_count))
+ dm_io_complete(io);
+}
+
+static void dm_io_set_error(struct dm_io *io, blk_status_t error)
+{
+ unsigned long flags;
+
+ /* Push-back supersedes any I/O errors */
+ spin_lock_irqsave(&io->lock, flags);
+ if (!(io->status == BLK_STS_DM_REQUEUE &&
+ __noflush_suspending(io->md))) {
+ io->status = error;
+ }
+ spin_unlock_irqrestore(&io->lock, flags);
+}
+
+static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
+{
+ if (unlikely(error))
+ dm_io_set_error(io, error);
+
+ __dm_io_dec_pending(io);
+}
+
+void disable_discard(struct mapped_device *md)
+{
+ struct queue_limits *limits = dm_get_queue_limits(md);
+
+ /* device doesn't really support DISCARD, disable it */
+ limits->max_discard_sectors = 0;
+}
+
+void disable_write_zeroes(struct mapped_device *md)
+{
+ struct queue_limits *limits = dm_get_queue_limits(md);
+
+ /* device doesn't really support WRITE ZEROES, disable it */
+ limits->max_write_zeroes_sectors = 0;
+}
+
+static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
+{
+ return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
+}
+
+static void clone_endio(struct bio *bio)
+{
+ blk_status_t error = bio->bi_status;
+ struct dm_target_io *tio = clone_to_tio(bio);
+ struct dm_target *ti = tio->ti;
+ dm_endio_fn endio = ti->type->end_io;
+ struct dm_io *io = tio->io;
+ struct mapped_device *md = io->md;
+
+ if (unlikely(error == BLK_STS_TARGET)) {
+ if (bio_op(bio) == REQ_OP_DISCARD &&
+ !bdev_max_discard_sectors(bio->bi_bdev))
+ disable_discard(md);
+ else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
+ !bdev_write_zeroes_sectors(bio->bi_bdev))
+ disable_write_zeroes(md);
+ }
+
+ if (static_branch_unlikely(&zoned_enabled) &&
+ unlikely(bdev_is_zoned(bio->bi_bdev)))
+ dm_zone_endio(io, bio);
+
+ if (endio) {
+ int r = endio(ti, bio, &error);
+ switch (r) {
+ case DM_ENDIO_REQUEUE:
+ if (static_branch_unlikely(&zoned_enabled)) {
+ /*
+ * Requeuing writes to a sequential zone of a zoned
+ * target will break the sequential write pattern:
+ * fail such IO.
+ */
+ if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
+ error = BLK_STS_IOERR;
+ else
+ error = BLK_STS_DM_REQUEUE;
+ } else
+ error = BLK_STS_DM_REQUEUE;
+ fallthrough;
+ case DM_ENDIO_DONE:
+ break;
+ case DM_ENDIO_INCOMPLETE:
+ /* The target will handle the io */
+ return;
+ default:
+ DMCRIT("unimplemented target endio return value: %d", r);
+ BUG();
+ }
+ }
+
+ if (static_branch_unlikely(&swap_bios_enabled) &&
+ unlikely(swap_bios_limit(ti, bio)))
+ up(&md->swap_bios_semaphore);
+
+ free_tio(bio);
+ dm_io_dec_pending(io, error);
+}
+
+/*
+ * Return maximum size of I/O possible at the supplied sector up to the current
+ * target boundary.
+ */
+static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
+ sector_t target_offset)
+{
+ return ti->len - target_offset;
+}
+
+static sector_t max_io_len(struct dm_target *ti, sector_t sector)
+{
+ sector_t target_offset = dm_target_offset(ti, sector);
+ sector_t len = max_io_len_target_boundary(ti, target_offset);
+
+ /*
+ * Does the target need to split IO even further?
+ * - varied (per target) IO splitting is a tenet of DM; this
+ * explains why stacked chunk_sectors based splitting via
+ * bio_split_to_limits() isn't possible here.
+ */
+ if (!ti->max_io_len)
+ return len;
+ return min_t(sector_t, len,
+ min(queue_max_sectors(ti->table->md->queue),
+ blk_chunk_sectors_left(target_offset, ti->max_io_len)));
+}
+
+int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
+{
+ if (len > UINT_MAX) {
+ DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
+ (unsigned long long)len, UINT_MAX);
+ ti->error = "Maximum size of target IO is too large";
+ return -EINVAL;
+ }
+
+ ti->max_io_len = (uint32_t) len;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
+
+static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
+ sector_t sector, int *srcu_idx)
+ __acquires(md->io_barrier)
+{
+ struct dm_table *map;
+ struct dm_target *ti;
+
+ map = dm_get_live_table(md, srcu_idx);
+ if (!map)
+ return NULL;
+
+ ti = dm_table_find_target(map, sector);
+ if (!ti)
+ return NULL;
+
+ return ti;
+}
+
+static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
+ long nr_pages, enum dax_access_mode mode, void **kaddr,
+ pfn_t *pfn)
+{
+ struct mapped_device *md = dax_get_private(dax_dev);
+ sector_t sector = pgoff * PAGE_SECTORS;
+ struct dm_target *ti;
+ long len, ret = -EIO;
+ int srcu_idx;
+
+ ti = dm_dax_get_live_target(md, sector, &srcu_idx);
+
+ if (!ti)
+ goto out;
+ if (!ti->type->direct_access)
+ goto out;
+ len = max_io_len(ti, sector) / PAGE_SECTORS;
+ if (len < 1)
+ goto out;
+ nr_pages = min(len, nr_pages);
+ ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
+
+ out:
+ dm_put_live_table(md, srcu_idx);
+
+ return ret;
+}
+
+static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
+ size_t nr_pages)
+{
+ struct mapped_device *md = dax_get_private(dax_dev);
+ sector_t sector = pgoff * PAGE_SECTORS;
+ struct dm_target *ti;
+ int ret = -EIO;
+ int srcu_idx;
+
+ ti = dm_dax_get_live_target(md, sector, &srcu_idx);
+
+ if (!ti)
+ goto out;
+ if (WARN_ON(!ti->type->dax_zero_page_range)) {
+ /*
+ * ->zero_page_range() is mandatory dax operation. If we are
+ * here, something is wrong.
+ */
+ goto out;
+ }
+ ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
+ out:
+ dm_put_live_table(md, srcu_idx);
+
+ return ret;
+}
+
+static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
+ void *addr, size_t bytes, struct iov_iter *i)
+{
+ struct mapped_device *md = dax_get_private(dax_dev);
+ sector_t sector = pgoff * PAGE_SECTORS;
+ struct dm_target *ti;
+ int srcu_idx;
+ long ret = 0;
+
+ ti = dm_dax_get_live_target(md, sector, &srcu_idx);
+ if (!ti || !ti->type->dax_recovery_write)
+ goto out;
+
+ ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
+out:
+ dm_put_live_table(md, srcu_idx);
+ return ret;
+}
+
+/*
+ * A target may call dm_accept_partial_bio only from the map routine. It is
+ * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
+ * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
+ * __send_duplicate_bios().
+ *
+ * dm_accept_partial_bio informs the dm that the target only wants to process
+ * additional n_sectors sectors of the bio and the rest of the data should be
+ * sent in a next bio.
+ *
+ * A diagram that explains the arithmetics:
+ * +--------------------+---------------+-------+
+ * | 1 | 2 | 3 |
+ * +--------------------+---------------+-------+
+ *
+ * <-------------- *tio->len_ptr --------------->
+ * <----- bio_sectors ----->
+ * <-- n_sectors -->
+ *
+ * Region 1 was already iterated over with bio_advance or similar function.
+ * (it may be empty if the target doesn't use bio_advance)
+ * Region 2 is the remaining bio size that the target wants to process.
+ * (it may be empty if region 1 is non-empty, although there is no reason
+ * to make it empty)
+ * The target requires that region 3 is to be sent in the next bio.
+ *
+ * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
+ * the partially processed part (the sum of regions 1+2) must be the same for all
+ * copies of the bio.
+ */
+void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
+{
+ struct dm_target_io *tio = clone_to_tio(bio);
+ struct dm_io *io = tio->io;
+ unsigned int bio_sectors = bio_sectors(bio);
+
+ BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
+ BUG_ON(op_is_zone_mgmt(bio_op(bio)));
+ BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
+ BUG_ON(bio_sectors > *tio->len_ptr);
+ BUG_ON(n_sectors > bio_sectors);
+
+ *tio->len_ptr -= bio_sectors - n_sectors;
+ bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
+
+ /*
+ * __split_and_process_bio() may have already saved mapped part
+ * for accounting but it is being reduced so update accordingly.
+ */
+ dm_io_set_flag(io, DM_IO_WAS_SPLIT);
+ io->sectors = n_sectors;
+ io->sector_offset = bio_sectors(io->orig_bio);
+}
+EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
+
+/*
+ * @clone: clone bio that DM core passed to target's .map function
+ * @tgt_clone: clone of @clone bio that target needs submitted
+ *
+ * Targets should use this interface to submit bios they take
+ * ownership of when returning DM_MAPIO_SUBMITTED.
+ *
+ * Target should also enable ti->accounts_remapped_io
+ */
+void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
+{
+ struct dm_target_io *tio = clone_to_tio(clone);
+ struct dm_io *io = tio->io;
+
+ /* establish bio that will get submitted */
+ if (!tgt_clone)
+ tgt_clone = clone;
+
+ /*
+ * Account io->origin_bio to DM dev on behalf of target
+ * that took ownership of IO with DM_MAPIO_SUBMITTED.
+ */
+ dm_start_io_acct(io, clone);
+
+ trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
+ tio->old_sector);
+ submit_bio_noacct(tgt_clone);
+}
+EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
+
+static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
+{
+ mutex_lock(&md->swap_bios_lock);
+ while (latch < md->swap_bios) {
+ cond_resched();
+ down(&md->swap_bios_semaphore);
+ md->swap_bios--;
+ }
+ while (latch > md->swap_bios) {
+ cond_resched();
+ up(&md->swap_bios_semaphore);
+ md->swap_bios++;
+ }
+ mutex_unlock(&md->swap_bios_lock);
+}
+
+static void __map_bio(struct bio *clone)
+{
+ struct dm_target_io *tio = clone_to_tio(clone);
+ struct dm_target *ti = tio->ti;
+ struct dm_io *io = tio->io;
+ struct mapped_device *md = io->md;
+ int r;
+
+ clone->bi_end_io = clone_endio;
+
+ /*
+ * Map the clone.
+ */
+ tio->old_sector = clone->bi_iter.bi_sector;
+
+ if (static_branch_unlikely(&swap_bios_enabled) &&
+ unlikely(swap_bios_limit(ti, clone))) {
+ int latch = get_swap_bios();
+ if (unlikely(latch != md->swap_bios))
+ __set_swap_bios_limit(md, latch);
+ down(&md->swap_bios_semaphore);
+ }
+
+ if (static_branch_unlikely(&zoned_enabled)) {
+ /*
+ * Check if the IO needs a special mapping due to zone append
+ * emulation on zoned target. In this case, dm_zone_map_bio()
+ * calls the target map operation.
+ */
+ if (unlikely(dm_emulate_zone_append(md)))
+ r = dm_zone_map_bio(tio);
+ else
+ r = ti->type->map(ti, clone);
+ } else
+ r = ti->type->map(ti, clone);
+
+ switch (r) {
+ case DM_MAPIO_SUBMITTED:
+ /* target has assumed ownership of this io */
+ if (!ti->accounts_remapped_io)
+ dm_start_io_acct(io, clone);
+ break;
+ case DM_MAPIO_REMAPPED:
+ dm_submit_bio_remap(clone, NULL);
+ break;
+ case DM_MAPIO_KILL:
+ case DM_MAPIO_REQUEUE:
+ if (static_branch_unlikely(&swap_bios_enabled) &&
+ unlikely(swap_bios_limit(ti, clone)))
+ up(&md->swap_bios_semaphore);
+ free_tio(clone);
+ if (r == DM_MAPIO_KILL)
+ dm_io_dec_pending(io, BLK_STS_IOERR);
+ else
+ dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
+ break;
+ default:
+ DMCRIT("unimplemented target map return value: %d", r);
+ BUG();
+ }
+}
+
+static void setup_split_accounting(struct clone_info *ci, unsigned int len)
+{
+ struct dm_io *io = ci->io;
+
+ if (ci->sector_count > len) {
+ /*
+ * Split needed, save the mapped part for accounting.
+ * NOTE: dm_accept_partial_bio() will update accordingly.
+ */
+ dm_io_set_flag(io, DM_IO_WAS_SPLIT);
+ io->sectors = len;
+ io->sector_offset = bio_sectors(ci->bio);
+ }
+}
+
+static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
+ struct dm_target *ti, unsigned int num_bios,
+ unsigned *len)
+{
+ struct bio *bio;
+ int try;
+
+ for (try = 0; try < 2; try++) {
+ int bio_nr;
+
+ if (try)
+ mutex_lock(&ci->io->md->table_devices_lock);
+ for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
+ bio = alloc_tio(ci, ti, bio_nr, len,
+ try ? GFP_NOIO : GFP_NOWAIT);
+ if (!bio)
+ break;
+
+ bio_list_add(blist, bio);
+ }
+ if (try)
+ mutex_unlock(&ci->io->md->table_devices_lock);
+ if (bio_nr == num_bios)
+ return;
+
+ while ((bio = bio_list_pop(blist)))
+ free_tio(bio);
+ }
+}
+
+static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
+ unsigned int num_bios, unsigned int *len)
+{
+ struct bio_list blist = BIO_EMPTY_LIST;
+ struct bio *clone;
+ unsigned int ret = 0;
+
+ switch (num_bios) {
+ case 0:
+ break;
+ case 1:
+ if (len)
+ setup_split_accounting(ci, *len);
+ clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
+ __map_bio(clone);
+ ret = 1;
+ break;
+ default:
+ if (len)
+ setup_split_accounting(ci, *len);
+ /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
+ alloc_multiple_bios(&blist, ci, ti, num_bios, len);
+ while ((clone = bio_list_pop(&blist))) {
+ dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
+ __map_bio(clone);
+ ret += 1;
+ }
+ break;
+ }
+
+ return ret;
+}
+
+static void __send_empty_flush(struct clone_info *ci)
+{
+ struct dm_table *t = ci->map;
+ struct bio flush_bio;
+
+ /*
+ * Use an on-stack bio for this, it's safe since we don't
+ * need to reference it after submit. It's just used as
+ * the basis for the clone(s).
+ */
+ bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
+ REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
+
+ ci->bio = &flush_bio;
+ ci->sector_count = 0;
+ ci->io->tio.clone.bi_iter.bi_size = 0;
+
+ for (unsigned int i = 0; i < t->num_targets; i++) {
+ unsigned int bios;
+ struct dm_target *ti = dm_table_get_target(t, i);
+
+ atomic_add(ti->num_flush_bios, &ci->io->io_count);
+ bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
+ atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
+ }
+
+ /*
+ * alloc_io() takes one extra reference for submission, so the
+ * reference won't reach 0 without the following subtraction
+ */
+ atomic_sub(1, &ci->io->io_count);
+
+ bio_uninit(ci->bio);
+}
+
+static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
+ unsigned int num_bios)
+{
+ unsigned int len, bios;
+
+ len = min_t(sector_t, ci->sector_count,
+ max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
+
+ atomic_add(num_bios, &ci->io->io_count);
+ bios = __send_duplicate_bios(ci, ti, num_bios, &len);
+ /*
+ * alloc_io() takes one extra reference for submission, so the
+ * reference won't reach 0 without the following (+1) subtraction
+ */
+ atomic_sub(num_bios - bios + 1, &ci->io->io_count);
+
+ ci->sector += len;
+ ci->sector_count -= len;
+}
+
+static bool is_abnormal_io(struct bio *bio)
+{
+ enum req_op op = bio_op(bio);
+
+ if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
+ switch (op) {
+ case REQ_OP_DISCARD:
+ case REQ_OP_SECURE_ERASE:
+ case REQ_OP_WRITE_ZEROES:
+ return true;
+ default:
+ break;
+ }
+ }
+
+ return false;
+}
+
+static blk_status_t __process_abnormal_io(struct clone_info *ci,
+ struct dm_target *ti)
+{
+ unsigned int num_bios = 0;
+
+ switch (bio_op(ci->bio)) {
+ case REQ_OP_DISCARD:
+ num_bios = ti->num_discard_bios;
+ break;
+ case REQ_OP_SECURE_ERASE:
+ num_bios = ti->num_secure_erase_bios;
+ break;
+ case REQ_OP_WRITE_ZEROES:
+ num_bios = ti->num_write_zeroes_bios;
+ break;
+ default:
+ break;
+ }
+
+ /*
+ * Even though the device advertised support for this type of
+ * request, that does not mean every target supports it, and
+ * reconfiguration might also have changed that since the
+ * check was performed.
+ */
+ if (unlikely(!num_bios))
+ return BLK_STS_NOTSUPP;
+
+ __send_changing_extent_only(ci, ti, num_bios);
+ return BLK_STS_OK;
+}
+
+/*
+ * Reuse ->bi_private as dm_io list head for storing all dm_io instances
+ * associated with this bio, and this bio's bi_private needs to be
+ * stored in dm_io->data before the reuse.
+ *
+ * bio->bi_private is owned by fs or upper layer, so block layer won't
+ * touch it after splitting. Meantime it won't be changed by anyone after
+ * bio is submitted. So this reuse is safe.
+ */
+static inline struct dm_io **dm_poll_list_head(struct bio *bio)
+{
+ return (struct dm_io **)&bio->bi_private;
+}
+
+static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
+{
+ struct dm_io **head = dm_poll_list_head(bio);
+
+ if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
+ bio->bi_opf |= REQ_DM_POLL_LIST;
+ /*
+ * Save .bi_private into dm_io, so that we can reuse
+ * .bi_private as dm_io list head for storing dm_io list
+ */
+ io->data = bio->bi_private;
+
+ /* tell block layer to poll for completion */
+ bio->bi_cookie = ~BLK_QC_T_NONE;
+
+ io->next = NULL;
+ } else {
+ /*
+ * bio recursed due to split, reuse original poll list,
+ * and save bio->bi_private too.
+ */
+ io->data = (*head)->data;
+ io->next = *head;
+ }
+
+ *head = io;
+}
+
+/*
+ * Select the correct strategy for processing a non-flush bio.
+ */
+static blk_status_t __split_and_process_bio(struct clone_info *ci)
+{
+ struct bio *clone;
+ struct dm_target *ti;
+ unsigned int len;
+
+ ti = dm_table_find_target(ci->map, ci->sector);
+ if (unlikely(!ti))
+ return BLK_STS_IOERR;
+
+ if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
+ unlikely(!dm_target_supports_nowait(ti->type)))
+ return BLK_STS_NOTSUPP;
+
+ if (unlikely(ci->is_abnormal_io))
+ return __process_abnormal_io(ci, ti);
+
+ /*
+ * Only support bio polling for normal IO, and the target io is
+ * exactly inside the dm_io instance (verified in dm_poll_dm_io)
+ */
+ ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
+
+ len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
+ setup_split_accounting(ci, len);
+ clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
+ __map_bio(clone);
+
+ ci->sector += len;
+ ci->sector_count -= len;
+
+ return BLK_STS_OK;
+}
+
+static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
+ struct dm_table *map, struct bio *bio, bool is_abnormal)
+{
+ ci->map = map;
+ ci->io = alloc_io(md, bio);
+ ci->bio = bio;
+ ci->is_abnormal_io = is_abnormal;
+ ci->submit_as_polled = false;
+ ci->sector = bio->bi_iter.bi_sector;
+ ci->sector_count = bio_sectors(bio);
+
+ /* Shouldn't happen but sector_count was being set to 0 so... */
+ if (static_branch_unlikely(&zoned_enabled) &&
+ WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
+ ci->sector_count = 0;
+}
+
+/*
+ * Entry point to split a bio into clones and submit them to the targets.
+ */
+static void dm_split_and_process_bio(struct mapped_device *md,
+ struct dm_table *map, struct bio *bio)
+{
+ struct clone_info ci;
+ struct dm_io *io;
+ blk_status_t error = BLK_STS_OK;
+ bool is_abnormal;
+
+ is_abnormal = is_abnormal_io(bio);
+ if (unlikely(is_abnormal)) {
+ /*
+ * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
+ * otherwise associated queue_limits won't be imposed.
+ */
+ bio = bio_split_to_limits(bio);
+ if (!bio)
+ return;
+ }
+
+ init_clone_info(&ci, md, map, bio, is_abnormal);
+ io = ci.io;
+
+ if (bio->bi_opf & REQ_PREFLUSH) {
+ __send_empty_flush(&ci);
+ /* dm_io_complete submits any data associated with flush */
+ goto out;
+ }
+
+ error = __split_and_process_bio(&ci);
+ if (error || !ci.sector_count)
+ goto out;
+ /*
+ * Remainder must be passed to submit_bio_noacct() so it gets handled
+ * *after* bios already submitted have been completely processed.
+ */
+ bio_trim(bio, io->sectors, ci.sector_count);
+ trace_block_split(bio, bio->bi_iter.bi_sector);
+ bio_inc_remaining(bio);
+ submit_bio_noacct(bio);
+out:
+ /*
+ * Drop the extra reference count for non-POLLED bio, and hold one
+ * reference for POLLED bio, which will be released in dm_poll_bio
+ *
+ * Add every dm_io instance into the dm_io list head which is stored
+ * in bio->bi_private, so that dm_poll_bio can poll them all.
+ */
+ if (error || !ci.submit_as_polled) {
+ /*
+ * In case of submission failure, the extra reference for
+ * submitting io isn't consumed yet
+ */
+ if (error)
+ atomic_dec(&io->io_count);
+ dm_io_dec_pending(io, error);
+ } else
+ dm_queue_poll_io(bio, io);
+}
+
+static void dm_submit_bio(struct bio *bio)
+{
+ struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
+ int srcu_idx;
+ struct dm_table *map;
+
+ map = dm_get_live_table(md, &srcu_idx);
+
+ /* If suspended, or map not yet available, queue this IO for later */
+ if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
+ unlikely(!map)) {
+ if (bio->bi_opf & REQ_NOWAIT)
+ bio_wouldblock_error(bio);
+ else if (bio->bi_opf & REQ_RAHEAD)
+ bio_io_error(bio);
+ else
+ queue_io(md, bio);
+ goto out;
+ }
+
+ dm_split_and_process_bio(md, map, bio);
+out:
+ dm_put_live_table(md, srcu_idx);
+}
+
+static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
+ unsigned int flags)
+{
+ WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
+
+ /* don't poll if the mapped io is done */
+ if (atomic_read(&io->io_count) > 1)
+ bio_poll(&io->tio.clone, iob, flags);
+
+ /* bio_poll holds the last reference */
+ return atomic_read(&io->io_count) == 1;
+}
+
+static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
+ unsigned int flags)
+{
+ struct dm_io **head = dm_poll_list_head(bio);
+ struct dm_io *list = *head;
+ struct dm_io *tmp = NULL;
+ struct dm_io *curr, *next;
+
+ /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
+ if (!(bio->bi_opf & REQ_DM_POLL_LIST))
+ return 0;
+
+ WARN_ON_ONCE(!list);
+
+ /*
+ * Restore .bi_private before possibly completing dm_io.
+ *
+ * bio_poll() is only possible once @bio has been completely
+ * submitted via submit_bio_noacct()'s depth-first submission.
+ * So there is no dm_queue_poll_io() race associated with
+ * clearing REQ_DM_POLL_LIST here.
+ */
+ bio->bi_opf &= ~REQ_DM_POLL_LIST;
+ bio->bi_private = list->data;
+
+ for (curr = list, next = curr->next; curr; curr = next, next =
+ curr ? curr->next : NULL) {
+ if (dm_poll_dm_io(curr, iob, flags)) {
+ /*
+ * clone_endio() has already occurred, so no
+ * error handling is needed here.
+ */
+ __dm_io_dec_pending(curr);
+ } else {
+ curr->next = tmp;
+ tmp = curr;
+ }
+ }
+
+ /* Not done? */
+ if (tmp) {
+ bio->bi_opf |= REQ_DM_POLL_LIST;
+ /* Reset bio->bi_private to dm_io list head */
+ *head = tmp;
+ return 0;
+ }
+ return 1;
+}
+
+/*-----------------------------------------------------------------
+ * An IDR is used to keep track of allocated minor numbers.
+ *---------------------------------------------------------------*/
+static void free_minor(int minor)
+{
+ spin_lock(&_minor_lock);
+ idr_remove(&_minor_idr, minor);
+ spin_unlock(&_minor_lock);
+}
+
+/*
+ * See if the device with a specific minor # is free.
+ */
+static int specific_minor(int minor)
+{
+ int r;
+
+ if (minor >= (1 << MINORBITS))
+ return -EINVAL;
+
+ idr_preload(GFP_KERNEL);
+ spin_lock(&_minor_lock);
+
+ r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
+
+ spin_unlock(&_minor_lock);
+ idr_preload_end();
+ if (r < 0)
+ return r == -ENOSPC ? -EBUSY : r;
+ return 0;
+}
+
+static int next_free_minor(int *minor)
+{
+ int r;
+
+ idr_preload(GFP_KERNEL);
+ spin_lock(&_minor_lock);
+
+ r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
+
+ spin_unlock(&_minor_lock);
+ idr_preload_end();
+ if (r < 0)
+ return r;
+ *minor = r;
+ return 0;
+}
+
+static const struct block_device_operations dm_blk_dops;
+static const struct block_device_operations dm_rq_blk_dops;
+static const struct dax_operations dm_dax_ops;
+
+static void dm_wq_work(struct work_struct *work);
+
+#ifdef CONFIG_BLK_INLINE_ENCRYPTION
+static void dm_queue_destroy_crypto_profile(struct request_queue *q)
+{
+ dm_destroy_crypto_profile(q->crypto_profile);
+}
+
+#else /* CONFIG_BLK_INLINE_ENCRYPTION */
+
+static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
+{
+}
+#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
+
+static void cleanup_mapped_device(struct mapped_device *md)
+{
+ if (md->wq)
+ destroy_workqueue(md->wq);
+ dm_free_md_mempools(md->mempools);
+
+ if (md->dax_dev) {
+ dax_remove_host(md->disk);
+ kill_dax(md->dax_dev);
+ put_dax(md->dax_dev);
+ md->dax_dev = NULL;
+ }
+
+ dm_cleanup_zoned_dev(md);
+ if (md->disk) {
+ spin_lock(&_minor_lock);
+ md->disk->private_data = NULL;
+ spin_unlock(&_minor_lock);
+ if (dm_get_md_type(md) != DM_TYPE_NONE) {
+ struct table_device *td;
+
+ dm_sysfs_exit(md);
+ list_for_each_entry(td, &md->table_devices, list) {
+ bd_unlink_disk_holder(td->dm_dev.bdev,
+ md->disk);
+ }
+
+ /*
+ * Hold lock to make sure del_gendisk() won't concurrent
+ * with open/close_table_device().
+ */
+ mutex_lock(&md->table_devices_lock);
+ del_gendisk(md->disk);
+ mutex_unlock(&md->table_devices_lock);
+ }
+ dm_queue_destroy_crypto_profile(md->queue);
+ put_disk(md->disk);
+ }
+
+ if (md->pending_io) {
+ free_percpu(md->pending_io);
+ md->pending_io = NULL;
+ }
+
+ cleanup_srcu_struct(&md->io_barrier);
+
+ mutex_destroy(&md->suspend_lock);
+ mutex_destroy(&md->type_lock);
+ mutex_destroy(&md->table_devices_lock);
+ mutex_destroy(&md->swap_bios_lock);
+
+ dm_mq_cleanup_mapped_device(md);
+}
+
+/*
+ * Allocate and initialise a blank device with a given minor.
+ */
+static struct mapped_device *alloc_dev(int minor)
+{
+ int r, numa_node_id = dm_get_numa_node();
+ struct mapped_device *md;
+ void *old_md;
+
+ md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
+ if (!md) {
+ DMERR("unable to allocate device, out of memory.");
+ return NULL;
+ }
+
+ if (!try_module_get(THIS_MODULE))
+ goto bad_module_get;
+
+ /* get a minor number for the dev */
+ if (minor == DM_ANY_MINOR)
+ r = next_free_minor(&minor);
+ else
+ r = specific_minor(minor);
+ if (r < 0)
+ goto bad_minor;
+
+ r = init_srcu_struct(&md->io_barrier);
+ if (r < 0)
+ goto bad_io_barrier;
+
+ md->numa_node_id = numa_node_id;
+ md->init_tio_pdu = false;
+ md->type = DM_TYPE_NONE;
+ mutex_init(&md->suspend_lock);
+ mutex_init(&md->type_lock);
+ mutex_init(&md->table_devices_lock);
+ spin_lock_init(&md->deferred_lock);
+ atomic_set(&md->holders, 1);
+ atomic_set(&md->open_count, 0);
+ atomic_set(&md->event_nr, 0);
+ atomic_set(&md->uevent_seq, 0);
+ INIT_LIST_HEAD(&md->uevent_list);
+ INIT_LIST_HEAD(&md->table_devices);
+ spin_lock_init(&md->uevent_lock);
+
+ /*
+ * default to bio-based until DM table is loaded and md->type
+ * established. If request-based table is loaded: blk-mq will
+ * override accordingly.
+ */
+ md->disk = blk_alloc_disk(md->numa_node_id);
+ if (!md->disk)
+ goto bad;
+ md->queue = md->disk->queue;
+
+ init_waitqueue_head(&md->wait);
+ INIT_WORK(&md->work, dm_wq_work);
+ INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
+ init_waitqueue_head(&md->eventq);
+ init_completion(&md->kobj_holder.completion);
+
+ md->requeue_list = NULL;
+ md->swap_bios = get_swap_bios();
+ sema_init(&md->swap_bios_semaphore, md->swap_bios);
+ mutex_init(&md->swap_bios_lock);
+
+ md->disk->major = _major;
+ md->disk->first_minor = minor;
+ md->disk->minors = 1;
+ md->disk->flags |= GENHD_FL_NO_PART;
+ md->disk->fops = &dm_blk_dops;
+ md->disk->private_data = md;
+ sprintf(md->disk->disk_name, "dm-%d", minor);
+
+ if (IS_ENABLED(CONFIG_FS_DAX)) {
+ md->dax_dev = alloc_dax(md, &dm_dax_ops);
+ if (IS_ERR(md->dax_dev)) {
+ md->dax_dev = NULL;
+ goto bad;
+ }
+ set_dax_nocache(md->dax_dev);
+ set_dax_nomc(md->dax_dev);
+ if (dax_add_host(md->dax_dev, md->disk))
+ goto bad;
+ }
+
+ format_dev_t(md->name, MKDEV(_major, minor));
+
+ md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
+ if (!md->wq)
+ goto bad;
+
+ md->pending_io = alloc_percpu(unsigned long);
+ if (!md->pending_io)
+ goto bad;
+
+ r = dm_stats_init(&md->stats);
+ if (r < 0)
+ goto bad;
+
+ /* Populate the mapping, nobody knows we exist yet */
+ spin_lock(&_minor_lock);
+ old_md = idr_replace(&_minor_idr, md, minor);
+ spin_unlock(&_minor_lock);
+
+ BUG_ON(old_md != MINOR_ALLOCED);
+
+ return md;
+
+bad:
+ cleanup_mapped_device(md);
+bad_io_barrier:
+ free_minor(minor);
+bad_minor:
+ module_put(THIS_MODULE);
+bad_module_get:
+ kvfree(md);
+ return NULL;
+}
+
+static void unlock_fs(struct mapped_device *md);
+
+static void free_dev(struct mapped_device *md)
+{
+ int minor = MINOR(disk_devt(md->disk));
+
+ unlock_fs(md);
+
+ cleanup_mapped_device(md);
+
+ free_table_devices(&md->table_devices);
+ dm_stats_cleanup(&md->stats);
+ free_minor(minor);
+
+ module_put(THIS_MODULE);
+ kvfree(md);
+}
+
+/*
+ * Bind a table to the device.
+ */
+static void event_callback(void *context)
+{
+ unsigned long flags;
+ LIST_HEAD(uevents);
+ struct mapped_device *md = (struct mapped_device *) context;
+
+ spin_lock_irqsave(&md->uevent_lock, flags);
+ list_splice_init(&md->uevent_list, &uevents);
+ spin_unlock_irqrestore(&md->uevent_lock, flags);
+
+ dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
+
+ atomic_inc(&md->event_nr);
+ wake_up(&md->eventq);
+ dm_issue_global_event();
+}
+
+/*
+ * Returns old map, which caller must destroy.
+ */
+static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
+ struct queue_limits *limits)
+{
+ struct dm_table *old_map;
+ sector_t size;
+ int ret;
+
+ lockdep_assert_held(&md->suspend_lock);
+
+ size = dm_table_get_size(t);
+
+ /*
+ * Wipe any geometry if the size of the table changed.
+ */
+ if (size != dm_get_size(md))
+ memset(&md->geometry, 0, sizeof(md->geometry));
+
+ set_capacity(md->disk, size);
+
+ dm_table_event_callback(t, event_callback, md);
+
+ if (dm_table_request_based(t)) {
+ /*
+ * Leverage the fact that request-based DM targets are
+ * immutable singletons - used to optimize dm_mq_queue_rq.
+ */
+ md->immutable_target = dm_table_get_immutable_target(t);
+
+ /*
+ * There is no need to reload with request-based dm because the
+ * size of front_pad doesn't change.
+ *
+ * Note for future: If you are to reload bioset, prep-ed
+ * requests in the queue may refer to bio from the old bioset,
+ * so you must walk through the queue to unprep.
+ */
+ if (!md->mempools) {
+ md->mempools = t->mempools;
+ t->mempools = NULL;
+ }
+ } else {
+ /*
+ * The md may already have mempools that need changing.
+ * If so, reload bioset because front_pad may have changed
+ * because a different table was loaded.
+ */
+ dm_free_md_mempools(md->mempools);
+ md->mempools = t->mempools;
+ t->mempools = NULL;
+ }
+
+ ret = dm_table_set_restrictions(t, md->queue, limits);
+ if (ret) {
+ old_map = ERR_PTR(ret);
+ goto out;
+ }
+
+ old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
+ rcu_assign_pointer(md->map, (void *)t);
+ md->immutable_target_type = dm_table_get_immutable_target_type(t);
+
+ if (old_map)
+ dm_sync_table(md);
+out:
+ return old_map;
+}
+
+/*
+ * Returns unbound table for the caller to free.
+ */
+static struct dm_table *__unbind(struct mapped_device *md)
+{
+ struct dm_table *map = rcu_dereference_protected(md->map, 1);
+
+ if (!map)
+ return NULL;
+
+ dm_table_event_callback(map, NULL, NULL);
+ RCU_INIT_POINTER(md->map, NULL);
+ dm_sync_table(md);
+
+ return map;
+}
+
+/*
+ * Constructor for a new device.
+ */
+int dm_create(int minor, struct mapped_device **result)
+{
+ struct mapped_device *md;
+
+ md = alloc_dev(minor);
+ if (!md)
+ return -ENXIO;
+
+ dm_ima_reset_data(md);
+
+ *result = md;
+ return 0;
+}
+
+/*
+ * Functions to manage md->type.
+ * All are required to hold md->type_lock.
+ */
+void dm_lock_md_type(struct mapped_device *md)
+{
+ mutex_lock(&md->type_lock);
+}
+
+void dm_unlock_md_type(struct mapped_device *md)
+{
+ mutex_unlock(&md->type_lock);
+}
+
+void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
+{
+ BUG_ON(!mutex_is_locked(&md->type_lock));
+ md->type = type;
+}
+
+enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
+{
+ return md->type;
+}
+
+struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
+{
+ return md->immutable_target_type;
+}
+
+/*
+ * The queue_limits are only valid as long as you have a reference
+ * count on 'md'.
+ */
+struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
+{
+ BUG_ON(!atomic_read(&md->holders));
+ return &md->queue->limits;
+}
+EXPORT_SYMBOL_GPL(dm_get_queue_limits);
+
+/*
+ * Setup the DM device's queue based on md's type
+ */
+int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
+{
+ enum dm_queue_mode type = dm_table_get_type(t);
+ struct queue_limits limits;
+ struct table_device *td;
+ int r;
+
+ switch (type) {
+ case DM_TYPE_REQUEST_BASED:
+ md->disk->fops = &dm_rq_blk_dops;
+ r = dm_mq_init_request_queue(md, t);
+ if (r) {
+ DMERR("Cannot initialize queue for request-based dm mapped device");
+ return r;
+ }
+ break;
+ case DM_TYPE_BIO_BASED:
+ case DM_TYPE_DAX_BIO_BASED:
+ break;
+ case DM_TYPE_NONE:
+ WARN_ON_ONCE(true);
+ break;
+ }
+
+ r = dm_calculate_queue_limits(t, &limits);
+ if (r) {
+ DMERR("Cannot calculate initial queue limits");
+ return r;
+ }
+ r = dm_table_set_restrictions(t, md->queue, &limits);
+ if (r)
+ return r;
+
+ /*
+ * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
+ * with open_table_device() and close_table_device().
+ */
+ mutex_lock(&md->table_devices_lock);
+ r = add_disk(md->disk);
+ mutex_unlock(&md->table_devices_lock);
+ if (r)
+ return r;
+
+ /*
+ * Register the holder relationship for devices added before the disk
+ * was live.
+ */
+ list_for_each_entry(td, &md->table_devices, list) {
+ r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
+ if (r)
+ goto out_undo_holders;
+ }
+
+ r = dm_sysfs_init(md);
+ if (r)
+ goto out_undo_holders;
+
+ md->type = type;
+ return 0;
+
+out_undo_holders:
+ list_for_each_entry_continue_reverse(td, &md->table_devices, list)
+ bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
+ mutex_lock(&md->table_devices_lock);
+ del_gendisk(md->disk);
+ mutex_unlock(&md->table_devices_lock);
+ return r;
+}
+
+struct mapped_device *dm_get_md(dev_t dev)
+{
+ struct mapped_device *md;
+ unsigned int minor = MINOR(dev);
+
+ if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
+ return NULL;
+
+ spin_lock(&_minor_lock);
+
+ md = idr_find(&_minor_idr, minor);
+ if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
+ test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
+ md = NULL;
+ goto out;
+ }
+ dm_get(md);
+out:
+ spin_unlock(&_minor_lock);
+
+ return md;
+}
+EXPORT_SYMBOL_GPL(dm_get_md);
+
+void *dm_get_mdptr(struct mapped_device *md)
+{
+ return md->interface_ptr;
+}
+
+void dm_set_mdptr(struct mapped_device *md, void *ptr)
+{
+ md->interface_ptr = ptr;
+}
+
+void dm_get(struct mapped_device *md)
+{
+ atomic_inc(&md->holders);
+ BUG_ON(test_bit(DMF_FREEING, &md->flags));
+}
+
+int dm_hold(struct mapped_device *md)
+{
+ spin_lock(&_minor_lock);
+ if (test_bit(DMF_FREEING, &md->flags)) {
+ spin_unlock(&_minor_lock);
+ return -EBUSY;
+ }
+ dm_get(md);
+ spin_unlock(&_minor_lock);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(dm_hold);
+
+const char *dm_device_name(struct mapped_device *md)
+{
+ return md->name;
+}
+EXPORT_SYMBOL_GPL(dm_device_name);
+
+static void __dm_destroy(struct mapped_device *md, bool wait)
+{
+ struct dm_table *map;
+ int srcu_idx;
+
+ might_sleep();
+
+ spin_lock(&_minor_lock);
+ idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
+ set_bit(DMF_FREEING, &md->flags);
+ spin_unlock(&_minor_lock);
+
+ blk_mark_disk_dead(md->disk);
+
+ /*
+ * Take suspend_lock so that presuspend and postsuspend methods
+ * do not race with internal suspend.
+ */
+ mutex_lock(&md->suspend_lock);
+ map = dm_get_live_table(md, &srcu_idx);
+ if (!dm_suspended_md(md)) {
+ dm_table_presuspend_targets(map);
+ set_bit(DMF_SUSPENDED, &md->flags);
+ set_bit(DMF_POST_SUSPENDING, &md->flags);
+ dm_table_postsuspend_targets(map);
+ }
+ /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
+ dm_put_live_table(md, srcu_idx);
+ mutex_unlock(&md->suspend_lock);
+
+ /*
+ * Rare, but there may be I/O requests still going to complete,
+ * for example. Wait for all references to disappear.
+ * No one should increment the reference count of the mapped_device,
+ * after the mapped_device state becomes DMF_FREEING.
+ */
+ if (wait)
+ while (atomic_read(&md->holders))
+ msleep(1);
+ else if (atomic_read(&md->holders))
+ DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
+ dm_device_name(md), atomic_read(&md->holders));
+
+ dm_table_destroy(__unbind(md));
+ free_dev(md);
+}
+
+void dm_destroy(struct mapped_device *md)
+{
+ __dm_destroy(md, true);
+}
+
+void dm_destroy_immediate(struct mapped_device *md)
+{
+ __dm_destroy(md, false);
+}
+
+void dm_put(struct mapped_device *md)
+{
+ atomic_dec(&md->holders);
+}
+EXPORT_SYMBOL_GPL(dm_put);
+
+static bool dm_in_flight_bios(struct mapped_device *md)
+{
+ int cpu;
+ unsigned long sum = 0;
+
+ for_each_possible_cpu(cpu)
+ sum += *per_cpu_ptr(md->pending_io, cpu);
+
+ return sum != 0;
+}
+
+static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
+{
+ int r = 0;
+ DEFINE_WAIT(wait);
+
+ while (true) {
+ prepare_to_wait(&md->wait, &wait, task_state);
+
+ if (!dm_in_flight_bios(md))
+ break;
+
+ if (signal_pending_state(task_state, current)) {
+ r = -EINTR;
+ break;
+ }
+
+ io_schedule();
+ }
+ finish_wait(&md->wait, &wait);
+
+ smp_rmb();
+
+ return r;
+}
+
+static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
+{
+ int r = 0;
+
+ if (!queue_is_mq(md->queue))
+ return dm_wait_for_bios_completion(md, task_state);
+
+ while (true) {
+ if (!blk_mq_queue_inflight(md->queue))
+ break;
+
+ if (signal_pending_state(task_state, current)) {
+ r = -EINTR;
+ break;
+ }
+
+ msleep(5);
+ }
+
+ return r;
+}
+
+/*
+ * Process the deferred bios
+ */
+static void dm_wq_work(struct work_struct *work)
+{
+ struct mapped_device *md = container_of(work, struct mapped_device, work);
+ struct bio *bio;
+
+ while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
+ spin_lock_irq(&md->deferred_lock);
+ bio = bio_list_pop(&md->deferred);
+ spin_unlock_irq(&md->deferred_lock);
+
+ if (!bio)
+ break;
+
+ submit_bio_noacct(bio);
+ cond_resched();
+ }
+}
+
+static void dm_queue_flush(struct mapped_device *md)
+{
+ clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
+ smp_mb__after_atomic();
+ queue_work(md->wq, &md->work);
+}
+
+/*
+ * Swap in a new table, returning the old one for the caller to destroy.
+ */
+struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
+{
+ struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
+ struct queue_limits limits;
+ int r;
+
+ mutex_lock(&md->suspend_lock);
+
+ /* device must be suspended */
+ if (!dm_suspended_md(md))
+ goto out;
+
+ /*
+ * If the new table has no data devices, retain the existing limits.
+ * This helps multipath with queue_if_no_path if all paths disappear,
+ * then new I/O is queued based on these limits, and then some paths
+ * reappear.
+ */
+ if (dm_table_has_no_data_devices(table)) {
+ live_map = dm_get_live_table_fast(md);
+ if (live_map)
+ limits = md->queue->limits;
+ dm_put_live_table_fast(md);
+ }
+
+ if (!live_map) {
+ r = dm_calculate_queue_limits(table, &limits);
+ if (r) {
+ map = ERR_PTR(r);
+ goto out;
+ }
+ }
+
+ map = __bind(md, table, &limits);
+ dm_issue_global_event();
+
+out:
+ mutex_unlock(&md->suspend_lock);
+ return map;
+}
+
+/*
+ * Functions to lock and unlock any filesystem running on the
+ * device.
+ */
+static int lock_fs(struct mapped_device *md)
+{
+ int r;
+
+ WARN_ON(test_bit(DMF_FROZEN, &md->flags));
+
+ r = freeze_bdev(md->disk->part0);
+ if (!r)
+ set_bit(DMF_FROZEN, &md->flags);
+ return r;
+}
+
+static void unlock_fs(struct mapped_device *md)
+{
+ if (!test_bit(DMF_FROZEN, &md->flags))
+ return;
+ thaw_bdev(md->disk->part0);
+ clear_bit(DMF_FROZEN, &md->flags);
+}
+
+/*
+ * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
+ * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
+ * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
+ *
+ * If __dm_suspend returns 0, the device is completely quiescent
+ * now. There is no request-processing activity. All new requests
+ * are being added to md->deferred list.
+ */
+static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
+ unsigned int suspend_flags, unsigned int task_state,
+ int dmf_suspended_flag)
+{
+ bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
+ bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
+ int r;
+
+ lockdep_assert_held(&md->suspend_lock);
+
+ /*
+ * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
+ * This flag is cleared before dm_suspend returns.
+ */
+ if (noflush)
+ set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
+ else
+ DMDEBUG("%s: suspending with flush", dm_device_name(md));
+
+ /*
+ * This gets reverted if there's an error later and the targets
+ * provide the .presuspend_undo hook.
+ */
+ dm_table_presuspend_targets(map);
+
+ /*
+ * Flush I/O to the device.
+ * Any I/O submitted after lock_fs() may not be flushed.
+ * noflush takes precedence over do_lockfs.
+ * (lock_fs() flushes I/Os and waits for them to complete.)
+ */
+ if (!noflush && do_lockfs) {
+ r = lock_fs(md);
+ if (r) {
+ dm_table_presuspend_undo_targets(map);
+ return r;
+ }
+ }
+
+ /*
+ * Here we must make sure that no processes are submitting requests
+ * to target drivers i.e. no one may be executing
+ * dm_split_and_process_bio from dm_submit_bio.
+ *
+ * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
+ * we take the write lock. To prevent any process from reentering
+ * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
+ * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
+ * flush_workqueue(md->wq).
+ */
+ set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
+ if (map)
+ synchronize_srcu(&md->io_barrier);
+
+ /*
+ * Stop md->queue before flushing md->wq in case request-based
+ * dm defers requests to md->wq from md->queue.
+ */
+ if (dm_request_based(md))
+ dm_stop_queue(md->queue);
+
+ flush_workqueue(md->wq);
+
+ /*
+ * At this point no more requests are entering target request routines.
+ * We call dm_wait_for_completion to wait for all existing requests
+ * to finish.
+ */
+ r = dm_wait_for_completion(md, task_state);
+ if (!r)
+ set_bit(dmf_suspended_flag, &md->flags);
+
+ if (noflush)
+ clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
+ if (map)
+ synchronize_srcu(&md->io_barrier);
+
+ /* were we interrupted ? */
+ if (r < 0) {
+ dm_queue_flush(md);
+
+ if (dm_request_based(md))
+ dm_start_queue(md->queue);
+
+ unlock_fs(md);
+ dm_table_presuspend_undo_targets(map);
+ /* pushback list is already flushed, so skip flush */
+ }
+
+ return r;
+}
+
+/*
+ * We need to be able to change a mapping table under a mounted
+ * filesystem. For example we might want to move some data in
+ * the background. Before the table can be swapped with
+ * dm_bind_table, dm_suspend must be called to flush any in
+ * flight bios and ensure that any further io gets deferred.
+ */
+/*
+ * Suspend mechanism in request-based dm.
+ *
+ * 1. Flush all I/Os by lock_fs() if needed.
+ * 2. Stop dispatching any I/O by stopping the request_queue.
+ * 3. Wait for all in-flight I/Os to be completed or requeued.
+ *
+ * To abort suspend, start the request_queue.
+ */
+int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
+{
+ struct dm_table *map = NULL;
+ int r = 0;
+
+retry:
+ mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
+
+ if (dm_suspended_md(md)) {
+ r = -EINVAL;
+ goto out_unlock;
+ }
+
+ if (dm_suspended_internally_md(md)) {
+ /* already internally suspended, wait for internal resume */
+ mutex_unlock(&md->suspend_lock);
+ r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
+ if (r)
+ return r;
+ goto retry;
+ }
+
+ map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
+ if (!map) {
+ /* avoid deadlock with fs/namespace.c:do_mount() */
+ suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
+ }
+
+ r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
+ if (r)
+ goto out_unlock;
+
+ set_bit(DMF_POST_SUSPENDING, &md->flags);
+ dm_table_postsuspend_targets(map);
+ clear_bit(DMF_POST_SUSPENDING, &md->flags);
+
+out_unlock:
+ mutex_unlock(&md->suspend_lock);
+ return r;
+}
+
+static int __dm_resume(struct mapped_device *md, struct dm_table *map)
+{
+ if (map) {
+ int r = dm_table_resume_targets(map);
+ if (r)
+ return r;
+ }
+
+ dm_queue_flush(md);
+
+ /*
+ * Flushing deferred I/Os must be done after targets are resumed
+ * so that mapping of targets can work correctly.
+ * Request-based dm is queueing the deferred I/Os in its request_queue.
+ */
+ if (dm_request_based(md))
+ dm_start_queue(md->queue);
+
+ unlock_fs(md);
+
+ return 0;
+}
+
+int dm_resume(struct mapped_device *md)
+{
+ int r;
+ struct dm_table *map = NULL;
+
+retry:
+ r = -EINVAL;
+ mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
+
+ if (!dm_suspended_md(md))
+ goto out;
+
+ if (dm_suspended_internally_md(md)) {
+ /* already internally suspended, wait for internal resume */
+ mutex_unlock(&md->suspend_lock);
+ r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
+ if (r)
+ return r;
+ goto retry;
+ }
+
+ map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
+ if (!map || !dm_table_get_size(map))
+ goto out;
+
+ r = __dm_resume(md, map);
+ if (r)
+ goto out;
+
+ clear_bit(DMF_SUSPENDED, &md->flags);
+out:
+ mutex_unlock(&md->suspend_lock);
+
+ return r;
+}
+
+/*
+ * Internal suspend/resume works like userspace-driven suspend. It waits
+ * until all bios finish and prevents issuing new bios to the target drivers.
+ * It may be used only from the kernel.
+ */
+
+static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
+{
+ struct dm_table *map = NULL;
+
+ lockdep_assert_held(&md->suspend_lock);
+
+ if (md->internal_suspend_count++)
+ return; /* nested internal suspend */
+
+ if (dm_suspended_md(md)) {
+ set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
+ return; /* nest suspend */
+ }
+
+ map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
+
+ /*
+ * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
+ * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
+ * would require changing .presuspend to return an error -- avoid this
+ * until there is a need for more elaborate variants of internal suspend.
+ */
+ (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
+ DMF_SUSPENDED_INTERNALLY);
+
+ set_bit(DMF_POST_SUSPENDING, &md->flags);
+ dm_table_postsuspend_targets(map);
+ clear_bit(DMF_POST_SUSPENDING, &md->flags);
+}
+
+static void __dm_internal_resume(struct mapped_device *md)
+{
+ BUG_ON(!md->internal_suspend_count);
+
+ if (--md->internal_suspend_count)
+ return; /* resume from nested internal suspend */
+
+ if (dm_suspended_md(md))
+ goto done; /* resume from nested suspend */
+
+ /*
+ * NOTE: existing callers don't need to call dm_table_resume_targets
+ * (which may fail -- so best to avoid it for now by passing NULL map)
+ */
+ (void) __dm_resume(md, NULL);
+
+done:
+ clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
+ smp_mb__after_atomic();
+ wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
+}
+
+void dm_internal_suspend_noflush(struct mapped_device *md)
+{
+ mutex_lock(&md->suspend_lock);
+ __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
+ mutex_unlock(&md->suspend_lock);
+}
+EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
+
+void dm_internal_resume(struct mapped_device *md)
+{
+ mutex_lock(&md->suspend_lock);
+ __dm_internal_resume(md);
+ mutex_unlock(&md->suspend_lock);
+}
+EXPORT_SYMBOL_GPL(dm_internal_resume);
+
+/*
+ * Fast variants of internal suspend/resume hold md->suspend_lock,
+ * which prevents interaction with userspace-driven suspend.
+ */
+
+void dm_internal_suspend_fast(struct mapped_device *md)
+{
+ mutex_lock(&md->suspend_lock);
+ if (dm_suspended_md(md) || dm_suspended_internally_md(md))
+ return;
+
+ set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
+ synchronize_srcu(&md->io_barrier);
+ flush_workqueue(md->wq);
+ dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
+}
+EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
+
+void dm_internal_resume_fast(struct mapped_device *md)
+{
+ if (dm_suspended_md(md) || dm_suspended_internally_md(md))
+ goto done;
+
+ dm_queue_flush(md);
+
+done:
+ mutex_unlock(&md->suspend_lock);
+}
+EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
+
+/*-----------------------------------------------------------------
+ * Event notification.
+ *---------------------------------------------------------------*/
+int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
+ unsigned int cookie, bool need_resize_uevent)
+{
+ int r;
+ unsigned int noio_flag;
+ char udev_cookie[DM_COOKIE_LENGTH];
+ char *envp[3] = { NULL, NULL, NULL };
+ char **envpp = envp;
+ if (cookie) {
+ snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
+ DM_COOKIE_ENV_VAR_NAME, cookie);
+ *envpp++ = udev_cookie;
+ }
+ if (need_resize_uevent) {
+ *envpp++ = "RESIZE=1";
+ }
+
+ noio_flag = memalloc_noio_save();
+
+ r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
+
+ memalloc_noio_restore(noio_flag);
+
+ return r;
+}
+
+uint32_t dm_next_uevent_seq(struct mapped_device *md)
+{
+ return atomic_add_return(1, &md->uevent_seq);
+}
+
+uint32_t dm_get_event_nr(struct mapped_device *md)
+{
+ return atomic_read(&md->event_nr);
+}
+
+int dm_wait_event(struct mapped_device *md, int event_nr)
+{
+ return wait_event_interruptible(md->eventq,
+ (event_nr != atomic_read(&md->event_nr)));
+}
+
+void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&md->uevent_lock, flags);
+ list_add(elist, &md->uevent_list);
+ spin_unlock_irqrestore(&md->uevent_lock, flags);
+}
+
+/*
+ * The gendisk is only valid as long as you have a reference
+ * count on 'md'.
+ */
+struct gendisk *dm_disk(struct mapped_device *md)
+{
+ return md->disk;
+}
+EXPORT_SYMBOL_GPL(dm_disk);
+
+struct kobject *dm_kobject(struct mapped_device *md)
+{
+ return &md->kobj_holder.kobj;
+}
+
+struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
+{
+ struct mapped_device *md;
+
+ md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
+
+ spin_lock(&_minor_lock);
+ if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
+ md = NULL;
+ goto out;
+ }
+ dm_get(md);
+out:
+ spin_unlock(&_minor_lock);
+
+ return md;
+}
+
+int dm_suspended_md(struct mapped_device *md)
+{
+ return test_bit(DMF_SUSPENDED, &md->flags);
+}
+
+static int dm_post_suspending_md(struct mapped_device *md)
+{
+ return test_bit(DMF_POST_SUSPENDING, &md->flags);
+}
+
+int dm_suspended_internally_md(struct mapped_device *md)
+{
+ return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
+}
+
+int dm_test_deferred_remove_flag(struct mapped_device *md)
+{
+ return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
+}
+
+int dm_suspended(struct dm_target *ti)
+{
+ return dm_suspended_md(ti->table->md);
+}
+EXPORT_SYMBOL_GPL(dm_suspended);
+
+int dm_post_suspending(struct dm_target *ti)
+{
+ return dm_post_suspending_md(ti->table->md);
+}
+EXPORT_SYMBOL_GPL(dm_post_suspending);
+
+int dm_noflush_suspending(struct dm_target *ti)
+{
+ return __noflush_suspending(ti->table->md);
+}
+EXPORT_SYMBOL_GPL(dm_noflush_suspending);
+
+void dm_free_md_mempools(struct dm_md_mempools *pools)
+{
+ if (!pools)
+ return;
+
+ bioset_exit(&pools->bs);
+ bioset_exit(&pools->io_bs);
+
+ kfree(pools);
+}
+
+struct dm_pr {
+ u64 old_key;
+ u64 new_key;
+ u32 flags;
+ bool abort;
+ bool fail_early;
+ int ret;
+ enum pr_type type;
+};
+
+static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
+ struct dm_pr *pr)
+{
+ struct mapped_device *md = bdev->bd_disk->private_data;
+ struct dm_table *table;
+ struct dm_target *ti;
+ int ret = -ENOTTY, srcu_idx;
+
+ table = dm_get_live_table(md, &srcu_idx);
+ if (!table || !dm_table_get_size(table))
+ goto out;
+
+ /* We only support devices that have a single target */
+ if (table->num_targets != 1)
+ goto out;
+ ti = dm_table_get_target(table, 0);
+
+ if (dm_suspended_md(md)) {
+ ret = -EAGAIN;
+ goto out;
+ }
+
+ ret = -EINVAL;
+ if (!ti->type->iterate_devices)
+ goto out;
+
+ ti->type->iterate_devices(ti, fn, pr);
+ ret = 0;
+out:
+ dm_put_live_table(md, srcu_idx);
+ return ret;
+}
+
+/*
+ * For register / unregister we need to manually call out to every path.
+ */
+static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ struct dm_pr *pr = data;
+ const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
+ int ret;
+
+ if (!ops || !ops->pr_register) {
+ pr->ret = -EOPNOTSUPP;
+ return -1;
+ }
+
+ ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
+ if (!ret)
+ return 0;
+
+ if (!pr->ret)
+ pr->ret = ret;
+
+ if (pr->fail_early)
+ return -1;
+
+ return 0;
+}
+
+static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
+ u32 flags)
+{
+ struct dm_pr pr = {
+ .old_key = old_key,
+ .new_key = new_key,
+ .flags = flags,
+ .fail_early = true,
+ .ret = 0,
+ };
+ int ret;
+
+ ret = dm_call_pr(bdev, __dm_pr_register, &pr);
+ if (ret) {
+ /* Didn't even get to register a path */
+ return ret;
+ }
+
+ if (!pr.ret)
+ return 0;
+ ret = pr.ret;
+
+ if (!new_key)
+ return ret;
+
+ /* unregister all paths if we failed to register any path */
+ pr.old_key = new_key;
+ pr.new_key = 0;
+ pr.flags = 0;
+ pr.fail_early = false;
+ (void) dm_call_pr(bdev, __dm_pr_register, &pr);
+ return ret;
+}
+
+
+static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ struct dm_pr *pr = data;
+ const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
+
+ if (!ops || !ops->pr_reserve) {
+ pr->ret = -EOPNOTSUPP;
+ return -1;
+ }
+
+ pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
+ if (!pr->ret)
+ return -1;
+
+ return 0;
+}
+
+static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
+ u32 flags)
+{
+ struct dm_pr pr = {
+ .old_key = key,
+ .flags = flags,
+ .type = type,
+ .fail_early = false,
+ .ret = 0,
+ };
+ int ret;
+
+ ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
+ if (ret)
+ return ret;
+
+ return pr.ret;
+}
+
+/*
+ * If there is a non-All Registrants type of reservation, the release must be
+ * sent down the holding path. For the cases where there is no reservation or
+ * the path is not the holder the device will also return success, so we must
+ * try each path to make sure we got the correct path.
+ */
+static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ struct dm_pr *pr = data;
+ const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
+
+ if (!ops || !ops->pr_release) {
+ pr->ret = -EOPNOTSUPP;
+ return -1;
+ }
+
+ pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
+ if (pr->ret)
+ return -1;
+
+ return 0;
+}
+
+static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
+{
+ struct dm_pr pr = {
+ .old_key = key,
+ .type = type,
+ .fail_early = false,
+ };
+ int ret;
+
+ ret = dm_call_pr(bdev, __dm_pr_release, &pr);
+ if (ret)
+ return ret;
+
+ return pr.ret;
+}
+
+static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
+ sector_t start, sector_t len, void *data)
+{
+ struct dm_pr *pr = data;
+ const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
+
+ if (!ops || !ops->pr_preempt) {
+ pr->ret = -EOPNOTSUPP;
+ return -1;
+ }
+
+ pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
+ pr->abort);
+ if (!pr->ret)
+ return -1;
+
+ return 0;
+}
+
+static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
+ enum pr_type type, bool abort)
+{
+ struct dm_pr pr = {
+ .new_key = new_key,
+ .old_key = old_key,
+ .type = type,
+ .fail_early = false,
+ };
+ int ret;
+
+ ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
+ if (ret)
+ return ret;
+
+ return pr.ret;
+}
+
+static int dm_pr_clear(struct block_device *bdev, u64 key)
+{
+ struct mapped_device *md = bdev->bd_disk->private_data;
+ const struct pr_ops *ops;
+ int r, srcu_idx;
+
+ r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
+ if (r < 0)
+ goto out;
+
+ ops = bdev->bd_disk->fops->pr_ops;
+ if (ops && ops->pr_clear)
+ r = ops->pr_clear(bdev, key);
+ else
+ r = -EOPNOTSUPP;
+out:
+ dm_unprepare_ioctl(md, srcu_idx);
+ return r;
+}
+
+static const struct pr_ops dm_pr_ops = {
+ .pr_register = dm_pr_register,
+ .pr_reserve = dm_pr_reserve,
+ .pr_release = dm_pr_release,
+ .pr_preempt = dm_pr_preempt,
+ .pr_clear = dm_pr_clear,
+};
+
+static const struct block_device_operations dm_blk_dops = {
+ .submit_bio = dm_submit_bio,
+ .poll_bio = dm_poll_bio,
+ .open = dm_blk_open,
+ .release = dm_blk_close,
+ .ioctl = dm_blk_ioctl,
+ .getgeo = dm_blk_getgeo,
+ .report_zones = dm_blk_report_zones,
+ .pr_ops = &dm_pr_ops,
+ .owner = THIS_MODULE
+};
+
+static const struct block_device_operations dm_rq_blk_dops = {
+ .open = dm_blk_open,
+ .release = dm_blk_close,
+ .ioctl = dm_blk_ioctl,
+ .getgeo = dm_blk_getgeo,
+ .pr_ops = &dm_pr_ops,
+ .owner = THIS_MODULE
+};
+
+static const struct dax_operations dm_dax_ops = {
+ .direct_access = dm_dax_direct_access,
+ .zero_page_range = dm_dax_zero_page_range,
+ .recovery_write = dm_dax_recovery_write,
+};
+
+/*
+ * module hooks
+ */
+module_init(dm_init);
+module_exit(dm_exit);
+
+module_param(major, uint, 0);
+MODULE_PARM_DESC(major, "The major number of the device mapper");
+
+module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
+
+module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
+
+module_param(swap_bios, int, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
+
+MODULE_DESCRIPTION(DM_NAME " driver");
+MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/md/dm.h b/drivers/md/dm.h
new file mode 100644
index 000000000..a7917df09
--- /dev/null
+++ b/drivers/md/dm.h
@@ -0,0 +1,227 @@
+/*
+ * Internal header file for device mapper
+ *
+ * Copyright (C) 2001, 2002 Sistina Software
+ * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the LGPL.
+ */
+
+#ifndef DM_INTERNAL_H
+#define DM_INTERNAL_H
+
+#include <linux/fs.h>
+#include <linux/device-mapper.h>
+#include <linux/list.h>
+#include <linux/moduleparam.h>
+#include <linux/blkdev.h>
+#include <linux/backing-dev.h>
+#include <linux/hdreg.h>
+#include <linux/completion.h>
+#include <linux/kobject.h>
+#include <linux/refcount.h>
+
+#include "dm-stats.h"
+
+/*
+ * Suspend feature flags
+ */
+#define DM_SUSPEND_LOCKFS_FLAG (1 << 0)
+#define DM_SUSPEND_NOFLUSH_FLAG (1 << 1)
+
+/*
+ * Status feature flags
+ */
+#define DM_STATUS_NOFLUSH_FLAG (1 << 0)
+
+/*
+ * List of devices that a metadevice uses and should open/close.
+ */
+struct dm_dev_internal {
+ struct list_head list;
+ refcount_t count;
+ struct dm_dev *dm_dev;
+};
+
+struct dm_table;
+struct dm_md_mempools;
+struct dm_target_io;
+struct dm_io;
+
+/*-----------------------------------------------------------------
+ * Internal table functions.
+ *---------------------------------------------------------------*/
+void dm_table_event_callback(struct dm_table *t,
+ void (*fn)(void *), void *context);
+struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector);
+bool dm_table_has_no_data_devices(struct dm_table *table);
+int dm_calculate_queue_limits(struct dm_table *table,
+ struct queue_limits *limits);
+int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
+ struct queue_limits *limits);
+struct list_head *dm_table_get_devices(struct dm_table *t);
+void dm_table_presuspend_targets(struct dm_table *t);
+void dm_table_presuspend_undo_targets(struct dm_table *t);
+void dm_table_postsuspend_targets(struct dm_table *t);
+int dm_table_resume_targets(struct dm_table *t);
+enum dm_queue_mode dm_table_get_type(struct dm_table *t);
+struct target_type *dm_table_get_immutable_target_type(struct dm_table *t);
+struct dm_target *dm_table_get_immutable_target(struct dm_table *t);
+struct dm_target *dm_table_get_wildcard_target(struct dm_table *t);
+bool dm_table_bio_based(struct dm_table *t);
+bool dm_table_request_based(struct dm_table *t);
+
+void dm_lock_md_type(struct mapped_device *md);
+void dm_unlock_md_type(struct mapped_device *md);
+void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type);
+enum dm_queue_mode dm_get_md_type(struct mapped_device *md);
+struct target_type *dm_get_immutable_target_type(struct mapped_device *md);
+
+int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t);
+
+/*
+ * To check whether the target type is bio-based or not (request-based).
+ */
+#define dm_target_bio_based(t) ((t)->type->map != NULL)
+
+/*
+ * To check whether the target type is request-based or not (bio-based).
+ */
+#define dm_target_request_based(t) ((t)->type->clone_and_map_rq != NULL)
+
+/*
+ * To check whether the target type is a hybrid (capable of being
+ * either request-based or bio-based).
+ */
+#define dm_target_hybrid(t) (dm_target_bio_based(t) && dm_target_request_based(t))
+
+/*
+ * Zoned targets related functions.
+ */
+int dm_set_zones_restrictions(struct dm_table *t, struct request_queue *q);
+void dm_zone_endio(struct dm_io *io, struct bio *clone);
+#ifdef CONFIG_BLK_DEV_ZONED
+void dm_cleanup_zoned_dev(struct mapped_device *md);
+int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
+ unsigned int nr_zones, report_zones_cb cb, void *data);
+bool dm_is_zone_write(struct mapped_device *md, struct bio *bio);
+int dm_zone_map_bio(struct dm_target_io *io);
+#else
+static inline void dm_cleanup_zoned_dev(struct mapped_device *md) {}
+#define dm_blk_report_zones NULL
+static inline bool dm_is_zone_write(struct mapped_device *md, struct bio *bio)
+{
+ return false;
+}
+static inline int dm_zone_map_bio(struct dm_target_io *tio)
+{
+ return DM_MAPIO_KILL;
+}
+#endif
+
+/*-----------------------------------------------------------------
+ * A registry of target types.
+ *---------------------------------------------------------------*/
+int dm_target_init(void);
+void dm_target_exit(void);
+struct target_type *dm_get_target_type(const char *name);
+void dm_put_target_type(struct target_type *tt);
+int dm_target_iterate(void (*iter_func)(struct target_type *tt,
+ void *param), void *param);
+
+int dm_split_args(int *argc, char ***argvp, char *input);
+
+/*
+ * Is this mapped_device being deleted?
+ */
+int dm_deleting_md(struct mapped_device *md);
+
+/*
+ * Is this mapped_device suspended?
+ */
+int dm_suspended_md(struct mapped_device *md);
+
+/*
+ * Internal suspend and resume methods.
+ */
+int dm_suspended_internally_md(struct mapped_device *md);
+void dm_internal_suspend_fast(struct mapped_device *md);
+void dm_internal_resume_fast(struct mapped_device *md);
+void dm_internal_suspend_noflush(struct mapped_device *md);
+void dm_internal_resume(struct mapped_device *md);
+
+/*
+ * Test if the device is scheduled for deferred remove.
+ */
+int dm_test_deferred_remove_flag(struct mapped_device *md);
+
+/*
+ * Try to remove devices marked for deferred removal.
+ */
+void dm_deferred_remove(void);
+
+/*
+ * The device-mapper can be driven through one of two interfaces;
+ * ioctl or filesystem, depending which patch you have applied.
+ */
+int dm_interface_init(void);
+void dm_interface_exit(void);
+
+/*
+ * sysfs interface
+ */
+int dm_sysfs_init(struct mapped_device *md);
+void dm_sysfs_exit(struct mapped_device *md);
+struct kobject *dm_kobject(struct mapped_device *md);
+struct mapped_device *dm_get_from_kobject(struct kobject *kobj);
+
+/*
+ * The kobject helper
+ */
+void dm_kobject_release(struct kobject *kobj);
+
+/*
+ * Targets for linear and striped mappings
+ */
+int dm_linear_init(void);
+void dm_linear_exit(void);
+
+int dm_stripe_init(void);
+void dm_stripe_exit(void);
+
+/*
+ * mapped_device operations
+ */
+void dm_destroy(struct mapped_device *md);
+void dm_destroy_immediate(struct mapped_device *md);
+int dm_open_count(struct mapped_device *md);
+int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred);
+int dm_cancel_deferred_remove(struct mapped_device *md);
+int dm_request_based(struct mapped_device *md);
+int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
+ struct dm_dev **result);
+void dm_put_table_device(struct mapped_device *md, struct dm_dev *d);
+
+int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
+ unsigned int cookie, bool need_resize_uevent);
+
+void dm_internal_suspend(struct mapped_device *md);
+void dm_internal_resume(struct mapped_device *md);
+
+int dm_io_init(void);
+void dm_io_exit(void);
+
+int dm_kcopyd_init(void);
+void dm_kcopyd_exit(void);
+
+/*
+ * Mempool operations
+ */
+void dm_free_md_mempools(struct dm_md_mempools *pools);
+
+/*
+ * Various helpers
+ */
+unsigned int dm_get_reserved_bio_based_ios(void);
+
+#endif
diff --git a/drivers/md/md-autodetect.c b/drivers/md/md-autodetect.c
new file mode 100644
index 000000000..91836e6de
--- /dev/null
+++ b/drivers/md/md-autodetect.c
@@ -0,0 +1,282 @@
+// SPDX-License-Identifier: GPL-2.0
+#include <linux/kernel.h>
+#include <linux/blkdev.h>
+#include <linux/init.h>
+#include <linux/mount.h>
+#include <linux/major.h>
+#include <linux/delay.h>
+#include <linux/init_syscalls.h>
+#include <linux/raid/detect.h>
+#include <linux/raid/md_u.h>
+#include <linux/raid/md_p.h>
+#include "md.h"
+
+/*
+ * When md (and any require personalities) are compiled into the kernel
+ * (not a module), arrays can be assembles are boot time using with AUTODETECT
+ * where specially marked partitions are registered with md_autodetect_dev(),
+ * and with MD_BOOT where devices to be collected are given on the boot line
+ * with md=.....
+ * The code for that is here.
+ */
+
+#ifdef CONFIG_MD_AUTODETECT
+static int __initdata raid_noautodetect;
+#else
+static int __initdata raid_noautodetect=1;
+#endif
+static int __initdata raid_autopart;
+
+static struct md_setup_args {
+ int minor;
+ int partitioned;
+ int level;
+ int chunk;
+ char *device_names;
+} md_setup_args[256] __initdata;
+
+static int md_setup_ents __initdata;
+
+/*
+ * Parse the command-line parameters given our kernel, but do not
+ * actually try to invoke the MD device now; that is handled by
+ * md_setup_drive after the low-level disk drivers have initialised.
+ *
+ * 27/11/1999: Fixed to work correctly with the 2.3 kernel (which
+ * assigns the task of parsing integer arguments to the
+ * invoked program now). Added ability to initialise all
+ * the MD devices (by specifying multiple "md=" lines)
+ * instead of just one. -- KTK
+ * 18May2000: Added support for persistent-superblock arrays:
+ * md=n,0,factor,fault,device-list uses RAID0 for device n
+ * md=n,-1,factor,fault,device-list uses LINEAR for device n
+ * md=n,device-list reads a RAID superblock from the devices
+ * elements in device-list are read by name_to_kdev_t so can be
+ * a hex number or something like /dev/hda1 /dev/sdb
+ * 2001-06-03: Dave Cinege <dcinege@psychosis.com>
+ * Shifted name_to_kdev_t() and related operations to md_set_drive()
+ * for later execution. Rewrote section to make devfs compatible.
+ */
+static int __init md_setup(char *str)
+{
+ int minor, level, factor, fault, partitioned = 0;
+ char *pername = "";
+ char *str1;
+ int ent;
+
+ if (*str == 'd') {
+ partitioned = 1;
+ str++;
+ }
+ if (get_option(&str, &minor) != 2) { /* MD Number */
+ printk(KERN_WARNING "md: Too few arguments supplied to md=.\n");
+ return 0;
+ }
+ str1 = str;
+ for (ent=0 ; ent< md_setup_ents ; ent++)
+ if (md_setup_args[ent].minor == minor &&
+ md_setup_args[ent].partitioned == partitioned) {
+ printk(KERN_WARNING "md: md=%s%d, Specified more than once. "
+ "Replacing previous definition.\n", partitioned?"d":"", minor);
+ break;
+ }
+ if (ent >= ARRAY_SIZE(md_setup_args)) {
+ printk(KERN_WARNING "md: md=%s%d - too many md initialisations\n", partitioned?"d":"", minor);
+ return 0;
+ }
+ if (ent >= md_setup_ents)
+ md_setup_ents++;
+ switch (get_option(&str, &level)) { /* RAID level */
+ case 2: /* could be 0 or -1.. */
+ if (level == 0 || level == LEVEL_LINEAR) {
+ if (get_option(&str, &factor) != 2 || /* Chunk Size */
+ get_option(&str, &fault) != 2) {
+ printk(KERN_WARNING "md: Too few arguments supplied to md=.\n");
+ return 0;
+ }
+ md_setup_args[ent].level = level;
+ md_setup_args[ent].chunk = 1 << (factor+12);
+ if (level == LEVEL_LINEAR)
+ pername = "linear";
+ else
+ pername = "raid0";
+ break;
+ }
+ fallthrough;
+ case 1: /* the first device is numeric */
+ str = str1;
+ fallthrough;
+ case 0:
+ md_setup_args[ent].level = LEVEL_NONE;
+ pername="super-block";
+ }
+
+ printk(KERN_INFO "md: Will configure md%d (%s) from %s, below.\n",
+ minor, pername, str);
+ md_setup_args[ent].device_names = str;
+ md_setup_args[ent].partitioned = partitioned;
+ md_setup_args[ent].minor = minor;
+
+ return 1;
+}
+
+static void __init md_setup_drive(struct md_setup_args *args)
+{
+ char *devname = args->device_names;
+ dev_t devices[MD_SB_DISKS + 1], mdev;
+ struct mdu_array_info_s ainfo = { };
+ struct mddev *mddev;
+ int err = 0, i;
+ char name[16];
+
+ if (args->partitioned) {
+ mdev = MKDEV(mdp_major, args->minor << MdpMinorShift);
+ sprintf(name, "md_d%d", args->minor);
+ } else {
+ mdev = MKDEV(MD_MAJOR, args->minor);
+ sprintf(name, "md%d", args->minor);
+ }
+
+ for (i = 0; i < MD_SB_DISKS && devname != NULL; i++) {
+ struct kstat stat;
+ char *p;
+ char comp_name[64];
+ dev_t dev;
+
+ p = strchr(devname, ',');
+ if (p)
+ *p++ = 0;
+
+ dev = name_to_dev_t(devname);
+ if (strncmp(devname, "/dev/", 5) == 0)
+ devname += 5;
+ snprintf(comp_name, 63, "/dev/%s", devname);
+ if (init_stat(comp_name, &stat, 0) == 0 && S_ISBLK(stat.mode))
+ dev = new_decode_dev(stat.rdev);
+ if (!dev) {
+ pr_warn("md: Unknown device name: %s\n", devname);
+ break;
+ }
+
+ devices[i] = dev;
+ devname = p;
+ }
+ devices[i] = 0;
+
+ if (!i)
+ return;
+
+ pr_info("md: Loading %s: %s\n", name, args->device_names);
+
+ mddev = md_alloc(mdev, name);
+ if (IS_ERR(mddev)) {
+ pr_err("md: md_alloc failed - cannot start array %s\n", name);
+ return;
+ }
+
+ err = mddev_lock(mddev);
+ if (err) {
+ pr_err("md: failed to lock array %s\n", name);
+ goto out_mddev_put;
+ }
+
+ if (!list_empty(&mddev->disks) || mddev->raid_disks) {
+ pr_warn("md: Ignoring %s, already autodetected. (Use raid=noautodetect)\n",
+ name);
+ goto out_unlock;
+ }
+
+ if (args->level != LEVEL_NONE) {
+ /* non-persistent */
+ ainfo.level = args->level;
+ ainfo.md_minor = args->minor;
+ ainfo.not_persistent = 1;
+ ainfo.state = (1 << MD_SB_CLEAN);
+ ainfo.chunk_size = args->chunk;
+ while (devices[ainfo.raid_disks])
+ ainfo.raid_disks++;
+ }
+
+ err = md_set_array_info(mddev, &ainfo);
+
+ for (i = 0; i <= MD_SB_DISKS && devices[i]; i++) {
+ struct mdu_disk_info_s dinfo = {
+ .major = MAJOR(devices[i]),
+ .minor = MINOR(devices[i]),
+ };
+
+ if (args->level != LEVEL_NONE) {
+ dinfo.number = i;
+ dinfo.raid_disk = i;
+ dinfo.state =
+ (1 << MD_DISK_ACTIVE) | (1 << MD_DISK_SYNC);
+ }
+
+ md_add_new_disk(mddev, &dinfo);
+ }
+
+ if (!err)
+ err = do_md_run(mddev);
+ if (err)
+ pr_warn("md: starting %s failed\n", name);
+out_unlock:
+ mddev_unlock(mddev);
+out_mddev_put:
+ mddev_put(mddev);
+}
+
+static int __init raid_setup(char *str)
+{
+ int len, pos;
+
+ len = strlen(str) + 1;
+ pos = 0;
+
+ while (pos < len) {
+ char *comma = strchr(str+pos, ',');
+ int wlen;
+ if (comma)
+ wlen = (comma-str)-pos;
+ else wlen = (len-1)-pos;
+
+ if (!strncmp(str, "noautodetect", wlen))
+ raid_noautodetect = 1;
+ if (!strncmp(str, "autodetect", wlen))
+ raid_noautodetect = 0;
+ if (strncmp(str, "partitionable", wlen)==0)
+ raid_autopart = 1;
+ if (strncmp(str, "part", wlen)==0)
+ raid_autopart = 1;
+ pos += wlen+1;
+ }
+ return 1;
+}
+
+__setup("raid=", raid_setup);
+__setup("md=", md_setup);
+
+static void __init autodetect_raid(void)
+{
+ /*
+ * Since we don't want to detect and use half a raid array, we need to
+ * wait for the known devices to complete their probing
+ */
+ printk(KERN_INFO "md: Waiting for all devices to be available before autodetect\n");
+ printk(KERN_INFO "md: If you don't use raid, use raid=noautodetect\n");
+
+ wait_for_device_probe();
+ md_autostart_arrays(raid_autopart);
+}
+
+void __init md_run_setup(void)
+{
+ int ent;
+
+ if (raid_noautodetect)
+ printk(KERN_INFO "md: Skipping autodetection of RAID arrays. (raid=autodetect will force)\n");
+ else
+ autodetect_raid();
+
+ for (ent = 0; ent < md_setup_ents; ent++)
+ md_setup_drive(&md_setup_args[ent]);
+}
diff --git a/drivers/md/md-bitmap.c b/drivers/md/md-bitmap.c
new file mode 100644
index 000000000..5200bba63
--- /dev/null
+++ b/drivers/md/md-bitmap.c
@@ -0,0 +1,2653 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * bitmap.c two-level bitmap (C) Peter T. Breuer (ptb@ot.uc3m.es) 2003
+ *
+ * bitmap_create - sets up the bitmap structure
+ * bitmap_destroy - destroys the bitmap structure
+ *
+ * additions, Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.:
+ * - added disk storage for bitmap
+ * - changes to allow various bitmap chunk sizes
+ */
+
+/*
+ * Still to do:
+ *
+ * flush after percent set rather than just time based. (maybe both).
+ */
+
+#include <linux/blkdev.h>
+#include <linux/module.h>
+#include <linux/errno.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/timer.h>
+#include <linux/sched.h>
+#include <linux/list.h>
+#include <linux/file.h>
+#include <linux/mount.h>
+#include <linux/buffer_head.h>
+#include <linux/seq_file.h>
+#include <trace/events/block.h>
+#include "md.h"
+#include "md-bitmap.h"
+
+static inline char *bmname(struct bitmap *bitmap)
+{
+ return bitmap->mddev ? mdname(bitmap->mddev) : "mdX";
+}
+
+/*
+ * check a page and, if necessary, allocate it (or hijack it if the alloc fails)
+ *
+ * 1) check to see if this page is allocated, if it's not then try to alloc
+ * 2) if the alloc fails, set the page's hijacked flag so we'll use the
+ * page pointer directly as a counter
+ *
+ * if we find our page, we increment the page's refcount so that it stays
+ * allocated while we're using it
+ */
+static int md_bitmap_checkpage(struct bitmap_counts *bitmap,
+ unsigned long page, int create, int no_hijack)
+__releases(bitmap->lock)
+__acquires(bitmap->lock)
+{
+ unsigned char *mappage;
+
+ WARN_ON_ONCE(page >= bitmap->pages);
+ if (bitmap->bp[page].hijacked) /* it's hijacked, don't try to alloc */
+ return 0;
+
+ if (bitmap->bp[page].map) /* page is already allocated, just return */
+ return 0;
+
+ if (!create)
+ return -ENOENT;
+
+ /* this page has not been allocated yet */
+
+ spin_unlock_irq(&bitmap->lock);
+ /* It is possible that this is being called inside a
+ * prepare_to_wait/finish_wait loop from raid5c:make_request().
+ * In general it is not permitted to sleep in that context as it
+ * can cause the loop to spin freely.
+ * That doesn't apply here as we can only reach this point
+ * once with any loop.
+ * When this function completes, either bp[page].map or
+ * bp[page].hijacked. In either case, this function will
+ * abort before getting to this point again. So there is
+ * no risk of a free-spin, and so it is safe to assert
+ * that sleeping here is allowed.
+ */
+ sched_annotate_sleep();
+ mappage = kzalloc(PAGE_SIZE, GFP_NOIO);
+ spin_lock_irq(&bitmap->lock);
+
+ if (mappage == NULL) {
+ pr_debug("md/bitmap: map page allocation failed, hijacking\n");
+ /* We don't support hijack for cluster raid */
+ if (no_hijack)
+ return -ENOMEM;
+ /* failed - set the hijacked flag so that we can use the
+ * pointer as a counter */
+ if (!bitmap->bp[page].map)
+ bitmap->bp[page].hijacked = 1;
+ } else if (bitmap->bp[page].map ||
+ bitmap->bp[page].hijacked) {
+ /* somebody beat us to getting the page */
+ kfree(mappage);
+ } else {
+
+ /* no page was in place and we have one, so install it */
+
+ bitmap->bp[page].map = mappage;
+ bitmap->missing_pages--;
+ }
+ return 0;
+}
+
+/* if page is completely empty, put it back on the free list, or dealloc it */
+/* if page was hijacked, unmark the flag so it might get alloced next time */
+/* Note: lock should be held when calling this */
+static void md_bitmap_checkfree(struct bitmap_counts *bitmap, unsigned long page)
+{
+ char *ptr;
+
+ if (bitmap->bp[page].count) /* page is still busy */
+ return;
+
+ /* page is no longer in use, it can be released */
+
+ if (bitmap->bp[page].hijacked) { /* page was hijacked, undo this now */
+ bitmap->bp[page].hijacked = 0;
+ bitmap->bp[page].map = NULL;
+ } else {
+ /* normal case, free the page */
+ ptr = bitmap->bp[page].map;
+ bitmap->bp[page].map = NULL;
+ bitmap->missing_pages++;
+ kfree(ptr);
+ }
+}
+
+/*
+ * bitmap file handling - read and write the bitmap file and its superblock
+ */
+
+/*
+ * basic page I/O operations
+ */
+
+/* IO operations when bitmap is stored near all superblocks */
+static int read_sb_page(struct mddev *mddev, loff_t offset,
+ struct page *page,
+ unsigned long index, int size)
+{
+ /* choose a good rdev and read the page from there */
+
+ struct md_rdev *rdev;
+ sector_t target;
+
+ rdev_for_each(rdev, mddev) {
+ if (! test_bit(In_sync, &rdev->flags)
+ || test_bit(Faulty, &rdev->flags)
+ || test_bit(Bitmap_sync, &rdev->flags))
+ continue;
+
+ target = offset + index * (PAGE_SIZE/512);
+
+ if (sync_page_io(rdev, target,
+ roundup(size, bdev_logical_block_size(rdev->bdev)),
+ page, REQ_OP_READ, true)) {
+ page->index = index;
+ return 0;
+ }
+ }
+ return -EIO;
+}
+
+static struct md_rdev *next_active_rdev(struct md_rdev *rdev, struct mddev *mddev)
+{
+ /* Iterate the disks of an mddev, using rcu to protect access to the
+ * linked list, and raising the refcount of devices we return to ensure
+ * they don't disappear while in use.
+ * As devices are only added or removed when raid_disk is < 0 and
+ * nr_pending is 0 and In_sync is clear, the entries we return will
+ * still be in the same position on the list when we re-enter
+ * list_for_each_entry_continue_rcu.
+ *
+ * Note that if entered with 'rdev == NULL' to start at the
+ * beginning, we temporarily assign 'rdev' to an address which
+ * isn't really an rdev, but which can be used by
+ * list_for_each_entry_continue_rcu() to find the first entry.
+ */
+ rcu_read_lock();
+ if (rdev == NULL)
+ /* start at the beginning */
+ rdev = list_entry(&mddev->disks, struct md_rdev, same_set);
+ else {
+ /* release the previous rdev and start from there. */
+ rdev_dec_pending(rdev, mddev);
+ }
+ list_for_each_entry_continue_rcu(rdev, &mddev->disks, same_set) {
+ if (rdev->raid_disk >= 0 &&
+ !test_bit(Faulty, &rdev->flags)) {
+ /* this is a usable devices */
+ atomic_inc(&rdev->nr_pending);
+ rcu_read_unlock();
+ return rdev;
+ }
+ }
+ rcu_read_unlock();
+ return NULL;
+}
+
+static int write_sb_page(struct bitmap *bitmap, struct page *page, int wait)
+{
+ struct md_rdev *rdev;
+ struct block_device *bdev;
+ struct mddev *mddev = bitmap->mddev;
+ struct bitmap_storage *store = &bitmap->storage;
+
+restart:
+ rdev = NULL;
+ while ((rdev = next_active_rdev(rdev, mddev)) != NULL) {
+ int size = PAGE_SIZE;
+ loff_t offset = mddev->bitmap_info.offset;
+
+ bdev = (rdev->meta_bdev) ? rdev->meta_bdev : rdev->bdev;
+
+ if (page->index == store->file_pages-1) {
+ int last_page_size = store->bytes & (PAGE_SIZE-1);
+ if (last_page_size == 0)
+ last_page_size = PAGE_SIZE;
+ size = roundup(last_page_size,
+ bdev_logical_block_size(bdev));
+ }
+ /* Just make sure we aren't corrupting data or
+ * metadata
+ */
+ if (mddev->external) {
+ /* Bitmap could be anywhere. */
+ if (rdev->sb_start + offset + (page->index
+ * (PAGE_SIZE/512))
+ > rdev->data_offset
+ &&
+ rdev->sb_start + offset
+ < (rdev->data_offset + mddev->dev_sectors
+ + (PAGE_SIZE/512)))
+ goto bad_alignment;
+ } else if (offset < 0) {
+ /* DATA BITMAP METADATA */
+ if (offset
+ + (long)(page->index * (PAGE_SIZE/512))
+ + size/512 > 0)
+ /* bitmap runs in to metadata */
+ goto bad_alignment;
+ if (rdev->data_offset + mddev->dev_sectors
+ > rdev->sb_start + offset)
+ /* data runs in to bitmap */
+ goto bad_alignment;
+ } else if (rdev->sb_start < rdev->data_offset) {
+ /* METADATA BITMAP DATA */
+ if (rdev->sb_start
+ + offset
+ + page->index*(PAGE_SIZE/512) + size/512
+ > rdev->data_offset)
+ /* bitmap runs in to data */
+ goto bad_alignment;
+ } else {
+ /* DATA METADATA BITMAP - no problems */
+ }
+ md_super_write(mddev, rdev,
+ rdev->sb_start + offset
+ + page->index * (PAGE_SIZE/512),
+ size,
+ page);
+ }
+
+ if (wait && md_super_wait(mddev) < 0)
+ goto restart;
+ return 0;
+
+ bad_alignment:
+ return -EINVAL;
+}
+
+static void md_bitmap_file_kick(struct bitmap *bitmap);
+/*
+ * write out a page to a file
+ */
+static void write_page(struct bitmap *bitmap, struct page *page, int wait)
+{
+ struct buffer_head *bh;
+
+ if (bitmap->storage.file == NULL) {
+ switch (write_sb_page(bitmap, page, wait)) {
+ case -EINVAL:
+ set_bit(BITMAP_WRITE_ERROR, &bitmap->flags);
+ }
+ } else {
+
+ bh = page_buffers(page);
+
+ while (bh && bh->b_blocknr) {
+ atomic_inc(&bitmap->pending_writes);
+ set_buffer_locked(bh);
+ set_buffer_mapped(bh);
+ submit_bh(REQ_OP_WRITE | REQ_SYNC, bh);
+ bh = bh->b_this_page;
+ }
+
+ if (wait)
+ wait_event(bitmap->write_wait,
+ atomic_read(&bitmap->pending_writes)==0);
+ }
+ if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags))
+ md_bitmap_file_kick(bitmap);
+}
+
+static void end_bitmap_write(struct buffer_head *bh, int uptodate)
+{
+ struct bitmap *bitmap = bh->b_private;
+
+ if (!uptodate)
+ set_bit(BITMAP_WRITE_ERROR, &bitmap->flags);
+ if (atomic_dec_and_test(&bitmap->pending_writes))
+ wake_up(&bitmap->write_wait);
+}
+
+static void free_buffers(struct page *page)
+{
+ struct buffer_head *bh;
+
+ if (!PagePrivate(page))
+ return;
+
+ bh = page_buffers(page);
+ while (bh) {
+ struct buffer_head *next = bh->b_this_page;
+ free_buffer_head(bh);
+ bh = next;
+ }
+ detach_page_private(page);
+ put_page(page);
+}
+
+/* read a page from a file.
+ * We both read the page, and attach buffers to the page to record the
+ * address of each block (using bmap). These addresses will be used
+ * to write the block later, completely bypassing the filesystem.
+ * This usage is similar to how swap files are handled, and allows us
+ * to write to a file with no concerns of memory allocation failing.
+ */
+static int read_page(struct file *file, unsigned long index,
+ struct bitmap *bitmap,
+ unsigned long count,
+ struct page *page)
+{
+ int ret = 0;
+ struct inode *inode = file_inode(file);
+ struct buffer_head *bh;
+ sector_t block, blk_cur;
+ unsigned long blocksize = i_blocksize(inode);
+
+ pr_debug("read bitmap file (%dB @ %llu)\n", (int)PAGE_SIZE,
+ (unsigned long long)index << PAGE_SHIFT);
+
+ bh = alloc_page_buffers(page, blocksize, false);
+ if (!bh) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ attach_page_private(page, bh);
+ blk_cur = index << (PAGE_SHIFT - inode->i_blkbits);
+ while (bh) {
+ block = blk_cur;
+
+ if (count == 0)
+ bh->b_blocknr = 0;
+ else {
+ ret = bmap(inode, &block);
+ if (ret || !block) {
+ ret = -EINVAL;
+ bh->b_blocknr = 0;
+ goto out;
+ }
+
+ bh->b_blocknr = block;
+ bh->b_bdev = inode->i_sb->s_bdev;
+ if (count < blocksize)
+ count = 0;
+ else
+ count -= blocksize;
+
+ bh->b_end_io = end_bitmap_write;
+ bh->b_private = bitmap;
+ atomic_inc(&bitmap->pending_writes);
+ set_buffer_locked(bh);
+ set_buffer_mapped(bh);
+ submit_bh(REQ_OP_READ, bh);
+ }
+ blk_cur++;
+ bh = bh->b_this_page;
+ }
+ page->index = index;
+
+ wait_event(bitmap->write_wait,
+ atomic_read(&bitmap->pending_writes)==0);
+ if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags))
+ ret = -EIO;
+out:
+ if (ret)
+ pr_err("md: bitmap read error: (%dB @ %llu): %d\n",
+ (int)PAGE_SIZE,
+ (unsigned long long)index << PAGE_SHIFT,
+ ret);
+ return ret;
+}
+
+/*
+ * bitmap file superblock operations
+ */
+
+/*
+ * md_bitmap_wait_writes() should be called before writing any bitmap
+ * blocks, to ensure previous writes, particularly from
+ * md_bitmap_daemon_work(), have completed.
+ */
+static void md_bitmap_wait_writes(struct bitmap *bitmap)
+{
+ if (bitmap->storage.file)
+ wait_event(bitmap->write_wait,
+ atomic_read(&bitmap->pending_writes)==0);
+ else
+ /* Note that we ignore the return value. The writes
+ * might have failed, but that would just mean that
+ * some bits which should be cleared haven't been,
+ * which is safe. The relevant bitmap blocks will
+ * probably get written again, but there is no great
+ * loss if they aren't.
+ */
+ md_super_wait(bitmap->mddev);
+}
+
+
+/* update the event counter and sync the superblock to disk */
+void md_bitmap_update_sb(struct bitmap *bitmap)
+{
+ bitmap_super_t *sb;
+
+ if (!bitmap || !bitmap->mddev) /* no bitmap for this array */
+ return;
+ if (bitmap->mddev->bitmap_info.external)
+ return;
+ if (!bitmap->storage.sb_page) /* no superblock */
+ return;
+ sb = kmap_atomic(bitmap->storage.sb_page);
+ sb->events = cpu_to_le64(bitmap->mddev->events);
+ if (bitmap->mddev->events < bitmap->events_cleared)
+ /* rocking back to read-only */
+ bitmap->events_cleared = bitmap->mddev->events;
+ sb->events_cleared = cpu_to_le64(bitmap->events_cleared);
+ /*
+ * clear BITMAP_WRITE_ERROR bit to protect against the case that
+ * a bitmap write error occurred but the later writes succeeded.
+ */
+ sb->state = cpu_to_le32(bitmap->flags & ~BIT(BITMAP_WRITE_ERROR));
+ /* Just in case these have been changed via sysfs: */
+ sb->daemon_sleep = cpu_to_le32(bitmap->mddev->bitmap_info.daemon_sleep/HZ);
+ sb->write_behind = cpu_to_le32(bitmap->mddev->bitmap_info.max_write_behind);
+ /* This might have been changed by a reshape */
+ sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors);
+ sb->chunksize = cpu_to_le32(bitmap->mddev->bitmap_info.chunksize);
+ sb->nodes = cpu_to_le32(bitmap->mddev->bitmap_info.nodes);
+ sb->sectors_reserved = cpu_to_le32(bitmap->mddev->
+ bitmap_info.space);
+ kunmap_atomic(sb);
+ write_page(bitmap, bitmap->storage.sb_page, 1);
+}
+EXPORT_SYMBOL(md_bitmap_update_sb);
+
+/* print out the bitmap file superblock */
+void md_bitmap_print_sb(struct bitmap *bitmap)
+{
+ bitmap_super_t *sb;
+
+ if (!bitmap || !bitmap->storage.sb_page)
+ return;
+ sb = kmap_atomic(bitmap->storage.sb_page);
+ pr_debug("%s: bitmap file superblock:\n", bmname(bitmap));
+ pr_debug(" magic: %08x\n", le32_to_cpu(sb->magic));
+ pr_debug(" version: %u\n", le32_to_cpu(sb->version));
+ pr_debug(" uuid: %08x.%08x.%08x.%08x\n",
+ le32_to_cpu(*(__le32 *)(sb->uuid+0)),
+ le32_to_cpu(*(__le32 *)(sb->uuid+4)),
+ le32_to_cpu(*(__le32 *)(sb->uuid+8)),
+ le32_to_cpu(*(__le32 *)(sb->uuid+12)));
+ pr_debug(" events: %llu\n",
+ (unsigned long long) le64_to_cpu(sb->events));
+ pr_debug("events cleared: %llu\n",
+ (unsigned long long) le64_to_cpu(sb->events_cleared));
+ pr_debug(" state: %08x\n", le32_to_cpu(sb->state));
+ pr_debug(" chunksize: %u B\n", le32_to_cpu(sb->chunksize));
+ pr_debug(" daemon sleep: %us\n", le32_to_cpu(sb->daemon_sleep));
+ pr_debug(" sync size: %llu KB\n",
+ (unsigned long long)le64_to_cpu(sb->sync_size)/2);
+ pr_debug("max write behind: %u\n", le32_to_cpu(sb->write_behind));
+ kunmap_atomic(sb);
+}
+
+/*
+ * bitmap_new_disk_sb
+ * @bitmap
+ *
+ * This function is somewhat the reverse of bitmap_read_sb. bitmap_read_sb
+ * reads and verifies the on-disk bitmap superblock and populates bitmap_info.
+ * This function verifies 'bitmap_info' and populates the on-disk bitmap
+ * structure, which is to be written to disk.
+ *
+ * Returns: 0 on success, -Exxx on error
+ */
+static int md_bitmap_new_disk_sb(struct bitmap *bitmap)
+{
+ bitmap_super_t *sb;
+ unsigned long chunksize, daemon_sleep, write_behind;
+
+ bitmap->storage.sb_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
+ if (bitmap->storage.sb_page == NULL)
+ return -ENOMEM;
+ bitmap->storage.sb_page->index = 0;
+
+ sb = kmap_atomic(bitmap->storage.sb_page);
+
+ sb->magic = cpu_to_le32(BITMAP_MAGIC);
+ sb->version = cpu_to_le32(BITMAP_MAJOR_HI);
+
+ chunksize = bitmap->mddev->bitmap_info.chunksize;
+ BUG_ON(!chunksize);
+ if (!is_power_of_2(chunksize)) {
+ kunmap_atomic(sb);
+ pr_warn("bitmap chunksize not a power of 2\n");
+ return -EINVAL;
+ }
+ sb->chunksize = cpu_to_le32(chunksize);
+
+ daemon_sleep = bitmap->mddev->bitmap_info.daemon_sleep;
+ if (!daemon_sleep || (daemon_sleep > MAX_SCHEDULE_TIMEOUT)) {
+ pr_debug("Choosing daemon_sleep default (5 sec)\n");
+ daemon_sleep = 5 * HZ;
+ }
+ sb->daemon_sleep = cpu_to_le32(daemon_sleep);
+ bitmap->mddev->bitmap_info.daemon_sleep = daemon_sleep;
+
+ /*
+ * FIXME: write_behind for RAID1. If not specified, what
+ * is a good choice? We choose COUNTER_MAX / 2 arbitrarily.
+ */
+ write_behind = bitmap->mddev->bitmap_info.max_write_behind;
+ if (write_behind > COUNTER_MAX)
+ write_behind = COUNTER_MAX / 2;
+ sb->write_behind = cpu_to_le32(write_behind);
+ bitmap->mddev->bitmap_info.max_write_behind = write_behind;
+
+ /* keep the array size field of the bitmap superblock up to date */
+ sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors);
+
+ memcpy(sb->uuid, bitmap->mddev->uuid, 16);
+
+ set_bit(BITMAP_STALE, &bitmap->flags);
+ sb->state = cpu_to_le32(bitmap->flags);
+ bitmap->events_cleared = bitmap->mddev->events;
+ sb->events_cleared = cpu_to_le64(bitmap->mddev->events);
+ bitmap->mddev->bitmap_info.nodes = 0;
+
+ kunmap_atomic(sb);
+
+ return 0;
+}
+
+/* read the superblock from the bitmap file and initialize some bitmap fields */
+static int md_bitmap_read_sb(struct bitmap *bitmap)
+{
+ char *reason = NULL;
+ bitmap_super_t *sb;
+ unsigned long chunksize, daemon_sleep, write_behind;
+ unsigned long long events;
+ int nodes = 0;
+ unsigned long sectors_reserved = 0;
+ int err = -EINVAL;
+ struct page *sb_page;
+ loff_t offset = bitmap->mddev->bitmap_info.offset;
+
+ if (!bitmap->storage.file && !bitmap->mddev->bitmap_info.offset) {
+ chunksize = 128 * 1024 * 1024;
+ daemon_sleep = 5 * HZ;
+ write_behind = 0;
+ set_bit(BITMAP_STALE, &bitmap->flags);
+ err = 0;
+ goto out_no_sb;
+ }
+ /* page 0 is the superblock, read it... */
+ sb_page = alloc_page(GFP_KERNEL);
+ if (!sb_page)
+ return -ENOMEM;
+ bitmap->storage.sb_page = sb_page;
+
+re_read:
+ /* If cluster_slot is set, the cluster is setup */
+ if (bitmap->cluster_slot >= 0) {
+ sector_t bm_blocks = bitmap->mddev->resync_max_sectors;
+
+ bm_blocks = DIV_ROUND_UP_SECTOR_T(bm_blocks,
+ (bitmap->mddev->bitmap_info.chunksize >> 9));
+ /* bits to bytes */
+ bm_blocks = ((bm_blocks+7) >> 3) + sizeof(bitmap_super_t);
+ /* to 4k blocks */
+ bm_blocks = DIV_ROUND_UP_SECTOR_T(bm_blocks, 4096);
+ offset = bitmap->mddev->bitmap_info.offset + (bitmap->cluster_slot * (bm_blocks << 3));
+ pr_debug("%s:%d bm slot: %d offset: %llu\n", __func__, __LINE__,
+ bitmap->cluster_slot, offset);
+ }
+
+ if (bitmap->storage.file) {
+ loff_t isize = i_size_read(bitmap->storage.file->f_mapping->host);
+ int bytes = isize > PAGE_SIZE ? PAGE_SIZE : isize;
+
+ err = read_page(bitmap->storage.file, 0,
+ bitmap, bytes, sb_page);
+ } else {
+ err = read_sb_page(bitmap->mddev,
+ offset,
+ sb_page,
+ 0, sizeof(bitmap_super_t));
+ }
+ if (err)
+ return err;
+
+ err = -EINVAL;
+ sb = kmap_atomic(sb_page);
+
+ chunksize = le32_to_cpu(sb->chunksize);
+ daemon_sleep = le32_to_cpu(sb->daemon_sleep) * HZ;
+ write_behind = le32_to_cpu(sb->write_behind);
+ sectors_reserved = le32_to_cpu(sb->sectors_reserved);
+
+ /* verify that the bitmap-specific fields are valid */
+ if (sb->magic != cpu_to_le32(BITMAP_MAGIC))
+ reason = "bad magic";
+ else if (le32_to_cpu(sb->version) < BITMAP_MAJOR_LO ||
+ le32_to_cpu(sb->version) > BITMAP_MAJOR_CLUSTERED)
+ reason = "unrecognized superblock version";
+ else if (chunksize < 512)
+ reason = "bitmap chunksize too small";
+ else if (!is_power_of_2(chunksize))
+ reason = "bitmap chunksize not a power of 2";
+ else if (daemon_sleep < 1 || daemon_sleep > MAX_SCHEDULE_TIMEOUT)
+ reason = "daemon sleep period out of range";
+ else if (write_behind > COUNTER_MAX)
+ reason = "write-behind limit out of range (0 - 16383)";
+ if (reason) {
+ pr_warn("%s: invalid bitmap file superblock: %s\n",
+ bmname(bitmap), reason);
+ goto out;
+ }
+
+ /*
+ * Setup nodes/clustername only if bitmap version is
+ * cluster-compatible
+ */
+ if (sb->version == cpu_to_le32(BITMAP_MAJOR_CLUSTERED)) {
+ nodes = le32_to_cpu(sb->nodes);
+ strscpy(bitmap->mddev->bitmap_info.cluster_name,
+ sb->cluster_name, 64);
+ }
+
+ /* keep the array size field of the bitmap superblock up to date */
+ sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors);
+
+ if (bitmap->mddev->persistent) {
+ /*
+ * We have a persistent array superblock, so compare the
+ * bitmap's UUID and event counter to the mddev's
+ */
+ if (memcmp(sb->uuid, bitmap->mddev->uuid, 16)) {
+ pr_warn("%s: bitmap superblock UUID mismatch\n",
+ bmname(bitmap));
+ goto out;
+ }
+ events = le64_to_cpu(sb->events);
+ if (!nodes && (events < bitmap->mddev->events)) {
+ pr_warn("%s: bitmap file is out of date (%llu < %llu) -- forcing full recovery\n",
+ bmname(bitmap), events,
+ (unsigned long long) bitmap->mddev->events);
+ set_bit(BITMAP_STALE, &bitmap->flags);
+ }
+ }
+
+ /* assign fields using values from superblock */
+ bitmap->flags |= le32_to_cpu(sb->state);
+ if (le32_to_cpu(sb->version) == BITMAP_MAJOR_HOSTENDIAN)
+ set_bit(BITMAP_HOSTENDIAN, &bitmap->flags);
+ bitmap->events_cleared = le64_to_cpu(sb->events_cleared);
+ err = 0;
+
+out:
+ kunmap_atomic(sb);
+ if (err == 0 && nodes && (bitmap->cluster_slot < 0)) {
+ /* Assigning chunksize is required for "re_read" */
+ bitmap->mddev->bitmap_info.chunksize = chunksize;
+ err = md_setup_cluster(bitmap->mddev, nodes);
+ if (err) {
+ pr_warn("%s: Could not setup cluster service (%d)\n",
+ bmname(bitmap), err);
+ goto out_no_sb;
+ }
+ bitmap->cluster_slot = md_cluster_ops->slot_number(bitmap->mddev);
+ goto re_read;
+ }
+
+out_no_sb:
+ if (err == 0) {
+ if (test_bit(BITMAP_STALE, &bitmap->flags))
+ bitmap->events_cleared = bitmap->mddev->events;
+ bitmap->mddev->bitmap_info.chunksize = chunksize;
+ bitmap->mddev->bitmap_info.daemon_sleep = daemon_sleep;
+ bitmap->mddev->bitmap_info.max_write_behind = write_behind;
+ bitmap->mddev->bitmap_info.nodes = nodes;
+ if (bitmap->mddev->bitmap_info.space == 0 ||
+ bitmap->mddev->bitmap_info.space > sectors_reserved)
+ bitmap->mddev->bitmap_info.space = sectors_reserved;
+ } else {
+ md_bitmap_print_sb(bitmap);
+ if (bitmap->cluster_slot < 0)
+ md_cluster_stop(bitmap->mddev);
+ }
+ return err;
+}
+
+/*
+ * general bitmap file operations
+ */
+
+/*
+ * on-disk bitmap:
+ *
+ * Use one bit per "chunk" (block set). We do the disk I/O on the bitmap
+ * file a page at a time. There's a superblock at the start of the file.
+ */
+/* calculate the index of the page that contains this bit */
+static inline unsigned long file_page_index(struct bitmap_storage *store,
+ unsigned long chunk)
+{
+ if (store->sb_page)
+ chunk += sizeof(bitmap_super_t) << 3;
+ return chunk >> PAGE_BIT_SHIFT;
+}
+
+/* calculate the (bit) offset of this bit within a page */
+static inline unsigned long file_page_offset(struct bitmap_storage *store,
+ unsigned long chunk)
+{
+ if (store->sb_page)
+ chunk += sizeof(bitmap_super_t) << 3;
+ return chunk & (PAGE_BITS - 1);
+}
+
+/*
+ * return a pointer to the page in the filemap that contains the given bit
+ *
+ */
+static inline struct page *filemap_get_page(struct bitmap_storage *store,
+ unsigned long chunk)
+{
+ if (file_page_index(store, chunk) >= store->file_pages)
+ return NULL;
+ return store->filemap[file_page_index(store, chunk)];
+}
+
+static int md_bitmap_storage_alloc(struct bitmap_storage *store,
+ unsigned long chunks, int with_super,
+ int slot_number)
+{
+ int pnum, offset = 0;
+ unsigned long num_pages;
+ unsigned long bytes;
+
+ bytes = DIV_ROUND_UP(chunks, 8);
+ if (with_super)
+ bytes += sizeof(bitmap_super_t);
+
+ num_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
+ offset = slot_number * num_pages;
+
+ store->filemap = kmalloc_array(num_pages, sizeof(struct page *),
+ GFP_KERNEL);
+ if (!store->filemap)
+ return -ENOMEM;
+
+ if (with_super && !store->sb_page) {
+ store->sb_page = alloc_page(GFP_KERNEL|__GFP_ZERO);
+ if (store->sb_page == NULL)
+ return -ENOMEM;
+ }
+
+ pnum = 0;
+ if (store->sb_page) {
+ store->filemap[0] = store->sb_page;
+ pnum = 1;
+ store->sb_page->index = offset;
+ }
+
+ for ( ; pnum < num_pages; pnum++) {
+ store->filemap[pnum] = alloc_page(GFP_KERNEL|__GFP_ZERO);
+ if (!store->filemap[pnum]) {
+ store->file_pages = pnum;
+ return -ENOMEM;
+ }
+ store->filemap[pnum]->index = pnum + offset;
+ }
+ store->file_pages = pnum;
+
+ /* We need 4 bits per page, rounded up to a multiple
+ * of sizeof(unsigned long) */
+ store->filemap_attr = kzalloc(
+ roundup(DIV_ROUND_UP(num_pages*4, 8), sizeof(unsigned long)),
+ GFP_KERNEL);
+ if (!store->filemap_attr)
+ return -ENOMEM;
+
+ store->bytes = bytes;
+
+ return 0;
+}
+
+static void md_bitmap_file_unmap(struct bitmap_storage *store)
+{
+ struct page **map, *sb_page;
+ int pages;
+ struct file *file;
+
+ file = store->file;
+ map = store->filemap;
+ pages = store->file_pages;
+ sb_page = store->sb_page;
+
+ while (pages--)
+ if (map[pages] != sb_page) /* 0 is sb_page, release it below */
+ free_buffers(map[pages]);
+ kfree(map);
+ kfree(store->filemap_attr);
+
+ if (sb_page)
+ free_buffers(sb_page);
+
+ if (file) {
+ struct inode *inode = file_inode(file);
+ invalidate_mapping_pages(inode->i_mapping, 0, -1);
+ fput(file);
+ }
+}
+
+/*
+ * bitmap_file_kick - if an error occurs while manipulating the bitmap file
+ * then it is no longer reliable, so we stop using it and we mark the file
+ * as failed in the superblock
+ */
+static void md_bitmap_file_kick(struct bitmap *bitmap)
+{
+ char *path, *ptr = NULL;
+
+ if (!test_and_set_bit(BITMAP_STALE, &bitmap->flags)) {
+ md_bitmap_update_sb(bitmap);
+
+ if (bitmap->storage.file) {
+ path = kmalloc(PAGE_SIZE, GFP_KERNEL);
+ if (path)
+ ptr = file_path(bitmap->storage.file,
+ path, PAGE_SIZE);
+
+ pr_warn("%s: kicking failed bitmap file %s from array!\n",
+ bmname(bitmap), IS_ERR(ptr) ? "" : ptr);
+
+ kfree(path);
+ } else
+ pr_warn("%s: disabling internal bitmap due to errors\n",
+ bmname(bitmap));
+ }
+}
+
+enum bitmap_page_attr {
+ BITMAP_PAGE_DIRTY = 0, /* there are set bits that need to be synced */
+ BITMAP_PAGE_PENDING = 1, /* there are bits that are being cleaned.
+ * i.e. counter is 1 or 2. */
+ BITMAP_PAGE_NEEDWRITE = 2, /* there are cleared bits that need to be synced */
+};
+
+static inline void set_page_attr(struct bitmap *bitmap, int pnum,
+ enum bitmap_page_attr attr)
+{
+ set_bit((pnum<<2) + attr, bitmap->storage.filemap_attr);
+}
+
+static inline void clear_page_attr(struct bitmap *bitmap, int pnum,
+ enum bitmap_page_attr attr)
+{
+ clear_bit((pnum<<2) + attr, bitmap->storage.filemap_attr);
+}
+
+static inline int test_page_attr(struct bitmap *bitmap, int pnum,
+ enum bitmap_page_attr attr)
+{
+ return test_bit((pnum<<2) + attr, bitmap->storage.filemap_attr);
+}
+
+static inline int test_and_clear_page_attr(struct bitmap *bitmap, int pnum,
+ enum bitmap_page_attr attr)
+{
+ return test_and_clear_bit((pnum<<2) + attr,
+ bitmap->storage.filemap_attr);
+}
+/*
+ * bitmap_file_set_bit -- called before performing a write to the md device
+ * to set (and eventually sync) a particular bit in the bitmap file
+ *
+ * we set the bit immediately, then we record the page number so that
+ * when an unplug occurs, we can flush the dirty pages out to disk
+ */
+static void md_bitmap_file_set_bit(struct bitmap *bitmap, sector_t block)
+{
+ unsigned long bit;
+ struct page *page;
+ void *kaddr;
+ unsigned long chunk = block >> bitmap->counts.chunkshift;
+ struct bitmap_storage *store = &bitmap->storage;
+ unsigned long node_offset = 0;
+
+ if (mddev_is_clustered(bitmap->mddev))
+ node_offset = bitmap->cluster_slot * store->file_pages;
+
+ page = filemap_get_page(&bitmap->storage, chunk);
+ if (!page)
+ return;
+ bit = file_page_offset(&bitmap->storage, chunk);
+
+ /* set the bit */
+ kaddr = kmap_atomic(page);
+ if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags))
+ set_bit(bit, kaddr);
+ else
+ set_bit_le(bit, kaddr);
+ kunmap_atomic(kaddr);
+ pr_debug("set file bit %lu page %lu\n", bit, page->index);
+ /* record page number so it gets flushed to disk when unplug occurs */
+ set_page_attr(bitmap, page->index - node_offset, BITMAP_PAGE_DIRTY);
+}
+
+static void md_bitmap_file_clear_bit(struct bitmap *bitmap, sector_t block)
+{
+ unsigned long bit;
+ struct page *page;
+ void *paddr;
+ unsigned long chunk = block >> bitmap->counts.chunkshift;
+ struct bitmap_storage *store = &bitmap->storage;
+ unsigned long node_offset = 0;
+
+ if (mddev_is_clustered(bitmap->mddev))
+ node_offset = bitmap->cluster_slot * store->file_pages;
+
+ page = filemap_get_page(&bitmap->storage, chunk);
+ if (!page)
+ return;
+ bit = file_page_offset(&bitmap->storage, chunk);
+ paddr = kmap_atomic(page);
+ if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags))
+ clear_bit(bit, paddr);
+ else
+ clear_bit_le(bit, paddr);
+ kunmap_atomic(paddr);
+ if (!test_page_attr(bitmap, page->index - node_offset, BITMAP_PAGE_NEEDWRITE)) {
+ set_page_attr(bitmap, page->index - node_offset, BITMAP_PAGE_PENDING);
+ bitmap->allclean = 0;
+ }
+}
+
+static int md_bitmap_file_test_bit(struct bitmap *bitmap, sector_t block)
+{
+ unsigned long bit;
+ struct page *page;
+ void *paddr;
+ unsigned long chunk = block >> bitmap->counts.chunkshift;
+ int set = 0;
+
+ page = filemap_get_page(&bitmap->storage, chunk);
+ if (!page)
+ return -EINVAL;
+ bit = file_page_offset(&bitmap->storage, chunk);
+ paddr = kmap_atomic(page);
+ if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags))
+ set = test_bit(bit, paddr);
+ else
+ set = test_bit_le(bit, paddr);
+ kunmap_atomic(paddr);
+ return set;
+}
+
+/* this gets called when the md device is ready to unplug its underlying
+ * (slave) device queues -- before we let any writes go down, we need to
+ * sync the dirty pages of the bitmap file to disk */
+void md_bitmap_unplug(struct bitmap *bitmap)
+{
+ unsigned long i;
+ int dirty, need_write;
+ int writing = 0;
+
+ if (!md_bitmap_enabled(bitmap))
+ return;
+
+ /* look at each page to see if there are any set bits that need to be
+ * flushed out to disk */
+ for (i = 0; i < bitmap->storage.file_pages; i++) {
+ dirty = test_and_clear_page_attr(bitmap, i, BITMAP_PAGE_DIRTY);
+ need_write = test_and_clear_page_attr(bitmap, i,
+ BITMAP_PAGE_NEEDWRITE);
+ if (dirty || need_write) {
+ if (!writing) {
+ md_bitmap_wait_writes(bitmap);
+ if (bitmap->mddev->queue)
+ blk_add_trace_msg(bitmap->mddev->queue,
+ "md bitmap_unplug");
+ }
+ clear_page_attr(bitmap, i, BITMAP_PAGE_PENDING);
+ write_page(bitmap, bitmap->storage.filemap[i], 0);
+ writing = 1;
+ }
+ }
+ if (writing)
+ md_bitmap_wait_writes(bitmap);
+
+ if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags))
+ md_bitmap_file_kick(bitmap);
+}
+EXPORT_SYMBOL(md_bitmap_unplug);
+
+static void md_bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed);
+/* * bitmap_init_from_disk -- called at bitmap_create time to initialize
+ * the in-memory bitmap from the on-disk bitmap -- also, sets up the
+ * memory mapping of the bitmap file
+ * Special cases:
+ * if there's no bitmap file, or if the bitmap file had been
+ * previously kicked from the array, we mark all the bits as
+ * 1's in order to cause a full resync.
+ *
+ * We ignore all bits for sectors that end earlier than 'start'.
+ * This is used when reading an out-of-date bitmap...
+ */
+static int md_bitmap_init_from_disk(struct bitmap *bitmap, sector_t start)
+{
+ unsigned long i, chunks, index, oldindex, bit, node_offset = 0;
+ struct page *page = NULL;
+ unsigned long bit_cnt = 0;
+ struct file *file;
+ unsigned long offset;
+ int outofdate;
+ int ret = -ENOSPC;
+ void *paddr;
+ struct bitmap_storage *store = &bitmap->storage;
+
+ chunks = bitmap->counts.chunks;
+ file = store->file;
+
+ if (!file && !bitmap->mddev->bitmap_info.offset) {
+ /* No permanent bitmap - fill with '1s'. */
+ store->filemap = NULL;
+ store->file_pages = 0;
+ for (i = 0; i < chunks ; i++) {
+ /* if the disk bit is set, set the memory bit */
+ int needed = ((sector_t)(i+1) << (bitmap->counts.chunkshift)
+ >= start);
+ md_bitmap_set_memory_bits(bitmap,
+ (sector_t)i << bitmap->counts.chunkshift,
+ needed);
+ }
+ return 0;
+ }
+
+ outofdate = test_bit(BITMAP_STALE, &bitmap->flags);
+ if (outofdate)
+ pr_warn("%s: bitmap file is out of date, doing full recovery\n", bmname(bitmap));
+
+ if (file && i_size_read(file->f_mapping->host) < store->bytes) {
+ pr_warn("%s: bitmap file too short %lu < %lu\n",
+ bmname(bitmap),
+ (unsigned long) i_size_read(file->f_mapping->host),
+ store->bytes);
+ goto err;
+ }
+
+ oldindex = ~0L;
+ offset = 0;
+ if (!bitmap->mddev->bitmap_info.external)
+ offset = sizeof(bitmap_super_t);
+
+ if (mddev_is_clustered(bitmap->mddev))
+ node_offset = bitmap->cluster_slot * (DIV_ROUND_UP(store->bytes, PAGE_SIZE));
+
+ for (i = 0; i < chunks; i++) {
+ int b;
+ index = file_page_index(&bitmap->storage, i);
+ bit = file_page_offset(&bitmap->storage, i);
+ if (index != oldindex) { /* this is a new page, read it in */
+ int count;
+ /* unmap the old page, we're done with it */
+ if (index == store->file_pages-1)
+ count = store->bytes - index * PAGE_SIZE;
+ else
+ count = PAGE_SIZE;
+ page = store->filemap[index];
+ if (file)
+ ret = read_page(file, index, bitmap,
+ count, page);
+ else
+ ret = read_sb_page(
+ bitmap->mddev,
+ bitmap->mddev->bitmap_info.offset,
+ page,
+ index + node_offset, count);
+
+ if (ret)
+ goto err;
+
+ oldindex = index;
+
+ if (outofdate) {
+ /*
+ * if bitmap is out of date, dirty the
+ * whole page and write it out
+ */
+ paddr = kmap_atomic(page);
+ memset(paddr + offset, 0xff,
+ PAGE_SIZE - offset);
+ kunmap_atomic(paddr);
+ write_page(bitmap, page, 1);
+
+ ret = -EIO;
+ if (test_bit(BITMAP_WRITE_ERROR,
+ &bitmap->flags))
+ goto err;
+ }
+ }
+ paddr = kmap_atomic(page);
+ if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags))
+ b = test_bit(bit, paddr);
+ else
+ b = test_bit_le(bit, paddr);
+ kunmap_atomic(paddr);
+ if (b) {
+ /* if the disk bit is set, set the memory bit */
+ int needed = ((sector_t)(i+1) << bitmap->counts.chunkshift
+ >= start);
+ md_bitmap_set_memory_bits(bitmap,
+ (sector_t)i << bitmap->counts.chunkshift,
+ needed);
+ bit_cnt++;
+ }
+ offset = 0;
+ }
+
+ pr_debug("%s: bitmap initialized from disk: read %lu pages, set %lu of %lu bits\n",
+ bmname(bitmap), store->file_pages,
+ bit_cnt, chunks);
+
+ return 0;
+
+ err:
+ pr_warn("%s: bitmap initialisation failed: %d\n",
+ bmname(bitmap), ret);
+ return ret;
+}
+
+void md_bitmap_write_all(struct bitmap *bitmap)
+{
+ /* We don't actually write all bitmap blocks here,
+ * just flag them as needing to be written
+ */
+ int i;
+
+ if (!bitmap || !bitmap->storage.filemap)
+ return;
+ if (bitmap->storage.file)
+ /* Only one copy, so nothing needed */
+ return;
+
+ for (i = 0; i < bitmap->storage.file_pages; i++)
+ set_page_attr(bitmap, i,
+ BITMAP_PAGE_NEEDWRITE);
+ bitmap->allclean = 0;
+}
+
+static void md_bitmap_count_page(struct bitmap_counts *bitmap,
+ sector_t offset, int inc)
+{
+ sector_t chunk = offset >> bitmap->chunkshift;
+ unsigned long page = chunk >> PAGE_COUNTER_SHIFT;
+ bitmap->bp[page].count += inc;
+ md_bitmap_checkfree(bitmap, page);
+}
+
+static void md_bitmap_set_pending(struct bitmap_counts *bitmap, sector_t offset)
+{
+ sector_t chunk = offset >> bitmap->chunkshift;
+ unsigned long page = chunk >> PAGE_COUNTER_SHIFT;
+ struct bitmap_page *bp = &bitmap->bp[page];
+
+ if (!bp->pending)
+ bp->pending = 1;
+}
+
+static bitmap_counter_t *md_bitmap_get_counter(struct bitmap_counts *bitmap,
+ sector_t offset, sector_t *blocks,
+ int create);
+
+/*
+ * bitmap daemon -- periodically wakes up to clean bits and flush pages
+ * out to disk
+ */
+
+void md_bitmap_daemon_work(struct mddev *mddev)
+{
+ struct bitmap *bitmap;
+ unsigned long j;
+ unsigned long nextpage;
+ sector_t blocks;
+ struct bitmap_counts *counts;
+
+ /* Use a mutex to guard daemon_work against
+ * bitmap_destroy.
+ */
+ mutex_lock(&mddev->bitmap_info.mutex);
+ bitmap = mddev->bitmap;
+ if (bitmap == NULL) {
+ mutex_unlock(&mddev->bitmap_info.mutex);
+ return;
+ }
+ if (time_before(jiffies, bitmap->daemon_lastrun
+ + mddev->bitmap_info.daemon_sleep))
+ goto done;
+
+ bitmap->daemon_lastrun = jiffies;
+ if (bitmap->allclean) {
+ mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
+ goto done;
+ }
+ bitmap->allclean = 1;
+
+ if (bitmap->mddev->queue)
+ blk_add_trace_msg(bitmap->mddev->queue,
+ "md bitmap_daemon_work");
+
+ /* Any file-page which is PENDING now needs to be written.
+ * So set NEEDWRITE now, then after we make any last-minute changes
+ * we will write it.
+ */
+ for (j = 0; j < bitmap->storage.file_pages; j++)
+ if (test_and_clear_page_attr(bitmap, j,
+ BITMAP_PAGE_PENDING))
+ set_page_attr(bitmap, j,
+ BITMAP_PAGE_NEEDWRITE);
+
+ if (bitmap->need_sync &&
+ mddev->bitmap_info.external == 0) {
+ /* Arrange for superblock update as well as
+ * other changes */
+ bitmap_super_t *sb;
+ bitmap->need_sync = 0;
+ if (bitmap->storage.filemap) {
+ sb = kmap_atomic(bitmap->storage.sb_page);
+ sb->events_cleared =
+ cpu_to_le64(bitmap->events_cleared);
+ kunmap_atomic(sb);
+ set_page_attr(bitmap, 0,
+ BITMAP_PAGE_NEEDWRITE);
+ }
+ }
+ /* Now look at the bitmap counters and if any are '2' or '1',
+ * decrement and handle accordingly.
+ */
+ counts = &bitmap->counts;
+ spin_lock_irq(&counts->lock);
+ nextpage = 0;
+ for (j = 0; j < counts->chunks; j++) {
+ bitmap_counter_t *bmc;
+ sector_t block = (sector_t)j << counts->chunkshift;
+
+ if (j == nextpage) {
+ nextpage += PAGE_COUNTER_RATIO;
+ if (!counts->bp[j >> PAGE_COUNTER_SHIFT].pending) {
+ j |= PAGE_COUNTER_MASK;
+ continue;
+ }
+ counts->bp[j >> PAGE_COUNTER_SHIFT].pending = 0;
+ }
+
+ bmc = md_bitmap_get_counter(counts, block, &blocks, 0);
+ if (!bmc) {
+ j |= PAGE_COUNTER_MASK;
+ continue;
+ }
+ if (*bmc == 1 && !bitmap->need_sync) {
+ /* We can clear the bit */
+ *bmc = 0;
+ md_bitmap_count_page(counts, block, -1);
+ md_bitmap_file_clear_bit(bitmap, block);
+ } else if (*bmc && *bmc <= 2) {
+ *bmc = 1;
+ md_bitmap_set_pending(counts, block);
+ bitmap->allclean = 0;
+ }
+ }
+ spin_unlock_irq(&counts->lock);
+
+ md_bitmap_wait_writes(bitmap);
+ /* Now start writeout on any page in NEEDWRITE that isn't DIRTY.
+ * DIRTY pages need to be written by bitmap_unplug so it can wait
+ * for them.
+ * If we find any DIRTY page we stop there and let bitmap_unplug
+ * handle all the rest. This is important in the case where
+ * the first blocking holds the superblock and it has been updated.
+ * We mustn't write any other blocks before the superblock.
+ */
+ for (j = 0;
+ j < bitmap->storage.file_pages
+ && !test_bit(BITMAP_STALE, &bitmap->flags);
+ j++) {
+ if (test_page_attr(bitmap, j,
+ BITMAP_PAGE_DIRTY))
+ /* bitmap_unplug will handle the rest */
+ break;
+ if (bitmap->storage.filemap &&
+ test_and_clear_page_attr(bitmap, j,
+ BITMAP_PAGE_NEEDWRITE)) {
+ write_page(bitmap, bitmap->storage.filemap[j], 0);
+ }
+ }
+
+ done:
+ if (bitmap->allclean == 0)
+ mddev->thread->timeout =
+ mddev->bitmap_info.daemon_sleep;
+ mutex_unlock(&mddev->bitmap_info.mutex);
+}
+
+static bitmap_counter_t *md_bitmap_get_counter(struct bitmap_counts *bitmap,
+ sector_t offset, sector_t *blocks,
+ int create)
+__releases(bitmap->lock)
+__acquires(bitmap->lock)
+{
+ /* If 'create', we might release the lock and reclaim it.
+ * The lock must have been taken with interrupts enabled.
+ * If !create, we don't release the lock.
+ */
+ sector_t chunk = offset >> bitmap->chunkshift;
+ unsigned long page = chunk >> PAGE_COUNTER_SHIFT;
+ unsigned long pageoff = (chunk & PAGE_COUNTER_MASK) << COUNTER_BYTE_SHIFT;
+ sector_t csize;
+ int err;
+
+ if (page >= bitmap->pages) {
+ /*
+ * This can happen if bitmap_start_sync goes beyond
+ * End-of-device while looking for a whole page or
+ * user set a huge number to sysfs bitmap_set_bits.
+ */
+ return NULL;
+ }
+ err = md_bitmap_checkpage(bitmap, page, create, 0);
+
+ if (bitmap->bp[page].hijacked ||
+ bitmap->bp[page].map == NULL)
+ csize = ((sector_t)1) << (bitmap->chunkshift +
+ PAGE_COUNTER_SHIFT);
+ else
+ csize = ((sector_t)1) << bitmap->chunkshift;
+ *blocks = csize - (offset & (csize - 1));
+
+ if (err < 0)
+ return NULL;
+
+ /* now locked ... */
+
+ if (bitmap->bp[page].hijacked) { /* hijacked pointer */
+ /* should we use the first or second counter field
+ * of the hijacked pointer? */
+ int hi = (pageoff > PAGE_COUNTER_MASK);
+ return &((bitmap_counter_t *)
+ &bitmap->bp[page].map)[hi];
+ } else /* page is allocated */
+ return (bitmap_counter_t *)
+ &(bitmap->bp[page].map[pageoff]);
+}
+
+int md_bitmap_startwrite(struct bitmap *bitmap, sector_t offset, unsigned long sectors, int behind)
+{
+ if (!bitmap)
+ return 0;
+
+ if (behind) {
+ int bw;
+ atomic_inc(&bitmap->behind_writes);
+ bw = atomic_read(&bitmap->behind_writes);
+ if (bw > bitmap->behind_writes_used)
+ bitmap->behind_writes_used = bw;
+
+ pr_debug("inc write-behind count %d/%lu\n",
+ bw, bitmap->mddev->bitmap_info.max_write_behind);
+ }
+
+ while (sectors) {
+ sector_t blocks;
+ bitmap_counter_t *bmc;
+
+ spin_lock_irq(&bitmap->counts.lock);
+ bmc = md_bitmap_get_counter(&bitmap->counts, offset, &blocks, 1);
+ if (!bmc) {
+ spin_unlock_irq(&bitmap->counts.lock);
+ return 0;
+ }
+
+ if (unlikely(COUNTER(*bmc) == COUNTER_MAX)) {
+ DEFINE_WAIT(__wait);
+ /* note that it is safe to do the prepare_to_wait
+ * after the test as long as we do it before dropping
+ * the spinlock.
+ */
+ prepare_to_wait(&bitmap->overflow_wait, &__wait,
+ TASK_UNINTERRUPTIBLE);
+ spin_unlock_irq(&bitmap->counts.lock);
+ schedule();
+ finish_wait(&bitmap->overflow_wait, &__wait);
+ continue;
+ }
+
+ switch (*bmc) {
+ case 0:
+ md_bitmap_file_set_bit(bitmap, offset);
+ md_bitmap_count_page(&bitmap->counts, offset, 1);
+ fallthrough;
+ case 1:
+ *bmc = 2;
+ }
+
+ (*bmc)++;
+
+ spin_unlock_irq(&bitmap->counts.lock);
+
+ offset += blocks;
+ if (sectors > blocks)
+ sectors -= blocks;
+ else
+ sectors = 0;
+ }
+ return 0;
+}
+EXPORT_SYMBOL(md_bitmap_startwrite);
+
+void md_bitmap_endwrite(struct bitmap *bitmap, sector_t offset,
+ unsigned long sectors, int success, int behind)
+{
+ if (!bitmap)
+ return;
+ if (behind) {
+ if (atomic_dec_and_test(&bitmap->behind_writes))
+ wake_up(&bitmap->behind_wait);
+ pr_debug("dec write-behind count %d/%lu\n",
+ atomic_read(&bitmap->behind_writes),
+ bitmap->mddev->bitmap_info.max_write_behind);
+ }
+
+ while (sectors) {
+ sector_t blocks;
+ unsigned long flags;
+ bitmap_counter_t *bmc;
+
+ spin_lock_irqsave(&bitmap->counts.lock, flags);
+ bmc = md_bitmap_get_counter(&bitmap->counts, offset, &blocks, 0);
+ if (!bmc) {
+ spin_unlock_irqrestore(&bitmap->counts.lock, flags);
+ return;
+ }
+
+ if (success && !bitmap->mddev->degraded &&
+ bitmap->events_cleared < bitmap->mddev->events) {
+ bitmap->events_cleared = bitmap->mddev->events;
+ bitmap->need_sync = 1;
+ sysfs_notify_dirent_safe(bitmap->sysfs_can_clear);
+ }
+
+ if (!success && !NEEDED(*bmc))
+ *bmc |= NEEDED_MASK;
+
+ if (COUNTER(*bmc) == COUNTER_MAX)
+ wake_up(&bitmap->overflow_wait);
+
+ (*bmc)--;
+ if (*bmc <= 2) {
+ md_bitmap_set_pending(&bitmap->counts, offset);
+ bitmap->allclean = 0;
+ }
+ spin_unlock_irqrestore(&bitmap->counts.lock, flags);
+ offset += blocks;
+ if (sectors > blocks)
+ sectors -= blocks;
+ else
+ sectors = 0;
+ }
+}
+EXPORT_SYMBOL(md_bitmap_endwrite);
+
+static int __bitmap_start_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks,
+ int degraded)
+{
+ bitmap_counter_t *bmc;
+ int rv;
+ if (bitmap == NULL) {/* FIXME or bitmap set as 'failed' */
+ *blocks = 1024;
+ return 1; /* always resync if no bitmap */
+ }
+ spin_lock_irq(&bitmap->counts.lock);
+ bmc = md_bitmap_get_counter(&bitmap->counts, offset, blocks, 0);
+ rv = 0;
+ if (bmc) {
+ /* locked */
+ if (RESYNC(*bmc))
+ rv = 1;
+ else if (NEEDED(*bmc)) {
+ rv = 1;
+ if (!degraded) { /* don't set/clear bits if degraded */
+ *bmc |= RESYNC_MASK;
+ *bmc &= ~NEEDED_MASK;
+ }
+ }
+ }
+ spin_unlock_irq(&bitmap->counts.lock);
+ return rv;
+}
+
+int md_bitmap_start_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks,
+ int degraded)
+{
+ /* bitmap_start_sync must always report on multiples of whole
+ * pages, otherwise resync (which is very PAGE_SIZE based) will
+ * get confused.
+ * So call __bitmap_start_sync repeatedly (if needed) until
+ * At least PAGE_SIZE>>9 blocks are covered.
+ * Return the 'or' of the result.
+ */
+ int rv = 0;
+ sector_t blocks1;
+
+ *blocks = 0;
+ while (*blocks < (PAGE_SIZE>>9)) {
+ rv |= __bitmap_start_sync(bitmap, offset,
+ &blocks1, degraded);
+ offset += blocks1;
+ *blocks += blocks1;
+ }
+ return rv;
+}
+EXPORT_SYMBOL(md_bitmap_start_sync);
+
+void md_bitmap_end_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks, int aborted)
+{
+ bitmap_counter_t *bmc;
+ unsigned long flags;
+
+ if (bitmap == NULL) {
+ *blocks = 1024;
+ return;
+ }
+ spin_lock_irqsave(&bitmap->counts.lock, flags);
+ bmc = md_bitmap_get_counter(&bitmap->counts, offset, blocks, 0);
+ if (bmc == NULL)
+ goto unlock;
+ /* locked */
+ if (RESYNC(*bmc)) {
+ *bmc &= ~RESYNC_MASK;
+
+ if (!NEEDED(*bmc) && aborted)
+ *bmc |= NEEDED_MASK;
+ else {
+ if (*bmc <= 2) {
+ md_bitmap_set_pending(&bitmap->counts, offset);
+ bitmap->allclean = 0;
+ }
+ }
+ }
+ unlock:
+ spin_unlock_irqrestore(&bitmap->counts.lock, flags);
+}
+EXPORT_SYMBOL(md_bitmap_end_sync);
+
+void md_bitmap_close_sync(struct bitmap *bitmap)
+{
+ /* Sync has finished, and any bitmap chunks that weren't synced
+ * properly have been aborted. It remains to us to clear the
+ * RESYNC bit wherever it is still on
+ */
+ sector_t sector = 0;
+ sector_t blocks;
+ if (!bitmap)
+ return;
+ while (sector < bitmap->mddev->resync_max_sectors) {
+ md_bitmap_end_sync(bitmap, sector, &blocks, 0);
+ sector += blocks;
+ }
+}
+EXPORT_SYMBOL(md_bitmap_close_sync);
+
+void md_bitmap_cond_end_sync(struct bitmap *bitmap, sector_t sector, bool force)
+{
+ sector_t s = 0;
+ sector_t blocks;
+
+ if (!bitmap)
+ return;
+ if (sector == 0) {
+ bitmap->last_end_sync = jiffies;
+ return;
+ }
+ if (!force && time_before(jiffies, (bitmap->last_end_sync
+ + bitmap->mddev->bitmap_info.daemon_sleep)))
+ return;
+ wait_event(bitmap->mddev->recovery_wait,
+ atomic_read(&bitmap->mddev->recovery_active) == 0);
+
+ bitmap->mddev->curr_resync_completed = sector;
+ set_bit(MD_SB_CHANGE_CLEAN, &bitmap->mddev->sb_flags);
+ sector &= ~((1ULL << bitmap->counts.chunkshift) - 1);
+ s = 0;
+ while (s < sector && s < bitmap->mddev->resync_max_sectors) {
+ md_bitmap_end_sync(bitmap, s, &blocks, 0);
+ s += blocks;
+ }
+ bitmap->last_end_sync = jiffies;
+ sysfs_notify_dirent_safe(bitmap->mddev->sysfs_completed);
+}
+EXPORT_SYMBOL(md_bitmap_cond_end_sync);
+
+void md_bitmap_sync_with_cluster(struct mddev *mddev,
+ sector_t old_lo, sector_t old_hi,
+ sector_t new_lo, sector_t new_hi)
+{
+ struct bitmap *bitmap = mddev->bitmap;
+ sector_t sector, blocks = 0;
+
+ for (sector = old_lo; sector < new_lo; ) {
+ md_bitmap_end_sync(bitmap, sector, &blocks, 0);
+ sector += blocks;
+ }
+ WARN((blocks > new_lo) && old_lo, "alignment is not correct for lo\n");
+
+ for (sector = old_hi; sector < new_hi; ) {
+ md_bitmap_start_sync(bitmap, sector, &blocks, 0);
+ sector += blocks;
+ }
+ WARN((blocks > new_hi) && old_hi, "alignment is not correct for hi\n");
+}
+EXPORT_SYMBOL(md_bitmap_sync_with_cluster);
+
+static void md_bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed)
+{
+ /* For each chunk covered by any of these sectors, set the
+ * counter to 2 and possibly set resync_needed. They should all
+ * be 0 at this point
+ */
+
+ sector_t secs;
+ bitmap_counter_t *bmc;
+ spin_lock_irq(&bitmap->counts.lock);
+ bmc = md_bitmap_get_counter(&bitmap->counts, offset, &secs, 1);
+ if (!bmc) {
+ spin_unlock_irq(&bitmap->counts.lock);
+ return;
+ }
+ if (!*bmc) {
+ *bmc = 2;
+ md_bitmap_count_page(&bitmap->counts, offset, 1);
+ md_bitmap_set_pending(&bitmap->counts, offset);
+ bitmap->allclean = 0;
+ }
+ if (needed)
+ *bmc |= NEEDED_MASK;
+ spin_unlock_irq(&bitmap->counts.lock);
+}
+
+/* dirty the memory and file bits for bitmap chunks "s" to "e" */
+void md_bitmap_dirty_bits(struct bitmap *bitmap, unsigned long s, unsigned long e)
+{
+ unsigned long chunk;
+
+ for (chunk = s; chunk <= e; chunk++) {
+ sector_t sec = (sector_t)chunk << bitmap->counts.chunkshift;
+ md_bitmap_set_memory_bits(bitmap, sec, 1);
+ md_bitmap_file_set_bit(bitmap, sec);
+ if (sec < bitmap->mddev->recovery_cp)
+ /* We are asserting that the array is dirty,
+ * so move the recovery_cp address back so
+ * that it is obvious that it is dirty
+ */
+ bitmap->mddev->recovery_cp = sec;
+ }
+}
+
+/*
+ * flush out any pending updates
+ */
+void md_bitmap_flush(struct mddev *mddev)
+{
+ struct bitmap *bitmap = mddev->bitmap;
+ long sleep;
+
+ if (!bitmap) /* there was no bitmap */
+ return;
+
+ /* run the daemon_work three time to ensure everything is flushed
+ * that can be
+ */
+ sleep = mddev->bitmap_info.daemon_sleep * 2;
+ bitmap->daemon_lastrun -= sleep;
+ md_bitmap_daemon_work(mddev);
+ bitmap->daemon_lastrun -= sleep;
+ md_bitmap_daemon_work(mddev);
+ bitmap->daemon_lastrun -= sleep;
+ md_bitmap_daemon_work(mddev);
+ if (mddev->bitmap_info.external)
+ md_super_wait(mddev);
+ md_bitmap_update_sb(bitmap);
+}
+
+/*
+ * free memory that was allocated
+ */
+void md_bitmap_free(struct bitmap *bitmap)
+{
+ unsigned long k, pages;
+ struct bitmap_page *bp;
+
+ if (!bitmap) /* there was no bitmap */
+ return;
+
+ if (bitmap->sysfs_can_clear)
+ sysfs_put(bitmap->sysfs_can_clear);
+
+ if (mddev_is_clustered(bitmap->mddev) && bitmap->mddev->cluster_info &&
+ bitmap->cluster_slot == md_cluster_ops->slot_number(bitmap->mddev))
+ md_cluster_stop(bitmap->mddev);
+
+ /* Shouldn't be needed - but just in case.... */
+ wait_event(bitmap->write_wait,
+ atomic_read(&bitmap->pending_writes) == 0);
+
+ /* release the bitmap file */
+ md_bitmap_file_unmap(&bitmap->storage);
+
+ bp = bitmap->counts.bp;
+ pages = bitmap->counts.pages;
+
+ /* free all allocated memory */
+
+ if (bp) /* deallocate the page memory */
+ for (k = 0; k < pages; k++)
+ if (bp[k].map && !bp[k].hijacked)
+ kfree(bp[k].map);
+ kfree(bp);
+ kfree(bitmap);
+}
+EXPORT_SYMBOL(md_bitmap_free);
+
+void md_bitmap_wait_behind_writes(struct mddev *mddev)
+{
+ struct bitmap *bitmap = mddev->bitmap;
+
+ /* wait for behind writes to complete */
+ if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
+ pr_debug("md:%s: behind writes in progress - waiting to stop.\n",
+ mdname(mddev));
+ /* need to kick something here to make sure I/O goes? */
+ wait_event(bitmap->behind_wait,
+ atomic_read(&bitmap->behind_writes) == 0);
+ }
+}
+
+void md_bitmap_destroy(struct mddev *mddev)
+{
+ struct bitmap *bitmap = mddev->bitmap;
+
+ if (!bitmap) /* there was no bitmap */
+ return;
+
+ md_bitmap_wait_behind_writes(mddev);
+ if (!mddev->serialize_policy)
+ mddev_destroy_serial_pool(mddev, NULL, true);
+
+ mutex_lock(&mddev->bitmap_info.mutex);
+ spin_lock(&mddev->lock);
+ mddev->bitmap = NULL; /* disconnect from the md device */
+ spin_unlock(&mddev->lock);
+ mutex_unlock(&mddev->bitmap_info.mutex);
+ if (mddev->thread)
+ mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
+
+ md_bitmap_free(bitmap);
+}
+
+/*
+ * initialize the bitmap structure
+ * if this returns an error, bitmap_destroy must be called to do clean up
+ * once mddev->bitmap is set
+ */
+struct bitmap *md_bitmap_create(struct mddev *mddev, int slot)
+{
+ struct bitmap *bitmap;
+ sector_t blocks = mddev->resync_max_sectors;
+ struct file *file = mddev->bitmap_info.file;
+ int err;
+ struct kernfs_node *bm = NULL;
+
+ BUILD_BUG_ON(sizeof(bitmap_super_t) != 256);
+
+ BUG_ON(file && mddev->bitmap_info.offset);
+
+ if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
+ pr_notice("md/raid:%s: array with journal cannot have bitmap\n",
+ mdname(mddev));
+ return ERR_PTR(-EBUSY);
+ }
+
+ bitmap = kzalloc(sizeof(*bitmap), GFP_KERNEL);
+ if (!bitmap)
+ return ERR_PTR(-ENOMEM);
+
+ spin_lock_init(&bitmap->counts.lock);
+ atomic_set(&bitmap->pending_writes, 0);
+ init_waitqueue_head(&bitmap->write_wait);
+ init_waitqueue_head(&bitmap->overflow_wait);
+ init_waitqueue_head(&bitmap->behind_wait);
+
+ bitmap->mddev = mddev;
+ bitmap->cluster_slot = slot;
+
+ if (mddev->kobj.sd)
+ bm = sysfs_get_dirent(mddev->kobj.sd, "bitmap");
+ if (bm) {
+ bitmap->sysfs_can_clear = sysfs_get_dirent(bm, "can_clear");
+ sysfs_put(bm);
+ } else
+ bitmap->sysfs_can_clear = NULL;
+
+ bitmap->storage.file = file;
+ if (file) {
+ get_file(file);
+ /* As future accesses to this file will use bmap,
+ * and bypass the page cache, we must sync the file
+ * first.
+ */
+ vfs_fsync(file, 1);
+ }
+ /* read superblock from bitmap file (this sets mddev->bitmap_info.chunksize) */
+ if (!mddev->bitmap_info.external) {
+ /*
+ * If 'MD_ARRAY_FIRST_USE' is set, then device-mapper is
+ * instructing us to create a new on-disk bitmap instance.
+ */
+ if (test_and_clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags))
+ err = md_bitmap_new_disk_sb(bitmap);
+ else
+ err = md_bitmap_read_sb(bitmap);
+ } else {
+ err = 0;
+ if (mddev->bitmap_info.chunksize == 0 ||
+ mddev->bitmap_info.daemon_sleep == 0)
+ /* chunksize and time_base need to be
+ * set first. */
+ err = -EINVAL;
+ }
+ if (err)
+ goto error;
+
+ bitmap->daemon_lastrun = jiffies;
+ err = md_bitmap_resize(bitmap, blocks, mddev->bitmap_info.chunksize, 1);
+ if (err)
+ goto error;
+
+ pr_debug("created bitmap (%lu pages) for device %s\n",
+ bitmap->counts.pages, bmname(bitmap));
+
+ err = test_bit(BITMAP_WRITE_ERROR, &bitmap->flags) ? -EIO : 0;
+ if (err)
+ goto error;
+
+ return bitmap;
+ error:
+ md_bitmap_free(bitmap);
+ return ERR_PTR(err);
+}
+
+int md_bitmap_load(struct mddev *mddev)
+{
+ int err = 0;
+ sector_t start = 0;
+ sector_t sector = 0;
+ struct bitmap *bitmap = mddev->bitmap;
+ struct md_rdev *rdev;
+
+ if (!bitmap)
+ goto out;
+
+ rdev_for_each(rdev, mddev)
+ mddev_create_serial_pool(mddev, rdev, true);
+
+ if (mddev_is_clustered(mddev))
+ md_cluster_ops->load_bitmaps(mddev, mddev->bitmap_info.nodes);
+
+ /* Clear out old bitmap info first: Either there is none, or we
+ * are resuming after someone else has possibly changed things,
+ * so we should forget old cached info.
+ * All chunks should be clean, but some might need_sync.
+ */
+ while (sector < mddev->resync_max_sectors) {
+ sector_t blocks;
+ md_bitmap_start_sync(bitmap, sector, &blocks, 0);
+ sector += blocks;
+ }
+ md_bitmap_close_sync(bitmap);
+
+ if (mddev->degraded == 0
+ || bitmap->events_cleared == mddev->events)
+ /* no need to keep dirty bits to optimise a
+ * re-add of a missing device */
+ start = mddev->recovery_cp;
+
+ mutex_lock(&mddev->bitmap_info.mutex);
+ err = md_bitmap_init_from_disk(bitmap, start);
+ mutex_unlock(&mddev->bitmap_info.mutex);
+
+ if (err)
+ goto out;
+ clear_bit(BITMAP_STALE, &bitmap->flags);
+
+ /* Kick recovery in case any bits were set */
+ set_bit(MD_RECOVERY_NEEDED, &bitmap->mddev->recovery);
+
+ mddev->thread->timeout = mddev->bitmap_info.daemon_sleep;
+ md_wakeup_thread(mddev->thread);
+
+ md_bitmap_update_sb(bitmap);
+
+ if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags))
+ err = -EIO;
+out:
+ return err;
+}
+EXPORT_SYMBOL_GPL(md_bitmap_load);
+
+/* caller need to free returned bitmap with md_bitmap_free() */
+struct bitmap *get_bitmap_from_slot(struct mddev *mddev, int slot)
+{
+ int rv = 0;
+ struct bitmap *bitmap;
+
+ bitmap = md_bitmap_create(mddev, slot);
+ if (IS_ERR(bitmap)) {
+ rv = PTR_ERR(bitmap);
+ return ERR_PTR(rv);
+ }
+
+ rv = md_bitmap_init_from_disk(bitmap, 0);
+ if (rv) {
+ md_bitmap_free(bitmap);
+ return ERR_PTR(rv);
+ }
+
+ return bitmap;
+}
+EXPORT_SYMBOL(get_bitmap_from_slot);
+
+/* Loads the bitmap associated with slot and copies the resync information
+ * to our bitmap
+ */
+int md_bitmap_copy_from_slot(struct mddev *mddev, int slot,
+ sector_t *low, sector_t *high, bool clear_bits)
+{
+ int rv = 0, i, j;
+ sector_t block, lo = 0, hi = 0;
+ struct bitmap_counts *counts;
+ struct bitmap *bitmap;
+
+ bitmap = get_bitmap_from_slot(mddev, slot);
+ if (IS_ERR(bitmap)) {
+ pr_err("%s can't get bitmap from slot %d\n", __func__, slot);
+ return -1;
+ }
+
+ counts = &bitmap->counts;
+ for (j = 0; j < counts->chunks; j++) {
+ block = (sector_t)j << counts->chunkshift;
+ if (md_bitmap_file_test_bit(bitmap, block)) {
+ if (!lo)
+ lo = block;
+ hi = block;
+ md_bitmap_file_clear_bit(bitmap, block);
+ md_bitmap_set_memory_bits(mddev->bitmap, block, 1);
+ md_bitmap_file_set_bit(mddev->bitmap, block);
+ }
+ }
+
+ if (clear_bits) {
+ md_bitmap_update_sb(bitmap);
+ /* BITMAP_PAGE_PENDING is set, but bitmap_unplug needs
+ * BITMAP_PAGE_DIRTY or _NEEDWRITE to write ... */
+ for (i = 0; i < bitmap->storage.file_pages; i++)
+ if (test_page_attr(bitmap, i, BITMAP_PAGE_PENDING))
+ set_page_attr(bitmap, i, BITMAP_PAGE_NEEDWRITE);
+ md_bitmap_unplug(bitmap);
+ }
+ md_bitmap_unplug(mddev->bitmap);
+ *low = lo;
+ *high = hi;
+ md_bitmap_free(bitmap);
+
+ return rv;
+}
+EXPORT_SYMBOL_GPL(md_bitmap_copy_from_slot);
+
+
+void md_bitmap_status(struct seq_file *seq, struct bitmap *bitmap)
+{
+ unsigned long chunk_kb;
+ struct bitmap_counts *counts;
+
+ if (!bitmap)
+ return;
+
+ counts = &bitmap->counts;
+
+ chunk_kb = bitmap->mddev->bitmap_info.chunksize >> 10;
+ seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
+ "%lu%s chunk",
+ counts->pages - counts->missing_pages,
+ counts->pages,
+ (counts->pages - counts->missing_pages)
+ << (PAGE_SHIFT - 10),
+ chunk_kb ? chunk_kb : bitmap->mddev->bitmap_info.chunksize,
+ chunk_kb ? "KB" : "B");
+ if (bitmap->storage.file) {
+ seq_printf(seq, ", file: ");
+ seq_file_path(seq, bitmap->storage.file, " \t\n");
+ }
+
+ seq_printf(seq, "\n");
+}
+
+int md_bitmap_resize(struct bitmap *bitmap, sector_t blocks,
+ int chunksize, int init)
+{
+ /* If chunk_size is 0, choose an appropriate chunk size.
+ * Then possibly allocate new storage space.
+ * Then quiesce, copy bits, replace bitmap, and re-start
+ *
+ * This function is called both to set up the initial bitmap
+ * and to resize the bitmap while the array is active.
+ * If this happens as a result of the array being resized,
+ * chunksize will be zero, and we need to choose a suitable
+ * chunksize, otherwise we use what we are given.
+ */
+ struct bitmap_storage store;
+ struct bitmap_counts old_counts;
+ unsigned long chunks;
+ sector_t block;
+ sector_t old_blocks, new_blocks;
+ int chunkshift;
+ int ret = 0;
+ long pages;
+ struct bitmap_page *new_bp;
+
+ if (bitmap->storage.file && !init) {
+ pr_info("md: cannot resize file-based bitmap\n");
+ return -EINVAL;
+ }
+
+ if (chunksize == 0) {
+ /* If there is enough space, leave the chunk size unchanged,
+ * else increase by factor of two until there is enough space.
+ */
+ long bytes;
+ long space = bitmap->mddev->bitmap_info.space;
+
+ if (space == 0) {
+ /* We don't know how much space there is, so limit
+ * to current size - in sectors.
+ */
+ bytes = DIV_ROUND_UP(bitmap->counts.chunks, 8);
+ if (!bitmap->mddev->bitmap_info.external)
+ bytes += sizeof(bitmap_super_t);
+ space = DIV_ROUND_UP(bytes, 512);
+ bitmap->mddev->bitmap_info.space = space;
+ }
+ chunkshift = bitmap->counts.chunkshift;
+ chunkshift--;
+ do {
+ /* 'chunkshift' is shift from block size to chunk size */
+ chunkshift++;
+ chunks = DIV_ROUND_UP_SECTOR_T(blocks, 1 << chunkshift);
+ bytes = DIV_ROUND_UP(chunks, 8);
+ if (!bitmap->mddev->bitmap_info.external)
+ bytes += sizeof(bitmap_super_t);
+ } while (bytes > (space << 9) && (chunkshift + BITMAP_BLOCK_SHIFT) <
+ (BITS_PER_BYTE * sizeof(((bitmap_super_t *)0)->chunksize) - 1));
+ } else
+ chunkshift = ffz(~chunksize) - BITMAP_BLOCK_SHIFT;
+
+ chunks = DIV_ROUND_UP_SECTOR_T(blocks, 1 << chunkshift);
+ memset(&store, 0, sizeof(store));
+ if (bitmap->mddev->bitmap_info.offset || bitmap->mddev->bitmap_info.file)
+ ret = md_bitmap_storage_alloc(&store, chunks,
+ !bitmap->mddev->bitmap_info.external,
+ mddev_is_clustered(bitmap->mddev)
+ ? bitmap->cluster_slot : 0);
+ if (ret) {
+ md_bitmap_file_unmap(&store);
+ goto err;
+ }
+
+ pages = DIV_ROUND_UP(chunks, PAGE_COUNTER_RATIO);
+
+ new_bp = kcalloc(pages, sizeof(*new_bp), GFP_KERNEL);
+ ret = -ENOMEM;
+ if (!new_bp) {
+ md_bitmap_file_unmap(&store);
+ goto err;
+ }
+
+ if (!init)
+ bitmap->mddev->pers->quiesce(bitmap->mddev, 1);
+
+ store.file = bitmap->storage.file;
+ bitmap->storage.file = NULL;
+
+ if (store.sb_page && bitmap->storage.sb_page)
+ memcpy(page_address(store.sb_page),
+ page_address(bitmap->storage.sb_page),
+ sizeof(bitmap_super_t));
+ spin_lock_irq(&bitmap->counts.lock);
+ md_bitmap_file_unmap(&bitmap->storage);
+ bitmap->storage = store;
+
+ old_counts = bitmap->counts;
+ bitmap->counts.bp = new_bp;
+ bitmap->counts.pages = pages;
+ bitmap->counts.missing_pages = pages;
+ bitmap->counts.chunkshift = chunkshift;
+ bitmap->counts.chunks = chunks;
+ bitmap->mddev->bitmap_info.chunksize = 1UL << (chunkshift +
+ BITMAP_BLOCK_SHIFT);
+
+ blocks = min(old_counts.chunks << old_counts.chunkshift,
+ chunks << chunkshift);
+
+ /* For cluster raid, need to pre-allocate bitmap */
+ if (mddev_is_clustered(bitmap->mddev)) {
+ unsigned long page;
+ for (page = 0; page < pages; page++) {
+ ret = md_bitmap_checkpage(&bitmap->counts, page, 1, 1);
+ if (ret) {
+ unsigned long k;
+
+ /* deallocate the page memory */
+ for (k = 0; k < page; k++) {
+ kfree(new_bp[k].map);
+ }
+ kfree(new_bp);
+
+ /* restore some fields from old_counts */
+ bitmap->counts.bp = old_counts.bp;
+ bitmap->counts.pages = old_counts.pages;
+ bitmap->counts.missing_pages = old_counts.pages;
+ bitmap->counts.chunkshift = old_counts.chunkshift;
+ bitmap->counts.chunks = old_counts.chunks;
+ bitmap->mddev->bitmap_info.chunksize =
+ 1UL << (old_counts.chunkshift + BITMAP_BLOCK_SHIFT);
+ blocks = old_counts.chunks << old_counts.chunkshift;
+ pr_warn("Could not pre-allocate in-memory bitmap for cluster raid\n");
+ break;
+ } else
+ bitmap->counts.bp[page].count += 1;
+ }
+ }
+
+ for (block = 0; block < blocks; ) {
+ bitmap_counter_t *bmc_old, *bmc_new;
+ int set;
+
+ bmc_old = md_bitmap_get_counter(&old_counts, block, &old_blocks, 0);
+ set = bmc_old && NEEDED(*bmc_old);
+
+ if (set) {
+ bmc_new = md_bitmap_get_counter(&bitmap->counts, block, &new_blocks, 1);
+ if (bmc_new) {
+ if (*bmc_new == 0) {
+ /* need to set on-disk bits too. */
+ sector_t end = block + new_blocks;
+ sector_t start = block >> chunkshift;
+
+ start <<= chunkshift;
+ while (start < end) {
+ md_bitmap_file_set_bit(bitmap, block);
+ start += 1 << chunkshift;
+ }
+ *bmc_new = 2;
+ md_bitmap_count_page(&bitmap->counts, block, 1);
+ md_bitmap_set_pending(&bitmap->counts, block);
+ }
+ *bmc_new |= NEEDED_MASK;
+ }
+ if (new_blocks < old_blocks)
+ old_blocks = new_blocks;
+ }
+ block += old_blocks;
+ }
+
+ if (bitmap->counts.bp != old_counts.bp) {
+ unsigned long k;
+ for (k = 0; k < old_counts.pages; k++)
+ if (!old_counts.bp[k].hijacked)
+ kfree(old_counts.bp[k].map);
+ kfree(old_counts.bp);
+ }
+
+ if (!init) {
+ int i;
+ while (block < (chunks << chunkshift)) {
+ bitmap_counter_t *bmc;
+ bmc = md_bitmap_get_counter(&bitmap->counts, block, &new_blocks, 1);
+ if (bmc) {
+ /* new space. It needs to be resynced, so
+ * we set NEEDED_MASK.
+ */
+ if (*bmc == 0) {
+ *bmc = NEEDED_MASK | 2;
+ md_bitmap_count_page(&bitmap->counts, block, 1);
+ md_bitmap_set_pending(&bitmap->counts, block);
+ }
+ }
+ block += new_blocks;
+ }
+ for (i = 0; i < bitmap->storage.file_pages; i++)
+ set_page_attr(bitmap, i, BITMAP_PAGE_DIRTY);
+ }
+ spin_unlock_irq(&bitmap->counts.lock);
+
+ if (!init) {
+ md_bitmap_unplug(bitmap);
+ bitmap->mddev->pers->quiesce(bitmap->mddev, 0);
+ }
+ ret = 0;
+err:
+ return ret;
+}
+EXPORT_SYMBOL_GPL(md_bitmap_resize);
+
+static ssize_t
+location_show(struct mddev *mddev, char *page)
+{
+ ssize_t len;
+ if (mddev->bitmap_info.file)
+ len = sprintf(page, "file");
+ else if (mddev->bitmap_info.offset)
+ len = sprintf(page, "%+lld", (long long)mddev->bitmap_info.offset);
+ else
+ len = sprintf(page, "none");
+ len += sprintf(page+len, "\n");
+ return len;
+}
+
+static ssize_t
+location_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ int rv;
+
+ rv = mddev_lock(mddev);
+ if (rv)
+ return rv;
+ if (mddev->pers) {
+ if (!mddev->pers->quiesce) {
+ rv = -EBUSY;
+ goto out;
+ }
+ if (mddev->recovery || mddev->sync_thread) {
+ rv = -EBUSY;
+ goto out;
+ }
+ }
+
+ if (mddev->bitmap || mddev->bitmap_info.file ||
+ mddev->bitmap_info.offset) {
+ /* bitmap already configured. Only option is to clear it */
+ if (strncmp(buf, "none", 4) != 0) {
+ rv = -EBUSY;
+ goto out;
+ }
+ if (mddev->pers) {
+ mddev_suspend(mddev);
+ md_bitmap_destroy(mddev);
+ mddev_resume(mddev);
+ }
+ mddev->bitmap_info.offset = 0;
+ if (mddev->bitmap_info.file) {
+ struct file *f = mddev->bitmap_info.file;
+ mddev->bitmap_info.file = NULL;
+ fput(f);
+ }
+ } else {
+ /* No bitmap, OK to set a location */
+ long long offset;
+ if (strncmp(buf, "none", 4) == 0)
+ /* nothing to be done */;
+ else if (strncmp(buf, "file:", 5) == 0) {
+ /* Not supported yet */
+ rv = -EINVAL;
+ goto out;
+ } else {
+ if (buf[0] == '+')
+ rv = kstrtoll(buf+1, 10, &offset);
+ else
+ rv = kstrtoll(buf, 10, &offset);
+ if (rv)
+ goto out;
+ if (offset == 0) {
+ rv = -EINVAL;
+ goto out;
+ }
+ if (mddev->bitmap_info.external == 0 &&
+ mddev->major_version == 0 &&
+ offset != mddev->bitmap_info.default_offset) {
+ rv = -EINVAL;
+ goto out;
+ }
+ mddev->bitmap_info.offset = offset;
+ if (mddev->pers) {
+ struct bitmap *bitmap;
+ bitmap = md_bitmap_create(mddev, -1);
+ mddev_suspend(mddev);
+ if (IS_ERR(bitmap))
+ rv = PTR_ERR(bitmap);
+ else {
+ mddev->bitmap = bitmap;
+ rv = md_bitmap_load(mddev);
+ if (rv)
+ mddev->bitmap_info.offset = 0;
+ }
+ if (rv) {
+ md_bitmap_destroy(mddev);
+ mddev_resume(mddev);
+ goto out;
+ }
+ mddev_resume(mddev);
+ }
+ }
+ }
+ if (!mddev->external) {
+ /* Ensure new bitmap info is stored in
+ * metadata promptly.
+ */
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+ md_wakeup_thread(mddev->thread);
+ }
+ rv = 0;
+out:
+ mddev_unlock(mddev);
+ if (rv)
+ return rv;
+ return len;
+}
+
+static struct md_sysfs_entry bitmap_location =
+__ATTR(location, S_IRUGO|S_IWUSR, location_show, location_store);
+
+/* 'bitmap/space' is the space available at 'location' for the
+ * bitmap. This allows the kernel to know when it is safe to
+ * resize the bitmap to match a resized array.
+ */
+static ssize_t
+space_show(struct mddev *mddev, char *page)
+{
+ return sprintf(page, "%lu\n", mddev->bitmap_info.space);
+}
+
+static ssize_t
+space_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ unsigned long sectors;
+ int rv;
+
+ rv = kstrtoul(buf, 10, &sectors);
+ if (rv)
+ return rv;
+
+ if (sectors == 0)
+ return -EINVAL;
+
+ if (mddev->bitmap &&
+ sectors < (mddev->bitmap->storage.bytes + 511) >> 9)
+ return -EFBIG; /* Bitmap is too big for this small space */
+
+ /* could make sure it isn't too big, but that isn't really
+ * needed - user-space should be careful.
+ */
+ mddev->bitmap_info.space = sectors;
+ return len;
+}
+
+static struct md_sysfs_entry bitmap_space =
+__ATTR(space, S_IRUGO|S_IWUSR, space_show, space_store);
+
+static ssize_t
+timeout_show(struct mddev *mddev, char *page)
+{
+ ssize_t len;
+ unsigned long secs = mddev->bitmap_info.daemon_sleep / HZ;
+ unsigned long jifs = mddev->bitmap_info.daemon_sleep % HZ;
+
+ len = sprintf(page, "%lu", secs);
+ if (jifs)
+ len += sprintf(page+len, ".%03u", jiffies_to_msecs(jifs));
+ len += sprintf(page+len, "\n");
+ return len;
+}
+
+static ssize_t
+timeout_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ /* timeout can be set at any time */
+ unsigned long timeout;
+ int rv = strict_strtoul_scaled(buf, &timeout, 4);
+ if (rv)
+ return rv;
+
+ /* just to make sure we don't overflow... */
+ if (timeout >= LONG_MAX / HZ)
+ return -EINVAL;
+
+ timeout = timeout * HZ / 10000;
+
+ if (timeout >= MAX_SCHEDULE_TIMEOUT)
+ timeout = MAX_SCHEDULE_TIMEOUT-1;
+ if (timeout < 1)
+ timeout = 1;
+ mddev->bitmap_info.daemon_sleep = timeout;
+ if (mddev->thread) {
+ /* if thread->timeout is MAX_SCHEDULE_TIMEOUT, then
+ * the bitmap is all clean and we don't need to
+ * adjust the timeout right now
+ */
+ if (mddev->thread->timeout < MAX_SCHEDULE_TIMEOUT) {
+ mddev->thread->timeout = timeout;
+ md_wakeup_thread(mddev->thread);
+ }
+ }
+ return len;
+}
+
+static struct md_sysfs_entry bitmap_timeout =
+__ATTR(time_base, S_IRUGO|S_IWUSR, timeout_show, timeout_store);
+
+static ssize_t
+backlog_show(struct mddev *mddev, char *page)
+{
+ return sprintf(page, "%lu\n", mddev->bitmap_info.max_write_behind);
+}
+
+static ssize_t
+backlog_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ unsigned long backlog;
+ unsigned long old_mwb = mddev->bitmap_info.max_write_behind;
+ struct md_rdev *rdev;
+ bool has_write_mostly = false;
+ int rv = kstrtoul(buf, 10, &backlog);
+ if (rv)
+ return rv;
+ if (backlog > COUNTER_MAX)
+ return -EINVAL;
+
+ rv = mddev_lock(mddev);
+ if (rv)
+ return rv;
+
+ /*
+ * Without write mostly device, it doesn't make sense to set
+ * backlog for max_write_behind.
+ */
+ rdev_for_each(rdev, mddev) {
+ if (test_bit(WriteMostly, &rdev->flags)) {
+ has_write_mostly = true;
+ break;
+ }
+ }
+ if (!has_write_mostly) {
+ pr_warn_ratelimited("%s: can't set backlog, no write mostly device available\n",
+ mdname(mddev));
+ mddev_unlock(mddev);
+ return -EINVAL;
+ }
+
+ mddev->bitmap_info.max_write_behind = backlog;
+ if (!backlog && mddev->serial_info_pool) {
+ /* serial_info_pool is not needed if backlog is zero */
+ if (!mddev->serialize_policy)
+ mddev_destroy_serial_pool(mddev, NULL, false);
+ } else if (backlog && !mddev->serial_info_pool) {
+ /* serial_info_pool is needed since backlog is not zero */
+ rdev_for_each(rdev, mddev)
+ mddev_create_serial_pool(mddev, rdev, false);
+ }
+ if (old_mwb != backlog)
+ md_bitmap_update_sb(mddev->bitmap);
+
+ mddev_unlock(mddev);
+ return len;
+}
+
+static struct md_sysfs_entry bitmap_backlog =
+__ATTR(backlog, S_IRUGO|S_IWUSR, backlog_show, backlog_store);
+
+static ssize_t
+chunksize_show(struct mddev *mddev, char *page)
+{
+ return sprintf(page, "%lu\n", mddev->bitmap_info.chunksize);
+}
+
+static ssize_t
+chunksize_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ /* Can only be changed when no bitmap is active */
+ int rv;
+ unsigned long csize;
+ if (mddev->bitmap)
+ return -EBUSY;
+ rv = kstrtoul(buf, 10, &csize);
+ if (rv)
+ return rv;
+ if (csize < 512 ||
+ !is_power_of_2(csize))
+ return -EINVAL;
+ if (BITS_PER_LONG > 32 && csize >= (1ULL << (BITS_PER_BYTE *
+ sizeof(((bitmap_super_t *)0)->chunksize))))
+ return -EOVERFLOW;
+ mddev->bitmap_info.chunksize = csize;
+ return len;
+}
+
+static struct md_sysfs_entry bitmap_chunksize =
+__ATTR(chunksize, S_IRUGO|S_IWUSR, chunksize_show, chunksize_store);
+
+static ssize_t metadata_show(struct mddev *mddev, char *page)
+{
+ if (mddev_is_clustered(mddev))
+ return sprintf(page, "clustered\n");
+ return sprintf(page, "%s\n", (mddev->bitmap_info.external
+ ? "external" : "internal"));
+}
+
+static ssize_t metadata_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ if (mddev->bitmap ||
+ mddev->bitmap_info.file ||
+ mddev->bitmap_info.offset)
+ return -EBUSY;
+ if (strncmp(buf, "external", 8) == 0)
+ mddev->bitmap_info.external = 1;
+ else if ((strncmp(buf, "internal", 8) == 0) ||
+ (strncmp(buf, "clustered", 9) == 0))
+ mddev->bitmap_info.external = 0;
+ else
+ return -EINVAL;
+ return len;
+}
+
+static struct md_sysfs_entry bitmap_metadata =
+__ATTR(metadata, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
+
+static ssize_t can_clear_show(struct mddev *mddev, char *page)
+{
+ int len;
+ spin_lock(&mddev->lock);
+ if (mddev->bitmap)
+ len = sprintf(page, "%s\n", (mddev->bitmap->need_sync ?
+ "false" : "true"));
+ else
+ len = sprintf(page, "\n");
+ spin_unlock(&mddev->lock);
+ return len;
+}
+
+static ssize_t can_clear_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ if (mddev->bitmap == NULL)
+ return -ENOENT;
+ if (strncmp(buf, "false", 5) == 0)
+ mddev->bitmap->need_sync = 1;
+ else if (strncmp(buf, "true", 4) == 0) {
+ if (mddev->degraded)
+ return -EBUSY;
+ mddev->bitmap->need_sync = 0;
+ } else
+ return -EINVAL;
+ return len;
+}
+
+static struct md_sysfs_entry bitmap_can_clear =
+__ATTR(can_clear, S_IRUGO|S_IWUSR, can_clear_show, can_clear_store);
+
+static ssize_t
+behind_writes_used_show(struct mddev *mddev, char *page)
+{
+ ssize_t ret;
+ spin_lock(&mddev->lock);
+ if (mddev->bitmap == NULL)
+ ret = sprintf(page, "0\n");
+ else
+ ret = sprintf(page, "%lu\n",
+ mddev->bitmap->behind_writes_used);
+ spin_unlock(&mddev->lock);
+ return ret;
+}
+
+static ssize_t
+behind_writes_used_reset(struct mddev *mddev, const char *buf, size_t len)
+{
+ if (mddev->bitmap)
+ mddev->bitmap->behind_writes_used = 0;
+ return len;
+}
+
+static struct md_sysfs_entry max_backlog_used =
+__ATTR(max_backlog_used, S_IRUGO | S_IWUSR,
+ behind_writes_used_show, behind_writes_used_reset);
+
+static struct attribute *md_bitmap_attrs[] = {
+ &bitmap_location.attr,
+ &bitmap_space.attr,
+ &bitmap_timeout.attr,
+ &bitmap_backlog.attr,
+ &bitmap_chunksize.attr,
+ &bitmap_metadata.attr,
+ &bitmap_can_clear.attr,
+ &max_backlog_used.attr,
+ NULL
+};
+const struct attribute_group md_bitmap_group = {
+ .name = "bitmap",
+ .attrs = md_bitmap_attrs,
+};
diff --git a/drivers/md/md-bitmap.h b/drivers/md/md-bitmap.h
new file mode 100644
index 000000000..3a4750952
--- /dev/null
+++ b/drivers/md/md-bitmap.h
@@ -0,0 +1,285 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * bitmap.h: Copyright (C) Peter T. Breuer (ptb@ot.uc3m.es) 2003
+ *
+ * additions: Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
+ */
+#ifndef BITMAP_H
+#define BITMAP_H 1
+
+#define BITMAP_MAJOR_LO 3
+/* version 4 insists the bitmap is in little-endian order
+ * with version 3, it is host-endian which is non-portable
+ * Version 5 is currently set only for clustered devices
+ */
+#define BITMAP_MAJOR_HI 4
+#define BITMAP_MAJOR_CLUSTERED 5
+#define BITMAP_MAJOR_HOSTENDIAN 3
+
+/*
+ * in-memory bitmap:
+ *
+ * Use 16 bit block counters to track pending writes to each "chunk".
+ * The 2 high order bits are special-purpose, the first is a flag indicating
+ * whether a resync is needed. The second is a flag indicating whether a
+ * resync is active.
+ * This means that the counter is actually 14 bits:
+ *
+ * +--------+--------+------------------------------------------------+
+ * | resync | resync | counter |
+ * | needed | active | |
+ * | (0-1) | (0-1) | (0-16383) |
+ * +--------+--------+------------------------------------------------+
+ *
+ * The "resync needed" bit is set when:
+ * a '1' bit is read from storage at startup.
+ * a write request fails on some drives
+ * a resync is aborted on a chunk with 'resync active' set
+ * It is cleared (and resync-active set) when a resync starts across all drives
+ * of the chunk.
+ *
+ *
+ * The "resync active" bit is set when:
+ * a resync is started on all drives, and resync_needed is set.
+ * resync_needed will be cleared (as long as resync_active wasn't already set).
+ * It is cleared when a resync completes.
+ *
+ * The counter counts pending write requests, plus the on-disk bit.
+ * When the counter is '1' and the resync bits are clear, the on-disk
+ * bit can be cleared as well, thus setting the counter to 0.
+ * When we set a bit, or in the counter (to start a write), if the fields is
+ * 0, we first set the disk bit and set the counter to 1.
+ *
+ * If the counter is 0, the on-disk bit is clear and the stripe is clean
+ * Anything that dirties the stripe pushes the counter to 2 (at least)
+ * and sets the on-disk bit (lazily).
+ * If a periodic sweep find the counter at 2, it is decremented to 1.
+ * If the sweep find the counter at 1, the on-disk bit is cleared and the
+ * counter goes to zero.
+ *
+ * Also, we'll hijack the "map" pointer itself and use it as two 16 bit block
+ * counters as a fallback when "page" memory cannot be allocated:
+ *
+ * Normal case (page memory allocated):
+ *
+ * page pointer (32-bit)
+ *
+ * [ ] ------+
+ * |
+ * +-------> [ ][ ]..[ ] (4096 byte page == 2048 counters)
+ * c1 c2 c2048
+ *
+ * Hijacked case (page memory allocation failed):
+ *
+ * hijacked page pointer (32-bit)
+ *
+ * [ ][ ] (no page memory allocated)
+ * counter #1 (16-bit) counter #2 (16-bit)
+ *
+ */
+
+#ifdef __KERNEL__
+
+#define PAGE_BITS (PAGE_SIZE << 3)
+#define PAGE_BIT_SHIFT (PAGE_SHIFT + 3)
+
+typedef __u16 bitmap_counter_t;
+#define COUNTER_BITS 16
+#define COUNTER_BIT_SHIFT 4
+#define COUNTER_BYTE_SHIFT (COUNTER_BIT_SHIFT - 3)
+
+#define NEEDED_MASK ((bitmap_counter_t) (1 << (COUNTER_BITS - 1)))
+#define RESYNC_MASK ((bitmap_counter_t) (1 << (COUNTER_BITS - 2)))
+#define COUNTER_MAX ((bitmap_counter_t) RESYNC_MASK - 1)
+#define NEEDED(x) (((bitmap_counter_t) x) & NEEDED_MASK)
+#define RESYNC(x) (((bitmap_counter_t) x) & RESYNC_MASK)
+#define COUNTER(x) (((bitmap_counter_t) x) & COUNTER_MAX)
+
+/* how many counters per page? */
+#define PAGE_COUNTER_RATIO (PAGE_BITS / COUNTER_BITS)
+/* same, except a shift value for more efficient bitops */
+#define PAGE_COUNTER_SHIFT (PAGE_BIT_SHIFT - COUNTER_BIT_SHIFT)
+/* same, except a mask value for more efficient bitops */
+#define PAGE_COUNTER_MASK (PAGE_COUNTER_RATIO - 1)
+
+#define BITMAP_BLOCK_SHIFT 9
+
+#endif
+
+/*
+ * bitmap structures:
+ */
+
+#define BITMAP_MAGIC 0x6d746962
+
+/* use these for bitmap->flags and bitmap->sb->state bit-fields */
+enum bitmap_state {
+ BITMAP_STALE = 1, /* the bitmap file is out of date or had -EIO */
+ BITMAP_WRITE_ERROR = 2, /* A write error has occurred */
+ BITMAP_HOSTENDIAN =15,
+};
+
+/* the superblock at the front of the bitmap file -- little endian */
+typedef struct bitmap_super_s {
+ __le32 magic; /* 0 BITMAP_MAGIC */
+ __le32 version; /* 4 the bitmap major for now, could change... */
+ __u8 uuid[16]; /* 8 128 bit uuid - must match md device uuid */
+ __le64 events; /* 24 event counter for the bitmap (1)*/
+ __le64 events_cleared;/*32 event counter when last bit cleared (2) */
+ __le64 sync_size; /* 40 the size of the md device's sync range(3) */
+ __le32 state; /* 48 bitmap state information */
+ __le32 chunksize; /* 52 the bitmap chunk size in bytes */
+ __le32 daemon_sleep; /* 56 seconds between disk flushes */
+ __le32 write_behind; /* 60 number of outstanding write-behind writes */
+ __le32 sectors_reserved; /* 64 number of 512-byte sectors that are
+ * reserved for the bitmap. */
+ __le32 nodes; /* 68 the maximum number of nodes in cluster. */
+ __u8 cluster_name[64]; /* 72 cluster name to which this md belongs */
+ __u8 pad[256 - 136]; /* set to zero */
+} bitmap_super_t;
+
+/* notes:
+ * (1) This event counter is updated before the eventcounter in the md superblock
+ * When a bitmap is loaded, it is only accepted if this event counter is equal
+ * to, or one greater than, the event counter in the superblock.
+ * (2) This event counter is updated when the other one is *if*and*only*if* the
+ * array is not degraded. As bits are not cleared when the array is degraded,
+ * this represents the last time that any bits were cleared.
+ * If a device is being added that has an event count with this value or
+ * higher, it is accepted as conforming to the bitmap.
+ * (3)This is the number of sectors represented by the bitmap, and is the range that
+ * resync happens across. For raid1 and raid5/6 it is the size of individual
+ * devices. For raid10 it is the size of the array.
+ */
+
+#ifdef __KERNEL__
+
+/* the in-memory bitmap is represented by bitmap_pages */
+struct bitmap_page {
+ /*
+ * map points to the actual memory page
+ */
+ char *map;
+ /*
+ * in emergencies (when map cannot be alloced), hijack the map
+ * pointer and use it as two counters itself
+ */
+ unsigned int hijacked:1;
+ /*
+ * If any counter in this page is '1' or '2' - and so could be
+ * cleared then that page is marked as 'pending'
+ */
+ unsigned int pending:1;
+ /*
+ * count of dirty bits on the page
+ */
+ unsigned int count:30;
+};
+
+/* the main bitmap structure - one per mddev */
+struct bitmap {
+
+ struct bitmap_counts {
+ spinlock_t lock;
+ struct bitmap_page *bp;
+ unsigned long pages; /* total number of pages
+ * in the bitmap */
+ unsigned long missing_pages; /* number of pages
+ * not yet allocated */
+ unsigned long chunkshift; /* chunksize = 2^chunkshift
+ * (for bitops) */
+ unsigned long chunks; /* Total number of data
+ * chunks for the array */
+ } counts;
+
+ struct mddev *mddev; /* the md device that the bitmap is for */
+
+ __u64 events_cleared;
+ int need_sync;
+
+ struct bitmap_storage {
+ struct file *file; /* backing disk file */
+ struct page *sb_page; /* cached copy of the bitmap
+ * file superblock */
+ struct page **filemap; /* list of cache pages for
+ * the file */
+ unsigned long *filemap_attr; /* attributes associated
+ * w/ filemap pages */
+ unsigned long file_pages; /* number of pages in the file*/
+ unsigned long bytes; /* total bytes in the bitmap */
+ } storage;
+
+ unsigned long flags;
+
+ int allclean;
+
+ atomic_t behind_writes;
+ unsigned long behind_writes_used; /* highest actual value at runtime */
+
+ /*
+ * the bitmap daemon - periodically wakes up and sweeps the bitmap
+ * file, cleaning up bits and flushing out pages to disk as necessary
+ */
+ unsigned long daemon_lastrun; /* jiffies of last run */
+ unsigned long last_end_sync; /* when we lasted called end_sync to
+ * update bitmap with resync progress */
+
+ atomic_t pending_writes; /* pending writes to the bitmap file */
+ wait_queue_head_t write_wait;
+ wait_queue_head_t overflow_wait;
+ wait_queue_head_t behind_wait;
+
+ struct kernfs_node *sysfs_can_clear;
+ int cluster_slot; /* Slot offset for clustered env */
+};
+
+/* the bitmap API */
+
+/* these are used only by md/bitmap */
+struct bitmap *md_bitmap_create(struct mddev *mddev, int slot);
+int md_bitmap_load(struct mddev *mddev);
+void md_bitmap_flush(struct mddev *mddev);
+void md_bitmap_destroy(struct mddev *mddev);
+
+void md_bitmap_print_sb(struct bitmap *bitmap);
+void md_bitmap_update_sb(struct bitmap *bitmap);
+void md_bitmap_status(struct seq_file *seq, struct bitmap *bitmap);
+
+int md_bitmap_setallbits(struct bitmap *bitmap);
+void md_bitmap_write_all(struct bitmap *bitmap);
+
+void md_bitmap_dirty_bits(struct bitmap *bitmap, unsigned long s, unsigned long e);
+
+/* these are exported */
+int md_bitmap_startwrite(struct bitmap *bitmap, sector_t offset,
+ unsigned long sectors, int behind);
+void md_bitmap_endwrite(struct bitmap *bitmap, sector_t offset,
+ unsigned long sectors, int success, int behind);
+int md_bitmap_start_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks, int degraded);
+void md_bitmap_end_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks, int aborted);
+void md_bitmap_close_sync(struct bitmap *bitmap);
+void md_bitmap_cond_end_sync(struct bitmap *bitmap, sector_t sector, bool force);
+void md_bitmap_sync_with_cluster(struct mddev *mddev,
+ sector_t old_lo, sector_t old_hi,
+ sector_t new_lo, sector_t new_hi);
+
+void md_bitmap_unplug(struct bitmap *bitmap);
+void md_bitmap_daemon_work(struct mddev *mddev);
+
+int md_bitmap_resize(struct bitmap *bitmap, sector_t blocks,
+ int chunksize, int init);
+struct bitmap *get_bitmap_from_slot(struct mddev *mddev, int slot);
+int md_bitmap_copy_from_slot(struct mddev *mddev, int slot,
+ sector_t *lo, sector_t *hi, bool clear_bits);
+void md_bitmap_free(struct bitmap *bitmap);
+void md_bitmap_wait_behind_writes(struct mddev *mddev);
+
+static inline bool md_bitmap_enabled(struct bitmap *bitmap)
+{
+ return bitmap && bitmap->storage.filemap &&
+ !test_bit(BITMAP_STALE, &bitmap->flags);
+}
+
+#endif
+
+#endif
diff --git a/drivers/md/md-cluster.c b/drivers/md/md-cluster.c
new file mode 100644
index 000000000..10e0c5381
--- /dev/null
+++ b/drivers/md/md-cluster.c
@@ -0,0 +1,1602 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Copyright (C) 2015, SUSE
+ */
+
+
+#include <linux/module.h>
+#include <linux/kthread.h>
+#include <linux/dlm.h>
+#include <linux/sched.h>
+#include <linux/raid/md_p.h>
+#include "md.h"
+#include "md-bitmap.h"
+#include "md-cluster.h"
+
+#define LVB_SIZE 64
+#define NEW_DEV_TIMEOUT 5000
+
+struct dlm_lock_resource {
+ dlm_lockspace_t *ls;
+ struct dlm_lksb lksb;
+ char *name; /* lock name. */
+ uint32_t flags; /* flags to pass to dlm_lock() */
+ wait_queue_head_t sync_locking; /* wait queue for synchronized locking */
+ bool sync_locking_done;
+ void (*bast)(void *arg, int mode); /* blocking AST function pointer*/
+ struct mddev *mddev; /* pointing back to mddev. */
+ int mode;
+};
+
+struct resync_info {
+ __le64 lo;
+ __le64 hi;
+};
+
+/* md_cluster_info flags */
+#define MD_CLUSTER_WAITING_FOR_NEWDISK 1
+#define MD_CLUSTER_SUSPEND_READ_BALANCING 2
+#define MD_CLUSTER_BEGIN_JOIN_CLUSTER 3
+
+/* Lock the send communication. This is done through
+ * bit manipulation as opposed to a mutex in order to
+ * accommodate lock and hold. See next comment.
+ */
+#define MD_CLUSTER_SEND_LOCK 4
+/* If cluster operations (such as adding a disk) must lock the
+ * communication channel, so as to perform extra operations
+ * (update metadata) and no other operation is allowed on the
+ * MD. Token needs to be locked and held until the operation
+ * completes witha md_update_sb(), which would eventually release
+ * the lock.
+ */
+#define MD_CLUSTER_SEND_LOCKED_ALREADY 5
+/* We should receive message after node joined cluster and
+ * set up all the related infos such as bitmap and personality */
+#define MD_CLUSTER_ALREADY_IN_CLUSTER 6
+#define MD_CLUSTER_PENDING_RECV_EVENT 7
+#define MD_CLUSTER_HOLDING_MUTEX_FOR_RECVD 8
+
+struct md_cluster_info {
+ struct mddev *mddev; /* the md device which md_cluster_info belongs to */
+ /* dlm lock space and resources for clustered raid. */
+ dlm_lockspace_t *lockspace;
+ int slot_number;
+ struct completion completion;
+ struct mutex recv_mutex;
+ struct dlm_lock_resource *bitmap_lockres;
+ struct dlm_lock_resource **other_bitmap_lockres;
+ struct dlm_lock_resource *resync_lockres;
+ struct list_head suspend_list;
+
+ spinlock_t suspend_lock;
+ /* record the region which write should be suspended */
+ sector_t suspend_lo;
+ sector_t suspend_hi;
+ int suspend_from; /* the slot which broadcast suspend_lo/hi */
+
+ struct md_thread *recovery_thread;
+ unsigned long recovery_map;
+ /* communication loc resources */
+ struct dlm_lock_resource *ack_lockres;
+ struct dlm_lock_resource *message_lockres;
+ struct dlm_lock_resource *token_lockres;
+ struct dlm_lock_resource *no_new_dev_lockres;
+ struct md_thread *recv_thread;
+ struct completion newdisk_completion;
+ wait_queue_head_t wait;
+ unsigned long state;
+ /* record the region in RESYNCING message */
+ sector_t sync_low;
+ sector_t sync_hi;
+};
+
+enum msg_type {
+ METADATA_UPDATED = 0,
+ RESYNCING,
+ NEWDISK,
+ REMOVE,
+ RE_ADD,
+ BITMAP_NEEDS_SYNC,
+ CHANGE_CAPACITY,
+ BITMAP_RESIZE,
+};
+
+struct cluster_msg {
+ __le32 type;
+ __le32 slot;
+ /* TODO: Unionize this for smaller footprint */
+ __le64 low;
+ __le64 high;
+ char uuid[16];
+ __le32 raid_slot;
+};
+
+static void sync_ast(void *arg)
+{
+ struct dlm_lock_resource *res;
+
+ res = arg;
+ res->sync_locking_done = true;
+ wake_up(&res->sync_locking);
+}
+
+static int dlm_lock_sync(struct dlm_lock_resource *res, int mode)
+{
+ int ret = 0;
+
+ ret = dlm_lock(res->ls, mode, &res->lksb,
+ res->flags, res->name, strlen(res->name),
+ 0, sync_ast, res, res->bast);
+ if (ret)
+ return ret;
+ wait_event(res->sync_locking, res->sync_locking_done);
+ res->sync_locking_done = false;
+ if (res->lksb.sb_status == 0)
+ res->mode = mode;
+ return res->lksb.sb_status;
+}
+
+static int dlm_unlock_sync(struct dlm_lock_resource *res)
+{
+ return dlm_lock_sync(res, DLM_LOCK_NL);
+}
+
+/*
+ * An variation of dlm_lock_sync, which make lock request could
+ * be interrupted
+ */
+static int dlm_lock_sync_interruptible(struct dlm_lock_resource *res, int mode,
+ struct mddev *mddev)
+{
+ int ret = 0;
+
+ ret = dlm_lock(res->ls, mode, &res->lksb,
+ res->flags, res->name, strlen(res->name),
+ 0, sync_ast, res, res->bast);
+ if (ret)
+ return ret;
+
+ wait_event(res->sync_locking, res->sync_locking_done
+ || kthread_should_stop()
+ || test_bit(MD_CLOSING, &mddev->flags));
+ if (!res->sync_locking_done) {
+ /*
+ * the convert queue contains the lock request when request is
+ * interrupted, and sync_ast could still be run, so need to
+ * cancel the request and reset completion
+ */
+ ret = dlm_unlock(res->ls, res->lksb.sb_lkid, DLM_LKF_CANCEL,
+ &res->lksb, res);
+ res->sync_locking_done = false;
+ if (unlikely(ret != 0))
+ pr_info("failed to cancel previous lock request "
+ "%s return %d\n", res->name, ret);
+ return -EPERM;
+ } else
+ res->sync_locking_done = false;
+ if (res->lksb.sb_status == 0)
+ res->mode = mode;
+ return res->lksb.sb_status;
+}
+
+static struct dlm_lock_resource *lockres_init(struct mddev *mddev,
+ char *name, void (*bastfn)(void *arg, int mode), int with_lvb)
+{
+ struct dlm_lock_resource *res = NULL;
+ int ret, namelen;
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+
+ res = kzalloc(sizeof(struct dlm_lock_resource), GFP_KERNEL);
+ if (!res)
+ return NULL;
+ init_waitqueue_head(&res->sync_locking);
+ res->sync_locking_done = false;
+ res->ls = cinfo->lockspace;
+ res->mddev = mddev;
+ res->mode = DLM_LOCK_IV;
+ namelen = strlen(name);
+ res->name = kzalloc(namelen + 1, GFP_KERNEL);
+ if (!res->name) {
+ pr_err("md-cluster: Unable to allocate resource name for resource %s\n", name);
+ goto out_err;
+ }
+ strscpy(res->name, name, namelen + 1);
+ if (with_lvb) {
+ res->lksb.sb_lvbptr = kzalloc(LVB_SIZE, GFP_KERNEL);
+ if (!res->lksb.sb_lvbptr) {
+ pr_err("md-cluster: Unable to allocate LVB for resource %s\n", name);
+ goto out_err;
+ }
+ res->flags = DLM_LKF_VALBLK;
+ }
+
+ if (bastfn)
+ res->bast = bastfn;
+
+ res->flags |= DLM_LKF_EXPEDITE;
+
+ ret = dlm_lock_sync(res, DLM_LOCK_NL);
+ if (ret) {
+ pr_err("md-cluster: Unable to lock NL on new lock resource %s\n", name);
+ goto out_err;
+ }
+ res->flags &= ~DLM_LKF_EXPEDITE;
+ res->flags |= DLM_LKF_CONVERT;
+
+ return res;
+out_err:
+ kfree(res->lksb.sb_lvbptr);
+ kfree(res->name);
+ kfree(res);
+ return NULL;
+}
+
+static void lockres_free(struct dlm_lock_resource *res)
+{
+ int ret = 0;
+
+ if (!res)
+ return;
+
+ /*
+ * use FORCEUNLOCK flag, so we can unlock even the lock is on the
+ * waiting or convert queue
+ */
+ ret = dlm_unlock(res->ls, res->lksb.sb_lkid, DLM_LKF_FORCEUNLOCK,
+ &res->lksb, res);
+ if (unlikely(ret != 0))
+ pr_err("failed to unlock %s return %d\n", res->name, ret);
+ else
+ wait_event(res->sync_locking, res->sync_locking_done);
+
+ kfree(res->name);
+ kfree(res->lksb.sb_lvbptr);
+ kfree(res);
+}
+
+static void add_resync_info(struct dlm_lock_resource *lockres,
+ sector_t lo, sector_t hi)
+{
+ struct resync_info *ri;
+
+ ri = (struct resync_info *)lockres->lksb.sb_lvbptr;
+ ri->lo = cpu_to_le64(lo);
+ ri->hi = cpu_to_le64(hi);
+}
+
+static int read_resync_info(struct mddev *mddev,
+ struct dlm_lock_resource *lockres)
+{
+ struct resync_info ri;
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ int ret = 0;
+
+ dlm_lock_sync(lockres, DLM_LOCK_CR);
+ memcpy(&ri, lockres->lksb.sb_lvbptr, sizeof(struct resync_info));
+ if (le64_to_cpu(ri.hi) > 0) {
+ cinfo->suspend_hi = le64_to_cpu(ri.hi);
+ cinfo->suspend_lo = le64_to_cpu(ri.lo);
+ ret = 1;
+ }
+ dlm_unlock_sync(lockres);
+ return ret;
+}
+
+static void recover_bitmaps(struct md_thread *thread)
+{
+ struct mddev *mddev = thread->mddev;
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ struct dlm_lock_resource *bm_lockres;
+ char str[64];
+ int slot, ret;
+ sector_t lo, hi;
+
+ while (cinfo->recovery_map) {
+ slot = fls64((u64)cinfo->recovery_map) - 1;
+
+ snprintf(str, 64, "bitmap%04d", slot);
+ bm_lockres = lockres_init(mddev, str, NULL, 1);
+ if (!bm_lockres) {
+ pr_err("md-cluster: Cannot initialize bitmaps\n");
+ goto clear_bit;
+ }
+
+ ret = dlm_lock_sync_interruptible(bm_lockres, DLM_LOCK_PW, mddev);
+ if (ret) {
+ pr_err("md-cluster: Could not DLM lock %s: %d\n",
+ str, ret);
+ goto clear_bit;
+ }
+ ret = md_bitmap_copy_from_slot(mddev, slot, &lo, &hi, true);
+ if (ret) {
+ pr_err("md-cluster: Could not copy data from bitmap %d\n", slot);
+ goto clear_bit;
+ }
+
+ /* Clear suspend_area associated with the bitmap */
+ spin_lock_irq(&cinfo->suspend_lock);
+ cinfo->suspend_hi = 0;
+ cinfo->suspend_lo = 0;
+ cinfo->suspend_from = -1;
+ spin_unlock_irq(&cinfo->suspend_lock);
+
+ /* Kick off a reshape if needed */
+ if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
+ test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
+ mddev->reshape_position != MaxSector)
+ md_wakeup_thread(mddev->sync_thread);
+
+ if (hi > 0) {
+ if (lo < mddev->recovery_cp)
+ mddev->recovery_cp = lo;
+ /* wake up thread to continue resync in case resync
+ * is not finished */
+ if (mddev->recovery_cp != MaxSector) {
+ /*
+ * clear the REMOTE flag since we will launch
+ * resync thread in current node.
+ */
+ clear_bit(MD_RESYNCING_REMOTE,
+ &mddev->recovery);
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ md_wakeup_thread(mddev->thread);
+ }
+ }
+clear_bit:
+ lockres_free(bm_lockres);
+ clear_bit(slot, &cinfo->recovery_map);
+ }
+}
+
+static void recover_prep(void *arg)
+{
+ struct mddev *mddev = arg;
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ set_bit(MD_CLUSTER_SUSPEND_READ_BALANCING, &cinfo->state);
+}
+
+static void __recover_slot(struct mddev *mddev, int slot)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+
+ set_bit(slot, &cinfo->recovery_map);
+ if (!cinfo->recovery_thread) {
+ cinfo->recovery_thread = md_register_thread(recover_bitmaps,
+ mddev, "recover");
+ if (!cinfo->recovery_thread) {
+ pr_warn("md-cluster: Could not create recovery thread\n");
+ return;
+ }
+ }
+ md_wakeup_thread(cinfo->recovery_thread);
+}
+
+static void recover_slot(void *arg, struct dlm_slot *slot)
+{
+ struct mddev *mddev = arg;
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+
+ pr_info("md-cluster: %s Node %d/%d down. My slot: %d. Initiating recovery.\n",
+ mddev->bitmap_info.cluster_name,
+ slot->nodeid, slot->slot,
+ cinfo->slot_number);
+ /* deduct one since dlm slot starts from one while the num of
+ * cluster-md begins with 0 */
+ __recover_slot(mddev, slot->slot - 1);
+}
+
+static void recover_done(void *arg, struct dlm_slot *slots,
+ int num_slots, int our_slot,
+ uint32_t generation)
+{
+ struct mddev *mddev = arg;
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+
+ cinfo->slot_number = our_slot;
+ /* completion is only need to be complete when node join cluster,
+ * it doesn't need to run during another node's failure */
+ if (test_bit(MD_CLUSTER_BEGIN_JOIN_CLUSTER, &cinfo->state)) {
+ complete(&cinfo->completion);
+ clear_bit(MD_CLUSTER_BEGIN_JOIN_CLUSTER, &cinfo->state);
+ }
+ clear_bit(MD_CLUSTER_SUSPEND_READ_BALANCING, &cinfo->state);
+}
+
+/* the ops is called when node join the cluster, and do lock recovery
+ * if node failure occurs */
+static const struct dlm_lockspace_ops md_ls_ops = {
+ .recover_prep = recover_prep,
+ .recover_slot = recover_slot,
+ .recover_done = recover_done,
+};
+
+/*
+ * The BAST function for the ack lock resource
+ * This function wakes up the receive thread in
+ * order to receive and process the message.
+ */
+static void ack_bast(void *arg, int mode)
+{
+ struct dlm_lock_resource *res = arg;
+ struct md_cluster_info *cinfo = res->mddev->cluster_info;
+
+ if (mode == DLM_LOCK_EX) {
+ if (test_bit(MD_CLUSTER_ALREADY_IN_CLUSTER, &cinfo->state))
+ md_wakeup_thread(cinfo->recv_thread);
+ else
+ set_bit(MD_CLUSTER_PENDING_RECV_EVENT, &cinfo->state);
+ }
+}
+
+static void remove_suspend_info(struct mddev *mddev, int slot)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ mddev->pers->quiesce(mddev, 1);
+ spin_lock_irq(&cinfo->suspend_lock);
+ cinfo->suspend_hi = 0;
+ cinfo->suspend_lo = 0;
+ spin_unlock_irq(&cinfo->suspend_lock);
+ mddev->pers->quiesce(mddev, 0);
+}
+
+static void process_suspend_info(struct mddev *mddev,
+ int slot, sector_t lo, sector_t hi)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ struct mdp_superblock_1 *sb = NULL;
+ struct md_rdev *rdev;
+
+ if (!hi) {
+ /*
+ * clear the REMOTE flag since resync or recovery is finished
+ * in remote node.
+ */
+ clear_bit(MD_RESYNCING_REMOTE, &mddev->recovery);
+ remove_suspend_info(mddev, slot);
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ md_wakeup_thread(mddev->thread);
+ return;
+ }
+
+ rdev_for_each(rdev, mddev)
+ if (rdev->raid_disk > -1 && !test_bit(Faulty, &rdev->flags)) {
+ sb = page_address(rdev->sb_page);
+ break;
+ }
+
+ /*
+ * The bitmaps are not same for different nodes
+ * if RESYNCING is happening in one node, then
+ * the node which received the RESYNCING message
+ * probably will perform resync with the region
+ * [lo, hi] again, so we could reduce resync time
+ * a lot if we can ensure that the bitmaps among
+ * different nodes are match up well.
+ *
+ * sync_low/hi is used to record the region which
+ * arrived in the previous RESYNCING message,
+ *
+ * Call md_bitmap_sync_with_cluster to clear NEEDED_MASK
+ * and set RESYNC_MASK since resync thread is running
+ * in another node, so we don't need to do the resync
+ * again with the same section.
+ *
+ * Skip md_bitmap_sync_with_cluster in case reshape
+ * happening, because reshaping region is small and
+ * we don't want to trigger lots of WARN.
+ */
+ if (sb && !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE))
+ md_bitmap_sync_with_cluster(mddev, cinfo->sync_low,
+ cinfo->sync_hi, lo, hi);
+ cinfo->sync_low = lo;
+ cinfo->sync_hi = hi;
+
+ mddev->pers->quiesce(mddev, 1);
+ spin_lock_irq(&cinfo->suspend_lock);
+ cinfo->suspend_from = slot;
+ cinfo->suspend_lo = lo;
+ cinfo->suspend_hi = hi;
+ spin_unlock_irq(&cinfo->suspend_lock);
+ mddev->pers->quiesce(mddev, 0);
+}
+
+static void process_add_new_disk(struct mddev *mddev, struct cluster_msg *cmsg)
+{
+ char disk_uuid[64];
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ char event_name[] = "EVENT=ADD_DEVICE";
+ char raid_slot[16];
+ char *envp[] = {event_name, disk_uuid, raid_slot, NULL};
+ int len;
+
+ len = snprintf(disk_uuid, 64, "DEVICE_UUID=");
+ sprintf(disk_uuid + len, "%pU", cmsg->uuid);
+ snprintf(raid_slot, 16, "RAID_DISK=%d", le32_to_cpu(cmsg->raid_slot));
+ pr_info("%s:%d Sending kobject change with %s and %s\n", __func__, __LINE__, disk_uuid, raid_slot);
+ init_completion(&cinfo->newdisk_completion);
+ set_bit(MD_CLUSTER_WAITING_FOR_NEWDISK, &cinfo->state);
+ kobject_uevent_env(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE, envp);
+ wait_for_completion_timeout(&cinfo->newdisk_completion,
+ NEW_DEV_TIMEOUT);
+ clear_bit(MD_CLUSTER_WAITING_FOR_NEWDISK, &cinfo->state);
+}
+
+
+static void process_metadata_update(struct mddev *mddev, struct cluster_msg *msg)
+{
+ int got_lock = 0;
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ mddev->good_device_nr = le32_to_cpu(msg->raid_slot);
+
+ dlm_lock_sync(cinfo->no_new_dev_lockres, DLM_LOCK_CR);
+ wait_event(mddev->thread->wqueue,
+ (got_lock = mddev_trylock(mddev)) ||
+ test_bit(MD_CLUSTER_HOLDING_MUTEX_FOR_RECVD, &cinfo->state));
+ md_reload_sb(mddev, mddev->good_device_nr);
+ if (got_lock)
+ mddev_unlock(mddev);
+}
+
+static void process_remove_disk(struct mddev *mddev, struct cluster_msg *msg)
+{
+ struct md_rdev *rdev;
+
+ rcu_read_lock();
+ rdev = md_find_rdev_nr_rcu(mddev, le32_to_cpu(msg->raid_slot));
+ if (rdev) {
+ set_bit(ClusterRemove, &rdev->flags);
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ md_wakeup_thread(mddev->thread);
+ }
+ else
+ pr_warn("%s: %d Could not find disk(%d) to REMOVE\n",
+ __func__, __LINE__, le32_to_cpu(msg->raid_slot));
+ rcu_read_unlock();
+}
+
+static void process_readd_disk(struct mddev *mddev, struct cluster_msg *msg)
+{
+ struct md_rdev *rdev;
+
+ rcu_read_lock();
+ rdev = md_find_rdev_nr_rcu(mddev, le32_to_cpu(msg->raid_slot));
+ if (rdev && test_bit(Faulty, &rdev->flags))
+ clear_bit(Faulty, &rdev->flags);
+ else
+ pr_warn("%s: %d Could not find disk(%d) which is faulty",
+ __func__, __LINE__, le32_to_cpu(msg->raid_slot));
+ rcu_read_unlock();
+}
+
+static int process_recvd_msg(struct mddev *mddev, struct cluster_msg *msg)
+{
+ int ret = 0;
+
+ if (WARN(mddev->cluster_info->slot_number - 1 == le32_to_cpu(msg->slot),
+ "node %d received its own msg\n", le32_to_cpu(msg->slot)))
+ return -1;
+ switch (le32_to_cpu(msg->type)) {
+ case METADATA_UPDATED:
+ process_metadata_update(mddev, msg);
+ break;
+ case CHANGE_CAPACITY:
+ set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
+ break;
+ case RESYNCING:
+ set_bit(MD_RESYNCING_REMOTE, &mddev->recovery);
+ process_suspend_info(mddev, le32_to_cpu(msg->slot),
+ le64_to_cpu(msg->low),
+ le64_to_cpu(msg->high));
+ break;
+ case NEWDISK:
+ process_add_new_disk(mddev, msg);
+ break;
+ case REMOVE:
+ process_remove_disk(mddev, msg);
+ break;
+ case RE_ADD:
+ process_readd_disk(mddev, msg);
+ break;
+ case BITMAP_NEEDS_SYNC:
+ __recover_slot(mddev, le32_to_cpu(msg->slot));
+ break;
+ case BITMAP_RESIZE:
+ if (le64_to_cpu(msg->high) != mddev->pers->size(mddev, 0, 0))
+ ret = md_bitmap_resize(mddev->bitmap,
+ le64_to_cpu(msg->high), 0, 0);
+ break;
+ default:
+ ret = -1;
+ pr_warn("%s:%d Received unknown message from %d\n",
+ __func__, __LINE__, msg->slot);
+ }
+ return ret;
+}
+
+/*
+ * thread for receiving message
+ */
+static void recv_daemon(struct md_thread *thread)
+{
+ struct md_cluster_info *cinfo = thread->mddev->cluster_info;
+ struct dlm_lock_resource *ack_lockres = cinfo->ack_lockres;
+ struct dlm_lock_resource *message_lockres = cinfo->message_lockres;
+ struct cluster_msg msg;
+ int ret;
+
+ mutex_lock(&cinfo->recv_mutex);
+ /*get CR on Message*/
+ if (dlm_lock_sync(message_lockres, DLM_LOCK_CR)) {
+ pr_err("md/raid1:failed to get CR on MESSAGE\n");
+ mutex_unlock(&cinfo->recv_mutex);
+ return;
+ }
+
+ /* read lvb and wake up thread to process this message_lockres */
+ memcpy(&msg, message_lockres->lksb.sb_lvbptr, sizeof(struct cluster_msg));
+ ret = process_recvd_msg(thread->mddev, &msg);
+ if (ret)
+ goto out;
+
+ /*release CR on ack_lockres*/
+ ret = dlm_unlock_sync(ack_lockres);
+ if (unlikely(ret != 0))
+ pr_info("unlock ack failed return %d\n", ret);
+ /*up-convert to PR on message_lockres*/
+ ret = dlm_lock_sync(message_lockres, DLM_LOCK_PR);
+ if (unlikely(ret != 0))
+ pr_info("lock PR on msg failed return %d\n", ret);
+ /*get CR on ack_lockres again*/
+ ret = dlm_lock_sync(ack_lockres, DLM_LOCK_CR);
+ if (unlikely(ret != 0))
+ pr_info("lock CR on ack failed return %d\n", ret);
+out:
+ /*release CR on message_lockres*/
+ ret = dlm_unlock_sync(message_lockres);
+ if (unlikely(ret != 0))
+ pr_info("unlock msg failed return %d\n", ret);
+ mutex_unlock(&cinfo->recv_mutex);
+}
+
+/* lock_token()
+ * Takes the lock on the TOKEN lock resource so no other
+ * node can communicate while the operation is underway.
+ */
+static int lock_token(struct md_cluster_info *cinfo)
+{
+ int error;
+
+ error = dlm_lock_sync(cinfo->token_lockres, DLM_LOCK_EX);
+ if (error) {
+ pr_err("md-cluster(%s:%d): failed to get EX on TOKEN (%d)\n",
+ __func__, __LINE__, error);
+ } else {
+ /* Lock the receive sequence */
+ mutex_lock(&cinfo->recv_mutex);
+ }
+ return error;
+}
+
+/* lock_comm()
+ * Sets the MD_CLUSTER_SEND_LOCK bit to lock the send channel.
+ */
+static int lock_comm(struct md_cluster_info *cinfo, bool mddev_locked)
+{
+ int rv, set_bit = 0;
+ struct mddev *mddev = cinfo->mddev;
+
+ /*
+ * If resync thread run after raid1d thread, then process_metadata_update
+ * could not continue if raid1d held reconfig_mutex (and raid1d is blocked
+ * since another node already got EX on Token and waiting the EX of Ack),
+ * so let resync wake up thread in case flag is set.
+ */
+ if (mddev_locked && !test_bit(MD_CLUSTER_HOLDING_MUTEX_FOR_RECVD,
+ &cinfo->state)) {
+ rv = test_and_set_bit_lock(MD_CLUSTER_HOLDING_MUTEX_FOR_RECVD,
+ &cinfo->state);
+ WARN_ON_ONCE(rv);
+ md_wakeup_thread(mddev->thread);
+ set_bit = 1;
+ }
+
+ wait_event(cinfo->wait,
+ !test_and_set_bit(MD_CLUSTER_SEND_LOCK, &cinfo->state));
+ rv = lock_token(cinfo);
+ if (set_bit)
+ clear_bit_unlock(MD_CLUSTER_HOLDING_MUTEX_FOR_RECVD, &cinfo->state);
+ return rv;
+}
+
+static void unlock_comm(struct md_cluster_info *cinfo)
+{
+ WARN_ON(cinfo->token_lockres->mode != DLM_LOCK_EX);
+ mutex_unlock(&cinfo->recv_mutex);
+ dlm_unlock_sync(cinfo->token_lockres);
+ clear_bit(MD_CLUSTER_SEND_LOCK, &cinfo->state);
+ wake_up(&cinfo->wait);
+}
+
+/* __sendmsg()
+ * This function performs the actual sending of the message. This function is
+ * usually called after performing the encompassing operation
+ * The function:
+ * 1. Grabs the message lockresource in EX mode
+ * 2. Copies the message to the message LVB
+ * 3. Downconverts message lockresource to CW
+ * 4. Upconverts ack lock resource from CR to EX. This forces the BAST on other nodes
+ * and the other nodes read the message. The thread will wait here until all other
+ * nodes have released ack lock resource.
+ * 5. Downconvert ack lockresource to CR
+ */
+static int __sendmsg(struct md_cluster_info *cinfo, struct cluster_msg *cmsg)
+{
+ int error;
+ int slot = cinfo->slot_number - 1;
+
+ cmsg->slot = cpu_to_le32(slot);
+ /*get EX on Message*/
+ error = dlm_lock_sync(cinfo->message_lockres, DLM_LOCK_EX);
+ if (error) {
+ pr_err("md-cluster: failed to get EX on MESSAGE (%d)\n", error);
+ goto failed_message;
+ }
+
+ memcpy(cinfo->message_lockres->lksb.sb_lvbptr, (void *)cmsg,
+ sizeof(struct cluster_msg));
+ /*down-convert EX to CW on Message*/
+ error = dlm_lock_sync(cinfo->message_lockres, DLM_LOCK_CW);
+ if (error) {
+ pr_err("md-cluster: failed to convert EX to CW on MESSAGE(%d)\n",
+ error);
+ goto failed_ack;
+ }
+
+ /*up-convert CR to EX on Ack*/
+ error = dlm_lock_sync(cinfo->ack_lockres, DLM_LOCK_EX);
+ if (error) {
+ pr_err("md-cluster: failed to convert CR to EX on ACK(%d)\n",
+ error);
+ goto failed_ack;
+ }
+
+ /*down-convert EX to CR on Ack*/
+ error = dlm_lock_sync(cinfo->ack_lockres, DLM_LOCK_CR);
+ if (error) {
+ pr_err("md-cluster: failed to convert EX to CR on ACK(%d)\n",
+ error);
+ goto failed_ack;
+ }
+
+failed_ack:
+ error = dlm_unlock_sync(cinfo->message_lockres);
+ if (unlikely(error != 0)) {
+ pr_err("md-cluster: failed convert to NL on MESSAGE(%d)\n",
+ error);
+ /* in case the message can't be released due to some reason */
+ goto failed_ack;
+ }
+failed_message:
+ return error;
+}
+
+static int sendmsg(struct md_cluster_info *cinfo, struct cluster_msg *cmsg,
+ bool mddev_locked)
+{
+ int ret;
+
+ ret = lock_comm(cinfo, mddev_locked);
+ if (!ret) {
+ ret = __sendmsg(cinfo, cmsg);
+ unlock_comm(cinfo);
+ }
+ return ret;
+}
+
+static int gather_all_resync_info(struct mddev *mddev, int total_slots)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ int i, ret = 0;
+ struct dlm_lock_resource *bm_lockres;
+ char str[64];
+ sector_t lo, hi;
+
+
+ for (i = 0; i < total_slots; i++) {
+ memset(str, '\0', 64);
+ snprintf(str, 64, "bitmap%04d", i);
+ bm_lockres = lockres_init(mddev, str, NULL, 1);
+ if (!bm_lockres)
+ return -ENOMEM;
+ if (i == (cinfo->slot_number - 1)) {
+ lockres_free(bm_lockres);
+ continue;
+ }
+
+ bm_lockres->flags |= DLM_LKF_NOQUEUE;
+ ret = dlm_lock_sync(bm_lockres, DLM_LOCK_PW);
+ if (ret == -EAGAIN) {
+ if (read_resync_info(mddev, bm_lockres)) {
+ pr_info("%s:%d Resync[%llu..%llu] in progress on %d\n",
+ __func__, __LINE__,
+ (unsigned long long) cinfo->suspend_lo,
+ (unsigned long long) cinfo->suspend_hi,
+ i);
+ cinfo->suspend_from = i;
+ }
+ ret = 0;
+ lockres_free(bm_lockres);
+ continue;
+ }
+ if (ret) {
+ lockres_free(bm_lockres);
+ goto out;
+ }
+
+ /* Read the disk bitmap sb and check if it needs recovery */
+ ret = md_bitmap_copy_from_slot(mddev, i, &lo, &hi, false);
+ if (ret) {
+ pr_warn("md-cluster: Could not gather bitmaps from slot %d", i);
+ lockres_free(bm_lockres);
+ continue;
+ }
+ if ((hi > 0) && (lo < mddev->recovery_cp)) {
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ mddev->recovery_cp = lo;
+ md_check_recovery(mddev);
+ }
+
+ lockres_free(bm_lockres);
+ }
+out:
+ return ret;
+}
+
+static int join(struct mddev *mddev, int nodes)
+{
+ struct md_cluster_info *cinfo;
+ int ret, ops_rv;
+ char str[64];
+
+ cinfo = kzalloc(sizeof(struct md_cluster_info), GFP_KERNEL);
+ if (!cinfo)
+ return -ENOMEM;
+
+ INIT_LIST_HEAD(&cinfo->suspend_list);
+ spin_lock_init(&cinfo->suspend_lock);
+ init_completion(&cinfo->completion);
+ set_bit(MD_CLUSTER_BEGIN_JOIN_CLUSTER, &cinfo->state);
+ init_waitqueue_head(&cinfo->wait);
+ mutex_init(&cinfo->recv_mutex);
+
+ mddev->cluster_info = cinfo;
+ cinfo->mddev = mddev;
+
+ memset(str, 0, 64);
+ sprintf(str, "%pU", mddev->uuid);
+ ret = dlm_new_lockspace(str, mddev->bitmap_info.cluster_name,
+ 0, LVB_SIZE, &md_ls_ops, mddev,
+ &ops_rv, &cinfo->lockspace);
+ if (ret)
+ goto err;
+ wait_for_completion(&cinfo->completion);
+ if (nodes < cinfo->slot_number) {
+ pr_err("md-cluster: Slot allotted(%d) is greater than available slots(%d).",
+ cinfo->slot_number, nodes);
+ ret = -ERANGE;
+ goto err;
+ }
+ /* Initiate the communication resources */
+ ret = -ENOMEM;
+ cinfo->recv_thread = md_register_thread(recv_daemon, mddev, "cluster_recv");
+ if (!cinfo->recv_thread) {
+ pr_err("md-cluster: cannot allocate memory for recv_thread!\n");
+ goto err;
+ }
+ cinfo->message_lockres = lockres_init(mddev, "message", NULL, 1);
+ if (!cinfo->message_lockres)
+ goto err;
+ cinfo->token_lockres = lockres_init(mddev, "token", NULL, 0);
+ if (!cinfo->token_lockres)
+ goto err;
+ cinfo->no_new_dev_lockres = lockres_init(mddev, "no-new-dev", NULL, 0);
+ if (!cinfo->no_new_dev_lockres)
+ goto err;
+
+ ret = dlm_lock_sync(cinfo->token_lockres, DLM_LOCK_EX);
+ if (ret) {
+ ret = -EAGAIN;
+ pr_err("md-cluster: can't join cluster to avoid lock issue\n");
+ goto err;
+ }
+ cinfo->ack_lockres = lockres_init(mddev, "ack", ack_bast, 0);
+ if (!cinfo->ack_lockres) {
+ ret = -ENOMEM;
+ goto err;
+ }
+ /* get sync CR lock on ACK. */
+ if (dlm_lock_sync(cinfo->ack_lockres, DLM_LOCK_CR))
+ pr_err("md-cluster: failed to get a sync CR lock on ACK!(%d)\n",
+ ret);
+ dlm_unlock_sync(cinfo->token_lockres);
+ /* get sync CR lock on no-new-dev. */
+ if (dlm_lock_sync(cinfo->no_new_dev_lockres, DLM_LOCK_CR))
+ pr_err("md-cluster: failed to get a sync CR lock on no-new-dev!(%d)\n", ret);
+
+
+ pr_info("md-cluster: Joined cluster %s slot %d\n", str, cinfo->slot_number);
+ snprintf(str, 64, "bitmap%04d", cinfo->slot_number - 1);
+ cinfo->bitmap_lockres = lockres_init(mddev, str, NULL, 1);
+ if (!cinfo->bitmap_lockres) {
+ ret = -ENOMEM;
+ goto err;
+ }
+ if (dlm_lock_sync(cinfo->bitmap_lockres, DLM_LOCK_PW)) {
+ pr_err("Failed to get bitmap lock\n");
+ ret = -EINVAL;
+ goto err;
+ }
+
+ cinfo->resync_lockres = lockres_init(mddev, "resync", NULL, 0);
+ if (!cinfo->resync_lockres) {
+ ret = -ENOMEM;
+ goto err;
+ }
+
+ return 0;
+err:
+ set_bit(MD_CLUSTER_HOLDING_MUTEX_FOR_RECVD, &cinfo->state);
+ md_unregister_thread(&cinfo->recovery_thread);
+ md_unregister_thread(&cinfo->recv_thread);
+ lockres_free(cinfo->message_lockres);
+ lockres_free(cinfo->token_lockres);
+ lockres_free(cinfo->ack_lockres);
+ lockres_free(cinfo->no_new_dev_lockres);
+ lockres_free(cinfo->resync_lockres);
+ lockres_free(cinfo->bitmap_lockres);
+ if (cinfo->lockspace)
+ dlm_release_lockspace(cinfo->lockspace, 2);
+ mddev->cluster_info = NULL;
+ kfree(cinfo);
+ return ret;
+}
+
+static void load_bitmaps(struct mddev *mddev, int total_slots)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+
+ /* load all the node's bitmap info for resync */
+ if (gather_all_resync_info(mddev, total_slots))
+ pr_err("md-cluster: failed to gather all resyn infos\n");
+ set_bit(MD_CLUSTER_ALREADY_IN_CLUSTER, &cinfo->state);
+ /* wake up recv thread in case something need to be handled */
+ if (test_and_clear_bit(MD_CLUSTER_PENDING_RECV_EVENT, &cinfo->state))
+ md_wakeup_thread(cinfo->recv_thread);
+}
+
+static void resync_bitmap(struct mddev *mddev)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ struct cluster_msg cmsg = {0};
+ int err;
+
+ cmsg.type = cpu_to_le32(BITMAP_NEEDS_SYNC);
+ err = sendmsg(cinfo, &cmsg, 1);
+ if (err)
+ pr_err("%s:%d: failed to send BITMAP_NEEDS_SYNC message (%d)\n",
+ __func__, __LINE__, err);
+}
+
+static void unlock_all_bitmaps(struct mddev *mddev);
+static int leave(struct mddev *mddev)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+
+ if (!cinfo)
+ return 0;
+
+ /*
+ * BITMAP_NEEDS_SYNC message should be sent when node
+ * is leaving the cluster with dirty bitmap, also we
+ * can only deliver it when dlm connection is available.
+ *
+ * Also, we should send BITMAP_NEEDS_SYNC message in
+ * case reshaping is interrupted.
+ */
+ if ((cinfo->slot_number > 0 && mddev->recovery_cp != MaxSector) ||
+ (mddev->reshape_position != MaxSector &&
+ test_bit(MD_CLOSING, &mddev->flags)))
+ resync_bitmap(mddev);
+
+ set_bit(MD_CLUSTER_HOLDING_MUTEX_FOR_RECVD, &cinfo->state);
+ md_unregister_thread(&cinfo->recovery_thread);
+ md_unregister_thread(&cinfo->recv_thread);
+ lockres_free(cinfo->message_lockres);
+ lockres_free(cinfo->token_lockres);
+ lockres_free(cinfo->ack_lockres);
+ lockres_free(cinfo->no_new_dev_lockres);
+ lockres_free(cinfo->resync_lockres);
+ lockres_free(cinfo->bitmap_lockres);
+ unlock_all_bitmaps(mddev);
+ dlm_release_lockspace(cinfo->lockspace, 2);
+ kfree(cinfo);
+ return 0;
+}
+
+/* slot_number(): Returns the MD slot number to use
+ * DLM starts the slot numbers from 1, wheras cluster-md
+ * wants the number to be from zero, so we deduct one
+ */
+static int slot_number(struct mddev *mddev)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+
+ return cinfo->slot_number - 1;
+}
+
+/*
+ * Check if the communication is already locked, else lock the communication
+ * channel.
+ * If it is already locked, token is in EX mode, and hence lock_token()
+ * should not be called.
+ */
+static int metadata_update_start(struct mddev *mddev)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ int ret;
+
+ /*
+ * metadata_update_start is always called with the protection of
+ * reconfig_mutex, so set WAITING_FOR_TOKEN here.
+ */
+ ret = test_and_set_bit_lock(MD_CLUSTER_HOLDING_MUTEX_FOR_RECVD,
+ &cinfo->state);
+ WARN_ON_ONCE(ret);
+ md_wakeup_thread(mddev->thread);
+
+ wait_event(cinfo->wait,
+ !test_and_set_bit(MD_CLUSTER_SEND_LOCK, &cinfo->state) ||
+ test_and_clear_bit(MD_CLUSTER_SEND_LOCKED_ALREADY, &cinfo->state));
+
+ /* If token is already locked, return 0 */
+ if (cinfo->token_lockres->mode == DLM_LOCK_EX) {
+ clear_bit_unlock(MD_CLUSTER_HOLDING_MUTEX_FOR_RECVD, &cinfo->state);
+ return 0;
+ }
+
+ ret = lock_token(cinfo);
+ clear_bit_unlock(MD_CLUSTER_HOLDING_MUTEX_FOR_RECVD, &cinfo->state);
+ return ret;
+}
+
+static int metadata_update_finish(struct mddev *mddev)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ struct cluster_msg cmsg;
+ struct md_rdev *rdev;
+ int ret = 0;
+ int raid_slot = -1;
+
+ memset(&cmsg, 0, sizeof(cmsg));
+ cmsg.type = cpu_to_le32(METADATA_UPDATED);
+ /* Pick up a good active device number to send.
+ */
+ rdev_for_each(rdev, mddev)
+ if (rdev->raid_disk > -1 && !test_bit(Faulty, &rdev->flags)) {
+ raid_slot = rdev->desc_nr;
+ break;
+ }
+ if (raid_slot >= 0) {
+ cmsg.raid_slot = cpu_to_le32(raid_slot);
+ ret = __sendmsg(cinfo, &cmsg);
+ } else
+ pr_warn("md-cluster: No good device id found to send\n");
+ clear_bit(MD_CLUSTER_SEND_LOCKED_ALREADY, &cinfo->state);
+ unlock_comm(cinfo);
+ return ret;
+}
+
+static void metadata_update_cancel(struct mddev *mddev)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ clear_bit(MD_CLUSTER_SEND_LOCKED_ALREADY, &cinfo->state);
+ unlock_comm(cinfo);
+}
+
+static int update_bitmap_size(struct mddev *mddev, sector_t size)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ struct cluster_msg cmsg = {0};
+ int ret;
+
+ cmsg.type = cpu_to_le32(BITMAP_RESIZE);
+ cmsg.high = cpu_to_le64(size);
+ ret = sendmsg(cinfo, &cmsg, 0);
+ if (ret)
+ pr_err("%s:%d: failed to send BITMAP_RESIZE message (%d)\n",
+ __func__, __LINE__, ret);
+ return ret;
+}
+
+static int resize_bitmaps(struct mddev *mddev, sector_t newsize, sector_t oldsize)
+{
+ struct bitmap_counts *counts;
+ char str[64];
+ struct dlm_lock_resource *bm_lockres;
+ struct bitmap *bitmap = mddev->bitmap;
+ unsigned long my_pages = bitmap->counts.pages;
+ int i, rv;
+
+ /*
+ * We need to ensure all the nodes can grow to a larger
+ * bitmap size before make the reshaping.
+ */
+ rv = update_bitmap_size(mddev, newsize);
+ if (rv)
+ return rv;
+
+ for (i = 0; i < mddev->bitmap_info.nodes; i++) {
+ if (i == md_cluster_ops->slot_number(mddev))
+ continue;
+
+ bitmap = get_bitmap_from_slot(mddev, i);
+ if (IS_ERR(bitmap)) {
+ pr_err("can't get bitmap from slot %d\n", i);
+ bitmap = NULL;
+ goto out;
+ }
+ counts = &bitmap->counts;
+
+ /*
+ * If we can hold the bitmap lock of one node then
+ * the slot is not occupied, update the pages.
+ */
+ snprintf(str, 64, "bitmap%04d", i);
+ bm_lockres = lockres_init(mddev, str, NULL, 1);
+ if (!bm_lockres) {
+ pr_err("Cannot initialize %s lock\n", str);
+ goto out;
+ }
+ bm_lockres->flags |= DLM_LKF_NOQUEUE;
+ rv = dlm_lock_sync(bm_lockres, DLM_LOCK_PW);
+ if (!rv)
+ counts->pages = my_pages;
+ lockres_free(bm_lockres);
+
+ if (my_pages != counts->pages)
+ /*
+ * Let's revert the bitmap size if one node
+ * can't resize bitmap
+ */
+ goto out;
+ md_bitmap_free(bitmap);
+ }
+
+ return 0;
+out:
+ md_bitmap_free(bitmap);
+ update_bitmap_size(mddev, oldsize);
+ return -1;
+}
+
+/*
+ * return 0 if all the bitmaps have the same sync_size
+ */
+static int cluster_check_sync_size(struct mddev *mddev)
+{
+ int i, rv;
+ bitmap_super_t *sb;
+ unsigned long my_sync_size, sync_size = 0;
+ int node_num = mddev->bitmap_info.nodes;
+ int current_slot = md_cluster_ops->slot_number(mddev);
+ struct bitmap *bitmap = mddev->bitmap;
+ char str[64];
+ struct dlm_lock_resource *bm_lockres;
+
+ sb = kmap_atomic(bitmap->storage.sb_page);
+ my_sync_size = sb->sync_size;
+ kunmap_atomic(sb);
+
+ for (i = 0; i < node_num; i++) {
+ if (i == current_slot)
+ continue;
+
+ bitmap = get_bitmap_from_slot(mddev, i);
+ if (IS_ERR(bitmap)) {
+ pr_err("can't get bitmap from slot %d\n", i);
+ return -1;
+ }
+
+ /*
+ * If we can hold the bitmap lock of one node then
+ * the slot is not occupied, update the sb.
+ */
+ snprintf(str, 64, "bitmap%04d", i);
+ bm_lockres = lockres_init(mddev, str, NULL, 1);
+ if (!bm_lockres) {
+ pr_err("md-cluster: Cannot initialize %s\n", str);
+ md_bitmap_free(bitmap);
+ return -1;
+ }
+ bm_lockres->flags |= DLM_LKF_NOQUEUE;
+ rv = dlm_lock_sync(bm_lockres, DLM_LOCK_PW);
+ if (!rv)
+ md_bitmap_update_sb(bitmap);
+ lockres_free(bm_lockres);
+
+ sb = kmap_atomic(bitmap->storage.sb_page);
+ if (sync_size == 0)
+ sync_size = sb->sync_size;
+ else if (sync_size != sb->sync_size) {
+ kunmap_atomic(sb);
+ md_bitmap_free(bitmap);
+ return -1;
+ }
+ kunmap_atomic(sb);
+ md_bitmap_free(bitmap);
+ }
+
+ return (my_sync_size == sync_size) ? 0 : -1;
+}
+
+/*
+ * Update the size for cluster raid is a little more complex, we perform it
+ * by the steps:
+ * 1. hold token lock and update superblock in initiator node.
+ * 2. send METADATA_UPDATED msg to other nodes.
+ * 3. The initiator node continues to check each bitmap's sync_size, if all
+ * bitmaps have the same value of sync_size, then we can set capacity and
+ * let other nodes to perform it. If one node can't update sync_size
+ * accordingly, we need to revert to previous value.
+ */
+static void update_size(struct mddev *mddev, sector_t old_dev_sectors)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ struct cluster_msg cmsg;
+ struct md_rdev *rdev;
+ int ret = 0;
+ int raid_slot = -1;
+
+ md_update_sb(mddev, 1);
+ if (lock_comm(cinfo, 1)) {
+ pr_err("%s: lock_comm failed\n", __func__);
+ return;
+ }
+
+ memset(&cmsg, 0, sizeof(cmsg));
+ cmsg.type = cpu_to_le32(METADATA_UPDATED);
+ rdev_for_each(rdev, mddev)
+ if (rdev->raid_disk >= 0 && !test_bit(Faulty, &rdev->flags)) {
+ raid_slot = rdev->desc_nr;
+ break;
+ }
+ if (raid_slot >= 0) {
+ cmsg.raid_slot = cpu_to_le32(raid_slot);
+ /*
+ * We can only change capiticy after all the nodes can do it,
+ * so need to wait after other nodes already received the msg
+ * and handled the change
+ */
+ ret = __sendmsg(cinfo, &cmsg);
+ if (ret) {
+ pr_err("%s:%d: failed to send METADATA_UPDATED msg\n",
+ __func__, __LINE__);
+ unlock_comm(cinfo);
+ return;
+ }
+ } else {
+ pr_err("md-cluster: No good device id found to send\n");
+ unlock_comm(cinfo);
+ return;
+ }
+
+ /*
+ * check the sync_size from other node's bitmap, if sync_size
+ * have already updated in other nodes as expected, send an
+ * empty metadata msg to permit the change of capacity
+ */
+ if (cluster_check_sync_size(mddev) == 0) {
+ memset(&cmsg, 0, sizeof(cmsg));
+ cmsg.type = cpu_to_le32(CHANGE_CAPACITY);
+ ret = __sendmsg(cinfo, &cmsg);
+ if (ret)
+ pr_err("%s:%d: failed to send CHANGE_CAPACITY msg\n",
+ __func__, __LINE__);
+ set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
+ } else {
+ /* revert to previous sectors */
+ ret = mddev->pers->resize(mddev, old_dev_sectors);
+ ret = __sendmsg(cinfo, &cmsg);
+ if (ret)
+ pr_err("%s:%d: failed to send METADATA_UPDATED msg\n",
+ __func__, __LINE__);
+ }
+ unlock_comm(cinfo);
+}
+
+static int resync_start(struct mddev *mddev)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ return dlm_lock_sync_interruptible(cinfo->resync_lockres, DLM_LOCK_EX, mddev);
+}
+
+static void resync_info_get(struct mddev *mddev, sector_t *lo, sector_t *hi)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+
+ spin_lock_irq(&cinfo->suspend_lock);
+ *lo = cinfo->suspend_lo;
+ *hi = cinfo->suspend_hi;
+ spin_unlock_irq(&cinfo->suspend_lock);
+}
+
+static int resync_info_update(struct mddev *mddev, sector_t lo, sector_t hi)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ struct resync_info ri;
+ struct cluster_msg cmsg = {0};
+
+ /* do not send zero again, if we have sent before */
+ if (hi == 0) {
+ memcpy(&ri, cinfo->bitmap_lockres->lksb.sb_lvbptr, sizeof(struct resync_info));
+ if (le64_to_cpu(ri.hi) == 0)
+ return 0;
+ }
+
+ add_resync_info(cinfo->bitmap_lockres, lo, hi);
+ /* Re-acquire the lock to refresh LVB */
+ dlm_lock_sync(cinfo->bitmap_lockres, DLM_LOCK_PW);
+ cmsg.type = cpu_to_le32(RESYNCING);
+ cmsg.low = cpu_to_le64(lo);
+ cmsg.high = cpu_to_le64(hi);
+
+ /*
+ * mddev_lock is held if resync_info_update is called from
+ * resync_finish (md_reap_sync_thread -> resync_finish)
+ */
+ if (lo == 0 && hi == 0)
+ return sendmsg(cinfo, &cmsg, 1);
+ else
+ return sendmsg(cinfo, &cmsg, 0);
+}
+
+static int resync_finish(struct mddev *mddev)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ int ret = 0;
+
+ clear_bit(MD_RESYNCING_REMOTE, &mddev->recovery);
+
+ /*
+ * If resync thread is interrupted so we can't say resync is finished,
+ * another node will launch resync thread to continue.
+ */
+ if (!test_bit(MD_CLOSING, &mddev->flags))
+ ret = resync_info_update(mddev, 0, 0);
+ dlm_unlock_sync(cinfo->resync_lockres);
+ return ret;
+}
+
+static int area_resyncing(struct mddev *mddev, int direction,
+ sector_t lo, sector_t hi)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ int ret = 0;
+
+ if ((direction == READ) &&
+ test_bit(MD_CLUSTER_SUSPEND_READ_BALANCING, &cinfo->state))
+ return 1;
+
+ spin_lock_irq(&cinfo->suspend_lock);
+ if (hi > cinfo->suspend_lo && lo < cinfo->suspend_hi)
+ ret = 1;
+ spin_unlock_irq(&cinfo->suspend_lock);
+ return ret;
+}
+
+/* add_new_disk() - initiates a disk add
+ * However, if this fails before writing md_update_sb(),
+ * add_new_disk_cancel() must be called to release token lock
+ */
+static int add_new_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ struct cluster_msg cmsg;
+ int ret = 0;
+ struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
+ char *uuid = sb->device_uuid;
+
+ memset(&cmsg, 0, sizeof(cmsg));
+ cmsg.type = cpu_to_le32(NEWDISK);
+ memcpy(cmsg.uuid, uuid, 16);
+ cmsg.raid_slot = cpu_to_le32(rdev->desc_nr);
+ if (lock_comm(cinfo, 1))
+ return -EAGAIN;
+ ret = __sendmsg(cinfo, &cmsg);
+ if (ret) {
+ unlock_comm(cinfo);
+ return ret;
+ }
+ cinfo->no_new_dev_lockres->flags |= DLM_LKF_NOQUEUE;
+ ret = dlm_lock_sync(cinfo->no_new_dev_lockres, DLM_LOCK_EX);
+ cinfo->no_new_dev_lockres->flags &= ~DLM_LKF_NOQUEUE;
+ /* Some node does not "see" the device */
+ if (ret == -EAGAIN)
+ ret = -ENOENT;
+ if (ret)
+ unlock_comm(cinfo);
+ else {
+ dlm_lock_sync(cinfo->no_new_dev_lockres, DLM_LOCK_CR);
+ /* Since MD_CHANGE_DEVS will be set in add_bound_rdev which
+ * will run soon after add_new_disk, the below path will be
+ * invoked:
+ * md_wakeup_thread(mddev->thread)
+ * -> conf->thread (raid1d)
+ * -> md_check_recovery -> md_update_sb
+ * -> metadata_update_start/finish
+ * MD_CLUSTER_SEND_LOCKED_ALREADY will be cleared eventually.
+ *
+ * For other failure cases, metadata_update_cancel and
+ * add_new_disk_cancel also clear below bit as well.
+ * */
+ set_bit(MD_CLUSTER_SEND_LOCKED_ALREADY, &cinfo->state);
+ wake_up(&cinfo->wait);
+ }
+ return ret;
+}
+
+static void add_new_disk_cancel(struct mddev *mddev)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ clear_bit(MD_CLUSTER_SEND_LOCKED_ALREADY, &cinfo->state);
+ unlock_comm(cinfo);
+}
+
+static int new_disk_ack(struct mddev *mddev, bool ack)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+
+ if (!test_bit(MD_CLUSTER_WAITING_FOR_NEWDISK, &cinfo->state)) {
+ pr_warn("md-cluster(%s): Spurious cluster confirmation\n", mdname(mddev));
+ return -EINVAL;
+ }
+
+ if (ack)
+ dlm_unlock_sync(cinfo->no_new_dev_lockres);
+ complete(&cinfo->newdisk_completion);
+ return 0;
+}
+
+static int remove_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct cluster_msg cmsg = {0};
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ cmsg.type = cpu_to_le32(REMOVE);
+ cmsg.raid_slot = cpu_to_le32(rdev->desc_nr);
+ return sendmsg(cinfo, &cmsg, 1);
+}
+
+static int lock_all_bitmaps(struct mddev *mddev)
+{
+ int slot, my_slot, ret, held = 1, i = 0;
+ char str[64];
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+
+ cinfo->other_bitmap_lockres =
+ kcalloc(mddev->bitmap_info.nodes - 1,
+ sizeof(struct dlm_lock_resource *), GFP_KERNEL);
+ if (!cinfo->other_bitmap_lockres) {
+ pr_err("md: can't alloc mem for other bitmap locks\n");
+ return 0;
+ }
+
+ my_slot = slot_number(mddev);
+ for (slot = 0; slot < mddev->bitmap_info.nodes; slot++) {
+ if (slot == my_slot)
+ continue;
+
+ memset(str, '\0', 64);
+ snprintf(str, 64, "bitmap%04d", slot);
+ cinfo->other_bitmap_lockres[i] = lockres_init(mddev, str, NULL, 1);
+ if (!cinfo->other_bitmap_lockres[i])
+ return -ENOMEM;
+
+ cinfo->other_bitmap_lockres[i]->flags |= DLM_LKF_NOQUEUE;
+ ret = dlm_lock_sync(cinfo->other_bitmap_lockres[i], DLM_LOCK_PW);
+ if (ret)
+ held = -1;
+ i++;
+ }
+
+ return held;
+}
+
+static void unlock_all_bitmaps(struct mddev *mddev)
+{
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+ int i;
+
+ /* release other node's bitmap lock if they are existed */
+ if (cinfo->other_bitmap_lockres) {
+ for (i = 0; i < mddev->bitmap_info.nodes - 1; i++) {
+ if (cinfo->other_bitmap_lockres[i]) {
+ lockres_free(cinfo->other_bitmap_lockres[i]);
+ }
+ }
+ kfree(cinfo->other_bitmap_lockres);
+ cinfo->other_bitmap_lockres = NULL;
+ }
+}
+
+static int gather_bitmaps(struct md_rdev *rdev)
+{
+ int sn, err;
+ sector_t lo, hi;
+ struct cluster_msg cmsg = {0};
+ struct mddev *mddev = rdev->mddev;
+ struct md_cluster_info *cinfo = mddev->cluster_info;
+
+ cmsg.type = cpu_to_le32(RE_ADD);
+ cmsg.raid_slot = cpu_to_le32(rdev->desc_nr);
+ err = sendmsg(cinfo, &cmsg, 1);
+ if (err)
+ goto out;
+
+ for (sn = 0; sn < mddev->bitmap_info.nodes; sn++) {
+ if (sn == (cinfo->slot_number - 1))
+ continue;
+ err = md_bitmap_copy_from_slot(mddev, sn, &lo, &hi, false);
+ if (err) {
+ pr_warn("md-cluster: Could not gather bitmaps from slot %d", sn);
+ goto out;
+ }
+ if ((hi > 0) && (lo < mddev->recovery_cp))
+ mddev->recovery_cp = lo;
+ }
+out:
+ return err;
+}
+
+static struct md_cluster_operations cluster_ops = {
+ .join = join,
+ .leave = leave,
+ .slot_number = slot_number,
+ .resync_start = resync_start,
+ .resync_finish = resync_finish,
+ .resync_info_update = resync_info_update,
+ .resync_info_get = resync_info_get,
+ .metadata_update_start = metadata_update_start,
+ .metadata_update_finish = metadata_update_finish,
+ .metadata_update_cancel = metadata_update_cancel,
+ .area_resyncing = area_resyncing,
+ .add_new_disk = add_new_disk,
+ .add_new_disk_cancel = add_new_disk_cancel,
+ .new_disk_ack = new_disk_ack,
+ .remove_disk = remove_disk,
+ .load_bitmaps = load_bitmaps,
+ .gather_bitmaps = gather_bitmaps,
+ .resize_bitmaps = resize_bitmaps,
+ .lock_all_bitmaps = lock_all_bitmaps,
+ .unlock_all_bitmaps = unlock_all_bitmaps,
+ .update_size = update_size,
+};
+
+static int __init cluster_init(void)
+{
+ pr_warn("md-cluster: support raid1 and raid10 (limited support)\n");
+ pr_info("Registering Cluster MD functions\n");
+ register_md_cluster_operations(&cluster_ops, THIS_MODULE);
+ return 0;
+}
+
+static void cluster_exit(void)
+{
+ unregister_md_cluster_operations();
+}
+
+module_init(cluster_init);
+module_exit(cluster_exit);
+MODULE_AUTHOR("SUSE");
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Clustering support for MD");
diff --git a/drivers/md/md-cluster.h b/drivers/md/md-cluster.h
new file mode 100644
index 000000000..a78e30217
--- /dev/null
+++ b/drivers/md/md-cluster.h
@@ -0,0 +1,36 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+
+
+#ifndef _MD_CLUSTER_H
+#define _MD_CLUSTER_H
+
+#include "md.h"
+
+struct mddev;
+struct md_rdev;
+
+struct md_cluster_operations {
+ int (*join)(struct mddev *mddev, int nodes);
+ int (*leave)(struct mddev *mddev);
+ int (*slot_number)(struct mddev *mddev);
+ int (*resync_info_update)(struct mddev *mddev, sector_t lo, sector_t hi);
+ void (*resync_info_get)(struct mddev *mddev, sector_t *lo, sector_t *hi);
+ int (*metadata_update_start)(struct mddev *mddev);
+ int (*metadata_update_finish)(struct mddev *mddev);
+ void (*metadata_update_cancel)(struct mddev *mddev);
+ int (*resync_start)(struct mddev *mddev);
+ int (*resync_finish)(struct mddev *mddev);
+ int (*area_resyncing)(struct mddev *mddev, int direction, sector_t lo, sector_t hi);
+ int (*add_new_disk)(struct mddev *mddev, struct md_rdev *rdev);
+ void (*add_new_disk_cancel)(struct mddev *mddev);
+ int (*new_disk_ack)(struct mddev *mddev, bool ack);
+ int (*remove_disk)(struct mddev *mddev, struct md_rdev *rdev);
+ void (*load_bitmaps)(struct mddev *mddev, int total_slots);
+ int (*gather_bitmaps)(struct md_rdev *rdev);
+ int (*resize_bitmaps)(struct mddev *mddev, sector_t newsize, sector_t oldsize);
+ int (*lock_all_bitmaps)(struct mddev *mddev);
+ void (*unlock_all_bitmaps)(struct mddev *mddev);
+ void (*update_size)(struct mddev *mddev, sector_t old_dev_sectors);
+};
+
+#endif /* _MD_CLUSTER_H */
diff --git a/drivers/md/md-faulty.c b/drivers/md/md-faulty.c
new file mode 100644
index 000000000..50ad81897
--- /dev/null
+++ b/drivers/md/md-faulty.c
@@ -0,0 +1,363 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * faulty.c : Multiple Devices driver for Linux
+ *
+ * Copyright (C) 2004 Neil Brown
+ *
+ * fautly-device-simulator personality for md
+ */
+
+
+/*
+ * The "faulty" personality causes some requests to fail.
+ *
+ * Possible failure modes are:
+ * reads fail "randomly" but succeed on retry
+ * writes fail "randomly" but succeed on retry
+ * reads for some address fail and then persist until a write
+ * reads for some address fail and then persist irrespective of write
+ * writes for some address fail and persist
+ * all writes fail
+ *
+ * Different modes can be active at a time, but only
+ * one can be set at array creation. Others can be added later.
+ * A mode can be one-shot or recurrent with the recurrence being
+ * once in every N requests.
+ * The bottom 5 bits of the "layout" indicate the mode. The
+ * remainder indicate a period, or 0 for one-shot.
+ *
+ * There is an implementation limit on the number of concurrently
+ * persisting-faulty blocks. When a new fault is requested that would
+ * exceed the limit, it is ignored.
+ * All current faults can be clear using a layout of "0".
+ *
+ * Requests are always sent to the device. If they are to fail,
+ * we clone the bio and insert a new b_end_io into the chain.
+ */
+
+#define WriteTransient 0
+#define ReadTransient 1
+#define WritePersistent 2
+#define ReadPersistent 3
+#define WriteAll 4 /* doesn't go to device */
+#define ReadFixable 5
+#define Modes 6
+
+#define ClearErrors 31
+#define ClearFaults 30
+
+#define AllPersist 100 /* internal use only */
+#define NoPersist 101
+
+#define ModeMask 0x1f
+#define ModeShift 5
+
+#define MaxFault 50
+#include <linux/blkdev.h>
+#include <linux/module.h>
+#include <linux/raid/md_u.h>
+#include <linux/slab.h>
+#include "md.h"
+#include <linux/seq_file.h>
+
+
+static void faulty_fail(struct bio *bio)
+{
+ struct bio *b = bio->bi_private;
+
+ b->bi_iter.bi_size = bio->bi_iter.bi_size;
+ b->bi_iter.bi_sector = bio->bi_iter.bi_sector;
+
+ bio_put(bio);
+
+ bio_io_error(b);
+}
+
+struct faulty_conf {
+ int period[Modes];
+ atomic_t counters[Modes];
+ sector_t faults[MaxFault];
+ int modes[MaxFault];
+ int nfaults;
+ struct md_rdev *rdev;
+};
+
+static int check_mode(struct faulty_conf *conf, int mode)
+{
+ if (conf->period[mode] == 0 &&
+ atomic_read(&conf->counters[mode]) <= 0)
+ return 0; /* no failure, no decrement */
+
+
+ if (atomic_dec_and_test(&conf->counters[mode])) {
+ if (conf->period[mode])
+ atomic_set(&conf->counters[mode], conf->period[mode]);
+ return 1;
+ }
+ return 0;
+}
+
+static int check_sector(struct faulty_conf *conf, sector_t start, sector_t end, int dir)
+{
+ /* If we find a ReadFixable sector, we fix it ... */
+ int i;
+ for (i=0; i<conf->nfaults; i++)
+ if (conf->faults[i] >= start &&
+ conf->faults[i] < end) {
+ /* found it ... */
+ switch (conf->modes[i] * 2 + dir) {
+ case WritePersistent*2+WRITE: return 1;
+ case ReadPersistent*2+READ: return 1;
+ case ReadFixable*2+READ: return 1;
+ case ReadFixable*2+WRITE:
+ conf->modes[i] = NoPersist;
+ return 0;
+ case AllPersist*2+READ:
+ case AllPersist*2+WRITE: return 1;
+ default:
+ return 0;
+ }
+ }
+ return 0;
+}
+
+static void add_sector(struct faulty_conf *conf, sector_t start, int mode)
+{
+ int i;
+ int n = conf->nfaults;
+ for (i=0; i<conf->nfaults; i++)
+ if (conf->faults[i] == start) {
+ switch(mode) {
+ case NoPersist: conf->modes[i] = mode; return;
+ case WritePersistent:
+ if (conf->modes[i] == ReadPersistent ||
+ conf->modes[i] == ReadFixable)
+ conf->modes[i] = AllPersist;
+ else
+ conf->modes[i] = WritePersistent;
+ return;
+ case ReadPersistent:
+ if (conf->modes[i] == WritePersistent)
+ conf->modes[i] = AllPersist;
+ else
+ conf->modes[i] = ReadPersistent;
+ return;
+ case ReadFixable:
+ if (conf->modes[i] == WritePersistent ||
+ conf->modes[i] == ReadPersistent)
+ conf->modes[i] = AllPersist;
+ else
+ conf->modes[i] = ReadFixable;
+ return;
+ }
+ } else if (conf->modes[i] == NoPersist)
+ n = i;
+
+ if (n >= MaxFault)
+ return;
+ conf->faults[n] = start;
+ conf->modes[n] = mode;
+ if (conf->nfaults == n)
+ conf->nfaults = n+1;
+}
+
+static bool faulty_make_request(struct mddev *mddev, struct bio *bio)
+{
+ struct faulty_conf *conf = mddev->private;
+ int failit = 0;
+
+ if (bio_data_dir(bio) == WRITE) {
+ /* write request */
+ if (atomic_read(&conf->counters[WriteAll])) {
+ /* special case - don't decrement, don't submit_bio_noacct,
+ * just fail immediately
+ */
+ bio_io_error(bio);
+ return true;
+ }
+
+ if (check_sector(conf, bio->bi_iter.bi_sector,
+ bio_end_sector(bio), WRITE))
+ failit = 1;
+ if (check_mode(conf, WritePersistent)) {
+ add_sector(conf, bio->bi_iter.bi_sector,
+ WritePersistent);
+ failit = 1;
+ }
+ if (check_mode(conf, WriteTransient))
+ failit = 1;
+ } else {
+ /* read request */
+ if (check_sector(conf, bio->bi_iter.bi_sector,
+ bio_end_sector(bio), READ))
+ failit = 1;
+ if (check_mode(conf, ReadTransient))
+ failit = 1;
+ if (check_mode(conf, ReadPersistent)) {
+ add_sector(conf, bio->bi_iter.bi_sector,
+ ReadPersistent);
+ failit = 1;
+ }
+ if (check_mode(conf, ReadFixable)) {
+ add_sector(conf, bio->bi_iter.bi_sector,
+ ReadFixable);
+ failit = 1;
+ }
+ }
+ if (failit) {
+ struct bio *b = bio_alloc_clone(conf->rdev->bdev, bio, GFP_NOIO,
+ &mddev->bio_set);
+
+ b->bi_private = bio;
+ b->bi_end_io = faulty_fail;
+ bio = b;
+ } else
+ bio_set_dev(bio, conf->rdev->bdev);
+
+ submit_bio_noacct(bio);
+ return true;
+}
+
+static void faulty_status(struct seq_file *seq, struct mddev *mddev)
+{
+ struct faulty_conf *conf = mddev->private;
+ int n;
+
+ if ((n=atomic_read(&conf->counters[WriteTransient])) != 0)
+ seq_printf(seq, " WriteTransient=%d(%d)",
+ n, conf->period[WriteTransient]);
+
+ if ((n=atomic_read(&conf->counters[ReadTransient])) != 0)
+ seq_printf(seq, " ReadTransient=%d(%d)",
+ n, conf->period[ReadTransient]);
+
+ if ((n=atomic_read(&conf->counters[WritePersistent])) != 0)
+ seq_printf(seq, " WritePersistent=%d(%d)",
+ n, conf->period[WritePersistent]);
+
+ if ((n=atomic_read(&conf->counters[ReadPersistent])) != 0)
+ seq_printf(seq, " ReadPersistent=%d(%d)",
+ n, conf->period[ReadPersistent]);
+
+
+ if ((n=atomic_read(&conf->counters[ReadFixable])) != 0)
+ seq_printf(seq, " ReadFixable=%d(%d)",
+ n, conf->period[ReadFixable]);
+
+ if ((n=atomic_read(&conf->counters[WriteAll])) != 0)
+ seq_printf(seq, " WriteAll");
+
+ seq_printf(seq, " nfaults=%d", conf->nfaults);
+}
+
+
+static int faulty_reshape(struct mddev *mddev)
+{
+ int mode = mddev->new_layout & ModeMask;
+ int count = mddev->new_layout >> ModeShift;
+ struct faulty_conf *conf = mddev->private;
+
+ if (mddev->new_layout < 0)
+ return 0;
+
+ /* new layout */
+ if (mode == ClearFaults)
+ conf->nfaults = 0;
+ else if (mode == ClearErrors) {
+ int i;
+ for (i=0 ; i < Modes ; i++) {
+ conf->period[i] = 0;
+ atomic_set(&conf->counters[i], 0);
+ }
+ } else if (mode < Modes) {
+ conf->period[mode] = count;
+ if (!count) count++;
+ atomic_set(&conf->counters[mode], count);
+ } else
+ return -EINVAL;
+ mddev->new_layout = -1;
+ mddev->layout = -1; /* makes sure further changes come through */
+ return 0;
+}
+
+static sector_t faulty_size(struct mddev *mddev, sector_t sectors, int raid_disks)
+{
+ WARN_ONCE(raid_disks,
+ "%s does not support generic reshape\n", __func__);
+
+ if (sectors == 0)
+ return mddev->dev_sectors;
+
+ return sectors;
+}
+
+static int faulty_run(struct mddev *mddev)
+{
+ struct md_rdev *rdev;
+ int i;
+ struct faulty_conf *conf;
+
+ if (md_check_no_bitmap(mddev))
+ return -EINVAL;
+
+ conf = kmalloc(sizeof(*conf), GFP_KERNEL);
+ if (!conf)
+ return -ENOMEM;
+
+ for (i=0; i<Modes; i++) {
+ atomic_set(&conf->counters[i], 0);
+ conf->period[i] = 0;
+ }
+ conf->nfaults = 0;
+
+ rdev_for_each(rdev, mddev) {
+ conf->rdev = rdev;
+ disk_stack_limits(mddev->gendisk, rdev->bdev,
+ rdev->data_offset << 9);
+ }
+
+ md_set_array_sectors(mddev, faulty_size(mddev, 0, 0));
+ mddev->private = conf;
+
+ faulty_reshape(mddev);
+
+ return 0;
+}
+
+static void faulty_free(struct mddev *mddev, void *priv)
+{
+ struct faulty_conf *conf = priv;
+
+ kfree(conf);
+}
+
+static struct md_personality faulty_personality =
+{
+ .name = "faulty",
+ .level = LEVEL_FAULTY,
+ .owner = THIS_MODULE,
+ .make_request = faulty_make_request,
+ .run = faulty_run,
+ .free = faulty_free,
+ .status = faulty_status,
+ .check_reshape = faulty_reshape,
+ .size = faulty_size,
+};
+
+static int __init raid_init(void)
+{
+ return register_md_personality(&faulty_personality);
+}
+
+static void raid_exit(void)
+{
+ unregister_md_personality(&faulty_personality);
+}
+
+module_init(raid_init);
+module_exit(raid_exit);
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Fault injection personality for MD (deprecated)");
+MODULE_ALIAS("md-personality-10"); /* faulty */
+MODULE_ALIAS("md-faulty");
+MODULE_ALIAS("md-level--5");
diff --git a/drivers/md/md-linear.c b/drivers/md/md-linear.c
new file mode 100644
index 000000000..4eb72b9dd
--- /dev/null
+++ b/drivers/md/md-linear.c
@@ -0,0 +1,319 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ linear.c : Multiple Devices driver for Linux
+ Copyright (C) 1994-96 Marc ZYNGIER
+ <zyngier@ufr-info-p7.ibp.fr> or
+ <maz@gloups.fdn.fr>
+
+ Linear mode management functions.
+
+*/
+
+#include <linux/blkdev.h>
+#include <linux/raid/md_u.h>
+#include <linux/seq_file.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <trace/events/block.h>
+#include "md.h"
+#include "md-linear.h"
+
+/*
+ * find which device holds a particular offset
+ */
+static inline struct dev_info *which_dev(struct mddev *mddev, sector_t sector)
+{
+ int lo, mid, hi;
+ struct linear_conf *conf;
+
+ lo = 0;
+ hi = mddev->raid_disks - 1;
+ conf = mddev->private;
+
+ /*
+ * Binary Search
+ */
+
+ while (hi > lo) {
+
+ mid = (hi + lo) / 2;
+ if (sector < conf->disks[mid].end_sector)
+ hi = mid;
+ else
+ lo = mid + 1;
+ }
+
+ return conf->disks + lo;
+}
+
+static sector_t linear_size(struct mddev *mddev, sector_t sectors, int raid_disks)
+{
+ struct linear_conf *conf;
+ sector_t array_sectors;
+
+ conf = mddev->private;
+ WARN_ONCE(sectors || raid_disks,
+ "%s does not support generic reshape\n", __func__);
+ array_sectors = conf->array_sectors;
+
+ return array_sectors;
+}
+
+static struct linear_conf *linear_conf(struct mddev *mddev, int raid_disks)
+{
+ struct linear_conf *conf;
+ struct md_rdev *rdev;
+ int i, cnt;
+
+ conf = kzalloc(struct_size(conf, disks, raid_disks), GFP_KERNEL);
+ if (!conf)
+ return NULL;
+
+ cnt = 0;
+ conf->array_sectors = 0;
+
+ rdev_for_each(rdev, mddev) {
+ int j = rdev->raid_disk;
+ struct dev_info *disk = conf->disks + j;
+ sector_t sectors;
+
+ if (j < 0 || j >= raid_disks || disk->rdev) {
+ pr_warn("md/linear:%s: disk numbering problem. Aborting!\n",
+ mdname(mddev));
+ goto out;
+ }
+
+ disk->rdev = rdev;
+ if (mddev->chunk_sectors) {
+ sectors = rdev->sectors;
+ sector_div(sectors, mddev->chunk_sectors);
+ rdev->sectors = sectors * mddev->chunk_sectors;
+ }
+
+ disk_stack_limits(mddev->gendisk, rdev->bdev,
+ rdev->data_offset << 9);
+
+ conf->array_sectors += rdev->sectors;
+ cnt++;
+ }
+ if (cnt != raid_disks) {
+ pr_warn("md/linear:%s: not enough drives present. Aborting!\n",
+ mdname(mddev));
+ goto out;
+ }
+
+ /*
+ * Here we calculate the device offsets.
+ */
+ conf->disks[0].end_sector = conf->disks[0].rdev->sectors;
+
+ for (i = 1; i < raid_disks; i++)
+ conf->disks[i].end_sector =
+ conf->disks[i-1].end_sector +
+ conf->disks[i].rdev->sectors;
+
+ /*
+ * conf->raid_disks is copy of mddev->raid_disks. The reason to
+ * keep a copy of mddev->raid_disks in struct linear_conf is,
+ * mddev->raid_disks may not be consistent with pointers number of
+ * conf->disks[] when it is updated in linear_add() and used to
+ * iterate old conf->disks[] earray in linear_congested().
+ * Here conf->raid_disks is always consitent with number of
+ * pointers in conf->disks[] array, and mddev->private is updated
+ * with rcu_assign_pointer() in linear_addr(), such race can be
+ * avoided.
+ */
+ conf->raid_disks = raid_disks;
+
+ return conf;
+
+out:
+ kfree(conf);
+ return NULL;
+}
+
+static int linear_run (struct mddev *mddev)
+{
+ struct linear_conf *conf;
+ int ret;
+
+ if (md_check_no_bitmap(mddev))
+ return -EINVAL;
+ conf = linear_conf(mddev, mddev->raid_disks);
+
+ if (!conf)
+ return 1;
+ mddev->private = conf;
+ md_set_array_sectors(mddev, linear_size(mddev, 0, 0));
+
+ ret = md_integrity_register(mddev);
+ if (ret) {
+ kfree(conf);
+ mddev->private = NULL;
+ }
+ return ret;
+}
+
+static int linear_add(struct mddev *mddev, struct md_rdev *rdev)
+{
+ /* Adding a drive to a linear array allows the array to grow.
+ * It is permitted if the new drive has a matching superblock
+ * already on it, with raid_disk equal to raid_disks.
+ * It is achieved by creating a new linear_private_data structure
+ * and swapping it in in-place of the current one.
+ * The current one is never freed until the array is stopped.
+ * This avoids races.
+ */
+ struct linear_conf *newconf, *oldconf;
+
+ if (rdev->saved_raid_disk != mddev->raid_disks)
+ return -EINVAL;
+
+ rdev->raid_disk = rdev->saved_raid_disk;
+ rdev->saved_raid_disk = -1;
+
+ newconf = linear_conf(mddev,mddev->raid_disks+1);
+
+ if (!newconf)
+ return -ENOMEM;
+
+ /* newconf->raid_disks already keeps a copy of * the increased
+ * value of mddev->raid_disks, WARN_ONCE() is just used to make
+ * sure of this. It is possible that oldconf is still referenced
+ * in linear_congested(), therefore kfree_rcu() is used to free
+ * oldconf until no one uses it anymore.
+ */
+ mddev_suspend(mddev);
+ oldconf = rcu_dereference_protected(mddev->private,
+ lockdep_is_held(&mddev->reconfig_mutex));
+ mddev->raid_disks++;
+ WARN_ONCE(mddev->raid_disks != newconf->raid_disks,
+ "copied raid_disks doesn't match mddev->raid_disks");
+ rcu_assign_pointer(mddev->private, newconf);
+ md_set_array_sectors(mddev, linear_size(mddev, 0, 0));
+ set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
+ mddev_resume(mddev);
+ kfree_rcu(oldconf, rcu);
+ return 0;
+}
+
+static void linear_free(struct mddev *mddev, void *priv)
+{
+ struct linear_conf *conf = priv;
+
+ kfree(conf);
+}
+
+static bool linear_make_request(struct mddev *mddev, struct bio *bio)
+{
+ struct dev_info *tmp_dev;
+ sector_t start_sector, end_sector, data_offset;
+ sector_t bio_sector = bio->bi_iter.bi_sector;
+
+ if (unlikely(bio->bi_opf & REQ_PREFLUSH)
+ && md_flush_request(mddev, bio))
+ return true;
+
+ tmp_dev = which_dev(mddev, bio_sector);
+ start_sector = tmp_dev->end_sector - tmp_dev->rdev->sectors;
+ end_sector = tmp_dev->end_sector;
+ data_offset = tmp_dev->rdev->data_offset;
+
+ if (unlikely(bio_sector >= end_sector ||
+ bio_sector < start_sector))
+ goto out_of_bounds;
+
+ if (unlikely(is_rdev_broken(tmp_dev->rdev))) {
+ md_error(mddev, tmp_dev->rdev);
+ bio_io_error(bio);
+ return true;
+ }
+
+ if (unlikely(bio_end_sector(bio) > end_sector)) {
+ /* This bio crosses a device boundary, so we have to split it */
+ struct bio *split = bio_split(bio, end_sector - bio_sector,
+ GFP_NOIO, &mddev->bio_set);
+ bio_chain(split, bio);
+ submit_bio_noacct(bio);
+ bio = split;
+ }
+
+ bio_set_dev(bio, tmp_dev->rdev->bdev);
+ bio->bi_iter.bi_sector = bio->bi_iter.bi_sector -
+ start_sector + data_offset;
+
+ if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
+ !bdev_max_discard_sectors(bio->bi_bdev))) {
+ /* Just ignore it */
+ bio_endio(bio);
+ } else {
+ if (mddev->gendisk)
+ trace_block_bio_remap(bio, disk_devt(mddev->gendisk),
+ bio_sector);
+ mddev_check_write_zeroes(mddev, bio);
+ submit_bio_noacct(bio);
+ }
+ return true;
+
+out_of_bounds:
+ pr_err("md/linear:%s: make_request: Sector %llu out of bounds on dev %pg: %llu sectors, offset %llu\n",
+ mdname(mddev),
+ (unsigned long long)bio->bi_iter.bi_sector,
+ tmp_dev->rdev->bdev,
+ (unsigned long long)tmp_dev->rdev->sectors,
+ (unsigned long long)start_sector);
+ bio_io_error(bio);
+ return true;
+}
+
+static void linear_status (struct seq_file *seq, struct mddev *mddev)
+{
+ seq_printf(seq, " %dk rounding", mddev->chunk_sectors / 2);
+}
+
+static void linear_error(struct mddev *mddev, struct md_rdev *rdev)
+{
+ if (!test_and_set_bit(MD_BROKEN, &mddev->flags)) {
+ char *md_name = mdname(mddev);
+
+ pr_crit("md/linear%s: Disk failure on %pg detected, failing array.\n",
+ md_name, rdev->bdev);
+ }
+}
+
+static void linear_quiesce(struct mddev *mddev, int state)
+{
+}
+
+static struct md_personality linear_personality =
+{
+ .name = "linear",
+ .level = LEVEL_LINEAR,
+ .owner = THIS_MODULE,
+ .make_request = linear_make_request,
+ .run = linear_run,
+ .free = linear_free,
+ .status = linear_status,
+ .hot_add_disk = linear_add,
+ .size = linear_size,
+ .quiesce = linear_quiesce,
+ .error_handler = linear_error,
+};
+
+static int __init linear_init (void)
+{
+ return register_md_personality (&linear_personality);
+}
+
+static void linear_exit (void)
+{
+ unregister_md_personality (&linear_personality);
+}
+
+module_init(linear_init);
+module_exit(linear_exit);
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Linear device concatenation personality for MD (deprecated)");
+MODULE_ALIAS("md-personality-1"); /* LINEAR - deprecated*/
+MODULE_ALIAS("md-linear");
+MODULE_ALIAS("md-level--1");
diff --git a/drivers/md/md-linear.h b/drivers/md/md-linear.h
new file mode 100644
index 000000000..24e97db50
--- /dev/null
+++ b/drivers/md/md-linear.h
@@ -0,0 +1,17 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _LINEAR_H
+#define _LINEAR_H
+
+struct dev_info {
+ struct md_rdev *rdev;
+ sector_t end_sector;
+};
+
+struct linear_conf
+{
+ struct rcu_head rcu;
+ sector_t array_sectors;
+ int raid_disks; /* a copy of mddev->raid_disks */
+ struct dev_info disks[];
+};
+#endif
diff --git a/drivers/md/md-multipath.c b/drivers/md/md-multipath.c
new file mode 100644
index 000000000..66edf5e72
--- /dev/null
+++ b/drivers/md/md-multipath.c
@@ -0,0 +1,470 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * multipath.c : Multiple Devices driver for Linux
+ *
+ * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
+ *
+ * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
+ *
+ * MULTIPATH management functions.
+ *
+ * derived from raid1.c.
+ */
+
+#include <linux/blkdev.h>
+#include <linux/module.h>
+#include <linux/raid/md_u.h>
+#include <linux/seq_file.h>
+#include <linux/slab.h>
+#include "md.h"
+#include "md-multipath.h"
+
+#define MAX_WORK_PER_DISK 128
+
+#define NR_RESERVED_BUFS 32
+
+static int multipath_map (struct mpconf *conf)
+{
+ int i, disks = conf->raid_disks;
+
+ /*
+ * Later we do read balancing on the read side
+ * now we use the first available disk.
+ */
+
+ rcu_read_lock();
+ for (i = 0; i < disks; i++) {
+ struct md_rdev *rdev = rcu_dereference(conf->multipaths[i].rdev);
+ if (rdev && test_bit(In_sync, &rdev->flags) &&
+ !test_bit(Faulty, &rdev->flags)) {
+ atomic_inc(&rdev->nr_pending);
+ rcu_read_unlock();
+ return i;
+ }
+ }
+ rcu_read_unlock();
+
+ pr_crit_ratelimited("multipath_map(): no more operational IO paths?\n");
+ return (-1);
+}
+
+static void multipath_reschedule_retry (struct multipath_bh *mp_bh)
+{
+ unsigned long flags;
+ struct mddev *mddev = mp_bh->mddev;
+ struct mpconf *conf = mddev->private;
+
+ spin_lock_irqsave(&conf->device_lock, flags);
+ list_add(&mp_bh->retry_list, &conf->retry_list);
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ md_wakeup_thread(mddev->thread);
+}
+
+/*
+ * multipath_end_bh_io() is called when we have finished servicing a multipathed
+ * operation and are ready to return a success/failure code to the buffer
+ * cache layer.
+ */
+static void multipath_end_bh_io(struct multipath_bh *mp_bh, blk_status_t status)
+{
+ struct bio *bio = mp_bh->master_bio;
+ struct mpconf *conf = mp_bh->mddev->private;
+
+ bio->bi_status = status;
+ bio_endio(bio);
+ mempool_free(mp_bh, &conf->pool);
+}
+
+static void multipath_end_request(struct bio *bio)
+{
+ struct multipath_bh *mp_bh = bio->bi_private;
+ struct mpconf *conf = mp_bh->mddev->private;
+ struct md_rdev *rdev = conf->multipaths[mp_bh->path].rdev;
+
+ if (!bio->bi_status)
+ multipath_end_bh_io(mp_bh, 0);
+ else if (!(bio->bi_opf & REQ_RAHEAD)) {
+ /*
+ * oops, IO error:
+ */
+ md_error (mp_bh->mddev, rdev);
+ pr_info("multipath: %pg: rescheduling sector %llu\n",
+ rdev->bdev,
+ (unsigned long long)bio->bi_iter.bi_sector);
+ multipath_reschedule_retry(mp_bh);
+ } else
+ multipath_end_bh_io(mp_bh, bio->bi_status);
+ rdev_dec_pending(rdev, conf->mddev);
+}
+
+static bool multipath_make_request(struct mddev *mddev, struct bio * bio)
+{
+ struct mpconf *conf = mddev->private;
+ struct multipath_bh * mp_bh;
+ struct multipath_info *multipath;
+
+ if (unlikely(bio->bi_opf & REQ_PREFLUSH)
+ && md_flush_request(mddev, bio))
+ return true;
+
+ mp_bh = mempool_alloc(&conf->pool, GFP_NOIO);
+
+ mp_bh->master_bio = bio;
+ mp_bh->mddev = mddev;
+
+ mp_bh->path = multipath_map(conf);
+ if (mp_bh->path < 0) {
+ bio_io_error(bio);
+ mempool_free(mp_bh, &conf->pool);
+ return true;
+ }
+ multipath = conf->multipaths + mp_bh->path;
+
+ bio_init_clone(multipath->rdev->bdev, &mp_bh->bio, bio, GFP_NOIO);
+
+ mp_bh->bio.bi_iter.bi_sector += multipath->rdev->data_offset;
+ mp_bh->bio.bi_opf |= REQ_FAILFAST_TRANSPORT;
+ mp_bh->bio.bi_end_io = multipath_end_request;
+ mp_bh->bio.bi_private = mp_bh;
+ mddev_check_write_zeroes(mddev, &mp_bh->bio);
+ submit_bio_noacct(&mp_bh->bio);
+ return true;
+}
+
+static void multipath_status(struct seq_file *seq, struct mddev *mddev)
+{
+ struct mpconf *conf = mddev->private;
+ int i;
+
+ seq_printf (seq, " [%d/%d] [", conf->raid_disks,
+ conf->raid_disks - mddev->degraded);
+ rcu_read_lock();
+ for (i = 0; i < conf->raid_disks; i++) {
+ struct md_rdev *rdev = rcu_dereference(conf->multipaths[i].rdev);
+ seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
+ }
+ rcu_read_unlock();
+ seq_putc(seq, ']');
+}
+
+/*
+ * Careful, this can execute in IRQ contexts as well!
+ */
+static void multipath_error (struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct mpconf *conf = mddev->private;
+
+ if (conf->raid_disks - mddev->degraded <= 1) {
+ /*
+ * Uh oh, we can do nothing if this is our last path, but
+ * first check if this is a queued request for a device
+ * which has just failed.
+ */
+ pr_warn("multipath: only one IO path left and IO error.\n");
+ /* leave it active... it's all we have */
+ return;
+ }
+ /*
+ * Mark disk as unusable
+ */
+ if (test_and_clear_bit(In_sync, &rdev->flags)) {
+ unsigned long flags;
+ spin_lock_irqsave(&conf->device_lock, flags);
+ mddev->degraded++;
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ }
+ set_bit(Faulty, &rdev->flags);
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+ pr_err("multipath: IO failure on %pg, disabling IO path.\n"
+ "multipath: Operation continuing on %d IO paths.\n",
+ rdev->bdev,
+ conf->raid_disks - mddev->degraded);
+}
+
+static void print_multipath_conf (struct mpconf *conf)
+{
+ int i;
+ struct multipath_info *tmp;
+
+ pr_debug("MULTIPATH conf printout:\n");
+ if (!conf) {
+ pr_debug("(conf==NULL)\n");
+ return;
+ }
+ pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
+ conf->raid_disks);
+
+ for (i = 0; i < conf->raid_disks; i++) {
+ tmp = conf->multipaths + i;
+ if (tmp->rdev)
+ pr_debug(" disk%d, o:%d, dev:%pg\n",
+ i,!test_bit(Faulty, &tmp->rdev->flags),
+ tmp->rdev->bdev);
+ }
+}
+
+static int multipath_add_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct mpconf *conf = mddev->private;
+ int err = -EEXIST;
+ int path;
+ struct multipath_info *p;
+ int first = 0;
+ int last = mddev->raid_disks - 1;
+
+ if (rdev->raid_disk >= 0)
+ first = last = rdev->raid_disk;
+
+ print_multipath_conf(conf);
+
+ for (path = first; path <= last; path++)
+ if ((p=conf->multipaths+path)->rdev == NULL) {
+ disk_stack_limits(mddev->gendisk, rdev->bdev,
+ rdev->data_offset << 9);
+
+ err = md_integrity_add_rdev(rdev, mddev);
+ if (err)
+ break;
+ spin_lock_irq(&conf->device_lock);
+ mddev->degraded--;
+ rdev->raid_disk = path;
+ set_bit(In_sync, &rdev->flags);
+ spin_unlock_irq(&conf->device_lock);
+ rcu_assign_pointer(p->rdev, rdev);
+ err = 0;
+ break;
+ }
+
+ print_multipath_conf(conf);
+
+ return err;
+}
+
+static int multipath_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct mpconf *conf = mddev->private;
+ int err = 0;
+ int number = rdev->raid_disk;
+ struct multipath_info *p = conf->multipaths + number;
+
+ print_multipath_conf(conf);
+
+ if (rdev == p->rdev) {
+ if (test_bit(In_sync, &rdev->flags) ||
+ atomic_read(&rdev->nr_pending)) {
+ pr_warn("hot-remove-disk, slot %d is identified but is still operational!\n", number);
+ err = -EBUSY;
+ goto abort;
+ }
+ p->rdev = NULL;
+ if (!test_bit(RemoveSynchronized, &rdev->flags)) {
+ synchronize_rcu();
+ if (atomic_read(&rdev->nr_pending)) {
+ /* lost the race, try later */
+ err = -EBUSY;
+ p->rdev = rdev;
+ goto abort;
+ }
+ }
+ err = md_integrity_register(mddev);
+ }
+abort:
+
+ print_multipath_conf(conf);
+ return err;
+}
+
+/*
+ * This is a kernel thread which:
+ *
+ * 1. Retries failed read operations on working multipaths.
+ * 2. Updates the raid superblock when problems encounter.
+ * 3. Performs writes following reads for array syncronising.
+ */
+
+static void multipathd(struct md_thread *thread)
+{
+ struct mddev *mddev = thread->mddev;
+ struct multipath_bh *mp_bh;
+ struct bio *bio;
+ unsigned long flags;
+ struct mpconf *conf = mddev->private;
+ struct list_head *head = &conf->retry_list;
+
+ md_check_recovery(mddev);
+ for (;;) {
+ spin_lock_irqsave(&conf->device_lock, flags);
+ if (list_empty(head))
+ break;
+ mp_bh = list_entry(head->prev, struct multipath_bh, retry_list);
+ list_del(head->prev);
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+
+ bio = &mp_bh->bio;
+ bio->bi_iter.bi_sector = mp_bh->master_bio->bi_iter.bi_sector;
+
+ if ((mp_bh->path = multipath_map (conf))<0) {
+ pr_err("multipath: %pg: unrecoverable IO read error for block %llu\n",
+ bio->bi_bdev,
+ (unsigned long long)bio->bi_iter.bi_sector);
+ multipath_end_bh_io(mp_bh, BLK_STS_IOERR);
+ } else {
+ pr_err("multipath: %pg: redirecting sector %llu to another IO path\n",
+ bio->bi_bdev,
+ (unsigned long long)bio->bi_iter.bi_sector);
+ *bio = *(mp_bh->master_bio);
+ bio->bi_iter.bi_sector +=
+ conf->multipaths[mp_bh->path].rdev->data_offset;
+ bio_set_dev(bio, conf->multipaths[mp_bh->path].rdev->bdev);
+ bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
+ bio->bi_end_io = multipath_end_request;
+ bio->bi_private = mp_bh;
+ submit_bio_noacct(bio);
+ }
+ }
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+}
+
+static sector_t multipath_size(struct mddev *mddev, sector_t sectors, int raid_disks)
+{
+ WARN_ONCE(sectors || raid_disks,
+ "%s does not support generic reshape\n", __func__);
+
+ return mddev->dev_sectors;
+}
+
+static int multipath_run (struct mddev *mddev)
+{
+ struct mpconf *conf;
+ int disk_idx;
+ struct multipath_info *disk;
+ struct md_rdev *rdev;
+ int working_disks;
+ int ret;
+
+ if (md_check_no_bitmap(mddev))
+ return -EINVAL;
+
+ if (mddev->level != LEVEL_MULTIPATH) {
+ pr_warn("multipath: %s: raid level not set to multipath IO (%d)\n",
+ mdname(mddev), mddev->level);
+ goto out;
+ }
+ /*
+ * copy the already verified devices into our private MULTIPATH
+ * bookkeeping area. [whatever we allocate in multipath_run(),
+ * should be freed in multipath_free()]
+ */
+
+ conf = kzalloc(sizeof(struct mpconf), GFP_KERNEL);
+ mddev->private = conf;
+ if (!conf)
+ goto out;
+
+ conf->multipaths = kcalloc(mddev->raid_disks,
+ sizeof(struct multipath_info),
+ GFP_KERNEL);
+ if (!conf->multipaths)
+ goto out_free_conf;
+
+ working_disks = 0;
+ rdev_for_each(rdev, mddev) {
+ disk_idx = rdev->raid_disk;
+ if (disk_idx < 0 ||
+ disk_idx >= mddev->raid_disks)
+ continue;
+
+ disk = conf->multipaths + disk_idx;
+ disk->rdev = rdev;
+ disk_stack_limits(mddev->gendisk, rdev->bdev,
+ rdev->data_offset << 9);
+
+ if (!test_bit(Faulty, &rdev->flags))
+ working_disks++;
+ }
+
+ conf->raid_disks = mddev->raid_disks;
+ conf->mddev = mddev;
+ spin_lock_init(&conf->device_lock);
+ INIT_LIST_HEAD(&conf->retry_list);
+
+ if (!working_disks) {
+ pr_warn("multipath: no operational IO paths for %s\n",
+ mdname(mddev));
+ goto out_free_conf;
+ }
+ mddev->degraded = conf->raid_disks - working_disks;
+
+ ret = mempool_init_kmalloc_pool(&conf->pool, NR_RESERVED_BUFS,
+ sizeof(struct multipath_bh));
+ if (ret)
+ goto out_free_conf;
+
+ mddev->thread = md_register_thread(multipathd, mddev,
+ "multipath");
+ if (!mddev->thread)
+ goto out_free_conf;
+
+ pr_info("multipath: array %s active with %d out of %d IO paths\n",
+ mdname(mddev), conf->raid_disks - mddev->degraded,
+ mddev->raid_disks);
+ /*
+ * Ok, everything is just fine now
+ */
+ md_set_array_sectors(mddev, multipath_size(mddev, 0, 0));
+
+ if (md_integrity_register(mddev))
+ goto out_free_conf;
+
+ return 0;
+
+out_free_conf:
+ mempool_exit(&conf->pool);
+ kfree(conf->multipaths);
+ kfree(conf);
+ mddev->private = NULL;
+out:
+ return -EIO;
+}
+
+static void multipath_free(struct mddev *mddev, void *priv)
+{
+ struct mpconf *conf = priv;
+
+ mempool_exit(&conf->pool);
+ kfree(conf->multipaths);
+ kfree(conf);
+}
+
+static struct md_personality multipath_personality =
+{
+ .name = "multipath",
+ .level = LEVEL_MULTIPATH,
+ .owner = THIS_MODULE,
+ .make_request = multipath_make_request,
+ .run = multipath_run,
+ .free = multipath_free,
+ .status = multipath_status,
+ .error_handler = multipath_error,
+ .hot_add_disk = multipath_add_disk,
+ .hot_remove_disk= multipath_remove_disk,
+ .size = multipath_size,
+};
+
+static int __init multipath_init (void)
+{
+ return register_md_personality (&multipath_personality);
+}
+
+static void __exit multipath_exit (void)
+{
+ unregister_md_personality (&multipath_personality);
+}
+
+module_init(multipath_init);
+module_exit(multipath_exit);
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("simple multi-path personality for MD (deprecated)");
+MODULE_ALIAS("md-personality-7"); /* MULTIPATH */
+MODULE_ALIAS("md-multipath");
+MODULE_ALIAS("md-level--4");
diff --git a/drivers/md/md-multipath.h b/drivers/md/md-multipath.h
new file mode 100644
index 000000000..b3099e5fc
--- /dev/null
+++ b/drivers/md/md-multipath.h
@@ -0,0 +1,32 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _MULTIPATH_H
+#define _MULTIPATH_H
+
+struct multipath_info {
+ struct md_rdev *rdev;
+};
+
+struct mpconf {
+ struct mddev *mddev;
+ struct multipath_info *multipaths;
+ int raid_disks;
+ spinlock_t device_lock;
+ struct list_head retry_list;
+
+ mempool_t pool;
+};
+
+/*
+ * this is our 'private' 'collective' MULTIPATH buffer head.
+ * it contains information about what kind of IO operations were started
+ * for this MULTIPATH operation, and about their status:
+ */
+
+struct multipath_bh {
+ struct mddev *mddev;
+ struct bio *master_bio;
+ struct bio bio;
+ int path;
+ struct list_head retry_list;
+};
+#endif
diff --git a/drivers/md/md.c b/drivers/md/md.c
new file mode 100644
index 000000000..6120f26a7
--- /dev/null
+++ b/drivers/md/md.c
@@ -0,0 +1,10020 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ md.c : Multiple Devices driver for Linux
+ Copyright (C) 1998, 1999, 2000 Ingo Molnar
+
+ completely rewritten, based on the MD driver code from Marc Zyngier
+
+ Changes:
+
+ - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
+ - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
+ - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
+ - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
+ - kmod support by: Cyrus Durgin
+ - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
+ - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
+
+ - lots of fixes and improvements to the RAID1/RAID5 and generic
+ RAID code (such as request based resynchronization):
+
+ Neil Brown <neilb@cse.unsw.edu.au>.
+
+ - persistent bitmap code
+ Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
+
+
+ Errors, Warnings, etc.
+ Please use:
+ pr_crit() for error conditions that risk data loss
+ pr_err() for error conditions that are unexpected, like an IO error
+ or internal inconsistency
+ pr_warn() for error conditions that could have been predicated, like
+ adding a device to an array when it has incompatible metadata
+ pr_info() for every interesting, very rare events, like an array starting
+ or stopping, or resync starting or stopping
+ pr_debug() for everything else.
+
+*/
+
+#include <linux/sched/mm.h>
+#include <linux/sched/signal.h>
+#include <linux/kthread.h>
+#include <linux/blkdev.h>
+#include <linux/blk-integrity.h>
+#include <linux/badblocks.h>
+#include <linux/sysctl.h>
+#include <linux/seq_file.h>
+#include <linux/fs.h>
+#include <linux/poll.h>
+#include <linux/ctype.h>
+#include <linux/string.h>
+#include <linux/hdreg.h>
+#include <linux/proc_fs.h>
+#include <linux/random.h>
+#include <linux/major.h>
+#include <linux/module.h>
+#include <linux/reboot.h>
+#include <linux/file.h>
+#include <linux/compat.h>
+#include <linux/delay.h>
+#include <linux/raid/md_p.h>
+#include <linux/raid/md_u.h>
+#include <linux/raid/detect.h>
+#include <linux/slab.h>
+#include <linux/percpu-refcount.h>
+#include <linux/part_stat.h>
+
+#include <trace/events/block.h>
+#include "md.h"
+#include "md-bitmap.h"
+#include "md-cluster.h"
+
+/* pers_list is a list of registered personalities protected
+ * by pers_lock.
+ * pers_lock does extra service to protect accesses to
+ * mddev->thread when the mutex cannot be held.
+ */
+static LIST_HEAD(pers_list);
+static DEFINE_SPINLOCK(pers_lock);
+
+static struct kobj_type md_ktype;
+
+struct md_cluster_operations *md_cluster_ops;
+EXPORT_SYMBOL(md_cluster_ops);
+static struct module *md_cluster_mod;
+
+static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
+static struct workqueue_struct *md_wq;
+static struct workqueue_struct *md_misc_wq;
+static struct workqueue_struct *md_rdev_misc_wq;
+
+static int remove_and_add_spares(struct mddev *mddev,
+ struct md_rdev *this);
+static void mddev_detach(struct mddev *mddev);
+
+enum md_ro_state {
+ MD_RDWR,
+ MD_RDONLY,
+ MD_AUTO_READ,
+ MD_MAX_STATE
+};
+
+static bool md_is_rdwr(struct mddev *mddev)
+{
+ return (mddev->ro == MD_RDWR);
+}
+
+/*
+ * Default number of read corrections we'll attempt on an rdev
+ * before ejecting it from the array. We divide the read error
+ * count by 2 for every hour elapsed between read errors.
+ */
+#define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
+/* Default safemode delay: 200 msec */
+#define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
+/*
+ * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
+ * is 1000 KB/sec, so the extra system load does not show up that much.
+ * Increase it if you want to have more _guaranteed_ speed. Note that
+ * the RAID driver will use the maximum available bandwidth if the IO
+ * subsystem is idle. There is also an 'absolute maximum' reconstruction
+ * speed limit - in case reconstruction slows down your system despite
+ * idle IO detection.
+ *
+ * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
+ * or /sys/block/mdX/md/sync_speed_{min,max}
+ */
+
+static int sysctl_speed_limit_min = 1000;
+static int sysctl_speed_limit_max = 200000;
+static inline int speed_min(struct mddev *mddev)
+{
+ return mddev->sync_speed_min ?
+ mddev->sync_speed_min : sysctl_speed_limit_min;
+}
+
+static inline int speed_max(struct mddev *mddev)
+{
+ return mddev->sync_speed_max ?
+ mddev->sync_speed_max : sysctl_speed_limit_max;
+}
+
+static void rdev_uninit_serial(struct md_rdev *rdev)
+{
+ if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
+ return;
+
+ kvfree(rdev->serial);
+ rdev->serial = NULL;
+}
+
+static void rdevs_uninit_serial(struct mddev *mddev)
+{
+ struct md_rdev *rdev;
+
+ rdev_for_each(rdev, mddev)
+ rdev_uninit_serial(rdev);
+}
+
+static int rdev_init_serial(struct md_rdev *rdev)
+{
+ /* serial_nums equals with BARRIER_BUCKETS_NR */
+ int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
+ struct serial_in_rdev *serial = NULL;
+
+ if (test_bit(CollisionCheck, &rdev->flags))
+ return 0;
+
+ serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
+ GFP_KERNEL);
+ if (!serial)
+ return -ENOMEM;
+
+ for (i = 0; i < serial_nums; i++) {
+ struct serial_in_rdev *serial_tmp = &serial[i];
+
+ spin_lock_init(&serial_tmp->serial_lock);
+ serial_tmp->serial_rb = RB_ROOT_CACHED;
+ init_waitqueue_head(&serial_tmp->serial_io_wait);
+ }
+
+ rdev->serial = serial;
+ set_bit(CollisionCheck, &rdev->flags);
+
+ return 0;
+}
+
+static int rdevs_init_serial(struct mddev *mddev)
+{
+ struct md_rdev *rdev;
+ int ret = 0;
+
+ rdev_for_each(rdev, mddev) {
+ ret = rdev_init_serial(rdev);
+ if (ret)
+ break;
+ }
+
+ /* Free all resources if pool is not existed */
+ if (ret && !mddev->serial_info_pool)
+ rdevs_uninit_serial(mddev);
+
+ return ret;
+}
+
+/*
+ * rdev needs to enable serial stuffs if it meets the conditions:
+ * 1. it is multi-queue device flaged with writemostly.
+ * 2. the write-behind mode is enabled.
+ */
+static int rdev_need_serial(struct md_rdev *rdev)
+{
+ return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
+ rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
+ test_bit(WriteMostly, &rdev->flags));
+}
+
+/*
+ * Init resource for rdev(s), then create serial_info_pool if:
+ * 1. rdev is the first device which return true from rdev_enable_serial.
+ * 2. rdev is NULL, means we want to enable serialization for all rdevs.
+ */
+void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
+ bool is_suspend)
+{
+ int ret = 0;
+
+ if (rdev && !rdev_need_serial(rdev) &&
+ !test_bit(CollisionCheck, &rdev->flags))
+ return;
+
+ if (!is_suspend)
+ mddev_suspend(mddev);
+
+ if (!rdev)
+ ret = rdevs_init_serial(mddev);
+ else
+ ret = rdev_init_serial(rdev);
+ if (ret)
+ goto abort;
+
+ if (mddev->serial_info_pool == NULL) {
+ /*
+ * already in memalloc noio context by
+ * mddev_suspend()
+ */
+ mddev->serial_info_pool =
+ mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
+ sizeof(struct serial_info));
+ if (!mddev->serial_info_pool) {
+ rdevs_uninit_serial(mddev);
+ pr_err("can't alloc memory pool for serialization\n");
+ }
+ }
+
+abort:
+ if (!is_suspend)
+ mddev_resume(mddev);
+}
+
+/*
+ * Free resource from rdev(s), and destroy serial_info_pool under conditions:
+ * 1. rdev is the last device flaged with CollisionCheck.
+ * 2. when bitmap is destroyed while policy is not enabled.
+ * 3. for disable policy, the pool is destroyed only when no rdev needs it.
+ */
+void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
+ bool is_suspend)
+{
+ if (rdev && !test_bit(CollisionCheck, &rdev->flags))
+ return;
+
+ if (mddev->serial_info_pool) {
+ struct md_rdev *temp;
+ int num = 0; /* used to track if other rdevs need the pool */
+
+ if (!is_suspend)
+ mddev_suspend(mddev);
+ rdev_for_each(temp, mddev) {
+ if (!rdev) {
+ if (!mddev->serialize_policy ||
+ !rdev_need_serial(temp))
+ rdev_uninit_serial(temp);
+ else
+ num++;
+ } else if (temp != rdev &&
+ test_bit(CollisionCheck, &temp->flags))
+ num++;
+ }
+
+ if (rdev)
+ rdev_uninit_serial(rdev);
+
+ if (num)
+ pr_info("The mempool could be used by other devices\n");
+ else {
+ mempool_destroy(mddev->serial_info_pool);
+ mddev->serial_info_pool = NULL;
+ }
+ if (!is_suspend)
+ mddev_resume(mddev);
+ }
+}
+
+static struct ctl_table_header *raid_table_header;
+
+static struct ctl_table raid_table[] = {
+ {
+ .procname = "speed_limit_min",
+ .data = &sysctl_speed_limit_min,
+ .maxlen = sizeof(int),
+ .mode = S_IRUGO|S_IWUSR,
+ .proc_handler = proc_dointvec,
+ },
+ {
+ .procname = "speed_limit_max",
+ .data = &sysctl_speed_limit_max,
+ .maxlen = sizeof(int),
+ .mode = S_IRUGO|S_IWUSR,
+ .proc_handler = proc_dointvec,
+ },
+ { }
+};
+
+static struct ctl_table raid_dir_table[] = {
+ {
+ .procname = "raid",
+ .maxlen = 0,
+ .mode = S_IRUGO|S_IXUGO,
+ .child = raid_table,
+ },
+ { }
+};
+
+static struct ctl_table raid_root_table[] = {
+ {
+ .procname = "dev",
+ .maxlen = 0,
+ .mode = 0555,
+ .child = raid_dir_table,
+ },
+ { }
+};
+
+static int start_readonly;
+
+/*
+ * The original mechanism for creating an md device is to create
+ * a device node in /dev and to open it. This causes races with device-close.
+ * The preferred method is to write to the "new_array" module parameter.
+ * This can avoid races.
+ * Setting create_on_open to false disables the original mechanism
+ * so all the races disappear.
+ */
+static bool create_on_open = true;
+
+/*
+ * We have a system wide 'event count' that is incremented
+ * on any 'interesting' event, and readers of /proc/mdstat
+ * can use 'poll' or 'select' to find out when the event
+ * count increases.
+ *
+ * Events are:
+ * start array, stop array, error, add device, remove device,
+ * start build, activate spare
+ */
+static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
+static atomic_t md_event_count;
+void md_new_event(void)
+{
+ atomic_inc(&md_event_count);
+ wake_up(&md_event_waiters);
+}
+EXPORT_SYMBOL_GPL(md_new_event);
+
+/*
+ * Enables to iterate over all existing md arrays
+ * all_mddevs_lock protects this list.
+ */
+static LIST_HEAD(all_mddevs);
+static DEFINE_SPINLOCK(all_mddevs_lock);
+
+static bool is_md_suspended(struct mddev *mddev)
+{
+ return percpu_ref_is_dying(&mddev->active_io);
+}
+/* Rather than calling directly into the personality make_request function,
+ * IO requests come here first so that we can check if the device is
+ * being suspended pending a reconfiguration.
+ * We hold a refcount over the call to ->make_request. By the time that
+ * call has finished, the bio has been linked into some internal structure
+ * and so is visible to ->quiesce(), so we don't need the refcount any more.
+ */
+static bool is_suspended(struct mddev *mddev, struct bio *bio)
+{
+ if (is_md_suspended(mddev))
+ return true;
+ if (bio_data_dir(bio) != WRITE)
+ return false;
+ if (mddev->suspend_lo >= mddev->suspend_hi)
+ return false;
+ if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
+ return false;
+ if (bio_end_sector(bio) < mddev->suspend_lo)
+ return false;
+ return true;
+}
+
+void md_handle_request(struct mddev *mddev, struct bio *bio)
+{
+check_suspended:
+ if (is_suspended(mddev, bio)) {
+ DEFINE_WAIT(__wait);
+ /* Bail out if REQ_NOWAIT is set for the bio */
+ if (bio->bi_opf & REQ_NOWAIT) {
+ bio_wouldblock_error(bio);
+ return;
+ }
+ for (;;) {
+ prepare_to_wait(&mddev->sb_wait, &__wait,
+ TASK_UNINTERRUPTIBLE);
+ if (!is_suspended(mddev, bio))
+ break;
+ schedule();
+ }
+ finish_wait(&mddev->sb_wait, &__wait);
+ }
+ if (!percpu_ref_tryget_live(&mddev->active_io))
+ goto check_suspended;
+
+ if (!mddev->pers->make_request(mddev, bio)) {
+ percpu_ref_put(&mddev->active_io);
+ goto check_suspended;
+ }
+
+ percpu_ref_put(&mddev->active_io);
+}
+EXPORT_SYMBOL(md_handle_request);
+
+static void md_submit_bio(struct bio *bio)
+{
+ const int rw = bio_data_dir(bio);
+ struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
+
+ if (mddev == NULL || mddev->pers == NULL) {
+ bio_io_error(bio);
+ return;
+ }
+
+ if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
+ bio_io_error(bio);
+ return;
+ }
+
+ bio = bio_split_to_limits(bio);
+ if (!bio)
+ return;
+
+ if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) {
+ if (bio_sectors(bio) != 0)
+ bio->bi_status = BLK_STS_IOERR;
+ bio_endio(bio);
+ return;
+ }
+
+ /* bio could be mergeable after passing to underlayer */
+ bio->bi_opf &= ~REQ_NOMERGE;
+
+ md_handle_request(mddev, bio);
+}
+
+/* mddev_suspend makes sure no new requests are submitted
+ * to the device, and that any requests that have been submitted
+ * are completely handled.
+ * Once mddev_detach() is called and completes, the module will be
+ * completely unused.
+ */
+void mddev_suspend(struct mddev *mddev)
+{
+ WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
+ lockdep_assert_held(&mddev->reconfig_mutex);
+ if (mddev->suspended++)
+ return;
+ wake_up(&mddev->sb_wait);
+ set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
+ percpu_ref_kill(&mddev->active_io);
+ wait_event(mddev->sb_wait, percpu_ref_is_zero(&mddev->active_io));
+ mddev->pers->quiesce(mddev, 1);
+ clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
+ wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
+
+ del_timer_sync(&mddev->safemode_timer);
+ /* restrict memory reclaim I/O during raid array is suspend */
+ mddev->noio_flag = memalloc_noio_save();
+}
+EXPORT_SYMBOL_GPL(mddev_suspend);
+
+void mddev_resume(struct mddev *mddev)
+{
+ lockdep_assert_held(&mddev->reconfig_mutex);
+ if (--mddev->suspended)
+ return;
+
+ /* entred the memalloc scope from mddev_suspend() */
+ memalloc_noio_restore(mddev->noio_flag);
+
+ percpu_ref_resurrect(&mddev->active_io);
+ wake_up(&mddev->sb_wait);
+ mddev->pers->quiesce(mddev, 0);
+
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ md_wakeup_thread(mddev->thread);
+ md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
+}
+EXPORT_SYMBOL_GPL(mddev_resume);
+
+/*
+ * Generic flush handling for md
+ */
+
+static void md_end_flush(struct bio *bio)
+{
+ struct md_rdev *rdev = bio->bi_private;
+ struct mddev *mddev = rdev->mddev;
+
+ bio_put(bio);
+
+ rdev_dec_pending(rdev, mddev);
+
+ if (atomic_dec_and_test(&mddev->flush_pending)) {
+ /* The pair is percpu_ref_get() from md_flush_request() */
+ percpu_ref_put(&mddev->active_io);
+
+ /* The pre-request flush has finished */
+ queue_work(md_wq, &mddev->flush_work);
+ }
+}
+
+static void md_submit_flush_data(struct work_struct *ws);
+
+static void submit_flushes(struct work_struct *ws)
+{
+ struct mddev *mddev = container_of(ws, struct mddev, flush_work);
+ struct md_rdev *rdev;
+
+ mddev->start_flush = ktime_get_boottime();
+ INIT_WORK(&mddev->flush_work, md_submit_flush_data);
+ atomic_set(&mddev->flush_pending, 1);
+ rcu_read_lock();
+ rdev_for_each_rcu(rdev, mddev)
+ if (rdev->raid_disk >= 0 &&
+ !test_bit(Faulty, &rdev->flags)) {
+ struct bio *bi;
+
+ atomic_inc(&rdev->nr_pending);
+ rcu_read_unlock();
+ bi = bio_alloc_bioset(rdev->bdev, 0,
+ REQ_OP_WRITE | REQ_PREFLUSH,
+ GFP_NOIO, &mddev->bio_set);
+ bi->bi_end_io = md_end_flush;
+ bi->bi_private = rdev;
+ atomic_inc(&mddev->flush_pending);
+ submit_bio(bi);
+ rcu_read_lock();
+ }
+ rcu_read_unlock();
+ if (atomic_dec_and_test(&mddev->flush_pending))
+ queue_work(md_wq, &mddev->flush_work);
+}
+
+static void md_submit_flush_data(struct work_struct *ws)
+{
+ struct mddev *mddev = container_of(ws, struct mddev, flush_work);
+ struct bio *bio = mddev->flush_bio;
+
+ /*
+ * must reset flush_bio before calling into md_handle_request to avoid a
+ * deadlock, because other bios passed md_handle_request suspend check
+ * could wait for this and below md_handle_request could wait for those
+ * bios because of suspend check
+ */
+ spin_lock_irq(&mddev->lock);
+ mddev->prev_flush_start = mddev->start_flush;
+ mddev->flush_bio = NULL;
+ spin_unlock_irq(&mddev->lock);
+ wake_up(&mddev->sb_wait);
+
+ if (bio->bi_iter.bi_size == 0) {
+ /* an empty barrier - all done */
+ bio_endio(bio);
+ } else {
+ bio->bi_opf &= ~REQ_PREFLUSH;
+ md_handle_request(mddev, bio);
+ }
+}
+
+/*
+ * Manages consolidation of flushes and submitting any flushes needed for
+ * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
+ * being finished in another context. Returns false if the flushing is
+ * complete but still needs the I/O portion of the bio to be processed.
+ */
+bool md_flush_request(struct mddev *mddev, struct bio *bio)
+{
+ ktime_t req_start = ktime_get_boottime();
+ spin_lock_irq(&mddev->lock);
+ /* flush requests wait until ongoing flush completes,
+ * hence coalescing all the pending requests.
+ */
+ wait_event_lock_irq(mddev->sb_wait,
+ !mddev->flush_bio ||
+ ktime_before(req_start, mddev->prev_flush_start),
+ mddev->lock);
+ /* new request after previous flush is completed */
+ if (ktime_after(req_start, mddev->prev_flush_start)) {
+ WARN_ON(mddev->flush_bio);
+ /*
+ * Grab a reference to make sure mddev_suspend() will wait for
+ * this flush to be done.
+ *
+ * md_flush_reqeust() is called under md_handle_request() and
+ * 'active_io' is already grabbed, hence percpu_ref_is_zero()
+ * won't pass, percpu_ref_tryget_live() can't be used because
+ * percpu_ref_kill() can be called by mddev_suspend()
+ * concurrently.
+ */
+ WARN_ON(percpu_ref_is_zero(&mddev->active_io));
+ percpu_ref_get(&mddev->active_io);
+ mddev->flush_bio = bio;
+ bio = NULL;
+ }
+ spin_unlock_irq(&mddev->lock);
+
+ if (!bio) {
+ INIT_WORK(&mddev->flush_work, submit_flushes);
+ queue_work(md_wq, &mddev->flush_work);
+ } else {
+ /* flush was performed for some other bio while we waited. */
+ if (bio->bi_iter.bi_size == 0)
+ /* an empty barrier - all done */
+ bio_endio(bio);
+ else {
+ bio->bi_opf &= ~REQ_PREFLUSH;
+ return false;
+ }
+ }
+ return true;
+}
+EXPORT_SYMBOL(md_flush_request);
+
+static inline struct mddev *mddev_get(struct mddev *mddev)
+{
+ lockdep_assert_held(&all_mddevs_lock);
+
+ if (test_bit(MD_DELETED, &mddev->flags))
+ return NULL;
+ atomic_inc(&mddev->active);
+ return mddev;
+}
+
+static void mddev_delayed_delete(struct work_struct *ws);
+
+void mddev_put(struct mddev *mddev)
+{
+ if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
+ return;
+ if (!mddev->raid_disks && list_empty(&mddev->disks) &&
+ mddev->ctime == 0 && !mddev->hold_active) {
+ /* Array is not configured at all, and not held active,
+ * so destroy it */
+ set_bit(MD_DELETED, &mddev->flags);
+
+ /*
+ * Call queue_work inside the spinlock so that
+ * flush_workqueue() after mddev_find will succeed in waiting
+ * for the work to be done.
+ */
+ INIT_WORK(&mddev->del_work, mddev_delayed_delete);
+ queue_work(md_misc_wq, &mddev->del_work);
+ }
+ spin_unlock(&all_mddevs_lock);
+}
+
+static void md_safemode_timeout(struct timer_list *t);
+
+void mddev_init(struct mddev *mddev)
+{
+ mutex_init(&mddev->open_mutex);
+ mutex_init(&mddev->reconfig_mutex);
+ mutex_init(&mddev->bitmap_info.mutex);
+ INIT_LIST_HEAD(&mddev->disks);
+ INIT_LIST_HEAD(&mddev->all_mddevs);
+ timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
+ atomic_set(&mddev->active, 1);
+ atomic_set(&mddev->openers, 0);
+ spin_lock_init(&mddev->lock);
+ atomic_set(&mddev->flush_pending, 0);
+ init_waitqueue_head(&mddev->sb_wait);
+ init_waitqueue_head(&mddev->recovery_wait);
+ mddev->reshape_position = MaxSector;
+ mddev->reshape_backwards = 0;
+ mddev->last_sync_action = "none";
+ mddev->resync_min = 0;
+ mddev->resync_max = MaxSector;
+ mddev->level = LEVEL_NONE;
+}
+EXPORT_SYMBOL_GPL(mddev_init);
+
+static struct mddev *mddev_find_locked(dev_t unit)
+{
+ struct mddev *mddev;
+
+ list_for_each_entry(mddev, &all_mddevs, all_mddevs)
+ if (mddev->unit == unit)
+ return mddev;
+
+ return NULL;
+}
+
+/* find an unused unit number */
+static dev_t mddev_alloc_unit(void)
+{
+ static int next_minor = 512;
+ int start = next_minor;
+ bool is_free = 0;
+ dev_t dev = 0;
+
+ while (!is_free) {
+ dev = MKDEV(MD_MAJOR, next_minor);
+ next_minor++;
+ if (next_minor > MINORMASK)
+ next_minor = 0;
+ if (next_minor == start)
+ return 0; /* Oh dear, all in use. */
+ is_free = !mddev_find_locked(dev);
+ }
+
+ return dev;
+}
+
+static struct mddev *mddev_alloc(dev_t unit)
+{
+ struct mddev *new;
+ int error;
+
+ if (unit && MAJOR(unit) != MD_MAJOR)
+ unit &= ~((1 << MdpMinorShift) - 1);
+
+ new = kzalloc(sizeof(*new), GFP_KERNEL);
+ if (!new)
+ return ERR_PTR(-ENOMEM);
+ mddev_init(new);
+
+ spin_lock(&all_mddevs_lock);
+ if (unit) {
+ error = -EEXIST;
+ if (mddev_find_locked(unit))
+ goto out_free_new;
+ new->unit = unit;
+ if (MAJOR(unit) == MD_MAJOR)
+ new->md_minor = MINOR(unit);
+ else
+ new->md_minor = MINOR(unit) >> MdpMinorShift;
+ new->hold_active = UNTIL_IOCTL;
+ } else {
+ error = -ENODEV;
+ new->unit = mddev_alloc_unit();
+ if (!new->unit)
+ goto out_free_new;
+ new->md_minor = MINOR(new->unit);
+ new->hold_active = UNTIL_STOP;
+ }
+
+ list_add(&new->all_mddevs, &all_mddevs);
+ spin_unlock(&all_mddevs_lock);
+ return new;
+out_free_new:
+ spin_unlock(&all_mddevs_lock);
+ kfree(new);
+ return ERR_PTR(error);
+}
+
+static void mddev_free(struct mddev *mddev)
+{
+ spin_lock(&all_mddevs_lock);
+ list_del(&mddev->all_mddevs);
+ spin_unlock(&all_mddevs_lock);
+
+ kfree(mddev);
+}
+
+static const struct attribute_group md_redundancy_group;
+
+void mddev_unlock(struct mddev *mddev)
+{
+ if (mddev->to_remove) {
+ /* These cannot be removed under reconfig_mutex as
+ * an access to the files will try to take reconfig_mutex
+ * while holding the file unremovable, which leads to
+ * a deadlock.
+ * So hold set sysfs_active while the remove in happeing,
+ * and anything else which might set ->to_remove or my
+ * otherwise change the sysfs namespace will fail with
+ * -EBUSY if sysfs_active is still set.
+ * We set sysfs_active under reconfig_mutex and elsewhere
+ * test it under the same mutex to ensure its correct value
+ * is seen.
+ */
+ const struct attribute_group *to_remove = mddev->to_remove;
+ mddev->to_remove = NULL;
+ mddev->sysfs_active = 1;
+ mutex_unlock(&mddev->reconfig_mutex);
+
+ if (mddev->kobj.sd) {
+ if (to_remove != &md_redundancy_group)
+ sysfs_remove_group(&mddev->kobj, to_remove);
+ if (mddev->pers == NULL ||
+ mddev->pers->sync_request == NULL) {
+ sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
+ if (mddev->sysfs_action)
+ sysfs_put(mddev->sysfs_action);
+ if (mddev->sysfs_completed)
+ sysfs_put(mddev->sysfs_completed);
+ if (mddev->sysfs_degraded)
+ sysfs_put(mddev->sysfs_degraded);
+ mddev->sysfs_action = NULL;
+ mddev->sysfs_completed = NULL;
+ mddev->sysfs_degraded = NULL;
+ }
+ }
+ mddev->sysfs_active = 0;
+ } else
+ mutex_unlock(&mddev->reconfig_mutex);
+
+ /* As we've dropped the mutex we need a spinlock to
+ * make sure the thread doesn't disappear
+ */
+ spin_lock(&pers_lock);
+ md_wakeup_thread(mddev->thread);
+ wake_up(&mddev->sb_wait);
+ spin_unlock(&pers_lock);
+}
+EXPORT_SYMBOL_GPL(mddev_unlock);
+
+struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
+{
+ struct md_rdev *rdev;
+
+ rdev_for_each_rcu(rdev, mddev)
+ if (rdev->desc_nr == nr)
+ return rdev;
+
+ return NULL;
+}
+EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
+
+static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
+{
+ struct md_rdev *rdev;
+
+ rdev_for_each(rdev, mddev)
+ if (rdev->bdev->bd_dev == dev)
+ return rdev;
+
+ return NULL;
+}
+
+struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
+{
+ struct md_rdev *rdev;
+
+ rdev_for_each_rcu(rdev, mddev)
+ if (rdev->bdev->bd_dev == dev)
+ return rdev;
+
+ return NULL;
+}
+EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
+
+static struct md_personality *find_pers(int level, char *clevel)
+{
+ struct md_personality *pers;
+ list_for_each_entry(pers, &pers_list, list) {
+ if (level != LEVEL_NONE && pers->level == level)
+ return pers;
+ if (strcmp(pers->name, clevel)==0)
+ return pers;
+ }
+ return NULL;
+}
+
+/* return the offset of the super block in 512byte sectors */
+static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
+{
+ return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev));
+}
+
+static int alloc_disk_sb(struct md_rdev *rdev)
+{
+ rdev->sb_page = alloc_page(GFP_KERNEL);
+ if (!rdev->sb_page)
+ return -ENOMEM;
+ return 0;
+}
+
+void md_rdev_clear(struct md_rdev *rdev)
+{
+ if (rdev->sb_page) {
+ put_page(rdev->sb_page);
+ rdev->sb_loaded = 0;
+ rdev->sb_page = NULL;
+ rdev->sb_start = 0;
+ rdev->sectors = 0;
+ }
+ if (rdev->bb_page) {
+ put_page(rdev->bb_page);
+ rdev->bb_page = NULL;
+ }
+ badblocks_exit(&rdev->badblocks);
+}
+EXPORT_SYMBOL_GPL(md_rdev_clear);
+
+static void super_written(struct bio *bio)
+{
+ struct md_rdev *rdev = bio->bi_private;
+ struct mddev *mddev = rdev->mddev;
+
+ if (bio->bi_status) {
+ pr_err("md: %s gets error=%d\n", __func__,
+ blk_status_to_errno(bio->bi_status));
+ md_error(mddev, rdev);
+ if (!test_bit(Faulty, &rdev->flags)
+ && (bio->bi_opf & MD_FAILFAST)) {
+ set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
+ set_bit(LastDev, &rdev->flags);
+ }
+ } else
+ clear_bit(LastDev, &rdev->flags);
+
+ bio_put(bio);
+
+ rdev_dec_pending(rdev, mddev);
+
+ if (atomic_dec_and_test(&mddev->pending_writes))
+ wake_up(&mddev->sb_wait);
+}
+
+void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
+ sector_t sector, int size, struct page *page)
+{
+ /* write first size bytes of page to sector of rdev
+ * Increment mddev->pending_writes before returning
+ * and decrement it on completion, waking up sb_wait
+ * if zero is reached.
+ * If an error occurred, call md_error
+ */
+ struct bio *bio;
+
+ if (!page)
+ return;
+
+ if (test_bit(Faulty, &rdev->flags))
+ return;
+
+ bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev,
+ 1,
+ REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA,
+ GFP_NOIO, &mddev->sync_set);
+
+ atomic_inc(&rdev->nr_pending);
+
+ bio->bi_iter.bi_sector = sector;
+ bio_add_page(bio, page, size, 0);
+ bio->bi_private = rdev;
+ bio->bi_end_io = super_written;
+
+ if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
+ test_bit(FailFast, &rdev->flags) &&
+ !test_bit(LastDev, &rdev->flags))
+ bio->bi_opf |= MD_FAILFAST;
+
+ atomic_inc(&mddev->pending_writes);
+ submit_bio(bio);
+}
+
+int md_super_wait(struct mddev *mddev)
+{
+ /* wait for all superblock writes that were scheduled to complete */
+ wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
+ if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
+ return -EAGAIN;
+ return 0;
+}
+
+int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
+ struct page *page, blk_opf_t opf, bool metadata_op)
+{
+ struct bio bio;
+ struct bio_vec bvec;
+
+ if (metadata_op && rdev->meta_bdev)
+ bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf);
+ else
+ bio_init(&bio, rdev->bdev, &bvec, 1, opf);
+
+ if (metadata_op)
+ bio.bi_iter.bi_sector = sector + rdev->sb_start;
+ else if (rdev->mddev->reshape_position != MaxSector &&
+ (rdev->mddev->reshape_backwards ==
+ (sector >= rdev->mddev->reshape_position)))
+ bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
+ else
+ bio.bi_iter.bi_sector = sector + rdev->data_offset;
+ bio_add_page(&bio, page, size, 0);
+
+ submit_bio_wait(&bio);
+
+ return !bio.bi_status;
+}
+EXPORT_SYMBOL_GPL(sync_page_io);
+
+static int read_disk_sb(struct md_rdev *rdev, int size)
+{
+ if (rdev->sb_loaded)
+ return 0;
+
+ if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true))
+ goto fail;
+ rdev->sb_loaded = 1;
+ return 0;
+
+fail:
+ pr_err("md: disabled device %pg, could not read superblock.\n",
+ rdev->bdev);
+ return -EINVAL;
+}
+
+static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
+{
+ return sb1->set_uuid0 == sb2->set_uuid0 &&
+ sb1->set_uuid1 == sb2->set_uuid1 &&
+ sb1->set_uuid2 == sb2->set_uuid2 &&
+ sb1->set_uuid3 == sb2->set_uuid3;
+}
+
+static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
+{
+ int ret;
+ mdp_super_t *tmp1, *tmp2;
+
+ tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
+ tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
+
+ if (!tmp1 || !tmp2) {
+ ret = 0;
+ goto abort;
+ }
+
+ *tmp1 = *sb1;
+ *tmp2 = *sb2;
+
+ /*
+ * nr_disks is not constant
+ */
+ tmp1->nr_disks = 0;
+ tmp2->nr_disks = 0;
+
+ ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
+abort:
+ kfree(tmp1);
+ kfree(tmp2);
+ return ret;
+}
+
+static u32 md_csum_fold(u32 csum)
+{
+ csum = (csum & 0xffff) + (csum >> 16);
+ return (csum & 0xffff) + (csum >> 16);
+}
+
+static unsigned int calc_sb_csum(mdp_super_t *sb)
+{
+ u64 newcsum = 0;
+ u32 *sb32 = (u32*)sb;
+ int i;
+ unsigned int disk_csum, csum;
+
+ disk_csum = sb->sb_csum;
+ sb->sb_csum = 0;
+
+ for (i = 0; i < MD_SB_BYTES/4 ; i++)
+ newcsum += sb32[i];
+ csum = (newcsum & 0xffffffff) + (newcsum>>32);
+
+#ifdef CONFIG_ALPHA
+ /* This used to use csum_partial, which was wrong for several
+ * reasons including that different results are returned on
+ * different architectures. It isn't critical that we get exactly
+ * the same return value as before (we always csum_fold before
+ * testing, and that removes any differences). However as we
+ * know that csum_partial always returned a 16bit value on
+ * alphas, do a fold to maximise conformity to previous behaviour.
+ */
+ sb->sb_csum = md_csum_fold(disk_csum);
+#else
+ sb->sb_csum = disk_csum;
+#endif
+ return csum;
+}
+
+/*
+ * Handle superblock details.
+ * We want to be able to handle multiple superblock formats
+ * so we have a common interface to them all, and an array of
+ * different handlers.
+ * We rely on user-space to write the initial superblock, and support
+ * reading and updating of superblocks.
+ * Interface methods are:
+ * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
+ * loads and validates a superblock on dev.
+ * if refdev != NULL, compare superblocks on both devices
+ * Return:
+ * 0 - dev has a superblock that is compatible with refdev
+ * 1 - dev has a superblock that is compatible and newer than refdev
+ * so dev should be used as the refdev in future
+ * -EINVAL superblock incompatible or invalid
+ * -othererror e.g. -EIO
+ *
+ * int validate_super(struct mddev *mddev, struct md_rdev *dev)
+ * Verify that dev is acceptable into mddev.
+ * The first time, mddev->raid_disks will be 0, and data from
+ * dev should be merged in. Subsequent calls check that dev
+ * is new enough. Return 0 or -EINVAL
+ *
+ * void sync_super(struct mddev *mddev, struct md_rdev *dev)
+ * Update the superblock for rdev with data in mddev
+ * This does not write to disc.
+ *
+ */
+
+struct super_type {
+ char *name;
+ struct module *owner;
+ int (*load_super)(struct md_rdev *rdev,
+ struct md_rdev *refdev,
+ int minor_version);
+ int (*validate_super)(struct mddev *mddev,
+ struct md_rdev *rdev);
+ void (*sync_super)(struct mddev *mddev,
+ struct md_rdev *rdev);
+ unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
+ sector_t num_sectors);
+ int (*allow_new_offset)(struct md_rdev *rdev,
+ unsigned long long new_offset);
+};
+
+/*
+ * Check that the given mddev has no bitmap.
+ *
+ * This function is called from the run method of all personalities that do not
+ * support bitmaps. It prints an error message and returns non-zero if mddev
+ * has a bitmap. Otherwise, it returns 0.
+ *
+ */
+int md_check_no_bitmap(struct mddev *mddev)
+{
+ if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
+ return 0;
+ pr_warn("%s: bitmaps are not supported for %s\n",
+ mdname(mddev), mddev->pers->name);
+ return 1;
+}
+EXPORT_SYMBOL(md_check_no_bitmap);
+
+/*
+ * load_super for 0.90.0
+ */
+static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
+{
+ mdp_super_t *sb;
+ int ret;
+ bool spare_disk = true;
+
+ /*
+ * Calculate the position of the superblock (512byte sectors),
+ * it's at the end of the disk.
+ *
+ * It also happens to be a multiple of 4Kb.
+ */
+ rdev->sb_start = calc_dev_sboffset(rdev);
+
+ ret = read_disk_sb(rdev, MD_SB_BYTES);
+ if (ret)
+ return ret;
+
+ ret = -EINVAL;
+
+ sb = page_address(rdev->sb_page);
+
+ if (sb->md_magic != MD_SB_MAGIC) {
+ pr_warn("md: invalid raid superblock magic on %pg\n",
+ rdev->bdev);
+ goto abort;
+ }
+
+ if (sb->major_version != 0 ||
+ sb->minor_version < 90 ||
+ sb->minor_version > 91) {
+ pr_warn("Bad version number %d.%d on %pg\n",
+ sb->major_version, sb->minor_version, rdev->bdev);
+ goto abort;
+ }
+
+ if (sb->raid_disks <= 0)
+ goto abort;
+
+ if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
+ pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev);
+ goto abort;
+ }
+
+ rdev->preferred_minor = sb->md_minor;
+ rdev->data_offset = 0;
+ rdev->new_data_offset = 0;
+ rdev->sb_size = MD_SB_BYTES;
+ rdev->badblocks.shift = -1;
+
+ if (sb->level == LEVEL_MULTIPATH)
+ rdev->desc_nr = -1;
+ else
+ rdev->desc_nr = sb->this_disk.number;
+
+ /* not spare disk, or LEVEL_MULTIPATH */
+ if (sb->level == LEVEL_MULTIPATH ||
+ (rdev->desc_nr >= 0 &&
+ rdev->desc_nr < MD_SB_DISKS &&
+ sb->disks[rdev->desc_nr].state &
+ ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
+ spare_disk = false;
+
+ if (!refdev) {
+ if (!spare_disk)
+ ret = 1;
+ else
+ ret = 0;
+ } else {
+ __u64 ev1, ev2;
+ mdp_super_t *refsb = page_address(refdev->sb_page);
+ if (!md_uuid_equal(refsb, sb)) {
+ pr_warn("md: %pg has different UUID to %pg\n",
+ rdev->bdev, refdev->bdev);
+ goto abort;
+ }
+ if (!md_sb_equal(refsb, sb)) {
+ pr_warn("md: %pg has same UUID but different superblock to %pg\n",
+ rdev->bdev, refdev->bdev);
+ goto abort;
+ }
+ ev1 = md_event(sb);
+ ev2 = md_event(refsb);
+
+ if (!spare_disk && ev1 > ev2)
+ ret = 1;
+ else
+ ret = 0;
+ }
+ rdev->sectors = rdev->sb_start;
+ /* Limit to 4TB as metadata cannot record more than that.
+ * (not needed for Linear and RAID0 as metadata doesn't
+ * record this size)
+ */
+ if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
+ rdev->sectors = (sector_t)(2ULL << 32) - 2;
+
+ if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
+ /* "this cannot possibly happen" ... */
+ ret = -EINVAL;
+
+ abort:
+ return ret;
+}
+
+/*
+ * validate_super for 0.90.0
+ */
+static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
+{
+ mdp_disk_t *desc;
+ mdp_super_t *sb = page_address(rdev->sb_page);
+ __u64 ev1 = md_event(sb);
+
+ rdev->raid_disk = -1;
+ clear_bit(Faulty, &rdev->flags);
+ clear_bit(In_sync, &rdev->flags);
+ clear_bit(Bitmap_sync, &rdev->flags);
+ clear_bit(WriteMostly, &rdev->flags);
+
+ if (mddev->raid_disks == 0) {
+ mddev->major_version = 0;
+ mddev->minor_version = sb->minor_version;
+ mddev->patch_version = sb->patch_version;
+ mddev->external = 0;
+ mddev->chunk_sectors = sb->chunk_size >> 9;
+ mddev->ctime = sb->ctime;
+ mddev->utime = sb->utime;
+ mddev->level = sb->level;
+ mddev->clevel[0] = 0;
+ mddev->layout = sb->layout;
+ mddev->raid_disks = sb->raid_disks;
+ mddev->dev_sectors = ((sector_t)sb->size) * 2;
+ mddev->events = ev1;
+ mddev->bitmap_info.offset = 0;
+ mddev->bitmap_info.space = 0;
+ /* bitmap can use 60 K after the 4K superblocks */
+ mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
+ mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
+ mddev->reshape_backwards = 0;
+
+ if (mddev->minor_version >= 91) {
+ mddev->reshape_position = sb->reshape_position;
+ mddev->delta_disks = sb->delta_disks;
+ mddev->new_level = sb->new_level;
+ mddev->new_layout = sb->new_layout;
+ mddev->new_chunk_sectors = sb->new_chunk >> 9;
+ if (mddev->delta_disks < 0)
+ mddev->reshape_backwards = 1;
+ } else {
+ mddev->reshape_position = MaxSector;
+ mddev->delta_disks = 0;
+ mddev->new_level = mddev->level;
+ mddev->new_layout = mddev->layout;
+ mddev->new_chunk_sectors = mddev->chunk_sectors;
+ }
+ if (mddev->level == 0)
+ mddev->layout = -1;
+
+ if (sb->state & (1<<MD_SB_CLEAN))
+ mddev->recovery_cp = MaxSector;
+ else {
+ if (sb->events_hi == sb->cp_events_hi &&
+ sb->events_lo == sb->cp_events_lo) {
+ mddev->recovery_cp = sb->recovery_cp;
+ } else
+ mddev->recovery_cp = 0;
+ }
+
+ memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
+ memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
+ memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
+ memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
+
+ mddev->max_disks = MD_SB_DISKS;
+
+ if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
+ mddev->bitmap_info.file == NULL) {
+ mddev->bitmap_info.offset =
+ mddev->bitmap_info.default_offset;
+ mddev->bitmap_info.space =
+ mddev->bitmap_info.default_space;
+ }
+
+ } else if (mddev->pers == NULL) {
+ /* Insist on good event counter while assembling, except
+ * for spares (which don't need an event count) */
+ ++ev1;
+ if (sb->disks[rdev->desc_nr].state & (
+ (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
+ if (ev1 < mddev->events)
+ return -EINVAL;
+ } else if (mddev->bitmap) {
+ /* if adding to array with a bitmap, then we can accept an
+ * older device ... but not too old.
+ */
+ if (ev1 < mddev->bitmap->events_cleared)
+ return 0;
+ if (ev1 < mddev->events)
+ set_bit(Bitmap_sync, &rdev->flags);
+ } else {
+ if (ev1 < mddev->events)
+ /* just a hot-add of a new device, leave raid_disk at -1 */
+ return 0;
+ }
+
+ if (mddev->level != LEVEL_MULTIPATH) {
+ desc = sb->disks + rdev->desc_nr;
+
+ if (desc->state & (1<<MD_DISK_FAULTY))
+ set_bit(Faulty, &rdev->flags);
+ else if (desc->state & (1<<MD_DISK_SYNC) /* &&
+ desc->raid_disk < mddev->raid_disks */) {
+ set_bit(In_sync, &rdev->flags);
+ rdev->raid_disk = desc->raid_disk;
+ rdev->saved_raid_disk = desc->raid_disk;
+ } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
+ /* active but not in sync implies recovery up to
+ * reshape position. We don't know exactly where
+ * that is, so set to zero for now */
+ if (mddev->minor_version >= 91) {
+ rdev->recovery_offset = 0;
+ rdev->raid_disk = desc->raid_disk;
+ }
+ }
+ if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
+ set_bit(WriteMostly, &rdev->flags);
+ if (desc->state & (1<<MD_DISK_FAILFAST))
+ set_bit(FailFast, &rdev->flags);
+ } else /* MULTIPATH are always insync */
+ set_bit(In_sync, &rdev->flags);
+ return 0;
+}
+
+/*
+ * sync_super for 0.90.0
+ */
+static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
+{
+ mdp_super_t *sb;
+ struct md_rdev *rdev2;
+ int next_spare = mddev->raid_disks;
+
+ /* make rdev->sb match mddev data..
+ *
+ * 1/ zero out disks
+ * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
+ * 3/ any empty disks < next_spare become removed
+ *
+ * disks[0] gets initialised to REMOVED because
+ * we cannot be sure from other fields if it has
+ * been initialised or not.
+ */
+ int i;
+ int active=0, working=0,failed=0,spare=0,nr_disks=0;
+
+ rdev->sb_size = MD_SB_BYTES;
+
+ sb = page_address(rdev->sb_page);
+
+ memset(sb, 0, sizeof(*sb));
+
+ sb->md_magic = MD_SB_MAGIC;
+ sb->major_version = mddev->major_version;
+ sb->patch_version = mddev->patch_version;
+ sb->gvalid_words = 0; /* ignored */
+ memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
+ memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
+ memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
+ memcpy(&sb->set_uuid3, mddev->uuid+12,4);
+
+ sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
+ sb->level = mddev->level;
+ sb->size = mddev->dev_sectors / 2;
+ sb->raid_disks = mddev->raid_disks;
+ sb->md_minor = mddev->md_minor;
+ sb->not_persistent = 0;
+ sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
+ sb->state = 0;
+ sb->events_hi = (mddev->events>>32);
+ sb->events_lo = (u32)mddev->events;
+
+ if (mddev->reshape_position == MaxSector)
+ sb->minor_version = 90;
+ else {
+ sb->minor_version = 91;
+ sb->reshape_position = mddev->reshape_position;
+ sb->new_level = mddev->new_level;
+ sb->delta_disks = mddev->delta_disks;
+ sb->new_layout = mddev->new_layout;
+ sb->new_chunk = mddev->new_chunk_sectors << 9;
+ }
+ mddev->minor_version = sb->minor_version;
+ if (mddev->in_sync)
+ {
+ sb->recovery_cp = mddev->recovery_cp;
+ sb->cp_events_hi = (mddev->events>>32);
+ sb->cp_events_lo = (u32)mddev->events;
+ if (mddev->recovery_cp == MaxSector)
+ sb->state = (1<< MD_SB_CLEAN);
+ } else
+ sb->recovery_cp = 0;
+
+ sb->layout = mddev->layout;
+ sb->chunk_size = mddev->chunk_sectors << 9;
+
+ if (mddev->bitmap && mddev->bitmap_info.file == NULL)
+ sb->state |= (1<<MD_SB_BITMAP_PRESENT);
+
+ sb->disks[0].state = (1<<MD_DISK_REMOVED);
+ rdev_for_each(rdev2, mddev) {
+ mdp_disk_t *d;
+ int desc_nr;
+ int is_active = test_bit(In_sync, &rdev2->flags);
+
+ if (rdev2->raid_disk >= 0 &&
+ sb->minor_version >= 91)
+ /* we have nowhere to store the recovery_offset,
+ * but if it is not below the reshape_position,
+ * we can piggy-back on that.
+ */
+ is_active = 1;
+ if (rdev2->raid_disk < 0 ||
+ test_bit(Faulty, &rdev2->flags))
+ is_active = 0;
+ if (is_active)
+ desc_nr = rdev2->raid_disk;
+ else
+ desc_nr = next_spare++;
+ rdev2->desc_nr = desc_nr;
+ d = &sb->disks[rdev2->desc_nr];
+ nr_disks++;
+ d->number = rdev2->desc_nr;
+ d->major = MAJOR(rdev2->bdev->bd_dev);
+ d->minor = MINOR(rdev2->bdev->bd_dev);
+ if (is_active)
+ d->raid_disk = rdev2->raid_disk;
+ else
+ d->raid_disk = rdev2->desc_nr; /* compatibility */
+ if (test_bit(Faulty, &rdev2->flags))
+ d->state = (1<<MD_DISK_FAULTY);
+ else if (is_active) {
+ d->state = (1<<MD_DISK_ACTIVE);
+ if (test_bit(In_sync, &rdev2->flags))
+ d->state |= (1<<MD_DISK_SYNC);
+ active++;
+ working++;
+ } else {
+ d->state = 0;
+ spare++;
+ working++;
+ }
+ if (test_bit(WriteMostly, &rdev2->flags))
+ d->state |= (1<<MD_DISK_WRITEMOSTLY);
+ if (test_bit(FailFast, &rdev2->flags))
+ d->state |= (1<<MD_DISK_FAILFAST);
+ }
+ /* now set the "removed" and "faulty" bits on any missing devices */
+ for (i=0 ; i < mddev->raid_disks ; i++) {
+ mdp_disk_t *d = &sb->disks[i];
+ if (d->state == 0 && d->number == 0) {
+ d->number = i;
+ d->raid_disk = i;
+ d->state = (1<<MD_DISK_REMOVED);
+ d->state |= (1<<MD_DISK_FAULTY);
+ failed++;
+ }
+ }
+ sb->nr_disks = nr_disks;
+ sb->active_disks = active;
+ sb->working_disks = working;
+ sb->failed_disks = failed;
+ sb->spare_disks = spare;
+
+ sb->this_disk = sb->disks[rdev->desc_nr];
+ sb->sb_csum = calc_sb_csum(sb);
+}
+
+/*
+ * rdev_size_change for 0.90.0
+ */
+static unsigned long long
+super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
+{
+ if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
+ return 0; /* component must fit device */
+ if (rdev->mddev->bitmap_info.offset)
+ return 0; /* can't move bitmap */
+ rdev->sb_start = calc_dev_sboffset(rdev);
+ if (!num_sectors || num_sectors > rdev->sb_start)
+ num_sectors = rdev->sb_start;
+ /* Limit to 4TB as metadata cannot record more than that.
+ * 4TB == 2^32 KB, or 2*2^32 sectors.
+ */
+ if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
+ num_sectors = (sector_t)(2ULL << 32) - 2;
+ do {
+ md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
+ rdev->sb_page);
+ } while (md_super_wait(rdev->mddev) < 0);
+ return num_sectors;
+}
+
+static int
+super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
+{
+ /* non-zero offset changes not possible with v0.90 */
+ return new_offset == 0;
+}
+
+/*
+ * version 1 superblock
+ */
+
+static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
+{
+ __le32 disk_csum;
+ u32 csum;
+ unsigned long long newcsum;
+ int size = 256 + le32_to_cpu(sb->max_dev)*2;
+ __le32 *isuper = (__le32*)sb;
+
+ disk_csum = sb->sb_csum;
+ sb->sb_csum = 0;
+ newcsum = 0;
+ for (; size >= 4; size -= 4)
+ newcsum += le32_to_cpu(*isuper++);
+
+ if (size == 2)
+ newcsum += le16_to_cpu(*(__le16*) isuper);
+
+ csum = (newcsum & 0xffffffff) + (newcsum >> 32);
+ sb->sb_csum = disk_csum;
+ return cpu_to_le32(csum);
+}
+
+static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
+{
+ struct mdp_superblock_1 *sb;
+ int ret;
+ sector_t sb_start;
+ sector_t sectors;
+ int bmask;
+ bool spare_disk = true;
+
+ /*
+ * Calculate the position of the superblock in 512byte sectors.
+ * It is always aligned to a 4K boundary and
+ * depeding on minor_version, it can be:
+ * 0: At least 8K, but less than 12K, from end of device
+ * 1: At start of device
+ * 2: 4K from start of device.
+ */
+ switch(minor_version) {
+ case 0:
+ sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2;
+ sb_start &= ~(sector_t)(4*2-1);
+ break;
+ case 1:
+ sb_start = 0;
+ break;
+ case 2:
+ sb_start = 8;
+ break;
+ default:
+ return -EINVAL;
+ }
+ rdev->sb_start = sb_start;
+
+ /* superblock is rarely larger than 1K, but it can be larger,
+ * and it is safe to read 4k, so we do that
+ */
+ ret = read_disk_sb(rdev, 4096);
+ if (ret) return ret;
+
+ sb = page_address(rdev->sb_page);
+
+ if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
+ sb->major_version != cpu_to_le32(1) ||
+ le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
+ le64_to_cpu(sb->super_offset) != rdev->sb_start ||
+ (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
+ return -EINVAL;
+
+ if (calc_sb_1_csum(sb) != sb->sb_csum) {
+ pr_warn("md: invalid superblock checksum on %pg\n",
+ rdev->bdev);
+ return -EINVAL;
+ }
+ if (le64_to_cpu(sb->data_size) < 10) {
+ pr_warn("md: data_size too small on %pg\n",
+ rdev->bdev);
+ return -EINVAL;
+ }
+ if (sb->pad0 ||
+ sb->pad3[0] ||
+ memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
+ /* Some padding is non-zero, might be a new feature */
+ return -EINVAL;
+
+ rdev->preferred_minor = 0xffff;
+ rdev->data_offset = le64_to_cpu(sb->data_offset);
+ rdev->new_data_offset = rdev->data_offset;
+ if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
+ (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
+ rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
+ atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
+
+ rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
+ bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
+ if (rdev->sb_size & bmask)
+ rdev->sb_size = (rdev->sb_size | bmask) + 1;
+
+ if (minor_version
+ && rdev->data_offset < sb_start + (rdev->sb_size/512))
+ return -EINVAL;
+ if (minor_version
+ && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
+ return -EINVAL;
+
+ if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
+ rdev->desc_nr = -1;
+ else
+ rdev->desc_nr = le32_to_cpu(sb->dev_number);
+
+ if (!rdev->bb_page) {
+ rdev->bb_page = alloc_page(GFP_KERNEL);
+ if (!rdev->bb_page)
+ return -ENOMEM;
+ }
+ if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
+ rdev->badblocks.count == 0) {
+ /* need to load the bad block list.
+ * Currently we limit it to one page.
+ */
+ s32 offset;
+ sector_t bb_sector;
+ __le64 *bbp;
+ int i;
+ int sectors = le16_to_cpu(sb->bblog_size);
+ if (sectors > (PAGE_SIZE / 512))
+ return -EINVAL;
+ offset = le32_to_cpu(sb->bblog_offset);
+ if (offset == 0)
+ return -EINVAL;
+ bb_sector = (long long)offset;
+ if (!sync_page_io(rdev, bb_sector, sectors << 9,
+ rdev->bb_page, REQ_OP_READ, true))
+ return -EIO;
+ bbp = (__le64 *)page_address(rdev->bb_page);
+ rdev->badblocks.shift = sb->bblog_shift;
+ for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
+ u64 bb = le64_to_cpu(*bbp);
+ int count = bb & (0x3ff);
+ u64 sector = bb >> 10;
+ sector <<= sb->bblog_shift;
+ count <<= sb->bblog_shift;
+ if (bb + 1 == 0)
+ break;
+ if (badblocks_set(&rdev->badblocks, sector, count, 1))
+ return -EINVAL;
+ }
+ } else if (sb->bblog_offset != 0)
+ rdev->badblocks.shift = 0;
+
+ if ((le32_to_cpu(sb->feature_map) &
+ (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
+ rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
+ rdev->ppl.size = le16_to_cpu(sb->ppl.size);
+ rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
+ }
+
+ if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
+ sb->level != 0)
+ return -EINVAL;
+
+ /* not spare disk, or LEVEL_MULTIPATH */
+ if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
+ (rdev->desc_nr >= 0 &&
+ rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
+ (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
+ le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
+ spare_disk = false;
+
+ if (!refdev) {
+ if (!spare_disk)
+ ret = 1;
+ else
+ ret = 0;
+ } else {
+ __u64 ev1, ev2;
+ struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
+
+ if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
+ sb->level != refsb->level ||
+ sb->layout != refsb->layout ||
+ sb->chunksize != refsb->chunksize) {
+ pr_warn("md: %pg has strangely different superblock to %pg\n",
+ rdev->bdev,
+ refdev->bdev);
+ return -EINVAL;
+ }
+ ev1 = le64_to_cpu(sb->events);
+ ev2 = le64_to_cpu(refsb->events);
+
+ if (!spare_disk && ev1 > ev2)
+ ret = 1;
+ else
+ ret = 0;
+ }
+ if (minor_version)
+ sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
+ else
+ sectors = rdev->sb_start;
+ if (sectors < le64_to_cpu(sb->data_size))
+ return -EINVAL;
+ rdev->sectors = le64_to_cpu(sb->data_size);
+ return ret;
+}
+
+static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
+ __u64 ev1 = le64_to_cpu(sb->events);
+
+ rdev->raid_disk = -1;
+ clear_bit(Faulty, &rdev->flags);
+ clear_bit(In_sync, &rdev->flags);
+ clear_bit(Bitmap_sync, &rdev->flags);
+ clear_bit(WriteMostly, &rdev->flags);
+
+ if (mddev->raid_disks == 0) {
+ mddev->major_version = 1;
+ mddev->patch_version = 0;
+ mddev->external = 0;
+ mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
+ mddev->ctime = le64_to_cpu(sb->ctime);
+ mddev->utime = le64_to_cpu(sb->utime);
+ mddev->level = le32_to_cpu(sb->level);
+ mddev->clevel[0] = 0;
+ mddev->layout = le32_to_cpu(sb->layout);
+ mddev->raid_disks = le32_to_cpu(sb->raid_disks);
+ mddev->dev_sectors = le64_to_cpu(sb->size);
+ mddev->events = ev1;
+ mddev->bitmap_info.offset = 0;
+ mddev->bitmap_info.space = 0;
+ /* Default location for bitmap is 1K after superblock
+ * using 3K - total of 4K
+ */
+ mddev->bitmap_info.default_offset = 1024 >> 9;
+ mddev->bitmap_info.default_space = (4096-1024) >> 9;
+ mddev->reshape_backwards = 0;
+
+ mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
+ memcpy(mddev->uuid, sb->set_uuid, 16);
+
+ mddev->max_disks = (4096-256)/2;
+
+ if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
+ mddev->bitmap_info.file == NULL) {
+ mddev->bitmap_info.offset =
+ (__s32)le32_to_cpu(sb->bitmap_offset);
+ /* Metadata doesn't record how much space is available.
+ * For 1.0, we assume we can use up to the superblock
+ * if before, else to 4K beyond superblock.
+ * For others, assume no change is possible.
+ */
+ if (mddev->minor_version > 0)
+ mddev->bitmap_info.space = 0;
+ else if (mddev->bitmap_info.offset > 0)
+ mddev->bitmap_info.space =
+ 8 - mddev->bitmap_info.offset;
+ else
+ mddev->bitmap_info.space =
+ -mddev->bitmap_info.offset;
+ }
+
+ if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
+ mddev->reshape_position = le64_to_cpu(sb->reshape_position);
+ mddev->delta_disks = le32_to_cpu(sb->delta_disks);
+ mddev->new_level = le32_to_cpu(sb->new_level);
+ mddev->new_layout = le32_to_cpu(sb->new_layout);
+ mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
+ if (mddev->delta_disks < 0 ||
+ (mddev->delta_disks == 0 &&
+ (le32_to_cpu(sb->feature_map)
+ & MD_FEATURE_RESHAPE_BACKWARDS)))
+ mddev->reshape_backwards = 1;
+ } else {
+ mddev->reshape_position = MaxSector;
+ mddev->delta_disks = 0;
+ mddev->new_level = mddev->level;
+ mddev->new_layout = mddev->layout;
+ mddev->new_chunk_sectors = mddev->chunk_sectors;
+ }
+
+ if (mddev->level == 0 &&
+ !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
+ mddev->layout = -1;
+
+ if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
+ set_bit(MD_HAS_JOURNAL, &mddev->flags);
+
+ if (le32_to_cpu(sb->feature_map) &
+ (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
+ if (le32_to_cpu(sb->feature_map) &
+ (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
+ return -EINVAL;
+ if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
+ (le32_to_cpu(sb->feature_map) &
+ MD_FEATURE_MULTIPLE_PPLS))
+ return -EINVAL;
+ set_bit(MD_HAS_PPL, &mddev->flags);
+ }
+ } else if (mddev->pers == NULL) {
+ /* Insist of good event counter while assembling, except for
+ * spares (which don't need an event count) */
+ ++ev1;
+ if (rdev->desc_nr >= 0 &&
+ rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
+ (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
+ le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
+ if (ev1 < mddev->events)
+ return -EINVAL;
+ } else if (mddev->bitmap) {
+ /* If adding to array with a bitmap, then we can accept an
+ * older device, but not too old.
+ */
+ if (ev1 < mddev->bitmap->events_cleared)
+ return 0;
+ if (ev1 < mddev->events)
+ set_bit(Bitmap_sync, &rdev->flags);
+ } else {
+ if (ev1 < mddev->events)
+ /* just a hot-add of a new device, leave raid_disk at -1 */
+ return 0;
+ }
+ if (mddev->level != LEVEL_MULTIPATH) {
+ int role;
+ if (rdev->desc_nr < 0 ||
+ rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
+ role = MD_DISK_ROLE_SPARE;
+ rdev->desc_nr = -1;
+ } else
+ role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
+ switch(role) {
+ case MD_DISK_ROLE_SPARE: /* spare */
+ break;
+ case MD_DISK_ROLE_FAULTY: /* faulty */
+ set_bit(Faulty, &rdev->flags);
+ break;
+ case MD_DISK_ROLE_JOURNAL: /* journal device */
+ if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
+ /* journal device without journal feature */
+ pr_warn("md: journal device provided without journal feature, ignoring the device\n");
+ return -EINVAL;
+ }
+ set_bit(Journal, &rdev->flags);
+ rdev->journal_tail = le64_to_cpu(sb->journal_tail);
+ rdev->raid_disk = 0;
+ break;
+ default:
+ rdev->saved_raid_disk = role;
+ if ((le32_to_cpu(sb->feature_map) &
+ MD_FEATURE_RECOVERY_OFFSET)) {
+ rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
+ if (!(le32_to_cpu(sb->feature_map) &
+ MD_FEATURE_RECOVERY_BITMAP))
+ rdev->saved_raid_disk = -1;
+ } else {
+ /*
+ * If the array is FROZEN, then the device can't
+ * be in_sync with rest of array.
+ */
+ if (!test_bit(MD_RECOVERY_FROZEN,
+ &mddev->recovery))
+ set_bit(In_sync, &rdev->flags);
+ }
+ rdev->raid_disk = role;
+ break;
+ }
+ if (sb->devflags & WriteMostly1)
+ set_bit(WriteMostly, &rdev->flags);
+ if (sb->devflags & FailFast1)
+ set_bit(FailFast, &rdev->flags);
+ if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
+ set_bit(Replacement, &rdev->flags);
+ } else /* MULTIPATH are always insync */
+ set_bit(In_sync, &rdev->flags);
+
+ return 0;
+}
+
+static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct mdp_superblock_1 *sb;
+ struct md_rdev *rdev2;
+ int max_dev, i;
+ /* make rdev->sb match mddev and rdev data. */
+
+ sb = page_address(rdev->sb_page);
+
+ sb->feature_map = 0;
+ sb->pad0 = 0;
+ sb->recovery_offset = cpu_to_le64(0);
+ memset(sb->pad3, 0, sizeof(sb->pad3));
+
+ sb->utime = cpu_to_le64((__u64)mddev->utime);
+ sb->events = cpu_to_le64(mddev->events);
+ if (mddev->in_sync)
+ sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
+ else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
+ sb->resync_offset = cpu_to_le64(MaxSector);
+ else
+ sb->resync_offset = cpu_to_le64(0);
+
+ sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
+
+ sb->raid_disks = cpu_to_le32(mddev->raid_disks);
+ sb->size = cpu_to_le64(mddev->dev_sectors);
+ sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
+ sb->level = cpu_to_le32(mddev->level);
+ sb->layout = cpu_to_le32(mddev->layout);
+ if (test_bit(FailFast, &rdev->flags))
+ sb->devflags |= FailFast1;
+ else
+ sb->devflags &= ~FailFast1;
+
+ if (test_bit(WriteMostly, &rdev->flags))
+ sb->devflags |= WriteMostly1;
+ else
+ sb->devflags &= ~WriteMostly1;
+ sb->data_offset = cpu_to_le64(rdev->data_offset);
+ sb->data_size = cpu_to_le64(rdev->sectors);
+
+ if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
+ sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
+ sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
+ }
+
+ if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
+ !test_bit(In_sync, &rdev->flags)) {
+ sb->feature_map |=
+ cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
+ sb->recovery_offset =
+ cpu_to_le64(rdev->recovery_offset);
+ if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
+ sb->feature_map |=
+ cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
+ }
+ /* Note: recovery_offset and journal_tail share space */
+ if (test_bit(Journal, &rdev->flags))
+ sb->journal_tail = cpu_to_le64(rdev->journal_tail);
+ if (test_bit(Replacement, &rdev->flags))
+ sb->feature_map |=
+ cpu_to_le32(MD_FEATURE_REPLACEMENT);
+
+ if (mddev->reshape_position != MaxSector) {
+ sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
+ sb->reshape_position = cpu_to_le64(mddev->reshape_position);
+ sb->new_layout = cpu_to_le32(mddev->new_layout);
+ sb->delta_disks = cpu_to_le32(mddev->delta_disks);
+ sb->new_level = cpu_to_le32(mddev->new_level);
+ sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
+ if (mddev->delta_disks == 0 &&
+ mddev->reshape_backwards)
+ sb->feature_map
+ |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
+ if (rdev->new_data_offset != rdev->data_offset) {
+ sb->feature_map
+ |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
+ sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
+ - rdev->data_offset));
+ }
+ }
+
+ if (mddev_is_clustered(mddev))
+ sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
+
+ if (rdev->badblocks.count == 0)
+ /* Nothing to do for bad blocks*/ ;
+ else if (sb->bblog_offset == 0)
+ /* Cannot record bad blocks on this device */
+ md_error(mddev, rdev);
+ else {
+ struct badblocks *bb = &rdev->badblocks;
+ __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
+ u64 *p = bb->page;
+ sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
+ if (bb->changed) {
+ unsigned seq;
+
+retry:
+ seq = read_seqbegin(&bb->lock);
+
+ memset(bbp, 0xff, PAGE_SIZE);
+
+ for (i = 0 ; i < bb->count ; i++) {
+ u64 internal_bb = p[i];
+ u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
+ | BB_LEN(internal_bb));
+ bbp[i] = cpu_to_le64(store_bb);
+ }
+ bb->changed = 0;
+ if (read_seqretry(&bb->lock, seq))
+ goto retry;
+
+ bb->sector = (rdev->sb_start +
+ (int)le32_to_cpu(sb->bblog_offset));
+ bb->size = le16_to_cpu(sb->bblog_size);
+ }
+ }
+
+ max_dev = 0;
+ rdev_for_each(rdev2, mddev)
+ if (rdev2->desc_nr+1 > max_dev)
+ max_dev = rdev2->desc_nr+1;
+
+ if (max_dev > le32_to_cpu(sb->max_dev)) {
+ int bmask;
+ sb->max_dev = cpu_to_le32(max_dev);
+ rdev->sb_size = max_dev * 2 + 256;
+ bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
+ if (rdev->sb_size & bmask)
+ rdev->sb_size = (rdev->sb_size | bmask) + 1;
+ } else
+ max_dev = le32_to_cpu(sb->max_dev);
+
+ for (i=0; i<max_dev;i++)
+ sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
+
+ if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
+ sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
+
+ if (test_bit(MD_HAS_PPL, &mddev->flags)) {
+ if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
+ sb->feature_map |=
+ cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
+ else
+ sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
+ sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
+ sb->ppl.size = cpu_to_le16(rdev->ppl.size);
+ }
+
+ rdev_for_each(rdev2, mddev) {
+ i = rdev2->desc_nr;
+ if (test_bit(Faulty, &rdev2->flags))
+ sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
+ else if (test_bit(In_sync, &rdev2->flags))
+ sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
+ else if (test_bit(Journal, &rdev2->flags))
+ sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
+ else if (rdev2->raid_disk >= 0)
+ sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
+ else
+ sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
+ }
+
+ sb->sb_csum = calc_sb_1_csum(sb);
+}
+
+static sector_t super_1_choose_bm_space(sector_t dev_size)
+{
+ sector_t bm_space;
+
+ /* if the device is bigger than 8Gig, save 64k for bitmap
+ * usage, if bigger than 200Gig, save 128k
+ */
+ if (dev_size < 64*2)
+ bm_space = 0;
+ else if (dev_size - 64*2 >= 200*1024*1024*2)
+ bm_space = 128*2;
+ else if (dev_size - 4*2 > 8*1024*1024*2)
+ bm_space = 64*2;
+ else
+ bm_space = 4*2;
+ return bm_space;
+}
+
+static unsigned long long
+super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
+{
+ struct mdp_superblock_1 *sb;
+ sector_t max_sectors;
+ if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
+ return 0; /* component must fit device */
+ if (rdev->data_offset != rdev->new_data_offset)
+ return 0; /* too confusing */
+ if (rdev->sb_start < rdev->data_offset) {
+ /* minor versions 1 and 2; superblock before data */
+ max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
+ if (!num_sectors || num_sectors > max_sectors)
+ num_sectors = max_sectors;
+ } else if (rdev->mddev->bitmap_info.offset) {
+ /* minor version 0 with bitmap we can't move */
+ return 0;
+ } else {
+ /* minor version 0; superblock after data */
+ sector_t sb_start, bm_space;
+ sector_t dev_size = bdev_nr_sectors(rdev->bdev);
+
+ /* 8K is for superblock */
+ sb_start = dev_size - 8*2;
+ sb_start &= ~(sector_t)(4*2 - 1);
+
+ bm_space = super_1_choose_bm_space(dev_size);
+
+ /* Space that can be used to store date needs to decrease
+ * superblock bitmap space and bad block space(4K)
+ */
+ max_sectors = sb_start - bm_space - 4*2;
+
+ if (!num_sectors || num_sectors > max_sectors)
+ num_sectors = max_sectors;
+ rdev->sb_start = sb_start;
+ }
+ sb = page_address(rdev->sb_page);
+ sb->data_size = cpu_to_le64(num_sectors);
+ sb->super_offset = cpu_to_le64(rdev->sb_start);
+ sb->sb_csum = calc_sb_1_csum(sb);
+ do {
+ md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
+ rdev->sb_page);
+ } while (md_super_wait(rdev->mddev) < 0);
+ return num_sectors;
+
+}
+
+static int
+super_1_allow_new_offset(struct md_rdev *rdev,
+ unsigned long long new_offset)
+{
+ /* All necessary checks on new >= old have been done */
+ struct bitmap *bitmap;
+ if (new_offset >= rdev->data_offset)
+ return 1;
+
+ /* with 1.0 metadata, there is no metadata to tread on
+ * so we can always move back */
+ if (rdev->mddev->minor_version == 0)
+ return 1;
+
+ /* otherwise we must be sure not to step on
+ * any metadata, so stay:
+ * 36K beyond start of superblock
+ * beyond end of badblocks
+ * beyond write-intent bitmap
+ */
+ if (rdev->sb_start + (32+4)*2 > new_offset)
+ return 0;
+ bitmap = rdev->mddev->bitmap;
+ if (bitmap && !rdev->mddev->bitmap_info.file &&
+ rdev->sb_start + rdev->mddev->bitmap_info.offset +
+ bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
+ return 0;
+ if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
+ return 0;
+
+ return 1;
+}
+
+static struct super_type super_types[] = {
+ [0] = {
+ .name = "0.90.0",
+ .owner = THIS_MODULE,
+ .load_super = super_90_load,
+ .validate_super = super_90_validate,
+ .sync_super = super_90_sync,
+ .rdev_size_change = super_90_rdev_size_change,
+ .allow_new_offset = super_90_allow_new_offset,
+ },
+ [1] = {
+ .name = "md-1",
+ .owner = THIS_MODULE,
+ .load_super = super_1_load,
+ .validate_super = super_1_validate,
+ .sync_super = super_1_sync,
+ .rdev_size_change = super_1_rdev_size_change,
+ .allow_new_offset = super_1_allow_new_offset,
+ },
+};
+
+static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
+{
+ if (mddev->sync_super) {
+ mddev->sync_super(mddev, rdev);
+ return;
+ }
+
+ BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
+
+ super_types[mddev->major_version].sync_super(mddev, rdev);
+}
+
+static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
+{
+ struct md_rdev *rdev, *rdev2;
+
+ rcu_read_lock();
+ rdev_for_each_rcu(rdev, mddev1) {
+ if (test_bit(Faulty, &rdev->flags) ||
+ test_bit(Journal, &rdev->flags) ||
+ rdev->raid_disk == -1)
+ continue;
+ rdev_for_each_rcu(rdev2, mddev2) {
+ if (test_bit(Faulty, &rdev2->flags) ||
+ test_bit(Journal, &rdev2->flags) ||
+ rdev2->raid_disk == -1)
+ continue;
+ if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
+ rcu_read_unlock();
+ return 1;
+ }
+ }
+ }
+ rcu_read_unlock();
+ return 0;
+}
+
+static LIST_HEAD(pending_raid_disks);
+
+/*
+ * Try to register data integrity profile for an mddev
+ *
+ * This is called when an array is started and after a disk has been kicked
+ * from the array. It only succeeds if all working and active component devices
+ * are integrity capable with matching profiles.
+ */
+int md_integrity_register(struct mddev *mddev)
+{
+ struct md_rdev *rdev, *reference = NULL;
+
+ if (list_empty(&mddev->disks))
+ return 0; /* nothing to do */
+ if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
+ return 0; /* shouldn't register, or already is */
+ rdev_for_each(rdev, mddev) {
+ /* skip spares and non-functional disks */
+ if (test_bit(Faulty, &rdev->flags))
+ continue;
+ if (rdev->raid_disk < 0)
+ continue;
+ if (!reference) {
+ /* Use the first rdev as the reference */
+ reference = rdev;
+ continue;
+ }
+ /* does this rdev's profile match the reference profile? */
+ if (blk_integrity_compare(reference->bdev->bd_disk,
+ rdev->bdev->bd_disk) < 0)
+ return -EINVAL;
+ }
+ if (!reference || !bdev_get_integrity(reference->bdev))
+ return 0;
+ /*
+ * All component devices are integrity capable and have matching
+ * profiles, register the common profile for the md device.
+ */
+ blk_integrity_register(mddev->gendisk,
+ bdev_get_integrity(reference->bdev));
+
+ pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
+ if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) ||
+ (mddev->level != 1 && mddev->level != 10 &&
+ bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) {
+ /*
+ * No need to handle the failure of bioset_integrity_create,
+ * because the function is called by md_run() -> pers->run(),
+ * md_run calls bioset_exit -> bioset_integrity_free in case
+ * of failure case.
+ */
+ pr_err("md: failed to create integrity pool for %s\n",
+ mdname(mddev));
+ return -EINVAL;
+ }
+ return 0;
+}
+EXPORT_SYMBOL(md_integrity_register);
+
+/*
+ * Attempt to add an rdev, but only if it is consistent with the current
+ * integrity profile
+ */
+int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
+{
+ struct blk_integrity *bi_mddev;
+
+ if (!mddev->gendisk)
+ return 0;
+
+ bi_mddev = blk_get_integrity(mddev->gendisk);
+
+ if (!bi_mddev) /* nothing to do */
+ return 0;
+
+ if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
+ pr_err("%s: incompatible integrity profile for %pg\n",
+ mdname(mddev), rdev->bdev);
+ return -ENXIO;
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL(md_integrity_add_rdev);
+
+static bool rdev_read_only(struct md_rdev *rdev)
+{
+ return bdev_read_only(rdev->bdev) ||
+ (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
+}
+
+static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
+{
+ char b[BDEVNAME_SIZE];
+ int err;
+
+ /* prevent duplicates */
+ if (find_rdev(mddev, rdev->bdev->bd_dev))
+ return -EEXIST;
+
+ if (rdev_read_only(rdev) && mddev->pers)
+ return -EROFS;
+
+ /* make sure rdev->sectors exceeds mddev->dev_sectors */
+ if (!test_bit(Journal, &rdev->flags) &&
+ rdev->sectors &&
+ (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
+ if (mddev->pers) {
+ /* Cannot change size, so fail
+ * If mddev->level <= 0, then we don't care
+ * about aligning sizes (e.g. linear)
+ */
+ if (mddev->level > 0)
+ return -ENOSPC;
+ } else
+ mddev->dev_sectors = rdev->sectors;
+ }
+
+ /* Verify rdev->desc_nr is unique.
+ * If it is -1, assign a free number, else
+ * check number is not in use
+ */
+ rcu_read_lock();
+ if (rdev->desc_nr < 0) {
+ int choice = 0;
+ if (mddev->pers)
+ choice = mddev->raid_disks;
+ while (md_find_rdev_nr_rcu(mddev, choice))
+ choice++;
+ rdev->desc_nr = choice;
+ } else {
+ if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
+ rcu_read_unlock();
+ return -EBUSY;
+ }
+ }
+ rcu_read_unlock();
+ if (!test_bit(Journal, &rdev->flags) &&
+ mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
+ pr_warn("md: %s: array is limited to %d devices\n",
+ mdname(mddev), mddev->max_disks);
+ return -EBUSY;
+ }
+ snprintf(b, sizeof(b), "%pg", rdev->bdev);
+ strreplace(b, '/', '!');
+
+ rdev->mddev = mddev;
+ pr_debug("md: bind<%s>\n", b);
+
+ if (mddev->raid_disks)
+ mddev_create_serial_pool(mddev, rdev, false);
+
+ if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
+ goto fail;
+
+ /* failure here is OK */
+ err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
+ rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
+ rdev->sysfs_unack_badblocks =
+ sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
+ rdev->sysfs_badblocks =
+ sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
+
+ list_add_rcu(&rdev->same_set, &mddev->disks);
+ bd_link_disk_holder(rdev->bdev, mddev->gendisk);
+
+ /* May as well allow recovery to be retried once */
+ mddev->recovery_disabled++;
+
+ return 0;
+
+ fail:
+ pr_warn("md: failed to register dev-%s for %s\n",
+ b, mdname(mddev));
+ return err;
+}
+
+static void rdev_delayed_delete(struct work_struct *ws)
+{
+ struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
+ kobject_del(&rdev->kobj);
+ kobject_put(&rdev->kobj);
+}
+
+static void unbind_rdev_from_array(struct md_rdev *rdev)
+{
+ bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
+ list_del_rcu(&rdev->same_set);
+ pr_debug("md: unbind<%pg>\n", rdev->bdev);
+ mddev_destroy_serial_pool(rdev->mddev, rdev, false);
+ rdev->mddev = NULL;
+ sysfs_remove_link(&rdev->kobj, "block");
+ sysfs_put(rdev->sysfs_state);
+ sysfs_put(rdev->sysfs_unack_badblocks);
+ sysfs_put(rdev->sysfs_badblocks);
+ rdev->sysfs_state = NULL;
+ rdev->sysfs_unack_badblocks = NULL;
+ rdev->sysfs_badblocks = NULL;
+ rdev->badblocks.count = 0;
+ /* We need to delay this, otherwise we can deadlock when
+ * writing to 'remove' to "dev/state". We also need
+ * to delay it due to rcu usage.
+ */
+ synchronize_rcu();
+ INIT_WORK(&rdev->del_work, rdev_delayed_delete);
+ kobject_get(&rdev->kobj);
+ queue_work(md_rdev_misc_wq, &rdev->del_work);
+}
+
+/*
+ * prevent the device from being mounted, repartitioned or
+ * otherwise reused by a RAID array (or any other kernel
+ * subsystem), by bd_claiming the device.
+ */
+static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
+{
+ int err = 0;
+ struct block_device *bdev;
+
+ bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
+ shared ? (struct md_rdev *)lock_rdev : rdev);
+ if (IS_ERR(bdev)) {
+ pr_warn("md: could not open device unknown-block(%u,%u).\n",
+ MAJOR(dev), MINOR(dev));
+ return PTR_ERR(bdev);
+ }
+ rdev->bdev = bdev;
+ return err;
+}
+
+static void unlock_rdev(struct md_rdev *rdev)
+{
+ struct block_device *bdev = rdev->bdev;
+ rdev->bdev = NULL;
+ blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
+}
+
+void md_autodetect_dev(dev_t dev);
+
+static void export_rdev(struct md_rdev *rdev)
+{
+ pr_debug("md: export_rdev(%pg)\n", rdev->bdev);
+ md_rdev_clear(rdev);
+#ifndef MODULE
+ if (test_bit(AutoDetected, &rdev->flags))
+ md_autodetect_dev(rdev->bdev->bd_dev);
+#endif
+ unlock_rdev(rdev);
+ kobject_put(&rdev->kobj);
+}
+
+void md_kick_rdev_from_array(struct md_rdev *rdev)
+{
+ unbind_rdev_from_array(rdev);
+ export_rdev(rdev);
+}
+EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
+
+static void export_array(struct mddev *mddev)
+{
+ struct md_rdev *rdev;
+
+ while (!list_empty(&mddev->disks)) {
+ rdev = list_first_entry(&mddev->disks, struct md_rdev,
+ same_set);
+ md_kick_rdev_from_array(rdev);
+ }
+ mddev->raid_disks = 0;
+ mddev->major_version = 0;
+}
+
+static bool set_in_sync(struct mddev *mddev)
+{
+ lockdep_assert_held(&mddev->lock);
+ if (!mddev->in_sync) {
+ mddev->sync_checkers++;
+ spin_unlock(&mddev->lock);
+ percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
+ spin_lock(&mddev->lock);
+ if (!mddev->in_sync &&
+ percpu_ref_is_zero(&mddev->writes_pending)) {
+ mddev->in_sync = 1;
+ /*
+ * Ensure ->in_sync is visible before we clear
+ * ->sync_checkers.
+ */
+ smp_mb();
+ set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
+ sysfs_notify_dirent_safe(mddev->sysfs_state);
+ }
+ if (--mddev->sync_checkers == 0)
+ percpu_ref_switch_to_percpu(&mddev->writes_pending);
+ }
+ if (mddev->safemode == 1)
+ mddev->safemode = 0;
+ return mddev->in_sync;
+}
+
+static void sync_sbs(struct mddev *mddev, int nospares)
+{
+ /* Update each superblock (in-memory image), but
+ * if we are allowed to, skip spares which already
+ * have the right event counter, or have one earlier
+ * (which would mean they aren't being marked as dirty
+ * with the rest of the array)
+ */
+ struct md_rdev *rdev;
+ rdev_for_each(rdev, mddev) {
+ if (rdev->sb_events == mddev->events ||
+ (nospares &&
+ rdev->raid_disk < 0 &&
+ rdev->sb_events+1 == mddev->events)) {
+ /* Don't update this superblock */
+ rdev->sb_loaded = 2;
+ } else {
+ sync_super(mddev, rdev);
+ rdev->sb_loaded = 1;
+ }
+ }
+}
+
+static bool does_sb_need_changing(struct mddev *mddev)
+{
+ struct md_rdev *rdev = NULL, *iter;
+ struct mdp_superblock_1 *sb;
+ int role;
+
+ /* Find a good rdev */
+ rdev_for_each(iter, mddev)
+ if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) {
+ rdev = iter;
+ break;
+ }
+
+ /* No good device found. */
+ if (!rdev)
+ return false;
+
+ sb = page_address(rdev->sb_page);
+ /* Check if a device has become faulty or a spare become active */
+ rdev_for_each(rdev, mddev) {
+ role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
+ /* Device activated? */
+ if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 &&
+ !test_bit(Faulty, &rdev->flags))
+ return true;
+ /* Device turned faulty? */
+ if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX))
+ return true;
+ }
+
+ /* Check if any mddev parameters have changed */
+ if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
+ (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
+ (mddev->layout != le32_to_cpu(sb->layout)) ||
+ (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
+ (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
+ return true;
+
+ return false;
+}
+
+void md_update_sb(struct mddev *mddev, int force_change)
+{
+ struct md_rdev *rdev;
+ int sync_req;
+ int nospares = 0;
+ int any_badblocks_changed = 0;
+ int ret = -1;
+
+ if (!md_is_rdwr(mddev)) {
+ if (force_change)
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+ return;
+ }
+
+repeat:
+ if (mddev_is_clustered(mddev)) {
+ if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
+ force_change = 1;
+ if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
+ nospares = 1;
+ ret = md_cluster_ops->metadata_update_start(mddev);
+ /* Has someone else has updated the sb */
+ if (!does_sb_need_changing(mddev)) {
+ if (ret == 0)
+ md_cluster_ops->metadata_update_cancel(mddev);
+ bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
+ BIT(MD_SB_CHANGE_DEVS) |
+ BIT(MD_SB_CHANGE_CLEAN));
+ return;
+ }
+ }
+
+ /*
+ * First make sure individual recovery_offsets are correct
+ * curr_resync_completed can only be used during recovery.
+ * During reshape/resync it might use array-addresses rather
+ * that device addresses.
+ */
+ rdev_for_each(rdev, mddev) {
+ if (rdev->raid_disk >= 0 &&
+ mddev->delta_disks >= 0 &&
+ test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
+ test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
+ !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
+ !test_bit(Journal, &rdev->flags) &&
+ !test_bit(In_sync, &rdev->flags) &&
+ mddev->curr_resync_completed > rdev->recovery_offset)
+ rdev->recovery_offset = mddev->curr_resync_completed;
+
+ }
+ if (!mddev->persistent) {
+ clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
+ clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+ if (!mddev->external) {
+ clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
+ rdev_for_each(rdev, mddev) {
+ if (rdev->badblocks.changed) {
+ rdev->badblocks.changed = 0;
+ ack_all_badblocks(&rdev->badblocks);
+ md_error(mddev, rdev);
+ }
+ clear_bit(Blocked, &rdev->flags);
+ clear_bit(BlockedBadBlocks, &rdev->flags);
+ wake_up(&rdev->blocked_wait);
+ }
+ }
+ wake_up(&mddev->sb_wait);
+ return;
+ }
+
+ spin_lock(&mddev->lock);
+
+ mddev->utime = ktime_get_real_seconds();
+
+ if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
+ force_change = 1;
+ if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
+ /* just a clean<-> dirty transition, possibly leave spares alone,
+ * though if events isn't the right even/odd, we will have to do
+ * spares after all
+ */
+ nospares = 1;
+ if (force_change)
+ nospares = 0;
+ if (mddev->degraded)
+ /* If the array is degraded, then skipping spares is both
+ * dangerous and fairly pointless.
+ * Dangerous because a device that was removed from the array
+ * might have a event_count that still looks up-to-date,
+ * so it can be re-added without a resync.
+ * Pointless because if there are any spares to skip,
+ * then a recovery will happen and soon that array won't
+ * be degraded any more and the spare can go back to sleep then.
+ */
+ nospares = 0;
+
+ sync_req = mddev->in_sync;
+
+ /* If this is just a dirty<->clean transition, and the array is clean
+ * and 'events' is odd, we can roll back to the previous clean state */
+ if (nospares
+ && (mddev->in_sync && mddev->recovery_cp == MaxSector)
+ && mddev->can_decrease_events
+ && mddev->events != 1) {
+ mddev->events--;
+ mddev->can_decrease_events = 0;
+ } else {
+ /* otherwise we have to go forward and ... */
+ mddev->events ++;
+ mddev->can_decrease_events = nospares;
+ }
+
+ /*
+ * This 64-bit counter should never wrap.
+ * Either we are in around ~1 trillion A.C., assuming
+ * 1 reboot per second, or we have a bug...
+ */
+ WARN_ON(mddev->events == 0);
+
+ rdev_for_each(rdev, mddev) {
+ if (rdev->badblocks.changed)
+ any_badblocks_changed++;
+ if (test_bit(Faulty, &rdev->flags))
+ set_bit(FaultRecorded, &rdev->flags);
+ }
+
+ sync_sbs(mddev, nospares);
+ spin_unlock(&mddev->lock);
+
+ pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
+ mdname(mddev), mddev->in_sync);
+
+ if (mddev->queue)
+ blk_add_trace_msg(mddev->queue, "md md_update_sb");
+rewrite:
+ md_bitmap_update_sb(mddev->bitmap);
+ rdev_for_each(rdev, mddev) {
+ if (rdev->sb_loaded != 1)
+ continue; /* no noise on spare devices */
+
+ if (!test_bit(Faulty, &rdev->flags)) {
+ md_super_write(mddev,rdev,
+ rdev->sb_start, rdev->sb_size,
+ rdev->sb_page);
+ pr_debug("md: (write) %pg's sb offset: %llu\n",
+ rdev->bdev,
+ (unsigned long long)rdev->sb_start);
+ rdev->sb_events = mddev->events;
+ if (rdev->badblocks.size) {
+ md_super_write(mddev, rdev,
+ rdev->badblocks.sector,
+ rdev->badblocks.size << 9,
+ rdev->bb_page);
+ rdev->badblocks.size = 0;
+ }
+
+ } else
+ pr_debug("md: %pg (skipping faulty)\n",
+ rdev->bdev);
+
+ if (mddev->level == LEVEL_MULTIPATH)
+ /* only need to write one superblock... */
+ break;
+ }
+ if (md_super_wait(mddev) < 0)
+ goto rewrite;
+ /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
+
+ if (mddev_is_clustered(mddev) && ret == 0)
+ md_cluster_ops->metadata_update_finish(mddev);
+
+ if (mddev->in_sync != sync_req ||
+ !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
+ BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
+ /* have to write it out again */
+ goto repeat;
+ wake_up(&mddev->sb_wait);
+ if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
+ sysfs_notify_dirent_safe(mddev->sysfs_completed);
+
+ rdev_for_each(rdev, mddev) {
+ if (test_and_clear_bit(FaultRecorded, &rdev->flags))
+ clear_bit(Blocked, &rdev->flags);
+
+ if (any_badblocks_changed)
+ ack_all_badblocks(&rdev->badblocks);
+ clear_bit(BlockedBadBlocks, &rdev->flags);
+ wake_up(&rdev->blocked_wait);
+ }
+}
+EXPORT_SYMBOL(md_update_sb);
+
+static int add_bound_rdev(struct md_rdev *rdev)
+{
+ struct mddev *mddev = rdev->mddev;
+ int err = 0;
+ bool add_journal = test_bit(Journal, &rdev->flags);
+
+ if (!mddev->pers->hot_remove_disk || add_journal) {
+ /* If there is hot_add_disk but no hot_remove_disk
+ * then added disks for geometry changes,
+ * and should be added immediately.
+ */
+ super_types[mddev->major_version].
+ validate_super(mddev, rdev);
+ if (add_journal)
+ mddev_suspend(mddev);
+ err = mddev->pers->hot_add_disk(mddev, rdev);
+ if (add_journal)
+ mddev_resume(mddev);
+ if (err) {
+ md_kick_rdev_from_array(rdev);
+ return err;
+ }
+ }
+ sysfs_notify_dirent_safe(rdev->sysfs_state);
+
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+ if (mddev->degraded)
+ set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ md_new_event();
+ md_wakeup_thread(mddev->thread);
+ return 0;
+}
+
+/* words written to sysfs files may, or may not, be \n terminated.
+ * We want to accept with case. For this we use cmd_match.
+ */
+static int cmd_match(const char *cmd, const char *str)
+{
+ /* See if cmd, written into a sysfs file, matches
+ * str. They must either be the same, or cmd can
+ * have a trailing newline
+ */
+ while (*cmd && *str && *cmd == *str) {
+ cmd++;
+ str++;
+ }
+ if (*cmd == '\n')
+ cmd++;
+ if (*str || *cmd)
+ return 0;
+ return 1;
+}
+
+struct rdev_sysfs_entry {
+ struct attribute attr;
+ ssize_t (*show)(struct md_rdev *, char *);
+ ssize_t (*store)(struct md_rdev *, const char *, size_t);
+};
+
+static ssize_t
+state_show(struct md_rdev *rdev, char *page)
+{
+ char *sep = ",";
+ size_t len = 0;
+ unsigned long flags = READ_ONCE(rdev->flags);
+
+ if (test_bit(Faulty, &flags) ||
+ (!test_bit(ExternalBbl, &flags) &&
+ rdev->badblocks.unacked_exist))
+ len += sprintf(page+len, "faulty%s", sep);
+ if (test_bit(In_sync, &flags))
+ len += sprintf(page+len, "in_sync%s", sep);
+ if (test_bit(Journal, &flags))
+ len += sprintf(page+len, "journal%s", sep);
+ if (test_bit(WriteMostly, &flags))
+ len += sprintf(page+len, "write_mostly%s", sep);
+ if (test_bit(Blocked, &flags) ||
+ (rdev->badblocks.unacked_exist
+ && !test_bit(Faulty, &flags)))
+ len += sprintf(page+len, "blocked%s", sep);
+ if (!test_bit(Faulty, &flags) &&
+ !test_bit(Journal, &flags) &&
+ !test_bit(In_sync, &flags))
+ len += sprintf(page+len, "spare%s", sep);
+ if (test_bit(WriteErrorSeen, &flags))
+ len += sprintf(page+len, "write_error%s", sep);
+ if (test_bit(WantReplacement, &flags))
+ len += sprintf(page+len, "want_replacement%s", sep);
+ if (test_bit(Replacement, &flags))
+ len += sprintf(page+len, "replacement%s", sep);
+ if (test_bit(ExternalBbl, &flags))
+ len += sprintf(page+len, "external_bbl%s", sep);
+ if (test_bit(FailFast, &flags))
+ len += sprintf(page+len, "failfast%s", sep);
+
+ if (len)
+ len -= strlen(sep);
+
+ return len+sprintf(page+len, "\n");
+}
+
+static ssize_t
+state_store(struct md_rdev *rdev, const char *buf, size_t len)
+{
+ /* can write
+ * faulty - simulates an error
+ * remove - disconnects the device
+ * writemostly - sets write_mostly
+ * -writemostly - clears write_mostly
+ * blocked - sets the Blocked flags
+ * -blocked - clears the Blocked and possibly simulates an error
+ * insync - sets Insync providing device isn't active
+ * -insync - clear Insync for a device with a slot assigned,
+ * so that it gets rebuilt based on bitmap
+ * write_error - sets WriteErrorSeen
+ * -write_error - clears WriteErrorSeen
+ * {,-}failfast - set/clear FailFast
+ */
+
+ struct mddev *mddev = rdev->mddev;
+ int err = -EINVAL;
+ bool need_update_sb = false;
+
+ if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
+ md_error(rdev->mddev, rdev);
+
+ if (test_bit(MD_BROKEN, &rdev->mddev->flags))
+ err = -EBUSY;
+ else
+ err = 0;
+ } else if (cmd_match(buf, "remove")) {
+ if (rdev->mddev->pers) {
+ clear_bit(Blocked, &rdev->flags);
+ remove_and_add_spares(rdev->mddev, rdev);
+ }
+ if (rdev->raid_disk >= 0)
+ err = -EBUSY;
+ else {
+ err = 0;
+ if (mddev_is_clustered(mddev))
+ err = md_cluster_ops->remove_disk(mddev, rdev);
+
+ if (err == 0) {
+ md_kick_rdev_from_array(rdev);
+ if (mddev->pers) {
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+ md_wakeup_thread(mddev->thread);
+ }
+ md_new_event();
+ }
+ }
+ } else if (cmd_match(buf, "writemostly")) {
+ set_bit(WriteMostly, &rdev->flags);
+ mddev_create_serial_pool(rdev->mddev, rdev, false);
+ need_update_sb = true;
+ err = 0;
+ } else if (cmd_match(buf, "-writemostly")) {
+ mddev_destroy_serial_pool(rdev->mddev, rdev, false);
+ clear_bit(WriteMostly, &rdev->flags);
+ need_update_sb = true;
+ err = 0;
+ } else if (cmd_match(buf, "blocked")) {
+ set_bit(Blocked, &rdev->flags);
+ err = 0;
+ } else if (cmd_match(buf, "-blocked")) {
+ if (!test_bit(Faulty, &rdev->flags) &&
+ !test_bit(ExternalBbl, &rdev->flags) &&
+ rdev->badblocks.unacked_exist) {
+ /* metadata handler doesn't understand badblocks,
+ * so we need to fail the device
+ */
+ md_error(rdev->mddev, rdev);
+ }
+ clear_bit(Blocked, &rdev->flags);
+ clear_bit(BlockedBadBlocks, &rdev->flags);
+ wake_up(&rdev->blocked_wait);
+ set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
+ md_wakeup_thread(rdev->mddev->thread);
+
+ err = 0;
+ } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
+ set_bit(In_sync, &rdev->flags);
+ err = 0;
+ } else if (cmd_match(buf, "failfast")) {
+ set_bit(FailFast, &rdev->flags);
+ need_update_sb = true;
+ err = 0;
+ } else if (cmd_match(buf, "-failfast")) {
+ clear_bit(FailFast, &rdev->flags);
+ need_update_sb = true;
+ err = 0;
+ } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
+ !test_bit(Journal, &rdev->flags)) {
+ if (rdev->mddev->pers == NULL) {
+ clear_bit(In_sync, &rdev->flags);
+ rdev->saved_raid_disk = rdev->raid_disk;
+ rdev->raid_disk = -1;
+ err = 0;
+ }
+ } else if (cmd_match(buf, "write_error")) {
+ set_bit(WriteErrorSeen, &rdev->flags);
+ err = 0;
+ } else if (cmd_match(buf, "-write_error")) {
+ clear_bit(WriteErrorSeen, &rdev->flags);
+ err = 0;
+ } else if (cmd_match(buf, "want_replacement")) {
+ /* Any non-spare device that is not a replacement can
+ * become want_replacement at any time, but we then need to
+ * check if recovery is needed.
+ */
+ if (rdev->raid_disk >= 0 &&
+ !test_bit(Journal, &rdev->flags) &&
+ !test_bit(Replacement, &rdev->flags))
+ set_bit(WantReplacement, &rdev->flags);
+ set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
+ md_wakeup_thread(rdev->mddev->thread);
+ err = 0;
+ } else if (cmd_match(buf, "-want_replacement")) {
+ /* Clearing 'want_replacement' is always allowed.
+ * Once replacements starts it is too late though.
+ */
+ err = 0;
+ clear_bit(WantReplacement, &rdev->flags);
+ } else if (cmd_match(buf, "replacement")) {
+ /* Can only set a device as a replacement when array has not
+ * yet been started. Once running, replacement is automatic
+ * from spares, or by assigning 'slot'.
+ */
+ if (rdev->mddev->pers)
+ err = -EBUSY;
+ else {
+ set_bit(Replacement, &rdev->flags);
+ err = 0;
+ }
+ } else if (cmd_match(buf, "-replacement")) {
+ /* Similarly, can only clear Replacement before start */
+ if (rdev->mddev->pers)
+ err = -EBUSY;
+ else {
+ clear_bit(Replacement, &rdev->flags);
+ err = 0;
+ }
+ } else if (cmd_match(buf, "re-add")) {
+ if (!rdev->mddev->pers)
+ err = -EINVAL;
+ else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
+ rdev->saved_raid_disk >= 0) {
+ /* clear_bit is performed _after_ all the devices
+ * have their local Faulty bit cleared. If any writes
+ * happen in the meantime in the local node, they
+ * will land in the local bitmap, which will be synced
+ * by this node eventually
+ */
+ if (!mddev_is_clustered(rdev->mddev) ||
+ (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
+ clear_bit(Faulty, &rdev->flags);
+ err = add_bound_rdev(rdev);
+ }
+ } else
+ err = -EBUSY;
+ } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
+ set_bit(ExternalBbl, &rdev->flags);
+ rdev->badblocks.shift = 0;
+ err = 0;
+ } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
+ clear_bit(ExternalBbl, &rdev->flags);
+ err = 0;
+ }
+ if (need_update_sb)
+ md_update_sb(mddev, 1);
+ if (!err)
+ sysfs_notify_dirent_safe(rdev->sysfs_state);
+ return err ? err : len;
+}
+static struct rdev_sysfs_entry rdev_state =
+__ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
+
+static ssize_t
+errors_show(struct md_rdev *rdev, char *page)
+{
+ return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
+}
+
+static ssize_t
+errors_store(struct md_rdev *rdev, const char *buf, size_t len)
+{
+ unsigned int n;
+ int rv;
+
+ rv = kstrtouint(buf, 10, &n);
+ if (rv < 0)
+ return rv;
+ atomic_set(&rdev->corrected_errors, n);
+ return len;
+}
+static struct rdev_sysfs_entry rdev_errors =
+__ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
+
+static ssize_t
+slot_show(struct md_rdev *rdev, char *page)
+{
+ if (test_bit(Journal, &rdev->flags))
+ return sprintf(page, "journal\n");
+ else if (rdev->raid_disk < 0)
+ return sprintf(page, "none\n");
+ else
+ return sprintf(page, "%d\n", rdev->raid_disk);
+}
+
+static ssize_t
+slot_store(struct md_rdev *rdev, const char *buf, size_t len)
+{
+ int slot;
+ int err;
+
+ if (test_bit(Journal, &rdev->flags))
+ return -EBUSY;
+ if (strncmp(buf, "none", 4)==0)
+ slot = -1;
+ else {
+ err = kstrtouint(buf, 10, (unsigned int *)&slot);
+ if (err < 0)
+ return err;
+ if (slot < 0)
+ /* overflow */
+ return -ENOSPC;
+ }
+ if (rdev->mddev->pers && slot == -1) {
+ /* Setting 'slot' on an active array requires also
+ * updating the 'rd%d' link, and communicating
+ * with the personality with ->hot_*_disk.
+ * For now we only support removing
+ * failed/spare devices. This normally happens automatically,
+ * but not when the metadata is externally managed.
+ */
+ if (rdev->raid_disk == -1)
+ return -EEXIST;
+ /* personality does all needed checks */
+ if (rdev->mddev->pers->hot_remove_disk == NULL)
+ return -EINVAL;
+ clear_bit(Blocked, &rdev->flags);
+ remove_and_add_spares(rdev->mddev, rdev);
+ if (rdev->raid_disk >= 0)
+ return -EBUSY;
+ set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
+ md_wakeup_thread(rdev->mddev->thread);
+ } else if (rdev->mddev->pers) {
+ /* Activating a spare .. or possibly reactivating
+ * if we ever get bitmaps working here.
+ */
+ int err;
+
+ if (rdev->raid_disk != -1)
+ return -EBUSY;
+
+ if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
+ return -EBUSY;
+
+ if (rdev->mddev->pers->hot_add_disk == NULL)
+ return -EINVAL;
+
+ if (slot >= rdev->mddev->raid_disks &&
+ slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
+ return -ENOSPC;
+
+ rdev->raid_disk = slot;
+ if (test_bit(In_sync, &rdev->flags))
+ rdev->saved_raid_disk = slot;
+ else
+ rdev->saved_raid_disk = -1;
+ clear_bit(In_sync, &rdev->flags);
+ clear_bit(Bitmap_sync, &rdev->flags);
+ err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
+ if (err) {
+ rdev->raid_disk = -1;
+ return err;
+ } else
+ sysfs_notify_dirent_safe(rdev->sysfs_state);
+ /* failure here is OK */;
+ sysfs_link_rdev(rdev->mddev, rdev);
+ /* don't wakeup anyone, leave that to userspace. */
+ } else {
+ if (slot >= rdev->mddev->raid_disks &&
+ slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
+ return -ENOSPC;
+ rdev->raid_disk = slot;
+ /* assume it is working */
+ clear_bit(Faulty, &rdev->flags);
+ clear_bit(WriteMostly, &rdev->flags);
+ set_bit(In_sync, &rdev->flags);
+ sysfs_notify_dirent_safe(rdev->sysfs_state);
+ }
+ return len;
+}
+
+static struct rdev_sysfs_entry rdev_slot =
+__ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
+
+static ssize_t
+offset_show(struct md_rdev *rdev, char *page)
+{
+ return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
+}
+
+static ssize_t
+offset_store(struct md_rdev *rdev, const char *buf, size_t len)
+{
+ unsigned long long offset;
+ if (kstrtoull(buf, 10, &offset) < 0)
+ return -EINVAL;
+ if (rdev->mddev->pers && rdev->raid_disk >= 0)
+ return -EBUSY;
+ if (rdev->sectors && rdev->mddev->external)
+ /* Must set offset before size, so overlap checks
+ * can be sane */
+ return -EBUSY;
+ rdev->data_offset = offset;
+ rdev->new_data_offset = offset;
+ return len;
+}
+
+static struct rdev_sysfs_entry rdev_offset =
+__ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
+
+static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
+{
+ return sprintf(page, "%llu\n",
+ (unsigned long long)rdev->new_data_offset);
+}
+
+static ssize_t new_offset_store(struct md_rdev *rdev,
+ const char *buf, size_t len)
+{
+ unsigned long long new_offset;
+ struct mddev *mddev = rdev->mddev;
+
+ if (kstrtoull(buf, 10, &new_offset) < 0)
+ return -EINVAL;
+
+ if (mddev->sync_thread ||
+ test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
+ return -EBUSY;
+ if (new_offset == rdev->data_offset)
+ /* reset is always permitted */
+ ;
+ else if (new_offset > rdev->data_offset) {
+ /* must not push array size beyond rdev_sectors */
+ if (new_offset - rdev->data_offset
+ + mddev->dev_sectors > rdev->sectors)
+ return -E2BIG;
+ }
+ /* Metadata worries about other space details. */
+
+ /* decreasing the offset is inconsistent with a backwards
+ * reshape.
+ */
+ if (new_offset < rdev->data_offset &&
+ mddev->reshape_backwards)
+ return -EINVAL;
+ /* Increasing offset is inconsistent with forwards
+ * reshape. reshape_direction should be set to
+ * 'backwards' first.
+ */
+ if (new_offset > rdev->data_offset &&
+ !mddev->reshape_backwards)
+ return -EINVAL;
+
+ if (mddev->pers && mddev->persistent &&
+ !super_types[mddev->major_version]
+ .allow_new_offset(rdev, new_offset))
+ return -E2BIG;
+ rdev->new_data_offset = new_offset;
+ if (new_offset > rdev->data_offset)
+ mddev->reshape_backwards = 1;
+ else if (new_offset < rdev->data_offset)
+ mddev->reshape_backwards = 0;
+
+ return len;
+}
+static struct rdev_sysfs_entry rdev_new_offset =
+__ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
+
+static ssize_t
+rdev_size_show(struct md_rdev *rdev, char *page)
+{
+ return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
+}
+
+static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b)
+{
+ /* check if two start/length pairs overlap */
+ if (a->data_offset + a->sectors <= b->data_offset)
+ return false;
+ if (b->data_offset + b->sectors <= a->data_offset)
+ return false;
+ return true;
+}
+
+static bool md_rdev_overlaps(struct md_rdev *rdev)
+{
+ struct mddev *mddev;
+ struct md_rdev *rdev2;
+
+ spin_lock(&all_mddevs_lock);
+ list_for_each_entry(mddev, &all_mddevs, all_mddevs) {
+ if (test_bit(MD_DELETED, &mddev->flags))
+ continue;
+ rdev_for_each(rdev2, mddev) {
+ if (rdev != rdev2 && rdev->bdev == rdev2->bdev &&
+ md_rdevs_overlap(rdev, rdev2)) {
+ spin_unlock(&all_mddevs_lock);
+ return true;
+ }
+ }
+ }
+ spin_unlock(&all_mddevs_lock);
+ return false;
+}
+
+static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
+{
+ unsigned long long blocks;
+ sector_t new;
+
+ if (kstrtoull(buf, 10, &blocks) < 0)
+ return -EINVAL;
+
+ if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
+ return -EINVAL; /* sector conversion overflow */
+
+ new = blocks * 2;
+ if (new != blocks * 2)
+ return -EINVAL; /* unsigned long long to sector_t overflow */
+
+ *sectors = new;
+ return 0;
+}
+
+static ssize_t
+rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
+{
+ struct mddev *my_mddev = rdev->mddev;
+ sector_t oldsectors = rdev->sectors;
+ sector_t sectors;
+
+ if (test_bit(Journal, &rdev->flags))
+ return -EBUSY;
+ if (strict_blocks_to_sectors(buf, &sectors) < 0)
+ return -EINVAL;
+ if (rdev->data_offset != rdev->new_data_offset)
+ return -EINVAL; /* too confusing */
+ if (my_mddev->pers && rdev->raid_disk >= 0) {
+ if (my_mddev->persistent) {
+ sectors = super_types[my_mddev->major_version].
+ rdev_size_change(rdev, sectors);
+ if (!sectors)
+ return -EBUSY;
+ } else if (!sectors)
+ sectors = bdev_nr_sectors(rdev->bdev) -
+ rdev->data_offset;
+ if (!my_mddev->pers->resize)
+ /* Cannot change size for RAID0 or Linear etc */
+ return -EINVAL;
+ }
+ if (sectors < my_mddev->dev_sectors)
+ return -EINVAL; /* component must fit device */
+
+ rdev->sectors = sectors;
+
+ /*
+ * Check that all other rdevs with the same bdev do not overlap. This
+ * check does not provide a hard guarantee, it just helps avoid
+ * dangerous mistakes.
+ */
+ if (sectors > oldsectors && my_mddev->external &&
+ md_rdev_overlaps(rdev)) {
+ /*
+ * Someone else could have slipped in a size change here, but
+ * doing so is just silly. We put oldsectors back because we
+ * know it is safe, and trust userspace not to race with itself.
+ */
+ rdev->sectors = oldsectors;
+ return -EBUSY;
+ }
+ return len;
+}
+
+static struct rdev_sysfs_entry rdev_size =
+__ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
+
+static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
+{
+ unsigned long long recovery_start = rdev->recovery_offset;
+
+ if (test_bit(In_sync, &rdev->flags) ||
+ recovery_start == MaxSector)
+ return sprintf(page, "none\n");
+
+ return sprintf(page, "%llu\n", recovery_start);
+}
+
+static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
+{
+ unsigned long long recovery_start;
+
+ if (cmd_match(buf, "none"))
+ recovery_start = MaxSector;
+ else if (kstrtoull(buf, 10, &recovery_start))
+ return -EINVAL;
+
+ if (rdev->mddev->pers &&
+ rdev->raid_disk >= 0)
+ return -EBUSY;
+
+ rdev->recovery_offset = recovery_start;
+ if (recovery_start == MaxSector)
+ set_bit(In_sync, &rdev->flags);
+ else
+ clear_bit(In_sync, &rdev->flags);
+ return len;
+}
+
+static struct rdev_sysfs_entry rdev_recovery_start =
+__ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
+
+/* sysfs access to bad-blocks list.
+ * We present two files.
+ * 'bad-blocks' lists sector numbers and lengths of ranges that
+ * are recorded as bad. The list is truncated to fit within
+ * the one-page limit of sysfs.
+ * Writing "sector length" to this file adds an acknowledged
+ * bad block list.
+ * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
+ * been acknowledged. Writing to this file adds bad blocks
+ * without acknowledging them. This is largely for testing.
+ */
+static ssize_t bb_show(struct md_rdev *rdev, char *page)
+{
+ return badblocks_show(&rdev->badblocks, page, 0);
+}
+static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
+{
+ int rv = badblocks_store(&rdev->badblocks, page, len, 0);
+ /* Maybe that ack was all we needed */
+ if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
+ wake_up(&rdev->blocked_wait);
+ return rv;
+}
+static struct rdev_sysfs_entry rdev_bad_blocks =
+__ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
+
+static ssize_t ubb_show(struct md_rdev *rdev, char *page)
+{
+ return badblocks_show(&rdev->badblocks, page, 1);
+}
+static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
+{
+ return badblocks_store(&rdev->badblocks, page, len, 1);
+}
+static struct rdev_sysfs_entry rdev_unack_bad_blocks =
+__ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
+
+static ssize_t
+ppl_sector_show(struct md_rdev *rdev, char *page)
+{
+ return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
+}
+
+static ssize_t
+ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
+{
+ unsigned long long sector;
+
+ if (kstrtoull(buf, 10, &sector) < 0)
+ return -EINVAL;
+ if (sector != (sector_t)sector)
+ return -EINVAL;
+
+ if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
+ rdev->raid_disk >= 0)
+ return -EBUSY;
+
+ if (rdev->mddev->persistent) {
+ if (rdev->mddev->major_version == 0)
+ return -EINVAL;
+ if ((sector > rdev->sb_start &&
+ sector - rdev->sb_start > S16_MAX) ||
+ (sector < rdev->sb_start &&
+ rdev->sb_start - sector > -S16_MIN))
+ return -EINVAL;
+ rdev->ppl.offset = sector - rdev->sb_start;
+ } else if (!rdev->mddev->external) {
+ return -EBUSY;
+ }
+ rdev->ppl.sector = sector;
+ return len;
+}
+
+static struct rdev_sysfs_entry rdev_ppl_sector =
+__ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
+
+static ssize_t
+ppl_size_show(struct md_rdev *rdev, char *page)
+{
+ return sprintf(page, "%u\n", rdev->ppl.size);
+}
+
+static ssize_t
+ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
+{
+ unsigned int size;
+
+ if (kstrtouint(buf, 10, &size) < 0)
+ return -EINVAL;
+
+ if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
+ rdev->raid_disk >= 0)
+ return -EBUSY;
+
+ if (rdev->mddev->persistent) {
+ if (rdev->mddev->major_version == 0)
+ return -EINVAL;
+ if (size > U16_MAX)
+ return -EINVAL;
+ } else if (!rdev->mddev->external) {
+ return -EBUSY;
+ }
+ rdev->ppl.size = size;
+ return len;
+}
+
+static struct rdev_sysfs_entry rdev_ppl_size =
+__ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
+
+static struct attribute *rdev_default_attrs[] = {
+ &rdev_state.attr,
+ &rdev_errors.attr,
+ &rdev_slot.attr,
+ &rdev_offset.attr,
+ &rdev_new_offset.attr,
+ &rdev_size.attr,
+ &rdev_recovery_start.attr,
+ &rdev_bad_blocks.attr,
+ &rdev_unack_bad_blocks.attr,
+ &rdev_ppl_sector.attr,
+ &rdev_ppl_size.attr,
+ NULL,
+};
+ATTRIBUTE_GROUPS(rdev_default);
+static ssize_t
+rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
+{
+ struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
+ struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
+
+ if (!entry->show)
+ return -EIO;
+ if (!rdev->mddev)
+ return -ENODEV;
+ return entry->show(rdev, page);
+}
+
+static ssize_t
+rdev_attr_store(struct kobject *kobj, struct attribute *attr,
+ const char *page, size_t length)
+{
+ struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
+ struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
+ ssize_t rv;
+ struct mddev *mddev = rdev->mddev;
+
+ if (!entry->store)
+ return -EIO;
+ if (!capable(CAP_SYS_ADMIN))
+ return -EACCES;
+ rv = mddev ? mddev_lock(mddev) : -ENODEV;
+ if (!rv) {
+ if (rdev->mddev == NULL)
+ rv = -ENODEV;
+ else
+ rv = entry->store(rdev, page, length);
+ mddev_unlock(mddev);
+ }
+ return rv;
+}
+
+static void rdev_free(struct kobject *ko)
+{
+ struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
+ kfree(rdev);
+}
+static const struct sysfs_ops rdev_sysfs_ops = {
+ .show = rdev_attr_show,
+ .store = rdev_attr_store,
+};
+static struct kobj_type rdev_ktype = {
+ .release = rdev_free,
+ .sysfs_ops = &rdev_sysfs_ops,
+ .default_groups = rdev_default_groups,
+};
+
+int md_rdev_init(struct md_rdev *rdev)
+{
+ rdev->desc_nr = -1;
+ rdev->saved_raid_disk = -1;
+ rdev->raid_disk = -1;
+ rdev->flags = 0;
+ rdev->data_offset = 0;
+ rdev->new_data_offset = 0;
+ rdev->sb_events = 0;
+ rdev->last_read_error = 0;
+ rdev->sb_loaded = 0;
+ rdev->bb_page = NULL;
+ atomic_set(&rdev->nr_pending, 0);
+ atomic_set(&rdev->read_errors, 0);
+ atomic_set(&rdev->corrected_errors, 0);
+
+ INIT_LIST_HEAD(&rdev->same_set);
+ init_waitqueue_head(&rdev->blocked_wait);
+
+ /* Add space to store bad block list.
+ * This reserves the space even on arrays where it cannot
+ * be used - I wonder if that matters
+ */
+ return badblocks_init(&rdev->badblocks, 0);
+}
+EXPORT_SYMBOL_GPL(md_rdev_init);
+/*
+ * Import a device. If 'super_format' >= 0, then sanity check the superblock
+ *
+ * mark the device faulty if:
+ *
+ * - the device is nonexistent (zero size)
+ * - the device has no valid superblock
+ *
+ * a faulty rdev _never_ has rdev->sb set.
+ */
+static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
+{
+ int err;
+ struct md_rdev *rdev;
+ sector_t size;
+
+ rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
+ if (!rdev)
+ return ERR_PTR(-ENOMEM);
+
+ err = md_rdev_init(rdev);
+ if (err)
+ goto abort_free;
+ err = alloc_disk_sb(rdev);
+ if (err)
+ goto abort_free;
+
+ err = lock_rdev(rdev, newdev, super_format == -2);
+ if (err)
+ goto abort_free;
+
+ kobject_init(&rdev->kobj, &rdev_ktype);
+
+ size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS;
+ if (!size) {
+ pr_warn("md: %pg has zero or unknown size, marking faulty!\n",
+ rdev->bdev);
+ err = -EINVAL;
+ goto abort_free;
+ }
+
+ if (super_format >= 0) {
+ err = super_types[super_format].
+ load_super(rdev, NULL, super_minor);
+ if (err == -EINVAL) {
+ pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n",
+ rdev->bdev,
+ super_format, super_minor);
+ goto abort_free;
+ }
+ if (err < 0) {
+ pr_warn("md: could not read %pg's sb, not importing!\n",
+ rdev->bdev);
+ goto abort_free;
+ }
+ }
+
+ return rdev;
+
+abort_free:
+ if (rdev->bdev)
+ unlock_rdev(rdev);
+ md_rdev_clear(rdev);
+ kfree(rdev);
+ return ERR_PTR(err);
+}
+
+/*
+ * Check a full RAID array for plausibility
+ */
+
+static int analyze_sbs(struct mddev *mddev)
+{
+ int i;
+ struct md_rdev *rdev, *freshest, *tmp;
+
+ freshest = NULL;
+ rdev_for_each_safe(rdev, tmp, mddev)
+ switch (super_types[mddev->major_version].
+ load_super(rdev, freshest, mddev->minor_version)) {
+ case 1:
+ freshest = rdev;
+ break;
+ case 0:
+ break;
+ default:
+ pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n",
+ rdev->bdev);
+ md_kick_rdev_from_array(rdev);
+ }
+
+ /* Cannot find a valid fresh disk */
+ if (!freshest) {
+ pr_warn("md: cannot find a valid disk\n");
+ return -EINVAL;
+ }
+
+ super_types[mddev->major_version].
+ validate_super(mddev, freshest);
+
+ i = 0;
+ rdev_for_each_safe(rdev, tmp, mddev) {
+ if (mddev->max_disks &&
+ (rdev->desc_nr >= mddev->max_disks ||
+ i > mddev->max_disks)) {
+ pr_warn("md: %s: %pg: only %d devices permitted\n",
+ mdname(mddev), rdev->bdev,
+ mddev->max_disks);
+ md_kick_rdev_from_array(rdev);
+ continue;
+ }
+ if (rdev != freshest) {
+ if (super_types[mddev->major_version].
+ validate_super(mddev, rdev)) {
+ pr_warn("md: kicking non-fresh %pg from array!\n",
+ rdev->bdev);
+ md_kick_rdev_from_array(rdev);
+ continue;
+ }
+ }
+ if (mddev->level == LEVEL_MULTIPATH) {
+ rdev->desc_nr = i++;
+ rdev->raid_disk = rdev->desc_nr;
+ set_bit(In_sync, &rdev->flags);
+ } else if (rdev->raid_disk >=
+ (mddev->raid_disks - min(0, mddev->delta_disks)) &&
+ !test_bit(Journal, &rdev->flags)) {
+ rdev->raid_disk = -1;
+ clear_bit(In_sync, &rdev->flags);
+ }
+ }
+
+ return 0;
+}
+
+/* Read a fixed-point number.
+ * Numbers in sysfs attributes should be in "standard" units where
+ * possible, so time should be in seconds.
+ * However we internally use a a much smaller unit such as
+ * milliseconds or jiffies.
+ * This function takes a decimal number with a possible fractional
+ * component, and produces an integer which is the result of
+ * multiplying that number by 10^'scale'.
+ * all without any floating-point arithmetic.
+ */
+int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
+{
+ unsigned long result = 0;
+ long decimals = -1;
+ while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
+ if (*cp == '.')
+ decimals = 0;
+ else if (decimals < scale) {
+ unsigned int value;
+ value = *cp - '0';
+ result = result * 10 + value;
+ if (decimals >= 0)
+ decimals++;
+ }
+ cp++;
+ }
+ if (*cp == '\n')
+ cp++;
+ if (*cp)
+ return -EINVAL;
+ if (decimals < 0)
+ decimals = 0;
+ *res = result * int_pow(10, scale - decimals);
+ return 0;
+}
+
+static ssize_t
+safe_delay_show(struct mddev *mddev, char *page)
+{
+ unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ;
+
+ return sprintf(page, "%u.%03u\n", msec/1000, msec%1000);
+}
+static ssize_t
+safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
+{
+ unsigned long msec;
+
+ if (mddev_is_clustered(mddev)) {
+ pr_warn("md: Safemode is disabled for clustered mode\n");
+ return -EINVAL;
+ }
+
+ if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ)
+ return -EINVAL;
+ if (msec == 0)
+ mddev->safemode_delay = 0;
+ else {
+ unsigned long old_delay = mddev->safemode_delay;
+ unsigned long new_delay = (msec*HZ)/1000;
+
+ if (new_delay == 0)
+ new_delay = 1;
+ mddev->safemode_delay = new_delay;
+ if (new_delay < old_delay || old_delay == 0)
+ mod_timer(&mddev->safemode_timer, jiffies+1);
+ }
+ return len;
+}
+static struct md_sysfs_entry md_safe_delay =
+__ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
+
+static ssize_t
+level_show(struct mddev *mddev, char *page)
+{
+ struct md_personality *p;
+ int ret;
+ spin_lock(&mddev->lock);
+ p = mddev->pers;
+ if (p)
+ ret = sprintf(page, "%s\n", p->name);
+ else if (mddev->clevel[0])
+ ret = sprintf(page, "%s\n", mddev->clevel);
+ else if (mddev->level != LEVEL_NONE)
+ ret = sprintf(page, "%d\n", mddev->level);
+ else
+ ret = 0;
+ spin_unlock(&mddev->lock);
+ return ret;
+}
+
+static ssize_t
+level_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ char clevel[16];
+ ssize_t rv;
+ size_t slen = len;
+ struct md_personality *pers, *oldpers;
+ long level;
+ void *priv, *oldpriv;
+ struct md_rdev *rdev;
+
+ if (slen == 0 || slen >= sizeof(clevel))
+ return -EINVAL;
+
+ rv = mddev_lock(mddev);
+ if (rv)
+ return rv;
+
+ if (mddev->pers == NULL) {
+ strncpy(mddev->clevel, buf, slen);
+ if (mddev->clevel[slen-1] == '\n')
+ slen--;
+ mddev->clevel[slen] = 0;
+ mddev->level = LEVEL_NONE;
+ rv = len;
+ goto out_unlock;
+ }
+ rv = -EROFS;
+ if (!md_is_rdwr(mddev))
+ goto out_unlock;
+
+ /* request to change the personality. Need to ensure:
+ * - array is not engaged in resync/recovery/reshape
+ * - old personality can be suspended
+ * - new personality will access other array.
+ */
+
+ rv = -EBUSY;
+ if (mddev->sync_thread ||
+ test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
+ mddev->reshape_position != MaxSector ||
+ mddev->sysfs_active)
+ goto out_unlock;
+
+ rv = -EINVAL;
+ if (!mddev->pers->quiesce) {
+ pr_warn("md: %s: %s does not support online personality change\n",
+ mdname(mddev), mddev->pers->name);
+ goto out_unlock;
+ }
+
+ /* Now find the new personality */
+ strncpy(clevel, buf, slen);
+ if (clevel[slen-1] == '\n')
+ slen--;
+ clevel[slen] = 0;
+ if (kstrtol(clevel, 10, &level))
+ level = LEVEL_NONE;
+
+ if (request_module("md-%s", clevel) != 0)
+ request_module("md-level-%s", clevel);
+ spin_lock(&pers_lock);
+ pers = find_pers(level, clevel);
+ if (!pers || !try_module_get(pers->owner)) {
+ spin_unlock(&pers_lock);
+ pr_warn("md: personality %s not loaded\n", clevel);
+ rv = -EINVAL;
+ goto out_unlock;
+ }
+ spin_unlock(&pers_lock);
+
+ if (pers == mddev->pers) {
+ /* Nothing to do! */
+ module_put(pers->owner);
+ rv = len;
+ goto out_unlock;
+ }
+ if (!pers->takeover) {
+ module_put(pers->owner);
+ pr_warn("md: %s: %s does not support personality takeover\n",
+ mdname(mddev), clevel);
+ rv = -EINVAL;
+ goto out_unlock;
+ }
+
+ rdev_for_each(rdev, mddev)
+ rdev->new_raid_disk = rdev->raid_disk;
+
+ /* ->takeover must set new_* and/or delta_disks
+ * if it succeeds, and may set them when it fails.
+ */
+ priv = pers->takeover(mddev);
+ if (IS_ERR(priv)) {
+ mddev->new_level = mddev->level;
+ mddev->new_layout = mddev->layout;
+ mddev->new_chunk_sectors = mddev->chunk_sectors;
+ mddev->raid_disks -= mddev->delta_disks;
+ mddev->delta_disks = 0;
+ mddev->reshape_backwards = 0;
+ module_put(pers->owner);
+ pr_warn("md: %s: %s would not accept array\n",
+ mdname(mddev), clevel);
+ rv = PTR_ERR(priv);
+ goto out_unlock;
+ }
+
+ /* Looks like we have a winner */
+ mddev_suspend(mddev);
+ mddev_detach(mddev);
+
+ spin_lock(&mddev->lock);
+ oldpers = mddev->pers;
+ oldpriv = mddev->private;
+ mddev->pers = pers;
+ mddev->private = priv;
+ strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
+ mddev->level = mddev->new_level;
+ mddev->layout = mddev->new_layout;
+ mddev->chunk_sectors = mddev->new_chunk_sectors;
+ mddev->delta_disks = 0;
+ mddev->reshape_backwards = 0;
+ mddev->degraded = 0;
+ spin_unlock(&mddev->lock);
+
+ if (oldpers->sync_request == NULL &&
+ mddev->external) {
+ /* We are converting from a no-redundancy array
+ * to a redundancy array and metadata is managed
+ * externally so we need to be sure that writes
+ * won't block due to a need to transition
+ * clean->dirty
+ * until external management is started.
+ */
+ mddev->in_sync = 0;
+ mddev->safemode_delay = 0;
+ mddev->safemode = 0;
+ }
+
+ oldpers->free(mddev, oldpriv);
+
+ if (oldpers->sync_request == NULL &&
+ pers->sync_request != NULL) {
+ /* need to add the md_redundancy_group */
+ if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
+ pr_warn("md: cannot register extra attributes for %s\n",
+ mdname(mddev));
+ mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
+ mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
+ mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
+ }
+ if (oldpers->sync_request != NULL &&
+ pers->sync_request == NULL) {
+ /* need to remove the md_redundancy_group */
+ if (mddev->to_remove == NULL)
+ mddev->to_remove = &md_redundancy_group;
+ }
+
+ module_put(oldpers->owner);
+
+ rdev_for_each(rdev, mddev) {
+ if (rdev->raid_disk < 0)
+ continue;
+ if (rdev->new_raid_disk >= mddev->raid_disks)
+ rdev->new_raid_disk = -1;
+ if (rdev->new_raid_disk == rdev->raid_disk)
+ continue;
+ sysfs_unlink_rdev(mddev, rdev);
+ }
+ rdev_for_each(rdev, mddev) {
+ if (rdev->raid_disk < 0)
+ continue;
+ if (rdev->new_raid_disk == rdev->raid_disk)
+ continue;
+ rdev->raid_disk = rdev->new_raid_disk;
+ if (rdev->raid_disk < 0)
+ clear_bit(In_sync, &rdev->flags);
+ else {
+ if (sysfs_link_rdev(mddev, rdev))
+ pr_warn("md: cannot register rd%d for %s after level change\n",
+ rdev->raid_disk, mdname(mddev));
+ }
+ }
+
+ if (pers->sync_request == NULL) {
+ /* this is now an array without redundancy, so
+ * it must always be in_sync
+ */
+ mddev->in_sync = 1;
+ del_timer_sync(&mddev->safemode_timer);
+ }
+ blk_set_stacking_limits(&mddev->queue->limits);
+ pers->run(mddev);
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+ mddev_resume(mddev);
+ if (!mddev->thread)
+ md_update_sb(mddev, 1);
+ sysfs_notify_dirent_safe(mddev->sysfs_level);
+ md_new_event();
+ rv = len;
+out_unlock:
+ mddev_unlock(mddev);
+ return rv;
+}
+
+static struct md_sysfs_entry md_level =
+__ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
+
+static ssize_t
+layout_show(struct mddev *mddev, char *page)
+{
+ /* just a number, not meaningful for all levels */
+ if (mddev->reshape_position != MaxSector &&
+ mddev->layout != mddev->new_layout)
+ return sprintf(page, "%d (%d)\n",
+ mddev->new_layout, mddev->layout);
+ return sprintf(page, "%d\n", mddev->layout);
+}
+
+static ssize_t
+layout_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ unsigned int n;
+ int err;
+
+ err = kstrtouint(buf, 10, &n);
+ if (err < 0)
+ return err;
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+
+ if (mddev->pers) {
+ if (mddev->pers->check_reshape == NULL)
+ err = -EBUSY;
+ else if (!md_is_rdwr(mddev))
+ err = -EROFS;
+ else {
+ mddev->new_layout = n;
+ err = mddev->pers->check_reshape(mddev);
+ if (err)
+ mddev->new_layout = mddev->layout;
+ }
+ } else {
+ mddev->new_layout = n;
+ if (mddev->reshape_position == MaxSector)
+ mddev->layout = n;
+ }
+ mddev_unlock(mddev);
+ return err ?: len;
+}
+static struct md_sysfs_entry md_layout =
+__ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
+
+static ssize_t
+raid_disks_show(struct mddev *mddev, char *page)
+{
+ if (mddev->raid_disks == 0)
+ return 0;
+ if (mddev->reshape_position != MaxSector &&
+ mddev->delta_disks != 0)
+ return sprintf(page, "%d (%d)\n", mddev->raid_disks,
+ mddev->raid_disks - mddev->delta_disks);
+ return sprintf(page, "%d\n", mddev->raid_disks);
+}
+
+static int update_raid_disks(struct mddev *mddev, int raid_disks);
+
+static ssize_t
+raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ unsigned int n;
+ int err;
+
+ err = kstrtouint(buf, 10, &n);
+ if (err < 0)
+ return err;
+
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+ if (mddev->pers)
+ err = update_raid_disks(mddev, n);
+ else if (mddev->reshape_position != MaxSector) {
+ struct md_rdev *rdev;
+ int olddisks = mddev->raid_disks - mddev->delta_disks;
+
+ err = -EINVAL;
+ rdev_for_each(rdev, mddev) {
+ if (olddisks < n &&
+ rdev->data_offset < rdev->new_data_offset)
+ goto out_unlock;
+ if (olddisks > n &&
+ rdev->data_offset > rdev->new_data_offset)
+ goto out_unlock;
+ }
+ err = 0;
+ mddev->delta_disks = n - olddisks;
+ mddev->raid_disks = n;
+ mddev->reshape_backwards = (mddev->delta_disks < 0);
+ } else
+ mddev->raid_disks = n;
+out_unlock:
+ mddev_unlock(mddev);
+ return err ? err : len;
+}
+static struct md_sysfs_entry md_raid_disks =
+__ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
+
+static ssize_t
+uuid_show(struct mddev *mddev, char *page)
+{
+ return sprintf(page, "%pU\n", mddev->uuid);
+}
+static struct md_sysfs_entry md_uuid =
+__ATTR(uuid, S_IRUGO, uuid_show, NULL);
+
+static ssize_t
+chunk_size_show(struct mddev *mddev, char *page)
+{
+ if (mddev->reshape_position != MaxSector &&
+ mddev->chunk_sectors != mddev->new_chunk_sectors)
+ return sprintf(page, "%d (%d)\n",
+ mddev->new_chunk_sectors << 9,
+ mddev->chunk_sectors << 9);
+ return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
+}
+
+static ssize_t
+chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ unsigned long n;
+ int err;
+
+ err = kstrtoul(buf, 10, &n);
+ if (err < 0)
+ return err;
+
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+ if (mddev->pers) {
+ if (mddev->pers->check_reshape == NULL)
+ err = -EBUSY;
+ else if (!md_is_rdwr(mddev))
+ err = -EROFS;
+ else {
+ mddev->new_chunk_sectors = n >> 9;
+ err = mddev->pers->check_reshape(mddev);
+ if (err)
+ mddev->new_chunk_sectors = mddev->chunk_sectors;
+ }
+ } else {
+ mddev->new_chunk_sectors = n >> 9;
+ if (mddev->reshape_position == MaxSector)
+ mddev->chunk_sectors = n >> 9;
+ }
+ mddev_unlock(mddev);
+ return err ?: len;
+}
+static struct md_sysfs_entry md_chunk_size =
+__ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
+
+static ssize_t
+resync_start_show(struct mddev *mddev, char *page)
+{
+ if (mddev->recovery_cp == MaxSector)
+ return sprintf(page, "none\n");
+ return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
+}
+
+static ssize_t
+resync_start_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ unsigned long long n;
+ int err;
+
+ if (cmd_match(buf, "none"))
+ n = MaxSector;
+ else {
+ err = kstrtoull(buf, 10, &n);
+ if (err < 0)
+ return err;
+ if (n != (sector_t)n)
+ return -EINVAL;
+ }
+
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+ if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
+ err = -EBUSY;
+
+ if (!err) {
+ mddev->recovery_cp = n;
+ if (mddev->pers)
+ set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
+ }
+ mddev_unlock(mddev);
+ return err ?: len;
+}
+static struct md_sysfs_entry md_resync_start =
+__ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
+ resync_start_show, resync_start_store);
+
+/*
+ * The array state can be:
+ *
+ * clear
+ * No devices, no size, no level
+ * Equivalent to STOP_ARRAY ioctl
+ * inactive
+ * May have some settings, but array is not active
+ * all IO results in error
+ * When written, doesn't tear down array, but just stops it
+ * suspended (not supported yet)
+ * All IO requests will block. The array can be reconfigured.
+ * Writing this, if accepted, will block until array is quiescent
+ * readonly
+ * no resync can happen. no superblocks get written.
+ * write requests fail
+ * read-auto
+ * like readonly, but behaves like 'clean' on a write request.
+ *
+ * clean - no pending writes, but otherwise active.
+ * When written to inactive array, starts without resync
+ * If a write request arrives then
+ * if metadata is known, mark 'dirty' and switch to 'active'.
+ * if not known, block and switch to write-pending
+ * If written to an active array that has pending writes, then fails.
+ * active
+ * fully active: IO and resync can be happening.
+ * When written to inactive array, starts with resync
+ *
+ * write-pending
+ * clean, but writes are blocked waiting for 'active' to be written.
+ *
+ * active-idle
+ * like active, but no writes have been seen for a while (100msec).
+ *
+ * broken
+* Array is failed. It's useful because mounted-arrays aren't stopped
+* when array is failed, so this state will at least alert the user that
+* something is wrong.
+ */
+enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
+ write_pending, active_idle, broken, bad_word};
+static char *array_states[] = {
+ "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
+ "write-pending", "active-idle", "broken", NULL };
+
+static int match_word(const char *word, char **list)
+{
+ int n;
+ for (n=0; list[n]; n++)
+ if (cmd_match(word, list[n]))
+ break;
+ return n;
+}
+
+static ssize_t
+array_state_show(struct mddev *mddev, char *page)
+{
+ enum array_state st = inactive;
+
+ if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
+ switch(mddev->ro) {
+ case MD_RDONLY:
+ st = readonly;
+ break;
+ case MD_AUTO_READ:
+ st = read_auto;
+ break;
+ case MD_RDWR:
+ spin_lock(&mddev->lock);
+ if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
+ st = write_pending;
+ else if (mddev->in_sync)
+ st = clean;
+ else if (mddev->safemode)
+ st = active_idle;
+ else
+ st = active;
+ spin_unlock(&mddev->lock);
+ }
+
+ if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
+ st = broken;
+ } else {
+ if (list_empty(&mddev->disks) &&
+ mddev->raid_disks == 0 &&
+ mddev->dev_sectors == 0)
+ st = clear;
+ else
+ st = inactive;
+ }
+ return sprintf(page, "%s\n", array_states[st]);
+}
+
+static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
+static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
+static int restart_array(struct mddev *mddev);
+
+static ssize_t
+array_state_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ int err = 0;
+ enum array_state st = match_word(buf, array_states);
+
+ if (mddev->pers && (st == active || st == clean) &&
+ mddev->ro != MD_RDONLY) {
+ /* don't take reconfig_mutex when toggling between
+ * clean and active
+ */
+ spin_lock(&mddev->lock);
+ if (st == active) {
+ restart_array(mddev);
+ clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
+ md_wakeup_thread(mddev->thread);
+ wake_up(&mddev->sb_wait);
+ } else /* st == clean */ {
+ restart_array(mddev);
+ if (!set_in_sync(mddev))
+ err = -EBUSY;
+ }
+ if (!err)
+ sysfs_notify_dirent_safe(mddev->sysfs_state);
+ spin_unlock(&mddev->lock);
+ return err ?: len;
+ }
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+ err = -EINVAL;
+ switch(st) {
+ case bad_word:
+ break;
+ case clear:
+ /* stopping an active array */
+ err = do_md_stop(mddev, 0, NULL);
+ break;
+ case inactive:
+ /* stopping an active array */
+ if (mddev->pers)
+ err = do_md_stop(mddev, 2, NULL);
+ else
+ err = 0; /* already inactive */
+ break;
+ case suspended:
+ break; /* not supported yet */
+ case readonly:
+ if (mddev->pers)
+ err = md_set_readonly(mddev, NULL);
+ else {
+ mddev->ro = MD_RDONLY;
+ set_disk_ro(mddev->gendisk, 1);
+ err = do_md_run(mddev);
+ }
+ break;
+ case read_auto:
+ if (mddev->pers) {
+ if (md_is_rdwr(mddev))
+ err = md_set_readonly(mddev, NULL);
+ else if (mddev->ro == MD_RDONLY)
+ err = restart_array(mddev);
+ if (err == 0) {
+ mddev->ro = MD_AUTO_READ;
+ set_disk_ro(mddev->gendisk, 0);
+ }
+ } else {
+ mddev->ro = MD_AUTO_READ;
+ err = do_md_run(mddev);
+ }
+ break;
+ case clean:
+ if (mddev->pers) {
+ err = restart_array(mddev);
+ if (err)
+ break;
+ spin_lock(&mddev->lock);
+ if (!set_in_sync(mddev))
+ err = -EBUSY;
+ spin_unlock(&mddev->lock);
+ } else
+ err = -EINVAL;
+ break;
+ case active:
+ if (mddev->pers) {
+ err = restart_array(mddev);
+ if (err)
+ break;
+ clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
+ wake_up(&mddev->sb_wait);
+ err = 0;
+ } else {
+ mddev->ro = MD_RDWR;
+ set_disk_ro(mddev->gendisk, 0);
+ err = do_md_run(mddev);
+ }
+ break;
+ case write_pending:
+ case active_idle:
+ case broken:
+ /* these cannot be set */
+ break;
+ }
+
+ if (!err) {
+ if (mddev->hold_active == UNTIL_IOCTL)
+ mddev->hold_active = 0;
+ sysfs_notify_dirent_safe(mddev->sysfs_state);
+ }
+ mddev_unlock(mddev);
+ return err ?: len;
+}
+static struct md_sysfs_entry md_array_state =
+__ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
+
+static ssize_t
+max_corrected_read_errors_show(struct mddev *mddev, char *page) {
+ return sprintf(page, "%d\n",
+ atomic_read(&mddev->max_corr_read_errors));
+}
+
+static ssize_t
+max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ unsigned int n;
+ int rv;
+
+ rv = kstrtouint(buf, 10, &n);
+ if (rv < 0)
+ return rv;
+ if (n > INT_MAX)
+ return -EINVAL;
+ atomic_set(&mddev->max_corr_read_errors, n);
+ return len;
+}
+
+static struct md_sysfs_entry max_corr_read_errors =
+__ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
+ max_corrected_read_errors_store);
+
+static ssize_t
+null_show(struct mddev *mddev, char *page)
+{
+ return -EINVAL;
+}
+
+/* need to ensure rdev_delayed_delete() has completed */
+static void flush_rdev_wq(struct mddev *mddev)
+{
+ struct md_rdev *rdev;
+
+ rcu_read_lock();
+ rdev_for_each_rcu(rdev, mddev)
+ if (work_pending(&rdev->del_work)) {
+ flush_workqueue(md_rdev_misc_wq);
+ break;
+ }
+ rcu_read_unlock();
+}
+
+static ssize_t
+new_dev_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ /* buf must be %d:%d\n? giving major and minor numbers */
+ /* The new device is added to the array.
+ * If the array has a persistent superblock, we read the
+ * superblock to initialise info and check validity.
+ * Otherwise, only checking done is that in bind_rdev_to_array,
+ * which mainly checks size.
+ */
+ char *e;
+ int major = simple_strtoul(buf, &e, 10);
+ int minor;
+ dev_t dev;
+ struct md_rdev *rdev;
+ int err;
+
+ if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
+ return -EINVAL;
+ minor = simple_strtoul(e+1, &e, 10);
+ if (*e && *e != '\n')
+ return -EINVAL;
+ dev = MKDEV(major, minor);
+ if (major != MAJOR(dev) ||
+ minor != MINOR(dev))
+ return -EOVERFLOW;
+
+ flush_rdev_wq(mddev);
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+ if (mddev->persistent) {
+ rdev = md_import_device(dev, mddev->major_version,
+ mddev->minor_version);
+ if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
+ struct md_rdev *rdev0
+ = list_entry(mddev->disks.next,
+ struct md_rdev, same_set);
+ err = super_types[mddev->major_version]
+ .load_super(rdev, rdev0, mddev->minor_version);
+ if (err < 0)
+ goto out;
+ }
+ } else if (mddev->external)
+ rdev = md_import_device(dev, -2, -1);
+ else
+ rdev = md_import_device(dev, -1, -1);
+
+ if (IS_ERR(rdev)) {
+ mddev_unlock(mddev);
+ return PTR_ERR(rdev);
+ }
+ err = bind_rdev_to_array(rdev, mddev);
+ out:
+ if (err)
+ export_rdev(rdev);
+ mddev_unlock(mddev);
+ if (!err)
+ md_new_event();
+ return err ? err : len;
+}
+
+static struct md_sysfs_entry md_new_device =
+__ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
+
+static ssize_t
+bitmap_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ char *end;
+ unsigned long chunk, end_chunk;
+ int err;
+
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+ if (!mddev->bitmap)
+ goto out;
+ /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
+ while (*buf) {
+ chunk = end_chunk = simple_strtoul(buf, &end, 0);
+ if (buf == end) break;
+ if (*end == '-') { /* range */
+ buf = end + 1;
+ end_chunk = simple_strtoul(buf, &end, 0);
+ if (buf == end) break;
+ }
+ if (*end && !isspace(*end)) break;
+ md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
+ buf = skip_spaces(end);
+ }
+ md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
+out:
+ mddev_unlock(mddev);
+ return len;
+}
+
+static struct md_sysfs_entry md_bitmap =
+__ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
+
+static ssize_t
+size_show(struct mddev *mddev, char *page)
+{
+ return sprintf(page, "%llu\n",
+ (unsigned long long)mddev->dev_sectors / 2);
+}
+
+static int update_size(struct mddev *mddev, sector_t num_sectors);
+
+static ssize_t
+size_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ /* If array is inactive, we can reduce the component size, but
+ * not increase it (except from 0).
+ * If array is active, we can try an on-line resize
+ */
+ sector_t sectors;
+ int err = strict_blocks_to_sectors(buf, &sectors);
+
+ if (err < 0)
+ return err;
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+ if (mddev->pers) {
+ err = update_size(mddev, sectors);
+ if (err == 0)
+ md_update_sb(mddev, 1);
+ } else {
+ if (mddev->dev_sectors == 0 ||
+ mddev->dev_sectors > sectors)
+ mddev->dev_sectors = sectors;
+ else
+ err = -ENOSPC;
+ }
+ mddev_unlock(mddev);
+ return err ? err : len;
+}
+
+static struct md_sysfs_entry md_size =
+__ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
+
+/* Metadata version.
+ * This is one of
+ * 'none' for arrays with no metadata (good luck...)
+ * 'external' for arrays with externally managed metadata,
+ * or N.M for internally known formats
+ */
+static ssize_t
+metadata_show(struct mddev *mddev, char *page)
+{
+ if (mddev->persistent)
+ return sprintf(page, "%d.%d\n",
+ mddev->major_version, mddev->minor_version);
+ else if (mddev->external)
+ return sprintf(page, "external:%s\n", mddev->metadata_type);
+ else
+ return sprintf(page, "none\n");
+}
+
+static ssize_t
+metadata_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ int major, minor;
+ char *e;
+ int err;
+ /* Changing the details of 'external' metadata is
+ * always permitted. Otherwise there must be
+ * no devices attached to the array.
+ */
+
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+ err = -EBUSY;
+ if (mddev->external && strncmp(buf, "external:", 9) == 0)
+ ;
+ else if (!list_empty(&mddev->disks))
+ goto out_unlock;
+
+ err = 0;
+ if (cmd_match(buf, "none")) {
+ mddev->persistent = 0;
+ mddev->external = 0;
+ mddev->major_version = 0;
+ mddev->minor_version = 90;
+ goto out_unlock;
+ }
+ if (strncmp(buf, "external:", 9) == 0) {
+ size_t namelen = len-9;
+ if (namelen >= sizeof(mddev->metadata_type))
+ namelen = sizeof(mddev->metadata_type)-1;
+ strncpy(mddev->metadata_type, buf+9, namelen);
+ mddev->metadata_type[namelen] = 0;
+ if (namelen && mddev->metadata_type[namelen-1] == '\n')
+ mddev->metadata_type[--namelen] = 0;
+ mddev->persistent = 0;
+ mddev->external = 1;
+ mddev->major_version = 0;
+ mddev->minor_version = 90;
+ goto out_unlock;
+ }
+ major = simple_strtoul(buf, &e, 10);
+ err = -EINVAL;
+ if (e==buf || *e != '.')
+ goto out_unlock;
+ buf = e+1;
+ minor = simple_strtoul(buf, &e, 10);
+ if (e==buf || (*e && *e != '\n') )
+ goto out_unlock;
+ err = -ENOENT;
+ if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
+ goto out_unlock;
+ mddev->major_version = major;
+ mddev->minor_version = minor;
+ mddev->persistent = 1;
+ mddev->external = 0;
+ err = 0;
+out_unlock:
+ mddev_unlock(mddev);
+ return err ?: len;
+}
+
+static struct md_sysfs_entry md_metadata =
+__ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
+
+static ssize_t
+action_show(struct mddev *mddev, char *page)
+{
+ char *type = "idle";
+ unsigned long recovery = mddev->recovery;
+ if (test_bit(MD_RECOVERY_FROZEN, &recovery))
+ type = "frozen";
+ else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
+ (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
+ if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
+ type = "reshape";
+ else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
+ if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
+ type = "resync";
+ else if (test_bit(MD_RECOVERY_CHECK, &recovery))
+ type = "check";
+ else
+ type = "repair";
+ } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
+ type = "recover";
+ else if (mddev->reshape_position != MaxSector)
+ type = "reshape";
+ }
+ return sprintf(page, "%s\n", type);
+}
+
+static ssize_t
+action_store(struct mddev *mddev, const char *page, size_t len)
+{
+ if (!mddev->pers || !mddev->pers->sync_request)
+ return -EINVAL;
+
+
+ if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
+ if (cmd_match(page, "frozen"))
+ set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+ else
+ clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+ if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
+ mddev_lock(mddev) == 0) {
+ if (work_pending(&mddev->del_work))
+ flush_workqueue(md_misc_wq);
+ if (mddev->sync_thread) {
+ sector_t save_rp = mddev->reshape_position;
+
+ mddev_unlock(mddev);
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ md_unregister_thread(&mddev->sync_thread);
+ mddev_lock_nointr(mddev);
+ /*
+ * set RECOVERY_INTR again and restore reshape
+ * position in case others changed them after
+ * got lock, eg, reshape_position_store and
+ * md_check_recovery.
+ */
+ mddev->reshape_position = save_rp;
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ md_reap_sync_thread(mddev);
+ }
+ mddev_unlock(mddev);
+ }
+ } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
+ return -EBUSY;
+ else if (cmd_match(page, "resync"))
+ clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+ else if (cmd_match(page, "recover")) {
+ clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+ set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
+ } else if (cmd_match(page, "reshape")) {
+ int err;
+ if (mddev->pers->start_reshape == NULL)
+ return -EINVAL;
+ err = mddev_lock(mddev);
+ if (!err) {
+ if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
+ err = -EBUSY;
+ else {
+ clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+ err = mddev->pers->start_reshape(mddev);
+ }
+ mddev_unlock(mddev);
+ }
+ if (err)
+ return err;
+ sysfs_notify_dirent_safe(mddev->sysfs_degraded);
+ } else {
+ if (cmd_match(page, "check"))
+ set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
+ else if (!cmd_match(page, "repair"))
+ return -EINVAL;
+ clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+ set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
+ set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+ }
+ if (mddev->ro == MD_AUTO_READ) {
+ /* A write to sync_action is enough to justify
+ * canceling read-auto mode
+ */
+ mddev->ro = MD_RDWR;
+ md_wakeup_thread(mddev->sync_thread);
+ }
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ md_wakeup_thread(mddev->thread);
+ sysfs_notify_dirent_safe(mddev->sysfs_action);
+ return len;
+}
+
+static struct md_sysfs_entry md_scan_mode =
+__ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
+
+static ssize_t
+last_sync_action_show(struct mddev *mddev, char *page)
+{
+ return sprintf(page, "%s\n", mddev->last_sync_action);
+}
+
+static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
+
+static ssize_t
+mismatch_cnt_show(struct mddev *mddev, char *page)
+{
+ return sprintf(page, "%llu\n",
+ (unsigned long long)
+ atomic64_read(&mddev->resync_mismatches));
+}
+
+static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
+
+static ssize_t
+sync_min_show(struct mddev *mddev, char *page)
+{
+ return sprintf(page, "%d (%s)\n", speed_min(mddev),
+ mddev->sync_speed_min ? "local": "system");
+}
+
+static ssize_t
+sync_min_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ unsigned int min;
+ int rv;
+
+ if (strncmp(buf, "system", 6)==0) {
+ min = 0;
+ } else {
+ rv = kstrtouint(buf, 10, &min);
+ if (rv < 0)
+ return rv;
+ if (min == 0)
+ return -EINVAL;
+ }
+ mddev->sync_speed_min = min;
+ return len;
+}
+
+static struct md_sysfs_entry md_sync_min =
+__ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
+
+static ssize_t
+sync_max_show(struct mddev *mddev, char *page)
+{
+ return sprintf(page, "%d (%s)\n", speed_max(mddev),
+ mddev->sync_speed_max ? "local": "system");
+}
+
+static ssize_t
+sync_max_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ unsigned int max;
+ int rv;
+
+ if (strncmp(buf, "system", 6)==0) {
+ max = 0;
+ } else {
+ rv = kstrtouint(buf, 10, &max);
+ if (rv < 0)
+ return rv;
+ if (max == 0)
+ return -EINVAL;
+ }
+ mddev->sync_speed_max = max;
+ return len;
+}
+
+static struct md_sysfs_entry md_sync_max =
+__ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
+
+static ssize_t
+degraded_show(struct mddev *mddev, char *page)
+{
+ return sprintf(page, "%d\n", mddev->degraded);
+}
+static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
+
+static ssize_t
+sync_force_parallel_show(struct mddev *mddev, char *page)
+{
+ return sprintf(page, "%d\n", mddev->parallel_resync);
+}
+
+static ssize_t
+sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ long n;
+
+ if (kstrtol(buf, 10, &n))
+ return -EINVAL;
+
+ if (n != 0 && n != 1)
+ return -EINVAL;
+
+ mddev->parallel_resync = n;
+
+ if (mddev->sync_thread)
+ wake_up(&resync_wait);
+
+ return len;
+}
+
+/* force parallel resync, even with shared block devices */
+static struct md_sysfs_entry md_sync_force_parallel =
+__ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
+ sync_force_parallel_show, sync_force_parallel_store);
+
+static ssize_t
+sync_speed_show(struct mddev *mddev, char *page)
+{
+ unsigned long resync, dt, db;
+ if (mddev->curr_resync == MD_RESYNC_NONE)
+ return sprintf(page, "none\n");
+ resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
+ dt = (jiffies - mddev->resync_mark) / HZ;
+ if (!dt) dt++;
+ db = resync - mddev->resync_mark_cnt;
+ return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
+}
+
+static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
+
+static ssize_t
+sync_completed_show(struct mddev *mddev, char *page)
+{
+ unsigned long long max_sectors, resync;
+
+ if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
+ return sprintf(page, "none\n");
+
+ if (mddev->curr_resync == MD_RESYNC_YIELDED ||
+ mddev->curr_resync == MD_RESYNC_DELAYED)
+ return sprintf(page, "delayed\n");
+
+ if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
+ test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
+ max_sectors = mddev->resync_max_sectors;
+ else
+ max_sectors = mddev->dev_sectors;
+
+ resync = mddev->curr_resync_completed;
+ return sprintf(page, "%llu / %llu\n", resync, max_sectors);
+}
+
+static struct md_sysfs_entry md_sync_completed =
+ __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
+
+static ssize_t
+min_sync_show(struct mddev *mddev, char *page)
+{
+ return sprintf(page, "%llu\n",
+ (unsigned long long)mddev->resync_min);
+}
+static ssize_t
+min_sync_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ unsigned long long min;
+ int err;
+
+ if (kstrtoull(buf, 10, &min))
+ return -EINVAL;
+
+ spin_lock(&mddev->lock);
+ err = -EINVAL;
+ if (min > mddev->resync_max)
+ goto out_unlock;
+
+ err = -EBUSY;
+ if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
+ goto out_unlock;
+
+ /* Round down to multiple of 4K for safety */
+ mddev->resync_min = round_down(min, 8);
+ err = 0;
+
+out_unlock:
+ spin_unlock(&mddev->lock);
+ return err ?: len;
+}
+
+static struct md_sysfs_entry md_min_sync =
+__ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
+
+static ssize_t
+max_sync_show(struct mddev *mddev, char *page)
+{
+ if (mddev->resync_max == MaxSector)
+ return sprintf(page, "max\n");
+ else
+ return sprintf(page, "%llu\n",
+ (unsigned long long)mddev->resync_max);
+}
+static ssize_t
+max_sync_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ int err;
+ spin_lock(&mddev->lock);
+ if (strncmp(buf, "max", 3) == 0)
+ mddev->resync_max = MaxSector;
+ else {
+ unsigned long long max;
+ int chunk;
+
+ err = -EINVAL;
+ if (kstrtoull(buf, 10, &max))
+ goto out_unlock;
+ if (max < mddev->resync_min)
+ goto out_unlock;
+
+ err = -EBUSY;
+ if (max < mddev->resync_max && md_is_rdwr(mddev) &&
+ test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
+ goto out_unlock;
+
+ /* Must be a multiple of chunk_size */
+ chunk = mddev->chunk_sectors;
+ if (chunk) {
+ sector_t temp = max;
+
+ err = -EINVAL;
+ if (sector_div(temp, chunk))
+ goto out_unlock;
+ }
+ mddev->resync_max = max;
+ }
+ wake_up(&mddev->recovery_wait);
+ err = 0;
+out_unlock:
+ spin_unlock(&mddev->lock);
+ return err ?: len;
+}
+
+static struct md_sysfs_entry md_max_sync =
+__ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
+
+static ssize_t
+suspend_lo_show(struct mddev *mddev, char *page)
+{
+ return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
+}
+
+static ssize_t
+suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ unsigned long long new;
+ int err;
+
+ err = kstrtoull(buf, 10, &new);
+ if (err < 0)
+ return err;
+ if (new != (sector_t)new)
+ return -EINVAL;
+
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+ err = -EINVAL;
+ if (mddev->pers == NULL ||
+ mddev->pers->quiesce == NULL)
+ goto unlock;
+ mddev_suspend(mddev);
+ mddev->suspend_lo = new;
+ mddev_resume(mddev);
+
+ err = 0;
+unlock:
+ mddev_unlock(mddev);
+ return err ?: len;
+}
+static struct md_sysfs_entry md_suspend_lo =
+__ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
+
+static ssize_t
+suspend_hi_show(struct mddev *mddev, char *page)
+{
+ return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
+}
+
+static ssize_t
+suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ unsigned long long new;
+ int err;
+
+ err = kstrtoull(buf, 10, &new);
+ if (err < 0)
+ return err;
+ if (new != (sector_t)new)
+ return -EINVAL;
+
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+ err = -EINVAL;
+ if (mddev->pers == NULL)
+ goto unlock;
+
+ mddev_suspend(mddev);
+ mddev->suspend_hi = new;
+ mddev_resume(mddev);
+
+ err = 0;
+unlock:
+ mddev_unlock(mddev);
+ return err ?: len;
+}
+static struct md_sysfs_entry md_suspend_hi =
+__ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
+
+static ssize_t
+reshape_position_show(struct mddev *mddev, char *page)
+{
+ if (mddev->reshape_position != MaxSector)
+ return sprintf(page, "%llu\n",
+ (unsigned long long)mddev->reshape_position);
+ strcpy(page, "none\n");
+ return 5;
+}
+
+static ssize_t
+reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ struct md_rdev *rdev;
+ unsigned long long new;
+ int err;
+
+ err = kstrtoull(buf, 10, &new);
+ if (err < 0)
+ return err;
+ if (new != (sector_t)new)
+ return -EINVAL;
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+ err = -EBUSY;
+ if (mddev->pers)
+ goto unlock;
+ mddev->reshape_position = new;
+ mddev->delta_disks = 0;
+ mddev->reshape_backwards = 0;
+ mddev->new_level = mddev->level;
+ mddev->new_layout = mddev->layout;
+ mddev->new_chunk_sectors = mddev->chunk_sectors;
+ rdev_for_each(rdev, mddev)
+ rdev->new_data_offset = rdev->data_offset;
+ err = 0;
+unlock:
+ mddev_unlock(mddev);
+ return err ?: len;
+}
+
+static struct md_sysfs_entry md_reshape_position =
+__ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
+ reshape_position_store);
+
+static ssize_t
+reshape_direction_show(struct mddev *mddev, char *page)
+{
+ return sprintf(page, "%s\n",
+ mddev->reshape_backwards ? "backwards" : "forwards");
+}
+
+static ssize_t
+reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ int backwards = 0;
+ int err;
+
+ if (cmd_match(buf, "forwards"))
+ backwards = 0;
+ else if (cmd_match(buf, "backwards"))
+ backwards = 1;
+ else
+ return -EINVAL;
+ if (mddev->reshape_backwards == backwards)
+ return len;
+
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+ /* check if we are allowed to change */
+ if (mddev->delta_disks)
+ err = -EBUSY;
+ else if (mddev->persistent &&
+ mddev->major_version == 0)
+ err = -EINVAL;
+ else
+ mddev->reshape_backwards = backwards;
+ mddev_unlock(mddev);
+ return err ?: len;
+}
+
+static struct md_sysfs_entry md_reshape_direction =
+__ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
+ reshape_direction_store);
+
+static ssize_t
+array_size_show(struct mddev *mddev, char *page)
+{
+ if (mddev->external_size)
+ return sprintf(page, "%llu\n",
+ (unsigned long long)mddev->array_sectors/2);
+ else
+ return sprintf(page, "default\n");
+}
+
+static ssize_t
+array_size_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ sector_t sectors;
+ int err;
+
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+
+ /* cluster raid doesn't support change array_sectors */
+ if (mddev_is_clustered(mddev)) {
+ mddev_unlock(mddev);
+ return -EINVAL;
+ }
+
+ if (strncmp(buf, "default", 7) == 0) {
+ if (mddev->pers)
+ sectors = mddev->pers->size(mddev, 0, 0);
+ else
+ sectors = mddev->array_sectors;
+
+ mddev->external_size = 0;
+ } else {
+ if (strict_blocks_to_sectors(buf, &sectors) < 0)
+ err = -EINVAL;
+ else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
+ err = -E2BIG;
+ else
+ mddev->external_size = 1;
+ }
+
+ if (!err) {
+ mddev->array_sectors = sectors;
+ if (mddev->pers)
+ set_capacity_and_notify(mddev->gendisk,
+ mddev->array_sectors);
+ }
+ mddev_unlock(mddev);
+ return err ?: len;
+}
+
+static struct md_sysfs_entry md_array_size =
+__ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
+ array_size_store);
+
+static ssize_t
+consistency_policy_show(struct mddev *mddev, char *page)
+{
+ int ret;
+
+ if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
+ ret = sprintf(page, "journal\n");
+ } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
+ ret = sprintf(page, "ppl\n");
+ } else if (mddev->bitmap) {
+ ret = sprintf(page, "bitmap\n");
+ } else if (mddev->pers) {
+ if (mddev->pers->sync_request)
+ ret = sprintf(page, "resync\n");
+ else
+ ret = sprintf(page, "none\n");
+ } else {
+ ret = sprintf(page, "unknown\n");
+ }
+
+ return ret;
+}
+
+static ssize_t
+consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ int err = 0;
+
+ if (mddev->pers) {
+ if (mddev->pers->change_consistency_policy)
+ err = mddev->pers->change_consistency_policy(mddev, buf);
+ else
+ err = -EBUSY;
+ } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
+ set_bit(MD_HAS_PPL, &mddev->flags);
+ } else {
+ err = -EINVAL;
+ }
+
+ return err ? err : len;
+}
+
+static struct md_sysfs_entry md_consistency_policy =
+__ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
+ consistency_policy_store);
+
+static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
+{
+ return sprintf(page, "%d\n", mddev->fail_last_dev);
+}
+
+/*
+ * Setting fail_last_dev to true to allow last device to be forcibly removed
+ * from RAID1/RAID10.
+ */
+static ssize_t
+fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ int ret;
+ bool value;
+
+ ret = kstrtobool(buf, &value);
+ if (ret)
+ return ret;
+
+ if (value != mddev->fail_last_dev)
+ mddev->fail_last_dev = value;
+
+ return len;
+}
+static struct md_sysfs_entry md_fail_last_dev =
+__ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
+ fail_last_dev_store);
+
+static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
+{
+ if (mddev->pers == NULL || (mddev->pers->level != 1))
+ return sprintf(page, "n/a\n");
+ else
+ return sprintf(page, "%d\n", mddev->serialize_policy);
+}
+
+/*
+ * Setting serialize_policy to true to enforce write IO is not reordered
+ * for raid1.
+ */
+static ssize_t
+serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
+{
+ int err;
+ bool value;
+
+ err = kstrtobool(buf, &value);
+ if (err)
+ return err;
+
+ if (value == mddev->serialize_policy)
+ return len;
+
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+ if (mddev->pers == NULL || (mddev->pers->level != 1)) {
+ pr_err("md: serialize_policy is only effective for raid1\n");
+ err = -EINVAL;
+ goto unlock;
+ }
+
+ mddev_suspend(mddev);
+ if (value)
+ mddev_create_serial_pool(mddev, NULL, true);
+ else
+ mddev_destroy_serial_pool(mddev, NULL, true);
+ mddev->serialize_policy = value;
+ mddev_resume(mddev);
+unlock:
+ mddev_unlock(mddev);
+ return err ?: len;
+}
+
+static struct md_sysfs_entry md_serialize_policy =
+__ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
+ serialize_policy_store);
+
+
+static struct attribute *md_default_attrs[] = {
+ &md_level.attr,
+ &md_layout.attr,
+ &md_raid_disks.attr,
+ &md_uuid.attr,
+ &md_chunk_size.attr,
+ &md_size.attr,
+ &md_resync_start.attr,
+ &md_metadata.attr,
+ &md_new_device.attr,
+ &md_safe_delay.attr,
+ &md_array_state.attr,
+ &md_reshape_position.attr,
+ &md_reshape_direction.attr,
+ &md_array_size.attr,
+ &max_corr_read_errors.attr,
+ &md_consistency_policy.attr,
+ &md_fail_last_dev.attr,
+ &md_serialize_policy.attr,
+ NULL,
+};
+
+static const struct attribute_group md_default_group = {
+ .attrs = md_default_attrs,
+};
+
+static struct attribute *md_redundancy_attrs[] = {
+ &md_scan_mode.attr,
+ &md_last_scan_mode.attr,
+ &md_mismatches.attr,
+ &md_sync_min.attr,
+ &md_sync_max.attr,
+ &md_sync_speed.attr,
+ &md_sync_force_parallel.attr,
+ &md_sync_completed.attr,
+ &md_min_sync.attr,
+ &md_max_sync.attr,
+ &md_suspend_lo.attr,
+ &md_suspend_hi.attr,
+ &md_bitmap.attr,
+ &md_degraded.attr,
+ NULL,
+};
+static const struct attribute_group md_redundancy_group = {
+ .name = NULL,
+ .attrs = md_redundancy_attrs,
+};
+
+static const struct attribute_group *md_attr_groups[] = {
+ &md_default_group,
+ &md_bitmap_group,
+ NULL,
+};
+
+static ssize_t
+md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
+{
+ struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
+ struct mddev *mddev = container_of(kobj, struct mddev, kobj);
+ ssize_t rv;
+
+ if (!entry->show)
+ return -EIO;
+ spin_lock(&all_mddevs_lock);
+ if (!mddev_get(mddev)) {
+ spin_unlock(&all_mddevs_lock);
+ return -EBUSY;
+ }
+ spin_unlock(&all_mddevs_lock);
+
+ rv = entry->show(mddev, page);
+ mddev_put(mddev);
+ return rv;
+}
+
+static ssize_t
+md_attr_store(struct kobject *kobj, struct attribute *attr,
+ const char *page, size_t length)
+{
+ struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
+ struct mddev *mddev = container_of(kobj, struct mddev, kobj);
+ ssize_t rv;
+
+ if (!entry->store)
+ return -EIO;
+ if (!capable(CAP_SYS_ADMIN))
+ return -EACCES;
+ spin_lock(&all_mddevs_lock);
+ if (!mddev_get(mddev)) {
+ spin_unlock(&all_mddevs_lock);
+ return -EBUSY;
+ }
+ spin_unlock(&all_mddevs_lock);
+ rv = entry->store(mddev, page, length);
+ mddev_put(mddev);
+ return rv;
+}
+
+static void md_kobj_release(struct kobject *ko)
+{
+ struct mddev *mddev = container_of(ko, struct mddev, kobj);
+
+ if (mddev->sysfs_state)
+ sysfs_put(mddev->sysfs_state);
+ if (mddev->sysfs_level)
+ sysfs_put(mddev->sysfs_level);
+
+ del_gendisk(mddev->gendisk);
+ put_disk(mddev->gendisk);
+}
+
+static const struct sysfs_ops md_sysfs_ops = {
+ .show = md_attr_show,
+ .store = md_attr_store,
+};
+static struct kobj_type md_ktype = {
+ .release = md_kobj_release,
+ .sysfs_ops = &md_sysfs_ops,
+ .default_groups = md_attr_groups,
+};
+
+int mdp_major = 0;
+
+static void mddev_delayed_delete(struct work_struct *ws)
+{
+ struct mddev *mddev = container_of(ws, struct mddev, del_work);
+
+ kobject_put(&mddev->kobj);
+}
+
+static void no_op(struct percpu_ref *r) {}
+
+int mddev_init_writes_pending(struct mddev *mddev)
+{
+ if (mddev->writes_pending.percpu_count_ptr)
+ return 0;
+ if (percpu_ref_init(&mddev->writes_pending, no_op,
+ PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
+ return -ENOMEM;
+ /* We want to start with the refcount at zero */
+ percpu_ref_put(&mddev->writes_pending);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
+
+struct mddev *md_alloc(dev_t dev, char *name)
+{
+ /*
+ * If dev is zero, name is the name of a device to allocate with
+ * an arbitrary minor number. It will be "md_???"
+ * If dev is non-zero it must be a device number with a MAJOR of
+ * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
+ * the device is being created by opening a node in /dev.
+ * If "name" is not NULL, the device is being created by
+ * writing to /sys/module/md_mod/parameters/new_array.
+ */
+ static DEFINE_MUTEX(disks_mutex);
+ struct mddev *mddev;
+ struct gendisk *disk;
+ int partitioned;
+ int shift;
+ int unit;
+ int error ;
+
+ /*
+ * Wait for any previous instance of this device to be completely
+ * removed (mddev_delayed_delete).
+ */
+ flush_workqueue(md_misc_wq);
+ flush_workqueue(md_rdev_misc_wq);
+
+ mutex_lock(&disks_mutex);
+ mddev = mddev_alloc(dev);
+ if (IS_ERR(mddev)) {
+ error = PTR_ERR(mddev);
+ goto out_unlock;
+ }
+
+ partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
+ shift = partitioned ? MdpMinorShift : 0;
+ unit = MINOR(mddev->unit) >> shift;
+
+ if (name && !dev) {
+ /* Need to ensure that 'name' is not a duplicate.
+ */
+ struct mddev *mddev2;
+ spin_lock(&all_mddevs_lock);
+
+ list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
+ if (mddev2->gendisk &&
+ strcmp(mddev2->gendisk->disk_name, name) == 0) {
+ spin_unlock(&all_mddevs_lock);
+ error = -EEXIST;
+ goto out_free_mddev;
+ }
+ spin_unlock(&all_mddevs_lock);
+ }
+ if (name && dev)
+ /*
+ * Creating /dev/mdNNN via "newarray", so adjust hold_active.
+ */
+ mddev->hold_active = UNTIL_STOP;
+
+ error = -ENOMEM;
+ disk = blk_alloc_disk(NUMA_NO_NODE);
+ if (!disk)
+ goto out_free_mddev;
+
+ disk->major = MAJOR(mddev->unit);
+ disk->first_minor = unit << shift;
+ disk->minors = 1 << shift;
+ if (name)
+ strcpy(disk->disk_name, name);
+ else if (partitioned)
+ sprintf(disk->disk_name, "md_d%d", unit);
+ else
+ sprintf(disk->disk_name, "md%d", unit);
+ disk->fops = &md_fops;
+ disk->private_data = mddev;
+
+ mddev->queue = disk->queue;
+ blk_set_stacking_limits(&mddev->queue->limits);
+ blk_queue_write_cache(mddev->queue, true, true);
+ disk->events |= DISK_EVENT_MEDIA_CHANGE;
+ mddev->gendisk = disk;
+ error = add_disk(disk);
+ if (error)
+ goto out_put_disk;
+
+ kobject_init(&mddev->kobj, &md_ktype);
+ error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
+ if (error) {
+ /*
+ * The disk is already live at this point. Clear the hold flag
+ * and let mddev_put take care of the deletion, as it isn't any
+ * different from a normal close on last release now.
+ */
+ mddev->hold_active = 0;
+ mutex_unlock(&disks_mutex);
+ mddev_put(mddev);
+ return ERR_PTR(error);
+ }
+
+ kobject_uevent(&mddev->kobj, KOBJ_ADD);
+ mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
+ mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
+ mutex_unlock(&disks_mutex);
+ return mddev;
+
+out_put_disk:
+ put_disk(disk);
+out_free_mddev:
+ mddev_free(mddev);
+out_unlock:
+ mutex_unlock(&disks_mutex);
+ return ERR_PTR(error);
+}
+
+static int md_alloc_and_put(dev_t dev, char *name)
+{
+ struct mddev *mddev = md_alloc(dev, name);
+
+ if (IS_ERR(mddev))
+ return PTR_ERR(mddev);
+ mddev_put(mddev);
+ return 0;
+}
+
+static void md_probe(dev_t dev)
+{
+ if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
+ return;
+ if (create_on_open)
+ md_alloc_and_put(dev, NULL);
+}
+
+static int add_named_array(const char *val, const struct kernel_param *kp)
+{
+ /*
+ * val must be "md_*" or "mdNNN".
+ * For "md_*" we allocate an array with a large free minor number, and
+ * set the name to val. val must not already be an active name.
+ * For "mdNNN" we allocate an array with the minor number NNN
+ * which must not already be in use.
+ */
+ int len = strlen(val);
+ char buf[DISK_NAME_LEN];
+ unsigned long devnum;
+
+ while (len && val[len-1] == '\n')
+ len--;
+ if (len >= DISK_NAME_LEN)
+ return -E2BIG;
+ strscpy(buf, val, len+1);
+ if (strncmp(buf, "md_", 3) == 0)
+ return md_alloc_and_put(0, buf);
+ if (strncmp(buf, "md", 2) == 0 &&
+ isdigit(buf[2]) &&
+ kstrtoul(buf+2, 10, &devnum) == 0 &&
+ devnum <= MINORMASK)
+ return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL);
+
+ return -EINVAL;
+}
+
+static void md_safemode_timeout(struct timer_list *t)
+{
+ struct mddev *mddev = from_timer(mddev, t, safemode_timer);
+
+ mddev->safemode = 1;
+ if (mddev->external)
+ sysfs_notify_dirent_safe(mddev->sysfs_state);
+
+ md_wakeup_thread(mddev->thread);
+}
+
+static int start_dirty_degraded;
+static void active_io_release(struct percpu_ref *ref)
+{
+ struct mddev *mddev = container_of(ref, struct mddev, active_io);
+
+ wake_up(&mddev->sb_wait);
+}
+
+int md_run(struct mddev *mddev)
+{
+ int err;
+ struct md_rdev *rdev;
+ struct md_personality *pers;
+ bool nowait = true;
+
+ if (list_empty(&mddev->disks))
+ /* cannot run an array with no devices.. */
+ return -EINVAL;
+
+ if (mddev->pers)
+ return -EBUSY;
+ /* Cannot run until previous stop completes properly */
+ if (mddev->sysfs_active)
+ return -EBUSY;
+
+ /*
+ * Analyze all RAID superblock(s)
+ */
+ if (!mddev->raid_disks) {
+ if (!mddev->persistent)
+ return -EINVAL;
+ err = analyze_sbs(mddev);
+ if (err)
+ return -EINVAL;
+ }
+
+ if (mddev->level != LEVEL_NONE)
+ request_module("md-level-%d", mddev->level);
+ else if (mddev->clevel[0])
+ request_module("md-%s", mddev->clevel);
+
+ /*
+ * Drop all container device buffers, from now on
+ * the only valid external interface is through the md
+ * device.
+ */
+ mddev->has_superblocks = false;
+ rdev_for_each(rdev, mddev) {
+ if (test_bit(Faulty, &rdev->flags))
+ continue;
+ sync_blockdev(rdev->bdev);
+ invalidate_bdev(rdev->bdev);
+ if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) {
+ mddev->ro = MD_RDONLY;
+ if (mddev->gendisk)
+ set_disk_ro(mddev->gendisk, 1);
+ }
+
+ if (rdev->sb_page)
+ mddev->has_superblocks = true;
+
+ /* perform some consistency tests on the device.
+ * We don't want the data to overlap the metadata,
+ * Internal Bitmap issues have been handled elsewhere.
+ */
+ if (rdev->meta_bdev) {
+ /* Nothing to check */;
+ } else if (rdev->data_offset < rdev->sb_start) {
+ if (mddev->dev_sectors &&
+ rdev->data_offset + mddev->dev_sectors
+ > rdev->sb_start) {
+ pr_warn("md: %s: data overlaps metadata\n",
+ mdname(mddev));
+ return -EINVAL;
+ }
+ } else {
+ if (rdev->sb_start + rdev->sb_size/512
+ > rdev->data_offset) {
+ pr_warn("md: %s: metadata overlaps data\n",
+ mdname(mddev));
+ return -EINVAL;
+ }
+ }
+ sysfs_notify_dirent_safe(rdev->sysfs_state);
+ nowait = nowait && bdev_nowait(rdev->bdev);
+ }
+
+ err = percpu_ref_init(&mddev->active_io, active_io_release,
+ PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
+ if (err)
+ return err;
+
+ if (!bioset_initialized(&mddev->bio_set)) {
+ err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
+ if (err)
+ goto exit_active_io;
+ }
+ if (!bioset_initialized(&mddev->sync_set)) {
+ err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
+ if (err)
+ goto exit_bio_set;
+ }
+
+ spin_lock(&pers_lock);
+ pers = find_pers(mddev->level, mddev->clevel);
+ if (!pers || !try_module_get(pers->owner)) {
+ spin_unlock(&pers_lock);
+ if (mddev->level != LEVEL_NONE)
+ pr_warn("md: personality for level %d is not loaded!\n",
+ mddev->level);
+ else
+ pr_warn("md: personality for level %s is not loaded!\n",
+ mddev->clevel);
+ err = -EINVAL;
+ goto abort;
+ }
+ spin_unlock(&pers_lock);
+ if (mddev->level != pers->level) {
+ mddev->level = pers->level;
+ mddev->new_level = pers->level;
+ }
+ strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
+
+ if (mddev->reshape_position != MaxSector &&
+ pers->start_reshape == NULL) {
+ /* This personality cannot handle reshaping... */
+ module_put(pers->owner);
+ err = -EINVAL;
+ goto abort;
+ }
+
+ if (pers->sync_request) {
+ /* Warn if this is a potentially silly
+ * configuration.
+ */
+ struct md_rdev *rdev2;
+ int warned = 0;
+
+ rdev_for_each(rdev, mddev)
+ rdev_for_each(rdev2, mddev) {
+ if (rdev < rdev2 &&
+ rdev->bdev->bd_disk ==
+ rdev2->bdev->bd_disk) {
+ pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n",
+ mdname(mddev),
+ rdev->bdev,
+ rdev2->bdev);
+ warned = 1;
+ }
+ }
+
+ if (warned)
+ pr_warn("True protection against single-disk failure might be compromised.\n");
+ }
+
+ mddev->recovery = 0;
+ /* may be over-ridden by personality */
+ mddev->resync_max_sectors = mddev->dev_sectors;
+
+ mddev->ok_start_degraded = start_dirty_degraded;
+
+ if (start_readonly && md_is_rdwr(mddev))
+ mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */
+
+ err = pers->run(mddev);
+ if (err)
+ pr_warn("md: pers->run() failed ...\n");
+ else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
+ WARN_ONCE(!mddev->external_size,
+ "%s: default size too small, but 'external_size' not in effect?\n",
+ __func__);
+ pr_warn("md: invalid array_size %llu > default size %llu\n",
+ (unsigned long long)mddev->array_sectors / 2,
+ (unsigned long long)pers->size(mddev, 0, 0) / 2);
+ err = -EINVAL;
+ }
+ if (err == 0 && pers->sync_request &&
+ (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
+ struct bitmap *bitmap;
+
+ bitmap = md_bitmap_create(mddev, -1);
+ if (IS_ERR(bitmap)) {
+ err = PTR_ERR(bitmap);
+ pr_warn("%s: failed to create bitmap (%d)\n",
+ mdname(mddev), err);
+ } else
+ mddev->bitmap = bitmap;
+
+ }
+ if (err)
+ goto bitmap_abort;
+
+ if (mddev->bitmap_info.max_write_behind > 0) {
+ bool create_pool = false;
+
+ rdev_for_each(rdev, mddev) {
+ if (test_bit(WriteMostly, &rdev->flags) &&
+ rdev_init_serial(rdev))
+ create_pool = true;
+ }
+ if (create_pool && mddev->serial_info_pool == NULL) {
+ mddev->serial_info_pool =
+ mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
+ sizeof(struct serial_info));
+ if (!mddev->serial_info_pool) {
+ err = -ENOMEM;
+ goto bitmap_abort;
+ }
+ }
+ }
+
+ if (mddev->queue) {
+ bool nonrot = true;
+
+ rdev_for_each(rdev, mddev) {
+ if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) {
+ nonrot = false;
+ break;
+ }
+ }
+ if (mddev->degraded)
+ nonrot = false;
+ if (nonrot)
+ blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
+ else
+ blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
+ blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue);
+
+ /* Set the NOWAIT flags if all underlying devices support it */
+ if (nowait)
+ blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue);
+ }
+ if (pers->sync_request) {
+ if (mddev->kobj.sd &&
+ sysfs_create_group(&mddev->kobj, &md_redundancy_group))
+ pr_warn("md: cannot register extra attributes for %s\n",
+ mdname(mddev));
+ mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
+ mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
+ mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
+ } else if (mddev->ro == MD_AUTO_READ)
+ mddev->ro = MD_RDWR;
+
+ atomic_set(&mddev->max_corr_read_errors,
+ MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
+ mddev->safemode = 0;
+ if (mddev_is_clustered(mddev))
+ mddev->safemode_delay = 0;
+ else
+ mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
+ mddev->in_sync = 1;
+ smp_wmb();
+ spin_lock(&mddev->lock);
+ mddev->pers = pers;
+ spin_unlock(&mddev->lock);
+ rdev_for_each(rdev, mddev)
+ if (rdev->raid_disk >= 0)
+ sysfs_link_rdev(mddev, rdev); /* failure here is OK */
+
+ if (mddev->degraded && md_is_rdwr(mddev))
+ /* This ensures that recovering status is reported immediately
+ * via sysfs - until a lack of spares is confirmed.
+ */
+ set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+
+ if (mddev->sb_flags)
+ md_update_sb(mddev, 0);
+
+ md_new_event();
+ return 0;
+
+bitmap_abort:
+ mddev_detach(mddev);
+ if (mddev->private)
+ pers->free(mddev, mddev->private);
+ mddev->private = NULL;
+ module_put(pers->owner);
+ md_bitmap_destroy(mddev);
+abort:
+ bioset_exit(&mddev->sync_set);
+exit_bio_set:
+ bioset_exit(&mddev->bio_set);
+exit_active_io:
+ percpu_ref_exit(&mddev->active_io);
+ return err;
+}
+EXPORT_SYMBOL_GPL(md_run);
+
+int do_md_run(struct mddev *mddev)
+{
+ int err;
+
+ set_bit(MD_NOT_READY, &mddev->flags);
+ err = md_run(mddev);
+ if (err)
+ goto out;
+ err = md_bitmap_load(mddev);
+ if (err) {
+ md_bitmap_destroy(mddev);
+ goto out;
+ }
+
+ if (mddev_is_clustered(mddev))
+ md_allow_write(mddev);
+
+ /* run start up tasks that require md_thread */
+ md_start(mddev);
+
+ md_wakeup_thread(mddev->thread);
+ md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
+
+ set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
+ clear_bit(MD_NOT_READY, &mddev->flags);
+ mddev->changed = 1;
+ kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
+ sysfs_notify_dirent_safe(mddev->sysfs_state);
+ sysfs_notify_dirent_safe(mddev->sysfs_action);
+ sysfs_notify_dirent_safe(mddev->sysfs_degraded);
+out:
+ clear_bit(MD_NOT_READY, &mddev->flags);
+ return err;
+}
+
+int md_start(struct mddev *mddev)
+{
+ int ret = 0;
+
+ if (mddev->pers->start) {
+ set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
+ md_wakeup_thread(mddev->thread);
+ ret = mddev->pers->start(mddev);
+ clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
+ md_wakeup_thread(mddev->sync_thread);
+ }
+ return ret;
+}
+EXPORT_SYMBOL_GPL(md_start);
+
+static int restart_array(struct mddev *mddev)
+{
+ struct gendisk *disk = mddev->gendisk;
+ struct md_rdev *rdev;
+ bool has_journal = false;
+ bool has_readonly = false;
+
+ /* Complain if it has no devices */
+ if (list_empty(&mddev->disks))
+ return -ENXIO;
+ if (!mddev->pers)
+ return -EINVAL;
+ if (md_is_rdwr(mddev))
+ return -EBUSY;
+
+ rcu_read_lock();
+ rdev_for_each_rcu(rdev, mddev) {
+ if (test_bit(Journal, &rdev->flags) &&
+ !test_bit(Faulty, &rdev->flags))
+ has_journal = true;
+ if (rdev_read_only(rdev))
+ has_readonly = true;
+ }
+ rcu_read_unlock();
+ if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
+ /* Don't restart rw with journal missing/faulty */
+ return -EINVAL;
+ if (has_readonly)
+ return -EROFS;
+
+ mddev->safemode = 0;
+ mddev->ro = MD_RDWR;
+ set_disk_ro(disk, 0);
+ pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
+ /* Kick recovery or resync if necessary */
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ md_wakeup_thread(mddev->thread);
+ md_wakeup_thread(mddev->sync_thread);
+ sysfs_notify_dirent_safe(mddev->sysfs_state);
+ return 0;
+}
+
+static void md_clean(struct mddev *mddev)
+{
+ mddev->array_sectors = 0;
+ mddev->external_size = 0;
+ mddev->dev_sectors = 0;
+ mddev->raid_disks = 0;
+ mddev->recovery_cp = 0;
+ mddev->resync_min = 0;
+ mddev->resync_max = MaxSector;
+ mddev->reshape_position = MaxSector;
+ mddev->external = 0;
+ mddev->persistent = 0;
+ mddev->level = LEVEL_NONE;
+ mddev->clevel[0] = 0;
+ mddev->flags = 0;
+ mddev->sb_flags = 0;
+ mddev->ro = MD_RDWR;
+ mddev->metadata_type[0] = 0;
+ mddev->chunk_sectors = 0;
+ mddev->ctime = mddev->utime = 0;
+ mddev->layout = 0;
+ mddev->max_disks = 0;
+ mddev->events = 0;
+ mddev->can_decrease_events = 0;
+ mddev->delta_disks = 0;
+ mddev->reshape_backwards = 0;
+ mddev->new_level = LEVEL_NONE;
+ mddev->new_layout = 0;
+ mddev->new_chunk_sectors = 0;
+ mddev->curr_resync = 0;
+ atomic64_set(&mddev->resync_mismatches, 0);
+ mddev->suspend_lo = mddev->suspend_hi = 0;
+ mddev->sync_speed_min = mddev->sync_speed_max = 0;
+ mddev->recovery = 0;
+ mddev->in_sync = 0;
+ mddev->changed = 0;
+ mddev->degraded = 0;
+ mddev->safemode = 0;
+ mddev->private = NULL;
+ mddev->cluster_info = NULL;
+ mddev->bitmap_info.offset = 0;
+ mddev->bitmap_info.default_offset = 0;
+ mddev->bitmap_info.default_space = 0;
+ mddev->bitmap_info.chunksize = 0;
+ mddev->bitmap_info.daemon_sleep = 0;
+ mddev->bitmap_info.max_write_behind = 0;
+ mddev->bitmap_info.nodes = 0;
+}
+
+static void __md_stop_writes(struct mddev *mddev)
+{
+ set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+ if (work_pending(&mddev->del_work))
+ flush_workqueue(md_misc_wq);
+ if (mddev->sync_thread) {
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ md_unregister_thread(&mddev->sync_thread);
+ md_reap_sync_thread(mddev);
+ }
+
+ del_timer_sync(&mddev->safemode_timer);
+
+ if (mddev->pers && mddev->pers->quiesce) {
+ mddev->pers->quiesce(mddev, 1);
+ mddev->pers->quiesce(mddev, 0);
+ }
+ md_bitmap_flush(mddev);
+
+ if (md_is_rdwr(mddev) &&
+ ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
+ mddev->sb_flags)) {
+ /* mark array as shutdown cleanly */
+ if (!mddev_is_clustered(mddev))
+ mddev->in_sync = 1;
+ md_update_sb(mddev, 1);
+ }
+ /* disable policy to guarantee rdevs free resources for serialization */
+ mddev->serialize_policy = 0;
+ mddev_destroy_serial_pool(mddev, NULL, true);
+}
+
+void md_stop_writes(struct mddev *mddev)
+{
+ mddev_lock_nointr(mddev);
+ __md_stop_writes(mddev);
+ mddev_unlock(mddev);
+}
+EXPORT_SYMBOL_GPL(md_stop_writes);
+
+static void mddev_detach(struct mddev *mddev)
+{
+ md_bitmap_wait_behind_writes(mddev);
+ if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) {
+ mddev->pers->quiesce(mddev, 1);
+ mddev->pers->quiesce(mddev, 0);
+ }
+ md_unregister_thread(&mddev->thread);
+ if (mddev->queue)
+ blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
+}
+
+static void __md_stop(struct mddev *mddev)
+{
+ struct md_personality *pers = mddev->pers;
+ md_bitmap_destroy(mddev);
+ mddev_detach(mddev);
+ /* Ensure ->event_work is done */
+ if (mddev->event_work.func)
+ flush_workqueue(md_misc_wq);
+ spin_lock(&mddev->lock);
+ mddev->pers = NULL;
+ spin_unlock(&mddev->lock);
+ if (mddev->private)
+ pers->free(mddev, mddev->private);
+ mddev->private = NULL;
+ if (pers->sync_request && mddev->to_remove == NULL)
+ mddev->to_remove = &md_redundancy_group;
+ module_put(pers->owner);
+ clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+
+ percpu_ref_exit(&mddev->active_io);
+ bioset_exit(&mddev->bio_set);
+ bioset_exit(&mddev->sync_set);
+}
+
+void md_stop(struct mddev *mddev)
+{
+ lockdep_assert_held(&mddev->reconfig_mutex);
+
+ /* stop the array and free an attached data structures.
+ * This is called from dm-raid
+ */
+ __md_stop_writes(mddev);
+ __md_stop(mddev);
+ percpu_ref_exit(&mddev->writes_pending);
+}
+
+EXPORT_SYMBOL_GPL(md_stop);
+
+static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
+{
+ int err = 0;
+ int did_freeze = 0;
+
+ if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
+ return -EBUSY;
+
+ if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
+ did_freeze = 1;
+ set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+ md_wakeup_thread(mddev->thread);
+ }
+ if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ if (mddev->sync_thread)
+ /* Thread might be blocked waiting for metadata update
+ * which will now never happen */
+ wake_up_process(mddev->sync_thread->tsk);
+
+ mddev_unlock(mddev);
+ wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
+ &mddev->recovery));
+ wait_event(mddev->sb_wait,
+ !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
+ mddev_lock_nointr(mddev);
+
+ mutex_lock(&mddev->open_mutex);
+ if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
+ mddev->sync_thread ||
+ test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
+ pr_warn("md: %s still in use.\n",mdname(mddev));
+ err = -EBUSY;
+ goto out;
+ }
+
+ if (mddev->pers) {
+ __md_stop_writes(mddev);
+
+ if (mddev->ro == MD_RDONLY) {
+ err = -ENXIO;
+ goto out;
+ }
+
+ mddev->ro = MD_RDONLY;
+ set_disk_ro(mddev->gendisk, 1);
+ }
+
+out:
+ if ((mddev->pers && !err) || did_freeze) {
+ clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ md_wakeup_thread(mddev->thread);
+ sysfs_notify_dirent_safe(mddev->sysfs_state);
+ }
+
+ mutex_unlock(&mddev->open_mutex);
+ return err;
+}
+
+/* mode:
+ * 0 - completely stop and dis-assemble array
+ * 2 - stop but do not disassemble array
+ */
+static int do_md_stop(struct mddev *mddev, int mode,
+ struct block_device *bdev)
+{
+ struct gendisk *disk = mddev->gendisk;
+ struct md_rdev *rdev;
+ int did_freeze = 0;
+
+ if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
+ did_freeze = 1;
+ set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+ md_wakeup_thread(mddev->thread);
+ }
+ if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ if (mddev->sync_thread)
+ /* Thread might be blocked waiting for metadata update
+ * which will now never happen */
+ wake_up_process(mddev->sync_thread->tsk);
+
+ mddev_unlock(mddev);
+ wait_event(resync_wait, (mddev->sync_thread == NULL &&
+ !test_bit(MD_RECOVERY_RUNNING,
+ &mddev->recovery)));
+ mddev_lock_nointr(mddev);
+
+ mutex_lock(&mddev->open_mutex);
+ if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
+ mddev->sysfs_active ||
+ mddev->sync_thread ||
+ test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
+ pr_warn("md: %s still in use.\n",mdname(mddev));
+ mutex_unlock(&mddev->open_mutex);
+ if (did_freeze) {
+ clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ md_wakeup_thread(mddev->thread);
+ }
+ return -EBUSY;
+ }
+ if (mddev->pers) {
+ if (!md_is_rdwr(mddev))
+ set_disk_ro(disk, 0);
+
+ __md_stop_writes(mddev);
+ __md_stop(mddev);
+
+ /* tell userspace to handle 'inactive' */
+ sysfs_notify_dirent_safe(mddev->sysfs_state);
+
+ rdev_for_each(rdev, mddev)
+ if (rdev->raid_disk >= 0)
+ sysfs_unlink_rdev(mddev, rdev);
+
+ set_capacity_and_notify(disk, 0);
+ mutex_unlock(&mddev->open_mutex);
+ mddev->changed = 1;
+
+ if (!md_is_rdwr(mddev))
+ mddev->ro = MD_RDWR;
+ } else
+ mutex_unlock(&mddev->open_mutex);
+ /*
+ * Free resources if final stop
+ */
+ if (mode == 0) {
+ pr_info("md: %s stopped.\n", mdname(mddev));
+
+ if (mddev->bitmap_info.file) {
+ struct file *f = mddev->bitmap_info.file;
+ spin_lock(&mddev->lock);
+ mddev->bitmap_info.file = NULL;
+ spin_unlock(&mddev->lock);
+ fput(f);
+ }
+ mddev->bitmap_info.offset = 0;
+
+ export_array(mddev);
+
+ md_clean(mddev);
+ if (mddev->hold_active == UNTIL_STOP)
+ mddev->hold_active = 0;
+ }
+ md_new_event();
+ sysfs_notify_dirent_safe(mddev->sysfs_state);
+ return 0;
+}
+
+#ifndef MODULE
+static void autorun_array(struct mddev *mddev)
+{
+ struct md_rdev *rdev;
+ int err;
+
+ if (list_empty(&mddev->disks))
+ return;
+
+ pr_info("md: running: ");
+
+ rdev_for_each(rdev, mddev) {
+ pr_cont("<%pg>", rdev->bdev);
+ }
+ pr_cont("\n");
+
+ err = do_md_run(mddev);
+ if (err) {
+ pr_warn("md: do_md_run() returned %d\n", err);
+ do_md_stop(mddev, 0, NULL);
+ }
+}
+
+/*
+ * lets try to run arrays based on all disks that have arrived
+ * until now. (those are in pending_raid_disks)
+ *
+ * the method: pick the first pending disk, collect all disks with
+ * the same UUID, remove all from the pending list and put them into
+ * the 'same_array' list. Then order this list based on superblock
+ * update time (freshest comes first), kick out 'old' disks and
+ * compare superblocks. If everything's fine then run it.
+ *
+ * If "unit" is allocated, then bump its reference count
+ */
+static void autorun_devices(int part)
+{
+ struct md_rdev *rdev0, *rdev, *tmp;
+ struct mddev *mddev;
+
+ pr_info("md: autorun ...\n");
+ while (!list_empty(&pending_raid_disks)) {
+ int unit;
+ dev_t dev;
+ LIST_HEAD(candidates);
+ rdev0 = list_entry(pending_raid_disks.next,
+ struct md_rdev, same_set);
+
+ pr_debug("md: considering %pg ...\n", rdev0->bdev);
+ INIT_LIST_HEAD(&candidates);
+ rdev_for_each_list(rdev, tmp, &pending_raid_disks)
+ if (super_90_load(rdev, rdev0, 0) >= 0) {
+ pr_debug("md: adding %pg ...\n",
+ rdev->bdev);
+ list_move(&rdev->same_set, &candidates);
+ }
+ /*
+ * now we have a set of devices, with all of them having
+ * mostly sane superblocks. It's time to allocate the
+ * mddev.
+ */
+ if (part) {
+ dev = MKDEV(mdp_major,
+ rdev0->preferred_minor << MdpMinorShift);
+ unit = MINOR(dev) >> MdpMinorShift;
+ } else {
+ dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
+ unit = MINOR(dev);
+ }
+ if (rdev0->preferred_minor != unit) {
+ pr_warn("md: unit number in %pg is bad: %d\n",
+ rdev0->bdev, rdev0->preferred_minor);
+ break;
+ }
+
+ mddev = md_alloc(dev, NULL);
+ if (IS_ERR(mddev))
+ break;
+
+ if (mddev_lock(mddev))
+ pr_warn("md: %s locked, cannot run\n", mdname(mddev));
+ else if (mddev->raid_disks || mddev->major_version
+ || !list_empty(&mddev->disks)) {
+ pr_warn("md: %s already running, cannot run %pg\n",
+ mdname(mddev), rdev0->bdev);
+ mddev_unlock(mddev);
+ } else {
+ pr_debug("md: created %s\n", mdname(mddev));
+ mddev->persistent = 1;
+ rdev_for_each_list(rdev, tmp, &candidates) {
+ list_del_init(&rdev->same_set);
+ if (bind_rdev_to_array(rdev, mddev))
+ export_rdev(rdev);
+ }
+ autorun_array(mddev);
+ mddev_unlock(mddev);
+ }
+ /* on success, candidates will be empty, on error
+ * it won't...
+ */
+ rdev_for_each_list(rdev, tmp, &candidates) {
+ list_del_init(&rdev->same_set);
+ export_rdev(rdev);
+ }
+ mddev_put(mddev);
+ }
+ pr_info("md: ... autorun DONE.\n");
+}
+#endif /* !MODULE */
+
+static int get_version(void __user *arg)
+{
+ mdu_version_t ver;
+
+ ver.major = MD_MAJOR_VERSION;
+ ver.minor = MD_MINOR_VERSION;
+ ver.patchlevel = MD_PATCHLEVEL_VERSION;
+
+ if (copy_to_user(arg, &ver, sizeof(ver)))
+ return -EFAULT;
+
+ return 0;
+}
+
+static int get_array_info(struct mddev *mddev, void __user *arg)
+{
+ mdu_array_info_t info;
+ int nr,working,insync,failed,spare;
+ struct md_rdev *rdev;
+
+ nr = working = insync = failed = spare = 0;
+ rcu_read_lock();
+ rdev_for_each_rcu(rdev, mddev) {
+ nr++;
+ if (test_bit(Faulty, &rdev->flags))
+ failed++;
+ else {
+ working++;
+ if (test_bit(In_sync, &rdev->flags))
+ insync++;
+ else if (test_bit(Journal, &rdev->flags))
+ /* TODO: add journal count to md_u.h */
+ ;
+ else
+ spare++;
+ }
+ }
+ rcu_read_unlock();
+
+ info.major_version = mddev->major_version;
+ info.minor_version = mddev->minor_version;
+ info.patch_version = MD_PATCHLEVEL_VERSION;
+ info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
+ info.level = mddev->level;
+ info.size = mddev->dev_sectors / 2;
+ if (info.size != mddev->dev_sectors / 2) /* overflow */
+ info.size = -1;
+ info.nr_disks = nr;
+ info.raid_disks = mddev->raid_disks;
+ info.md_minor = mddev->md_minor;
+ info.not_persistent= !mddev->persistent;
+
+ info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
+ info.state = 0;
+ if (mddev->in_sync)
+ info.state = (1<<MD_SB_CLEAN);
+ if (mddev->bitmap && mddev->bitmap_info.offset)
+ info.state |= (1<<MD_SB_BITMAP_PRESENT);
+ if (mddev_is_clustered(mddev))
+ info.state |= (1<<MD_SB_CLUSTERED);
+ info.active_disks = insync;
+ info.working_disks = working;
+ info.failed_disks = failed;
+ info.spare_disks = spare;
+
+ info.layout = mddev->layout;
+ info.chunk_size = mddev->chunk_sectors << 9;
+
+ if (copy_to_user(arg, &info, sizeof(info)))
+ return -EFAULT;
+
+ return 0;
+}
+
+static int get_bitmap_file(struct mddev *mddev, void __user * arg)
+{
+ mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
+ char *ptr;
+ int err;
+
+ file = kzalloc(sizeof(*file), GFP_NOIO);
+ if (!file)
+ return -ENOMEM;
+
+ err = 0;
+ spin_lock(&mddev->lock);
+ /* bitmap enabled */
+ if (mddev->bitmap_info.file) {
+ ptr = file_path(mddev->bitmap_info.file, file->pathname,
+ sizeof(file->pathname));
+ if (IS_ERR(ptr))
+ err = PTR_ERR(ptr);
+ else
+ memmove(file->pathname, ptr,
+ sizeof(file->pathname)-(ptr-file->pathname));
+ }
+ spin_unlock(&mddev->lock);
+
+ if (err == 0 &&
+ copy_to_user(arg, file, sizeof(*file)))
+ err = -EFAULT;
+
+ kfree(file);
+ return err;
+}
+
+static int get_disk_info(struct mddev *mddev, void __user * arg)
+{
+ mdu_disk_info_t info;
+ struct md_rdev *rdev;
+
+ if (copy_from_user(&info, arg, sizeof(info)))
+ return -EFAULT;
+
+ rcu_read_lock();
+ rdev = md_find_rdev_nr_rcu(mddev, info.number);
+ if (rdev) {
+ info.major = MAJOR(rdev->bdev->bd_dev);
+ info.minor = MINOR(rdev->bdev->bd_dev);
+ info.raid_disk = rdev->raid_disk;
+ info.state = 0;
+ if (test_bit(Faulty, &rdev->flags))
+ info.state |= (1<<MD_DISK_FAULTY);
+ else if (test_bit(In_sync, &rdev->flags)) {
+ info.state |= (1<<MD_DISK_ACTIVE);
+ info.state |= (1<<MD_DISK_SYNC);
+ }
+ if (test_bit(Journal, &rdev->flags))
+ info.state |= (1<<MD_DISK_JOURNAL);
+ if (test_bit(WriteMostly, &rdev->flags))
+ info.state |= (1<<MD_DISK_WRITEMOSTLY);
+ if (test_bit(FailFast, &rdev->flags))
+ info.state |= (1<<MD_DISK_FAILFAST);
+ } else {
+ info.major = info.minor = 0;
+ info.raid_disk = -1;
+ info.state = (1<<MD_DISK_REMOVED);
+ }
+ rcu_read_unlock();
+
+ if (copy_to_user(arg, &info, sizeof(info)))
+ return -EFAULT;
+
+ return 0;
+}
+
+int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
+{
+ struct md_rdev *rdev;
+ dev_t dev = MKDEV(info->major,info->minor);
+
+ if (mddev_is_clustered(mddev) &&
+ !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
+ pr_warn("%s: Cannot add to clustered mddev.\n",
+ mdname(mddev));
+ return -EINVAL;
+ }
+
+ if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
+ return -EOVERFLOW;
+
+ if (!mddev->raid_disks) {
+ int err;
+ /* expecting a device which has a superblock */
+ rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
+ if (IS_ERR(rdev)) {
+ pr_warn("md: md_import_device returned %ld\n",
+ PTR_ERR(rdev));
+ return PTR_ERR(rdev);
+ }
+ if (!list_empty(&mddev->disks)) {
+ struct md_rdev *rdev0
+ = list_entry(mddev->disks.next,
+ struct md_rdev, same_set);
+ err = super_types[mddev->major_version]
+ .load_super(rdev, rdev0, mddev->minor_version);
+ if (err < 0) {
+ pr_warn("md: %pg has different UUID to %pg\n",
+ rdev->bdev,
+ rdev0->bdev);
+ export_rdev(rdev);
+ return -EINVAL;
+ }
+ }
+ err = bind_rdev_to_array(rdev, mddev);
+ if (err)
+ export_rdev(rdev);
+ return err;
+ }
+
+ /*
+ * md_add_new_disk can be used once the array is assembled
+ * to add "hot spares". They must already have a superblock
+ * written
+ */
+ if (mddev->pers) {
+ int err;
+ if (!mddev->pers->hot_add_disk) {
+ pr_warn("%s: personality does not support diskops!\n",
+ mdname(mddev));
+ return -EINVAL;
+ }
+ if (mddev->persistent)
+ rdev = md_import_device(dev, mddev->major_version,
+ mddev->minor_version);
+ else
+ rdev = md_import_device(dev, -1, -1);
+ if (IS_ERR(rdev)) {
+ pr_warn("md: md_import_device returned %ld\n",
+ PTR_ERR(rdev));
+ return PTR_ERR(rdev);
+ }
+ /* set saved_raid_disk if appropriate */
+ if (!mddev->persistent) {
+ if (info->state & (1<<MD_DISK_SYNC) &&
+ info->raid_disk < mddev->raid_disks) {
+ rdev->raid_disk = info->raid_disk;
+ set_bit(In_sync, &rdev->flags);
+ clear_bit(Bitmap_sync, &rdev->flags);
+ } else
+ rdev->raid_disk = -1;
+ rdev->saved_raid_disk = rdev->raid_disk;
+ } else
+ super_types[mddev->major_version].
+ validate_super(mddev, rdev);
+ if ((info->state & (1<<MD_DISK_SYNC)) &&
+ rdev->raid_disk != info->raid_disk) {
+ /* This was a hot-add request, but events doesn't
+ * match, so reject it.
+ */
+ export_rdev(rdev);
+ return -EINVAL;
+ }
+
+ clear_bit(In_sync, &rdev->flags); /* just to be sure */
+ if (info->state & (1<<MD_DISK_WRITEMOSTLY))
+ set_bit(WriteMostly, &rdev->flags);
+ else
+ clear_bit(WriteMostly, &rdev->flags);
+ if (info->state & (1<<MD_DISK_FAILFAST))
+ set_bit(FailFast, &rdev->flags);
+ else
+ clear_bit(FailFast, &rdev->flags);
+
+ if (info->state & (1<<MD_DISK_JOURNAL)) {
+ struct md_rdev *rdev2;
+ bool has_journal = false;
+
+ /* make sure no existing journal disk */
+ rdev_for_each(rdev2, mddev) {
+ if (test_bit(Journal, &rdev2->flags)) {
+ has_journal = true;
+ break;
+ }
+ }
+ if (has_journal || mddev->bitmap) {
+ export_rdev(rdev);
+ return -EBUSY;
+ }
+ set_bit(Journal, &rdev->flags);
+ }
+ /*
+ * check whether the device shows up in other nodes
+ */
+ if (mddev_is_clustered(mddev)) {
+ if (info->state & (1 << MD_DISK_CANDIDATE))
+ set_bit(Candidate, &rdev->flags);
+ else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
+ /* --add initiated by this node */
+ err = md_cluster_ops->add_new_disk(mddev, rdev);
+ if (err) {
+ export_rdev(rdev);
+ return err;
+ }
+ }
+ }
+
+ rdev->raid_disk = -1;
+ err = bind_rdev_to_array(rdev, mddev);
+
+ if (err)
+ export_rdev(rdev);
+
+ if (mddev_is_clustered(mddev)) {
+ if (info->state & (1 << MD_DISK_CANDIDATE)) {
+ if (!err) {
+ err = md_cluster_ops->new_disk_ack(mddev,
+ err == 0);
+ if (err)
+ md_kick_rdev_from_array(rdev);
+ }
+ } else {
+ if (err)
+ md_cluster_ops->add_new_disk_cancel(mddev);
+ else
+ err = add_bound_rdev(rdev);
+ }
+
+ } else if (!err)
+ err = add_bound_rdev(rdev);
+
+ return err;
+ }
+
+ /* otherwise, md_add_new_disk is only allowed
+ * for major_version==0 superblocks
+ */
+ if (mddev->major_version != 0) {
+ pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
+ return -EINVAL;
+ }
+
+ if (!(info->state & (1<<MD_DISK_FAULTY))) {
+ int err;
+ rdev = md_import_device(dev, -1, 0);
+ if (IS_ERR(rdev)) {
+ pr_warn("md: error, md_import_device() returned %ld\n",
+ PTR_ERR(rdev));
+ return PTR_ERR(rdev);
+ }
+ rdev->desc_nr = info->number;
+ if (info->raid_disk < mddev->raid_disks)
+ rdev->raid_disk = info->raid_disk;
+ else
+ rdev->raid_disk = -1;
+
+ if (rdev->raid_disk < mddev->raid_disks)
+ if (info->state & (1<<MD_DISK_SYNC))
+ set_bit(In_sync, &rdev->flags);
+
+ if (info->state & (1<<MD_DISK_WRITEMOSTLY))
+ set_bit(WriteMostly, &rdev->flags);
+ if (info->state & (1<<MD_DISK_FAILFAST))
+ set_bit(FailFast, &rdev->flags);
+
+ if (!mddev->persistent) {
+ pr_debug("md: nonpersistent superblock ...\n");
+ rdev->sb_start = bdev_nr_sectors(rdev->bdev);
+ } else
+ rdev->sb_start = calc_dev_sboffset(rdev);
+ rdev->sectors = rdev->sb_start;
+
+ err = bind_rdev_to_array(rdev, mddev);
+ if (err) {
+ export_rdev(rdev);
+ return err;
+ }
+ }
+
+ return 0;
+}
+
+static int hot_remove_disk(struct mddev *mddev, dev_t dev)
+{
+ struct md_rdev *rdev;
+
+ if (!mddev->pers)
+ return -ENODEV;
+
+ rdev = find_rdev(mddev, dev);
+ if (!rdev)
+ return -ENXIO;
+
+ if (rdev->raid_disk < 0)
+ goto kick_rdev;
+
+ clear_bit(Blocked, &rdev->flags);
+ remove_and_add_spares(mddev, rdev);
+
+ if (rdev->raid_disk >= 0)
+ goto busy;
+
+kick_rdev:
+ if (mddev_is_clustered(mddev)) {
+ if (md_cluster_ops->remove_disk(mddev, rdev))
+ goto busy;
+ }
+
+ md_kick_rdev_from_array(rdev);
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+ if (mddev->thread)
+ md_wakeup_thread(mddev->thread);
+ else
+ md_update_sb(mddev, 1);
+ md_new_event();
+
+ return 0;
+busy:
+ pr_debug("md: cannot remove active disk %pg from %s ...\n",
+ rdev->bdev, mdname(mddev));
+ return -EBUSY;
+}
+
+static int hot_add_disk(struct mddev *mddev, dev_t dev)
+{
+ int err;
+ struct md_rdev *rdev;
+
+ if (!mddev->pers)
+ return -ENODEV;
+
+ if (mddev->major_version != 0) {
+ pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
+ mdname(mddev));
+ return -EINVAL;
+ }
+ if (!mddev->pers->hot_add_disk) {
+ pr_warn("%s: personality does not support diskops!\n",
+ mdname(mddev));
+ return -EINVAL;
+ }
+
+ rdev = md_import_device(dev, -1, 0);
+ if (IS_ERR(rdev)) {
+ pr_warn("md: error, md_import_device() returned %ld\n",
+ PTR_ERR(rdev));
+ return -EINVAL;
+ }
+
+ if (mddev->persistent)
+ rdev->sb_start = calc_dev_sboffset(rdev);
+ else
+ rdev->sb_start = bdev_nr_sectors(rdev->bdev);
+
+ rdev->sectors = rdev->sb_start;
+
+ if (test_bit(Faulty, &rdev->flags)) {
+ pr_warn("md: can not hot-add faulty %pg disk to %s!\n",
+ rdev->bdev, mdname(mddev));
+ err = -EINVAL;
+ goto abort_export;
+ }
+
+ clear_bit(In_sync, &rdev->flags);
+ rdev->desc_nr = -1;
+ rdev->saved_raid_disk = -1;
+ err = bind_rdev_to_array(rdev, mddev);
+ if (err)
+ goto abort_export;
+
+ /*
+ * The rest should better be atomic, we can have disk failures
+ * noticed in interrupt contexts ...
+ */
+
+ rdev->raid_disk = -1;
+
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+ if (!mddev->thread)
+ md_update_sb(mddev, 1);
+ /*
+ * If the new disk does not support REQ_NOWAIT,
+ * disable on the whole MD.
+ */
+ if (!bdev_nowait(rdev->bdev)) {
+ pr_info("%s: Disabling nowait because %pg does not support nowait\n",
+ mdname(mddev), rdev->bdev);
+ blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue);
+ }
+ /*
+ * Kick recovery, maybe this spare has to be added to the
+ * array immediately.
+ */
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ md_wakeup_thread(mddev->thread);
+ md_new_event();
+ return 0;
+
+abort_export:
+ export_rdev(rdev);
+ return err;
+}
+
+static int set_bitmap_file(struct mddev *mddev, int fd)
+{
+ int err = 0;
+
+ if (mddev->pers) {
+ if (!mddev->pers->quiesce || !mddev->thread)
+ return -EBUSY;
+ if (mddev->recovery || mddev->sync_thread)
+ return -EBUSY;
+ /* we should be able to change the bitmap.. */
+ }
+
+ if (fd >= 0) {
+ struct inode *inode;
+ struct file *f;
+
+ if (mddev->bitmap || mddev->bitmap_info.file)
+ return -EEXIST; /* cannot add when bitmap is present */
+ f = fget(fd);
+
+ if (f == NULL) {
+ pr_warn("%s: error: failed to get bitmap file\n",
+ mdname(mddev));
+ return -EBADF;
+ }
+
+ inode = f->f_mapping->host;
+ if (!S_ISREG(inode->i_mode)) {
+ pr_warn("%s: error: bitmap file must be a regular file\n",
+ mdname(mddev));
+ err = -EBADF;
+ } else if (!(f->f_mode & FMODE_WRITE)) {
+ pr_warn("%s: error: bitmap file must open for write\n",
+ mdname(mddev));
+ err = -EBADF;
+ } else if (atomic_read(&inode->i_writecount) != 1) {
+ pr_warn("%s: error: bitmap file is already in use\n",
+ mdname(mddev));
+ err = -EBUSY;
+ }
+ if (err) {
+ fput(f);
+ return err;
+ }
+ mddev->bitmap_info.file = f;
+ mddev->bitmap_info.offset = 0; /* file overrides offset */
+ } else if (mddev->bitmap == NULL)
+ return -ENOENT; /* cannot remove what isn't there */
+ err = 0;
+ if (mddev->pers) {
+ if (fd >= 0) {
+ struct bitmap *bitmap;
+
+ bitmap = md_bitmap_create(mddev, -1);
+ mddev_suspend(mddev);
+ if (!IS_ERR(bitmap)) {
+ mddev->bitmap = bitmap;
+ err = md_bitmap_load(mddev);
+ } else
+ err = PTR_ERR(bitmap);
+ if (err) {
+ md_bitmap_destroy(mddev);
+ fd = -1;
+ }
+ mddev_resume(mddev);
+ } else if (fd < 0) {
+ mddev_suspend(mddev);
+ md_bitmap_destroy(mddev);
+ mddev_resume(mddev);
+ }
+ }
+ if (fd < 0) {
+ struct file *f = mddev->bitmap_info.file;
+ if (f) {
+ spin_lock(&mddev->lock);
+ mddev->bitmap_info.file = NULL;
+ spin_unlock(&mddev->lock);
+ fput(f);
+ }
+ }
+
+ return err;
+}
+
+/*
+ * md_set_array_info is used two different ways
+ * The original usage is when creating a new array.
+ * In this usage, raid_disks is > 0 and it together with
+ * level, size, not_persistent,layout,chunksize determine the
+ * shape of the array.
+ * This will always create an array with a type-0.90.0 superblock.
+ * The newer usage is when assembling an array.
+ * In this case raid_disks will be 0, and the major_version field is
+ * use to determine which style super-blocks are to be found on the devices.
+ * The minor and patch _version numbers are also kept incase the
+ * super_block handler wishes to interpret them.
+ */
+int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
+{
+ if (info->raid_disks == 0) {
+ /* just setting version number for superblock loading */
+ if (info->major_version < 0 ||
+ info->major_version >= ARRAY_SIZE(super_types) ||
+ super_types[info->major_version].name == NULL) {
+ /* maybe try to auto-load a module? */
+ pr_warn("md: superblock version %d not known\n",
+ info->major_version);
+ return -EINVAL;
+ }
+ mddev->major_version = info->major_version;
+ mddev->minor_version = info->minor_version;
+ mddev->patch_version = info->patch_version;
+ mddev->persistent = !info->not_persistent;
+ /* ensure mddev_put doesn't delete this now that there
+ * is some minimal configuration.
+ */
+ mddev->ctime = ktime_get_real_seconds();
+ return 0;
+ }
+ mddev->major_version = MD_MAJOR_VERSION;
+ mddev->minor_version = MD_MINOR_VERSION;
+ mddev->patch_version = MD_PATCHLEVEL_VERSION;
+ mddev->ctime = ktime_get_real_seconds();
+
+ mddev->level = info->level;
+ mddev->clevel[0] = 0;
+ mddev->dev_sectors = 2 * (sector_t)info->size;
+ mddev->raid_disks = info->raid_disks;
+ /* don't set md_minor, it is determined by which /dev/md* was
+ * openned
+ */
+ if (info->state & (1<<MD_SB_CLEAN))
+ mddev->recovery_cp = MaxSector;
+ else
+ mddev->recovery_cp = 0;
+ mddev->persistent = ! info->not_persistent;
+ mddev->external = 0;
+
+ mddev->layout = info->layout;
+ if (mddev->level == 0)
+ /* Cannot trust RAID0 layout info here */
+ mddev->layout = -1;
+ mddev->chunk_sectors = info->chunk_size >> 9;
+
+ if (mddev->persistent) {
+ mddev->max_disks = MD_SB_DISKS;
+ mddev->flags = 0;
+ mddev->sb_flags = 0;
+ }
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+
+ mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
+ mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
+ mddev->bitmap_info.offset = 0;
+
+ mddev->reshape_position = MaxSector;
+
+ /*
+ * Generate a 128 bit UUID
+ */
+ get_random_bytes(mddev->uuid, 16);
+
+ mddev->new_level = mddev->level;
+ mddev->new_chunk_sectors = mddev->chunk_sectors;
+ mddev->new_layout = mddev->layout;
+ mddev->delta_disks = 0;
+ mddev->reshape_backwards = 0;
+
+ return 0;
+}
+
+void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
+{
+ lockdep_assert_held(&mddev->reconfig_mutex);
+
+ if (mddev->external_size)
+ return;
+
+ mddev->array_sectors = array_sectors;
+}
+EXPORT_SYMBOL(md_set_array_sectors);
+
+static int update_size(struct mddev *mddev, sector_t num_sectors)
+{
+ struct md_rdev *rdev;
+ int rv;
+ int fit = (num_sectors == 0);
+ sector_t old_dev_sectors = mddev->dev_sectors;
+
+ if (mddev->pers->resize == NULL)
+ return -EINVAL;
+ /* The "num_sectors" is the number of sectors of each device that
+ * is used. This can only make sense for arrays with redundancy.
+ * linear and raid0 always use whatever space is available. We can only
+ * consider changing this number if no resync or reconstruction is
+ * happening, and if the new size is acceptable. It must fit before the
+ * sb_start or, if that is <data_offset, it must fit before the size
+ * of each device. If num_sectors is zero, we find the largest size
+ * that fits.
+ */
+ if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
+ mddev->sync_thread)
+ return -EBUSY;
+ if (!md_is_rdwr(mddev))
+ return -EROFS;
+
+ rdev_for_each(rdev, mddev) {
+ sector_t avail = rdev->sectors;
+
+ if (fit && (num_sectors == 0 || num_sectors > avail))
+ num_sectors = avail;
+ if (avail < num_sectors)
+ return -ENOSPC;
+ }
+ rv = mddev->pers->resize(mddev, num_sectors);
+ if (!rv) {
+ if (mddev_is_clustered(mddev))
+ md_cluster_ops->update_size(mddev, old_dev_sectors);
+ else if (mddev->queue) {
+ set_capacity_and_notify(mddev->gendisk,
+ mddev->array_sectors);
+ }
+ }
+ return rv;
+}
+
+static int update_raid_disks(struct mddev *mddev, int raid_disks)
+{
+ int rv;
+ struct md_rdev *rdev;
+ /* change the number of raid disks */
+ if (mddev->pers->check_reshape == NULL)
+ return -EINVAL;
+ if (!md_is_rdwr(mddev))
+ return -EROFS;
+ if (raid_disks <= 0 ||
+ (mddev->max_disks && raid_disks >= mddev->max_disks))
+ return -EINVAL;
+ if (mddev->sync_thread ||
+ test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
+ test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
+ mddev->reshape_position != MaxSector)
+ return -EBUSY;
+
+ rdev_for_each(rdev, mddev) {
+ if (mddev->raid_disks < raid_disks &&
+ rdev->data_offset < rdev->new_data_offset)
+ return -EINVAL;
+ if (mddev->raid_disks > raid_disks &&
+ rdev->data_offset > rdev->new_data_offset)
+ return -EINVAL;
+ }
+
+ mddev->delta_disks = raid_disks - mddev->raid_disks;
+ if (mddev->delta_disks < 0)
+ mddev->reshape_backwards = 1;
+ else if (mddev->delta_disks > 0)
+ mddev->reshape_backwards = 0;
+
+ rv = mddev->pers->check_reshape(mddev);
+ if (rv < 0) {
+ mddev->delta_disks = 0;
+ mddev->reshape_backwards = 0;
+ }
+ return rv;
+}
+
+/*
+ * update_array_info is used to change the configuration of an
+ * on-line array.
+ * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
+ * fields in the info are checked against the array.
+ * Any differences that cannot be handled will cause an error.
+ * Normally, only one change can be managed at a time.
+ */
+static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
+{
+ int rv = 0;
+ int cnt = 0;
+ int state = 0;
+
+ /* calculate expected state,ignoring low bits */
+ if (mddev->bitmap && mddev->bitmap_info.offset)
+ state |= (1 << MD_SB_BITMAP_PRESENT);
+
+ if (mddev->major_version != info->major_version ||
+ mddev->minor_version != info->minor_version ||
+/* mddev->patch_version != info->patch_version || */
+ mddev->ctime != info->ctime ||
+ mddev->level != info->level ||
+/* mddev->layout != info->layout || */
+ mddev->persistent != !info->not_persistent ||
+ mddev->chunk_sectors != info->chunk_size >> 9 ||
+ /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
+ ((state^info->state) & 0xfffffe00)
+ )
+ return -EINVAL;
+ /* Check there is only one change */
+ if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
+ cnt++;
+ if (mddev->raid_disks != info->raid_disks)
+ cnt++;
+ if (mddev->layout != info->layout)
+ cnt++;
+ if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
+ cnt++;
+ if (cnt == 0)
+ return 0;
+ if (cnt > 1)
+ return -EINVAL;
+
+ if (mddev->layout != info->layout) {
+ /* Change layout
+ * we don't need to do anything at the md level, the
+ * personality will take care of it all.
+ */
+ if (mddev->pers->check_reshape == NULL)
+ return -EINVAL;
+ else {
+ mddev->new_layout = info->layout;
+ rv = mddev->pers->check_reshape(mddev);
+ if (rv)
+ mddev->new_layout = mddev->layout;
+ return rv;
+ }
+ }
+ if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
+ rv = update_size(mddev, (sector_t)info->size * 2);
+
+ if (mddev->raid_disks != info->raid_disks)
+ rv = update_raid_disks(mddev, info->raid_disks);
+
+ if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
+ if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
+ rv = -EINVAL;
+ goto err;
+ }
+ if (mddev->recovery || mddev->sync_thread) {
+ rv = -EBUSY;
+ goto err;
+ }
+ if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
+ struct bitmap *bitmap;
+ /* add the bitmap */
+ if (mddev->bitmap) {
+ rv = -EEXIST;
+ goto err;
+ }
+ if (mddev->bitmap_info.default_offset == 0) {
+ rv = -EINVAL;
+ goto err;
+ }
+ mddev->bitmap_info.offset =
+ mddev->bitmap_info.default_offset;
+ mddev->bitmap_info.space =
+ mddev->bitmap_info.default_space;
+ bitmap = md_bitmap_create(mddev, -1);
+ mddev_suspend(mddev);
+ if (!IS_ERR(bitmap)) {
+ mddev->bitmap = bitmap;
+ rv = md_bitmap_load(mddev);
+ } else
+ rv = PTR_ERR(bitmap);
+ if (rv)
+ md_bitmap_destroy(mddev);
+ mddev_resume(mddev);
+ } else {
+ /* remove the bitmap */
+ if (!mddev->bitmap) {
+ rv = -ENOENT;
+ goto err;
+ }
+ if (mddev->bitmap->storage.file) {
+ rv = -EINVAL;
+ goto err;
+ }
+ if (mddev->bitmap_info.nodes) {
+ /* hold PW on all the bitmap lock */
+ if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
+ pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
+ rv = -EPERM;
+ md_cluster_ops->unlock_all_bitmaps(mddev);
+ goto err;
+ }
+
+ mddev->bitmap_info.nodes = 0;
+ md_cluster_ops->leave(mddev);
+ module_put(md_cluster_mod);
+ mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
+ }
+ mddev_suspend(mddev);
+ md_bitmap_destroy(mddev);
+ mddev_resume(mddev);
+ mddev->bitmap_info.offset = 0;
+ }
+ }
+ md_update_sb(mddev, 1);
+ return rv;
+err:
+ return rv;
+}
+
+static int set_disk_faulty(struct mddev *mddev, dev_t dev)
+{
+ struct md_rdev *rdev;
+ int err = 0;
+
+ if (mddev->pers == NULL)
+ return -ENODEV;
+
+ rcu_read_lock();
+ rdev = md_find_rdev_rcu(mddev, dev);
+ if (!rdev)
+ err = -ENODEV;
+ else {
+ md_error(mddev, rdev);
+ if (test_bit(MD_BROKEN, &mddev->flags))
+ err = -EBUSY;
+ }
+ rcu_read_unlock();
+ return err;
+}
+
+/*
+ * We have a problem here : there is no easy way to give a CHS
+ * virtual geometry. We currently pretend that we have a 2 heads
+ * 4 sectors (with a BIG number of cylinders...). This drives
+ * dosfs just mad... ;-)
+ */
+static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
+{
+ struct mddev *mddev = bdev->bd_disk->private_data;
+
+ geo->heads = 2;
+ geo->sectors = 4;
+ geo->cylinders = mddev->array_sectors / 8;
+ return 0;
+}
+
+static inline bool md_ioctl_valid(unsigned int cmd)
+{
+ switch (cmd) {
+ case ADD_NEW_DISK:
+ case GET_ARRAY_INFO:
+ case GET_BITMAP_FILE:
+ case GET_DISK_INFO:
+ case HOT_ADD_DISK:
+ case HOT_REMOVE_DISK:
+ case RAID_VERSION:
+ case RESTART_ARRAY_RW:
+ case RUN_ARRAY:
+ case SET_ARRAY_INFO:
+ case SET_BITMAP_FILE:
+ case SET_DISK_FAULTY:
+ case STOP_ARRAY:
+ case STOP_ARRAY_RO:
+ case CLUSTERED_DISK_NACK:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static int md_ioctl(struct block_device *bdev, fmode_t mode,
+ unsigned int cmd, unsigned long arg)
+{
+ int err = 0;
+ void __user *argp = (void __user *)arg;
+ struct mddev *mddev = NULL;
+ bool did_set_md_closing = false;
+
+ if (!md_ioctl_valid(cmd))
+ return -ENOTTY;
+
+ switch (cmd) {
+ case RAID_VERSION:
+ case GET_ARRAY_INFO:
+ case GET_DISK_INFO:
+ break;
+ default:
+ if (!capable(CAP_SYS_ADMIN))
+ return -EACCES;
+ }
+
+ /*
+ * Commands dealing with the RAID driver but not any
+ * particular array:
+ */
+ switch (cmd) {
+ case RAID_VERSION:
+ err = get_version(argp);
+ goto out;
+ default:;
+ }
+
+ /*
+ * Commands creating/starting a new array:
+ */
+
+ mddev = bdev->bd_disk->private_data;
+
+ if (!mddev) {
+ BUG();
+ goto out;
+ }
+
+ /* Some actions do not requires the mutex */
+ switch (cmd) {
+ case GET_ARRAY_INFO:
+ if (!mddev->raid_disks && !mddev->external)
+ err = -ENODEV;
+ else
+ err = get_array_info(mddev, argp);
+ goto out;
+
+ case GET_DISK_INFO:
+ if (!mddev->raid_disks && !mddev->external)
+ err = -ENODEV;
+ else
+ err = get_disk_info(mddev, argp);
+ goto out;
+
+ case SET_DISK_FAULTY:
+ err = set_disk_faulty(mddev, new_decode_dev(arg));
+ goto out;
+
+ case GET_BITMAP_FILE:
+ err = get_bitmap_file(mddev, argp);
+ goto out;
+
+ }
+
+ if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
+ flush_rdev_wq(mddev);
+
+ if (cmd == HOT_REMOVE_DISK)
+ /* need to ensure recovery thread has run */
+ wait_event_interruptible_timeout(mddev->sb_wait,
+ !test_bit(MD_RECOVERY_NEEDED,
+ &mddev->recovery),
+ msecs_to_jiffies(5000));
+ if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
+ /* Need to flush page cache, and ensure no-one else opens
+ * and writes
+ */
+ mutex_lock(&mddev->open_mutex);
+ if (mddev->pers && atomic_read(&mddev->openers) > 1) {
+ mutex_unlock(&mddev->open_mutex);
+ err = -EBUSY;
+ goto out;
+ }
+ if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
+ mutex_unlock(&mddev->open_mutex);
+ err = -EBUSY;
+ goto out;
+ }
+ did_set_md_closing = true;
+ mutex_unlock(&mddev->open_mutex);
+ sync_blockdev(bdev);
+ }
+ err = mddev_lock(mddev);
+ if (err) {
+ pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
+ err, cmd);
+ goto out;
+ }
+
+ if (cmd == SET_ARRAY_INFO) {
+ mdu_array_info_t info;
+ if (!arg)
+ memset(&info, 0, sizeof(info));
+ else if (copy_from_user(&info, argp, sizeof(info))) {
+ err = -EFAULT;
+ goto unlock;
+ }
+ if (mddev->pers) {
+ err = update_array_info(mddev, &info);
+ if (err) {
+ pr_warn("md: couldn't update array info. %d\n", err);
+ goto unlock;
+ }
+ goto unlock;
+ }
+ if (!list_empty(&mddev->disks)) {
+ pr_warn("md: array %s already has disks!\n", mdname(mddev));
+ err = -EBUSY;
+ goto unlock;
+ }
+ if (mddev->raid_disks) {
+ pr_warn("md: array %s already initialised!\n", mdname(mddev));
+ err = -EBUSY;
+ goto unlock;
+ }
+ err = md_set_array_info(mddev, &info);
+ if (err) {
+ pr_warn("md: couldn't set array info. %d\n", err);
+ goto unlock;
+ }
+ goto unlock;
+ }
+
+ /*
+ * Commands querying/configuring an existing array:
+ */
+ /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
+ * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
+ if ((!mddev->raid_disks && !mddev->external)
+ && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
+ && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
+ && cmd != GET_BITMAP_FILE) {
+ err = -ENODEV;
+ goto unlock;
+ }
+
+ /*
+ * Commands even a read-only array can execute:
+ */
+ switch (cmd) {
+ case RESTART_ARRAY_RW:
+ err = restart_array(mddev);
+ goto unlock;
+
+ case STOP_ARRAY:
+ err = do_md_stop(mddev, 0, bdev);
+ goto unlock;
+
+ case STOP_ARRAY_RO:
+ err = md_set_readonly(mddev, bdev);
+ goto unlock;
+
+ case HOT_REMOVE_DISK:
+ err = hot_remove_disk(mddev, new_decode_dev(arg));
+ goto unlock;
+
+ case ADD_NEW_DISK:
+ /* We can support ADD_NEW_DISK on read-only arrays
+ * only if we are re-adding a preexisting device.
+ * So require mddev->pers and MD_DISK_SYNC.
+ */
+ if (mddev->pers) {
+ mdu_disk_info_t info;
+ if (copy_from_user(&info, argp, sizeof(info)))
+ err = -EFAULT;
+ else if (!(info.state & (1<<MD_DISK_SYNC)))
+ /* Need to clear read-only for this */
+ break;
+ else
+ err = md_add_new_disk(mddev, &info);
+ goto unlock;
+ }
+ break;
+ }
+
+ /*
+ * The remaining ioctls are changing the state of the
+ * superblock, so we do not allow them on read-only arrays.
+ */
+ if (!md_is_rdwr(mddev) && mddev->pers) {
+ if (mddev->ro != MD_AUTO_READ) {
+ err = -EROFS;
+ goto unlock;
+ }
+ mddev->ro = MD_RDWR;
+ sysfs_notify_dirent_safe(mddev->sysfs_state);
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ /* mddev_unlock will wake thread */
+ /* If a device failed while we were read-only, we
+ * need to make sure the metadata is updated now.
+ */
+ if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
+ mddev_unlock(mddev);
+ wait_event(mddev->sb_wait,
+ !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
+ !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
+ mddev_lock_nointr(mddev);
+ }
+ }
+
+ switch (cmd) {
+ case ADD_NEW_DISK:
+ {
+ mdu_disk_info_t info;
+ if (copy_from_user(&info, argp, sizeof(info)))
+ err = -EFAULT;
+ else
+ err = md_add_new_disk(mddev, &info);
+ goto unlock;
+ }
+
+ case CLUSTERED_DISK_NACK:
+ if (mddev_is_clustered(mddev))
+ md_cluster_ops->new_disk_ack(mddev, false);
+ else
+ err = -EINVAL;
+ goto unlock;
+
+ case HOT_ADD_DISK:
+ err = hot_add_disk(mddev, new_decode_dev(arg));
+ goto unlock;
+
+ case RUN_ARRAY:
+ err = do_md_run(mddev);
+ goto unlock;
+
+ case SET_BITMAP_FILE:
+ err = set_bitmap_file(mddev, (int)arg);
+ goto unlock;
+
+ default:
+ err = -EINVAL;
+ goto unlock;
+ }
+
+unlock:
+ if (mddev->hold_active == UNTIL_IOCTL &&
+ err != -EINVAL)
+ mddev->hold_active = 0;
+ mddev_unlock(mddev);
+out:
+ if(did_set_md_closing)
+ clear_bit(MD_CLOSING, &mddev->flags);
+ return err;
+}
+#ifdef CONFIG_COMPAT
+static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
+ unsigned int cmd, unsigned long arg)
+{
+ switch (cmd) {
+ case HOT_REMOVE_DISK:
+ case HOT_ADD_DISK:
+ case SET_DISK_FAULTY:
+ case SET_BITMAP_FILE:
+ /* These take in integer arg, do not convert */
+ break;
+ default:
+ arg = (unsigned long)compat_ptr(arg);
+ break;
+ }
+
+ return md_ioctl(bdev, mode, cmd, arg);
+}
+#endif /* CONFIG_COMPAT */
+
+static int md_set_read_only(struct block_device *bdev, bool ro)
+{
+ struct mddev *mddev = bdev->bd_disk->private_data;
+ int err;
+
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+
+ if (!mddev->raid_disks && !mddev->external) {
+ err = -ENODEV;
+ goto out_unlock;
+ }
+
+ /*
+ * Transitioning to read-auto need only happen for arrays that call
+ * md_write_start and which are not ready for writes yet.
+ */
+ if (!ro && mddev->ro == MD_RDONLY && mddev->pers) {
+ err = restart_array(mddev);
+ if (err)
+ goto out_unlock;
+ mddev->ro = MD_AUTO_READ;
+ }
+
+out_unlock:
+ mddev_unlock(mddev);
+ return err;
+}
+
+static int md_open(struct block_device *bdev, fmode_t mode)
+{
+ struct mddev *mddev;
+ int err;
+
+ spin_lock(&all_mddevs_lock);
+ mddev = mddev_get(bdev->bd_disk->private_data);
+ spin_unlock(&all_mddevs_lock);
+ if (!mddev)
+ return -ENODEV;
+
+ err = mutex_lock_interruptible(&mddev->open_mutex);
+ if (err)
+ goto out;
+
+ err = -ENODEV;
+ if (test_bit(MD_CLOSING, &mddev->flags))
+ goto out_unlock;
+
+ atomic_inc(&mddev->openers);
+ mutex_unlock(&mddev->open_mutex);
+
+ bdev_check_media_change(bdev);
+ return 0;
+
+out_unlock:
+ mutex_unlock(&mddev->open_mutex);
+out:
+ mddev_put(mddev);
+ return err;
+}
+
+static void md_release(struct gendisk *disk, fmode_t mode)
+{
+ struct mddev *mddev = disk->private_data;
+
+ BUG_ON(!mddev);
+ atomic_dec(&mddev->openers);
+ mddev_put(mddev);
+}
+
+static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
+{
+ struct mddev *mddev = disk->private_data;
+ unsigned int ret = 0;
+
+ if (mddev->changed)
+ ret = DISK_EVENT_MEDIA_CHANGE;
+ mddev->changed = 0;
+ return ret;
+}
+
+static void md_free_disk(struct gendisk *disk)
+{
+ struct mddev *mddev = disk->private_data;
+
+ percpu_ref_exit(&mddev->writes_pending);
+ mddev_free(mddev);
+}
+
+const struct block_device_operations md_fops =
+{
+ .owner = THIS_MODULE,
+ .submit_bio = md_submit_bio,
+ .open = md_open,
+ .release = md_release,
+ .ioctl = md_ioctl,
+#ifdef CONFIG_COMPAT
+ .compat_ioctl = md_compat_ioctl,
+#endif
+ .getgeo = md_getgeo,
+ .check_events = md_check_events,
+ .set_read_only = md_set_read_only,
+ .free_disk = md_free_disk,
+};
+
+static int md_thread(void *arg)
+{
+ struct md_thread *thread = arg;
+
+ /*
+ * md_thread is a 'system-thread', it's priority should be very
+ * high. We avoid resource deadlocks individually in each
+ * raid personality. (RAID5 does preallocation) We also use RR and
+ * the very same RT priority as kswapd, thus we will never get
+ * into a priority inversion deadlock.
+ *
+ * we definitely have to have equal or higher priority than
+ * bdflush, otherwise bdflush will deadlock if there are too
+ * many dirty RAID5 blocks.
+ */
+
+ allow_signal(SIGKILL);
+ while (!kthread_should_stop()) {
+
+ /* We need to wait INTERRUPTIBLE so that
+ * we don't add to the load-average.
+ * That means we need to be sure no signals are
+ * pending
+ */
+ if (signal_pending(current))
+ flush_signals(current);
+
+ wait_event_interruptible_timeout
+ (thread->wqueue,
+ test_bit(THREAD_WAKEUP, &thread->flags)
+ || kthread_should_stop() || kthread_should_park(),
+ thread->timeout);
+
+ clear_bit(THREAD_WAKEUP, &thread->flags);
+ if (kthread_should_park())
+ kthread_parkme();
+ if (!kthread_should_stop())
+ thread->run(thread);
+ }
+
+ return 0;
+}
+
+void md_wakeup_thread(struct md_thread *thread)
+{
+ if (thread) {
+ pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
+ set_bit(THREAD_WAKEUP, &thread->flags);
+ wake_up(&thread->wqueue);
+ }
+}
+EXPORT_SYMBOL(md_wakeup_thread);
+
+struct md_thread *md_register_thread(void (*run) (struct md_thread *),
+ struct mddev *mddev, const char *name)
+{
+ struct md_thread *thread;
+
+ thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
+ if (!thread)
+ return NULL;
+
+ init_waitqueue_head(&thread->wqueue);
+
+ thread->run = run;
+ thread->mddev = mddev;
+ thread->timeout = MAX_SCHEDULE_TIMEOUT;
+ thread->tsk = kthread_run(md_thread, thread,
+ "%s_%s",
+ mdname(thread->mddev),
+ name);
+ if (IS_ERR(thread->tsk)) {
+ kfree(thread);
+ return NULL;
+ }
+ return thread;
+}
+EXPORT_SYMBOL(md_register_thread);
+
+void md_unregister_thread(struct md_thread **threadp)
+{
+ struct md_thread *thread;
+
+ /*
+ * Locking ensures that mddev_unlock does not wake_up a
+ * non-existent thread
+ */
+ spin_lock(&pers_lock);
+ thread = *threadp;
+ if (!thread) {
+ spin_unlock(&pers_lock);
+ return;
+ }
+ *threadp = NULL;
+ spin_unlock(&pers_lock);
+
+ pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
+ kthread_stop(thread->tsk);
+ kfree(thread);
+}
+EXPORT_SYMBOL(md_unregister_thread);
+
+void md_error(struct mddev *mddev, struct md_rdev *rdev)
+{
+ if (!rdev || test_bit(Faulty, &rdev->flags))
+ return;
+
+ if (!mddev->pers || !mddev->pers->error_handler)
+ return;
+ mddev->pers->error_handler(mddev, rdev);
+
+ if (mddev->pers->level == 0 || mddev->pers->level == LEVEL_LINEAR)
+ return;
+
+ if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags))
+ set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
+ sysfs_notify_dirent_safe(rdev->sysfs_state);
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ if (!test_bit(MD_BROKEN, &mddev->flags)) {
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ md_wakeup_thread(mddev->thread);
+ }
+ if (mddev->event_work.func)
+ queue_work(md_misc_wq, &mddev->event_work);
+ md_new_event();
+}
+EXPORT_SYMBOL(md_error);
+
+/* seq_file implementation /proc/mdstat */
+
+static void status_unused(struct seq_file *seq)
+{
+ int i = 0;
+ struct md_rdev *rdev;
+
+ seq_printf(seq, "unused devices: ");
+
+ list_for_each_entry(rdev, &pending_raid_disks, same_set) {
+ i++;
+ seq_printf(seq, "%pg ", rdev->bdev);
+ }
+ if (!i)
+ seq_printf(seq, "<none>");
+
+ seq_printf(seq, "\n");
+}
+
+static int status_resync(struct seq_file *seq, struct mddev *mddev)
+{
+ sector_t max_sectors, resync, res;
+ unsigned long dt, db = 0;
+ sector_t rt, curr_mark_cnt, resync_mark_cnt;
+ int scale, recovery_active;
+ unsigned int per_milli;
+
+ if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
+ test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
+ max_sectors = mddev->resync_max_sectors;
+ else
+ max_sectors = mddev->dev_sectors;
+
+ resync = mddev->curr_resync;
+ if (resync < MD_RESYNC_ACTIVE) {
+ if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
+ /* Still cleaning up */
+ resync = max_sectors;
+ } else if (resync > max_sectors) {
+ resync = max_sectors;
+ } else {
+ res = atomic_read(&mddev->recovery_active);
+ /*
+ * Resync has started, but the subtraction has overflowed or
+ * yielded one of the special values. Force it to active to
+ * ensure the status reports an active resync.
+ */
+ if (resync < res || resync - res < MD_RESYNC_ACTIVE)
+ resync = MD_RESYNC_ACTIVE;
+ else
+ resync -= res;
+ }
+
+ if (resync == MD_RESYNC_NONE) {
+ if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
+ struct md_rdev *rdev;
+
+ rdev_for_each(rdev, mddev)
+ if (rdev->raid_disk >= 0 &&
+ !test_bit(Faulty, &rdev->flags) &&
+ rdev->recovery_offset != MaxSector &&
+ rdev->recovery_offset) {
+ seq_printf(seq, "\trecover=REMOTE");
+ return 1;
+ }
+ if (mddev->reshape_position != MaxSector)
+ seq_printf(seq, "\treshape=REMOTE");
+ else
+ seq_printf(seq, "\tresync=REMOTE");
+ return 1;
+ }
+ if (mddev->recovery_cp < MaxSector) {
+ seq_printf(seq, "\tresync=PENDING");
+ return 1;
+ }
+ return 0;
+ }
+ if (resync < MD_RESYNC_ACTIVE) {
+ seq_printf(seq, "\tresync=DELAYED");
+ return 1;
+ }
+
+ WARN_ON(max_sectors == 0);
+ /* Pick 'scale' such that (resync>>scale)*1000 will fit
+ * in a sector_t, and (max_sectors>>scale) will fit in a
+ * u32, as those are the requirements for sector_div.
+ * Thus 'scale' must be at least 10
+ */
+ scale = 10;
+ if (sizeof(sector_t) > sizeof(unsigned long)) {
+ while ( max_sectors/2 > (1ULL<<(scale+32)))
+ scale++;
+ }
+ res = (resync>>scale)*1000;
+ sector_div(res, (u32)((max_sectors>>scale)+1));
+
+ per_milli = res;
+ {
+ int i, x = per_milli/50, y = 20-x;
+ seq_printf(seq, "[");
+ for (i = 0; i < x; i++)
+ seq_printf(seq, "=");
+ seq_printf(seq, ">");
+ for (i = 0; i < y; i++)
+ seq_printf(seq, ".");
+ seq_printf(seq, "] ");
+ }
+ seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
+ (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
+ "reshape" :
+ (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
+ "check" :
+ (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
+ "resync" : "recovery"))),
+ per_milli/10, per_milli % 10,
+ (unsigned long long) resync/2,
+ (unsigned long long) max_sectors/2);
+
+ /*
+ * dt: time from mark until now
+ * db: blocks written from mark until now
+ * rt: remaining time
+ *
+ * rt is a sector_t, which is always 64bit now. We are keeping
+ * the original algorithm, but it is not really necessary.
+ *
+ * Original algorithm:
+ * So we divide before multiply in case it is 32bit and close
+ * to the limit.
+ * We scale the divisor (db) by 32 to avoid losing precision
+ * near the end of resync when the number of remaining sectors
+ * is close to 'db'.
+ * We then divide rt by 32 after multiplying by db to compensate.
+ * The '+1' avoids division by zero if db is very small.
+ */
+ dt = ((jiffies - mddev->resync_mark) / HZ);
+ if (!dt) dt++;
+
+ curr_mark_cnt = mddev->curr_mark_cnt;
+ recovery_active = atomic_read(&mddev->recovery_active);
+ resync_mark_cnt = mddev->resync_mark_cnt;
+
+ if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
+ db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
+
+ rt = max_sectors - resync; /* number of remaining sectors */
+ rt = div64_u64(rt, db/32+1);
+ rt *= dt;
+ rt >>= 5;
+
+ seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
+ ((unsigned long)rt % 60)/6);
+
+ seq_printf(seq, " speed=%ldK/sec", db/2/dt);
+ return 1;
+}
+
+static void *md_seq_start(struct seq_file *seq, loff_t *pos)
+{
+ struct list_head *tmp;
+ loff_t l = *pos;
+ struct mddev *mddev;
+
+ if (l == 0x10000) {
+ ++*pos;
+ return (void *)2;
+ }
+ if (l > 0x10000)
+ return NULL;
+ if (!l--)
+ /* header */
+ return (void*)1;
+
+ spin_lock(&all_mddevs_lock);
+ list_for_each(tmp,&all_mddevs)
+ if (!l--) {
+ mddev = list_entry(tmp, struct mddev, all_mddevs);
+ if (!mddev_get(mddev))
+ continue;
+ spin_unlock(&all_mddevs_lock);
+ return mddev;
+ }
+ spin_unlock(&all_mddevs_lock);
+ if (!l--)
+ return (void*)2;/* tail */
+ return NULL;
+}
+
+static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
+{
+ struct list_head *tmp;
+ struct mddev *next_mddev, *mddev = v;
+ struct mddev *to_put = NULL;
+
+ ++*pos;
+ if (v == (void*)2)
+ return NULL;
+
+ spin_lock(&all_mddevs_lock);
+ if (v == (void*)1) {
+ tmp = all_mddevs.next;
+ } else {
+ to_put = mddev;
+ tmp = mddev->all_mddevs.next;
+ }
+
+ for (;;) {
+ if (tmp == &all_mddevs) {
+ next_mddev = (void*)2;
+ *pos = 0x10000;
+ break;
+ }
+ next_mddev = list_entry(tmp, struct mddev, all_mddevs);
+ if (mddev_get(next_mddev))
+ break;
+ mddev = next_mddev;
+ tmp = mddev->all_mddevs.next;
+ }
+ spin_unlock(&all_mddevs_lock);
+
+ if (to_put)
+ mddev_put(to_put);
+ return next_mddev;
+
+}
+
+static void md_seq_stop(struct seq_file *seq, void *v)
+{
+ struct mddev *mddev = v;
+
+ if (mddev && v != (void*)1 && v != (void*)2)
+ mddev_put(mddev);
+}
+
+static int md_seq_show(struct seq_file *seq, void *v)
+{
+ struct mddev *mddev = v;
+ sector_t sectors;
+ struct md_rdev *rdev;
+
+ if (v == (void*)1) {
+ struct md_personality *pers;
+ seq_printf(seq, "Personalities : ");
+ spin_lock(&pers_lock);
+ list_for_each_entry(pers, &pers_list, list)
+ seq_printf(seq, "[%s] ", pers->name);
+
+ spin_unlock(&pers_lock);
+ seq_printf(seq, "\n");
+ seq->poll_event = atomic_read(&md_event_count);
+ return 0;
+ }
+ if (v == (void*)2) {
+ status_unused(seq);
+ return 0;
+ }
+
+ spin_lock(&mddev->lock);
+ if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
+ seq_printf(seq, "%s : %sactive", mdname(mddev),
+ mddev->pers ? "" : "in");
+ if (mddev->pers) {
+ if (mddev->ro == MD_RDONLY)
+ seq_printf(seq, " (read-only)");
+ if (mddev->ro == MD_AUTO_READ)
+ seq_printf(seq, " (auto-read-only)");
+ seq_printf(seq, " %s", mddev->pers->name);
+ }
+
+ sectors = 0;
+ rcu_read_lock();
+ rdev_for_each_rcu(rdev, mddev) {
+ seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr);
+
+ if (test_bit(WriteMostly, &rdev->flags))
+ seq_printf(seq, "(W)");
+ if (test_bit(Journal, &rdev->flags))
+ seq_printf(seq, "(J)");
+ if (test_bit(Faulty, &rdev->flags)) {
+ seq_printf(seq, "(F)");
+ continue;
+ }
+ if (rdev->raid_disk < 0)
+ seq_printf(seq, "(S)"); /* spare */
+ if (test_bit(Replacement, &rdev->flags))
+ seq_printf(seq, "(R)");
+ sectors += rdev->sectors;
+ }
+ rcu_read_unlock();
+
+ if (!list_empty(&mddev->disks)) {
+ if (mddev->pers)
+ seq_printf(seq, "\n %llu blocks",
+ (unsigned long long)
+ mddev->array_sectors / 2);
+ else
+ seq_printf(seq, "\n %llu blocks",
+ (unsigned long long)sectors / 2);
+ }
+ if (mddev->persistent) {
+ if (mddev->major_version != 0 ||
+ mddev->minor_version != 90) {
+ seq_printf(seq," super %d.%d",
+ mddev->major_version,
+ mddev->minor_version);
+ }
+ } else if (mddev->external)
+ seq_printf(seq, " super external:%s",
+ mddev->metadata_type);
+ else
+ seq_printf(seq, " super non-persistent");
+
+ if (mddev->pers) {
+ mddev->pers->status(seq, mddev);
+ seq_printf(seq, "\n ");
+ if (mddev->pers->sync_request) {
+ if (status_resync(seq, mddev))
+ seq_printf(seq, "\n ");
+ }
+ } else
+ seq_printf(seq, "\n ");
+
+ md_bitmap_status(seq, mddev->bitmap);
+
+ seq_printf(seq, "\n");
+ }
+ spin_unlock(&mddev->lock);
+
+ return 0;
+}
+
+static const struct seq_operations md_seq_ops = {
+ .start = md_seq_start,
+ .next = md_seq_next,
+ .stop = md_seq_stop,
+ .show = md_seq_show,
+};
+
+static int md_seq_open(struct inode *inode, struct file *file)
+{
+ struct seq_file *seq;
+ int error;
+
+ error = seq_open(file, &md_seq_ops);
+ if (error)
+ return error;
+
+ seq = file->private_data;
+ seq->poll_event = atomic_read(&md_event_count);
+ return error;
+}
+
+static int md_unloading;
+static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
+{
+ struct seq_file *seq = filp->private_data;
+ __poll_t mask;
+
+ if (md_unloading)
+ return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
+ poll_wait(filp, &md_event_waiters, wait);
+
+ /* always allow read */
+ mask = EPOLLIN | EPOLLRDNORM;
+
+ if (seq->poll_event != atomic_read(&md_event_count))
+ mask |= EPOLLERR | EPOLLPRI;
+ return mask;
+}
+
+static const struct proc_ops mdstat_proc_ops = {
+ .proc_open = md_seq_open,
+ .proc_read = seq_read,
+ .proc_lseek = seq_lseek,
+ .proc_release = seq_release,
+ .proc_poll = mdstat_poll,
+};
+
+int register_md_personality(struct md_personality *p)
+{
+ pr_debug("md: %s personality registered for level %d\n",
+ p->name, p->level);
+ spin_lock(&pers_lock);
+ list_add_tail(&p->list, &pers_list);
+ spin_unlock(&pers_lock);
+ return 0;
+}
+EXPORT_SYMBOL(register_md_personality);
+
+int unregister_md_personality(struct md_personality *p)
+{
+ pr_debug("md: %s personality unregistered\n", p->name);
+ spin_lock(&pers_lock);
+ list_del_init(&p->list);
+ spin_unlock(&pers_lock);
+ return 0;
+}
+EXPORT_SYMBOL(unregister_md_personality);
+
+int register_md_cluster_operations(struct md_cluster_operations *ops,
+ struct module *module)
+{
+ int ret = 0;
+ spin_lock(&pers_lock);
+ if (md_cluster_ops != NULL)
+ ret = -EALREADY;
+ else {
+ md_cluster_ops = ops;
+ md_cluster_mod = module;
+ }
+ spin_unlock(&pers_lock);
+ return ret;
+}
+EXPORT_SYMBOL(register_md_cluster_operations);
+
+int unregister_md_cluster_operations(void)
+{
+ spin_lock(&pers_lock);
+ md_cluster_ops = NULL;
+ spin_unlock(&pers_lock);
+ return 0;
+}
+EXPORT_SYMBOL(unregister_md_cluster_operations);
+
+int md_setup_cluster(struct mddev *mddev, int nodes)
+{
+ int ret;
+ if (!md_cluster_ops)
+ request_module("md-cluster");
+ spin_lock(&pers_lock);
+ /* ensure module won't be unloaded */
+ if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
+ pr_warn("can't find md-cluster module or get its reference.\n");
+ spin_unlock(&pers_lock);
+ return -ENOENT;
+ }
+ spin_unlock(&pers_lock);
+
+ ret = md_cluster_ops->join(mddev, nodes);
+ if (!ret)
+ mddev->safemode_delay = 0;
+ return ret;
+}
+
+void md_cluster_stop(struct mddev *mddev)
+{
+ if (!md_cluster_ops)
+ return;
+ md_cluster_ops->leave(mddev);
+ module_put(md_cluster_mod);
+}
+
+static int is_mddev_idle(struct mddev *mddev, int init)
+{
+ struct md_rdev *rdev;
+ int idle;
+ int curr_events;
+
+ idle = 1;
+ rcu_read_lock();
+ rdev_for_each_rcu(rdev, mddev) {
+ struct gendisk *disk = rdev->bdev->bd_disk;
+ curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
+ atomic_read(&disk->sync_io);
+ /* sync IO will cause sync_io to increase before the disk_stats
+ * as sync_io is counted when a request starts, and
+ * disk_stats is counted when it completes.
+ * So resync activity will cause curr_events to be smaller than
+ * when there was no such activity.
+ * non-sync IO will cause disk_stat to increase without
+ * increasing sync_io so curr_events will (eventually)
+ * be larger than it was before. Once it becomes
+ * substantially larger, the test below will cause
+ * the array to appear non-idle, and resync will slow
+ * down.
+ * If there is a lot of outstanding resync activity when
+ * we set last_event to curr_events, then all that activity
+ * completing might cause the array to appear non-idle
+ * and resync will be slowed down even though there might
+ * not have been non-resync activity. This will only
+ * happen once though. 'last_events' will soon reflect
+ * the state where there is little or no outstanding
+ * resync requests, and further resync activity will
+ * always make curr_events less than last_events.
+ *
+ */
+ if (init || curr_events - rdev->last_events > 64) {
+ rdev->last_events = curr_events;
+ idle = 0;
+ }
+ }
+ rcu_read_unlock();
+ return idle;
+}
+
+void md_done_sync(struct mddev *mddev, int blocks, int ok)
+{
+ /* another "blocks" (512byte) blocks have been synced */
+ atomic_sub(blocks, &mddev->recovery_active);
+ wake_up(&mddev->recovery_wait);
+ if (!ok) {
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
+ md_wakeup_thread(mddev->thread);
+ // stop recovery, signal do_sync ....
+ }
+}
+EXPORT_SYMBOL(md_done_sync);
+
+/* md_write_start(mddev, bi)
+ * If we need to update some array metadata (e.g. 'active' flag
+ * in superblock) before writing, schedule a superblock update
+ * and wait for it to complete.
+ * A return value of 'false' means that the write wasn't recorded
+ * and cannot proceed as the array is being suspend.
+ */
+bool md_write_start(struct mddev *mddev, struct bio *bi)
+{
+ int did_change = 0;
+
+ if (bio_data_dir(bi) != WRITE)
+ return true;
+
+ BUG_ON(mddev->ro == MD_RDONLY);
+ if (mddev->ro == MD_AUTO_READ) {
+ /* need to switch to read/write */
+ mddev->ro = MD_RDWR;
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ md_wakeup_thread(mddev->thread);
+ md_wakeup_thread(mddev->sync_thread);
+ did_change = 1;
+ }
+ rcu_read_lock();
+ percpu_ref_get(&mddev->writes_pending);
+ smp_mb(); /* Match smp_mb in set_in_sync() */
+ if (mddev->safemode == 1)
+ mddev->safemode = 0;
+ /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
+ if (mddev->in_sync || mddev->sync_checkers) {
+ spin_lock(&mddev->lock);
+ if (mddev->in_sync) {
+ mddev->in_sync = 0;
+ set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
+ set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
+ md_wakeup_thread(mddev->thread);
+ did_change = 1;
+ }
+ spin_unlock(&mddev->lock);
+ }
+ rcu_read_unlock();
+ if (did_change)
+ sysfs_notify_dirent_safe(mddev->sysfs_state);
+ if (!mddev->has_superblocks)
+ return true;
+ wait_event(mddev->sb_wait,
+ !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
+ is_md_suspended(mddev));
+ if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
+ percpu_ref_put(&mddev->writes_pending);
+ return false;
+ }
+ return true;
+}
+EXPORT_SYMBOL(md_write_start);
+
+/* md_write_inc can only be called when md_write_start() has
+ * already been called at least once of the current request.
+ * It increments the counter and is useful when a single request
+ * is split into several parts. Each part causes an increment and
+ * so needs a matching md_write_end().
+ * Unlike md_write_start(), it is safe to call md_write_inc() inside
+ * a spinlocked region.
+ */
+void md_write_inc(struct mddev *mddev, struct bio *bi)
+{
+ if (bio_data_dir(bi) != WRITE)
+ return;
+ WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev));
+ percpu_ref_get(&mddev->writes_pending);
+}
+EXPORT_SYMBOL(md_write_inc);
+
+void md_write_end(struct mddev *mddev)
+{
+ percpu_ref_put(&mddev->writes_pending);
+
+ if (mddev->safemode == 2)
+ md_wakeup_thread(mddev->thread);
+ else if (mddev->safemode_delay)
+ /* The roundup() ensures this only performs locking once
+ * every ->safemode_delay jiffies
+ */
+ mod_timer(&mddev->safemode_timer,
+ roundup(jiffies, mddev->safemode_delay) +
+ mddev->safemode_delay);
+}
+
+EXPORT_SYMBOL(md_write_end);
+
+/* This is used by raid0 and raid10 */
+void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
+ struct bio *bio, sector_t start, sector_t size)
+{
+ struct bio *discard_bio = NULL;
+
+ if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO,
+ &discard_bio) || !discard_bio)
+ return;
+
+ bio_chain(discard_bio, bio);
+ bio_clone_blkg_association(discard_bio, bio);
+ if (mddev->gendisk)
+ trace_block_bio_remap(discard_bio,
+ disk_devt(mddev->gendisk),
+ bio->bi_iter.bi_sector);
+ submit_bio_noacct(discard_bio);
+}
+EXPORT_SYMBOL_GPL(md_submit_discard_bio);
+
+int acct_bioset_init(struct mddev *mddev)
+{
+ int err = 0;
+
+ if (!bioset_initialized(&mddev->io_acct_set))
+ err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE,
+ offsetof(struct md_io_acct, bio_clone), 0);
+ return err;
+}
+EXPORT_SYMBOL_GPL(acct_bioset_init);
+
+void acct_bioset_exit(struct mddev *mddev)
+{
+ bioset_exit(&mddev->io_acct_set);
+}
+EXPORT_SYMBOL_GPL(acct_bioset_exit);
+
+static void md_end_io_acct(struct bio *bio)
+{
+ struct md_io_acct *md_io_acct = bio->bi_private;
+ struct bio *orig_bio = md_io_acct->orig_bio;
+
+ if (bio->bi_status && !orig_bio->bi_status)
+ orig_bio->bi_status = bio->bi_status;
+
+ bio_end_io_acct(orig_bio, md_io_acct->start_time);
+ bio_put(bio);
+ bio_endio(orig_bio);
+}
+
+/*
+ * Used by personalities that don't already clone the bio and thus can't
+ * easily add the timestamp to their extended bio structure.
+ */
+void md_account_bio(struct mddev *mddev, struct bio **bio)
+{
+ struct block_device *bdev = (*bio)->bi_bdev;
+ struct md_io_acct *md_io_acct;
+ struct bio *clone;
+
+ if (!blk_queue_io_stat(bdev->bd_disk->queue))
+ return;
+
+ clone = bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_acct_set);
+ md_io_acct = container_of(clone, struct md_io_acct, bio_clone);
+ md_io_acct->orig_bio = *bio;
+ md_io_acct->start_time = bio_start_io_acct(*bio);
+
+ clone->bi_end_io = md_end_io_acct;
+ clone->bi_private = md_io_acct;
+ *bio = clone;
+}
+EXPORT_SYMBOL_GPL(md_account_bio);
+
+/* md_allow_write(mddev)
+ * Calling this ensures that the array is marked 'active' so that writes
+ * may proceed without blocking. It is important to call this before
+ * attempting a GFP_KERNEL allocation while holding the mddev lock.
+ * Must be called with mddev_lock held.
+ */
+void md_allow_write(struct mddev *mddev)
+{
+ if (!mddev->pers)
+ return;
+ if (!md_is_rdwr(mddev))
+ return;
+ if (!mddev->pers->sync_request)
+ return;
+
+ spin_lock(&mddev->lock);
+ if (mddev->in_sync) {
+ mddev->in_sync = 0;
+ set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
+ set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
+ if (mddev->safemode_delay &&
+ mddev->safemode == 0)
+ mddev->safemode = 1;
+ spin_unlock(&mddev->lock);
+ md_update_sb(mddev, 0);
+ sysfs_notify_dirent_safe(mddev->sysfs_state);
+ /* wait for the dirty state to be recorded in the metadata */
+ wait_event(mddev->sb_wait,
+ !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
+ } else
+ spin_unlock(&mddev->lock);
+}
+EXPORT_SYMBOL_GPL(md_allow_write);
+
+#define SYNC_MARKS 10
+#define SYNC_MARK_STEP (3*HZ)
+#define UPDATE_FREQUENCY (5*60*HZ)
+void md_do_sync(struct md_thread *thread)
+{
+ struct mddev *mddev = thread->mddev;
+ struct mddev *mddev2;
+ unsigned int currspeed = 0, window;
+ sector_t max_sectors,j, io_sectors, recovery_done;
+ unsigned long mark[SYNC_MARKS];
+ unsigned long update_time;
+ sector_t mark_cnt[SYNC_MARKS];
+ int last_mark,m;
+ sector_t last_check;
+ int skipped = 0;
+ struct md_rdev *rdev;
+ char *desc, *action = NULL;
+ struct blk_plug plug;
+ int ret;
+
+ /* just incase thread restarts... */
+ if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
+ test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
+ return;
+ if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ return;
+ }
+
+ if (mddev_is_clustered(mddev)) {
+ ret = md_cluster_ops->resync_start(mddev);
+ if (ret)
+ goto skip;
+
+ set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
+ if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
+ test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
+ test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
+ && ((unsigned long long)mddev->curr_resync_completed
+ < (unsigned long long)mddev->resync_max_sectors))
+ goto skip;
+ }
+
+ if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
+ if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
+ desc = "data-check";
+ action = "check";
+ } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
+ desc = "requested-resync";
+ action = "repair";
+ } else
+ desc = "resync";
+ } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
+ desc = "reshape";
+ else
+ desc = "recovery";
+
+ mddev->last_sync_action = action ?: desc;
+
+ /*
+ * Before starting a resync we must have set curr_resync to
+ * 2, and then checked that every "conflicting" array has curr_resync
+ * less than ours. When we find one that is the same or higher
+ * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
+ * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
+ * This will mean we have to start checking from the beginning again.
+ *
+ */
+
+ do {
+ int mddev2_minor = -1;
+ mddev->curr_resync = MD_RESYNC_DELAYED;
+
+ try_again:
+ if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
+ goto skip;
+ spin_lock(&all_mddevs_lock);
+ list_for_each_entry(mddev2, &all_mddevs, all_mddevs) {
+ if (test_bit(MD_DELETED, &mddev2->flags))
+ continue;
+ if (mddev2 == mddev)
+ continue;
+ if (!mddev->parallel_resync
+ && mddev2->curr_resync
+ && match_mddev_units(mddev, mddev2)) {
+ DEFINE_WAIT(wq);
+ if (mddev < mddev2 &&
+ mddev->curr_resync == MD_RESYNC_DELAYED) {
+ /* arbitrarily yield */
+ mddev->curr_resync = MD_RESYNC_YIELDED;
+ wake_up(&resync_wait);
+ }
+ if (mddev > mddev2 &&
+ mddev->curr_resync == MD_RESYNC_YIELDED)
+ /* no need to wait here, we can wait the next
+ * time 'round when curr_resync == 2
+ */
+ continue;
+ /* We need to wait 'interruptible' so as not to
+ * contribute to the load average, and not to
+ * be caught by 'softlockup'
+ */
+ prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
+ if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
+ mddev2->curr_resync >= mddev->curr_resync) {
+ if (mddev2_minor != mddev2->md_minor) {
+ mddev2_minor = mddev2->md_minor;
+ pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
+ desc, mdname(mddev),
+ mdname(mddev2));
+ }
+ spin_unlock(&all_mddevs_lock);
+
+ if (signal_pending(current))
+ flush_signals(current);
+ schedule();
+ finish_wait(&resync_wait, &wq);
+ goto try_again;
+ }
+ finish_wait(&resync_wait, &wq);
+ }
+ }
+ spin_unlock(&all_mddevs_lock);
+ } while (mddev->curr_resync < MD_RESYNC_DELAYED);
+
+ j = 0;
+ if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
+ /* resync follows the size requested by the personality,
+ * which defaults to physical size, but can be virtual size
+ */
+ max_sectors = mddev->resync_max_sectors;
+ atomic64_set(&mddev->resync_mismatches, 0);
+ /* we don't use the checkpoint if there's a bitmap */
+ if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
+ j = mddev->resync_min;
+ else if (!mddev->bitmap)
+ j = mddev->recovery_cp;
+
+ } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
+ max_sectors = mddev->resync_max_sectors;
+ /*
+ * If the original node aborts reshaping then we continue the
+ * reshaping, so set j again to avoid restart reshape from the
+ * first beginning
+ */
+ if (mddev_is_clustered(mddev) &&
+ mddev->reshape_position != MaxSector)
+ j = mddev->reshape_position;
+ } else {
+ /* recovery follows the physical size of devices */
+ max_sectors = mddev->dev_sectors;
+ j = MaxSector;
+ rcu_read_lock();
+ rdev_for_each_rcu(rdev, mddev)
+ if (rdev->raid_disk >= 0 &&
+ !test_bit(Journal, &rdev->flags) &&
+ !test_bit(Faulty, &rdev->flags) &&
+ !test_bit(In_sync, &rdev->flags) &&
+ rdev->recovery_offset < j)
+ j = rdev->recovery_offset;
+ rcu_read_unlock();
+
+ /* If there is a bitmap, we need to make sure all
+ * writes that started before we added a spare
+ * complete before we start doing a recovery.
+ * Otherwise the write might complete and (via
+ * bitmap_endwrite) set a bit in the bitmap after the
+ * recovery has checked that bit and skipped that
+ * region.
+ */
+ if (mddev->bitmap) {
+ mddev->pers->quiesce(mddev, 1);
+ mddev->pers->quiesce(mddev, 0);
+ }
+ }
+
+ pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
+ pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
+ pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
+ speed_max(mddev), desc);
+
+ is_mddev_idle(mddev, 1); /* this initializes IO event counters */
+
+ io_sectors = 0;
+ for (m = 0; m < SYNC_MARKS; m++) {
+ mark[m] = jiffies;
+ mark_cnt[m] = io_sectors;
+ }
+ last_mark = 0;
+ mddev->resync_mark = mark[last_mark];
+ mddev->resync_mark_cnt = mark_cnt[last_mark];
+
+ /*
+ * Tune reconstruction:
+ */
+ window = 32 * (PAGE_SIZE / 512);
+ pr_debug("md: using %dk window, over a total of %lluk.\n",
+ window/2, (unsigned long long)max_sectors/2);
+
+ atomic_set(&mddev->recovery_active, 0);
+ last_check = 0;
+
+ if (j>2) {
+ pr_debug("md: resuming %s of %s from checkpoint.\n",
+ desc, mdname(mddev));
+ mddev->curr_resync = j;
+ } else
+ mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */
+ mddev->curr_resync_completed = j;
+ sysfs_notify_dirent_safe(mddev->sysfs_completed);
+ md_new_event();
+ update_time = jiffies;
+
+ blk_start_plug(&plug);
+ while (j < max_sectors) {
+ sector_t sectors;
+
+ skipped = 0;
+
+ if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
+ ((mddev->curr_resync > mddev->curr_resync_completed &&
+ (mddev->curr_resync - mddev->curr_resync_completed)
+ > (max_sectors >> 4)) ||
+ time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
+ (j - mddev->curr_resync_completed)*2
+ >= mddev->resync_max - mddev->curr_resync_completed ||
+ mddev->curr_resync_completed > mddev->resync_max
+ )) {
+ /* time to update curr_resync_completed */
+ wait_event(mddev->recovery_wait,
+ atomic_read(&mddev->recovery_active) == 0);
+ mddev->curr_resync_completed = j;
+ if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
+ j > mddev->recovery_cp)
+ mddev->recovery_cp = j;
+ update_time = jiffies;
+ set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
+ sysfs_notify_dirent_safe(mddev->sysfs_completed);
+ }
+
+ while (j >= mddev->resync_max &&
+ !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
+ /* As this condition is controlled by user-space,
+ * we can block indefinitely, so use '_interruptible'
+ * to avoid triggering warnings.
+ */
+ flush_signals(current); /* just in case */
+ wait_event_interruptible(mddev->recovery_wait,
+ mddev->resync_max > j
+ || test_bit(MD_RECOVERY_INTR,
+ &mddev->recovery));
+ }
+
+ if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
+ break;
+
+ sectors = mddev->pers->sync_request(mddev, j, &skipped);
+ if (sectors == 0) {
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ break;
+ }
+
+ if (!skipped) { /* actual IO requested */
+ io_sectors += sectors;
+ atomic_add(sectors, &mddev->recovery_active);
+ }
+
+ if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
+ break;
+
+ j += sectors;
+ if (j > max_sectors)
+ /* when skipping, extra large numbers can be returned. */
+ j = max_sectors;
+ if (j > 2)
+ mddev->curr_resync = j;
+ mddev->curr_mark_cnt = io_sectors;
+ if (last_check == 0)
+ /* this is the earliest that rebuild will be
+ * visible in /proc/mdstat
+ */
+ md_new_event();
+
+ if (last_check + window > io_sectors || j == max_sectors)
+ continue;
+
+ last_check = io_sectors;
+ repeat:
+ if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
+ /* step marks */
+ int next = (last_mark+1) % SYNC_MARKS;
+
+ mddev->resync_mark = mark[next];
+ mddev->resync_mark_cnt = mark_cnt[next];
+ mark[next] = jiffies;
+ mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
+ last_mark = next;
+ }
+
+ if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
+ break;
+
+ /*
+ * this loop exits only if either when we are slower than
+ * the 'hard' speed limit, or the system was IO-idle for
+ * a jiffy.
+ * the system might be non-idle CPU-wise, but we only care
+ * about not overloading the IO subsystem. (things like an
+ * e2fsck being done on the RAID array should execute fast)
+ */
+ cond_resched();
+
+ recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
+ currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
+ /((jiffies-mddev->resync_mark)/HZ +1) +1;
+
+ if (currspeed > speed_min(mddev)) {
+ if (currspeed > speed_max(mddev)) {
+ msleep(500);
+ goto repeat;
+ }
+ if (!is_mddev_idle(mddev, 0)) {
+ /*
+ * Give other IO more of a chance.
+ * The faster the devices, the less we wait.
+ */
+ wait_event(mddev->recovery_wait,
+ !atomic_read(&mddev->recovery_active));
+ }
+ }
+ }
+ pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
+ test_bit(MD_RECOVERY_INTR, &mddev->recovery)
+ ? "interrupted" : "done");
+ /*
+ * this also signals 'finished resyncing' to md_stop
+ */
+ blk_finish_plug(&plug);
+ wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
+
+ if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
+ !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
+ mddev->curr_resync >= MD_RESYNC_ACTIVE) {
+ mddev->curr_resync_completed = mddev->curr_resync;
+ sysfs_notify_dirent_safe(mddev->sysfs_completed);
+ }
+ mddev->pers->sync_request(mddev, max_sectors, &skipped);
+
+ if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
+ mddev->curr_resync > MD_RESYNC_ACTIVE) {
+ if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
+ if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
+ if (mddev->curr_resync >= mddev->recovery_cp) {
+ pr_debug("md: checkpointing %s of %s.\n",
+ desc, mdname(mddev));
+ if (test_bit(MD_RECOVERY_ERROR,
+ &mddev->recovery))
+ mddev->recovery_cp =
+ mddev->curr_resync_completed;
+ else
+ mddev->recovery_cp =
+ mddev->curr_resync;
+ }
+ } else
+ mddev->recovery_cp = MaxSector;
+ } else {
+ if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
+ mddev->curr_resync = MaxSector;
+ if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
+ test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
+ rcu_read_lock();
+ rdev_for_each_rcu(rdev, mddev)
+ if (rdev->raid_disk >= 0 &&
+ mddev->delta_disks >= 0 &&
+ !test_bit(Journal, &rdev->flags) &&
+ !test_bit(Faulty, &rdev->flags) &&
+ !test_bit(In_sync, &rdev->flags) &&
+ rdev->recovery_offset < mddev->curr_resync)
+ rdev->recovery_offset = mddev->curr_resync;
+ rcu_read_unlock();
+ }
+ }
+ }
+ skip:
+ /* set CHANGE_PENDING here since maybe another update is needed,
+ * so other nodes are informed. It should be harmless for normal
+ * raid */
+ set_mask_bits(&mddev->sb_flags, 0,
+ BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
+
+ if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
+ !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
+ mddev->delta_disks > 0 &&
+ mddev->pers->finish_reshape &&
+ mddev->pers->size &&
+ mddev->queue) {
+ mddev_lock_nointr(mddev);
+ md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
+ mddev_unlock(mddev);
+ if (!mddev_is_clustered(mddev))
+ set_capacity_and_notify(mddev->gendisk,
+ mddev->array_sectors);
+ }
+
+ spin_lock(&mddev->lock);
+ if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
+ /* We completed so min/max setting can be forgotten if used. */
+ if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
+ mddev->resync_min = 0;
+ mddev->resync_max = MaxSector;
+ } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
+ mddev->resync_min = mddev->curr_resync_completed;
+ set_bit(MD_RECOVERY_DONE, &mddev->recovery);
+ mddev->curr_resync = MD_RESYNC_NONE;
+ spin_unlock(&mddev->lock);
+
+ wake_up(&resync_wait);
+ md_wakeup_thread(mddev->thread);
+ return;
+}
+EXPORT_SYMBOL_GPL(md_do_sync);
+
+static int remove_and_add_spares(struct mddev *mddev,
+ struct md_rdev *this)
+{
+ struct md_rdev *rdev;
+ int spares = 0;
+ int removed = 0;
+ bool remove_some = false;
+
+ if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
+ /* Mustn't remove devices when resync thread is running */
+ return 0;
+
+ rdev_for_each(rdev, mddev) {
+ if ((this == NULL || rdev == this) &&
+ rdev->raid_disk >= 0 &&
+ !test_bit(Blocked, &rdev->flags) &&
+ test_bit(Faulty, &rdev->flags) &&
+ atomic_read(&rdev->nr_pending)==0) {
+ /* Faulty non-Blocked devices with nr_pending == 0
+ * never get nr_pending incremented,
+ * never get Faulty cleared, and never get Blocked set.
+ * So we can synchronize_rcu now rather than once per device
+ */
+ remove_some = true;
+ set_bit(RemoveSynchronized, &rdev->flags);
+ }
+ }
+
+ if (remove_some)
+ synchronize_rcu();
+ rdev_for_each(rdev, mddev) {
+ if ((this == NULL || rdev == this) &&
+ rdev->raid_disk >= 0 &&
+ !test_bit(Blocked, &rdev->flags) &&
+ ((test_bit(RemoveSynchronized, &rdev->flags) ||
+ (!test_bit(In_sync, &rdev->flags) &&
+ !test_bit(Journal, &rdev->flags))) &&
+ atomic_read(&rdev->nr_pending)==0)) {
+ if (mddev->pers->hot_remove_disk(
+ mddev, rdev) == 0) {
+ sysfs_unlink_rdev(mddev, rdev);
+ rdev->saved_raid_disk = rdev->raid_disk;
+ rdev->raid_disk = -1;
+ removed++;
+ }
+ }
+ if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
+ clear_bit(RemoveSynchronized, &rdev->flags);
+ }
+
+ if (removed && mddev->kobj.sd)
+ sysfs_notify_dirent_safe(mddev->sysfs_degraded);
+
+ if (this && removed)
+ goto no_add;
+
+ rdev_for_each(rdev, mddev) {
+ if (this && this != rdev)
+ continue;
+ if (test_bit(Candidate, &rdev->flags))
+ continue;
+ if (rdev->raid_disk >= 0 &&
+ !test_bit(In_sync, &rdev->flags) &&
+ !test_bit(Journal, &rdev->flags) &&
+ !test_bit(Faulty, &rdev->flags))
+ spares++;
+ if (rdev->raid_disk >= 0)
+ continue;
+ if (test_bit(Faulty, &rdev->flags))
+ continue;
+ if (!test_bit(Journal, &rdev->flags)) {
+ if (!md_is_rdwr(mddev) &&
+ !(rdev->saved_raid_disk >= 0 &&
+ !test_bit(Bitmap_sync, &rdev->flags)))
+ continue;
+
+ rdev->recovery_offset = 0;
+ }
+ if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
+ /* failure here is OK */
+ sysfs_link_rdev(mddev, rdev);
+ if (!test_bit(Journal, &rdev->flags))
+ spares++;
+ md_new_event();
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+ }
+ }
+no_add:
+ if (removed)
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+ return spares;
+}
+
+static void md_start_sync(struct work_struct *ws)
+{
+ struct mddev *mddev = container_of(ws, struct mddev, del_work);
+
+ mddev->sync_thread = md_register_thread(md_do_sync,
+ mddev,
+ "resync");
+ if (!mddev->sync_thread) {
+ pr_warn("%s: could not start resync thread...\n",
+ mdname(mddev));
+ /* leave the spares where they are, it shouldn't hurt */
+ clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+ clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
+ clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
+ clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
+ clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
+ wake_up(&resync_wait);
+ if (test_and_clear_bit(MD_RECOVERY_RECOVER,
+ &mddev->recovery))
+ if (mddev->sysfs_action)
+ sysfs_notify_dirent_safe(mddev->sysfs_action);
+ } else
+ md_wakeup_thread(mddev->sync_thread);
+ sysfs_notify_dirent_safe(mddev->sysfs_action);
+ md_new_event();
+}
+
+/*
+ * This routine is regularly called by all per-raid-array threads to
+ * deal with generic issues like resync and super-block update.
+ * Raid personalities that don't have a thread (linear/raid0) do not
+ * need this as they never do any recovery or update the superblock.
+ *
+ * It does not do any resync itself, but rather "forks" off other threads
+ * to do that as needed.
+ * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
+ * "->recovery" and create a thread at ->sync_thread.
+ * When the thread finishes it sets MD_RECOVERY_DONE
+ * and wakeups up this thread which will reap the thread and finish up.
+ * This thread also removes any faulty devices (with nr_pending == 0).
+ *
+ * The overall approach is:
+ * 1/ if the superblock needs updating, update it.
+ * 2/ If a recovery thread is running, don't do anything else.
+ * 3/ If recovery has finished, clean up, possibly marking spares active.
+ * 4/ If there are any faulty devices, remove them.
+ * 5/ If array is degraded, try to add spares devices
+ * 6/ If array has spares or is not in-sync, start a resync thread.
+ */
+void md_check_recovery(struct mddev *mddev)
+{
+ if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
+ /* Write superblock - thread that called mddev_suspend()
+ * holds reconfig_mutex for us.
+ */
+ set_bit(MD_UPDATING_SB, &mddev->flags);
+ smp_mb__after_atomic();
+ if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
+ md_update_sb(mddev, 0);
+ clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
+ wake_up(&mddev->sb_wait);
+ }
+
+ if (is_md_suspended(mddev))
+ return;
+
+ if (mddev->bitmap)
+ md_bitmap_daemon_work(mddev);
+
+ if (signal_pending(current)) {
+ if (mddev->pers->sync_request && !mddev->external) {
+ pr_debug("md: %s in immediate safe mode\n",
+ mdname(mddev));
+ mddev->safemode = 2;
+ }
+ flush_signals(current);
+ }
+
+ if (!md_is_rdwr(mddev) &&
+ !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
+ return;
+ if ( ! (
+ (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
+ test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
+ test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
+ (mddev->external == 0 && mddev->safemode == 1) ||
+ (mddev->safemode == 2
+ && !mddev->in_sync && mddev->recovery_cp == MaxSector)
+ ))
+ return;
+
+ if (mddev_trylock(mddev)) {
+ int spares = 0;
+ bool try_set_sync = mddev->safemode != 0;
+
+ if (!mddev->external && mddev->safemode == 1)
+ mddev->safemode = 0;
+
+ if (!md_is_rdwr(mddev)) {
+ struct md_rdev *rdev;
+ if (!mddev->external && mddev->in_sync)
+ /* 'Blocked' flag not needed as failed devices
+ * will be recorded if array switched to read/write.
+ * Leaving it set will prevent the device
+ * from being removed.
+ */
+ rdev_for_each(rdev, mddev)
+ clear_bit(Blocked, &rdev->flags);
+ /* On a read-only array we can:
+ * - remove failed devices
+ * - add already-in_sync devices if the array itself
+ * is in-sync.
+ * As we only add devices that are already in-sync,
+ * we can activate the spares immediately.
+ */
+ remove_and_add_spares(mddev, NULL);
+ /* There is no thread, but we need to call
+ * ->spare_active and clear saved_raid_disk
+ */
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ md_unregister_thread(&mddev->sync_thread);
+ md_reap_sync_thread(mddev);
+ clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
+ clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
+ goto unlock;
+ }
+
+ if (mddev_is_clustered(mddev)) {
+ struct md_rdev *rdev, *tmp;
+ /* kick the device if another node issued a
+ * remove disk.
+ */
+ rdev_for_each_safe(rdev, tmp, mddev) {
+ if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
+ rdev->raid_disk < 0)
+ md_kick_rdev_from_array(rdev);
+ }
+ }
+
+ if (try_set_sync && !mddev->external && !mddev->in_sync) {
+ spin_lock(&mddev->lock);
+ set_in_sync(mddev);
+ spin_unlock(&mddev->lock);
+ }
+
+ if (mddev->sb_flags)
+ md_update_sb(mddev, 0);
+
+ if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
+ !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
+ /* resync/recovery still happening */
+ clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ goto unlock;
+ }
+ if (mddev->sync_thread) {
+ md_unregister_thread(&mddev->sync_thread);
+ md_reap_sync_thread(mddev);
+ goto unlock;
+ }
+ /* Set RUNNING before clearing NEEDED to avoid
+ * any transients in the value of "sync_action".
+ */
+ mddev->curr_resync_completed = 0;
+ spin_lock(&mddev->lock);
+ set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
+ spin_unlock(&mddev->lock);
+ /* Clear some bits that don't mean anything, but
+ * might be left set
+ */
+ clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
+
+ if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
+ test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
+ goto not_running;
+ /* no recovery is running.
+ * remove any failed drives, then
+ * add spares if possible.
+ * Spares are also removed and re-added, to allow
+ * the personality to fail the re-add.
+ */
+
+ if (mddev->reshape_position != MaxSector) {
+ if (mddev->pers->check_reshape == NULL ||
+ mddev->pers->check_reshape(mddev) != 0)
+ /* Cannot proceed */
+ goto not_running;
+ set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
+ clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
+ } else if ((spares = remove_and_add_spares(mddev, NULL))) {
+ clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+ clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
+ clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
+ set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
+ } else if (mddev->recovery_cp < MaxSector) {
+ set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+ clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
+ } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
+ /* nothing to be done ... */
+ goto not_running;
+
+ if (mddev->pers->sync_request) {
+ if (spares) {
+ /* We are adding a device or devices to an array
+ * which has the bitmap stored on all devices.
+ * So make sure all bitmap pages get written
+ */
+ md_bitmap_write_all(mddev->bitmap);
+ }
+ INIT_WORK(&mddev->del_work, md_start_sync);
+ queue_work(md_misc_wq, &mddev->del_work);
+ goto unlock;
+ }
+ not_running:
+ if (!mddev->sync_thread) {
+ clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
+ wake_up(&resync_wait);
+ if (test_and_clear_bit(MD_RECOVERY_RECOVER,
+ &mddev->recovery))
+ if (mddev->sysfs_action)
+ sysfs_notify_dirent_safe(mddev->sysfs_action);
+ }
+ unlock:
+ wake_up(&mddev->sb_wait);
+ mddev_unlock(mddev);
+ }
+}
+EXPORT_SYMBOL(md_check_recovery);
+
+void md_reap_sync_thread(struct mddev *mddev)
+{
+ struct md_rdev *rdev;
+ sector_t old_dev_sectors = mddev->dev_sectors;
+ bool is_reshaped = false;
+
+ /* sync_thread should be unregistered, collect result */
+ if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
+ !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
+ mddev->degraded != mddev->raid_disks) {
+ /* success...*/
+ /* activate any spares */
+ if (mddev->pers->spare_active(mddev)) {
+ sysfs_notify_dirent_safe(mddev->sysfs_degraded);
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+ }
+ }
+ if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
+ mddev->pers->finish_reshape) {
+ mddev->pers->finish_reshape(mddev);
+ if (mddev_is_clustered(mddev))
+ is_reshaped = true;
+ }
+
+ /* If array is no-longer degraded, then any saved_raid_disk
+ * information must be scrapped.
+ */
+ if (!mddev->degraded)
+ rdev_for_each(rdev, mddev)
+ rdev->saved_raid_disk = -1;
+
+ md_update_sb(mddev, 1);
+ /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
+ * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
+ * clustered raid */
+ if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
+ md_cluster_ops->resync_finish(mddev);
+ clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
+ clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
+ clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+ clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
+ clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
+ clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
+ /*
+ * We call md_cluster_ops->update_size here because sync_size could
+ * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
+ * so it is time to update size across cluster.
+ */
+ if (mddev_is_clustered(mddev) && is_reshaped
+ && !test_bit(MD_CLOSING, &mddev->flags))
+ md_cluster_ops->update_size(mddev, old_dev_sectors);
+ wake_up(&resync_wait);
+ /* flag recovery needed just to double check */
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ sysfs_notify_dirent_safe(mddev->sysfs_completed);
+ sysfs_notify_dirent_safe(mddev->sysfs_action);
+ md_new_event();
+ if (mddev->event_work.func)
+ queue_work(md_misc_wq, &mddev->event_work);
+}
+EXPORT_SYMBOL(md_reap_sync_thread);
+
+void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
+{
+ sysfs_notify_dirent_safe(rdev->sysfs_state);
+ wait_event_timeout(rdev->blocked_wait,
+ !test_bit(Blocked, &rdev->flags) &&
+ !test_bit(BlockedBadBlocks, &rdev->flags),
+ msecs_to_jiffies(5000));
+ rdev_dec_pending(rdev, mddev);
+}
+EXPORT_SYMBOL(md_wait_for_blocked_rdev);
+
+void md_finish_reshape(struct mddev *mddev)
+{
+ /* called be personality module when reshape completes. */
+ struct md_rdev *rdev;
+
+ rdev_for_each(rdev, mddev) {
+ if (rdev->data_offset > rdev->new_data_offset)
+ rdev->sectors += rdev->data_offset - rdev->new_data_offset;
+ else
+ rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
+ rdev->data_offset = rdev->new_data_offset;
+ }
+}
+EXPORT_SYMBOL(md_finish_reshape);
+
+/* Bad block management */
+
+/* Returns 1 on success, 0 on failure */
+int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
+ int is_new)
+{
+ struct mddev *mddev = rdev->mddev;
+ int rv;
+ if (is_new)
+ s += rdev->new_data_offset;
+ else
+ s += rdev->data_offset;
+ rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
+ if (rv == 0) {
+ /* Make sure they get written out promptly */
+ if (test_bit(ExternalBbl, &rdev->flags))
+ sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
+ sysfs_notify_dirent_safe(rdev->sysfs_state);
+ set_mask_bits(&mddev->sb_flags, 0,
+ BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
+ md_wakeup_thread(rdev->mddev->thread);
+ return 1;
+ } else
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rdev_set_badblocks);
+
+int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
+ int is_new)
+{
+ int rv;
+ if (is_new)
+ s += rdev->new_data_offset;
+ else
+ s += rdev->data_offset;
+ rv = badblocks_clear(&rdev->badblocks, s, sectors);
+ if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
+ sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
+ return rv;
+}
+EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
+
+static int md_notify_reboot(struct notifier_block *this,
+ unsigned long code, void *x)
+{
+ struct mddev *mddev, *n;
+ int need_delay = 0;
+
+ spin_lock(&all_mddevs_lock);
+ list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) {
+ if (!mddev_get(mddev))
+ continue;
+ spin_unlock(&all_mddevs_lock);
+ if (mddev_trylock(mddev)) {
+ if (mddev->pers)
+ __md_stop_writes(mddev);
+ if (mddev->persistent)
+ mddev->safemode = 2;
+ mddev_unlock(mddev);
+ }
+ need_delay = 1;
+ mddev_put(mddev);
+ spin_lock(&all_mddevs_lock);
+ }
+ spin_unlock(&all_mddevs_lock);
+
+ /*
+ * certain more exotic SCSI devices are known to be
+ * volatile wrt too early system reboots. While the
+ * right place to handle this issue is the given
+ * driver, we do want to have a safe RAID driver ...
+ */
+ if (need_delay)
+ msleep(1000);
+
+ return NOTIFY_DONE;
+}
+
+static struct notifier_block md_notifier = {
+ .notifier_call = md_notify_reboot,
+ .next = NULL,
+ .priority = INT_MAX, /* before any real devices */
+};
+
+static void md_geninit(void)
+{
+ pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
+
+ proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
+}
+
+static int __init md_init(void)
+{
+ int ret = -ENOMEM;
+
+ md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
+ if (!md_wq)
+ goto err_wq;
+
+ md_misc_wq = alloc_workqueue("md_misc", 0, 0);
+ if (!md_misc_wq)
+ goto err_misc_wq;
+
+ md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
+ if (!md_rdev_misc_wq)
+ goto err_rdev_misc_wq;
+
+ ret = __register_blkdev(MD_MAJOR, "md", md_probe);
+ if (ret < 0)
+ goto err_md;
+
+ ret = __register_blkdev(0, "mdp", md_probe);
+ if (ret < 0)
+ goto err_mdp;
+ mdp_major = ret;
+
+ register_reboot_notifier(&md_notifier);
+ raid_table_header = register_sysctl_table(raid_root_table);
+
+ md_geninit();
+ return 0;
+
+err_mdp:
+ unregister_blkdev(MD_MAJOR, "md");
+err_md:
+ destroy_workqueue(md_rdev_misc_wq);
+err_rdev_misc_wq:
+ destroy_workqueue(md_misc_wq);
+err_misc_wq:
+ destroy_workqueue(md_wq);
+err_wq:
+ return ret;
+}
+
+static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
+ struct md_rdev *rdev2, *tmp;
+ int role, ret;
+
+ /*
+ * If size is changed in another node then we need to
+ * do resize as well.
+ */
+ if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
+ ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
+ if (ret)
+ pr_info("md-cluster: resize failed\n");
+ else
+ md_bitmap_update_sb(mddev->bitmap);
+ }
+
+ /* Check for change of roles in the active devices */
+ rdev_for_each_safe(rdev2, tmp, mddev) {
+ if (test_bit(Faulty, &rdev2->flags))
+ continue;
+
+ /* Check if the roles changed */
+ role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
+
+ if (test_bit(Candidate, &rdev2->flags)) {
+ if (role == MD_DISK_ROLE_FAULTY) {
+ pr_info("md: Removing Candidate device %pg because add failed\n",
+ rdev2->bdev);
+ md_kick_rdev_from_array(rdev2);
+ continue;
+ }
+ else
+ clear_bit(Candidate, &rdev2->flags);
+ }
+
+ if (role != rdev2->raid_disk) {
+ /*
+ * got activated except reshape is happening.
+ */
+ if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE &&
+ !(le32_to_cpu(sb->feature_map) &
+ MD_FEATURE_RESHAPE_ACTIVE)) {
+ rdev2->saved_raid_disk = role;
+ ret = remove_and_add_spares(mddev, rdev2);
+ pr_info("Activated spare: %pg\n",
+ rdev2->bdev);
+ /* wakeup mddev->thread here, so array could
+ * perform resync with the new activated disk */
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ md_wakeup_thread(mddev->thread);
+ }
+ /* device faulty
+ * We just want to do the minimum to mark the disk
+ * as faulty. The recovery is performed by the
+ * one who initiated the error.
+ */
+ if (role == MD_DISK_ROLE_FAULTY ||
+ role == MD_DISK_ROLE_JOURNAL) {
+ md_error(mddev, rdev2);
+ clear_bit(Blocked, &rdev2->flags);
+ }
+ }
+ }
+
+ if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
+ ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
+ if (ret)
+ pr_warn("md: updating array disks failed. %d\n", ret);
+ }
+
+ /*
+ * Since mddev->delta_disks has already updated in update_raid_disks,
+ * so it is time to check reshape.
+ */
+ if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
+ (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
+ /*
+ * reshape is happening in the remote node, we need to
+ * update reshape_position and call start_reshape.
+ */
+ mddev->reshape_position = le64_to_cpu(sb->reshape_position);
+ if (mddev->pers->update_reshape_pos)
+ mddev->pers->update_reshape_pos(mddev);
+ if (mddev->pers->start_reshape)
+ mddev->pers->start_reshape(mddev);
+ } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
+ mddev->reshape_position != MaxSector &&
+ !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
+ /* reshape is just done in another node. */
+ mddev->reshape_position = MaxSector;
+ if (mddev->pers->update_reshape_pos)
+ mddev->pers->update_reshape_pos(mddev);
+ }
+
+ /* Finally set the event to be up to date */
+ mddev->events = le64_to_cpu(sb->events);
+}
+
+static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
+{
+ int err;
+ struct page *swapout = rdev->sb_page;
+ struct mdp_superblock_1 *sb;
+
+ /* Store the sb page of the rdev in the swapout temporary
+ * variable in case we err in the future
+ */
+ rdev->sb_page = NULL;
+ err = alloc_disk_sb(rdev);
+ if (err == 0) {
+ ClearPageUptodate(rdev->sb_page);
+ rdev->sb_loaded = 0;
+ err = super_types[mddev->major_version].
+ load_super(rdev, NULL, mddev->minor_version);
+ }
+ if (err < 0) {
+ pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
+ __func__, __LINE__, rdev->desc_nr, err);
+ if (rdev->sb_page)
+ put_page(rdev->sb_page);
+ rdev->sb_page = swapout;
+ rdev->sb_loaded = 1;
+ return err;
+ }
+
+ sb = page_address(rdev->sb_page);
+ /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
+ * is not set
+ */
+
+ if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
+ rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
+
+ /* The other node finished recovery, call spare_active to set
+ * device In_sync and mddev->degraded
+ */
+ if (rdev->recovery_offset == MaxSector &&
+ !test_bit(In_sync, &rdev->flags) &&
+ mddev->pers->spare_active(mddev))
+ sysfs_notify_dirent_safe(mddev->sysfs_degraded);
+
+ put_page(swapout);
+ return 0;
+}
+
+void md_reload_sb(struct mddev *mddev, int nr)
+{
+ struct md_rdev *rdev = NULL, *iter;
+ int err;
+
+ /* Find the rdev */
+ rdev_for_each_rcu(iter, mddev) {
+ if (iter->desc_nr == nr) {
+ rdev = iter;
+ break;
+ }
+ }
+
+ if (!rdev) {
+ pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
+ return;
+ }
+
+ err = read_rdev(mddev, rdev);
+ if (err < 0)
+ return;
+
+ check_sb_changes(mddev, rdev);
+
+ /* Read all rdev's to update recovery_offset */
+ rdev_for_each_rcu(rdev, mddev) {
+ if (!test_bit(Faulty, &rdev->flags))
+ read_rdev(mddev, rdev);
+ }
+}
+EXPORT_SYMBOL(md_reload_sb);
+
+#ifndef MODULE
+
+/*
+ * Searches all registered partitions for autorun RAID arrays
+ * at boot time.
+ */
+
+static DEFINE_MUTEX(detected_devices_mutex);
+static LIST_HEAD(all_detected_devices);
+struct detected_devices_node {
+ struct list_head list;
+ dev_t dev;
+};
+
+void md_autodetect_dev(dev_t dev)
+{
+ struct detected_devices_node *node_detected_dev;
+
+ node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
+ if (node_detected_dev) {
+ node_detected_dev->dev = dev;
+ mutex_lock(&detected_devices_mutex);
+ list_add_tail(&node_detected_dev->list, &all_detected_devices);
+ mutex_unlock(&detected_devices_mutex);
+ }
+}
+
+void md_autostart_arrays(int part)
+{
+ struct md_rdev *rdev;
+ struct detected_devices_node *node_detected_dev;
+ dev_t dev;
+ int i_scanned, i_passed;
+
+ i_scanned = 0;
+ i_passed = 0;
+
+ pr_info("md: Autodetecting RAID arrays.\n");
+
+ mutex_lock(&detected_devices_mutex);
+ while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
+ i_scanned++;
+ node_detected_dev = list_entry(all_detected_devices.next,
+ struct detected_devices_node, list);
+ list_del(&node_detected_dev->list);
+ dev = node_detected_dev->dev;
+ kfree(node_detected_dev);
+ mutex_unlock(&detected_devices_mutex);
+ rdev = md_import_device(dev,0, 90);
+ mutex_lock(&detected_devices_mutex);
+ if (IS_ERR(rdev))
+ continue;
+
+ if (test_bit(Faulty, &rdev->flags))
+ continue;
+
+ set_bit(AutoDetected, &rdev->flags);
+ list_add(&rdev->same_set, &pending_raid_disks);
+ i_passed++;
+ }
+ mutex_unlock(&detected_devices_mutex);
+
+ pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
+
+ autorun_devices(part);
+}
+
+#endif /* !MODULE */
+
+static __exit void md_exit(void)
+{
+ struct mddev *mddev, *n;
+ int delay = 1;
+
+ unregister_blkdev(MD_MAJOR,"md");
+ unregister_blkdev(mdp_major, "mdp");
+ unregister_reboot_notifier(&md_notifier);
+ unregister_sysctl_table(raid_table_header);
+
+ /* We cannot unload the modules while some process is
+ * waiting for us in select() or poll() - wake them up
+ */
+ md_unloading = 1;
+ while (waitqueue_active(&md_event_waiters)) {
+ /* not safe to leave yet */
+ wake_up(&md_event_waiters);
+ msleep(delay);
+ delay += delay;
+ }
+ remove_proc_entry("mdstat", NULL);
+
+ spin_lock(&all_mddevs_lock);
+ list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) {
+ if (!mddev_get(mddev))
+ continue;
+ spin_unlock(&all_mddevs_lock);
+ export_array(mddev);
+ mddev->ctime = 0;
+ mddev->hold_active = 0;
+ /*
+ * As the mddev is now fully clear, mddev_put will schedule
+ * the mddev for destruction by a workqueue, and the
+ * destroy_workqueue() below will wait for that to complete.
+ */
+ mddev_put(mddev);
+ spin_lock(&all_mddevs_lock);
+ }
+ spin_unlock(&all_mddevs_lock);
+
+ destroy_workqueue(md_rdev_misc_wq);
+ destroy_workqueue(md_misc_wq);
+ destroy_workqueue(md_wq);
+}
+
+subsys_initcall(md_init);
+module_exit(md_exit)
+
+static int get_ro(char *buffer, const struct kernel_param *kp)
+{
+ return sprintf(buffer, "%d\n", start_readonly);
+}
+static int set_ro(const char *val, const struct kernel_param *kp)
+{
+ return kstrtouint(val, 10, (unsigned int *)&start_readonly);
+}
+
+module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
+module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
+module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
+module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
+
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("MD RAID framework");
+MODULE_ALIAS("md");
+MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
diff --git a/drivers/md/md.h b/drivers/md/md.h
new file mode 100644
index 000000000..4f0b48097
--- /dev/null
+++ b/drivers/md/md.h
@@ -0,0 +1,838 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ md.h : kernel internal structure of the Linux MD driver
+ Copyright (C) 1996-98 Ingo Molnar, Gadi Oxman
+
+*/
+
+#ifndef _MD_MD_H
+#define _MD_MD_H
+
+#include <linux/blkdev.h>
+#include <linux/backing-dev.h>
+#include <linux/badblocks.h>
+#include <linux/kobject.h>
+#include <linux/list.h>
+#include <linux/mm.h>
+#include <linux/mutex.h>
+#include <linux/timer.h>
+#include <linux/wait.h>
+#include <linux/workqueue.h>
+#include "md-cluster.h"
+
+#define MaxSector (~(sector_t)0)
+
+/*
+ * These flags should really be called "NO_RETRY" rather than
+ * "FAILFAST" because they don't make any promise about time lapse,
+ * only about the number of retries, which will be zero.
+ * REQ_FAILFAST_DRIVER is not included because
+ * Commit: 4a27446f3e39 ("[SCSI] modify scsi to handle new fail fast flags.")
+ * seems to suggest that the errors it avoids retrying should usually
+ * be retried.
+ */
+#define MD_FAILFAST (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT)
+
+/*
+ * The struct embedded in rdev is used to serialize IO.
+ */
+struct serial_in_rdev {
+ struct rb_root_cached serial_rb;
+ spinlock_t serial_lock;
+ wait_queue_head_t serial_io_wait;
+};
+
+/*
+ * MD's 'extended' device
+ */
+struct md_rdev {
+ struct list_head same_set; /* RAID devices within the same set */
+
+ sector_t sectors; /* Device size (in 512bytes sectors) */
+ struct mddev *mddev; /* RAID array if running */
+ int last_events; /* IO event timestamp */
+
+ /*
+ * If meta_bdev is non-NULL, it means that a separate device is
+ * being used to store the metadata (superblock/bitmap) which
+ * would otherwise be contained on the same device as the data (bdev).
+ */
+ struct block_device *meta_bdev;
+ struct block_device *bdev; /* block device handle */
+
+ struct page *sb_page, *bb_page;
+ int sb_loaded;
+ __u64 sb_events;
+ sector_t data_offset; /* start of data in array */
+ sector_t new_data_offset;/* only relevant while reshaping */
+ sector_t sb_start; /* offset of the super block (in 512byte sectors) */
+ int sb_size; /* bytes in the superblock */
+ int preferred_minor; /* autorun support */
+
+ struct kobject kobj;
+
+ /* A device can be in one of three states based on two flags:
+ * Not working: faulty==1 in_sync==0
+ * Fully working: faulty==0 in_sync==1
+ * Working, but not
+ * in sync with array
+ * faulty==0 in_sync==0
+ *
+ * It can never have faulty==1, in_sync==1
+ * This reduces the burden of testing multiple flags in many cases
+ */
+
+ unsigned long flags; /* bit set of 'enum flag_bits' bits. */
+ wait_queue_head_t blocked_wait;
+
+ int desc_nr; /* descriptor index in the superblock */
+ int raid_disk; /* role of device in array */
+ int new_raid_disk; /* role that the device will have in
+ * the array after a level-change completes.
+ */
+ int saved_raid_disk; /* role that device used to have in the
+ * array and could again if we did a partial
+ * resync from the bitmap
+ */
+ union {
+ sector_t recovery_offset;/* If this device has been partially
+ * recovered, this is where we were
+ * up to.
+ */
+ sector_t journal_tail; /* If this device is a journal device,
+ * this is the journal tail (journal
+ * recovery start point)
+ */
+ };
+
+ atomic_t nr_pending; /* number of pending requests.
+ * only maintained for arrays that
+ * support hot removal
+ */
+ atomic_t read_errors; /* number of consecutive read errors that
+ * we have tried to ignore.
+ */
+ time64_t last_read_error; /* monotonic time since our
+ * last read error
+ */
+ atomic_t corrected_errors; /* number of corrected read errors,
+ * for reporting to userspace and storing
+ * in superblock.
+ */
+
+ struct serial_in_rdev *serial; /* used for raid1 io serialization */
+
+ struct work_struct del_work; /* used for delayed sysfs removal */
+
+ struct kernfs_node *sysfs_state; /* handle for 'state'
+ * sysfs entry */
+ /* handle for 'unacknowledged_bad_blocks' sysfs dentry */
+ struct kernfs_node *sysfs_unack_badblocks;
+ /* handle for 'bad_blocks' sysfs dentry */
+ struct kernfs_node *sysfs_badblocks;
+ struct badblocks badblocks;
+
+ struct {
+ short offset; /* Offset from superblock to start of PPL.
+ * Not used by external metadata. */
+ unsigned int size; /* Size in sectors of the PPL space */
+ sector_t sector; /* First sector of the PPL space */
+ } ppl;
+};
+enum flag_bits {
+ Faulty, /* device is known to have a fault */
+ In_sync, /* device is in_sync with rest of array */
+ Bitmap_sync, /* ..actually, not quite In_sync. Need a
+ * bitmap-based recovery to get fully in sync.
+ * The bit is only meaningful before device
+ * has been passed to pers->hot_add_disk.
+ */
+ WriteMostly, /* Avoid reading if at all possible */
+ AutoDetected, /* added by auto-detect */
+ Blocked, /* An error occurred but has not yet
+ * been acknowledged by the metadata
+ * handler, so don't allow writes
+ * until it is cleared */
+ WriteErrorSeen, /* A write error has been seen on this
+ * device
+ */
+ FaultRecorded, /* Intermediate state for clearing
+ * Blocked. The Fault is/will-be
+ * recorded in the metadata, but that
+ * metadata hasn't been stored safely
+ * on disk yet.
+ */
+ BlockedBadBlocks, /* A writer is blocked because they
+ * found an unacknowledged bad-block.
+ * This can safely be cleared at any
+ * time, and the writer will re-check.
+ * It may be set at any time, and at
+ * worst the writer will timeout and
+ * re-check. So setting it as
+ * accurately as possible is good, but
+ * not absolutely critical.
+ */
+ WantReplacement, /* This device is a candidate to be
+ * hot-replaced, either because it has
+ * reported some faults, or because
+ * of explicit request.
+ */
+ Replacement, /* This device is a replacement for
+ * a want_replacement device with same
+ * raid_disk number.
+ */
+ Candidate, /* For clustered environments only:
+ * This device is seen locally but not
+ * by the whole cluster
+ */
+ Journal, /* This device is used as journal for
+ * raid-5/6.
+ * Usually, this device should be faster
+ * than other devices in the array
+ */
+ ClusterRemove,
+ RemoveSynchronized, /* synchronize_rcu() was called after
+ * this device was known to be faulty,
+ * so it is safe to remove without
+ * another synchronize_rcu() call.
+ */
+ ExternalBbl, /* External metadata provides bad
+ * block management for a disk
+ */
+ FailFast, /* Minimal retries should be attempted on
+ * this device, so use REQ_FAILFAST_DEV.
+ * Also don't try to repair failed reads.
+ * It is expects that no bad block log
+ * is present.
+ */
+ LastDev, /* Seems to be the last working dev as
+ * it didn't fail, so don't use FailFast
+ * any more for metadata
+ */
+ CollisionCheck, /*
+ * check if there is collision between raid1
+ * serial bios.
+ */
+};
+
+static inline int is_badblock(struct md_rdev *rdev, sector_t s, int sectors,
+ sector_t *first_bad, int *bad_sectors)
+{
+ if (unlikely(rdev->badblocks.count)) {
+ int rv = badblocks_check(&rdev->badblocks, rdev->data_offset + s,
+ sectors,
+ first_bad, bad_sectors);
+ if (rv)
+ *first_bad -= rdev->data_offset;
+ return rv;
+ }
+ return 0;
+}
+extern int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
+ int is_new);
+extern int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
+ int is_new);
+struct md_cluster_info;
+
+/**
+ * enum mddev_flags - md device flags.
+ * @MD_ARRAY_FIRST_USE: First use of array, needs initialization.
+ * @MD_CLOSING: If set, we are closing the array, do not open it then.
+ * @MD_JOURNAL_CLEAN: A raid with journal is already clean.
+ * @MD_HAS_JOURNAL: The raid array has journal feature set.
+ * @MD_CLUSTER_RESYNC_LOCKED: cluster raid only, which means node, already took
+ * resync lock, need to release the lock.
+ * @MD_FAILFAST_SUPPORTED: Using MD_FAILFAST on metadata writes is supported as
+ * calls to md_error() will never cause the array to
+ * become failed.
+ * @MD_HAS_PPL: The raid array has PPL feature set.
+ * @MD_HAS_MULTIPLE_PPLS: The raid array has multiple PPLs feature set.
+ * @MD_ALLOW_SB_UPDATE: md_check_recovery is allowed to update the metadata
+ * without taking reconfig_mutex.
+ * @MD_UPDATING_SB: md_check_recovery is updating the metadata without
+ * explicitly holding reconfig_mutex.
+ * @MD_NOT_READY: do_md_run() is active, so 'array_state', ust not report that
+ * array is ready yet.
+ * @MD_BROKEN: This is used to stop writes and mark array as failed.
+ * @MD_DELETED: This device is being deleted
+ *
+ * change UNSUPPORTED_MDDEV_FLAGS for each array type if new flag is added
+ */
+enum mddev_flags {
+ MD_ARRAY_FIRST_USE,
+ MD_CLOSING,
+ MD_JOURNAL_CLEAN,
+ MD_HAS_JOURNAL,
+ MD_CLUSTER_RESYNC_LOCKED,
+ MD_FAILFAST_SUPPORTED,
+ MD_HAS_PPL,
+ MD_HAS_MULTIPLE_PPLS,
+ MD_ALLOW_SB_UPDATE,
+ MD_UPDATING_SB,
+ MD_NOT_READY,
+ MD_BROKEN,
+ MD_DELETED,
+};
+
+enum mddev_sb_flags {
+ MD_SB_CHANGE_DEVS, /* Some device status has changed */
+ MD_SB_CHANGE_CLEAN, /* transition to or from 'clean' */
+ MD_SB_CHANGE_PENDING, /* switch from 'clean' to 'active' in progress */
+ MD_SB_NEED_REWRITE, /* metadata write needs to be repeated */
+};
+
+#define NR_SERIAL_INFOS 8
+/* record current range of serialize IOs */
+struct serial_info {
+ struct rb_node node;
+ sector_t start; /* start sector of rb node */
+ sector_t last; /* end sector of rb node */
+ sector_t _subtree_last; /* highest sector in subtree of rb node */
+};
+
+/*
+ * mddev->curr_resync stores the current sector of the resync but
+ * also has some overloaded values.
+ */
+enum {
+ /* No resync in progress */
+ MD_RESYNC_NONE = 0,
+ /* Yielded to allow another conflicting resync to commence */
+ MD_RESYNC_YIELDED = 1,
+ /* Delayed to check that there is no conflict with another sync */
+ MD_RESYNC_DELAYED = 2,
+ /* Any value greater than or equal to this is in an active resync */
+ MD_RESYNC_ACTIVE = 3,
+};
+
+struct mddev {
+ void *private;
+ struct md_personality *pers;
+ dev_t unit;
+ int md_minor;
+ struct list_head disks;
+ unsigned long flags;
+ unsigned long sb_flags;
+
+ int suspended;
+ struct percpu_ref active_io;
+ int ro;
+ int sysfs_active; /* set when sysfs deletes
+ * are happening, so run/
+ * takeover/stop are not safe
+ */
+ struct gendisk *gendisk;
+
+ struct kobject kobj;
+ int hold_active;
+#define UNTIL_IOCTL 1
+#define UNTIL_STOP 2
+
+ /* Superblock information */
+ int major_version,
+ minor_version,
+ patch_version;
+ int persistent;
+ int external; /* metadata is
+ * managed externally */
+ char metadata_type[17]; /* externally set*/
+ int chunk_sectors;
+ time64_t ctime, utime;
+ int level, layout;
+ char clevel[16];
+ int raid_disks;
+ int max_disks;
+ sector_t dev_sectors; /* used size of
+ * component devices */
+ sector_t array_sectors; /* exported array size */
+ int external_size; /* size managed
+ * externally */
+ __u64 events;
+ /* If the last 'event' was simply a clean->dirty transition, and
+ * we didn't write it to the spares, then it is safe and simple
+ * to just decrement the event count on a dirty->clean transition.
+ * So we record that possibility here.
+ */
+ int can_decrease_events;
+
+ char uuid[16];
+
+ /* If the array is being reshaped, we need to record the
+ * new shape and an indication of where we are up to.
+ * This is written to the superblock.
+ * If reshape_position is MaxSector, then no reshape is happening (yet).
+ */
+ sector_t reshape_position;
+ int delta_disks, new_level, new_layout;
+ int new_chunk_sectors;
+ int reshape_backwards;
+
+ struct md_thread *thread; /* management thread */
+ struct md_thread *sync_thread; /* doing resync or reconstruct */
+
+ /* 'last_sync_action' is initialized to "none". It is set when a
+ * sync operation (i.e "data-check", "requested-resync", "resync",
+ * "recovery", or "reshape") is started. It holds this value even
+ * when the sync thread is "frozen" (interrupted) or "idle" (stopped
+ * or finished). It is overwritten when a new sync operation is begun.
+ */
+ char *last_sync_action;
+ sector_t curr_resync; /* last block scheduled */
+ /* As resync requests can complete out of order, we cannot easily track
+ * how much resync has been completed. So we occasionally pause until
+ * everything completes, then set curr_resync_completed to curr_resync.
+ * As such it may be well behind the real resync mark, but it is a value
+ * we are certain of.
+ */
+ sector_t curr_resync_completed;
+ unsigned long resync_mark; /* a recent timestamp */
+ sector_t resync_mark_cnt;/* blocks written at resync_mark */
+ sector_t curr_mark_cnt; /* blocks scheduled now */
+
+ sector_t resync_max_sectors; /* may be set by personality */
+
+ atomic64_t resync_mismatches; /* count of sectors where
+ * parity/replica mismatch found
+ */
+
+ /* allow user-space to request suspension of IO to regions of the array */
+ sector_t suspend_lo;
+ sector_t suspend_hi;
+ /* if zero, use the system-wide default */
+ int sync_speed_min;
+ int sync_speed_max;
+
+ /* resync even though the same disks are shared among md-devices */
+ int parallel_resync;
+
+ int ok_start_degraded;
+
+ unsigned long recovery;
+ /* If a RAID personality determines that recovery (of a particular
+ * device) will fail due to a read error on the source device, it
+ * takes a copy of this number and does not attempt recovery again
+ * until this number changes.
+ */
+ int recovery_disabled;
+
+ int in_sync; /* know to not need resync */
+ /* 'open_mutex' avoids races between 'md_open' and 'do_md_stop', so
+ * that we are never stopping an array while it is open.
+ * 'reconfig_mutex' protects all other reconfiguration.
+ * These locks are separate due to conflicting interactions
+ * with disk->open_mutex.
+ * Lock ordering is:
+ * reconfig_mutex -> disk->open_mutex
+ * disk->open_mutex -> open_mutex: e.g. __blkdev_get -> md_open
+ */
+ struct mutex open_mutex;
+ struct mutex reconfig_mutex;
+ atomic_t active; /* general refcount */
+ atomic_t openers; /* number of active opens */
+
+ int changed; /* True if we might need to
+ * reread partition info */
+ int degraded; /* whether md should consider
+ * adding a spare
+ */
+
+ atomic_t recovery_active; /* blocks scheduled, but not written */
+ wait_queue_head_t recovery_wait;
+ sector_t recovery_cp;
+ sector_t resync_min; /* user requested sync
+ * starts here */
+ sector_t resync_max; /* resync should pause
+ * when it gets here */
+
+ struct kernfs_node *sysfs_state; /* handle for 'array_state'
+ * file in sysfs.
+ */
+ struct kernfs_node *sysfs_action; /* handle for 'sync_action' */
+ struct kernfs_node *sysfs_completed; /*handle for 'sync_completed' */
+ struct kernfs_node *sysfs_degraded; /*handle for 'degraded' */
+ struct kernfs_node *sysfs_level; /*handle for 'level' */
+
+ struct work_struct del_work; /* used for delayed sysfs removal */
+
+ /* "lock" protects:
+ * flush_bio transition from NULL to !NULL
+ * rdev superblocks, events
+ * clearing MD_CHANGE_*
+ * in_sync - and related safemode and MD_CHANGE changes
+ * pers (also protected by reconfig_mutex and pending IO).
+ * clearing ->bitmap
+ * clearing ->bitmap_info.file
+ * changing ->resync_{min,max}
+ * setting MD_RECOVERY_RUNNING (which interacts with resync_{min,max})
+ */
+ spinlock_t lock;
+ wait_queue_head_t sb_wait; /* for waiting on superblock updates */
+ atomic_t pending_writes; /* number of active superblock writes */
+
+ unsigned int safemode; /* if set, update "clean" superblock
+ * when no writes pending.
+ */
+ unsigned int safemode_delay;
+ struct timer_list safemode_timer;
+ struct percpu_ref writes_pending;
+ int sync_checkers; /* # of threads checking writes_pending */
+ struct request_queue *queue; /* for plugging ... */
+
+ struct bitmap *bitmap; /* the bitmap for the device */
+ struct {
+ struct file *file; /* the bitmap file */
+ loff_t offset; /* offset from superblock of
+ * start of bitmap. May be
+ * negative, but not '0'
+ * For external metadata, offset
+ * from start of device.
+ */
+ unsigned long space; /* space available at this offset */
+ loff_t default_offset; /* this is the offset to use when
+ * hot-adding a bitmap. It should
+ * eventually be settable by sysfs.
+ */
+ unsigned long default_space; /* space available at
+ * default offset */
+ struct mutex mutex;
+ unsigned long chunksize;
+ unsigned long daemon_sleep; /* how many jiffies between updates? */
+ unsigned long max_write_behind; /* write-behind mode */
+ int external;
+ int nodes; /* Maximum number of nodes in the cluster */
+ char cluster_name[64]; /* Name of the cluster */
+ } bitmap_info;
+
+ atomic_t max_corr_read_errors; /* max read retries */
+ struct list_head all_mddevs;
+
+ const struct attribute_group *to_remove;
+
+ struct bio_set bio_set;
+ struct bio_set sync_set; /* for sync operations like
+ * metadata and bitmap writes
+ */
+ struct bio_set io_acct_set; /* for raid0 and raid5 io accounting */
+
+ /* Generic flush handling.
+ * The last to finish preflush schedules a worker to submit
+ * the rest of the request (without the REQ_PREFLUSH flag).
+ */
+ struct bio *flush_bio;
+ atomic_t flush_pending;
+ ktime_t start_flush, prev_flush_start; /* prev_flush_start is when the previous completed
+ * flush was started.
+ */
+ struct work_struct flush_work;
+ struct work_struct event_work; /* used by dm to report failure event */
+ mempool_t *serial_info_pool;
+ void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
+ struct md_cluster_info *cluster_info;
+ unsigned int good_device_nr; /* good device num within cluster raid */
+ unsigned int noio_flag; /* for memalloc scope API */
+
+ bool has_superblocks:1;
+ bool fail_last_dev:1;
+ bool serialize_policy:1;
+};
+
+enum recovery_flags {
+ /*
+ * If neither SYNC or RESHAPE are set, then it is a recovery.
+ */
+ MD_RECOVERY_RUNNING, /* a thread is running, or about to be started */
+ MD_RECOVERY_SYNC, /* actually doing a resync, not a recovery */
+ MD_RECOVERY_RECOVER, /* doing recovery, or need to try it. */
+ MD_RECOVERY_INTR, /* resync needs to be aborted for some reason */
+ MD_RECOVERY_DONE, /* thread is done and is waiting to be reaped */
+ MD_RECOVERY_NEEDED, /* we might need to start a resync/recover */
+ MD_RECOVERY_REQUESTED, /* user-space has requested a sync (used with SYNC) */
+ MD_RECOVERY_CHECK, /* user-space request for check-only, no repair */
+ MD_RECOVERY_RESHAPE, /* A reshape is happening */
+ MD_RECOVERY_FROZEN, /* User request to abort, and not restart, any action */
+ MD_RECOVERY_ERROR, /* sync-action interrupted because io-error */
+ MD_RECOVERY_WAIT, /* waiting for pers->start() to finish */
+ MD_RESYNCING_REMOTE, /* remote node is running resync thread */
+};
+
+static inline int __must_check mddev_lock(struct mddev *mddev)
+{
+ return mutex_lock_interruptible(&mddev->reconfig_mutex);
+}
+
+/* Sometimes we need to take the lock in a situation where
+ * failure due to interrupts is not acceptable.
+ */
+static inline void mddev_lock_nointr(struct mddev *mddev)
+{
+ mutex_lock(&mddev->reconfig_mutex);
+}
+
+static inline int mddev_trylock(struct mddev *mddev)
+{
+ return mutex_trylock(&mddev->reconfig_mutex);
+}
+extern void mddev_unlock(struct mddev *mddev);
+
+static inline void md_sync_acct(struct block_device *bdev, unsigned long nr_sectors)
+{
+ atomic_add(nr_sectors, &bdev->bd_disk->sync_io);
+}
+
+static inline void md_sync_acct_bio(struct bio *bio, unsigned long nr_sectors)
+{
+ md_sync_acct(bio->bi_bdev, nr_sectors);
+}
+
+struct md_personality
+{
+ char *name;
+ int level;
+ struct list_head list;
+ struct module *owner;
+ bool __must_check (*make_request)(struct mddev *mddev, struct bio *bio);
+ /*
+ * start up works that do NOT require md_thread. tasks that
+ * requires md_thread should go into start()
+ */
+ int (*run)(struct mddev *mddev);
+ /* start up works that require md threads */
+ int (*start)(struct mddev *mddev);
+ void (*free)(struct mddev *mddev, void *priv);
+ void (*status)(struct seq_file *seq, struct mddev *mddev);
+ /* error_handler must set ->faulty and clear ->in_sync
+ * if appropriate, and should abort recovery if needed
+ */
+ void (*error_handler)(struct mddev *mddev, struct md_rdev *rdev);
+ int (*hot_add_disk) (struct mddev *mddev, struct md_rdev *rdev);
+ int (*hot_remove_disk) (struct mddev *mddev, struct md_rdev *rdev);
+ int (*spare_active) (struct mddev *mddev);
+ sector_t (*sync_request)(struct mddev *mddev, sector_t sector_nr, int *skipped);
+ int (*resize) (struct mddev *mddev, sector_t sectors);
+ sector_t (*size) (struct mddev *mddev, sector_t sectors, int raid_disks);
+ int (*check_reshape) (struct mddev *mddev);
+ int (*start_reshape) (struct mddev *mddev);
+ void (*finish_reshape) (struct mddev *mddev);
+ void (*update_reshape_pos) (struct mddev *mddev);
+ /* quiesce suspends or resumes internal processing.
+ * 1 - stop new actions and wait for action io to complete
+ * 0 - return to normal behaviour
+ */
+ void (*quiesce) (struct mddev *mddev, int quiesce);
+ /* takeover is used to transition an array from one
+ * personality to another. The new personality must be able
+ * to handle the data in the current layout.
+ * e.g. 2drive raid1 -> 2drive raid5
+ * ndrive raid5 -> degraded n+1drive raid6 with special layout
+ * If the takeover succeeds, a new 'private' structure is returned.
+ * This needs to be installed and then ->run used to activate the
+ * array.
+ */
+ void *(*takeover) (struct mddev *mddev);
+ /* Changes the consistency policy of an active array. */
+ int (*change_consistency_policy)(struct mddev *mddev, const char *buf);
+};
+
+struct md_sysfs_entry {
+ struct attribute attr;
+ ssize_t (*show)(struct mddev *, char *);
+ ssize_t (*store)(struct mddev *, const char *, size_t);
+};
+extern const struct attribute_group md_bitmap_group;
+
+static inline struct kernfs_node *sysfs_get_dirent_safe(struct kernfs_node *sd, char *name)
+{
+ if (sd)
+ return sysfs_get_dirent(sd, name);
+ return sd;
+}
+static inline void sysfs_notify_dirent_safe(struct kernfs_node *sd)
+{
+ if (sd)
+ sysfs_notify_dirent(sd);
+}
+
+static inline char * mdname (struct mddev * mddev)
+{
+ return mddev->gendisk ? mddev->gendisk->disk_name : "mdX";
+}
+
+static inline int sysfs_link_rdev(struct mddev *mddev, struct md_rdev *rdev)
+{
+ char nm[20];
+ if (!test_bit(Replacement, &rdev->flags) &&
+ !test_bit(Journal, &rdev->flags) &&
+ mddev->kobj.sd) {
+ sprintf(nm, "rd%d", rdev->raid_disk);
+ return sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
+ } else
+ return 0;
+}
+
+static inline void sysfs_unlink_rdev(struct mddev *mddev, struct md_rdev *rdev)
+{
+ char nm[20];
+ if (!test_bit(Replacement, &rdev->flags) &&
+ !test_bit(Journal, &rdev->flags) &&
+ mddev->kobj.sd) {
+ sprintf(nm, "rd%d", rdev->raid_disk);
+ sysfs_remove_link(&mddev->kobj, nm);
+ }
+}
+
+/*
+ * iterates through some rdev ringlist. It's safe to remove the
+ * current 'rdev'. Dont touch 'tmp' though.
+ */
+#define rdev_for_each_list(rdev, tmp, head) \
+ list_for_each_entry_safe(rdev, tmp, head, same_set)
+
+/*
+ * iterates through the 'same array disks' ringlist
+ */
+#define rdev_for_each(rdev, mddev) \
+ list_for_each_entry(rdev, &((mddev)->disks), same_set)
+
+#define rdev_for_each_safe(rdev, tmp, mddev) \
+ list_for_each_entry_safe(rdev, tmp, &((mddev)->disks), same_set)
+
+#define rdev_for_each_rcu(rdev, mddev) \
+ list_for_each_entry_rcu(rdev, &((mddev)->disks), same_set)
+
+struct md_thread {
+ void (*run) (struct md_thread *thread);
+ struct mddev *mddev;
+ wait_queue_head_t wqueue;
+ unsigned long flags;
+ struct task_struct *tsk;
+ unsigned long timeout;
+ void *private;
+};
+
+struct md_io_acct {
+ struct bio *orig_bio;
+ unsigned long start_time;
+ struct bio bio_clone;
+};
+
+#define THREAD_WAKEUP 0
+
+static inline void safe_put_page(struct page *p)
+{
+ if (p) put_page(p);
+}
+
+extern int register_md_personality(struct md_personality *p);
+extern int unregister_md_personality(struct md_personality *p);
+extern int register_md_cluster_operations(struct md_cluster_operations *ops,
+ struct module *module);
+extern int unregister_md_cluster_operations(void);
+extern int md_setup_cluster(struct mddev *mddev, int nodes);
+extern void md_cluster_stop(struct mddev *mddev);
+extern struct md_thread *md_register_thread(
+ void (*run)(struct md_thread *thread),
+ struct mddev *mddev,
+ const char *name);
+extern void md_unregister_thread(struct md_thread **threadp);
+extern void md_wakeup_thread(struct md_thread *thread);
+extern void md_check_recovery(struct mddev *mddev);
+extern void md_reap_sync_thread(struct mddev *mddev);
+extern int mddev_init_writes_pending(struct mddev *mddev);
+extern bool md_write_start(struct mddev *mddev, struct bio *bi);
+extern void md_write_inc(struct mddev *mddev, struct bio *bi);
+extern void md_write_end(struct mddev *mddev);
+extern void md_done_sync(struct mddev *mddev, int blocks, int ok);
+extern void md_error(struct mddev *mddev, struct md_rdev *rdev);
+extern void md_finish_reshape(struct mddev *mddev);
+void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
+ struct bio *bio, sector_t start, sector_t size);
+int acct_bioset_init(struct mddev *mddev);
+void acct_bioset_exit(struct mddev *mddev);
+void md_account_bio(struct mddev *mddev, struct bio **bio);
+
+extern bool __must_check md_flush_request(struct mddev *mddev, struct bio *bio);
+extern void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
+ sector_t sector, int size, struct page *page);
+extern int md_super_wait(struct mddev *mddev);
+extern int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
+ struct page *page, blk_opf_t opf, bool metadata_op);
+extern void md_do_sync(struct md_thread *thread);
+extern void md_new_event(void);
+extern void md_allow_write(struct mddev *mddev);
+extern void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev);
+extern void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors);
+extern int md_check_no_bitmap(struct mddev *mddev);
+extern int md_integrity_register(struct mddev *mddev);
+extern int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev);
+extern int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale);
+
+extern void mddev_init(struct mddev *mddev);
+struct mddev *md_alloc(dev_t dev, char *name);
+void mddev_put(struct mddev *mddev);
+extern int md_run(struct mddev *mddev);
+extern int md_start(struct mddev *mddev);
+extern void md_stop(struct mddev *mddev);
+extern void md_stop_writes(struct mddev *mddev);
+extern int md_rdev_init(struct md_rdev *rdev);
+extern void md_rdev_clear(struct md_rdev *rdev);
+
+extern void md_handle_request(struct mddev *mddev, struct bio *bio);
+extern void mddev_suspend(struct mddev *mddev);
+extern void mddev_resume(struct mddev *mddev);
+
+extern void md_reload_sb(struct mddev *mddev, int raid_disk);
+extern void md_update_sb(struct mddev *mddev, int force);
+extern void md_kick_rdev_from_array(struct md_rdev * rdev);
+extern void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
+ bool is_suspend);
+extern void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
+ bool is_suspend);
+struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr);
+struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev);
+
+static inline bool is_rdev_broken(struct md_rdev *rdev)
+{
+ return !disk_live(rdev->bdev->bd_disk);
+}
+
+static inline void rdev_dec_pending(struct md_rdev *rdev, struct mddev *mddev)
+{
+ int faulty = test_bit(Faulty, &rdev->flags);
+ if (atomic_dec_and_test(&rdev->nr_pending) && faulty) {
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ md_wakeup_thread(mddev->thread);
+ }
+}
+
+extern struct md_cluster_operations *md_cluster_ops;
+static inline int mddev_is_clustered(struct mddev *mddev)
+{
+ return mddev->cluster_info && mddev->bitmap_info.nodes > 1;
+}
+
+/* clear unsupported mddev_flags */
+static inline void mddev_clear_unsupported_flags(struct mddev *mddev,
+ unsigned long unsupported_flags)
+{
+ mddev->flags &= ~unsupported_flags;
+}
+
+static inline void mddev_check_write_zeroes(struct mddev *mddev, struct bio *bio)
+{
+ if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
+ !bio->bi_bdev->bd_disk->queue->limits.max_write_zeroes_sectors)
+ mddev->queue->limits.max_write_zeroes_sectors = 0;
+}
+
+struct mdu_array_info_s;
+struct mdu_disk_info_s;
+
+extern int mdp_major;
+void md_autostart_arrays(int part);
+int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info);
+int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info);
+int do_md_run(struct mddev *mddev);
+
+extern const struct block_device_operations md_fops;
+
+#endif /* _MD_MD_H */
diff --git a/drivers/md/persistent-data/Kconfig b/drivers/md/persistent-data/Kconfig
new file mode 100644
index 000000000..f4f948b0e
--- /dev/null
+++ b/drivers/md/persistent-data/Kconfig
@@ -0,0 +1,10 @@
+# SPDX-License-Identifier: GPL-2.0-only
+config DM_PERSISTENT_DATA
+ tristate
+ depends on BLK_DEV_DM
+ select LIBCRC32C
+ select DM_BUFIO
+ help
+ Library providing immutable on-disk data structure support for
+ device-mapper targets such as the thin provisioning target.
+
diff --git a/drivers/md/persistent-data/Makefile b/drivers/md/persistent-data/Makefile
new file mode 100644
index 000000000..66be7c664
--- /dev/null
+++ b/drivers/md/persistent-data/Makefile
@@ -0,0 +1,13 @@
+# SPDX-License-Identifier: GPL-2.0
+obj-$(CONFIG_DM_PERSISTENT_DATA) += dm-persistent-data.o
+dm-persistent-data-objs := \
+ dm-array.o \
+ dm-bitset.o \
+ dm-block-manager.o \
+ dm-space-map-common.o \
+ dm-space-map-disk.o \
+ dm-space-map-metadata.o \
+ dm-transaction-manager.o \
+ dm-btree.o \
+ dm-btree-remove.o \
+ dm-btree-spine.o
diff --git a/drivers/md/persistent-data/dm-array.c b/drivers/md/persistent-data/dm-array.c
new file mode 100644
index 000000000..eff9b4186
--- /dev/null
+++ b/drivers/md/persistent-data/dm-array.c
@@ -0,0 +1,1011 @@
+/*
+ * Copyright (C) 2012 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-array.h"
+#include "dm-space-map.h"
+#include "dm-transaction-manager.h"
+
+#include <linux/export.h>
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "array"
+
+/*----------------------------------------------------------------*/
+
+/*
+ * The array is implemented as a fully populated btree, which points to
+ * blocks that contain the packed values. This is more space efficient
+ * than just using a btree since we don't store 1 key per value.
+ */
+struct array_block {
+ __le32 csum;
+ __le32 max_entries;
+ __le32 nr_entries;
+ __le32 value_size;
+ __le64 blocknr; /* Block this node is supposed to live in. */
+} __packed;
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Validator methods. As usual we calculate a checksum, and also write the
+ * block location into the header (paranoia about ssds remapping areas by
+ * mistake).
+ */
+#define CSUM_XOR 595846735
+
+static void array_block_prepare_for_write(struct dm_block_validator *v,
+ struct dm_block *b,
+ size_t size_of_block)
+{
+ struct array_block *bh_le = dm_block_data(b);
+
+ bh_le->blocknr = cpu_to_le64(dm_block_location(b));
+ bh_le->csum = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
+ size_of_block - sizeof(__le32),
+ CSUM_XOR));
+}
+
+static int array_block_check(struct dm_block_validator *v,
+ struct dm_block *b,
+ size_t size_of_block)
+{
+ struct array_block *bh_le = dm_block_data(b);
+ __le32 csum_disk;
+
+ if (dm_block_location(b) != le64_to_cpu(bh_le->blocknr)) {
+ DMERR_LIMIT("array_block_check failed: blocknr %llu != wanted %llu",
+ (unsigned long long) le64_to_cpu(bh_le->blocknr),
+ (unsigned long long) dm_block_location(b));
+ return -ENOTBLK;
+ }
+
+ csum_disk = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
+ size_of_block - sizeof(__le32),
+ CSUM_XOR));
+ if (csum_disk != bh_le->csum) {
+ DMERR_LIMIT("array_block_check failed: csum %u != wanted %u",
+ (unsigned int) le32_to_cpu(csum_disk),
+ (unsigned int) le32_to_cpu(bh_le->csum));
+ return -EILSEQ;
+ }
+
+ return 0;
+}
+
+static struct dm_block_validator array_validator = {
+ .name = "array",
+ .prepare_for_write = array_block_prepare_for_write,
+ .check = array_block_check
+};
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Functions for manipulating the array blocks.
+ */
+
+/*
+ * Returns a pointer to a value within an array block.
+ *
+ * index - The index into _this_ specific block.
+ */
+static void *element_at(struct dm_array_info *info, struct array_block *ab,
+ unsigned int index)
+{
+ unsigned char *entry = (unsigned char *) (ab + 1);
+
+ entry += index * info->value_type.size;
+
+ return entry;
+}
+
+/*
+ * Utility function that calls one of the value_type methods on every value
+ * in an array block.
+ */
+static void on_entries(struct dm_array_info *info, struct array_block *ab,
+ void (*fn)(void *, const void *, unsigned int))
+{
+ unsigned int nr_entries = le32_to_cpu(ab->nr_entries);
+ fn(info->value_type.context, element_at(info, ab, 0), nr_entries);
+}
+
+/*
+ * Increment every value in an array block.
+ */
+static void inc_ablock_entries(struct dm_array_info *info, struct array_block *ab)
+{
+ struct dm_btree_value_type *vt = &info->value_type;
+
+ if (vt->inc)
+ on_entries(info, ab, vt->inc);
+}
+
+/*
+ * Decrement every value in an array block.
+ */
+static void dec_ablock_entries(struct dm_array_info *info, struct array_block *ab)
+{
+ struct dm_btree_value_type *vt = &info->value_type;
+
+ if (vt->dec)
+ on_entries(info, ab, vt->dec);
+}
+
+/*
+ * Each array block can hold this many values.
+ */
+static uint32_t calc_max_entries(size_t value_size, size_t size_of_block)
+{
+ return (size_of_block - sizeof(struct array_block)) / value_size;
+}
+
+/*
+ * Allocate a new array block. The caller will need to unlock block.
+ */
+static int alloc_ablock(struct dm_array_info *info, size_t size_of_block,
+ uint32_t max_entries,
+ struct dm_block **block, struct array_block **ab)
+{
+ int r;
+
+ r = dm_tm_new_block(info->btree_info.tm, &array_validator, block);
+ if (r)
+ return r;
+
+ (*ab) = dm_block_data(*block);
+ (*ab)->max_entries = cpu_to_le32(max_entries);
+ (*ab)->nr_entries = cpu_to_le32(0);
+ (*ab)->value_size = cpu_to_le32(info->value_type.size);
+
+ return 0;
+}
+
+/*
+ * Pad an array block out with a particular value. Every instance will
+ * cause an increment of the value_type. new_nr must always be more than
+ * the current number of entries.
+ */
+static void fill_ablock(struct dm_array_info *info, struct array_block *ab,
+ const void *value, unsigned int new_nr)
+{
+ uint32_t nr_entries, delta, i;
+ struct dm_btree_value_type *vt = &info->value_type;
+
+ BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
+ BUG_ON(new_nr < le32_to_cpu(ab->nr_entries));
+
+ nr_entries = le32_to_cpu(ab->nr_entries);
+ delta = new_nr - nr_entries;
+ if (vt->inc)
+ vt->inc(vt->context, value, delta);
+ for (i = nr_entries; i < new_nr; i++)
+ memcpy(element_at(info, ab, i), value, vt->size);
+ ab->nr_entries = cpu_to_le32(new_nr);
+}
+
+/*
+ * Remove some entries from the back of an array block. Every value
+ * removed will be decremented. new_nr must be <= the current number of
+ * entries.
+ */
+static void trim_ablock(struct dm_array_info *info, struct array_block *ab,
+ unsigned int new_nr)
+{
+ uint32_t nr_entries, delta;
+ struct dm_btree_value_type *vt = &info->value_type;
+
+ BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
+ BUG_ON(new_nr > le32_to_cpu(ab->nr_entries));
+
+ nr_entries = le32_to_cpu(ab->nr_entries);
+ delta = nr_entries - new_nr;
+ if (vt->dec)
+ vt->dec(vt->context, element_at(info, ab, new_nr - 1), delta);
+ ab->nr_entries = cpu_to_le32(new_nr);
+}
+
+/*
+ * Read locks a block, and coerces it to an array block. The caller must
+ * unlock 'block' when finished.
+ */
+static int get_ablock(struct dm_array_info *info, dm_block_t b,
+ struct dm_block **block, struct array_block **ab)
+{
+ int r;
+
+ r = dm_tm_read_lock(info->btree_info.tm, b, &array_validator, block);
+ if (r)
+ return r;
+
+ *ab = dm_block_data(*block);
+ return 0;
+}
+
+/*
+ * Unlocks an array block.
+ */
+static void unlock_ablock(struct dm_array_info *info, struct dm_block *block)
+{
+ dm_tm_unlock(info->btree_info.tm, block);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Btree manipulation.
+ */
+
+/*
+ * Looks up an array block in the btree, and then read locks it.
+ *
+ * index is the index of the index of the array_block, (ie. the array index
+ * / max_entries).
+ */
+static int lookup_ablock(struct dm_array_info *info, dm_block_t root,
+ unsigned int index, struct dm_block **block,
+ struct array_block **ab)
+{
+ int r;
+ uint64_t key = index;
+ __le64 block_le;
+
+ r = dm_btree_lookup(&info->btree_info, root, &key, &block_le);
+ if (r)
+ return r;
+
+ return get_ablock(info, le64_to_cpu(block_le), block, ab);
+}
+
+/*
+ * Insert an array block into the btree. The block is _not_ unlocked.
+ */
+static int insert_ablock(struct dm_array_info *info, uint64_t index,
+ struct dm_block *block, dm_block_t *root)
+{
+ __le64 block_le = cpu_to_le64(dm_block_location(block));
+
+ __dm_bless_for_disk(block_le);
+ return dm_btree_insert(&info->btree_info, *root, &index, &block_le, root);
+}
+
+/*----------------------------------------------------------------*/
+
+static int __shadow_ablock(struct dm_array_info *info, dm_block_t b,
+ struct dm_block **block, struct array_block **ab)
+{
+ int inc;
+ int r = dm_tm_shadow_block(info->btree_info.tm, b,
+ &array_validator, block, &inc);
+ if (r)
+ return r;
+
+ *ab = dm_block_data(*block);
+ if (inc)
+ inc_ablock_entries(info, *ab);
+
+ return 0;
+}
+
+/*
+ * The shadow op will often be a noop. Only insert if it really
+ * copied data.
+ */
+static int __reinsert_ablock(struct dm_array_info *info, unsigned int index,
+ struct dm_block *block, dm_block_t b,
+ dm_block_t *root)
+{
+ int r = 0;
+
+ if (dm_block_location(block) != b) {
+ /*
+ * dm_tm_shadow_block will have already decremented the old
+ * block, but it is still referenced by the btree. We
+ * increment to stop the insert decrementing it below zero
+ * when overwriting the old value.
+ */
+ dm_tm_inc(info->btree_info.tm, b);
+ r = insert_ablock(info, index, block, root);
+ }
+
+ return r;
+}
+
+/*
+ * Looks up an array block in the btree. Then shadows it, and updates the
+ * btree to point to this new shadow. 'root' is an input/output parameter
+ * for both the current root block, and the new one.
+ */
+static int shadow_ablock(struct dm_array_info *info, dm_block_t *root,
+ unsigned int index, struct dm_block **block,
+ struct array_block **ab)
+{
+ int r;
+ uint64_t key = index;
+ dm_block_t b;
+ __le64 block_le;
+
+ r = dm_btree_lookup(&info->btree_info, *root, &key, &block_le);
+ if (r)
+ return r;
+ b = le64_to_cpu(block_le);
+
+ r = __shadow_ablock(info, b, block, ab);
+ if (r)
+ return r;
+
+ return __reinsert_ablock(info, index, *block, b, root);
+}
+
+/*
+ * Allocate an new array block, and fill it with some values.
+ */
+static int insert_new_ablock(struct dm_array_info *info, size_t size_of_block,
+ uint32_t max_entries,
+ unsigned int block_index, uint32_t nr,
+ const void *value, dm_block_t *root)
+{
+ int r;
+ struct dm_block *block;
+ struct array_block *ab;
+
+ r = alloc_ablock(info, size_of_block, max_entries, &block, &ab);
+ if (r)
+ return r;
+
+ fill_ablock(info, ab, value, nr);
+ r = insert_ablock(info, block_index, block, root);
+ unlock_ablock(info, block);
+
+ return r;
+}
+
+static int insert_full_ablocks(struct dm_array_info *info, size_t size_of_block,
+ unsigned int begin_block, unsigned int end_block,
+ unsigned int max_entries, const void *value,
+ dm_block_t *root)
+{
+ int r = 0;
+
+ for (; !r && begin_block != end_block; begin_block++)
+ r = insert_new_ablock(info, size_of_block, max_entries, begin_block, max_entries, value, root);
+
+ return r;
+}
+
+/*
+ * There are a bunch of functions involved with resizing an array. This
+ * structure holds information that commonly needed by them. Purely here
+ * to reduce parameter count.
+ */
+struct resize {
+ /*
+ * Describes the array.
+ */
+ struct dm_array_info *info;
+
+ /*
+ * The current root of the array. This gets updated.
+ */
+ dm_block_t root;
+
+ /*
+ * Metadata block size. Used to calculate the nr entries in an
+ * array block.
+ */
+ size_t size_of_block;
+
+ /*
+ * Maximum nr entries in an array block.
+ */
+ unsigned int max_entries;
+
+ /*
+ * nr of completely full blocks in the array.
+ *
+ * 'old' refers to before the resize, 'new' after.
+ */
+ unsigned int old_nr_full_blocks, new_nr_full_blocks;
+
+ /*
+ * Number of entries in the final block. 0 iff only full blocks in
+ * the array.
+ */
+ unsigned int old_nr_entries_in_last_block, new_nr_entries_in_last_block;
+
+ /*
+ * The default value used when growing the array.
+ */
+ const void *value;
+};
+
+/*
+ * Removes a consecutive set of array blocks from the btree. The values
+ * in block are decremented as a side effect of the btree remove.
+ *
+ * begin_index - the index of the first array block to remove.
+ * end_index - the one-past-the-end value. ie. this block is not removed.
+ */
+static int drop_blocks(struct resize *resize, unsigned int begin_index,
+ unsigned int end_index)
+{
+ int r;
+
+ while (begin_index != end_index) {
+ uint64_t key = begin_index++;
+ r = dm_btree_remove(&resize->info->btree_info, resize->root,
+ &key, &resize->root);
+ if (r)
+ return r;
+ }
+
+ return 0;
+}
+
+/*
+ * Calculates how many blocks are needed for the array.
+ */
+static unsigned int total_nr_blocks_needed(unsigned int nr_full_blocks,
+ unsigned int nr_entries_in_last_block)
+{
+ return nr_full_blocks + (nr_entries_in_last_block ? 1 : 0);
+}
+
+/*
+ * Shrink an array.
+ */
+static int shrink(struct resize *resize)
+{
+ int r;
+ unsigned int begin, end;
+ struct dm_block *block;
+ struct array_block *ab;
+
+ /*
+ * Lose some blocks from the back?
+ */
+ if (resize->new_nr_full_blocks < resize->old_nr_full_blocks) {
+ begin = total_nr_blocks_needed(resize->new_nr_full_blocks,
+ resize->new_nr_entries_in_last_block);
+ end = total_nr_blocks_needed(resize->old_nr_full_blocks,
+ resize->old_nr_entries_in_last_block);
+
+ r = drop_blocks(resize, begin, end);
+ if (r)
+ return r;
+ }
+
+ /*
+ * Trim the new tail block
+ */
+ if (resize->new_nr_entries_in_last_block) {
+ r = shadow_ablock(resize->info, &resize->root,
+ resize->new_nr_full_blocks, &block, &ab);
+ if (r)
+ return r;
+
+ trim_ablock(resize->info, ab, resize->new_nr_entries_in_last_block);
+ unlock_ablock(resize->info, block);
+ }
+
+ return 0;
+}
+
+/*
+ * Grow an array.
+ */
+static int grow_extend_tail_block(struct resize *resize, uint32_t new_nr_entries)
+{
+ int r;
+ struct dm_block *block;
+ struct array_block *ab;
+
+ r = shadow_ablock(resize->info, &resize->root,
+ resize->old_nr_full_blocks, &block, &ab);
+ if (r)
+ return r;
+
+ fill_ablock(resize->info, ab, resize->value, new_nr_entries);
+ unlock_ablock(resize->info, block);
+
+ return r;
+}
+
+static int grow_add_tail_block(struct resize *resize)
+{
+ return insert_new_ablock(resize->info, resize->size_of_block,
+ resize->max_entries,
+ resize->new_nr_full_blocks,
+ resize->new_nr_entries_in_last_block,
+ resize->value, &resize->root);
+}
+
+static int grow_needs_more_blocks(struct resize *resize)
+{
+ int r;
+ unsigned int old_nr_blocks = resize->old_nr_full_blocks;
+
+ if (resize->old_nr_entries_in_last_block > 0) {
+ old_nr_blocks++;
+
+ r = grow_extend_tail_block(resize, resize->max_entries);
+ if (r)
+ return r;
+ }
+
+ r = insert_full_ablocks(resize->info, resize->size_of_block,
+ old_nr_blocks,
+ resize->new_nr_full_blocks,
+ resize->max_entries, resize->value,
+ &resize->root);
+ if (r)
+ return r;
+
+ if (resize->new_nr_entries_in_last_block)
+ r = grow_add_tail_block(resize);
+
+ return r;
+}
+
+static int grow(struct resize *resize)
+{
+ if (resize->new_nr_full_blocks > resize->old_nr_full_blocks)
+ return grow_needs_more_blocks(resize);
+
+ else if (resize->old_nr_entries_in_last_block)
+ return grow_extend_tail_block(resize, resize->new_nr_entries_in_last_block);
+
+ else
+ return grow_add_tail_block(resize);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * These are the value_type functions for the btree elements, which point
+ * to array blocks.
+ */
+static void block_inc(void *context, const void *value, unsigned int count)
+{
+ const __le64 *block_le = value;
+ struct dm_array_info *info = context;
+ unsigned int i;
+
+ for (i = 0; i < count; i++, block_le++)
+ dm_tm_inc(info->btree_info.tm, le64_to_cpu(*block_le));
+}
+
+static void __block_dec(void *context, const void *value)
+{
+ int r;
+ uint64_t b;
+ __le64 block_le;
+ uint32_t ref_count;
+ struct dm_block *block;
+ struct array_block *ab;
+ struct dm_array_info *info = context;
+
+ memcpy(&block_le, value, sizeof(block_le));
+ b = le64_to_cpu(block_le);
+
+ r = dm_tm_ref(info->btree_info.tm, b, &ref_count);
+ if (r) {
+ DMERR_LIMIT("couldn't get reference count for block %llu",
+ (unsigned long long) b);
+ return;
+ }
+
+ if (ref_count == 1) {
+ /*
+ * We're about to drop the last reference to this ablock.
+ * So we need to decrement the ref count of the contents.
+ */
+ r = get_ablock(info, b, &block, &ab);
+ if (r) {
+ DMERR_LIMIT("couldn't get array block %llu",
+ (unsigned long long) b);
+ return;
+ }
+
+ dec_ablock_entries(info, ab);
+ unlock_ablock(info, block);
+ }
+
+ dm_tm_dec(info->btree_info.tm, b);
+}
+
+static void block_dec(void *context, const void *value, unsigned int count)
+{
+ unsigned int i;
+ for (i = 0; i < count; i++, value += sizeof(__le64))
+ __block_dec(context, value);
+}
+
+static int block_equal(void *context, const void *value1, const void *value2)
+{
+ return !memcmp(value1, value2, sizeof(__le64));
+}
+
+/*----------------------------------------------------------------*/
+
+void dm_array_info_init(struct dm_array_info *info,
+ struct dm_transaction_manager *tm,
+ struct dm_btree_value_type *vt)
+{
+ struct dm_btree_value_type *bvt = &info->btree_info.value_type;
+
+ memcpy(&info->value_type, vt, sizeof(info->value_type));
+ info->btree_info.tm = tm;
+ info->btree_info.levels = 1;
+
+ bvt->context = info;
+ bvt->size = sizeof(__le64);
+ bvt->inc = block_inc;
+ bvt->dec = block_dec;
+ bvt->equal = block_equal;
+}
+EXPORT_SYMBOL_GPL(dm_array_info_init);
+
+int dm_array_empty(struct dm_array_info *info, dm_block_t *root)
+{
+ return dm_btree_empty(&info->btree_info, root);
+}
+EXPORT_SYMBOL_GPL(dm_array_empty);
+
+static int array_resize(struct dm_array_info *info, dm_block_t root,
+ uint32_t old_size, uint32_t new_size,
+ const void *value, dm_block_t *new_root)
+{
+ int r;
+ struct resize resize;
+
+ if (old_size == new_size) {
+ *new_root = root;
+ return 0;
+ }
+
+ resize.info = info;
+ resize.root = root;
+ resize.size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
+ resize.max_entries = calc_max_entries(info->value_type.size,
+ resize.size_of_block);
+
+ resize.old_nr_full_blocks = old_size / resize.max_entries;
+ resize.old_nr_entries_in_last_block = old_size % resize.max_entries;
+ resize.new_nr_full_blocks = new_size / resize.max_entries;
+ resize.new_nr_entries_in_last_block = new_size % resize.max_entries;
+ resize.value = value;
+
+ r = ((new_size > old_size) ? grow : shrink)(&resize);
+ if (r)
+ return r;
+
+ *new_root = resize.root;
+ return 0;
+}
+
+int dm_array_resize(struct dm_array_info *info, dm_block_t root,
+ uint32_t old_size, uint32_t new_size,
+ const void *value, dm_block_t *new_root)
+ __dm_written_to_disk(value)
+{
+ int r = array_resize(info, root, old_size, new_size, value, new_root);
+ __dm_unbless_for_disk(value);
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_array_resize);
+
+static int populate_ablock_with_values(struct dm_array_info *info, struct array_block *ab,
+ value_fn fn, void *context,
+ unsigned int base, unsigned int new_nr)
+{
+ int r;
+ unsigned int i;
+ struct dm_btree_value_type *vt = &info->value_type;
+
+ BUG_ON(le32_to_cpu(ab->nr_entries));
+ BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
+
+ for (i = 0; i < new_nr; i++) {
+ r = fn(base + i, element_at(info, ab, i), context);
+ if (r)
+ return r;
+
+ if (vt->inc)
+ vt->inc(vt->context, element_at(info, ab, i), 1);
+ }
+
+ ab->nr_entries = cpu_to_le32(new_nr);
+ return 0;
+}
+
+int dm_array_new(struct dm_array_info *info, dm_block_t *root,
+ uint32_t size, value_fn fn, void *context)
+{
+ int r;
+ struct dm_block *block;
+ struct array_block *ab;
+ unsigned int block_index, end_block, size_of_block, max_entries;
+
+ r = dm_array_empty(info, root);
+ if (r)
+ return r;
+
+ size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
+ max_entries = calc_max_entries(info->value_type.size, size_of_block);
+ end_block = dm_div_up(size, max_entries);
+
+ for (block_index = 0; block_index != end_block; block_index++) {
+ r = alloc_ablock(info, size_of_block, max_entries, &block, &ab);
+ if (r)
+ break;
+
+ r = populate_ablock_with_values(info, ab, fn, context,
+ block_index * max_entries,
+ min(max_entries, size));
+ if (r) {
+ unlock_ablock(info, block);
+ break;
+ }
+
+ r = insert_ablock(info, block_index, block, root);
+ unlock_ablock(info, block);
+ if (r)
+ break;
+
+ size -= max_entries;
+ }
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_array_new);
+
+int dm_array_del(struct dm_array_info *info, dm_block_t root)
+{
+ return dm_btree_del(&info->btree_info, root);
+}
+EXPORT_SYMBOL_GPL(dm_array_del);
+
+int dm_array_get_value(struct dm_array_info *info, dm_block_t root,
+ uint32_t index, void *value_le)
+{
+ int r;
+ struct dm_block *block;
+ struct array_block *ab;
+ size_t size_of_block;
+ unsigned int entry, max_entries;
+
+ size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
+ max_entries = calc_max_entries(info->value_type.size, size_of_block);
+
+ r = lookup_ablock(info, root, index / max_entries, &block, &ab);
+ if (r)
+ return r;
+
+ entry = index % max_entries;
+ if (entry >= le32_to_cpu(ab->nr_entries))
+ r = -ENODATA;
+ else
+ memcpy(value_le, element_at(info, ab, entry),
+ info->value_type.size);
+
+ unlock_ablock(info, block);
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_array_get_value);
+
+static int array_set_value(struct dm_array_info *info, dm_block_t root,
+ uint32_t index, const void *value, dm_block_t *new_root)
+{
+ int r;
+ struct dm_block *block;
+ struct array_block *ab;
+ size_t size_of_block;
+ unsigned int max_entries;
+ unsigned int entry;
+ void *old_value;
+ struct dm_btree_value_type *vt = &info->value_type;
+
+ size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
+ max_entries = calc_max_entries(info->value_type.size, size_of_block);
+
+ r = shadow_ablock(info, &root, index / max_entries, &block, &ab);
+ if (r)
+ return r;
+ *new_root = root;
+
+ entry = index % max_entries;
+ if (entry >= le32_to_cpu(ab->nr_entries)) {
+ r = -ENODATA;
+ goto out;
+ }
+
+ old_value = element_at(info, ab, entry);
+ if (vt->dec &&
+ (!vt->equal || !vt->equal(vt->context, old_value, value))) {
+ vt->dec(vt->context, old_value, 1);
+ if (vt->inc)
+ vt->inc(vt->context, value, 1);
+ }
+
+ memcpy(old_value, value, info->value_type.size);
+
+out:
+ unlock_ablock(info, block);
+ return r;
+}
+
+int dm_array_set_value(struct dm_array_info *info, dm_block_t root,
+ uint32_t index, const void *value, dm_block_t *new_root)
+ __dm_written_to_disk(value)
+{
+ int r;
+
+ r = array_set_value(info, root, index, value, new_root);
+ __dm_unbless_for_disk(value);
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_array_set_value);
+
+struct walk_info {
+ struct dm_array_info *info;
+ int (*fn)(void *context, uint64_t key, void *leaf);
+ void *context;
+};
+
+static int walk_ablock(void *context, uint64_t *keys, void *leaf)
+{
+ struct walk_info *wi = context;
+
+ int r;
+ unsigned int i;
+ __le64 block_le;
+ unsigned int nr_entries, max_entries;
+ struct dm_block *block;
+ struct array_block *ab;
+
+ memcpy(&block_le, leaf, sizeof(block_le));
+ r = get_ablock(wi->info, le64_to_cpu(block_le), &block, &ab);
+ if (r)
+ return r;
+
+ max_entries = le32_to_cpu(ab->max_entries);
+ nr_entries = le32_to_cpu(ab->nr_entries);
+ for (i = 0; i < nr_entries; i++) {
+ r = wi->fn(wi->context, keys[0] * max_entries + i,
+ element_at(wi->info, ab, i));
+
+ if (r)
+ break;
+ }
+
+ unlock_ablock(wi->info, block);
+ return r;
+}
+
+int dm_array_walk(struct dm_array_info *info, dm_block_t root,
+ int (*fn)(void *, uint64_t key, void *leaf),
+ void *context)
+{
+ struct walk_info wi;
+
+ wi.info = info;
+ wi.fn = fn;
+ wi.context = context;
+
+ return dm_btree_walk(&info->btree_info, root, walk_ablock, &wi);
+}
+EXPORT_SYMBOL_GPL(dm_array_walk);
+
+/*----------------------------------------------------------------*/
+
+static int load_ablock(struct dm_array_cursor *c)
+{
+ int r;
+ __le64 value_le;
+ uint64_t key;
+
+ if (c->block)
+ unlock_ablock(c->info, c->block);
+
+ c->block = NULL;
+ c->ab = NULL;
+ c->index = 0;
+
+ r = dm_btree_cursor_get_value(&c->cursor, &key, &value_le);
+ if (r) {
+ DMERR("dm_btree_cursor_get_value failed");
+ dm_btree_cursor_end(&c->cursor);
+
+ } else {
+ r = get_ablock(c->info, le64_to_cpu(value_le), &c->block, &c->ab);
+ if (r) {
+ DMERR("get_ablock failed");
+ dm_btree_cursor_end(&c->cursor);
+ }
+ }
+
+ return r;
+}
+
+int dm_array_cursor_begin(struct dm_array_info *info, dm_block_t root,
+ struct dm_array_cursor *c)
+{
+ int r;
+
+ memset(c, 0, sizeof(*c));
+ c->info = info;
+ r = dm_btree_cursor_begin(&info->btree_info, root, true, &c->cursor);
+ if (r) {
+ DMERR("couldn't create btree cursor");
+ return r;
+ }
+
+ return load_ablock(c);
+}
+EXPORT_SYMBOL_GPL(dm_array_cursor_begin);
+
+void dm_array_cursor_end(struct dm_array_cursor *c)
+{
+ if (c->block) {
+ unlock_ablock(c->info, c->block);
+ dm_btree_cursor_end(&c->cursor);
+ }
+}
+EXPORT_SYMBOL_GPL(dm_array_cursor_end);
+
+int dm_array_cursor_next(struct dm_array_cursor *c)
+{
+ int r;
+
+ if (!c->block)
+ return -ENODATA;
+
+ c->index++;
+
+ if (c->index >= le32_to_cpu(c->ab->nr_entries)) {
+ r = dm_btree_cursor_next(&c->cursor);
+ if (r)
+ return r;
+
+ r = load_ablock(c);
+ if (r)
+ return r;
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(dm_array_cursor_next);
+
+int dm_array_cursor_skip(struct dm_array_cursor *c, uint32_t count)
+{
+ int r;
+
+ do {
+ uint32_t remaining = le32_to_cpu(c->ab->nr_entries) - c->index;
+
+ if (count < remaining) {
+ c->index += count;
+ return 0;
+ }
+
+ count -= remaining;
+ r = dm_array_cursor_next(c);
+
+ } while (!r);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_array_cursor_skip);
+
+void dm_array_cursor_get_value(struct dm_array_cursor *c, void **value_le)
+{
+ *value_le = element_at(c->info, c->ab, c->index);
+}
+EXPORT_SYMBOL_GPL(dm_array_cursor_get_value);
+
+/*----------------------------------------------------------------*/
diff --git a/drivers/md/persistent-data/dm-array.h b/drivers/md/persistent-data/dm-array.h
new file mode 100644
index 000000000..b6c7077c7
--- /dev/null
+++ b/drivers/md/persistent-data/dm-array.h
@@ -0,0 +1,219 @@
+/*
+ * Copyright (C) 2012 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+#ifndef _LINUX_DM_ARRAY_H
+#define _LINUX_DM_ARRAY_H
+
+#include "dm-btree.h"
+
+/*----------------------------------------------------------------*/
+
+/*
+ * The dm-array is a persistent version of an array. It packs the data
+ * more efficiently than a btree which will result in less disk space use,
+ * and a performance boost. The element get and set operations are still
+ * O(ln(n)), but with a much smaller constant.
+ *
+ * The value type structure is reused from the btree type to support proper
+ * reference counting of values.
+ *
+ * The arrays implicitly know their length, and bounds are checked for
+ * lookups and updated. It doesn't store this in an accessible place
+ * because it would waste a whole metadata block. Make sure you store the
+ * size along with the array root in your encompassing data.
+ *
+ * Array entries are indexed via an unsigned integer starting from zero.
+ * Arrays are not sparse; if you resize an array to have 'n' entries then
+ * 'n - 1' will be the last valid index.
+ *
+ * Typical use:
+ *
+ * a) initialise a dm_array_info structure. This describes the array
+ * values and ties it into a specific transaction manager. It holds no
+ * instance data; the same info can be used for many similar arrays if
+ * you wish.
+ *
+ * b) Get yourself a root. The root is the index of a block of data on the
+ * disk that holds a particular instance of an array. You may have a
+ * pre existing root in your metadata that you wish to use, or you may
+ * want to create a brand new, empty array with dm_array_empty().
+ *
+ * Like the other data structures in this library, dm_array objects are
+ * immutable between transactions. Update functions will return you the
+ * root for a _new_ array. If you've incremented the old root, via
+ * dm_tm_inc(), before calling the update function you may continue to use
+ * it in parallel with the new root.
+ *
+ * c) resize an array with dm_array_resize().
+ *
+ * d) Get a value from the array with dm_array_get_value().
+ *
+ * e) Set a value in the array with dm_array_set_value().
+ *
+ * f) Walk an array of values in index order with dm_array_walk(). More
+ * efficient than making many calls to dm_array_get_value().
+ *
+ * g) Destroy the array with dm_array_del(). This tells the transaction
+ * manager that you're no longer using this data structure so it can
+ * recycle it's blocks. (dm_array_dec() would be a better name for it,
+ * but del is in keeping with dm_btree_del()).
+ */
+
+/*
+ * Describes an array. Don't initialise this structure yourself, use the
+ * init function below.
+ */
+struct dm_array_info {
+ struct dm_transaction_manager *tm;
+ struct dm_btree_value_type value_type;
+ struct dm_btree_info btree_info;
+};
+
+/*
+ * Sets up a dm_array_info structure. You don't need to do anything with
+ * this structure when you finish using it.
+ *
+ * info - the structure being filled in.
+ * tm - the transaction manager that should supervise this structure.
+ * vt - describes the leaf values.
+ */
+void dm_array_info_init(struct dm_array_info *info,
+ struct dm_transaction_manager *tm,
+ struct dm_btree_value_type *vt);
+
+/*
+ * Create an empty, zero length array.
+ *
+ * info - describes the array
+ * root - on success this will be filled out with the root block
+ */
+int dm_array_empty(struct dm_array_info *info, dm_block_t *root);
+
+/*
+ * Resizes the array.
+ *
+ * info - describes the array
+ * root - the root block of the array on disk
+ * old_size - the caller is responsible for remembering the size of
+ * the array
+ * new_size - can be bigger or smaller than old_size
+ * value - if we're growing the array the new entries will have this value
+ * new_root - on success, points to the new root block
+ *
+ * If growing the inc function for 'value' will be called the appropriate
+ * number of times. So if the caller is holding a reference they may want
+ * to drop it.
+ */
+int dm_array_resize(struct dm_array_info *info, dm_block_t root,
+ uint32_t old_size, uint32_t new_size,
+ const void *value, dm_block_t *new_root)
+ __dm_written_to_disk(value);
+
+/*
+ * Creates a new array populated with values provided by a callback
+ * function. This is more efficient than creating an empty array,
+ * resizing, and then setting values since that process incurs a lot of
+ * copying.
+ *
+ * Assumes 32bit values for now since it's only used by the cache hint
+ * array.
+ *
+ * info - describes the array
+ * root - the root block of the array on disk
+ * size - the number of entries in the array
+ * fn - the callback
+ * context - passed to the callback
+ */
+typedef int (*value_fn)(uint32_t index, void *value_le, void *context);
+int dm_array_new(struct dm_array_info *info, dm_block_t *root,
+ uint32_t size, value_fn fn, void *context);
+
+/*
+ * Frees a whole array. The value_type's decrement operation will be called
+ * for all values in the array
+ */
+int dm_array_del(struct dm_array_info *info, dm_block_t root);
+
+/*
+ * Lookup a value in the array
+ *
+ * info - describes the array
+ * root - root block of the array
+ * index - array index
+ * value - the value to be read. Will be in on-disk format of course.
+ *
+ * -ENODATA will be returned if the index is out of bounds.
+ */
+int dm_array_get_value(struct dm_array_info *info, dm_block_t root,
+ uint32_t index, void *value);
+
+/*
+ * Set an entry in the array.
+ *
+ * info - describes the array
+ * root - root block of the array
+ * index - array index
+ * value - value to be written to disk. Make sure you confirm the value is
+ * in on-disk format with__dm_bless_for_disk() before calling.
+ * new_root - the new root block
+ *
+ * The old value being overwritten will be decremented, the new value
+ * incremented.
+ *
+ * -ENODATA will be returned if the index is out of bounds.
+ */
+int dm_array_set_value(struct dm_array_info *info, dm_block_t root,
+ uint32_t index, const void *value, dm_block_t *new_root)
+ __dm_written_to_disk(value);
+
+/*
+ * Walk through all the entries in an array.
+ *
+ * info - describes the array
+ * root - root block of the array
+ * fn - called back for every element
+ * context - passed to the callback
+ */
+int dm_array_walk(struct dm_array_info *info, dm_block_t root,
+ int (*fn)(void *context, uint64_t key, void *leaf),
+ void *context);
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Cursor api.
+ *
+ * This lets you iterate through all the entries in an array efficiently
+ * (it will preload metadata).
+ *
+ * I'm using a cursor, rather than a walk function with a callback because
+ * the cache target needs to iterate both the mapping and hint arrays in
+ * unison.
+ */
+struct dm_array_cursor {
+ struct dm_array_info *info;
+ struct dm_btree_cursor cursor;
+
+ struct dm_block *block;
+ struct array_block *ab;
+ unsigned int index;
+};
+
+int dm_array_cursor_begin(struct dm_array_info *info,
+ dm_block_t root, struct dm_array_cursor *c);
+void dm_array_cursor_end(struct dm_array_cursor *c);
+
+uint32_t dm_array_cursor_index(struct dm_array_cursor *c);
+int dm_array_cursor_next(struct dm_array_cursor *c);
+int dm_array_cursor_skip(struct dm_array_cursor *c, uint32_t count);
+
+/*
+ * value_le is only valid while the cursor points at the current value.
+ */
+void dm_array_cursor_get_value(struct dm_array_cursor *c, void **value_le);
+
+/*----------------------------------------------------------------*/
+
+#endif /* _LINUX_DM_ARRAY_H */
diff --git a/drivers/md/persistent-data/dm-bitset.c b/drivers/md/persistent-data/dm-bitset.c
new file mode 100644
index 000000000..625d93498
--- /dev/null
+++ b/drivers/md/persistent-data/dm-bitset.c
@@ -0,0 +1,317 @@
+/*
+ * Copyright (C) 2012 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-bitset.h"
+#include "dm-transaction-manager.h"
+
+#include <linux/export.h>
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "bitset"
+#define BITS_PER_ARRAY_ENTRY 64
+
+/*----------------------------------------------------------------*/
+
+static struct dm_btree_value_type bitset_bvt = {
+ .context = NULL,
+ .size = sizeof(__le64),
+ .inc = NULL,
+ .dec = NULL,
+ .equal = NULL,
+};
+
+/*----------------------------------------------------------------*/
+
+void dm_disk_bitset_init(struct dm_transaction_manager *tm,
+ struct dm_disk_bitset *info)
+{
+ dm_array_info_init(&info->array_info, tm, &bitset_bvt);
+ info->current_index_set = false;
+}
+EXPORT_SYMBOL_GPL(dm_disk_bitset_init);
+
+int dm_bitset_empty(struct dm_disk_bitset *info, dm_block_t *root)
+{
+ return dm_array_empty(&info->array_info, root);
+}
+EXPORT_SYMBOL_GPL(dm_bitset_empty);
+
+struct packer_context {
+ bit_value_fn fn;
+ unsigned int nr_bits;
+ void *context;
+};
+
+static int pack_bits(uint32_t index, void *value, void *context)
+{
+ int r;
+ struct packer_context *p = context;
+ unsigned int bit, nr = min(64u, p->nr_bits - (index * 64));
+ uint64_t word = 0;
+ bool bv;
+
+ for (bit = 0; bit < nr; bit++) {
+ r = p->fn(index * 64 + bit, &bv, p->context);
+ if (r)
+ return r;
+
+ if (bv)
+ set_bit(bit, (unsigned long *) &word);
+ else
+ clear_bit(bit, (unsigned long *) &word);
+ }
+
+ *((__le64 *) value) = cpu_to_le64(word);
+
+ return 0;
+}
+
+int dm_bitset_new(struct dm_disk_bitset *info, dm_block_t *root,
+ uint32_t size, bit_value_fn fn, void *context)
+{
+ struct packer_context p;
+ p.fn = fn;
+ p.nr_bits = size;
+ p.context = context;
+
+ return dm_array_new(&info->array_info, root, dm_div_up(size, 64), pack_bits, &p);
+}
+EXPORT_SYMBOL_GPL(dm_bitset_new);
+
+int dm_bitset_resize(struct dm_disk_bitset *info, dm_block_t root,
+ uint32_t old_nr_entries, uint32_t new_nr_entries,
+ bool default_value, dm_block_t *new_root)
+{
+ uint32_t old_blocks = dm_div_up(old_nr_entries, BITS_PER_ARRAY_ENTRY);
+ uint32_t new_blocks = dm_div_up(new_nr_entries, BITS_PER_ARRAY_ENTRY);
+ __le64 value = default_value ? cpu_to_le64(~0) : cpu_to_le64(0);
+
+ __dm_bless_for_disk(&value);
+ return dm_array_resize(&info->array_info, root, old_blocks, new_blocks,
+ &value, new_root);
+}
+EXPORT_SYMBOL_GPL(dm_bitset_resize);
+
+int dm_bitset_del(struct dm_disk_bitset *info, dm_block_t root)
+{
+ return dm_array_del(&info->array_info, root);
+}
+EXPORT_SYMBOL_GPL(dm_bitset_del);
+
+int dm_bitset_flush(struct dm_disk_bitset *info, dm_block_t root,
+ dm_block_t *new_root)
+{
+ int r;
+ __le64 value;
+
+ if (!info->current_index_set || !info->dirty)
+ return 0;
+
+ value = cpu_to_le64(info->current_bits);
+
+ __dm_bless_for_disk(&value);
+ r = dm_array_set_value(&info->array_info, root, info->current_index,
+ &value, new_root);
+ if (r)
+ return r;
+
+ info->current_index_set = false;
+ info->dirty = false;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(dm_bitset_flush);
+
+static int read_bits(struct dm_disk_bitset *info, dm_block_t root,
+ uint32_t array_index)
+{
+ int r;
+ __le64 value;
+
+ r = dm_array_get_value(&info->array_info, root, array_index, &value);
+ if (r)
+ return r;
+
+ info->current_bits = le64_to_cpu(value);
+ info->current_index_set = true;
+ info->current_index = array_index;
+ info->dirty = false;
+
+ return 0;
+}
+
+static int get_array_entry(struct dm_disk_bitset *info, dm_block_t root,
+ uint32_t index, dm_block_t *new_root)
+{
+ int r;
+ unsigned int array_index = index / BITS_PER_ARRAY_ENTRY;
+
+ if (info->current_index_set) {
+ if (info->current_index == array_index)
+ return 0;
+
+ r = dm_bitset_flush(info, root, new_root);
+ if (r)
+ return r;
+ }
+
+ return read_bits(info, root, array_index);
+}
+
+int dm_bitset_set_bit(struct dm_disk_bitset *info, dm_block_t root,
+ uint32_t index, dm_block_t *new_root)
+{
+ int r;
+ unsigned int b = index % BITS_PER_ARRAY_ENTRY;
+
+ r = get_array_entry(info, root, index, new_root);
+ if (r)
+ return r;
+
+ set_bit(b, (unsigned long *) &info->current_bits);
+ info->dirty = true;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(dm_bitset_set_bit);
+
+int dm_bitset_clear_bit(struct dm_disk_bitset *info, dm_block_t root,
+ uint32_t index, dm_block_t *new_root)
+{
+ int r;
+ unsigned int b = index % BITS_PER_ARRAY_ENTRY;
+
+ r = get_array_entry(info, root, index, new_root);
+ if (r)
+ return r;
+
+ clear_bit(b, (unsigned long *) &info->current_bits);
+ info->dirty = true;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(dm_bitset_clear_bit);
+
+int dm_bitset_test_bit(struct dm_disk_bitset *info, dm_block_t root,
+ uint32_t index, dm_block_t *new_root, bool *result)
+{
+ int r;
+ unsigned int b = index % BITS_PER_ARRAY_ENTRY;
+
+ r = get_array_entry(info, root, index, new_root);
+ if (r)
+ return r;
+
+ *result = test_bit(b, (unsigned long *) &info->current_bits);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(dm_bitset_test_bit);
+
+static int cursor_next_array_entry(struct dm_bitset_cursor *c)
+{
+ int r;
+ __le64 *value;
+
+ r = dm_array_cursor_next(&c->cursor);
+ if (r)
+ return r;
+
+ dm_array_cursor_get_value(&c->cursor, (void **) &value);
+ c->array_index++;
+ c->bit_index = 0;
+ c->current_bits = le64_to_cpu(*value);
+ return 0;
+}
+
+int dm_bitset_cursor_begin(struct dm_disk_bitset *info,
+ dm_block_t root, uint32_t nr_entries,
+ struct dm_bitset_cursor *c)
+{
+ int r;
+ __le64 *value;
+
+ if (!nr_entries)
+ return -ENODATA;
+
+ c->info = info;
+ c->entries_remaining = nr_entries;
+
+ r = dm_array_cursor_begin(&info->array_info, root, &c->cursor);
+ if (r)
+ return r;
+
+ dm_array_cursor_get_value(&c->cursor, (void **) &value);
+ c->array_index = 0;
+ c->bit_index = 0;
+ c->current_bits = le64_to_cpu(*value);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_bitset_cursor_begin);
+
+void dm_bitset_cursor_end(struct dm_bitset_cursor *c)
+{
+ return dm_array_cursor_end(&c->cursor);
+}
+EXPORT_SYMBOL_GPL(dm_bitset_cursor_end);
+
+int dm_bitset_cursor_next(struct dm_bitset_cursor *c)
+{
+ int r = 0;
+
+ if (!c->entries_remaining)
+ return -ENODATA;
+
+ c->entries_remaining--;
+ if (++c->bit_index > 63)
+ r = cursor_next_array_entry(c);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_bitset_cursor_next);
+
+int dm_bitset_cursor_skip(struct dm_bitset_cursor *c, uint32_t count)
+{
+ int r;
+ __le64 *value;
+ uint32_t nr_array_skip;
+ uint32_t remaining_in_word = 64 - c->bit_index;
+
+ if (c->entries_remaining < count)
+ return -ENODATA;
+
+ if (count < remaining_in_word) {
+ c->bit_index += count;
+ c->entries_remaining -= count;
+ return 0;
+
+ } else {
+ c->entries_remaining -= remaining_in_word;
+ count -= remaining_in_word;
+ }
+
+ nr_array_skip = (count / 64) + 1;
+ r = dm_array_cursor_skip(&c->cursor, nr_array_skip);
+ if (r)
+ return r;
+
+ dm_array_cursor_get_value(&c->cursor, (void **) &value);
+ c->entries_remaining -= count;
+ c->array_index += nr_array_skip;
+ c->bit_index = count & 63;
+ c->current_bits = le64_to_cpu(*value);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(dm_bitset_cursor_skip);
+
+bool dm_bitset_cursor_get_value(struct dm_bitset_cursor *c)
+{
+ return test_bit(c->bit_index, (unsigned long *) &c->current_bits);
+}
+EXPORT_SYMBOL_GPL(dm_bitset_cursor_get_value);
+
+/*----------------------------------------------------------------*/
diff --git a/drivers/md/persistent-data/dm-bitset.h b/drivers/md/persistent-data/dm-bitset.h
new file mode 100644
index 000000000..df888da04
--- /dev/null
+++ b/drivers/md/persistent-data/dm-bitset.h
@@ -0,0 +1,205 @@
+/*
+ * Copyright (C) 2012 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+#ifndef _LINUX_DM_BITSET_H
+#define _LINUX_DM_BITSET_H
+
+#include "dm-array.h"
+
+/*----------------------------------------------------------------*/
+
+/*
+ * This bitset type is a thin wrapper round a dm_array of 64bit words. It
+ * uses a tiny, one word cache to reduce the number of array lookups and so
+ * increase performance.
+ *
+ * Like the dm-array that it's based on, the caller needs to keep track of
+ * the size of the bitset separately. The underlying dm-array implicitly
+ * knows how many words it's storing and will return -ENODATA if you try
+ * and access an out of bounds word. However, an out of bounds bit in the
+ * final word will _not_ be detected, you have been warned.
+ *
+ * Bits are indexed from zero.
+
+ * Typical use:
+ *
+ * a) Initialise a dm_disk_bitset structure with dm_disk_bitset_init().
+ * This describes the bitset and includes the cache. It's not called it
+ * dm_bitset_info in line with other data structures because it does
+ * include instance data.
+ *
+ * b) Get yourself a root. The root is the index of a block of data on the
+ * disk that holds a particular instance of an bitset. You may have a
+ * pre existing root in your metadata that you wish to use, or you may
+ * want to create a brand new, empty bitset with dm_bitset_empty().
+ *
+ * Like the other data structures in this library, dm_bitset objects are
+ * immutable between transactions. Update functions will return you the
+ * root for a _new_ array. If you've incremented the old root, via
+ * dm_tm_inc(), before calling the update function you may continue to use
+ * it in parallel with the new root.
+ *
+ * Even read operations may trigger the cache to be flushed and as such
+ * return a root for a new, updated bitset.
+ *
+ * c) resize a bitset with dm_bitset_resize().
+ *
+ * d) Set a bit with dm_bitset_set_bit().
+ *
+ * e) Clear a bit with dm_bitset_clear_bit().
+ *
+ * f) Test a bit with dm_bitset_test_bit().
+ *
+ * g) Flush all updates from the cache with dm_bitset_flush().
+ *
+ * h) Destroy the bitset with dm_bitset_del(). This tells the transaction
+ * manager that you're no longer using this data structure so it can
+ * recycle it's blocks. (dm_bitset_dec() would be a better name for it,
+ * but del is in keeping with dm_btree_del()).
+ */
+
+/*
+ * Opaque object. Unlike dm_array_info, you should have one of these per
+ * bitset. Initialise with dm_disk_bitset_init().
+ */
+struct dm_disk_bitset {
+ struct dm_array_info array_info;
+
+ uint32_t current_index;
+ uint64_t current_bits;
+
+ bool current_index_set:1;
+ bool dirty:1;
+};
+
+/*
+ * Sets up a dm_disk_bitset structure. You don't need to do anything with
+ * this structure when you finish using it.
+ *
+ * tm - the transaction manager that should supervise this structure
+ * info - the structure being initialised
+ */
+void dm_disk_bitset_init(struct dm_transaction_manager *tm,
+ struct dm_disk_bitset *info);
+
+/*
+ * Create an empty, zero length bitset.
+ *
+ * info - describes the bitset
+ * new_root - on success, points to the new root block
+ */
+int dm_bitset_empty(struct dm_disk_bitset *info, dm_block_t *new_root);
+
+/*
+ * Creates a new bitset populated with values provided by a callback
+ * function. This is more efficient than creating an empty bitset,
+ * resizing, and then setting values since that process incurs a lot of
+ * copying.
+ *
+ * info - describes the array
+ * root - the root block of the array on disk
+ * size - the number of entries in the array
+ * fn - the callback
+ * context - passed to the callback
+ */
+typedef int (*bit_value_fn)(uint32_t index, bool *value, void *context);
+int dm_bitset_new(struct dm_disk_bitset *info, dm_block_t *root,
+ uint32_t size, bit_value_fn fn, void *context);
+
+/*
+ * Resize the bitset.
+ *
+ * info - describes the bitset
+ * old_root - the root block of the array on disk
+ * old_nr_entries - the number of bits in the old bitset
+ * new_nr_entries - the number of bits you want in the new bitset
+ * default_value - the value for any new bits
+ * new_root - on success, points to the new root block
+ */
+int dm_bitset_resize(struct dm_disk_bitset *info, dm_block_t old_root,
+ uint32_t old_nr_entries, uint32_t new_nr_entries,
+ bool default_value, dm_block_t *new_root);
+
+/*
+ * Frees the bitset.
+ */
+int dm_bitset_del(struct dm_disk_bitset *info, dm_block_t root);
+
+/*
+ * Set a bit.
+ *
+ * info - describes the bitset
+ * root - the root block of the bitset
+ * index - the bit index
+ * new_root - on success, points to the new root block
+ *
+ * -ENODATA will be returned if the index is out of bounds.
+ */
+int dm_bitset_set_bit(struct dm_disk_bitset *info, dm_block_t root,
+ uint32_t index, dm_block_t *new_root);
+
+/*
+ * Clears a bit.
+ *
+ * info - describes the bitset
+ * root - the root block of the bitset
+ * index - the bit index
+ * new_root - on success, points to the new root block
+ *
+ * -ENODATA will be returned if the index is out of bounds.
+ */
+int dm_bitset_clear_bit(struct dm_disk_bitset *info, dm_block_t root,
+ uint32_t index, dm_block_t *new_root);
+
+/*
+ * Tests a bit.
+ *
+ * info - describes the bitset
+ * root - the root block of the bitset
+ * index - the bit index
+ * new_root - on success, points to the new root block (cached values may have been written)
+ * result - the bit value you're after
+ *
+ * -ENODATA will be returned if the index is out of bounds.
+ */
+int dm_bitset_test_bit(struct dm_disk_bitset *info, dm_block_t root,
+ uint32_t index, dm_block_t *new_root, bool *result);
+
+/*
+ * Flush any cached changes to disk.
+ *
+ * info - describes the bitset
+ * root - the root block of the bitset
+ * new_root - on success, points to the new root block
+ */
+int dm_bitset_flush(struct dm_disk_bitset *info, dm_block_t root,
+ dm_block_t *new_root);
+
+struct dm_bitset_cursor {
+ struct dm_disk_bitset *info;
+ struct dm_array_cursor cursor;
+
+ uint32_t entries_remaining;
+ uint32_t array_index;
+ uint32_t bit_index;
+ uint64_t current_bits;
+};
+
+/*
+ * Make sure you've flush any dm_disk_bitset and updated the root before
+ * using this.
+ */
+int dm_bitset_cursor_begin(struct dm_disk_bitset *info,
+ dm_block_t root, uint32_t nr_entries,
+ struct dm_bitset_cursor *c);
+void dm_bitset_cursor_end(struct dm_bitset_cursor *c);
+
+int dm_bitset_cursor_next(struct dm_bitset_cursor *c);
+int dm_bitset_cursor_skip(struct dm_bitset_cursor *c, uint32_t count);
+bool dm_bitset_cursor_get_value(struct dm_bitset_cursor *c);
+
+/*----------------------------------------------------------------*/
+
+#endif /* _LINUX_DM_BITSET_H */
diff --git a/drivers/md/persistent-data/dm-block-manager.c b/drivers/md/persistent-data/dm-block-manager.c
new file mode 100644
index 000000000..2bbfbb704
--- /dev/null
+++ b/drivers/md/persistent-data/dm-block-manager.c
@@ -0,0 +1,656 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+#include "dm-block-manager.h"
+#include "dm-persistent-data-internal.h"
+
+#include <linux/dm-bufio.h>
+#include <linux/crc32c.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/rwsem.h>
+#include <linux/device-mapper.h>
+#include <linux/stacktrace.h>
+#include <linux/sched/task.h>
+
+#define DM_MSG_PREFIX "block manager"
+
+/*----------------------------------------------------------------*/
+
+#ifdef CONFIG_DM_DEBUG_BLOCK_MANAGER_LOCKING
+
+/*
+ * This is a read/write semaphore with a couple of differences.
+ *
+ * i) There is a restriction on the number of concurrent read locks that
+ * may be held at once. This is just an implementation detail.
+ *
+ * ii) Recursive locking attempts are detected and return EINVAL. A stack
+ * trace is also emitted for the previous lock acquisition.
+ *
+ * iii) Priority is given to write locks.
+ */
+#define MAX_HOLDERS 4
+#define MAX_STACK 10
+
+struct stack_store {
+ unsigned int nr_entries;
+ unsigned long entries[MAX_STACK];
+};
+
+struct block_lock {
+ spinlock_t lock;
+ __s32 count;
+ struct list_head waiters;
+ struct task_struct *holders[MAX_HOLDERS];
+
+#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
+ struct stack_store traces[MAX_HOLDERS];
+#endif
+};
+
+struct waiter {
+ struct list_head list;
+ struct task_struct *task;
+ int wants_write;
+};
+
+static unsigned int __find_holder(struct block_lock *lock,
+ struct task_struct *task)
+{
+ unsigned int i;
+
+ for (i = 0; i < MAX_HOLDERS; i++)
+ if (lock->holders[i] == task)
+ break;
+
+ BUG_ON(i == MAX_HOLDERS);
+ return i;
+}
+
+/* call this *after* you increment lock->count */
+static void __add_holder(struct block_lock *lock, struct task_struct *task)
+{
+ unsigned int h = __find_holder(lock, NULL);
+#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
+ struct stack_store *t;
+#endif
+
+ get_task_struct(task);
+ lock->holders[h] = task;
+
+#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
+ t = lock->traces + h;
+ t->nr_entries = stack_trace_save(t->entries, MAX_STACK, 2);
+#endif
+}
+
+/* call this *before* you decrement lock->count */
+static void __del_holder(struct block_lock *lock, struct task_struct *task)
+{
+ unsigned int h = __find_holder(lock, task);
+ lock->holders[h] = NULL;
+ put_task_struct(task);
+}
+
+static int __check_holder(struct block_lock *lock)
+{
+ unsigned int i;
+
+ for (i = 0; i < MAX_HOLDERS; i++) {
+ if (lock->holders[i] == current) {
+ DMERR("recursive lock detected in metadata");
+#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
+ DMERR("previously held here:");
+ stack_trace_print(lock->traces[i].entries,
+ lock->traces[i].nr_entries, 4);
+
+ DMERR("subsequent acquisition attempted here:");
+ dump_stack();
+#endif
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+static void __wait(struct waiter *w)
+{
+ for (;;) {
+ set_current_state(TASK_UNINTERRUPTIBLE);
+
+ if (!w->task)
+ break;
+
+ schedule();
+ }
+
+ set_current_state(TASK_RUNNING);
+}
+
+static void __wake_waiter(struct waiter *w)
+{
+ struct task_struct *task;
+
+ list_del(&w->list);
+ task = w->task;
+ smp_mb();
+ w->task = NULL;
+ wake_up_process(task);
+}
+
+/*
+ * We either wake a few readers or a single writer.
+ */
+static void __wake_many(struct block_lock *lock)
+{
+ struct waiter *w, *tmp;
+
+ BUG_ON(lock->count < 0);
+ list_for_each_entry_safe(w, tmp, &lock->waiters, list) {
+ if (lock->count >= MAX_HOLDERS)
+ return;
+
+ if (w->wants_write) {
+ if (lock->count > 0)
+ return; /* still read locked */
+
+ lock->count = -1;
+ __add_holder(lock, w->task);
+ __wake_waiter(w);
+ return;
+ }
+
+ lock->count++;
+ __add_holder(lock, w->task);
+ __wake_waiter(w);
+ }
+}
+
+static void bl_init(struct block_lock *lock)
+{
+ int i;
+
+ spin_lock_init(&lock->lock);
+ lock->count = 0;
+ INIT_LIST_HEAD(&lock->waiters);
+ for (i = 0; i < MAX_HOLDERS; i++)
+ lock->holders[i] = NULL;
+}
+
+static int __available_for_read(struct block_lock *lock)
+{
+ return lock->count >= 0 &&
+ lock->count < MAX_HOLDERS &&
+ list_empty(&lock->waiters);
+}
+
+static int bl_down_read(struct block_lock *lock)
+{
+ int r;
+ struct waiter w;
+
+ spin_lock(&lock->lock);
+ r = __check_holder(lock);
+ if (r) {
+ spin_unlock(&lock->lock);
+ return r;
+ }
+
+ if (__available_for_read(lock)) {
+ lock->count++;
+ __add_holder(lock, current);
+ spin_unlock(&lock->lock);
+ return 0;
+ }
+
+ get_task_struct(current);
+
+ w.task = current;
+ w.wants_write = 0;
+ list_add_tail(&w.list, &lock->waiters);
+ spin_unlock(&lock->lock);
+
+ __wait(&w);
+ put_task_struct(current);
+ return 0;
+}
+
+static int bl_down_read_nonblock(struct block_lock *lock)
+{
+ int r;
+
+ spin_lock(&lock->lock);
+ r = __check_holder(lock);
+ if (r)
+ goto out;
+
+ if (__available_for_read(lock)) {
+ lock->count++;
+ __add_holder(lock, current);
+ r = 0;
+ } else
+ r = -EWOULDBLOCK;
+
+out:
+ spin_unlock(&lock->lock);
+ return r;
+}
+
+static void bl_up_read(struct block_lock *lock)
+{
+ spin_lock(&lock->lock);
+ BUG_ON(lock->count <= 0);
+ __del_holder(lock, current);
+ --lock->count;
+ if (!list_empty(&lock->waiters))
+ __wake_many(lock);
+ spin_unlock(&lock->lock);
+}
+
+static int bl_down_write(struct block_lock *lock)
+{
+ int r;
+ struct waiter w;
+
+ spin_lock(&lock->lock);
+ r = __check_holder(lock);
+ if (r) {
+ spin_unlock(&lock->lock);
+ return r;
+ }
+
+ if (lock->count == 0 && list_empty(&lock->waiters)) {
+ lock->count = -1;
+ __add_holder(lock, current);
+ spin_unlock(&lock->lock);
+ return 0;
+ }
+
+ get_task_struct(current);
+ w.task = current;
+ w.wants_write = 1;
+
+ /*
+ * Writers given priority. We know there's only one mutator in the
+ * system, so ignoring the ordering reversal.
+ */
+ list_add(&w.list, &lock->waiters);
+ spin_unlock(&lock->lock);
+
+ __wait(&w);
+ put_task_struct(current);
+
+ return 0;
+}
+
+static void bl_up_write(struct block_lock *lock)
+{
+ spin_lock(&lock->lock);
+ __del_holder(lock, current);
+ lock->count = 0;
+ if (!list_empty(&lock->waiters))
+ __wake_many(lock);
+ spin_unlock(&lock->lock);
+}
+
+static void report_recursive_bug(dm_block_t b, int r)
+{
+ if (r == -EINVAL)
+ DMERR("recursive acquisition of block %llu requested.",
+ (unsigned long long) b);
+}
+
+#else /* !CONFIG_DM_DEBUG_BLOCK_MANAGER_LOCKING */
+
+#define bl_init(x) do { } while (0)
+#define bl_down_read(x) 0
+#define bl_down_read_nonblock(x) 0
+#define bl_up_read(x) do { } while (0)
+#define bl_down_write(x) 0
+#define bl_up_write(x) do { } while (0)
+#define report_recursive_bug(x, y) do { } while (0)
+
+#endif /* CONFIG_DM_DEBUG_BLOCK_MANAGER_LOCKING */
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Block manager is currently implemented using dm-bufio. struct
+ * dm_block_manager and struct dm_block map directly onto a couple of
+ * structs in the bufio interface. I want to retain the freedom to move
+ * away from bufio in the future. So these structs are just cast within
+ * this .c file, rather than making it through to the public interface.
+ */
+static struct dm_buffer *to_buffer(struct dm_block *b)
+{
+ return (struct dm_buffer *) b;
+}
+
+dm_block_t dm_block_location(struct dm_block *b)
+{
+ return dm_bufio_get_block_number(to_buffer(b));
+}
+EXPORT_SYMBOL_GPL(dm_block_location);
+
+void *dm_block_data(struct dm_block *b)
+{
+ return dm_bufio_get_block_data(to_buffer(b));
+}
+EXPORT_SYMBOL_GPL(dm_block_data);
+
+struct buffer_aux {
+ struct dm_block_validator *validator;
+ int write_locked;
+
+#ifdef CONFIG_DM_DEBUG_BLOCK_MANAGER_LOCKING
+ struct block_lock lock;
+#endif
+};
+
+static void dm_block_manager_alloc_callback(struct dm_buffer *buf)
+{
+ struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
+ aux->validator = NULL;
+ bl_init(&aux->lock);
+}
+
+static void dm_block_manager_write_callback(struct dm_buffer *buf)
+{
+ struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
+ if (aux->validator) {
+ aux->validator->prepare_for_write(aux->validator, (struct dm_block *) buf,
+ dm_bufio_get_block_size(dm_bufio_get_client(buf)));
+ }
+}
+
+/*----------------------------------------------------------------
+ * Public interface
+ *--------------------------------------------------------------*/
+struct dm_block_manager {
+ struct dm_bufio_client *bufio;
+ bool read_only:1;
+};
+
+struct dm_block_manager *dm_block_manager_create(struct block_device *bdev,
+ unsigned int block_size,
+ unsigned int max_held_per_thread)
+{
+ int r;
+ struct dm_block_manager *bm;
+
+ bm = kmalloc(sizeof(*bm), GFP_KERNEL);
+ if (!bm) {
+ r = -ENOMEM;
+ goto bad;
+ }
+
+ bm->bufio = dm_bufio_client_create(bdev, block_size, max_held_per_thread,
+ sizeof(struct buffer_aux),
+ dm_block_manager_alloc_callback,
+ dm_block_manager_write_callback,
+ 0);
+ if (IS_ERR(bm->bufio)) {
+ r = PTR_ERR(bm->bufio);
+ kfree(bm);
+ goto bad;
+ }
+
+ bm->read_only = false;
+
+ return bm;
+
+bad:
+ return ERR_PTR(r);
+}
+EXPORT_SYMBOL_GPL(dm_block_manager_create);
+
+void dm_block_manager_destroy(struct dm_block_manager *bm)
+{
+ dm_bufio_client_destroy(bm->bufio);
+ kfree(bm);
+}
+EXPORT_SYMBOL_GPL(dm_block_manager_destroy);
+
+void dm_block_manager_reset(struct dm_block_manager *bm)
+{
+ dm_bufio_client_reset(bm->bufio);
+}
+EXPORT_SYMBOL_GPL(dm_block_manager_reset);
+
+unsigned int dm_bm_block_size(struct dm_block_manager *bm)
+{
+ return dm_bufio_get_block_size(bm->bufio);
+}
+EXPORT_SYMBOL_GPL(dm_bm_block_size);
+
+dm_block_t dm_bm_nr_blocks(struct dm_block_manager *bm)
+{
+ return dm_bufio_get_device_size(bm->bufio);
+}
+
+static int dm_bm_validate_buffer(struct dm_block_manager *bm,
+ struct dm_buffer *buf,
+ struct buffer_aux *aux,
+ struct dm_block_validator *v)
+{
+ if (unlikely(!aux->validator)) {
+ int r;
+ if (!v)
+ return 0;
+ r = v->check(v, (struct dm_block *) buf, dm_bufio_get_block_size(bm->bufio));
+ if (unlikely(r)) {
+ DMERR_LIMIT("%s validator check failed for block %llu", v->name,
+ (unsigned long long) dm_bufio_get_block_number(buf));
+ return r;
+ }
+ aux->validator = v;
+ } else {
+ if (unlikely(aux->validator != v)) {
+ DMERR_LIMIT("validator mismatch (old=%s vs new=%s) for block %llu",
+ aux->validator->name, v ? v->name : "NULL",
+ (unsigned long long) dm_bufio_get_block_number(buf));
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+int dm_bm_read_lock(struct dm_block_manager *bm, dm_block_t b,
+ struct dm_block_validator *v,
+ struct dm_block **result)
+{
+ struct buffer_aux *aux;
+ void *p;
+ int r;
+
+ p = dm_bufio_read(bm->bufio, b, (struct dm_buffer **) result);
+ if (IS_ERR(p))
+ return PTR_ERR(p);
+
+ aux = dm_bufio_get_aux_data(to_buffer(*result));
+ r = bl_down_read(&aux->lock);
+ if (unlikely(r)) {
+ dm_bufio_release(to_buffer(*result));
+ report_recursive_bug(b, r);
+ return r;
+ }
+
+ aux->write_locked = 0;
+
+ r = dm_bm_validate_buffer(bm, to_buffer(*result), aux, v);
+ if (unlikely(r)) {
+ bl_up_read(&aux->lock);
+ dm_bufio_release(to_buffer(*result));
+ return r;
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(dm_bm_read_lock);
+
+int dm_bm_write_lock(struct dm_block_manager *bm,
+ dm_block_t b, struct dm_block_validator *v,
+ struct dm_block **result)
+{
+ struct buffer_aux *aux;
+ void *p;
+ int r;
+
+ if (dm_bm_is_read_only(bm))
+ return -EPERM;
+
+ p = dm_bufio_read(bm->bufio, b, (struct dm_buffer **) result);
+ if (IS_ERR(p))
+ return PTR_ERR(p);
+
+ aux = dm_bufio_get_aux_data(to_buffer(*result));
+ r = bl_down_write(&aux->lock);
+ if (r) {
+ dm_bufio_release(to_buffer(*result));
+ report_recursive_bug(b, r);
+ return r;
+ }
+
+ aux->write_locked = 1;
+
+ r = dm_bm_validate_buffer(bm, to_buffer(*result), aux, v);
+ if (unlikely(r)) {
+ bl_up_write(&aux->lock);
+ dm_bufio_release(to_buffer(*result));
+ return r;
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(dm_bm_write_lock);
+
+int dm_bm_read_try_lock(struct dm_block_manager *bm,
+ dm_block_t b, struct dm_block_validator *v,
+ struct dm_block **result)
+{
+ struct buffer_aux *aux;
+ void *p;
+ int r;
+
+ p = dm_bufio_get(bm->bufio, b, (struct dm_buffer **) result);
+ if (IS_ERR(p))
+ return PTR_ERR(p);
+ if (unlikely(!p))
+ return -EWOULDBLOCK;
+
+ aux = dm_bufio_get_aux_data(to_buffer(*result));
+ r = bl_down_read_nonblock(&aux->lock);
+ if (r < 0) {
+ dm_bufio_release(to_buffer(*result));
+ report_recursive_bug(b, r);
+ return r;
+ }
+ aux->write_locked = 0;
+
+ r = dm_bm_validate_buffer(bm, to_buffer(*result), aux, v);
+ if (unlikely(r)) {
+ bl_up_read(&aux->lock);
+ dm_bufio_release(to_buffer(*result));
+ return r;
+ }
+
+ return 0;
+}
+
+int dm_bm_write_lock_zero(struct dm_block_manager *bm,
+ dm_block_t b, struct dm_block_validator *v,
+ struct dm_block **result)
+{
+ int r;
+ struct buffer_aux *aux;
+ void *p;
+
+ if (dm_bm_is_read_only(bm))
+ return -EPERM;
+
+ p = dm_bufio_new(bm->bufio, b, (struct dm_buffer **) result);
+ if (IS_ERR(p))
+ return PTR_ERR(p);
+
+ memset(p, 0, dm_bm_block_size(bm));
+
+ aux = dm_bufio_get_aux_data(to_buffer(*result));
+ r = bl_down_write(&aux->lock);
+ if (r) {
+ dm_bufio_release(to_buffer(*result));
+ return r;
+ }
+
+ aux->write_locked = 1;
+ aux->validator = v;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(dm_bm_write_lock_zero);
+
+void dm_bm_unlock(struct dm_block *b)
+{
+ struct buffer_aux *aux;
+ aux = dm_bufio_get_aux_data(to_buffer(b));
+
+ if (aux->write_locked) {
+ dm_bufio_mark_buffer_dirty(to_buffer(b));
+ bl_up_write(&aux->lock);
+ } else
+ bl_up_read(&aux->lock);
+
+ dm_bufio_release(to_buffer(b));
+}
+EXPORT_SYMBOL_GPL(dm_bm_unlock);
+
+int dm_bm_flush(struct dm_block_manager *bm)
+{
+ if (dm_bm_is_read_only(bm))
+ return -EPERM;
+
+ return dm_bufio_write_dirty_buffers(bm->bufio);
+}
+EXPORT_SYMBOL_GPL(dm_bm_flush);
+
+void dm_bm_prefetch(struct dm_block_manager *bm, dm_block_t b)
+{
+ dm_bufio_prefetch(bm->bufio, b, 1);
+}
+
+bool dm_bm_is_read_only(struct dm_block_manager *bm)
+{
+ return (bm ? bm->read_only : true);
+}
+EXPORT_SYMBOL_GPL(dm_bm_is_read_only);
+
+void dm_bm_set_read_only(struct dm_block_manager *bm)
+{
+ if (bm)
+ bm->read_only = true;
+}
+EXPORT_SYMBOL_GPL(dm_bm_set_read_only);
+
+void dm_bm_set_read_write(struct dm_block_manager *bm)
+{
+ if (bm)
+ bm->read_only = false;
+}
+EXPORT_SYMBOL_GPL(dm_bm_set_read_write);
+
+u32 dm_bm_checksum(const void *data, size_t len, u32 init_xor)
+{
+ return crc32c(~(u32) 0, data, len) ^ init_xor;
+}
+EXPORT_SYMBOL_GPL(dm_bm_checksum);
+
+/*----------------------------------------------------------------*/
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
+MODULE_DESCRIPTION("Immutable metadata library for dm");
+
+/*----------------------------------------------------------------*/
diff --git a/drivers/md/persistent-data/dm-block-manager.h b/drivers/md/persistent-data/dm-block-manager.h
new file mode 100644
index 000000000..4371d85d3
--- /dev/null
+++ b/drivers/md/persistent-data/dm-block-manager.h
@@ -0,0 +1,135 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef _LINUX_DM_BLOCK_MANAGER_H
+#define _LINUX_DM_BLOCK_MANAGER_H
+
+#include <linux/types.h>
+#include <linux/blkdev.h>
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Block number.
+ */
+typedef uint64_t dm_block_t;
+struct dm_block;
+
+dm_block_t dm_block_location(struct dm_block *b);
+void *dm_block_data(struct dm_block *b);
+
+/*----------------------------------------------------------------*/
+
+/*
+ * @name should be a unique identifier for the block manager, no longer
+ * than 32 chars.
+ *
+ * @max_held_per_thread should be the maximum number of locks, read or
+ * write, that an individual thread holds at any one time.
+ */
+struct dm_block_manager;
+struct dm_block_manager *dm_block_manager_create(
+ struct block_device *bdev, unsigned int block_size,
+ unsigned int max_held_per_thread);
+void dm_block_manager_destroy(struct dm_block_manager *bm);
+void dm_block_manager_reset(struct dm_block_manager *bm);
+
+unsigned int dm_bm_block_size(struct dm_block_manager *bm);
+dm_block_t dm_bm_nr_blocks(struct dm_block_manager *bm);
+
+/*----------------------------------------------------------------*/
+
+/*
+ * The validator allows the caller to verify newly-read data and modify
+ * the data just before writing, e.g. to calculate checksums. It's
+ * important to be consistent with your use of validators. The only time
+ * you can change validators is if you call dm_bm_write_lock_zero.
+ */
+struct dm_block_validator {
+ const char *name;
+ void (*prepare_for_write)(struct dm_block_validator *v, struct dm_block *b, size_t block_size);
+
+ /*
+ * Return 0 if the checksum is valid or < 0 on error.
+ */
+ int (*check)(struct dm_block_validator *v, struct dm_block *b, size_t block_size);
+};
+
+/*----------------------------------------------------------------*/
+
+/*
+ * You can have multiple concurrent readers or a single writer holding a
+ * block lock.
+ */
+
+/*
+ * dm_bm_lock() locks a block and returns through @result a pointer to
+ * memory that holds a copy of that block. If you have write-locked the
+ * block then any changes you make to memory pointed to by @result will be
+ * written back to the disk sometime after dm_bm_unlock is called.
+ */
+int dm_bm_read_lock(struct dm_block_manager *bm, dm_block_t b,
+ struct dm_block_validator *v,
+ struct dm_block **result);
+
+int dm_bm_write_lock(struct dm_block_manager *bm, dm_block_t b,
+ struct dm_block_validator *v,
+ struct dm_block **result);
+
+/*
+ * The *_try_lock variants return -EWOULDBLOCK if the block isn't
+ * available immediately.
+ */
+int dm_bm_read_try_lock(struct dm_block_manager *bm, dm_block_t b,
+ struct dm_block_validator *v,
+ struct dm_block **result);
+
+/*
+ * Use dm_bm_write_lock_zero() when you know you're going to
+ * overwrite the block completely. It saves a disk read.
+ */
+int dm_bm_write_lock_zero(struct dm_block_manager *bm, dm_block_t b,
+ struct dm_block_validator *v,
+ struct dm_block **result);
+
+void dm_bm_unlock(struct dm_block *b);
+
+/*
+ * It's a common idiom to have a superblock that should be committed last.
+ *
+ * @superblock should be write-locked on entry. It will be unlocked during
+ * this function. All dirty blocks are guaranteed to be written and flushed
+ * before the superblock.
+ *
+ * This method always blocks.
+ */
+int dm_bm_flush(struct dm_block_manager *bm);
+
+/*
+ * Request data is prefetched into the cache.
+ */
+void dm_bm_prefetch(struct dm_block_manager *bm, dm_block_t b);
+
+/*
+ * Switches the bm to a read only mode. Once read-only mode
+ * has been entered the following functions will return -EPERM.
+ *
+ * dm_bm_write_lock
+ * dm_bm_write_lock_zero
+ * dm_bm_flush_and_unlock
+ *
+ * Additionally you should not use dm_bm_unlock_move, however no error will
+ * be returned if you do.
+ */
+bool dm_bm_is_read_only(struct dm_block_manager *bm);
+void dm_bm_set_read_only(struct dm_block_manager *bm);
+void dm_bm_set_read_write(struct dm_block_manager *bm);
+
+u32 dm_bm_checksum(const void *data, size_t len, u32 init_xor);
+
+/*----------------------------------------------------------------*/
+
+#endif /* _LINUX_DM_BLOCK_MANAGER_H */
diff --git a/drivers/md/persistent-data/dm-btree-internal.h b/drivers/md/persistent-data/dm-btree-internal.h
new file mode 100644
index 000000000..893edb426
--- /dev/null
+++ b/drivers/md/persistent-data/dm-btree-internal.h
@@ -0,0 +1,160 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_BTREE_INTERNAL_H
+#define DM_BTREE_INTERNAL_H
+
+#include "dm-btree.h"
+
+/*----------------------------------------------------------------*/
+
+/*
+ * We'll need 2 accessor functions for n->csum and n->blocknr
+ * to support dm-btree-spine.c in that case.
+ */
+
+enum node_flags {
+ INTERNAL_NODE = 1,
+ LEAF_NODE = 1 << 1
+};
+
+/*
+ * Every btree node begins with this structure. Make sure it's a multiple
+ * of 8-bytes in size, otherwise the 64bit keys will be mis-aligned.
+ */
+struct node_header {
+ __le32 csum;
+ __le32 flags;
+ __le64 blocknr; /* Block this node is supposed to live in. */
+
+ __le32 nr_entries;
+ __le32 max_entries;
+ __le32 value_size;
+ __le32 padding;
+} __attribute__((packed, aligned(8)));
+
+struct btree_node {
+ struct node_header header;
+ __le64 keys[];
+} __attribute__((packed, aligned(8)));
+
+
+/*
+ * Locks a block using the btree node validator.
+ */
+int bn_read_lock(struct dm_btree_info *info, dm_block_t b,
+ struct dm_block **result);
+
+void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
+ struct dm_btree_value_type *vt);
+
+int new_block(struct dm_btree_info *info, struct dm_block **result);
+void unlock_block(struct dm_btree_info *info, struct dm_block *b);
+
+/*
+ * Spines keep track of the rolling locks. There are 2 variants, read-only
+ * and one that uses shadowing. These are separate structs to allow the
+ * type checker to spot misuse, for example accidentally calling read_lock
+ * on a shadow spine.
+ */
+struct ro_spine {
+ struct dm_btree_info *info;
+
+ int count;
+ struct dm_block *nodes[2];
+};
+
+void init_ro_spine(struct ro_spine *s, struct dm_btree_info *info);
+void exit_ro_spine(struct ro_spine *s);
+int ro_step(struct ro_spine *s, dm_block_t new_child);
+void ro_pop(struct ro_spine *s);
+struct btree_node *ro_node(struct ro_spine *s);
+
+struct shadow_spine {
+ struct dm_btree_info *info;
+
+ int count;
+ struct dm_block *nodes[2];
+
+ dm_block_t root;
+};
+
+void init_shadow_spine(struct shadow_spine *s, struct dm_btree_info *info);
+void exit_shadow_spine(struct shadow_spine *s);
+
+int shadow_step(struct shadow_spine *s, dm_block_t b,
+ struct dm_btree_value_type *vt);
+
+/*
+ * The spine must have at least one entry before calling this.
+ */
+struct dm_block *shadow_current(struct shadow_spine *s);
+
+/*
+ * The spine must have at least two entries before calling this.
+ */
+struct dm_block *shadow_parent(struct shadow_spine *s);
+
+int shadow_has_parent(struct shadow_spine *s);
+
+dm_block_t shadow_root(struct shadow_spine *s);
+
+/*
+ * Some inlines.
+ */
+static inline __le64 *key_ptr(struct btree_node *n, uint32_t index)
+{
+ return n->keys + index;
+}
+
+static inline void *value_base(struct btree_node *n)
+{
+ return &n->keys[le32_to_cpu(n->header.max_entries)];
+}
+
+static inline void *value_ptr(struct btree_node *n, uint32_t index)
+{
+ uint32_t value_size = le32_to_cpu(n->header.value_size);
+ return value_base(n) + (value_size * index);
+}
+
+/*
+ * Assumes the values are suitably-aligned and converts to core format.
+ */
+static inline uint64_t value64(struct btree_node *n, uint32_t index)
+{
+ __le64 *values_le = value_base(n);
+
+ return le64_to_cpu(values_le[index]);
+}
+
+/*
+ * Searching for a key within a single node.
+ */
+int lower_bound(struct btree_node *n, uint64_t key);
+
+extern struct dm_block_validator btree_node_validator;
+
+/*
+ * Value type for upper levels of multi-level btrees.
+ */
+extern void init_le64_type(struct dm_transaction_manager *tm,
+ struct dm_btree_value_type *vt);
+
+/*
+ * This returns a shadowed btree leaf that you may modify. In practise
+ * this means overwrites only, since an insert could cause a node to
+ * be split. Useful if you need access to the old value to calculate the
+ * new one.
+ *
+ * This only works with single level btrees. The given key must be present in
+ * the tree, otherwise -EINVAL will be returned.
+ */
+int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root,
+ uint64_t key, int *index,
+ dm_block_t *new_root, struct dm_block **leaf);
+
+#endif /* DM_BTREE_INTERNAL_H */
diff --git a/drivers/md/persistent-data/dm-btree-remove.c b/drivers/md/persistent-data/dm-btree-remove.c
new file mode 100644
index 000000000..ac213138b
--- /dev/null
+++ b/drivers/md/persistent-data/dm-btree-remove.c
@@ -0,0 +1,759 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-btree.h"
+#include "dm-btree-internal.h"
+#include "dm-transaction-manager.h"
+
+#include <linux/export.h>
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "btree"
+
+/*
+ * Removing an entry from a btree
+ * ==============================
+ *
+ * A very important constraint for our btree is that no node, except the
+ * root, may have fewer than a certain number of entries.
+ * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
+ *
+ * Ensuring this is complicated by the way we want to only ever hold the
+ * locks on 2 nodes concurrently, and only change nodes in a top to bottom
+ * fashion.
+ *
+ * Each node may have a left or right sibling. When decending the spine,
+ * if a node contains only MIN_ENTRIES then we try and increase this to at
+ * least MIN_ENTRIES + 1. We do this in the following ways:
+ *
+ * [A] No siblings => this can only happen if the node is the root, in which
+ * case we copy the childs contents over the root.
+ *
+ * [B] No left sibling
+ * ==> rebalance(node, right sibling)
+ *
+ * [C] No right sibling
+ * ==> rebalance(left sibling, node)
+ *
+ * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
+ * ==> delete node adding it's contents to left and right
+ *
+ * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
+ * ==> rebalance(left, node, right)
+ *
+ * After these operations it's possible that the our original node no
+ * longer contains the desired sub tree. For this reason this rebalancing
+ * is performed on the children of the current node. This also avoids
+ * having a special case for the root.
+ *
+ * Once this rebalancing has occurred we can then step into the child node
+ * for internal nodes. Or delete the entry for leaf nodes.
+ */
+
+/*
+ * Some little utilities for moving node data around.
+ */
+static void node_shift(struct btree_node *n, int shift)
+{
+ uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
+ uint32_t value_size = le32_to_cpu(n->header.value_size);
+
+ if (shift < 0) {
+ shift = -shift;
+ BUG_ON(shift > nr_entries);
+ BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift));
+ memmove(key_ptr(n, 0),
+ key_ptr(n, shift),
+ (nr_entries - shift) * sizeof(__le64));
+ memmove(value_ptr(n, 0),
+ value_ptr(n, shift),
+ (nr_entries - shift) * value_size);
+ } else {
+ BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
+ memmove(key_ptr(n, shift),
+ key_ptr(n, 0),
+ nr_entries * sizeof(__le64));
+ memmove(value_ptr(n, shift),
+ value_ptr(n, 0),
+ nr_entries * value_size);
+ }
+}
+
+static int node_copy(struct btree_node *left, struct btree_node *right, int shift)
+{
+ uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
+ uint32_t value_size = le32_to_cpu(left->header.value_size);
+ if (value_size != le32_to_cpu(right->header.value_size)) {
+ DMERR("mismatched value size");
+ return -EILSEQ;
+ }
+
+ if (shift < 0) {
+ shift = -shift;
+
+ if (nr_left + shift > le32_to_cpu(left->header.max_entries)) {
+ DMERR("bad shift");
+ return -EINVAL;
+ }
+
+ memcpy(key_ptr(left, nr_left),
+ key_ptr(right, 0),
+ shift * sizeof(__le64));
+ memcpy(value_ptr(left, nr_left),
+ value_ptr(right, 0),
+ shift * value_size);
+ } else {
+ if (shift > le32_to_cpu(right->header.max_entries)) {
+ DMERR("bad shift");
+ return -EINVAL;
+ }
+
+ memcpy(key_ptr(right, 0),
+ key_ptr(left, nr_left - shift),
+ shift * sizeof(__le64));
+ memcpy(value_ptr(right, 0),
+ value_ptr(left, nr_left - shift),
+ shift * value_size);
+ }
+ return 0;
+}
+
+/*
+ * Delete a specific entry from a leaf node.
+ */
+static void delete_at(struct btree_node *n, unsigned int index)
+{
+ unsigned int nr_entries = le32_to_cpu(n->header.nr_entries);
+ unsigned int nr_to_copy = nr_entries - (index + 1);
+ uint32_t value_size = le32_to_cpu(n->header.value_size);
+ BUG_ON(index >= nr_entries);
+
+ if (nr_to_copy) {
+ memmove(key_ptr(n, index),
+ key_ptr(n, index + 1),
+ nr_to_copy * sizeof(__le64));
+
+ memmove(value_ptr(n, index),
+ value_ptr(n, index + 1),
+ nr_to_copy * value_size);
+ }
+
+ n->header.nr_entries = cpu_to_le32(nr_entries - 1);
+}
+
+static unsigned int merge_threshold(struct btree_node *n)
+{
+ return le32_to_cpu(n->header.max_entries) / 3;
+}
+
+struct child {
+ unsigned int index;
+ struct dm_block *block;
+ struct btree_node *n;
+};
+
+static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
+ struct btree_node *parent,
+ unsigned int index, struct child *result)
+{
+ int r, inc;
+ dm_block_t root;
+
+ result->index = index;
+ root = value64(parent, index);
+
+ r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
+ &result->block, &inc);
+ if (r)
+ return r;
+
+ result->n = dm_block_data(result->block);
+
+ if (inc)
+ inc_children(info->tm, result->n, vt);
+
+ *((__le64 *) value_ptr(parent, index)) =
+ cpu_to_le64(dm_block_location(result->block));
+
+ return 0;
+}
+
+static void exit_child(struct dm_btree_info *info, struct child *c)
+{
+ dm_tm_unlock(info->tm, c->block);
+}
+
+static int shift(struct btree_node *left, struct btree_node *right, int count)
+{
+ int r;
+ uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
+ uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
+ uint32_t max_entries = le32_to_cpu(left->header.max_entries);
+ uint32_t r_max_entries = le32_to_cpu(right->header.max_entries);
+
+ if (max_entries != r_max_entries) {
+ DMERR("node max_entries mismatch");
+ return -EILSEQ;
+ }
+
+ if (nr_left - count > max_entries) {
+ DMERR("node shift out of bounds");
+ return -EINVAL;
+ }
+
+ if (nr_right + count > max_entries) {
+ DMERR("node shift out of bounds");
+ return -EINVAL;
+ }
+
+ if (!count)
+ return 0;
+
+ if (count > 0) {
+ node_shift(right, count);
+ r = node_copy(left, right, count);
+ if (r)
+ return r;
+ } else {
+ r = node_copy(left, right, count);
+ if (r)
+ return r;
+ node_shift(right, count);
+ }
+
+ left->header.nr_entries = cpu_to_le32(nr_left - count);
+ right->header.nr_entries = cpu_to_le32(nr_right + count);
+
+ return 0;
+}
+
+static int __rebalance2(struct dm_btree_info *info, struct btree_node *parent,
+ struct child *l, struct child *r)
+{
+ int ret;
+ struct btree_node *left = l->n;
+ struct btree_node *right = r->n;
+ uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
+ uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
+ /*
+ * Ensure the number of entries in each child will be greater
+ * than or equal to (max_entries / 3 + 1), so no matter which
+ * child is used for removal, the number will still be not
+ * less than (max_entries / 3).
+ */
+ unsigned int threshold = 2 * (merge_threshold(left) + 1);
+
+ if (nr_left + nr_right < threshold) {
+ /*
+ * Merge
+ */
+ node_copy(left, right, -nr_right);
+ left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
+ delete_at(parent, r->index);
+
+ /*
+ * We need to decrement the right block, but not it's
+ * children, since they're still referenced by left.
+ */
+ dm_tm_dec(info->tm, dm_block_location(r->block));
+ } else {
+ /*
+ * Rebalance.
+ */
+ unsigned int target_left = (nr_left + nr_right) / 2;
+ ret = shift(left, right, nr_left - target_left);
+ if (ret)
+ return ret;
+ *key_ptr(parent, r->index) = right->keys[0];
+ }
+ return 0;
+}
+
+static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
+ struct dm_btree_value_type *vt, unsigned int left_index)
+{
+ int r;
+ struct btree_node *parent;
+ struct child left, right;
+
+ parent = dm_block_data(shadow_current(s));
+
+ r = init_child(info, vt, parent, left_index, &left);
+ if (r)
+ return r;
+
+ r = init_child(info, vt, parent, left_index + 1, &right);
+ if (r) {
+ exit_child(info, &left);
+ return r;
+ }
+
+ r = __rebalance2(info, parent, &left, &right);
+
+ exit_child(info, &left);
+ exit_child(info, &right);
+
+ return r;
+}
+
+/*
+ * We dump as many entries from center as possible into left, then the rest
+ * in right, then rebalance2. This wastes some cpu, but I want something
+ * simple atm.
+ */
+static int delete_center_node(struct dm_btree_info *info, struct btree_node *parent,
+ struct child *l, struct child *c, struct child *r,
+ struct btree_node *left, struct btree_node *center, struct btree_node *right,
+ uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
+{
+ uint32_t max_entries = le32_to_cpu(left->header.max_entries);
+ unsigned int shift = min(max_entries - nr_left, nr_center);
+
+ if (nr_left + shift > max_entries) {
+ DMERR("node shift out of bounds");
+ return -EINVAL;
+ }
+
+ node_copy(left, center, -shift);
+ left->header.nr_entries = cpu_to_le32(nr_left + shift);
+
+ if (shift != nr_center) {
+ shift = nr_center - shift;
+
+ if ((nr_right + shift) > max_entries) {
+ DMERR("node shift out of bounds");
+ return -EINVAL;
+ }
+
+ node_shift(right, shift);
+ node_copy(center, right, shift);
+ right->header.nr_entries = cpu_to_le32(nr_right + shift);
+ }
+ *key_ptr(parent, r->index) = right->keys[0];
+
+ delete_at(parent, c->index);
+ r->index--;
+
+ dm_tm_dec(info->tm, dm_block_location(c->block));
+ return __rebalance2(info, parent, l, r);
+}
+
+/*
+ * Redistributes entries among 3 sibling nodes.
+ */
+static int redistribute3(struct dm_btree_info *info, struct btree_node *parent,
+ struct child *l, struct child *c, struct child *r,
+ struct btree_node *left, struct btree_node *center, struct btree_node *right,
+ uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
+{
+ int s, ret;
+ uint32_t max_entries = le32_to_cpu(left->header.max_entries);
+ unsigned int total = nr_left + nr_center + nr_right;
+ unsigned int target_right = total / 3;
+ unsigned int remainder = (target_right * 3) != total;
+ unsigned int target_left = target_right + remainder;
+
+ BUG_ON(target_left > max_entries);
+ BUG_ON(target_right > max_entries);
+
+ if (nr_left < nr_right) {
+ s = nr_left - target_left;
+
+ if (s < 0 && nr_center < -s) {
+ /* not enough in central node */
+ ret = shift(left, center, -nr_center);
+ if (ret)
+ return ret;
+
+ s += nr_center;
+ ret = shift(left, right, s);
+ if (ret)
+ return ret;
+
+ nr_right += s;
+ } else {
+ ret = shift(left, center, s);
+ if (ret)
+ return ret;
+ }
+
+ ret = shift(center, right, target_right - nr_right);
+ if (ret)
+ return ret;
+ } else {
+ s = target_right - nr_right;
+ if (s > 0 && nr_center < s) {
+ /* not enough in central node */
+ ret = shift(center, right, nr_center);
+ if (ret)
+ return ret;
+ s -= nr_center;
+ ret = shift(left, right, s);
+ if (ret)
+ return ret;
+ nr_left -= s;
+ } else {
+ ret = shift(center, right, s);
+ if (ret)
+ return ret;
+ }
+
+ ret = shift(left, center, nr_left - target_left);
+ if (ret)
+ return ret;
+ }
+
+ *key_ptr(parent, c->index) = center->keys[0];
+ *key_ptr(parent, r->index) = right->keys[0];
+ return 0;
+}
+
+static int __rebalance3(struct dm_btree_info *info, struct btree_node *parent,
+ struct child *l, struct child *c, struct child *r)
+{
+ struct btree_node *left = l->n;
+ struct btree_node *center = c->n;
+ struct btree_node *right = r->n;
+
+ uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
+ uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
+ uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
+
+ unsigned int threshold = merge_threshold(left) * 4 + 1;
+
+ if ((left->header.max_entries != center->header.max_entries) ||
+ (center->header.max_entries != right->header.max_entries)) {
+ DMERR("bad btree metadata, max_entries differ");
+ return -EILSEQ;
+ }
+
+ if ((nr_left + nr_center + nr_right) < threshold) {
+ return delete_center_node(info, parent, l, c, r, left, center, right,
+ nr_left, nr_center, nr_right);
+ }
+
+ return redistribute3(info, parent, l, c, r, left, center, right,
+ nr_left, nr_center, nr_right);
+}
+
+static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
+ struct dm_btree_value_type *vt, unsigned int left_index)
+{
+ int r;
+ struct btree_node *parent = dm_block_data(shadow_current(s));
+ struct child left, center, right;
+
+ /*
+ * FIXME: fill out an array?
+ */
+ r = init_child(info, vt, parent, left_index, &left);
+ if (r)
+ return r;
+
+ r = init_child(info, vt, parent, left_index + 1, &center);
+ if (r) {
+ exit_child(info, &left);
+ return r;
+ }
+
+ r = init_child(info, vt, parent, left_index + 2, &right);
+ if (r) {
+ exit_child(info, &left);
+ exit_child(info, &center);
+ return r;
+ }
+
+ r = __rebalance3(info, parent, &left, &center, &right);
+
+ exit_child(info, &left);
+ exit_child(info, &center);
+ exit_child(info, &right);
+
+ return r;
+}
+
+static int rebalance_children(struct shadow_spine *s,
+ struct dm_btree_info *info,
+ struct dm_btree_value_type *vt, uint64_t key)
+{
+ int i, r, has_left_sibling, has_right_sibling;
+ struct btree_node *n;
+
+ n = dm_block_data(shadow_current(s));
+
+ if (le32_to_cpu(n->header.nr_entries) == 1) {
+ struct dm_block *child;
+ dm_block_t b = value64(n, 0);
+
+ r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
+ if (r)
+ return r;
+
+ memcpy(n, dm_block_data(child),
+ dm_bm_block_size(dm_tm_get_bm(info->tm)));
+
+ dm_tm_dec(info->tm, dm_block_location(child));
+ dm_tm_unlock(info->tm, child);
+ return 0;
+ }
+
+ i = lower_bound(n, key);
+ if (i < 0)
+ return -ENODATA;
+
+ has_left_sibling = i > 0;
+ has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
+
+ if (!has_left_sibling)
+ r = rebalance2(s, info, vt, i);
+
+ else if (!has_right_sibling)
+ r = rebalance2(s, info, vt, i - 1);
+
+ else
+ r = rebalance3(s, info, vt, i - 1);
+
+ return r;
+}
+
+static int do_leaf(struct btree_node *n, uint64_t key, unsigned int *index)
+{
+ int i = lower_bound(n, key);
+
+ if ((i < 0) ||
+ (i >= le32_to_cpu(n->header.nr_entries)) ||
+ (le64_to_cpu(n->keys[i]) != key))
+ return -ENODATA;
+
+ *index = i;
+
+ return 0;
+}
+
+/*
+ * Prepares for removal from one level of the hierarchy. The caller must
+ * call delete_at() to remove the entry at index.
+ */
+static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
+ struct dm_btree_value_type *vt, dm_block_t root,
+ uint64_t key, unsigned int *index)
+{
+ int i = *index, r;
+ struct btree_node *n;
+
+ for (;;) {
+ r = shadow_step(s, root, vt);
+ if (r < 0)
+ break;
+
+ /*
+ * We have to patch up the parent node, ugly, but I don't
+ * see a way to do this automatically as part of the spine
+ * op.
+ */
+ if (shadow_has_parent(s)) {
+ __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
+ memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
+ &location, sizeof(__le64));
+ }
+
+ n = dm_block_data(shadow_current(s));
+
+ if (le32_to_cpu(n->header.flags) & LEAF_NODE)
+ return do_leaf(n, key, index);
+
+ r = rebalance_children(s, info, vt, key);
+ if (r)
+ break;
+
+ n = dm_block_data(shadow_current(s));
+ if (le32_to_cpu(n->header.flags) & LEAF_NODE)
+ return do_leaf(n, key, index);
+
+ i = lower_bound(n, key);
+
+ /*
+ * We know the key is present, or else
+ * rebalance_children would have returned
+ * -ENODATA
+ */
+ root = value64(n, i);
+ }
+
+ return r;
+}
+
+int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, dm_block_t *new_root)
+{
+ unsigned int level, last_level = info->levels - 1;
+ int index = 0, r = 0;
+ struct shadow_spine spine;
+ struct btree_node *n;
+ struct dm_btree_value_type le64_vt;
+
+ init_le64_type(info->tm, &le64_vt);
+ init_shadow_spine(&spine, info);
+ for (level = 0; level < info->levels; level++) {
+ r = remove_raw(&spine, info,
+ (level == last_level ?
+ &info->value_type : &le64_vt),
+ root, keys[level], (unsigned int *)&index);
+ if (r < 0)
+ break;
+
+ n = dm_block_data(shadow_current(&spine));
+ if (level != last_level) {
+ root = value64(n, index);
+ continue;
+ }
+
+ BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
+
+ if (info->value_type.dec)
+ info->value_type.dec(info->value_type.context,
+ value_ptr(n, index), 1);
+
+ delete_at(n, index);
+ }
+
+ if (!r)
+ *new_root = shadow_root(&spine);
+ exit_shadow_spine(&spine);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_btree_remove);
+
+/*----------------------------------------------------------------*/
+
+static int remove_nearest(struct shadow_spine *s, struct dm_btree_info *info,
+ struct dm_btree_value_type *vt, dm_block_t root,
+ uint64_t key, int *index)
+{
+ int i = *index, r;
+ struct btree_node *n;
+
+ for (;;) {
+ r = shadow_step(s, root, vt);
+ if (r < 0)
+ break;
+
+ /*
+ * We have to patch up the parent node, ugly, but I don't
+ * see a way to do this automatically as part of the spine
+ * op.
+ */
+ if (shadow_has_parent(s)) {
+ __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
+ memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
+ &location, sizeof(__le64));
+ }
+
+ n = dm_block_data(shadow_current(s));
+
+ if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
+ *index = lower_bound(n, key);
+ return 0;
+ }
+
+ r = rebalance_children(s, info, vt, key);
+ if (r)
+ break;
+
+ n = dm_block_data(shadow_current(s));
+ if (le32_to_cpu(n->header.flags) & LEAF_NODE) {
+ *index = lower_bound(n, key);
+ return 0;
+ }
+
+ i = lower_bound(n, key);
+
+ /*
+ * We know the key is present, or else
+ * rebalance_children would have returned
+ * -ENODATA
+ */
+ root = value64(n, i);
+ }
+
+ return r;
+}
+
+static int remove_one(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, uint64_t end_key,
+ dm_block_t *new_root, unsigned int *nr_removed)
+{
+ unsigned int level, last_level = info->levels - 1;
+ int index = 0, r = 0;
+ struct shadow_spine spine;
+ struct btree_node *n;
+ struct dm_btree_value_type le64_vt;
+ uint64_t k;
+
+ init_le64_type(info->tm, &le64_vt);
+ init_shadow_spine(&spine, info);
+ for (level = 0; level < last_level; level++) {
+ r = remove_raw(&spine, info, &le64_vt,
+ root, keys[level], (unsigned int *) &index);
+ if (r < 0)
+ goto out;
+
+ n = dm_block_data(shadow_current(&spine));
+ root = value64(n, index);
+ }
+
+ r = remove_nearest(&spine, info, &info->value_type,
+ root, keys[last_level], &index);
+ if (r < 0)
+ goto out;
+
+ n = dm_block_data(shadow_current(&spine));
+
+ if (index < 0)
+ index = 0;
+
+ if (index >= le32_to_cpu(n->header.nr_entries)) {
+ r = -ENODATA;
+ goto out;
+ }
+
+ k = le64_to_cpu(n->keys[index]);
+ if (k >= keys[last_level] && k < end_key) {
+ if (info->value_type.dec)
+ info->value_type.dec(info->value_type.context,
+ value_ptr(n, index), 1);
+
+ delete_at(n, index);
+ keys[last_level] = k + 1ull;
+
+ } else
+ r = -ENODATA;
+
+out:
+ *new_root = shadow_root(&spine);
+ exit_shadow_spine(&spine);
+
+ return r;
+}
+
+int dm_btree_remove_leaves(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *first_key, uint64_t end_key,
+ dm_block_t *new_root, unsigned int *nr_removed)
+{
+ int r;
+
+ *nr_removed = 0;
+ do {
+ r = remove_one(info, root, first_key, end_key, &root, nr_removed);
+ if (!r)
+ (*nr_removed)++;
+ } while (!r);
+
+ *new_root = root;
+ return r == -ENODATA ? 0 : r;
+}
+EXPORT_SYMBOL_GPL(dm_btree_remove_leaves);
diff --git a/drivers/md/persistent-data/dm-btree-spine.c b/drivers/md/persistent-data/dm-btree-spine.c
new file mode 100644
index 000000000..45a39d4f1
--- /dev/null
+++ b/drivers/md/persistent-data/dm-btree-spine.c
@@ -0,0 +1,264 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-btree-internal.h"
+#include "dm-transaction-manager.h"
+
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "btree spine"
+
+/*----------------------------------------------------------------*/
+
+#define BTREE_CSUM_XOR 121107
+
+static void node_prepare_for_write(struct dm_block_validator *v,
+ struct dm_block *b,
+ size_t block_size)
+{
+ struct btree_node *n = dm_block_data(b);
+ struct node_header *h = &n->header;
+
+ h->blocknr = cpu_to_le64(dm_block_location(b));
+ h->csum = cpu_to_le32(dm_bm_checksum(&h->flags,
+ block_size - sizeof(__le32),
+ BTREE_CSUM_XOR));
+}
+
+static int node_check(struct dm_block_validator *v,
+ struct dm_block *b,
+ size_t block_size)
+{
+ struct btree_node *n = dm_block_data(b);
+ struct node_header *h = &n->header;
+ size_t value_size;
+ __le32 csum_disk;
+ uint32_t flags, nr_entries, max_entries;
+
+ if (dm_block_location(b) != le64_to_cpu(h->blocknr)) {
+ DMERR_LIMIT("node_check failed: blocknr %llu != wanted %llu",
+ le64_to_cpu(h->blocknr), dm_block_location(b));
+ return -ENOTBLK;
+ }
+
+ csum_disk = cpu_to_le32(dm_bm_checksum(&h->flags,
+ block_size - sizeof(__le32),
+ BTREE_CSUM_XOR));
+ if (csum_disk != h->csum) {
+ DMERR_LIMIT("node_check failed: csum %u != wanted %u",
+ le32_to_cpu(csum_disk), le32_to_cpu(h->csum));
+ return -EILSEQ;
+ }
+
+ nr_entries = le32_to_cpu(h->nr_entries);
+ max_entries = le32_to_cpu(h->max_entries);
+ value_size = le32_to_cpu(h->value_size);
+
+ if (sizeof(struct node_header) +
+ (sizeof(__le64) + value_size) * max_entries > block_size) {
+ DMERR_LIMIT("node_check failed: max_entries too large");
+ return -EILSEQ;
+ }
+
+ if (nr_entries > max_entries) {
+ DMERR_LIMIT("node_check failed: too many entries");
+ return -EILSEQ;
+ }
+
+ /*
+ * The node must be either INTERNAL or LEAF.
+ */
+ flags = le32_to_cpu(h->flags);
+ if (!(flags & INTERNAL_NODE) && !(flags & LEAF_NODE)) {
+ DMERR_LIMIT("node_check failed: node is neither INTERNAL or LEAF");
+ return -EILSEQ;
+ }
+
+ return 0;
+}
+
+struct dm_block_validator btree_node_validator = {
+ .name = "btree_node",
+ .prepare_for_write = node_prepare_for_write,
+ .check = node_check
+};
+
+/*----------------------------------------------------------------*/
+
+int bn_read_lock(struct dm_btree_info *info, dm_block_t b,
+ struct dm_block **result)
+{
+ return dm_tm_read_lock(info->tm, b, &btree_node_validator, result);
+}
+
+static int bn_shadow(struct dm_btree_info *info, dm_block_t orig,
+ struct dm_btree_value_type *vt,
+ struct dm_block **result)
+{
+ int r, inc;
+
+ r = dm_tm_shadow_block(info->tm, orig, &btree_node_validator,
+ result, &inc);
+ if (!r && inc)
+ inc_children(info->tm, dm_block_data(*result), vt);
+
+ return r;
+}
+
+int new_block(struct dm_btree_info *info, struct dm_block **result)
+{
+ return dm_tm_new_block(info->tm, &btree_node_validator, result);
+}
+
+void unlock_block(struct dm_btree_info *info, struct dm_block *b)
+{
+ dm_tm_unlock(info->tm, b);
+}
+
+/*----------------------------------------------------------------*/
+
+void init_ro_spine(struct ro_spine *s, struct dm_btree_info *info)
+{
+ s->info = info;
+ s->count = 0;
+ s->nodes[0] = NULL;
+ s->nodes[1] = NULL;
+}
+
+void exit_ro_spine(struct ro_spine *s)
+{
+ int i;
+
+ for (i = 0; i < s->count; i++) {
+ unlock_block(s->info, s->nodes[i]);
+ }
+}
+
+int ro_step(struct ro_spine *s, dm_block_t new_child)
+{
+ int r;
+
+ if (s->count == 2) {
+ unlock_block(s->info, s->nodes[0]);
+ s->nodes[0] = s->nodes[1];
+ s->count--;
+ }
+
+ r = bn_read_lock(s->info, new_child, s->nodes + s->count);
+ if (!r)
+ s->count++;
+
+ return r;
+}
+
+void ro_pop(struct ro_spine *s)
+{
+ BUG_ON(!s->count);
+ --s->count;
+ unlock_block(s->info, s->nodes[s->count]);
+}
+
+struct btree_node *ro_node(struct ro_spine *s)
+{
+ struct dm_block *block;
+
+ BUG_ON(!s->count);
+ block = s->nodes[s->count - 1];
+
+ return dm_block_data(block);
+}
+
+/*----------------------------------------------------------------*/
+
+void init_shadow_spine(struct shadow_spine *s, struct dm_btree_info *info)
+{
+ s->info = info;
+ s->count = 0;
+}
+
+void exit_shadow_spine(struct shadow_spine *s)
+{
+ int i;
+
+ for (i = 0; i < s->count; i++) {
+ unlock_block(s->info, s->nodes[i]);
+ }
+}
+
+int shadow_step(struct shadow_spine *s, dm_block_t b,
+ struct dm_btree_value_type *vt)
+{
+ int r;
+
+ if (s->count == 2) {
+ unlock_block(s->info, s->nodes[0]);
+ s->nodes[0] = s->nodes[1];
+ s->count--;
+ }
+
+ r = bn_shadow(s->info, b, vt, s->nodes + s->count);
+ if (!r) {
+ if (!s->count)
+ s->root = dm_block_location(s->nodes[0]);
+
+ s->count++;
+ }
+
+ return r;
+}
+
+struct dm_block *shadow_current(struct shadow_spine *s)
+{
+ BUG_ON(!s->count);
+
+ return s->nodes[s->count - 1];
+}
+
+struct dm_block *shadow_parent(struct shadow_spine *s)
+{
+ BUG_ON(s->count != 2);
+
+ return s->count == 2 ? s->nodes[0] : NULL;
+}
+
+int shadow_has_parent(struct shadow_spine *s)
+{
+ return s->count >= 2;
+}
+
+dm_block_t shadow_root(struct shadow_spine *s)
+{
+ return s->root;
+}
+
+static void le64_inc(void *context, const void *value_le, unsigned int count)
+{
+ dm_tm_with_runs(context, value_le, count, dm_tm_inc_range);
+}
+
+static void le64_dec(void *context, const void *value_le, unsigned int count)
+{
+ dm_tm_with_runs(context, value_le, count, dm_tm_dec_range);
+}
+
+static int le64_equal(void *context, const void *value1_le, const void *value2_le)
+{
+ __le64 v1_le, v2_le;
+
+ memcpy(&v1_le, value1_le, sizeof(v1_le));
+ memcpy(&v2_le, value2_le, sizeof(v2_le));
+ return v1_le == v2_le;
+}
+
+void init_le64_type(struct dm_transaction_manager *tm,
+ struct dm_btree_value_type *vt)
+{
+ vt->context = tm;
+ vt->size = sizeof(__le64);
+ vt->inc = le64_inc;
+ vt->dec = le64_dec;
+ vt->equal = le64_equal;
+}
diff --git a/drivers/md/persistent-data/dm-btree.c b/drivers/md/persistent-data/dm-btree.c
new file mode 100644
index 000000000..1cc783d70
--- /dev/null
+++ b/drivers/md/persistent-data/dm-btree.c
@@ -0,0 +1,1625 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-btree-internal.h"
+#include "dm-space-map.h"
+#include "dm-transaction-manager.h"
+
+#include <linux/export.h>
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "btree"
+
+/*----------------------------------------------------------------
+ * Array manipulation
+ *--------------------------------------------------------------*/
+static void memcpy_disk(void *dest, const void *src, size_t len)
+ __dm_written_to_disk(src)
+{
+ memcpy(dest, src, len);
+ __dm_unbless_for_disk(src);
+}
+
+static void array_insert(void *base, size_t elt_size, unsigned int nr_elts,
+ unsigned int index, void *elt)
+ __dm_written_to_disk(elt)
+{
+ if (index < nr_elts)
+ memmove(base + (elt_size * (index + 1)),
+ base + (elt_size * index),
+ (nr_elts - index) * elt_size);
+
+ memcpy_disk(base + (elt_size * index), elt, elt_size);
+}
+
+/*----------------------------------------------------------------*/
+
+/* makes the assumption that no two keys are the same. */
+static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
+{
+ int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
+
+ while (hi - lo > 1) {
+ int mid = lo + ((hi - lo) / 2);
+ uint64_t mid_key = le64_to_cpu(n->keys[mid]);
+
+ if (mid_key == key)
+ return mid;
+
+ if (mid_key < key)
+ lo = mid;
+ else
+ hi = mid;
+ }
+
+ return want_hi ? hi : lo;
+}
+
+int lower_bound(struct btree_node *n, uint64_t key)
+{
+ return bsearch(n, key, 0);
+}
+
+static int upper_bound(struct btree_node *n, uint64_t key)
+{
+ return bsearch(n, key, 1);
+}
+
+void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
+ struct dm_btree_value_type *vt)
+{
+ uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
+
+ if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
+ dm_tm_with_runs(tm, value_ptr(n, 0), nr_entries, dm_tm_inc_range);
+
+ else if (vt->inc)
+ vt->inc(vt->context, value_ptr(n, 0), nr_entries);
+}
+
+static int insert_at(size_t value_size, struct btree_node *node, unsigned int index,
+ uint64_t key, void *value)
+ __dm_written_to_disk(value)
+{
+ uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
+ uint32_t max_entries = le32_to_cpu(node->header.max_entries);
+ __le64 key_le = cpu_to_le64(key);
+
+ if (index > nr_entries ||
+ index >= max_entries ||
+ nr_entries >= max_entries) {
+ DMERR("too many entries in btree node for insert");
+ __dm_unbless_for_disk(value);
+ return -ENOMEM;
+ }
+
+ __dm_bless_for_disk(&key_le);
+
+ array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
+ array_insert(value_base(node), value_size, nr_entries, index, value);
+ node->header.nr_entries = cpu_to_le32(nr_entries + 1);
+
+ return 0;
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * We want 3n entries (for some n). This works more nicely for repeated
+ * insert remove loops than (2n + 1).
+ */
+static uint32_t calc_max_entries(size_t value_size, size_t block_size)
+{
+ uint32_t total, n;
+ size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
+
+ block_size -= sizeof(struct node_header);
+ total = block_size / elt_size;
+ n = total / 3; /* rounds down */
+
+ return 3 * n;
+}
+
+int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
+{
+ int r;
+ struct dm_block *b;
+ struct btree_node *n;
+ size_t block_size;
+ uint32_t max_entries;
+
+ r = new_block(info, &b);
+ if (r < 0)
+ return r;
+
+ block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
+ max_entries = calc_max_entries(info->value_type.size, block_size);
+
+ n = dm_block_data(b);
+ memset(n, 0, block_size);
+ n->header.flags = cpu_to_le32(LEAF_NODE);
+ n->header.nr_entries = cpu_to_le32(0);
+ n->header.max_entries = cpu_to_le32(max_entries);
+ n->header.value_size = cpu_to_le32(info->value_type.size);
+
+ *root = dm_block_location(b);
+ unlock_block(info, b);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(dm_btree_empty);
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Deletion uses a recursive algorithm, since we have limited stack space
+ * we explicitly manage our own stack on the heap.
+ */
+#define MAX_SPINE_DEPTH 64
+struct frame {
+ struct dm_block *b;
+ struct btree_node *n;
+ unsigned int level;
+ unsigned int nr_children;
+ unsigned int current_child;
+};
+
+struct del_stack {
+ struct dm_btree_info *info;
+ struct dm_transaction_manager *tm;
+ int top;
+ struct frame spine[MAX_SPINE_DEPTH];
+};
+
+static int top_frame(struct del_stack *s, struct frame **f)
+{
+ if (s->top < 0) {
+ DMERR("btree deletion stack empty");
+ return -EINVAL;
+ }
+
+ *f = s->spine + s->top;
+
+ return 0;
+}
+
+static int unprocessed_frames(struct del_stack *s)
+{
+ return s->top >= 0;
+}
+
+static void prefetch_children(struct del_stack *s, struct frame *f)
+{
+ unsigned int i;
+ struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
+
+ for (i = 0; i < f->nr_children; i++)
+ dm_bm_prefetch(bm, value64(f->n, i));
+}
+
+static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
+{
+ return f->level < (info->levels - 1);
+}
+
+static int push_frame(struct del_stack *s, dm_block_t b, unsigned int level)
+{
+ int r;
+ uint32_t ref_count;
+
+ if (s->top >= MAX_SPINE_DEPTH - 1) {
+ DMERR("btree deletion stack out of memory");
+ return -ENOMEM;
+ }
+
+ r = dm_tm_ref(s->tm, b, &ref_count);
+ if (r)
+ return r;
+
+ if (ref_count > 1)
+ /*
+ * This is a shared node, so we can just decrement it's
+ * reference counter and leave the children.
+ */
+ dm_tm_dec(s->tm, b);
+
+ else {
+ uint32_t flags;
+ struct frame *f = s->spine + ++s->top;
+
+ r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
+ if (r) {
+ s->top--;
+ return r;
+ }
+
+ f->n = dm_block_data(f->b);
+ f->level = level;
+ f->nr_children = le32_to_cpu(f->n->header.nr_entries);
+ f->current_child = 0;
+
+ flags = le32_to_cpu(f->n->header.flags);
+ if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
+ prefetch_children(s, f);
+ }
+
+ return 0;
+}
+
+static void pop_frame(struct del_stack *s)
+{
+ struct frame *f = s->spine + s->top--;
+
+ dm_tm_dec(s->tm, dm_block_location(f->b));
+ dm_tm_unlock(s->tm, f->b);
+}
+
+static void unlock_all_frames(struct del_stack *s)
+{
+ struct frame *f;
+
+ while (unprocessed_frames(s)) {
+ f = s->spine + s->top--;
+ dm_tm_unlock(s->tm, f->b);
+ }
+}
+
+int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
+{
+ int r;
+ struct del_stack *s;
+
+ /*
+ * dm_btree_del() is called via an ioctl, as such should be
+ * considered an FS op. We can't recurse back into the FS, so we
+ * allocate GFP_NOFS.
+ */
+ s = kmalloc(sizeof(*s), GFP_NOFS);
+ if (!s)
+ return -ENOMEM;
+ s->info = info;
+ s->tm = info->tm;
+ s->top = -1;
+
+ r = push_frame(s, root, 0);
+ if (r)
+ goto out;
+
+ while (unprocessed_frames(s)) {
+ uint32_t flags;
+ struct frame *f;
+ dm_block_t b;
+
+ r = top_frame(s, &f);
+ if (r)
+ goto out;
+
+ if (f->current_child >= f->nr_children) {
+ pop_frame(s);
+ continue;
+ }
+
+ flags = le32_to_cpu(f->n->header.flags);
+ if (flags & INTERNAL_NODE) {
+ b = value64(f->n, f->current_child);
+ f->current_child++;
+ r = push_frame(s, b, f->level);
+ if (r)
+ goto out;
+
+ } else if (is_internal_level(info, f)) {
+ b = value64(f->n, f->current_child);
+ f->current_child++;
+ r = push_frame(s, b, f->level + 1);
+ if (r)
+ goto out;
+
+ } else {
+ if (info->value_type.dec)
+ info->value_type.dec(info->value_type.context,
+ value_ptr(f->n, 0), f->nr_children);
+ pop_frame(s);
+ }
+ }
+out:
+ if (r) {
+ /* cleanup all frames of del_stack */
+ unlock_all_frames(s);
+ }
+ kfree(s);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_btree_del);
+
+/*----------------------------------------------------------------*/
+
+static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
+ int (*search_fn)(struct btree_node *, uint64_t),
+ uint64_t *result_key, void *v, size_t value_size)
+{
+ int i, r;
+ uint32_t flags, nr_entries;
+
+ do {
+ r = ro_step(s, block);
+ if (r < 0)
+ return r;
+
+ i = search_fn(ro_node(s), key);
+
+ flags = le32_to_cpu(ro_node(s)->header.flags);
+ nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
+ if (i < 0 || i >= nr_entries)
+ return -ENODATA;
+
+ if (flags & INTERNAL_NODE)
+ block = value64(ro_node(s), i);
+
+ } while (!(flags & LEAF_NODE));
+
+ *result_key = le64_to_cpu(ro_node(s)->keys[i]);
+ if (v)
+ memcpy(v, value_ptr(ro_node(s), i), value_size);
+
+ return 0;
+}
+
+int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, void *value_le)
+{
+ unsigned int level, last_level = info->levels - 1;
+ int r = -ENODATA;
+ uint64_t rkey;
+ __le64 internal_value_le;
+ struct ro_spine spine;
+
+ init_ro_spine(&spine, info);
+ for (level = 0; level < info->levels; level++) {
+ size_t size;
+ void *value_p;
+
+ if (level == last_level) {
+ value_p = value_le;
+ size = info->value_type.size;
+
+ } else {
+ value_p = &internal_value_le;
+ size = sizeof(uint64_t);
+ }
+
+ r = btree_lookup_raw(&spine, root, keys[level],
+ lower_bound, &rkey,
+ value_p, size);
+
+ if (!r) {
+ if (rkey != keys[level]) {
+ exit_ro_spine(&spine);
+ return -ENODATA;
+ }
+ } else {
+ exit_ro_spine(&spine);
+ return r;
+ }
+
+ root = le64_to_cpu(internal_value_le);
+ }
+ exit_ro_spine(&spine);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_btree_lookup);
+
+static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
+ uint64_t key, uint64_t *rkey, void *value_le)
+{
+ int r, i;
+ uint32_t flags, nr_entries;
+ struct dm_block *node;
+ struct btree_node *n;
+
+ r = bn_read_lock(info, root, &node);
+ if (r)
+ return r;
+
+ n = dm_block_data(node);
+ flags = le32_to_cpu(n->header.flags);
+ nr_entries = le32_to_cpu(n->header.nr_entries);
+
+ if (flags & INTERNAL_NODE) {
+ i = lower_bound(n, key);
+ if (i < 0) {
+ /*
+ * avoid early -ENODATA return when all entries are
+ * higher than the search @key.
+ */
+ i = 0;
+ }
+ if (i >= nr_entries) {
+ r = -ENODATA;
+ goto out;
+ }
+
+ r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
+ if (r == -ENODATA && i < (nr_entries - 1)) {
+ i++;
+ r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
+ }
+
+ } else {
+ i = upper_bound(n, key);
+ if (i < 0 || i >= nr_entries) {
+ r = -ENODATA;
+ goto out;
+ }
+
+ *rkey = le64_to_cpu(n->keys[i]);
+ memcpy(value_le, value_ptr(n, i), info->value_type.size);
+ }
+out:
+ dm_tm_unlock(info->tm, node);
+ return r;
+}
+
+int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, uint64_t *rkey, void *value_le)
+{
+ unsigned int level;
+ int r = -ENODATA;
+ __le64 internal_value_le;
+ struct ro_spine spine;
+
+ init_ro_spine(&spine, info);
+ for (level = 0; level < info->levels - 1u; level++) {
+ r = btree_lookup_raw(&spine, root, keys[level],
+ lower_bound, rkey,
+ &internal_value_le, sizeof(uint64_t));
+ if (r)
+ goto out;
+
+ if (*rkey != keys[level]) {
+ r = -ENODATA;
+ goto out;
+ }
+
+ root = le64_to_cpu(internal_value_le);
+ }
+
+ r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
+out:
+ exit_ro_spine(&spine);
+ return r;
+}
+
+EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Copies entries from one region of a btree node to another. The regions
+ * must not overlap.
+ */
+static void copy_entries(struct btree_node *dest, unsigned int dest_offset,
+ struct btree_node *src, unsigned int src_offset,
+ unsigned int count)
+{
+ size_t value_size = le32_to_cpu(dest->header.value_size);
+ memcpy(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
+ memcpy(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
+}
+
+/*
+ * Moves entries from one region fo a btree node to another. The regions
+ * may overlap.
+ */
+static void move_entries(struct btree_node *dest, unsigned int dest_offset,
+ struct btree_node *src, unsigned int src_offset,
+ unsigned int count)
+{
+ size_t value_size = le32_to_cpu(dest->header.value_size);
+ memmove(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
+ memmove(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
+}
+
+/*
+ * Erases the first 'count' entries of a btree node, shifting following
+ * entries down into their place.
+ */
+static void shift_down(struct btree_node *n, unsigned int count)
+{
+ move_entries(n, 0, n, count, le32_to_cpu(n->header.nr_entries) - count);
+}
+
+/*
+ * Moves entries in a btree node up 'count' places, making space for
+ * new entries at the start of the node.
+ */
+static void shift_up(struct btree_node *n, unsigned int count)
+{
+ move_entries(n, count, n, 0, le32_to_cpu(n->header.nr_entries));
+}
+
+/*
+ * Redistributes entries between two btree nodes to make them
+ * have similar numbers of entries.
+ */
+static void redistribute2(struct btree_node *left, struct btree_node *right)
+{
+ unsigned int nr_left = le32_to_cpu(left->header.nr_entries);
+ unsigned int nr_right = le32_to_cpu(right->header.nr_entries);
+ unsigned int total = nr_left + nr_right;
+ unsigned int target_left = total / 2;
+ unsigned int target_right = total - target_left;
+
+ if (nr_left < target_left) {
+ unsigned int delta = target_left - nr_left;
+ copy_entries(left, nr_left, right, 0, delta);
+ shift_down(right, delta);
+ } else if (nr_left > target_left) {
+ unsigned int delta = nr_left - target_left;
+ if (nr_right)
+ shift_up(right, delta);
+ copy_entries(right, 0, left, target_left, delta);
+ }
+
+ left->header.nr_entries = cpu_to_le32(target_left);
+ right->header.nr_entries = cpu_to_le32(target_right);
+}
+
+/*
+ * Redistribute entries between three nodes. Assumes the central
+ * node is empty.
+ */
+static void redistribute3(struct btree_node *left, struct btree_node *center,
+ struct btree_node *right)
+{
+ unsigned int nr_left = le32_to_cpu(left->header.nr_entries);
+ unsigned int nr_center = le32_to_cpu(center->header.nr_entries);
+ unsigned int nr_right = le32_to_cpu(right->header.nr_entries);
+ unsigned int total, target_left, target_center, target_right;
+
+ BUG_ON(nr_center);
+
+ total = nr_left + nr_right;
+ target_left = total / 3;
+ target_center = (total - target_left) / 2;
+ target_right = (total - target_left - target_center);
+
+ if (nr_left < target_left) {
+ unsigned int left_short = target_left - nr_left;
+ copy_entries(left, nr_left, right, 0, left_short);
+ copy_entries(center, 0, right, left_short, target_center);
+ shift_down(right, nr_right - target_right);
+
+ } else if (nr_left < (target_left + target_center)) {
+ unsigned int left_to_center = nr_left - target_left;
+ copy_entries(center, 0, left, target_left, left_to_center);
+ copy_entries(center, left_to_center, right, 0, target_center - left_to_center);
+ shift_down(right, nr_right - target_right);
+
+ } else {
+ unsigned int right_short = target_right - nr_right;
+ shift_up(right, right_short);
+ copy_entries(right, 0, left, nr_left - right_short, right_short);
+ copy_entries(center, 0, left, target_left, nr_left - target_left);
+ }
+
+ left->header.nr_entries = cpu_to_le32(target_left);
+ center->header.nr_entries = cpu_to_le32(target_center);
+ right->header.nr_entries = cpu_to_le32(target_right);
+}
+
+/*
+ * Splits a node by creating a sibling node and shifting half the nodes
+ * contents across. Assumes there is a parent node, and it has room for
+ * another child.
+ *
+ * Before:
+ * +--------+
+ * | Parent |
+ * +--------+
+ * |
+ * v
+ * +----------+
+ * | A ++++++ |
+ * +----------+
+ *
+ *
+ * After:
+ * +--------+
+ * | Parent |
+ * +--------+
+ * | |
+ * v +------+
+ * +---------+ |
+ * | A* +++ | v
+ * +---------+ +-------+
+ * | B +++ |
+ * +-------+
+ *
+ * Where A* is a shadow of A.
+ */
+static int split_one_into_two(struct shadow_spine *s, unsigned int parent_index,
+ struct dm_btree_value_type *vt, uint64_t key)
+{
+ int r;
+ struct dm_block *left, *right, *parent;
+ struct btree_node *ln, *rn, *pn;
+ __le64 location;
+
+ left = shadow_current(s);
+
+ r = new_block(s->info, &right);
+ if (r < 0)
+ return r;
+
+ ln = dm_block_data(left);
+ rn = dm_block_data(right);
+
+ rn->header.flags = ln->header.flags;
+ rn->header.nr_entries = cpu_to_le32(0);
+ rn->header.max_entries = ln->header.max_entries;
+ rn->header.value_size = ln->header.value_size;
+ redistribute2(ln, rn);
+
+ /* patch up the parent */
+ parent = shadow_parent(s);
+ pn = dm_block_data(parent);
+
+ location = cpu_to_le64(dm_block_location(right));
+ __dm_bless_for_disk(&location);
+ r = insert_at(sizeof(__le64), pn, parent_index + 1,
+ le64_to_cpu(rn->keys[0]), &location);
+ if (r) {
+ unlock_block(s->info, right);
+ return r;
+ }
+
+ /* patch up the spine */
+ if (key < le64_to_cpu(rn->keys[0])) {
+ unlock_block(s->info, right);
+ s->nodes[1] = left;
+ } else {
+ unlock_block(s->info, left);
+ s->nodes[1] = right;
+ }
+
+ return 0;
+}
+
+/*
+ * We often need to modify a sibling node. This function shadows a particular
+ * child of the given parent node. Making sure to update the parent to point
+ * to the new shadow.
+ */
+static int shadow_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
+ struct btree_node *parent, unsigned int index,
+ struct dm_block **result)
+{
+ int r, inc;
+ dm_block_t root;
+ struct btree_node *node;
+
+ root = value64(parent, index);
+
+ r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
+ result, &inc);
+ if (r)
+ return r;
+
+ node = dm_block_data(*result);
+
+ if (inc)
+ inc_children(info->tm, node, vt);
+
+ *((__le64 *) value_ptr(parent, index)) =
+ cpu_to_le64(dm_block_location(*result));
+
+ return 0;
+}
+
+/*
+ * Splits two nodes into three. This is more work, but results in fuller
+ * nodes, so saves metadata space.
+ */
+static int split_two_into_three(struct shadow_spine *s, unsigned int parent_index,
+ struct dm_btree_value_type *vt, uint64_t key)
+{
+ int r;
+ unsigned int middle_index;
+ struct dm_block *left, *middle, *right, *parent;
+ struct btree_node *ln, *rn, *mn, *pn;
+ __le64 location;
+
+ parent = shadow_parent(s);
+ pn = dm_block_data(parent);
+
+ if (parent_index == 0) {
+ middle_index = 1;
+ left = shadow_current(s);
+ r = shadow_child(s->info, vt, pn, parent_index + 1, &right);
+ if (r)
+ return r;
+ } else {
+ middle_index = parent_index;
+ right = shadow_current(s);
+ r = shadow_child(s->info, vt, pn, parent_index - 1, &left);
+ if (r)
+ return r;
+ }
+
+ r = new_block(s->info, &middle);
+ if (r < 0)
+ return r;
+
+ ln = dm_block_data(left);
+ mn = dm_block_data(middle);
+ rn = dm_block_data(right);
+
+ mn->header.nr_entries = cpu_to_le32(0);
+ mn->header.flags = ln->header.flags;
+ mn->header.max_entries = ln->header.max_entries;
+ mn->header.value_size = ln->header.value_size;
+
+ redistribute3(ln, mn, rn);
+
+ /* patch up the parent */
+ pn->keys[middle_index] = rn->keys[0];
+ location = cpu_to_le64(dm_block_location(middle));
+ __dm_bless_for_disk(&location);
+ r = insert_at(sizeof(__le64), pn, middle_index,
+ le64_to_cpu(mn->keys[0]), &location);
+ if (r) {
+ if (shadow_current(s) != left)
+ unlock_block(s->info, left);
+
+ unlock_block(s->info, middle);
+
+ if (shadow_current(s) != right)
+ unlock_block(s->info, right);
+
+ return r;
+ }
+
+
+ /* patch up the spine */
+ if (key < le64_to_cpu(mn->keys[0])) {
+ unlock_block(s->info, middle);
+ unlock_block(s->info, right);
+ s->nodes[1] = left;
+ } else if (key < le64_to_cpu(rn->keys[0])) {
+ unlock_block(s->info, left);
+ unlock_block(s->info, right);
+ s->nodes[1] = middle;
+ } else {
+ unlock_block(s->info, left);
+ unlock_block(s->info, middle);
+ s->nodes[1] = right;
+ }
+
+ return 0;
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Splits a node by creating two new children beneath the given node.
+ *
+ * Before:
+ * +----------+
+ * | A ++++++ |
+ * +----------+
+ *
+ *
+ * After:
+ * +------------+
+ * | A (shadow) |
+ * +------------+
+ * | |
+ * +------+ +----+
+ * | |
+ * v v
+ * +-------+ +-------+
+ * | B +++ | | C +++ |
+ * +-------+ +-------+
+ */
+static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
+{
+ int r;
+ size_t size;
+ unsigned int nr_left, nr_right;
+ struct dm_block *left, *right, *new_parent;
+ struct btree_node *pn, *ln, *rn;
+ __le64 val;
+
+ new_parent = shadow_current(s);
+
+ pn = dm_block_data(new_parent);
+ size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
+ sizeof(__le64) : s->info->value_type.size;
+
+ /* create & init the left block */
+ r = new_block(s->info, &left);
+ if (r < 0)
+ return r;
+
+ ln = dm_block_data(left);
+ nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
+
+ ln->header.flags = pn->header.flags;
+ ln->header.nr_entries = cpu_to_le32(nr_left);
+ ln->header.max_entries = pn->header.max_entries;
+ ln->header.value_size = pn->header.value_size;
+ memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
+ memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
+
+ /* create & init the right block */
+ r = new_block(s->info, &right);
+ if (r < 0) {
+ unlock_block(s->info, left);
+ return r;
+ }
+
+ rn = dm_block_data(right);
+ nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
+
+ rn->header.flags = pn->header.flags;
+ rn->header.nr_entries = cpu_to_le32(nr_right);
+ rn->header.max_entries = pn->header.max_entries;
+ rn->header.value_size = pn->header.value_size;
+ memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
+ memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
+ nr_right * size);
+
+ /* new_parent should just point to l and r now */
+ pn->header.flags = cpu_to_le32(INTERNAL_NODE);
+ pn->header.nr_entries = cpu_to_le32(2);
+ pn->header.max_entries = cpu_to_le32(
+ calc_max_entries(sizeof(__le64),
+ dm_bm_block_size(
+ dm_tm_get_bm(s->info->tm))));
+ pn->header.value_size = cpu_to_le32(sizeof(__le64));
+
+ val = cpu_to_le64(dm_block_location(left));
+ __dm_bless_for_disk(&val);
+ pn->keys[0] = ln->keys[0];
+ memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
+
+ val = cpu_to_le64(dm_block_location(right));
+ __dm_bless_for_disk(&val);
+ pn->keys[1] = rn->keys[0];
+ memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
+
+ unlock_block(s->info, left);
+ unlock_block(s->info, right);
+ return 0;
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Redistributes a node's entries with its left sibling.
+ */
+static int rebalance_left(struct shadow_spine *s, struct dm_btree_value_type *vt,
+ unsigned int parent_index, uint64_t key)
+{
+ int r;
+ struct dm_block *sib;
+ struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
+
+ r = shadow_child(s->info, vt, parent, parent_index - 1, &sib);
+ if (r)
+ return r;
+
+ left = dm_block_data(sib);
+ right = dm_block_data(shadow_current(s));
+ redistribute2(left, right);
+ *key_ptr(parent, parent_index) = right->keys[0];
+
+ if (key < le64_to_cpu(right->keys[0])) {
+ unlock_block(s->info, s->nodes[1]);
+ s->nodes[1] = sib;
+ } else {
+ unlock_block(s->info, sib);
+ }
+
+ return 0;
+}
+
+/*
+ * Redistributes a nodes entries with its right sibling.
+ */
+static int rebalance_right(struct shadow_spine *s, struct dm_btree_value_type *vt,
+ unsigned int parent_index, uint64_t key)
+{
+ int r;
+ struct dm_block *sib;
+ struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
+
+ r = shadow_child(s->info, vt, parent, parent_index + 1, &sib);
+ if (r)
+ return r;
+
+ left = dm_block_data(shadow_current(s));
+ right = dm_block_data(sib);
+ redistribute2(left, right);
+ *key_ptr(parent, parent_index + 1) = right->keys[0];
+
+ if (key < le64_to_cpu(right->keys[0])) {
+ unlock_block(s->info, sib);
+ } else {
+ unlock_block(s->info, s->nodes[1]);
+ s->nodes[1] = sib;
+ }
+
+ return 0;
+}
+
+/*
+ * Returns the number of spare entries in a node.
+ */
+static int get_node_free_space(struct dm_btree_info *info, dm_block_t b, unsigned int *space)
+{
+ int r;
+ unsigned int nr_entries;
+ struct dm_block *block;
+ struct btree_node *node;
+
+ r = bn_read_lock(info, b, &block);
+ if (r)
+ return r;
+
+ node = dm_block_data(block);
+ nr_entries = le32_to_cpu(node->header.nr_entries);
+ *space = le32_to_cpu(node->header.max_entries) - nr_entries;
+
+ unlock_block(info, block);
+ return 0;
+}
+
+/*
+ * Make space in a node, either by moving some entries to a sibling,
+ * or creating a new sibling node. SPACE_THRESHOLD defines the minimum
+ * number of free entries that must be in the sibling to make the move
+ * worth while. If the siblings are shared (eg, part of a snapshot),
+ * then they are not touched, since this break sharing and so consume
+ * more space than we save.
+ */
+#define SPACE_THRESHOLD 8
+static int rebalance_or_split(struct shadow_spine *s, struct dm_btree_value_type *vt,
+ unsigned int parent_index, uint64_t key)
+{
+ int r;
+ struct btree_node *parent = dm_block_data(shadow_parent(s));
+ unsigned int nr_parent = le32_to_cpu(parent->header.nr_entries);
+ unsigned int free_space;
+ int left_shared = 0, right_shared = 0;
+
+ /* Should we move entries to the left sibling? */
+ if (parent_index > 0) {
+ dm_block_t left_b = value64(parent, parent_index - 1);
+ r = dm_tm_block_is_shared(s->info->tm, left_b, &left_shared);
+ if (r)
+ return r;
+
+ if (!left_shared) {
+ r = get_node_free_space(s->info, left_b, &free_space);
+ if (r)
+ return r;
+
+ if (free_space >= SPACE_THRESHOLD)
+ return rebalance_left(s, vt, parent_index, key);
+ }
+ }
+
+ /* Should we move entries to the right sibling? */
+ if (parent_index < (nr_parent - 1)) {
+ dm_block_t right_b = value64(parent, parent_index + 1);
+ r = dm_tm_block_is_shared(s->info->tm, right_b, &right_shared);
+ if (r)
+ return r;
+
+ if (!right_shared) {
+ r = get_node_free_space(s->info, right_b, &free_space);
+ if (r)
+ return r;
+
+ if (free_space >= SPACE_THRESHOLD)
+ return rebalance_right(s, vt, parent_index, key);
+ }
+ }
+
+ /*
+ * We need to split the node, normally we split two nodes
+ * into three. But when inserting a sequence that is either
+ * monotonically increasing or decreasing it's better to split
+ * a single node into two.
+ */
+ if (left_shared || right_shared || (nr_parent <= 2) ||
+ (parent_index == 0) || (parent_index + 1 == nr_parent)) {
+ return split_one_into_two(s, parent_index, vt, key);
+ } else {
+ return split_two_into_three(s, parent_index, vt, key);
+ }
+}
+
+/*
+ * Does the node contain a particular key?
+ */
+static bool contains_key(struct btree_node *node, uint64_t key)
+{
+ int i = lower_bound(node, key);
+
+ if (i >= 0 && le64_to_cpu(node->keys[i]) == key)
+ return true;
+
+ return false;
+}
+
+/*
+ * In general we preemptively make sure there's a free entry in every
+ * node on the spine when doing an insert. But we can avoid that with
+ * leaf nodes if we know it's an overwrite.
+ */
+static bool has_space_for_insert(struct btree_node *node, uint64_t key)
+{
+ if (node->header.nr_entries == node->header.max_entries) {
+ if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
+ /* we don't need space if it's an overwrite */
+ return contains_key(node, key);
+ }
+
+ return false;
+ }
+
+ return true;
+}
+
+static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
+ struct dm_btree_value_type *vt,
+ uint64_t key, unsigned int *index)
+{
+ int r, i = *index, top = 1;
+ struct btree_node *node;
+
+ for (;;) {
+ r = shadow_step(s, root, vt);
+ if (r < 0)
+ return r;
+
+ node = dm_block_data(shadow_current(s));
+
+ /*
+ * We have to patch up the parent node, ugly, but I don't
+ * see a way to do this automatically as part of the spine
+ * op.
+ */
+ if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
+ __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
+
+ __dm_bless_for_disk(&location);
+ memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
+ &location, sizeof(__le64));
+ }
+
+ node = dm_block_data(shadow_current(s));
+
+ if (!has_space_for_insert(node, key)) {
+ if (top)
+ r = btree_split_beneath(s, key);
+ else
+ r = rebalance_or_split(s, vt, i, key);
+
+ if (r < 0)
+ return r;
+
+ /* making space can cause the current node to change */
+ node = dm_block_data(shadow_current(s));
+ }
+
+ i = lower_bound(node, key);
+
+ if (le32_to_cpu(node->header.flags) & LEAF_NODE)
+ break;
+
+ if (i < 0) {
+ /* change the bounds on the lowest key */
+ node->keys[0] = cpu_to_le64(key);
+ i = 0;
+ }
+
+ root = value64(node, i);
+ top = 0;
+ }
+
+ if (i < 0 || le64_to_cpu(node->keys[i]) != key)
+ i++;
+
+ *index = i;
+ return 0;
+}
+
+static int __btree_get_overwrite_leaf(struct shadow_spine *s, dm_block_t root,
+ uint64_t key, int *index)
+{
+ int r, i = -1;
+ struct btree_node *node;
+
+ *index = 0;
+ for (;;) {
+ r = shadow_step(s, root, &s->info->value_type);
+ if (r < 0)
+ return r;
+
+ node = dm_block_data(shadow_current(s));
+
+ /*
+ * We have to patch up the parent node, ugly, but I don't
+ * see a way to do this automatically as part of the spine
+ * op.
+ */
+ if (shadow_has_parent(s) && i >= 0) {
+ __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
+
+ __dm_bless_for_disk(&location);
+ memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
+ &location, sizeof(__le64));
+ }
+
+ node = dm_block_data(shadow_current(s));
+ i = lower_bound(node, key);
+
+ BUG_ON(i < 0);
+ BUG_ON(i >= le32_to_cpu(node->header.nr_entries));
+
+ if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
+ if (key != le64_to_cpu(node->keys[i]))
+ return -EINVAL;
+ break;
+ }
+
+ root = value64(node, i);
+ }
+
+ *index = i;
+ return 0;
+}
+
+int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root,
+ uint64_t key, int *index,
+ dm_block_t *new_root, struct dm_block **leaf)
+{
+ int r;
+ struct shadow_spine spine;
+
+ BUG_ON(info->levels > 1);
+ init_shadow_spine(&spine, info);
+ r = __btree_get_overwrite_leaf(&spine, root, key, index);
+ if (!r) {
+ *new_root = shadow_root(&spine);
+ *leaf = shadow_current(&spine);
+
+ /*
+ * Decrement the count so exit_shadow_spine() doesn't
+ * unlock the leaf.
+ */
+ spine.count--;
+ }
+ exit_shadow_spine(&spine);
+
+ return r;
+}
+
+static bool need_insert(struct btree_node *node, uint64_t *keys,
+ unsigned int level, unsigned int index)
+{
+ return ((index >= le32_to_cpu(node->header.nr_entries)) ||
+ (le64_to_cpu(node->keys[index]) != keys[level]));
+}
+
+static int insert(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, void *value, dm_block_t *new_root,
+ int *inserted)
+ __dm_written_to_disk(value)
+{
+ int r;
+ unsigned int level, index = -1, last_level = info->levels - 1;
+ dm_block_t block = root;
+ struct shadow_spine spine;
+ struct btree_node *n;
+ struct dm_btree_value_type le64_type;
+
+ init_le64_type(info->tm, &le64_type);
+ init_shadow_spine(&spine, info);
+
+ for (level = 0; level < (info->levels - 1); level++) {
+ r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
+ if (r < 0)
+ goto bad;
+
+ n = dm_block_data(shadow_current(&spine));
+
+ if (need_insert(n, keys, level, index)) {
+ dm_block_t new_tree;
+ __le64 new_le;
+
+ r = dm_btree_empty(info, &new_tree);
+ if (r < 0)
+ goto bad;
+
+ new_le = cpu_to_le64(new_tree);
+ __dm_bless_for_disk(&new_le);
+
+ r = insert_at(sizeof(uint64_t), n, index,
+ keys[level], &new_le);
+ if (r)
+ goto bad;
+ }
+
+ if (level < last_level)
+ block = value64(n, index);
+ }
+
+ r = btree_insert_raw(&spine, block, &info->value_type,
+ keys[level], &index);
+ if (r < 0)
+ goto bad;
+
+ n = dm_block_data(shadow_current(&spine));
+
+ if (need_insert(n, keys, level, index)) {
+ if (inserted)
+ *inserted = 1;
+
+ r = insert_at(info->value_type.size, n, index,
+ keys[level], value);
+ if (r)
+ goto bad_unblessed;
+ } else {
+ if (inserted)
+ *inserted = 0;
+
+ if (info->value_type.dec &&
+ (!info->value_type.equal ||
+ !info->value_type.equal(
+ info->value_type.context,
+ value_ptr(n, index),
+ value))) {
+ info->value_type.dec(info->value_type.context,
+ value_ptr(n, index), 1);
+ }
+ memcpy_disk(value_ptr(n, index),
+ value, info->value_type.size);
+ }
+
+ *new_root = shadow_root(&spine);
+ exit_shadow_spine(&spine);
+
+ return 0;
+
+bad:
+ __dm_unbless_for_disk(value);
+bad_unblessed:
+ exit_shadow_spine(&spine);
+ return r;
+}
+
+int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, void *value, dm_block_t *new_root)
+ __dm_written_to_disk(value)
+{
+ return insert(info, root, keys, value, new_root, NULL);
+}
+EXPORT_SYMBOL_GPL(dm_btree_insert);
+
+int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, void *value, dm_block_t *new_root,
+ int *inserted)
+ __dm_written_to_disk(value)
+{
+ return insert(info, root, keys, value, new_root, inserted);
+}
+EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
+
+/*----------------------------------------------------------------*/
+
+static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
+ uint64_t *result_key, dm_block_t *next_block)
+{
+ int i, r;
+ uint32_t flags;
+
+ do {
+ r = ro_step(s, block);
+ if (r < 0)
+ return r;
+
+ flags = le32_to_cpu(ro_node(s)->header.flags);
+ i = le32_to_cpu(ro_node(s)->header.nr_entries);
+ if (!i)
+ return -ENODATA;
+ else
+ i--;
+
+ if (find_highest)
+ *result_key = le64_to_cpu(ro_node(s)->keys[i]);
+ else
+ *result_key = le64_to_cpu(ro_node(s)->keys[0]);
+
+ if (next_block || flags & INTERNAL_NODE) {
+ if (find_highest)
+ block = value64(ro_node(s), i);
+ else
+ block = value64(ro_node(s), 0);
+ }
+
+ } while (flags & INTERNAL_NODE);
+
+ if (next_block)
+ *next_block = block;
+ return 0;
+}
+
+static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
+ bool find_highest, uint64_t *result_keys)
+{
+ int r = 0, count = 0, level;
+ struct ro_spine spine;
+
+ init_ro_spine(&spine, info);
+ for (level = 0; level < info->levels; level++) {
+ r = find_key(&spine, root, find_highest, result_keys + level,
+ level == info->levels - 1 ? NULL : &root);
+ if (r == -ENODATA) {
+ r = 0;
+ break;
+
+ } else if (r)
+ break;
+
+ count++;
+ }
+ exit_ro_spine(&spine);
+
+ return r ? r : count;
+}
+
+int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *result_keys)
+{
+ return dm_btree_find_key(info, root, true, result_keys);
+}
+EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
+
+int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *result_keys)
+{
+ return dm_btree_find_key(info, root, false, result_keys);
+}
+EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
+
+/*----------------------------------------------------------------*/
+
+/*
+ * FIXME: We shouldn't use a recursive algorithm when we have limited stack
+ * space. Also this only works for single level trees.
+ */
+static int walk_node(struct dm_btree_info *info, dm_block_t block,
+ int (*fn)(void *context, uint64_t *keys, void *leaf),
+ void *context)
+{
+ int r;
+ unsigned int i, nr;
+ struct dm_block *node;
+ struct btree_node *n;
+ uint64_t keys;
+
+ r = bn_read_lock(info, block, &node);
+ if (r)
+ return r;
+
+ n = dm_block_data(node);
+
+ nr = le32_to_cpu(n->header.nr_entries);
+ for (i = 0; i < nr; i++) {
+ if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
+ r = walk_node(info, value64(n, i), fn, context);
+ if (r)
+ goto out;
+ } else {
+ keys = le64_to_cpu(*key_ptr(n, i));
+ r = fn(context, &keys, value_ptr(n, i));
+ if (r)
+ goto out;
+ }
+ }
+
+out:
+ dm_tm_unlock(info->tm, node);
+ return r;
+}
+
+int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
+ int (*fn)(void *context, uint64_t *keys, void *leaf),
+ void *context)
+{
+ BUG_ON(info->levels > 1);
+ return walk_node(info, root, fn, context);
+}
+EXPORT_SYMBOL_GPL(dm_btree_walk);
+
+/*----------------------------------------------------------------*/
+
+static void prefetch_values(struct dm_btree_cursor *c)
+{
+ unsigned int i, nr;
+ __le64 value_le;
+ struct cursor_node *n = c->nodes + c->depth - 1;
+ struct btree_node *bn = dm_block_data(n->b);
+ struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
+
+ BUG_ON(c->info->value_type.size != sizeof(value_le));
+
+ nr = le32_to_cpu(bn->header.nr_entries);
+ for (i = 0; i < nr; i++) {
+ memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
+ dm_bm_prefetch(bm, le64_to_cpu(value_le));
+ }
+}
+
+static bool leaf_node(struct dm_btree_cursor *c)
+{
+ struct cursor_node *n = c->nodes + c->depth - 1;
+ struct btree_node *bn = dm_block_data(n->b);
+
+ return le32_to_cpu(bn->header.flags) & LEAF_NODE;
+}
+
+static int push_node(struct dm_btree_cursor *c, dm_block_t b)
+{
+ int r;
+ struct cursor_node *n = c->nodes + c->depth;
+
+ if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
+ DMERR("couldn't push cursor node, stack depth too high");
+ return -EINVAL;
+ }
+
+ r = bn_read_lock(c->info, b, &n->b);
+ if (r)
+ return r;
+
+ n->index = 0;
+ c->depth++;
+
+ if (c->prefetch_leaves || !leaf_node(c))
+ prefetch_values(c);
+
+ return 0;
+}
+
+static void pop_node(struct dm_btree_cursor *c)
+{
+ c->depth--;
+ unlock_block(c->info, c->nodes[c->depth].b);
+}
+
+static int inc_or_backtrack(struct dm_btree_cursor *c)
+{
+ struct cursor_node *n;
+ struct btree_node *bn;
+
+ for (;;) {
+ if (!c->depth)
+ return -ENODATA;
+
+ n = c->nodes + c->depth - 1;
+ bn = dm_block_data(n->b);
+
+ n->index++;
+ if (n->index < le32_to_cpu(bn->header.nr_entries))
+ break;
+
+ pop_node(c);
+ }
+
+ return 0;
+}
+
+static int find_leaf(struct dm_btree_cursor *c)
+{
+ int r = 0;
+ struct cursor_node *n;
+ struct btree_node *bn;
+ __le64 value_le;
+
+ for (;;) {
+ n = c->nodes + c->depth - 1;
+ bn = dm_block_data(n->b);
+
+ if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
+ break;
+
+ memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
+ r = push_node(c, le64_to_cpu(value_le));
+ if (r) {
+ DMERR("push_node failed");
+ break;
+ }
+ }
+
+ if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
+ return -ENODATA;
+
+ return r;
+}
+
+int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
+ bool prefetch_leaves, struct dm_btree_cursor *c)
+{
+ int r;
+
+ c->info = info;
+ c->root = root;
+ c->depth = 0;
+ c->prefetch_leaves = prefetch_leaves;
+
+ r = push_node(c, root);
+ if (r)
+ return r;
+
+ return find_leaf(c);
+}
+EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
+
+void dm_btree_cursor_end(struct dm_btree_cursor *c)
+{
+ while (c->depth)
+ pop_node(c);
+}
+EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
+
+int dm_btree_cursor_next(struct dm_btree_cursor *c)
+{
+ int r = inc_or_backtrack(c);
+ if (!r) {
+ r = find_leaf(c);
+ if (r)
+ DMERR("find_leaf failed");
+ }
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
+
+int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
+{
+ int r = 0;
+
+ while (count-- && !r)
+ r = dm_btree_cursor_next(c);
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
+
+int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
+{
+ if (c->depth) {
+ struct cursor_node *n = c->nodes + c->depth - 1;
+ struct btree_node *bn = dm_block_data(n->b);
+
+ if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
+ return -EINVAL;
+
+ *key = le64_to_cpu(*key_ptr(bn, n->index));
+ memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
+ return 0;
+
+ } else
+ return -ENODATA;
+}
+EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);
diff --git a/drivers/md/persistent-data/dm-btree.h b/drivers/md/persistent-data/dm-btree.h
new file mode 100644
index 000000000..5566e7c32
--- /dev/null
+++ b/drivers/md/persistent-data/dm-btree.h
@@ -0,0 +1,215 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+#ifndef _LINUX_DM_BTREE_H
+#define _LINUX_DM_BTREE_H
+
+#include "dm-block-manager.h"
+
+struct dm_transaction_manager;
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Annotations used to check on-disk metadata is handled as little-endian.
+ */
+#ifdef __CHECKER__
+# define __dm_written_to_disk(x) __releases(x)
+# define __dm_reads_from_disk(x) __acquires(x)
+# define __dm_bless_for_disk(x) __acquire(x)
+# define __dm_unbless_for_disk(x) __release(x)
+#else
+# define __dm_written_to_disk(x)
+# define __dm_reads_from_disk(x)
+# define __dm_bless_for_disk(x)
+# define __dm_unbless_for_disk(x)
+#endif
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Manipulates hierarchical B+ trees with 64-bit keys and arbitrary-sized
+ * values.
+ */
+
+/*
+ * Information about the values stored within the btree.
+ */
+struct dm_btree_value_type {
+ void *context;
+
+ /*
+ * The size in bytes of each value.
+ */
+ uint32_t size;
+
+ /*
+ * Any of these methods can be safely set to NULL if you do not
+ * need the corresponding feature.
+ */
+
+ /*
+ * The btree is making a duplicate of a run of values, for instance
+ * because previously-shared btree nodes have now diverged.
+ * @value argument is the new copy that the copy function may modify.
+ * (Probably it just wants to increment a reference count
+ * somewhere.) This method is _not_ called for insertion of a new
+ * value: It is assumed the ref count is already 1.
+ */
+ void (*inc)(void *context, const void *value, unsigned int count);
+
+ /*
+ * These values are being deleted. The btree takes care of freeing
+ * the memory pointed to by @value. Often the del function just
+ * needs to decrement a reference counts somewhere.
+ */
+ void (*dec)(void *context, const void *value, unsigned int count);
+
+ /*
+ * A test for equality between two values. When a value is
+ * overwritten with a new one, the old one has the dec method
+ * called _unless_ the new and old value are deemed equal.
+ */
+ int (*equal)(void *context, const void *value1, const void *value2);
+};
+
+/*
+ * The shape and contents of a btree.
+ */
+struct dm_btree_info {
+ struct dm_transaction_manager *tm;
+
+ /*
+ * Number of nested btrees. (Not the depth of a single tree.)
+ */
+ unsigned int levels;
+ struct dm_btree_value_type value_type;
+};
+
+/*
+ * Set up an empty tree. O(1).
+ */
+int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root);
+
+/*
+ * Delete a tree. O(n) - this is the slow one! It can also block, so
+ * please don't call it on an IO path.
+ */
+int dm_btree_del(struct dm_btree_info *info, dm_block_t root);
+
+/*
+ * All the lookup functions return -ENODATA if the key cannot be found.
+ */
+
+/*
+ * Tries to find a key that matches exactly. O(ln(n))
+ */
+int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, void *value_le);
+
+/*
+ * Tries to find the first key where the bottom level key is >= to that
+ * given. Useful for skipping empty sections of the btree.
+ */
+int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, uint64_t *rkey, void *value_le);
+
+/*
+ * Insertion (or overwrite an existing value). O(ln(n))
+ */
+int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, void *value, dm_block_t *new_root)
+ __dm_written_to_disk(value);
+
+/*
+ * A variant of insert that indicates whether it actually inserted or just
+ * overwrote. Useful if you're keeping track of the number of entries in a
+ * tree.
+ */
+int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, void *value, dm_block_t *new_root,
+ int *inserted)
+ __dm_written_to_disk(value);
+
+/*
+ * Remove a key if present. This doesn't remove empty sub trees. Normally
+ * subtrees represent a separate entity, like a snapshot map, so this is
+ * correct behaviour. O(ln(n)).
+ */
+int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, dm_block_t *new_root);
+
+/*
+ * Removes a _contiguous_ run of values starting from 'keys' and not
+ * reaching keys2 (where keys2 is keys with the final key replaced with
+ * 'end_key'). 'end_key' is the one-past-the-end value. 'keys' may be
+ * altered.
+ */
+int dm_btree_remove_leaves(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, uint64_t end_key,
+ dm_block_t *new_root, unsigned int *nr_removed);
+
+/*
+ * Returns < 0 on failure. Otherwise the number of key entries that have
+ * been filled out. Remember trees can have zero entries, and as such have
+ * no lowest key.
+ */
+int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *result_keys);
+
+/*
+ * Returns < 0 on failure. Otherwise the number of key entries that have
+ * been filled out. Remember trees can have zero entries, and as such have
+ * no highest key.
+ */
+int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *result_keys);
+
+/*
+ * Iterate through the a btree, calling fn() on each entry.
+ * It only works for single level trees and is internally recursive, so
+ * monitor stack usage carefully.
+ */
+int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
+ int (*fn)(void *context, uint64_t *keys, void *leaf),
+ void *context);
+
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Cursor API. This does not follow the rolling lock convention. Since we
+ * know the order that values are required we can issue prefetches to speed
+ * up iteration. Use on a single level btree only.
+ */
+#define DM_BTREE_CURSOR_MAX_DEPTH 16
+
+struct cursor_node {
+ struct dm_block *b;
+ unsigned int index;
+};
+
+struct dm_btree_cursor {
+ struct dm_btree_info *info;
+ dm_block_t root;
+
+ bool prefetch_leaves;
+ unsigned int depth;
+ struct cursor_node nodes[DM_BTREE_CURSOR_MAX_DEPTH];
+};
+
+/*
+ * Creates a fresh cursor. If prefetch_leaves is set then it is assumed
+ * the btree contains block indexes that will be prefetched. The cursor is
+ * quite large, so you probably don't want to put it on the stack.
+ */
+int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
+ bool prefetch_leaves, struct dm_btree_cursor *c);
+void dm_btree_cursor_end(struct dm_btree_cursor *c);
+int dm_btree_cursor_next(struct dm_btree_cursor *c);
+int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count);
+int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le);
+
+#endif /* _LINUX_DM_BTREE_H */
diff --git a/drivers/md/persistent-data/dm-persistent-data-internal.h b/drivers/md/persistent-data/dm-persistent-data-internal.h
new file mode 100644
index 000000000..b945a2be9
--- /dev/null
+++ b/drivers/md/persistent-data/dm-persistent-data-internal.h
@@ -0,0 +1,19 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef _DM_PERSISTENT_DATA_INTERNAL_H
+#define _DM_PERSISTENT_DATA_INTERNAL_H
+
+#include "dm-block-manager.h"
+
+static inline unsigned int dm_hash_block(dm_block_t b, unsigned int hash_mask)
+{
+ const unsigned int BIG_PRIME = 4294967291UL;
+
+ return (((unsigned int) b) * BIG_PRIME) & hash_mask;
+}
+
+#endif /* _PERSISTENT_DATA_INTERNAL_H */
diff --git a/drivers/md/persistent-data/dm-space-map-common.c b/drivers/md/persistent-data/dm-space-map-common.c
new file mode 100644
index 000000000..af800efed
--- /dev/null
+++ b/drivers/md/persistent-data/dm-space-map-common.c
@@ -0,0 +1,1259 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-space-map-common.h"
+#include "dm-transaction-manager.h"
+#include "dm-btree-internal.h"
+#include "dm-persistent-data-internal.h"
+
+#include <linux/bitops.h>
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "space map common"
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Index validator.
+ */
+#define INDEX_CSUM_XOR 160478
+
+static void index_prepare_for_write(struct dm_block_validator *v,
+ struct dm_block *b,
+ size_t block_size)
+{
+ struct disk_metadata_index *mi_le = dm_block_data(b);
+
+ mi_le->blocknr = cpu_to_le64(dm_block_location(b));
+ mi_le->csum = cpu_to_le32(dm_bm_checksum(&mi_le->padding,
+ block_size - sizeof(__le32),
+ INDEX_CSUM_XOR));
+}
+
+static int index_check(struct dm_block_validator *v,
+ struct dm_block *b,
+ size_t block_size)
+{
+ struct disk_metadata_index *mi_le = dm_block_data(b);
+ __le32 csum_disk;
+
+ if (dm_block_location(b) != le64_to_cpu(mi_le->blocknr)) {
+ DMERR_LIMIT("index_check failed: blocknr %llu != wanted %llu",
+ le64_to_cpu(mi_le->blocknr), dm_block_location(b));
+ return -ENOTBLK;
+ }
+
+ csum_disk = cpu_to_le32(dm_bm_checksum(&mi_le->padding,
+ block_size - sizeof(__le32),
+ INDEX_CSUM_XOR));
+ if (csum_disk != mi_le->csum) {
+ DMERR_LIMIT("index_check failed: csum %u != wanted %u",
+ le32_to_cpu(csum_disk), le32_to_cpu(mi_le->csum));
+ return -EILSEQ;
+ }
+
+ return 0;
+}
+
+static struct dm_block_validator index_validator = {
+ .name = "index",
+ .prepare_for_write = index_prepare_for_write,
+ .check = index_check
+};
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Bitmap validator
+ */
+#define BITMAP_CSUM_XOR 240779
+
+static void dm_bitmap_prepare_for_write(struct dm_block_validator *v,
+ struct dm_block *b,
+ size_t block_size)
+{
+ struct disk_bitmap_header *disk_header = dm_block_data(b);
+
+ disk_header->blocknr = cpu_to_le64(dm_block_location(b));
+ disk_header->csum = cpu_to_le32(dm_bm_checksum(&disk_header->not_used,
+ block_size - sizeof(__le32),
+ BITMAP_CSUM_XOR));
+}
+
+static int dm_bitmap_check(struct dm_block_validator *v,
+ struct dm_block *b,
+ size_t block_size)
+{
+ struct disk_bitmap_header *disk_header = dm_block_data(b);
+ __le32 csum_disk;
+
+ if (dm_block_location(b) != le64_to_cpu(disk_header->blocknr)) {
+ DMERR_LIMIT("bitmap check failed: blocknr %llu != wanted %llu",
+ le64_to_cpu(disk_header->blocknr), dm_block_location(b));
+ return -ENOTBLK;
+ }
+
+ csum_disk = cpu_to_le32(dm_bm_checksum(&disk_header->not_used,
+ block_size - sizeof(__le32),
+ BITMAP_CSUM_XOR));
+ if (csum_disk != disk_header->csum) {
+ DMERR_LIMIT("bitmap check failed: csum %u != wanted %u",
+ le32_to_cpu(csum_disk), le32_to_cpu(disk_header->csum));
+ return -EILSEQ;
+ }
+
+ return 0;
+}
+
+static struct dm_block_validator dm_sm_bitmap_validator = {
+ .name = "sm_bitmap",
+ .prepare_for_write = dm_bitmap_prepare_for_write,
+ .check = dm_bitmap_check,
+};
+
+/*----------------------------------------------------------------*/
+
+#define ENTRIES_PER_WORD 32
+#define ENTRIES_SHIFT 5
+
+static void *dm_bitmap_data(struct dm_block *b)
+{
+ return dm_block_data(b) + sizeof(struct disk_bitmap_header);
+}
+
+#define WORD_MASK_HIGH 0xAAAAAAAAAAAAAAAAULL
+
+static unsigned int dm_bitmap_word_used(void *addr, unsigned int b)
+{
+ __le64 *words_le = addr;
+ __le64 *w_le = words_le + (b >> ENTRIES_SHIFT);
+
+ uint64_t bits = le64_to_cpu(*w_le);
+ uint64_t mask = (bits + WORD_MASK_HIGH + 1) & WORD_MASK_HIGH;
+
+ return !(~bits & mask);
+}
+
+static unsigned int sm_lookup_bitmap(void *addr, unsigned int b)
+{
+ __le64 *words_le = addr;
+ __le64 *w_le = words_le + (b >> ENTRIES_SHIFT);
+ unsigned int hi, lo;
+
+ b = (b & (ENTRIES_PER_WORD - 1)) << 1;
+ hi = !!test_bit_le(b, (void *) w_le);
+ lo = !!test_bit_le(b + 1, (void *) w_le);
+ return (hi << 1) | lo;
+}
+
+static void sm_set_bitmap(void *addr, unsigned int b, unsigned int val)
+{
+ __le64 *words_le = addr;
+ __le64 *w_le = words_le + (b >> ENTRIES_SHIFT);
+
+ b = (b & (ENTRIES_PER_WORD - 1)) << 1;
+
+ if (val & 2)
+ __set_bit_le(b, (void *) w_le);
+ else
+ __clear_bit_le(b, (void *) w_le);
+
+ if (val & 1)
+ __set_bit_le(b + 1, (void *) w_le);
+ else
+ __clear_bit_le(b + 1, (void *) w_le);
+}
+
+static int sm_find_free(void *addr, unsigned int begin, unsigned int end,
+ unsigned int *result)
+{
+ while (begin < end) {
+ if (!(begin & (ENTRIES_PER_WORD - 1)) &&
+ dm_bitmap_word_used(addr, begin)) {
+ begin += ENTRIES_PER_WORD;
+ continue;
+ }
+
+ if (!sm_lookup_bitmap(addr, begin)) {
+ *result = begin;
+ return 0;
+ }
+
+ begin++;
+ }
+
+ return -ENOSPC;
+}
+
+/*----------------------------------------------------------------*/
+
+static int sm_ll_init(struct ll_disk *ll, struct dm_transaction_manager *tm)
+{
+ memset(ll, 0, sizeof(struct ll_disk));
+
+ ll->tm = tm;
+
+ ll->bitmap_info.tm = tm;
+ ll->bitmap_info.levels = 1;
+
+ /*
+ * Because the new bitmap blocks are created via a shadow
+ * operation, the old entry has already had its reference count
+ * decremented and we don't need the btree to do any bookkeeping.
+ */
+ ll->bitmap_info.value_type.size = sizeof(struct disk_index_entry);
+ ll->bitmap_info.value_type.inc = NULL;
+ ll->bitmap_info.value_type.dec = NULL;
+ ll->bitmap_info.value_type.equal = NULL;
+
+ ll->ref_count_info.tm = tm;
+ ll->ref_count_info.levels = 1;
+ ll->ref_count_info.value_type.size = sizeof(uint32_t);
+ ll->ref_count_info.value_type.inc = NULL;
+ ll->ref_count_info.value_type.dec = NULL;
+ ll->ref_count_info.value_type.equal = NULL;
+
+ ll->block_size = dm_bm_block_size(dm_tm_get_bm(tm));
+
+ if (ll->block_size > (1 << 30)) {
+ DMERR("block size too big to hold bitmaps");
+ return -EINVAL;
+ }
+
+ ll->entries_per_block = (ll->block_size - sizeof(struct disk_bitmap_header)) *
+ ENTRIES_PER_BYTE;
+ ll->nr_blocks = 0;
+ ll->bitmap_root = 0;
+ ll->ref_count_root = 0;
+ ll->bitmap_index_changed = false;
+
+ return 0;
+}
+
+int sm_ll_extend(struct ll_disk *ll, dm_block_t extra_blocks)
+{
+ int r;
+ dm_block_t i, nr_blocks, nr_indexes;
+ unsigned int old_blocks, blocks;
+
+ nr_blocks = ll->nr_blocks + extra_blocks;
+ old_blocks = dm_sector_div_up(ll->nr_blocks, ll->entries_per_block);
+ blocks = dm_sector_div_up(nr_blocks, ll->entries_per_block);
+
+ nr_indexes = dm_sector_div_up(nr_blocks, ll->entries_per_block);
+ if (nr_indexes > ll->max_entries(ll)) {
+ DMERR("space map too large");
+ return -EINVAL;
+ }
+
+ /*
+ * We need to set this before the dm_tm_new_block() call below.
+ */
+ ll->nr_blocks = nr_blocks;
+ for (i = old_blocks; i < blocks; i++) {
+ struct dm_block *b;
+ struct disk_index_entry idx;
+
+ r = dm_tm_new_block(ll->tm, &dm_sm_bitmap_validator, &b);
+ if (r < 0)
+ return r;
+
+ idx.blocknr = cpu_to_le64(dm_block_location(b));
+
+ dm_tm_unlock(ll->tm, b);
+
+ idx.nr_free = cpu_to_le32(ll->entries_per_block);
+ idx.none_free_before = 0;
+
+ r = ll->save_ie(ll, i, &idx);
+ if (r < 0)
+ return r;
+ }
+
+ return 0;
+}
+
+int sm_ll_lookup_bitmap(struct ll_disk *ll, dm_block_t b, uint32_t *result)
+{
+ int r;
+ dm_block_t index = b;
+ struct disk_index_entry ie_disk;
+ struct dm_block *blk;
+
+ if (b >= ll->nr_blocks) {
+ DMERR_LIMIT("metadata block out of bounds");
+ return -EINVAL;
+ }
+
+ b = do_div(index, ll->entries_per_block);
+ r = ll->load_ie(ll, index, &ie_disk);
+ if (r < 0)
+ return r;
+
+ r = dm_tm_read_lock(ll->tm, le64_to_cpu(ie_disk.blocknr),
+ &dm_sm_bitmap_validator, &blk);
+ if (r < 0)
+ return r;
+
+ *result = sm_lookup_bitmap(dm_bitmap_data(blk), b);
+
+ dm_tm_unlock(ll->tm, blk);
+
+ return 0;
+}
+
+static int sm_ll_lookup_big_ref_count(struct ll_disk *ll, dm_block_t b,
+ uint32_t *result)
+{
+ __le32 le_rc;
+ int r;
+
+ r = dm_btree_lookup(&ll->ref_count_info, ll->ref_count_root, &b, &le_rc);
+ if (r < 0)
+ return r;
+
+ *result = le32_to_cpu(le_rc);
+
+ return r;
+}
+
+int sm_ll_lookup(struct ll_disk *ll, dm_block_t b, uint32_t *result)
+{
+ int r = sm_ll_lookup_bitmap(ll, b, result);
+
+ if (r)
+ return r;
+
+ if (*result != 3)
+ return r;
+
+ return sm_ll_lookup_big_ref_count(ll, b, result);
+}
+
+int sm_ll_find_free_block(struct ll_disk *ll, dm_block_t begin,
+ dm_block_t end, dm_block_t *result)
+{
+ int r;
+ struct disk_index_entry ie_disk;
+ dm_block_t i, index_begin = begin;
+ dm_block_t index_end = dm_sector_div_up(end, ll->entries_per_block);
+
+ /*
+ * FIXME: Use shifts
+ */
+ begin = do_div(index_begin, ll->entries_per_block);
+ end = do_div(end, ll->entries_per_block);
+ if (end == 0)
+ end = ll->entries_per_block;
+
+ for (i = index_begin; i < index_end; i++, begin = 0) {
+ struct dm_block *blk;
+ unsigned int position;
+ uint32_t bit_end;
+
+ r = ll->load_ie(ll, i, &ie_disk);
+ if (r < 0)
+ return r;
+
+ if (le32_to_cpu(ie_disk.nr_free) == 0)
+ continue;
+
+ r = dm_tm_read_lock(ll->tm, le64_to_cpu(ie_disk.blocknr),
+ &dm_sm_bitmap_validator, &blk);
+ if (r < 0)
+ return r;
+
+ bit_end = (i == index_end - 1) ? end : ll->entries_per_block;
+
+ r = sm_find_free(dm_bitmap_data(blk),
+ max_t(unsigned int, begin, le32_to_cpu(ie_disk.none_free_before)),
+ bit_end, &position);
+ if (r == -ENOSPC) {
+ /*
+ * This might happen because we started searching
+ * part way through the bitmap.
+ */
+ dm_tm_unlock(ll->tm, blk);
+ continue;
+ }
+
+ dm_tm_unlock(ll->tm, blk);
+
+ *result = i * ll->entries_per_block + (dm_block_t) position;
+ return 0;
+ }
+
+ return -ENOSPC;
+}
+
+int sm_ll_find_common_free_block(struct ll_disk *old_ll, struct ll_disk *new_ll,
+ dm_block_t begin, dm_block_t end, dm_block_t *b)
+{
+ int r;
+ uint32_t count;
+
+ do {
+ r = sm_ll_find_free_block(new_ll, begin, new_ll->nr_blocks, b);
+ if (r)
+ break;
+
+ /* double check this block wasn't used in the old transaction */
+ if (*b >= old_ll->nr_blocks)
+ count = 0;
+ else {
+ r = sm_ll_lookup(old_ll, *b, &count);
+ if (r)
+ break;
+
+ if (count)
+ begin = *b + 1;
+ }
+ } while (count);
+
+ return r;
+}
+
+/*----------------------------------------------------------------*/
+
+int sm_ll_insert(struct ll_disk *ll, dm_block_t b,
+ uint32_t ref_count, int32_t *nr_allocations)
+{
+ int r;
+ uint32_t bit, old;
+ struct dm_block *nb;
+ dm_block_t index = b;
+ struct disk_index_entry ie_disk;
+ void *bm_le;
+ int inc;
+
+ bit = do_div(index, ll->entries_per_block);
+ r = ll->load_ie(ll, index, &ie_disk);
+ if (r < 0)
+ return r;
+
+ r = dm_tm_shadow_block(ll->tm, le64_to_cpu(ie_disk.blocknr),
+ &dm_sm_bitmap_validator, &nb, &inc);
+ if (r < 0) {
+ DMERR("dm_tm_shadow_block() failed");
+ return r;
+ }
+ ie_disk.blocknr = cpu_to_le64(dm_block_location(nb));
+ bm_le = dm_bitmap_data(nb);
+
+ old = sm_lookup_bitmap(bm_le, bit);
+ if (old > 2) {
+ r = sm_ll_lookup_big_ref_count(ll, b, &old);
+ if (r < 0) {
+ dm_tm_unlock(ll->tm, nb);
+ return r;
+ }
+ }
+
+ if (r) {
+ dm_tm_unlock(ll->tm, nb);
+ return r;
+ }
+
+ if (ref_count <= 2) {
+ sm_set_bitmap(bm_le, bit, ref_count);
+ dm_tm_unlock(ll->tm, nb);
+
+ if (old > 2) {
+ r = dm_btree_remove(&ll->ref_count_info,
+ ll->ref_count_root,
+ &b, &ll->ref_count_root);
+ if (r)
+ return r;
+ }
+
+ } else {
+ __le32 le_rc = cpu_to_le32(ref_count);
+
+ sm_set_bitmap(bm_le, bit, 3);
+ dm_tm_unlock(ll->tm, nb);
+
+ __dm_bless_for_disk(&le_rc);
+ r = dm_btree_insert(&ll->ref_count_info, ll->ref_count_root,
+ &b, &le_rc, &ll->ref_count_root);
+ if (r < 0) {
+ DMERR("ref count insert failed");
+ return r;
+ }
+ }
+
+ if (ref_count && !old) {
+ *nr_allocations = 1;
+ ll->nr_allocated++;
+ le32_add_cpu(&ie_disk.nr_free, -1);
+ if (le32_to_cpu(ie_disk.none_free_before) == bit)
+ ie_disk.none_free_before = cpu_to_le32(bit + 1);
+
+ } else if (old && !ref_count) {
+ *nr_allocations = -1;
+ ll->nr_allocated--;
+ le32_add_cpu(&ie_disk.nr_free, 1);
+ ie_disk.none_free_before = cpu_to_le32(min(le32_to_cpu(ie_disk.none_free_before), bit));
+ } else
+ *nr_allocations = 0;
+
+ return ll->save_ie(ll, index, &ie_disk);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Holds useful intermediate results for the range based inc and dec
+ * operations.
+ */
+struct inc_context {
+ struct disk_index_entry ie_disk;
+ struct dm_block *bitmap_block;
+ void *bitmap;
+
+ struct dm_block *overflow_leaf;
+};
+
+static inline void init_inc_context(struct inc_context *ic)
+{
+ ic->bitmap_block = NULL;
+ ic->bitmap = NULL;
+ ic->overflow_leaf = NULL;
+}
+
+static inline void exit_inc_context(struct ll_disk *ll, struct inc_context *ic)
+{
+ if (ic->bitmap_block)
+ dm_tm_unlock(ll->tm, ic->bitmap_block);
+ if (ic->overflow_leaf)
+ dm_tm_unlock(ll->tm, ic->overflow_leaf);
+}
+
+static inline void reset_inc_context(struct ll_disk *ll, struct inc_context *ic)
+{
+ exit_inc_context(ll, ic);
+ init_inc_context(ic);
+}
+
+/*
+ * Confirms a btree node contains a particular key at an index.
+ */
+static bool contains_key(struct btree_node *n, uint64_t key, int index)
+{
+ return index >= 0 &&
+ index < le32_to_cpu(n->header.nr_entries) &&
+ le64_to_cpu(n->keys[index]) == key;
+}
+
+static int __sm_ll_inc_overflow(struct ll_disk *ll, dm_block_t b, struct inc_context *ic)
+{
+ int r;
+ int index;
+ struct btree_node *n;
+ __le32 *v_ptr;
+ uint32_t rc;
+
+ /*
+ * bitmap_block needs to be unlocked because getting the
+ * overflow_leaf may need to allocate, and thus use the space map.
+ */
+ reset_inc_context(ll, ic);
+
+ r = btree_get_overwrite_leaf(&ll->ref_count_info, ll->ref_count_root,
+ b, &index, &ll->ref_count_root, &ic->overflow_leaf);
+ if (r < 0)
+ return r;
+
+ n = dm_block_data(ic->overflow_leaf);
+
+ if (!contains_key(n, b, index)) {
+ DMERR("overflow btree is missing an entry");
+ return -EINVAL;
+ }
+
+ v_ptr = value_ptr(n, index);
+ rc = le32_to_cpu(*v_ptr) + 1;
+ *v_ptr = cpu_to_le32(rc);
+
+ return 0;
+}
+
+static int sm_ll_inc_overflow(struct ll_disk *ll, dm_block_t b, struct inc_context *ic)
+{
+ int index;
+ struct btree_node *n;
+ __le32 *v_ptr;
+ uint32_t rc;
+
+ /*
+ * Do we already have the correct overflow leaf?
+ */
+ if (ic->overflow_leaf) {
+ n = dm_block_data(ic->overflow_leaf);
+ index = lower_bound(n, b);
+ if (contains_key(n, b, index)) {
+ v_ptr = value_ptr(n, index);
+ rc = le32_to_cpu(*v_ptr) + 1;
+ *v_ptr = cpu_to_le32(rc);
+
+ return 0;
+ }
+ }
+
+ return __sm_ll_inc_overflow(ll, b, ic);
+}
+
+static inline int shadow_bitmap(struct ll_disk *ll, struct inc_context *ic)
+{
+ int r, inc;
+ r = dm_tm_shadow_block(ll->tm, le64_to_cpu(ic->ie_disk.blocknr),
+ &dm_sm_bitmap_validator, &ic->bitmap_block, &inc);
+ if (r < 0) {
+ DMERR("dm_tm_shadow_block() failed");
+ return r;
+ }
+ ic->ie_disk.blocknr = cpu_to_le64(dm_block_location(ic->bitmap_block));
+ ic->bitmap = dm_bitmap_data(ic->bitmap_block);
+ return 0;
+}
+
+/*
+ * Once shadow_bitmap has been called, which always happens at the start of inc/dec,
+ * we can reopen the bitmap with a simple write lock, rather than re calling
+ * dm_tm_shadow_block().
+ */
+static inline int ensure_bitmap(struct ll_disk *ll, struct inc_context *ic)
+{
+ if (!ic->bitmap_block) {
+ int r = dm_bm_write_lock(dm_tm_get_bm(ll->tm), le64_to_cpu(ic->ie_disk.blocknr),
+ &dm_sm_bitmap_validator, &ic->bitmap_block);
+ if (r) {
+ DMERR("unable to re-get write lock for bitmap");
+ return r;
+ }
+ ic->bitmap = dm_bitmap_data(ic->bitmap_block);
+ }
+
+ return 0;
+}
+
+/*
+ * Loops round incrementing entries in a single bitmap.
+ */
+static inline int sm_ll_inc_bitmap(struct ll_disk *ll, dm_block_t b,
+ uint32_t bit, uint32_t bit_end,
+ int32_t *nr_allocations, dm_block_t *new_b,
+ struct inc_context *ic)
+{
+ int r;
+ __le32 le_rc;
+ uint32_t old;
+
+ for (; bit != bit_end; bit++, b++) {
+ /*
+ * We only need to drop the bitmap if we need to find a new btree
+ * leaf for the overflow. So if it was dropped last iteration,
+ * we now re-get it.
+ */
+ r = ensure_bitmap(ll, ic);
+ if (r)
+ return r;
+
+ old = sm_lookup_bitmap(ic->bitmap, bit);
+ switch (old) {
+ case 0:
+ /* inc bitmap, adjust nr_allocated */
+ sm_set_bitmap(ic->bitmap, bit, 1);
+ (*nr_allocations)++;
+ ll->nr_allocated++;
+ le32_add_cpu(&ic->ie_disk.nr_free, -1);
+ if (le32_to_cpu(ic->ie_disk.none_free_before) == bit)
+ ic->ie_disk.none_free_before = cpu_to_le32(bit + 1);
+ break;
+
+ case 1:
+ /* inc bitmap */
+ sm_set_bitmap(ic->bitmap, bit, 2);
+ break;
+
+ case 2:
+ /* inc bitmap and insert into overflow */
+ sm_set_bitmap(ic->bitmap, bit, 3);
+ reset_inc_context(ll, ic);
+
+ le_rc = cpu_to_le32(3);
+ __dm_bless_for_disk(&le_rc);
+ r = dm_btree_insert(&ll->ref_count_info, ll->ref_count_root,
+ &b, &le_rc, &ll->ref_count_root);
+ if (r < 0) {
+ DMERR("ref count insert failed");
+ return r;
+ }
+ break;
+
+ default:
+ /*
+ * inc within the overflow tree only.
+ */
+ r = sm_ll_inc_overflow(ll, b, ic);
+ if (r < 0)
+ return r;
+ }
+ }
+
+ *new_b = b;
+ return 0;
+}
+
+/*
+ * Finds a bitmap that contains entries in the block range, and increments
+ * them.
+ */
+static int __sm_ll_inc(struct ll_disk *ll, dm_block_t b, dm_block_t e,
+ int32_t *nr_allocations, dm_block_t *new_b)
+{
+ int r;
+ struct inc_context ic;
+ uint32_t bit, bit_end;
+ dm_block_t index = b;
+
+ init_inc_context(&ic);
+
+ bit = do_div(index, ll->entries_per_block);
+ r = ll->load_ie(ll, index, &ic.ie_disk);
+ if (r < 0)
+ return r;
+
+ r = shadow_bitmap(ll, &ic);
+ if (r)
+ return r;
+
+ bit_end = min(bit + (e - b), (dm_block_t) ll->entries_per_block);
+ r = sm_ll_inc_bitmap(ll, b, bit, bit_end, nr_allocations, new_b, &ic);
+
+ exit_inc_context(ll, &ic);
+
+ if (r)
+ return r;
+
+ return ll->save_ie(ll, index, &ic.ie_disk);
+}
+
+int sm_ll_inc(struct ll_disk *ll, dm_block_t b, dm_block_t e,
+ int32_t *nr_allocations)
+{
+ *nr_allocations = 0;
+ while (b != e) {
+ int r = __sm_ll_inc(ll, b, e, nr_allocations, &b);
+ if (r)
+ return r;
+ }
+
+ return 0;
+}
+
+/*----------------------------------------------------------------*/
+
+static int __sm_ll_del_overflow(struct ll_disk *ll, dm_block_t b,
+ struct inc_context *ic)
+{
+ reset_inc_context(ll, ic);
+ return dm_btree_remove(&ll->ref_count_info, ll->ref_count_root,
+ &b, &ll->ref_count_root);
+}
+
+static int __sm_ll_dec_overflow(struct ll_disk *ll, dm_block_t b,
+ struct inc_context *ic, uint32_t *old_rc)
+{
+ int r;
+ int index = -1;
+ struct btree_node *n;
+ __le32 *v_ptr;
+ uint32_t rc;
+
+ reset_inc_context(ll, ic);
+ r = btree_get_overwrite_leaf(&ll->ref_count_info, ll->ref_count_root,
+ b, &index, &ll->ref_count_root, &ic->overflow_leaf);
+ if (r < 0)
+ return r;
+
+ n = dm_block_data(ic->overflow_leaf);
+
+ if (!contains_key(n, b, index)) {
+ DMERR("overflow btree is missing an entry");
+ return -EINVAL;
+ }
+
+ v_ptr = value_ptr(n, index);
+ rc = le32_to_cpu(*v_ptr);
+ *old_rc = rc;
+
+ if (rc == 3) {
+ return __sm_ll_del_overflow(ll, b, ic);
+ } else {
+ rc--;
+ *v_ptr = cpu_to_le32(rc);
+ return 0;
+ }
+}
+
+static int sm_ll_dec_overflow(struct ll_disk *ll, dm_block_t b,
+ struct inc_context *ic, uint32_t *old_rc)
+{
+ /*
+ * Do we already have the correct overflow leaf?
+ */
+ if (ic->overflow_leaf) {
+ int index;
+ struct btree_node *n;
+ __le32 *v_ptr;
+ uint32_t rc;
+
+ n = dm_block_data(ic->overflow_leaf);
+ index = lower_bound(n, b);
+ if (contains_key(n, b, index)) {
+ v_ptr = value_ptr(n, index);
+ rc = le32_to_cpu(*v_ptr);
+ *old_rc = rc;
+
+ if (rc > 3) {
+ rc--;
+ *v_ptr = cpu_to_le32(rc);
+ return 0;
+ } else {
+ return __sm_ll_del_overflow(ll, b, ic);
+ }
+
+ }
+ }
+
+ return __sm_ll_dec_overflow(ll, b, ic, old_rc);
+}
+
+/*
+ * Loops round incrementing entries in a single bitmap.
+ */
+static inline int sm_ll_dec_bitmap(struct ll_disk *ll, dm_block_t b,
+ uint32_t bit, uint32_t bit_end,
+ struct inc_context *ic,
+ int32_t *nr_allocations, dm_block_t *new_b)
+{
+ int r;
+ uint32_t old;
+
+ for (; bit != bit_end; bit++, b++) {
+ /*
+ * We only need to drop the bitmap if we need to find a new btree
+ * leaf for the overflow. So if it was dropped last iteration,
+ * we now re-get it.
+ */
+ r = ensure_bitmap(ll, ic);
+ if (r)
+ return r;
+
+ old = sm_lookup_bitmap(ic->bitmap, bit);
+ switch (old) {
+ case 0:
+ DMERR("unable to decrement block");
+ return -EINVAL;
+
+ case 1:
+ /* dec bitmap */
+ sm_set_bitmap(ic->bitmap, bit, 0);
+ (*nr_allocations)--;
+ ll->nr_allocated--;
+ le32_add_cpu(&ic->ie_disk.nr_free, 1);
+ ic->ie_disk.none_free_before =
+ cpu_to_le32(min(le32_to_cpu(ic->ie_disk.none_free_before), bit));
+ break;
+
+ case 2:
+ /* dec bitmap and insert into overflow */
+ sm_set_bitmap(ic->bitmap, bit, 1);
+ break;
+
+ case 3:
+ r = sm_ll_dec_overflow(ll, b, ic, &old);
+ if (r < 0)
+ return r;
+
+ if (old == 3) {
+ r = ensure_bitmap(ll, ic);
+ if (r)
+ return r;
+
+ sm_set_bitmap(ic->bitmap, bit, 2);
+ }
+ break;
+ }
+ }
+
+ *new_b = b;
+ return 0;
+}
+
+static int __sm_ll_dec(struct ll_disk *ll, dm_block_t b, dm_block_t e,
+ int32_t *nr_allocations, dm_block_t *new_b)
+{
+ int r;
+ uint32_t bit, bit_end;
+ struct inc_context ic;
+ dm_block_t index = b;
+
+ init_inc_context(&ic);
+
+ bit = do_div(index, ll->entries_per_block);
+ r = ll->load_ie(ll, index, &ic.ie_disk);
+ if (r < 0)
+ return r;
+
+ r = shadow_bitmap(ll, &ic);
+ if (r)
+ return r;
+
+ bit_end = min(bit + (e - b), (dm_block_t) ll->entries_per_block);
+ r = sm_ll_dec_bitmap(ll, b, bit, bit_end, &ic, nr_allocations, new_b);
+ exit_inc_context(ll, &ic);
+
+ if (r)
+ return r;
+
+ return ll->save_ie(ll, index, &ic.ie_disk);
+}
+
+int sm_ll_dec(struct ll_disk *ll, dm_block_t b, dm_block_t e,
+ int32_t *nr_allocations)
+{
+ *nr_allocations = 0;
+ while (b != e) {
+ int r = __sm_ll_dec(ll, b, e, nr_allocations, &b);
+ if (r)
+ return r;
+ }
+
+ return 0;
+}
+
+/*----------------------------------------------------------------*/
+
+int sm_ll_commit(struct ll_disk *ll)
+{
+ int r = 0;
+
+ if (ll->bitmap_index_changed) {
+ r = ll->commit(ll);
+ if (!r)
+ ll->bitmap_index_changed = false;
+ }
+
+ return r;
+}
+
+/*----------------------------------------------------------------*/
+
+static int metadata_ll_load_ie(struct ll_disk *ll, dm_block_t index,
+ struct disk_index_entry *ie)
+{
+ memcpy(ie, ll->mi_le.index + index, sizeof(*ie));
+ return 0;
+}
+
+static int metadata_ll_save_ie(struct ll_disk *ll, dm_block_t index,
+ struct disk_index_entry *ie)
+{
+ ll->bitmap_index_changed = true;
+ memcpy(ll->mi_le.index + index, ie, sizeof(*ie));
+ return 0;
+}
+
+static int metadata_ll_init_index(struct ll_disk *ll)
+{
+ int r;
+ struct dm_block *b;
+
+ r = dm_tm_new_block(ll->tm, &index_validator, &b);
+ if (r < 0)
+ return r;
+
+ ll->bitmap_root = dm_block_location(b);
+
+ dm_tm_unlock(ll->tm, b);
+
+ return 0;
+}
+
+static int metadata_ll_open(struct ll_disk *ll)
+{
+ int r;
+ struct dm_block *block;
+
+ r = dm_tm_read_lock(ll->tm, ll->bitmap_root,
+ &index_validator, &block);
+ if (r)
+ return r;
+
+ memcpy(&ll->mi_le, dm_block_data(block), sizeof(ll->mi_le));
+ dm_tm_unlock(ll->tm, block);
+
+ return 0;
+}
+
+static dm_block_t metadata_ll_max_entries(struct ll_disk *ll)
+{
+ return MAX_METADATA_BITMAPS;
+}
+
+static int metadata_ll_commit(struct ll_disk *ll)
+{
+ int r, inc;
+ struct dm_block *b;
+
+ r = dm_tm_shadow_block(ll->tm, ll->bitmap_root, &index_validator, &b, &inc);
+ if (r)
+ return r;
+
+ memcpy(dm_block_data(b), &ll->mi_le, sizeof(ll->mi_le));
+ ll->bitmap_root = dm_block_location(b);
+
+ dm_tm_unlock(ll->tm, b);
+
+ return 0;
+}
+
+int sm_ll_new_metadata(struct ll_disk *ll, struct dm_transaction_manager *tm)
+{
+ int r;
+
+ r = sm_ll_init(ll, tm);
+ if (r < 0)
+ return r;
+
+ ll->load_ie = metadata_ll_load_ie;
+ ll->save_ie = metadata_ll_save_ie;
+ ll->init_index = metadata_ll_init_index;
+ ll->open_index = metadata_ll_open;
+ ll->max_entries = metadata_ll_max_entries;
+ ll->commit = metadata_ll_commit;
+
+ ll->nr_blocks = 0;
+ ll->nr_allocated = 0;
+
+ r = ll->init_index(ll);
+ if (r < 0)
+ return r;
+
+ r = dm_btree_empty(&ll->ref_count_info, &ll->ref_count_root);
+ if (r < 0)
+ return r;
+
+ return 0;
+}
+
+int sm_ll_open_metadata(struct ll_disk *ll, struct dm_transaction_manager *tm,
+ void *root_le, size_t len)
+{
+ int r;
+ struct disk_sm_root smr;
+
+ if (len < sizeof(struct disk_sm_root)) {
+ DMERR("sm_metadata root too small");
+ return -ENOMEM;
+ }
+
+ /*
+ * We don't know the alignment of the root_le buffer, so need to
+ * copy into a new structure.
+ */
+ memcpy(&smr, root_le, sizeof(smr));
+
+ r = sm_ll_init(ll, tm);
+ if (r < 0)
+ return r;
+
+ ll->load_ie = metadata_ll_load_ie;
+ ll->save_ie = metadata_ll_save_ie;
+ ll->init_index = metadata_ll_init_index;
+ ll->open_index = metadata_ll_open;
+ ll->max_entries = metadata_ll_max_entries;
+ ll->commit = metadata_ll_commit;
+
+ ll->nr_blocks = le64_to_cpu(smr.nr_blocks);
+ ll->nr_allocated = le64_to_cpu(smr.nr_allocated);
+ ll->bitmap_root = le64_to_cpu(smr.bitmap_root);
+ ll->ref_count_root = le64_to_cpu(smr.ref_count_root);
+
+ return ll->open_index(ll);
+}
+
+/*----------------------------------------------------------------*/
+
+static inline int ie_cache_writeback(struct ll_disk *ll, struct ie_cache *iec)
+{
+ iec->dirty = false;
+ __dm_bless_for_disk(iec->ie);
+ return dm_btree_insert(&ll->bitmap_info, ll->bitmap_root,
+ &iec->index, &iec->ie, &ll->bitmap_root);
+}
+
+static inline unsigned int hash_index(dm_block_t index)
+{
+ return dm_hash_block(index, IE_CACHE_MASK);
+}
+
+static int disk_ll_load_ie(struct ll_disk *ll, dm_block_t index,
+ struct disk_index_entry *ie)
+{
+ int r;
+ unsigned int h = hash_index(index);
+ struct ie_cache *iec = ll->ie_cache + h;
+
+ if (iec->valid) {
+ if (iec->index == index) {
+ memcpy(ie, &iec->ie, sizeof(*ie));
+ return 0;
+ }
+
+ if (iec->dirty) {
+ r = ie_cache_writeback(ll, iec);
+ if (r)
+ return r;
+ }
+ }
+
+ r = dm_btree_lookup(&ll->bitmap_info, ll->bitmap_root, &index, ie);
+ if (!r) {
+ iec->valid = true;
+ iec->dirty = false;
+ iec->index = index;
+ memcpy(&iec->ie, ie, sizeof(*ie));
+ }
+
+ return r;
+}
+
+static int disk_ll_save_ie(struct ll_disk *ll, dm_block_t index,
+ struct disk_index_entry *ie)
+{
+ int r;
+ unsigned int h = hash_index(index);
+ struct ie_cache *iec = ll->ie_cache + h;
+
+ ll->bitmap_index_changed = true;
+ if (iec->valid) {
+ if (iec->index == index) {
+ memcpy(&iec->ie, ie, sizeof(*ie));
+ iec->dirty = true;
+ return 0;
+ }
+
+ if (iec->dirty) {
+ r = ie_cache_writeback(ll, iec);
+ if (r)
+ return r;
+ }
+ }
+
+ iec->valid = true;
+ iec->dirty = true;
+ iec->index = index;
+ memcpy(&iec->ie, ie, sizeof(*ie));
+ return 0;
+}
+
+static int disk_ll_init_index(struct ll_disk *ll)
+{
+ unsigned int i;
+ for (i = 0; i < IE_CACHE_SIZE; i++) {
+ struct ie_cache *iec = ll->ie_cache + i;
+ iec->valid = false;
+ iec->dirty = false;
+ }
+ return dm_btree_empty(&ll->bitmap_info, &ll->bitmap_root);
+}
+
+static int disk_ll_open(struct ll_disk *ll)
+{
+ return 0;
+}
+
+static dm_block_t disk_ll_max_entries(struct ll_disk *ll)
+{
+ return -1ULL;
+}
+
+static int disk_ll_commit(struct ll_disk *ll)
+{
+ int r = 0;
+ unsigned int i;
+
+ for (i = 0; i < IE_CACHE_SIZE; i++) {
+ struct ie_cache *iec = ll->ie_cache + i;
+ if (iec->valid && iec->dirty)
+ r = ie_cache_writeback(ll, iec);
+ }
+
+ return r;
+}
+
+int sm_ll_new_disk(struct ll_disk *ll, struct dm_transaction_manager *tm)
+{
+ int r;
+
+ r = sm_ll_init(ll, tm);
+ if (r < 0)
+ return r;
+
+ ll->load_ie = disk_ll_load_ie;
+ ll->save_ie = disk_ll_save_ie;
+ ll->init_index = disk_ll_init_index;
+ ll->open_index = disk_ll_open;
+ ll->max_entries = disk_ll_max_entries;
+ ll->commit = disk_ll_commit;
+
+ ll->nr_blocks = 0;
+ ll->nr_allocated = 0;
+
+ r = ll->init_index(ll);
+ if (r < 0)
+ return r;
+
+ r = dm_btree_empty(&ll->ref_count_info, &ll->ref_count_root);
+ if (r < 0)
+ return r;
+
+ return 0;
+}
+
+int sm_ll_open_disk(struct ll_disk *ll, struct dm_transaction_manager *tm,
+ void *root_le, size_t len)
+{
+ int r;
+ struct disk_sm_root *smr = root_le;
+
+ if (len < sizeof(struct disk_sm_root)) {
+ DMERR("sm_metadata root too small");
+ return -ENOMEM;
+ }
+
+ r = sm_ll_init(ll, tm);
+ if (r < 0)
+ return r;
+
+ ll->load_ie = disk_ll_load_ie;
+ ll->save_ie = disk_ll_save_ie;
+ ll->init_index = disk_ll_init_index;
+ ll->open_index = disk_ll_open;
+ ll->max_entries = disk_ll_max_entries;
+ ll->commit = disk_ll_commit;
+
+ ll->nr_blocks = le64_to_cpu(smr->nr_blocks);
+ ll->nr_allocated = le64_to_cpu(smr->nr_allocated);
+ ll->bitmap_root = le64_to_cpu(smr->bitmap_root);
+ ll->ref_count_root = le64_to_cpu(smr->ref_count_root);
+
+ return ll->open_index(ll);
+}
+
+/*----------------------------------------------------------------*/
diff --git a/drivers/md/persistent-data/dm-space-map-common.h b/drivers/md/persistent-data/dm-space-map-common.h
new file mode 100644
index 000000000..706ceb85d
--- /dev/null
+++ b/drivers/md/persistent-data/dm-space-map-common.h
@@ -0,0 +1,145 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_SPACE_MAP_COMMON_H
+#define DM_SPACE_MAP_COMMON_H
+
+#include "dm-btree.h"
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Low level disk format
+ *
+ * Bitmap btree
+ * ------------
+ *
+ * Each value stored in the btree is an index_entry. This points to a
+ * block that is used as a bitmap. Within the bitmap hold 2 bits per
+ * entry, which represent UNUSED = 0, REF_COUNT = 1, REF_COUNT = 2 and
+ * REF_COUNT = many.
+ *
+ * Refcount btree
+ * --------------
+ *
+ * Any entry that has a ref count higher than 2 gets entered in the ref
+ * count tree. The leaf values for this tree is the 32-bit ref count.
+ */
+
+struct disk_index_entry {
+ __le64 blocknr;
+ __le32 nr_free;
+ __le32 none_free_before;
+} __attribute__ ((packed, aligned(8)));
+
+
+#define MAX_METADATA_BITMAPS 255
+struct disk_metadata_index {
+ __le32 csum;
+ __le32 padding;
+ __le64 blocknr;
+
+ struct disk_index_entry index[MAX_METADATA_BITMAPS];
+} __attribute__ ((packed, aligned(8)));
+
+struct ll_disk;
+
+typedef int (*load_ie_fn)(struct ll_disk *ll, dm_block_t index, struct disk_index_entry *result);
+typedef int (*save_ie_fn)(struct ll_disk *ll, dm_block_t index, struct disk_index_entry *ie);
+typedef int (*init_index_fn)(struct ll_disk *ll);
+typedef int (*open_index_fn)(struct ll_disk *ll);
+typedef dm_block_t (*max_index_entries_fn)(struct ll_disk *ll);
+typedef int (*commit_fn)(struct ll_disk *ll);
+
+/*
+ * A lot of time can be wasted reading and writing the same
+ * index entry. So we cache a few entries.
+ */
+#define IE_CACHE_SIZE 64
+#define IE_CACHE_MASK (IE_CACHE_SIZE - 1)
+
+struct ie_cache {
+ bool valid;
+ bool dirty;
+ dm_block_t index;
+ struct disk_index_entry ie;
+};
+
+struct ll_disk {
+ struct dm_transaction_manager *tm;
+ struct dm_btree_info bitmap_info;
+ struct dm_btree_info ref_count_info;
+
+ uint32_t block_size;
+ uint32_t entries_per_block;
+ dm_block_t nr_blocks;
+ dm_block_t nr_allocated;
+
+ /*
+ * bitmap_root may be a btree root or a simple index.
+ */
+ dm_block_t bitmap_root;
+
+ dm_block_t ref_count_root;
+
+ struct disk_metadata_index mi_le;
+ load_ie_fn load_ie;
+ save_ie_fn save_ie;
+ init_index_fn init_index;
+ open_index_fn open_index;
+ max_index_entries_fn max_entries;
+ commit_fn commit;
+ bool bitmap_index_changed:1;
+
+ struct ie_cache ie_cache[IE_CACHE_SIZE];
+};
+
+struct disk_sm_root {
+ __le64 nr_blocks;
+ __le64 nr_allocated;
+ __le64 bitmap_root;
+ __le64 ref_count_root;
+} __attribute__ ((packed, aligned(8)));
+
+#define ENTRIES_PER_BYTE 4
+
+struct disk_bitmap_header {
+ __le32 csum;
+ __le32 not_used;
+ __le64 blocknr;
+} __attribute__ ((packed, aligned(8)));
+
+/*----------------------------------------------------------------*/
+
+int sm_ll_extend(struct ll_disk *ll, dm_block_t extra_blocks);
+int sm_ll_lookup_bitmap(struct ll_disk *ll, dm_block_t b, uint32_t *result);
+int sm_ll_lookup(struct ll_disk *ll, dm_block_t b, uint32_t *result);
+int sm_ll_find_free_block(struct ll_disk *ll, dm_block_t begin,
+ dm_block_t end, dm_block_t *result);
+int sm_ll_find_common_free_block(struct ll_disk *old_ll, struct ll_disk *new_ll,
+ dm_block_t begin, dm_block_t end, dm_block_t *result);
+
+/*
+ * The next three functions return (via nr_allocations) the net number of
+ * allocations that were made. This number may be negative if there were
+ * more frees than allocs.
+ */
+int sm_ll_insert(struct ll_disk *ll, dm_block_t b, uint32_t ref_count, int32_t *nr_allocations);
+int sm_ll_inc(struct ll_disk *ll, dm_block_t b, dm_block_t e, int32_t *nr_allocations);
+int sm_ll_dec(struct ll_disk *ll, dm_block_t b, dm_block_t e, int32_t *nr_allocations);
+int sm_ll_commit(struct ll_disk *ll);
+
+int sm_ll_new_metadata(struct ll_disk *ll, struct dm_transaction_manager *tm);
+int sm_ll_open_metadata(struct ll_disk *ll, struct dm_transaction_manager *tm,
+ void *root_le, size_t len);
+
+int sm_ll_new_disk(struct ll_disk *ll, struct dm_transaction_manager *tm);
+int sm_ll_open_disk(struct ll_disk *ll, struct dm_transaction_manager *tm,
+ void *root_le, size_t len);
+
+/*----------------------------------------------------------------*/
+
+#endif /* DM_SPACE_MAP_COMMON_H */
diff --git a/drivers/md/persistent-data/dm-space-map-disk.c b/drivers/md/persistent-data/dm-space-map-disk.c
new file mode 100644
index 000000000..d0a8d5e73
--- /dev/null
+++ b/drivers/md/persistent-data/dm-space-map-disk.c
@@ -0,0 +1,280 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-space-map-common.h"
+#include "dm-space-map-disk.h"
+#include "dm-space-map.h"
+#include "dm-transaction-manager.h"
+
+#include <linux/list.h>
+#include <linux/slab.h>
+#include <linux/export.h>
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "space map disk"
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Space map interface.
+ */
+struct sm_disk {
+ struct dm_space_map sm;
+
+ struct ll_disk ll;
+ struct ll_disk old_ll;
+
+ dm_block_t begin;
+ dm_block_t nr_allocated_this_transaction;
+};
+
+static void sm_disk_destroy(struct dm_space_map *sm)
+{
+ struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+
+ kfree(smd);
+}
+
+static int sm_disk_extend(struct dm_space_map *sm, dm_block_t extra_blocks)
+{
+ struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+
+ return sm_ll_extend(&smd->ll, extra_blocks);
+}
+
+static int sm_disk_get_nr_blocks(struct dm_space_map *sm, dm_block_t *count)
+{
+ struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+ *count = smd->old_ll.nr_blocks;
+
+ return 0;
+}
+
+static int sm_disk_get_nr_free(struct dm_space_map *sm, dm_block_t *count)
+{
+ struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+ *count = (smd->old_ll.nr_blocks - smd->old_ll.nr_allocated) - smd->nr_allocated_this_transaction;
+
+ return 0;
+}
+
+static int sm_disk_get_count(struct dm_space_map *sm, dm_block_t b,
+ uint32_t *result)
+{
+ struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+ return sm_ll_lookup(&smd->ll, b, result);
+}
+
+static int sm_disk_count_is_more_than_one(struct dm_space_map *sm, dm_block_t b,
+ int *result)
+{
+ int r;
+ uint32_t count;
+
+ r = sm_disk_get_count(sm, b, &count);
+ if (r)
+ return r;
+
+ *result = count > 1;
+
+ return 0;
+}
+
+static int sm_disk_set_count(struct dm_space_map *sm, dm_block_t b,
+ uint32_t count)
+{
+ int r;
+ int32_t nr_allocations;
+ struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+
+ r = sm_ll_insert(&smd->ll, b, count, &nr_allocations);
+ if (!r) {
+ smd->nr_allocated_this_transaction += nr_allocations;
+ }
+
+ return r;
+}
+
+static int sm_disk_inc_blocks(struct dm_space_map *sm, dm_block_t b, dm_block_t e)
+{
+ int r;
+ int32_t nr_allocations;
+ struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+
+ r = sm_ll_inc(&smd->ll, b, e, &nr_allocations);
+ if (!r)
+ smd->nr_allocated_this_transaction += nr_allocations;
+
+ return r;
+}
+
+static int sm_disk_dec_blocks(struct dm_space_map *sm, dm_block_t b, dm_block_t e)
+{
+ int r;
+ int32_t nr_allocations;
+ struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+
+ r = sm_ll_dec(&smd->ll, b, e, &nr_allocations);
+ if (!r)
+ smd->nr_allocated_this_transaction += nr_allocations;
+
+ return r;
+}
+
+static int sm_disk_new_block(struct dm_space_map *sm, dm_block_t *b)
+{
+ int r;
+ int32_t nr_allocations;
+ struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+
+ /*
+ * Any block we allocate has to be free in both the old and current ll.
+ */
+ r = sm_ll_find_common_free_block(&smd->old_ll, &smd->ll, smd->begin, smd->ll.nr_blocks, b);
+ if (r == -ENOSPC) {
+ /*
+ * There's no free block between smd->begin and the end of the metadata device.
+ * We search before smd->begin in case something has been freed.
+ */
+ r = sm_ll_find_common_free_block(&smd->old_ll, &smd->ll, 0, smd->begin, b);
+ }
+
+ if (r)
+ return r;
+
+ smd->begin = *b + 1;
+ r = sm_ll_inc(&smd->ll, *b, *b + 1, &nr_allocations);
+ if (!r) {
+ smd->nr_allocated_this_transaction += nr_allocations;
+ }
+
+ return r;
+}
+
+static int sm_disk_commit(struct dm_space_map *sm)
+{
+ int r;
+ struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+
+ r = sm_ll_commit(&smd->ll);
+ if (r)
+ return r;
+
+ memcpy(&smd->old_ll, &smd->ll, sizeof(smd->old_ll));
+ smd->nr_allocated_this_transaction = 0;
+
+ return 0;
+}
+
+static int sm_disk_root_size(struct dm_space_map *sm, size_t *result)
+{
+ *result = sizeof(struct disk_sm_root);
+
+ return 0;
+}
+
+static int sm_disk_copy_root(struct dm_space_map *sm, void *where_le, size_t max)
+{
+ struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+ struct disk_sm_root root_le;
+
+ root_le.nr_blocks = cpu_to_le64(smd->ll.nr_blocks);
+ root_le.nr_allocated = cpu_to_le64(smd->ll.nr_allocated);
+ root_le.bitmap_root = cpu_to_le64(smd->ll.bitmap_root);
+ root_le.ref_count_root = cpu_to_le64(smd->ll.ref_count_root);
+
+ if (max < sizeof(root_le))
+ return -ENOSPC;
+
+ memcpy(where_le, &root_le, sizeof(root_le));
+
+ return 0;
+}
+
+/*----------------------------------------------------------------*/
+
+static struct dm_space_map ops = {
+ .destroy = sm_disk_destroy,
+ .extend = sm_disk_extend,
+ .get_nr_blocks = sm_disk_get_nr_blocks,
+ .get_nr_free = sm_disk_get_nr_free,
+ .get_count = sm_disk_get_count,
+ .count_is_more_than_one = sm_disk_count_is_more_than_one,
+ .set_count = sm_disk_set_count,
+ .inc_blocks = sm_disk_inc_blocks,
+ .dec_blocks = sm_disk_dec_blocks,
+ .new_block = sm_disk_new_block,
+ .commit = sm_disk_commit,
+ .root_size = sm_disk_root_size,
+ .copy_root = sm_disk_copy_root,
+ .register_threshold_callback = NULL
+};
+
+struct dm_space_map *dm_sm_disk_create(struct dm_transaction_manager *tm,
+ dm_block_t nr_blocks)
+{
+ int r;
+ struct sm_disk *smd;
+
+ smd = kmalloc(sizeof(*smd), GFP_KERNEL);
+ if (!smd)
+ return ERR_PTR(-ENOMEM);
+
+ smd->begin = 0;
+ smd->nr_allocated_this_transaction = 0;
+ memcpy(&smd->sm, &ops, sizeof(smd->sm));
+
+ r = sm_ll_new_disk(&smd->ll, tm);
+ if (r)
+ goto bad;
+
+ r = sm_ll_extend(&smd->ll, nr_blocks);
+ if (r)
+ goto bad;
+
+ r = sm_disk_commit(&smd->sm);
+ if (r)
+ goto bad;
+
+ return &smd->sm;
+
+bad:
+ kfree(smd);
+ return ERR_PTR(r);
+}
+EXPORT_SYMBOL_GPL(dm_sm_disk_create);
+
+struct dm_space_map *dm_sm_disk_open(struct dm_transaction_manager *tm,
+ void *root_le, size_t len)
+{
+ int r;
+ struct sm_disk *smd;
+
+ smd = kmalloc(sizeof(*smd), GFP_KERNEL);
+ if (!smd)
+ return ERR_PTR(-ENOMEM);
+
+ smd->begin = 0;
+ smd->nr_allocated_this_transaction = 0;
+ memcpy(&smd->sm, &ops, sizeof(smd->sm));
+
+ r = sm_ll_open_disk(&smd->ll, tm, root_le, len);
+ if (r)
+ goto bad;
+
+ r = sm_disk_commit(&smd->sm);
+ if (r)
+ goto bad;
+
+ return &smd->sm;
+
+bad:
+ kfree(smd);
+ return ERR_PTR(r);
+}
+EXPORT_SYMBOL_GPL(dm_sm_disk_open);
+
+/*----------------------------------------------------------------*/
diff --git a/drivers/md/persistent-data/dm-space-map-disk.h b/drivers/md/persistent-data/dm-space-map-disk.h
new file mode 100644
index 000000000..447a0a9a2
--- /dev/null
+++ b/drivers/md/persistent-data/dm-space-map-disk.h
@@ -0,0 +1,25 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef _LINUX_DM_SPACE_MAP_DISK_H
+#define _LINUX_DM_SPACE_MAP_DISK_H
+
+#include "dm-block-manager.h"
+
+struct dm_space_map;
+struct dm_transaction_manager;
+
+/*
+ * Unfortunately we have to use two-phase construction due to the cycle
+ * between the tm and sm.
+ */
+struct dm_space_map *dm_sm_disk_create(struct dm_transaction_manager *tm,
+ dm_block_t nr_blocks);
+
+struct dm_space_map *dm_sm_disk_open(struct dm_transaction_manager *tm,
+ void *root, size_t len);
+
+#endif /* _LINUX_DM_SPACE_MAP_DISK_H */
diff --git a/drivers/md/persistent-data/dm-space-map-metadata.c b/drivers/md/persistent-data/dm-space-map-metadata.c
new file mode 100644
index 000000000..0d1fcdf29
--- /dev/null
+++ b/drivers/md/persistent-data/dm-space-map-metadata.c
@@ -0,0 +1,842 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-space-map.h"
+#include "dm-space-map-common.h"
+#include "dm-space-map-metadata.h"
+
+#include <linux/list.h>
+#include <linux/slab.h>
+#include <linux/device-mapper.h>
+#include <linux/kernel.h>
+
+#define DM_MSG_PREFIX "space map metadata"
+
+/*----------------------------------------------------------------*/
+
+/*
+ * An edge triggered threshold.
+ */
+struct threshold {
+ bool threshold_set;
+ bool value_set;
+ dm_block_t threshold;
+ dm_block_t current_value;
+ dm_sm_threshold_fn fn;
+ void *context;
+};
+
+static void threshold_init(struct threshold *t)
+{
+ t->threshold_set = false;
+ t->value_set = false;
+}
+
+static void set_threshold(struct threshold *t, dm_block_t value,
+ dm_sm_threshold_fn fn, void *context)
+{
+ t->threshold_set = true;
+ t->threshold = value;
+ t->fn = fn;
+ t->context = context;
+}
+
+static bool below_threshold(struct threshold *t, dm_block_t value)
+{
+ return t->threshold_set && value <= t->threshold;
+}
+
+static bool threshold_already_triggered(struct threshold *t)
+{
+ return t->value_set && below_threshold(t, t->current_value);
+}
+
+static void check_threshold(struct threshold *t, dm_block_t value)
+{
+ if (below_threshold(t, value) &&
+ !threshold_already_triggered(t))
+ t->fn(t->context);
+
+ t->value_set = true;
+ t->current_value = value;
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Space map interface.
+ *
+ * The low level disk format is written using the standard btree and
+ * transaction manager. This means that performing disk operations may
+ * cause us to recurse into the space map in order to allocate new blocks.
+ * For this reason we have a pool of pre-allocated blocks large enough to
+ * service any metadata_ll_disk operation.
+ */
+
+/*
+ * FIXME: we should calculate this based on the size of the device.
+ * Only the metadata space map needs this functionality.
+ */
+#define MAX_RECURSIVE_ALLOCATIONS 1024
+
+enum block_op_type {
+ BOP_INC,
+ BOP_DEC
+};
+
+struct block_op {
+ enum block_op_type type;
+ dm_block_t b;
+ dm_block_t e;
+};
+
+struct bop_ring_buffer {
+ unsigned int begin;
+ unsigned int end;
+ struct block_op bops[MAX_RECURSIVE_ALLOCATIONS + 1];
+};
+
+static void brb_init(struct bop_ring_buffer *brb)
+{
+ brb->begin = 0;
+ brb->end = 0;
+}
+
+static bool brb_empty(struct bop_ring_buffer *brb)
+{
+ return brb->begin == brb->end;
+}
+
+static unsigned int brb_next(struct bop_ring_buffer *brb, unsigned int old)
+{
+ unsigned int r = old + 1;
+ return r >= ARRAY_SIZE(brb->bops) ? 0 : r;
+}
+
+static int brb_push(struct bop_ring_buffer *brb,
+ enum block_op_type type, dm_block_t b, dm_block_t e)
+{
+ struct block_op *bop;
+ unsigned int next = brb_next(brb, brb->end);
+
+ /*
+ * We don't allow the last bop to be filled, this way we can
+ * differentiate between full and empty.
+ */
+ if (next == brb->begin)
+ return -ENOMEM;
+
+ bop = brb->bops + brb->end;
+ bop->type = type;
+ bop->b = b;
+ bop->e = e;
+
+ brb->end = next;
+
+ return 0;
+}
+
+static int brb_peek(struct bop_ring_buffer *brb, struct block_op *result)
+{
+ struct block_op *bop;
+
+ if (brb_empty(brb))
+ return -ENODATA;
+
+ bop = brb->bops + brb->begin;
+ memcpy(result, bop, sizeof(*result));
+ return 0;
+}
+
+static int brb_pop(struct bop_ring_buffer *brb)
+{
+ if (brb_empty(brb))
+ return -ENODATA;
+
+ brb->begin = brb_next(brb, brb->begin);
+
+ return 0;
+}
+
+/*----------------------------------------------------------------*/
+
+struct sm_metadata {
+ struct dm_space_map sm;
+
+ struct ll_disk ll;
+ struct ll_disk old_ll;
+
+ dm_block_t begin;
+
+ unsigned int recursion_count;
+ unsigned int allocated_this_transaction;
+ struct bop_ring_buffer uncommitted;
+
+ struct threshold threshold;
+};
+
+static int add_bop(struct sm_metadata *smm, enum block_op_type type, dm_block_t b, dm_block_t e)
+{
+ int r = brb_push(&smm->uncommitted, type, b, e);
+ if (r) {
+ DMERR("too many recursive allocations");
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static int commit_bop(struct sm_metadata *smm, struct block_op *op)
+{
+ int r = 0;
+ int32_t nr_allocations;
+
+ switch (op->type) {
+ case BOP_INC:
+ r = sm_ll_inc(&smm->ll, op->b, op->e, &nr_allocations);
+ break;
+
+ case BOP_DEC:
+ r = sm_ll_dec(&smm->ll, op->b, op->e, &nr_allocations);
+ break;
+ }
+
+ return r;
+}
+
+static void in(struct sm_metadata *smm)
+{
+ smm->recursion_count++;
+}
+
+static int apply_bops(struct sm_metadata *smm)
+{
+ int r = 0;
+
+ while (!brb_empty(&smm->uncommitted)) {
+ struct block_op bop;
+
+ r = brb_peek(&smm->uncommitted, &bop);
+ if (r) {
+ DMERR("bug in bop ring buffer");
+ break;
+ }
+
+ r = commit_bop(smm, &bop);
+ if (r)
+ break;
+
+ brb_pop(&smm->uncommitted);
+ }
+
+ return r;
+}
+
+static int out(struct sm_metadata *smm)
+{
+ int r = 0;
+
+ /*
+ * If we're not recursing then very bad things are happening.
+ */
+ if (!smm->recursion_count) {
+ DMERR("lost track of recursion depth");
+ return -ENOMEM;
+ }
+
+ if (smm->recursion_count == 1)
+ r = apply_bops(smm);
+
+ smm->recursion_count--;
+
+ return r;
+}
+
+/*
+ * When using the out() function above, we often want to combine an error
+ * code for the operation run in the recursive context with that from
+ * out().
+ */
+static int combine_errors(int r1, int r2)
+{
+ return r1 ? r1 : r2;
+}
+
+static int recursing(struct sm_metadata *smm)
+{
+ return smm->recursion_count;
+}
+
+static void sm_metadata_destroy(struct dm_space_map *sm)
+{
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+ kfree(smm);
+}
+
+static int sm_metadata_get_nr_blocks(struct dm_space_map *sm, dm_block_t *count)
+{
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+ *count = smm->ll.nr_blocks;
+
+ return 0;
+}
+
+static int sm_metadata_get_nr_free(struct dm_space_map *sm, dm_block_t *count)
+{
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+ *count = smm->old_ll.nr_blocks - smm->old_ll.nr_allocated -
+ smm->allocated_this_transaction;
+
+ return 0;
+}
+
+static int sm_metadata_get_count(struct dm_space_map *sm, dm_block_t b,
+ uint32_t *result)
+{
+ int r;
+ unsigned int i;
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+ unsigned int adjustment = 0;
+
+ /*
+ * We may have some uncommitted adjustments to add. This list
+ * should always be really short.
+ */
+ for (i = smm->uncommitted.begin;
+ i != smm->uncommitted.end;
+ i = brb_next(&smm->uncommitted, i)) {
+ struct block_op *op = smm->uncommitted.bops + i;
+
+ if (b < op->b || b >= op->e)
+ continue;
+
+ switch (op->type) {
+ case BOP_INC:
+ adjustment++;
+ break;
+
+ case BOP_DEC:
+ adjustment--;
+ break;
+ }
+ }
+
+ r = sm_ll_lookup(&smm->ll, b, result);
+ if (r)
+ return r;
+
+ *result += adjustment;
+
+ return 0;
+}
+
+static int sm_metadata_count_is_more_than_one(struct dm_space_map *sm,
+ dm_block_t b, int *result)
+{
+ int r, adjustment = 0;
+ unsigned int i;
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+ uint32_t rc;
+
+ /*
+ * We may have some uncommitted adjustments to add. This list
+ * should always be really short.
+ */
+ for (i = smm->uncommitted.begin;
+ i != smm->uncommitted.end;
+ i = brb_next(&smm->uncommitted, i)) {
+
+ struct block_op *op = smm->uncommitted.bops + i;
+
+ if (b < op->b || b >= op->e)
+ continue;
+
+ switch (op->type) {
+ case BOP_INC:
+ adjustment++;
+ break;
+
+ case BOP_DEC:
+ adjustment--;
+ break;
+ }
+ }
+
+ if (adjustment > 1) {
+ *result = 1;
+ return 0;
+ }
+
+ r = sm_ll_lookup_bitmap(&smm->ll, b, &rc);
+ if (r)
+ return r;
+
+ if (rc == 3)
+ /*
+ * We err on the side of caution, and always return true.
+ */
+ *result = 1;
+ else
+ *result = rc + adjustment > 1;
+
+ return 0;
+}
+
+static int sm_metadata_set_count(struct dm_space_map *sm, dm_block_t b,
+ uint32_t count)
+{
+ int r, r2;
+ int32_t nr_allocations;
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+ if (smm->recursion_count) {
+ DMERR("cannot recurse set_count()");
+ return -EINVAL;
+ }
+
+ in(smm);
+ r = sm_ll_insert(&smm->ll, b, count, &nr_allocations);
+ r2 = out(smm);
+
+ return combine_errors(r, r2);
+}
+
+static int sm_metadata_inc_blocks(struct dm_space_map *sm, dm_block_t b, dm_block_t e)
+{
+ int r, r2 = 0;
+ int32_t nr_allocations;
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+ if (recursing(smm)) {
+ r = add_bop(smm, BOP_INC, b, e);
+ if (r)
+ return r;
+ } else {
+ in(smm);
+ r = sm_ll_inc(&smm->ll, b, e, &nr_allocations);
+ r2 = out(smm);
+ }
+
+ return combine_errors(r, r2);
+}
+
+static int sm_metadata_dec_blocks(struct dm_space_map *sm, dm_block_t b, dm_block_t e)
+{
+ int r, r2 = 0;
+ int32_t nr_allocations;
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+ if (recursing(smm))
+ r = add_bop(smm, BOP_DEC, b, e);
+ else {
+ in(smm);
+ r = sm_ll_dec(&smm->ll, b, e, &nr_allocations);
+ r2 = out(smm);
+ }
+
+ return combine_errors(r, r2);
+}
+
+static int sm_metadata_new_block_(struct dm_space_map *sm, dm_block_t *b)
+{
+ int r, r2 = 0;
+ int32_t nr_allocations;
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+ /*
+ * Any block we allocate has to be free in both the old and current ll.
+ */
+ r = sm_ll_find_common_free_block(&smm->old_ll, &smm->ll, smm->begin, smm->ll.nr_blocks, b);
+ if (r == -ENOSPC) {
+ /*
+ * There's no free block between smm->begin and the end of the metadata device.
+ * We search before smm->begin in case something has been freed.
+ */
+ r = sm_ll_find_common_free_block(&smm->old_ll, &smm->ll, 0, smm->begin, b);
+ }
+
+ if (r)
+ return r;
+
+ smm->begin = *b + 1;
+
+ if (recursing(smm))
+ r = add_bop(smm, BOP_INC, *b, *b + 1);
+ else {
+ in(smm);
+ r = sm_ll_inc(&smm->ll, *b, *b + 1, &nr_allocations);
+ r2 = out(smm);
+ }
+
+ if (!r)
+ smm->allocated_this_transaction++;
+
+ return combine_errors(r, r2);
+}
+
+static int sm_metadata_new_block(struct dm_space_map *sm, dm_block_t *b)
+{
+ dm_block_t count;
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+ int r = sm_metadata_new_block_(sm, b);
+ if (r) {
+ DMERR_LIMIT("unable to allocate new metadata block");
+ return r;
+ }
+
+ r = sm_metadata_get_nr_free(sm, &count);
+ if (r) {
+ DMERR_LIMIT("couldn't get free block count");
+ return r;
+ }
+
+ check_threshold(&smm->threshold, count);
+
+ return r;
+}
+
+static int sm_metadata_commit(struct dm_space_map *sm)
+{
+ int r;
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+ r = sm_ll_commit(&smm->ll);
+ if (r)
+ return r;
+
+ memcpy(&smm->old_ll, &smm->ll, sizeof(smm->old_ll));
+ smm->allocated_this_transaction = 0;
+
+ return 0;
+}
+
+static int sm_metadata_register_threshold_callback(struct dm_space_map *sm,
+ dm_block_t threshold,
+ dm_sm_threshold_fn fn,
+ void *context)
+{
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+ set_threshold(&smm->threshold, threshold, fn, context);
+
+ return 0;
+}
+
+static int sm_metadata_root_size(struct dm_space_map *sm, size_t *result)
+{
+ *result = sizeof(struct disk_sm_root);
+
+ return 0;
+}
+
+static int sm_metadata_copy_root(struct dm_space_map *sm, void *where_le, size_t max)
+{
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+ struct disk_sm_root root_le;
+
+ root_le.nr_blocks = cpu_to_le64(smm->ll.nr_blocks);
+ root_le.nr_allocated = cpu_to_le64(smm->ll.nr_allocated);
+ root_le.bitmap_root = cpu_to_le64(smm->ll.bitmap_root);
+ root_le.ref_count_root = cpu_to_le64(smm->ll.ref_count_root);
+
+ if (max < sizeof(root_le))
+ return -ENOSPC;
+
+ memcpy(where_le, &root_le, sizeof(root_le));
+
+ return 0;
+}
+
+static int sm_metadata_extend(struct dm_space_map *sm, dm_block_t extra_blocks);
+
+static const struct dm_space_map ops = {
+ .destroy = sm_metadata_destroy,
+ .extend = sm_metadata_extend,
+ .get_nr_blocks = sm_metadata_get_nr_blocks,
+ .get_nr_free = sm_metadata_get_nr_free,
+ .get_count = sm_metadata_get_count,
+ .count_is_more_than_one = sm_metadata_count_is_more_than_one,
+ .set_count = sm_metadata_set_count,
+ .inc_blocks = sm_metadata_inc_blocks,
+ .dec_blocks = sm_metadata_dec_blocks,
+ .new_block = sm_metadata_new_block,
+ .commit = sm_metadata_commit,
+ .root_size = sm_metadata_root_size,
+ .copy_root = sm_metadata_copy_root,
+ .register_threshold_callback = sm_metadata_register_threshold_callback
+};
+
+/*----------------------------------------------------------------*/
+
+/*
+ * When a new space map is created that manages its own space. We use
+ * this tiny bootstrap allocator.
+ */
+static void sm_bootstrap_destroy(struct dm_space_map *sm)
+{
+}
+
+static int sm_bootstrap_extend(struct dm_space_map *sm, dm_block_t extra_blocks)
+{
+ DMERR("bootstrap doesn't support extend");
+
+ return -EINVAL;
+}
+
+static int sm_bootstrap_get_nr_blocks(struct dm_space_map *sm, dm_block_t *count)
+{
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+ *count = smm->ll.nr_blocks;
+
+ return 0;
+}
+
+static int sm_bootstrap_get_nr_free(struct dm_space_map *sm, dm_block_t *count)
+{
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+ *count = smm->ll.nr_blocks - smm->begin;
+
+ return 0;
+}
+
+static int sm_bootstrap_get_count(struct dm_space_map *sm, dm_block_t b,
+ uint32_t *result)
+{
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+ *result = (b < smm->begin) ? 1 : 0;
+
+ return 0;
+}
+
+static int sm_bootstrap_count_is_more_than_one(struct dm_space_map *sm,
+ dm_block_t b, int *result)
+{
+ *result = 0;
+
+ return 0;
+}
+
+static int sm_bootstrap_set_count(struct dm_space_map *sm, dm_block_t b,
+ uint32_t count)
+{
+ DMERR("bootstrap doesn't support set_count");
+
+ return -EINVAL;
+}
+
+static int sm_bootstrap_new_block(struct dm_space_map *sm, dm_block_t *b)
+{
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+ /*
+ * We know the entire device is unused.
+ */
+ if (smm->begin == smm->ll.nr_blocks)
+ return -ENOSPC;
+
+ *b = smm->begin++;
+
+ return 0;
+}
+
+static int sm_bootstrap_inc_blocks(struct dm_space_map *sm, dm_block_t b, dm_block_t e)
+{
+ int r;
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+ r = add_bop(smm, BOP_INC, b, e);
+ if (r)
+ return r;
+
+ return 0;
+}
+
+static int sm_bootstrap_dec_blocks(struct dm_space_map *sm, dm_block_t b, dm_block_t e)
+{
+ int r;
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+ r = add_bop(smm, BOP_DEC, b, e);
+ if (r)
+ return r;
+
+ return 0;
+}
+
+static int sm_bootstrap_commit(struct dm_space_map *sm)
+{
+ return 0;
+}
+
+static int sm_bootstrap_root_size(struct dm_space_map *sm, size_t *result)
+{
+ DMERR("bootstrap doesn't support root_size");
+
+ return -EINVAL;
+}
+
+static int sm_bootstrap_copy_root(struct dm_space_map *sm, void *where,
+ size_t max)
+{
+ DMERR("bootstrap doesn't support copy_root");
+
+ return -EINVAL;
+}
+
+static const struct dm_space_map bootstrap_ops = {
+ .destroy = sm_bootstrap_destroy,
+ .extend = sm_bootstrap_extend,
+ .get_nr_blocks = sm_bootstrap_get_nr_blocks,
+ .get_nr_free = sm_bootstrap_get_nr_free,
+ .get_count = sm_bootstrap_get_count,
+ .count_is_more_than_one = sm_bootstrap_count_is_more_than_one,
+ .set_count = sm_bootstrap_set_count,
+ .inc_blocks = sm_bootstrap_inc_blocks,
+ .dec_blocks = sm_bootstrap_dec_blocks,
+ .new_block = sm_bootstrap_new_block,
+ .commit = sm_bootstrap_commit,
+ .root_size = sm_bootstrap_root_size,
+ .copy_root = sm_bootstrap_copy_root,
+ .register_threshold_callback = NULL
+};
+
+/*----------------------------------------------------------------*/
+
+static int sm_metadata_extend(struct dm_space_map *sm, dm_block_t extra_blocks)
+{
+ int r;
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+ dm_block_t old_len = smm->ll.nr_blocks;
+
+ /*
+ * Flick into a mode where all blocks get allocated in the new area.
+ */
+ smm->begin = old_len;
+ memcpy(sm, &bootstrap_ops, sizeof(*sm));
+
+ /*
+ * Extend.
+ */
+ r = sm_ll_extend(&smm->ll, extra_blocks);
+ if (r)
+ goto out;
+
+ /*
+ * We repeatedly increment then commit until the commit doesn't
+ * allocate any new blocks.
+ */
+ do {
+ r = add_bop(smm, BOP_INC, old_len, smm->begin);
+ if (r)
+ goto out;
+
+ old_len = smm->begin;
+
+ r = apply_bops(smm);
+ if (r) {
+ DMERR("%s: apply_bops failed", __func__);
+ goto out;
+ }
+
+ r = sm_ll_commit(&smm->ll);
+ if (r)
+ goto out;
+
+ } while (old_len != smm->begin);
+
+out:
+ /*
+ * Switch back to normal behaviour.
+ */
+ memcpy(sm, &ops, sizeof(*sm));
+ return r;
+}
+
+/*----------------------------------------------------------------*/
+
+struct dm_space_map *dm_sm_metadata_init(void)
+{
+ struct sm_metadata *smm;
+
+ smm = kmalloc(sizeof(*smm), GFP_KERNEL);
+ if (!smm)
+ return ERR_PTR(-ENOMEM);
+
+ memcpy(&smm->sm, &ops, sizeof(smm->sm));
+
+ return &smm->sm;
+}
+
+int dm_sm_metadata_create(struct dm_space_map *sm,
+ struct dm_transaction_manager *tm,
+ dm_block_t nr_blocks,
+ dm_block_t superblock)
+{
+ int r;
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+ smm->begin = superblock + 1;
+ smm->recursion_count = 0;
+ smm->allocated_this_transaction = 0;
+ brb_init(&smm->uncommitted);
+ threshold_init(&smm->threshold);
+
+ memcpy(&smm->sm, &bootstrap_ops, sizeof(smm->sm));
+
+ r = sm_ll_new_metadata(&smm->ll, tm);
+ if (!r) {
+ if (nr_blocks > DM_SM_METADATA_MAX_BLOCKS)
+ nr_blocks = DM_SM_METADATA_MAX_BLOCKS;
+ r = sm_ll_extend(&smm->ll, nr_blocks);
+ }
+ memcpy(&smm->sm, &ops, sizeof(smm->sm));
+ if (r)
+ return r;
+
+ /*
+ * Now we need to update the newly created data structures with the
+ * allocated blocks that they were built from.
+ */
+ r = add_bop(smm, BOP_INC, superblock, smm->begin);
+ if (r)
+ return r;
+
+ r = apply_bops(smm);
+ if (r) {
+ DMERR("%s: apply_bops failed", __func__);
+ return r;
+ }
+
+ return sm_metadata_commit(sm);
+}
+
+int dm_sm_metadata_open(struct dm_space_map *sm,
+ struct dm_transaction_manager *tm,
+ void *root_le, size_t len)
+{
+ int r;
+ struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+ r = sm_ll_open_metadata(&smm->ll, tm, root_le, len);
+ if (r)
+ return r;
+
+ smm->begin = 0;
+ smm->recursion_count = 0;
+ smm->allocated_this_transaction = 0;
+ brb_init(&smm->uncommitted);
+ threshold_init(&smm->threshold);
+
+ memcpy(&smm->old_ll, &smm->ll, sizeof(smm->old_ll));
+ return 0;
+}
diff --git a/drivers/md/persistent-data/dm-space-map-metadata.h b/drivers/md/persistent-data/dm-space-map-metadata.h
new file mode 100644
index 000000000..64df92397
--- /dev/null
+++ b/drivers/md/persistent-data/dm-space-map-metadata.h
@@ -0,0 +1,44 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_SPACE_MAP_METADATA_H
+#define DM_SPACE_MAP_METADATA_H
+
+#include "dm-transaction-manager.h"
+
+#define DM_SM_METADATA_BLOCK_SIZE (4096 >> SECTOR_SHIFT)
+
+/*
+ * The metadata device is currently limited in size.
+ *
+ * We have one block of index, which can hold 255 index entries. Each
+ * index entry contains allocation info about ~16k metadata blocks.
+ */
+#define DM_SM_METADATA_MAX_BLOCKS (255 * ((1 << 14) - 64))
+#define DM_SM_METADATA_MAX_SECTORS (DM_SM_METADATA_MAX_BLOCKS * DM_SM_METADATA_BLOCK_SIZE)
+
+/*
+ * Unfortunately we have to use two-phase construction due to the cycle
+ * between the tm and sm.
+ */
+struct dm_space_map *dm_sm_metadata_init(void);
+
+/*
+ * Create a fresh space map.
+ */
+int dm_sm_metadata_create(struct dm_space_map *sm,
+ struct dm_transaction_manager *tm,
+ dm_block_t nr_blocks,
+ dm_block_t superblock);
+
+/*
+ * Open from a previously-recorded root.
+ */
+int dm_sm_metadata_open(struct dm_space_map *sm,
+ struct dm_transaction_manager *tm,
+ void *root_le, size_t len);
+
+#endif /* DM_SPACE_MAP_METADATA_H */
diff --git a/drivers/md/persistent-data/dm-space-map.h b/drivers/md/persistent-data/dm-space-map.h
new file mode 100644
index 000000000..85aa0a397
--- /dev/null
+++ b/drivers/md/persistent-data/dm-space-map.h
@@ -0,0 +1,168 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef _LINUX_DM_SPACE_MAP_H
+#define _LINUX_DM_SPACE_MAP_H
+
+#include "dm-block-manager.h"
+
+typedef void (*dm_sm_threshold_fn)(void *context);
+
+/*
+ * struct dm_space_map keeps a record of how many times each block in a device
+ * is referenced. It needs to be fixed on disk as part of the transaction.
+ */
+struct dm_space_map {
+ void (*destroy)(struct dm_space_map *sm);
+
+ /*
+ * You must commit before allocating the newly added space.
+ */
+ int (*extend)(struct dm_space_map *sm, dm_block_t extra_blocks);
+
+ /*
+ * Extensions do not appear in this count until after commit has
+ * been called.
+ */
+ int (*get_nr_blocks)(struct dm_space_map *sm, dm_block_t *count);
+
+ /*
+ * Space maps must never allocate a block from the previous
+ * transaction, in case we need to rollback. This complicates the
+ * semantics of get_nr_free(), it should return the number of blocks
+ * that are available for allocation _now_. For instance you may
+ * have blocks with a zero reference count that will not be
+ * available for allocation until after the next commit.
+ */
+ int (*get_nr_free)(struct dm_space_map *sm, dm_block_t *count);
+
+ int (*get_count)(struct dm_space_map *sm, dm_block_t b, uint32_t *result);
+ int (*count_is_more_than_one)(struct dm_space_map *sm, dm_block_t b,
+ int *result);
+ int (*set_count)(struct dm_space_map *sm, dm_block_t b, uint32_t count);
+
+ int (*commit)(struct dm_space_map *sm);
+
+ int (*inc_blocks)(struct dm_space_map *sm, dm_block_t b, dm_block_t e);
+ int (*dec_blocks)(struct dm_space_map *sm, dm_block_t b, dm_block_t e);
+
+ /*
+ * new_block will increment the returned block.
+ */
+ int (*new_block)(struct dm_space_map *sm, dm_block_t *b);
+
+ /*
+ * The root contains all the information needed to fix the space map.
+ * Generally this info is small, so squirrel it away in a disk block
+ * along with other info.
+ */
+ int (*root_size)(struct dm_space_map *sm, size_t *result);
+ int (*copy_root)(struct dm_space_map *sm, void *copy_to_here_le, size_t len);
+
+ /*
+ * You can register one threshold callback which is edge-triggered
+ * when the free space in the space map drops below the threshold.
+ */
+ int (*register_threshold_callback)(struct dm_space_map *sm,
+ dm_block_t threshold,
+ dm_sm_threshold_fn fn,
+ void *context);
+};
+
+/*----------------------------------------------------------------*/
+
+static inline void dm_sm_destroy(struct dm_space_map *sm)
+{
+ if (sm)
+ sm->destroy(sm);
+}
+
+static inline int dm_sm_extend(struct dm_space_map *sm, dm_block_t extra_blocks)
+{
+ return sm->extend(sm, extra_blocks);
+}
+
+static inline int dm_sm_get_nr_blocks(struct dm_space_map *sm, dm_block_t *count)
+{
+ return sm->get_nr_blocks(sm, count);
+}
+
+static inline int dm_sm_get_nr_free(struct dm_space_map *sm, dm_block_t *count)
+{
+ return sm->get_nr_free(sm, count);
+}
+
+static inline int dm_sm_get_count(struct dm_space_map *sm, dm_block_t b,
+ uint32_t *result)
+{
+ return sm->get_count(sm, b, result);
+}
+
+static inline int dm_sm_count_is_more_than_one(struct dm_space_map *sm,
+ dm_block_t b, int *result)
+{
+ return sm->count_is_more_than_one(sm, b, result);
+}
+
+static inline int dm_sm_set_count(struct dm_space_map *sm, dm_block_t b,
+ uint32_t count)
+{
+ return sm->set_count(sm, b, count);
+}
+
+static inline int dm_sm_commit(struct dm_space_map *sm)
+{
+ return sm->commit(sm);
+}
+
+static inline int dm_sm_inc_blocks(struct dm_space_map *sm, dm_block_t b, dm_block_t e)
+{
+ return sm->inc_blocks(sm, b, e);
+}
+
+static inline int dm_sm_inc_block(struct dm_space_map *sm, dm_block_t b)
+{
+ return dm_sm_inc_blocks(sm, b, b + 1);
+}
+
+static inline int dm_sm_dec_blocks(struct dm_space_map *sm, dm_block_t b, dm_block_t e)
+{
+ return sm->dec_blocks(sm, b, e);
+}
+
+static inline int dm_sm_dec_block(struct dm_space_map *sm, dm_block_t b)
+{
+ return dm_sm_dec_blocks(sm, b, b + 1);
+}
+
+static inline int dm_sm_new_block(struct dm_space_map *sm, dm_block_t *b)
+{
+ return sm->new_block(sm, b);
+}
+
+static inline int dm_sm_root_size(struct dm_space_map *sm, size_t *result)
+{
+ return sm->root_size(sm, result);
+}
+
+static inline int dm_sm_copy_root(struct dm_space_map *sm, void *copy_to_here_le, size_t len)
+{
+ return sm->copy_root(sm, copy_to_here_le, len);
+}
+
+static inline int dm_sm_register_threshold_callback(struct dm_space_map *sm,
+ dm_block_t threshold,
+ dm_sm_threshold_fn fn,
+ void *context)
+{
+ if (sm->register_threshold_callback)
+ return sm->register_threshold_callback(sm, threshold, fn, context);
+
+ return -EINVAL;
+}
+
+
+#endif /* _LINUX_DM_SPACE_MAP_H */
diff --git a/drivers/md/persistent-data/dm-transaction-manager.c b/drivers/md/persistent-data/dm-transaction-manager.c
new file mode 100644
index 000000000..557a3ecfe
--- /dev/null
+++ b/drivers/md/persistent-data/dm-transaction-manager.c
@@ -0,0 +1,519 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+#include "dm-transaction-manager.h"
+#include "dm-space-map.h"
+#include "dm-space-map-disk.h"
+#include "dm-space-map-metadata.h"
+#include "dm-persistent-data-internal.h"
+
+#include <linux/export.h>
+#include <linux/mutex.h>
+#include <linux/hash.h>
+#include <linux/slab.h>
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "transaction manager"
+
+/*----------------------------------------------------------------*/
+
+#define PREFETCH_SIZE 128
+#define PREFETCH_BITS 7
+#define PREFETCH_SENTINEL ((dm_block_t) -1ULL)
+
+struct prefetch_set {
+ struct mutex lock;
+ dm_block_t blocks[PREFETCH_SIZE];
+};
+
+static unsigned int prefetch_hash(dm_block_t b)
+{
+ return hash_64(b, PREFETCH_BITS);
+}
+
+static void prefetch_wipe(struct prefetch_set *p)
+{
+ unsigned int i;
+ for (i = 0; i < PREFETCH_SIZE; i++)
+ p->blocks[i] = PREFETCH_SENTINEL;
+}
+
+static void prefetch_init(struct prefetch_set *p)
+{
+ mutex_init(&p->lock);
+ prefetch_wipe(p);
+}
+
+static void prefetch_add(struct prefetch_set *p, dm_block_t b)
+{
+ unsigned int h = prefetch_hash(b);
+
+ mutex_lock(&p->lock);
+ if (p->blocks[h] == PREFETCH_SENTINEL)
+ p->blocks[h] = b;
+
+ mutex_unlock(&p->lock);
+}
+
+static void prefetch_issue(struct prefetch_set *p, struct dm_block_manager *bm)
+{
+ unsigned int i;
+
+ mutex_lock(&p->lock);
+
+ for (i = 0; i < PREFETCH_SIZE; i++)
+ if (p->blocks[i] != PREFETCH_SENTINEL) {
+ dm_bm_prefetch(bm, p->blocks[i]);
+ p->blocks[i] = PREFETCH_SENTINEL;
+ }
+
+ mutex_unlock(&p->lock);
+}
+
+/*----------------------------------------------------------------*/
+
+struct shadow_info {
+ struct hlist_node hlist;
+ dm_block_t where;
+};
+
+/*
+ * It would be nice if we scaled with the size of transaction.
+ */
+#define DM_HASH_SIZE 256
+#define DM_HASH_MASK (DM_HASH_SIZE - 1)
+
+struct dm_transaction_manager {
+ int is_clone;
+ struct dm_transaction_manager *real;
+
+ struct dm_block_manager *bm;
+ struct dm_space_map *sm;
+
+ spinlock_t lock;
+ struct hlist_head buckets[DM_HASH_SIZE];
+
+ struct prefetch_set prefetches;
+};
+
+/*----------------------------------------------------------------*/
+
+static int is_shadow(struct dm_transaction_manager *tm, dm_block_t b)
+{
+ int r = 0;
+ unsigned int bucket = dm_hash_block(b, DM_HASH_MASK);
+ struct shadow_info *si;
+
+ spin_lock(&tm->lock);
+ hlist_for_each_entry(si, tm->buckets + bucket, hlist)
+ if (si->where == b) {
+ r = 1;
+ break;
+ }
+ spin_unlock(&tm->lock);
+
+ return r;
+}
+
+/*
+ * This can silently fail if there's no memory. We're ok with this since
+ * creating redundant shadows causes no harm.
+ */
+static void insert_shadow(struct dm_transaction_manager *tm, dm_block_t b)
+{
+ unsigned int bucket;
+ struct shadow_info *si;
+
+ si = kmalloc(sizeof(*si), GFP_NOIO);
+ if (si) {
+ si->where = b;
+ bucket = dm_hash_block(b, DM_HASH_MASK);
+ spin_lock(&tm->lock);
+ hlist_add_head(&si->hlist, tm->buckets + bucket);
+ spin_unlock(&tm->lock);
+ }
+}
+
+static void wipe_shadow_table(struct dm_transaction_manager *tm)
+{
+ struct shadow_info *si;
+ struct hlist_node *tmp;
+ struct hlist_head *bucket;
+ int i;
+
+ spin_lock(&tm->lock);
+ for (i = 0; i < DM_HASH_SIZE; i++) {
+ bucket = tm->buckets + i;
+ hlist_for_each_entry_safe(si, tmp, bucket, hlist)
+ kfree(si);
+
+ INIT_HLIST_HEAD(bucket);
+ }
+
+ spin_unlock(&tm->lock);
+}
+
+/*----------------------------------------------------------------*/
+
+static struct dm_transaction_manager *dm_tm_create(struct dm_block_manager *bm,
+ struct dm_space_map *sm)
+{
+ int i;
+ struct dm_transaction_manager *tm;
+
+ tm = kmalloc(sizeof(*tm), GFP_KERNEL);
+ if (!tm)
+ return ERR_PTR(-ENOMEM);
+
+ tm->is_clone = 0;
+ tm->real = NULL;
+ tm->bm = bm;
+ tm->sm = sm;
+
+ spin_lock_init(&tm->lock);
+ for (i = 0; i < DM_HASH_SIZE; i++)
+ INIT_HLIST_HEAD(tm->buckets + i);
+
+ prefetch_init(&tm->prefetches);
+
+ return tm;
+}
+
+struct dm_transaction_manager *dm_tm_create_non_blocking_clone(struct dm_transaction_manager *real)
+{
+ struct dm_transaction_manager *tm;
+
+ tm = kmalloc(sizeof(*tm), GFP_KERNEL);
+ if (tm) {
+ tm->is_clone = 1;
+ tm->real = real;
+ }
+
+ return tm;
+}
+EXPORT_SYMBOL_GPL(dm_tm_create_non_blocking_clone);
+
+void dm_tm_destroy(struct dm_transaction_manager *tm)
+{
+ if (!tm)
+ return;
+
+ if (!tm->is_clone)
+ wipe_shadow_table(tm);
+
+ kfree(tm);
+}
+EXPORT_SYMBOL_GPL(dm_tm_destroy);
+
+int dm_tm_pre_commit(struct dm_transaction_manager *tm)
+{
+ int r;
+
+ if (tm->is_clone)
+ return -EWOULDBLOCK;
+
+ r = dm_sm_commit(tm->sm);
+ if (r < 0)
+ return r;
+
+ return dm_bm_flush(tm->bm);
+}
+EXPORT_SYMBOL_GPL(dm_tm_pre_commit);
+
+int dm_tm_commit(struct dm_transaction_manager *tm, struct dm_block *root)
+{
+ if (tm->is_clone)
+ return -EWOULDBLOCK;
+
+ wipe_shadow_table(tm);
+ dm_bm_unlock(root);
+
+ return dm_bm_flush(tm->bm);
+}
+EXPORT_SYMBOL_GPL(dm_tm_commit);
+
+int dm_tm_new_block(struct dm_transaction_manager *tm,
+ struct dm_block_validator *v,
+ struct dm_block **result)
+{
+ int r;
+ dm_block_t new_block;
+
+ if (tm->is_clone)
+ return -EWOULDBLOCK;
+
+ r = dm_sm_new_block(tm->sm, &new_block);
+ if (r < 0)
+ return r;
+
+ r = dm_bm_write_lock_zero(tm->bm, new_block, v, result);
+ if (r < 0) {
+ dm_sm_dec_block(tm->sm, new_block);
+ return r;
+ }
+
+ /*
+ * New blocks count as shadows in that they don't need to be
+ * shadowed again.
+ */
+ insert_shadow(tm, new_block);
+
+ return 0;
+}
+
+static int __shadow_block(struct dm_transaction_manager *tm, dm_block_t orig,
+ struct dm_block_validator *v,
+ struct dm_block **result)
+{
+ int r;
+ dm_block_t new;
+ struct dm_block *orig_block;
+
+ r = dm_sm_new_block(tm->sm, &new);
+ if (r < 0)
+ return r;
+
+ r = dm_sm_dec_block(tm->sm, orig);
+ if (r < 0)
+ return r;
+
+ r = dm_bm_read_lock(tm->bm, orig, v, &orig_block);
+ if (r < 0)
+ return r;
+
+ /*
+ * It would be tempting to use dm_bm_unlock_move here, but some
+ * code, such as the space maps, keeps using the old data structures
+ * secure in the knowledge they won't be changed until the next
+ * transaction. Using unlock_move would force a synchronous read
+ * since the old block would no longer be in the cache.
+ */
+ r = dm_bm_write_lock_zero(tm->bm, new, v, result);
+ if (r) {
+ dm_bm_unlock(orig_block);
+ return r;
+ }
+
+ memcpy(dm_block_data(*result), dm_block_data(orig_block),
+ dm_bm_block_size(tm->bm));
+
+ dm_bm_unlock(orig_block);
+ return r;
+}
+
+int dm_tm_shadow_block(struct dm_transaction_manager *tm, dm_block_t orig,
+ struct dm_block_validator *v, struct dm_block **result,
+ int *inc_children)
+{
+ int r;
+
+ if (tm->is_clone)
+ return -EWOULDBLOCK;
+
+ r = dm_sm_count_is_more_than_one(tm->sm, orig, inc_children);
+ if (r < 0)
+ return r;
+
+ if (is_shadow(tm, orig) && !*inc_children)
+ return dm_bm_write_lock(tm->bm, orig, v, result);
+
+ r = __shadow_block(tm, orig, v, result);
+ if (r < 0)
+ return r;
+ insert_shadow(tm, dm_block_location(*result));
+
+ return r;
+}
+EXPORT_SYMBOL_GPL(dm_tm_shadow_block);
+
+int dm_tm_read_lock(struct dm_transaction_manager *tm, dm_block_t b,
+ struct dm_block_validator *v,
+ struct dm_block **blk)
+{
+ if (tm->is_clone) {
+ int r = dm_bm_read_try_lock(tm->real->bm, b, v, blk);
+
+ if (r == -EWOULDBLOCK)
+ prefetch_add(&tm->real->prefetches, b);
+
+ return r;
+ }
+
+ return dm_bm_read_lock(tm->bm, b, v, blk);
+}
+EXPORT_SYMBOL_GPL(dm_tm_read_lock);
+
+void dm_tm_unlock(struct dm_transaction_manager *tm, struct dm_block *b)
+{
+ dm_bm_unlock(b);
+}
+EXPORT_SYMBOL_GPL(dm_tm_unlock);
+
+void dm_tm_inc(struct dm_transaction_manager *tm, dm_block_t b)
+{
+ /*
+ * The non-blocking clone doesn't support this.
+ */
+ BUG_ON(tm->is_clone);
+
+ dm_sm_inc_block(tm->sm, b);
+}
+EXPORT_SYMBOL_GPL(dm_tm_inc);
+
+void dm_tm_inc_range(struct dm_transaction_manager *tm, dm_block_t b, dm_block_t e)
+{
+ /*
+ * The non-blocking clone doesn't support this.
+ */
+ BUG_ON(tm->is_clone);
+
+ dm_sm_inc_blocks(tm->sm, b, e);
+}
+EXPORT_SYMBOL_GPL(dm_tm_inc_range);
+
+void dm_tm_dec(struct dm_transaction_manager *tm, dm_block_t b)
+{
+ /*
+ * The non-blocking clone doesn't support this.
+ */
+ BUG_ON(tm->is_clone);
+
+ dm_sm_dec_block(tm->sm, b);
+}
+EXPORT_SYMBOL_GPL(dm_tm_dec);
+
+void dm_tm_dec_range(struct dm_transaction_manager *tm, dm_block_t b, dm_block_t e)
+{
+ /*
+ * The non-blocking clone doesn't support this.
+ */
+ BUG_ON(tm->is_clone);
+
+ dm_sm_dec_blocks(tm->sm, b, e);
+}
+EXPORT_SYMBOL_GPL(dm_tm_dec_range);
+
+void dm_tm_with_runs(struct dm_transaction_manager *tm,
+ const __le64 *value_le, unsigned int count, dm_tm_run_fn fn)
+{
+ uint64_t b, begin, end;
+ bool in_run = false;
+ unsigned int i;
+
+ for (i = 0; i < count; i++, value_le++) {
+ b = le64_to_cpu(*value_le);
+
+ if (in_run) {
+ if (b == end)
+ end++;
+ else {
+ fn(tm, begin, end);
+ begin = b;
+ end = b + 1;
+ }
+ } else {
+ in_run = true;
+ begin = b;
+ end = b + 1;
+ }
+ }
+
+ if (in_run)
+ fn(tm, begin, end);
+}
+EXPORT_SYMBOL_GPL(dm_tm_with_runs);
+
+int dm_tm_ref(struct dm_transaction_manager *tm, dm_block_t b,
+ uint32_t *result)
+{
+ if (tm->is_clone)
+ return -EWOULDBLOCK;
+
+ return dm_sm_get_count(tm->sm, b, result);
+}
+
+int dm_tm_block_is_shared(struct dm_transaction_manager *tm, dm_block_t b,
+ int *result)
+{
+ if (tm->is_clone)
+ return -EWOULDBLOCK;
+
+ return dm_sm_count_is_more_than_one(tm->sm, b, result);
+}
+
+struct dm_block_manager *dm_tm_get_bm(struct dm_transaction_manager *tm)
+{
+ return tm->bm;
+}
+
+void dm_tm_issue_prefetches(struct dm_transaction_manager *tm)
+{
+ prefetch_issue(&tm->prefetches, tm->bm);
+}
+EXPORT_SYMBOL_GPL(dm_tm_issue_prefetches);
+
+/*----------------------------------------------------------------*/
+
+static int dm_tm_create_internal(struct dm_block_manager *bm,
+ dm_block_t sb_location,
+ struct dm_transaction_manager **tm,
+ struct dm_space_map **sm,
+ int create,
+ void *sm_root, size_t sm_len)
+{
+ int r;
+
+ *sm = dm_sm_metadata_init();
+ if (IS_ERR(*sm))
+ return PTR_ERR(*sm);
+
+ *tm = dm_tm_create(bm, *sm);
+ if (IS_ERR(*tm)) {
+ dm_sm_destroy(*sm);
+ return PTR_ERR(*tm);
+ }
+
+ if (create) {
+ r = dm_sm_metadata_create(*sm, *tm, dm_bm_nr_blocks(bm),
+ sb_location);
+ if (r) {
+ DMERR("couldn't create metadata space map");
+ goto bad;
+ }
+
+ } else {
+ r = dm_sm_metadata_open(*sm, *tm, sm_root, sm_len);
+ if (r) {
+ DMERR("couldn't open metadata space map");
+ goto bad;
+ }
+ }
+
+ return 0;
+
+bad:
+ dm_tm_destroy(*tm);
+ dm_sm_destroy(*sm);
+ return r;
+}
+
+int dm_tm_create_with_sm(struct dm_block_manager *bm, dm_block_t sb_location,
+ struct dm_transaction_manager **tm,
+ struct dm_space_map **sm)
+{
+ return dm_tm_create_internal(bm, sb_location, tm, sm, 1, NULL, 0);
+}
+EXPORT_SYMBOL_GPL(dm_tm_create_with_sm);
+
+int dm_tm_open_with_sm(struct dm_block_manager *bm, dm_block_t sb_location,
+ void *sm_root, size_t root_len,
+ struct dm_transaction_manager **tm,
+ struct dm_space_map **sm)
+{
+ return dm_tm_create_internal(bm, sb_location, tm, sm, 0, sm_root, root_len);
+}
+EXPORT_SYMBOL_GPL(dm_tm_open_with_sm);
+
+/*----------------------------------------------------------------*/
diff --git a/drivers/md/persistent-data/dm-transaction-manager.h b/drivers/md/persistent-data/dm-transaction-manager.h
new file mode 100644
index 000000000..0f573a4a0
--- /dev/null
+++ b/drivers/md/persistent-data/dm-transaction-manager.h
@@ -0,0 +1,153 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef _LINUX_DM_TRANSACTION_MANAGER_H
+#define _LINUX_DM_TRANSACTION_MANAGER_H
+
+#include "dm-block-manager.h"
+
+struct dm_transaction_manager;
+struct dm_space_map;
+
+/*----------------------------------------------------------------*/
+
+/*
+ * This manages the scope of a transaction. It also enforces immutability
+ * of the on-disk data structures by limiting access to writeable blocks.
+ *
+ * Clients should not fiddle with the block manager directly.
+ */
+
+void dm_tm_destroy(struct dm_transaction_manager *tm);
+
+/*
+ * The non-blocking version of a transaction manager is intended for use in
+ * fast path code that needs to do lookups e.g. a dm mapping function.
+ * You create the non-blocking variant from a normal tm. The interface is
+ * the same, except that most functions will just return -EWOULDBLOCK.
+ * Methods that return void yet may block should not be called on a clone
+ * viz. dm_tm_inc, dm_tm_dec. Call dm_tm_destroy() as you would with a normal
+ * tm when you've finished with it. You may not destroy the original prior
+ * to clones.
+ */
+struct dm_transaction_manager *dm_tm_create_non_blocking_clone(struct dm_transaction_manager *real);
+
+/*
+ * We use a 2-phase commit here.
+ *
+ * i) Make all changes for the transaction *except* for the superblock.
+ * Then call dm_tm_pre_commit() to flush them to disk.
+ *
+ * ii) Lock your superblock. Update. Then call dm_tm_commit() which will
+ * unlock the superblock and flush it. No other blocks should be updated
+ * during this period. Care should be taken to never unlock a partially
+ * updated superblock; perform any operations that could fail *before* you
+ * take the superblock lock.
+ */
+int dm_tm_pre_commit(struct dm_transaction_manager *tm);
+int dm_tm_commit(struct dm_transaction_manager *tm, struct dm_block *superblock);
+
+/*
+ * These methods are the only way to get hold of a writeable block.
+ */
+
+/*
+ * dm_tm_new_block() is pretty self-explanatory. Make sure you do actually
+ * write to the whole of @data before you unlock, otherwise you could get
+ * a data leak. (The other option is for tm_new_block() to zero new blocks
+ * before handing them out, which will be redundant in most, if not all,
+ * cases).
+ * Zeroes the new block and returns with write lock held.
+ */
+int dm_tm_new_block(struct dm_transaction_manager *tm,
+ struct dm_block_validator *v,
+ struct dm_block **result);
+
+/*
+ * dm_tm_shadow_block() allocates a new block and copies the data from @orig
+ * to it. It then decrements the reference count on original block. Use
+ * this to update the contents of a block in a data structure, don't
+ * confuse this with a clone - you shouldn't access the orig block after
+ * this operation. Because the tm knows the scope of the transaction it
+ * can optimise requests for a shadow of a shadow to a no-op. Don't forget
+ * to unlock when you've finished with the shadow.
+ *
+ * The @inc_children flag is used to tell the caller whether it needs to
+ * adjust reference counts for children. (Data in the block may refer to
+ * other blocks.)
+ *
+ * Shadowing implicitly drops a reference on @orig so you must not have
+ * it locked when you call this.
+ */
+int dm_tm_shadow_block(struct dm_transaction_manager *tm, dm_block_t orig,
+ struct dm_block_validator *v,
+ struct dm_block **result, int *inc_children);
+
+/*
+ * Read access. You can lock any block you want. If there's a write lock
+ * on it outstanding then it'll block.
+ */
+int dm_tm_read_lock(struct dm_transaction_manager *tm, dm_block_t b,
+ struct dm_block_validator *v,
+ struct dm_block **result);
+
+void dm_tm_unlock(struct dm_transaction_manager *tm, struct dm_block *b);
+
+/*
+ * Functions for altering the reference count of a block directly.
+ */
+void dm_tm_inc(struct dm_transaction_manager *tm, dm_block_t b);
+void dm_tm_inc_range(struct dm_transaction_manager *tm, dm_block_t b, dm_block_t e);
+void dm_tm_dec(struct dm_transaction_manager *tm, dm_block_t b);
+void dm_tm_dec_range(struct dm_transaction_manager *tm, dm_block_t b, dm_block_t e);
+
+/*
+ * Builds up runs of adjacent blocks, and then calls the given fn
+ * (typically dm_tm_inc/dec). Very useful when you have to perform
+ * the same tm operation on all values in a btree leaf.
+ */
+typedef void (*dm_tm_run_fn)(struct dm_transaction_manager *, dm_block_t, dm_block_t);
+void dm_tm_with_runs(struct dm_transaction_manager *tm,
+ const __le64 *value_le, unsigned int count, dm_tm_run_fn fn);
+
+int dm_tm_ref(struct dm_transaction_manager *tm, dm_block_t b, uint32_t *result);
+
+/*
+ * Finds out if a given block is shared (ie. has a reference count higher
+ * than one).
+ */
+int dm_tm_block_is_shared(struct dm_transaction_manager *tm, dm_block_t b,
+ int *result);
+
+struct dm_block_manager *dm_tm_get_bm(struct dm_transaction_manager *tm);
+
+/*
+ * If you're using a non-blocking clone the tm will build up a list of
+ * requested blocks that weren't in core. This call will request those
+ * blocks to be prefetched.
+ */
+void dm_tm_issue_prefetches(struct dm_transaction_manager *tm);
+
+/*
+ * A little utility that ties the knot by producing a transaction manager
+ * that has a space map managed by the transaction manager...
+ *
+ * Returns a tm that has an open transaction to write the new disk sm.
+ * Caller should store the new sm root and commit.
+ *
+ * The superblock location is passed so the metadata space map knows it
+ * shouldn't be used.
+ */
+int dm_tm_create_with_sm(struct dm_block_manager *bm, dm_block_t sb_location,
+ struct dm_transaction_manager **tm,
+ struct dm_space_map **sm);
+
+int dm_tm_open_with_sm(struct dm_block_manager *bm, dm_block_t sb_location,
+ void *sm_root, size_t root_len,
+ struct dm_transaction_manager **tm,
+ struct dm_space_map **sm);
+
+#endif /* _LINUX_DM_TRANSACTION_MANAGER_H */
diff --git a/drivers/md/raid0.c b/drivers/md/raid0.c
new file mode 100644
index 000000000..7c6a0b443
--- /dev/null
+++ b/drivers/md/raid0.c
@@ -0,0 +1,846 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ raid0.c : Multiple Devices driver for Linux
+ Copyright (C) 1994-96 Marc ZYNGIER
+ <zyngier@ufr-info-p7.ibp.fr> or
+ <maz@gloups.fdn.fr>
+ Copyright (C) 1999, 2000 Ingo Molnar, Red Hat
+
+ RAID-0 management functions.
+
+*/
+
+#include <linux/blkdev.h>
+#include <linux/seq_file.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <trace/events/block.h>
+#include "md.h"
+#include "raid0.h"
+#include "raid5.h"
+
+static int default_layout = 0;
+module_param(default_layout, int, 0644);
+
+#define UNSUPPORTED_MDDEV_FLAGS \
+ ((1L << MD_HAS_JOURNAL) | \
+ (1L << MD_JOURNAL_CLEAN) | \
+ (1L << MD_FAILFAST_SUPPORTED) |\
+ (1L << MD_HAS_PPL) | \
+ (1L << MD_HAS_MULTIPLE_PPLS))
+
+/*
+ * inform the user of the raid configuration
+*/
+static void dump_zones(struct mddev *mddev)
+{
+ int j, k;
+ sector_t zone_size = 0;
+ sector_t zone_start = 0;
+ struct r0conf *conf = mddev->private;
+ int raid_disks = conf->strip_zone[0].nb_dev;
+ pr_debug("md: RAID0 configuration for %s - %d zone%s\n",
+ mdname(mddev),
+ conf->nr_strip_zones, conf->nr_strip_zones==1?"":"s");
+ for (j = 0; j < conf->nr_strip_zones; j++) {
+ char line[200];
+ int len = 0;
+
+ for (k = 0; k < conf->strip_zone[j].nb_dev; k++)
+ len += scnprintf(line+len, 200-len, "%s%pg", k?"/":"",
+ conf->devlist[j * raid_disks + k]->bdev);
+ pr_debug("md: zone%d=[%s]\n", j, line);
+
+ zone_size = conf->strip_zone[j].zone_end - zone_start;
+ pr_debug(" zone-offset=%10lluKB, device-offset=%10lluKB, size=%10lluKB\n",
+ (unsigned long long)zone_start>>1,
+ (unsigned long long)conf->strip_zone[j].dev_start>>1,
+ (unsigned long long)zone_size>>1);
+ zone_start = conf->strip_zone[j].zone_end;
+ }
+}
+
+static int create_strip_zones(struct mddev *mddev, struct r0conf **private_conf)
+{
+ int i, c, err;
+ sector_t curr_zone_end, sectors;
+ struct md_rdev *smallest, *rdev1, *rdev2, *rdev, **dev;
+ struct strip_zone *zone;
+ int cnt;
+ struct r0conf *conf = kzalloc(sizeof(*conf), GFP_KERNEL);
+ unsigned blksize = 512;
+
+ *private_conf = ERR_PTR(-ENOMEM);
+ if (!conf)
+ return -ENOMEM;
+ rdev_for_each(rdev1, mddev) {
+ pr_debug("md/raid0:%s: looking at %pg\n",
+ mdname(mddev),
+ rdev1->bdev);
+ c = 0;
+
+ /* round size to chunk_size */
+ sectors = rdev1->sectors;
+ sector_div(sectors, mddev->chunk_sectors);
+ rdev1->sectors = sectors * mddev->chunk_sectors;
+
+ blksize = max(blksize, queue_logical_block_size(
+ rdev1->bdev->bd_disk->queue));
+
+ rdev_for_each(rdev2, mddev) {
+ pr_debug("md/raid0:%s: comparing %pg(%llu)"
+ " with %pg(%llu)\n",
+ mdname(mddev),
+ rdev1->bdev,
+ (unsigned long long)rdev1->sectors,
+ rdev2->bdev,
+ (unsigned long long)rdev2->sectors);
+ if (rdev2 == rdev1) {
+ pr_debug("md/raid0:%s: END\n",
+ mdname(mddev));
+ break;
+ }
+ if (rdev2->sectors == rdev1->sectors) {
+ /*
+ * Not unique, don't count it as a new
+ * group
+ */
+ pr_debug("md/raid0:%s: EQUAL\n",
+ mdname(mddev));
+ c = 1;
+ break;
+ }
+ pr_debug("md/raid0:%s: NOT EQUAL\n",
+ mdname(mddev));
+ }
+ if (!c) {
+ pr_debug("md/raid0:%s: ==> UNIQUE\n",
+ mdname(mddev));
+ conf->nr_strip_zones++;
+ pr_debug("md/raid0:%s: %d zones\n",
+ mdname(mddev), conf->nr_strip_zones);
+ }
+ }
+ pr_debug("md/raid0:%s: FINAL %d zones\n",
+ mdname(mddev), conf->nr_strip_zones);
+
+ /*
+ * now since we have the hard sector sizes, we can make sure
+ * chunk size is a multiple of that sector size
+ */
+ if ((mddev->chunk_sectors << 9) % blksize) {
+ pr_warn("md/raid0:%s: chunk_size of %d not multiple of block size %d\n",
+ mdname(mddev),
+ mddev->chunk_sectors << 9, blksize);
+ err = -EINVAL;
+ goto abort;
+ }
+
+ err = -ENOMEM;
+ conf->strip_zone = kcalloc(conf->nr_strip_zones,
+ sizeof(struct strip_zone),
+ GFP_KERNEL);
+ if (!conf->strip_zone)
+ goto abort;
+ conf->devlist = kzalloc(array3_size(sizeof(struct md_rdev *),
+ conf->nr_strip_zones,
+ mddev->raid_disks),
+ GFP_KERNEL);
+ if (!conf->devlist)
+ goto abort;
+
+ /* The first zone must contain all devices, so here we check that
+ * there is a proper alignment of slots to devices and find them all
+ */
+ zone = &conf->strip_zone[0];
+ cnt = 0;
+ smallest = NULL;
+ dev = conf->devlist;
+ err = -EINVAL;
+ rdev_for_each(rdev1, mddev) {
+ int j = rdev1->raid_disk;
+
+ if (mddev->level == 10) {
+ /* taking over a raid10-n2 array */
+ j /= 2;
+ rdev1->new_raid_disk = j;
+ }
+
+ if (mddev->level == 1) {
+ /* taiking over a raid1 array-
+ * we have only one active disk
+ */
+ j = 0;
+ rdev1->new_raid_disk = j;
+ }
+
+ if (j < 0) {
+ pr_warn("md/raid0:%s: remove inactive devices before converting to RAID0\n",
+ mdname(mddev));
+ goto abort;
+ }
+ if (j >= mddev->raid_disks) {
+ pr_warn("md/raid0:%s: bad disk number %d - aborting!\n",
+ mdname(mddev), j);
+ goto abort;
+ }
+ if (dev[j]) {
+ pr_warn("md/raid0:%s: multiple devices for %d - aborting!\n",
+ mdname(mddev), j);
+ goto abort;
+ }
+ dev[j] = rdev1;
+
+ if (!smallest || (rdev1->sectors < smallest->sectors))
+ smallest = rdev1;
+ cnt++;
+ }
+ if (cnt != mddev->raid_disks) {
+ pr_warn("md/raid0:%s: too few disks (%d of %d) - aborting!\n",
+ mdname(mddev), cnt, mddev->raid_disks);
+ goto abort;
+ }
+ zone->nb_dev = cnt;
+ zone->zone_end = smallest->sectors * cnt;
+
+ curr_zone_end = zone->zone_end;
+
+ /* now do the other zones */
+ for (i = 1; i < conf->nr_strip_zones; i++)
+ {
+ int j;
+
+ zone = conf->strip_zone + i;
+ dev = conf->devlist + i * mddev->raid_disks;
+
+ pr_debug("md/raid0:%s: zone %d\n", mdname(mddev), i);
+ zone->dev_start = smallest->sectors;
+ smallest = NULL;
+ c = 0;
+
+ for (j=0; j<cnt; j++) {
+ rdev = conf->devlist[j];
+ if (rdev->sectors <= zone->dev_start) {
+ pr_debug("md/raid0:%s: checking %pg ... nope\n",
+ mdname(mddev),
+ rdev->bdev);
+ continue;
+ }
+ pr_debug("md/raid0:%s: checking %pg ..."
+ " contained as device %d\n",
+ mdname(mddev),
+ rdev->bdev, c);
+ dev[c] = rdev;
+ c++;
+ if (!smallest || rdev->sectors < smallest->sectors) {
+ smallest = rdev;
+ pr_debug("md/raid0:%s: (%llu) is smallest!.\n",
+ mdname(mddev),
+ (unsigned long long)rdev->sectors);
+ }
+ }
+
+ zone->nb_dev = c;
+ sectors = (smallest->sectors - zone->dev_start) * c;
+ pr_debug("md/raid0:%s: zone->nb_dev: %d, sectors: %llu\n",
+ mdname(mddev),
+ zone->nb_dev, (unsigned long long)sectors);
+
+ curr_zone_end += sectors;
+ zone->zone_end = curr_zone_end;
+
+ pr_debug("md/raid0:%s: current zone start: %llu\n",
+ mdname(mddev),
+ (unsigned long long)smallest->sectors);
+ }
+
+ if (conf->nr_strip_zones == 1 || conf->strip_zone[1].nb_dev == 1) {
+ conf->layout = RAID0_ORIG_LAYOUT;
+ } else if (mddev->layout == RAID0_ORIG_LAYOUT ||
+ mddev->layout == RAID0_ALT_MULTIZONE_LAYOUT) {
+ conf->layout = mddev->layout;
+ } else if (default_layout == RAID0_ORIG_LAYOUT ||
+ default_layout == RAID0_ALT_MULTIZONE_LAYOUT) {
+ conf->layout = default_layout;
+ } else {
+ pr_err("md/raid0:%s: cannot assemble multi-zone RAID0 with default_layout setting\n",
+ mdname(mddev));
+ pr_err("md/raid0: please set raid0.default_layout to 1 or 2\n");
+ err = -EOPNOTSUPP;
+ goto abort;
+ }
+
+ if (conf->layout == RAID0_ORIG_LAYOUT) {
+ for (i = 1; i < conf->nr_strip_zones; i++) {
+ sector_t first_sector = conf->strip_zone[i-1].zone_end;
+
+ sector_div(first_sector, mddev->chunk_sectors);
+ zone = conf->strip_zone + i;
+ /* disk_shift is first disk index used in the zone */
+ zone->disk_shift = sector_div(first_sector,
+ zone->nb_dev);
+ }
+ }
+
+ pr_debug("md/raid0:%s: done.\n", mdname(mddev));
+ *private_conf = conf;
+
+ return 0;
+abort:
+ kfree(conf->strip_zone);
+ kfree(conf->devlist);
+ kfree(conf);
+ *private_conf = ERR_PTR(err);
+ return err;
+}
+
+/* Find the zone which holds a particular offset
+ * Update *sectorp to be an offset in that zone
+ */
+static struct strip_zone *find_zone(struct r0conf *conf,
+ sector_t *sectorp)
+{
+ int i;
+ struct strip_zone *z = conf->strip_zone;
+ sector_t sector = *sectorp;
+
+ for (i = 0; i < conf->nr_strip_zones; i++)
+ if (sector < z[i].zone_end) {
+ if (i)
+ *sectorp = sector - z[i-1].zone_end;
+ return z + i;
+ }
+ BUG();
+}
+
+/*
+ * remaps the bio to the target device. we separate two flows.
+ * power 2 flow and a general flow for the sake of performance
+*/
+static struct md_rdev *map_sector(struct mddev *mddev, struct strip_zone *zone,
+ sector_t sector, sector_t *sector_offset)
+{
+ unsigned int sect_in_chunk;
+ sector_t chunk;
+ struct r0conf *conf = mddev->private;
+ int raid_disks = conf->strip_zone[0].nb_dev;
+ unsigned int chunk_sects = mddev->chunk_sectors;
+
+ if (is_power_of_2(chunk_sects)) {
+ int chunksect_bits = ffz(~chunk_sects);
+ /* find the sector offset inside the chunk */
+ sect_in_chunk = sector & (chunk_sects - 1);
+ sector >>= chunksect_bits;
+ /* chunk in zone */
+ chunk = *sector_offset;
+ /* quotient is the chunk in real device*/
+ sector_div(chunk, zone->nb_dev << chunksect_bits);
+ } else{
+ sect_in_chunk = sector_div(sector, chunk_sects);
+ chunk = *sector_offset;
+ sector_div(chunk, chunk_sects * zone->nb_dev);
+ }
+ /*
+ * position the bio over the real device
+ * real sector = chunk in device + starting of zone
+ * + the position in the chunk
+ */
+ *sector_offset = (chunk * chunk_sects) + sect_in_chunk;
+ return conf->devlist[(zone - conf->strip_zone)*raid_disks
+ + sector_div(sector, zone->nb_dev)];
+}
+
+static sector_t raid0_size(struct mddev *mddev, sector_t sectors, int raid_disks)
+{
+ sector_t array_sectors = 0;
+ struct md_rdev *rdev;
+
+ WARN_ONCE(sectors || raid_disks,
+ "%s does not support generic reshape\n", __func__);
+
+ rdev_for_each(rdev, mddev)
+ array_sectors += (rdev->sectors &
+ ~(sector_t)(mddev->chunk_sectors-1));
+
+ return array_sectors;
+}
+
+static void free_conf(struct mddev *mddev, struct r0conf *conf)
+{
+ kfree(conf->strip_zone);
+ kfree(conf->devlist);
+ kfree(conf);
+}
+
+static void raid0_free(struct mddev *mddev, void *priv)
+{
+ struct r0conf *conf = priv;
+
+ free_conf(mddev, conf);
+ acct_bioset_exit(mddev);
+}
+
+static int raid0_run(struct mddev *mddev)
+{
+ struct r0conf *conf;
+ int ret;
+
+ if (mddev->chunk_sectors == 0) {
+ pr_warn("md/raid0:%s: chunk size must be set.\n", mdname(mddev));
+ return -EINVAL;
+ }
+ if (md_check_no_bitmap(mddev))
+ return -EINVAL;
+
+ if (acct_bioset_init(mddev)) {
+ pr_err("md/raid0:%s: alloc acct bioset failed.\n", mdname(mddev));
+ return -ENOMEM;
+ }
+
+ /* if private is not null, we are here after takeover */
+ if (mddev->private == NULL) {
+ ret = create_strip_zones(mddev, &conf);
+ if (ret < 0)
+ goto exit_acct_set;
+ mddev->private = conf;
+ }
+ conf = mddev->private;
+ if (mddev->queue) {
+ struct md_rdev *rdev;
+
+ blk_queue_max_hw_sectors(mddev->queue, mddev->chunk_sectors);
+ blk_queue_max_write_zeroes_sectors(mddev->queue, mddev->chunk_sectors);
+
+ blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
+ blk_queue_io_opt(mddev->queue,
+ (mddev->chunk_sectors << 9) * mddev->raid_disks);
+
+ rdev_for_each(rdev, mddev) {
+ disk_stack_limits(mddev->gendisk, rdev->bdev,
+ rdev->data_offset << 9);
+ }
+ }
+
+ /* calculate array device size */
+ md_set_array_sectors(mddev, raid0_size(mddev, 0, 0));
+
+ pr_debug("md/raid0:%s: md_size is %llu sectors.\n",
+ mdname(mddev),
+ (unsigned long long)mddev->array_sectors);
+
+ dump_zones(mddev);
+
+ ret = md_integrity_register(mddev);
+ if (ret)
+ goto free;
+
+ return ret;
+
+free:
+ free_conf(mddev, conf);
+exit_acct_set:
+ acct_bioset_exit(mddev);
+ return ret;
+}
+
+/*
+ * Convert disk_index to the disk order in which it is read/written.
+ * For example, if we have 4 disks, they are numbered 0,1,2,3. If we
+ * write the disks starting at disk 3, then the read/write order would
+ * be disk 3, then 0, then 1, and then disk 2 and we want map_disk_shift()
+ * to map the disks as follows 0,1,2,3 => 1,2,3,0. So disk 0 would map
+ * to 1, 1 to 2, 2 to 3, and 3 to 0. That way we can compare disks in
+ * that 'output' space to understand the read/write disk ordering.
+ */
+static int map_disk_shift(int disk_index, int num_disks, int disk_shift)
+{
+ return ((disk_index + num_disks - disk_shift) % num_disks);
+}
+
+static void raid0_handle_discard(struct mddev *mddev, struct bio *bio)
+{
+ struct r0conf *conf = mddev->private;
+ struct strip_zone *zone;
+ sector_t start = bio->bi_iter.bi_sector;
+ sector_t end;
+ unsigned int stripe_size;
+ sector_t first_stripe_index, last_stripe_index;
+ sector_t start_disk_offset;
+ unsigned int start_disk_index;
+ sector_t end_disk_offset;
+ unsigned int end_disk_index;
+ unsigned int disk;
+ sector_t orig_start, orig_end;
+
+ orig_start = start;
+ zone = find_zone(conf, &start);
+
+ if (bio_end_sector(bio) > zone->zone_end) {
+ struct bio *split = bio_split(bio,
+ zone->zone_end - bio->bi_iter.bi_sector, GFP_NOIO,
+ &mddev->bio_set);
+ bio_chain(split, bio);
+ submit_bio_noacct(bio);
+ bio = split;
+ end = zone->zone_end;
+ } else
+ end = bio_end_sector(bio);
+
+ orig_end = end;
+ if (zone != conf->strip_zone)
+ end = end - zone[-1].zone_end;
+
+ /* Now start and end is the offset in zone */
+ stripe_size = zone->nb_dev * mddev->chunk_sectors;
+
+ first_stripe_index = start;
+ sector_div(first_stripe_index, stripe_size);
+ last_stripe_index = end;
+ sector_div(last_stripe_index, stripe_size);
+
+ /* In the first zone the original and alternate layouts are the same */
+ if ((conf->layout == RAID0_ORIG_LAYOUT) && (zone != conf->strip_zone)) {
+ sector_div(orig_start, mddev->chunk_sectors);
+ start_disk_index = sector_div(orig_start, zone->nb_dev);
+ start_disk_index = map_disk_shift(start_disk_index,
+ zone->nb_dev,
+ zone->disk_shift);
+ sector_div(orig_end, mddev->chunk_sectors);
+ end_disk_index = sector_div(orig_end, zone->nb_dev);
+ end_disk_index = map_disk_shift(end_disk_index,
+ zone->nb_dev, zone->disk_shift);
+ } else {
+ start_disk_index = (int)(start - first_stripe_index * stripe_size) /
+ mddev->chunk_sectors;
+ end_disk_index = (int)(end - last_stripe_index * stripe_size) /
+ mddev->chunk_sectors;
+ }
+ start_disk_offset = ((int)(start - first_stripe_index * stripe_size) %
+ mddev->chunk_sectors) +
+ first_stripe_index * mddev->chunk_sectors;
+ end_disk_offset = ((int)(end - last_stripe_index * stripe_size) %
+ mddev->chunk_sectors) +
+ last_stripe_index * mddev->chunk_sectors;
+
+ for (disk = 0; disk < zone->nb_dev; disk++) {
+ sector_t dev_start, dev_end;
+ struct md_rdev *rdev;
+ int compare_disk;
+
+ compare_disk = map_disk_shift(disk, zone->nb_dev,
+ zone->disk_shift);
+
+ if (compare_disk < start_disk_index)
+ dev_start = (first_stripe_index + 1) *
+ mddev->chunk_sectors;
+ else if (compare_disk > start_disk_index)
+ dev_start = first_stripe_index * mddev->chunk_sectors;
+ else
+ dev_start = start_disk_offset;
+
+ if (compare_disk < end_disk_index)
+ dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
+ else if (compare_disk > end_disk_index)
+ dev_end = last_stripe_index * mddev->chunk_sectors;
+ else
+ dev_end = end_disk_offset;
+
+ if (dev_end <= dev_start)
+ continue;
+
+ rdev = conf->devlist[(zone - conf->strip_zone) *
+ conf->strip_zone[0].nb_dev + disk];
+ md_submit_discard_bio(mddev, rdev, bio,
+ dev_start + zone->dev_start + rdev->data_offset,
+ dev_end - dev_start);
+ }
+ bio_endio(bio);
+}
+
+static void raid0_map_submit_bio(struct mddev *mddev, struct bio *bio)
+{
+ struct r0conf *conf = mddev->private;
+ struct strip_zone *zone;
+ struct md_rdev *tmp_dev;
+ sector_t bio_sector = bio->bi_iter.bi_sector;
+ sector_t sector = bio_sector;
+
+ md_account_bio(mddev, &bio);
+
+ zone = find_zone(mddev->private, &sector);
+ switch (conf->layout) {
+ case RAID0_ORIG_LAYOUT:
+ tmp_dev = map_sector(mddev, zone, bio_sector, &sector);
+ break;
+ case RAID0_ALT_MULTIZONE_LAYOUT:
+ tmp_dev = map_sector(mddev, zone, sector, &sector);
+ break;
+ default:
+ WARN(1, "md/raid0:%s: Invalid layout\n", mdname(mddev));
+ bio_io_error(bio);
+ return;
+ }
+
+ if (unlikely(is_rdev_broken(tmp_dev))) {
+ bio_io_error(bio);
+ md_error(mddev, tmp_dev);
+ return;
+ }
+
+ bio_set_dev(bio, tmp_dev->bdev);
+ bio->bi_iter.bi_sector = sector + zone->dev_start +
+ tmp_dev->data_offset;
+
+ if (mddev->gendisk)
+ trace_block_bio_remap(bio, disk_devt(mddev->gendisk),
+ bio_sector);
+ mddev_check_write_zeroes(mddev, bio);
+ submit_bio_noacct(bio);
+}
+
+static bool raid0_make_request(struct mddev *mddev, struct bio *bio)
+{
+ sector_t sector;
+ unsigned chunk_sects;
+ unsigned sectors;
+
+ if (unlikely(bio->bi_opf & REQ_PREFLUSH)
+ && md_flush_request(mddev, bio))
+ return true;
+
+ if (unlikely((bio_op(bio) == REQ_OP_DISCARD))) {
+ raid0_handle_discard(mddev, bio);
+ return true;
+ }
+
+ sector = bio->bi_iter.bi_sector;
+ chunk_sects = mddev->chunk_sectors;
+
+ sectors = chunk_sects -
+ (likely(is_power_of_2(chunk_sects))
+ ? (sector & (chunk_sects-1))
+ : sector_div(sector, chunk_sects));
+
+ if (sectors < bio_sectors(bio)) {
+ struct bio *split = bio_split(bio, sectors, GFP_NOIO,
+ &mddev->bio_set);
+ bio_chain(split, bio);
+ raid0_map_submit_bio(mddev, bio);
+ bio = split;
+ }
+
+ raid0_map_submit_bio(mddev, bio);
+ return true;
+}
+
+static void raid0_status(struct seq_file *seq, struct mddev *mddev)
+{
+ seq_printf(seq, " %dk chunks", mddev->chunk_sectors / 2);
+ return;
+}
+
+static void raid0_error(struct mddev *mddev, struct md_rdev *rdev)
+{
+ if (!test_and_set_bit(MD_BROKEN, &mddev->flags)) {
+ char *md_name = mdname(mddev);
+
+ pr_crit("md/raid0%s: Disk failure on %pg detected, failing array.\n",
+ md_name, rdev->bdev);
+ }
+}
+
+static void *raid0_takeover_raid45(struct mddev *mddev)
+{
+ struct md_rdev *rdev;
+ struct r0conf *priv_conf;
+
+ if (mddev->degraded != 1) {
+ pr_warn("md/raid0:%s: raid5 must be degraded! Degraded disks: %d\n",
+ mdname(mddev),
+ mddev->degraded);
+ return ERR_PTR(-EINVAL);
+ }
+
+ rdev_for_each(rdev, mddev) {
+ /* check slot number for a disk */
+ if (rdev->raid_disk == mddev->raid_disks-1) {
+ pr_warn("md/raid0:%s: raid5 must have missing parity disk!\n",
+ mdname(mddev));
+ return ERR_PTR(-EINVAL);
+ }
+ rdev->sectors = mddev->dev_sectors;
+ }
+
+ /* Set new parameters */
+ mddev->new_level = 0;
+ mddev->new_layout = 0;
+ mddev->new_chunk_sectors = mddev->chunk_sectors;
+ mddev->raid_disks--;
+ mddev->delta_disks = -1;
+ /* make sure it will be not marked as dirty */
+ mddev->recovery_cp = MaxSector;
+ mddev_clear_unsupported_flags(mddev, UNSUPPORTED_MDDEV_FLAGS);
+
+ create_strip_zones(mddev, &priv_conf);
+
+ return priv_conf;
+}
+
+static void *raid0_takeover_raid10(struct mddev *mddev)
+{
+ struct r0conf *priv_conf;
+
+ /* Check layout:
+ * - far_copies must be 1
+ * - near_copies must be 2
+ * - disks number must be even
+ * - all mirrors must be already degraded
+ */
+ if (mddev->layout != ((1 << 8) + 2)) {
+ pr_warn("md/raid0:%s:: Raid0 cannot takeover layout: 0x%x\n",
+ mdname(mddev),
+ mddev->layout);
+ return ERR_PTR(-EINVAL);
+ }
+ if (mddev->raid_disks & 1) {
+ pr_warn("md/raid0:%s: Raid0 cannot takeover Raid10 with odd disk number.\n",
+ mdname(mddev));
+ return ERR_PTR(-EINVAL);
+ }
+ if (mddev->degraded != (mddev->raid_disks>>1)) {
+ pr_warn("md/raid0:%s: All mirrors must be already degraded!\n",
+ mdname(mddev));
+ return ERR_PTR(-EINVAL);
+ }
+
+ /* Set new parameters */
+ mddev->new_level = 0;
+ mddev->new_layout = 0;
+ mddev->new_chunk_sectors = mddev->chunk_sectors;
+ mddev->delta_disks = - mddev->raid_disks / 2;
+ mddev->raid_disks += mddev->delta_disks;
+ mddev->degraded = 0;
+ /* make sure it will be not marked as dirty */
+ mddev->recovery_cp = MaxSector;
+ mddev_clear_unsupported_flags(mddev, UNSUPPORTED_MDDEV_FLAGS);
+
+ create_strip_zones(mddev, &priv_conf);
+ return priv_conf;
+}
+
+static void *raid0_takeover_raid1(struct mddev *mddev)
+{
+ struct r0conf *priv_conf;
+ int chunksect;
+
+ /* Check layout:
+ * - (N - 1) mirror drives must be already faulty
+ */
+ if ((mddev->raid_disks - 1) != mddev->degraded) {
+ pr_err("md/raid0:%s: (N - 1) mirrors drives must be already faulty!\n",
+ mdname(mddev));
+ return ERR_PTR(-EINVAL);
+ }
+
+ /*
+ * a raid1 doesn't have the notion of chunk size, so
+ * figure out the largest suitable size we can use.
+ */
+ chunksect = 64 * 2; /* 64K by default */
+
+ /* The array must be an exact multiple of chunksize */
+ while (chunksect && (mddev->array_sectors & (chunksect - 1)))
+ chunksect >>= 1;
+
+ if ((chunksect << 9) < PAGE_SIZE)
+ /* array size does not allow a suitable chunk size */
+ return ERR_PTR(-EINVAL);
+
+ /* Set new parameters */
+ mddev->new_level = 0;
+ mddev->new_layout = 0;
+ mddev->new_chunk_sectors = chunksect;
+ mddev->chunk_sectors = chunksect;
+ mddev->delta_disks = 1 - mddev->raid_disks;
+ mddev->raid_disks = 1;
+ /* make sure it will be not marked as dirty */
+ mddev->recovery_cp = MaxSector;
+ mddev_clear_unsupported_flags(mddev, UNSUPPORTED_MDDEV_FLAGS);
+
+ create_strip_zones(mddev, &priv_conf);
+ return priv_conf;
+}
+
+static void *raid0_takeover(struct mddev *mddev)
+{
+ /* raid0 can take over:
+ * raid4 - if all data disks are active.
+ * raid5 - providing it is Raid4 layout and one disk is faulty
+ * raid10 - assuming we have all necessary active disks
+ * raid1 - with (N -1) mirror drives faulty
+ */
+
+ if (mddev->bitmap) {
+ pr_warn("md/raid0: %s: cannot takeover array with bitmap\n",
+ mdname(mddev));
+ return ERR_PTR(-EBUSY);
+ }
+ if (mddev->level == 4)
+ return raid0_takeover_raid45(mddev);
+
+ if (mddev->level == 5) {
+ if (mddev->layout == ALGORITHM_PARITY_N)
+ return raid0_takeover_raid45(mddev);
+
+ pr_warn("md/raid0:%s: Raid can only takeover Raid5 with layout: %d\n",
+ mdname(mddev), ALGORITHM_PARITY_N);
+ }
+
+ if (mddev->level == 10)
+ return raid0_takeover_raid10(mddev);
+
+ if (mddev->level == 1)
+ return raid0_takeover_raid1(mddev);
+
+ pr_warn("Takeover from raid%i to raid0 not supported\n",
+ mddev->level);
+
+ return ERR_PTR(-EINVAL);
+}
+
+static void raid0_quiesce(struct mddev *mddev, int quiesce)
+{
+}
+
+static struct md_personality raid0_personality=
+{
+ .name = "raid0",
+ .level = 0,
+ .owner = THIS_MODULE,
+ .make_request = raid0_make_request,
+ .run = raid0_run,
+ .free = raid0_free,
+ .status = raid0_status,
+ .size = raid0_size,
+ .takeover = raid0_takeover,
+ .quiesce = raid0_quiesce,
+ .error_handler = raid0_error,
+};
+
+static int __init raid0_init (void)
+{
+ return register_md_personality (&raid0_personality);
+}
+
+static void raid0_exit (void)
+{
+ unregister_md_personality (&raid0_personality);
+}
+
+module_init(raid0_init);
+module_exit(raid0_exit);
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("RAID0 (striping) personality for MD");
+MODULE_ALIAS("md-personality-2"); /* RAID0 */
+MODULE_ALIAS("md-raid0");
+MODULE_ALIAS("md-level-0");
diff --git a/drivers/md/raid0.h b/drivers/md/raid0.h
new file mode 100644
index 000000000..8cc761ca7
--- /dev/null
+++ b/drivers/md/raid0.h
@@ -0,0 +1,33 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _RAID0_H
+#define _RAID0_H
+
+struct strip_zone {
+ sector_t zone_end; /* Start of the next zone (in sectors) */
+ sector_t dev_start; /* Zone offset in real dev (in sectors) */
+ int nb_dev; /* # of devices attached to the zone */
+ int disk_shift; /* start disk for the original layout */
+};
+
+/* Linux 3.14 (20d0189b101) made an unintended change to
+ * the RAID0 layout for multi-zone arrays (where devices aren't all
+ * the same size.
+ * RAID0_ORIG_LAYOUT restores the original layout
+ * RAID0_ALT_MULTIZONE_LAYOUT uses the altered layout
+ * The layouts are identical when there is only one zone (all
+ * devices the same size).
+ */
+
+enum r0layout {
+ RAID0_ORIG_LAYOUT = 1,
+ RAID0_ALT_MULTIZONE_LAYOUT = 2,
+};
+struct r0conf {
+ struct strip_zone *strip_zone;
+ struct md_rdev **devlist; /* lists of rdevs, pointed to
+ * by strip_zone->dev */
+ int nr_strip_zones;
+ enum r0layout layout;
+};
+
+#endif
diff --git a/drivers/md/raid1-10.c b/drivers/md/raid1-10.c
new file mode 100644
index 000000000..e0c8ac814
--- /dev/null
+++ b/drivers/md/raid1-10.c
@@ -0,0 +1,153 @@
+// SPDX-License-Identifier: GPL-2.0
+/* Maximum size of each resync request */
+#define RESYNC_BLOCK_SIZE (64*1024)
+#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
+
+/*
+ * Number of guaranteed raid bios in case of extreme VM load:
+ */
+#define NR_RAID_BIOS 256
+
+/* when we get a read error on a read-only array, we redirect to another
+ * device without failing the first device, or trying to over-write to
+ * correct the read error. To keep track of bad blocks on a per-bio
+ * level, we store IO_BLOCKED in the appropriate 'bios' pointer
+ */
+#define IO_BLOCKED ((struct bio *)1)
+/* When we successfully write to a known bad-block, we need to remove the
+ * bad-block marking which must be done from process context. So we record
+ * the success by setting devs[n].bio to IO_MADE_GOOD
+ */
+#define IO_MADE_GOOD ((struct bio *)2)
+
+#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
+
+/* for managing resync I/O pages */
+struct resync_pages {
+ void *raid_bio;
+ struct page *pages[RESYNC_PAGES];
+};
+
+struct raid1_plug_cb {
+ struct blk_plug_cb cb;
+ struct bio_list pending;
+};
+
+static void rbio_pool_free(void *rbio, void *data)
+{
+ kfree(rbio);
+}
+
+static inline int resync_alloc_pages(struct resync_pages *rp,
+ gfp_t gfp_flags)
+{
+ int i;
+
+ for (i = 0; i < RESYNC_PAGES; i++) {
+ rp->pages[i] = alloc_page(gfp_flags);
+ if (!rp->pages[i])
+ goto out_free;
+ }
+
+ return 0;
+
+out_free:
+ while (--i >= 0)
+ put_page(rp->pages[i]);
+ return -ENOMEM;
+}
+
+static inline void resync_free_pages(struct resync_pages *rp)
+{
+ int i;
+
+ for (i = 0; i < RESYNC_PAGES; i++)
+ put_page(rp->pages[i]);
+}
+
+static inline void resync_get_all_pages(struct resync_pages *rp)
+{
+ int i;
+
+ for (i = 0; i < RESYNC_PAGES; i++)
+ get_page(rp->pages[i]);
+}
+
+static inline struct page *resync_fetch_page(struct resync_pages *rp,
+ unsigned idx)
+{
+ if (WARN_ON_ONCE(idx >= RESYNC_PAGES))
+ return NULL;
+ return rp->pages[idx];
+}
+
+/*
+ * 'strct resync_pages' stores actual pages used for doing the resync
+ * IO, and it is per-bio, so make .bi_private points to it.
+ */
+static inline struct resync_pages *get_resync_pages(struct bio *bio)
+{
+ return bio->bi_private;
+}
+
+/* generally called after bio_reset() for reseting bvec */
+static void md_bio_reset_resync_pages(struct bio *bio, struct resync_pages *rp,
+ int size)
+{
+ int idx = 0;
+
+ /* initialize bvec table again */
+ do {
+ struct page *page = resync_fetch_page(rp, idx);
+ int len = min_t(int, size, PAGE_SIZE);
+
+ /*
+ * won't fail because the vec table is big
+ * enough to hold all these pages
+ */
+ bio_add_page(bio, page, len, 0);
+ size -= len;
+ } while (idx++ < RESYNC_PAGES && size > 0);
+}
+
+
+static inline void raid1_submit_write(struct bio *bio)
+{
+ struct md_rdev *rdev = (void *)bio->bi_bdev;
+
+ bio->bi_next = NULL;
+ bio_set_dev(bio, rdev->bdev);
+ if (test_bit(Faulty, &rdev->flags))
+ bio_io_error(bio);
+ else if (unlikely(bio_op(bio) == REQ_OP_DISCARD &&
+ !bdev_max_discard_sectors(bio->bi_bdev)))
+ /* Just ignore it */
+ bio_endio(bio);
+ else
+ submit_bio_noacct(bio);
+}
+
+static inline bool raid1_add_bio_to_plug(struct mddev *mddev, struct bio *bio,
+ blk_plug_cb_fn unplug)
+{
+ struct raid1_plug_cb *plug = NULL;
+ struct blk_plug_cb *cb;
+
+ /*
+ * If bitmap is not enabled, it's safe to submit the io directly, and
+ * this can get optimal performance.
+ */
+ if (!md_bitmap_enabled(mddev->bitmap)) {
+ raid1_submit_write(bio);
+ return true;
+ }
+
+ cb = blk_check_plugged(unplug, mddev, sizeof(*plug));
+ if (!cb)
+ return false;
+
+ plug = container_of(cb, struct raid1_plug_cb, cb);
+ bio_list_add(&plug->pending, bio);
+
+ return true;
+}
diff --git a/drivers/md/raid1.c b/drivers/md/raid1.c
new file mode 100644
index 000000000..76f7ca53d
--- /dev/null
+++ b/drivers/md/raid1.c
@@ -0,0 +1,3407 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * raid1.c : Multiple Devices driver for Linux
+ *
+ * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
+ *
+ * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
+ *
+ * RAID-1 management functions.
+ *
+ * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
+ *
+ * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
+ * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
+ *
+ * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
+ * bitmapped intelligence in resync:
+ *
+ * - bitmap marked during normal i/o
+ * - bitmap used to skip nondirty blocks during sync
+ *
+ * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
+ * - persistent bitmap code
+ */
+
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/blkdev.h>
+#include <linux/module.h>
+#include <linux/seq_file.h>
+#include <linux/ratelimit.h>
+#include <linux/interval_tree_generic.h>
+
+#include <trace/events/block.h>
+
+#include "md.h"
+#include "raid1.h"
+#include "md-bitmap.h"
+
+#define UNSUPPORTED_MDDEV_FLAGS \
+ ((1L << MD_HAS_JOURNAL) | \
+ (1L << MD_JOURNAL_CLEAN) | \
+ (1L << MD_HAS_PPL) | \
+ (1L << MD_HAS_MULTIPLE_PPLS))
+
+static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
+static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
+
+#define raid1_log(md, fmt, args...) \
+ do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
+
+#include "raid1-10.c"
+
+#define START(node) ((node)->start)
+#define LAST(node) ((node)->last)
+INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
+ START, LAST, static inline, raid1_rb);
+
+static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
+ struct serial_info *si, int idx)
+{
+ unsigned long flags;
+ int ret = 0;
+ sector_t lo = r1_bio->sector;
+ sector_t hi = lo + r1_bio->sectors;
+ struct serial_in_rdev *serial = &rdev->serial[idx];
+
+ spin_lock_irqsave(&serial->serial_lock, flags);
+ /* collision happened */
+ if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
+ ret = -EBUSY;
+ else {
+ si->start = lo;
+ si->last = hi;
+ raid1_rb_insert(si, &serial->serial_rb);
+ }
+ spin_unlock_irqrestore(&serial->serial_lock, flags);
+
+ return ret;
+}
+
+static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
+{
+ struct mddev *mddev = rdev->mddev;
+ struct serial_info *si;
+ int idx = sector_to_idx(r1_bio->sector);
+ struct serial_in_rdev *serial = &rdev->serial[idx];
+
+ if (WARN_ON(!mddev->serial_info_pool))
+ return;
+ si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
+ wait_event(serial->serial_io_wait,
+ check_and_add_serial(rdev, r1_bio, si, idx) == 0);
+}
+
+static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
+{
+ struct serial_info *si;
+ unsigned long flags;
+ int found = 0;
+ struct mddev *mddev = rdev->mddev;
+ int idx = sector_to_idx(lo);
+ struct serial_in_rdev *serial = &rdev->serial[idx];
+
+ spin_lock_irqsave(&serial->serial_lock, flags);
+ for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
+ si; si = raid1_rb_iter_next(si, lo, hi)) {
+ if (si->start == lo && si->last == hi) {
+ raid1_rb_remove(si, &serial->serial_rb);
+ mempool_free(si, mddev->serial_info_pool);
+ found = 1;
+ break;
+ }
+ }
+ if (!found)
+ WARN(1, "The write IO is not recorded for serialization\n");
+ spin_unlock_irqrestore(&serial->serial_lock, flags);
+ wake_up(&serial->serial_io_wait);
+}
+
+/*
+ * for resync bio, r1bio pointer can be retrieved from the per-bio
+ * 'struct resync_pages'.
+ */
+static inline struct r1bio *get_resync_r1bio(struct bio *bio)
+{
+ return get_resync_pages(bio)->raid_bio;
+}
+
+static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
+{
+ struct pool_info *pi = data;
+ int size = offsetof(struct r1bio, bios[pi->raid_disks]);
+
+ /* allocate a r1bio with room for raid_disks entries in the bios array */
+ return kzalloc(size, gfp_flags);
+}
+
+#define RESYNC_DEPTH 32
+#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
+#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
+#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
+#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
+#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
+
+static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
+{
+ struct pool_info *pi = data;
+ struct r1bio *r1_bio;
+ struct bio *bio;
+ int need_pages;
+ int j;
+ struct resync_pages *rps;
+
+ r1_bio = r1bio_pool_alloc(gfp_flags, pi);
+ if (!r1_bio)
+ return NULL;
+
+ rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
+ gfp_flags);
+ if (!rps)
+ goto out_free_r1bio;
+
+ /*
+ * Allocate bios : 1 for reading, n-1 for writing
+ */
+ for (j = pi->raid_disks ; j-- ; ) {
+ bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
+ if (!bio)
+ goto out_free_bio;
+ bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
+ r1_bio->bios[j] = bio;
+ }
+ /*
+ * Allocate RESYNC_PAGES data pages and attach them to
+ * the first bio.
+ * If this is a user-requested check/repair, allocate
+ * RESYNC_PAGES for each bio.
+ */
+ if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
+ need_pages = pi->raid_disks;
+ else
+ need_pages = 1;
+ for (j = 0; j < pi->raid_disks; j++) {
+ struct resync_pages *rp = &rps[j];
+
+ bio = r1_bio->bios[j];
+
+ if (j < need_pages) {
+ if (resync_alloc_pages(rp, gfp_flags))
+ goto out_free_pages;
+ } else {
+ memcpy(rp, &rps[0], sizeof(*rp));
+ resync_get_all_pages(rp);
+ }
+
+ rp->raid_bio = r1_bio;
+ bio->bi_private = rp;
+ }
+
+ r1_bio->master_bio = NULL;
+
+ return r1_bio;
+
+out_free_pages:
+ while (--j >= 0)
+ resync_free_pages(&rps[j]);
+
+out_free_bio:
+ while (++j < pi->raid_disks) {
+ bio_uninit(r1_bio->bios[j]);
+ kfree(r1_bio->bios[j]);
+ }
+ kfree(rps);
+
+out_free_r1bio:
+ rbio_pool_free(r1_bio, data);
+ return NULL;
+}
+
+static void r1buf_pool_free(void *__r1_bio, void *data)
+{
+ struct pool_info *pi = data;
+ int i;
+ struct r1bio *r1bio = __r1_bio;
+ struct resync_pages *rp = NULL;
+
+ for (i = pi->raid_disks; i--; ) {
+ rp = get_resync_pages(r1bio->bios[i]);
+ resync_free_pages(rp);
+ bio_uninit(r1bio->bios[i]);
+ kfree(r1bio->bios[i]);
+ }
+
+ /* resync pages array stored in the 1st bio's .bi_private */
+ kfree(rp);
+
+ rbio_pool_free(r1bio, data);
+}
+
+static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
+{
+ int i;
+
+ for (i = 0; i < conf->raid_disks * 2; i++) {
+ struct bio **bio = r1_bio->bios + i;
+ if (!BIO_SPECIAL(*bio))
+ bio_put(*bio);
+ *bio = NULL;
+ }
+}
+
+static void free_r1bio(struct r1bio *r1_bio)
+{
+ struct r1conf *conf = r1_bio->mddev->private;
+
+ put_all_bios(conf, r1_bio);
+ mempool_free(r1_bio, &conf->r1bio_pool);
+}
+
+static void put_buf(struct r1bio *r1_bio)
+{
+ struct r1conf *conf = r1_bio->mddev->private;
+ sector_t sect = r1_bio->sector;
+ int i;
+
+ for (i = 0; i < conf->raid_disks * 2; i++) {
+ struct bio *bio = r1_bio->bios[i];
+ if (bio->bi_end_io)
+ rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
+ }
+
+ mempool_free(r1_bio, &conf->r1buf_pool);
+
+ lower_barrier(conf, sect);
+}
+
+static void reschedule_retry(struct r1bio *r1_bio)
+{
+ unsigned long flags;
+ struct mddev *mddev = r1_bio->mddev;
+ struct r1conf *conf = mddev->private;
+ int idx;
+
+ idx = sector_to_idx(r1_bio->sector);
+ spin_lock_irqsave(&conf->device_lock, flags);
+ list_add(&r1_bio->retry_list, &conf->retry_list);
+ atomic_inc(&conf->nr_queued[idx]);
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+
+ wake_up(&conf->wait_barrier);
+ md_wakeup_thread(mddev->thread);
+}
+
+/*
+ * raid_end_bio_io() is called when we have finished servicing a mirrored
+ * operation and are ready to return a success/failure code to the buffer
+ * cache layer.
+ */
+static void call_bio_endio(struct r1bio *r1_bio)
+{
+ struct bio *bio = r1_bio->master_bio;
+
+ if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
+ bio->bi_status = BLK_STS_IOERR;
+
+ if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
+ bio_end_io_acct(bio, r1_bio->start_time);
+ bio_endio(bio);
+}
+
+static void raid_end_bio_io(struct r1bio *r1_bio)
+{
+ struct bio *bio = r1_bio->master_bio;
+ struct r1conf *conf = r1_bio->mddev->private;
+
+ /* if nobody has done the final endio yet, do it now */
+ if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
+ pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
+ (bio_data_dir(bio) == WRITE) ? "write" : "read",
+ (unsigned long long) bio->bi_iter.bi_sector,
+ (unsigned long long) bio_end_sector(bio) - 1);
+
+ call_bio_endio(r1_bio);
+ }
+ /*
+ * Wake up any possible resync thread that waits for the device
+ * to go idle. All I/Os, even write-behind writes, are done.
+ */
+ allow_barrier(conf, r1_bio->sector);
+
+ free_r1bio(r1_bio);
+}
+
+/*
+ * Update disk head position estimator based on IRQ completion info.
+ */
+static inline void update_head_pos(int disk, struct r1bio *r1_bio)
+{
+ struct r1conf *conf = r1_bio->mddev->private;
+
+ conf->mirrors[disk].head_position =
+ r1_bio->sector + (r1_bio->sectors);
+}
+
+/*
+ * Find the disk number which triggered given bio
+ */
+static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
+{
+ int mirror;
+ struct r1conf *conf = r1_bio->mddev->private;
+ int raid_disks = conf->raid_disks;
+
+ for (mirror = 0; mirror < raid_disks * 2; mirror++)
+ if (r1_bio->bios[mirror] == bio)
+ break;
+
+ BUG_ON(mirror == raid_disks * 2);
+ update_head_pos(mirror, r1_bio);
+
+ return mirror;
+}
+
+static void raid1_end_read_request(struct bio *bio)
+{
+ int uptodate = !bio->bi_status;
+ struct r1bio *r1_bio = bio->bi_private;
+ struct r1conf *conf = r1_bio->mddev->private;
+ struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
+
+ /*
+ * this branch is our 'one mirror IO has finished' event handler:
+ */
+ update_head_pos(r1_bio->read_disk, r1_bio);
+
+ if (uptodate)
+ set_bit(R1BIO_Uptodate, &r1_bio->state);
+ else if (test_bit(FailFast, &rdev->flags) &&
+ test_bit(R1BIO_FailFast, &r1_bio->state))
+ /* This was a fail-fast read so we definitely
+ * want to retry */
+ ;
+ else {
+ /* If all other devices have failed, we want to return
+ * the error upwards rather than fail the last device.
+ * Here we redefine "uptodate" to mean "Don't want to retry"
+ */
+ unsigned long flags;
+ spin_lock_irqsave(&conf->device_lock, flags);
+ if (r1_bio->mddev->degraded == conf->raid_disks ||
+ (r1_bio->mddev->degraded == conf->raid_disks-1 &&
+ test_bit(In_sync, &rdev->flags)))
+ uptodate = 1;
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ }
+
+ if (uptodate) {
+ raid_end_bio_io(r1_bio);
+ rdev_dec_pending(rdev, conf->mddev);
+ } else {
+ /*
+ * oops, read error:
+ */
+ pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
+ mdname(conf->mddev),
+ rdev->bdev,
+ (unsigned long long)r1_bio->sector);
+ set_bit(R1BIO_ReadError, &r1_bio->state);
+ reschedule_retry(r1_bio);
+ /* don't drop the reference on read_disk yet */
+ }
+}
+
+static void close_write(struct r1bio *r1_bio)
+{
+ /* it really is the end of this request */
+ if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
+ bio_free_pages(r1_bio->behind_master_bio);
+ bio_put(r1_bio->behind_master_bio);
+ r1_bio->behind_master_bio = NULL;
+ }
+ /* clear the bitmap if all writes complete successfully */
+ md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
+ r1_bio->sectors,
+ !test_bit(R1BIO_Degraded, &r1_bio->state),
+ test_bit(R1BIO_BehindIO, &r1_bio->state));
+ md_write_end(r1_bio->mddev);
+}
+
+static void r1_bio_write_done(struct r1bio *r1_bio)
+{
+ if (!atomic_dec_and_test(&r1_bio->remaining))
+ return;
+
+ if (test_bit(R1BIO_WriteError, &r1_bio->state))
+ reschedule_retry(r1_bio);
+ else {
+ close_write(r1_bio);
+ if (test_bit(R1BIO_MadeGood, &r1_bio->state))
+ reschedule_retry(r1_bio);
+ else
+ raid_end_bio_io(r1_bio);
+ }
+}
+
+static void raid1_end_write_request(struct bio *bio)
+{
+ struct r1bio *r1_bio = bio->bi_private;
+ int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
+ struct r1conf *conf = r1_bio->mddev->private;
+ struct bio *to_put = NULL;
+ int mirror = find_bio_disk(r1_bio, bio);
+ struct md_rdev *rdev = conf->mirrors[mirror].rdev;
+ bool discard_error;
+ sector_t lo = r1_bio->sector;
+ sector_t hi = r1_bio->sector + r1_bio->sectors;
+
+ discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
+
+ /*
+ * 'one mirror IO has finished' event handler:
+ */
+ if (bio->bi_status && !discard_error) {
+ set_bit(WriteErrorSeen, &rdev->flags);
+ if (!test_and_set_bit(WantReplacement, &rdev->flags))
+ set_bit(MD_RECOVERY_NEEDED, &
+ conf->mddev->recovery);
+
+ if (test_bit(FailFast, &rdev->flags) &&
+ (bio->bi_opf & MD_FAILFAST) &&
+ /* We never try FailFast to WriteMostly devices */
+ !test_bit(WriteMostly, &rdev->flags)) {
+ md_error(r1_bio->mddev, rdev);
+ }
+
+ /*
+ * When the device is faulty, it is not necessary to
+ * handle write error.
+ */
+ if (!test_bit(Faulty, &rdev->flags))
+ set_bit(R1BIO_WriteError, &r1_bio->state);
+ else {
+ /* Fail the request */
+ set_bit(R1BIO_Degraded, &r1_bio->state);
+ /* Finished with this branch */
+ r1_bio->bios[mirror] = NULL;
+ to_put = bio;
+ }
+ } else {
+ /*
+ * Set R1BIO_Uptodate in our master bio, so that we
+ * will return a good error code for to the higher
+ * levels even if IO on some other mirrored buffer
+ * fails.
+ *
+ * The 'master' represents the composite IO operation
+ * to user-side. So if something waits for IO, then it
+ * will wait for the 'master' bio.
+ */
+ sector_t first_bad;
+ int bad_sectors;
+
+ r1_bio->bios[mirror] = NULL;
+ to_put = bio;
+ /*
+ * Do not set R1BIO_Uptodate if the current device is
+ * rebuilding or Faulty. This is because we cannot use
+ * such device for properly reading the data back (we could
+ * potentially use it, if the current write would have felt
+ * before rdev->recovery_offset, but for simplicity we don't
+ * check this here.
+ */
+ if (test_bit(In_sync, &rdev->flags) &&
+ !test_bit(Faulty, &rdev->flags))
+ set_bit(R1BIO_Uptodate, &r1_bio->state);
+
+ /* Maybe we can clear some bad blocks. */
+ if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
+ &first_bad, &bad_sectors) && !discard_error) {
+ r1_bio->bios[mirror] = IO_MADE_GOOD;
+ set_bit(R1BIO_MadeGood, &r1_bio->state);
+ }
+ }
+
+ if (behind) {
+ if (test_bit(CollisionCheck, &rdev->flags))
+ remove_serial(rdev, lo, hi);
+ if (test_bit(WriteMostly, &rdev->flags))
+ atomic_dec(&r1_bio->behind_remaining);
+
+ /*
+ * In behind mode, we ACK the master bio once the I/O
+ * has safely reached all non-writemostly
+ * disks. Setting the Returned bit ensures that this
+ * gets done only once -- we don't ever want to return
+ * -EIO here, instead we'll wait
+ */
+ if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
+ test_bit(R1BIO_Uptodate, &r1_bio->state)) {
+ /* Maybe we can return now */
+ if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
+ struct bio *mbio = r1_bio->master_bio;
+ pr_debug("raid1: behind end write sectors"
+ " %llu-%llu\n",
+ (unsigned long long) mbio->bi_iter.bi_sector,
+ (unsigned long long) bio_end_sector(mbio) - 1);
+ call_bio_endio(r1_bio);
+ }
+ }
+ } else if (rdev->mddev->serialize_policy)
+ remove_serial(rdev, lo, hi);
+ if (r1_bio->bios[mirror] == NULL)
+ rdev_dec_pending(rdev, conf->mddev);
+
+ /*
+ * Let's see if all mirrored write operations have finished
+ * already.
+ */
+ r1_bio_write_done(r1_bio);
+
+ if (to_put)
+ bio_put(to_put);
+}
+
+static sector_t align_to_barrier_unit_end(sector_t start_sector,
+ sector_t sectors)
+{
+ sector_t len;
+
+ WARN_ON(sectors == 0);
+ /*
+ * len is the number of sectors from start_sector to end of the
+ * barrier unit which start_sector belongs to.
+ */
+ len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
+ start_sector;
+
+ if (len > sectors)
+ len = sectors;
+
+ return len;
+}
+
+/*
+ * This routine returns the disk from which the requested read should
+ * be done. There is a per-array 'next expected sequential IO' sector
+ * number - if this matches on the next IO then we use the last disk.
+ * There is also a per-disk 'last know head position' sector that is
+ * maintained from IRQ contexts, both the normal and the resync IO
+ * completion handlers update this position correctly. If there is no
+ * perfect sequential match then we pick the disk whose head is closest.
+ *
+ * If there are 2 mirrors in the same 2 devices, performance degrades
+ * because position is mirror, not device based.
+ *
+ * The rdev for the device selected will have nr_pending incremented.
+ */
+static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
+{
+ const sector_t this_sector = r1_bio->sector;
+ int sectors;
+ int best_good_sectors;
+ int best_disk, best_dist_disk, best_pending_disk;
+ int has_nonrot_disk;
+ int disk;
+ sector_t best_dist;
+ unsigned int min_pending;
+ struct md_rdev *rdev;
+ int choose_first;
+ int choose_next_idle;
+
+ rcu_read_lock();
+ /*
+ * Check if we can balance. We can balance on the whole
+ * device if no resync is going on, or below the resync window.
+ * We take the first readable disk when above the resync window.
+ */
+ retry:
+ sectors = r1_bio->sectors;
+ best_disk = -1;
+ best_dist_disk = -1;
+ best_dist = MaxSector;
+ best_pending_disk = -1;
+ min_pending = UINT_MAX;
+ best_good_sectors = 0;
+ has_nonrot_disk = 0;
+ choose_next_idle = 0;
+ clear_bit(R1BIO_FailFast, &r1_bio->state);
+
+ if ((conf->mddev->recovery_cp < this_sector + sectors) ||
+ (mddev_is_clustered(conf->mddev) &&
+ md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
+ this_sector + sectors)))
+ choose_first = 1;
+ else
+ choose_first = 0;
+
+ for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
+ sector_t dist;
+ sector_t first_bad;
+ int bad_sectors;
+ unsigned int pending;
+ bool nonrot;
+
+ rdev = rcu_dereference(conf->mirrors[disk].rdev);
+ if (r1_bio->bios[disk] == IO_BLOCKED
+ || rdev == NULL
+ || test_bit(Faulty, &rdev->flags))
+ continue;
+ if (!test_bit(In_sync, &rdev->flags) &&
+ rdev->recovery_offset < this_sector + sectors)
+ continue;
+ if (test_bit(WriteMostly, &rdev->flags)) {
+ /* Don't balance among write-mostly, just
+ * use the first as a last resort */
+ if (best_dist_disk < 0) {
+ if (is_badblock(rdev, this_sector, sectors,
+ &first_bad, &bad_sectors)) {
+ if (first_bad <= this_sector)
+ /* Cannot use this */
+ continue;
+ best_good_sectors = first_bad - this_sector;
+ } else
+ best_good_sectors = sectors;
+ best_dist_disk = disk;
+ best_pending_disk = disk;
+ }
+ continue;
+ }
+ /* This is a reasonable device to use. It might
+ * even be best.
+ */
+ if (is_badblock(rdev, this_sector, sectors,
+ &first_bad, &bad_sectors)) {
+ if (best_dist < MaxSector)
+ /* already have a better device */
+ continue;
+ if (first_bad <= this_sector) {
+ /* cannot read here. If this is the 'primary'
+ * device, then we must not read beyond
+ * bad_sectors from another device..
+ */
+ bad_sectors -= (this_sector - first_bad);
+ if (choose_first && sectors > bad_sectors)
+ sectors = bad_sectors;
+ if (best_good_sectors > sectors)
+ best_good_sectors = sectors;
+
+ } else {
+ sector_t good_sectors = first_bad - this_sector;
+ if (good_sectors > best_good_sectors) {
+ best_good_sectors = good_sectors;
+ best_disk = disk;
+ }
+ if (choose_first)
+ break;
+ }
+ continue;
+ } else {
+ if ((sectors > best_good_sectors) && (best_disk >= 0))
+ best_disk = -1;
+ best_good_sectors = sectors;
+ }
+
+ if (best_disk >= 0)
+ /* At least two disks to choose from so failfast is OK */
+ set_bit(R1BIO_FailFast, &r1_bio->state);
+
+ nonrot = bdev_nonrot(rdev->bdev);
+ has_nonrot_disk |= nonrot;
+ pending = atomic_read(&rdev->nr_pending);
+ dist = abs(this_sector - conf->mirrors[disk].head_position);
+ if (choose_first) {
+ best_disk = disk;
+ break;
+ }
+ /* Don't change to another disk for sequential reads */
+ if (conf->mirrors[disk].next_seq_sect == this_sector
+ || dist == 0) {
+ int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
+ struct raid1_info *mirror = &conf->mirrors[disk];
+
+ best_disk = disk;
+ /*
+ * If buffered sequential IO size exceeds optimal
+ * iosize, check if there is idle disk. If yes, choose
+ * the idle disk. read_balance could already choose an
+ * idle disk before noticing it's a sequential IO in
+ * this disk. This doesn't matter because this disk
+ * will idle, next time it will be utilized after the
+ * first disk has IO size exceeds optimal iosize. In
+ * this way, iosize of the first disk will be optimal
+ * iosize at least. iosize of the second disk might be
+ * small, but not a big deal since when the second disk
+ * starts IO, the first disk is likely still busy.
+ */
+ if (nonrot && opt_iosize > 0 &&
+ mirror->seq_start != MaxSector &&
+ mirror->next_seq_sect > opt_iosize &&
+ mirror->next_seq_sect - opt_iosize >=
+ mirror->seq_start) {
+ choose_next_idle = 1;
+ continue;
+ }
+ break;
+ }
+
+ if (choose_next_idle)
+ continue;
+
+ if (min_pending > pending) {
+ min_pending = pending;
+ best_pending_disk = disk;
+ }
+
+ if (dist < best_dist) {
+ best_dist = dist;
+ best_dist_disk = disk;
+ }
+ }
+
+ /*
+ * If all disks are rotational, choose the closest disk. If any disk is
+ * non-rotational, choose the disk with less pending request even the
+ * disk is rotational, which might/might not be optimal for raids with
+ * mixed ratation/non-rotational disks depending on workload.
+ */
+ if (best_disk == -1) {
+ if (has_nonrot_disk || min_pending == 0)
+ best_disk = best_pending_disk;
+ else
+ best_disk = best_dist_disk;
+ }
+
+ if (best_disk >= 0) {
+ rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
+ if (!rdev)
+ goto retry;
+ atomic_inc(&rdev->nr_pending);
+ sectors = best_good_sectors;
+
+ if (conf->mirrors[best_disk].next_seq_sect != this_sector)
+ conf->mirrors[best_disk].seq_start = this_sector;
+
+ conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
+ }
+ rcu_read_unlock();
+ *max_sectors = sectors;
+
+ return best_disk;
+}
+
+static void flush_bio_list(struct r1conf *conf, struct bio *bio)
+{
+ /* flush any pending bitmap writes to disk before proceeding w/ I/O */
+ md_bitmap_unplug(conf->mddev->bitmap);
+ wake_up(&conf->wait_barrier);
+
+ while (bio) { /* submit pending writes */
+ struct bio *next = bio->bi_next;
+
+ raid1_submit_write(bio);
+ bio = next;
+ cond_resched();
+ }
+}
+
+static void flush_pending_writes(struct r1conf *conf)
+{
+ /* Any writes that have been queued but are awaiting
+ * bitmap updates get flushed here.
+ */
+ spin_lock_irq(&conf->device_lock);
+
+ if (conf->pending_bio_list.head) {
+ struct blk_plug plug;
+ struct bio *bio;
+
+ bio = bio_list_get(&conf->pending_bio_list);
+ spin_unlock_irq(&conf->device_lock);
+
+ /*
+ * As this is called in a wait_event() loop (see freeze_array),
+ * current->state might be TASK_UNINTERRUPTIBLE which will
+ * cause a warning when we prepare to wait again. As it is
+ * rare that this path is taken, it is perfectly safe to force
+ * us to go around the wait_event() loop again, so the warning
+ * is a false-positive. Silence the warning by resetting
+ * thread state
+ */
+ __set_current_state(TASK_RUNNING);
+ blk_start_plug(&plug);
+ flush_bio_list(conf, bio);
+ blk_finish_plug(&plug);
+ } else
+ spin_unlock_irq(&conf->device_lock);
+}
+
+/* Barriers....
+ * Sometimes we need to suspend IO while we do something else,
+ * either some resync/recovery, or reconfigure the array.
+ * To do this we raise a 'barrier'.
+ * The 'barrier' is a counter that can be raised multiple times
+ * to count how many activities are happening which preclude
+ * normal IO.
+ * We can only raise the barrier if there is no pending IO.
+ * i.e. if nr_pending == 0.
+ * We choose only to raise the barrier if no-one is waiting for the
+ * barrier to go down. This means that as soon as an IO request
+ * is ready, no other operations which require a barrier will start
+ * until the IO request has had a chance.
+ *
+ * So: regular IO calls 'wait_barrier'. When that returns there
+ * is no backgroup IO happening, It must arrange to call
+ * allow_barrier when it has finished its IO.
+ * backgroup IO calls must call raise_barrier. Once that returns
+ * there is no normal IO happeing. It must arrange to call
+ * lower_barrier when the particular background IO completes.
+ *
+ * If resync/recovery is interrupted, returns -EINTR;
+ * Otherwise, returns 0.
+ */
+static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
+{
+ int idx = sector_to_idx(sector_nr);
+
+ spin_lock_irq(&conf->resync_lock);
+
+ /* Wait until no block IO is waiting */
+ wait_event_lock_irq(conf->wait_barrier,
+ !atomic_read(&conf->nr_waiting[idx]),
+ conf->resync_lock);
+
+ /* block any new IO from starting */
+ atomic_inc(&conf->barrier[idx]);
+ /*
+ * In raise_barrier() we firstly increase conf->barrier[idx] then
+ * check conf->nr_pending[idx]. In _wait_barrier() we firstly
+ * increase conf->nr_pending[idx] then check conf->barrier[idx].
+ * A memory barrier here to make sure conf->nr_pending[idx] won't
+ * be fetched before conf->barrier[idx] is increased. Otherwise
+ * there will be a race between raise_barrier() and _wait_barrier().
+ */
+ smp_mb__after_atomic();
+
+ /* For these conditions we must wait:
+ * A: while the array is in frozen state
+ * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
+ * existing in corresponding I/O barrier bucket.
+ * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
+ * max resync count which allowed on current I/O barrier bucket.
+ */
+ wait_event_lock_irq(conf->wait_barrier,
+ (!conf->array_frozen &&
+ !atomic_read(&conf->nr_pending[idx]) &&
+ atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
+ test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
+ conf->resync_lock);
+
+ if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
+ atomic_dec(&conf->barrier[idx]);
+ spin_unlock_irq(&conf->resync_lock);
+ wake_up(&conf->wait_barrier);
+ return -EINTR;
+ }
+
+ atomic_inc(&conf->nr_sync_pending);
+ spin_unlock_irq(&conf->resync_lock);
+
+ return 0;
+}
+
+static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
+{
+ int idx = sector_to_idx(sector_nr);
+
+ BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
+
+ atomic_dec(&conf->barrier[idx]);
+ atomic_dec(&conf->nr_sync_pending);
+ wake_up(&conf->wait_barrier);
+}
+
+static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
+{
+ bool ret = true;
+
+ /*
+ * We need to increase conf->nr_pending[idx] very early here,
+ * then raise_barrier() can be blocked when it waits for
+ * conf->nr_pending[idx] to be 0. Then we can avoid holding
+ * conf->resync_lock when there is no barrier raised in same
+ * barrier unit bucket. Also if the array is frozen, I/O
+ * should be blocked until array is unfrozen.
+ */
+ atomic_inc(&conf->nr_pending[idx]);
+ /*
+ * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
+ * check conf->barrier[idx]. In raise_barrier() we firstly increase
+ * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
+ * barrier is necessary here to make sure conf->barrier[idx] won't be
+ * fetched before conf->nr_pending[idx] is increased. Otherwise there
+ * will be a race between _wait_barrier() and raise_barrier().
+ */
+ smp_mb__after_atomic();
+
+ /*
+ * Don't worry about checking two atomic_t variables at same time
+ * here. If during we check conf->barrier[idx], the array is
+ * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
+ * 0, it is safe to return and make the I/O continue. Because the
+ * array is frozen, all I/O returned here will eventually complete
+ * or be queued, no race will happen. See code comment in
+ * frozen_array().
+ */
+ if (!READ_ONCE(conf->array_frozen) &&
+ !atomic_read(&conf->barrier[idx]))
+ return ret;
+
+ /*
+ * After holding conf->resync_lock, conf->nr_pending[idx]
+ * should be decreased before waiting for barrier to drop.
+ * Otherwise, we may encounter a race condition because
+ * raise_barrer() might be waiting for conf->nr_pending[idx]
+ * to be 0 at same time.
+ */
+ spin_lock_irq(&conf->resync_lock);
+ atomic_inc(&conf->nr_waiting[idx]);
+ atomic_dec(&conf->nr_pending[idx]);
+ /*
+ * In case freeze_array() is waiting for
+ * get_unqueued_pending() == extra
+ */
+ wake_up(&conf->wait_barrier);
+ /* Wait for the barrier in same barrier unit bucket to drop. */
+
+ /* Return false when nowait flag is set */
+ if (nowait) {
+ ret = false;
+ } else {
+ wait_event_lock_irq(conf->wait_barrier,
+ !conf->array_frozen &&
+ !atomic_read(&conf->barrier[idx]),
+ conf->resync_lock);
+ atomic_inc(&conf->nr_pending[idx]);
+ }
+
+ atomic_dec(&conf->nr_waiting[idx]);
+ spin_unlock_irq(&conf->resync_lock);
+ return ret;
+}
+
+static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
+{
+ int idx = sector_to_idx(sector_nr);
+ bool ret = true;
+
+ /*
+ * Very similar to _wait_barrier(). The difference is, for read
+ * I/O we don't need wait for sync I/O, but if the whole array
+ * is frozen, the read I/O still has to wait until the array is
+ * unfrozen. Since there is no ordering requirement with
+ * conf->barrier[idx] here, memory barrier is unnecessary as well.
+ */
+ atomic_inc(&conf->nr_pending[idx]);
+
+ if (!READ_ONCE(conf->array_frozen))
+ return ret;
+
+ spin_lock_irq(&conf->resync_lock);
+ atomic_inc(&conf->nr_waiting[idx]);
+ atomic_dec(&conf->nr_pending[idx]);
+ /*
+ * In case freeze_array() is waiting for
+ * get_unqueued_pending() == extra
+ */
+ wake_up(&conf->wait_barrier);
+ /* Wait for array to be unfrozen */
+
+ /* Return false when nowait flag is set */
+ if (nowait) {
+ /* Return false when nowait flag is set */
+ ret = false;
+ } else {
+ wait_event_lock_irq(conf->wait_barrier,
+ !conf->array_frozen,
+ conf->resync_lock);
+ atomic_inc(&conf->nr_pending[idx]);
+ }
+
+ atomic_dec(&conf->nr_waiting[idx]);
+ spin_unlock_irq(&conf->resync_lock);
+ return ret;
+}
+
+static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
+{
+ int idx = sector_to_idx(sector_nr);
+
+ return _wait_barrier(conf, idx, nowait);
+}
+
+static void _allow_barrier(struct r1conf *conf, int idx)
+{
+ atomic_dec(&conf->nr_pending[idx]);
+ wake_up(&conf->wait_barrier);
+}
+
+static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
+{
+ int idx = sector_to_idx(sector_nr);
+
+ _allow_barrier(conf, idx);
+}
+
+/* conf->resync_lock should be held */
+static int get_unqueued_pending(struct r1conf *conf)
+{
+ int idx, ret;
+
+ ret = atomic_read(&conf->nr_sync_pending);
+ for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
+ ret += atomic_read(&conf->nr_pending[idx]) -
+ atomic_read(&conf->nr_queued[idx]);
+
+ return ret;
+}
+
+static void freeze_array(struct r1conf *conf, int extra)
+{
+ /* Stop sync I/O and normal I/O and wait for everything to
+ * go quiet.
+ * This is called in two situations:
+ * 1) management command handlers (reshape, remove disk, quiesce).
+ * 2) one normal I/O request failed.
+
+ * After array_frozen is set to 1, new sync IO will be blocked at
+ * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
+ * or wait_read_barrier(). The flying I/Os will either complete or be
+ * queued. When everything goes quite, there are only queued I/Os left.
+
+ * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
+ * barrier bucket index which this I/O request hits. When all sync and
+ * normal I/O are queued, sum of all conf->nr_pending[] will match sum
+ * of all conf->nr_queued[]. But normal I/O failure is an exception,
+ * in handle_read_error(), we may call freeze_array() before trying to
+ * fix the read error. In this case, the error read I/O is not queued,
+ * so get_unqueued_pending() == 1.
+ *
+ * Therefore before this function returns, we need to wait until
+ * get_unqueued_pendings(conf) gets equal to extra. For
+ * normal I/O context, extra is 1, in rested situations extra is 0.
+ */
+ spin_lock_irq(&conf->resync_lock);
+ conf->array_frozen = 1;
+ raid1_log(conf->mddev, "wait freeze");
+ wait_event_lock_irq_cmd(
+ conf->wait_barrier,
+ get_unqueued_pending(conf) == extra,
+ conf->resync_lock,
+ flush_pending_writes(conf));
+ spin_unlock_irq(&conf->resync_lock);
+}
+static void unfreeze_array(struct r1conf *conf)
+{
+ /* reverse the effect of the freeze */
+ spin_lock_irq(&conf->resync_lock);
+ conf->array_frozen = 0;
+ spin_unlock_irq(&conf->resync_lock);
+ wake_up(&conf->wait_barrier);
+}
+
+static void alloc_behind_master_bio(struct r1bio *r1_bio,
+ struct bio *bio)
+{
+ int size = bio->bi_iter.bi_size;
+ unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
+ int i = 0;
+ struct bio *behind_bio = NULL;
+
+ behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
+ &r1_bio->mddev->bio_set);
+ if (!behind_bio)
+ return;
+
+ /* discard op, we don't support writezero/writesame yet */
+ if (!bio_has_data(bio)) {
+ behind_bio->bi_iter.bi_size = size;
+ goto skip_copy;
+ }
+
+ while (i < vcnt && size) {
+ struct page *page;
+ int len = min_t(int, PAGE_SIZE, size);
+
+ page = alloc_page(GFP_NOIO);
+ if (unlikely(!page))
+ goto free_pages;
+
+ bio_add_page(behind_bio, page, len, 0);
+
+ size -= len;
+ i++;
+ }
+
+ bio_copy_data(behind_bio, bio);
+skip_copy:
+ r1_bio->behind_master_bio = behind_bio;
+ set_bit(R1BIO_BehindIO, &r1_bio->state);
+
+ return;
+
+free_pages:
+ pr_debug("%dB behind alloc failed, doing sync I/O\n",
+ bio->bi_iter.bi_size);
+ bio_free_pages(behind_bio);
+ bio_put(behind_bio);
+}
+
+static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
+{
+ struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
+ cb);
+ struct mddev *mddev = plug->cb.data;
+ struct r1conf *conf = mddev->private;
+ struct bio *bio;
+
+ if (from_schedule || current->bio_list) {
+ spin_lock_irq(&conf->device_lock);
+ bio_list_merge(&conf->pending_bio_list, &plug->pending);
+ spin_unlock_irq(&conf->device_lock);
+ wake_up(&conf->wait_barrier);
+ md_wakeup_thread(mddev->thread);
+ kfree(plug);
+ return;
+ }
+
+ /* we aren't scheduling, so we can do the write-out directly. */
+ bio = bio_list_get(&plug->pending);
+ flush_bio_list(conf, bio);
+ kfree(plug);
+}
+
+static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
+{
+ r1_bio->master_bio = bio;
+ r1_bio->sectors = bio_sectors(bio);
+ r1_bio->state = 0;
+ r1_bio->mddev = mddev;
+ r1_bio->sector = bio->bi_iter.bi_sector;
+}
+
+static inline struct r1bio *
+alloc_r1bio(struct mddev *mddev, struct bio *bio)
+{
+ struct r1conf *conf = mddev->private;
+ struct r1bio *r1_bio;
+
+ r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
+ /* Ensure no bio records IO_BLOCKED */
+ memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
+ init_r1bio(r1_bio, mddev, bio);
+ return r1_bio;
+}
+
+static void raid1_read_request(struct mddev *mddev, struct bio *bio,
+ int max_read_sectors, struct r1bio *r1_bio)
+{
+ struct r1conf *conf = mddev->private;
+ struct raid1_info *mirror;
+ struct bio *read_bio;
+ struct bitmap *bitmap = mddev->bitmap;
+ const enum req_op op = bio_op(bio);
+ const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
+ int max_sectors;
+ int rdisk;
+ bool r1bio_existed = !!r1_bio;
+ char b[BDEVNAME_SIZE];
+
+ /*
+ * If r1_bio is set, we are blocking the raid1d thread
+ * so there is a tiny risk of deadlock. So ask for
+ * emergency memory if needed.
+ */
+ gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
+
+ if (r1bio_existed) {
+ /* Need to get the block device name carefully */
+ struct md_rdev *rdev;
+ rcu_read_lock();
+ rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
+ if (rdev)
+ snprintf(b, sizeof(b), "%pg", rdev->bdev);
+ else
+ strcpy(b, "???");
+ rcu_read_unlock();
+ }
+
+ /*
+ * Still need barrier for READ in case that whole
+ * array is frozen.
+ */
+ if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
+ bio->bi_opf & REQ_NOWAIT)) {
+ bio_wouldblock_error(bio);
+ return;
+ }
+
+ if (!r1_bio)
+ r1_bio = alloc_r1bio(mddev, bio);
+ else
+ init_r1bio(r1_bio, mddev, bio);
+ r1_bio->sectors = max_read_sectors;
+
+ /*
+ * make_request() can abort the operation when read-ahead is being
+ * used and no empty request is available.
+ */
+ rdisk = read_balance(conf, r1_bio, &max_sectors);
+
+ if (rdisk < 0) {
+ /* couldn't find anywhere to read from */
+ if (r1bio_existed) {
+ pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
+ mdname(mddev),
+ b,
+ (unsigned long long)r1_bio->sector);
+ }
+ raid_end_bio_io(r1_bio);
+ return;
+ }
+ mirror = conf->mirrors + rdisk;
+
+ if (r1bio_existed)
+ pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
+ mdname(mddev),
+ (unsigned long long)r1_bio->sector,
+ mirror->rdev->bdev);
+
+ if (test_bit(WriteMostly, &mirror->rdev->flags) &&
+ bitmap) {
+ /*
+ * Reading from a write-mostly device must take care not to
+ * over-take any writes that are 'behind'
+ */
+ raid1_log(mddev, "wait behind writes");
+ wait_event(bitmap->behind_wait,
+ atomic_read(&bitmap->behind_writes) == 0);
+ }
+
+ if (max_sectors < bio_sectors(bio)) {
+ struct bio *split = bio_split(bio, max_sectors,
+ gfp, &conf->bio_split);
+ bio_chain(split, bio);
+ submit_bio_noacct(bio);
+ bio = split;
+ r1_bio->master_bio = bio;
+ r1_bio->sectors = max_sectors;
+ }
+
+ r1_bio->read_disk = rdisk;
+
+ if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
+ r1_bio->start_time = bio_start_io_acct(bio);
+
+ read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
+ &mddev->bio_set);
+
+ r1_bio->bios[rdisk] = read_bio;
+
+ read_bio->bi_iter.bi_sector = r1_bio->sector +
+ mirror->rdev->data_offset;
+ read_bio->bi_end_io = raid1_end_read_request;
+ bio_set_op_attrs(read_bio, op, do_sync);
+ if (test_bit(FailFast, &mirror->rdev->flags) &&
+ test_bit(R1BIO_FailFast, &r1_bio->state))
+ read_bio->bi_opf |= MD_FAILFAST;
+ read_bio->bi_private = r1_bio;
+
+ if (mddev->gendisk)
+ trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
+ r1_bio->sector);
+
+ submit_bio_noacct(read_bio);
+}
+
+static void raid1_write_request(struct mddev *mddev, struct bio *bio,
+ int max_write_sectors)
+{
+ struct r1conf *conf = mddev->private;
+ struct r1bio *r1_bio;
+ int i, disks;
+ struct bitmap *bitmap = mddev->bitmap;
+ unsigned long flags;
+ struct md_rdev *blocked_rdev;
+ int first_clone;
+ int max_sectors;
+ bool write_behind = false;
+
+ if (mddev_is_clustered(mddev) &&
+ md_cluster_ops->area_resyncing(mddev, WRITE,
+ bio->bi_iter.bi_sector, bio_end_sector(bio))) {
+
+ DEFINE_WAIT(w);
+ if (bio->bi_opf & REQ_NOWAIT) {
+ bio_wouldblock_error(bio);
+ return;
+ }
+ for (;;) {
+ prepare_to_wait(&conf->wait_barrier,
+ &w, TASK_IDLE);
+ if (!md_cluster_ops->area_resyncing(mddev, WRITE,
+ bio->bi_iter.bi_sector,
+ bio_end_sector(bio)))
+ break;
+ schedule();
+ }
+ finish_wait(&conf->wait_barrier, &w);
+ }
+
+ /*
+ * Register the new request and wait if the reconstruction
+ * thread has put up a bar for new requests.
+ * Continue immediately if no resync is active currently.
+ */
+ if (!wait_barrier(conf, bio->bi_iter.bi_sector,
+ bio->bi_opf & REQ_NOWAIT)) {
+ bio_wouldblock_error(bio);
+ return;
+ }
+
+ r1_bio = alloc_r1bio(mddev, bio);
+ r1_bio->sectors = max_write_sectors;
+
+ /* first select target devices under rcu_lock and
+ * inc refcount on their rdev. Record them by setting
+ * bios[x] to bio
+ * If there are known/acknowledged bad blocks on any device on
+ * which we have seen a write error, we want to avoid writing those
+ * blocks.
+ * This potentially requires several writes to write around
+ * the bad blocks. Each set of writes gets it's own r1bio
+ * with a set of bios attached.
+ */
+
+ disks = conf->raid_disks * 2;
+ retry_write:
+ blocked_rdev = NULL;
+ rcu_read_lock();
+ max_sectors = r1_bio->sectors;
+ for (i = 0; i < disks; i++) {
+ struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
+
+ /*
+ * The write-behind io is only attempted on drives marked as
+ * write-mostly, which means we could allocate write behind
+ * bio later.
+ */
+ if (rdev && test_bit(WriteMostly, &rdev->flags))
+ write_behind = true;
+
+ if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
+ atomic_inc(&rdev->nr_pending);
+ blocked_rdev = rdev;
+ break;
+ }
+ r1_bio->bios[i] = NULL;
+ if (!rdev || test_bit(Faulty, &rdev->flags)) {
+ if (i < conf->raid_disks)
+ set_bit(R1BIO_Degraded, &r1_bio->state);
+ continue;
+ }
+
+ atomic_inc(&rdev->nr_pending);
+ if (test_bit(WriteErrorSeen, &rdev->flags)) {
+ sector_t first_bad;
+ int bad_sectors;
+ int is_bad;
+
+ is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
+ &first_bad, &bad_sectors);
+ if (is_bad < 0) {
+ /* mustn't write here until the bad block is
+ * acknowledged*/
+ set_bit(BlockedBadBlocks, &rdev->flags);
+ blocked_rdev = rdev;
+ break;
+ }
+ if (is_bad && first_bad <= r1_bio->sector) {
+ /* Cannot write here at all */
+ bad_sectors -= (r1_bio->sector - first_bad);
+ if (bad_sectors < max_sectors)
+ /* mustn't write more than bad_sectors
+ * to other devices yet
+ */
+ max_sectors = bad_sectors;
+ rdev_dec_pending(rdev, mddev);
+ /* We don't set R1BIO_Degraded as that
+ * only applies if the disk is
+ * missing, so it might be re-added,
+ * and we want to know to recover this
+ * chunk.
+ * In this case the device is here,
+ * and the fact that this chunk is not
+ * in-sync is recorded in the bad
+ * block log
+ */
+ continue;
+ }
+ if (is_bad) {
+ int good_sectors = first_bad - r1_bio->sector;
+ if (good_sectors < max_sectors)
+ max_sectors = good_sectors;
+ }
+ }
+ r1_bio->bios[i] = bio;
+ }
+ rcu_read_unlock();
+
+ if (unlikely(blocked_rdev)) {
+ /* Wait for this device to become unblocked */
+ int j;
+
+ for (j = 0; j < i; j++)
+ if (r1_bio->bios[j])
+ rdev_dec_pending(conf->mirrors[j].rdev, mddev);
+ r1_bio->state = 0;
+ allow_barrier(conf, bio->bi_iter.bi_sector);
+
+ if (bio->bi_opf & REQ_NOWAIT) {
+ bio_wouldblock_error(bio);
+ return;
+ }
+ raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
+ md_wait_for_blocked_rdev(blocked_rdev, mddev);
+ wait_barrier(conf, bio->bi_iter.bi_sector, false);
+ goto retry_write;
+ }
+
+ /*
+ * When using a bitmap, we may call alloc_behind_master_bio below.
+ * alloc_behind_master_bio allocates a copy of the data payload a page
+ * at a time and thus needs a new bio that can fit the whole payload
+ * this bio in page sized chunks.
+ */
+ if (write_behind && bitmap)
+ max_sectors = min_t(int, max_sectors,
+ BIO_MAX_VECS * (PAGE_SIZE >> 9));
+ if (max_sectors < bio_sectors(bio)) {
+ struct bio *split = bio_split(bio, max_sectors,
+ GFP_NOIO, &conf->bio_split);
+ bio_chain(split, bio);
+ submit_bio_noacct(bio);
+ bio = split;
+ r1_bio->master_bio = bio;
+ r1_bio->sectors = max_sectors;
+ }
+
+ if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
+ r1_bio->start_time = bio_start_io_acct(bio);
+ atomic_set(&r1_bio->remaining, 1);
+ atomic_set(&r1_bio->behind_remaining, 0);
+
+ first_clone = 1;
+
+ for (i = 0; i < disks; i++) {
+ struct bio *mbio = NULL;
+ struct md_rdev *rdev = conf->mirrors[i].rdev;
+ if (!r1_bio->bios[i])
+ continue;
+
+ if (first_clone) {
+ /* do behind I/O ?
+ * Not if there are too many, or cannot
+ * allocate memory, or a reader on WriteMostly
+ * is waiting for behind writes to flush */
+ if (bitmap &&
+ test_bit(WriteMostly, &rdev->flags) &&
+ (atomic_read(&bitmap->behind_writes)
+ < mddev->bitmap_info.max_write_behind) &&
+ !waitqueue_active(&bitmap->behind_wait)) {
+ alloc_behind_master_bio(r1_bio, bio);
+ }
+
+ md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
+ test_bit(R1BIO_BehindIO, &r1_bio->state));
+ first_clone = 0;
+ }
+
+ if (r1_bio->behind_master_bio) {
+ mbio = bio_alloc_clone(rdev->bdev,
+ r1_bio->behind_master_bio,
+ GFP_NOIO, &mddev->bio_set);
+ if (test_bit(CollisionCheck, &rdev->flags))
+ wait_for_serialization(rdev, r1_bio);
+ if (test_bit(WriteMostly, &rdev->flags))
+ atomic_inc(&r1_bio->behind_remaining);
+ } else {
+ mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
+ &mddev->bio_set);
+
+ if (mddev->serialize_policy)
+ wait_for_serialization(rdev, r1_bio);
+ }
+
+ r1_bio->bios[i] = mbio;
+
+ mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
+ mbio->bi_end_io = raid1_end_write_request;
+ mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
+ if (test_bit(FailFast, &rdev->flags) &&
+ !test_bit(WriteMostly, &rdev->flags) &&
+ conf->raid_disks - mddev->degraded > 1)
+ mbio->bi_opf |= MD_FAILFAST;
+ mbio->bi_private = r1_bio;
+
+ atomic_inc(&r1_bio->remaining);
+
+ if (mddev->gendisk)
+ trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
+ r1_bio->sector);
+ /* flush_pending_writes() needs access to the rdev so...*/
+ mbio->bi_bdev = (void *)rdev;
+ if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug)) {
+ spin_lock_irqsave(&conf->device_lock, flags);
+ bio_list_add(&conf->pending_bio_list, mbio);
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ md_wakeup_thread(mddev->thread);
+ }
+ }
+
+ r1_bio_write_done(r1_bio);
+
+ /* In case raid1d snuck in to freeze_array */
+ wake_up(&conf->wait_barrier);
+}
+
+static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
+{
+ sector_t sectors;
+
+ if (unlikely(bio->bi_opf & REQ_PREFLUSH)
+ && md_flush_request(mddev, bio))
+ return true;
+
+ /*
+ * There is a limit to the maximum size, but
+ * the read/write handler might find a lower limit
+ * due to bad blocks. To avoid multiple splits,
+ * we pass the maximum number of sectors down
+ * and let the lower level perform the split.
+ */
+ sectors = align_to_barrier_unit_end(
+ bio->bi_iter.bi_sector, bio_sectors(bio));
+
+ if (bio_data_dir(bio) == READ)
+ raid1_read_request(mddev, bio, sectors, NULL);
+ else {
+ if (!md_write_start(mddev,bio))
+ return false;
+ raid1_write_request(mddev, bio, sectors);
+ }
+ return true;
+}
+
+static void raid1_status(struct seq_file *seq, struct mddev *mddev)
+{
+ struct r1conf *conf = mddev->private;
+ int i;
+
+ seq_printf(seq, " [%d/%d] [", conf->raid_disks,
+ conf->raid_disks - mddev->degraded);
+ rcu_read_lock();
+ for (i = 0; i < conf->raid_disks; i++) {
+ struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
+ seq_printf(seq, "%s",
+ rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
+ }
+ rcu_read_unlock();
+ seq_printf(seq, "]");
+}
+
+/**
+ * raid1_error() - RAID1 error handler.
+ * @mddev: affected md device.
+ * @rdev: member device to fail.
+ *
+ * The routine acknowledges &rdev failure and determines new @mddev state.
+ * If it failed, then:
+ * - &MD_BROKEN flag is set in &mddev->flags.
+ * - recovery is disabled.
+ * Otherwise, it must be degraded:
+ * - recovery is interrupted.
+ * - &mddev->degraded is bumped.
+ *
+ * @rdev is marked as &Faulty excluding case when array is failed and
+ * &mddev->fail_last_dev is off.
+ */
+static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct r1conf *conf = mddev->private;
+ unsigned long flags;
+
+ spin_lock_irqsave(&conf->device_lock, flags);
+
+ if (test_bit(In_sync, &rdev->flags) &&
+ (conf->raid_disks - mddev->degraded) == 1) {
+ set_bit(MD_BROKEN, &mddev->flags);
+
+ if (!mddev->fail_last_dev) {
+ conf->recovery_disabled = mddev->recovery_disabled;
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ return;
+ }
+ }
+ set_bit(Blocked, &rdev->flags);
+ if (test_and_clear_bit(In_sync, &rdev->flags))
+ mddev->degraded++;
+ set_bit(Faulty, &rdev->flags);
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ /*
+ * if recovery is running, make sure it aborts.
+ */
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ set_mask_bits(&mddev->sb_flags, 0,
+ BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
+ pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
+ "md/raid1:%s: Operation continuing on %d devices.\n",
+ mdname(mddev), rdev->bdev,
+ mdname(mddev), conf->raid_disks - mddev->degraded);
+}
+
+static void print_conf(struct r1conf *conf)
+{
+ int i;
+
+ pr_debug("RAID1 conf printout:\n");
+ if (!conf) {
+ pr_debug("(!conf)\n");
+ return;
+ }
+ pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
+ conf->raid_disks);
+
+ rcu_read_lock();
+ for (i = 0; i < conf->raid_disks; i++) {
+ struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
+ if (rdev)
+ pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
+ i, !test_bit(In_sync, &rdev->flags),
+ !test_bit(Faulty, &rdev->flags),
+ rdev->bdev);
+ }
+ rcu_read_unlock();
+}
+
+static void close_sync(struct r1conf *conf)
+{
+ int idx;
+
+ for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
+ _wait_barrier(conf, idx, false);
+ _allow_barrier(conf, idx);
+ }
+
+ mempool_exit(&conf->r1buf_pool);
+}
+
+static int raid1_spare_active(struct mddev *mddev)
+{
+ int i;
+ struct r1conf *conf = mddev->private;
+ int count = 0;
+ unsigned long flags;
+
+ /*
+ * Find all failed disks within the RAID1 configuration
+ * and mark them readable.
+ * Called under mddev lock, so rcu protection not needed.
+ * device_lock used to avoid races with raid1_end_read_request
+ * which expects 'In_sync' flags and ->degraded to be consistent.
+ */
+ spin_lock_irqsave(&conf->device_lock, flags);
+ for (i = 0; i < conf->raid_disks; i++) {
+ struct md_rdev *rdev = conf->mirrors[i].rdev;
+ struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
+ if (repl
+ && !test_bit(Candidate, &repl->flags)
+ && repl->recovery_offset == MaxSector
+ && !test_bit(Faulty, &repl->flags)
+ && !test_and_set_bit(In_sync, &repl->flags)) {
+ /* replacement has just become active */
+ if (!rdev ||
+ !test_and_clear_bit(In_sync, &rdev->flags))
+ count++;
+ if (rdev) {
+ /* Replaced device not technically
+ * faulty, but we need to be sure
+ * it gets removed and never re-added
+ */
+ set_bit(Faulty, &rdev->flags);
+ sysfs_notify_dirent_safe(
+ rdev->sysfs_state);
+ }
+ }
+ if (rdev
+ && rdev->recovery_offset == MaxSector
+ && !test_bit(Faulty, &rdev->flags)
+ && !test_and_set_bit(In_sync, &rdev->flags)) {
+ count++;
+ sysfs_notify_dirent_safe(rdev->sysfs_state);
+ }
+ }
+ mddev->degraded -= count;
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+
+ print_conf(conf);
+ return count;
+}
+
+static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct r1conf *conf = mddev->private;
+ int err = -EEXIST;
+ int mirror = 0;
+ struct raid1_info *p;
+ int first = 0;
+ int last = conf->raid_disks - 1;
+
+ if (mddev->recovery_disabled == conf->recovery_disabled)
+ return -EBUSY;
+
+ if (md_integrity_add_rdev(rdev, mddev))
+ return -ENXIO;
+
+ if (rdev->raid_disk >= 0)
+ first = last = rdev->raid_disk;
+
+ /*
+ * find the disk ... but prefer rdev->saved_raid_disk
+ * if possible.
+ */
+ if (rdev->saved_raid_disk >= 0 &&
+ rdev->saved_raid_disk >= first &&
+ rdev->saved_raid_disk < conf->raid_disks &&
+ conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
+ first = last = rdev->saved_raid_disk;
+
+ for (mirror = first; mirror <= last; mirror++) {
+ p = conf->mirrors + mirror;
+ if (!p->rdev) {
+ if (mddev->gendisk)
+ disk_stack_limits(mddev->gendisk, rdev->bdev,
+ rdev->data_offset << 9);
+
+ p->head_position = 0;
+ rdev->raid_disk = mirror;
+ err = 0;
+ /* As all devices are equivalent, we don't need a full recovery
+ * if this was recently any drive of the array
+ */
+ if (rdev->saved_raid_disk < 0)
+ conf->fullsync = 1;
+ rcu_assign_pointer(p->rdev, rdev);
+ break;
+ }
+ if (test_bit(WantReplacement, &p->rdev->flags) &&
+ p[conf->raid_disks].rdev == NULL) {
+ /* Add this device as a replacement */
+ clear_bit(In_sync, &rdev->flags);
+ set_bit(Replacement, &rdev->flags);
+ rdev->raid_disk = mirror;
+ err = 0;
+ conf->fullsync = 1;
+ rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
+ break;
+ }
+ }
+ print_conf(conf);
+ return err;
+}
+
+static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct r1conf *conf = mddev->private;
+ int err = 0;
+ int number = rdev->raid_disk;
+ struct raid1_info *p = conf->mirrors + number;
+
+ if (unlikely(number >= conf->raid_disks))
+ goto abort;
+
+ if (rdev != p->rdev)
+ p = conf->mirrors + conf->raid_disks + number;
+
+ print_conf(conf);
+ if (rdev == p->rdev) {
+ if (test_bit(In_sync, &rdev->flags) ||
+ atomic_read(&rdev->nr_pending)) {
+ err = -EBUSY;
+ goto abort;
+ }
+ /* Only remove non-faulty devices if recovery
+ * is not possible.
+ */
+ if (!test_bit(Faulty, &rdev->flags) &&
+ mddev->recovery_disabled != conf->recovery_disabled &&
+ mddev->degraded < conf->raid_disks) {
+ err = -EBUSY;
+ goto abort;
+ }
+ p->rdev = NULL;
+ if (!test_bit(RemoveSynchronized, &rdev->flags)) {
+ synchronize_rcu();
+ if (atomic_read(&rdev->nr_pending)) {
+ /* lost the race, try later */
+ err = -EBUSY;
+ p->rdev = rdev;
+ goto abort;
+ }
+ }
+ if (conf->mirrors[conf->raid_disks + number].rdev) {
+ /* We just removed a device that is being replaced.
+ * Move down the replacement. We drain all IO before
+ * doing this to avoid confusion.
+ */
+ struct md_rdev *repl =
+ conf->mirrors[conf->raid_disks + number].rdev;
+ freeze_array(conf, 0);
+ if (atomic_read(&repl->nr_pending)) {
+ /* It means that some queued IO of retry_list
+ * hold repl. Thus, we cannot set replacement
+ * as NULL, avoiding rdev NULL pointer
+ * dereference in sync_request_write and
+ * handle_write_finished.
+ */
+ err = -EBUSY;
+ unfreeze_array(conf);
+ goto abort;
+ }
+ clear_bit(Replacement, &repl->flags);
+ p->rdev = repl;
+ conf->mirrors[conf->raid_disks + number].rdev = NULL;
+ unfreeze_array(conf);
+ }
+
+ clear_bit(WantReplacement, &rdev->flags);
+ err = md_integrity_register(mddev);
+ }
+abort:
+
+ print_conf(conf);
+ return err;
+}
+
+static void end_sync_read(struct bio *bio)
+{
+ struct r1bio *r1_bio = get_resync_r1bio(bio);
+
+ update_head_pos(r1_bio->read_disk, r1_bio);
+
+ /*
+ * we have read a block, now it needs to be re-written,
+ * or re-read if the read failed.
+ * We don't do much here, just schedule handling by raid1d
+ */
+ if (!bio->bi_status)
+ set_bit(R1BIO_Uptodate, &r1_bio->state);
+
+ if (atomic_dec_and_test(&r1_bio->remaining))
+ reschedule_retry(r1_bio);
+}
+
+static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
+{
+ sector_t sync_blocks = 0;
+ sector_t s = r1_bio->sector;
+ long sectors_to_go = r1_bio->sectors;
+
+ /* make sure these bits don't get cleared. */
+ do {
+ md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
+ s += sync_blocks;
+ sectors_to_go -= sync_blocks;
+ } while (sectors_to_go > 0);
+}
+
+static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
+{
+ if (atomic_dec_and_test(&r1_bio->remaining)) {
+ struct mddev *mddev = r1_bio->mddev;
+ int s = r1_bio->sectors;
+
+ if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
+ test_bit(R1BIO_WriteError, &r1_bio->state))
+ reschedule_retry(r1_bio);
+ else {
+ put_buf(r1_bio);
+ md_done_sync(mddev, s, uptodate);
+ }
+ }
+}
+
+static void end_sync_write(struct bio *bio)
+{
+ int uptodate = !bio->bi_status;
+ struct r1bio *r1_bio = get_resync_r1bio(bio);
+ struct mddev *mddev = r1_bio->mddev;
+ struct r1conf *conf = mddev->private;
+ sector_t first_bad;
+ int bad_sectors;
+ struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
+
+ if (!uptodate) {
+ abort_sync_write(mddev, r1_bio);
+ set_bit(WriteErrorSeen, &rdev->flags);
+ if (!test_and_set_bit(WantReplacement, &rdev->flags))
+ set_bit(MD_RECOVERY_NEEDED, &
+ mddev->recovery);
+ set_bit(R1BIO_WriteError, &r1_bio->state);
+ } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
+ &first_bad, &bad_sectors) &&
+ !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
+ r1_bio->sector,
+ r1_bio->sectors,
+ &first_bad, &bad_sectors)
+ )
+ set_bit(R1BIO_MadeGood, &r1_bio->state);
+
+ put_sync_write_buf(r1_bio, uptodate);
+}
+
+static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
+ int sectors, struct page *page, blk_opf_t rw)
+{
+ if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
+ /* success */
+ return 1;
+ if (rw == REQ_OP_WRITE) {
+ set_bit(WriteErrorSeen, &rdev->flags);
+ if (!test_and_set_bit(WantReplacement,
+ &rdev->flags))
+ set_bit(MD_RECOVERY_NEEDED, &
+ rdev->mddev->recovery);
+ }
+ /* need to record an error - either for the block or the device */
+ if (!rdev_set_badblocks(rdev, sector, sectors, 0))
+ md_error(rdev->mddev, rdev);
+ return 0;
+}
+
+static int fix_sync_read_error(struct r1bio *r1_bio)
+{
+ /* Try some synchronous reads of other devices to get
+ * good data, much like with normal read errors. Only
+ * read into the pages we already have so we don't
+ * need to re-issue the read request.
+ * We don't need to freeze the array, because being in an
+ * active sync request, there is no normal IO, and
+ * no overlapping syncs.
+ * We don't need to check is_badblock() again as we
+ * made sure that anything with a bad block in range
+ * will have bi_end_io clear.
+ */
+ struct mddev *mddev = r1_bio->mddev;
+ struct r1conf *conf = mddev->private;
+ struct bio *bio = r1_bio->bios[r1_bio->read_disk];
+ struct page **pages = get_resync_pages(bio)->pages;
+ sector_t sect = r1_bio->sector;
+ int sectors = r1_bio->sectors;
+ int idx = 0;
+ struct md_rdev *rdev;
+
+ rdev = conf->mirrors[r1_bio->read_disk].rdev;
+ if (test_bit(FailFast, &rdev->flags)) {
+ /* Don't try recovering from here - just fail it
+ * ... unless it is the last working device of course */
+ md_error(mddev, rdev);
+ if (test_bit(Faulty, &rdev->flags))
+ /* Don't try to read from here, but make sure
+ * put_buf does it's thing
+ */
+ bio->bi_end_io = end_sync_write;
+ }
+
+ while(sectors) {
+ int s = sectors;
+ int d = r1_bio->read_disk;
+ int success = 0;
+ int start;
+
+ if (s > (PAGE_SIZE>>9))
+ s = PAGE_SIZE >> 9;
+ do {
+ if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
+ /* No rcu protection needed here devices
+ * can only be removed when no resync is
+ * active, and resync is currently active
+ */
+ rdev = conf->mirrors[d].rdev;
+ if (sync_page_io(rdev, sect, s<<9,
+ pages[idx],
+ REQ_OP_READ, false)) {
+ success = 1;
+ break;
+ }
+ }
+ d++;
+ if (d == conf->raid_disks * 2)
+ d = 0;
+ } while (!success && d != r1_bio->read_disk);
+
+ if (!success) {
+ int abort = 0;
+ /* Cannot read from anywhere, this block is lost.
+ * Record a bad block on each device. If that doesn't
+ * work just disable and interrupt the recovery.
+ * Don't fail devices as that won't really help.
+ */
+ pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
+ mdname(mddev), bio->bi_bdev,
+ (unsigned long long)r1_bio->sector);
+ for (d = 0; d < conf->raid_disks * 2; d++) {
+ rdev = conf->mirrors[d].rdev;
+ if (!rdev || test_bit(Faulty, &rdev->flags))
+ continue;
+ if (!rdev_set_badblocks(rdev, sect, s, 0))
+ abort = 1;
+ }
+ if (abort) {
+ conf->recovery_disabled =
+ mddev->recovery_disabled;
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ md_done_sync(mddev, r1_bio->sectors, 0);
+ put_buf(r1_bio);
+ return 0;
+ }
+ /* Try next page */
+ sectors -= s;
+ sect += s;
+ idx++;
+ continue;
+ }
+
+ start = d;
+ /* write it back and re-read */
+ while (d != r1_bio->read_disk) {
+ if (d == 0)
+ d = conf->raid_disks * 2;
+ d--;
+ if (r1_bio->bios[d]->bi_end_io != end_sync_read)
+ continue;
+ rdev = conf->mirrors[d].rdev;
+ if (r1_sync_page_io(rdev, sect, s,
+ pages[idx],
+ REQ_OP_WRITE) == 0) {
+ r1_bio->bios[d]->bi_end_io = NULL;
+ rdev_dec_pending(rdev, mddev);
+ }
+ }
+ d = start;
+ while (d != r1_bio->read_disk) {
+ if (d == 0)
+ d = conf->raid_disks * 2;
+ d--;
+ if (r1_bio->bios[d]->bi_end_io != end_sync_read)
+ continue;
+ rdev = conf->mirrors[d].rdev;
+ if (r1_sync_page_io(rdev, sect, s,
+ pages[idx],
+ REQ_OP_READ) != 0)
+ atomic_add(s, &rdev->corrected_errors);
+ }
+ sectors -= s;
+ sect += s;
+ idx ++;
+ }
+ set_bit(R1BIO_Uptodate, &r1_bio->state);
+ bio->bi_status = 0;
+ return 1;
+}
+
+static void process_checks(struct r1bio *r1_bio)
+{
+ /* We have read all readable devices. If we haven't
+ * got the block, then there is no hope left.
+ * If we have, then we want to do a comparison
+ * and skip the write if everything is the same.
+ * If any blocks failed to read, then we need to
+ * attempt an over-write
+ */
+ struct mddev *mddev = r1_bio->mddev;
+ struct r1conf *conf = mddev->private;
+ int primary;
+ int i;
+ int vcnt;
+
+ /* Fix variable parts of all bios */
+ vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
+ for (i = 0; i < conf->raid_disks * 2; i++) {
+ blk_status_t status;
+ struct bio *b = r1_bio->bios[i];
+ struct resync_pages *rp = get_resync_pages(b);
+ if (b->bi_end_io != end_sync_read)
+ continue;
+ /* fixup the bio for reuse, but preserve errno */
+ status = b->bi_status;
+ bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
+ b->bi_status = status;
+ b->bi_iter.bi_sector = r1_bio->sector +
+ conf->mirrors[i].rdev->data_offset;
+ b->bi_end_io = end_sync_read;
+ rp->raid_bio = r1_bio;
+ b->bi_private = rp;
+
+ /* initialize bvec table again */
+ md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
+ }
+ for (primary = 0; primary < conf->raid_disks * 2; primary++)
+ if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
+ !r1_bio->bios[primary]->bi_status) {
+ r1_bio->bios[primary]->bi_end_io = NULL;
+ rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
+ break;
+ }
+ r1_bio->read_disk = primary;
+ for (i = 0; i < conf->raid_disks * 2; i++) {
+ int j = 0;
+ struct bio *pbio = r1_bio->bios[primary];
+ struct bio *sbio = r1_bio->bios[i];
+ blk_status_t status = sbio->bi_status;
+ struct page **ppages = get_resync_pages(pbio)->pages;
+ struct page **spages = get_resync_pages(sbio)->pages;
+ struct bio_vec *bi;
+ int page_len[RESYNC_PAGES] = { 0 };
+ struct bvec_iter_all iter_all;
+
+ if (sbio->bi_end_io != end_sync_read)
+ continue;
+ /* Now we can 'fixup' the error value */
+ sbio->bi_status = 0;
+
+ bio_for_each_segment_all(bi, sbio, iter_all)
+ page_len[j++] = bi->bv_len;
+
+ if (!status) {
+ for (j = vcnt; j-- ; ) {
+ if (memcmp(page_address(ppages[j]),
+ page_address(spages[j]),
+ page_len[j]))
+ break;
+ }
+ } else
+ j = 0;
+ if (j >= 0)
+ atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
+ if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
+ && !status)) {
+ /* No need to write to this device. */
+ sbio->bi_end_io = NULL;
+ rdev_dec_pending(conf->mirrors[i].rdev, mddev);
+ continue;
+ }
+
+ bio_copy_data(sbio, pbio);
+ }
+}
+
+static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
+{
+ struct r1conf *conf = mddev->private;
+ int i;
+ int disks = conf->raid_disks * 2;
+ struct bio *wbio;
+
+ if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
+ /* ouch - failed to read all of that. */
+ if (!fix_sync_read_error(r1_bio))
+ return;
+
+ if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
+ process_checks(r1_bio);
+
+ /*
+ * schedule writes
+ */
+ atomic_set(&r1_bio->remaining, 1);
+ for (i = 0; i < disks ; i++) {
+ wbio = r1_bio->bios[i];
+ if (wbio->bi_end_io == NULL ||
+ (wbio->bi_end_io == end_sync_read &&
+ (i == r1_bio->read_disk ||
+ !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
+ continue;
+ if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
+ abort_sync_write(mddev, r1_bio);
+ continue;
+ }
+
+ bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
+ if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
+ wbio->bi_opf |= MD_FAILFAST;
+
+ wbio->bi_end_io = end_sync_write;
+ atomic_inc(&r1_bio->remaining);
+ md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
+
+ submit_bio_noacct(wbio);
+ }
+
+ put_sync_write_buf(r1_bio, 1);
+}
+
+/*
+ * This is a kernel thread which:
+ *
+ * 1. Retries failed read operations on working mirrors.
+ * 2. Updates the raid superblock when problems encounter.
+ * 3. Performs writes following reads for array synchronising.
+ */
+
+static void fix_read_error(struct r1conf *conf, int read_disk,
+ sector_t sect, int sectors)
+{
+ struct mddev *mddev = conf->mddev;
+ while(sectors) {
+ int s = sectors;
+ int d = read_disk;
+ int success = 0;
+ int start;
+ struct md_rdev *rdev;
+
+ if (s > (PAGE_SIZE>>9))
+ s = PAGE_SIZE >> 9;
+
+ do {
+ sector_t first_bad;
+ int bad_sectors;
+
+ rcu_read_lock();
+ rdev = rcu_dereference(conf->mirrors[d].rdev);
+ if (rdev &&
+ (test_bit(In_sync, &rdev->flags) ||
+ (!test_bit(Faulty, &rdev->flags) &&
+ rdev->recovery_offset >= sect + s)) &&
+ is_badblock(rdev, sect, s,
+ &first_bad, &bad_sectors) == 0) {
+ atomic_inc(&rdev->nr_pending);
+ rcu_read_unlock();
+ if (sync_page_io(rdev, sect, s<<9,
+ conf->tmppage, REQ_OP_READ, false))
+ success = 1;
+ rdev_dec_pending(rdev, mddev);
+ if (success)
+ break;
+ } else
+ rcu_read_unlock();
+ d++;
+ if (d == conf->raid_disks * 2)
+ d = 0;
+ } while (!success && d != read_disk);
+
+ if (!success) {
+ /* Cannot read from anywhere - mark it bad */
+ struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
+ if (!rdev_set_badblocks(rdev, sect, s, 0))
+ md_error(mddev, rdev);
+ break;
+ }
+ /* write it back and re-read */
+ start = d;
+ while (d != read_disk) {
+ if (d==0)
+ d = conf->raid_disks * 2;
+ d--;
+ rcu_read_lock();
+ rdev = rcu_dereference(conf->mirrors[d].rdev);
+ if (rdev &&
+ !test_bit(Faulty, &rdev->flags)) {
+ atomic_inc(&rdev->nr_pending);
+ rcu_read_unlock();
+ r1_sync_page_io(rdev, sect, s,
+ conf->tmppage, REQ_OP_WRITE);
+ rdev_dec_pending(rdev, mddev);
+ } else
+ rcu_read_unlock();
+ }
+ d = start;
+ while (d != read_disk) {
+ if (d==0)
+ d = conf->raid_disks * 2;
+ d--;
+ rcu_read_lock();
+ rdev = rcu_dereference(conf->mirrors[d].rdev);
+ if (rdev &&
+ !test_bit(Faulty, &rdev->flags)) {
+ atomic_inc(&rdev->nr_pending);
+ rcu_read_unlock();
+ if (r1_sync_page_io(rdev, sect, s,
+ conf->tmppage, REQ_OP_READ)) {
+ atomic_add(s, &rdev->corrected_errors);
+ pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
+ mdname(mddev), s,
+ (unsigned long long)(sect +
+ rdev->data_offset),
+ rdev->bdev);
+ }
+ rdev_dec_pending(rdev, mddev);
+ } else
+ rcu_read_unlock();
+ }
+ sectors -= s;
+ sect += s;
+ }
+}
+
+static int narrow_write_error(struct r1bio *r1_bio, int i)
+{
+ struct mddev *mddev = r1_bio->mddev;
+ struct r1conf *conf = mddev->private;
+ struct md_rdev *rdev = conf->mirrors[i].rdev;
+
+ /* bio has the data to be written to device 'i' where
+ * we just recently had a write error.
+ * We repeatedly clone the bio and trim down to one block,
+ * then try the write. Where the write fails we record
+ * a bad block.
+ * It is conceivable that the bio doesn't exactly align with
+ * blocks. We must handle this somehow.
+ *
+ * We currently own a reference on the rdev.
+ */
+
+ int block_sectors;
+ sector_t sector;
+ int sectors;
+ int sect_to_write = r1_bio->sectors;
+ int ok = 1;
+
+ if (rdev->badblocks.shift < 0)
+ return 0;
+
+ block_sectors = roundup(1 << rdev->badblocks.shift,
+ bdev_logical_block_size(rdev->bdev) >> 9);
+ sector = r1_bio->sector;
+ sectors = ((sector + block_sectors)
+ & ~(sector_t)(block_sectors - 1))
+ - sector;
+
+ while (sect_to_write) {
+ struct bio *wbio;
+ if (sectors > sect_to_write)
+ sectors = sect_to_write;
+ /* Write at 'sector' for 'sectors'*/
+
+ if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
+ wbio = bio_alloc_clone(rdev->bdev,
+ r1_bio->behind_master_bio,
+ GFP_NOIO, &mddev->bio_set);
+ } else {
+ wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
+ GFP_NOIO, &mddev->bio_set);
+ }
+
+ bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
+ wbio->bi_iter.bi_sector = r1_bio->sector;
+ wbio->bi_iter.bi_size = r1_bio->sectors << 9;
+
+ bio_trim(wbio, sector - r1_bio->sector, sectors);
+ wbio->bi_iter.bi_sector += rdev->data_offset;
+
+ if (submit_bio_wait(wbio) < 0)
+ /* failure! */
+ ok = rdev_set_badblocks(rdev, sector,
+ sectors, 0)
+ && ok;
+
+ bio_put(wbio);
+ sect_to_write -= sectors;
+ sector += sectors;
+ sectors = block_sectors;
+ }
+ return ok;
+}
+
+static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
+{
+ int m;
+ int s = r1_bio->sectors;
+ for (m = 0; m < conf->raid_disks * 2 ; m++) {
+ struct md_rdev *rdev = conf->mirrors[m].rdev;
+ struct bio *bio = r1_bio->bios[m];
+ if (bio->bi_end_io == NULL)
+ continue;
+ if (!bio->bi_status &&
+ test_bit(R1BIO_MadeGood, &r1_bio->state)) {
+ rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
+ }
+ if (bio->bi_status &&
+ test_bit(R1BIO_WriteError, &r1_bio->state)) {
+ if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
+ md_error(conf->mddev, rdev);
+ }
+ }
+ put_buf(r1_bio);
+ md_done_sync(conf->mddev, s, 1);
+}
+
+static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
+{
+ int m, idx;
+ bool fail = false;
+
+ for (m = 0; m < conf->raid_disks * 2 ; m++)
+ if (r1_bio->bios[m] == IO_MADE_GOOD) {
+ struct md_rdev *rdev = conf->mirrors[m].rdev;
+ rdev_clear_badblocks(rdev,
+ r1_bio->sector,
+ r1_bio->sectors, 0);
+ rdev_dec_pending(rdev, conf->mddev);
+ } else if (r1_bio->bios[m] != NULL) {
+ /* This drive got a write error. We need to
+ * narrow down and record precise write
+ * errors.
+ */
+ fail = true;
+ if (!narrow_write_error(r1_bio, m)) {
+ md_error(conf->mddev,
+ conf->mirrors[m].rdev);
+ /* an I/O failed, we can't clear the bitmap */
+ set_bit(R1BIO_Degraded, &r1_bio->state);
+ }
+ rdev_dec_pending(conf->mirrors[m].rdev,
+ conf->mddev);
+ }
+ if (fail) {
+ spin_lock_irq(&conf->device_lock);
+ list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
+ idx = sector_to_idx(r1_bio->sector);
+ atomic_inc(&conf->nr_queued[idx]);
+ spin_unlock_irq(&conf->device_lock);
+ /*
+ * In case freeze_array() is waiting for condition
+ * get_unqueued_pending() == extra to be true.
+ */
+ wake_up(&conf->wait_barrier);
+ md_wakeup_thread(conf->mddev->thread);
+ } else {
+ if (test_bit(R1BIO_WriteError, &r1_bio->state))
+ close_write(r1_bio);
+ raid_end_bio_io(r1_bio);
+ }
+}
+
+static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
+{
+ struct mddev *mddev = conf->mddev;
+ struct bio *bio;
+ struct md_rdev *rdev;
+
+ clear_bit(R1BIO_ReadError, &r1_bio->state);
+ /* we got a read error. Maybe the drive is bad. Maybe just
+ * the block and we can fix it.
+ * We freeze all other IO, and try reading the block from
+ * other devices. When we find one, we re-write
+ * and check it that fixes the read error.
+ * This is all done synchronously while the array is
+ * frozen
+ */
+
+ bio = r1_bio->bios[r1_bio->read_disk];
+ bio_put(bio);
+ r1_bio->bios[r1_bio->read_disk] = NULL;
+
+ rdev = conf->mirrors[r1_bio->read_disk].rdev;
+ if (mddev->ro == 0
+ && !test_bit(FailFast, &rdev->flags)) {
+ freeze_array(conf, 1);
+ fix_read_error(conf, r1_bio->read_disk,
+ r1_bio->sector, r1_bio->sectors);
+ unfreeze_array(conf);
+ } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
+ md_error(mddev, rdev);
+ } else {
+ r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
+ }
+
+ rdev_dec_pending(rdev, conf->mddev);
+ allow_barrier(conf, r1_bio->sector);
+ bio = r1_bio->master_bio;
+
+ /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
+ r1_bio->state = 0;
+ raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
+}
+
+static void raid1d(struct md_thread *thread)
+{
+ struct mddev *mddev = thread->mddev;
+ struct r1bio *r1_bio;
+ unsigned long flags;
+ struct r1conf *conf = mddev->private;
+ struct list_head *head = &conf->retry_list;
+ struct blk_plug plug;
+ int idx;
+
+ md_check_recovery(mddev);
+
+ if (!list_empty_careful(&conf->bio_end_io_list) &&
+ !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
+ LIST_HEAD(tmp);
+ spin_lock_irqsave(&conf->device_lock, flags);
+ if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
+ list_splice_init(&conf->bio_end_io_list, &tmp);
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ while (!list_empty(&tmp)) {
+ r1_bio = list_first_entry(&tmp, struct r1bio,
+ retry_list);
+ list_del(&r1_bio->retry_list);
+ idx = sector_to_idx(r1_bio->sector);
+ atomic_dec(&conf->nr_queued[idx]);
+ if (mddev->degraded)
+ set_bit(R1BIO_Degraded, &r1_bio->state);
+ if (test_bit(R1BIO_WriteError, &r1_bio->state))
+ close_write(r1_bio);
+ raid_end_bio_io(r1_bio);
+ }
+ }
+
+ blk_start_plug(&plug);
+ for (;;) {
+
+ flush_pending_writes(conf);
+
+ spin_lock_irqsave(&conf->device_lock, flags);
+ if (list_empty(head)) {
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ break;
+ }
+ r1_bio = list_entry(head->prev, struct r1bio, retry_list);
+ list_del(head->prev);
+ idx = sector_to_idx(r1_bio->sector);
+ atomic_dec(&conf->nr_queued[idx]);
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+
+ mddev = r1_bio->mddev;
+ conf = mddev->private;
+ if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
+ if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
+ test_bit(R1BIO_WriteError, &r1_bio->state))
+ handle_sync_write_finished(conf, r1_bio);
+ else
+ sync_request_write(mddev, r1_bio);
+ } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
+ test_bit(R1BIO_WriteError, &r1_bio->state))
+ handle_write_finished(conf, r1_bio);
+ else if (test_bit(R1BIO_ReadError, &r1_bio->state))
+ handle_read_error(conf, r1_bio);
+ else
+ WARN_ON_ONCE(1);
+
+ cond_resched();
+ if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
+ md_check_recovery(mddev);
+ }
+ blk_finish_plug(&plug);
+}
+
+static int init_resync(struct r1conf *conf)
+{
+ int buffs;
+
+ buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
+ BUG_ON(mempool_initialized(&conf->r1buf_pool));
+
+ return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
+ r1buf_pool_free, conf->poolinfo);
+}
+
+static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
+{
+ struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
+ struct resync_pages *rps;
+ struct bio *bio;
+ int i;
+
+ for (i = conf->poolinfo->raid_disks; i--; ) {
+ bio = r1bio->bios[i];
+ rps = bio->bi_private;
+ bio_reset(bio, NULL, 0);
+ bio->bi_private = rps;
+ }
+ r1bio->master_bio = NULL;
+ return r1bio;
+}
+
+/*
+ * perform a "sync" on one "block"
+ *
+ * We need to make sure that no normal I/O request - particularly write
+ * requests - conflict with active sync requests.
+ *
+ * This is achieved by tracking pending requests and a 'barrier' concept
+ * that can be installed to exclude normal IO requests.
+ */
+
+static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
+ int *skipped)
+{
+ struct r1conf *conf = mddev->private;
+ struct r1bio *r1_bio;
+ struct bio *bio;
+ sector_t max_sector, nr_sectors;
+ int disk = -1;
+ int i;
+ int wonly = -1;
+ int write_targets = 0, read_targets = 0;
+ sector_t sync_blocks;
+ int still_degraded = 0;
+ int good_sectors = RESYNC_SECTORS;
+ int min_bad = 0; /* number of sectors that are bad in all devices */
+ int idx = sector_to_idx(sector_nr);
+ int page_idx = 0;
+
+ if (!mempool_initialized(&conf->r1buf_pool))
+ if (init_resync(conf))
+ return 0;
+
+ max_sector = mddev->dev_sectors;
+ if (sector_nr >= max_sector) {
+ /* If we aborted, we need to abort the
+ * sync on the 'current' bitmap chunk (there will
+ * only be one in raid1 resync.
+ * We can find the current addess in mddev->curr_resync
+ */
+ if (mddev->curr_resync < max_sector) /* aborted */
+ md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
+ &sync_blocks, 1);
+ else /* completed sync */
+ conf->fullsync = 0;
+
+ md_bitmap_close_sync(mddev->bitmap);
+ close_sync(conf);
+
+ if (mddev_is_clustered(mddev)) {
+ conf->cluster_sync_low = 0;
+ conf->cluster_sync_high = 0;
+ }
+ return 0;
+ }
+
+ if (mddev->bitmap == NULL &&
+ mddev->recovery_cp == MaxSector &&
+ !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
+ conf->fullsync == 0) {
+ *skipped = 1;
+ return max_sector - sector_nr;
+ }
+ /* before building a request, check if we can skip these blocks..
+ * This call the bitmap_start_sync doesn't actually record anything
+ */
+ if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
+ !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
+ /* We can skip this block, and probably several more */
+ *skipped = 1;
+ return sync_blocks;
+ }
+
+ /*
+ * If there is non-resync activity waiting for a turn, then let it
+ * though before starting on this new sync request.
+ */
+ if (atomic_read(&conf->nr_waiting[idx]))
+ schedule_timeout_uninterruptible(1);
+
+ /* we are incrementing sector_nr below. To be safe, we check against
+ * sector_nr + two times RESYNC_SECTORS
+ */
+
+ md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
+ mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
+
+
+ if (raise_barrier(conf, sector_nr))
+ return 0;
+
+ r1_bio = raid1_alloc_init_r1buf(conf);
+
+ rcu_read_lock();
+ /*
+ * If we get a correctably read error during resync or recovery,
+ * we might want to read from a different device. So we
+ * flag all drives that could conceivably be read from for READ,
+ * and any others (which will be non-In_sync devices) for WRITE.
+ * If a read fails, we try reading from something else for which READ
+ * is OK.
+ */
+
+ r1_bio->mddev = mddev;
+ r1_bio->sector = sector_nr;
+ r1_bio->state = 0;
+ set_bit(R1BIO_IsSync, &r1_bio->state);
+ /* make sure good_sectors won't go across barrier unit boundary */
+ good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
+
+ for (i = 0; i < conf->raid_disks * 2; i++) {
+ struct md_rdev *rdev;
+ bio = r1_bio->bios[i];
+
+ rdev = rcu_dereference(conf->mirrors[i].rdev);
+ if (rdev == NULL ||
+ test_bit(Faulty, &rdev->flags)) {
+ if (i < conf->raid_disks)
+ still_degraded = 1;
+ } else if (!test_bit(In_sync, &rdev->flags)) {
+ bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
+ bio->bi_end_io = end_sync_write;
+ write_targets ++;
+ } else {
+ /* may need to read from here */
+ sector_t first_bad = MaxSector;
+ int bad_sectors;
+
+ if (is_badblock(rdev, sector_nr, good_sectors,
+ &first_bad, &bad_sectors)) {
+ if (first_bad > sector_nr)
+ good_sectors = first_bad - sector_nr;
+ else {
+ bad_sectors -= (sector_nr - first_bad);
+ if (min_bad == 0 ||
+ min_bad > bad_sectors)
+ min_bad = bad_sectors;
+ }
+ }
+ if (sector_nr < first_bad) {
+ if (test_bit(WriteMostly, &rdev->flags)) {
+ if (wonly < 0)
+ wonly = i;
+ } else {
+ if (disk < 0)
+ disk = i;
+ }
+ bio_set_op_attrs(bio, REQ_OP_READ, 0);
+ bio->bi_end_io = end_sync_read;
+ read_targets++;
+ } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
+ test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
+ !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
+ /*
+ * The device is suitable for reading (InSync),
+ * but has bad block(s) here. Let's try to correct them,
+ * if we are doing resync or repair. Otherwise, leave
+ * this device alone for this sync request.
+ */
+ bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
+ bio->bi_end_io = end_sync_write;
+ write_targets++;
+ }
+ }
+ if (rdev && bio->bi_end_io) {
+ atomic_inc(&rdev->nr_pending);
+ bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
+ bio_set_dev(bio, rdev->bdev);
+ if (test_bit(FailFast, &rdev->flags))
+ bio->bi_opf |= MD_FAILFAST;
+ }
+ }
+ rcu_read_unlock();
+ if (disk < 0)
+ disk = wonly;
+ r1_bio->read_disk = disk;
+
+ if (read_targets == 0 && min_bad > 0) {
+ /* These sectors are bad on all InSync devices, so we
+ * need to mark them bad on all write targets
+ */
+ int ok = 1;
+ for (i = 0 ; i < conf->raid_disks * 2 ; i++)
+ if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
+ struct md_rdev *rdev = conf->mirrors[i].rdev;
+ ok = rdev_set_badblocks(rdev, sector_nr,
+ min_bad, 0
+ ) && ok;
+ }
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+ *skipped = 1;
+ put_buf(r1_bio);
+
+ if (!ok) {
+ /* Cannot record the badblocks, so need to
+ * abort the resync.
+ * If there are multiple read targets, could just
+ * fail the really bad ones ???
+ */
+ conf->recovery_disabled = mddev->recovery_disabled;
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ return 0;
+ } else
+ return min_bad;
+
+ }
+ if (min_bad > 0 && min_bad < good_sectors) {
+ /* only resync enough to reach the next bad->good
+ * transition */
+ good_sectors = min_bad;
+ }
+
+ if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
+ /* extra read targets are also write targets */
+ write_targets += read_targets-1;
+
+ if (write_targets == 0 || read_targets == 0) {
+ /* There is nowhere to write, so all non-sync
+ * drives must be failed - so we are finished
+ */
+ sector_t rv;
+ if (min_bad > 0)
+ max_sector = sector_nr + min_bad;
+ rv = max_sector - sector_nr;
+ *skipped = 1;
+ put_buf(r1_bio);
+ return rv;
+ }
+
+ if (max_sector > mddev->resync_max)
+ max_sector = mddev->resync_max; /* Don't do IO beyond here */
+ if (max_sector > sector_nr + good_sectors)
+ max_sector = sector_nr + good_sectors;
+ nr_sectors = 0;
+ sync_blocks = 0;
+ do {
+ struct page *page;
+ int len = PAGE_SIZE;
+ if (sector_nr + (len>>9) > max_sector)
+ len = (max_sector - sector_nr) << 9;
+ if (len == 0)
+ break;
+ if (sync_blocks == 0) {
+ if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
+ &sync_blocks, still_degraded) &&
+ !conf->fullsync &&
+ !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
+ break;
+ if ((len >> 9) > sync_blocks)
+ len = sync_blocks<<9;
+ }
+
+ for (i = 0 ; i < conf->raid_disks * 2; i++) {
+ struct resync_pages *rp;
+
+ bio = r1_bio->bios[i];
+ rp = get_resync_pages(bio);
+ if (bio->bi_end_io) {
+ page = resync_fetch_page(rp, page_idx);
+
+ /*
+ * won't fail because the vec table is big
+ * enough to hold all these pages
+ */
+ bio_add_page(bio, page, len, 0);
+ }
+ }
+ nr_sectors += len>>9;
+ sector_nr += len>>9;
+ sync_blocks -= (len>>9);
+ } while (++page_idx < RESYNC_PAGES);
+
+ r1_bio->sectors = nr_sectors;
+
+ if (mddev_is_clustered(mddev) &&
+ conf->cluster_sync_high < sector_nr + nr_sectors) {
+ conf->cluster_sync_low = mddev->curr_resync_completed;
+ conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
+ /* Send resync message */
+ md_cluster_ops->resync_info_update(mddev,
+ conf->cluster_sync_low,
+ conf->cluster_sync_high);
+ }
+
+ /* For a user-requested sync, we read all readable devices and do a
+ * compare
+ */
+ if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
+ atomic_set(&r1_bio->remaining, read_targets);
+ for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
+ bio = r1_bio->bios[i];
+ if (bio->bi_end_io == end_sync_read) {
+ read_targets--;
+ md_sync_acct_bio(bio, nr_sectors);
+ if (read_targets == 1)
+ bio->bi_opf &= ~MD_FAILFAST;
+ submit_bio_noacct(bio);
+ }
+ }
+ } else {
+ atomic_set(&r1_bio->remaining, 1);
+ bio = r1_bio->bios[r1_bio->read_disk];
+ md_sync_acct_bio(bio, nr_sectors);
+ if (read_targets == 1)
+ bio->bi_opf &= ~MD_FAILFAST;
+ submit_bio_noacct(bio);
+ }
+ return nr_sectors;
+}
+
+static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
+{
+ if (sectors)
+ return sectors;
+
+ return mddev->dev_sectors;
+}
+
+static struct r1conf *setup_conf(struct mddev *mddev)
+{
+ struct r1conf *conf;
+ int i;
+ struct raid1_info *disk;
+ struct md_rdev *rdev;
+ int err = -ENOMEM;
+
+ conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
+ if (!conf)
+ goto abort;
+
+ conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
+ sizeof(atomic_t), GFP_KERNEL);
+ if (!conf->nr_pending)
+ goto abort;
+
+ conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
+ sizeof(atomic_t), GFP_KERNEL);
+ if (!conf->nr_waiting)
+ goto abort;
+
+ conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
+ sizeof(atomic_t), GFP_KERNEL);
+ if (!conf->nr_queued)
+ goto abort;
+
+ conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
+ sizeof(atomic_t), GFP_KERNEL);
+ if (!conf->barrier)
+ goto abort;
+
+ conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
+ mddev->raid_disks, 2),
+ GFP_KERNEL);
+ if (!conf->mirrors)
+ goto abort;
+
+ conf->tmppage = alloc_page(GFP_KERNEL);
+ if (!conf->tmppage)
+ goto abort;
+
+ conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
+ if (!conf->poolinfo)
+ goto abort;
+ conf->poolinfo->raid_disks = mddev->raid_disks * 2;
+ err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
+ rbio_pool_free, conf->poolinfo);
+ if (err)
+ goto abort;
+
+ err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
+ if (err)
+ goto abort;
+
+ conf->poolinfo->mddev = mddev;
+
+ err = -EINVAL;
+ spin_lock_init(&conf->device_lock);
+ rdev_for_each(rdev, mddev) {
+ int disk_idx = rdev->raid_disk;
+ if (disk_idx >= mddev->raid_disks
+ || disk_idx < 0)
+ continue;
+ if (test_bit(Replacement, &rdev->flags))
+ disk = conf->mirrors + mddev->raid_disks + disk_idx;
+ else
+ disk = conf->mirrors + disk_idx;
+
+ if (disk->rdev)
+ goto abort;
+ disk->rdev = rdev;
+ disk->head_position = 0;
+ disk->seq_start = MaxSector;
+ }
+ conf->raid_disks = mddev->raid_disks;
+ conf->mddev = mddev;
+ INIT_LIST_HEAD(&conf->retry_list);
+ INIT_LIST_HEAD(&conf->bio_end_io_list);
+
+ spin_lock_init(&conf->resync_lock);
+ init_waitqueue_head(&conf->wait_barrier);
+
+ bio_list_init(&conf->pending_bio_list);
+ conf->recovery_disabled = mddev->recovery_disabled - 1;
+
+ err = -EIO;
+ for (i = 0; i < conf->raid_disks * 2; i++) {
+
+ disk = conf->mirrors + i;
+
+ if (i < conf->raid_disks &&
+ disk[conf->raid_disks].rdev) {
+ /* This slot has a replacement. */
+ if (!disk->rdev) {
+ /* No original, just make the replacement
+ * a recovering spare
+ */
+ disk->rdev =
+ disk[conf->raid_disks].rdev;
+ disk[conf->raid_disks].rdev = NULL;
+ } else if (!test_bit(In_sync, &disk->rdev->flags))
+ /* Original is not in_sync - bad */
+ goto abort;
+ }
+
+ if (!disk->rdev ||
+ !test_bit(In_sync, &disk->rdev->flags)) {
+ disk->head_position = 0;
+ if (disk->rdev &&
+ (disk->rdev->saved_raid_disk < 0))
+ conf->fullsync = 1;
+ }
+ }
+
+ err = -ENOMEM;
+ conf->thread = md_register_thread(raid1d, mddev, "raid1");
+ if (!conf->thread)
+ goto abort;
+
+ return conf;
+
+ abort:
+ if (conf) {
+ mempool_exit(&conf->r1bio_pool);
+ kfree(conf->mirrors);
+ safe_put_page(conf->tmppage);
+ kfree(conf->poolinfo);
+ kfree(conf->nr_pending);
+ kfree(conf->nr_waiting);
+ kfree(conf->nr_queued);
+ kfree(conf->barrier);
+ bioset_exit(&conf->bio_split);
+ kfree(conf);
+ }
+ return ERR_PTR(err);
+}
+
+static void raid1_free(struct mddev *mddev, void *priv);
+static int raid1_run(struct mddev *mddev)
+{
+ struct r1conf *conf;
+ int i;
+ struct md_rdev *rdev;
+ int ret;
+
+ if (mddev->level != 1) {
+ pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
+ mdname(mddev), mddev->level);
+ return -EIO;
+ }
+ if (mddev->reshape_position != MaxSector) {
+ pr_warn("md/raid1:%s: reshape_position set but not supported\n",
+ mdname(mddev));
+ return -EIO;
+ }
+ if (mddev_init_writes_pending(mddev) < 0)
+ return -ENOMEM;
+ /*
+ * copy the already verified devices into our private RAID1
+ * bookkeeping area. [whatever we allocate in run(),
+ * should be freed in raid1_free()]
+ */
+ if (mddev->private == NULL)
+ conf = setup_conf(mddev);
+ else
+ conf = mddev->private;
+
+ if (IS_ERR(conf))
+ return PTR_ERR(conf);
+
+ if (mddev->queue)
+ blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
+
+ rdev_for_each(rdev, mddev) {
+ if (!mddev->gendisk)
+ continue;
+ disk_stack_limits(mddev->gendisk, rdev->bdev,
+ rdev->data_offset << 9);
+ }
+
+ mddev->degraded = 0;
+ for (i = 0; i < conf->raid_disks; i++)
+ if (conf->mirrors[i].rdev == NULL ||
+ !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
+ test_bit(Faulty, &conf->mirrors[i].rdev->flags))
+ mddev->degraded++;
+ /*
+ * RAID1 needs at least one disk in active
+ */
+ if (conf->raid_disks - mddev->degraded < 1) {
+ md_unregister_thread(&conf->thread);
+ ret = -EINVAL;
+ goto abort;
+ }
+
+ if (conf->raid_disks - mddev->degraded == 1)
+ mddev->recovery_cp = MaxSector;
+
+ if (mddev->recovery_cp != MaxSector)
+ pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
+ mdname(mddev));
+ pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
+ mdname(mddev), mddev->raid_disks - mddev->degraded,
+ mddev->raid_disks);
+
+ /*
+ * Ok, everything is just fine now
+ */
+ mddev->thread = conf->thread;
+ conf->thread = NULL;
+ mddev->private = conf;
+ set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
+
+ md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
+
+ ret = md_integrity_register(mddev);
+ if (ret) {
+ md_unregister_thread(&mddev->thread);
+ goto abort;
+ }
+ return 0;
+
+abort:
+ raid1_free(mddev, conf);
+ return ret;
+}
+
+static void raid1_free(struct mddev *mddev, void *priv)
+{
+ struct r1conf *conf = priv;
+
+ mempool_exit(&conf->r1bio_pool);
+ kfree(conf->mirrors);
+ safe_put_page(conf->tmppage);
+ kfree(conf->poolinfo);
+ kfree(conf->nr_pending);
+ kfree(conf->nr_waiting);
+ kfree(conf->nr_queued);
+ kfree(conf->barrier);
+ bioset_exit(&conf->bio_split);
+ kfree(conf);
+}
+
+static int raid1_resize(struct mddev *mddev, sector_t sectors)
+{
+ /* no resync is happening, and there is enough space
+ * on all devices, so we can resize.
+ * We need to make sure resync covers any new space.
+ * If the array is shrinking we should possibly wait until
+ * any io in the removed space completes, but it hardly seems
+ * worth it.
+ */
+ sector_t newsize = raid1_size(mddev, sectors, 0);
+ if (mddev->external_size &&
+ mddev->array_sectors > newsize)
+ return -EINVAL;
+ if (mddev->bitmap) {
+ int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
+ if (ret)
+ return ret;
+ }
+ md_set_array_sectors(mddev, newsize);
+ if (sectors > mddev->dev_sectors &&
+ mddev->recovery_cp > mddev->dev_sectors) {
+ mddev->recovery_cp = mddev->dev_sectors;
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ }
+ mddev->dev_sectors = sectors;
+ mddev->resync_max_sectors = sectors;
+ return 0;
+}
+
+static int raid1_reshape(struct mddev *mddev)
+{
+ /* We need to:
+ * 1/ resize the r1bio_pool
+ * 2/ resize conf->mirrors
+ *
+ * We allocate a new r1bio_pool if we can.
+ * Then raise a device barrier and wait until all IO stops.
+ * Then resize conf->mirrors and swap in the new r1bio pool.
+ *
+ * At the same time, we "pack" the devices so that all the missing
+ * devices have the higher raid_disk numbers.
+ */
+ mempool_t newpool, oldpool;
+ struct pool_info *newpoolinfo;
+ struct raid1_info *newmirrors;
+ struct r1conf *conf = mddev->private;
+ int cnt, raid_disks;
+ unsigned long flags;
+ int d, d2;
+ int ret;
+
+ memset(&newpool, 0, sizeof(newpool));
+ memset(&oldpool, 0, sizeof(oldpool));
+
+ /* Cannot change chunk_size, layout, or level */
+ if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
+ mddev->layout != mddev->new_layout ||
+ mddev->level != mddev->new_level) {
+ mddev->new_chunk_sectors = mddev->chunk_sectors;
+ mddev->new_layout = mddev->layout;
+ mddev->new_level = mddev->level;
+ return -EINVAL;
+ }
+
+ if (!mddev_is_clustered(mddev))
+ md_allow_write(mddev);
+
+ raid_disks = mddev->raid_disks + mddev->delta_disks;
+
+ if (raid_disks < conf->raid_disks) {
+ cnt=0;
+ for (d= 0; d < conf->raid_disks; d++)
+ if (conf->mirrors[d].rdev)
+ cnt++;
+ if (cnt > raid_disks)
+ return -EBUSY;
+ }
+
+ newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
+ if (!newpoolinfo)
+ return -ENOMEM;
+ newpoolinfo->mddev = mddev;
+ newpoolinfo->raid_disks = raid_disks * 2;
+
+ ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
+ rbio_pool_free, newpoolinfo);
+ if (ret) {
+ kfree(newpoolinfo);
+ return ret;
+ }
+ newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
+ raid_disks, 2),
+ GFP_KERNEL);
+ if (!newmirrors) {
+ kfree(newpoolinfo);
+ mempool_exit(&newpool);
+ return -ENOMEM;
+ }
+
+ freeze_array(conf, 0);
+
+ /* ok, everything is stopped */
+ oldpool = conf->r1bio_pool;
+ conf->r1bio_pool = newpool;
+
+ for (d = d2 = 0; d < conf->raid_disks; d++) {
+ struct md_rdev *rdev = conf->mirrors[d].rdev;
+ if (rdev && rdev->raid_disk != d2) {
+ sysfs_unlink_rdev(mddev, rdev);
+ rdev->raid_disk = d2;
+ sysfs_unlink_rdev(mddev, rdev);
+ if (sysfs_link_rdev(mddev, rdev))
+ pr_warn("md/raid1:%s: cannot register rd%d\n",
+ mdname(mddev), rdev->raid_disk);
+ }
+ if (rdev)
+ newmirrors[d2++].rdev = rdev;
+ }
+ kfree(conf->mirrors);
+ conf->mirrors = newmirrors;
+ kfree(conf->poolinfo);
+ conf->poolinfo = newpoolinfo;
+
+ spin_lock_irqsave(&conf->device_lock, flags);
+ mddev->degraded += (raid_disks - conf->raid_disks);
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ conf->raid_disks = mddev->raid_disks = raid_disks;
+ mddev->delta_disks = 0;
+
+ unfreeze_array(conf);
+
+ set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ md_wakeup_thread(mddev->thread);
+
+ mempool_exit(&oldpool);
+ return 0;
+}
+
+static void raid1_quiesce(struct mddev *mddev, int quiesce)
+{
+ struct r1conf *conf = mddev->private;
+
+ if (quiesce)
+ freeze_array(conf, 0);
+ else
+ unfreeze_array(conf);
+}
+
+static void *raid1_takeover(struct mddev *mddev)
+{
+ /* raid1 can take over:
+ * raid5 with 2 devices, any layout or chunk size
+ */
+ if (mddev->level == 5 && mddev->raid_disks == 2) {
+ struct r1conf *conf;
+ mddev->new_level = 1;
+ mddev->new_layout = 0;
+ mddev->new_chunk_sectors = 0;
+ conf = setup_conf(mddev);
+ if (!IS_ERR(conf)) {
+ /* Array must appear to be quiesced */
+ conf->array_frozen = 1;
+ mddev_clear_unsupported_flags(mddev,
+ UNSUPPORTED_MDDEV_FLAGS);
+ }
+ return conf;
+ }
+ return ERR_PTR(-EINVAL);
+}
+
+static struct md_personality raid1_personality =
+{
+ .name = "raid1",
+ .level = 1,
+ .owner = THIS_MODULE,
+ .make_request = raid1_make_request,
+ .run = raid1_run,
+ .free = raid1_free,
+ .status = raid1_status,
+ .error_handler = raid1_error,
+ .hot_add_disk = raid1_add_disk,
+ .hot_remove_disk= raid1_remove_disk,
+ .spare_active = raid1_spare_active,
+ .sync_request = raid1_sync_request,
+ .resize = raid1_resize,
+ .size = raid1_size,
+ .check_reshape = raid1_reshape,
+ .quiesce = raid1_quiesce,
+ .takeover = raid1_takeover,
+};
+
+static int __init raid_init(void)
+{
+ return register_md_personality(&raid1_personality);
+}
+
+static void raid_exit(void)
+{
+ unregister_md_personality(&raid1_personality);
+}
+
+module_init(raid_init);
+module_exit(raid_exit);
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
+MODULE_ALIAS("md-personality-3"); /* RAID1 */
+MODULE_ALIAS("md-raid1");
+MODULE_ALIAS("md-level-1");
diff --git a/drivers/md/raid1.h b/drivers/md/raid1.h
new file mode 100644
index 000000000..ebb678882
--- /dev/null
+++ b/drivers/md/raid1.h
@@ -0,0 +1,218 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _RAID1_H
+#define _RAID1_H
+
+/*
+ * each barrier unit size is 64MB fow now
+ * note: it must be larger than RESYNC_DEPTH
+ */
+#define BARRIER_UNIT_SECTOR_BITS 17
+#define BARRIER_UNIT_SECTOR_SIZE (1<<17)
+/*
+ * In struct r1conf, the following members are related to I/O barrier
+ * buckets,
+ * atomic_t *nr_pending;
+ * atomic_t *nr_waiting;
+ * atomic_t *nr_queued;
+ * atomic_t *barrier;
+ * Each of them points to array of atomic_t variables, each array is
+ * designed to have BARRIER_BUCKETS_NR elements and occupy a single
+ * memory page. The data width of atomic_t variables is 4 bytes, equal
+ * to 1<<(ilog2(sizeof(atomic_t))), BARRIER_BUCKETS_NR_BITS is defined
+ * as (PAGE_SHIFT - ilog2(sizeof(int))) to make sure an array of
+ * atomic_t variables with BARRIER_BUCKETS_NR elements just exactly
+ * occupies a single memory page.
+ */
+#define BARRIER_BUCKETS_NR_BITS (PAGE_SHIFT - ilog2(sizeof(atomic_t)))
+#define BARRIER_BUCKETS_NR (1<<BARRIER_BUCKETS_NR_BITS)
+
+/* Note: raid1_info.rdev can be set to NULL asynchronously by raid1_remove_disk.
+ * There are three safe ways to access raid1_info.rdev.
+ * 1/ when holding mddev->reconfig_mutex
+ * 2/ when resync/recovery is known to be happening - i.e. in code that is
+ * called as part of performing resync/recovery.
+ * 3/ while holding rcu_read_lock(), use rcu_dereference to get the pointer
+ * and if it is non-NULL, increment rdev->nr_pending before dropping the
+ * RCU lock.
+ * When .rdev is set to NULL, the nr_pending count checked again and if it has
+ * been incremented, the pointer is put back in .rdev.
+ */
+
+struct raid1_info {
+ struct md_rdev *rdev;
+ sector_t head_position;
+
+ /* When choose the best device for a read (read_balance())
+ * we try to keep sequential reads one the same device
+ */
+ sector_t next_seq_sect;
+ sector_t seq_start;
+};
+
+/*
+ * memory pools need a pointer to the mddev, so they can force an unplug
+ * when memory is tight, and a count of the number of drives that the
+ * pool was allocated for, so they know how much to allocate and free.
+ * mddev->raid_disks cannot be used, as it can change while a pool is active
+ * These two datums are stored in a kmalloced struct.
+ * The 'raid_disks' here is twice the raid_disks in r1conf.
+ * This allows space for each 'real' device can have a replacement in the
+ * second half of the array.
+ */
+
+struct pool_info {
+ struct mddev *mddev;
+ int raid_disks;
+};
+
+struct r1conf {
+ struct mddev *mddev;
+ struct raid1_info *mirrors; /* twice 'raid_disks' to
+ * allow for replacements.
+ */
+ int raid_disks;
+
+ spinlock_t device_lock;
+
+ /* list of 'struct r1bio' that need to be processed by raid1d,
+ * whether to retry a read, writeout a resync or recovery
+ * block, or anything else.
+ */
+ struct list_head retry_list;
+ /* A separate list of r1bio which just need raid_end_bio_io called.
+ * This mustn't happen for writes which had any errors if the superblock
+ * needs to be written.
+ */
+ struct list_head bio_end_io_list;
+
+ /* queue pending writes to be submitted on unplug */
+ struct bio_list pending_bio_list;
+
+ /* for use when syncing mirrors:
+ * We don't allow both normal IO and resync/recovery IO at
+ * the same time - resync/recovery can only happen when there
+ * is no other IO. So when either is active, the other has to wait.
+ * See more details description in raid1.c near raise_barrier().
+ */
+ wait_queue_head_t wait_barrier;
+ spinlock_t resync_lock;
+ atomic_t nr_sync_pending;
+ atomic_t *nr_pending;
+ atomic_t *nr_waiting;
+ atomic_t *nr_queued;
+ atomic_t *barrier;
+ int array_frozen;
+
+ /* Set to 1 if a full sync is needed, (fresh device added).
+ * Cleared when a sync completes.
+ */
+ int fullsync;
+
+ /* When the same as mddev->recovery_disabled we don't allow
+ * recovery to be attempted as we expect a read error.
+ */
+ int recovery_disabled;
+
+ /* poolinfo contains information about the content of the
+ * mempools - it changes when the array grows or shrinks
+ */
+ struct pool_info *poolinfo;
+ mempool_t r1bio_pool;
+ mempool_t r1buf_pool;
+
+ struct bio_set bio_split;
+
+ /* temporary buffer to synchronous IO when attempting to repair
+ * a read error.
+ */
+ struct page *tmppage;
+
+ /* When taking over an array from a different personality, we store
+ * the new thread here until we fully activate the array.
+ */
+ struct md_thread *thread;
+
+ /* Keep track of cluster resync window to send to other
+ * nodes.
+ */
+ sector_t cluster_sync_low;
+ sector_t cluster_sync_high;
+
+};
+
+/*
+ * this is our 'private' RAID1 bio.
+ *
+ * it contains information about what kind of IO operations were started
+ * for this RAID1 operation, and about their status:
+ */
+
+struct r1bio {
+ atomic_t remaining; /* 'have we finished' count,
+ * used from IRQ handlers
+ */
+ atomic_t behind_remaining; /* number of write-behind ios remaining
+ * in this BehindIO request
+ */
+ sector_t sector;
+ int sectors;
+ unsigned long state;
+ unsigned long start_time;
+ struct mddev *mddev;
+ /*
+ * original bio going to /dev/mdx
+ */
+ struct bio *master_bio;
+ /*
+ * if the IO is in READ direction, then this is where we read
+ */
+ int read_disk;
+
+ struct list_head retry_list;
+
+ /*
+ * When R1BIO_BehindIO is set, we store pages for write behind
+ * in behind_master_bio.
+ */
+ struct bio *behind_master_bio;
+
+ /*
+ * if the IO is in WRITE direction, then multiple bios are used.
+ * We choose the number when they are allocated.
+ */
+ struct bio *bios[];
+ /* DO NOT PUT ANY NEW FIELDS HERE - bios array is contiguously alloced*/
+};
+
+/* bits for r1bio.state */
+enum r1bio_state {
+ R1BIO_Uptodate,
+ R1BIO_IsSync,
+ R1BIO_Degraded,
+ R1BIO_BehindIO,
+/* Set ReadError on bios that experience a readerror so that
+ * raid1d knows what to do with them.
+ */
+ R1BIO_ReadError,
+/* For write-behind requests, we call bi_end_io when
+ * the last non-write-behind device completes, providing
+ * any write was successful. Otherwise we call when
+ * any write-behind write succeeds, otherwise we call
+ * with failure when last write completes (and all failed).
+ * Record that bi_end_io was called with this flag...
+ */
+ R1BIO_Returned,
+/* If a write for this request means we can clear some
+ * known-bad-block records, we set this flag
+ */
+ R1BIO_MadeGood,
+ R1BIO_WriteError,
+ R1BIO_FailFast,
+};
+
+static inline int sector_to_idx(sector_t sector)
+{
+ return hash_long(sector >> BARRIER_UNIT_SECTOR_BITS,
+ BARRIER_BUCKETS_NR_BITS);
+}
+#endif
diff --git a/drivers/md/raid10.c b/drivers/md/raid10.c
new file mode 100644
index 000000000..7b318e7e8
--- /dev/null
+++ b/drivers/md/raid10.c
@@ -0,0 +1,5290 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * raid10.c : Multiple Devices driver for Linux
+ *
+ * Copyright (C) 2000-2004 Neil Brown
+ *
+ * RAID-10 support for md.
+ *
+ * Base on code in raid1.c. See raid1.c for further copyright information.
+ */
+
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/blkdev.h>
+#include <linux/module.h>
+#include <linux/seq_file.h>
+#include <linux/ratelimit.h>
+#include <linux/kthread.h>
+#include <linux/raid/md_p.h>
+#include <trace/events/block.h>
+#include "md.h"
+#include "raid10.h"
+#include "raid0.h"
+#include "md-bitmap.h"
+
+/*
+ * RAID10 provides a combination of RAID0 and RAID1 functionality.
+ * The layout of data is defined by
+ * chunk_size
+ * raid_disks
+ * near_copies (stored in low byte of layout)
+ * far_copies (stored in second byte of layout)
+ * far_offset (stored in bit 16 of layout )
+ * use_far_sets (stored in bit 17 of layout )
+ * use_far_sets_bugfixed (stored in bit 18 of layout )
+ *
+ * The data to be stored is divided into chunks using chunksize. Each device
+ * is divided into far_copies sections. In each section, chunks are laid out
+ * in a style similar to raid0, but near_copies copies of each chunk is stored
+ * (each on a different drive). The starting device for each section is offset
+ * near_copies from the starting device of the previous section. Thus there
+ * are (near_copies * far_copies) of each chunk, and each is on a different
+ * drive. near_copies and far_copies must be at least one, and their product
+ * is at most raid_disks.
+ *
+ * If far_offset is true, then the far_copies are handled a bit differently.
+ * The copies are still in different stripes, but instead of being very far
+ * apart on disk, there are adjacent stripes.
+ *
+ * The far and offset algorithms are handled slightly differently if
+ * 'use_far_sets' is true. In this case, the array's devices are grouped into
+ * sets that are (near_copies * far_copies) in size. The far copied stripes
+ * are still shifted by 'near_copies' devices, but this shifting stays confined
+ * to the set rather than the entire array. This is done to improve the number
+ * of device combinations that can fail without causing the array to fail.
+ * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
+ * on a device):
+ * A B C D A B C D E
+ * ... ...
+ * D A B C E A B C D
+ * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
+ * [A B] [C D] [A B] [C D E]
+ * |...| |...| |...| | ... |
+ * [B A] [D C] [B A] [E C D]
+ */
+
+static void allow_barrier(struct r10conf *conf);
+static void lower_barrier(struct r10conf *conf);
+static int _enough(struct r10conf *conf, int previous, int ignore);
+static int enough(struct r10conf *conf, int ignore);
+static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
+ int *skipped);
+static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
+static void end_reshape_write(struct bio *bio);
+static void end_reshape(struct r10conf *conf);
+
+#define raid10_log(md, fmt, args...) \
+ do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
+
+#include "raid1-10.c"
+
+#define NULL_CMD
+#define cmd_before(conf, cmd) \
+ do { \
+ write_sequnlock_irq(&(conf)->resync_lock); \
+ cmd; \
+ } while (0)
+#define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
+
+#define wait_event_barrier_cmd(conf, cond, cmd) \
+ wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
+ cmd_after(conf))
+
+#define wait_event_barrier(conf, cond) \
+ wait_event_barrier_cmd(conf, cond, NULL_CMD)
+
+/*
+ * for resync bio, r10bio pointer can be retrieved from the per-bio
+ * 'struct resync_pages'.
+ */
+static inline struct r10bio *get_resync_r10bio(struct bio *bio)
+{
+ return get_resync_pages(bio)->raid_bio;
+}
+
+static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
+{
+ struct r10conf *conf = data;
+ int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
+
+ /* allocate a r10bio with room for raid_disks entries in the
+ * bios array */
+ return kzalloc(size, gfp_flags);
+}
+
+#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
+/* amount of memory to reserve for resync requests */
+#define RESYNC_WINDOW (1024*1024)
+/* maximum number of concurrent requests, memory permitting */
+#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
+#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
+#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
+
+/*
+ * When performing a resync, we need to read and compare, so
+ * we need as many pages are there are copies.
+ * When performing a recovery, we need 2 bios, one for read,
+ * one for write (we recover only one drive per r10buf)
+ *
+ */
+static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
+{
+ struct r10conf *conf = data;
+ struct r10bio *r10_bio;
+ struct bio *bio;
+ int j;
+ int nalloc, nalloc_rp;
+ struct resync_pages *rps;
+
+ r10_bio = r10bio_pool_alloc(gfp_flags, conf);
+ if (!r10_bio)
+ return NULL;
+
+ if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
+ test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
+ nalloc = conf->copies; /* resync */
+ else
+ nalloc = 2; /* recovery */
+
+ /* allocate once for all bios */
+ if (!conf->have_replacement)
+ nalloc_rp = nalloc;
+ else
+ nalloc_rp = nalloc * 2;
+ rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
+ if (!rps)
+ goto out_free_r10bio;
+
+ /*
+ * Allocate bios.
+ */
+ for (j = nalloc ; j-- ; ) {
+ bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
+ if (!bio)
+ goto out_free_bio;
+ bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
+ r10_bio->devs[j].bio = bio;
+ if (!conf->have_replacement)
+ continue;
+ bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
+ if (!bio)
+ goto out_free_bio;
+ bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
+ r10_bio->devs[j].repl_bio = bio;
+ }
+ /*
+ * Allocate RESYNC_PAGES data pages and attach them
+ * where needed.
+ */
+ for (j = 0; j < nalloc; j++) {
+ struct bio *rbio = r10_bio->devs[j].repl_bio;
+ struct resync_pages *rp, *rp_repl;
+
+ rp = &rps[j];
+ if (rbio)
+ rp_repl = &rps[nalloc + j];
+
+ bio = r10_bio->devs[j].bio;
+
+ if (!j || test_bit(MD_RECOVERY_SYNC,
+ &conf->mddev->recovery)) {
+ if (resync_alloc_pages(rp, gfp_flags))
+ goto out_free_pages;
+ } else {
+ memcpy(rp, &rps[0], sizeof(*rp));
+ resync_get_all_pages(rp);
+ }
+
+ rp->raid_bio = r10_bio;
+ bio->bi_private = rp;
+ if (rbio) {
+ memcpy(rp_repl, rp, sizeof(*rp));
+ rbio->bi_private = rp_repl;
+ }
+ }
+
+ return r10_bio;
+
+out_free_pages:
+ while (--j >= 0)
+ resync_free_pages(&rps[j]);
+
+ j = 0;
+out_free_bio:
+ for ( ; j < nalloc; j++) {
+ if (r10_bio->devs[j].bio)
+ bio_uninit(r10_bio->devs[j].bio);
+ kfree(r10_bio->devs[j].bio);
+ if (r10_bio->devs[j].repl_bio)
+ bio_uninit(r10_bio->devs[j].repl_bio);
+ kfree(r10_bio->devs[j].repl_bio);
+ }
+ kfree(rps);
+out_free_r10bio:
+ rbio_pool_free(r10_bio, conf);
+ return NULL;
+}
+
+static void r10buf_pool_free(void *__r10_bio, void *data)
+{
+ struct r10conf *conf = data;
+ struct r10bio *r10bio = __r10_bio;
+ int j;
+ struct resync_pages *rp = NULL;
+
+ for (j = conf->copies; j--; ) {
+ struct bio *bio = r10bio->devs[j].bio;
+
+ if (bio) {
+ rp = get_resync_pages(bio);
+ resync_free_pages(rp);
+ bio_uninit(bio);
+ kfree(bio);
+ }
+
+ bio = r10bio->devs[j].repl_bio;
+ if (bio) {
+ bio_uninit(bio);
+ kfree(bio);
+ }
+ }
+
+ /* resync pages array stored in the 1st bio's .bi_private */
+ kfree(rp);
+
+ rbio_pool_free(r10bio, conf);
+}
+
+static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
+{
+ int i;
+
+ for (i = 0; i < conf->geo.raid_disks; i++) {
+ struct bio **bio = & r10_bio->devs[i].bio;
+ if (!BIO_SPECIAL(*bio))
+ bio_put(*bio);
+ *bio = NULL;
+ bio = &r10_bio->devs[i].repl_bio;
+ if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
+ bio_put(*bio);
+ *bio = NULL;
+ }
+}
+
+static void free_r10bio(struct r10bio *r10_bio)
+{
+ struct r10conf *conf = r10_bio->mddev->private;
+
+ put_all_bios(conf, r10_bio);
+ mempool_free(r10_bio, &conf->r10bio_pool);
+}
+
+static void put_buf(struct r10bio *r10_bio)
+{
+ struct r10conf *conf = r10_bio->mddev->private;
+
+ mempool_free(r10_bio, &conf->r10buf_pool);
+
+ lower_barrier(conf);
+}
+
+static void wake_up_barrier(struct r10conf *conf)
+{
+ if (wq_has_sleeper(&conf->wait_barrier))
+ wake_up(&conf->wait_barrier);
+}
+
+static void reschedule_retry(struct r10bio *r10_bio)
+{
+ unsigned long flags;
+ struct mddev *mddev = r10_bio->mddev;
+ struct r10conf *conf = mddev->private;
+
+ spin_lock_irqsave(&conf->device_lock, flags);
+ list_add(&r10_bio->retry_list, &conf->retry_list);
+ conf->nr_queued ++;
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+
+ /* wake up frozen array... */
+ wake_up(&conf->wait_barrier);
+
+ md_wakeup_thread(mddev->thread);
+}
+
+/*
+ * raid_end_bio_io() is called when we have finished servicing a mirrored
+ * operation and are ready to return a success/failure code to the buffer
+ * cache layer.
+ */
+static void raid_end_bio_io(struct r10bio *r10_bio)
+{
+ struct bio *bio = r10_bio->master_bio;
+ struct r10conf *conf = r10_bio->mddev->private;
+
+ if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
+ bio->bi_status = BLK_STS_IOERR;
+
+ if (r10_bio->start_time)
+ bio_end_io_acct(bio, r10_bio->start_time);
+ bio_endio(bio);
+ /*
+ * Wake up any possible resync thread that waits for the device
+ * to go idle.
+ */
+ allow_barrier(conf);
+
+ free_r10bio(r10_bio);
+}
+
+/*
+ * Update disk head position estimator based on IRQ completion info.
+ */
+static inline void update_head_pos(int slot, struct r10bio *r10_bio)
+{
+ struct r10conf *conf = r10_bio->mddev->private;
+
+ conf->mirrors[r10_bio->devs[slot].devnum].head_position =
+ r10_bio->devs[slot].addr + (r10_bio->sectors);
+}
+
+/*
+ * Find the disk number which triggered given bio
+ */
+static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
+ struct bio *bio, int *slotp, int *replp)
+{
+ int slot;
+ int repl = 0;
+
+ for (slot = 0; slot < conf->geo.raid_disks; slot++) {
+ if (r10_bio->devs[slot].bio == bio)
+ break;
+ if (r10_bio->devs[slot].repl_bio == bio) {
+ repl = 1;
+ break;
+ }
+ }
+
+ update_head_pos(slot, r10_bio);
+
+ if (slotp)
+ *slotp = slot;
+ if (replp)
+ *replp = repl;
+ return r10_bio->devs[slot].devnum;
+}
+
+static void raid10_end_read_request(struct bio *bio)
+{
+ int uptodate = !bio->bi_status;
+ struct r10bio *r10_bio = bio->bi_private;
+ int slot;
+ struct md_rdev *rdev;
+ struct r10conf *conf = r10_bio->mddev->private;
+
+ slot = r10_bio->read_slot;
+ rdev = r10_bio->devs[slot].rdev;
+ /*
+ * this branch is our 'one mirror IO has finished' event handler:
+ */
+ update_head_pos(slot, r10_bio);
+
+ if (uptodate) {
+ /*
+ * Set R10BIO_Uptodate in our master bio, so that
+ * we will return a good error code to the higher
+ * levels even if IO on some other mirrored buffer fails.
+ *
+ * The 'master' represents the composite IO operation to
+ * user-side. So if something waits for IO, then it will
+ * wait for the 'master' bio.
+ */
+ set_bit(R10BIO_Uptodate, &r10_bio->state);
+ } else {
+ /* If all other devices that store this block have
+ * failed, we want to return the error upwards rather
+ * than fail the last device. Here we redefine
+ * "uptodate" to mean "Don't want to retry"
+ */
+ if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
+ rdev->raid_disk))
+ uptodate = 1;
+ }
+ if (uptodate) {
+ raid_end_bio_io(r10_bio);
+ rdev_dec_pending(rdev, conf->mddev);
+ } else {
+ /*
+ * oops, read error - keep the refcount on the rdev
+ */
+ pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
+ mdname(conf->mddev),
+ rdev->bdev,
+ (unsigned long long)r10_bio->sector);
+ set_bit(R10BIO_ReadError, &r10_bio->state);
+ reschedule_retry(r10_bio);
+ }
+}
+
+static void close_write(struct r10bio *r10_bio)
+{
+ /* clear the bitmap if all writes complete successfully */
+ md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
+ r10_bio->sectors,
+ !test_bit(R10BIO_Degraded, &r10_bio->state),
+ 0);
+ md_write_end(r10_bio->mddev);
+}
+
+static void one_write_done(struct r10bio *r10_bio)
+{
+ if (atomic_dec_and_test(&r10_bio->remaining)) {
+ if (test_bit(R10BIO_WriteError, &r10_bio->state))
+ reschedule_retry(r10_bio);
+ else {
+ close_write(r10_bio);
+ if (test_bit(R10BIO_MadeGood, &r10_bio->state))
+ reschedule_retry(r10_bio);
+ else
+ raid_end_bio_io(r10_bio);
+ }
+ }
+}
+
+static void raid10_end_write_request(struct bio *bio)
+{
+ struct r10bio *r10_bio = bio->bi_private;
+ int dev;
+ int dec_rdev = 1;
+ struct r10conf *conf = r10_bio->mddev->private;
+ int slot, repl;
+ struct md_rdev *rdev = NULL;
+ struct bio *to_put = NULL;
+ bool discard_error;
+
+ discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
+
+ dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
+
+ if (repl)
+ rdev = conf->mirrors[dev].replacement;
+ if (!rdev) {
+ smp_rmb();
+ repl = 0;
+ rdev = conf->mirrors[dev].rdev;
+ }
+ /*
+ * this branch is our 'one mirror IO has finished' event handler:
+ */
+ if (bio->bi_status && !discard_error) {
+ if (repl)
+ /* Never record new bad blocks to replacement,
+ * just fail it.
+ */
+ md_error(rdev->mddev, rdev);
+ else {
+ set_bit(WriteErrorSeen, &rdev->flags);
+ if (!test_and_set_bit(WantReplacement, &rdev->flags))
+ set_bit(MD_RECOVERY_NEEDED,
+ &rdev->mddev->recovery);
+
+ dec_rdev = 0;
+ if (test_bit(FailFast, &rdev->flags) &&
+ (bio->bi_opf & MD_FAILFAST)) {
+ md_error(rdev->mddev, rdev);
+ }
+
+ /*
+ * When the device is faulty, it is not necessary to
+ * handle write error.
+ */
+ if (!test_bit(Faulty, &rdev->flags))
+ set_bit(R10BIO_WriteError, &r10_bio->state);
+ else {
+ /* Fail the request */
+ set_bit(R10BIO_Degraded, &r10_bio->state);
+ r10_bio->devs[slot].bio = NULL;
+ to_put = bio;
+ dec_rdev = 1;
+ }
+ }
+ } else {
+ /*
+ * Set R10BIO_Uptodate in our master bio, so that
+ * we will return a good error code for to the higher
+ * levels even if IO on some other mirrored buffer fails.
+ *
+ * The 'master' represents the composite IO operation to
+ * user-side. So if something waits for IO, then it will
+ * wait for the 'master' bio.
+ */
+ sector_t first_bad;
+ int bad_sectors;
+
+ /*
+ * Do not set R10BIO_Uptodate if the current device is
+ * rebuilding or Faulty. This is because we cannot use
+ * such device for properly reading the data back (we could
+ * potentially use it, if the current write would have felt
+ * before rdev->recovery_offset, but for simplicity we don't
+ * check this here.
+ */
+ if (test_bit(In_sync, &rdev->flags) &&
+ !test_bit(Faulty, &rdev->flags))
+ set_bit(R10BIO_Uptodate, &r10_bio->state);
+
+ /* Maybe we can clear some bad blocks. */
+ if (is_badblock(rdev,
+ r10_bio->devs[slot].addr,
+ r10_bio->sectors,
+ &first_bad, &bad_sectors) && !discard_error) {
+ bio_put(bio);
+ if (repl)
+ r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
+ else
+ r10_bio->devs[slot].bio = IO_MADE_GOOD;
+ dec_rdev = 0;
+ set_bit(R10BIO_MadeGood, &r10_bio->state);
+ }
+ }
+
+ /*
+ *
+ * Let's see if all mirrored write operations have finished
+ * already.
+ */
+ one_write_done(r10_bio);
+ if (dec_rdev)
+ rdev_dec_pending(rdev, conf->mddev);
+ if (to_put)
+ bio_put(to_put);
+}
+
+/*
+ * RAID10 layout manager
+ * As well as the chunksize and raid_disks count, there are two
+ * parameters: near_copies and far_copies.
+ * near_copies * far_copies must be <= raid_disks.
+ * Normally one of these will be 1.
+ * If both are 1, we get raid0.
+ * If near_copies == raid_disks, we get raid1.
+ *
+ * Chunks are laid out in raid0 style with near_copies copies of the
+ * first chunk, followed by near_copies copies of the next chunk and
+ * so on.
+ * If far_copies > 1, then after 1/far_copies of the array has been assigned
+ * as described above, we start again with a device offset of near_copies.
+ * So we effectively have another copy of the whole array further down all
+ * the drives, but with blocks on different drives.
+ * With this layout, and block is never stored twice on the one device.
+ *
+ * raid10_find_phys finds the sector offset of a given virtual sector
+ * on each device that it is on.
+ *
+ * raid10_find_virt does the reverse mapping, from a device and a
+ * sector offset to a virtual address
+ */
+
+static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
+{
+ int n,f;
+ sector_t sector;
+ sector_t chunk;
+ sector_t stripe;
+ int dev;
+ int slot = 0;
+ int last_far_set_start, last_far_set_size;
+
+ last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
+ last_far_set_start *= geo->far_set_size;
+
+ last_far_set_size = geo->far_set_size;
+ last_far_set_size += (geo->raid_disks % geo->far_set_size);
+
+ /* now calculate first sector/dev */
+ chunk = r10bio->sector >> geo->chunk_shift;
+ sector = r10bio->sector & geo->chunk_mask;
+
+ chunk *= geo->near_copies;
+ stripe = chunk;
+ dev = sector_div(stripe, geo->raid_disks);
+ if (geo->far_offset)
+ stripe *= geo->far_copies;
+
+ sector += stripe << geo->chunk_shift;
+
+ /* and calculate all the others */
+ for (n = 0; n < geo->near_copies; n++) {
+ int d = dev;
+ int set;
+ sector_t s = sector;
+ r10bio->devs[slot].devnum = d;
+ r10bio->devs[slot].addr = s;
+ slot++;
+
+ for (f = 1; f < geo->far_copies; f++) {
+ set = d / geo->far_set_size;
+ d += geo->near_copies;
+
+ if ((geo->raid_disks % geo->far_set_size) &&
+ (d > last_far_set_start)) {
+ d -= last_far_set_start;
+ d %= last_far_set_size;
+ d += last_far_set_start;
+ } else {
+ d %= geo->far_set_size;
+ d += geo->far_set_size * set;
+ }
+ s += geo->stride;
+ r10bio->devs[slot].devnum = d;
+ r10bio->devs[slot].addr = s;
+ slot++;
+ }
+ dev++;
+ if (dev >= geo->raid_disks) {
+ dev = 0;
+ sector += (geo->chunk_mask + 1);
+ }
+ }
+}
+
+static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
+{
+ struct geom *geo = &conf->geo;
+
+ if (conf->reshape_progress != MaxSector &&
+ ((r10bio->sector >= conf->reshape_progress) !=
+ conf->mddev->reshape_backwards)) {
+ set_bit(R10BIO_Previous, &r10bio->state);
+ geo = &conf->prev;
+ } else
+ clear_bit(R10BIO_Previous, &r10bio->state);
+
+ __raid10_find_phys(geo, r10bio);
+}
+
+static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
+{
+ sector_t offset, chunk, vchunk;
+ /* Never use conf->prev as this is only called during resync
+ * or recovery, so reshape isn't happening
+ */
+ struct geom *geo = &conf->geo;
+ int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
+ int far_set_size = geo->far_set_size;
+ int last_far_set_start;
+
+ if (geo->raid_disks % geo->far_set_size) {
+ last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
+ last_far_set_start *= geo->far_set_size;
+
+ if (dev >= last_far_set_start) {
+ far_set_size = geo->far_set_size;
+ far_set_size += (geo->raid_disks % geo->far_set_size);
+ far_set_start = last_far_set_start;
+ }
+ }
+
+ offset = sector & geo->chunk_mask;
+ if (geo->far_offset) {
+ int fc;
+ chunk = sector >> geo->chunk_shift;
+ fc = sector_div(chunk, geo->far_copies);
+ dev -= fc * geo->near_copies;
+ if (dev < far_set_start)
+ dev += far_set_size;
+ } else {
+ while (sector >= geo->stride) {
+ sector -= geo->stride;
+ if (dev < (geo->near_copies + far_set_start))
+ dev += far_set_size - geo->near_copies;
+ else
+ dev -= geo->near_copies;
+ }
+ chunk = sector >> geo->chunk_shift;
+ }
+ vchunk = chunk * geo->raid_disks + dev;
+ sector_div(vchunk, geo->near_copies);
+ return (vchunk << geo->chunk_shift) + offset;
+}
+
+/*
+ * This routine returns the disk from which the requested read should
+ * be done. There is a per-array 'next expected sequential IO' sector
+ * number - if this matches on the next IO then we use the last disk.
+ * There is also a per-disk 'last know head position' sector that is
+ * maintained from IRQ contexts, both the normal and the resync IO
+ * completion handlers update this position correctly. If there is no
+ * perfect sequential match then we pick the disk whose head is closest.
+ *
+ * If there are 2 mirrors in the same 2 devices, performance degrades
+ * because position is mirror, not device based.
+ *
+ * The rdev for the device selected will have nr_pending incremented.
+ */
+
+/*
+ * FIXME: possibly should rethink readbalancing and do it differently
+ * depending on near_copies / far_copies geometry.
+ */
+static struct md_rdev *read_balance(struct r10conf *conf,
+ struct r10bio *r10_bio,
+ int *max_sectors)
+{
+ const sector_t this_sector = r10_bio->sector;
+ int disk, slot;
+ int sectors = r10_bio->sectors;
+ int best_good_sectors;
+ sector_t new_distance, best_dist;
+ struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
+ int do_balance;
+ int best_dist_slot, best_pending_slot;
+ bool has_nonrot_disk = false;
+ unsigned int min_pending;
+ struct geom *geo = &conf->geo;
+
+ raid10_find_phys(conf, r10_bio);
+ rcu_read_lock();
+ best_dist_slot = -1;
+ min_pending = UINT_MAX;
+ best_dist_rdev = NULL;
+ best_pending_rdev = NULL;
+ best_dist = MaxSector;
+ best_good_sectors = 0;
+ do_balance = 1;
+ clear_bit(R10BIO_FailFast, &r10_bio->state);
+ /*
+ * Check if we can balance. We can balance on the whole
+ * device if no resync is going on (recovery is ok), or below
+ * the resync window. We take the first readable disk when
+ * above the resync window.
+ */
+ if ((conf->mddev->recovery_cp < MaxSector
+ && (this_sector + sectors >= conf->next_resync)) ||
+ (mddev_is_clustered(conf->mddev) &&
+ md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
+ this_sector + sectors)))
+ do_balance = 0;
+
+ for (slot = 0; slot < conf->copies ; slot++) {
+ sector_t first_bad;
+ int bad_sectors;
+ sector_t dev_sector;
+ unsigned int pending;
+ bool nonrot;
+
+ if (r10_bio->devs[slot].bio == IO_BLOCKED)
+ continue;
+ disk = r10_bio->devs[slot].devnum;
+ rdev = rcu_dereference(conf->mirrors[disk].replacement);
+ if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
+ r10_bio->devs[slot].addr + sectors >
+ rdev->recovery_offset) {
+ /*
+ * Read replacement first to prevent reading both rdev
+ * and replacement as NULL during replacement replace
+ * rdev.
+ */
+ smp_mb();
+ rdev = rcu_dereference(conf->mirrors[disk].rdev);
+ }
+ if (rdev == NULL ||
+ test_bit(Faulty, &rdev->flags))
+ continue;
+ if (!test_bit(In_sync, &rdev->flags) &&
+ r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
+ continue;
+
+ dev_sector = r10_bio->devs[slot].addr;
+ if (is_badblock(rdev, dev_sector, sectors,
+ &first_bad, &bad_sectors)) {
+ if (best_dist < MaxSector)
+ /* Already have a better slot */
+ continue;
+ if (first_bad <= dev_sector) {
+ /* Cannot read here. If this is the
+ * 'primary' device, then we must not read
+ * beyond 'bad_sectors' from another device.
+ */
+ bad_sectors -= (dev_sector - first_bad);
+ if (!do_balance && sectors > bad_sectors)
+ sectors = bad_sectors;
+ if (best_good_sectors > sectors)
+ best_good_sectors = sectors;
+ } else {
+ sector_t good_sectors =
+ first_bad - dev_sector;
+ if (good_sectors > best_good_sectors) {
+ best_good_sectors = good_sectors;
+ best_dist_slot = slot;
+ best_dist_rdev = rdev;
+ }
+ if (!do_balance)
+ /* Must read from here */
+ break;
+ }
+ continue;
+ } else
+ best_good_sectors = sectors;
+
+ if (!do_balance)
+ break;
+
+ nonrot = bdev_nonrot(rdev->bdev);
+ has_nonrot_disk |= nonrot;
+ pending = atomic_read(&rdev->nr_pending);
+ if (min_pending > pending && nonrot) {
+ min_pending = pending;
+ best_pending_slot = slot;
+ best_pending_rdev = rdev;
+ }
+
+ if (best_dist_slot >= 0)
+ /* At least 2 disks to choose from so failfast is OK */
+ set_bit(R10BIO_FailFast, &r10_bio->state);
+ /* This optimisation is debatable, and completely destroys
+ * sequential read speed for 'far copies' arrays. So only
+ * keep it for 'near' arrays, and review those later.
+ */
+ if (geo->near_copies > 1 && !pending)
+ new_distance = 0;
+
+ /* for far > 1 always use the lowest address */
+ else if (geo->far_copies > 1)
+ new_distance = r10_bio->devs[slot].addr;
+ else
+ new_distance = abs(r10_bio->devs[slot].addr -
+ conf->mirrors[disk].head_position);
+
+ if (new_distance < best_dist) {
+ best_dist = new_distance;
+ best_dist_slot = slot;
+ best_dist_rdev = rdev;
+ }
+ }
+ if (slot >= conf->copies) {
+ if (has_nonrot_disk) {
+ slot = best_pending_slot;
+ rdev = best_pending_rdev;
+ } else {
+ slot = best_dist_slot;
+ rdev = best_dist_rdev;
+ }
+ }
+
+ if (slot >= 0) {
+ atomic_inc(&rdev->nr_pending);
+ r10_bio->read_slot = slot;
+ } else
+ rdev = NULL;
+ rcu_read_unlock();
+ *max_sectors = best_good_sectors;
+
+ return rdev;
+}
+
+static void flush_pending_writes(struct r10conf *conf)
+{
+ /* Any writes that have been queued but are awaiting
+ * bitmap updates get flushed here.
+ */
+ spin_lock_irq(&conf->device_lock);
+
+ if (conf->pending_bio_list.head) {
+ struct blk_plug plug;
+ struct bio *bio;
+
+ bio = bio_list_get(&conf->pending_bio_list);
+ spin_unlock_irq(&conf->device_lock);
+
+ /*
+ * As this is called in a wait_event() loop (see freeze_array),
+ * current->state might be TASK_UNINTERRUPTIBLE which will
+ * cause a warning when we prepare to wait again. As it is
+ * rare that this path is taken, it is perfectly safe to force
+ * us to go around the wait_event() loop again, so the warning
+ * is a false-positive. Silence the warning by resetting
+ * thread state
+ */
+ __set_current_state(TASK_RUNNING);
+
+ blk_start_plug(&plug);
+ /* flush any pending bitmap writes to disk
+ * before proceeding w/ I/O */
+ md_bitmap_unplug(conf->mddev->bitmap);
+ wake_up(&conf->wait_barrier);
+
+ while (bio) { /* submit pending writes */
+ struct bio *next = bio->bi_next;
+
+ raid1_submit_write(bio);
+ bio = next;
+ }
+ blk_finish_plug(&plug);
+ } else
+ spin_unlock_irq(&conf->device_lock);
+}
+
+/* Barriers....
+ * Sometimes we need to suspend IO while we do something else,
+ * either some resync/recovery, or reconfigure the array.
+ * To do this we raise a 'barrier'.
+ * The 'barrier' is a counter that can be raised multiple times
+ * to count how many activities are happening which preclude
+ * normal IO.
+ * We can only raise the barrier if there is no pending IO.
+ * i.e. if nr_pending == 0.
+ * We choose only to raise the barrier if no-one is waiting for the
+ * barrier to go down. This means that as soon as an IO request
+ * is ready, no other operations which require a barrier will start
+ * until the IO request has had a chance.
+ *
+ * So: regular IO calls 'wait_barrier'. When that returns there
+ * is no backgroup IO happening, It must arrange to call
+ * allow_barrier when it has finished its IO.
+ * backgroup IO calls must call raise_barrier. Once that returns
+ * there is no normal IO happeing. It must arrange to call
+ * lower_barrier when the particular background IO completes.
+ */
+
+static void raise_barrier(struct r10conf *conf, int force)
+{
+ write_seqlock_irq(&conf->resync_lock);
+ BUG_ON(force && !conf->barrier);
+
+ /* Wait until no block IO is waiting (unless 'force') */
+ wait_event_barrier(conf, force || !conf->nr_waiting);
+
+ /* block any new IO from starting */
+ WRITE_ONCE(conf->barrier, conf->barrier + 1);
+
+ /* Now wait for all pending IO to complete */
+ wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
+ conf->barrier < RESYNC_DEPTH);
+
+ write_sequnlock_irq(&conf->resync_lock);
+}
+
+static void lower_barrier(struct r10conf *conf)
+{
+ unsigned long flags;
+
+ write_seqlock_irqsave(&conf->resync_lock, flags);
+ WRITE_ONCE(conf->barrier, conf->barrier - 1);
+ write_sequnlock_irqrestore(&conf->resync_lock, flags);
+ wake_up(&conf->wait_barrier);
+}
+
+static bool stop_waiting_barrier(struct r10conf *conf)
+{
+ struct bio_list *bio_list = current->bio_list;
+
+ /* barrier is dropped */
+ if (!conf->barrier)
+ return true;
+
+ /*
+ * If there are already pending requests (preventing the barrier from
+ * rising completely), and the pre-process bio queue isn't empty, then
+ * don't wait, as we need to empty that queue to get the nr_pending
+ * count down.
+ */
+ if (atomic_read(&conf->nr_pending) && bio_list &&
+ (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
+ return true;
+
+ /*
+ * move on if io is issued from raid10d(), nr_pending is not released
+ * from original io(see handle_read_error()). All raise barrier is
+ * blocked until this io is done.
+ */
+ if (conf->mddev->thread->tsk == current) {
+ WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
+ return true;
+ }
+
+ return false;
+}
+
+static bool wait_barrier_nolock(struct r10conf *conf)
+{
+ unsigned int seq = read_seqbegin(&conf->resync_lock);
+
+ if (READ_ONCE(conf->barrier))
+ return false;
+
+ atomic_inc(&conf->nr_pending);
+ if (!read_seqretry(&conf->resync_lock, seq))
+ return true;
+
+ if (atomic_dec_and_test(&conf->nr_pending))
+ wake_up_barrier(conf);
+
+ return false;
+}
+
+static bool wait_barrier(struct r10conf *conf, bool nowait)
+{
+ bool ret = true;
+
+ if (wait_barrier_nolock(conf))
+ return true;
+
+ write_seqlock_irq(&conf->resync_lock);
+ if (conf->barrier) {
+ /* Return false when nowait flag is set */
+ if (nowait) {
+ ret = false;
+ } else {
+ conf->nr_waiting++;
+ raid10_log(conf->mddev, "wait barrier");
+ wait_event_barrier(conf, stop_waiting_barrier(conf));
+ conf->nr_waiting--;
+ }
+ if (!conf->nr_waiting)
+ wake_up(&conf->wait_barrier);
+ }
+ /* Only increment nr_pending when we wait */
+ if (ret)
+ atomic_inc(&conf->nr_pending);
+ write_sequnlock_irq(&conf->resync_lock);
+ return ret;
+}
+
+static void allow_barrier(struct r10conf *conf)
+{
+ if ((atomic_dec_and_test(&conf->nr_pending)) ||
+ (conf->array_freeze_pending))
+ wake_up_barrier(conf);
+}
+
+static void freeze_array(struct r10conf *conf, int extra)
+{
+ /* stop syncio and normal IO and wait for everything to
+ * go quiet.
+ * We increment barrier and nr_waiting, and then
+ * wait until nr_pending match nr_queued+extra
+ * This is called in the context of one normal IO request
+ * that has failed. Thus any sync request that might be pending
+ * will be blocked by nr_pending, and we need to wait for
+ * pending IO requests to complete or be queued for re-try.
+ * Thus the number queued (nr_queued) plus this request (extra)
+ * must match the number of pending IOs (nr_pending) before
+ * we continue.
+ */
+ write_seqlock_irq(&conf->resync_lock);
+ conf->array_freeze_pending++;
+ WRITE_ONCE(conf->barrier, conf->barrier + 1);
+ conf->nr_waiting++;
+ wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
+ conf->nr_queued + extra, flush_pending_writes(conf));
+ conf->array_freeze_pending--;
+ write_sequnlock_irq(&conf->resync_lock);
+}
+
+static void unfreeze_array(struct r10conf *conf)
+{
+ /* reverse the effect of the freeze */
+ write_seqlock_irq(&conf->resync_lock);
+ WRITE_ONCE(conf->barrier, conf->barrier - 1);
+ conf->nr_waiting--;
+ wake_up(&conf->wait_barrier);
+ write_sequnlock_irq(&conf->resync_lock);
+}
+
+static sector_t choose_data_offset(struct r10bio *r10_bio,
+ struct md_rdev *rdev)
+{
+ if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
+ test_bit(R10BIO_Previous, &r10_bio->state))
+ return rdev->data_offset;
+ else
+ return rdev->new_data_offset;
+}
+
+static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
+{
+ struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
+ struct mddev *mddev = plug->cb.data;
+ struct r10conf *conf = mddev->private;
+ struct bio *bio;
+
+ if (from_schedule || current->bio_list) {
+ spin_lock_irq(&conf->device_lock);
+ bio_list_merge(&conf->pending_bio_list, &plug->pending);
+ spin_unlock_irq(&conf->device_lock);
+ wake_up(&conf->wait_barrier);
+ md_wakeup_thread(mddev->thread);
+ kfree(plug);
+ return;
+ }
+
+ /* we aren't scheduling, so we can do the write-out directly. */
+ bio = bio_list_get(&plug->pending);
+ md_bitmap_unplug(mddev->bitmap);
+ wake_up(&conf->wait_barrier);
+
+ while (bio) { /* submit pending writes */
+ struct bio *next = bio->bi_next;
+
+ raid1_submit_write(bio);
+ bio = next;
+ }
+ kfree(plug);
+}
+
+/*
+ * 1. Register the new request and wait if the reconstruction thread has put
+ * up a bar for new requests. Continue immediately if no resync is active
+ * currently.
+ * 2. If IO spans the reshape position. Need to wait for reshape to pass.
+ */
+static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
+ struct bio *bio, sector_t sectors)
+{
+ /* Bail out if REQ_NOWAIT is set for the bio */
+ if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
+ bio_wouldblock_error(bio);
+ return false;
+ }
+ while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
+ bio->bi_iter.bi_sector < conf->reshape_progress &&
+ bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
+ allow_barrier(conf);
+ if (bio->bi_opf & REQ_NOWAIT) {
+ bio_wouldblock_error(bio);
+ return false;
+ }
+ raid10_log(conf->mddev, "wait reshape");
+ wait_event(conf->wait_barrier,
+ conf->reshape_progress <= bio->bi_iter.bi_sector ||
+ conf->reshape_progress >= bio->bi_iter.bi_sector +
+ sectors);
+ wait_barrier(conf, false);
+ }
+ return true;
+}
+
+static void raid10_read_request(struct mddev *mddev, struct bio *bio,
+ struct r10bio *r10_bio)
+{
+ struct r10conf *conf = mddev->private;
+ struct bio *read_bio;
+ const enum req_op op = bio_op(bio);
+ const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
+ int max_sectors;
+ struct md_rdev *rdev;
+ char b[BDEVNAME_SIZE];
+ int slot = r10_bio->read_slot;
+ struct md_rdev *err_rdev = NULL;
+ gfp_t gfp = GFP_NOIO;
+
+ if (slot >= 0 && r10_bio->devs[slot].rdev) {
+ /*
+ * This is an error retry, but we cannot
+ * safely dereference the rdev in the r10_bio,
+ * we must use the one in conf.
+ * If it has already been disconnected (unlikely)
+ * we lose the device name in error messages.
+ */
+ int disk;
+ /*
+ * As we are blocking raid10, it is a little safer to
+ * use __GFP_HIGH.
+ */
+ gfp = GFP_NOIO | __GFP_HIGH;
+
+ rcu_read_lock();
+ disk = r10_bio->devs[slot].devnum;
+ err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
+ if (err_rdev)
+ snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
+ else {
+ strcpy(b, "???");
+ /* This never gets dereferenced */
+ err_rdev = r10_bio->devs[slot].rdev;
+ }
+ rcu_read_unlock();
+ }
+
+ if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
+ return;
+ rdev = read_balance(conf, r10_bio, &max_sectors);
+ if (!rdev) {
+ if (err_rdev) {
+ pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
+ mdname(mddev), b,
+ (unsigned long long)r10_bio->sector);
+ }
+ raid_end_bio_io(r10_bio);
+ return;
+ }
+ if (err_rdev)
+ pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
+ mdname(mddev),
+ rdev->bdev,
+ (unsigned long long)r10_bio->sector);
+ if (max_sectors < bio_sectors(bio)) {
+ struct bio *split = bio_split(bio, max_sectors,
+ gfp, &conf->bio_split);
+ bio_chain(split, bio);
+ allow_barrier(conf);
+ submit_bio_noacct(bio);
+ wait_barrier(conf, false);
+ bio = split;
+ r10_bio->master_bio = bio;
+ r10_bio->sectors = max_sectors;
+ }
+ slot = r10_bio->read_slot;
+
+ if (!r10_bio->start_time &&
+ blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
+ r10_bio->start_time = bio_start_io_acct(bio);
+ read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
+
+ r10_bio->devs[slot].bio = read_bio;
+ r10_bio->devs[slot].rdev = rdev;
+
+ read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
+ choose_data_offset(r10_bio, rdev);
+ read_bio->bi_end_io = raid10_end_read_request;
+ bio_set_op_attrs(read_bio, op, do_sync);
+ if (test_bit(FailFast, &rdev->flags) &&
+ test_bit(R10BIO_FailFast, &r10_bio->state))
+ read_bio->bi_opf |= MD_FAILFAST;
+ read_bio->bi_private = r10_bio;
+
+ if (mddev->gendisk)
+ trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
+ r10_bio->sector);
+ submit_bio_noacct(read_bio);
+ return;
+}
+
+static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
+ struct bio *bio, bool replacement,
+ int n_copy)
+{
+ const enum req_op op = bio_op(bio);
+ const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
+ const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
+ unsigned long flags;
+ struct r10conf *conf = mddev->private;
+ struct md_rdev *rdev;
+ int devnum = r10_bio->devs[n_copy].devnum;
+ struct bio *mbio;
+
+ if (replacement) {
+ rdev = conf->mirrors[devnum].replacement;
+ if (rdev == NULL) {
+ /* Replacement just got moved to main 'rdev' */
+ smp_mb();
+ rdev = conf->mirrors[devnum].rdev;
+ }
+ } else
+ rdev = conf->mirrors[devnum].rdev;
+
+ mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
+ if (replacement)
+ r10_bio->devs[n_copy].repl_bio = mbio;
+ else
+ r10_bio->devs[n_copy].bio = mbio;
+
+ mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
+ choose_data_offset(r10_bio, rdev));
+ mbio->bi_end_io = raid10_end_write_request;
+ bio_set_op_attrs(mbio, op, do_sync | do_fua);
+ if (!replacement && test_bit(FailFast,
+ &conf->mirrors[devnum].rdev->flags)
+ && enough(conf, devnum))
+ mbio->bi_opf |= MD_FAILFAST;
+ mbio->bi_private = r10_bio;
+
+ if (conf->mddev->gendisk)
+ trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
+ r10_bio->sector);
+ /* flush_pending_writes() needs access to the rdev so...*/
+ mbio->bi_bdev = (void *)rdev;
+
+ atomic_inc(&r10_bio->remaining);
+
+ if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug)) {
+ spin_lock_irqsave(&conf->device_lock, flags);
+ bio_list_add(&conf->pending_bio_list, mbio);
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ md_wakeup_thread(mddev->thread);
+ }
+}
+
+static struct md_rdev *dereference_rdev_and_rrdev(struct raid10_info *mirror,
+ struct md_rdev **prrdev)
+{
+ struct md_rdev *rdev, *rrdev;
+
+ rrdev = rcu_dereference(mirror->replacement);
+ /*
+ * Read replacement first to prevent reading both rdev and
+ * replacement as NULL during replacement replace rdev.
+ */
+ smp_mb();
+ rdev = rcu_dereference(mirror->rdev);
+ if (rdev == rrdev)
+ rrdev = NULL;
+
+ *prrdev = rrdev;
+ return rdev;
+}
+
+static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
+{
+ int i;
+ struct r10conf *conf = mddev->private;
+ struct md_rdev *blocked_rdev;
+
+retry_wait:
+ blocked_rdev = NULL;
+ rcu_read_lock();
+ for (i = 0; i < conf->copies; i++) {
+ struct md_rdev *rdev, *rrdev;
+
+ rdev = dereference_rdev_and_rrdev(&conf->mirrors[i], &rrdev);
+ if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
+ atomic_inc(&rdev->nr_pending);
+ blocked_rdev = rdev;
+ break;
+ }
+ if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
+ atomic_inc(&rrdev->nr_pending);
+ blocked_rdev = rrdev;
+ break;
+ }
+
+ if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
+ sector_t first_bad;
+ sector_t dev_sector = r10_bio->devs[i].addr;
+ int bad_sectors;
+ int is_bad;
+
+ /*
+ * Discard request doesn't care the write result
+ * so it doesn't need to wait blocked disk here.
+ */
+ if (!r10_bio->sectors)
+ continue;
+
+ is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
+ &first_bad, &bad_sectors);
+ if (is_bad < 0) {
+ /*
+ * Mustn't write here until the bad block
+ * is acknowledged
+ */
+ atomic_inc(&rdev->nr_pending);
+ set_bit(BlockedBadBlocks, &rdev->flags);
+ blocked_rdev = rdev;
+ break;
+ }
+ }
+ }
+ rcu_read_unlock();
+
+ if (unlikely(blocked_rdev)) {
+ /* Have to wait for this device to get unblocked, then retry */
+ allow_barrier(conf);
+ raid10_log(conf->mddev, "%s wait rdev %d blocked",
+ __func__, blocked_rdev->raid_disk);
+ md_wait_for_blocked_rdev(blocked_rdev, mddev);
+ wait_barrier(conf, false);
+ goto retry_wait;
+ }
+}
+
+static void raid10_write_request(struct mddev *mddev, struct bio *bio,
+ struct r10bio *r10_bio)
+{
+ struct r10conf *conf = mddev->private;
+ int i;
+ sector_t sectors;
+ int max_sectors;
+
+ if ((mddev_is_clustered(mddev) &&
+ md_cluster_ops->area_resyncing(mddev, WRITE,
+ bio->bi_iter.bi_sector,
+ bio_end_sector(bio)))) {
+ DEFINE_WAIT(w);
+ /* Bail out if REQ_NOWAIT is set for the bio */
+ if (bio->bi_opf & REQ_NOWAIT) {
+ bio_wouldblock_error(bio);
+ return;
+ }
+ for (;;) {
+ prepare_to_wait(&conf->wait_barrier,
+ &w, TASK_IDLE);
+ if (!md_cluster_ops->area_resyncing(mddev, WRITE,
+ bio->bi_iter.bi_sector, bio_end_sector(bio)))
+ break;
+ schedule();
+ }
+ finish_wait(&conf->wait_barrier, &w);
+ }
+
+ sectors = r10_bio->sectors;
+ if (!regular_request_wait(mddev, conf, bio, sectors))
+ return;
+ if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
+ (mddev->reshape_backwards
+ ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
+ bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
+ : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
+ bio->bi_iter.bi_sector < conf->reshape_progress))) {
+ /* Need to update reshape_position in metadata */
+ mddev->reshape_position = conf->reshape_progress;
+ set_mask_bits(&mddev->sb_flags, 0,
+ BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
+ md_wakeup_thread(mddev->thread);
+ if (bio->bi_opf & REQ_NOWAIT) {
+ allow_barrier(conf);
+ bio_wouldblock_error(bio);
+ return;
+ }
+ raid10_log(conf->mddev, "wait reshape metadata");
+ wait_event(mddev->sb_wait,
+ !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
+
+ conf->reshape_safe = mddev->reshape_position;
+ }
+
+ /* first select target devices under rcu_lock and
+ * inc refcount on their rdev. Record them by setting
+ * bios[x] to bio
+ * If there are known/acknowledged bad blocks on any device
+ * on which we have seen a write error, we want to avoid
+ * writing to those blocks. This potentially requires several
+ * writes to write around the bad blocks. Each set of writes
+ * gets its own r10_bio with a set of bios attached.
+ */
+
+ r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
+ raid10_find_phys(conf, r10_bio);
+
+ wait_blocked_dev(mddev, r10_bio);
+
+ rcu_read_lock();
+ max_sectors = r10_bio->sectors;
+
+ for (i = 0; i < conf->copies; i++) {
+ int d = r10_bio->devs[i].devnum;
+ struct md_rdev *rdev, *rrdev;
+
+ rdev = dereference_rdev_and_rrdev(&conf->mirrors[d], &rrdev);
+ if (rdev && (test_bit(Faulty, &rdev->flags)))
+ rdev = NULL;
+ if (rrdev && (test_bit(Faulty, &rrdev->flags)))
+ rrdev = NULL;
+
+ r10_bio->devs[i].bio = NULL;
+ r10_bio->devs[i].repl_bio = NULL;
+
+ if (!rdev && !rrdev) {
+ set_bit(R10BIO_Degraded, &r10_bio->state);
+ continue;
+ }
+ if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
+ sector_t first_bad;
+ sector_t dev_sector = r10_bio->devs[i].addr;
+ int bad_sectors;
+ int is_bad;
+
+ is_bad = is_badblock(rdev, dev_sector, max_sectors,
+ &first_bad, &bad_sectors);
+ if (is_bad && first_bad <= dev_sector) {
+ /* Cannot write here at all */
+ bad_sectors -= (dev_sector - first_bad);
+ if (bad_sectors < max_sectors)
+ /* Mustn't write more than bad_sectors
+ * to other devices yet
+ */
+ max_sectors = bad_sectors;
+ /* We don't set R10BIO_Degraded as that
+ * only applies if the disk is missing,
+ * so it might be re-added, and we want to
+ * know to recover this chunk.
+ * In this case the device is here, and the
+ * fact that this chunk is not in-sync is
+ * recorded in the bad block log.
+ */
+ continue;
+ }
+ if (is_bad) {
+ int good_sectors = first_bad - dev_sector;
+ if (good_sectors < max_sectors)
+ max_sectors = good_sectors;
+ }
+ }
+ if (rdev) {
+ r10_bio->devs[i].bio = bio;
+ atomic_inc(&rdev->nr_pending);
+ }
+ if (rrdev) {
+ r10_bio->devs[i].repl_bio = bio;
+ atomic_inc(&rrdev->nr_pending);
+ }
+ }
+ rcu_read_unlock();
+
+ if (max_sectors < r10_bio->sectors)
+ r10_bio->sectors = max_sectors;
+
+ if (r10_bio->sectors < bio_sectors(bio)) {
+ struct bio *split = bio_split(bio, r10_bio->sectors,
+ GFP_NOIO, &conf->bio_split);
+ bio_chain(split, bio);
+ allow_barrier(conf);
+ submit_bio_noacct(bio);
+ wait_barrier(conf, false);
+ bio = split;
+ r10_bio->master_bio = bio;
+ }
+
+ if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
+ r10_bio->start_time = bio_start_io_acct(bio);
+ atomic_set(&r10_bio->remaining, 1);
+ md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
+
+ for (i = 0; i < conf->copies; i++) {
+ if (r10_bio->devs[i].bio)
+ raid10_write_one_disk(mddev, r10_bio, bio, false, i);
+ if (r10_bio->devs[i].repl_bio)
+ raid10_write_one_disk(mddev, r10_bio, bio, true, i);
+ }
+ one_write_done(r10_bio);
+}
+
+static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
+{
+ struct r10conf *conf = mddev->private;
+ struct r10bio *r10_bio;
+
+ r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
+
+ r10_bio->master_bio = bio;
+ r10_bio->sectors = sectors;
+
+ r10_bio->mddev = mddev;
+ r10_bio->sector = bio->bi_iter.bi_sector;
+ r10_bio->state = 0;
+ r10_bio->read_slot = -1;
+ r10_bio->start_time = 0;
+ memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
+ conf->geo.raid_disks);
+
+ if (bio_data_dir(bio) == READ)
+ raid10_read_request(mddev, bio, r10_bio);
+ else
+ raid10_write_request(mddev, bio, r10_bio);
+}
+
+static void raid_end_discard_bio(struct r10bio *r10bio)
+{
+ struct r10conf *conf = r10bio->mddev->private;
+ struct r10bio *first_r10bio;
+
+ while (atomic_dec_and_test(&r10bio->remaining)) {
+
+ allow_barrier(conf);
+
+ if (!test_bit(R10BIO_Discard, &r10bio->state)) {
+ first_r10bio = (struct r10bio *)r10bio->master_bio;
+ free_r10bio(r10bio);
+ r10bio = first_r10bio;
+ } else {
+ md_write_end(r10bio->mddev);
+ bio_endio(r10bio->master_bio);
+ free_r10bio(r10bio);
+ break;
+ }
+ }
+}
+
+static void raid10_end_discard_request(struct bio *bio)
+{
+ struct r10bio *r10_bio = bio->bi_private;
+ struct r10conf *conf = r10_bio->mddev->private;
+ struct md_rdev *rdev = NULL;
+ int dev;
+ int slot, repl;
+
+ /*
+ * We don't care the return value of discard bio
+ */
+ if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
+ set_bit(R10BIO_Uptodate, &r10_bio->state);
+
+ dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
+ if (repl)
+ rdev = conf->mirrors[dev].replacement;
+ if (!rdev) {
+ /*
+ * raid10_remove_disk uses smp_mb to make sure rdev is set to
+ * replacement before setting replacement to NULL. It can read
+ * rdev first without barrier protect even replacment is NULL
+ */
+ smp_rmb();
+ rdev = conf->mirrors[dev].rdev;
+ }
+
+ raid_end_discard_bio(r10_bio);
+ rdev_dec_pending(rdev, conf->mddev);
+}
+
+/*
+ * There are some limitations to handle discard bio
+ * 1st, the discard size is bigger than stripe_size*2.
+ * 2st, if the discard bio spans reshape progress, we use the old way to
+ * handle discard bio
+ */
+static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
+{
+ struct r10conf *conf = mddev->private;
+ struct geom *geo = &conf->geo;
+ int far_copies = geo->far_copies;
+ bool first_copy = true;
+ struct r10bio *r10_bio, *first_r10bio;
+ struct bio *split;
+ int disk;
+ sector_t chunk;
+ unsigned int stripe_size;
+ unsigned int stripe_data_disks;
+ sector_t split_size;
+ sector_t bio_start, bio_end;
+ sector_t first_stripe_index, last_stripe_index;
+ sector_t start_disk_offset;
+ unsigned int start_disk_index;
+ sector_t end_disk_offset;
+ unsigned int end_disk_index;
+ unsigned int remainder;
+
+ if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
+ return -EAGAIN;
+
+ if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
+ bio_wouldblock_error(bio);
+ return 0;
+ }
+ wait_barrier(conf, false);
+
+ /*
+ * Check reshape again to avoid reshape happens after checking
+ * MD_RECOVERY_RESHAPE and before wait_barrier
+ */
+ if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
+ goto out;
+
+ if (geo->near_copies)
+ stripe_data_disks = geo->raid_disks / geo->near_copies +
+ geo->raid_disks % geo->near_copies;
+ else
+ stripe_data_disks = geo->raid_disks;
+
+ stripe_size = stripe_data_disks << geo->chunk_shift;
+
+ bio_start = bio->bi_iter.bi_sector;
+ bio_end = bio_end_sector(bio);
+
+ /*
+ * Maybe one discard bio is smaller than strip size or across one
+ * stripe and discard region is larger than one stripe size. For far
+ * offset layout, if the discard region is not aligned with stripe
+ * size, there is hole when we submit discard bio to member disk.
+ * For simplicity, we only handle discard bio which discard region
+ * is bigger than stripe_size * 2
+ */
+ if (bio_sectors(bio) < stripe_size*2)
+ goto out;
+
+ /*
+ * Keep bio aligned with strip size.
+ */
+ div_u64_rem(bio_start, stripe_size, &remainder);
+ if (remainder) {
+ split_size = stripe_size - remainder;
+ split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
+ bio_chain(split, bio);
+ allow_barrier(conf);
+ /* Resend the fist split part */
+ submit_bio_noacct(split);
+ wait_barrier(conf, false);
+ }
+ div_u64_rem(bio_end, stripe_size, &remainder);
+ if (remainder) {
+ split_size = bio_sectors(bio) - remainder;
+ split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
+ bio_chain(split, bio);
+ allow_barrier(conf);
+ /* Resend the second split part */
+ submit_bio_noacct(bio);
+ bio = split;
+ wait_barrier(conf, false);
+ }
+
+ bio_start = bio->bi_iter.bi_sector;
+ bio_end = bio_end_sector(bio);
+
+ /*
+ * Raid10 uses chunk as the unit to store data. It's similar like raid0.
+ * One stripe contains the chunks from all member disk (one chunk from
+ * one disk at the same HBA address). For layout detail, see 'man md 4'
+ */
+ chunk = bio_start >> geo->chunk_shift;
+ chunk *= geo->near_copies;
+ first_stripe_index = chunk;
+ start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
+ if (geo->far_offset)
+ first_stripe_index *= geo->far_copies;
+ start_disk_offset = (bio_start & geo->chunk_mask) +
+ (first_stripe_index << geo->chunk_shift);
+
+ chunk = bio_end >> geo->chunk_shift;
+ chunk *= geo->near_copies;
+ last_stripe_index = chunk;
+ end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
+ if (geo->far_offset)
+ last_stripe_index *= geo->far_copies;
+ end_disk_offset = (bio_end & geo->chunk_mask) +
+ (last_stripe_index << geo->chunk_shift);
+
+retry_discard:
+ r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
+ r10_bio->mddev = mddev;
+ r10_bio->state = 0;
+ r10_bio->sectors = 0;
+ memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
+ wait_blocked_dev(mddev, r10_bio);
+
+ /*
+ * For far layout it needs more than one r10bio to cover all regions.
+ * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
+ * to record the discard bio. Other r10bio->master_bio record the first
+ * r10bio. The first r10bio only release after all other r10bios finish.
+ * The discard bio returns only first r10bio finishes
+ */
+ if (first_copy) {
+ r10_bio->master_bio = bio;
+ set_bit(R10BIO_Discard, &r10_bio->state);
+ first_copy = false;
+ first_r10bio = r10_bio;
+ } else
+ r10_bio->master_bio = (struct bio *)first_r10bio;
+
+ /*
+ * first select target devices under rcu_lock and
+ * inc refcount on their rdev. Record them by setting
+ * bios[x] to bio
+ */
+ rcu_read_lock();
+ for (disk = 0; disk < geo->raid_disks; disk++) {
+ struct md_rdev *rdev, *rrdev;
+
+ rdev = dereference_rdev_and_rrdev(&conf->mirrors[disk], &rrdev);
+ r10_bio->devs[disk].bio = NULL;
+ r10_bio->devs[disk].repl_bio = NULL;
+
+ if (rdev && (test_bit(Faulty, &rdev->flags)))
+ rdev = NULL;
+ if (rrdev && (test_bit(Faulty, &rrdev->flags)))
+ rrdev = NULL;
+ if (!rdev && !rrdev)
+ continue;
+
+ if (rdev) {
+ r10_bio->devs[disk].bio = bio;
+ atomic_inc(&rdev->nr_pending);
+ }
+ if (rrdev) {
+ r10_bio->devs[disk].repl_bio = bio;
+ atomic_inc(&rrdev->nr_pending);
+ }
+ }
+ rcu_read_unlock();
+
+ atomic_set(&r10_bio->remaining, 1);
+ for (disk = 0; disk < geo->raid_disks; disk++) {
+ sector_t dev_start, dev_end;
+ struct bio *mbio, *rbio = NULL;
+
+ /*
+ * Now start to calculate the start and end address for each disk.
+ * The space between dev_start and dev_end is the discard region.
+ *
+ * For dev_start, it needs to consider three conditions:
+ * 1st, the disk is before start_disk, you can imagine the disk in
+ * the next stripe. So the dev_start is the start address of next
+ * stripe.
+ * 2st, the disk is after start_disk, it means the disk is at the
+ * same stripe of first disk
+ * 3st, the first disk itself, we can use start_disk_offset directly
+ */
+ if (disk < start_disk_index)
+ dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
+ else if (disk > start_disk_index)
+ dev_start = first_stripe_index * mddev->chunk_sectors;
+ else
+ dev_start = start_disk_offset;
+
+ if (disk < end_disk_index)
+ dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
+ else if (disk > end_disk_index)
+ dev_end = last_stripe_index * mddev->chunk_sectors;
+ else
+ dev_end = end_disk_offset;
+
+ /*
+ * It only handles discard bio which size is >= stripe size, so
+ * dev_end > dev_start all the time.
+ * It doesn't need to use rcu lock to get rdev here. We already
+ * add rdev->nr_pending in the first loop.
+ */
+ if (r10_bio->devs[disk].bio) {
+ struct md_rdev *rdev = conf->mirrors[disk].rdev;
+ mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
+ &mddev->bio_set);
+ mbio->bi_end_io = raid10_end_discard_request;
+ mbio->bi_private = r10_bio;
+ r10_bio->devs[disk].bio = mbio;
+ r10_bio->devs[disk].devnum = disk;
+ atomic_inc(&r10_bio->remaining);
+ md_submit_discard_bio(mddev, rdev, mbio,
+ dev_start + choose_data_offset(r10_bio, rdev),
+ dev_end - dev_start);
+ bio_endio(mbio);
+ }
+ if (r10_bio->devs[disk].repl_bio) {
+ struct md_rdev *rrdev = conf->mirrors[disk].replacement;
+ rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
+ &mddev->bio_set);
+ rbio->bi_end_io = raid10_end_discard_request;
+ rbio->bi_private = r10_bio;
+ r10_bio->devs[disk].repl_bio = rbio;
+ r10_bio->devs[disk].devnum = disk;
+ atomic_inc(&r10_bio->remaining);
+ md_submit_discard_bio(mddev, rrdev, rbio,
+ dev_start + choose_data_offset(r10_bio, rrdev),
+ dev_end - dev_start);
+ bio_endio(rbio);
+ }
+ }
+
+ if (!geo->far_offset && --far_copies) {
+ first_stripe_index += geo->stride >> geo->chunk_shift;
+ start_disk_offset += geo->stride;
+ last_stripe_index += geo->stride >> geo->chunk_shift;
+ end_disk_offset += geo->stride;
+ atomic_inc(&first_r10bio->remaining);
+ raid_end_discard_bio(r10_bio);
+ wait_barrier(conf, false);
+ goto retry_discard;
+ }
+
+ raid_end_discard_bio(r10_bio);
+
+ return 0;
+out:
+ allow_barrier(conf);
+ return -EAGAIN;
+}
+
+static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
+{
+ struct r10conf *conf = mddev->private;
+ sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
+ int chunk_sects = chunk_mask + 1;
+ int sectors = bio_sectors(bio);
+
+ if (unlikely(bio->bi_opf & REQ_PREFLUSH)
+ && md_flush_request(mddev, bio))
+ return true;
+
+ if (!md_write_start(mddev, bio))
+ return false;
+
+ if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
+ if (!raid10_handle_discard(mddev, bio))
+ return true;
+
+ /*
+ * If this request crosses a chunk boundary, we need to split
+ * it.
+ */
+ if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
+ sectors > chunk_sects
+ && (conf->geo.near_copies < conf->geo.raid_disks
+ || conf->prev.near_copies <
+ conf->prev.raid_disks)))
+ sectors = chunk_sects -
+ (bio->bi_iter.bi_sector &
+ (chunk_sects - 1));
+ __make_request(mddev, bio, sectors);
+
+ /* In case raid10d snuck in to freeze_array */
+ wake_up_barrier(conf);
+ return true;
+}
+
+static void raid10_status(struct seq_file *seq, struct mddev *mddev)
+{
+ struct r10conf *conf = mddev->private;
+ int i;
+
+ if (conf->geo.near_copies < conf->geo.raid_disks)
+ seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
+ if (conf->geo.near_copies > 1)
+ seq_printf(seq, " %d near-copies", conf->geo.near_copies);
+ if (conf->geo.far_copies > 1) {
+ if (conf->geo.far_offset)
+ seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
+ else
+ seq_printf(seq, " %d far-copies", conf->geo.far_copies);
+ if (conf->geo.far_set_size != conf->geo.raid_disks)
+ seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
+ }
+ seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
+ conf->geo.raid_disks - mddev->degraded);
+ rcu_read_lock();
+ for (i = 0; i < conf->geo.raid_disks; i++) {
+ struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
+ seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
+ }
+ rcu_read_unlock();
+ seq_printf(seq, "]");
+}
+
+/* check if there are enough drives for
+ * every block to appear on atleast one.
+ * Don't consider the device numbered 'ignore'
+ * as we might be about to remove it.
+ */
+static int _enough(struct r10conf *conf, int previous, int ignore)
+{
+ int first = 0;
+ int has_enough = 0;
+ int disks, ncopies;
+ if (previous) {
+ disks = conf->prev.raid_disks;
+ ncopies = conf->prev.near_copies;
+ } else {
+ disks = conf->geo.raid_disks;
+ ncopies = conf->geo.near_copies;
+ }
+
+ rcu_read_lock();
+ do {
+ int n = conf->copies;
+ int cnt = 0;
+ int this = first;
+ while (n--) {
+ struct md_rdev *rdev;
+ if (this != ignore &&
+ (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
+ test_bit(In_sync, &rdev->flags))
+ cnt++;
+ this = (this+1) % disks;
+ }
+ if (cnt == 0)
+ goto out;
+ first = (first + ncopies) % disks;
+ } while (first != 0);
+ has_enough = 1;
+out:
+ rcu_read_unlock();
+ return has_enough;
+}
+
+static int enough(struct r10conf *conf, int ignore)
+{
+ /* when calling 'enough', both 'prev' and 'geo' must
+ * be stable.
+ * This is ensured if ->reconfig_mutex or ->device_lock
+ * is held.
+ */
+ return _enough(conf, 0, ignore) &&
+ _enough(conf, 1, ignore);
+}
+
+/**
+ * raid10_error() - RAID10 error handler.
+ * @mddev: affected md device.
+ * @rdev: member device to fail.
+ *
+ * The routine acknowledges &rdev failure and determines new @mddev state.
+ * If it failed, then:
+ * - &MD_BROKEN flag is set in &mddev->flags.
+ * Otherwise, it must be degraded:
+ * - recovery is interrupted.
+ * - &mddev->degraded is bumped.
+ *
+ * @rdev is marked as &Faulty excluding case when array is failed and
+ * &mddev->fail_last_dev is off.
+ */
+static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct r10conf *conf = mddev->private;
+ unsigned long flags;
+
+ spin_lock_irqsave(&conf->device_lock, flags);
+
+ if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
+ set_bit(MD_BROKEN, &mddev->flags);
+
+ if (!mddev->fail_last_dev) {
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ return;
+ }
+ }
+ if (test_and_clear_bit(In_sync, &rdev->flags))
+ mddev->degraded++;
+
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ set_bit(Blocked, &rdev->flags);
+ set_bit(Faulty, &rdev->flags);
+ set_mask_bits(&mddev->sb_flags, 0,
+ BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
+ "md/raid10:%s: Operation continuing on %d devices.\n",
+ mdname(mddev), rdev->bdev,
+ mdname(mddev), conf->geo.raid_disks - mddev->degraded);
+}
+
+static void print_conf(struct r10conf *conf)
+{
+ int i;
+ struct md_rdev *rdev;
+
+ pr_debug("RAID10 conf printout:\n");
+ if (!conf) {
+ pr_debug("(!conf)\n");
+ return;
+ }
+ pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
+ conf->geo.raid_disks);
+
+ /* This is only called with ->reconfix_mutex held, so
+ * rcu protection of rdev is not needed */
+ for (i = 0; i < conf->geo.raid_disks; i++) {
+ rdev = conf->mirrors[i].rdev;
+ if (rdev)
+ pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
+ i, !test_bit(In_sync, &rdev->flags),
+ !test_bit(Faulty, &rdev->flags),
+ rdev->bdev);
+ }
+}
+
+static void close_sync(struct r10conf *conf)
+{
+ wait_barrier(conf, false);
+ allow_barrier(conf);
+
+ mempool_exit(&conf->r10buf_pool);
+}
+
+static int raid10_spare_active(struct mddev *mddev)
+{
+ int i;
+ struct r10conf *conf = mddev->private;
+ struct raid10_info *tmp;
+ int count = 0;
+ unsigned long flags;
+
+ /*
+ * Find all non-in_sync disks within the RAID10 configuration
+ * and mark them in_sync
+ */
+ for (i = 0; i < conf->geo.raid_disks; i++) {
+ tmp = conf->mirrors + i;
+ if (tmp->replacement
+ && tmp->replacement->recovery_offset == MaxSector
+ && !test_bit(Faulty, &tmp->replacement->flags)
+ && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
+ /* Replacement has just become active */
+ if (!tmp->rdev
+ || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
+ count++;
+ if (tmp->rdev) {
+ /* Replaced device not technically faulty,
+ * but we need to be sure it gets removed
+ * and never re-added.
+ */
+ set_bit(Faulty, &tmp->rdev->flags);
+ sysfs_notify_dirent_safe(
+ tmp->rdev->sysfs_state);
+ }
+ sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
+ } else if (tmp->rdev
+ && tmp->rdev->recovery_offset == MaxSector
+ && !test_bit(Faulty, &tmp->rdev->flags)
+ && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
+ count++;
+ sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
+ }
+ }
+ spin_lock_irqsave(&conf->device_lock, flags);
+ mddev->degraded -= count;
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+
+ print_conf(conf);
+ return count;
+}
+
+static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct r10conf *conf = mddev->private;
+ int err = -EEXIST;
+ int mirror;
+ int first = 0;
+ int last = conf->geo.raid_disks - 1;
+
+ if (mddev->recovery_cp < MaxSector)
+ /* only hot-add to in-sync arrays, as recovery is
+ * very different from resync
+ */
+ return -EBUSY;
+ if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
+ return -EINVAL;
+
+ if (md_integrity_add_rdev(rdev, mddev))
+ return -ENXIO;
+
+ if (rdev->raid_disk >= 0)
+ first = last = rdev->raid_disk;
+
+ if (rdev->saved_raid_disk >= first &&
+ rdev->saved_raid_disk < conf->geo.raid_disks &&
+ conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
+ mirror = rdev->saved_raid_disk;
+ else
+ mirror = first;
+ for ( ; mirror <= last ; mirror++) {
+ struct raid10_info *p = &conf->mirrors[mirror];
+ if (p->recovery_disabled == mddev->recovery_disabled)
+ continue;
+ if (p->rdev) {
+ if (!test_bit(WantReplacement, &p->rdev->flags) ||
+ p->replacement != NULL)
+ continue;
+ clear_bit(In_sync, &rdev->flags);
+ set_bit(Replacement, &rdev->flags);
+ rdev->raid_disk = mirror;
+ err = 0;
+ if (mddev->gendisk)
+ disk_stack_limits(mddev->gendisk, rdev->bdev,
+ rdev->data_offset << 9);
+ conf->fullsync = 1;
+ rcu_assign_pointer(p->replacement, rdev);
+ break;
+ }
+
+ if (mddev->gendisk)
+ disk_stack_limits(mddev->gendisk, rdev->bdev,
+ rdev->data_offset << 9);
+
+ p->head_position = 0;
+ p->recovery_disabled = mddev->recovery_disabled - 1;
+ rdev->raid_disk = mirror;
+ err = 0;
+ if (rdev->saved_raid_disk != mirror)
+ conf->fullsync = 1;
+ rcu_assign_pointer(p->rdev, rdev);
+ break;
+ }
+
+ print_conf(conf);
+ return err;
+}
+
+static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct r10conf *conf = mddev->private;
+ int err = 0;
+ int number = rdev->raid_disk;
+ struct md_rdev **rdevp;
+ struct raid10_info *p;
+
+ print_conf(conf);
+ if (unlikely(number >= mddev->raid_disks))
+ return 0;
+ p = conf->mirrors + number;
+ if (rdev == p->rdev)
+ rdevp = &p->rdev;
+ else if (rdev == p->replacement)
+ rdevp = &p->replacement;
+ else
+ return 0;
+
+ if (test_bit(In_sync, &rdev->flags) ||
+ atomic_read(&rdev->nr_pending)) {
+ err = -EBUSY;
+ goto abort;
+ }
+ /* Only remove non-faulty devices if recovery
+ * is not possible.
+ */
+ if (!test_bit(Faulty, &rdev->flags) &&
+ mddev->recovery_disabled != p->recovery_disabled &&
+ (!p->replacement || p->replacement == rdev) &&
+ number < conf->geo.raid_disks &&
+ enough(conf, -1)) {
+ err = -EBUSY;
+ goto abort;
+ }
+ *rdevp = NULL;
+ if (!test_bit(RemoveSynchronized, &rdev->flags)) {
+ synchronize_rcu();
+ if (atomic_read(&rdev->nr_pending)) {
+ /* lost the race, try later */
+ err = -EBUSY;
+ *rdevp = rdev;
+ goto abort;
+ }
+ }
+ if (p->replacement) {
+ /* We must have just cleared 'rdev' */
+ p->rdev = p->replacement;
+ clear_bit(Replacement, &p->replacement->flags);
+ smp_mb(); /* Make sure other CPUs may see both as identical
+ * but will never see neither -- if they are careful.
+ */
+ p->replacement = NULL;
+ }
+
+ clear_bit(WantReplacement, &rdev->flags);
+ err = md_integrity_register(mddev);
+
+abort:
+
+ print_conf(conf);
+ return err;
+}
+
+static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
+{
+ struct r10conf *conf = r10_bio->mddev->private;
+
+ if (!bio->bi_status)
+ set_bit(R10BIO_Uptodate, &r10_bio->state);
+ else
+ /* The write handler will notice the lack of
+ * R10BIO_Uptodate and record any errors etc
+ */
+ atomic_add(r10_bio->sectors,
+ &conf->mirrors[d].rdev->corrected_errors);
+
+ /* for reconstruct, we always reschedule after a read.
+ * for resync, only after all reads
+ */
+ rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
+ if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
+ atomic_dec_and_test(&r10_bio->remaining)) {
+ /* we have read all the blocks,
+ * do the comparison in process context in raid10d
+ */
+ reschedule_retry(r10_bio);
+ }
+}
+
+static void end_sync_read(struct bio *bio)
+{
+ struct r10bio *r10_bio = get_resync_r10bio(bio);
+ struct r10conf *conf = r10_bio->mddev->private;
+ int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
+
+ __end_sync_read(r10_bio, bio, d);
+}
+
+static void end_reshape_read(struct bio *bio)
+{
+ /* reshape read bio isn't allocated from r10buf_pool */
+ struct r10bio *r10_bio = bio->bi_private;
+
+ __end_sync_read(r10_bio, bio, r10_bio->read_slot);
+}
+
+static void end_sync_request(struct r10bio *r10_bio)
+{
+ struct mddev *mddev = r10_bio->mddev;
+
+ while (atomic_dec_and_test(&r10_bio->remaining)) {
+ if (r10_bio->master_bio == NULL) {
+ /* the primary of several recovery bios */
+ sector_t s = r10_bio->sectors;
+ if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
+ test_bit(R10BIO_WriteError, &r10_bio->state))
+ reschedule_retry(r10_bio);
+ else
+ put_buf(r10_bio);
+ md_done_sync(mddev, s, 1);
+ break;
+ } else {
+ struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
+ if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
+ test_bit(R10BIO_WriteError, &r10_bio->state))
+ reschedule_retry(r10_bio);
+ else
+ put_buf(r10_bio);
+ r10_bio = r10_bio2;
+ }
+ }
+}
+
+static void end_sync_write(struct bio *bio)
+{
+ struct r10bio *r10_bio = get_resync_r10bio(bio);
+ struct mddev *mddev = r10_bio->mddev;
+ struct r10conf *conf = mddev->private;
+ int d;
+ sector_t first_bad;
+ int bad_sectors;
+ int slot;
+ int repl;
+ struct md_rdev *rdev = NULL;
+
+ d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
+ if (repl)
+ rdev = conf->mirrors[d].replacement;
+ else
+ rdev = conf->mirrors[d].rdev;
+
+ if (bio->bi_status) {
+ if (repl)
+ md_error(mddev, rdev);
+ else {
+ set_bit(WriteErrorSeen, &rdev->flags);
+ if (!test_and_set_bit(WantReplacement, &rdev->flags))
+ set_bit(MD_RECOVERY_NEEDED,
+ &rdev->mddev->recovery);
+ set_bit(R10BIO_WriteError, &r10_bio->state);
+ }
+ } else if (is_badblock(rdev,
+ r10_bio->devs[slot].addr,
+ r10_bio->sectors,
+ &first_bad, &bad_sectors))
+ set_bit(R10BIO_MadeGood, &r10_bio->state);
+
+ rdev_dec_pending(rdev, mddev);
+
+ end_sync_request(r10_bio);
+}
+
+/*
+ * Note: sync and recover and handled very differently for raid10
+ * This code is for resync.
+ * For resync, we read through virtual addresses and read all blocks.
+ * If there is any error, we schedule a write. The lowest numbered
+ * drive is authoritative.
+ * However requests come for physical address, so we need to map.
+ * For every physical address there are raid_disks/copies virtual addresses,
+ * which is always are least one, but is not necessarly an integer.
+ * This means that a physical address can span multiple chunks, so we may
+ * have to submit multiple io requests for a single sync request.
+ */
+/*
+ * We check if all blocks are in-sync and only write to blocks that
+ * aren't in sync
+ */
+static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
+{
+ struct r10conf *conf = mddev->private;
+ int i, first;
+ struct bio *tbio, *fbio;
+ int vcnt;
+ struct page **tpages, **fpages;
+
+ atomic_set(&r10_bio->remaining, 1);
+
+ /* find the first device with a block */
+ for (i=0; i<conf->copies; i++)
+ if (!r10_bio->devs[i].bio->bi_status)
+ break;
+
+ if (i == conf->copies)
+ goto done;
+
+ first = i;
+ fbio = r10_bio->devs[i].bio;
+ fbio->bi_iter.bi_size = r10_bio->sectors << 9;
+ fbio->bi_iter.bi_idx = 0;
+ fpages = get_resync_pages(fbio)->pages;
+
+ vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
+ /* now find blocks with errors */
+ for (i=0 ; i < conf->copies ; i++) {
+ int j, d;
+ struct md_rdev *rdev;
+ struct resync_pages *rp;
+
+ tbio = r10_bio->devs[i].bio;
+
+ if (tbio->bi_end_io != end_sync_read)
+ continue;
+ if (i == first)
+ continue;
+
+ tpages = get_resync_pages(tbio)->pages;
+ d = r10_bio->devs[i].devnum;
+ rdev = conf->mirrors[d].rdev;
+ if (!r10_bio->devs[i].bio->bi_status) {
+ /* We know that the bi_io_vec layout is the same for
+ * both 'first' and 'i', so we just compare them.
+ * All vec entries are PAGE_SIZE;
+ */
+ int sectors = r10_bio->sectors;
+ for (j = 0; j < vcnt; j++) {
+ int len = PAGE_SIZE;
+ if (sectors < (len / 512))
+ len = sectors * 512;
+ if (memcmp(page_address(fpages[j]),
+ page_address(tpages[j]),
+ len))
+ break;
+ sectors -= len/512;
+ }
+ if (j == vcnt)
+ continue;
+ atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
+ if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
+ /* Don't fix anything. */
+ continue;
+ } else if (test_bit(FailFast, &rdev->flags)) {
+ /* Just give up on this device */
+ md_error(rdev->mddev, rdev);
+ continue;
+ }
+ /* Ok, we need to write this bio, either to correct an
+ * inconsistency or to correct an unreadable block.
+ * First we need to fixup bv_offset, bv_len and
+ * bi_vecs, as the read request might have corrupted these
+ */
+ rp = get_resync_pages(tbio);
+ bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
+
+ md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
+
+ rp->raid_bio = r10_bio;
+ tbio->bi_private = rp;
+ tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
+ tbio->bi_end_io = end_sync_write;
+
+ bio_copy_data(tbio, fbio);
+
+ atomic_inc(&conf->mirrors[d].rdev->nr_pending);
+ atomic_inc(&r10_bio->remaining);
+ md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
+
+ if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
+ tbio->bi_opf |= MD_FAILFAST;
+ tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
+ submit_bio_noacct(tbio);
+ }
+
+ /* Now write out to any replacement devices
+ * that are active
+ */
+ for (i = 0; i < conf->copies; i++) {
+ int d;
+
+ tbio = r10_bio->devs[i].repl_bio;
+ if (!tbio || !tbio->bi_end_io)
+ continue;
+ if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
+ && r10_bio->devs[i].bio != fbio)
+ bio_copy_data(tbio, fbio);
+ d = r10_bio->devs[i].devnum;
+ atomic_inc(&r10_bio->remaining);
+ md_sync_acct(conf->mirrors[d].replacement->bdev,
+ bio_sectors(tbio));
+ submit_bio_noacct(tbio);
+ }
+
+done:
+ if (atomic_dec_and_test(&r10_bio->remaining)) {
+ md_done_sync(mddev, r10_bio->sectors, 1);
+ put_buf(r10_bio);
+ }
+}
+
+/*
+ * Now for the recovery code.
+ * Recovery happens across physical sectors.
+ * We recover all non-is_sync drives by finding the virtual address of
+ * each, and then choose a working drive that also has that virt address.
+ * There is a separate r10_bio for each non-in_sync drive.
+ * Only the first two slots are in use. The first for reading,
+ * The second for writing.
+ *
+ */
+static void fix_recovery_read_error(struct r10bio *r10_bio)
+{
+ /* We got a read error during recovery.
+ * We repeat the read in smaller page-sized sections.
+ * If a read succeeds, write it to the new device or record
+ * a bad block if we cannot.
+ * If a read fails, record a bad block on both old and
+ * new devices.
+ */
+ struct mddev *mddev = r10_bio->mddev;
+ struct r10conf *conf = mddev->private;
+ struct bio *bio = r10_bio->devs[0].bio;
+ sector_t sect = 0;
+ int sectors = r10_bio->sectors;
+ int idx = 0;
+ int dr = r10_bio->devs[0].devnum;
+ int dw = r10_bio->devs[1].devnum;
+ struct page **pages = get_resync_pages(bio)->pages;
+
+ while (sectors) {
+ int s = sectors;
+ struct md_rdev *rdev;
+ sector_t addr;
+ int ok;
+
+ if (s > (PAGE_SIZE>>9))
+ s = PAGE_SIZE >> 9;
+
+ rdev = conf->mirrors[dr].rdev;
+ addr = r10_bio->devs[0].addr + sect,
+ ok = sync_page_io(rdev,
+ addr,
+ s << 9,
+ pages[idx],
+ REQ_OP_READ, false);
+ if (ok) {
+ rdev = conf->mirrors[dw].rdev;
+ addr = r10_bio->devs[1].addr + sect;
+ ok = sync_page_io(rdev,
+ addr,
+ s << 9,
+ pages[idx],
+ REQ_OP_WRITE, false);
+ if (!ok) {
+ set_bit(WriteErrorSeen, &rdev->flags);
+ if (!test_and_set_bit(WantReplacement,
+ &rdev->flags))
+ set_bit(MD_RECOVERY_NEEDED,
+ &rdev->mddev->recovery);
+ }
+ }
+ if (!ok) {
+ /* We don't worry if we cannot set a bad block -
+ * it really is bad so there is no loss in not
+ * recording it yet
+ */
+ rdev_set_badblocks(rdev, addr, s, 0);
+
+ if (rdev != conf->mirrors[dw].rdev) {
+ /* need bad block on destination too */
+ struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
+ addr = r10_bio->devs[1].addr + sect;
+ ok = rdev_set_badblocks(rdev2, addr, s, 0);
+ if (!ok) {
+ /* just abort the recovery */
+ pr_notice("md/raid10:%s: recovery aborted due to read error\n",
+ mdname(mddev));
+
+ conf->mirrors[dw].recovery_disabled
+ = mddev->recovery_disabled;
+ set_bit(MD_RECOVERY_INTR,
+ &mddev->recovery);
+ break;
+ }
+ }
+ }
+
+ sectors -= s;
+ sect += s;
+ idx++;
+ }
+}
+
+static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
+{
+ struct r10conf *conf = mddev->private;
+ int d;
+ struct bio *wbio = r10_bio->devs[1].bio;
+ struct bio *wbio2 = r10_bio->devs[1].repl_bio;
+
+ /* Need to test wbio2->bi_end_io before we call
+ * submit_bio_noacct as if the former is NULL,
+ * the latter is free to free wbio2.
+ */
+ if (wbio2 && !wbio2->bi_end_io)
+ wbio2 = NULL;
+
+ if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
+ fix_recovery_read_error(r10_bio);
+ if (wbio->bi_end_io)
+ end_sync_request(r10_bio);
+ if (wbio2)
+ end_sync_request(r10_bio);
+ return;
+ }
+
+ /*
+ * share the pages with the first bio
+ * and submit the write request
+ */
+ d = r10_bio->devs[1].devnum;
+ if (wbio->bi_end_io) {
+ atomic_inc(&conf->mirrors[d].rdev->nr_pending);
+ md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
+ submit_bio_noacct(wbio);
+ }
+ if (wbio2) {
+ atomic_inc(&conf->mirrors[d].replacement->nr_pending);
+ md_sync_acct(conf->mirrors[d].replacement->bdev,
+ bio_sectors(wbio2));
+ submit_bio_noacct(wbio2);
+ }
+}
+
+/*
+ * Used by fix_read_error() to decay the per rdev read_errors.
+ * We halve the read error count for every hour that has elapsed
+ * since the last recorded read error.
+ *
+ */
+static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
+{
+ long cur_time_mon;
+ unsigned long hours_since_last;
+ unsigned int read_errors = atomic_read(&rdev->read_errors);
+
+ cur_time_mon = ktime_get_seconds();
+
+ if (rdev->last_read_error == 0) {
+ /* first time we've seen a read error */
+ rdev->last_read_error = cur_time_mon;
+ return;
+ }
+
+ hours_since_last = (long)(cur_time_mon -
+ rdev->last_read_error) / 3600;
+
+ rdev->last_read_error = cur_time_mon;
+
+ /*
+ * if hours_since_last is > the number of bits in read_errors
+ * just set read errors to 0. We do this to avoid
+ * overflowing the shift of read_errors by hours_since_last.
+ */
+ if (hours_since_last >= 8 * sizeof(read_errors))
+ atomic_set(&rdev->read_errors, 0);
+ else
+ atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
+}
+
+static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
+ int sectors, struct page *page, enum req_op op)
+{
+ sector_t first_bad;
+ int bad_sectors;
+
+ if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
+ && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
+ return -1;
+ if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
+ /* success */
+ return 1;
+ if (op == REQ_OP_WRITE) {
+ set_bit(WriteErrorSeen, &rdev->flags);
+ if (!test_and_set_bit(WantReplacement, &rdev->flags))
+ set_bit(MD_RECOVERY_NEEDED,
+ &rdev->mddev->recovery);
+ }
+ /* need to record an error - either for the block or the device */
+ if (!rdev_set_badblocks(rdev, sector, sectors, 0))
+ md_error(rdev->mddev, rdev);
+ return 0;
+}
+
+/*
+ * This is a kernel thread which:
+ *
+ * 1. Retries failed read operations on working mirrors.
+ * 2. Updates the raid superblock when problems encounter.
+ * 3. Performs writes following reads for array synchronising.
+ */
+
+static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
+{
+ int sect = 0; /* Offset from r10_bio->sector */
+ int sectors = r10_bio->sectors;
+ struct md_rdev *rdev;
+ int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
+ int d = r10_bio->devs[r10_bio->read_slot].devnum;
+
+ /* still own a reference to this rdev, so it cannot
+ * have been cleared recently.
+ */
+ rdev = conf->mirrors[d].rdev;
+
+ if (test_bit(Faulty, &rdev->flags))
+ /* drive has already been failed, just ignore any
+ more fix_read_error() attempts */
+ return;
+
+ check_decay_read_errors(mddev, rdev);
+ atomic_inc(&rdev->read_errors);
+ if (atomic_read(&rdev->read_errors) > max_read_errors) {
+ pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
+ mdname(mddev), rdev->bdev,
+ atomic_read(&rdev->read_errors), max_read_errors);
+ pr_notice("md/raid10:%s: %pg: Failing raid device\n",
+ mdname(mddev), rdev->bdev);
+ md_error(mddev, rdev);
+ r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
+ return;
+ }
+
+ while(sectors) {
+ int s = sectors;
+ int sl = r10_bio->read_slot;
+ int success = 0;
+ int start;
+
+ if (s > (PAGE_SIZE>>9))
+ s = PAGE_SIZE >> 9;
+
+ rcu_read_lock();
+ do {
+ sector_t first_bad;
+ int bad_sectors;
+
+ d = r10_bio->devs[sl].devnum;
+ rdev = rcu_dereference(conf->mirrors[d].rdev);
+ if (rdev &&
+ test_bit(In_sync, &rdev->flags) &&
+ !test_bit(Faulty, &rdev->flags) &&
+ is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
+ &first_bad, &bad_sectors) == 0) {
+ atomic_inc(&rdev->nr_pending);
+ rcu_read_unlock();
+ success = sync_page_io(rdev,
+ r10_bio->devs[sl].addr +
+ sect,
+ s<<9,
+ conf->tmppage,
+ REQ_OP_READ, false);
+ rdev_dec_pending(rdev, mddev);
+ rcu_read_lock();
+ if (success)
+ break;
+ }
+ sl++;
+ if (sl == conf->copies)
+ sl = 0;
+ } while (!success && sl != r10_bio->read_slot);
+ rcu_read_unlock();
+
+ if (!success) {
+ /* Cannot read from anywhere, just mark the block
+ * as bad on the first device to discourage future
+ * reads.
+ */
+ int dn = r10_bio->devs[r10_bio->read_slot].devnum;
+ rdev = conf->mirrors[dn].rdev;
+
+ if (!rdev_set_badblocks(
+ rdev,
+ r10_bio->devs[r10_bio->read_slot].addr
+ + sect,
+ s, 0)) {
+ md_error(mddev, rdev);
+ r10_bio->devs[r10_bio->read_slot].bio
+ = IO_BLOCKED;
+ }
+ break;
+ }
+
+ start = sl;
+ /* write it back and re-read */
+ rcu_read_lock();
+ while (sl != r10_bio->read_slot) {
+ if (sl==0)
+ sl = conf->copies;
+ sl--;
+ d = r10_bio->devs[sl].devnum;
+ rdev = rcu_dereference(conf->mirrors[d].rdev);
+ if (!rdev ||
+ test_bit(Faulty, &rdev->flags) ||
+ !test_bit(In_sync, &rdev->flags))
+ continue;
+
+ atomic_inc(&rdev->nr_pending);
+ rcu_read_unlock();
+ if (r10_sync_page_io(rdev,
+ r10_bio->devs[sl].addr +
+ sect,
+ s, conf->tmppage, REQ_OP_WRITE)
+ == 0) {
+ /* Well, this device is dead */
+ pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
+ mdname(mddev), s,
+ (unsigned long long)(
+ sect +
+ choose_data_offset(r10_bio,
+ rdev)),
+ rdev->bdev);
+ pr_notice("md/raid10:%s: %pg: failing drive\n",
+ mdname(mddev),
+ rdev->bdev);
+ }
+ rdev_dec_pending(rdev, mddev);
+ rcu_read_lock();
+ }
+ sl = start;
+ while (sl != r10_bio->read_slot) {
+ if (sl==0)
+ sl = conf->copies;
+ sl--;
+ d = r10_bio->devs[sl].devnum;
+ rdev = rcu_dereference(conf->mirrors[d].rdev);
+ if (!rdev ||
+ test_bit(Faulty, &rdev->flags) ||
+ !test_bit(In_sync, &rdev->flags))
+ continue;
+
+ atomic_inc(&rdev->nr_pending);
+ rcu_read_unlock();
+ switch (r10_sync_page_io(rdev,
+ r10_bio->devs[sl].addr +
+ sect,
+ s, conf->tmppage, REQ_OP_READ)) {
+ case 0:
+ /* Well, this device is dead */
+ pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
+ mdname(mddev), s,
+ (unsigned long long)(
+ sect +
+ choose_data_offset(r10_bio, rdev)),
+ rdev->bdev);
+ pr_notice("md/raid10:%s: %pg: failing drive\n",
+ mdname(mddev),
+ rdev->bdev);
+ break;
+ case 1:
+ pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
+ mdname(mddev), s,
+ (unsigned long long)(
+ sect +
+ choose_data_offset(r10_bio, rdev)),
+ rdev->bdev);
+ atomic_add(s, &rdev->corrected_errors);
+ }
+
+ rdev_dec_pending(rdev, mddev);
+ rcu_read_lock();
+ }
+ rcu_read_unlock();
+
+ sectors -= s;
+ sect += s;
+ }
+}
+
+static int narrow_write_error(struct r10bio *r10_bio, int i)
+{
+ struct bio *bio = r10_bio->master_bio;
+ struct mddev *mddev = r10_bio->mddev;
+ struct r10conf *conf = mddev->private;
+ struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
+ /* bio has the data to be written to slot 'i' where
+ * we just recently had a write error.
+ * We repeatedly clone the bio and trim down to one block,
+ * then try the write. Where the write fails we record
+ * a bad block.
+ * It is conceivable that the bio doesn't exactly align with
+ * blocks. We must handle this.
+ *
+ * We currently own a reference to the rdev.
+ */
+
+ int block_sectors;
+ sector_t sector;
+ int sectors;
+ int sect_to_write = r10_bio->sectors;
+ int ok = 1;
+
+ if (rdev->badblocks.shift < 0)
+ return 0;
+
+ block_sectors = roundup(1 << rdev->badblocks.shift,
+ bdev_logical_block_size(rdev->bdev) >> 9);
+ sector = r10_bio->sector;
+ sectors = ((r10_bio->sector + block_sectors)
+ & ~(sector_t)(block_sectors - 1))
+ - sector;
+
+ while (sect_to_write) {
+ struct bio *wbio;
+ sector_t wsector;
+ if (sectors > sect_to_write)
+ sectors = sect_to_write;
+ /* Write at 'sector' for 'sectors' */
+ wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
+ &mddev->bio_set);
+ bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
+ wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
+ wbio->bi_iter.bi_sector = wsector +
+ choose_data_offset(r10_bio, rdev);
+ bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
+
+ if (submit_bio_wait(wbio) < 0)
+ /* Failure! */
+ ok = rdev_set_badblocks(rdev, wsector,
+ sectors, 0)
+ && ok;
+
+ bio_put(wbio);
+ sect_to_write -= sectors;
+ sector += sectors;
+ sectors = block_sectors;
+ }
+ return ok;
+}
+
+static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
+{
+ int slot = r10_bio->read_slot;
+ struct bio *bio;
+ struct r10conf *conf = mddev->private;
+ struct md_rdev *rdev = r10_bio->devs[slot].rdev;
+
+ /* we got a read error. Maybe the drive is bad. Maybe just
+ * the block and we can fix it.
+ * We freeze all other IO, and try reading the block from
+ * other devices. When we find one, we re-write
+ * and check it that fixes the read error.
+ * This is all done synchronously while the array is
+ * frozen.
+ */
+ bio = r10_bio->devs[slot].bio;
+ bio_put(bio);
+ r10_bio->devs[slot].bio = NULL;
+
+ if (mddev->ro)
+ r10_bio->devs[slot].bio = IO_BLOCKED;
+ else if (!test_bit(FailFast, &rdev->flags)) {
+ freeze_array(conf, 1);
+ fix_read_error(conf, mddev, r10_bio);
+ unfreeze_array(conf);
+ } else
+ md_error(mddev, rdev);
+
+ rdev_dec_pending(rdev, mddev);
+ r10_bio->state = 0;
+ raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
+ /*
+ * allow_barrier after re-submit to ensure no sync io
+ * can be issued while regular io pending.
+ */
+ allow_barrier(conf);
+}
+
+static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
+{
+ /* Some sort of write request has finished and it
+ * succeeded in writing where we thought there was a
+ * bad block. So forget the bad block.
+ * Or possibly if failed and we need to record
+ * a bad block.
+ */
+ int m;
+ struct md_rdev *rdev;
+
+ if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
+ test_bit(R10BIO_IsRecover, &r10_bio->state)) {
+ for (m = 0; m < conf->copies; m++) {
+ int dev = r10_bio->devs[m].devnum;
+ rdev = conf->mirrors[dev].rdev;
+ if (r10_bio->devs[m].bio == NULL ||
+ r10_bio->devs[m].bio->bi_end_io == NULL)
+ continue;
+ if (!r10_bio->devs[m].bio->bi_status) {
+ rdev_clear_badblocks(
+ rdev,
+ r10_bio->devs[m].addr,
+ r10_bio->sectors, 0);
+ } else {
+ if (!rdev_set_badblocks(
+ rdev,
+ r10_bio->devs[m].addr,
+ r10_bio->sectors, 0))
+ md_error(conf->mddev, rdev);
+ }
+ rdev = conf->mirrors[dev].replacement;
+ if (r10_bio->devs[m].repl_bio == NULL ||
+ r10_bio->devs[m].repl_bio->bi_end_io == NULL)
+ continue;
+
+ if (!r10_bio->devs[m].repl_bio->bi_status) {
+ rdev_clear_badblocks(
+ rdev,
+ r10_bio->devs[m].addr,
+ r10_bio->sectors, 0);
+ } else {
+ if (!rdev_set_badblocks(
+ rdev,
+ r10_bio->devs[m].addr,
+ r10_bio->sectors, 0))
+ md_error(conf->mddev, rdev);
+ }
+ }
+ put_buf(r10_bio);
+ } else {
+ bool fail = false;
+ for (m = 0; m < conf->copies; m++) {
+ int dev = r10_bio->devs[m].devnum;
+ struct bio *bio = r10_bio->devs[m].bio;
+ rdev = conf->mirrors[dev].rdev;
+ if (bio == IO_MADE_GOOD) {
+ rdev_clear_badblocks(
+ rdev,
+ r10_bio->devs[m].addr,
+ r10_bio->sectors, 0);
+ rdev_dec_pending(rdev, conf->mddev);
+ } else if (bio != NULL && bio->bi_status) {
+ fail = true;
+ if (!narrow_write_error(r10_bio, m)) {
+ md_error(conf->mddev, rdev);
+ set_bit(R10BIO_Degraded,
+ &r10_bio->state);
+ }
+ rdev_dec_pending(rdev, conf->mddev);
+ }
+ bio = r10_bio->devs[m].repl_bio;
+ rdev = conf->mirrors[dev].replacement;
+ if (rdev && bio == IO_MADE_GOOD) {
+ rdev_clear_badblocks(
+ rdev,
+ r10_bio->devs[m].addr,
+ r10_bio->sectors, 0);
+ rdev_dec_pending(rdev, conf->mddev);
+ }
+ }
+ if (fail) {
+ spin_lock_irq(&conf->device_lock);
+ list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
+ conf->nr_queued++;
+ spin_unlock_irq(&conf->device_lock);
+ /*
+ * In case freeze_array() is waiting for condition
+ * nr_pending == nr_queued + extra to be true.
+ */
+ wake_up(&conf->wait_barrier);
+ md_wakeup_thread(conf->mddev->thread);
+ } else {
+ if (test_bit(R10BIO_WriteError,
+ &r10_bio->state))
+ close_write(r10_bio);
+ raid_end_bio_io(r10_bio);
+ }
+ }
+}
+
+static void raid10d(struct md_thread *thread)
+{
+ struct mddev *mddev = thread->mddev;
+ struct r10bio *r10_bio;
+ unsigned long flags;
+ struct r10conf *conf = mddev->private;
+ struct list_head *head = &conf->retry_list;
+ struct blk_plug plug;
+
+ md_check_recovery(mddev);
+
+ if (!list_empty_careful(&conf->bio_end_io_list) &&
+ !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
+ LIST_HEAD(tmp);
+ spin_lock_irqsave(&conf->device_lock, flags);
+ if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
+ while (!list_empty(&conf->bio_end_io_list)) {
+ list_move(conf->bio_end_io_list.prev, &tmp);
+ conf->nr_queued--;
+ }
+ }
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ while (!list_empty(&tmp)) {
+ r10_bio = list_first_entry(&tmp, struct r10bio,
+ retry_list);
+ list_del(&r10_bio->retry_list);
+ if (mddev->degraded)
+ set_bit(R10BIO_Degraded, &r10_bio->state);
+
+ if (test_bit(R10BIO_WriteError,
+ &r10_bio->state))
+ close_write(r10_bio);
+ raid_end_bio_io(r10_bio);
+ }
+ }
+
+ blk_start_plug(&plug);
+ for (;;) {
+
+ flush_pending_writes(conf);
+
+ spin_lock_irqsave(&conf->device_lock, flags);
+ if (list_empty(head)) {
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ break;
+ }
+ r10_bio = list_entry(head->prev, struct r10bio, retry_list);
+ list_del(head->prev);
+ conf->nr_queued--;
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+
+ mddev = r10_bio->mddev;
+ conf = mddev->private;
+ if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
+ test_bit(R10BIO_WriteError, &r10_bio->state))
+ handle_write_completed(conf, r10_bio);
+ else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
+ reshape_request_write(mddev, r10_bio);
+ else if (test_bit(R10BIO_IsSync, &r10_bio->state))
+ sync_request_write(mddev, r10_bio);
+ else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
+ recovery_request_write(mddev, r10_bio);
+ else if (test_bit(R10BIO_ReadError, &r10_bio->state))
+ handle_read_error(mddev, r10_bio);
+ else
+ WARN_ON_ONCE(1);
+
+ cond_resched();
+ if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
+ md_check_recovery(mddev);
+ }
+ blk_finish_plug(&plug);
+}
+
+static int init_resync(struct r10conf *conf)
+{
+ int ret, buffs, i;
+
+ buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
+ BUG_ON(mempool_initialized(&conf->r10buf_pool));
+ conf->have_replacement = 0;
+ for (i = 0; i < conf->geo.raid_disks; i++)
+ if (conf->mirrors[i].replacement)
+ conf->have_replacement = 1;
+ ret = mempool_init(&conf->r10buf_pool, buffs,
+ r10buf_pool_alloc, r10buf_pool_free, conf);
+ if (ret)
+ return ret;
+ conf->next_resync = 0;
+ return 0;
+}
+
+static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
+{
+ struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
+ struct rsync_pages *rp;
+ struct bio *bio;
+ int nalloc;
+ int i;
+
+ if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
+ test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
+ nalloc = conf->copies; /* resync */
+ else
+ nalloc = 2; /* recovery */
+
+ for (i = 0; i < nalloc; i++) {
+ bio = r10bio->devs[i].bio;
+ rp = bio->bi_private;
+ bio_reset(bio, NULL, 0);
+ bio->bi_private = rp;
+ bio = r10bio->devs[i].repl_bio;
+ if (bio) {
+ rp = bio->bi_private;
+ bio_reset(bio, NULL, 0);
+ bio->bi_private = rp;
+ }
+ }
+ return r10bio;
+}
+
+/*
+ * Set cluster_sync_high since we need other nodes to add the
+ * range [cluster_sync_low, cluster_sync_high] to suspend list.
+ */
+static void raid10_set_cluster_sync_high(struct r10conf *conf)
+{
+ sector_t window_size;
+ int extra_chunk, chunks;
+
+ /*
+ * First, here we define "stripe" as a unit which across
+ * all member devices one time, so we get chunks by use
+ * raid_disks / near_copies. Otherwise, if near_copies is
+ * close to raid_disks, then resync window could increases
+ * linearly with the increase of raid_disks, which means
+ * we will suspend a really large IO window while it is not
+ * necessary. If raid_disks is not divisible by near_copies,
+ * an extra chunk is needed to ensure the whole "stripe" is
+ * covered.
+ */
+
+ chunks = conf->geo.raid_disks / conf->geo.near_copies;
+ if (conf->geo.raid_disks % conf->geo.near_copies == 0)
+ extra_chunk = 0;
+ else
+ extra_chunk = 1;
+ window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
+
+ /*
+ * At least use a 32M window to align with raid1's resync window
+ */
+ window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
+ CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
+
+ conf->cluster_sync_high = conf->cluster_sync_low + window_size;
+}
+
+/*
+ * perform a "sync" on one "block"
+ *
+ * We need to make sure that no normal I/O request - particularly write
+ * requests - conflict with active sync requests.
+ *
+ * This is achieved by tracking pending requests and a 'barrier' concept
+ * that can be installed to exclude normal IO requests.
+ *
+ * Resync and recovery are handled very differently.
+ * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
+ *
+ * For resync, we iterate over virtual addresses, read all copies,
+ * and update if there are differences. If only one copy is live,
+ * skip it.
+ * For recovery, we iterate over physical addresses, read a good
+ * value for each non-in_sync drive, and over-write.
+ *
+ * So, for recovery we may have several outstanding complex requests for a
+ * given address, one for each out-of-sync device. We model this by allocating
+ * a number of r10_bio structures, one for each out-of-sync device.
+ * As we setup these structures, we collect all bio's together into a list
+ * which we then process collectively to add pages, and then process again
+ * to pass to submit_bio_noacct.
+ *
+ * The r10_bio structures are linked using a borrowed master_bio pointer.
+ * This link is counted in ->remaining. When the r10_bio that points to NULL
+ * has its remaining count decremented to 0, the whole complex operation
+ * is complete.
+ *
+ */
+
+static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
+ int *skipped)
+{
+ struct r10conf *conf = mddev->private;
+ struct r10bio *r10_bio;
+ struct bio *biolist = NULL, *bio;
+ sector_t max_sector, nr_sectors;
+ int i;
+ int max_sync;
+ sector_t sync_blocks;
+ sector_t sectors_skipped = 0;
+ int chunks_skipped = 0;
+ sector_t chunk_mask = conf->geo.chunk_mask;
+ int page_idx = 0;
+
+ /*
+ * Allow skipping a full rebuild for incremental assembly
+ * of a clean array, like RAID1 does.
+ */
+ if (mddev->bitmap == NULL &&
+ mddev->recovery_cp == MaxSector &&
+ mddev->reshape_position == MaxSector &&
+ !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
+ !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
+ !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
+ conf->fullsync == 0) {
+ *skipped = 1;
+ return mddev->dev_sectors - sector_nr;
+ }
+
+ if (!mempool_initialized(&conf->r10buf_pool))
+ if (init_resync(conf))
+ return 0;
+
+ skipped:
+ max_sector = mddev->dev_sectors;
+ if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
+ test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
+ max_sector = mddev->resync_max_sectors;
+ if (sector_nr >= max_sector) {
+ conf->cluster_sync_low = 0;
+ conf->cluster_sync_high = 0;
+
+ /* If we aborted, we need to abort the
+ * sync on the 'current' bitmap chucks (there can
+ * be several when recovering multiple devices).
+ * as we may have started syncing it but not finished.
+ * We can find the current address in
+ * mddev->curr_resync, but for recovery,
+ * we need to convert that to several
+ * virtual addresses.
+ */
+ if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
+ end_reshape(conf);
+ close_sync(conf);
+ return 0;
+ }
+
+ if (mddev->curr_resync < max_sector) { /* aborted */
+ if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
+ md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
+ &sync_blocks, 1);
+ else for (i = 0; i < conf->geo.raid_disks; i++) {
+ sector_t sect =
+ raid10_find_virt(conf, mddev->curr_resync, i);
+ md_bitmap_end_sync(mddev->bitmap, sect,
+ &sync_blocks, 1);
+ }
+ } else {
+ /* completed sync */
+ if ((!mddev->bitmap || conf->fullsync)
+ && conf->have_replacement
+ && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
+ /* Completed a full sync so the replacements
+ * are now fully recovered.
+ */
+ rcu_read_lock();
+ for (i = 0; i < conf->geo.raid_disks; i++) {
+ struct md_rdev *rdev =
+ rcu_dereference(conf->mirrors[i].replacement);
+ if (rdev)
+ rdev->recovery_offset = MaxSector;
+ }
+ rcu_read_unlock();
+ }
+ conf->fullsync = 0;
+ }
+ md_bitmap_close_sync(mddev->bitmap);
+ close_sync(conf);
+ *skipped = 1;
+ return sectors_skipped;
+ }
+
+ if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
+ return reshape_request(mddev, sector_nr, skipped);
+
+ if (chunks_skipped >= conf->geo.raid_disks) {
+ /* if there has been nothing to do on any drive,
+ * then there is nothing to do at all..
+ */
+ *skipped = 1;
+ return (max_sector - sector_nr) + sectors_skipped;
+ }
+
+ if (max_sector > mddev->resync_max)
+ max_sector = mddev->resync_max; /* Don't do IO beyond here */
+
+ /* make sure whole request will fit in a chunk - if chunks
+ * are meaningful
+ */
+ if (conf->geo.near_copies < conf->geo.raid_disks &&
+ max_sector > (sector_nr | chunk_mask))
+ max_sector = (sector_nr | chunk_mask) + 1;
+
+ /*
+ * If there is non-resync activity waiting for a turn, then let it
+ * though before starting on this new sync request.
+ */
+ if (conf->nr_waiting)
+ schedule_timeout_uninterruptible(1);
+
+ /* Again, very different code for resync and recovery.
+ * Both must result in an r10bio with a list of bios that
+ * have bi_end_io, bi_sector, bi_bdev set,
+ * and bi_private set to the r10bio.
+ * For recovery, we may actually create several r10bios
+ * with 2 bios in each, that correspond to the bios in the main one.
+ * In this case, the subordinate r10bios link back through a
+ * borrowed master_bio pointer, and the counter in the master
+ * includes a ref from each subordinate.
+ */
+ /* First, we decide what to do and set ->bi_end_io
+ * To end_sync_read if we want to read, and
+ * end_sync_write if we will want to write.
+ */
+
+ max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
+ if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
+ /* recovery... the complicated one */
+ int j;
+ r10_bio = NULL;
+
+ for (i = 0 ; i < conf->geo.raid_disks; i++) {
+ int still_degraded;
+ struct r10bio *rb2;
+ sector_t sect;
+ int must_sync;
+ int any_working;
+ int need_recover = 0;
+ struct raid10_info *mirror = &conf->mirrors[i];
+ struct md_rdev *mrdev, *mreplace;
+
+ rcu_read_lock();
+ mrdev = rcu_dereference(mirror->rdev);
+ mreplace = rcu_dereference(mirror->replacement);
+
+ if (mrdev != NULL &&
+ !test_bit(Faulty, &mrdev->flags) &&
+ !test_bit(In_sync, &mrdev->flags))
+ need_recover = 1;
+ if (mreplace && test_bit(Faulty, &mreplace->flags))
+ mreplace = NULL;
+
+ if (!need_recover && !mreplace) {
+ rcu_read_unlock();
+ continue;
+ }
+
+ still_degraded = 0;
+ /* want to reconstruct this device */
+ rb2 = r10_bio;
+ sect = raid10_find_virt(conf, sector_nr, i);
+ if (sect >= mddev->resync_max_sectors) {
+ /* last stripe is not complete - don't
+ * try to recover this sector.
+ */
+ rcu_read_unlock();
+ continue;
+ }
+ /* Unless we are doing a full sync, or a replacement
+ * we only need to recover the block if it is set in
+ * the bitmap
+ */
+ must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
+ &sync_blocks, 1);
+ if (sync_blocks < max_sync)
+ max_sync = sync_blocks;
+ if (!must_sync &&
+ mreplace == NULL &&
+ !conf->fullsync) {
+ /* yep, skip the sync_blocks here, but don't assume
+ * that there will never be anything to do here
+ */
+ chunks_skipped = -1;
+ rcu_read_unlock();
+ continue;
+ }
+ atomic_inc(&mrdev->nr_pending);
+ if (mreplace)
+ atomic_inc(&mreplace->nr_pending);
+ rcu_read_unlock();
+
+ r10_bio = raid10_alloc_init_r10buf(conf);
+ r10_bio->state = 0;
+ raise_barrier(conf, rb2 != NULL);
+ atomic_set(&r10_bio->remaining, 0);
+
+ r10_bio->master_bio = (struct bio*)rb2;
+ if (rb2)
+ atomic_inc(&rb2->remaining);
+ r10_bio->mddev = mddev;
+ set_bit(R10BIO_IsRecover, &r10_bio->state);
+ r10_bio->sector = sect;
+
+ raid10_find_phys(conf, r10_bio);
+
+ /* Need to check if the array will still be
+ * degraded
+ */
+ rcu_read_lock();
+ for (j = 0; j < conf->geo.raid_disks; j++) {
+ struct md_rdev *rdev = rcu_dereference(
+ conf->mirrors[j].rdev);
+ if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
+ still_degraded = 1;
+ break;
+ }
+ }
+
+ must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
+ &sync_blocks, still_degraded);
+
+ any_working = 0;
+ for (j=0; j<conf->copies;j++) {
+ int k;
+ int d = r10_bio->devs[j].devnum;
+ sector_t from_addr, to_addr;
+ struct md_rdev *rdev =
+ rcu_dereference(conf->mirrors[d].rdev);
+ sector_t sector, first_bad;
+ int bad_sectors;
+ if (!rdev ||
+ !test_bit(In_sync, &rdev->flags))
+ continue;
+ /* This is where we read from */
+ any_working = 1;
+ sector = r10_bio->devs[j].addr;
+
+ if (is_badblock(rdev, sector, max_sync,
+ &first_bad, &bad_sectors)) {
+ if (first_bad > sector)
+ max_sync = first_bad - sector;
+ else {
+ bad_sectors -= (sector
+ - first_bad);
+ if (max_sync > bad_sectors)
+ max_sync = bad_sectors;
+ continue;
+ }
+ }
+ bio = r10_bio->devs[0].bio;
+ bio->bi_next = biolist;
+ biolist = bio;
+ bio->bi_end_io = end_sync_read;
+ bio_set_op_attrs(bio, REQ_OP_READ, 0);
+ if (test_bit(FailFast, &rdev->flags))
+ bio->bi_opf |= MD_FAILFAST;
+ from_addr = r10_bio->devs[j].addr;
+ bio->bi_iter.bi_sector = from_addr +
+ rdev->data_offset;
+ bio_set_dev(bio, rdev->bdev);
+ atomic_inc(&rdev->nr_pending);
+ /* and we write to 'i' (if not in_sync) */
+
+ for (k=0; k<conf->copies; k++)
+ if (r10_bio->devs[k].devnum == i)
+ break;
+ BUG_ON(k == conf->copies);
+ to_addr = r10_bio->devs[k].addr;
+ r10_bio->devs[0].devnum = d;
+ r10_bio->devs[0].addr = from_addr;
+ r10_bio->devs[1].devnum = i;
+ r10_bio->devs[1].addr = to_addr;
+
+ if (need_recover) {
+ bio = r10_bio->devs[1].bio;
+ bio->bi_next = biolist;
+ biolist = bio;
+ bio->bi_end_io = end_sync_write;
+ bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
+ bio->bi_iter.bi_sector = to_addr
+ + mrdev->data_offset;
+ bio_set_dev(bio, mrdev->bdev);
+ atomic_inc(&r10_bio->remaining);
+ } else
+ r10_bio->devs[1].bio->bi_end_io = NULL;
+
+ /* and maybe write to replacement */
+ bio = r10_bio->devs[1].repl_bio;
+ if (bio)
+ bio->bi_end_io = NULL;
+ /* Note: if replace is not NULL, then bio
+ * cannot be NULL as r10buf_pool_alloc will
+ * have allocated it.
+ */
+ if (!mreplace)
+ break;
+ bio->bi_next = biolist;
+ biolist = bio;
+ bio->bi_end_io = end_sync_write;
+ bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
+ bio->bi_iter.bi_sector = to_addr +
+ mreplace->data_offset;
+ bio_set_dev(bio, mreplace->bdev);
+ atomic_inc(&r10_bio->remaining);
+ break;
+ }
+ rcu_read_unlock();
+ if (j == conf->copies) {
+ /* Cannot recover, so abort the recovery or
+ * record a bad block */
+ if (any_working) {
+ /* problem is that there are bad blocks
+ * on other device(s)
+ */
+ int k;
+ for (k = 0; k < conf->copies; k++)
+ if (r10_bio->devs[k].devnum == i)
+ break;
+ if (!test_bit(In_sync,
+ &mrdev->flags)
+ && !rdev_set_badblocks(
+ mrdev,
+ r10_bio->devs[k].addr,
+ max_sync, 0))
+ any_working = 0;
+ if (mreplace &&
+ !rdev_set_badblocks(
+ mreplace,
+ r10_bio->devs[k].addr,
+ max_sync, 0))
+ any_working = 0;
+ }
+ if (!any_working) {
+ if (!test_and_set_bit(MD_RECOVERY_INTR,
+ &mddev->recovery))
+ pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
+ mdname(mddev));
+ mirror->recovery_disabled
+ = mddev->recovery_disabled;
+ }
+ put_buf(r10_bio);
+ if (rb2)
+ atomic_dec(&rb2->remaining);
+ r10_bio = rb2;
+ rdev_dec_pending(mrdev, mddev);
+ if (mreplace)
+ rdev_dec_pending(mreplace, mddev);
+ break;
+ }
+ rdev_dec_pending(mrdev, mddev);
+ if (mreplace)
+ rdev_dec_pending(mreplace, mddev);
+ if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
+ /* Only want this if there is elsewhere to
+ * read from. 'j' is currently the first
+ * readable copy.
+ */
+ int targets = 1;
+ for (; j < conf->copies; j++) {
+ int d = r10_bio->devs[j].devnum;
+ if (conf->mirrors[d].rdev &&
+ test_bit(In_sync,
+ &conf->mirrors[d].rdev->flags))
+ targets++;
+ }
+ if (targets == 1)
+ r10_bio->devs[0].bio->bi_opf
+ &= ~MD_FAILFAST;
+ }
+ }
+ if (biolist == NULL) {
+ while (r10_bio) {
+ struct r10bio *rb2 = r10_bio;
+ r10_bio = (struct r10bio*) rb2->master_bio;
+ rb2->master_bio = NULL;
+ put_buf(rb2);
+ }
+ goto giveup;
+ }
+ } else {
+ /* resync. Schedule a read for every block at this virt offset */
+ int count = 0;
+
+ /*
+ * Since curr_resync_completed could probably not update in
+ * time, and we will set cluster_sync_low based on it.
+ * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
+ * safety reason, which ensures curr_resync_completed is
+ * updated in bitmap_cond_end_sync.
+ */
+ md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
+ mddev_is_clustered(mddev) &&
+ (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
+
+ if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
+ &sync_blocks, mddev->degraded) &&
+ !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
+ &mddev->recovery)) {
+ /* We can skip this block */
+ *skipped = 1;
+ return sync_blocks + sectors_skipped;
+ }
+ if (sync_blocks < max_sync)
+ max_sync = sync_blocks;
+ r10_bio = raid10_alloc_init_r10buf(conf);
+ r10_bio->state = 0;
+
+ r10_bio->mddev = mddev;
+ atomic_set(&r10_bio->remaining, 0);
+ raise_barrier(conf, 0);
+ conf->next_resync = sector_nr;
+
+ r10_bio->master_bio = NULL;
+ r10_bio->sector = sector_nr;
+ set_bit(R10BIO_IsSync, &r10_bio->state);
+ raid10_find_phys(conf, r10_bio);
+ r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
+
+ for (i = 0; i < conf->copies; i++) {
+ int d = r10_bio->devs[i].devnum;
+ sector_t first_bad, sector;
+ int bad_sectors;
+ struct md_rdev *rdev;
+
+ if (r10_bio->devs[i].repl_bio)
+ r10_bio->devs[i].repl_bio->bi_end_io = NULL;
+
+ bio = r10_bio->devs[i].bio;
+ bio->bi_status = BLK_STS_IOERR;
+ rcu_read_lock();
+ rdev = rcu_dereference(conf->mirrors[d].rdev);
+ if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
+ rcu_read_unlock();
+ continue;
+ }
+ sector = r10_bio->devs[i].addr;
+ if (is_badblock(rdev, sector, max_sync,
+ &first_bad, &bad_sectors)) {
+ if (first_bad > sector)
+ max_sync = first_bad - sector;
+ else {
+ bad_sectors -= (sector - first_bad);
+ if (max_sync > bad_sectors)
+ max_sync = bad_sectors;
+ rcu_read_unlock();
+ continue;
+ }
+ }
+ atomic_inc(&rdev->nr_pending);
+ atomic_inc(&r10_bio->remaining);
+ bio->bi_next = biolist;
+ biolist = bio;
+ bio->bi_end_io = end_sync_read;
+ bio_set_op_attrs(bio, REQ_OP_READ, 0);
+ if (test_bit(FailFast, &rdev->flags))
+ bio->bi_opf |= MD_FAILFAST;
+ bio->bi_iter.bi_sector = sector + rdev->data_offset;
+ bio_set_dev(bio, rdev->bdev);
+ count++;
+
+ rdev = rcu_dereference(conf->mirrors[d].replacement);
+ if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
+ rcu_read_unlock();
+ continue;
+ }
+ atomic_inc(&rdev->nr_pending);
+
+ /* Need to set up for writing to the replacement */
+ bio = r10_bio->devs[i].repl_bio;
+ bio->bi_status = BLK_STS_IOERR;
+
+ sector = r10_bio->devs[i].addr;
+ bio->bi_next = biolist;
+ biolist = bio;
+ bio->bi_end_io = end_sync_write;
+ bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
+ if (test_bit(FailFast, &rdev->flags))
+ bio->bi_opf |= MD_FAILFAST;
+ bio->bi_iter.bi_sector = sector + rdev->data_offset;
+ bio_set_dev(bio, rdev->bdev);
+ count++;
+ rcu_read_unlock();
+ }
+
+ if (count < 2) {
+ for (i=0; i<conf->copies; i++) {
+ int d = r10_bio->devs[i].devnum;
+ if (r10_bio->devs[i].bio->bi_end_io)
+ rdev_dec_pending(conf->mirrors[d].rdev,
+ mddev);
+ if (r10_bio->devs[i].repl_bio &&
+ r10_bio->devs[i].repl_bio->bi_end_io)
+ rdev_dec_pending(
+ conf->mirrors[d].replacement,
+ mddev);
+ }
+ put_buf(r10_bio);
+ biolist = NULL;
+ goto giveup;
+ }
+ }
+
+ nr_sectors = 0;
+ if (sector_nr + max_sync < max_sector)
+ max_sector = sector_nr + max_sync;
+ do {
+ struct page *page;
+ int len = PAGE_SIZE;
+ if (sector_nr + (len>>9) > max_sector)
+ len = (max_sector - sector_nr) << 9;
+ if (len == 0)
+ break;
+ for (bio= biolist ; bio ; bio=bio->bi_next) {
+ struct resync_pages *rp = get_resync_pages(bio);
+ page = resync_fetch_page(rp, page_idx);
+ /*
+ * won't fail because the vec table is big enough
+ * to hold all these pages
+ */
+ bio_add_page(bio, page, len, 0);
+ }
+ nr_sectors += len>>9;
+ sector_nr += len>>9;
+ } while (++page_idx < RESYNC_PAGES);
+ r10_bio->sectors = nr_sectors;
+
+ if (mddev_is_clustered(mddev) &&
+ test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
+ /* It is resync not recovery */
+ if (conf->cluster_sync_high < sector_nr + nr_sectors) {
+ conf->cluster_sync_low = mddev->curr_resync_completed;
+ raid10_set_cluster_sync_high(conf);
+ /* Send resync message */
+ md_cluster_ops->resync_info_update(mddev,
+ conf->cluster_sync_low,
+ conf->cluster_sync_high);
+ }
+ } else if (mddev_is_clustered(mddev)) {
+ /* This is recovery not resync */
+ sector_t sect_va1, sect_va2;
+ bool broadcast_msg = false;
+
+ for (i = 0; i < conf->geo.raid_disks; i++) {
+ /*
+ * sector_nr is a device address for recovery, so we
+ * need translate it to array address before compare
+ * with cluster_sync_high.
+ */
+ sect_va1 = raid10_find_virt(conf, sector_nr, i);
+
+ if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
+ broadcast_msg = true;
+ /*
+ * curr_resync_completed is similar as
+ * sector_nr, so make the translation too.
+ */
+ sect_va2 = raid10_find_virt(conf,
+ mddev->curr_resync_completed, i);
+
+ if (conf->cluster_sync_low == 0 ||
+ conf->cluster_sync_low > sect_va2)
+ conf->cluster_sync_low = sect_va2;
+ }
+ }
+ if (broadcast_msg) {
+ raid10_set_cluster_sync_high(conf);
+ md_cluster_ops->resync_info_update(mddev,
+ conf->cluster_sync_low,
+ conf->cluster_sync_high);
+ }
+ }
+
+ while (biolist) {
+ bio = biolist;
+ biolist = biolist->bi_next;
+
+ bio->bi_next = NULL;
+ r10_bio = get_resync_r10bio(bio);
+ r10_bio->sectors = nr_sectors;
+
+ if (bio->bi_end_io == end_sync_read) {
+ md_sync_acct_bio(bio, nr_sectors);
+ bio->bi_status = 0;
+ submit_bio_noacct(bio);
+ }
+ }
+
+ if (sectors_skipped)
+ /* pretend they weren't skipped, it makes
+ * no important difference in this case
+ */
+ md_done_sync(mddev, sectors_skipped, 1);
+
+ return sectors_skipped + nr_sectors;
+ giveup:
+ /* There is nowhere to write, so all non-sync
+ * drives must be failed or in resync, all drives
+ * have a bad block, so try the next chunk...
+ */
+ if (sector_nr + max_sync < max_sector)
+ max_sector = sector_nr + max_sync;
+
+ sectors_skipped += (max_sector - sector_nr);
+ chunks_skipped ++;
+ sector_nr = max_sector;
+ goto skipped;
+}
+
+static sector_t
+raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
+{
+ sector_t size;
+ struct r10conf *conf = mddev->private;
+
+ if (!raid_disks)
+ raid_disks = min(conf->geo.raid_disks,
+ conf->prev.raid_disks);
+ if (!sectors)
+ sectors = conf->dev_sectors;
+
+ size = sectors >> conf->geo.chunk_shift;
+ sector_div(size, conf->geo.far_copies);
+ size = size * raid_disks;
+ sector_div(size, conf->geo.near_copies);
+
+ return size << conf->geo.chunk_shift;
+}
+
+static void calc_sectors(struct r10conf *conf, sector_t size)
+{
+ /* Calculate the number of sectors-per-device that will
+ * actually be used, and set conf->dev_sectors and
+ * conf->stride
+ */
+
+ size = size >> conf->geo.chunk_shift;
+ sector_div(size, conf->geo.far_copies);
+ size = size * conf->geo.raid_disks;
+ sector_div(size, conf->geo.near_copies);
+ /* 'size' is now the number of chunks in the array */
+ /* calculate "used chunks per device" */
+ size = size * conf->copies;
+
+ /* We need to round up when dividing by raid_disks to
+ * get the stride size.
+ */
+ size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
+
+ conf->dev_sectors = size << conf->geo.chunk_shift;
+
+ if (conf->geo.far_offset)
+ conf->geo.stride = 1 << conf->geo.chunk_shift;
+ else {
+ sector_div(size, conf->geo.far_copies);
+ conf->geo.stride = size << conf->geo.chunk_shift;
+ }
+}
+
+enum geo_type {geo_new, geo_old, geo_start};
+static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
+{
+ int nc, fc, fo;
+ int layout, chunk, disks;
+ switch (new) {
+ case geo_old:
+ layout = mddev->layout;
+ chunk = mddev->chunk_sectors;
+ disks = mddev->raid_disks - mddev->delta_disks;
+ break;
+ case geo_new:
+ layout = mddev->new_layout;
+ chunk = mddev->new_chunk_sectors;
+ disks = mddev->raid_disks;
+ break;
+ default: /* avoid 'may be unused' warnings */
+ case geo_start: /* new when starting reshape - raid_disks not
+ * updated yet. */
+ layout = mddev->new_layout;
+ chunk = mddev->new_chunk_sectors;
+ disks = mddev->raid_disks + mddev->delta_disks;
+ break;
+ }
+ if (layout >> 19)
+ return -1;
+ if (chunk < (PAGE_SIZE >> 9) ||
+ !is_power_of_2(chunk))
+ return -2;
+ nc = layout & 255;
+ fc = (layout >> 8) & 255;
+ fo = layout & (1<<16);
+ geo->raid_disks = disks;
+ geo->near_copies = nc;
+ geo->far_copies = fc;
+ geo->far_offset = fo;
+ switch (layout >> 17) {
+ case 0: /* original layout. simple but not always optimal */
+ geo->far_set_size = disks;
+ break;
+ case 1: /* "improved" layout which was buggy. Hopefully no-one is
+ * actually using this, but leave code here just in case.*/
+ geo->far_set_size = disks/fc;
+ WARN(geo->far_set_size < fc,
+ "This RAID10 layout does not provide data safety - please backup and create new array\n");
+ break;
+ case 2: /* "improved" layout fixed to match documentation */
+ geo->far_set_size = fc * nc;
+ break;
+ default: /* Not a valid layout */
+ return -1;
+ }
+ geo->chunk_mask = chunk - 1;
+ geo->chunk_shift = ffz(~chunk);
+ return nc*fc;
+}
+
+static void raid10_free_conf(struct r10conf *conf)
+{
+ if (!conf)
+ return;
+
+ mempool_exit(&conf->r10bio_pool);
+ kfree(conf->mirrors);
+ kfree(conf->mirrors_old);
+ kfree(conf->mirrors_new);
+ safe_put_page(conf->tmppage);
+ bioset_exit(&conf->bio_split);
+ kfree(conf);
+}
+
+static struct r10conf *setup_conf(struct mddev *mddev)
+{
+ struct r10conf *conf = NULL;
+ int err = -EINVAL;
+ struct geom geo;
+ int copies;
+
+ copies = setup_geo(&geo, mddev, geo_new);
+
+ if (copies == -2) {
+ pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
+ mdname(mddev), PAGE_SIZE);
+ goto out;
+ }
+
+ if (copies < 2 || copies > mddev->raid_disks) {
+ pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
+ mdname(mddev), mddev->new_layout);
+ goto out;
+ }
+
+ err = -ENOMEM;
+ conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
+ if (!conf)
+ goto out;
+
+ /* FIXME calc properly */
+ conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
+ sizeof(struct raid10_info),
+ GFP_KERNEL);
+ if (!conf->mirrors)
+ goto out;
+
+ conf->tmppage = alloc_page(GFP_KERNEL);
+ if (!conf->tmppage)
+ goto out;
+
+ conf->geo = geo;
+ conf->copies = copies;
+ err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
+ rbio_pool_free, conf);
+ if (err)
+ goto out;
+
+ err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
+ if (err)
+ goto out;
+
+ calc_sectors(conf, mddev->dev_sectors);
+ if (mddev->reshape_position == MaxSector) {
+ conf->prev = conf->geo;
+ conf->reshape_progress = MaxSector;
+ } else {
+ if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
+ err = -EINVAL;
+ goto out;
+ }
+ conf->reshape_progress = mddev->reshape_position;
+ if (conf->prev.far_offset)
+ conf->prev.stride = 1 << conf->prev.chunk_shift;
+ else
+ /* far_copies must be 1 */
+ conf->prev.stride = conf->dev_sectors;
+ }
+ conf->reshape_safe = conf->reshape_progress;
+ spin_lock_init(&conf->device_lock);
+ INIT_LIST_HEAD(&conf->retry_list);
+ INIT_LIST_HEAD(&conf->bio_end_io_list);
+
+ seqlock_init(&conf->resync_lock);
+ init_waitqueue_head(&conf->wait_barrier);
+ atomic_set(&conf->nr_pending, 0);
+
+ err = -ENOMEM;
+ conf->thread = md_register_thread(raid10d, mddev, "raid10");
+ if (!conf->thread)
+ goto out;
+
+ conf->mddev = mddev;
+ return conf;
+
+ out:
+ raid10_free_conf(conf);
+ return ERR_PTR(err);
+}
+
+static void raid10_set_io_opt(struct r10conf *conf)
+{
+ int raid_disks = conf->geo.raid_disks;
+
+ if (!(conf->geo.raid_disks % conf->geo.near_copies))
+ raid_disks /= conf->geo.near_copies;
+ blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
+ raid_disks);
+}
+
+static int raid10_run(struct mddev *mddev)
+{
+ struct r10conf *conf;
+ int i, disk_idx;
+ struct raid10_info *disk;
+ struct md_rdev *rdev;
+ sector_t size;
+ sector_t min_offset_diff = 0;
+ int first = 1;
+
+ if (mddev_init_writes_pending(mddev) < 0)
+ return -ENOMEM;
+
+ if (mddev->private == NULL) {
+ conf = setup_conf(mddev);
+ if (IS_ERR(conf))
+ return PTR_ERR(conf);
+ mddev->private = conf;
+ }
+ conf = mddev->private;
+ if (!conf)
+ goto out;
+
+ mddev->thread = conf->thread;
+ conf->thread = NULL;
+
+ if (mddev_is_clustered(conf->mddev)) {
+ int fc, fo;
+
+ fc = (mddev->layout >> 8) & 255;
+ fo = mddev->layout & (1<<16);
+ if (fc > 1 || fo > 0) {
+ pr_err("only near layout is supported by clustered"
+ " raid10\n");
+ goto out_free_conf;
+ }
+ }
+
+ if (mddev->queue) {
+ blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
+ blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
+ raid10_set_io_opt(conf);
+ }
+
+ rdev_for_each(rdev, mddev) {
+ long long diff;
+
+ disk_idx = rdev->raid_disk;
+ if (disk_idx < 0)
+ continue;
+ if (disk_idx >= conf->geo.raid_disks &&
+ disk_idx >= conf->prev.raid_disks)
+ continue;
+ disk = conf->mirrors + disk_idx;
+
+ if (test_bit(Replacement, &rdev->flags)) {
+ if (disk->replacement)
+ goto out_free_conf;
+ disk->replacement = rdev;
+ } else {
+ if (disk->rdev)
+ goto out_free_conf;
+ disk->rdev = rdev;
+ }
+ diff = (rdev->new_data_offset - rdev->data_offset);
+ if (!mddev->reshape_backwards)
+ diff = -diff;
+ if (diff < 0)
+ diff = 0;
+ if (first || diff < min_offset_diff)
+ min_offset_diff = diff;
+
+ if (mddev->gendisk)
+ disk_stack_limits(mddev->gendisk, rdev->bdev,
+ rdev->data_offset << 9);
+
+ disk->head_position = 0;
+ first = 0;
+ }
+
+ /* need to check that every block has at least one working mirror */
+ if (!enough(conf, -1)) {
+ pr_err("md/raid10:%s: not enough operational mirrors.\n",
+ mdname(mddev));
+ goto out_free_conf;
+ }
+
+ if (conf->reshape_progress != MaxSector) {
+ /* must ensure that shape change is supported */
+ if (conf->geo.far_copies != 1 &&
+ conf->geo.far_offset == 0)
+ goto out_free_conf;
+ if (conf->prev.far_copies != 1 &&
+ conf->prev.far_offset == 0)
+ goto out_free_conf;
+ }
+
+ mddev->degraded = 0;
+ for (i = 0;
+ i < conf->geo.raid_disks
+ || i < conf->prev.raid_disks;
+ i++) {
+
+ disk = conf->mirrors + i;
+
+ if (!disk->rdev && disk->replacement) {
+ /* The replacement is all we have - use it */
+ disk->rdev = disk->replacement;
+ disk->replacement = NULL;
+ clear_bit(Replacement, &disk->rdev->flags);
+ }
+
+ if (!disk->rdev ||
+ !test_bit(In_sync, &disk->rdev->flags)) {
+ disk->head_position = 0;
+ mddev->degraded++;
+ if (disk->rdev &&
+ disk->rdev->saved_raid_disk < 0)
+ conf->fullsync = 1;
+ }
+
+ if (disk->replacement &&
+ !test_bit(In_sync, &disk->replacement->flags) &&
+ disk->replacement->saved_raid_disk < 0) {
+ conf->fullsync = 1;
+ }
+
+ disk->recovery_disabled = mddev->recovery_disabled - 1;
+ }
+
+ if (mddev->recovery_cp != MaxSector)
+ pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
+ mdname(mddev));
+ pr_info("md/raid10:%s: active with %d out of %d devices\n",
+ mdname(mddev), conf->geo.raid_disks - mddev->degraded,
+ conf->geo.raid_disks);
+ /*
+ * Ok, everything is just fine now
+ */
+ mddev->dev_sectors = conf->dev_sectors;
+ size = raid10_size(mddev, 0, 0);
+ md_set_array_sectors(mddev, size);
+ mddev->resync_max_sectors = size;
+ set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
+
+ if (md_integrity_register(mddev))
+ goto out_free_conf;
+
+ if (conf->reshape_progress != MaxSector) {
+ unsigned long before_length, after_length;
+
+ before_length = ((1 << conf->prev.chunk_shift) *
+ conf->prev.far_copies);
+ after_length = ((1 << conf->geo.chunk_shift) *
+ conf->geo.far_copies);
+
+ if (max(before_length, after_length) > min_offset_diff) {
+ /* This cannot work */
+ pr_warn("md/raid10: offset difference not enough to continue reshape\n");
+ goto out_free_conf;
+ }
+ conf->offset_diff = min_offset_diff;
+
+ clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+ clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
+ set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
+ set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
+ mddev->sync_thread = md_register_thread(md_do_sync, mddev,
+ "reshape");
+ if (!mddev->sync_thread)
+ goto out_free_conf;
+ }
+
+ return 0;
+
+out_free_conf:
+ md_unregister_thread(&mddev->thread);
+ raid10_free_conf(conf);
+ mddev->private = NULL;
+out:
+ return -EIO;
+}
+
+static void raid10_free(struct mddev *mddev, void *priv)
+{
+ raid10_free_conf(priv);
+}
+
+static void raid10_quiesce(struct mddev *mddev, int quiesce)
+{
+ struct r10conf *conf = mddev->private;
+
+ if (quiesce)
+ raise_barrier(conf, 0);
+ else
+ lower_barrier(conf);
+}
+
+static int raid10_resize(struct mddev *mddev, sector_t sectors)
+{
+ /* Resize of 'far' arrays is not supported.
+ * For 'near' and 'offset' arrays we can set the
+ * number of sectors used to be an appropriate multiple
+ * of the chunk size.
+ * For 'offset', this is far_copies*chunksize.
+ * For 'near' the multiplier is the LCM of
+ * near_copies and raid_disks.
+ * So if far_copies > 1 && !far_offset, fail.
+ * Else find LCM(raid_disks, near_copy)*far_copies and
+ * multiply by chunk_size. Then round to this number.
+ * This is mostly done by raid10_size()
+ */
+ struct r10conf *conf = mddev->private;
+ sector_t oldsize, size;
+
+ if (mddev->reshape_position != MaxSector)
+ return -EBUSY;
+
+ if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
+ return -EINVAL;
+
+ oldsize = raid10_size(mddev, 0, 0);
+ size = raid10_size(mddev, sectors, 0);
+ if (mddev->external_size &&
+ mddev->array_sectors > size)
+ return -EINVAL;
+ if (mddev->bitmap) {
+ int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
+ if (ret)
+ return ret;
+ }
+ md_set_array_sectors(mddev, size);
+ if (sectors > mddev->dev_sectors &&
+ mddev->recovery_cp > oldsize) {
+ mddev->recovery_cp = oldsize;
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ }
+ calc_sectors(conf, sectors);
+ mddev->dev_sectors = conf->dev_sectors;
+ mddev->resync_max_sectors = size;
+ return 0;
+}
+
+static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
+{
+ struct md_rdev *rdev;
+ struct r10conf *conf;
+
+ if (mddev->degraded > 0) {
+ pr_warn("md/raid10:%s: Error: degraded raid0!\n",
+ mdname(mddev));
+ return ERR_PTR(-EINVAL);
+ }
+ sector_div(size, devs);
+
+ /* Set new parameters */
+ mddev->new_level = 10;
+ /* new layout: far_copies = 1, near_copies = 2 */
+ mddev->new_layout = (1<<8) + 2;
+ mddev->new_chunk_sectors = mddev->chunk_sectors;
+ mddev->delta_disks = mddev->raid_disks;
+ mddev->raid_disks *= 2;
+ /* make sure it will be not marked as dirty */
+ mddev->recovery_cp = MaxSector;
+ mddev->dev_sectors = size;
+
+ conf = setup_conf(mddev);
+ if (!IS_ERR(conf)) {
+ rdev_for_each(rdev, mddev)
+ if (rdev->raid_disk >= 0) {
+ rdev->new_raid_disk = rdev->raid_disk * 2;
+ rdev->sectors = size;
+ }
+ WRITE_ONCE(conf->barrier, 1);
+ }
+
+ return conf;
+}
+
+static void *raid10_takeover(struct mddev *mddev)
+{
+ struct r0conf *raid0_conf;
+
+ /* raid10 can take over:
+ * raid0 - providing it has only two drives
+ */
+ if (mddev->level == 0) {
+ /* for raid0 takeover only one zone is supported */
+ raid0_conf = mddev->private;
+ if (raid0_conf->nr_strip_zones > 1) {
+ pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
+ mdname(mddev));
+ return ERR_PTR(-EINVAL);
+ }
+ return raid10_takeover_raid0(mddev,
+ raid0_conf->strip_zone->zone_end,
+ raid0_conf->strip_zone->nb_dev);
+ }
+ return ERR_PTR(-EINVAL);
+}
+
+static int raid10_check_reshape(struct mddev *mddev)
+{
+ /* Called when there is a request to change
+ * - layout (to ->new_layout)
+ * - chunk size (to ->new_chunk_sectors)
+ * - raid_disks (by delta_disks)
+ * or when trying to restart a reshape that was ongoing.
+ *
+ * We need to validate the request and possibly allocate
+ * space if that might be an issue later.
+ *
+ * Currently we reject any reshape of a 'far' mode array,
+ * allow chunk size to change if new is generally acceptable,
+ * allow raid_disks to increase, and allow
+ * a switch between 'near' mode and 'offset' mode.
+ */
+ struct r10conf *conf = mddev->private;
+ struct geom geo;
+
+ if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
+ return -EINVAL;
+
+ if (setup_geo(&geo, mddev, geo_start) != conf->copies)
+ /* mustn't change number of copies */
+ return -EINVAL;
+ if (geo.far_copies > 1 && !geo.far_offset)
+ /* Cannot switch to 'far' mode */
+ return -EINVAL;
+
+ if (mddev->array_sectors & geo.chunk_mask)
+ /* not factor of array size */
+ return -EINVAL;
+
+ if (!enough(conf, -1))
+ return -EINVAL;
+
+ kfree(conf->mirrors_new);
+ conf->mirrors_new = NULL;
+ if (mddev->delta_disks > 0) {
+ /* allocate new 'mirrors' list */
+ conf->mirrors_new =
+ kcalloc(mddev->raid_disks + mddev->delta_disks,
+ sizeof(struct raid10_info),
+ GFP_KERNEL);
+ if (!conf->mirrors_new)
+ return -ENOMEM;
+ }
+ return 0;
+}
+
+/*
+ * Need to check if array has failed when deciding whether to:
+ * - start an array
+ * - remove non-faulty devices
+ * - add a spare
+ * - allow a reshape
+ * This determination is simple when no reshape is happening.
+ * However if there is a reshape, we need to carefully check
+ * both the before and after sections.
+ * This is because some failed devices may only affect one
+ * of the two sections, and some non-in_sync devices may
+ * be insync in the section most affected by failed devices.
+ */
+static int calc_degraded(struct r10conf *conf)
+{
+ int degraded, degraded2;
+ int i;
+
+ rcu_read_lock();
+ degraded = 0;
+ /* 'prev' section first */
+ for (i = 0; i < conf->prev.raid_disks; i++) {
+ struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
+ if (!rdev || test_bit(Faulty, &rdev->flags))
+ degraded++;
+ else if (!test_bit(In_sync, &rdev->flags))
+ /* When we can reduce the number of devices in
+ * an array, this might not contribute to
+ * 'degraded'. It does now.
+ */
+ degraded++;
+ }
+ rcu_read_unlock();
+ if (conf->geo.raid_disks == conf->prev.raid_disks)
+ return degraded;
+ rcu_read_lock();
+ degraded2 = 0;
+ for (i = 0; i < conf->geo.raid_disks; i++) {
+ struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
+ if (!rdev || test_bit(Faulty, &rdev->flags))
+ degraded2++;
+ else if (!test_bit(In_sync, &rdev->flags)) {
+ /* If reshape is increasing the number of devices,
+ * this section has already been recovered, so
+ * it doesn't contribute to degraded.
+ * else it does.
+ */
+ if (conf->geo.raid_disks <= conf->prev.raid_disks)
+ degraded2++;
+ }
+ }
+ rcu_read_unlock();
+ if (degraded2 > degraded)
+ return degraded2;
+ return degraded;
+}
+
+static int raid10_start_reshape(struct mddev *mddev)
+{
+ /* A 'reshape' has been requested. This commits
+ * the various 'new' fields and sets MD_RECOVER_RESHAPE
+ * This also checks if there are enough spares and adds them
+ * to the array.
+ * We currently require enough spares to make the final
+ * array non-degraded. We also require that the difference
+ * between old and new data_offset - on each device - is
+ * enough that we never risk over-writing.
+ */
+
+ unsigned long before_length, after_length;
+ sector_t min_offset_diff = 0;
+ int first = 1;
+ struct geom new;
+ struct r10conf *conf = mddev->private;
+ struct md_rdev *rdev;
+ int spares = 0;
+ int ret;
+
+ if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
+ return -EBUSY;
+
+ if (setup_geo(&new, mddev, geo_start) != conf->copies)
+ return -EINVAL;
+
+ before_length = ((1 << conf->prev.chunk_shift) *
+ conf->prev.far_copies);
+ after_length = ((1 << conf->geo.chunk_shift) *
+ conf->geo.far_copies);
+
+ rdev_for_each(rdev, mddev) {
+ if (!test_bit(In_sync, &rdev->flags)
+ && !test_bit(Faulty, &rdev->flags))
+ spares++;
+ if (rdev->raid_disk >= 0) {
+ long long diff = (rdev->new_data_offset
+ - rdev->data_offset);
+ if (!mddev->reshape_backwards)
+ diff = -diff;
+ if (diff < 0)
+ diff = 0;
+ if (first || diff < min_offset_diff)
+ min_offset_diff = diff;
+ first = 0;
+ }
+ }
+
+ if (max(before_length, after_length) > min_offset_diff)
+ return -EINVAL;
+
+ if (spares < mddev->delta_disks)
+ return -EINVAL;
+
+ conf->offset_diff = min_offset_diff;
+ spin_lock_irq(&conf->device_lock);
+ if (conf->mirrors_new) {
+ memcpy(conf->mirrors_new, conf->mirrors,
+ sizeof(struct raid10_info)*conf->prev.raid_disks);
+ smp_mb();
+ kfree(conf->mirrors_old);
+ conf->mirrors_old = conf->mirrors;
+ conf->mirrors = conf->mirrors_new;
+ conf->mirrors_new = NULL;
+ }
+ setup_geo(&conf->geo, mddev, geo_start);
+ smp_mb();
+ if (mddev->reshape_backwards) {
+ sector_t size = raid10_size(mddev, 0, 0);
+ if (size < mddev->array_sectors) {
+ spin_unlock_irq(&conf->device_lock);
+ pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
+ mdname(mddev));
+ return -EINVAL;
+ }
+ mddev->resync_max_sectors = size;
+ conf->reshape_progress = size;
+ } else
+ conf->reshape_progress = 0;
+ conf->reshape_safe = conf->reshape_progress;
+ spin_unlock_irq(&conf->device_lock);
+
+ if (mddev->delta_disks && mddev->bitmap) {
+ struct mdp_superblock_1 *sb = NULL;
+ sector_t oldsize, newsize;
+
+ oldsize = raid10_size(mddev, 0, 0);
+ newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
+
+ if (!mddev_is_clustered(mddev)) {
+ ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
+ if (ret)
+ goto abort;
+ else
+ goto out;
+ }
+
+ rdev_for_each(rdev, mddev) {
+ if (rdev->raid_disk > -1 &&
+ !test_bit(Faulty, &rdev->flags))
+ sb = page_address(rdev->sb_page);
+ }
+
+ /*
+ * some node is already performing reshape, and no need to
+ * call md_bitmap_resize again since it should be called when
+ * receiving BITMAP_RESIZE msg
+ */
+ if ((sb && (le32_to_cpu(sb->feature_map) &
+ MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
+ goto out;
+
+ ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
+ if (ret)
+ goto abort;
+
+ ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
+ if (ret) {
+ md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
+ goto abort;
+ }
+ }
+out:
+ if (mddev->delta_disks > 0) {
+ rdev_for_each(rdev, mddev)
+ if (rdev->raid_disk < 0 &&
+ !test_bit(Faulty, &rdev->flags)) {
+ if (raid10_add_disk(mddev, rdev) == 0) {
+ if (rdev->raid_disk >=
+ conf->prev.raid_disks)
+ set_bit(In_sync, &rdev->flags);
+ else
+ rdev->recovery_offset = 0;
+
+ /* Failure here is OK */
+ sysfs_link_rdev(mddev, rdev);
+ }
+ } else if (rdev->raid_disk >= conf->prev.raid_disks
+ && !test_bit(Faulty, &rdev->flags)) {
+ /* This is a spare that was manually added */
+ set_bit(In_sync, &rdev->flags);
+ }
+ }
+ /* When a reshape changes the number of devices,
+ * ->degraded is measured against the larger of the
+ * pre and post numbers.
+ */
+ spin_lock_irq(&conf->device_lock);
+ mddev->degraded = calc_degraded(conf);
+ spin_unlock_irq(&conf->device_lock);
+ mddev->raid_disks = conf->geo.raid_disks;
+ mddev->reshape_position = conf->reshape_progress;
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+
+ clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+ clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
+ clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
+ set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
+ set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
+
+ mddev->sync_thread = md_register_thread(md_do_sync, mddev,
+ "reshape");
+ if (!mddev->sync_thread) {
+ ret = -EAGAIN;
+ goto abort;
+ }
+ conf->reshape_checkpoint = jiffies;
+ md_wakeup_thread(mddev->sync_thread);
+ md_new_event();
+ return 0;
+
+abort:
+ mddev->recovery = 0;
+ spin_lock_irq(&conf->device_lock);
+ conf->geo = conf->prev;
+ mddev->raid_disks = conf->geo.raid_disks;
+ rdev_for_each(rdev, mddev)
+ rdev->new_data_offset = rdev->data_offset;
+ smp_wmb();
+ conf->reshape_progress = MaxSector;
+ conf->reshape_safe = MaxSector;
+ mddev->reshape_position = MaxSector;
+ spin_unlock_irq(&conf->device_lock);
+ return ret;
+}
+
+/* Calculate the last device-address that could contain
+ * any block from the chunk that includes the array-address 's'
+ * and report the next address.
+ * i.e. the address returned will be chunk-aligned and after
+ * any data that is in the chunk containing 's'.
+ */
+static sector_t last_dev_address(sector_t s, struct geom *geo)
+{
+ s = (s | geo->chunk_mask) + 1;
+ s >>= geo->chunk_shift;
+ s *= geo->near_copies;
+ s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
+ s *= geo->far_copies;
+ s <<= geo->chunk_shift;
+ return s;
+}
+
+/* Calculate the first device-address that could contain
+ * any block from the chunk that includes the array-address 's'.
+ * This too will be the start of a chunk
+ */
+static sector_t first_dev_address(sector_t s, struct geom *geo)
+{
+ s >>= geo->chunk_shift;
+ s *= geo->near_copies;
+ sector_div(s, geo->raid_disks);
+ s *= geo->far_copies;
+ s <<= geo->chunk_shift;
+ return s;
+}
+
+static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
+ int *skipped)
+{
+ /* We simply copy at most one chunk (smallest of old and new)
+ * at a time, possibly less if that exceeds RESYNC_PAGES,
+ * or we hit a bad block or something.
+ * This might mean we pause for normal IO in the middle of
+ * a chunk, but that is not a problem as mddev->reshape_position
+ * can record any location.
+ *
+ * If we will want to write to a location that isn't
+ * yet recorded as 'safe' (i.e. in metadata on disk) then
+ * we need to flush all reshape requests and update the metadata.
+ *
+ * When reshaping forwards (e.g. to more devices), we interpret
+ * 'safe' as the earliest block which might not have been copied
+ * down yet. We divide this by previous stripe size and multiply
+ * by previous stripe length to get lowest device offset that we
+ * cannot write to yet.
+ * We interpret 'sector_nr' as an address that we want to write to.
+ * From this we use last_device_address() to find where we might
+ * write to, and first_device_address on the 'safe' position.
+ * If this 'next' write position is after the 'safe' position,
+ * we must update the metadata to increase the 'safe' position.
+ *
+ * When reshaping backwards, we round in the opposite direction
+ * and perform the reverse test: next write position must not be
+ * less than current safe position.
+ *
+ * In all this the minimum difference in data offsets
+ * (conf->offset_diff - always positive) allows a bit of slack,
+ * so next can be after 'safe', but not by more than offset_diff
+ *
+ * We need to prepare all the bios here before we start any IO
+ * to ensure the size we choose is acceptable to all devices.
+ * The means one for each copy for write-out and an extra one for
+ * read-in.
+ * We store the read-in bio in ->master_bio and the others in
+ * ->devs[x].bio and ->devs[x].repl_bio.
+ */
+ struct r10conf *conf = mddev->private;
+ struct r10bio *r10_bio;
+ sector_t next, safe, last;
+ int max_sectors;
+ int nr_sectors;
+ int s;
+ struct md_rdev *rdev;
+ int need_flush = 0;
+ struct bio *blist;
+ struct bio *bio, *read_bio;
+ int sectors_done = 0;
+ struct page **pages;
+
+ if (sector_nr == 0) {
+ /* If restarting in the middle, skip the initial sectors */
+ if (mddev->reshape_backwards &&
+ conf->reshape_progress < raid10_size(mddev, 0, 0)) {
+ sector_nr = (raid10_size(mddev, 0, 0)
+ - conf->reshape_progress);
+ } else if (!mddev->reshape_backwards &&
+ conf->reshape_progress > 0)
+ sector_nr = conf->reshape_progress;
+ if (sector_nr) {
+ mddev->curr_resync_completed = sector_nr;
+ sysfs_notify_dirent_safe(mddev->sysfs_completed);
+ *skipped = 1;
+ return sector_nr;
+ }
+ }
+
+ /* We don't use sector_nr to track where we are up to
+ * as that doesn't work well for ->reshape_backwards.
+ * So just use ->reshape_progress.
+ */
+ if (mddev->reshape_backwards) {
+ /* 'next' is the earliest device address that we might
+ * write to for this chunk in the new layout
+ */
+ next = first_dev_address(conf->reshape_progress - 1,
+ &conf->geo);
+
+ /* 'safe' is the last device address that we might read from
+ * in the old layout after a restart
+ */
+ safe = last_dev_address(conf->reshape_safe - 1,
+ &conf->prev);
+
+ if (next + conf->offset_diff < safe)
+ need_flush = 1;
+
+ last = conf->reshape_progress - 1;
+ sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
+ & conf->prev.chunk_mask);
+ if (sector_nr + RESYNC_SECTORS < last)
+ sector_nr = last + 1 - RESYNC_SECTORS;
+ } else {
+ /* 'next' is after the last device address that we
+ * might write to for this chunk in the new layout
+ */
+ next = last_dev_address(conf->reshape_progress, &conf->geo);
+
+ /* 'safe' is the earliest device address that we might
+ * read from in the old layout after a restart
+ */
+ safe = first_dev_address(conf->reshape_safe, &conf->prev);
+
+ /* Need to update metadata if 'next' might be beyond 'safe'
+ * as that would possibly corrupt data
+ */
+ if (next > safe + conf->offset_diff)
+ need_flush = 1;
+
+ sector_nr = conf->reshape_progress;
+ last = sector_nr | (conf->geo.chunk_mask
+ & conf->prev.chunk_mask);
+
+ if (sector_nr + RESYNC_SECTORS <= last)
+ last = sector_nr + RESYNC_SECTORS - 1;
+ }
+
+ if (need_flush ||
+ time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
+ /* Need to update reshape_position in metadata */
+ wait_barrier(conf, false);
+ mddev->reshape_position = conf->reshape_progress;
+ if (mddev->reshape_backwards)
+ mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
+ - conf->reshape_progress;
+ else
+ mddev->curr_resync_completed = conf->reshape_progress;
+ conf->reshape_checkpoint = jiffies;
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+ md_wakeup_thread(mddev->thread);
+ wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
+ test_bit(MD_RECOVERY_INTR, &mddev->recovery));
+ if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
+ allow_barrier(conf);
+ return sectors_done;
+ }
+ conf->reshape_safe = mddev->reshape_position;
+ allow_barrier(conf);
+ }
+
+ raise_barrier(conf, 0);
+read_more:
+ /* Now schedule reads for blocks from sector_nr to last */
+ r10_bio = raid10_alloc_init_r10buf(conf);
+ r10_bio->state = 0;
+ raise_barrier(conf, 1);
+ atomic_set(&r10_bio->remaining, 0);
+ r10_bio->mddev = mddev;
+ r10_bio->sector = sector_nr;
+ set_bit(R10BIO_IsReshape, &r10_bio->state);
+ r10_bio->sectors = last - sector_nr + 1;
+ rdev = read_balance(conf, r10_bio, &max_sectors);
+ BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
+
+ if (!rdev) {
+ /* Cannot read from here, so need to record bad blocks
+ * on all the target devices.
+ */
+ // FIXME
+ mempool_free(r10_bio, &conf->r10buf_pool);
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ return sectors_done;
+ }
+
+ read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
+ GFP_KERNEL, &mddev->bio_set);
+ read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
+ + rdev->data_offset);
+ read_bio->bi_private = r10_bio;
+ read_bio->bi_end_io = end_reshape_read;
+ r10_bio->master_bio = read_bio;
+ r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
+
+ /*
+ * Broadcast RESYNC message to other nodes, so all nodes would not
+ * write to the region to avoid conflict.
+ */
+ if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
+ struct mdp_superblock_1 *sb = NULL;
+ int sb_reshape_pos = 0;
+
+ conf->cluster_sync_low = sector_nr;
+ conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
+ sb = page_address(rdev->sb_page);
+ if (sb) {
+ sb_reshape_pos = le64_to_cpu(sb->reshape_position);
+ /*
+ * Set cluster_sync_low again if next address for array
+ * reshape is less than cluster_sync_low. Since we can't
+ * update cluster_sync_low until it has finished reshape.
+ */
+ if (sb_reshape_pos < conf->cluster_sync_low)
+ conf->cluster_sync_low = sb_reshape_pos;
+ }
+
+ md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
+ conf->cluster_sync_high);
+ }
+
+ /* Now find the locations in the new layout */
+ __raid10_find_phys(&conf->geo, r10_bio);
+
+ blist = read_bio;
+ read_bio->bi_next = NULL;
+
+ rcu_read_lock();
+ for (s = 0; s < conf->copies*2; s++) {
+ struct bio *b;
+ int d = r10_bio->devs[s/2].devnum;
+ struct md_rdev *rdev2;
+ if (s&1) {
+ rdev2 = rcu_dereference(conf->mirrors[d].replacement);
+ b = r10_bio->devs[s/2].repl_bio;
+ } else {
+ rdev2 = rcu_dereference(conf->mirrors[d].rdev);
+ b = r10_bio->devs[s/2].bio;
+ }
+ if (!rdev2 || test_bit(Faulty, &rdev2->flags))
+ continue;
+
+ bio_set_dev(b, rdev2->bdev);
+ b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
+ rdev2->new_data_offset;
+ b->bi_end_io = end_reshape_write;
+ bio_set_op_attrs(b, REQ_OP_WRITE, 0);
+ b->bi_next = blist;
+ blist = b;
+ }
+
+ /* Now add as many pages as possible to all of these bios. */
+
+ nr_sectors = 0;
+ pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
+ for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
+ struct page *page = pages[s / (PAGE_SIZE >> 9)];
+ int len = (max_sectors - s) << 9;
+ if (len > PAGE_SIZE)
+ len = PAGE_SIZE;
+ for (bio = blist; bio ; bio = bio->bi_next) {
+ /*
+ * won't fail because the vec table is big enough
+ * to hold all these pages
+ */
+ bio_add_page(bio, page, len, 0);
+ }
+ sector_nr += len >> 9;
+ nr_sectors += len >> 9;
+ }
+ rcu_read_unlock();
+ r10_bio->sectors = nr_sectors;
+
+ /* Now submit the read */
+ md_sync_acct_bio(read_bio, r10_bio->sectors);
+ atomic_inc(&r10_bio->remaining);
+ read_bio->bi_next = NULL;
+ submit_bio_noacct(read_bio);
+ sectors_done += nr_sectors;
+ if (sector_nr <= last)
+ goto read_more;
+
+ lower_barrier(conf);
+
+ /* Now that we have done the whole section we can
+ * update reshape_progress
+ */
+ if (mddev->reshape_backwards)
+ conf->reshape_progress -= sectors_done;
+ else
+ conf->reshape_progress += sectors_done;
+
+ return sectors_done;
+}
+
+static void end_reshape_request(struct r10bio *r10_bio);
+static int handle_reshape_read_error(struct mddev *mddev,
+ struct r10bio *r10_bio);
+static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
+{
+ /* Reshape read completed. Hopefully we have a block
+ * to write out.
+ * If we got a read error then we do sync 1-page reads from
+ * elsewhere until we find the data - or give up.
+ */
+ struct r10conf *conf = mddev->private;
+ int s;
+
+ if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
+ if (handle_reshape_read_error(mddev, r10_bio) < 0) {
+ /* Reshape has been aborted */
+ md_done_sync(mddev, r10_bio->sectors, 0);
+ return;
+ }
+
+ /* We definitely have the data in the pages, schedule the
+ * writes.
+ */
+ atomic_set(&r10_bio->remaining, 1);
+ for (s = 0; s < conf->copies*2; s++) {
+ struct bio *b;
+ int d = r10_bio->devs[s/2].devnum;
+ struct md_rdev *rdev;
+ rcu_read_lock();
+ if (s&1) {
+ rdev = rcu_dereference(conf->mirrors[d].replacement);
+ b = r10_bio->devs[s/2].repl_bio;
+ } else {
+ rdev = rcu_dereference(conf->mirrors[d].rdev);
+ b = r10_bio->devs[s/2].bio;
+ }
+ if (!rdev || test_bit(Faulty, &rdev->flags)) {
+ rcu_read_unlock();
+ continue;
+ }
+ atomic_inc(&rdev->nr_pending);
+ rcu_read_unlock();
+ md_sync_acct_bio(b, r10_bio->sectors);
+ atomic_inc(&r10_bio->remaining);
+ b->bi_next = NULL;
+ submit_bio_noacct(b);
+ }
+ end_reshape_request(r10_bio);
+}
+
+static void end_reshape(struct r10conf *conf)
+{
+ if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
+ return;
+
+ spin_lock_irq(&conf->device_lock);
+ conf->prev = conf->geo;
+ md_finish_reshape(conf->mddev);
+ smp_wmb();
+ conf->reshape_progress = MaxSector;
+ conf->reshape_safe = MaxSector;
+ spin_unlock_irq(&conf->device_lock);
+
+ if (conf->mddev->queue)
+ raid10_set_io_opt(conf);
+ conf->fullsync = 0;
+}
+
+static void raid10_update_reshape_pos(struct mddev *mddev)
+{
+ struct r10conf *conf = mddev->private;
+ sector_t lo, hi;
+
+ md_cluster_ops->resync_info_get(mddev, &lo, &hi);
+ if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
+ || mddev->reshape_position == MaxSector)
+ conf->reshape_progress = mddev->reshape_position;
+ else
+ WARN_ON_ONCE(1);
+}
+
+static int handle_reshape_read_error(struct mddev *mddev,
+ struct r10bio *r10_bio)
+{
+ /* Use sync reads to get the blocks from somewhere else */
+ int sectors = r10_bio->sectors;
+ struct r10conf *conf = mddev->private;
+ struct r10bio *r10b;
+ int slot = 0;
+ int idx = 0;
+ struct page **pages;
+
+ r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
+ if (!r10b) {
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+ return -ENOMEM;
+ }
+
+ /* reshape IOs share pages from .devs[0].bio */
+ pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
+
+ r10b->sector = r10_bio->sector;
+ __raid10_find_phys(&conf->prev, r10b);
+
+ while (sectors) {
+ int s = sectors;
+ int success = 0;
+ int first_slot = slot;
+
+ if (s > (PAGE_SIZE >> 9))
+ s = PAGE_SIZE >> 9;
+
+ rcu_read_lock();
+ while (!success) {
+ int d = r10b->devs[slot].devnum;
+ struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
+ sector_t addr;
+ if (rdev == NULL ||
+ test_bit(Faulty, &rdev->flags) ||
+ !test_bit(In_sync, &rdev->flags))
+ goto failed;
+
+ addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
+ atomic_inc(&rdev->nr_pending);
+ rcu_read_unlock();
+ success = sync_page_io(rdev,
+ addr,
+ s << 9,
+ pages[idx],
+ REQ_OP_READ, false);
+ rdev_dec_pending(rdev, mddev);
+ rcu_read_lock();
+ if (success)
+ break;
+ failed:
+ slot++;
+ if (slot >= conf->copies)
+ slot = 0;
+ if (slot == first_slot)
+ break;
+ }
+ rcu_read_unlock();
+ if (!success) {
+ /* couldn't read this block, must give up */
+ set_bit(MD_RECOVERY_INTR,
+ &mddev->recovery);
+ kfree(r10b);
+ return -EIO;
+ }
+ sectors -= s;
+ idx++;
+ }
+ kfree(r10b);
+ return 0;
+}
+
+static void end_reshape_write(struct bio *bio)
+{
+ struct r10bio *r10_bio = get_resync_r10bio(bio);
+ struct mddev *mddev = r10_bio->mddev;
+ struct r10conf *conf = mddev->private;
+ int d;
+ int slot;
+ int repl;
+ struct md_rdev *rdev = NULL;
+
+ d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
+ if (repl)
+ rdev = conf->mirrors[d].replacement;
+ if (!rdev) {
+ smp_mb();
+ rdev = conf->mirrors[d].rdev;
+ }
+
+ if (bio->bi_status) {
+ /* FIXME should record badblock */
+ md_error(mddev, rdev);
+ }
+
+ rdev_dec_pending(rdev, mddev);
+ end_reshape_request(r10_bio);
+}
+
+static void end_reshape_request(struct r10bio *r10_bio)
+{
+ if (!atomic_dec_and_test(&r10_bio->remaining))
+ return;
+ md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
+ bio_put(r10_bio->master_bio);
+ put_buf(r10_bio);
+}
+
+static void raid10_finish_reshape(struct mddev *mddev)
+{
+ struct r10conf *conf = mddev->private;
+
+ if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
+ return;
+
+ if (mddev->delta_disks > 0) {
+ if (mddev->recovery_cp > mddev->resync_max_sectors) {
+ mddev->recovery_cp = mddev->resync_max_sectors;
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ }
+ mddev->resync_max_sectors = mddev->array_sectors;
+ } else {
+ int d;
+ rcu_read_lock();
+ for (d = conf->geo.raid_disks ;
+ d < conf->geo.raid_disks - mddev->delta_disks;
+ d++) {
+ struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
+ if (rdev)
+ clear_bit(In_sync, &rdev->flags);
+ rdev = rcu_dereference(conf->mirrors[d].replacement);
+ if (rdev)
+ clear_bit(In_sync, &rdev->flags);
+ }
+ rcu_read_unlock();
+ }
+ mddev->layout = mddev->new_layout;
+ mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
+ mddev->reshape_position = MaxSector;
+ mddev->delta_disks = 0;
+ mddev->reshape_backwards = 0;
+}
+
+static struct md_personality raid10_personality =
+{
+ .name = "raid10",
+ .level = 10,
+ .owner = THIS_MODULE,
+ .make_request = raid10_make_request,
+ .run = raid10_run,
+ .free = raid10_free,
+ .status = raid10_status,
+ .error_handler = raid10_error,
+ .hot_add_disk = raid10_add_disk,
+ .hot_remove_disk= raid10_remove_disk,
+ .spare_active = raid10_spare_active,
+ .sync_request = raid10_sync_request,
+ .quiesce = raid10_quiesce,
+ .size = raid10_size,
+ .resize = raid10_resize,
+ .takeover = raid10_takeover,
+ .check_reshape = raid10_check_reshape,
+ .start_reshape = raid10_start_reshape,
+ .finish_reshape = raid10_finish_reshape,
+ .update_reshape_pos = raid10_update_reshape_pos,
+};
+
+static int __init raid_init(void)
+{
+ return register_md_personality(&raid10_personality);
+}
+
+static void raid_exit(void)
+{
+ unregister_md_personality(&raid10_personality);
+}
+
+module_init(raid_init);
+module_exit(raid_exit);
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
+MODULE_ALIAS("md-personality-9"); /* RAID10 */
+MODULE_ALIAS("md-raid10");
+MODULE_ALIAS("md-level-10");
diff --git a/drivers/md/raid10.h b/drivers/md/raid10.h
new file mode 100644
index 000000000..8c072ce0b
--- /dev/null
+++ b/drivers/md/raid10.h
@@ -0,0 +1,184 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _RAID10_H
+#define _RAID10_H
+
+/* Note: raid10_info.rdev can be set to NULL asynchronously by
+ * raid10_remove_disk.
+ * There are three safe ways to access raid10_info.rdev.
+ * 1/ when holding mddev->reconfig_mutex
+ * 2/ when resync/recovery/reshape is known to be happening - i.e. in code
+ * that is called as part of performing resync/recovery/reshape.
+ * 3/ while holding rcu_read_lock(), use rcu_dereference to get the pointer
+ * and if it is non-NULL, increment rdev->nr_pending before dropping the
+ * RCU lock.
+ * When .rdev is set to NULL, the nr_pending count checked again and if it has
+ * been incremented, the pointer is put back in .rdev.
+ */
+
+struct raid10_info {
+ struct md_rdev *rdev, *replacement;
+ sector_t head_position;
+ int recovery_disabled; /* matches
+ * mddev->recovery_disabled
+ * when we shouldn't try
+ * recovering this device.
+ */
+};
+
+struct r10conf {
+ struct mddev *mddev;
+ struct raid10_info *mirrors;
+ struct raid10_info *mirrors_new, *mirrors_old;
+ spinlock_t device_lock;
+
+ /* geometry */
+ struct geom {
+ int raid_disks;
+ int near_copies; /* number of copies laid out
+ * raid0 style */
+ int far_copies; /* number of copies laid out
+ * at large strides across drives
+ */
+ int far_offset; /* far_copies are offset by 1
+ * stripe instead of many
+ */
+ sector_t stride; /* distance between far copies.
+ * This is size / far_copies unless
+ * far_offset, in which case it is
+ * 1 stripe.
+ */
+ int far_set_size; /* The number of devices in a set,
+ * where a 'set' are devices that
+ * contain far/offset copies of
+ * each other.
+ */
+ int chunk_shift; /* shift from chunks to sectors */
+ sector_t chunk_mask;
+ } prev, geo;
+ int copies; /* near_copies * far_copies.
+ * must be <= raid_disks
+ */
+
+ sector_t dev_sectors; /* temp copy of
+ * mddev->dev_sectors */
+ sector_t reshape_progress;
+ sector_t reshape_safe;
+ unsigned long reshape_checkpoint;
+ sector_t offset_diff;
+
+ struct list_head retry_list;
+ /* A separate list of r1bio which just need raid_end_bio_io called.
+ * This mustn't happen for writes which had any errors if the superblock
+ * needs to be written.
+ */
+ struct list_head bio_end_io_list;
+
+ /* queue pending writes and submit them on unplug */
+ struct bio_list pending_bio_list;
+
+ seqlock_t resync_lock;
+ atomic_t nr_pending;
+ int nr_waiting;
+ int nr_queued;
+ int barrier;
+ int array_freeze_pending;
+ sector_t next_resync;
+ int fullsync; /* set to 1 if a full sync is needed,
+ * (fresh device added).
+ * Cleared when a sync completes.
+ */
+ int have_replacement; /* There is at least one
+ * replacement device.
+ */
+ wait_queue_head_t wait_barrier;
+
+ mempool_t r10bio_pool;
+ mempool_t r10buf_pool;
+ struct page *tmppage;
+ struct bio_set bio_split;
+
+ /* When taking over an array from a different personality, we store
+ * the new thread here until we fully activate the array.
+ */
+ struct md_thread *thread;
+
+ /*
+ * Keep track of cluster resync window to send to other nodes.
+ */
+ sector_t cluster_sync_low;
+ sector_t cluster_sync_high;
+};
+
+/*
+ * this is our 'private' RAID10 bio.
+ *
+ * it contains information about what kind of IO operations were started
+ * for this RAID10 operation, and about their status:
+ */
+
+struct r10bio {
+ atomic_t remaining; /* 'have we finished' count,
+ * used from IRQ handlers
+ */
+ sector_t sector; /* virtual sector number */
+ int sectors;
+ unsigned long state;
+ unsigned long start_time;
+ struct mddev *mddev;
+ /*
+ * original bio going to /dev/mdx
+ */
+ struct bio *master_bio;
+ /*
+ * if the IO is in READ direction, then this is where we read
+ */
+ int read_slot;
+
+ struct list_head retry_list;
+ /*
+ * if the IO is in WRITE direction, then multiple bios are used,
+ * one for each copy.
+ * When resyncing we also use one for each copy.
+ * When reconstructing, we use 2 bios, one for read, one for write.
+ * We choose the number when they are allocated.
+ * We sometimes need an extra bio to write to the replacement.
+ */
+ struct r10dev {
+ struct bio *bio;
+ union {
+ struct bio *repl_bio; /* used for resync and
+ * writes */
+ struct md_rdev *rdev; /* used for reads
+ * (read_slot >= 0) */
+ };
+ sector_t addr;
+ int devnum;
+ } devs[];
+};
+
+/* bits for r10bio.state */
+enum r10bio_state {
+ R10BIO_Uptodate,
+ R10BIO_IsSync,
+ R10BIO_IsRecover,
+ R10BIO_IsReshape,
+ R10BIO_Degraded,
+/* Set ReadError on bios that experience a read error
+ * so that raid10d knows what to do with them.
+ */
+ R10BIO_ReadError,
+/* If a write for this request means we can clear some
+ * known-bad-block records, we set this flag.
+ */
+ R10BIO_MadeGood,
+ R10BIO_WriteError,
+/* During a reshape we might be performing IO on the
+ * 'previous' part of the array, in which case this
+ * flag is set
+ */
+ R10BIO_Previous,
+/* failfast devices did receive failfast requests. */
+ R10BIO_FailFast,
+ R10BIO_Discard,
+};
+#endif
diff --git a/drivers/md/raid5-cache.c b/drivers/md/raid5-cache.c
new file mode 100644
index 000000000..eb66d0bfe
--- /dev/null
+++ b/drivers/md/raid5-cache.c
@@ -0,0 +1,3183 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2015 Shaohua Li <shli@fb.com>
+ * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
+ */
+#include <linux/kernel.h>
+#include <linux/wait.h>
+#include <linux/blkdev.h>
+#include <linux/slab.h>
+#include <linux/raid/md_p.h>
+#include <linux/crc32c.h>
+#include <linux/random.h>
+#include <linux/kthread.h>
+#include <linux/types.h>
+#include "md.h"
+#include "raid5.h"
+#include "md-bitmap.h"
+#include "raid5-log.h"
+
+/*
+ * metadata/data stored in disk with 4k size unit (a block) regardless
+ * underneath hardware sector size. only works with PAGE_SIZE == 4096
+ */
+#define BLOCK_SECTORS (8)
+#define BLOCK_SECTOR_SHIFT (3)
+
+/*
+ * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
+ *
+ * In write through mode, the reclaim runs every log->max_free_space.
+ * This can prevent the recovery scans for too long
+ */
+#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
+#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
+
+/* wake up reclaim thread periodically */
+#define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
+/* start flush with these full stripes */
+#define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
+/* reclaim stripes in groups */
+#define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
+
+/*
+ * We only need 2 bios per I/O unit to make progress, but ensure we
+ * have a few more available to not get too tight.
+ */
+#define R5L_POOL_SIZE 4
+
+static char *r5c_journal_mode_str[] = {"write-through",
+ "write-back"};
+/*
+ * raid5 cache state machine
+ *
+ * With the RAID cache, each stripe works in two phases:
+ * - caching phase
+ * - writing-out phase
+ *
+ * These two phases are controlled by bit STRIPE_R5C_CACHING:
+ * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
+ * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
+ *
+ * When there is no journal, or the journal is in write-through mode,
+ * the stripe is always in writing-out phase.
+ *
+ * For write-back journal, the stripe is sent to caching phase on write
+ * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
+ * the write-out phase by clearing STRIPE_R5C_CACHING.
+ *
+ * Stripes in caching phase do not write the raid disks. Instead, all
+ * writes are committed from the log device. Therefore, a stripe in
+ * caching phase handles writes as:
+ * - write to log device
+ * - return IO
+ *
+ * Stripes in writing-out phase handle writes as:
+ * - calculate parity
+ * - write pending data and parity to journal
+ * - write data and parity to raid disks
+ * - return IO for pending writes
+ */
+
+struct r5l_log {
+ struct md_rdev *rdev;
+
+ u32 uuid_checksum;
+
+ sector_t device_size; /* log device size, round to
+ * BLOCK_SECTORS */
+ sector_t max_free_space; /* reclaim run if free space is at
+ * this size */
+
+ sector_t last_checkpoint; /* log tail. where recovery scan
+ * starts from */
+ u64 last_cp_seq; /* log tail sequence */
+
+ sector_t log_start; /* log head. where new data appends */
+ u64 seq; /* log head sequence */
+
+ sector_t next_checkpoint;
+
+ struct mutex io_mutex;
+ struct r5l_io_unit *current_io; /* current io_unit accepting new data */
+
+ spinlock_t io_list_lock;
+ struct list_head running_ios; /* io_units which are still running,
+ * and have not yet been completely
+ * written to the log */
+ struct list_head io_end_ios; /* io_units which have been completely
+ * written to the log but not yet written
+ * to the RAID */
+ struct list_head flushing_ios; /* io_units which are waiting for log
+ * cache flush */
+ struct list_head finished_ios; /* io_units which settle down in log disk */
+ struct bio flush_bio;
+
+ struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */
+
+ struct kmem_cache *io_kc;
+ mempool_t io_pool;
+ struct bio_set bs;
+ mempool_t meta_pool;
+
+ struct md_thread *reclaim_thread;
+ unsigned long reclaim_target; /* number of space that need to be
+ * reclaimed. if it's 0, reclaim spaces
+ * used by io_units which are in
+ * IO_UNIT_STRIPE_END state (eg, reclaim
+ * doesn't wait for specific io_unit
+ * switching to IO_UNIT_STRIPE_END
+ * state) */
+ wait_queue_head_t iounit_wait;
+
+ struct list_head no_space_stripes; /* pending stripes, log has no space */
+ spinlock_t no_space_stripes_lock;
+
+ bool need_cache_flush;
+
+ /* for r5c_cache */
+ enum r5c_journal_mode r5c_journal_mode;
+
+ /* all stripes in r5cache, in the order of seq at sh->log_start */
+ struct list_head stripe_in_journal_list;
+
+ spinlock_t stripe_in_journal_lock;
+ atomic_t stripe_in_journal_count;
+
+ /* to submit async io_units, to fulfill ordering of flush */
+ struct work_struct deferred_io_work;
+ /* to disable write back during in degraded mode */
+ struct work_struct disable_writeback_work;
+
+ /* to for chunk_aligned_read in writeback mode, details below */
+ spinlock_t tree_lock;
+ struct radix_tree_root big_stripe_tree;
+};
+
+/*
+ * Enable chunk_aligned_read() with write back cache.
+ *
+ * Each chunk may contain more than one stripe (for example, a 256kB
+ * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
+ * chunk_aligned_read, these stripes are grouped into one "big_stripe".
+ * For each big_stripe, we count how many stripes of this big_stripe
+ * are in the write back cache. These data are tracked in a radix tree
+ * (big_stripe_tree). We use radix_tree item pointer as the counter.
+ * r5c_tree_index() is used to calculate keys for the radix tree.
+ *
+ * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
+ * big_stripe of each chunk in the tree. If this big_stripe is in the
+ * tree, chunk_aligned_read() aborts. This look up is protected by
+ * rcu_read_lock().
+ *
+ * It is necessary to remember whether a stripe is counted in
+ * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
+ * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
+ * two flags are set, the stripe is counted in big_stripe_tree. This
+ * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
+ * r5c_try_caching_write(); and moving clear_bit of
+ * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
+ * r5c_finish_stripe_write_out().
+ */
+
+/*
+ * radix tree requests lowest 2 bits of data pointer to be 2b'00.
+ * So it is necessary to left shift the counter by 2 bits before using it
+ * as data pointer of the tree.
+ */
+#define R5C_RADIX_COUNT_SHIFT 2
+
+/*
+ * calculate key for big_stripe_tree
+ *
+ * sect: align_bi->bi_iter.bi_sector or sh->sector
+ */
+static inline sector_t r5c_tree_index(struct r5conf *conf,
+ sector_t sect)
+{
+ sector_div(sect, conf->chunk_sectors);
+ return sect;
+}
+
+/*
+ * an IO range starts from a meta data block and end at the next meta data
+ * block. The io unit's the meta data block tracks data/parity followed it. io
+ * unit is written to log disk with normal write, as we always flush log disk
+ * first and then start move data to raid disks, there is no requirement to
+ * write io unit with FLUSH/FUA
+ */
+struct r5l_io_unit {
+ struct r5l_log *log;
+
+ struct page *meta_page; /* store meta block */
+ int meta_offset; /* current offset in meta_page */
+
+ struct bio *current_bio;/* current_bio accepting new data */
+
+ atomic_t pending_stripe;/* how many stripes not flushed to raid */
+ u64 seq; /* seq number of the metablock */
+ sector_t log_start; /* where the io_unit starts */
+ sector_t log_end; /* where the io_unit ends */
+ struct list_head log_sibling; /* log->running_ios */
+ struct list_head stripe_list; /* stripes added to the io_unit */
+
+ int state;
+ bool need_split_bio;
+ struct bio *split_bio;
+
+ unsigned int has_flush:1; /* include flush request */
+ unsigned int has_fua:1; /* include fua request */
+ unsigned int has_null_flush:1; /* include null flush request */
+ unsigned int has_flush_payload:1; /* include flush payload */
+ /*
+ * io isn't sent yet, flush/fua request can only be submitted till it's
+ * the first IO in running_ios list
+ */
+ unsigned int io_deferred:1;
+
+ struct bio_list flush_barriers; /* size == 0 flush bios */
+};
+
+/* r5l_io_unit state */
+enum r5l_io_unit_state {
+ IO_UNIT_RUNNING = 0, /* accepting new IO */
+ IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
+ * don't accepting new bio */
+ IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
+ IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
+};
+
+bool r5c_is_writeback(struct r5l_log *log)
+{
+ return (log != NULL &&
+ log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
+}
+
+static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
+{
+ start += inc;
+ if (start >= log->device_size)
+ start = start - log->device_size;
+ return start;
+}
+
+static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
+ sector_t end)
+{
+ if (end >= start)
+ return end - start;
+ else
+ return end + log->device_size - start;
+}
+
+static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
+{
+ sector_t used_size;
+
+ used_size = r5l_ring_distance(log, log->last_checkpoint,
+ log->log_start);
+
+ return log->device_size > used_size + size;
+}
+
+static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
+ enum r5l_io_unit_state state)
+{
+ if (WARN_ON(io->state >= state))
+ return;
+ io->state = state;
+}
+
+static void
+r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
+{
+ struct bio *wbi, *wbi2;
+
+ wbi = dev->written;
+ dev->written = NULL;
+ while (wbi && wbi->bi_iter.bi_sector <
+ dev->sector + RAID5_STRIPE_SECTORS(conf)) {
+ wbi2 = r5_next_bio(conf, wbi, dev->sector);
+ md_write_end(conf->mddev);
+ bio_endio(wbi);
+ wbi = wbi2;
+ }
+}
+
+void r5c_handle_cached_data_endio(struct r5conf *conf,
+ struct stripe_head *sh, int disks)
+{
+ int i;
+
+ for (i = sh->disks; i--; ) {
+ if (sh->dev[i].written) {
+ set_bit(R5_UPTODATE, &sh->dev[i].flags);
+ r5c_return_dev_pending_writes(conf, &sh->dev[i]);
+ md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
+ RAID5_STRIPE_SECTORS(conf),
+ !test_bit(STRIPE_DEGRADED, &sh->state),
+ 0);
+ }
+ }
+}
+
+void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
+
+/* Check whether we should flush some stripes to free up stripe cache */
+void r5c_check_stripe_cache_usage(struct r5conf *conf)
+{
+ int total_cached;
+
+ if (!r5c_is_writeback(conf->log))
+ return;
+
+ total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
+ atomic_read(&conf->r5c_cached_full_stripes);
+
+ /*
+ * The following condition is true for either of the following:
+ * - stripe cache pressure high:
+ * total_cached > 3/4 min_nr_stripes ||
+ * empty_inactive_list_nr > 0
+ * - stripe cache pressure moderate:
+ * total_cached > 1/2 min_nr_stripes
+ */
+ if (total_cached > conf->min_nr_stripes * 1 / 2 ||
+ atomic_read(&conf->empty_inactive_list_nr) > 0)
+ r5l_wake_reclaim(conf->log, 0);
+}
+
+/*
+ * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
+ * stripes in the cache
+ */
+void r5c_check_cached_full_stripe(struct r5conf *conf)
+{
+ if (!r5c_is_writeback(conf->log))
+ return;
+
+ /*
+ * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
+ * or a full stripe (chunk size / 4k stripes).
+ */
+ if (atomic_read(&conf->r5c_cached_full_stripes) >=
+ min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
+ conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf)))
+ r5l_wake_reclaim(conf->log, 0);
+}
+
+/*
+ * Total log space (in sectors) needed to flush all data in cache
+ *
+ * To avoid deadlock due to log space, it is necessary to reserve log
+ * space to flush critical stripes (stripes that occupying log space near
+ * last_checkpoint). This function helps check how much log space is
+ * required to flush all cached stripes.
+ *
+ * To reduce log space requirements, two mechanisms are used to give cache
+ * flush higher priorities:
+ * 1. In handle_stripe_dirtying() and schedule_reconstruction(),
+ * stripes ALREADY in journal can be flushed w/o pending writes;
+ * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
+ * can be delayed (r5l_add_no_space_stripe).
+ *
+ * In cache flush, the stripe goes through 1 and then 2. For a stripe that
+ * already passed 1, flushing it requires at most (conf->max_degraded + 1)
+ * pages of journal space. For stripes that has not passed 1, flushing it
+ * requires (conf->raid_disks + 1) pages of journal space. There are at
+ * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
+ * required to flush all cached stripes (in pages) is:
+ *
+ * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
+ * (group_cnt + 1) * (raid_disks + 1)
+ * or
+ * (stripe_in_journal_count) * (max_degraded + 1) +
+ * (group_cnt + 1) * (raid_disks - max_degraded)
+ */
+static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
+{
+ struct r5l_log *log = conf->log;
+
+ if (!r5c_is_writeback(log))
+ return 0;
+
+ return BLOCK_SECTORS *
+ ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
+ (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
+}
+
+/*
+ * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
+ *
+ * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
+ * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
+ * device is less than 2x of reclaim_required_space.
+ */
+static inline void r5c_update_log_state(struct r5l_log *log)
+{
+ struct r5conf *conf = log->rdev->mddev->private;
+ sector_t free_space;
+ sector_t reclaim_space;
+ bool wake_reclaim = false;
+
+ if (!r5c_is_writeback(log))
+ return;
+
+ free_space = r5l_ring_distance(log, log->log_start,
+ log->last_checkpoint);
+ reclaim_space = r5c_log_required_to_flush_cache(conf);
+ if (free_space < 2 * reclaim_space)
+ set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
+ else {
+ if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
+ wake_reclaim = true;
+ clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
+ }
+ if (free_space < 3 * reclaim_space)
+ set_bit(R5C_LOG_TIGHT, &conf->cache_state);
+ else
+ clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
+
+ if (wake_reclaim)
+ r5l_wake_reclaim(log, 0);
+}
+
+/*
+ * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
+ * This function should only be called in write-back mode.
+ */
+void r5c_make_stripe_write_out(struct stripe_head *sh)
+{
+ struct r5conf *conf = sh->raid_conf;
+ struct r5l_log *log = conf->log;
+
+ BUG_ON(!r5c_is_writeback(log));
+
+ WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
+ clear_bit(STRIPE_R5C_CACHING, &sh->state);
+
+ if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
+ atomic_inc(&conf->preread_active_stripes);
+}
+
+static void r5c_handle_data_cached(struct stripe_head *sh)
+{
+ int i;
+
+ for (i = sh->disks; i--; )
+ if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
+ set_bit(R5_InJournal, &sh->dev[i].flags);
+ clear_bit(R5_LOCKED, &sh->dev[i].flags);
+ }
+ clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
+}
+
+/*
+ * this journal write must contain full parity,
+ * it may also contain some data pages
+ */
+static void r5c_handle_parity_cached(struct stripe_head *sh)
+{
+ int i;
+
+ for (i = sh->disks; i--; )
+ if (test_bit(R5_InJournal, &sh->dev[i].flags))
+ set_bit(R5_Wantwrite, &sh->dev[i].flags);
+}
+
+/*
+ * Setting proper flags after writing (or flushing) data and/or parity to the
+ * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
+ */
+static void r5c_finish_cache_stripe(struct stripe_head *sh)
+{
+ struct r5l_log *log = sh->raid_conf->log;
+
+ if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
+ BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
+ /*
+ * Set R5_InJournal for parity dev[pd_idx]. This means
+ * all data AND parity in the journal. For RAID 6, it is
+ * NOT necessary to set the flag for dev[qd_idx], as the
+ * two parities are written out together.
+ */
+ set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
+ } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
+ r5c_handle_data_cached(sh);
+ } else {
+ r5c_handle_parity_cached(sh);
+ set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
+ }
+}
+
+static void r5l_io_run_stripes(struct r5l_io_unit *io)
+{
+ struct stripe_head *sh, *next;
+
+ list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
+ list_del_init(&sh->log_list);
+
+ r5c_finish_cache_stripe(sh);
+
+ set_bit(STRIPE_HANDLE, &sh->state);
+ raid5_release_stripe(sh);
+ }
+}
+
+static void r5l_log_run_stripes(struct r5l_log *log)
+{
+ struct r5l_io_unit *io, *next;
+
+ lockdep_assert_held(&log->io_list_lock);
+
+ list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
+ /* don't change list order */
+ if (io->state < IO_UNIT_IO_END)
+ break;
+
+ list_move_tail(&io->log_sibling, &log->finished_ios);
+ r5l_io_run_stripes(io);
+ }
+}
+
+static void r5l_move_to_end_ios(struct r5l_log *log)
+{
+ struct r5l_io_unit *io, *next;
+
+ lockdep_assert_held(&log->io_list_lock);
+
+ list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
+ /* don't change list order */
+ if (io->state < IO_UNIT_IO_END)
+ break;
+ list_move_tail(&io->log_sibling, &log->io_end_ios);
+ }
+}
+
+static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
+static void r5l_log_endio(struct bio *bio)
+{
+ struct r5l_io_unit *io = bio->bi_private;
+ struct r5l_io_unit *io_deferred;
+ struct r5l_log *log = io->log;
+ unsigned long flags;
+ bool has_null_flush;
+ bool has_flush_payload;
+
+ if (bio->bi_status)
+ md_error(log->rdev->mddev, log->rdev);
+
+ bio_put(bio);
+ mempool_free(io->meta_page, &log->meta_pool);
+
+ spin_lock_irqsave(&log->io_list_lock, flags);
+ __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
+
+ /*
+ * if the io doesn't not have null_flush or flush payload,
+ * it is not safe to access it after releasing io_list_lock.
+ * Therefore, it is necessary to check the condition with
+ * the lock held.
+ */
+ has_null_flush = io->has_null_flush;
+ has_flush_payload = io->has_flush_payload;
+
+ if (log->need_cache_flush && !list_empty(&io->stripe_list))
+ r5l_move_to_end_ios(log);
+ else
+ r5l_log_run_stripes(log);
+ if (!list_empty(&log->running_ios)) {
+ /*
+ * FLUSH/FUA io_unit is deferred because of ordering, now we
+ * can dispatch it
+ */
+ io_deferred = list_first_entry(&log->running_ios,
+ struct r5l_io_unit, log_sibling);
+ if (io_deferred->io_deferred)
+ schedule_work(&log->deferred_io_work);
+ }
+
+ spin_unlock_irqrestore(&log->io_list_lock, flags);
+
+ if (log->need_cache_flush)
+ md_wakeup_thread(log->rdev->mddev->thread);
+
+ /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
+ if (has_null_flush) {
+ struct bio *bi;
+
+ WARN_ON(bio_list_empty(&io->flush_barriers));
+ while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
+ bio_endio(bi);
+ if (atomic_dec_and_test(&io->pending_stripe)) {
+ __r5l_stripe_write_finished(io);
+ return;
+ }
+ }
+ }
+ /* decrease pending_stripe for flush payload */
+ if (has_flush_payload)
+ if (atomic_dec_and_test(&io->pending_stripe))
+ __r5l_stripe_write_finished(io);
+}
+
+static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&log->io_list_lock, flags);
+ __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
+ spin_unlock_irqrestore(&log->io_list_lock, flags);
+
+ /*
+ * In case of journal device failures, submit_bio will get error
+ * and calls endio, then active stripes will continue write
+ * process. Therefore, it is not necessary to check Faulty bit
+ * of journal device here.
+ *
+ * We can't check split_bio after current_bio is submitted. If
+ * io->split_bio is null, after current_bio is submitted, current_bio
+ * might already be completed and the io_unit is freed. We submit
+ * split_bio first to avoid the issue.
+ */
+ if (io->split_bio) {
+ if (io->has_flush)
+ io->split_bio->bi_opf |= REQ_PREFLUSH;
+ if (io->has_fua)
+ io->split_bio->bi_opf |= REQ_FUA;
+ submit_bio(io->split_bio);
+ }
+
+ if (io->has_flush)
+ io->current_bio->bi_opf |= REQ_PREFLUSH;
+ if (io->has_fua)
+ io->current_bio->bi_opf |= REQ_FUA;
+ submit_bio(io->current_bio);
+}
+
+/* deferred io_unit will be dispatched here */
+static void r5l_submit_io_async(struct work_struct *work)
+{
+ struct r5l_log *log = container_of(work, struct r5l_log,
+ deferred_io_work);
+ struct r5l_io_unit *io = NULL;
+ unsigned long flags;
+
+ spin_lock_irqsave(&log->io_list_lock, flags);
+ if (!list_empty(&log->running_ios)) {
+ io = list_first_entry(&log->running_ios, struct r5l_io_unit,
+ log_sibling);
+ if (!io->io_deferred)
+ io = NULL;
+ else
+ io->io_deferred = 0;
+ }
+ spin_unlock_irqrestore(&log->io_list_lock, flags);
+ if (io)
+ r5l_do_submit_io(log, io);
+}
+
+static void r5c_disable_writeback_async(struct work_struct *work)
+{
+ struct r5l_log *log = container_of(work, struct r5l_log,
+ disable_writeback_work);
+ struct mddev *mddev = log->rdev->mddev;
+ struct r5conf *conf = mddev->private;
+ int locked = 0;
+
+ if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
+ return;
+ pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
+ mdname(mddev));
+
+ /* wait superblock change before suspend */
+ wait_event(mddev->sb_wait,
+ conf->log == NULL ||
+ (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
+ (locked = mddev_trylock(mddev))));
+ if (locked) {
+ mddev_suspend(mddev);
+ log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
+ mddev_resume(mddev);
+ mddev_unlock(mddev);
+ }
+}
+
+static void r5l_submit_current_io(struct r5l_log *log)
+{
+ struct r5l_io_unit *io = log->current_io;
+ struct r5l_meta_block *block;
+ unsigned long flags;
+ u32 crc;
+ bool do_submit = true;
+
+ if (!io)
+ return;
+
+ block = page_address(io->meta_page);
+ block->meta_size = cpu_to_le32(io->meta_offset);
+ crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
+ block->checksum = cpu_to_le32(crc);
+
+ log->current_io = NULL;
+ spin_lock_irqsave(&log->io_list_lock, flags);
+ if (io->has_flush || io->has_fua) {
+ if (io != list_first_entry(&log->running_ios,
+ struct r5l_io_unit, log_sibling)) {
+ io->io_deferred = 1;
+ do_submit = false;
+ }
+ }
+ spin_unlock_irqrestore(&log->io_list_lock, flags);
+ if (do_submit)
+ r5l_do_submit_io(log, io);
+}
+
+static struct bio *r5l_bio_alloc(struct r5l_log *log)
+{
+ struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS,
+ REQ_OP_WRITE, GFP_NOIO, &log->bs);
+
+ bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
+
+ return bio;
+}
+
+static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
+{
+ log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
+
+ r5c_update_log_state(log);
+ /*
+ * If we filled up the log device start from the beginning again,
+ * which will require a new bio.
+ *
+ * Note: for this to work properly the log size needs to me a multiple
+ * of BLOCK_SECTORS.
+ */
+ if (log->log_start == 0)
+ io->need_split_bio = true;
+
+ io->log_end = log->log_start;
+}
+
+static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
+{
+ struct r5l_io_unit *io;
+ struct r5l_meta_block *block;
+
+ io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
+ if (!io)
+ return NULL;
+ memset(io, 0, sizeof(*io));
+
+ io->log = log;
+ INIT_LIST_HEAD(&io->log_sibling);
+ INIT_LIST_HEAD(&io->stripe_list);
+ bio_list_init(&io->flush_barriers);
+ io->state = IO_UNIT_RUNNING;
+
+ io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
+ block = page_address(io->meta_page);
+ clear_page(block);
+ block->magic = cpu_to_le32(R5LOG_MAGIC);
+ block->version = R5LOG_VERSION;
+ block->seq = cpu_to_le64(log->seq);
+ block->position = cpu_to_le64(log->log_start);
+
+ io->log_start = log->log_start;
+ io->meta_offset = sizeof(struct r5l_meta_block);
+ io->seq = log->seq++;
+
+ io->current_bio = r5l_bio_alloc(log);
+ io->current_bio->bi_end_io = r5l_log_endio;
+ io->current_bio->bi_private = io;
+ bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
+
+ r5_reserve_log_entry(log, io);
+
+ spin_lock_irq(&log->io_list_lock);
+ list_add_tail(&io->log_sibling, &log->running_ios);
+ spin_unlock_irq(&log->io_list_lock);
+
+ return io;
+}
+
+static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
+{
+ if (log->current_io &&
+ log->current_io->meta_offset + payload_size > PAGE_SIZE)
+ r5l_submit_current_io(log);
+
+ if (!log->current_io) {
+ log->current_io = r5l_new_meta(log);
+ if (!log->current_io)
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
+ sector_t location,
+ u32 checksum1, u32 checksum2,
+ bool checksum2_valid)
+{
+ struct r5l_io_unit *io = log->current_io;
+ struct r5l_payload_data_parity *payload;
+
+ payload = page_address(io->meta_page) + io->meta_offset;
+ payload->header.type = cpu_to_le16(type);
+ payload->header.flags = cpu_to_le16(0);
+ payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
+ (PAGE_SHIFT - 9));
+ payload->location = cpu_to_le64(location);
+ payload->checksum[0] = cpu_to_le32(checksum1);
+ if (checksum2_valid)
+ payload->checksum[1] = cpu_to_le32(checksum2);
+
+ io->meta_offset += sizeof(struct r5l_payload_data_parity) +
+ sizeof(__le32) * (1 + !!checksum2_valid);
+}
+
+static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
+{
+ struct r5l_io_unit *io = log->current_io;
+
+ if (io->need_split_bio) {
+ BUG_ON(io->split_bio);
+ io->split_bio = io->current_bio;
+ io->current_bio = r5l_bio_alloc(log);
+ bio_chain(io->current_bio, io->split_bio);
+ io->need_split_bio = false;
+ }
+
+ if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
+ BUG();
+
+ r5_reserve_log_entry(log, io);
+}
+
+static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
+{
+ struct mddev *mddev = log->rdev->mddev;
+ struct r5conf *conf = mddev->private;
+ struct r5l_io_unit *io;
+ struct r5l_payload_flush *payload;
+ int meta_size;
+
+ /*
+ * payload_flush requires extra writes to the journal.
+ * To avoid handling the extra IO in quiesce, just skip
+ * flush_payload
+ */
+ if (conf->quiesce)
+ return;
+
+ mutex_lock(&log->io_mutex);
+ meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
+
+ if (r5l_get_meta(log, meta_size)) {
+ mutex_unlock(&log->io_mutex);
+ return;
+ }
+
+ /* current implementation is one stripe per flush payload */
+ io = log->current_io;
+ payload = page_address(io->meta_page) + io->meta_offset;
+ payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
+ payload->header.flags = cpu_to_le16(0);
+ payload->size = cpu_to_le32(sizeof(__le64));
+ payload->flush_stripes[0] = cpu_to_le64(sect);
+ io->meta_offset += meta_size;
+ /* multiple flush payloads count as one pending_stripe */
+ if (!io->has_flush_payload) {
+ io->has_flush_payload = 1;
+ atomic_inc(&io->pending_stripe);
+ }
+ mutex_unlock(&log->io_mutex);
+}
+
+static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
+ int data_pages, int parity_pages)
+{
+ int i;
+ int meta_size;
+ int ret;
+ struct r5l_io_unit *io;
+
+ meta_size =
+ ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
+ * data_pages) +
+ sizeof(struct r5l_payload_data_parity) +
+ sizeof(__le32) * parity_pages;
+
+ ret = r5l_get_meta(log, meta_size);
+ if (ret)
+ return ret;
+
+ io = log->current_io;
+
+ if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
+ io->has_flush = 1;
+
+ for (i = 0; i < sh->disks; i++) {
+ if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
+ test_bit(R5_InJournal, &sh->dev[i].flags))
+ continue;
+ if (i == sh->pd_idx || i == sh->qd_idx)
+ continue;
+ if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
+ log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
+ io->has_fua = 1;
+ /*
+ * we need to flush journal to make sure recovery can
+ * reach the data with fua flag
+ */
+ io->has_flush = 1;
+ }
+ r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
+ raid5_compute_blocknr(sh, i, 0),
+ sh->dev[i].log_checksum, 0, false);
+ r5l_append_payload_page(log, sh->dev[i].page);
+ }
+
+ if (parity_pages == 2) {
+ r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
+ sh->sector, sh->dev[sh->pd_idx].log_checksum,
+ sh->dev[sh->qd_idx].log_checksum, true);
+ r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
+ r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
+ } else if (parity_pages == 1) {
+ r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
+ sh->sector, sh->dev[sh->pd_idx].log_checksum,
+ 0, false);
+ r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
+ } else /* Just writing data, not parity, in caching phase */
+ BUG_ON(parity_pages != 0);
+
+ list_add_tail(&sh->log_list, &io->stripe_list);
+ atomic_inc(&io->pending_stripe);
+ sh->log_io = io;
+
+ if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
+ return 0;
+
+ if (sh->log_start == MaxSector) {
+ BUG_ON(!list_empty(&sh->r5c));
+ sh->log_start = io->log_start;
+ spin_lock_irq(&log->stripe_in_journal_lock);
+ list_add_tail(&sh->r5c,
+ &log->stripe_in_journal_list);
+ spin_unlock_irq(&log->stripe_in_journal_lock);
+ atomic_inc(&log->stripe_in_journal_count);
+ }
+ return 0;
+}
+
+/* add stripe to no_space_stripes, and then wake up reclaim */
+static inline void r5l_add_no_space_stripe(struct r5l_log *log,
+ struct stripe_head *sh)
+{
+ spin_lock(&log->no_space_stripes_lock);
+ list_add_tail(&sh->log_list, &log->no_space_stripes);
+ spin_unlock(&log->no_space_stripes_lock);
+}
+
+/*
+ * running in raid5d, where reclaim could wait for raid5d too (when it flushes
+ * data from log to raid disks), so we shouldn't wait for reclaim here
+ */
+int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
+{
+ struct r5conf *conf = sh->raid_conf;
+ int write_disks = 0;
+ int data_pages, parity_pages;
+ int reserve;
+ int i;
+ int ret = 0;
+ bool wake_reclaim = false;
+
+ if (!log)
+ return -EAGAIN;
+ /* Don't support stripe batch */
+ if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
+ test_bit(STRIPE_SYNCING, &sh->state)) {
+ /* the stripe is written to log, we start writing it to raid */
+ clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
+ return -EAGAIN;
+ }
+
+ WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
+
+ for (i = 0; i < sh->disks; i++) {
+ void *addr;
+
+ if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
+ test_bit(R5_InJournal, &sh->dev[i].flags))
+ continue;
+
+ write_disks++;
+ /* checksum is already calculated in last run */
+ if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
+ continue;
+ addr = kmap_atomic(sh->dev[i].page);
+ sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
+ addr, PAGE_SIZE);
+ kunmap_atomic(addr);
+ }
+ parity_pages = 1 + !!(sh->qd_idx >= 0);
+ data_pages = write_disks - parity_pages;
+
+ set_bit(STRIPE_LOG_TRAPPED, &sh->state);
+ /*
+ * The stripe must enter state machine again to finish the write, so
+ * don't delay.
+ */
+ clear_bit(STRIPE_DELAYED, &sh->state);
+ atomic_inc(&sh->count);
+
+ mutex_lock(&log->io_mutex);
+ /* meta + data */
+ reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
+
+ if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
+ if (!r5l_has_free_space(log, reserve)) {
+ r5l_add_no_space_stripe(log, sh);
+ wake_reclaim = true;
+ } else {
+ ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
+ if (ret) {
+ spin_lock_irq(&log->io_list_lock);
+ list_add_tail(&sh->log_list,
+ &log->no_mem_stripes);
+ spin_unlock_irq(&log->io_list_lock);
+ }
+ }
+ } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
+ /*
+ * log space critical, do not process stripes that are
+ * not in cache yet (sh->log_start == MaxSector).
+ */
+ if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
+ sh->log_start == MaxSector) {
+ r5l_add_no_space_stripe(log, sh);
+ wake_reclaim = true;
+ reserve = 0;
+ } else if (!r5l_has_free_space(log, reserve)) {
+ if (sh->log_start == log->last_checkpoint)
+ BUG();
+ else
+ r5l_add_no_space_stripe(log, sh);
+ } else {
+ ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
+ if (ret) {
+ spin_lock_irq(&log->io_list_lock);
+ list_add_tail(&sh->log_list,
+ &log->no_mem_stripes);
+ spin_unlock_irq(&log->io_list_lock);
+ }
+ }
+ }
+
+ mutex_unlock(&log->io_mutex);
+ if (wake_reclaim)
+ r5l_wake_reclaim(log, reserve);
+ return 0;
+}
+
+void r5l_write_stripe_run(struct r5l_log *log)
+{
+ if (!log)
+ return;
+ mutex_lock(&log->io_mutex);
+ r5l_submit_current_io(log);
+ mutex_unlock(&log->io_mutex);
+}
+
+int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
+{
+ if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
+ /*
+ * in write through (journal only)
+ * we flush log disk cache first, then write stripe data to
+ * raid disks. So if bio is finished, the log disk cache is
+ * flushed already. The recovery guarantees we can recovery
+ * the bio from log disk, so we don't need to flush again
+ */
+ if (bio->bi_iter.bi_size == 0) {
+ bio_endio(bio);
+ return 0;
+ }
+ bio->bi_opf &= ~REQ_PREFLUSH;
+ } else {
+ /* write back (with cache) */
+ if (bio->bi_iter.bi_size == 0) {
+ mutex_lock(&log->io_mutex);
+ r5l_get_meta(log, 0);
+ bio_list_add(&log->current_io->flush_barriers, bio);
+ log->current_io->has_flush = 1;
+ log->current_io->has_null_flush = 1;
+ atomic_inc(&log->current_io->pending_stripe);
+ r5l_submit_current_io(log);
+ mutex_unlock(&log->io_mutex);
+ return 0;
+ }
+ }
+ return -EAGAIN;
+}
+
+/* This will run after log space is reclaimed */
+static void r5l_run_no_space_stripes(struct r5l_log *log)
+{
+ struct stripe_head *sh;
+
+ spin_lock(&log->no_space_stripes_lock);
+ while (!list_empty(&log->no_space_stripes)) {
+ sh = list_first_entry(&log->no_space_stripes,
+ struct stripe_head, log_list);
+ list_del_init(&sh->log_list);
+ set_bit(STRIPE_HANDLE, &sh->state);
+ raid5_release_stripe(sh);
+ }
+ spin_unlock(&log->no_space_stripes_lock);
+}
+
+/*
+ * calculate new last_checkpoint
+ * for write through mode, returns log->next_checkpoint
+ * for write back, returns log_start of first sh in stripe_in_journal_list
+ */
+static sector_t r5c_calculate_new_cp(struct r5conf *conf)
+{
+ struct stripe_head *sh;
+ struct r5l_log *log = conf->log;
+ sector_t new_cp;
+ unsigned long flags;
+
+ if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
+ return log->next_checkpoint;
+
+ spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
+ if (list_empty(&conf->log->stripe_in_journal_list)) {
+ /* all stripes flushed */
+ spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
+ return log->next_checkpoint;
+ }
+ sh = list_first_entry(&conf->log->stripe_in_journal_list,
+ struct stripe_head, r5c);
+ new_cp = sh->log_start;
+ spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
+ return new_cp;
+}
+
+static sector_t r5l_reclaimable_space(struct r5l_log *log)
+{
+ struct r5conf *conf = log->rdev->mddev->private;
+
+ return r5l_ring_distance(log, log->last_checkpoint,
+ r5c_calculate_new_cp(conf));
+}
+
+static void r5l_run_no_mem_stripe(struct r5l_log *log)
+{
+ struct stripe_head *sh;
+
+ lockdep_assert_held(&log->io_list_lock);
+
+ if (!list_empty(&log->no_mem_stripes)) {
+ sh = list_first_entry(&log->no_mem_stripes,
+ struct stripe_head, log_list);
+ list_del_init(&sh->log_list);
+ set_bit(STRIPE_HANDLE, &sh->state);
+ raid5_release_stripe(sh);
+ }
+}
+
+static bool r5l_complete_finished_ios(struct r5l_log *log)
+{
+ struct r5l_io_unit *io, *next;
+ bool found = false;
+
+ lockdep_assert_held(&log->io_list_lock);
+
+ list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
+ /* don't change list order */
+ if (io->state < IO_UNIT_STRIPE_END)
+ break;
+
+ log->next_checkpoint = io->log_start;
+
+ list_del(&io->log_sibling);
+ mempool_free(io, &log->io_pool);
+ r5l_run_no_mem_stripe(log);
+
+ found = true;
+ }
+
+ return found;
+}
+
+static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
+{
+ struct r5l_log *log = io->log;
+ struct r5conf *conf = log->rdev->mddev->private;
+ unsigned long flags;
+
+ spin_lock_irqsave(&log->io_list_lock, flags);
+ __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
+
+ if (!r5l_complete_finished_ios(log)) {
+ spin_unlock_irqrestore(&log->io_list_lock, flags);
+ return;
+ }
+
+ if (r5l_reclaimable_space(log) > log->max_free_space ||
+ test_bit(R5C_LOG_TIGHT, &conf->cache_state))
+ r5l_wake_reclaim(log, 0);
+
+ spin_unlock_irqrestore(&log->io_list_lock, flags);
+ wake_up(&log->iounit_wait);
+}
+
+void r5l_stripe_write_finished(struct stripe_head *sh)
+{
+ struct r5l_io_unit *io;
+
+ io = sh->log_io;
+ sh->log_io = NULL;
+
+ if (io && atomic_dec_and_test(&io->pending_stripe))
+ __r5l_stripe_write_finished(io);
+}
+
+static void r5l_log_flush_endio(struct bio *bio)
+{
+ struct r5l_log *log = container_of(bio, struct r5l_log,
+ flush_bio);
+ unsigned long flags;
+ struct r5l_io_unit *io;
+
+ if (bio->bi_status)
+ md_error(log->rdev->mddev, log->rdev);
+ bio_uninit(bio);
+
+ spin_lock_irqsave(&log->io_list_lock, flags);
+ list_for_each_entry(io, &log->flushing_ios, log_sibling)
+ r5l_io_run_stripes(io);
+ list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
+ spin_unlock_irqrestore(&log->io_list_lock, flags);
+}
+
+/*
+ * Starting dispatch IO to raid.
+ * io_unit(meta) consists of a log. There is one situation we want to avoid. A
+ * broken meta in the middle of a log causes recovery can't find meta at the
+ * head of log. If operations require meta at the head persistent in log, we
+ * must make sure meta before it persistent in log too. A case is:
+ *
+ * stripe data/parity is in log, we start write stripe to raid disks. stripe
+ * data/parity must be persistent in log before we do the write to raid disks.
+ *
+ * The solution is we restrictly maintain io_unit list order. In this case, we
+ * only write stripes of an io_unit to raid disks till the io_unit is the first
+ * one whose data/parity is in log.
+ */
+void r5l_flush_stripe_to_raid(struct r5l_log *log)
+{
+ bool do_flush;
+
+ if (!log || !log->need_cache_flush)
+ return;
+
+ spin_lock_irq(&log->io_list_lock);
+ /* flush bio is running */
+ if (!list_empty(&log->flushing_ios)) {
+ spin_unlock_irq(&log->io_list_lock);
+ return;
+ }
+ list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
+ do_flush = !list_empty(&log->flushing_ios);
+ spin_unlock_irq(&log->io_list_lock);
+
+ if (!do_flush)
+ return;
+ bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0,
+ REQ_OP_WRITE | REQ_PREFLUSH);
+ log->flush_bio.bi_end_io = r5l_log_flush_endio;
+ submit_bio(&log->flush_bio);
+}
+
+static void r5l_write_super(struct r5l_log *log, sector_t cp);
+static void r5l_write_super_and_discard_space(struct r5l_log *log,
+ sector_t end)
+{
+ struct block_device *bdev = log->rdev->bdev;
+ struct mddev *mddev;
+
+ r5l_write_super(log, end);
+
+ if (!bdev_max_discard_sectors(bdev))
+ return;
+
+ mddev = log->rdev->mddev;
+ /*
+ * Discard could zero data, so before discard we must make sure
+ * superblock is updated to new log tail. Updating superblock (either
+ * directly call md_update_sb() or depend on md thread) must hold
+ * reconfig mutex. On the other hand, raid5_quiesce is called with
+ * reconfig_mutex hold. The first step of raid5_quiesce() is waiting
+ * for all IO finish, hence waiting for reclaim thread, while reclaim
+ * thread is calling this function and waiting for reconfig mutex. So
+ * there is a deadlock. We workaround this issue with a trylock.
+ * FIXME: we could miss discard if we can't take reconfig mutex
+ */
+ set_mask_bits(&mddev->sb_flags, 0,
+ BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
+ if (!mddev_trylock(mddev))
+ return;
+ md_update_sb(mddev, 1);
+ mddev_unlock(mddev);
+
+ /* discard IO error really doesn't matter, ignore it */
+ if (log->last_checkpoint < end) {
+ blkdev_issue_discard(bdev,
+ log->last_checkpoint + log->rdev->data_offset,
+ end - log->last_checkpoint, GFP_NOIO);
+ } else {
+ blkdev_issue_discard(bdev,
+ log->last_checkpoint + log->rdev->data_offset,
+ log->device_size - log->last_checkpoint,
+ GFP_NOIO);
+ blkdev_issue_discard(bdev, log->rdev->data_offset, end,
+ GFP_NOIO);
+ }
+}
+
+/*
+ * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
+ * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
+ *
+ * must hold conf->device_lock
+ */
+static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
+{
+ BUG_ON(list_empty(&sh->lru));
+ BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
+ BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
+
+ /*
+ * The stripe is not ON_RELEASE_LIST, so it is safe to call
+ * raid5_release_stripe() while holding conf->device_lock
+ */
+ BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
+ lockdep_assert_held(&conf->device_lock);
+
+ list_del_init(&sh->lru);
+ atomic_inc(&sh->count);
+
+ set_bit(STRIPE_HANDLE, &sh->state);
+ atomic_inc(&conf->active_stripes);
+ r5c_make_stripe_write_out(sh);
+
+ if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
+ atomic_inc(&conf->r5c_flushing_partial_stripes);
+ else
+ atomic_inc(&conf->r5c_flushing_full_stripes);
+ raid5_release_stripe(sh);
+}
+
+/*
+ * if num == 0, flush all full stripes
+ * if num > 0, flush all full stripes. If less than num full stripes are
+ * flushed, flush some partial stripes until totally num stripes are
+ * flushed or there is no more cached stripes.
+ */
+void r5c_flush_cache(struct r5conf *conf, int num)
+{
+ int count;
+ struct stripe_head *sh, *next;
+
+ lockdep_assert_held(&conf->device_lock);
+ if (!conf->log)
+ return;
+
+ count = 0;
+ list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
+ r5c_flush_stripe(conf, sh);
+ count++;
+ }
+
+ if (count >= num)
+ return;
+ list_for_each_entry_safe(sh, next,
+ &conf->r5c_partial_stripe_list, lru) {
+ r5c_flush_stripe(conf, sh);
+ if (++count >= num)
+ break;
+ }
+}
+
+static void r5c_do_reclaim(struct r5conf *conf)
+{
+ struct r5l_log *log = conf->log;
+ struct stripe_head *sh;
+ int count = 0;
+ unsigned long flags;
+ int total_cached;
+ int stripes_to_flush;
+ int flushing_partial, flushing_full;
+
+ if (!r5c_is_writeback(log))
+ return;
+
+ flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
+ flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
+ total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
+ atomic_read(&conf->r5c_cached_full_stripes) -
+ flushing_full - flushing_partial;
+
+ if (total_cached > conf->min_nr_stripes * 3 / 4 ||
+ atomic_read(&conf->empty_inactive_list_nr) > 0)
+ /*
+ * if stripe cache pressure high, flush all full stripes and
+ * some partial stripes
+ */
+ stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
+ else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
+ atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
+ R5C_FULL_STRIPE_FLUSH_BATCH(conf))
+ /*
+ * if stripe cache pressure moderate, or if there is many full
+ * stripes,flush all full stripes
+ */
+ stripes_to_flush = 0;
+ else
+ /* no need to flush */
+ stripes_to_flush = -1;
+
+ if (stripes_to_flush >= 0) {
+ spin_lock_irqsave(&conf->device_lock, flags);
+ r5c_flush_cache(conf, stripes_to_flush);
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ }
+
+ /* if log space is tight, flush stripes on stripe_in_journal_list */
+ if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
+ spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
+ spin_lock(&conf->device_lock);
+ list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
+ /*
+ * stripes on stripe_in_journal_list could be in any
+ * state of the stripe_cache state machine. In this
+ * case, we only want to flush stripe on
+ * r5c_cached_full/partial_stripes. The following
+ * condition makes sure the stripe is on one of the
+ * two lists.
+ */
+ if (!list_empty(&sh->lru) &&
+ !test_bit(STRIPE_HANDLE, &sh->state) &&
+ atomic_read(&sh->count) == 0) {
+ r5c_flush_stripe(conf, sh);
+ if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
+ break;
+ }
+ }
+ spin_unlock(&conf->device_lock);
+ spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
+ }
+
+ if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
+ r5l_run_no_space_stripes(log);
+
+ md_wakeup_thread(conf->mddev->thread);
+}
+
+static void r5l_do_reclaim(struct r5l_log *log)
+{
+ struct r5conf *conf = log->rdev->mddev->private;
+ sector_t reclaim_target = xchg(&log->reclaim_target, 0);
+ sector_t reclaimable;
+ sector_t next_checkpoint;
+ bool write_super;
+
+ spin_lock_irq(&log->io_list_lock);
+ write_super = r5l_reclaimable_space(log) > log->max_free_space ||
+ reclaim_target != 0 || !list_empty(&log->no_space_stripes);
+ /*
+ * move proper io_unit to reclaim list. We should not change the order.
+ * reclaimable/unreclaimable io_unit can be mixed in the list, we
+ * shouldn't reuse space of an unreclaimable io_unit
+ */
+ while (1) {
+ reclaimable = r5l_reclaimable_space(log);
+ if (reclaimable >= reclaim_target ||
+ (list_empty(&log->running_ios) &&
+ list_empty(&log->io_end_ios) &&
+ list_empty(&log->flushing_ios) &&
+ list_empty(&log->finished_ios)))
+ break;
+
+ md_wakeup_thread(log->rdev->mddev->thread);
+ wait_event_lock_irq(log->iounit_wait,
+ r5l_reclaimable_space(log) > reclaimable,
+ log->io_list_lock);
+ }
+
+ next_checkpoint = r5c_calculate_new_cp(conf);
+ spin_unlock_irq(&log->io_list_lock);
+
+ if (reclaimable == 0 || !write_super)
+ return;
+
+ /*
+ * write_super will flush cache of each raid disk. We must write super
+ * here, because the log area might be reused soon and we don't want to
+ * confuse recovery
+ */
+ r5l_write_super_and_discard_space(log, next_checkpoint);
+
+ mutex_lock(&log->io_mutex);
+ log->last_checkpoint = next_checkpoint;
+ r5c_update_log_state(log);
+ mutex_unlock(&log->io_mutex);
+
+ r5l_run_no_space_stripes(log);
+}
+
+static void r5l_reclaim_thread(struct md_thread *thread)
+{
+ struct mddev *mddev = thread->mddev;
+ struct r5conf *conf = mddev->private;
+ struct r5l_log *log = conf->log;
+
+ if (!log)
+ return;
+ r5c_do_reclaim(conf);
+ r5l_do_reclaim(log);
+}
+
+void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
+{
+ unsigned long target;
+ unsigned long new = (unsigned long)space; /* overflow in theory */
+
+ if (!log)
+ return;
+ do {
+ target = log->reclaim_target;
+ if (new < target)
+ return;
+ } while (cmpxchg(&log->reclaim_target, target, new) != target);
+ md_wakeup_thread(log->reclaim_thread);
+}
+
+void r5l_quiesce(struct r5l_log *log, int quiesce)
+{
+ struct mddev *mddev;
+
+ if (quiesce) {
+ /* make sure r5l_write_super_and_discard_space exits */
+ mddev = log->rdev->mddev;
+ wake_up(&mddev->sb_wait);
+ kthread_park(log->reclaim_thread->tsk);
+ r5l_wake_reclaim(log, MaxSector);
+ r5l_do_reclaim(log);
+ } else
+ kthread_unpark(log->reclaim_thread->tsk);
+}
+
+bool r5l_log_disk_error(struct r5conf *conf)
+{
+ struct r5l_log *log = conf->log;
+
+ /* don't allow write if journal disk is missing */
+ if (!log)
+ return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
+ else
+ return test_bit(Faulty, &log->rdev->flags);
+}
+
+#define R5L_RECOVERY_PAGE_POOL_SIZE 256
+
+struct r5l_recovery_ctx {
+ struct page *meta_page; /* current meta */
+ sector_t meta_total_blocks; /* total size of current meta and data */
+ sector_t pos; /* recovery position */
+ u64 seq; /* recovery position seq */
+ int data_parity_stripes; /* number of data_parity stripes */
+ int data_only_stripes; /* number of data_only stripes */
+ struct list_head cached_list;
+
+ /*
+ * read ahead page pool (ra_pool)
+ * in recovery, log is read sequentially. It is not efficient to
+ * read every page with sync_page_io(). The read ahead page pool
+ * reads multiple pages with one IO, so further log read can
+ * just copy data from the pool.
+ */
+ struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
+ struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE];
+ sector_t pool_offset; /* offset of first page in the pool */
+ int total_pages; /* total allocated pages */
+ int valid_pages; /* pages with valid data */
+};
+
+static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
+ struct r5l_recovery_ctx *ctx)
+{
+ struct page *page;
+
+ ctx->valid_pages = 0;
+ ctx->total_pages = 0;
+ while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
+ page = alloc_page(GFP_KERNEL);
+
+ if (!page)
+ break;
+ ctx->ra_pool[ctx->total_pages] = page;
+ ctx->total_pages += 1;
+ }
+
+ if (ctx->total_pages == 0)
+ return -ENOMEM;
+
+ ctx->pool_offset = 0;
+ return 0;
+}
+
+static void r5l_recovery_free_ra_pool(struct r5l_log *log,
+ struct r5l_recovery_ctx *ctx)
+{
+ int i;
+
+ for (i = 0; i < ctx->total_pages; ++i)
+ put_page(ctx->ra_pool[i]);
+}
+
+/*
+ * fetch ctx->valid_pages pages from offset
+ * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
+ * However, if the offset is close to the end of the journal device,
+ * ctx->valid_pages could be smaller than ctx->total_pages
+ */
+static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
+ struct r5l_recovery_ctx *ctx,
+ sector_t offset)
+{
+ struct bio bio;
+ int ret;
+
+ bio_init(&bio, log->rdev->bdev, ctx->ra_bvec,
+ R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ);
+ bio.bi_iter.bi_sector = log->rdev->data_offset + offset;
+
+ ctx->valid_pages = 0;
+ ctx->pool_offset = offset;
+
+ while (ctx->valid_pages < ctx->total_pages) {
+ __bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE,
+ 0);
+ ctx->valid_pages += 1;
+
+ offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
+
+ if (offset == 0) /* reached end of the device */
+ break;
+ }
+
+ ret = submit_bio_wait(&bio);
+ bio_uninit(&bio);
+ return ret;
+}
+
+/*
+ * try read a page from the read ahead page pool, if the page is not in the
+ * pool, call r5l_recovery_fetch_ra_pool
+ */
+static int r5l_recovery_read_page(struct r5l_log *log,
+ struct r5l_recovery_ctx *ctx,
+ struct page *page,
+ sector_t offset)
+{
+ int ret;
+
+ if (offset < ctx->pool_offset ||
+ offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
+ ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
+ if (ret)
+ return ret;
+ }
+
+ BUG_ON(offset < ctx->pool_offset ||
+ offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
+
+ memcpy(page_address(page),
+ page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
+ BLOCK_SECTOR_SHIFT]),
+ PAGE_SIZE);
+ return 0;
+}
+
+static int r5l_recovery_read_meta_block(struct r5l_log *log,
+ struct r5l_recovery_ctx *ctx)
+{
+ struct page *page = ctx->meta_page;
+ struct r5l_meta_block *mb;
+ u32 crc, stored_crc;
+ int ret;
+
+ ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
+ if (ret != 0)
+ return ret;
+
+ mb = page_address(page);
+ stored_crc = le32_to_cpu(mb->checksum);
+ mb->checksum = 0;
+
+ if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
+ le64_to_cpu(mb->seq) != ctx->seq ||
+ mb->version != R5LOG_VERSION ||
+ le64_to_cpu(mb->position) != ctx->pos)
+ return -EINVAL;
+
+ crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
+ if (stored_crc != crc)
+ return -EINVAL;
+
+ if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
+ return -EINVAL;
+
+ ctx->meta_total_blocks = BLOCK_SECTORS;
+
+ return 0;
+}
+
+static void
+r5l_recovery_create_empty_meta_block(struct r5l_log *log,
+ struct page *page,
+ sector_t pos, u64 seq)
+{
+ struct r5l_meta_block *mb;
+
+ mb = page_address(page);
+ clear_page(mb);
+ mb->magic = cpu_to_le32(R5LOG_MAGIC);
+ mb->version = R5LOG_VERSION;
+ mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
+ mb->seq = cpu_to_le64(seq);
+ mb->position = cpu_to_le64(pos);
+}
+
+static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
+ u64 seq)
+{
+ struct page *page;
+ struct r5l_meta_block *mb;
+
+ page = alloc_page(GFP_KERNEL);
+ if (!page)
+ return -ENOMEM;
+ r5l_recovery_create_empty_meta_block(log, page, pos, seq);
+ mb = page_address(page);
+ mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
+ mb, PAGE_SIZE));
+ if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE |
+ REQ_SYNC | REQ_FUA, false)) {
+ __free_page(page);
+ return -EIO;
+ }
+ __free_page(page);
+ return 0;
+}
+
+/*
+ * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
+ * to mark valid (potentially not flushed) data in the journal.
+ *
+ * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
+ * so there should not be any mismatch here.
+ */
+static void r5l_recovery_load_data(struct r5l_log *log,
+ struct stripe_head *sh,
+ struct r5l_recovery_ctx *ctx,
+ struct r5l_payload_data_parity *payload,
+ sector_t log_offset)
+{
+ struct mddev *mddev = log->rdev->mddev;
+ struct r5conf *conf = mddev->private;
+ int dd_idx;
+
+ raid5_compute_sector(conf,
+ le64_to_cpu(payload->location), 0,
+ &dd_idx, sh);
+ r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
+ sh->dev[dd_idx].log_checksum =
+ le32_to_cpu(payload->checksum[0]);
+ ctx->meta_total_blocks += BLOCK_SECTORS;
+
+ set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
+ set_bit(STRIPE_R5C_CACHING, &sh->state);
+}
+
+static void r5l_recovery_load_parity(struct r5l_log *log,
+ struct stripe_head *sh,
+ struct r5l_recovery_ctx *ctx,
+ struct r5l_payload_data_parity *payload,
+ sector_t log_offset)
+{
+ struct mddev *mddev = log->rdev->mddev;
+ struct r5conf *conf = mddev->private;
+
+ ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
+ r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
+ sh->dev[sh->pd_idx].log_checksum =
+ le32_to_cpu(payload->checksum[0]);
+ set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
+
+ if (sh->qd_idx >= 0) {
+ r5l_recovery_read_page(
+ log, ctx, sh->dev[sh->qd_idx].page,
+ r5l_ring_add(log, log_offset, BLOCK_SECTORS));
+ sh->dev[sh->qd_idx].log_checksum =
+ le32_to_cpu(payload->checksum[1]);
+ set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
+ }
+ clear_bit(STRIPE_R5C_CACHING, &sh->state);
+}
+
+static void r5l_recovery_reset_stripe(struct stripe_head *sh)
+{
+ int i;
+
+ sh->state = 0;
+ sh->log_start = MaxSector;
+ for (i = sh->disks; i--; )
+ sh->dev[i].flags = 0;
+}
+
+static void
+r5l_recovery_replay_one_stripe(struct r5conf *conf,
+ struct stripe_head *sh,
+ struct r5l_recovery_ctx *ctx)
+{
+ struct md_rdev *rdev, *rrdev;
+ int disk_index;
+ int data_count = 0;
+
+ for (disk_index = 0; disk_index < sh->disks; disk_index++) {
+ if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
+ continue;
+ if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
+ continue;
+ data_count++;
+ }
+
+ /*
+ * stripes that only have parity must have been flushed
+ * before the crash that we are now recovering from, so
+ * there is nothing more to recovery.
+ */
+ if (data_count == 0)
+ goto out;
+
+ for (disk_index = 0; disk_index < sh->disks; disk_index++) {
+ if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
+ continue;
+
+ /* in case device is broken */
+ rcu_read_lock();
+ rdev = rcu_dereference(conf->disks[disk_index].rdev);
+ if (rdev) {
+ atomic_inc(&rdev->nr_pending);
+ rcu_read_unlock();
+ sync_page_io(rdev, sh->sector, PAGE_SIZE,
+ sh->dev[disk_index].page, REQ_OP_WRITE,
+ false);
+ rdev_dec_pending(rdev, rdev->mddev);
+ rcu_read_lock();
+ }
+ rrdev = rcu_dereference(conf->disks[disk_index].replacement);
+ if (rrdev) {
+ atomic_inc(&rrdev->nr_pending);
+ rcu_read_unlock();
+ sync_page_io(rrdev, sh->sector, PAGE_SIZE,
+ sh->dev[disk_index].page, REQ_OP_WRITE,
+ false);
+ rdev_dec_pending(rrdev, rrdev->mddev);
+ rcu_read_lock();
+ }
+ rcu_read_unlock();
+ }
+ ctx->data_parity_stripes++;
+out:
+ r5l_recovery_reset_stripe(sh);
+}
+
+static struct stripe_head *
+r5c_recovery_alloc_stripe(
+ struct r5conf *conf,
+ sector_t stripe_sect,
+ int noblock)
+{
+ struct stripe_head *sh;
+
+ sh = raid5_get_active_stripe(conf, NULL, stripe_sect,
+ noblock ? R5_GAS_NOBLOCK : 0);
+ if (!sh)
+ return NULL; /* no more stripe available */
+
+ r5l_recovery_reset_stripe(sh);
+
+ return sh;
+}
+
+static struct stripe_head *
+r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
+{
+ struct stripe_head *sh;
+
+ list_for_each_entry(sh, list, lru)
+ if (sh->sector == sect)
+ return sh;
+ return NULL;
+}
+
+static void
+r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
+ struct r5l_recovery_ctx *ctx)
+{
+ struct stripe_head *sh, *next;
+
+ list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
+ r5l_recovery_reset_stripe(sh);
+ list_del_init(&sh->lru);
+ raid5_release_stripe(sh);
+ }
+}
+
+static void
+r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
+ struct r5l_recovery_ctx *ctx)
+{
+ struct stripe_head *sh, *next;
+
+ list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
+ if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
+ r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
+ list_del_init(&sh->lru);
+ raid5_release_stripe(sh);
+ }
+}
+
+/* if matches return 0; otherwise return -EINVAL */
+static int
+r5l_recovery_verify_data_checksum(struct r5l_log *log,
+ struct r5l_recovery_ctx *ctx,
+ struct page *page,
+ sector_t log_offset, __le32 log_checksum)
+{
+ void *addr;
+ u32 checksum;
+
+ r5l_recovery_read_page(log, ctx, page, log_offset);
+ addr = kmap_atomic(page);
+ checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
+ kunmap_atomic(addr);
+ return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
+}
+
+/*
+ * before loading data to stripe cache, we need verify checksum for all data,
+ * if there is mismatch for any data page, we drop all data in the mata block
+ */
+static int
+r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
+ struct r5l_recovery_ctx *ctx)
+{
+ struct mddev *mddev = log->rdev->mddev;
+ struct r5conf *conf = mddev->private;
+ struct r5l_meta_block *mb = page_address(ctx->meta_page);
+ sector_t mb_offset = sizeof(struct r5l_meta_block);
+ sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
+ struct page *page;
+ struct r5l_payload_data_parity *payload;
+ struct r5l_payload_flush *payload_flush;
+
+ page = alloc_page(GFP_KERNEL);
+ if (!page)
+ return -ENOMEM;
+
+ while (mb_offset < le32_to_cpu(mb->meta_size)) {
+ payload = (void *)mb + mb_offset;
+ payload_flush = (void *)mb + mb_offset;
+
+ if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
+ if (r5l_recovery_verify_data_checksum(
+ log, ctx, page, log_offset,
+ payload->checksum[0]) < 0)
+ goto mismatch;
+ } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
+ if (r5l_recovery_verify_data_checksum(
+ log, ctx, page, log_offset,
+ payload->checksum[0]) < 0)
+ goto mismatch;
+ if (conf->max_degraded == 2 && /* q for RAID 6 */
+ r5l_recovery_verify_data_checksum(
+ log, ctx, page,
+ r5l_ring_add(log, log_offset,
+ BLOCK_SECTORS),
+ payload->checksum[1]) < 0)
+ goto mismatch;
+ } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
+ /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
+ } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
+ goto mismatch;
+
+ if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
+ mb_offset += sizeof(struct r5l_payload_flush) +
+ le32_to_cpu(payload_flush->size);
+ } else {
+ /* DATA or PARITY payload */
+ log_offset = r5l_ring_add(log, log_offset,
+ le32_to_cpu(payload->size));
+ mb_offset += sizeof(struct r5l_payload_data_parity) +
+ sizeof(__le32) *
+ (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
+ }
+
+ }
+
+ put_page(page);
+ return 0;
+
+mismatch:
+ put_page(page);
+ return -EINVAL;
+}
+
+/*
+ * Analyze all data/parity pages in one meta block
+ * Returns:
+ * 0 for success
+ * -EINVAL for unknown playload type
+ * -EAGAIN for checksum mismatch of data page
+ * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
+ */
+static int
+r5c_recovery_analyze_meta_block(struct r5l_log *log,
+ struct r5l_recovery_ctx *ctx,
+ struct list_head *cached_stripe_list)
+{
+ struct mddev *mddev = log->rdev->mddev;
+ struct r5conf *conf = mddev->private;
+ struct r5l_meta_block *mb;
+ struct r5l_payload_data_parity *payload;
+ struct r5l_payload_flush *payload_flush;
+ int mb_offset;
+ sector_t log_offset;
+ sector_t stripe_sect;
+ struct stripe_head *sh;
+ int ret;
+
+ /*
+ * for mismatch in data blocks, we will drop all data in this mb, but
+ * we will still read next mb for other data with FLUSH flag, as
+ * io_unit could finish out of order.
+ */
+ ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
+ if (ret == -EINVAL)
+ return -EAGAIN;
+ else if (ret)
+ return ret; /* -ENOMEM duo to alloc_page() failed */
+
+ mb = page_address(ctx->meta_page);
+ mb_offset = sizeof(struct r5l_meta_block);
+ log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
+
+ while (mb_offset < le32_to_cpu(mb->meta_size)) {
+ int dd;
+
+ payload = (void *)mb + mb_offset;
+ payload_flush = (void *)mb + mb_offset;
+
+ if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
+ int i, count;
+
+ count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
+ for (i = 0; i < count; ++i) {
+ stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
+ sh = r5c_recovery_lookup_stripe(cached_stripe_list,
+ stripe_sect);
+ if (sh) {
+ WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
+ r5l_recovery_reset_stripe(sh);
+ list_del_init(&sh->lru);
+ raid5_release_stripe(sh);
+ }
+ }
+
+ mb_offset += sizeof(struct r5l_payload_flush) +
+ le32_to_cpu(payload_flush->size);
+ continue;
+ }
+
+ /* DATA or PARITY payload */
+ stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
+ raid5_compute_sector(
+ conf, le64_to_cpu(payload->location), 0, &dd,
+ NULL)
+ : le64_to_cpu(payload->location);
+
+ sh = r5c_recovery_lookup_stripe(cached_stripe_list,
+ stripe_sect);
+
+ if (!sh) {
+ sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
+ /*
+ * cannot get stripe from raid5_get_active_stripe
+ * try replay some stripes
+ */
+ if (!sh) {
+ r5c_recovery_replay_stripes(
+ cached_stripe_list, ctx);
+ sh = r5c_recovery_alloc_stripe(
+ conf, stripe_sect, 1);
+ }
+ if (!sh) {
+ int new_size = conf->min_nr_stripes * 2;
+ pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
+ mdname(mddev),
+ new_size);
+ ret = raid5_set_cache_size(mddev, new_size);
+ if (conf->min_nr_stripes <= new_size / 2) {
+ pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
+ mdname(mddev),
+ ret,
+ new_size,
+ conf->min_nr_stripes,
+ conf->max_nr_stripes);
+ return -ENOMEM;
+ }
+ sh = r5c_recovery_alloc_stripe(
+ conf, stripe_sect, 0);
+ }
+ if (!sh) {
+ pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
+ mdname(mddev));
+ return -ENOMEM;
+ }
+ list_add_tail(&sh->lru, cached_stripe_list);
+ }
+
+ if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
+ if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
+ test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
+ r5l_recovery_replay_one_stripe(conf, sh, ctx);
+ list_move_tail(&sh->lru, cached_stripe_list);
+ }
+ r5l_recovery_load_data(log, sh, ctx, payload,
+ log_offset);
+ } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
+ r5l_recovery_load_parity(log, sh, ctx, payload,
+ log_offset);
+ else
+ return -EINVAL;
+
+ log_offset = r5l_ring_add(log, log_offset,
+ le32_to_cpu(payload->size));
+
+ mb_offset += sizeof(struct r5l_payload_data_parity) +
+ sizeof(__le32) *
+ (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
+ }
+
+ return 0;
+}
+
+/*
+ * Load the stripe into cache. The stripe will be written out later by
+ * the stripe cache state machine.
+ */
+static void r5c_recovery_load_one_stripe(struct r5l_log *log,
+ struct stripe_head *sh)
+{
+ struct r5dev *dev;
+ int i;
+
+ for (i = sh->disks; i--; ) {
+ dev = sh->dev + i;
+ if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
+ set_bit(R5_InJournal, &dev->flags);
+ set_bit(R5_UPTODATE, &dev->flags);
+ }
+ }
+}
+
+/*
+ * Scan through the log for all to-be-flushed data
+ *
+ * For stripes with data and parity, namely Data-Parity stripe
+ * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
+ *
+ * For stripes with only data, namely Data-Only stripe
+ * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
+ *
+ * For a stripe, if we see data after parity, we should discard all previous
+ * data and parity for this stripe, as these data are already flushed to
+ * the array.
+ *
+ * At the end of the scan, we return the new journal_tail, which points to
+ * first data-only stripe on the journal device, or next invalid meta block.
+ */
+static int r5c_recovery_flush_log(struct r5l_log *log,
+ struct r5l_recovery_ctx *ctx)
+{
+ struct stripe_head *sh;
+ int ret = 0;
+
+ /* scan through the log */
+ while (1) {
+ if (r5l_recovery_read_meta_block(log, ctx))
+ break;
+
+ ret = r5c_recovery_analyze_meta_block(log, ctx,
+ &ctx->cached_list);
+ /*
+ * -EAGAIN means mismatch in data block, in this case, we still
+ * try scan the next metablock
+ */
+ if (ret && ret != -EAGAIN)
+ break; /* ret == -EINVAL or -ENOMEM */
+ ctx->seq++;
+ ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
+ }
+
+ if (ret == -ENOMEM) {
+ r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
+ return ret;
+ }
+
+ /* replay data-parity stripes */
+ r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
+
+ /* load data-only stripes to stripe cache */
+ list_for_each_entry(sh, &ctx->cached_list, lru) {
+ WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
+ r5c_recovery_load_one_stripe(log, sh);
+ ctx->data_only_stripes++;
+ }
+
+ return 0;
+}
+
+/*
+ * we did a recovery. Now ctx.pos points to an invalid meta block. New
+ * log will start here. but we can't let superblock point to last valid
+ * meta block. The log might looks like:
+ * | meta 1| meta 2| meta 3|
+ * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
+ * superblock points to meta 1, we write a new valid meta 2n. if crash
+ * happens again, new recovery will start from meta 1. Since meta 2n is
+ * valid now, recovery will think meta 3 is valid, which is wrong.
+ * The solution is we create a new meta in meta2 with its seq == meta
+ * 1's seq + 10000 and let superblock points to meta2. The same recovery
+ * will not think meta 3 is a valid meta, because its seq doesn't match
+ */
+
+/*
+ * Before recovery, the log looks like the following
+ *
+ * ---------------------------------------------
+ * | valid log | invalid log |
+ * ---------------------------------------------
+ * ^
+ * |- log->last_checkpoint
+ * |- log->last_cp_seq
+ *
+ * Now we scan through the log until we see invalid entry
+ *
+ * ---------------------------------------------
+ * | valid log | invalid log |
+ * ---------------------------------------------
+ * ^ ^
+ * |- log->last_checkpoint |- ctx->pos
+ * |- log->last_cp_seq |- ctx->seq
+ *
+ * From this point, we need to increase seq number by 10 to avoid
+ * confusing next recovery.
+ *
+ * ---------------------------------------------
+ * | valid log | invalid log |
+ * ---------------------------------------------
+ * ^ ^
+ * |- log->last_checkpoint |- ctx->pos+1
+ * |- log->last_cp_seq |- ctx->seq+10001
+ *
+ * However, it is not safe to start the state machine yet, because data only
+ * parities are not yet secured in RAID. To save these data only parities, we
+ * rewrite them from seq+11.
+ *
+ * -----------------------------------------------------------------
+ * | valid log | data only stripes | invalid log |
+ * -----------------------------------------------------------------
+ * ^ ^
+ * |- log->last_checkpoint |- ctx->pos+n
+ * |- log->last_cp_seq |- ctx->seq+10000+n
+ *
+ * If failure happens again during this process, the recovery can safe start
+ * again from log->last_checkpoint.
+ *
+ * Once data only stripes are rewritten to journal, we move log_tail
+ *
+ * -----------------------------------------------------------------
+ * | old log | data only stripes | invalid log |
+ * -----------------------------------------------------------------
+ * ^ ^
+ * |- log->last_checkpoint |- ctx->pos+n
+ * |- log->last_cp_seq |- ctx->seq+10000+n
+ *
+ * Then we can safely start the state machine. If failure happens from this
+ * point on, the recovery will start from new log->last_checkpoint.
+ */
+static int
+r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
+ struct r5l_recovery_ctx *ctx)
+{
+ struct stripe_head *sh;
+ struct mddev *mddev = log->rdev->mddev;
+ struct page *page;
+ sector_t next_checkpoint = MaxSector;
+
+ page = alloc_page(GFP_KERNEL);
+ if (!page) {
+ pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
+ mdname(mddev));
+ return -ENOMEM;
+ }
+
+ WARN_ON(list_empty(&ctx->cached_list));
+
+ list_for_each_entry(sh, &ctx->cached_list, lru) {
+ struct r5l_meta_block *mb;
+ int i;
+ int offset;
+ sector_t write_pos;
+
+ WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
+ r5l_recovery_create_empty_meta_block(log, page,
+ ctx->pos, ctx->seq);
+ mb = page_address(page);
+ offset = le32_to_cpu(mb->meta_size);
+ write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
+
+ for (i = sh->disks; i--; ) {
+ struct r5dev *dev = &sh->dev[i];
+ struct r5l_payload_data_parity *payload;
+ void *addr;
+
+ if (test_bit(R5_InJournal, &dev->flags)) {
+ payload = (void *)mb + offset;
+ payload->header.type = cpu_to_le16(
+ R5LOG_PAYLOAD_DATA);
+ payload->size = cpu_to_le32(BLOCK_SECTORS);
+ payload->location = cpu_to_le64(
+ raid5_compute_blocknr(sh, i, 0));
+ addr = kmap_atomic(dev->page);
+ payload->checksum[0] = cpu_to_le32(
+ crc32c_le(log->uuid_checksum, addr,
+ PAGE_SIZE));
+ kunmap_atomic(addr);
+ sync_page_io(log->rdev, write_pos, PAGE_SIZE,
+ dev->page, REQ_OP_WRITE, false);
+ write_pos = r5l_ring_add(log, write_pos,
+ BLOCK_SECTORS);
+ offset += sizeof(__le32) +
+ sizeof(struct r5l_payload_data_parity);
+
+ }
+ }
+ mb->meta_size = cpu_to_le32(offset);
+ mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
+ mb, PAGE_SIZE));
+ sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
+ REQ_OP_WRITE | REQ_SYNC | REQ_FUA, false);
+ sh->log_start = ctx->pos;
+ list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
+ atomic_inc(&log->stripe_in_journal_count);
+ ctx->pos = write_pos;
+ ctx->seq += 1;
+ next_checkpoint = sh->log_start;
+ }
+ log->next_checkpoint = next_checkpoint;
+ __free_page(page);
+ return 0;
+}
+
+static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
+ struct r5l_recovery_ctx *ctx)
+{
+ struct mddev *mddev = log->rdev->mddev;
+ struct r5conf *conf = mddev->private;
+ struct stripe_head *sh, *next;
+ bool cleared_pending = false;
+
+ if (ctx->data_only_stripes == 0)
+ return;
+
+ if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
+ cleared_pending = true;
+ clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
+ }
+ log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
+
+ list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
+ r5c_make_stripe_write_out(sh);
+ set_bit(STRIPE_HANDLE, &sh->state);
+ list_del_init(&sh->lru);
+ raid5_release_stripe(sh);
+ }
+
+ /* reuse conf->wait_for_quiescent in recovery */
+ wait_event(conf->wait_for_quiescent,
+ atomic_read(&conf->active_stripes) == 0);
+
+ log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
+ if (cleared_pending)
+ set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
+}
+
+static int r5l_recovery_log(struct r5l_log *log)
+{
+ struct mddev *mddev = log->rdev->mddev;
+ struct r5l_recovery_ctx *ctx;
+ int ret;
+ sector_t pos;
+
+ ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
+ if (!ctx)
+ return -ENOMEM;
+
+ ctx->pos = log->last_checkpoint;
+ ctx->seq = log->last_cp_seq;
+ INIT_LIST_HEAD(&ctx->cached_list);
+ ctx->meta_page = alloc_page(GFP_KERNEL);
+
+ if (!ctx->meta_page) {
+ ret = -ENOMEM;
+ goto meta_page;
+ }
+
+ if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
+ ret = -ENOMEM;
+ goto ra_pool;
+ }
+
+ ret = r5c_recovery_flush_log(log, ctx);
+
+ if (ret)
+ goto error;
+
+ pos = ctx->pos;
+ ctx->seq += 10000;
+
+ if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
+ pr_info("md/raid:%s: starting from clean shutdown\n",
+ mdname(mddev));
+ else
+ pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
+ mdname(mddev), ctx->data_only_stripes,
+ ctx->data_parity_stripes);
+
+ if (ctx->data_only_stripes == 0) {
+ log->next_checkpoint = ctx->pos;
+ r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
+ ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
+ } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
+ pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
+ mdname(mddev));
+ ret = -EIO;
+ goto error;
+ }
+
+ log->log_start = ctx->pos;
+ log->seq = ctx->seq;
+ log->last_checkpoint = pos;
+ r5l_write_super(log, pos);
+
+ r5c_recovery_flush_data_only_stripes(log, ctx);
+ ret = 0;
+error:
+ r5l_recovery_free_ra_pool(log, ctx);
+ra_pool:
+ __free_page(ctx->meta_page);
+meta_page:
+ kfree(ctx);
+ return ret;
+}
+
+static void r5l_write_super(struct r5l_log *log, sector_t cp)
+{
+ struct mddev *mddev = log->rdev->mddev;
+
+ log->rdev->journal_tail = cp;
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+}
+
+static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
+{
+ struct r5conf *conf;
+ int ret;
+
+ ret = mddev_lock(mddev);
+ if (ret)
+ return ret;
+
+ conf = mddev->private;
+ if (!conf || !conf->log)
+ goto out_unlock;
+
+ switch (conf->log->r5c_journal_mode) {
+ case R5C_JOURNAL_MODE_WRITE_THROUGH:
+ ret = snprintf(
+ page, PAGE_SIZE, "[%s] %s\n",
+ r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
+ r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
+ break;
+ case R5C_JOURNAL_MODE_WRITE_BACK:
+ ret = snprintf(
+ page, PAGE_SIZE, "%s [%s]\n",
+ r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
+ r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
+ break;
+ default:
+ ret = 0;
+ }
+
+out_unlock:
+ mddev_unlock(mddev);
+ return ret;
+}
+
+/*
+ * Set journal cache mode on @mddev (external API initially needed by dm-raid).
+ *
+ * @mode as defined in 'enum r5c_journal_mode'.
+ *
+ */
+int r5c_journal_mode_set(struct mddev *mddev, int mode)
+{
+ struct r5conf *conf;
+
+ if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
+ mode > R5C_JOURNAL_MODE_WRITE_BACK)
+ return -EINVAL;
+
+ conf = mddev->private;
+ if (!conf || !conf->log)
+ return -ENODEV;
+
+ if (raid5_calc_degraded(conf) > 0 &&
+ mode == R5C_JOURNAL_MODE_WRITE_BACK)
+ return -EINVAL;
+
+ mddev_suspend(mddev);
+ conf->log->r5c_journal_mode = mode;
+ mddev_resume(mddev);
+
+ pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
+ mdname(mddev), mode, r5c_journal_mode_str[mode]);
+ return 0;
+}
+EXPORT_SYMBOL(r5c_journal_mode_set);
+
+static ssize_t r5c_journal_mode_store(struct mddev *mddev,
+ const char *page, size_t length)
+{
+ int mode = ARRAY_SIZE(r5c_journal_mode_str);
+ size_t len = length;
+ int ret;
+
+ if (len < 2)
+ return -EINVAL;
+
+ if (page[len - 1] == '\n')
+ len--;
+
+ while (mode--)
+ if (strlen(r5c_journal_mode_str[mode]) == len &&
+ !strncmp(page, r5c_journal_mode_str[mode], len))
+ break;
+ ret = mddev_lock(mddev);
+ if (ret)
+ return ret;
+ ret = r5c_journal_mode_set(mddev, mode);
+ mddev_unlock(mddev);
+ return ret ?: length;
+}
+
+struct md_sysfs_entry
+r5c_journal_mode = __ATTR(journal_mode, 0644,
+ r5c_journal_mode_show, r5c_journal_mode_store);
+
+/*
+ * Try handle write operation in caching phase. This function should only
+ * be called in write-back mode.
+ *
+ * If all outstanding writes can be handled in caching phase, returns 0
+ * If writes requires write-out phase, call r5c_make_stripe_write_out()
+ * and returns -EAGAIN
+ */
+int r5c_try_caching_write(struct r5conf *conf,
+ struct stripe_head *sh,
+ struct stripe_head_state *s,
+ int disks)
+{
+ struct r5l_log *log = conf->log;
+ int i;
+ struct r5dev *dev;
+ int to_cache = 0;
+ void __rcu **pslot;
+ sector_t tree_index;
+ int ret;
+ uintptr_t refcount;
+
+ BUG_ON(!r5c_is_writeback(log));
+
+ if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
+ /*
+ * There are two different scenarios here:
+ * 1. The stripe has some data cached, and it is sent to
+ * write-out phase for reclaim
+ * 2. The stripe is clean, and this is the first write
+ *
+ * For 1, return -EAGAIN, so we continue with
+ * handle_stripe_dirtying().
+ *
+ * For 2, set STRIPE_R5C_CACHING and continue with caching
+ * write.
+ */
+
+ /* case 1: anything injournal or anything in written */
+ if (s->injournal > 0 || s->written > 0)
+ return -EAGAIN;
+ /* case 2 */
+ set_bit(STRIPE_R5C_CACHING, &sh->state);
+ }
+
+ /*
+ * When run in degraded mode, array is set to write-through mode.
+ * This check helps drain pending write safely in the transition to
+ * write-through mode.
+ *
+ * When a stripe is syncing, the write is also handled in write
+ * through mode.
+ */
+ if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
+ r5c_make_stripe_write_out(sh);
+ return -EAGAIN;
+ }
+
+ for (i = disks; i--; ) {
+ dev = &sh->dev[i];
+ /* if non-overwrite, use writing-out phase */
+ if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
+ !test_bit(R5_InJournal, &dev->flags)) {
+ r5c_make_stripe_write_out(sh);
+ return -EAGAIN;
+ }
+ }
+
+ /* if the stripe is not counted in big_stripe_tree, add it now */
+ if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
+ !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
+ tree_index = r5c_tree_index(conf, sh->sector);
+ spin_lock(&log->tree_lock);
+ pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
+ tree_index);
+ if (pslot) {
+ refcount = (uintptr_t)radix_tree_deref_slot_protected(
+ pslot, &log->tree_lock) >>
+ R5C_RADIX_COUNT_SHIFT;
+ radix_tree_replace_slot(
+ &log->big_stripe_tree, pslot,
+ (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
+ } else {
+ /*
+ * this radix_tree_insert can fail safely, so no
+ * need to call radix_tree_preload()
+ */
+ ret = radix_tree_insert(
+ &log->big_stripe_tree, tree_index,
+ (void *)(1 << R5C_RADIX_COUNT_SHIFT));
+ if (ret) {
+ spin_unlock(&log->tree_lock);
+ r5c_make_stripe_write_out(sh);
+ return -EAGAIN;
+ }
+ }
+ spin_unlock(&log->tree_lock);
+
+ /*
+ * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
+ * counted in the radix tree
+ */
+ set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
+ atomic_inc(&conf->r5c_cached_partial_stripes);
+ }
+
+ for (i = disks; i--; ) {
+ dev = &sh->dev[i];
+ if (dev->towrite) {
+ set_bit(R5_Wantwrite, &dev->flags);
+ set_bit(R5_Wantdrain, &dev->flags);
+ set_bit(R5_LOCKED, &dev->flags);
+ to_cache++;
+ }
+ }
+
+ if (to_cache) {
+ set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
+ /*
+ * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
+ * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
+ * r5c_handle_data_cached()
+ */
+ set_bit(STRIPE_LOG_TRAPPED, &sh->state);
+ }
+
+ return 0;
+}
+
+/*
+ * free extra pages (orig_page) we allocated for prexor
+ */
+void r5c_release_extra_page(struct stripe_head *sh)
+{
+ struct r5conf *conf = sh->raid_conf;
+ int i;
+ bool using_disk_info_extra_page;
+
+ using_disk_info_extra_page =
+ sh->dev[0].orig_page == conf->disks[0].extra_page;
+
+ for (i = sh->disks; i--; )
+ if (sh->dev[i].page != sh->dev[i].orig_page) {
+ struct page *p = sh->dev[i].orig_page;
+
+ sh->dev[i].orig_page = sh->dev[i].page;
+ clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
+
+ if (!using_disk_info_extra_page)
+ put_page(p);
+ }
+
+ if (using_disk_info_extra_page) {
+ clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
+ md_wakeup_thread(conf->mddev->thread);
+ }
+}
+
+void r5c_use_extra_page(struct stripe_head *sh)
+{
+ struct r5conf *conf = sh->raid_conf;
+ int i;
+ struct r5dev *dev;
+
+ for (i = sh->disks; i--; ) {
+ dev = &sh->dev[i];
+ if (dev->orig_page != dev->page)
+ put_page(dev->orig_page);
+ dev->orig_page = conf->disks[i].extra_page;
+ }
+}
+
+/*
+ * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
+ * stripe is committed to RAID disks.
+ */
+void r5c_finish_stripe_write_out(struct r5conf *conf,
+ struct stripe_head *sh,
+ struct stripe_head_state *s)
+{
+ struct r5l_log *log = conf->log;
+ int i;
+ int do_wakeup = 0;
+ sector_t tree_index;
+ void __rcu **pslot;
+ uintptr_t refcount;
+
+ if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
+ return;
+
+ WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
+ clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
+
+ if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
+ return;
+
+ for (i = sh->disks; i--; ) {
+ clear_bit(R5_InJournal, &sh->dev[i].flags);
+ if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
+ do_wakeup = 1;
+ }
+
+ /*
+ * analyse_stripe() runs before r5c_finish_stripe_write_out(),
+ * We updated R5_InJournal, so we also update s->injournal.
+ */
+ s->injournal = 0;
+
+ if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
+ if (atomic_dec_and_test(&conf->pending_full_writes))
+ md_wakeup_thread(conf->mddev->thread);
+
+ if (do_wakeup)
+ wake_up(&conf->wait_for_overlap);
+
+ spin_lock_irq(&log->stripe_in_journal_lock);
+ list_del_init(&sh->r5c);
+ spin_unlock_irq(&log->stripe_in_journal_lock);
+ sh->log_start = MaxSector;
+
+ atomic_dec(&log->stripe_in_journal_count);
+ r5c_update_log_state(log);
+
+ /* stop counting this stripe in big_stripe_tree */
+ if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
+ test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
+ tree_index = r5c_tree_index(conf, sh->sector);
+ spin_lock(&log->tree_lock);
+ pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
+ tree_index);
+ BUG_ON(pslot == NULL);
+ refcount = (uintptr_t)radix_tree_deref_slot_protected(
+ pslot, &log->tree_lock) >>
+ R5C_RADIX_COUNT_SHIFT;
+ if (refcount == 1)
+ radix_tree_delete(&log->big_stripe_tree, tree_index);
+ else
+ radix_tree_replace_slot(
+ &log->big_stripe_tree, pslot,
+ (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
+ spin_unlock(&log->tree_lock);
+ }
+
+ if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
+ BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
+ atomic_dec(&conf->r5c_flushing_partial_stripes);
+ atomic_dec(&conf->r5c_cached_partial_stripes);
+ }
+
+ if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
+ BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
+ atomic_dec(&conf->r5c_flushing_full_stripes);
+ atomic_dec(&conf->r5c_cached_full_stripes);
+ }
+
+ r5l_append_flush_payload(log, sh->sector);
+ /* stripe is flused to raid disks, we can do resync now */
+ if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
+ set_bit(STRIPE_HANDLE, &sh->state);
+}
+
+int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
+{
+ struct r5conf *conf = sh->raid_conf;
+ int pages = 0;
+ int reserve;
+ int i;
+ int ret = 0;
+
+ BUG_ON(!log);
+
+ for (i = 0; i < sh->disks; i++) {
+ void *addr;
+
+ if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
+ continue;
+ addr = kmap_atomic(sh->dev[i].page);
+ sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
+ addr, PAGE_SIZE);
+ kunmap_atomic(addr);
+ pages++;
+ }
+ WARN_ON(pages == 0);
+
+ /*
+ * The stripe must enter state machine again to call endio, so
+ * don't delay.
+ */
+ clear_bit(STRIPE_DELAYED, &sh->state);
+ atomic_inc(&sh->count);
+
+ mutex_lock(&log->io_mutex);
+ /* meta + data */
+ reserve = (1 + pages) << (PAGE_SHIFT - 9);
+
+ if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
+ sh->log_start == MaxSector)
+ r5l_add_no_space_stripe(log, sh);
+ else if (!r5l_has_free_space(log, reserve)) {
+ if (sh->log_start == log->last_checkpoint)
+ BUG();
+ else
+ r5l_add_no_space_stripe(log, sh);
+ } else {
+ ret = r5l_log_stripe(log, sh, pages, 0);
+ if (ret) {
+ spin_lock_irq(&log->io_list_lock);
+ list_add_tail(&sh->log_list, &log->no_mem_stripes);
+ spin_unlock_irq(&log->io_list_lock);
+ }
+ }
+
+ mutex_unlock(&log->io_mutex);
+ return 0;
+}
+
+/* check whether this big stripe is in write back cache. */
+bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
+{
+ struct r5l_log *log = conf->log;
+ sector_t tree_index;
+ void *slot;
+
+ if (!log)
+ return false;
+
+ WARN_ON_ONCE(!rcu_read_lock_held());
+ tree_index = r5c_tree_index(conf, sect);
+ slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
+ return slot != NULL;
+}
+
+static int r5l_load_log(struct r5l_log *log)
+{
+ struct md_rdev *rdev = log->rdev;
+ struct page *page;
+ struct r5l_meta_block *mb;
+ sector_t cp = log->rdev->journal_tail;
+ u32 stored_crc, expected_crc;
+ bool create_super = false;
+ int ret = 0;
+
+ /* Make sure it's valid */
+ if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
+ cp = 0;
+ page = alloc_page(GFP_KERNEL);
+ if (!page)
+ return -ENOMEM;
+
+ if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, false)) {
+ ret = -EIO;
+ goto ioerr;
+ }
+ mb = page_address(page);
+
+ if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
+ mb->version != R5LOG_VERSION) {
+ create_super = true;
+ goto create;
+ }
+ stored_crc = le32_to_cpu(mb->checksum);
+ mb->checksum = 0;
+ expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
+ if (stored_crc != expected_crc) {
+ create_super = true;
+ goto create;
+ }
+ if (le64_to_cpu(mb->position) != cp) {
+ create_super = true;
+ goto create;
+ }
+create:
+ if (create_super) {
+ log->last_cp_seq = get_random_u32();
+ cp = 0;
+ r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
+ /*
+ * Make sure super points to correct address. Log might have
+ * data very soon. If super hasn't correct log tail address,
+ * recovery can't find the log
+ */
+ r5l_write_super(log, cp);
+ } else
+ log->last_cp_seq = le64_to_cpu(mb->seq);
+
+ log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
+ log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
+ if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
+ log->max_free_space = RECLAIM_MAX_FREE_SPACE;
+ log->last_checkpoint = cp;
+
+ __free_page(page);
+
+ if (create_super) {
+ log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
+ log->seq = log->last_cp_seq + 1;
+ log->next_checkpoint = cp;
+ } else
+ ret = r5l_recovery_log(log);
+
+ r5c_update_log_state(log);
+ return ret;
+ioerr:
+ __free_page(page);
+ return ret;
+}
+
+int r5l_start(struct r5l_log *log)
+{
+ int ret;
+
+ if (!log)
+ return 0;
+
+ ret = r5l_load_log(log);
+ if (ret) {
+ struct mddev *mddev = log->rdev->mddev;
+ struct r5conf *conf = mddev->private;
+
+ r5l_exit_log(conf);
+ }
+ return ret;
+}
+
+void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct r5conf *conf = mddev->private;
+ struct r5l_log *log = conf->log;
+
+ if (!log)
+ return;
+
+ if ((raid5_calc_degraded(conf) > 0 ||
+ test_bit(Journal, &rdev->flags)) &&
+ conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
+ schedule_work(&log->disable_writeback_work);
+}
+
+int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
+{
+ struct request_queue *q = bdev_get_queue(rdev->bdev);
+ struct r5l_log *log;
+ int ret;
+
+ pr_debug("md/raid:%s: using device %pg as journal\n",
+ mdname(conf->mddev), rdev->bdev);
+
+ if (PAGE_SIZE != 4096)
+ return -EINVAL;
+
+ /*
+ * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
+ * raid_disks r5l_payload_data_parity.
+ *
+ * Write journal and cache does not work for very big array
+ * (raid_disks > 203)
+ */
+ if (sizeof(struct r5l_meta_block) +
+ ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
+ conf->raid_disks) > PAGE_SIZE) {
+ pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
+ mdname(conf->mddev), conf->raid_disks);
+ return -EINVAL;
+ }
+
+ log = kzalloc(sizeof(*log), GFP_KERNEL);
+ if (!log)
+ return -ENOMEM;
+ log->rdev = rdev;
+
+ log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
+
+ log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
+ sizeof(rdev->mddev->uuid));
+
+ mutex_init(&log->io_mutex);
+
+ spin_lock_init(&log->io_list_lock);
+ INIT_LIST_HEAD(&log->running_ios);
+ INIT_LIST_HEAD(&log->io_end_ios);
+ INIT_LIST_HEAD(&log->flushing_ios);
+ INIT_LIST_HEAD(&log->finished_ios);
+
+ log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
+ if (!log->io_kc)
+ goto io_kc;
+
+ ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
+ if (ret)
+ goto io_pool;
+
+ ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
+ if (ret)
+ goto io_bs;
+
+ ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
+ if (ret)
+ goto out_mempool;
+
+ spin_lock_init(&log->tree_lock);
+ INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
+
+ log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
+ log->rdev->mddev, "reclaim");
+ if (!log->reclaim_thread)
+ goto reclaim_thread;
+ log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
+
+ init_waitqueue_head(&log->iounit_wait);
+
+ INIT_LIST_HEAD(&log->no_mem_stripes);
+
+ INIT_LIST_HEAD(&log->no_space_stripes);
+ spin_lock_init(&log->no_space_stripes_lock);
+
+ INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
+ INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
+
+ log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
+ INIT_LIST_HEAD(&log->stripe_in_journal_list);
+ spin_lock_init(&log->stripe_in_journal_lock);
+ atomic_set(&log->stripe_in_journal_count, 0);
+
+ conf->log = log;
+
+ set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
+ return 0;
+
+reclaim_thread:
+ mempool_exit(&log->meta_pool);
+out_mempool:
+ bioset_exit(&log->bs);
+io_bs:
+ mempool_exit(&log->io_pool);
+io_pool:
+ kmem_cache_destroy(log->io_kc);
+io_kc:
+ kfree(log);
+ return -EINVAL;
+}
+
+void r5l_exit_log(struct r5conf *conf)
+{
+ struct r5l_log *log = conf->log;
+
+ md_unregister_thread(&log->reclaim_thread);
+
+ /*
+ * 'reconfig_mutex' is held by caller, set 'confg->log' to NULL to
+ * ensure disable_writeback_work wakes up and exits.
+ */
+ conf->log = NULL;
+ wake_up(&conf->mddev->sb_wait);
+ flush_work(&log->disable_writeback_work);
+
+ mempool_exit(&log->meta_pool);
+ bioset_exit(&log->bs);
+ mempool_exit(&log->io_pool);
+ kmem_cache_destroy(log->io_kc);
+ kfree(log);
+}
diff --git a/drivers/md/raid5-log.h b/drivers/md/raid5-log.h
new file mode 100644
index 000000000..c83325026
--- /dev/null
+++ b/drivers/md/raid5-log.h
@@ -0,0 +1,151 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _RAID5_LOG_H
+#define _RAID5_LOG_H
+
+int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev);
+void r5l_exit_log(struct r5conf *conf);
+int r5l_write_stripe(struct r5l_log *log, struct stripe_head *head_sh);
+void r5l_write_stripe_run(struct r5l_log *log);
+void r5l_flush_stripe_to_raid(struct r5l_log *log);
+void r5l_stripe_write_finished(struct stripe_head *sh);
+int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio);
+void r5l_quiesce(struct r5l_log *log, int quiesce);
+bool r5l_log_disk_error(struct r5conf *conf);
+bool r5c_is_writeback(struct r5l_log *log);
+int r5c_try_caching_write(struct r5conf *conf, struct stripe_head *sh,
+ struct stripe_head_state *s, int disks);
+void r5c_finish_stripe_write_out(struct r5conf *conf, struct stripe_head *sh,
+ struct stripe_head_state *s);
+void r5c_release_extra_page(struct stripe_head *sh);
+void r5c_use_extra_page(struct stripe_head *sh);
+void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
+void r5c_handle_cached_data_endio(struct r5conf *conf,
+ struct stripe_head *sh, int disks);
+int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh);
+void r5c_make_stripe_write_out(struct stripe_head *sh);
+void r5c_flush_cache(struct r5conf *conf, int num);
+void r5c_check_stripe_cache_usage(struct r5conf *conf);
+void r5c_check_cached_full_stripe(struct r5conf *conf);
+extern struct md_sysfs_entry r5c_journal_mode;
+void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev);
+bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect);
+int r5l_start(struct r5l_log *log);
+
+struct dma_async_tx_descriptor *
+ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu,
+ struct dma_async_tx_descriptor *tx);
+int ppl_init_log(struct r5conf *conf);
+void ppl_exit_log(struct r5conf *conf);
+int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh);
+void ppl_write_stripe_run(struct r5conf *conf);
+void ppl_stripe_write_finished(struct stripe_head *sh);
+int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add);
+void ppl_quiesce(struct r5conf *conf, int quiesce);
+int ppl_handle_flush_request(struct bio *bio);
+extern struct md_sysfs_entry ppl_write_hint;
+
+static inline bool raid5_has_log(struct r5conf *conf)
+{
+ return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
+}
+
+static inline bool raid5_has_ppl(struct r5conf *conf)
+{
+ return test_bit(MD_HAS_PPL, &conf->mddev->flags);
+}
+
+static inline int log_stripe(struct stripe_head *sh, struct stripe_head_state *s)
+{
+ struct r5conf *conf = sh->raid_conf;
+
+ if (conf->log) {
+ if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
+ /* writing out phase */
+ if (s->waiting_extra_page)
+ return 0;
+ return r5l_write_stripe(conf->log, sh);
+ } else if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) {
+ /* caching phase */
+ return r5c_cache_data(conf->log, sh);
+ }
+ } else if (raid5_has_ppl(conf)) {
+ return ppl_write_stripe(conf, sh);
+ }
+
+ return -EAGAIN;
+}
+
+static inline void log_stripe_write_finished(struct stripe_head *sh)
+{
+ struct r5conf *conf = sh->raid_conf;
+
+ if (conf->log)
+ r5l_stripe_write_finished(sh);
+ else if (raid5_has_ppl(conf))
+ ppl_stripe_write_finished(sh);
+}
+
+static inline void log_write_stripe_run(struct r5conf *conf)
+{
+ if (conf->log)
+ r5l_write_stripe_run(conf->log);
+ else if (raid5_has_ppl(conf))
+ ppl_write_stripe_run(conf);
+}
+
+static inline void log_flush_stripe_to_raid(struct r5conf *conf)
+{
+ if (conf->log)
+ r5l_flush_stripe_to_raid(conf->log);
+ else if (raid5_has_ppl(conf))
+ ppl_write_stripe_run(conf);
+}
+
+static inline int log_handle_flush_request(struct r5conf *conf, struct bio *bio)
+{
+ int ret = -ENODEV;
+
+ if (conf->log)
+ ret = r5l_handle_flush_request(conf->log, bio);
+ else if (raid5_has_ppl(conf))
+ ret = ppl_handle_flush_request(bio);
+
+ return ret;
+}
+
+static inline void log_quiesce(struct r5conf *conf, int quiesce)
+{
+ if (conf->log)
+ r5l_quiesce(conf->log, quiesce);
+ else if (raid5_has_ppl(conf))
+ ppl_quiesce(conf, quiesce);
+}
+
+static inline void log_exit(struct r5conf *conf)
+{
+ if (conf->log)
+ r5l_exit_log(conf);
+ else if (raid5_has_ppl(conf))
+ ppl_exit_log(conf);
+}
+
+static inline int log_init(struct r5conf *conf, struct md_rdev *journal_dev,
+ bool ppl)
+{
+ if (journal_dev)
+ return r5l_init_log(conf, journal_dev);
+ else if (ppl)
+ return ppl_init_log(conf);
+
+ return 0;
+}
+
+static inline int log_modify(struct r5conf *conf, struct md_rdev *rdev, bool add)
+{
+ if (raid5_has_ppl(conf))
+ return ppl_modify_log(conf, rdev, add);
+
+ return 0;
+}
+
+#endif
diff --git a/drivers/md/raid5-ppl.c b/drivers/md/raid5-ppl.c
new file mode 100644
index 000000000..31b9157bc
--- /dev/null
+++ b/drivers/md/raid5-ppl.c
@@ -0,0 +1,1532 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Partial Parity Log for closing the RAID5 write hole
+ * Copyright (c) 2017, Intel Corporation.
+ */
+
+#include <linux/kernel.h>
+#include <linux/blkdev.h>
+#include <linux/slab.h>
+#include <linux/crc32c.h>
+#include <linux/async_tx.h>
+#include <linux/raid/md_p.h>
+#include "md.h"
+#include "raid5.h"
+#include "raid5-log.h"
+
+/*
+ * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
+ * partial parity data. The header contains an array of entries
+ * (struct ppl_header_entry) which describe the logged write requests.
+ * Partial parity for the entries comes after the header, written in the same
+ * sequence as the entries:
+ *
+ * Header
+ * entry0
+ * ...
+ * entryN
+ * PP data
+ * PP for entry0
+ * ...
+ * PP for entryN
+ *
+ * An entry describes one or more consecutive stripe_heads, up to a full
+ * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
+ * number of stripe_heads in the entry and n is the number of modified data
+ * disks. Every stripe_head in the entry must write to the same data disks.
+ * An example of a valid case described by a single entry (writes to the first
+ * stripe of a 4 disk array, 16k chunk size):
+ *
+ * sh->sector dd0 dd1 dd2 ppl
+ * +-----+-----+-----+
+ * 0 | --- | --- | --- | +----+
+ * 8 | -W- | -W- | --- | | pp | data_sector = 8
+ * 16 | -W- | -W- | --- | | pp | data_size = 3 * 2 * 4k
+ * 24 | -W- | -W- | --- | | pp | pp_size = 3 * 4k
+ * +-----+-----+-----+ +----+
+ *
+ * data_sector is the first raid sector of the modified data, data_size is the
+ * total size of modified data and pp_size is the size of partial parity for
+ * this entry. Entries for full stripe writes contain no partial parity
+ * (pp_size = 0), they only mark the stripes for which parity should be
+ * recalculated after an unclean shutdown. Every entry holds a checksum of its
+ * partial parity, the header also has a checksum of the header itself.
+ *
+ * A write request is always logged to the PPL instance stored on the parity
+ * disk of the corresponding stripe. For each member disk there is one ppl_log
+ * used to handle logging for this disk, independently from others. They are
+ * grouped in child_logs array in struct ppl_conf, which is assigned to
+ * r5conf->log_private.
+ *
+ * ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
+ * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
+ * can be appended to the last entry if it meets the conditions for a valid
+ * entry described above, otherwise a new entry is added. Checksums of entries
+ * are calculated incrementally as stripes containing partial parity are being
+ * added. ppl_submit_iounit() calculates the checksum of the header and submits
+ * a bio containing the header page and partial parity pages (sh->ppl_page) for
+ * all stripes of the io_unit. When the PPL write completes, the stripes
+ * associated with the io_unit are released and raid5d starts writing their data
+ * and parity. When all stripes are written, the io_unit is freed and the next
+ * can be submitted.
+ *
+ * An io_unit is used to gather stripes until it is submitted or becomes full
+ * (if the maximum number of entries or size of PPL is reached). Another io_unit
+ * can't be submitted until the previous has completed (PPL and stripe
+ * data+parity is written). The log->io_list tracks all io_units of a log
+ * (for a single member disk). New io_units are added to the end of the list
+ * and the first io_unit is submitted, if it is not submitted already.
+ * The current io_unit accepting new stripes is always at the end of the list.
+ *
+ * If write-back cache is enabled for any of the disks in the array, its data
+ * must be flushed before next io_unit is submitted.
+ */
+
+#define PPL_SPACE_SIZE (128 * 1024)
+
+struct ppl_conf {
+ struct mddev *mddev;
+
+ /* array of child logs, one for each raid disk */
+ struct ppl_log *child_logs;
+ int count;
+
+ int block_size; /* the logical block size used for data_sector
+ * in ppl_header_entry */
+ u32 signature; /* raid array identifier */
+ atomic64_t seq; /* current log write sequence number */
+
+ struct kmem_cache *io_kc;
+ mempool_t io_pool;
+ struct bio_set bs;
+ struct bio_set flush_bs;
+
+ /* used only for recovery */
+ int recovered_entries;
+ int mismatch_count;
+
+ /* stripes to retry if failed to allocate io_unit */
+ struct list_head no_mem_stripes;
+ spinlock_t no_mem_stripes_lock;
+
+ unsigned short write_hint;
+};
+
+struct ppl_log {
+ struct ppl_conf *ppl_conf; /* shared between all log instances */
+
+ struct md_rdev *rdev; /* array member disk associated with
+ * this log instance */
+ struct mutex io_mutex;
+ struct ppl_io_unit *current_io; /* current io_unit accepting new data
+ * always at the end of io_list */
+ spinlock_t io_list_lock;
+ struct list_head io_list; /* all io_units of this log */
+
+ sector_t next_io_sector;
+ unsigned int entry_space;
+ bool use_multippl;
+ bool wb_cache_on;
+ unsigned long disk_flush_bitmap;
+};
+
+#define PPL_IO_INLINE_BVECS 32
+
+struct ppl_io_unit {
+ struct ppl_log *log;
+
+ struct page *header_page; /* for ppl_header */
+
+ unsigned int entries_count; /* number of entries in ppl_header */
+ unsigned int pp_size; /* total size current of partial parity */
+
+ u64 seq; /* sequence number of this log write */
+ struct list_head log_sibling; /* log->io_list */
+
+ struct list_head stripe_list; /* stripes added to the io_unit */
+ atomic_t pending_stripes; /* how many stripes not written to raid */
+ atomic_t pending_flushes; /* how many disk flushes are in progress */
+
+ bool submitted; /* true if write to log started */
+
+ /* inline bio and its biovec for submitting the iounit */
+ struct bio bio;
+ struct bio_vec biovec[PPL_IO_INLINE_BVECS];
+};
+
+struct dma_async_tx_descriptor *
+ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu,
+ struct dma_async_tx_descriptor *tx)
+{
+ int disks = sh->disks;
+ struct page **srcs = percpu->scribble;
+ int count = 0, pd_idx = sh->pd_idx, i;
+ struct async_submit_ctl submit;
+
+ pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
+
+ /*
+ * Partial parity is the XOR of stripe data chunks that are not changed
+ * during the write request. Depending on available data
+ * (read-modify-write vs. reconstruct-write case) we calculate it
+ * differently.
+ */
+ if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
+ /*
+ * rmw: xor old data and parity from updated disks
+ * This is calculated earlier by ops_run_prexor5() so just copy
+ * the parity dev page.
+ */
+ srcs[count++] = sh->dev[pd_idx].page;
+ } else if (sh->reconstruct_state == reconstruct_state_drain_run) {
+ /* rcw: xor data from all not updated disks */
+ for (i = disks; i--;) {
+ struct r5dev *dev = &sh->dev[i];
+ if (test_bit(R5_UPTODATE, &dev->flags))
+ srcs[count++] = dev->page;
+ }
+ } else {
+ return tx;
+ }
+
+ init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx,
+ NULL, sh, (void *) (srcs + sh->disks + 2));
+
+ if (count == 1)
+ tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE,
+ &submit);
+ else
+ tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE,
+ &submit);
+
+ return tx;
+}
+
+static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data)
+{
+ struct kmem_cache *kc = pool_data;
+ struct ppl_io_unit *io;
+
+ io = kmem_cache_alloc(kc, gfp_mask);
+ if (!io)
+ return NULL;
+
+ io->header_page = alloc_page(gfp_mask);
+ if (!io->header_page) {
+ kmem_cache_free(kc, io);
+ return NULL;
+ }
+
+ return io;
+}
+
+static void ppl_io_pool_free(void *element, void *pool_data)
+{
+ struct kmem_cache *kc = pool_data;
+ struct ppl_io_unit *io = element;
+
+ __free_page(io->header_page);
+ kmem_cache_free(kc, io);
+}
+
+static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log,
+ struct stripe_head *sh)
+{
+ struct ppl_conf *ppl_conf = log->ppl_conf;
+ struct ppl_io_unit *io;
+ struct ppl_header *pplhdr;
+ struct page *header_page;
+
+ io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT);
+ if (!io)
+ return NULL;
+
+ header_page = io->header_page;
+ memset(io, 0, sizeof(*io));
+ io->header_page = header_page;
+
+ io->log = log;
+ INIT_LIST_HEAD(&io->log_sibling);
+ INIT_LIST_HEAD(&io->stripe_list);
+ atomic_set(&io->pending_stripes, 0);
+ atomic_set(&io->pending_flushes, 0);
+ bio_init(&io->bio, log->rdev->bdev, io->biovec, PPL_IO_INLINE_BVECS,
+ REQ_OP_WRITE | REQ_FUA);
+
+ pplhdr = page_address(io->header_page);
+ clear_page(pplhdr);
+ memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
+ pplhdr->signature = cpu_to_le32(ppl_conf->signature);
+
+ io->seq = atomic64_add_return(1, &ppl_conf->seq);
+ pplhdr->generation = cpu_to_le64(io->seq);
+
+ return io;
+}
+
+static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh)
+{
+ struct ppl_io_unit *io = log->current_io;
+ struct ppl_header_entry *e = NULL;
+ struct ppl_header *pplhdr;
+ int i;
+ sector_t data_sector = 0;
+ int data_disks = 0;
+ struct r5conf *conf = sh->raid_conf;
+
+ pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector);
+
+ /* check if current io_unit is full */
+ if (io && (io->pp_size == log->entry_space ||
+ io->entries_count == PPL_HDR_MAX_ENTRIES)) {
+ pr_debug("%s: add io_unit blocked by seq: %llu\n",
+ __func__, io->seq);
+ io = NULL;
+ }
+
+ /* add a new unit if there is none or the current is full */
+ if (!io) {
+ io = ppl_new_iounit(log, sh);
+ if (!io)
+ return -ENOMEM;
+ spin_lock_irq(&log->io_list_lock);
+ list_add_tail(&io->log_sibling, &log->io_list);
+ spin_unlock_irq(&log->io_list_lock);
+
+ log->current_io = io;
+ }
+
+ for (i = 0; i < sh->disks; i++) {
+ struct r5dev *dev = &sh->dev[i];
+
+ if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) {
+ if (!data_disks || dev->sector < data_sector)
+ data_sector = dev->sector;
+ data_disks++;
+ }
+ }
+ BUG_ON(!data_disks);
+
+ pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__,
+ io->seq, (unsigned long long)data_sector, data_disks);
+
+ pplhdr = page_address(io->header_page);
+
+ if (io->entries_count > 0) {
+ struct ppl_header_entry *last =
+ &pplhdr->entries[io->entries_count - 1];
+ struct stripe_head *sh_last = list_last_entry(
+ &io->stripe_list, struct stripe_head, log_list);
+ u64 data_sector_last = le64_to_cpu(last->data_sector);
+ u32 data_size_last = le32_to_cpu(last->data_size);
+
+ /*
+ * Check if we can append the stripe to the last entry. It must
+ * be just after the last logged stripe and write to the same
+ * disks. Use bit shift and logarithm to avoid 64-bit division.
+ */
+ if ((sh->sector == sh_last->sector + RAID5_STRIPE_SECTORS(conf)) &&
+ (data_sector >> ilog2(conf->chunk_sectors) ==
+ data_sector_last >> ilog2(conf->chunk_sectors)) &&
+ ((data_sector - data_sector_last) * data_disks ==
+ data_size_last >> 9))
+ e = last;
+ }
+
+ if (!e) {
+ e = &pplhdr->entries[io->entries_count++];
+ e->data_sector = cpu_to_le64(data_sector);
+ e->parity_disk = cpu_to_le32(sh->pd_idx);
+ e->checksum = cpu_to_le32(~0);
+ }
+
+ le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT);
+
+ /* don't write any PP if full stripe write */
+ if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) {
+ le32_add_cpu(&e->pp_size, PAGE_SIZE);
+ io->pp_size += PAGE_SIZE;
+ e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum),
+ page_address(sh->ppl_page),
+ PAGE_SIZE));
+ }
+
+ list_add_tail(&sh->log_list, &io->stripe_list);
+ atomic_inc(&io->pending_stripes);
+ sh->ppl_io = io;
+
+ return 0;
+}
+
+int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh)
+{
+ struct ppl_conf *ppl_conf = conf->log_private;
+ struct ppl_io_unit *io = sh->ppl_io;
+ struct ppl_log *log;
+
+ if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page ||
+ !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
+ !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) {
+ clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
+ return -EAGAIN;
+ }
+
+ log = &ppl_conf->child_logs[sh->pd_idx];
+
+ mutex_lock(&log->io_mutex);
+
+ if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
+ mutex_unlock(&log->io_mutex);
+ return -EAGAIN;
+ }
+
+ set_bit(STRIPE_LOG_TRAPPED, &sh->state);
+ clear_bit(STRIPE_DELAYED, &sh->state);
+ atomic_inc(&sh->count);
+
+ if (ppl_log_stripe(log, sh)) {
+ spin_lock_irq(&ppl_conf->no_mem_stripes_lock);
+ list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes);
+ spin_unlock_irq(&ppl_conf->no_mem_stripes_lock);
+ }
+
+ mutex_unlock(&log->io_mutex);
+
+ return 0;
+}
+
+static void ppl_log_endio(struct bio *bio)
+{
+ struct ppl_io_unit *io = bio->bi_private;
+ struct ppl_log *log = io->log;
+ struct ppl_conf *ppl_conf = log->ppl_conf;
+ struct stripe_head *sh, *next;
+
+ pr_debug("%s: seq: %llu\n", __func__, io->seq);
+
+ if (bio->bi_status)
+ md_error(ppl_conf->mddev, log->rdev);
+
+ list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
+ list_del_init(&sh->log_list);
+
+ set_bit(STRIPE_HANDLE, &sh->state);
+ raid5_release_stripe(sh);
+ }
+}
+
+static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio)
+{
+ pr_debug("%s: seq: %llu size: %u sector: %llu dev: %pg\n",
+ __func__, io->seq, bio->bi_iter.bi_size,
+ (unsigned long long)bio->bi_iter.bi_sector,
+ bio->bi_bdev);
+
+ submit_bio(bio);
+}
+
+static void ppl_submit_iounit(struct ppl_io_unit *io)
+{
+ struct ppl_log *log = io->log;
+ struct ppl_conf *ppl_conf = log->ppl_conf;
+ struct ppl_header *pplhdr = page_address(io->header_page);
+ struct bio *bio = &io->bio;
+ struct stripe_head *sh;
+ int i;
+
+ bio->bi_private = io;
+
+ if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
+ ppl_log_endio(bio);
+ return;
+ }
+
+ for (i = 0; i < io->entries_count; i++) {
+ struct ppl_header_entry *e = &pplhdr->entries[i];
+
+ pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
+ __func__, io->seq, i, le64_to_cpu(e->data_sector),
+ le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size));
+
+ e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >>
+ ilog2(ppl_conf->block_size >> 9));
+ e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum));
+ }
+
+ pplhdr->entries_count = cpu_to_le32(io->entries_count);
+ pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE));
+
+ /* Rewind the buffer if current PPL is larger then remaining space */
+ if (log->use_multippl &&
+ log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector <
+ (PPL_HEADER_SIZE + io->pp_size) >> 9)
+ log->next_io_sector = log->rdev->ppl.sector;
+
+
+ bio->bi_end_io = ppl_log_endio;
+ bio->bi_iter.bi_sector = log->next_io_sector;
+ bio_add_page(bio, io->header_page, PAGE_SIZE, 0);
+
+ pr_debug("%s: log->current_io_sector: %llu\n", __func__,
+ (unsigned long long)log->next_io_sector);
+
+ if (log->use_multippl)
+ log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9;
+
+ WARN_ON(log->disk_flush_bitmap != 0);
+
+ list_for_each_entry(sh, &io->stripe_list, log_list) {
+ for (i = 0; i < sh->disks; i++) {
+ struct r5dev *dev = &sh->dev[i];
+
+ if ((ppl_conf->child_logs[i].wb_cache_on) &&
+ (test_bit(R5_Wantwrite, &dev->flags))) {
+ set_bit(i, &log->disk_flush_bitmap);
+ }
+ }
+
+ /* entries for full stripe writes have no partial parity */
+ if (test_bit(STRIPE_FULL_WRITE, &sh->state))
+ continue;
+
+ if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) {
+ struct bio *prev = bio;
+
+ bio = bio_alloc_bioset(prev->bi_bdev, BIO_MAX_VECS,
+ prev->bi_opf, GFP_NOIO,
+ &ppl_conf->bs);
+ bio->bi_iter.bi_sector = bio_end_sector(prev);
+ bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0);
+
+ bio_chain(bio, prev);
+ ppl_submit_iounit_bio(io, prev);
+ }
+ }
+
+ ppl_submit_iounit_bio(io, bio);
+}
+
+static void ppl_submit_current_io(struct ppl_log *log)
+{
+ struct ppl_io_unit *io;
+
+ spin_lock_irq(&log->io_list_lock);
+
+ io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
+ log_sibling);
+ if (io && io->submitted)
+ io = NULL;
+
+ spin_unlock_irq(&log->io_list_lock);
+
+ if (io) {
+ io->submitted = true;
+
+ if (io == log->current_io)
+ log->current_io = NULL;
+
+ ppl_submit_iounit(io);
+ }
+}
+
+void ppl_write_stripe_run(struct r5conf *conf)
+{
+ struct ppl_conf *ppl_conf = conf->log_private;
+ struct ppl_log *log;
+ int i;
+
+ for (i = 0; i < ppl_conf->count; i++) {
+ log = &ppl_conf->child_logs[i];
+
+ mutex_lock(&log->io_mutex);
+ ppl_submit_current_io(log);
+ mutex_unlock(&log->io_mutex);
+ }
+}
+
+static void ppl_io_unit_finished(struct ppl_io_unit *io)
+{
+ struct ppl_log *log = io->log;
+ struct ppl_conf *ppl_conf = log->ppl_conf;
+ struct r5conf *conf = ppl_conf->mddev->private;
+ unsigned long flags;
+
+ pr_debug("%s: seq: %llu\n", __func__, io->seq);
+
+ local_irq_save(flags);
+
+ spin_lock(&log->io_list_lock);
+ list_del(&io->log_sibling);
+ spin_unlock(&log->io_list_lock);
+
+ mempool_free(io, &ppl_conf->io_pool);
+
+ spin_lock(&ppl_conf->no_mem_stripes_lock);
+ if (!list_empty(&ppl_conf->no_mem_stripes)) {
+ struct stripe_head *sh;
+
+ sh = list_first_entry(&ppl_conf->no_mem_stripes,
+ struct stripe_head, log_list);
+ list_del_init(&sh->log_list);
+ set_bit(STRIPE_HANDLE, &sh->state);
+ raid5_release_stripe(sh);
+ }
+ spin_unlock(&ppl_conf->no_mem_stripes_lock);
+
+ local_irq_restore(flags);
+
+ wake_up(&conf->wait_for_quiescent);
+}
+
+static void ppl_flush_endio(struct bio *bio)
+{
+ struct ppl_io_unit *io = bio->bi_private;
+ struct ppl_log *log = io->log;
+ struct ppl_conf *ppl_conf = log->ppl_conf;
+ struct r5conf *conf = ppl_conf->mddev->private;
+
+ pr_debug("%s: dev: %pg\n", __func__, bio->bi_bdev);
+
+ if (bio->bi_status) {
+ struct md_rdev *rdev;
+
+ rcu_read_lock();
+ rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio));
+ if (rdev)
+ md_error(rdev->mddev, rdev);
+ rcu_read_unlock();
+ }
+
+ bio_put(bio);
+
+ if (atomic_dec_and_test(&io->pending_flushes)) {
+ ppl_io_unit_finished(io);
+ md_wakeup_thread(conf->mddev->thread);
+ }
+}
+
+static void ppl_do_flush(struct ppl_io_unit *io)
+{
+ struct ppl_log *log = io->log;
+ struct ppl_conf *ppl_conf = log->ppl_conf;
+ struct r5conf *conf = ppl_conf->mddev->private;
+ int raid_disks = conf->raid_disks;
+ int flushed_disks = 0;
+ int i;
+
+ atomic_set(&io->pending_flushes, raid_disks);
+
+ for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) {
+ struct md_rdev *rdev;
+ struct block_device *bdev = NULL;
+
+ rcu_read_lock();
+ rdev = rcu_dereference(conf->disks[i].rdev);
+ if (rdev && !test_bit(Faulty, &rdev->flags))
+ bdev = rdev->bdev;
+ rcu_read_unlock();
+
+ if (bdev) {
+ struct bio *bio;
+
+ bio = bio_alloc_bioset(bdev, 0,
+ REQ_OP_WRITE | REQ_PREFLUSH,
+ GFP_NOIO, &ppl_conf->flush_bs);
+ bio->bi_private = io;
+ bio->bi_end_io = ppl_flush_endio;
+
+ pr_debug("%s: dev: %ps\n", __func__, bio->bi_bdev);
+
+ submit_bio(bio);
+ flushed_disks++;
+ }
+ }
+
+ log->disk_flush_bitmap = 0;
+
+ for (i = flushed_disks ; i < raid_disks; i++) {
+ if (atomic_dec_and_test(&io->pending_flushes))
+ ppl_io_unit_finished(io);
+ }
+}
+
+static inline bool ppl_no_io_unit_submitted(struct r5conf *conf,
+ struct ppl_log *log)
+{
+ struct ppl_io_unit *io;
+
+ io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
+ log_sibling);
+
+ return !io || !io->submitted;
+}
+
+void ppl_quiesce(struct r5conf *conf, int quiesce)
+{
+ struct ppl_conf *ppl_conf = conf->log_private;
+ int i;
+
+ if (quiesce) {
+ for (i = 0; i < ppl_conf->count; i++) {
+ struct ppl_log *log = &ppl_conf->child_logs[i];
+
+ spin_lock_irq(&log->io_list_lock);
+ wait_event_lock_irq(conf->wait_for_quiescent,
+ ppl_no_io_unit_submitted(conf, log),
+ log->io_list_lock);
+ spin_unlock_irq(&log->io_list_lock);
+ }
+ }
+}
+
+int ppl_handle_flush_request(struct bio *bio)
+{
+ if (bio->bi_iter.bi_size == 0) {
+ bio_endio(bio);
+ return 0;
+ }
+ bio->bi_opf &= ~REQ_PREFLUSH;
+ return -EAGAIN;
+}
+
+void ppl_stripe_write_finished(struct stripe_head *sh)
+{
+ struct ppl_io_unit *io;
+
+ io = sh->ppl_io;
+ sh->ppl_io = NULL;
+
+ if (io && atomic_dec_and_test(&io->pending_stripes)) {
+ if (io->log->disk_flush_bitmap)
+ ppl_do_flush(io);
+ else
+ ppl_io_unit_finished(io);
+ }
+}
+
+static void ppl_xor(int size, struct page *page1, struct page *page2)
+{
+ struct async_submit_ctl submit;
+ struct dma_async_tx_descriptor *tx;
+ struct page *xor_srcs[] = { page1, page2 };
+
+ init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST,
+ NULL, NULL, NULL, NULL);
+ tx = async_xor(page1, xor_srcs, 0, 2, size, &submit);
+
+ async_tx_quiesce(&tx);
+}
+
+/*
+ * PPL recovery strategy: xor partial parity and data from all modified data
+ * disks within a stripe and write the result as the new stripe parity. If all
+ * stripe data disks are modified (full stripe write), no partial parity is
+ * available, so just xor the data disks.
+ *
+ * Recovery of a PPL entry shall occur only if all modified data disks are
+ * available and read from all of them succeeds.
+ *
+ * A PPL entry applies to a stripe, partial parity size for an entry is at most
+ * the size of the chunk. Examples of possible cases for a single entry:
+ *
+ * case 0: single data disk write:
+ * data0 data1 data2 ppl parity
+ * +--------+--------+--------+ +--------------------+
+ * | ------ | ------ | ------ | +----+ | (no change) |
+ * | ------ | -data- | ------ | | pp | -> | data1 ^ pp |
+ * | ------ | -data- | ------ | | pp | -> | data1 ^ pp |
+ * | ------ | ------ | ------ | +----+ | (no change) |
+ * +--------+--------+--------+ +--------------------+
+ * pp_size = data_size
+ *
+ * case 1: more than one data disk write:
+ * data0 data1 data2 ppl parity
+ * +--------+--------+--------+ +--------------------+
+ * | ------ | ------ | ------ | +----+ | (no change) |
+ * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
+ * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
+ * | ------ | ------ | ------ | +----+ | (no change) |
+ * +--------+--------+--------+ +--------------------+
+ * pp_size = data_size / modified_data_disks
+ *
+ * case 2: write to all data disks (also full stripe write):
+ * data0 data1 data2 parity
+ * +--------+--------+--------+ +--------------------+
+ * | ------ | ------ | ------ | | (no change) |
+ * | -data- | -data- | -data- | --------> | xor all data |
+ * | ------ | ------ | ------ | --------> | (no change) |
+ * | ------ | ------ | ------ | | (no change) |
+ * +--------+--------+--------+ +--------------------+
+ * pp_size = 0
+ *
+ * The following cases are possible only in other implementations. The recovery
+ * code can handle them, but they are not generated at runtime because they can
+ * be reduced to cases 0, 1 and 2:
+ *
+ * case 3:
+ * data0 data1 data2 ppl parity
+ * +--------+--------+--------+ +----+ +--------------------+
+ * | ------ | -data- | -data- | | pp | | data1 ^ data2 ^ pp |
+ * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
+ * | -data- | -data- | -data- | | -- | -> | xor all data |
+ * | -data- | -data- | ------ | | pp | | data0 ^ data1 ^ pp |
+ * +--------+--------+--------+ +----+ +--------------------+
+ * pp_size = chunk_size
+ *
+ * case 4:
+ * data0 data1 data2 ppl parity
+ * +--------+--------+--------+ +----+ +--------------------+
+ * | ------ | -data- | ------ | | pp | | data1 ^ pp |
+ * | ------ | ------ | ------ | | -- | -> | (no change) |
+ * | ------ | ------ | ------ | | -- | -> | (no change) |
+ * | -data- | ------ | ------ | | pp | | data0 ^ pp |
+ * +--------+--------+--------+ +----+ +--------------------+
+ * pp_size = chunk_size
+ */
+static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e,
+ sector_t ppl_sector)
+{
+ struct ppl_conf *ppl_conf = log->ppl_conf;
+ struct mddev *mddev = ppl_conf->mddev;
+ struct r5conf *conf = mddev->private;
+ int block_size = ppl_conf->block_size;
+ struct page *page1;
+ struct page *page2;
+ sector_t r_sector_first;
+ sector_t r_sector_last;
+ int strip_sectors;
+ int data_disks;
+ int i;
+ int ret = 0;
+ unsigned int pp_size = le32_to_cpu(e->pp_size);
+ unsigned int data_size = le32_to_cpu(e->data_size);
+
+ page1 = alloc_page(GFP_KERNEL);
+ page2 = alloc_page(GFP_KERNEL);
+
+ if (!page1 || !page2) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9);
+
+ if ((pp_size >> 9) < conf->chunk_sectors) {
+ if (pp_size > 0) {
+ data_disks = data_size / pp_size;
+ strip_sectors = pp_size >> 9;
+ } else {
+ data_disks = conf->raid_disks - conf->max_degraded;
+ strip_sectors = (data_size >> 9) / data_disks;
+ }
+ r_sector_last = r_sector_first +
+ (data_disks - 1) * conf->chunk_sectors +
+ strip_sectors;
+ } else {
+ data_disks = conf->raid_disks - conf->max_degraded;
+ strip_sectors = conf->chunk_sectors;
+ r_sector_last = r_sector_first + (data_size >> 9);
+ }
+
+ pr_debug("%s: array sector first: %llu last: %llu\n", __func__,
+ (unsigned long long)r_sector_first,
+ (unsigned long long)r_sector_last);
+
+ /* if start and end is 4k aligned, use a 4k block */
+ if (block_size == 512 &&
+ (r_sector_first & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0 &&
+ (r_sector_last & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0)
+ block_size = RAID5_STRIPE_SIZE(conf);
+
+ /* iterate through blocks in strip */
+ for (i = 0; i < strip_sectors; i += (block_size >> 9)) {
+ bool update_parity = false;
+ sector_t parity_sector;
+ struct md_rdev *parity_rdev;
+ struct stripe_head sh;
+ int disk;
+ int indent = 0;
+
+ pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i);
+ indent += 2;
+
+ memset(page_address(page1), 0, PAGE_SIZE);
+
+ /* iterate through data member disks */
+ for (disk = 0; disk < data_disks; disk++) {
+ int dd_idx;
+ struct md_rdev *rdev;
+ sector_t sector;
+ sector_t r_sector = r_sector_first + i +
+ (disk * conf->chunk_sectors);
+
+ pr_debug("%s:%*s data member disk %d start\n",
+ __func__, indent, "", disk);
+ indent += 2;
+
+ if (r_sector >= r_sector_last) {
+ pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
+ __func__, indent, "",
+ (unsigned long long)r_sector);
+ indent -= 2;
+ continue;
+ }
+
+ update_parity = true;
+
+ /* map raid sector to member disk */
+ sector = raid5_compute_sector(conf, r_sector, 0,
+ &dd_idx, NULL);
+ pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
+ __func__, indent, "",
+ (unsigned long long)r_sector, dd_idx,
+ (unsigned long long)sector);
+
+ /* Array has not started so rcu dereference is safe */
+ rdev = rcu_dereference_protected(
+ conf->disks[dd_idx].rdev, 1);
+ if (!rdev || (!test_bit(In_sync, &rdev->flags) &&
+ sector >= rdev->recovery_offset)) {
+ pr_debug("%s:%*s data member disk %d missing\n",
+ __func__, indent, "", dd_idx);
+ update_parity = false;
+ break;
+ }
+
+ pr_debug("%s:%*s reading data member disk %pg sector %llu\n",
+ __func__, indent, "", rdev->bdev,
+ (unsigned long long)sector);
+ if (!sync_page_io(rdev, sector, block_size, page2,
+ REQ_OP_READ, false)) {
+ md_error(mddev, rdev);
+ pr_debug("%s:%*s read failed!\n", __func__,
+ indent, "");
+ ret = -EIO;
+ goto out;
+ }
+
+ ppl_xor(block_size, page1, page2);
+
+ indent -= 2;
+ }
+
+ if (!update_parity)
+ continue;
+
+ if (pp_size > 0) {
+ pr_debug("%s:%*s reading pp disk sector %llu\n",
+ __func__, indent, "",
+ (unsigned long long)(ppl_sector + i));
+ if (!sync_page_io(log->rdev,
+ ppl_sector - log->rdev->data_offset + i,
+ block_size, page2, REQ_OP_READ,
+ false)) {
+ pr_debug("%s:%*s read failed!\n", __func__,
+ indent, "");
+ md_error(mddev, log->rdev);
+ ret = -EIO;
+ goto out;
+ }
+
+ ppl_xor(block_size, page1, page2);
+ }
+
+ /* map raid sector to parity disk */
+ parity_sector = raid5_compute_sector(conf, r_sector_first + i,
+ 0, &disk, &sh);
+ BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk));
+
+ /* Array has not started so rcu dereference is safe */
+ parity_rdev = rcu_dereference_protected(
+ conf->disks[sh.pd_idx].rdev, 1);
+
+ BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev);
+ pr_debug("%s:%*s write parity at sector %llu, disk %pg\n",
+ __func__, indent, "",
+ (unsigned long long)parity_sector,
+ parity_rdev->bdev);
+ if (!sync_page_io(parity_rdev, parity_sector, block_size,
+ page1, REQ_OP_WRITE, false)) {
+ pr_debug("%s:%*s parity write error!\n", __func__,
+ indent, "");
+ md_error(mddev, parity_rdev);
+ ret = -EIO;
+ goto out;
+ }
+ }
+out:
+ if (page1)
+ __free_page(page1);
+ if (page2)
+ __free_page(page2);
+ return ret;
+}
+
+static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr,
+ sector_t offset)
+{
+ struct ppl_conf *ppl_conf = log->ppl_conf;
+ struct md_rdev *rdev = log->rdev;
+ struct mddev *mddev = rdev->mddev;
+ sector_t ppl_sector = rdev->ppl.sector + offset +
+ (PPL_HEADER_SIZE >> 9);
+ struct page *page;
+ int i;
+ int ret = 0;
+
+ page = alloc_page(GFP_KERNEL);
+ if (!page)
+ return -ENOMEM;
+
+ /* iterate through all PPL entries saved */
+ for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) {
+ struct ppl_header_entry *e = &pplhdr->entries[i];
+ u32 pp_size = le32_to_cpu(e->pp_size);
+ sector_t sector = ppl_sector;
+ int ppl_entry_sectors = pp_size >> 9;
+ u32 crc, crc_stored;
+
+ pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
+ __func__, rdev->raid_disk, i,
+ (unsigned long long)ppl_sector, pp_size);
+
+ crc = ~0;
+ crc_stored = le32_to_cpu(e->checksum);
+
+ /* read parial parity for this entry and calculate its checksum */
+ while (pp_size) {
+ int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size;
+
+ if (!sync_page_io(rdev, sector - rdev->data_offset,
+ s, page, REQ_OP_READ, false)) {
+ md_error(mddev, rdev);
+ ret = -EIO;
+ goto out;
+ }
+
+ crc = crc32c_le(crc, page_address(page), s);
+
+ pp_size -= s;
+ sector += s >> 9;
+ }
+
+ crc = ~crc;
+
+ if (crc != crc_stored) {
+ /*
+ * Don't recover this entry if the checksum does not
+ * match, but keep going and try to recover other
+ * entries.
+ */
+ pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
+ __func__, crc_stored, crc);
+ ppl_conf->mismatch_count++;
+ } else {
+ ret = ppl_recover_entry(log, e, ppl_sector);
+ if (ret)
+ goto out;
+ ppl_conf->recovered_entries++;
+ }
+
+ ppl_sector += ppl_entry_sectors;
+ }
+
+ /* flush the disk cache after recovery if necessary */
+ ret = blkdev_issue_flush(rdev->bdev);
+out:
+ __free_page(page);
+ return ret;
+}
+
+static int ppl_write_empty_header(struct ppl_log *log)
+{
+ struct page *page;
+ struct ppl_header *pplhdr;
+ struct md_rdev *rdev = log->rdev;
+ int ret = 0;
+
+ pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__,
+ rdev->raid_disk, (unsigned long long)rdev->ppl.sector);
+
+ page = alloc_page(GFP_NOIO | __GFP_ZERO);
+ if (!page)
+ return -ENOMEM;
+
+ pplhdr = page_address(page);
+ /* zero out PPL space to avoid collision with old PPLs */
+ blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector,
+ log->rdev->ppl.size, GFP_NOIO, 0);
+ memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
+ pplhdr->signature = cpu_to_le32(log->ppl_conf->signature);
+ pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE));
+
+ if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
+ PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC |
+ REQ_FUA, false)) {
+ md_error(rdev->mddev, rdev);
+ ret = -EIO;
+ }
+
+ __free_page(page);
+ return ret;
+}
+
+static int ppl_load_distributed(struct ppl_log *log)
+{
+ struct ppl_conf *ppl_conf = log->ppl_conf;
+ struct md_rdev *rdev = log->rdev;
+ struct mddev *mddev = rdev->mddev;
+ struct page *page, *page2;
+ struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL;
+ u32 crc, crc_stored;
+ u32 signature;
+ int ret = 0, i;
+ sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0;
+
+ pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk);
+ /* read PPL headers, find the recent one */
+ page = alloc_page(GFP_KERNEL);
+ if (!page)
+ return -ENOMEM;
+
+ page2 = alloc_page(GFP_KERNEL);
+ if (!page2) {
+ __free_page(page);
+ return -ENOMEM;
+ }
+
+ /* searching ppl area for latest ppl */
+ while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) {
+ if (!sync_page_io(rdev,
+ rdev->ppl.sector - rdev->data_offset +
+ pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ,
+ false)) {
+ md_error(mddev, rdev);
+ ret = -EIO;
+ /* if not able to read - don't recover any PPL */
+ pplhdr = NULL;
+ break;
+ }
+ pplhdr = page_address(page);
+
+ /* check header validity */
+ crc_stored = le32_to_cpu(pplhdr->checksum);
+ pplhdr->checksum = 0;
+ crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE);
+
+ if (crc_stored != crc) {
+ pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n",
+ __func__, crc_stored, crc,
+ (unsigned long long)pplhdr_offset);
+ pplhdr = prev_pplhdr;
+ pplhdr_offset = prev_pplhdr_offset;
+ break;
+ }
+
+ signature = le32_to_cpu(pplhdr->signature);
+
+ if (mddev->external) {
+ /*
+ * For external metadata the header signature is set and
+ * validated in userspace.
+ */
+ ppl_conf->signature = signature;
+ } else if (ppl_conf->signature != signature) {
+ pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n",
+ __func__, signature, ppl_conf->signature,
+ (unsigned long long)pplhdr_offset);
+ pplhdr = prev_pplhdr;
+ pplhdr_offset = prev_pplhdr_offset;
+ break;
+ }
+
+ if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) >
+ le64_to_cpu(pplhdr->generation)) {
+ /* previous was newest */
+ pplhdr = prev_pplhdr;
+ pplhdr_offset = prev_pplhdr_offset;
+ break;
+ }
+
+ prev_pplhdr_offset = pplhdr_offset;
+ prev_pplhdr = pplhdr;
+
+ swap(page, page2);
+
+ /* calculate next potential ppl offset */
+ for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++)
+ pplhdr_offset +=
+ le32_to_cpu(pplhdr->entries[i].pp_size) >> 9;
+ pplhdr_offset += PPL_HEADER_SIZE >> 9;
+ }
+
+ /* no valid ppl found */
+ if (!pplhdr)
+ ppl_conf->mismatch_count++;
+ else
+ pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n",
+ __func__, (unsigned long long)pplhdr_offset,
+ le64_to_cpu(pplhdr->generation));
+
+ /* attempt to recover from log if we are starting a dirty array */
+ if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector)
+ ret = ppl_recover(log, pplhdr, pplhdr_offset);
+
+ /* write empty header if we are starting the array */
+ if (!ret && !mddev->pers)
+ ret = ppl_write_empty_header(log);
+
+ __free_page(page);
+ __free_page(page2);
+
+ pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
+ __func__, ret, ppl_conf->mismatch_count,
+ ppl_conf->recovered_entries);
+ return ret;
+}
+
+static int ppl_load(struct ppl_conf *ppl_conf)
+{
+ int ret = 0;
+ u32 signature = 0;
+ bool signature_set = false;
+ int i;
+
+ for (i = 0; i < ppl_conf->count; i++) {
+ struct ppl_log *log = &ppl_conf->child_logs[i];
+
+ /* skip missing drive */
+ if (!log->rdev)
+ continue;
+
+ ret = ppl_load_distributed(log);
+ if (ret)
+ break;
+
+ /*
+ * For external metadata we can't check if the signature is
+ * correct on a single drive, but we can check if it is the same
+ * on all drives.
+ */
+ if (ppl_conf->mddev->external) {
+ if (!signature_set) {
+ signature = ppl_conf->signature;
+ signature_set = true;
+ } else if (signature != ppl_conf->signature) {
+ pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
+ mdname(ppl_conf->mddev));
+ ret = -EINVAL;
+ break;
+ }
+ }
+ }
+
+ pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
+ __func__, ret, ppl_conf->mismatch_count,
+ ppl_conf->recovered_entries);
+ return ret;
+}
+
+static void __ppl_exit_log(struct ppl_conf *ppl_conf)
+{
+ clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
+ clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags);
+
+ kfree(ppl_conf->child_logs);
+
+ bioset_exit(&ppl_conf->bs);
+ bioset_exit(&ppl_conf->flush_bs);
+ mempool_exit(&ppl_conf->io_pool);
+ kmem_cache_destroy(ppl_conf->io_kc);
+
+ kfree(ppl_conf);
+}
+
+void ppl_exit_log(struct r5conf *conf)
+{
+ struct ppl_conf *ppl_conf = conf->log_private;
+
+ if (ppl_conf) {
+ __ppl_exit_log(ppl_conf);
+ conf->log_private = NULL;
+ }
+}
+
+static int ppl_validate_rdev(struct md_rdev *rdev)
+{
+ int ppl_data_sectors;
+ int ppl_size_new;
+
+ /*
+ * The configured PPL size must be enough to store
+ * the header and (at the very least) partial parity
+ * for one stripe. Round it down to ensure the data
+ * space is cleanly divisible by stripe size.
+ */
+ ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9);
+
+ if (ppl_data_sectors > 0)
+ ppl_data_sectors = rounddown(ppl_data_sectors,
+ RAID5_STRIPE_SECTORS((struct r5conf *)rdev->mddev->private));
+
+ if (ppl_data_sectors <= 0) {
+ pr_warn("md/raid:%s: PPL space too small on %pg\n",
+ mdname(rdev->mddev), rdev->bdev);
+ return -ENOSPC;
+ }
+
+ ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9);
+
+ if ((rdev->ppl.sector < rdev->data_offset &&
+ rdev->ppl.sector + ppl_size_new > rdev->data_offset) ||
+ (rdev->ppl.sector >= rdev->data_offset &&
+ rdev->data_offset + rdev->sectors > rdev->ppl.sector)) {
+ pr_warn("md/raid:%s: PPL space overlaps with data on %pg\n",
+ mdname(rdev->mddev), rdev->bdev);
+ return -EINVAL;
+ }
+
+ if (!rdev->mddev->external &&
+ ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) ||
+ (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) {
+ pr_warn("md/raid:%s: PPL space overlaps with superblock on %pg\n",
+ mdname(rdev->mddev), rdev->bdev);
+ return -EINVAL;
+ }
+
+ rdev->ppl.size = ppl_size_new;
+
+ return 0;
+}
+
+static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev)
+{
+ struct request_queue *q;
+
+ if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE +
+ PPL_HEADER_SIZE) * 2) {
+ log->use_multippl = true;
+ set_bit(MD_HAS_MULTIPLE_PPLS,
+ &log->ppl_conf->mddev->flags);
+ log->entry_space = PPL_SPACE_SIZE;
+ } else {
+ log->use_multippl = false;
+ log->entry_space = (log->rdev->ppl.size << 9) -
+ PPL_HEADER_SIZE;
+ }
+ log->next_io_sector = rdev->ppl.sector;
+
+ q = bdev_get_queue(rdev->bdev);
+ if (test_bit(QUEUE_FLAG_WC, &q->queue_flags))
+ log->wb_cache_on = true;
+}
+
+int ppl_init_log(struct r5conf *conf)
+{
+ struct ppl_conf *ppl_conf;
+ struct mddev *mddev = conf->mddev;
+ int ret = 0;
+ int max_disks;
+ int i;
+
+ pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
+ mdname(conf->mddev));
+
+ if (PAGE_SIZE != 4096)
+ return -EINVAL;
+
+ if (mddev->level != 5) {
+ pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
+ mdname(mddev), mddev->level);
+ return -EINVAL;
+ }
+
+ if (mddev->bitmap_info.file || mddev->bitmap_info.offset) {
+ pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
+ mdname(mddev));
+ return -EINVAL;
+ }
+
+ if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
+ pr_warn("md/raid:%s PPL is not compatible with journal\n",
+ mdname(mddev));
+ return -EINVAL;
+ }
+
+ max_disks = sizeof_field(struct ppl_log, disk_flush_bitmap) *
+ BITS_PER_BYTE;
+ if (conf->raid_disks > max_disks) {
+ pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n",
+ mdname(mddev), max_disks);
+ return -EINVAL;
+ }
+
+ ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL);
+ if (!ppl_conf)
+ return -ENOMEM;
+
+ ppl_conf->mddev = mddev;
+
+ ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0);
+ if (!ppl_conf->io_kc) {
+ ret = -ENOMEM;
+ goto err;
+ }
+
+ ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc,
+ ppl_io_pool_free, ppl_conf->io_kc);
+ if (ret)
+ goto err;
+
+ ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS);
+ if (ret)
+ goto err;
+
+ ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0);
+ if (ret)
+ goto err;
+
+ ppl_conf->count = conf->raid_disks;
+ ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log),
+ GFP_KERNEL);
+ if (!ppl_conf->child_logs) {
+ ret = -ENOMEM;
+ goto err;
+ }
+
+ atomic64_set(&ppl_conf->seq, 0);
+ INIT_LIST_HEAD(&ppl_conf->no_mem_stripes);
+ spin_lock_init(&ppl_conf->no_mem_stripes_lock);
+
+ if (!mddev->external) {
+ ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid));
+ ppl_conf->block_size = 512;
+ } else {
+ ppl_conf->block_size = queue_logical_block_size(mddev->queue);
+ }
+
+ for (i = 0; i < ppl_conf->count; i++) {
+ struct ppl_log *log = &ppl_conf->child_logs[i];
+ /* Array has not started so rcu dereference is safe */
+ struct md_rdev *rdev =
+ rcu_dereference_protected(conf->disks[i].rdev, 1);
+
+ mutex_init(&log->io_mutex);
+ spin_lock_init(&log->io_list_lock);
+ INIT_LIST_HEAD(&log->io_list);
+
+ log->ppl_conf = ppl_conf;
+ log->rdev = rdev;
+
+ if (rdev) {
+ ret = ppl_validate_rdev(rdev);
+ if (ret)
+ goto err;
+
+ ppl_init_child_log(log, rdev);
+ }
+ }
+
+ /* load and possibly recover the logs from the member disks */
+ ret = ppl_load(ppl_conf);
+
+ if (ret) {
+ goto err;
+ } else if (!mddev->pers && mddev->recovery_cp == 0 &&
+ ppl_conf->recovered_entries > 0 &&
+ ppl_conf->mismatch_count == 0) {
+ /*
+ * If we are starting a dirty array and the recovery succeeds
+ * without any issues, set the array as clean.
+ */
+ mddev->recovery_cp = MaxSector;
+ set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
+ } else if (mddev->pers && ppl_conf->mismatch_count > 0) {
+ /* no mismatch allowed when enabling PPL for a running array */
+ ret = -EINVAL;
+ goto err;
+ }
+
+ conf->log_private = ppl_conf;
+ set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
+
+ return 0;
+err:
+ __ppl_exit_log(ppl_conf);
+ return ret;
+}
+
+int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add)
+{
+ struct ppl_conf *ppl_conf = conf->log_private;
+ struct ppl_log *log;
+ int ret = 0;
+
+ if (!rdev)
+ return -EINVAL;
+
+ pr_debug("%s: disk: %d operation: %s dev: %pg\n",
+ __func__, rdev->raid_disk, add ? "add" : "remove",
+ rdev->bdev);
+
+ if (rdev->raid_disk < 0)
+ return 0;
+
+ if (rdev->raid_disk >= ppl_conf->count)
+ return -ENODEV;
+
+ log = &ppl_conf->child_logs[rdev->raid_disk];
+
+ mutex_lock(&log->io_mutex);
+ if (add) {
+ ret = ppl_validate_rdev(rdev);
+ if (!ret) {
+ log->rdev = rdev;
+ ret = ppl_write_empty_header(log);
+ ppl_init_child_log(log, rdev);
+ }
+ } else {
+ log->rdev = NULL;
+ }
+ mutex_unlock(&log->io_mutex);
+
+ return ret;
+}
+
+static ssize_t
+ppl_write_hint_show(struct mddev *mddev, char *buf)
+{
+ return sprintf(buf, "%d\n", 0);
+}
+
+static ssize_t
+ppl_write_hint_store(struct mddev *mddev, const char *page, size_t len)
+{
+ struct r5conf *conf;
+ int err = 0;
+ unsigned short new;
+
+ if (len >= PAGE_SIZE)
+ return -EINVAL;
+ if (kstrtou16(page, 10, &new))
+ return -EINVAL;
+
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+
+ conf = mddev->private;
+ if (!conf)
+ err = -ENODEV;
+ else if (!raid5_has_ppl(conf) || !conf->log_private)
+ err = -EINVAL;
+
+ mddev_unlock(mddev);
+
+ return err ?: len;
+}
+
+struct md_sysfs_entry
+ppl_write_hint = __ATTR(ppl_write_hint, S_IRUGO | S_IWUSR,
+ ppl_write_hint_show,
+ ppl_write_hint_store);
diff --git a/drivers/md/raid5.c b/drivers/md/raid5.c
new file mode 100644
index 000000000..e4564ca1f
--- /dev/null
+++ b/drivers/md/raid5.c
@@ -0,0 +1,9177 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * raid5.c : Multiple Devices driver for Linux
+ * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
+ * Copyright (C) 1999, 2000 Ingo Molnar
+ * Copyright (C) 2002, 2003 H. Peter Anvin
+ *
+ * RAID-4/5/6 management functions.
+ * Thanks to Penguin Computing for making the RAID-6 development possible
+ * by donating a test server!
+ */
+
+/*
+ * BITMAP UNPLUGGING:
+ *
+ * The sequencing for updating the bitmap reliably is a little
+ * subtle (and I got it wrong the first time) so it deserves some
+ * explanation.
+ *
+ * We group bitmap updates into batches. Each batch has a number.
+ * We may write out several batches at once, but that isn't very important.
+ * conf->seq_write is the number of the last batch successfully written.
+ * conf->seq_flush is the number of the last batch that was closed to
+ * new additions.
+ * When we discover that we will need to write to any block in a stripe
+ * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
+ * the number of the batch it will be in. This is seq_flush+1.
+ * When we are ready to do a write, if that batch hasn't been written yet,
+ * we plug the array and queue the stripe for later.
+ * When an unplug happens, we increment bm_flush, thus closing the current
+ * batch.
+ * When we notice that bm_flush > bm_write, we write out all pending updates
+ * to the bitmap, and advance bm_write to where bm_flush was.
+ * This may occasionally write a bit out twice, but is sure never to
+ * miss any bits.
+ */
+
+#include <linux/blkdev.h>
+#include <linux/delay.h>
+#include <linux/kthread.h>
+#include <linux/raid/pq.h>
+#include <linux/async_tx.h>
+#include <linux/module.h>
+#include <linux/async.h>
+#include <linux/seq_file.h>
+#include <linux/cpu.h>
+#include <linux/slab.h>
+#include <linux/ratelimit.h>
+#include <linux/nodemask.h>
+
+#include <trace/events/block.h>
+#include <linux/list_sort.h>
+
+#include "md.h"
+#include "raid5.h"
+#include "raid0.h"
+#include "md-bitmap.h"
+#include "raid5-log.h"
+
+#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
+
+#define cpu_to_group(cpu) cpu_to_node(cpu)
+#define ANY_GROUP NUMA_NO_NODE
+
+#define RAID5_MAX_REQ_STRIPES 256
+
+static bool devices_handle_discard_safely = false;
+module_param(devices_handle_discard_safely, bool, 0644);
+MODULE_PARM_DESC(devices_handle_discard_safely,
+ "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
+static struct workqueue_struct *raid5_wq;
+
+static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
+{
+ int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
+ return &conf->stripe_hashtbl[hash];
+}
+
+static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
+{
+ return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
+}
+
+static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
+ __acquires(&conf->device_lock)
+{
+ spin_lock_irq(conf->hash_locks + hash);
+ spin_lock(&conf->device_lock);
+}
+
+static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
+ __releases(&conf->device_lock)
+{
+ spin_unlock(&conf->device_lock);
+ spin_unlock_irq(conf->hash_locks + hash);
+}
+
+static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
+ __acquires(&conf->device_lock)
+{
+ int i;
+ spin_lock_irq(conf->hash_locks);
+ for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
+ spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
+ spin_lock(&conf->device_lock);
+}
+
+static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
+ __releases(&conf->device_lock)
+{
+ int i;
+ spin_unlock(&conf->device_lock);
+ for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
+ spin_unlock(conf->hash_locks + i);
+ spin_unlock_irq(conf->hash_locks);
+}
+
+/* Find first data disk in a raid6 stripe */
+static inline int raid6_d0(struct stripe_head *sh)
+{
+ if (sh->ddf_layout)
+ /* ddf always start from first device */
+ return 0;
+ /* md starts just after Q block */
+ if (sh->qd_idx == sh->disks - 1)
+ return 0;
+ else
+ return sh->qd_idx + 1;
+}
+static inline int raid6_next_disk(int disk, int raid_disks)
+{
+ disk++;
+ return (disk < raid_disks) ? disk : 0;
+}
+
+/* When walking through the disks in a raid5, starting at raid6_d0,
+ * We need to map each disk to a 'slot', where the data disks are slot
+ * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
+ * is raid_disks-1. This help does that mapping.
+ */
+static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
+ int *count, int syndrome_disks)
+{
+ int slot = *count;
+
+ if (sh->ddf_layout)
+ (*count)++;
+ if (idx == sh->pd_idx)
+ return syndrome_disks;
+ if (idx == sh->qd_idx)
+ return syndrome_disks + 1;
+ if (!sh->ddf_layout)
+ (*count)++;
+ return slot;
+}
+
+static void print_raid5_conf (struct r5conf *conf);
+
+static int stripe_operations_active(struct stripe_head *sh)
+{
+ return sh->check_state || sh->reconstruct_state ||
+ test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
+ test_bit(STRIPE_COMPUTE_RUN, &sh->state);
+}
+
+static bool stripe_is_lowprio(struct stripe_head *sh)
+{
+ return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
+ test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
+ !test_bit(STRIPE_R5C_CACHING, &sh->state);
+}
+
+static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
+ __must_hold(&sh->raid_conf->device_lock)
+{
+ struct r5conf *conf = sh->raid_conf;
+ struct r5worker_group *group;
+ int thread_cnt;
+ int i, cpu = sh->cpu;
+
+ if (!cpu_online(cpu)) {
+ cpu = cpumask_any(cpu_online_mask);
+ sh->cpu = cpu;
+ }
+
+ if (list_empty(&sh->lru)) {
+ struct r5worker_group *group;
+ group = conf->worker_groups + cpu_to_group(cpu);
+ if (stripe_is_lowprio(sh))
+ list_add_tail(&sh->lru, &group->loprio_list);
+ else
+ list_add_tail(&sh->lru, &group->handle_list);
+ group->stripes_cnt++;
+ sh->group = group;
+ }
+
+ if (conf->worker_cnt_per_group == 0) {
+ md_wakeup_thread(conf->mddev->thread);
+ return;
+ }
+
+ group = conf->worker_groups + cpu_to_group(sh->cpu);
+
+ group->workers[0].working = true;
+ /* at least one worker should run to avoid race */
+ queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
+
+ thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
+ /* wakeup more workers */
+ for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
+ if (group->workers[i].working == false) {
+ group->workers[i].working = true;
+ queue_work_on(sh->cpu, raid5_wq,
+ &group->workers[i].work);
+ thread_cnt--;
+ }
+ }
+}
+
+static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
+ struct list_head *temp_inactive_list)
+ __must_hold(&conf->device_lock)
+{
+ int i;
+ int injournal = 0; /* number of date pages with R5_InJournal */
+
+ BUG_ON(!list_empty(&sh->lru));
+ BUG_ON(atomic_read(&conf->active_stripes)==0);
+
+ if (r5c_is_writeback(conf->log))
+ for (i = sh->disks; i--; )
+ if (test_bit(R5_InJournal, &sh->dev[i].flags))
+ injournal++;
+ /*
+ * In the following cases, the stripe cannot be released to cached
+ * lists. Therefore, we make the stripe write out and set
+ * STRIPE_HANDLE:
+ * 1. when quiesce in r5c write back;
+ * 2. when resync is requested fot the stripe.
+ */
+ if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
+ (conf->quiesce && r5c_is_writeback(conf->log) &&
+ !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
+ if (test_bit(STRIPE_R5C_CACHING, &sh->state))
+ r5c_make_stripe_write_out(sh);
+ set_bit(STRIPE_HANDLE, &sh->state);
+ }
+
+ if (test_bit(STRIPE_HANDLE, &sh->state)) {
+ if (test_bit(STRIPE_DELAYED, &sh->state) &&
+ !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
+ list_add_tail(&sh->lru, &conf->delayed_list);
+ else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
+ sh->bm_seq - conf->seq_write > 0)
+ list_add_tail(&sh->lru, &conf->bitmap_list);
+ else {
+ clear_bit(STRIPE_DELAYED, &sh->state);
+ clear_bit(STRIPE_BIT_DELAY, &sh->state);
+ if (conf->worker_cnt_per_group == 0) {
+ if (stripe_is_lowprio(sh))
+ list_add_tail(&sh->lru,
+ &conf->loprio_list);
+ else
+ list_add_tail(&sh->lru,
+ &conf->handle_list);
+ } else {
+ raid5_wakeup_stripe_thread(sh);
+ return;
+ }
+ }
+ md_wakeup_thread(conf->mddev->thread);
+ } else {
+ BUG_ON(stripe_operations_active(sh));
+ if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
+ if (atomic_dec_return(&conf->preread_active_stripes)
+ < IO_THRESHOLD)
+ md_wakeup_thread(conf->mddev->thread);
+ atomic_dec(&conf->active_stripes);
+ if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
+ if (!r5c_is_writeback(conf->log))
+ list_add_tail(&sh->lru, temp_inactive_list);
+ else {
+ WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
+ if (injournal == 0)
+ list_add_tail(&sh->lru, temp_inactive_list);
+ else if (injournal == conf->raid_disks - conf->max_degraded) {
+ /* full stripe */
+ if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
+ atomic_inc(&conf->r5c_cached_full_stripes);
+ if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
+ atomic_dec(&conf->r5c_cached_partial_stripes);
+ list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
+ r5c_check_cached_full_stripe(conf);
+ } else
+ /*
+ * STRIPE_R5C_PARTIAL_STRIPE is set in
+ * r5c_try_caching_write(). No need to
+ * set it again.
+ */
+ list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
+ }
+ }
+ }
+}
+
+static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
+ struct list_head *temp_inactive_list)
+ __must_hold(&conf->device_lock)
+{
+ if (atomic_dec_and_test(&sh->count))
+ do_release_stripe(conf, sh, temp_inactive_list);
+}
+
+/*
+ * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
+ *
+ * Be careful: Only one task can add/delete stripes from temp_inactive_list at
+ * given time. Adding stripes only takes device lock, while deleting stripes
+ * only takes hash lock.
+ */
+static void release_inactive_stripe_list(struct r5conf *conf,
+ struct list_head *temp_inactive_list,
+ int hash)
+{
+ int size;
+ bool do_wakeup = false;
+ unsigned long flags;
+
+ if (hash == NR_STRIPE_HASH_LOCKS) {
+ size = NR_STRIPE_HASH_LOCKS;
+ hash = NR_STRIPE_HASH_LOCKS - 1;
+ } else
+ size = 1;
+ while (size) {
+ struct list_head *list = &temp_inactive_list[size - 1];
+
+ /*
+ * We don't hold any lock here yet, raid5_get_active_stripe() might
+ * remove stripes from the list
+ */
+ if (!list_empty_careful(list)) {
+ spin_lock_irqsave(conf->hash_locks + hash, flags);
+ if (list_empty(conf->inactive_list + hash) &&
+ !list_empty(list))
+ atomic_dec(&conf->empty_inactive_list_nr);
+ list_splice_tail_init(list, conf->inactive_list + hash);
+ do_wakeup = true;
+ spin_unlock_irqrestore(conf->hash_locks + hash, flags);
+ }
+ size--;
+ hash--;
+ }
+
+ if (do_wakeup) {
+ wake_up(&conf->wait_for_stripe);
+ if (atomic_read(&conf->active_stripes) == 0)
+ wake_up(&conf->wait_for_quiescent);
+ if (conf->retry_read_aligned)
+ md_wakeup_thread(conf->mddev->thread);
+ }
+}
+
+static int release_stripe_list(struct r5conf *conf,
+ struct list_head *temp_inactive_list)
+ __must_hold(&conf->device_lock)
+{
+ struct stripe_head *sh, *t;
+ int count = 0;
+ struct llist_node *head;
+
+ head = llist_del_all(&conf->released_stripes);
+ head = llist_reverse_order(head);
+ llist_for_each_entry_safe(sh, t, head, release_list) {
+ int hash;
+
+ /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
+ smp_mb();
+ clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
+ /*
+ * Don't worry the bit is set here, because if the bit is set
+ * again, the count is always > 1. This is true for
+ * STRIPE_ON_UNPLUG_LIST bit too.
+ */
+ hash = sh->hash_lock_index;
+ __release_stripe(conf, sh, &temp_inactive_list[hash]);
+ count++;
+ }
+
+ return count;
+}
+
+void raid5_release_stripe(struct stripe_head *sh)
+{
+ struct r5conf *conf = sh->raid_conf;
+ unsigned long flags;
+ struct list_head list;
+ int hash;
+ bool wakeup;
+
+ /* Avoid release_list until the last reference.
+ */
+ if (atomic_add_unless(&sh->count, -1, 1))
+ return;
+
+ if (unlikely(!conf->mddev->thread) ||
+ test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
+ goto slow_path;
+ wakeup = llist_add(&sh->release_list, &conf->released_stripes);
+ if (wakeup)
+ md_wakeup_thread(conf->mddev->thread);
+ return;
+slow_path:
+ /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
+ if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
+ INIT_LIST_HEAD(&list);
+ hash = sh->hash_lock_index;
+ do_release_stripe(conf, sh, &list);
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ release_inactive_stripe_list(conf, &list, hash);
+ }
+}
+
+static inline void remove_hash(struct stripe_head *sh)
+{
+ pr_debug("remove_hash(), stripe %llu\n",
+ (unsigned long long)sh->sector);
+
+ hlist_del_init(&sh->hash);
+}
+
+static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
+{
+ struct hlist_head *hp = stripe_hash(conf, sh->sector);
+
+ pr_debug("insert_hash(), stripe %llu\n",
+ (unsigned long long)sh->sector);
+
+ hlist_add_head(&sh->hash, hp);
+}
+
+/* find an idle stripe, make sure it is unhashed, and return it. */
+static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
+{
+ struct stripe_head *sh = NULL;
+ struct list_head *first;
+
+ if (list_empty(conf->inactive_list + hash))
+ goto out;
+ first = (conf->inactive_list + hash)->next;
+ sh = list_entry(first, struct stripe_head, lru);
+ list_del_init(first);
+ remove_hash(sh);
+ atomic_inc(&conf->active_stripes);
+ BUG_ON(hash != sh->hash_lock_index);
+ if (list_empty(conf->inactive_list + hash))
+ atomic_inc(&conf->empty_inactive_list_nr);
+out:
+ return sh;
+}
+
+#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
+static void free_stripe_pages(struct stripe_head *sh)
+{
+ int i;
+ struct page *p;
+
+ /* Have not allocate page pool */
+ if (!sh->pages)
+ return;
+
+ for (i = 0; i < sh->nr_pages; i++) {
+ p = sh->pages[i];
+ if (p)
+ put_page(p);
+ sh->pages[i] = NULL;
+ }
+}
+
+static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
+{
+ int i;
+ struct page *p;
+
+ for (i = 0; i < sh->nr_pages; i++) {
+ /* The page have allocated. */
+ if (sh->pages[i])
+ continue;
+
+ p = alloc_page(gfp);
+ if (!p) {
+ free_stripe_pages(sh);
+ return -ENOMEM;
+ }
+ sh->pages[i] = p;
+ }
+ return 0;
+}
+
+static int
+init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
+{
+ int nr_pages, cnt;
+
+ if (sh->pages)
+ return 0;
+
+ /* Each of the sh->dev[i] need one conf->stripe_size */
+ cnt = PAGE_SIZE / conf->stripe_size;
+ nr_pages = (disks + cnt - 1) / cnt;
+
+ sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
+ if (!sh->pages)
+ return -ENOMEM;
+ sh->nr_pages = nr_pages;
+ sh->stripes_per_page = cnt;
+ return 0;
+}
+#endif
+
+static void shrink_buffers(struct stripe_head *sh)
+{
+ int i;
+ int num = sh->raid_conf->pool_size;
+
+#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
+ for (i = 0; i < num ; i++) {
+ struct page *p;
+
+ WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
+ p = sh->dev[i].page;
+ if (!p)
+ continue;
+ sh->dev[i].page = NULL;
+ put_page(p);
+ }
+#else
+ for (i = 0; i < num; i++)
+ sh->dev[i].page = NULL;
+ free_stripe_pages(sh); /* Free pages */
+#endif
+}
+
+static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
+{
+ int i;
+ int num = sh->raid_conf->pool_size;
+
+#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
+ for (i = 0; i < num; i++) {
+ struct page *page;
+
+ if (!(page = alloc_page(gfp))) {
+ return 1;
+ }
+ sh->dev[i].page = page;
+ sh->dev[i].orig_page = page;
+ sh->dev[i].offset = 0;
+ }
+#else
+ if (alloc_stripe_pages(sh, gfp))
+ return -ENOMEM;
+
+ for (i = 0; i < num; i++) {
+ sh->dev[i].page = raid5_get_dev_page(sh, i);
+ sh->dev[i].orig_page = sh->dev[i].page;
+ sh->dev[i].offset = raid5_get_page_offset(sh, i);
+ }
+#endif
+ return 0;
+}
+
+static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
+ struct stripe_head *sh);
+
+static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
+{
+ struct r5conf *conf = sh->raid_conf;
+ int i, seq;
+
+ BUG_ON(atomic_read(&sh->count) != 0);
+ BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
+ BUG_ON(stripe_operations_active(sh));
+ BUG_ON(sh->batch_head);
+
+ pr_debug("init_stripe called, stripe %llu\n",
+ (unsigned long long)sector);
+retry:
+ seq = read_seqcount_begin(&conf->gen_lock);
+ sh->generation = conf->generation - previous;
+ sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
+ sh->sector = sector;
+ stripe_set_idx(sector, conf, previous, sh);
+ sh->state = 0;
+
+ for (i = sh->disks; i--; ) {
+ struct r5dev *dev = &sh->dev[i];
+
+ if (dev->toread || dev->read || dev->towrite || dev->written ||
+ test_bit(R5_LOCKED, &dev->flags)) {
+ pr_err("sector=%llx i=%d %p %p %p %p %d\n",
+ (unsigned long long)sh->sector, i, dev->toread,
+ dev->read, dev->towrite, dev->written,
+ test_bit(R5_LOCKED, &dev->flags));
+ WARN_ON(1);
+ }
+ dev->flags = 0;
+ dev->sector = raid5_compute_blocknr(sh, i, previous);
+ }
+ if (read_seqcount_retry(&conf->gen_lock, seq))
+ goto retry;
+ sh->overwrite_disks = 0;
+ insert_hash(conf, sh);
+ sh->cpu = smp_processor_id();
+ set_bit(STRIPE_BATCH_READY, &sh->state);
+}
+
+static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
+ short generation)
+{
+ struct stripe_head *sh;
+
+ pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
+ hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
+ if (sh->sector == sector && sh->generation == generation)
+ return sh;
+ pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
+ return NULL;
+}
+
+static struct stripe_head *find_get_stripe(struct r5conf *conf,
+ sector_t sector, short generation, int hash)
+{
+ int inc_empty_inactive_list_flag;
+ struct stripe_head *sh;
+
+ sh = __find_stripe(conf, sector, generation);
+ if (!sh)
+ return NULL;
+
+ if (atomic_inc_not_zero(&sh->count))
+ return sh;
+
+ /*
+ * Slow path. The reference count is zero which means the stripe must
+ * be on a list (sh->lru). Must remove the stripe from the list that
+ * references it with the device_lock held.
+ */
+
+ spin_lock(&conf->device_lock);
+ if (!atomic_read(&sh->count)) {
+ if (!test_bit(STRIPE_HANDLE, &sh->state))
+ atomic_inc(&conf->active_stripes);
+ BUG_ON(list_empty(&sh->lru) &&
+ !test_bit(STRIPE_EXPANDING, &sh->state));
+ inc_empty_inactive_list_flag = 0;
+ if (!list_empty(conf->inactive_list + hash))
+ inc_empty_inactive_list_flag = 1;
+ list_del_init(&sh->lru);
+ if (list_empty(conf->inactive_list + hash) &&
+ inc_empty_inactive_list_flag)
+ atomic_inc(&conf->empty_inactive_list_nr);
+ if (sh->group) {
+ sh->group->stripes_cnt--;
+ sh->group = NULL;
+ }
+ }
+ atomic_inc(&sh->count);
+ spin_unlock(&conf->device_lock);
+
+ return sh;
+}
+
+/*
+ * Need to check if array has failed when deciding whether to:
+ * - start an array
+ * - remove non-faulty devices
+ * - add a spare
+ * - allow a reshape
+ * This determination is simple when no reshape is happening.
+ * However if there is a reshape, we need to carefully check
+ * both the before and after sections.
+ * This is because some failed devices may only affect one
+ * of the two sections, and some non-in_sync devices may
+ * be insync in the section most affected by failed devices.
+ *
+ * Most calls to this function hold &conf->device_lock. Calls
+ * in raid5_run() do not require the lock as no other threads
+ * have been started yet.
+ */
+int raid5_calc_degraded(struct r5conf *conf)
+{
+ int degraded, degraded2;
+ int i;
+
+ rcu_read_lock();
+ degraded = 0;
+ for (i = 0; i < conf->previous_raid_disks; i++) {
+ struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
+ if (rdev && test_bit(Faulty, &rdev->flags))
+ rdev = rcu_dereference(conf->disks[i].replacement);
+ if (!rdev || test_bit(Faulty, &rdev->flags))
+ degraded++;
+ else if (test_bit(In_sync, &rdev->flags))
+ ;
+ else
+ /* not in-sync or faulty.
+ * If the reshape increases the number of devices,
+ * this is being recovered by the reshape, so
+ * this 'previous' section is not in_sync.
+ * If the number of devices is being reduced however,
+ * the device can only be part of the array if
+ * we are reverting a reshape, so this section will
+ * be in-sync.
+ */
+ if (conf->raid_disks >= conf->previous_raid_disks)
+ degraded++;
+ }
+ rcu_read_unlock();
+ if (conf->raid_disks == conf->previous_raid_disks)
+ return degraded;
+ rcu_read_lock();
+ degraded2 = 0;
+ for (i = 0; i < conf->raid_disks; i++) {
+ struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
+ if (rdev && test_bit(Faulty, &rdev->flags))
+ rdev = rcu_dereference(conf->disks[i].replacement);
+ if (!rdev || test_bit(Faulty, &rdev->flags))
+ degraded2++;
+ else if (test_bit(In_sync, &rdev->flags))
+ ;
+ else
+ /* not in-sync or faulty.
+ * If reshape increases the number of devices, this
+ * section has already been recovered, else it
+ * almost certainly hasn't.
+ */
+ if (conf->raid_disks <= conf->previous_raid_disks)
+ degraded2++;
+ }
+ rcu_read_unlock();
+ if (degraded2 > degraded)
+ return degraded2;
+ return degraded;
+}
+
+static bool has_failed(struct r5conf *conf)
+{
+ int degraded = conf->mddev->degraded;
+
+ if (test_bit(MD_BROKEN, &conf->mddev->flags))
+ return true;
+
+ if (conf->mddev->reshape_position != MaxSector)
+ degraded = raid5_calc_degraded(conf);
+
+ return degraded > conf->max_degraded;
+}
+
+enum stripe_result {
+ STRIPE_SUCCESS = 0,
+ STRIPE_RETRY,
+ STRIPE_SCHEDULE_AND_RETRY,
+ STRIPE_FAIL,
+};
+
+struct stripe_request_ctx {
+ /* a reference to the last stripe_head for batching */
+ struct stripe_head *batch_last;
+
+ /* first sector in the request */
+ sector_t first_sector;
+
+ /* last sector in the request */
+ sector_t last_sector;
+
+ /*
+ * bitmap to track stripe sectors that have been added to stripes
+ * add one to account for unaligned requests
+ */
+ DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
+
+ /* the request had REQ_PREFLUSH, cleared after the first stripe_head */
+ bool do_flush;
+};
+
+/*
+ * Block until another thread clears R5_INACTIVE_BLOCKED or
+ * there are fewer than 3/4 the maximum number of active stripes
+ * and there is an inactive stripe available.
+ */
+static bool is_inactive_blocked(struct r5conf *conf, int hash)
+{
+ if (list_empty(conf->inactive_list + hash))
+ return false;
+
+ if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
+ return true;
+
+ return (atomic_read(&conf->active_stripes) <
+ (conf->max_nr_stripes * 3 / 4));
+}
+
+struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
+ struct stripe_request_ctx *ctx, sector_t sector,
+ unsigned int flags)
+{
+ struct stripe_head *sh;
+ int hash = stripe_hash_locks_hash(conf, sector);
+ int previous = !!(flags & R5_GAS_PREVIOUS);
+
+ pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
+
+ spin_lock_irq(conf->hash_locks + hash);
+
+ for (;;) {
+ if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
+ /*
+ * Must release the reference to batch_last before
+ * waiting, on quiesce, otherwise the batch_last will
+ * hold a reference to a stripe and raid5_quiesce()
+ * will deadlock waiting for active_stripes to go to
+ * zero.
+ */
+ if (ctx && ctx->batch_last) {
+ raid5_release_stripe(ctx->batch_last);
+ ctx->batch_last = NULL;
+ }
+
+ wait_event_lock_irq(conf->wait_for_quiescent,
+ !conf->quiesce,
+ *(conf->hash_locks + hash));
+ }
+
+ sh = find_get_stripe(conf, sector, conf->generation - previous,
+ hash);
+ if (sh)
+ break;
+
+ if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
+ sh = get_free_stripe(conf, hash);
+ if (sh) {
+ r5c_check_stripe_cache_usage(conf);
+ init_stripe(sh, sector, previous);
+ atomic_inc(&sh->count);
+ break;
+ }
+
+ if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
+ set_bit(R5_ALLOC_MORE, &conf->cache_state);
+ }
+
+ if (flags & R5_GAS_NOBLOCK)
+ break;
+
+ set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
+ r5l_wake_reclaim(conf->log, 0);
+
+ /* release batch_last before wait to avoid risk of deadlock */
+ if (ctx && ctx->batch_last) {
+ raid5_release_stripe(ctx->batch_last);
+ ctx->batch_last = NULL;
+ }
+
+ wait_event_lock_irq(conf->wait_for_stripe,
+ is_inactive_blocked(conf, hash),
+ *(conf->hash_locks + hash));
+ clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
+ }
+
+ spin_unlock_irq(conf->hash_locks + hash);
+ return sh;
+}
+
+static bool is_full_stripe_write(struct stripe_head *sh)
+{
+ BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
+ return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
+}
+
+static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
+ __acquires(&sh1->stripe_lock)
+ __acquires(&sh2->stripe_lock)
+{
+ if (sh1 > sh2) {
+ spin_lock_irq(&sh2->stripe_lock);
+ spin_lock_nested(&sh1->stripe_lock, 1);
+ } else {
+ spin_lock_irq(&sh1->stripe_lock);
+ spin_lock_nested(&sh2->stripe_lock, 1);
+ }
+}
+
+static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
+ __releases(&sh1->stripe_lock)
+ __releases(&sh2->stripe_lock)
+{
+ spin_unlock(&sh1->stripe_lock);
+ spin_unlock_irq(&sh2->stripe_lock);
+}
+
+/* Only freshly new full stripe normal write stripe can be added to a batch list */
+static bool stripe_can_batch(struct stripe_head *sh)
+{
+ struct r5conf *conf = sh->raid_conf;
+
+ if (raid5_has_log(conf) || raid5_has_ppl(conf))
+ return false;
+ return test_bit(STRIPE_BATCH_READY, &sh->state) &&
+ !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
+ is_full_stripe_write(sh);
+}
+
+/* we only do back search */
+static void stripe_add_to_batch_list(struct r5conf *conf,
+ struct stripe_head *sh, struct stripe_head *last_sh)
+{
+ struct stripe_head *head;
+ sector_t head_sector, tmp_sec;
+ int hash;
+ int dd_idx;
+
+ /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
+ tmp_sec = sh->sector;
+ if (!sector_div(tmp_sec, conf->chunk_sectors))
+ return;
+ head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
+
+ if (last_sh && head_sector == last_sh->sector) {
+ head = last_sh;
+ atomic_inc(&head->count);
+ } else {
+ hash = stripe_hash_locks_hash(conf, head_sector);
+ spin_lock_irq(conf->hash_locks + hash);
+ head = find_get_stripe(conf, head_sector, conf->generation,
+ hash);
+ spin_unlock_irq(conf->hash_locks + hash);
+ if (!head)
+ return;
+ if (!stripe_can_batch(head))
+ goto out;
+ }
+
+ lock_two_stripes(head, sh);
+ /* clear_batch_ready clear the flag */
+ if (!stripe_can_batch(head) || !stripe_can_batch(sh))
+ goto unlock_out;
+
+ if (sh->batch_head)
+ goto unlock_out;
+
+ dd_idx = 0;
+ while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
+ dd_idx++;
+ if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
+ bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
+ goto unlock_out;
+
+ if (head->batch_head) {
+ spin_lock(&head->batch_head->batch_lock);
+ /* This batch list is already running */
+ if (!stripe_can_batch(head)) {
+ spin_unlock(&head->batch_head->batch_lock);
+ goto unlock_out;
+ }
+ /*
+ * We must assign batch_head of this stripe within the
+ * batch_lock, otherwise clear_batch_ready of batch head
+ * stripe could clear BATCH_READY bit of this stripe and
+ * this stripe->batch_head doesn't get assigned, which
+ * could confuse clear_batch_ready for this stripe
+ */
+ sh->batch_head = head->batch_head;
+
+ /*
+ * at this point, head's BATCH_READY could be cleared, but we
+ * can still add the stripe to batch list
+ */
+ list_add(&sh->batch_list, &head->batch_list);
+ spin_unlock(&head->batch_head->batch_lock);
+ } else {
+ head->batch_head = head;
+ sh->batch_head = head->batch_head;
+ spin_lock(&head->batch_lock);
+ list_add_tail(&sh->batch_list, &head->batch_list);
+ spin_unlock(&head->batch_lock);
+ }
+
+ if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
+ if (atomic_dec_return(&conf->preread_active_stripes)
+ < IO_THRESHOLD)
+ md_wakeup_thread(conf->mddev->thread);
+
+ if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
+ int seq = sh->bm_seq;
+ if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
+ sh->batch_head->bm_seq > seq)
+ seq = sh->batch_head->bm_seq;
+ set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
+ sh->batch_head->bm_seq = seq;
+ }
+
+ atomic_inc(&sh->count);
+unlock_out:
+ unlock_two_stripes(head, sh);
+out:
+ raid5_release_stripe(head);
+}
+
+/* Determine if 'data_offset' or 'new_data_offset' should be used
+ * in this stripe_head.
+ */
+static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
+{
+ sector_t progress = conf->reshape_progress;
+ /* Need a memory barrier to make sure we see the value
+ * of conf->generation, or ->data_offset that was set before
+ * reshape_progress was updated.
+ */
+ smp_rmb();
+ if (progress == MaxSector)
+ return 0;
+ if (sh->generation == conf->generation - 1)
+ return 0;
+ /* We are in a reshape, and this is a new-generation stripe,
+ * so use new_data_offset.
+ */
+ return 1;
+}
+
+static void dispatch_bio_list(struct bio_list *tmp)
+{
+ struct bio *bio;
+
+ while ((bio = bio_list_pop(tmp)))
+ submit_bio_noacct(bio);
+}
+
+static int cmp_stripe(void *priv, const struct list_head *a,
+ const struct list_head *b)
+{
+ const struct r5pending_data *da = list_entry(a,
+ struct r5pending_data, sibling);
+ const struct r5pending_data *db = list_entry(b,
+ struct r5pending_data, sibling);
+ if (da->sector > db->sector)
+ return 1;
+ if (da->sector < db->sector)
+ return -1;
+ return 0;
+}
+
+static void dispatch_defer_bios(struct r5conf *conf, int target,
+ struct bio_list *list)
+{
+ struct r5pending_data *data;
+ struct list_head *first, *next = NULL;
+ int cnt = 0;
+
+ if (conf->pending_data_cnt == 0)
+ return;
+
+ list_sort(NULL, &conf->pending_list, cmp_stripe);
+
+ first = conf->pending_list.next;
+
+ /* temporarily move the head */
+ if (conf->next_pending_data)
+ list_move_tail(&conf->pending_list,
+ &conf->next_pending_data->sibling);
+
+ while (!list_empty(&conf->pending_list)) {
+ data = list_first_entry(&conf->pending_list,
+ struct r5pending_data, sibling);
+ if (&data->sibling == first)
+ first = data->sibling.next;
+ next = data->sibling.next;
+
+ bio_list_merge(list, &data->bios);
+ list_move(&data->sibling, &conf->free_list);
+ cnt++;
+ if (cnt >= target)
+ break;
+ }
+ conf->pending_data_cnt -= cnt;
+ BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
+
+ if (next != &conf->pending_list)
+ conf->next_pending_data = list_entry(next,
+ struct r5pending_data, sibling);
+ else
+ conf->next_pending_data = NULL;
+ /* list isn't empty */
+ if (first != &conf->pending_list)
+ list_move_tail(&conf->pending_list, first);
+}
+
+static void flush_deferred_bios(struct r5conf *conf)
+{
+ struct bio_list tmp = BIO_EMPTY_LIST;
+
+ if (conf->pending_data_cnt == 0)
+ return;
+
+ spin_lock(&conf->pending_bios_lock);
+ dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
+ BUG_ON(conf->pending_data_cnt != 0);
+ spin_unlock(&conf->pending_bios_lock);
+
+ dispatch_bio_list(&tmp);
+}
+
+static void defer_issue_bios(struct r5conf *conf, sector_t sector,
+ struct bio_list *bios)
+{
+ struct bio_list tmp = BIO_EMPTY_LIST;
+ struct r5pending_data *ent;
+
+ spin_lock(&conf->pending_bios_lock);
+ ent = list_first_entry(&conf->free_list, struct r5pending_data,
+ sibling);
+ list_move_tail(&ent->sibling, &conf->pending_list);
+ ent->sector = sector;
+ bio_list_init(&ent->bios);
+ bio_list_merge(&ent->bios, bios);
+ conf->pending_data_cnt++;
+ if (conf->pending_data_cnt >= PENDING_IO_MAX)
+ dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
+
+ spin_unlock(&conf->pending_bios_lock);
+
+ dispatch_bio_list(&tmp);
+}
+
+static void
+raid5_end_read_request(struct bio *bi);
+static void
+raid5_end_write_request(struct bio *bi);
+
+static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
+{
+ struct r5conf *conf = sh->raid_conf;
+ int i, disks = sh->disks;
+ struct stripe_head *head_sh = sh;
+ struct bio_list pending_bios = BIO_EMPTY_LIST;
+ struct r5dev *dev;
+ bool should_defer;
+
+ might_sleep();
+
+ if (log_stripe(sh, s) == 0)
+ return;
+
+ should_defer = conf->batch_bio_dispatch && conf->group_cnt;
+
+ for (i = disks; i--; ) {
+ enum req_op op;
+ blk_opf_t op_flags = 0;
+ int replace_only = 0;
+ struct bio *bi, *rbi;
+ struct md_rdev *rdev, *rrdev = NULL;
+
+ sh = head_sh;
+ if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
+ op = REQ_OP_WRITE;
+ if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
+ op_flags = REQ_FUA;
+ if (test_bit(R5_Discard, &sh->dev[i].flags))
+ op = REQ_OP_DISCARD;
+ } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
+ op = REQ_OP_READ;
+ else if (test_and_clear_bit(R5_WantReplace,
+ &sh->dev[i].flags)) {
+ op = REQ_OP_WRITE;
+ replace_only = 1;
+ } else
+ continue;
+ if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
+ op_flags |= REQ_SYNC;
+
+again:
+ dev = &sh->dev[i];
+ bi = &dev->req;
+ rbi = &dev->rreq; /* For writing to replacement */
+
+ rcu_read_lock();
+ rrdev = rcu_dereference(conf->disks[i].replacement);
+ smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
+ rdev = rcu_dereference(conf->disks[i].rdev);
+ if (!rdev) {
+ rdev = rrdev;
+ rrdev = NULL;
+ }
+ if (op_is_write(op)) {
+ if (replace_only)
+ rdev = NULL;
+ if (rdev == rrdev)
+ /* We raced and saw duplicates */
+ rrdev = NULL;
+ } else {
+ if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
+ rdev = rrdev;
+ rrdev = NULL;
+ }
+
+ if (rdev && test_bit(Faulty, &rdev->flags))
+ rdev = NULL;
+ if (rdev)
+ atomic_inc(&rdev->nr_pending);
+ if (rrdev && test_bit(Faulty, &rrdev->flags))
+ rrdev = NULL;
+ if (rrdev)
+ atomic_inc(&rrdev->nr_pending);
+ rcu_read_unlock();
+
+ /* We have already checked bad blocks for reads. Now
+ * need to check for writes. We never accept write errors
+ * on the replacement, so we don't to check rrdev.
+ */
+ while (op_is_write(op) && rdev &&
+ test_bit(WriteErrorSeen, &rdev->flags)) {
+ sector_t first_bad;
+ int bad_sectors;
+ int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
+ &first_bad, &bad_sectors);
+ if (!bad)
+ break;
+
+ if (bad < 0) {
+ set_bit(BlockedBadBlocks, &rdev->flags);
+ if (!conf->mddev->external &&
+ conf->mddev->sb_flags) {
+ /* It is very unlikely, but we might
+ * still need to write out the
+ * bad block log - better give it
+ * a chance*/
+ md_check_recovery(conf->mddev);
+ }
+ /*
+ * Because md_wait_for_blocked_rdev
+ * will dec nr_pending, we must
+ * increment it first.
+ */
+ atomic_inc(&rdev->nr_pending);
+ md_wait_for_blocked_rdev(rdev, conf->mddev);
+ } else {
+ /* Acknowledged bad block - skip the write */
+ rdev_dec_pending(rdev, conf->mddev);
+ rdev = NULL;
+ }
+ }
+
+ if (rdev) {
+ if (s->syncing || s->expanding || s->expanded
+ || s->replacing)
+ md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
+
+ set_bit(STRIPE_IO_STARTED, &sh->state);
+
+ bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
+ bi->bi_end_io = op_is_write(op)
+ ? raid5_end_write_request
+ : raid5_end_read_request;
+ bi->bi_private = sh;
+
+ pr_debug("%s: for %llu schedule op %d on disc %d\n",
+ __func__, (unsigned long long)sh->sector,
+ bi->bi_opf, i);
+ atomic_inc(&sh->count);
+ if (sh != head_sh)
+ atomic_inc(&head_sh->count);
+ if (use_new_offset(conf, sh))
+ bi->bi_iter.bi_sector = (sh->sector
+ + rdev->new_data_offset);
+ else
+ bi->bi_iter.bi_sector = (sh->sector
+ + rdev->data_offset);
+ if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
+ bi->bi_opf |= REQ_NOMERGE;
+
+ if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
+ WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
+
+ if (!op_is_write(op) &&
+ test_bit(R5_InJournal, &sh->dev[i].flags))
+ /*
+ * issuing read for a page in journal, this
+ * must be preparing for prexor in rmw; read
+ * the data into orig_page
+ */
+ sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
+ else
+ sh->dev[i].vec.bv_page = sh->dev[i].page;
+ bi->bi_vcnt = 1;
+ bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
+ bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
+ bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
+ /*
+ * If this is discard request, set bi_vcnt 0. We don't
+ * want to confuse SCSI because SCSI will replace payload
+ */
+ if (op == REQ_OP_DISCARD)
+ bi->bi_vcnt = 0;
+ if (rrdev)
+ set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
+
+ if (conf->mddev->gendisk)
+ trace_block_bio_remap(bi,
+ disk_devt(conf->mddev->gendisk),
+ sh->dev[i].sector);
+ if (should_defer && op_is_write(op))
+ bio_list_add(&pending_bios, bi);
+ else
+ submit_bio_noacct(bi);
+ }
+ if (rrdev) {
+ if (s->syncing || s->expanding || s->expanded
+ || s->replacing)
+ md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
+
+ set_bit(STRIPE_IO_STARTED, &sh->state);
+
+ bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
+ BUG_ON(!op_is_write(op));
+ rbi->bi_end_io = raid5_end_write_request;
+ rbi->bi_private = sh;
+
+ pr_debug("%s: for %llu schedule op %d on "
+ "replacement disc %d\n",
+ __func__, (unsigned long long)sh->sector,
+ rbi->bi_opf, i);
+ atomic_inc(&sh->count);
+ if (sh != head_sh)
+ atomic_inc(&head_sh->count);
+ if (use_new_offset(conf, sh))
+ rbi->bi_iter.bi_sector = (sh->sector
+ + rrdev->new_data_offset);
+ else
+ rbi->bi_iter.bi_sector = (sh->sector
+ + rrdev->data_offset);
+ if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
+ WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
+ sh->dev[i].rvec.bv_page = sh->dev[i].page;
+ rbi->bi_vcnt = 1;
+ rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
+ rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
+ rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
+ /*
+ * If this is discard request, set bi_vcnt 0. We don't
+ * want to confuse SCSI because SCSI will replace payload
+ */
+ if (op == REQ_OP_DISCARD)
+ rbi->bi_vcnt = 0;
+ if (conf->mddev->gendisk)
+ trace_block_bio_remap(rbi,
+ disk_devt(conf->mddev->gendisk),
+ sh->dev[i].sector);
+ if (should_defer && op_is_write(op))
+ bio_list_add(&pending_bios, rbi);
+ else
+ submit_bio_noacct(rbi);
+ }
+ if (!rdev && !rrdev) {
+ if (op_is_write(op))
+ set_bit(STRIPE_DEGRADED, &sh->state);
+ pr_debug("skip op %d on disc %d for sector %llu\n",
+ bi->bi_opf, i, (unsigned long long)sh->sector);
+ clear_bit(R5_LOCKED, &sh->dev[i].flags);
+ set_bit(STRIPE_HANDLE, &sh->state);
+ }
+
+ if (!head_sh->batch_head)
+ continue;
+ sh = list_first_entry(&sh->batch_list, struct stripe_head,
+ batch_list);
+ if (sh != head_sh)
+ goto again;
+ }
+
+ if (should_defer && !bio_list_empty(&pending_bios))
+ defer_issue_bios(conf, head_sh->sector, &pending_bios);
+}
+
+static struct dma_async_tx_descriptor *
+async_copy_data(int frombio, struct bio *bio, struct page **page,
+ unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
+ struct stripe_head *sh, int no_skipcopy)
+{
+ struct bio_vec bvl;
+ struct bvec_iter iter;
+ struct page *bio_page;
+ int page_offset;
+ struct async_submit_ctl submit;
+ enum async_tx_flags flags = 0;
+ struct r5conf *conf = sh->raid_conf;
+
+ if (bio->bi_iter.bi_sector >= sector)
+ page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
+ else
+ page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
+
+ if (frombio)
+ flags |= ASYNC_TX_FENCE;
+ init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
+
+ bio_for_each_segment(bvl, bio, iter) {
+ int len = bvl.bv_len;
+ int clen;
+ int b_offset = 0;
+
+ if (page_offset < 0) {
+ b_offset = -page_offset;
+ page_offset += b_offset;
+ len -= b_offset;
+ }
+
+ if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
+ clen = RAID5_STRIPE_SIZE(conf) - page_offset;
+ else
+ clen = len;
+
+ if (clen > 0) {
+ b_offset += bvl.bv_offset;
+ bio_page = bvl.bv_page;
+ if (frombio) {
+ if (conf->skip_copy &&
+ b_offset == 0 && page_offset == 0 &&
+ clen == RAID5_STRIPE_SIZE(conf) &&
+ !no_skipcopy)
+ *page = bio_page;
+ else
+ tx = async_memcpy(*page, bio_page, page_offset + poff,
+ b_offset, clen, &submit);
+ } else
+ tx = async_memcpy(bio_page, *page, b_offset,
+ page_offset + poff, clen, &submit);
+ }
+ /* chain the operations */
+ submit.depend_tx = tx;
+
+ if (clen < len) /* hit end of page */
+ break;
+ page_offset += len;
+ }
+
+ return tx;
+}
+
+static void ops_complete_biofill(void *stripe_head_ref)
+{
+ struct stripe_head *sh = stripe_head_ref;
+ int i;
+ struct r5conf *conf = sh->raid_conf;
+
+ pr_debug("%s: stripe %llu\n", __func__,
+ (unsigned long long)sh->sector);
+
+ /* clear completed biofills */
+ for (i = sh->disks; i--; ) {
+ struct r5dev *dev = &sh->dev[i];
+
+ /* acknowledge completion of a biofill operation */
+ /* and check if we need to reply to a read request,
+ * new R5_Wantfill requests are held off until
+ * !STRIPE_BIOFILL_RUN
+ */
+ if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
+ struct bio *rbi, *rbi2;
+
+ BUG_ON(!dev->read);
+ rbi = dev->read;
+ dev->read = NULL;
+ while (rbi && rbi->bi_iter.bi_sector <
+ dev->sector + RAID5_STRIPE_SECTORS(conf)) {
+ rbi2 = r5_next_bio(conf, rbi, dev->sector);
+ bio_endio(rbi);
+ rbi = rbi2;
+ }
+ }
+ }
+ clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
+
+ set_bit(STRIPE_HANDLE, &sh->state);
+ raid5_release_stripe(sh);
+}
+
+static void ops_run_biofill(struct stripe_head *sh)
+{
+ struct dma_async_tx_descriptor *tx = NULL;
+ struct async_submit_ctl submit;
+ int i;
+ struct r5conf *conf = sh->raid_conf;
+
+ BUG_ON(sh->batch_head);
+ pr_debug("%s: stripe %llu\n", __func__,
+ (unsigned long long)sh->sector);
+
+ for (i = sh->disks; i--; ) {
+ struct r5dev *dev = &sh->dev[i];
+ if (test_bit(R5_Wantfill, &dev->flags)) {
+ struct bio *rbi;
+ spin_lock_irq(&sh->stripe_lock);
+ dev->read = rbi = dev->toread;
+ dev->toread = NULL;
+ spin_unlock_irq(&sh->stripe_lock);
+ while (rbi && rbi->bi_iter.bi_sector <
+ dev->sector + RAID5_STRIPE_SECTORS(conf)) {
+ tx = async_copy_data(0, rbi, &dev->page,
+ dev->offset,
+ dev->sector, tx, sh, 0);
+ rbi = r5_next_bio(conf, rbi, dev->sector);
+ }
+ }
+ }
+
+ atomic_inc(&sh->count);
+ init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
+ async_trigger_callback(&submit);
+}
+
+static void mark_target_uptodate(struct stripe_head *sh, int target)
+{
+ struct r5dev *tgt;
+
+ if (target < 0)
+ return;
+
+ tgt = &sh->dev[target];
+ set_bit(R5_UPTODATE, &tgt->flags);
+ BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
+ clear_bit(R5_Wantcompute, &tgt->flags);
+}
+
+static void ops_complete_compute(void *stripe_head_ref)
+{
+ struct stripe_head *sh = stripe_head_ref;
+
+ pr_debug("%s: stripe %llu\n", __func__,
+ (unsigned long long)sh->sector);
+
+ /* mark the computed target(s) as uptodate */
+ mark_target_uptodate(sh, sh->ops.target);
+ mark_target_uptodate(sh, sh->ops.target2);
+
+ clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
+ if (sh->check_state == check_state_compute_run)
+ sh->check_state = check_state_compute_result;
+ set_bit(STRIPE_HANDLE, &sh->state);
+ raid5_release_stripe(sh);
+}
+
+/* return a pointer to the address conversion region of the scribble buffer */
+static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
+{
+ return percpu->scribble + i * percpu->scribble_obj_size;
+}
+
+/* return a pointer to the address conversion region of the scribble buffer */
+static addr_conv_t *to_addr_conv(struct stripe_head *sh,
+ struct raid5_percpu *percpu, int i)
+{
+ return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
+}
+
+/*
+ * Return a pointer to record offset address.
+ */
+static unsigned int *
+to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
+{
+ return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
+}
+
+static struct dma_async_tx_descriptor *
+ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
+{
+ int disks = sh->disks;
+ struct page **xor_srcs = to_addr_page(percpu, 0);
+ unsigned int *off_srcs = to_addr_offs(sh, percpu);
+ int target = sh->ops.target;
+ struct r5dev *tgt = &sh->dev[target];
+ struct page *xor_dest = tgt->page;
+ unsigned int off_dest = tgt->offset;
+ int count = 0;
+ struct dma_async_tx_descriptor *tx;
+ struct async_submit_ctl submit;
+ int i;
+
+ BUG_ON(sh->batch_head);
+
+ pr_debug("%s: stripe %llu block: %d\n",
+ __func__, (unsigned long long)sh->sector, target);
+ BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
+
+ for (i = disks; i--; ) {
+ if (i != target) {
+ off_srcs[count] = sh->dev[i].offset;
+ xor_srcs[count++] = sh->dev[i].page;
+ }
+ }
+
+ atomic_inc(&sh->count);
+
+ init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
+ ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
+ if (unlikely(count == 1))
+ tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
+ RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
+ else
+ tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
+ RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
+
+ return tx;
+}
+
+/* set_syndrome_sources - populate source buffers for gen_syndrome
+ * @srcs - (struct page *) array of size sh->disks
+ * @offs - (unsigned int) array of offset for each page
+ * @sh - stripe_head to parse
+ *
+ * Populates srcs in proper layout order for the stripe and returns the
+ * 'count' of sources to be used in a call to async_gen_syndrome. The P
+ * destination buffer is recorded in srcs[count] and the Q destination
+ * is recorded in srcs[count+1]].
+ */
+static int set_syndrome_sources(struct page **srcs,
+ unsigned int *offs,
+ struct stripe_head *sh,
+ int srctype)
+{
+ int disks = sh->disks;
+ int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
+ int d0_idx = raid6_d0(sh);
+ int count;
+ int i;
+
+ for (i = 0; i < disks; i++)
+ srcs[i] = NULL;
+
+ count = 0;
+ i = d0_idx;
+ do {
+ int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
+ struct r5dev *dev = &sh->dev[i];
+
+ if (i == sh->qd_idx || i == sh->pd_idx ||
+ (srctype == SYNDROME_SRC_ALL) ||
+ (srctype == SYNDROME_SRC_WANT_DRAIN &&
+ (test_bit(R5_Wantdrain, &dev->flags) ||
+ test_bit(R5_InJournal, &dev->flags))) ||
+ (srctype == SYNDROME_SRC_WRITTEN &&
+ (dev->written ||
+ test_bit(R5_InJournal, &dev->flags)))) {
+ if (test_bit(R5_InJournal, &dev->flags))
+ srcs[slot] = sh->dev[i].orig_page;
+ else
+ srcs[slot] = sh->dev[i].page;
+ /*
+ * For R5_InJournal, PAGE_SIZE must be 4KB and will
+ * not shared page. In that case, dev[i].offset
+ * is 0.
+ */
+ offs[slot] = sh->dev[i].offset;
+ }
+ i = raid6_next_disk(i, disks);
+ } while (i != d0_idx);
+
+ return syndrome_disks;
+}
+
+static struct dma_async_tx_descriptor *
+ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
+{
+ int disks = sh->disks;
+ struct page **blocks = to_addr_page(percpu, 0);
+ unsigned int *offs = to_addr_offs(sh, percpu);
+ int target;
+ int qd_idx = sh->qd_idx;
+ struct dma_async_tx_descriptor *tx;
+ struct async_submit_ctl submit;
+ struct r5dev *tgt;
+ struct page *dest;
+ unsigned int dest_off;
+ int i;
+ int count;
+
+ BUG_ON(sh->batch_head);
+ if (sh->ops.target < 0)
+ target = sh->ops.target2;
+ else if (sh->ops.target2 < 0)
+ target = sh->ops.target;
+ else
+ /* we should only have one valid target */
+ BUG();
+ BUG_ON(target < 0);
+ pr_debug("%s: stripe %llu block: %d\n",
+ __func__, (unsigned long long)sh->sector, target);
+
+ tgt = &sh->dev[target];
+ BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
+ dest = tgt->page;
+ dest_off = tgt->offset;
+
+ atomic_inc(&sh->count);
+
+ if (target == qd_idx) {
+ count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
+ blocks[count] = NULL; /* regenerating p is not necessary */
+ BUG_ON(blocks[count+1] != dest); /* q should already be set */
+ init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
+ ops_complete_compute, sh,
+ to_addr_conv(sh, percpu, 0));
+ tx = async_gen_syndrome(blocks, offs, count+2,
+ RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
+ } else {
+ /* Compute any data- or p-drive using XOR */
+ count = 0;
+ for (i = disks; i-- ; ) {
+ if (i == target || i == qd_idx)
+ continue;
+ offs[count] = sh->dev[i].offset;
+ blocks[count++] = sh->dev[i].page;
+ }
+
+ init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
+ NULL, ops_complete_compute, sh,
+ to_addr_conv(sh, percpu, 0));
+ tx = async_xor_offs(dest, dest_off, blocks, offs, count,
+ RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
+ }
+
+ return tx;
+}
+
+static struct dma_async_tx_descriptor *
+ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
+{
+ int i, count, disks = sh->disks;
+ int syndrome_disks = sh->ddf_layout ? disks : disks-2;
+ int d0_idx = raid6_d0(sh);
+ int faila = -1, failb = -1;
+ int target = sh->ops.target;
+ int target2 = sh->ops.target2;
+ struct r5dev *tgt = &sh->dev[target];
+ struct r5dev *tgt2 = &sh->dev[target2];
+ struct dma_async_tx_descriptor *tx;
+ struct page **blocks = to_addr_page(percpu, 0);
+ unsigned int *offs = to_addr_offs(sh, percpu);
+ struct async_submit_ctl submit;
+
+ BUG_ON(sh->batch_head);
+ pr_debug("%s: stripe %llu block1: %d block2: %d\n",
+ __func__, (unsigned long long)sh->sector, target, target2);
+ BUG_ON(target < 0 || target2 < 0);
+ BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
+ BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
+
+ /* we need to open-code set_syndrome_sources to handle the
+ * slot number conversion for 'faila' and 'failb'
+ */
+ for (i = 0; i < disks ; i++) {
+ offs[i] = 0;
+ blocks[i] = NULL;
+ }
+ count = 0;
+ i = d0_idx;
+ do {
+ int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
+
+ offs[slot] = sh->dev[i].offset;
+ blocks[slot] = sh->dev[i].page;
+
+ if (i == target)
+ faila = slot;
+ if (i == target2)
+ failb = slot;
+ i = raid6_next_disk(i, disks);
+ } while (i != d0_idx);
+
+ BUG_ON(faila == failb);
+ if (failb < faila)
+ swap(faila, failb);
+ pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
+ __func__, (unsigned long long)sh->sector, faila, failb);
+
+ atomic_inc(&sh->count);
+
+ if (failb == syndrome_disks+1) {
+ /* Q disk is one of the missing disks */
+ if (faila == syndrome_disks) {
+ /* Missing P+Q, just recompute */
+ init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
+ ops_complete_compute, sh,
+ to_addr_conv(sh, percpu, 0));
+ return async_gen_syndrome(blocks, offs, syndrome_disks+2,
+ RAID5_STRIPE_SIZE(sh->raid_conf),
+ &submit);
+ } else {
+ struct page *dest;
+ unsigned int dest_off;
+ int data_target;
+ int qd_idx = sh->qd_idx;
+
+ /* Missing D+Q: recompute D from P, then recompute Q */
+ if (target == qd_idx)
+ data_target = target2;
+ else
+ data_target = target;
+
+ count = 0;
+ for (i = disks; i-- ; ) {
+ if (i == data_target || i == qd_idx)
+ continue;
+ offs[count] = sh->dev[i].offset;
+ blocks[count++] = sh->dev[i].page;
+ }
+ dest = sh->dev[data_target].page;
+ dest_off = sh->dev[data_target].offset;
+ init_async_submit(&submit,
+ ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
+ NULL, NULL, NULL,
+ to_addr_conv(sh, percpu, 0));
+ tx = async_xor_offs(dest, dest_off, blocks, offs, count,
+ RAID5_STRIPE_SIZE(sh->raid_conf),
+ &submit);
+
+ count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
+ init_async_submit(&submit, ASYNC_TX_FENCE, tx,
+ ops_complete_compute, sh,
+ to_addr_conv(sh, percpu, 0));
+ return async_gen_syndrome(blocks, offs, count+2,
+ RAID5_STRIPE_SIZE(sh->raid_conf),
+ &submit);
+ }
+ } else {
+ init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
+ ops_complete_compute, sh,
+ to_addr_conv(sh, percpu, 0));
+ if (failb == syndrome_disks) {
+ /* We're missing D+P. */
+ return async_raid6_datap_recov(syndrome_disks+2,
+ RAID5_STRIPE_SIZE(sh->raid_conf),
+ faila,
+ blocks, offs, &submit);
+ } else {
+ /* We're missing D+D. */
+ return async_raid6_2data_recov(syndrome_disks+2,
+ RAID5_STRIPE_SIZE(sh->raid_conf),
+ faila, failb,
+ blocks, offs, &submit);
+ }
+ }
+}
+
+static void ops_complete_prexor(void *stripe_head_ref)
+{
+ struct stripe_head *sh = stripe_head_ref;
+
+ pr_debug("%s: stripe %llu\n", __func__,
+ (unsigned long long)sh->sector);
+
+ if (r5c_is_writeback(sh->raid_conf->log))
+ /*
+ * raid5-cache write back uses orig_page during prexor.
+ * After prexor, it is time to free orig_page
+ */
+ r5c_release_extra_page(sh);
+}
+
+static struct dma_async_tx_descriptor *
+ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
+ struct dma_async_tx_descriptor *tx)
+{
+ int disks = sh->disks;
+ struct page **xor_srcs = to_addr_page(percpu, 0);
+ unsigned int *off_srcs = to_addr_offs(sh, percpu);
+ int count = 0, pd_idx = sh->pd_idx, i;
+ struct async_submit_ctl submit;
+
+ /* existing parity data subtracted */
+ unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
+ struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
+
+ BUG_ON(sh->batch_head);
+ pr_debug("%s: stripe %llu\n", __func__,
+ (unsigned long long)sh->sector);
+
+ for (i = disks; i--; ) {
+ struct r5dev *dev = &sh->dev[i];
+ /* Only process blocks that are known to be uptodate */
+ if (test_bit(R5_InJournal, &dev->flags)) {
+ /*
+ * For this case, PAGE_SIZE must be equal to 4KB and
+ * page offset is zero.
+ */
+ off_srcs[count] = dev->offset;
+ xor_srcs[count++] = dev->orig_page;
+ } else if (test_bit(R5_Wantdrain, &dev->flags)) {
+ off_srcs[count] = dev->offset;
+ xor_srcs[count++] = dev->page;
+ }
+ }
+
+ init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
+ ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
+ tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
+ RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
+
+ return tx;
+}
+
+static struct dma_async_tx_descriptor *
+ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
+ struct dma_async_tx_descriptor *tx)
+{
+ struct page **blocks = to_addr_page(percpu, 0);
+ unsigned int *offs = to_addr_offs(sh, percpu);
+ int count;
+ struct async_submit_ctl submit;
+
+ pr_debug("%s: stripe %llu\n", __func__,
+ (unsigned long long)sh->sector);
+
+ count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
+
+ init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
+ ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
+ tx = async_gen_syndrome(blocks, offs, count+2,
+ RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
+
+ return tx;
+}
+
+static struct dma_async_tx_descriptor *
+ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
+{
+ struct r5conf *conf = sh->raid_conf;
+ int disks = sh->disks;
+ int i;
+ struct stripe_head *head_sh = sh;
+
+ pr_debug("%s: stripe %llu\n", __func__,
+ (unsigned long long)sh->sector);
+
+ for (i = disks; i--; ) {
+ struct r5dev *dev;
+ struct bio *chosen;
+
+ sh = head_sh;
+ if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
+ struct bio *wbi;
+
+again:
+ dev = &sh->dev[i];
+ /*
+ * clear R5_InJournal, so when rewriting a page in
+ * journal, it is not skipped by r5l_log_stripe()
+ */
+ clear_bit(R5_InJournal, &dev->flags);
+ spin_lock_irq(&sh->stripe_lock);
+ chosen = dev->towrite;
+ dev->towrite = NULL;
+ sh->overwrite_disks = 0;
+ BUG_ON(dev->written);
+ wbi = dev->written = chosen;
+ spin_unlock_irq(&sh->stripe_lock);
+ WARN_ON(dev->page != dev->orig_page);
+
+ while (wbi && wbi->bi_iter.bi_sector <
+ dev->sector + RAID5_STRIPE_SECTORS(conf)) {
+ if (wbi->bi_opf & REQ_FUA)
+ set_bit(R5_WantFUA, &dev->flags);
+ if (wbi->bi_opf & REQ_SYNC)
+ set_bit(R5_SyncIO, &dev->flags);
+ if (bio_op(wbi) == REQ_OP_DISCARD)
+ set_bit(R5_Discard, &dev->flags);
+ else {
+ tx = async_copy_data(1, wbi, &dev->page,
+ dev->offset,
+ dev->sector, tx, sh,
+ r5c_is_writeback(conf->log));
+ if (dev->page != dev->orig_page &&
+ !r5c_is_writeback(conf->log)) {
+ set_bit(R5_SkipCopy, &dev->flags);
+ clear_bit(R5_UPTODATE, &dev->flags);
+ clear_bit(R5_OVERWRITE, &dev->flags);
+ }
+ }
+ wbi = r5_next_bio(conf, wbi, dev->sector);
+ }
+
+ if (head_sh->batch_head) {
+ sh = list_first_entry(&sh->batch_list,
+ struct stripe_head,
+ batch_list);
+ if (sh == head_sh)
+ continue;
+ goto again;
+ }
+ }
+ }
+
+ return tx;
+}
+
+static void ops_complete_reconstruct(void *stripe_head_ref)
+{
+ struct stripe_head *sh = stripe_head_ref;
+ int disks = sh->disks;
+ int pd_idx = sh->pd_idx;
+ int qd_idx = sh->qd_idx;
+ int i;
+ bool fua = false, sync = false, discard = false;
+
+ pr_debug("%s: stripe %llu\n", __func__,
+ (unsigned long long)sh->sector);
+
+ for (i = disks; i--; ) {
+ fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
+ sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
+ discard |= test_bit(R5_Discard, &sh->dev[i].flags);
+ }
+
+ for (i = disks; i--; ) {
+ struct r5dev *dev = &sh->dev[i];
+
+ if (dev->written || i == pd_idx || i == qd_idx) {
+ if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
+ set_bit(R5_UPTODATE, &dev->flags);
+ if (test_bit(STRIPE_EXPAND_READY, &sh->state))
+ set_bit(R5_Expanded, &dev->flags);
+ }
+ if (fua)
+ set_bit(R5_WantFUA, &dev->flags);
+ if (sync)
+ set_bit(R5_SyncIO, &dev->flags);
+ }
+ }
+
+ if (sh->reconstruct_state == reconstruct_state_drain_run)
+ sh->reconstruct_state = reconstruct_state_drain_result;
+ else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
+ sh->reconstruct_state = reconstruct_state_prexor_drain_result;
+ else {
+ BUG_ON(sh->reconstruct_state != reconstruct_state_run);
+ sh->reconstruct_state = reconstruct_state_result;
+ }
+
+ set_bit(STRIPE_HANDLE, &sh->state);
+ raid5_release_stripe(sh);
+}
+
+static void
+ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
+ struct dma_async_tx_descriptor *tx)
+{
+ int disks = sh->disks;
+ struct page **xor_srcs;
+ unsigned int *off_srcs;
+ struct async_submit_ctl submit;
+ int count, pd_idx = sh->pd_idx, i;
+ struct page *xor_dest;
+ unsigned int off_dest;
+ int prexor = 0;
+ unsigned long flags;
+ int j = 0;
+ struct stripe_head *head_sh = sh;
+ int last_stripe;
+
+ pr_debug("%s: stripe %llu\n", __func__,
+ (unsigned long long)sh->sector);
+
+ for (i = 0; i < sh->disks; i++) {
+ if (pd_idx == i)
+ continue;
+ if (!test_bit(R5_Discard, &sh->dev[i].flags))
+ break;
+ }
+ if (i >= sh->disks) {
+ atomic_inc(&sh->count);
+ set_bit(R5_Discard, &sh->dev[pd_idx].flags);
+ ops_complete_reconstruct(sh);
+ return;
+ }
+again:
+ count = 0;
+ xor_srcs = to_addr_page(percpu, j);
+ off_srcs = to_addr_offs(sh, percpu);
+ /* check if prexor is active which means only process blocks
+ * that are part of a read-modify-write (written)
+ */
+ if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
+ prexor = 1;
+ off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
+ xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
+ for (i = disks; i--; ) {
+ struct r5dev *dev = &sh->dev[i];
+ if (head_sh->dev[i].written ||
+ test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
+ off_srcs[count] = dev->offset;
+ xor_srcs[count++] = dev->page;
+ }
+ }
+ } else {
+ xor_dest = sh->dev[pd_idx].page;
+ off_dest = sh->dev[pd_idx].offset;
+ for (i = disks; i--; ) {
+ struct r5dev *dev = &sh->dev[i];
+ if (i != pd_idx) {
+ off_srcs[count] = dev->offset;
+ xor_srcs[count++] = dev->page;
+ }
+ }
+ }
+
+ /* 1/ if we prexor'd then the dest is reused as a source
+ * 2/ if we did not prexor then we are redoing the parity
+ * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
+ * for the synchronous xor case
+ */
+ last_stripe = !head_sh->batch_head ||
+ list_first_entry(&sh->batch_list,
+ struct stripe_head, batch_list) == head_sh;
+ if (last_stripe) {
+ flags = ASYNC_TX_ACK |
+ (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
+
+ atomic_inc(&head_sh->count);
+ init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
+ to_addr_conv(sh, percpu, j));
+ } else {
+ flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
+ init_async_submit(&submit, flags, tx, NULL, NULL,
+ to_addr_conv(sh, percpu, j));
+ }
+
+ if (unlikely(count == 1))
+ tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
+ RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
+ else
+ tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
+ RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
+ if (!last_stripe) {
+ j++;
+ sh = list_first_entry(&sh->batch_list, struct stripe_head,
+ batch_list);
+ goto again;
+ }
+}
+
+static void
+ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
+ struct dma_async_tx_descriptor *tx)
+{
+ struct async_submit_ctl submit;
+ struct page **blocks;
+ unsigned int *offs;
+ int count, i, j = 0;
+ struct stripe_head *head_sh = sh;
+ int last_stripe;
+ int synflags;
+ unsigned long txflags;
+
+ pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
+
+ for (i = 0; i < sh->disks; i++) {
+ if (sh->pd_idx == i || sh->qd_idx == i)
+ continue;
+ if (!test_bit(R5_Discard, &sh->dev[i].flags))
+ break;
+ }
+ if (i >= sh->disks) {
+ atomic_inc(&sh->count);
+ set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
+ set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
+ ops_complete_reconstruct(sh);
+ return;
+ }
+
+again:
+ blocks = to_addr_page(percpu, j);
+ offs = to_addr_offs(sh, percpu);
+
+ if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
+ synflags = SYNDROME_SRC_WRITTEN;
+ txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
+ } else {
+ synflags = SYNDROME_SRC_ALL;
+ txflags = ASYNC_TX_ACK;
+ }
+
+ count = set_syndrome_sources(blocks, offs, sh, synflags);
+ last_stripe = !head_sh->batch_head ||
+ list_first_entry(&sh->batch_list,
+ struct stripe_head, batch_list) == head_sh;
+
+ if (last_stripe) {
+ atomic_inc(&head_sh->count);
+ init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
+ head_sh, to_addr_conv(sh, percpu, j));
+ } else
+ init_async_submit(&submit, 0, tx, NULL, NULL,
+ to_addr_conv(sh, percpu, j));
+ tx = async_gen_syndrome(blocks, offs, count+2,
+ RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
+ if (!last_stripe) {
+ j++;
+ sh = list_first_entry(&sh->batch_list, struct stripe_head,
+ batch_list);
+ goto again;
+ }
+}
+
+static void ops_complete_check(void *stripe_head_ref)
+{
+ struct stripe_head *sh = stripe_head_ref;
+
+ pr_debug("%s: stripe %llu\n", __func__,
+ (unsigned long long)sh->sector);
+
+ sh->check_state = check_state_check_result;
+ set_bit(STRIPE_HANDLE, &sh->state);
+ raid5_release_stripe(sh);
+}
+
+static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
+{
+ int disks = sh->disks;
+ int pd_idx = sh->pd_idx;
+ int qd_idx = sh->qd_idx;
+ struct page *xor_dest;
+ unsigned int off_dest;
+ struct page **xor_srcs = to_addr_page(percpu, 0);
+ unsigned int *off_srcs = to_addr_offs(sh, percpu);
+ struct dma_async_tx_descriptor *tx;
+ struct async_submit_ctl submit;
+ int count;
+ int i;
+
+ pr_debug("%s: stripe %llu\n", __func__,
+ (unsigned long long)sh->sector);
+
+ BUG_ON(sh->batch_head);
+ count = 0;
+ xor_dest = sh->dev[pd_idx].page;
+ off_dest = sh->dev[pd_idx].offset;
+ off_srcs[count] = off_dest;
+ xor_srcs[count++] = xor_dest;
+ for (i = disks; i--; ) {
+ if (i == pd_idx || i == qd_idx)
+ continue;
+ off_srcs[count] = sh->dev[i].offset;
+ xor_srcs[count++] = sh->dev[i].page;
+ }
+
+ init_async_submit(&submit, 0, NULL, NULL, NULL,
+ to_addr_conv(sh, percpu, 0));
+ tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
+ RAID5_STRIPE_SIZE(sh->raid_conf),
+ &sh->ops.zero_sum_result, &submit);
+
+ atomic_inc(&sh->count);
+ init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
+ tx = async_trigger_callback(&submit);
+}
+
+static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
+{
+ struct page **srcs = to_addr_page(percpu, 0);
+ unsigned int *offs = to_addr_offs(sh, percpu);
+ struct async_submit_ctl submit;
+ int count;
+
+ pr_debug("%s: stripe %llu checkp: %d\n", __func__,
+ (unsigned long long)sh->sector, checkp);
+
+ BUG_ON(sh->batch_head);
+ count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
+ if (!checkp)
+ srcs[count] = NULL;
+
+ atomic_inc(&sh->count);
+ init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
+ sh, to_addr_conv(sh, percpu, 0));
+ async_syndrome_val(srcs, offs, count+2,
+ RAID5_STRIPE_SIZE(sh->raid_conf),
+ &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
+}
+
+static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
+{
+ int overlap_clear = 0, i, disks = sh->disks;
+ struct dma_async_tx_descriptor *tx = NULL;
+ struct r5conf *conf = sh->raid_conf;
+ int level = conf->level;
+ struct raid5_percpu *percpu;
+
+ local_lock(&conf->percpu->lock);
+ percpu = this_cpu_ptr(conf->percpu);
+ if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
+ ops_run_biofill(sh);
+ overlap_clear++;
+ }
+
+ if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
+ if (level < 6)
+ tx = ops_run_compute5(sh, percpu);
+ else {
+ if (sh->ops.target2 < 0 || sh->ops.target < 0)
+ tx = ops_run_compute6_1(sh, percpu);
+ else
+ tx = ops_run_compute6_2(sh, percpu);
+ }
+ /* terminate the chain if reconstruct is not set to be run */
+ if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
+ async_tx_ack(tx);
+ }
+
+ if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
+ if (level < 6)
+ tx = ops_run_prexor5(sh, percpu, tx);
+ else
+ tx = ops_run_prexor6(sh, percpu, tx);
+ }
+
+ if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
+ tx = ops_run_partial_parity(sh, percpu, tx);
+
+ if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
+ tx = ops_run_biodrain(sh, tx);
+ overlap_clear++;
+ }
+
+ if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
+ if (level < 6)
+ ops_run_reconstruct5(sh, percpu, tx);
+ else
+ ops_run_reconstruct6(sh, percpu, tx);
+ }
+
+ if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
+ if (sh->check_state == check_state_run)
+ ops_run_check_p(sh, percpu);
+ else if (sh->check_state == check_state_run_q)
+ ops_run_check_pq(sh, percpu, 0);
+ else if (sh->check_state == check_state_run_pq)
+ ops_run_check_pq(sh, percpu, 1);
+ else
+ BUG();
+ }
+
+ if (overlap_clear && !sh->batch_head) {
+ for (i = disks; i--; ) {
+ struct r5dev *dev = &sh->dev[i];
+ if (test_and_clear_bit(R5_Overlap, &dev->flags))
+ wake_up(&sh->raid_conf->wait_for_overlap);
+ }
+ }
+ local_unlock(&conf->percpu->lock);
+}
+
+static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
+{
+#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
+ kfree(sh->pages);
+#endif
+ if (sh->ppl_page)
+ __free_page(sh->ppl_page);
+ kmem_cache_free(sc, sh);
+}
+
+static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
+ int disks, struct r5conf *conf)
+{
+ struct stripe_head *sh;
+
+ sh = kmem_cache_zalloc(sc, gfp);
+ if (sh) {
+ spin_lock_init(&sh->stripe_lock);
+ spin_lock_init(&sh->batch_lock);
+ INIT_LIST_HEAD(&sh->batch_list);
+ INIT_LIST_HEAD(&sh->lru);
+ INIT_LIST_HEAD(&sh->r5c);
+ INIT_LIST_HEAD(&sh->log_list);
+ atomic_set(&sh->count, 1);
+ sh->raid_conf = conf;
+ sh->log_start = MaxSector;
+
+ if (raid5_has_ppl(conf)) {
+ sh->ppl_page = alloc_page(gfp);
+ if (!sh->ppl_page) {
+ free_stripe(sc, sh);
+ return NULL;
+ }
+ }
+#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
+ if (init_stripe_shared_pages(sh, conf, disks)) {
+ free_stripe(sc, sh);
+ return NULL;
+ }
+#endif
+ }
+ return sh;
+}
+static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
+{
+ struct stripe_head *sh;
+
+ sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
+ if (!sh)
+ return 0;
+
+ if (grow_buffers(sh, gfp)) {
+ shrink_buffers(sh);
+ free_stripe(conf->slab_cache, sh);
+ return 0;
+ }
+ sh->hash_lock_index =
+ conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
+ /* we just created an active stripe so... */
+ atomic_inc(&conf->active_stripes);
+
+ raid5_release_stripe(sh);
+ conf->max_nr_stripes++;
+ return 1;
+}
+
+static int grow_stripes(struct r5conf *conf, int num)
+{
+ struct kmem_cache *sc;
+ size_t namelen = sizeof(conf->cache_name[0]);
+ int devs = max(conf->raid_disks, conf->previous_raid_disks);
+
+ if (conf->mddev->gendisk)
+ snprintf(conf->cache_name[0], namelen,
+ "raid%d-%s", conf->level, mdname(conf->mddev));
+ else
+ snprintf(conf->cache_name[0], namelen,
+ "raid%d-%p", conf->level, conf->mddev);
+ snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
+
+ conf->active_name = 0;
+ sc = kmem_cache_create(conf->cache_name[conf->active_name],
+ sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
+ 0, 0, NULL);
+ if (!sc)
+ return 1;
+ conf->slab_cache = sc;
+ conf->pool_size = devs;
+ while (num--)
+ if (!grow_one_stripe(conf, GFP_KERNEL))
+ return 1;
+
+ return 0;
+}
+
+/**
+ * scribble_alloc - allocate percpu scribble buffer for required size
+ * of the scribble region
+ * @percpu: from for_each_present_cpu() of the caller
+ * @num: total number of disks in the array
+ * @cnt: scribble objs count for required size of the scribble region
+ *
+ * The scribble buffer size must be enough to contain:
+ * 1/ a struct page pointer for each device in the array +2
+ * 2/ room to convert each entry in (1) to its corresponding dma
+ * (dma_map_page()) or page (page_address()) address.
+ *
+ * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
+ * calculate over all devices (not just the data blocks), using zeros in place
+ * of the P and Q blocks.
+ */
+static int scribble_alloc(struct raid5_percpu *percpu,
+ int num, int cnt)
+{
+ size_t obj_size =
+ sizeof(struct page *) * (num + 2) +
+ sizeof(addr_conv_t) * (num + 2) +
+ sizeof(unsigned int) * (num + 2);
+ void *scribble;
+
+ /*
+ * If here is in raid array suspend context, it is in memalloc noio
+ * context as well, there is no potential recursive memory reclaim
+ * I/Os with the GFP_KERNEL flag.
+ */
+ scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
+ if (!scribble)
+ return -ENOMEM;
+
+ kvfree(percpu->scribble);
+
+ percpu->scribble = scribble;
+ percpu->scribble_obj_size = obj_size;
+ return 0;
+}
+
+static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
+{
+ unsigned long cpu;
+ int err = 0;
+
+ /*
+ * Never shrink. And mddev_suspend() could deadlock if this is called
+ * from raid5d. In that case, scribble_disks and scribble_sectors
+ * should equal to new_disks and new_sectors
+ */
+ if (conf->scribble_disks >= new_disks &&
+ conf->scribble_sectors >= new_sectors)
+ return 0;
+ mddev_suspend(conf->mddev);
+ cpus_read_lock();
+
+ for_each_present_cpu(cpu) {
+ struct raid5_percpu *percpu;
+
+ percpu = per_cpu_ptr(conf->percpu, cpu);
+ err = scribble_alloc(percpu, new_disks,
+ new_sectors / RAID5_STRIPE_SECTORS(conf));
+ if (err)
+ break;
+ }
+
+ cpus_read_unlock();
+ mddev_resume(conf->mddev);
+ if (!err) {
+ conf->scribble_disks = new_disks;
+ conf->scribble_sectors = new_sectors;
+ }
+ return err;
+}
+
+static int resize_stripes(struct r5conf *conf, int newsize)
+{
+ /* Make all the stripes able to hold 'newsize' devices.
+ * New slots in each stripe get 'page' set to a new page.
+ *
+ * This happens in stages:
+ * 1/ create a new kmem_cache and allocate the required number of
+ * stripe_heads.
+ * 2/ gather all the old stripe_heads and transfer the pages across
+ * to the new stripe_heads. This will have the side effect of
+ * freezing the array as once all stripe_heads have been collected,
+ * no IO will be possible. Old stripe heads are freed once their
+ * pages have been transferred over, and the old kmem_cache is
+ * freed when all stripes are done.
+ * 3/ reallocate conf->disks to be suitable bigger. If this fails,
+ * we simple return a failure status - no need to clean anything up.
+ * 4/ allocate new pages for the new slots in the new stripe_heads.
+ * If this fails, we don't bother trying the shrink the
+ * stripe_heads down again, we just leave them as they are.
+ * As each stripe_head is processed the new one is released into
+ * active service.
+ *
+ * Once step2 is started, we cannot afford to wait for a write,
+ * so we use GFP_NOIO allocations.
+ */
+ struct stripe_head *osh, *nsh;
+ LIST_HEAD(newstripes);
+ struct disk_info *ndisks;
+ int err = 0;
+ struct kmem_cache *sc;
+ int i;
+ int hash, cnt;
+
+ md_allow_write(conf->mddev);
+
+ /* Step 1 */
+ sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
+ sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
+ 0, 0, NULL);
+ if (!sc)
+ return -ENOMEM;
+
+ /* Need to ensure auto-resizing doesn't interfere */
+ mutex_lock(&conf->cache_size_mutex);
+
+ for (i = conf->max_nr_stripes; i; i--) {
+ nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
+ if (!nsh)
+ break;
+
+ list_add(&nsh->lru, &newstripes);
+ }
+ if (i) {
+ /* didn't get enough, give up */
+ while (!list_empty(&newstripes)) {
+ nsh = list_entry(newstripes.next, struct stripe_head, lru);
+ list_del(&nsh->lru);
+ free_stripe(sc, nsh);
+ }
+ kmem_cache_destroy(sc);
+ mutex_unlock(&conf->cache_size_mutex);
+ return -ENOMEM;
+ }
+ /* Step 2 - Must use GFP_NOIO now.
+ * OK, we have enough stripes, start collecting inactive
+ * stripes and copying them over
+ */
+ hash = 0;
+ cnt = 0;
+ list_for_each_entry(nsh, &newstripes, lru) {
+ lock_device_hash_lock(conf, hash);
+ wait_event_cmd(conf->wait_for_stripe,
+ !list_empty(conf->inactive_list + hash),
+ unlock_device_hash_lock(conf, hash),
+ lock_device_hash_lock(conf, hash));
+ osh = get_free_stripe(conf, hash);
+ unlock_device_hash_lock(conf, hash);
+
+#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
+ for (i = 0; i < osh->nr_pages; i++) {
+ nsh->pages[i] = osh->pages[i];
+ osh->pages[i] = NULL;
+ }
+#endif
+ for(i=0; i<conf->pool_size; i++) {
+ nsh->dev[i].page = osh->dev[i].page;
+ nsh->dev[i].orig_page = osh->dev[i].page;
+ nsh->dev[i].offset = osh->dev[i].offset;
+ }
+ nsh->hash_lock_index = hash;
+ free_stripe(conf->slab_cache, osh);
+ cnt++;
+ if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
+ !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
+ hash++;
+ cnt = 0;
+ }
+ }
+ kmem_cache_destroy(conf->slab_cache);
+
+ /* Step 3.
+ * At this point, we are holding all the stripes so the array
+ * is completely stalled, so now is a good time to resize
+ * conf->disks and the scribble region
+ */
+ ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
+ if (ndisks) {
+ for (i = 0; i < conf->pool_size; i++)
+ ndisks[i] = conf->disks[i];
+
+ for (i = conf->pool_size; i < newsize; i++) {
+ ndisks[i].extra_page = alloc_page(GFP_NOIO);
+ if (!ndisks[i].extra_page)
+ err = -ENOMEM;
+ }
+
+ if (err) {
+ for (i = conf->pool_size; i < newsize; i++)
+ if (ndisks[i].extra_page)
+ put_page(ndisks[i].extra_page);
+ kfree(ndisks);
+ } else {
+ kfree(conf->disks);
+ conf->disks = ndisks;
+ }
+ } else
+ err = -ENOMEM;
+
+ conf->slab_cache = sc;
+ conf->active_name = 1-conf->active_name;
+
+ /* Step 4, return new stripes to service */
+ while(!list_empty(&newstripes)) {
+ nsh = list_entry(newstripes.next, struct stripe_head, lru);
+ list_del_init(&nsh->lru);
+
+#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
+ for (i = 0; i < nsh->nr_pages; i++) {
+ if (nsh->pages[i])
+ continue;
+ nsh->pages[i] = alloc_page(GFP_NOIO);
+ if (!nsh->pages[i])
+ err = -ENOMEM;
+ }
+
+ for (i = conf->raid_disks; i < newsize; i++) {
+ if (nsh->dev[i].page)
+ continue;
+ nsh->dev[i].page = raid5_get_dev_page(nsh, i);
+ nsh->dev[i].orig_page = nsh->dev[i].page;
+ nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
+ }
+#else
+ for (i=conf->raid_disks; i < newsize; i++)
+ if (nsh->dev[i].page == NULL) {
+ struct page *p = alloc_page(GFP_NOIO);
+ nsh->dev[i].page = p;
+ nsh->dev[i].orig_page = p;
+ nsh->dev[i].offset = 0;
+ if (!p)
+ err = -ENOMEM;
+ }
+#endif
+ raid5_release_stripe(nsh);
+ }
+ /* critical section pass, GFP_NOIO no longer needed */
+
+ if (!err)
+ conf->pool_size = newsize;
+ mutex_unlock(&conf->cache_size_mutex);
+
+ return err;
+}
+
+static int drop_one_stripe(struct r5conf *conf)
+{
+ struct stripe_head *sh;
+ int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
+
+ spin_lock_irq(conf->hash_locks + hash);
+ sh = get_free_stripe(conf, hash);
+ spin_unlock_irq(conf->hash_locks + hash);
+ if (!sh)
+ return 0;
+ BUG_ON(atomic_read(&sh->count));
+ shrink_buffers(sh);
+ free_stripe(conf->slab_cache, sh);
+ atomic_dec(&conf->active_stripes);
+ conf->max_nr_stripes--;
+ return 1;
+}
+
+static void shrink_stripes(struct r5conf *conf)
+{
+ while (conf->max_nr_stripes &&
+ drop_one_stripe(conf))
+ ;
+
+ kmem_cache_destroy(conf->slab_cache);
+ conf->slab_cache = NULL;
+}
+
+/*
+ * This helper wraps rcu_dereference_protected() and can be used when
+ * it is known that the nr_pending of the rdev is elevated.
+ */
+static struct md_rdev *rdev_pend_deref(struct md_rdev __rcu *rdev)
+{
+ return rcu_dereference_protected(rdev,
+ atomic_read(&rcu_access_pointer(rdev)->nr_pending));
+}
+
+/*
+ * This helper wraps rcu_dereference_protected() and should be used
+ * when it is known that the mddev_lock() is held. This is safe
+ * seeing raid5_remove_disk() has the same lock held.
+ */
+static struct md_rdev *rdev_mdlock_deref(struct mddev *mddev,
+ struct md_rdev __rcu *rdev)
+{
+ return rcu_dereference_protected(rdev,
+ lockdep_is_held(&mddev->reconfig_mutex));
+}
+
+static void raid5_end_read_request(struct bio * bi)
+{
+ struct stripe_head *sh = bi->bi_private;
+ struct r5conf *conf = sh->raid_conf;
+ int disks = sh->disks, i;
+ struct md_rdev *rdev = NULL;
+ sector_t s;
+
+ for (i=0 ; i<disks; i++)
+ if (bi == &sh->dev[i].req)
+ break;
+
+ pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
+ (unsigned long long)sh->sector, i, atomic_read(&sh->count),
+ bi->bi_status);
+ if (i == disks) {
+ BUG();
+ return;
+ }
+ if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
+ /* If replacement finished while this request was outstanding,
+ * 'replacement' might be NULL already.
+ * In that case it moved down to 'rdev'.
+ * rdev is not removed until all requests are finished.
+ */
+ rdev = rdev_pend_deref(conf->disks[i].replacement);
+ if (!rdev)
+ rdev = rdev_pend_deref(conf->disks[i].rdev);
+
+ if (use_new_offset(conf, sh))
+ s = sh->sector + rdev->new_data_offset;
+ else
+ s = sh->sector + rdev->data_offset;
+ if (!bi->bi_status) {
+ set_bit(R5_UPTODATE, &sh->dev[i].flags);
+ if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
+ /* Note that this cannot happen on a
+ * replacement device. We just fail those on
+ * any error
+ */
+ pr_info_ratelimited(
+ "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
+ mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
+ (unsigned long long)s,
+ rdev->bdev);
+ atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
+ clear_bit(R5_ReadError, &sh->dev[i].flags);
+ clear_bit(R5_ReWrite, &sh->dev[i].flags);
+ } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
+ clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
+
+ if (test_bit(R5_InJournal, &sh->dev[i].flags))
+ /*
+ * end read for a page in journal, this
+ * must be preparing for prexor in rmw
+ */
+ set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
+
+ if (atomic_read(&rdev->read_errors))
+ atomic_set(&rdev->read_errors, 0);
+ } else {
+ int retry = 0;
+ int set_bad = 0;
+
+ clear_bit(R5_UPTODATE, &sh->dev[i].flags);
+ if (!(bi->bi_status == BLK_STS_PROTECTION))
+ atomic_inc(&rdev->read_errors);
+ if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
+ pr_warn_ratelimited(
+ "md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
+ mdname(conf->mddev),
+ (unsigned long long)s,
+ rdev->bdev);
+ else if (conf->mddev->degraded >= conf->max_degraded) {
+ set_bad = 1;
+ pr_warn_ratelimited(
+ "md/raid:%s: read error not correctable (sector %llu on %pg).\n",
+ mdname(conf->mddev),
+ (unsigned long long)s,
+ rdev->bdev);
+ } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
+ /* Oh, no!!! */
+ set_bad = 1;
+ pr_warn_ratelimited(
+ "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
+ mdname(conf->mddev),
+ (unsigned long long)s,
+ rdev->bdev);
+ } else if (atomic_read(&rdev->read_errors)
+ > conf->max_nr_stripes) {
+ if (!test_bit(Faulty, &rdev->flags)) {
+ pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
+ mdname(conf->mddev),
+ atomic_read(&rdev->read_errors),
+ conf->max_nr_stripes);
+ pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
+ mdname(conf->mddev), rdev->bdev);
+ }
+ } else
+ retry = 1;
+ if (set_bad && test_bit(In_sync, &rdev->flags)
+ && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
+ retry = 1;
+ if (retry)
+ if (sh->qd_idx >= 0 && sh->pd_idx == i)
+ set_bit(R5_ReadError, &sh->dev[i].flags);
+ else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
+ set_bit(R5_ReadError, &sh->dev[i].flags);
+ clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
+ } else
+ set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
+ else {
+ clear_bit(R5_ReadError, &sh->dev[i].flags);
+ clear_bit(R5_ReWrite, &sh->dev[i].flags);
+ if (!(set_bad
+ && test_bit(In_sync, &rdev->flags)
+ && rdev_set_badblocks(
+ rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
+ md_error(conf->mddev, rdev);
+ }
+ }
+ rdev_dec_pending(rdev, conf->mddev);
+ bio_uninit(bi);
+ clear_bit(R5_LOCKED, &sh->dev[i].flags);
+ set_bit(STRIPE_HANDLE, &sh->state);
+ raid5_release_stripe(sh);
+}
+
+static void raid5_end_write_request(struct bio *bi)
+{
+ struct stripe_head *sh = bi->bi_private;
+ struct r5conf *conf = sh->raid_conf;
+ int disks = sh->disks, i;
+ struct md_rdev *rdev;
+ sector_t first_bad;
+ int bad_sectors;
+ int replacement = 0;
+
+ for (i = 0 ; i < disks; i++) {
+ if (bi == &sh->dev[i].req) {
+ rdev = rdev_pend_deref(conf->disks[i].rdev);
+ break;
+ }
+ if (bi == &sh->dev[i].rreq) {
+ rdev = rdev_pend_deref(conf->disks[i].replacement);
+ if (rdev)
+ replacement = 1;
+ else
+ /* rdev was removed and 'replacement'
+ * replaced it. rdev is not removed
+ * until all requests are finished.
+ */
+ rdev = rdev_pend_deref(conf->disks[i].rdev);
+ break;
+ }
+ }
+ pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
+ (unsigned long long)sh->sector, i, atomic_read(&sh->count),
+ bi->bi_status);
+ if (i == disks) {
+ BUG();
+ return;
+ }
+
+ if (replacement) {
+ if (bi->bi_status)
+ md_error(conf->mddev, rdev);
+ else if (is_badblock(rdev, sh->sector,
+ RAID5_STRIPE_SECTORS(conf),
+ &first_bad, &bad_sectors))
+ set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
+ } else {
+ if (bi->bi_status) {
+ set_bit(STRIPE_DEGRADED, &sh->state);
+ set_bit(WriteErrorSeen, &rdev->flags);
+ set_bit(R5_WriteError, &sh->dev[i].flags);
+ if (!test_and_set_bit(WantReplacement, &rdev->flags))
+ set_bit(MD_RECOVERY_NEEDED,
+ &rdev->mddev->recovery);
+ } else if (is_badblock(rdev, sh->sector,
+ RAID5_STRIPE_SECTORS(conf),
+ &first_bad, &bad_sectors)) {
+ set_bit(R5_MadeGood, &sh->dev[i].flags);
+ if (test_bit(R5_ReadError, &sh->dev[i].flags))
+ /* That was a successful write so make
+ * sure it looks like we already did
+ * a re-write.
+ */
+ set_bit(R5_ReWrite, &sh->dev[i].flags);
+ }
+ }
+ rdev_dec_pending(rdev, conf->mddev);
+
+ if (sh->batch_head && bi->bi_status && !replacement)
+ set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
+
+ bio_uninit(bi);
+ if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
+ clear_bit(R5_LOCKED, &sh->dev[i].flags);
+ set_bit(STRIPE_HANDLE, &sh->state);
+
+ if (sh->batch_head && sh != sh->batch_head)
+ raid5_release_stripe(sh->batch_head);
+ raid5_release_stripe(sh);
+}
+
+static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct r5conf *conf = mddev->private;
+ unsigned long flags;
+ pr_debug("raid456: error called\n");
+
+ pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
+ mdname(mddev), rdev->bdev);
+
+ spin_lock_irqsave(&conf->device_lock, flags);
+ set_bit(Faulty, &rdev->flags);
+ clear_bit(In_sync, &rdev->flags);
+ mddev->degraded = raid5_calc_degraded(conf);
+
+ if (has_failed(conf)) {
+ set_bit(MD_BROKEN, &conf->mddev->flags);
+ conf->recovery_disabled = mddev->recovery_disabled;
+
+ pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
+ mdname(mddev), mddev->degraded, conf->raid_disks);
+ } else {
+ pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
+ mdname(mddev), conf->raid_disks - mddev->degraded);
+ }
+
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+
+ set_bit(Blocked, &rdev->flags);
+ set_mask_bits(&mddev->sb_flags, 0,
+ BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
+ r5c_update_on_rdev_error(mddev, rdev);
+}
+
+/*
+ * Input: a 'big' sector number,
+ * Output: index of the data and parity disk, and the sector # in them.
+ */
+sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
+ int previous, int *dd_idx,
+ struct stripe_head *sh)
+{
+ sector_t stripe, stripe2;
+ sector_t chunk_number;
+ unsigned int chunk_offset;
+ int pd_idx, qd_idx;
+ int ddf_layout = 0;
+ sector_t new_sector;
+ int algorithm = previous ? conf->prev_algo
+ : conf->algorithm;
+ int sectors_per_chunk = previous ? conf->prev_chunk_sectors
+ : conf->chunk_sectors;
+ int raid_disks = previous ? conf->previous_raid_disks
+ : conf->raid_disks;
+ int data_disks = raid_disks - conf->max_degraded;
+
+ /* First compute the information on this sector */
+
+ /*
+ * Compute the chunk number and the sector offset inside the chunk
+ */
+ chunk_offset = sector_div(r_sector, sectors_per_chunk);
+ chunk_number = r_sector;
+
+ /*
+ * Compute the stripe number
+ */
+ stripe = chunk_number;
+ *dd_idx = sector_div(stripe, data_disks);
+ stripe2 = stripe;
+ /*
+ * Select the parity disk based on the user selected algorithm.
+ */
+ pd_idx = qd_idx = -1;
+ switch(conf->level) {
+ case 4:
+ pd_idx = data_disks;
+ break;
+ case 5:
+ switch (algorithm) {
+ case ALGORITHM_LEFT_ASYMMETRIC:
+ pd_idx = data_disks - sector_div(stripe2, raid_disks);
+ if (*dd_idx >= pd_idx)
+ (*dd_idx)++;
+ break;
+ case ALGORITHM_RIGHT_ASYMMETRIC:
+ pd_idx = sector_div(stripe2, raid_disks);
+ if (*dd_idx >= pd_idx)
+ (*dd_idx)++;
+ break;
+ case ALGORITHM_LEFT_SYMMETRIC:
+ pd_idx = data_disks - sector_div(stripe2, raid_disks);
+ *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
+ break;
+ case ALGORITHM_RIGHT_SYMMETRIC:
+ pd_idx = sector_div(stripe2, raid_disks);
+ *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
+ break;
+ case ALGORITHM_PARITY_0:
+ pd_idx = 0;
+ (*dd_idx)++;
+ break;
+ case ALGORITHM_PARITY_N:
+ pd_idx = data_disks;
+ break;
+ default:
+ BUG();
+ }
+ break;
+ case 6:
+
+ switch (algorithm) {
+ case ALGORITHM_LEFT_ASYMMETRIC:
+ pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
+ qd_idx = pd_idx + 1;
+ if (pd_idx == raid_disks-1) {
+ (*dd_idx)++; /* Q D D D P */
+ qd_idx = 0;
+ } else if (*dd_idx >= pd_idx)
+ (*dd_idx) += 2; /* D D P Q D */
+ break;
+ case ALGORITHM_RIGHT_ASYMMETRIC:
+ pd_idx = sector_div(stripe2, raid_disks);
+ qd_idx = pd_idx + 1;
+ if (pd_idx == raid_disks-1) {
+ (*dd_idx)++; /* Q D D D P */
+ qd_idx = 0;
+ } else if (*dd_idx >= pd_idx)
+ (*dd_idx) += 2; /* D D P Q D */
+ break;
+ case ALGORITHM_LEFT_SYMMETRIC:
+ pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
+ qd_idx = (pd_idx + 1) % raid_disks;
+ *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
+ break;
+ case ALGORITHM_RIGHT_SYMMETRIC:
+ pd_idx = sector_div(stripe2, raid_disks);
+ qd_idx = (pd_idx + 1) % raid_disks;
+ *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
+ break;
+
+ case ALGORITHM_PARITY_0:
+ pd_idx = 0;
+ qd_idx = 1;
+ (*dd_idx) += 2;
+ break;
+ case ALGORITHM_PARITY_N:
+ pd_idx = data_disks;
+ qd_idx = data_disks + 1;
+ break;
+
+ case ALGORITHM_ROTATING_ZERO_RESTART:
+ /* Exactly the same as RIGHT_ASYMMETRIC, but or
+ * of blocks for computing Q is different.
+ */
+ pd_idx = sector_div(stripe2, raid_disks);
+ qd_idx = pd_idx + 1;
+ if (pd_idx == raid_disks-1) {
+ (*dd_idx)++; /* Q D D D P */
+ qd_idx = 0;
+ } else if (*dd_idx >= pd_idx)
+ (*dd_idx) += 2; /* D D P Q D */
+ ddf_layout = 1;
+ break;
+
+ case ALGORITHM_ROTATING_N_RESTART:
+ /* Same a left_asymmetric, by first stripe is
+ * D D D P Q rather than
+ * Q D D D P
+ */
+ stripe2 += 1;
+ pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
+ qd_idx = pd_idx + 1;
+ if (pd_idx == raid_disks-1) {
+ (*dd_idx)++; /* Q D D D P */
+ qd_idx = 0;
+ } else if (*dd_idx >= pd_idx)
+ (*dd_idx) += 2; /* D D P Q D */
+ ddf_layout = 1;
+ break;
+
+ case ALGORITHM_ROTATING_N_CONTINUE:
+ /* Same as left_symmetric but Q is before P */
+ pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
+ qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
+ *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
+ ddf_layout = 1;
+ break;
+
+ case ALGORITHM_LEFT_ASYMMETRIC_6:
+ /* RAID5 left_asymmetric, with Q on last device */
+ pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
+ if (*dd_idx >= pd_idx)
+ (*dd_idx)++;
+ qd_idx = raid_disks - 1;
+ break;
+
+ case ALGORITHM_RIGHT_ASYMMETRIC_6:
+ pd_idx = sector_div(stripe2, raid_disks-1);
+ if (*dd_idx >= pd_idx)
+ (*dd_idx)++;
+ qd_idx = raid_disks - 1;
+ break;
+
+ case ALGORITHM_LEFT_SYMMETRIC_6:
+ pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
+ *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
+ qd_idx = raid_disks - 1;
+ break;
+
+ case ALGORITHM_RIGHT_SYMMETRIC_6:
+ pd_idx = sector_div(stripe2, raid_disks-1);
+ *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
+ qd_idx = raid_disks - 1;
+ break;
+
+ case ALGORITHM_PARITY_0_6:
+ pd_idx = 0;
+ (*dd_idx)++;
+ qd_idx = raid_disks - 1;
+ break;
+
+ default:
+ BUG();
+ }
+ break;
+ }
+
+ if (sh) {
+ sh->pd_idx = pd_idx;
+ sh->qd_idx = qd_idx;
+ sh->ddf_layout = ddf_layout;
+ }
+ /*
+ * Finally, compute the new sector number
+ */
+ new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
+ return new_sector;
+}
+
+sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
+{
+ struct r5conf *conf = sh->raid_conf;
+ int raid_disks = sh->disks;
+ int data_disks = raid_disks - conf->max_degraded;
+ sector_t new_sector = sh->sector, check;
+ int sectors_per_chunk = previous ? conf->prev_chunk_sectors
+ : conf->chunk_sectors;
+ int algorithm = previous ? conf->prev_algo
+ : conf->algorithm;
+ sector_t stripe;
+ int chunk_offset;
+ sector_t chunk_number;
+ int dummy1, dd_idx = i;
+ sector_t r_sector;
+ struct stripe_head sh2;
+
+ chunk_offset = sector_div(new_sector, sectors_per_chunk);
+ stripe = new_sector;
+
+ if (i == sh->pd_idx)
+ return 0;
+ switch(conf->level) {
+ case 4: break;
+ case 5:
+ switch (algorithm) {
+ case ALGORITHM_LEFT_ASYMMETRIC:
+ case ALGORITHM_RIGHT_ASYMMETRIC:
+ if (i > sh->pd_idx)
+ i--;
+ break;
+ case ALGORITHM_LEFT_SYMMETRIC:
+ case ALGORITHM_RIGHT_SYMMETRIC:
+ if (i < sh->pd_idx)
+ i += raid_disks;
+ i -= (sh->pd_idx + 1);
+ break;
+ case ALGORITHM_PARITY_0:
+ i -= 1;
+ break;
+ case ALGORITHM_PARITY_N:
+ break;
+ default:
+ BUG();
+ }
+ break;
+ case 6:
+ if (i == sh->qd_idx)
+ return 0; /* It is the Q disk */
+ switch (algorithm) {
+ case ALGORITHM_LEFT_ASYMMETRIC:
+ case ALGORITHM_RIGHT_ASYMMETRIC:
+ case ALGORITHM_ROTATING_ZERO_RESTART:
+ case ALGORITHM_ROTATING_N_RESTART:
+ if (sh->pd_idx == raid_disks-1)
+ i--; /* Q D D D P */
+ else if (i > sh->pd_idx)
+ i -= 2; /* D D P Q D */
+ break;
+ case ALGORITHM_LEFT_SYMMETRIC:
+ case ALGORITHM_RIGHT_SYMMETRIC:
+ if (sh->pd_idx == raid_disks-1)
+ i--; /* Q D D D P */
+ else {
+ /* D D P Q D */
+ if (i < sh->pd_idx)
+ i += raid_disks;
+ i -= (sh->pd_idx + 2);
+ }
+ break;
+ case ALGORITHM_PARITY_0:
+ i -= 2;
+ break;
+ case ALGORITHM_PARITY_N:
+ break;
+ case ALGORITHM_ROTATING_N_CONTINUE:
+ /* Like left_symmetric, but P is before Q */
+ if (sh->pd_idx == 0)
+ i--; /* P D D D Q */
+ else {
+ /* D D Q P D */
+ if (i < sh->pd_idx)
+ i += raid_disks;
+ i -= (sh->pd_idx + 1);
+ }
+ break;
+ case ALGORITHM_LEFT_ASYMMETRIC_6:
+ case ALGORITHM_RIGHT_ASYMMETRIC_6:
+ if (i > sh->pd_idx)
+ i--;
+ break;
+ case ALGORITHM_LEFT_SYMMETRIC_6:
+ case ALGORITHM_RIGHT_SYMMETRIC_6:
+ if (i < sh->pd_idx)
+ i += data_disks + 1;
+ i -= (sh->pd_idx + 1);
+ break;
+ case ALGORITHM_PARITY_0_6:
+ i -= 1;
+ break;
+ default:
+ BUG();
+ }
+ break;
+ }
+
+ chunk_number = stripe * data_disks + i;
+ r_sector = chunk_number * sectors_per_chunk + chunk_offset;
+
+ check = raid5_compute_sector(conf, r_sector,
+ previous, &dummy1, &sh2);
+ if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
+ || sh2.qd_idx != sh->qd_idx) {
+ pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
+ mdname(conf->mddev));
+ return 0;
+ }
+ return r_sector;
+}
+
+/*
+ * There are cases where we want handle_stripe_dirtying() and
+ * schedule_reconstruction() to delay towrite to some dev of a stripe.
+ *
+ * This function checks whether we want to delay the towrite. Specifically,
+ * we delay the towrite when:
+ *
+ * 1. degraded stripe has a non-overwrite to the missing dev, AND this
+ * stripe has data in journal (for other devices).
+ *
+ * In this case, when reading data for the non-overwrite dev, it is
+ * necessary to handle complex rmw of write back cache (prexor with
+ * orig_page, and xor with page). To keep read path simple, we would
+ * like to flush data in journal to RAID disks first, so complex rmw
+ * is handled in the write patch (handle_stripe_dirtying).
+ *
+ * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
+ *
+ * It is important to be able to flush all stripes in raid5-cache.
+ * Therefore, we need reserve some space on the journal device for
+ * these flushes. If flush operation includes pending writes to the
+ * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
+ * for the flush out. If we exclude these pending writes from flush
+ * operation, we only need (conf->max_degraded + 1) pages per stripe.
+ * Therefore, excluding pending writes in these cases enables more
+ * efficient use of the journal device.
+ *
+ * Note: To make sure the stripe makes progress, we only delay
+ * towrite for stripes with data already in journal (injournal > 0).
+ * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
+ * no_space_stripes list.
+ *
+ * 3. during journal failure
+ * In journal failure, we try to flush all cached data to raid disks
+ * based on data in stripe cache. The array is read-only to upper
+ * layers, so we would skip all pending writes.
+ *
+ */
+static inline bool delay_towrite(struct r5conf *conf,
+ struct r5dev *dev,
+ struct stripe_head_state *s)
+{
+ /* case 1 above */
+ if (!test_bit(R5_OVERWRITE, &dev->flags) &&
+ !test_bit(R5_Insync, &dev->flags) && s->injournal)
+ return true;
+ /* case 2 above */
+ if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
+ s->injournal > 0)
+ return true;
+ /* case 3 above */
+ if (s->log_failed && s->injournal)
+ return true;
+ return false;
+}
+
+static void
+schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
+ int rcw, int expand)
+{
+ int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
+ struct r5conf *conf = sh->raid_conf;
+ int level = conf->level;
+
+ if (rcw) {
+ /*
+ * In some cases, handle_stripe_dirtying initially decided to
+ * run rmw and allocates extra page for prexor. However, rcw is
+ * cheaper later on. We need to free the extra page now,
+ * because we won't be able to do that in ops_complete_prexor().
+ */
+ r5c_release_extra_page(sh);
+
+ for (i = disks; i--; ) {
+ struct r5dev *dev = &sh->dev[i];
+
+ if (dev->towrite && !delay_towrite(conf, dev, s)) {
+ set_bit(R5_LOCKED, &dev->flags);
+ set_bit(R5_Wantdrain, &dev->flags);
+ if (!expand)
+ clear_bit(R5_UPTODATE, &dev->flags);
+ s->locked++;
+ } else if (test_bit(R5_InJournal, &dev->flags)) {
+ set_bit(R5_LOCKED, &dev->flags);
+ s->locked++;
+ }
+ }
+ /* if we are not expanding this is a proper write request, and
+ * there will be bios with new data to be drained into the
+ * stripe cache
+ */
+ if (!expand) {
+ if (!s->locked)
+ /* False alarm, nothing to do */
+ return;
+ sh->reconstruct_state = reconstruct_state_drain_run;
+ set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
+ } else
+ sh->reconstruct_state = reconstruct_state_run;
+
+ set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
+
+ if (s->locked + conf->max_degraded == disks)
+ if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
+ atomic_inc(&conf->pending_full_writes);
+ } else {
+ BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
+ test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
+ BUG_ON(level == 6 &&
+ (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
+ test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
+
+ for (i = disks; i--; ) {
+ struct r5dev *dev = &sh->dev[i];
+ if (i == pd_idx || i == qd_idx)
+ continue;
+
+ if (dev->towrite &&
+ (test_bit(R5_UPTODATE, &dev->flags) ||
+ test_bit(R5_Wantcompute, &dev->flags))) {
+ set_bit(R5_Wantdrain, &dev->flags);
+ set_bit(R5_LOCKED, &dev->flags);
+ clear_bit(R5_UPTODATE, &dev->flags);
+ s->locked++;
+ } else if (test_bit(R5_InJournal, &dev->flags)) {
+ set_bit(R5_LOCKED, &dev->flags);
+ s->locked++;
+ }
+ }
+ if (!s->locked)
+ /* False alarm - nothing to do */
+ return;
+ sh->reconstruct_state = reconstruct_state_prexor_drain_run;
+ set_bit(STRIPE_OP_PREXOR, &s->ops_request);
+ set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
+ set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
+ }
+
+ /* keep the parity disk(s) locked while asynchronous operations
+ * are in flight
+ */
+ set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
+ clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
+ s->locked++;
+
+ if (level == 6) {
+ int qd_idx = sh->qd_idx;
+ struct r5dev *dev = &sh->dev[qd_idx];
+
+ set_bit(R5_LOCKED, &dev->flags);
+ clear_bit(R5_UPTODATE, &dev->flags);
+ s->locked++;
+ }
+
+ if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
+ test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
+ !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
+ test_bit(R5_Insync, &sh->dev[pd_idx].flags))
+ set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
+
+ pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
+ __func__, (unsigned long long)sh->sector,
+ s->locked, s->ops_request);
+}
+
+static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
+ int dd_idx, int forwrite)
+{
+ struct r5conf *conf = sh->raid_conf;
+ struct bio **bip;
+
+ pr_debug("checking bi b#%llu to stripe s#%llu\n",
+ bi->bi_iter.bi_sector, sh->sector);
+
+ /* Don't allow new IO added to stripes in batch list */
+ if (sh->batch_head)
+ return true;
+
+ if (forwrite)
+ bip = &sh->dev[dd_idx].towrite;
+ else
+ bip = &sh->dev[dd_idx].toread;
+
+ while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
+ if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
+ return true;
+ bip = &(*bip)->bi_next;
+ }
+
+ if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
+ return true;
+
+ if (forwrite && raid5_has_ppl(conf)) {
+ /*
+ * With PPL only writes to consecutive data chunks within a
+ * stripe are allowed because for a single stripe_head we can
+ * only have one PPL entry at a time, which describes one data
+ * range. Not really an overlap, but wait_for_overlap can be
+ * used to handle this.
+ */
+ sector_t sector;
+ sector_t first = 0;
+ sector_t last = 0;
+ int count = 0;
+ int i;
+
+ for (i = 0; i < sh->disks; i++) {
+ if (i != sh->pd_idx &&
+ (i == dd_idx || sh->dev[i].towrite)) {
+ sector = sh->dev[i].sector;
+ if (count == 0 || sector < first)
+ first = sector;
+ if (sector > last)
+ last = sector;
+ count++;
+ }
+ }
+
+ if (first + conf->chunk_sectors * (count - 1) != last)
+ return true;
+ }
+
+ return false;
+}
+
+static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
+ int dd_idx, int forwrite, int previous)
+{
+ struct r5conf *conf = sh->raid_conf;
+ struct bio **bip;
+ int firstwrite = 0;
+
+ if (forwrite) {
+ bip = &sh->dev[dd_idx].towrite;
+ if (!*bip)
+ firstwrite = 1;
+ } else {
+ bip = &sh->dev[dd_idx].toread;
+ }
+
+ while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
+ bip = &(*bip)->bi_next;
+
+ if (!forwrite || previous)
+ clear_bit(STRIPE_BATCH_READY, &sh->state);
+
+ BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
+ if (*bip)
+ bi->bi_next = *bip;
+ *bip = bi;
+ bio_inc_remaining(bi);
+ md_write_inc(conf->mddev, bi);
+
+ if (forwrite) {
+ /* check if page is covered */
+ sector_t sector = sh->dev[dd_idx].sector;
+ for (bi=sh->dev[dd_idx].towrite;
+ sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
+ bi && bi->bi_iter.bi_sector <= sector;
+ bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
+ if (bio_end_sector(bi) >= sector)
+ sector = bio_end_sector(bi);
+ }
+ if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
+ if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
+ sh->overwrite_disks++;
+ }
+
+ pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
+ (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
+ sh->dev[dd_idx].sector);
+
+ if (conf->mddev->bitmap && firstwrite) {
+ /* Cannot hold spinlock over bitmap_startwrite,
+ * but must ensure this isn't added to a batch until
+ * we have added to the bitmap and set bm_seq.
+ * So set STRIPE_BITMAP_PENDING to prevent
+ * batching.
+ * If multiple __add_stripe_bio() calls race here they
+ * much all set STRIPE_BITMAP_PENDING. So only the first one
+ * to complete "bitmap_startwrite" gets to set
+ * STRIPE_BIT_DELAY. This is important as once a stripe
+ * is added to a batch, STRIPE_BIT_DELAY cannot be changed
+ * any more.
+ */
+ set_bit(STRIPE_BITMAP_PENDING, &sh->state);
+ spin_unlock_irq(&sh->stripe_lock);
+ md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
+ RAID5_STRIPE_SECTORS(conf), 0);
+ spin_lock_irq(&sh->stripe_lock);
+ clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
+ if (!sh->batch_head) {
+ sh->bm_seq = conf->seq_flush+1;
+ set_bit(STRIPE_BIT_DELAY, &sh->state);
+ }
+ }
+}
+
+/*
+ * Each stripe/dev can have one or more bios attached.
+ * toread/towrite point to the first in a chain.
+ * The bi_next chain must be in order.
+ */
+static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
+ int dd_idx, int forwrite, int previous)
+{
+ spin_lock_irq(&sh->stripe_lock);
+
+ if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
+ set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
+ spin_unlock_irq(&sh->stripe_lock);
+ return false;
+ }
+
+ __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
+ spin_unlock_irq(&sh->stripe_lock);
+ return true;
+}
+
+static void end_reshape(struct r5conf *conf);
+
+static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
+ struct stripe_head *sh)
+{
+ int sectors_per_chunk =
+ previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
+ int dd_idx;
+ int chunk_offset = sector_div(stripe, sectors_per_chunk);
+ int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
+
+ raid5_compute_sector(conf,
+ stripe * (disks - conf->max_degraded)
+ *sectors_per_chunk + chunk_offset,
+ previous,
+ &dd_idx, sh);
+}
+
+static void
+handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
+ struct stripe_head_state *s, int disks)
+{
+ int i;
+ BUG_ON(sh->batch_head);
+ for (i = disks; i--; ) {
+ struct bio *bi;
+ int bitmap_end = 0;
+
+ if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
+ struct md_rdev *rdev;
+ rcu_read_lock();
+ rdev = rcu_dereference(conf->disks[i].rdev);
+ if (rdev && test_bit(In_sync, &rdev->flags) &&
+ !test_bit(Faulty, &rdev->flags))
+ atomic_inc(&rdev->nr_pending);
+ else
+ rdev = NULL;
+ rcu_read_unlock();
+ if (rdev) {
+ if (!rdev_set_badblocks(
+ rdev,
+ sh->sector,
+ RAID5_STRIPE_SECTORS(conf), 0))
+ md_error(conf->mddev, rdev);
+ rdev_dec_pending(rdev, conf->mddev);
+ }
+ }
+ spin_lock_irq(&sh->stripe_lock);
+ /* fail all writes first */
+ bi = sh->dev[i].towrite;
+ sh->dev[i].towrite = NULL;
+ sh->overwrite_disks = 0;
+ spin_unlock_irq(&sh->stripe_lock);
+ if (bi)
+ bitmap_end = 1;
+
+ log_stripe_write_finished(sh);
+
+ if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
+ wake_up(&conf->wait_for_overlap);
+
+ while (bi && bi->bi_iter.bi_sector <
+ sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
+ struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
+
+ md_write_end(conf->mddev);
+ bio_io_error(bi);
+ bi = nextbi;
+ }
+ if (bitmap_end)
+ md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
+ RAID5_STRIPE_SECTORS(conf), 0, 0);
+ bitmap_end = 0;
+ /* and fail all 'written' */
+ bi = sh->dev[i].written;
+ sh->dev[i].written = NULL;
+ if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
+ WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
+ sh->dev[i].page = sh->dev[i].orig_page;
+ }
+
+ if (bi) bitmap_end = 1;
+ while (bi && bi->bi_iter.bi_sector <
+ sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
+ struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
+
+ md_write_end(conf->mddev);
+ bio_io_error(bi);
+ bi = bi2;
+ }
+
+ /* fail any reads if this device is non-operational and
+ * the data has not reached the cache yet.
+ */
+ if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
+ s->failed > conf->max_degraded &&
+ (!test_bit(R5_Insync, &sh->dev[i].flags) ||
+ test_bit(R5_ReadError, &sh->dev[i].flags))) {
+ spin_lock_irq(&sh->stripe_lock);
+ bi = sh->dev[i].toread;
+ sh->dev[i].toread = NULL;
+ spin_unlock_irq(&sh->stripe_lock);
+ if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
+ wake_up(&conf->wait_for_overlap);
+ if (bi)
+ s->to_read--;
+ while (bi && bi->bi_iter.bi_sector <
+ sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
+ struct bio *nextbi =
+ r5_next_bio(conf, bi, sh->dev[i].sector);
+
+ bio_io_error(bi);
+ bi = nextbi;
+ }
+ }
+ if (bitmap_end)
+ md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
+ RAID5_STRIPE_SECTORS(conf), 0, 0);
+ /* If we were in the middle of a write the parity block might
+ * still be locked - so just clear all R5_LOCKED flags
+ */
+ clear_bit(R5_LOCKED, &sh->dev[i].flags);
+ }
+ s->to_write = 0;
+ s->written = 0;
+
+ if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
+ if (atomic_dec_and_test(&conf->pending_full_writes))
+ md_wakeup_thread(conf->mddev->thread);
+}
+
+static void
+handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
+ struct stripe_head_state *s)
+{
+ int abort = 0;
+ int i;
+
+ BUG_ON(sh->batch_head);
+ clear_bit(STRIPE_SYNCING, &sh->state);
+ if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
+ wake_up(&conf->wait_for_overlap);
+ s->syncing = 0;
+ s->replacing = 0;
+ /* There is nothing more to do for sync/check/repair.
+ * Don't even need to abort as that is handled elsewhere
+ * if needed, and not always wanted e.g. if there is a known
+ * bad block here.
+ * For recover/replace we need to record a bad block on all
+ * non-sync devices, or abort the recovery
+ */
+ if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
+ /* During recovery devices cannot be removed, so
+ * locking and refcounting of rdevs is not needed
+ */
+ rcu_read_lock();
+ for (i = 0; i < conf->raid_disks; i++) {
+ struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
+ if (rdev
+ && !test_bit(Faulty, &rdev->flags)
+ && !test_bit(In_sync, &rdev->flags)
+ && !rdev_set_badblocks(rdev, sh->sector,
+ RAID5_STRIPE_SECTORS(conf), 0))
+ abort = 1;
+ rdev = rcu_dereference(conf->disks[i].replacement);
+ if (rdev
+ && !test_bit(Faulty, &rdev->flags)
+ && !test_bit(In_sync, &rdev->flags)
+ && !rdev_set_badblocks(rdev, sh->sector,
+ RAID5_STRIPE_SECTORS(conf), 0))
+ abort = 1;
+ }
+ rcu_read_unlock();
+ if (abort)
+ conf->recovery_disabled =
+ conf->mddev->recovery_disabled;
+ }
+ md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
+}
+
+static int want_replace(struct stripe_head *sh, int disk_idx)
+{
+ struct md_rdev *rdev;
+ int rv = 0;
+
+ rcu_read_lock();
+ rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
+ if (rdev
+ && !test_bit(Faulty, &rdev->flags)
+ && !test_bit(In_sync, &rdev->flags)
+ && (rdev->recovery_offset <= sh->sector
+ || rdev->mddev->recovery_cp <= sh->sector))
+ rv = 1;
+ rcu_read_unlock();
+ return rv;
+}
+
+static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
+ int disk_idx, int disks)
+{
+ struct r5dev *dev = &sh->dev[disk_idx];
+ struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
+ &sh->dev[s->failed_num[1]] };
+ int i;
+ bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
+
+
+ if (test_bit(R5_LOCKED, &dev->flags) ||
+ test_bit(R5_UPTODATE, &dev->flags))
+ /* No point reading this as we already have it or have
+ * decided to get it.
+ */
+ return 0;
+
+ if (dev->toread ||
+ (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
+ /* We need this block to directly satisfy a request */
+ return 1;
+
+ if (s->syncing || s->expanding ||
+ (s->replacing && want_replace(sh, disk_idx)))
+ /* When syncing, or expanding we read everything.
+ * When replacing, we need the replaced block.
+ */
+ return 1;
+
+ if ((s->failed >= 1 && fdev[0]->toread) ||
+ (s->failed >= 2 && fdev[1]->toread))
+ /* If we want to read from a failed device, then
+ * we need to actually read every other device.
+ */
+ return 1;
+
+ /* Sometimes neither read-modify-write nor reconstruct-write
+ * cycles can work. In those cases we read every block we
+ * can. Then the parity-update is certain to have enough to
+ * work with.
+ * This can only be a problem when we need to write something,
+ * and some device has failed. If either of those tests
+ * fail we need look no further.
+ */
+ if (!s->failed || !s->to_write)
+ return 0;
+
+ if (test_bit(R5_Insync, &dev->flags) &&
+ !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
+ /* Pre-reads at not permitted until after short delay
+ * to gather multiple requests. However if this
+ * device is no Insync, the block could only be computed
+ * and there is no need to delay that.
+ */
+ return 0;
+
+ for (i = 0; i < s->failed && i < 2; i++) {
+ if (fdev[i]->towrite &&
+ !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
+ !test_bit(R5_OVERWRITE, &fdev[i]->flags))
+ /* If we have a partial write to a failed
+ * device, then we will need to reconstruct
+ * the content of that device, so all other
+ * devices must be read.
+ */
+ return 1;
+
+ if (s->failed >= 2 &&
+ (fdev[i]->towrite ||
+ s->failed_num[i] == sh->pd_idx ||
+ s->failed_num[i] == sh->qd_idx) &&
+ !test_bit(R5_UPTODATE, &fdev[i]->flags))
+ /* In max degraded raid6, If the failed disk is P, Q,
+ * or we want to read the failed disk, we need to do
+ * reconstruct-write.
+ */
+ force_rcw = true;
+ }
+
+ /* If we are forced to do a reconstruct-write, because parity
+ * cannot be trusted and we are currently recovering it, there
+ * is extra need to be careful.
+ * If one of the devices that we would need to read, because
+ * it is not being overwritten (and maybe not written at all)
+ * is missing/faulty, then we need to read everything we can.
+ */
+ if (!force_rcw &&
+ sh->sector < sh->raid_conf->mddev->recovery_cp)
+ /* reconstruct-write isn't being forced */
+ return 0;
+ for (i = 0; i < s->failed && i < 2; i++) {
+ if (s->failed_num[i] != sh->pd_idx &&
+ s->failed_num[i] != sh->qd_idx &&
+ !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
+ !test_bit(R5_OVERWRITE, &fdev[i]->flags))
+ return 1;
+ }
+
+ return 0;
+}
+
+/* fetch_block - checks the given member device to see if its data needs
+ * to be read or computed to satisfy a request.
+ *
+ * Returns 1 when no more member devices need to be checked, otherwise returns
+ * 0 to tell the loop in handle_stripe_fill to continue
+ */
+static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
+ int disk_idx, int disks)
+{
+ struct r5dev *dev = &sh->dev[disk_idx];
+
+ /* is the data in this block needed, and can we get it? */
+ if (need_this_block(sh, s, disk_idx, disks)) {
+ /* we would like to get this block, possibly by computing it,
+ * otherwise read it if the backing disk is insync
+ */
+ BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
+ BUG_ON(test_bit(R5_Wantread, &dev->flags));
+ BUG_ON(sh->batch_head);
+
+ /*
+ * In the raid6 case if the only non-uptodate disk is P
+ * then we already trusted P to compute the other failed
+ * drives. It is safe to compute rather than re-read P.
+ * In other cases we only compute blocks from failed
+ * devices, otherwise check/repair might fail to detect
+ * a real inconsistency.
+ */
+
+ if ((s->uptodate == disks - 1) &&
+ ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
+ (s->failed && (disk_idx == s->failed_num[0] ||
+ disk_idx == s->failed_num[1])))) {
+ /* have disk failed, and we're requested to fetch it;
+ * do compute it
+ */
+ pr_debug("Computing stripe %llu block %d\n",
+ (unsigned long long)sh->sector, disk_idx);
+ set_bit(STRIPE_COMPUTE_RUN, &sh->state);
+ set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
+ set_bit(R5_Wantcompute, &dev->flags);
+ sh->ops.target = disk_idx;
+ sh->ops.target2 = -1; /* no 2nd target */
+ s->req_compute = 1;
+ /* Careful: from this point on 'uptodate' is in the eye
+ * of raid_run_ops which services 'compute' operations
+ * before writes. R5_Wantcompute flags a block that will
+ * be R5_UPTODATE by the time it is needed for a
+ * subsequent operation.
+ */
+ s->uptodate++;
+ return 1;
+ } else if (s->uptodate == disks-2 && s->failed >= 2) {
+ /* Computing 2-failure is *very* expensive; only
+ * do it if failed >= 2
+ */
+ int other;
+ for (other = disks; other--; ) {
+ if (other == disk_idx)
+ continue;
+ if (!test_bit(R5_UPTODATE,
+ &sh->dev[other].flags))
+ break;
+ }
+ BUG_ON(other < 0);
+ pr_debug("Computing stripe %llu blocks %d,%d\n",
+ (unsigned long long)sh->sector,
+ disk_idx, other);
+ set_bit(STRIPE_COMPUTE_RUN, &sh->state);
+ set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
+ set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
+ set_bit(R5_Wantcompute, &sh->dev[other].flags);
+ sh->ops.target = disk_idx;
+ sh->ops.target2 = other;
+ s->uptodate += 2;
+ s->req_compute = 1;
+ return 1;
+ } else if (test_bit(R5_Insync, &dev->flags)) {
+ set_bit(R5_LOCKED, &dev->flags);
+ set_bit(R5_Wantread, &dev->flags);
+ s->locked++;
+ pr_debug("Reading block %d (sync=%d)\n",
+ disk_idx, s->syncing);
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * handle_stripe_fill - read or compute data to satisfy pending requests.
+ */
+static void handle_stripe_fill(struct stripe_head *sh,
+ struct stripe_head_state *s,
+ int disks)
+{
+ int i;
+
+ /* look for blocks to read/compute, skip this if a compute
+ * is already in flight, or if the stripe contents are in the
+ * midst of changing due to a write
+ */
+ if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
+ !sh->reconstruct_state) {
+
+ /*
+ * For degraded stripe with data in journal, do not handle
+ * read requests yet, instead, flush the stripe to raid
+ * disks first, this avoids handling complex rmw of write
+ * back cache (prexor with orig_page, and then xor with
+ * page) in the read path
+ */
+ if (s->to_read && s->injournal && s->failed) {
+ if (test_bit(STRIPE_R5C_CACHING, &sh->state))
+ r5c_make_stripe_write_out(sh);
+ goto out;
+ }
+
+ for (i = disks; i--; )
+ if (fetch_block(sh, s, i, disks))
+ break;
+ }
+out:
+ set_bit(STRIPE_HANDLE, &sh->state);
+}
+
+static void break_stripe_batch_list(struct stripe_head *head_sh,
+ unsigned long handle_flags);
+/* handle_stripe_clean_event
+ * any written block on an uptodate or failed drive can be returned.
+ * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
+ * never LOCKED, so we don't need to test 'failed' directly.
+ */
+static void handle_stripe_clean_event(struct r5conf *conf,
+ struct stripe_head *sh, int disks)
+{
+ int i;
+ struct r5dev *dev;
+ int discard_pending = 0;
+ struct stripe_head *head_sh = sh;
+ bool do_endio = false;
+
+ for (i = disks; i--; )
+ if (sh->dev[i].written) {
+ dev = &sh->dev[i];
+ if (!test_bit(R5_LOCKED, &dev->flags) &&
+ (test_bit(R5_UPTODATE, &dev->flags) ||
+ test_bit(R5_Discard, &dev->flags) ||
+ test_bit(R5_SkipCopy, &dev->flags))) {
+ /* We can return any write requests */
+ struct bio *wbi, *wbi2;
+ pr_debug("Return write for disc %d\n", i);
+ if (test_and_clear_bit(R5_Discard, &dev->flags))
+ clear_bit(R5_UPTODATE, &dev->flags);
+ if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
+ WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
+ }
+ do_endio = true;
+
+returnbi:
+ dev->page = dev->orig_page;
+ wbi = dev->written;
+ dev->written = NULL;
+ while (wbi && wbi->bi_iter.bi_sector <
+ dev->sector + RAID5_STRIPE_SECTORS(conf)) {
+ wbi2 = r5_next_bio(conf, wbi, dev->sector);
+ md_write_end(conf->mddev);
+ bio_endio(wbi);
+ wbi = wbi2;
+ }
+ md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
+ RAID5_STRIPE_SECTORS(conf),
+ !test_bit(STRIPE_DEGRADED, &sh->state),
+ 0);
+ if (head_sh->batch_head) {
+ sh = list_first_entry(&sh->batch_list,
+ struct stripe_head,
+ batch_list);
+ if (sh != head_sh) {
+ dev = &sh->dev[i];
+ goto returnbi;
+ }
+ }
+ sh = head_sh;
+ dev = &sh->dev[i];
+ } else if (test_bit(R5_Discard, &dev->flags))
+ discard_pending = 1;
+ }
+
+ log_stripe_write_finished(sh);
+
+ if (!discard_pending &&
+ test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
+ int hash;
+ clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
+ clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
+ if (sh->qd_idx >= 0) {
+ clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
+ clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
+ }
+ /* now that discard is done we can proceed with any sync */
+ clear_bit(STRIPE_DISCARD, &sh->state);
+ /*
+ * SCSI discard will change some bio fields and the stripe has
+ * no updated data, so remove it from hash list and the stripe
+ * will be reinitialized
+ */
+unhash:
+ hash = sh->hash_lock_index;
+ spin_lock_irq(conf->hash_locks + hash);
+ remove_hash(sh);
+ spin_unlock_irq(conf->hash_locks + hash);
+ if (head_sh->batch_head) {
+ sh = list_first_entry(&sh->batch_list,
+ struct stripe_head, batch_list);
+ if (sh != head_sh)
+ goto unhash;
+ }
+ sh = head_sh;
+
+ if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
+ set_bit(STRIPE_HANDLE, &sh->state);
+
+ }
+
+ if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
+ if (atomic_dec_and_test(&conf->pending_full_writes))
+ md_wakeup_thread(conf->mddev->thread);
+
+ if (head_sh->batch_head && do_endio)
+ break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
+}
+
+/*
+ * For RMW in write back cache, we need extra page in prexor to store the
+ * old data. This page is stored in dev->orig_page.
+ *
+ * This function checks whether we have data for prexor. The exact logic
+ * is:
+ * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
+ */
+static inline bool uptodate_for_rmw(struct r5dev *dev)
+{
+ return (test_bit(R5_UPTODATE, &dev->flags)) &&
+ (!test_bit(R5_InJournal, &dev->flags) ||
+ test_bit(R5_OrigPageUPTDODATE, &dev->flags));
+}
+
+static int handle_stripe_dirtying(struct r5conf *conf,
+ struct stripe_head *sh,
+ struct stripe_head_state *s,
+ int disks)
+{
+ int rmw = 0, rcw = 0, i;
+ sector_t recovery_cp = conf->mddev->recovery_cp;
+
+ /* Check whether resync is now happening or should start.
+ * If yes, then the array is dirty (after unclean shutdown or
+ * initial creation), so parity in some stripes might be inconsistent.
+ * In this case, we need to always do reconstruct-write, to ensure
+ * that in case of drive failure or read-error correction, we
+ * generate correct data from the parity.
+ */
+ if (conf->rmw_level == PARITY_DISABLE_RMW ||
+ (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
+ s->failed == 0)) {
+ /* Calculate the real rcw later - for now make it
+ * look like rcw is cheaper
+ */
+ rcw = 1; rmw = 2;
+ pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
+ conf->rmw_level, (unsigned long long)recovery_cp,
+ (unsigned long long)sh->sector);
+ } else for (i = disks; i--; ) {
+ /* would I have to read this buffer for read_modify_write */
+ struct r5dev *dev = &sh->dev[i];
+ if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
+ i == sh->pd_idx || i == sh->qd_idx ||
+ test_bit(R5_InJournal, &dev->flags)) &&
+ !test_bit(R5_LOCKED, &dev->flags) &&
+ !(uptodate_for_rmw(dev) ||
+ test_bit(R5_Wantcompute, &dev->flags))) {
+ if (test_bit(R5_Insync, &dev->flags))
+ rmw++;
+ else
+ rmw += 2*disks; /* cannot read it */
+ }
+ /* Would I have to read this buffer for reconstruct_write */
+ if (!test_bit(R5_OVERWRITE, &dev->flags) &&
+ i != sh->pd_idx && i != sh->qd_idx &&
+ !test_bit(R5_LOCKED, &dev->flags) &&
+ !(test_bit(R5_UPTODATE, &dev->flags) ||
+ test_bit(R5_Wantcompute, &dev->flags))) {
+ if (test_bit(R5_Insync, &dev->flags))
+ rcw++;
+ else
+ rcw += 2*disks;
+ }
+ }
+
+ pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
+ (unsigned long long)sh->sector, sh->state, rmw, rcw);
+ set_bit(STRIPE_HANDLE, &sh->state);
+ if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
+ /* prefer read-modify-write, but need to get some data */
+ if (conf->mddev->queue)
+ blk_add_trace_msg(conf->mddev->queue,
+ "raid5 rmw %llu %d",
+ (unsigned long long)sh->sector, rmw);
+ for (i = disks; i--; ) {
+ struct r5dev *dev = &sh->dev[i];
+ if (test_bit(R5_InJournal, &dev->flags) &&
+ dev->page == dev->orig_page &&
+ !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
+ /* alloc page for prexor */
+ struct page *p = alloc_page(GFP_NOIO);
+
+ if (p) {
+ dev->orig_page = p;
+ continue;
+ }
+
+ /*
+ * alloc_page() failed, try use
+ * disk_info->extra_page
+ */
+ if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
+ &conf->cache_state)) {
+ r5c_use_extra_page(sh);
+ break;
+ }
+
+ /* extra_page in use, add to delayed_list */
+ set_bit(STRIPE_DELAYED, &sh->state);
+ s->waiting_extra_page = 1;
+ return -EAGAIN;
+ }
+ }
+
+ for (i = disks; i--; ) {
+ struct r5dev *dev = &sh->dev[i];
+ if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
+ i == sh->pd_idx || i == sh->qd_idx ||
+ test_bit(R5_InJournal, &dev->flags)) &&
+ !test_bit(R5_LOCKED, &dev->flags) &&
+ !(uptodate_for_rmw(dev) ||
+ test_bit(R5_Wantcompute, &dev->flags)) &&
+ test_bit(R5_Insync, &dev->flags)) {
+ if (test_bit(STRIPE_PREREAD_ACTIVE,
+ &sh->state)) {
+ pr_debug("Read_old block %d for r-m-w\n",
+ i);
+ set_bit(R5_LOCKED, &dev->flags);
+ set_bit(R5_Wantread, &dev->flags);
+ s->locked++;
+ } else
+ set_bit(STRIPE_DELAYED, &sh->state);
+ }
+ }
+ }
+ if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
+ /* want reconstruct write, but need to get some data */
+ int qread =0;
+ rcw = 0;
+ for (i = disks; i--; ) {
+ struct r5dev *dev = &sh->dev[i];
+ if (!test_bit(R5_OVERWRITE, &dev->flags) &&
+ i != sh->pd_idx && i != sh->qd_idx &&
+ !test_bit(R5_LOCKED, &dev->flags) &&
+ !(test_bit(R5_UPTODATE, &dev->flags) ||
+ test_bit(R5_Wantcompute, &dev->flags))) {
+ rcw++;
+ if (test_bit(R5_Insync, &dev->flags) &&
+ test_bit(STRIPE_PREREAD_ACTIVE,
+ &sh->state)) {
+ pr_debug("Read_old block "
+ "%d for Reconstruct\n", i);
+ set_bit(R5_LOCKED, &dev->flags);
+ set_bit(R5_Wantread, &dev->flags);
+ s->locked++;
+ qread++;
+ } else
+ set_bit(STRIPE_DELAYED, &sh->state);
+ }
+ }
+ if (rcw && conf->mddev->queue)
+ blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
+ (unsigned long long)sh->sector,
+ rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
+ }
+
+ if (rcw > disks && rmw > disks &&
+ !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
+ set_bit(STRIPE_DELAYED, &sh->state);
+
+ /* now if nothing is locked, and if we have enough data,
+ * we can start a write request
+ */
+ /* since handle_stripe can be called at any time we need to handle the
+ * case where a compute block operation has been submitted and then a
+ * subsequent call wants to start a write request. raid_run_ops only
+ * handles the case where compute block and reconstruct are requested
+ * simultaneously. If this is not the case then new writes need to be
+ * held off until the compute completes.
+ */
+ if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
+ (s->locked == 0 && (rcw == 0 || rmw == 0) &&
+ !test_bit(STRIPE_BIT_DELAY, &sh->state)))
+ schedule_reconstruction(sh, s, rcw == 0, 0);
+ return 0;
+}
+
+static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
+ struct stripe_head_state *s, int disks)
+{
+ struct r5dev *dev = NULL;
+
+ BUG_ON(sh->batch_head);
+ set_bit(STRIPE_HANDLE, &sh->state);
+
+ switch (sh->check_state) {
+ case check_state_idle:
+ /* start a new check operation if there are no failures */
+ if (s->failed == 0) {
+ BUG_ON(s->uptodate != disks);
+ sh->check_state = check_state_run;
+ set_bit(STRIPE_OP_CHECK, &s->ops_request);
+ clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
+ s->uptodate--;
+ break;
+ }
+ dev = &sh->dev[s->failed_num[0]];
+ fallthrough;
+ case check_state_compute_result:
+ sh->check_state = check_state_idle;
+ if (!dev)
+ dev = &sh->dev[sh->pd_idx];
+
+ /* check that a write has not made the stripe insync */
+ if (test_bit(STRIPE_INSYNC, &sh->state))
+ break;
+
+ /* either failed parity check, or recovery is happening */
+ BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
+ BUG_ON(s->uptodate != disks);
+
+ set_bit(R5_LOCKED, &dev->flags);
+ s->locked++;
+ set_bit(R5_Wantwrite, &dev->flags);
+
+ clear_bit(STRIPE_DEGRADED, &sh->state);
+ set_bit(STRIPE_INSYNC, &sh->state);
+ break;
+ case check_state_run:
+ break; /* we will be called again upon completion */
+ case check_state_check_result:
+ sh->check_state = check_state_idle;
+
+ /* if a failure occurred during the check operation, leave
+ * STRIPE_INSYNC not set and let the stripe be handled again
+ */
+ if (s->failed)
+ break;
+
+ /* handle a successful check operation, if parity is correct
+ * we are done. Otherwise update the mismatch count and repair
+ * parity if !MD_RECOVERY_CHECK
+ */
+ if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
+ /* parity is correct (on disc,
+ * not in buffer any more)
+ */
+ set_bit(STRIPE_INSYNC, &sh->state);
+ else {
+ atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
+ if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
+ /* don't try to repair!! */
+ set_bit(STRIPE_INSYNC, &sh->state);
+ pr_warn_ratelimited("%s: mismatch sector in range "
+ "%llu-%llu\n", mdname(conf->mddev),
+ (unsigned long long) sh->sector,
+ (unsigned long long) sh->sector +
+ RAID5_STRIPE_SECTORS(conf));
+ } else {
+ sh->check_state = check_state_compute_run;
+ set_bit(STRIPE_COMPUTE_RUN, &sh->state);
+ set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
+ set_bit(R5_Wantcompute,
+ &sh->dev[sh->pd_idx].flags);
+ sh->ops.target = sh->pd_idx;
+ sh->ops.target2 = -1;
+ s->uptodate++;
+ }
+ }
+ break;
+ case check_state_compute_run:
+ break;
+ default:
+ pr_err("%s: unknown check_state: %d sector: %llu\n",
+ __func__, sh->check_state,
+ (unsigned long long) sh->sector);
+ BUG();
+ }
+}
+
+static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
+ struct stripe_head_state *s,
+ int disks)
+{
+ int pd_idx = sh->pd_idx;
+ int qd_idx = sh->qd_idx;
+ struct r5dev *dev;
+
+ BUG_ON(sh->batch_head);
+ set_bit(STRIPE_HANDLE, &sh->state);
+
+ BUG_ON(s->failed > 2);
+
+ /* Want to check and possibly repair P and Q.
+ * However there could be one 'failed' device, in which
+ * case we can only check one of them, possibly using the
+ * other to generate missing data
+ */
+
+ switch (sh->check_state) {
+ case check_state_idle:
+ /* start a new check operation if there are < 2 failures */
+ if (s->failed == s->q_failed) {
+ /* The only possible failed device holds Q, so it
+ * makes sense to check P (If anything else were failed,
+ * we would have used P to recreate it).
+ */
+ sh->check_state = check_state_run;
+ }
+ if (!s->q_failed && s->failed < 2) {
+ /* Q is not failed, and we didn't use it to generate
+ * anything, so it makes sense to check it
+ */
+ if (sh->check_state == check_state_run)
+ sh->check_state = check_state_run_pq;
+ else
+ sh->check_state = check_state_run_q;
+ }
+
+ /* discard potentially stale zero_sum_result */
+ sh->ops.zero_sum_result = 0;
+
+ if (sh->check_state == check_state_run) {
+ /* async_xor_zero_sum destroys the contents of P */
+ clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
+ s->uptodate--;
+ }
+ if (sh->check_state >= check_state_run &&
+ sh->check_state <= check_state_run_pq) {
+ /* async_syndrome_zero_sum preserves P and Q, so
+ * no need to mark them !uptodate here
+ */
+ set_bit(STRIPE_OP_CHECK, &s->ops_request);
+ break;
+ }
+
+ /* we have 2-disk failure */
+ BUG_ON(s->failed != 2);
+ fallthrough;
+ case check_state_compute_result:
+ sh->check_state = check_state_idle;
+
+ /* check that a write has not made the stripe insync */
+ if (test_bit(STRIPE_INSYNC, &sh->state))
+ break;
+
+ /* now write out any block on a failed drive,
+ * or P or Q if they were recomputed
+ */
+ dev = NULL;
+ if (s->failed == 2) {
+ dev = &sh->dev[s->failed_num[1]];
+ s->locked++;
+ set_bit(R5_LOCKED, &dev->flags);
+ set_bit(R5_Wantwrite, &dev->flags);
+ }
+ if (s->failed >= 1) {
+ dev = &sh->dev[s->failed_num[0]];
+ s->locked++;
+ set_bit(R5_LOCKED, &dev->flags);
+ set_bit(R5_Wantwrite, &dev->flags);
+ }
+ if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
+ dev = &sh->dev[pd_idx];
+ s->locked++;
+ set_bit(R5_LOCKED, &dev->flags);
+ set_bit(R5_Wantwrite, &dev->flags);
+ }
+ if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
+ dev = &sh->dev[qd_idx];
+ s->locked++;
+ set_bit(R5_LOCKED, &dev->flags);
+ set_bit(R5_Wantwrite, &dev->flags);
+ }
+ if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
+ "%s: disk%td not up to date\n",
+ mdname(conf->mddev),
+ dev - (struct r5dev *) &sh->dev)) {
+ clear_bit(R5_LOCKED, &dev->flags);
+ clear_bit(R5_Wantwrite, &dev->flags);
+ s->locked--;
+ }
+ clear_bit(STRIPE_DEGRADED, &sh->state);
+
+ set_bit(STRIPE_INSYNC, &sh->state);
+ break;
+ case check_state_run:
+ case check_state_run_q:
+ case check_state_run_pq:
+ break; /* we will be called again upon completion */
+ case check_state_check_result:
+ sh->check_state = check_state_idle;
+
+ /* handle a successful check operation, if parity is correct
+ * we are done. Otherwise update the mismatch count and repair
+ * parity if !MD_RECOVERY_CHECK
+ */
+ if (sh->ops.zero_sum_result == 0) {
+ /* both parities are correct */
+ if (!s->failed)
+ set_bit(STRIPE_INSYNC, &sh->state);
+ else {
+ /* in contrast to the raid5 case we can validate
+ * parity, but still have a failure to write
+ * back
+ */
+ sh->check_state = check_state_compute_result;
+ /* Returning at this point means that we may go
+ * off and bring p and/or q uptodate again so
+ * we make sure to check zero_sum_result again
+ * to verify if p or q need writeback
+ */
+ }
+ } else {
+ atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
+ if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
+ /* don't try to repair!! */
+ set_bit(STRIPE_INSYNC, &sh->state);
+ pr_warn_ratelimited("%s: mismatch sector in range "
+ "%llu-%llu\n", mdname(conf->mddev),
+ (unsigned long long) sh->sector,
+ (unsigned long long) sh->sector +
+ RAID5_STRIPE_SECTORS(conf));
+ } else {
+ int *target = &sh->ops.target;
+
+ sh->ops.target = -1;
+ sh->ops.target2 = -1;
+ sh->check_state = check_state_compute_run;
+ set_bit(STRIPE_COMPUTE_RUN, &sh->state);
+ set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
+ if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
+ set_bit(R5_Wantcompute,
+ &sh->dev[pd_idx].flags);
+ *target = pd_idx;
+ target = &sh->ops.target2;
+ s->uptodate++;
+ }
+ if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
+ set_bit(R5_Wantcompute,
+ &sh->dev[qd_idx].flags);
+ *target = qd_idx;
+ s->uptodate++;
+ }
+ }
+ }
+ break;
+ case check_state_compute_run:
+ break;
+ default:
+ pr_warn("%s: unknown check_state: %d sector: %llu\n",
+ __func__, sh->check_state,
+ (unsigned long long) sh->sector);
+ BUG();
+ }
+}
+
+static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
+{
+ int i;
+
+ /* We have read all the blocks in this stripe and now we need to
+ * copy some of them into a target stripe for expand.
+ */
+ struct dma_async_tx_descriptor *tx = NULL;
+ BUG_ON(sh->batch_head);
+ clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
+ for (i = 0; i < sh->disks; i++)
+ if (i != sh->pd_idx && i != sh->qd_idx) {
+ int dd_idx, j;
+ struct stripe_head *sh2;
+ struct async_submit_ctl submit;
+
+ sector_t bn = raid5_compute_blocknr(sh, i, 1);
+ sector_t s = raid5_compute_sector(conf, bn, 0,
+ &dd_idx, NULL);
+ sh2 = raid5_get_active_stripe(conf, NULL, s,
+ R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
+ if (sh2 == NULL)
+ /* so far only the early blocks of this stripe
+ * have been requested. When later blocks
+ * get requested, we will try again
+ */
+ continue;
+ if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
+ test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
+ /* must have already done this block */
+ raid5_release_stripe(sh2);
+ continue;
+ }
+
+ /* place all the copies on one channel */
+ init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
+ tx = async_memcpy(sh2->dev[dd_idx].page,
+ sh->dev[i].page, sh2->dev[dd_idx].offset,
+ sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
+ &submit);
+
+ set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
+ set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
+ for (j = 0; j < conf->raid_disks; j++)
+ if (j != sh2->pd_idx &&
+ j != sh2->qd_idx &&
+ !test_bit(R5_Expanded, &sh2->dev[j].flags))
+ break;
+ if (j == conf->raid_disks) {
+ set_bit(STRIPE_EXPAND_READY, &sh2->state);
+ set_bit(STRIPE_HANDLE, &sh2->state);
+ }
+ raid5_release_stripe(sh2);
+
+ }
+ /* done submitting copies, wait for them to complete */
+ async_tx_quiesce(&tx);
+}
+
+/*
+ * handle_stripe - do things to a stripe.
+ *
+ * We lock the stripe by setting STRIPE_ACTIVE and then examine the
+ * state of various bits to see what needs to be done.
+ * Possible results:
+ * return some read requests which now have data
+ * return some write requests which are safely on storage
+ * schedule a read on some buffers
+ * schedule a write of some buffers
+ * return confirmation of parity correctness
+ *
+ */
+
+static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
+{
+ struct r5conf *conf = sh->raid_conf;
+ int disks = sh->disks;
+ struct r5dev *dev;
+ int i;
+ int do_recovery = 0;
+
+ memset(s, 0, sizeof(*s));
+
+ s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
+ s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
+ s->failed_num[0] = -1;
+ s->failed_num[1] = -1;
+ s->log_failed = r5l_log_disk_error(conf);
+
+ /* Now to look around and see what can be done */
+ rcu_read_lock();
+ for (i=disks; i--; ) {
+ struct md_rdev *rdev;
+ sector_t first_bad;
+ int bad_sectors;
+ int is_bad = 0;
+
+ dev = &sh->dev[i];
+
+ pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
+ i, dev->flags,
+ dev->toread, dev->towrite, dev->written);
+ /* maybe we can reply to a read
+ *
+ * new wantfill requests are only permitted while
+ * ops_complete_biofill is guaranteed to be inactive
+ */
+ if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
+ !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
+ set_bit(R5_Wantfill, &dev->flags);
+
+ /* now count some things */
+ if (test_bit(R5_LOCKED, &dev->flags))
+ s->locked++;
+ if (test_bit(R5_UPTODATE, &dev->flags))
+ s->uptodate++;
+ if (test_bit(R5_Wantcompute, &dev->flags)) {
+ s->compute++;
+ BUG_ON(s->compute > 2);
+ }
+
+ if (test_bit(R5_Wantfill, &dev->flags))
+ s->to_fill++;
+ else if (dev->toread)
+ s->to_read++;
+ if (dev->towrite) {
+ s->to_write++;
+ if (!test_bit(R5_OVERWRITE, &dev->flags))
+ s->non_overwrite++;
+ }
+ if (dev->written)
+ s->written++;
+ /* Prefer to use the replacement for reads, but only
+ * if it is recovered enough and has no bad blocks.
+ */
+ rdev = rcu_dereference(conf->disks[i].replacement);
+ if (rdev && !test_bit(Faulty, &rdev->flags) &&
+ rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
+ !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
+ &first_bad, &bad_sectors))
+ set_bit(R5_ReadRepl, &dev->flags);
+ else {
+ if (rdev && !test_bit(Faulty, &rdev->flags))
+ set_bit(R5_NeedReplace, &dev->flags);
+ else
+ clear_bit(R5_NeedReplace, &dev->flags);
+ rdev = rcu_dereference(conf->disks[i].rdev);
+ clear_bit(R5_ReadRepl, &dev->flags);
+ }
+ if (rdev && test_bit(Faulty, &rdev->flags))
+ rdev = NULL;
+ if (rdev) {
+ is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
+ &first_bad, &bad_sectors);
+ if (s->blocked_rdev == NULL
+ && (test_bit(Blocked, &rdev->flags)
+ || is_bad < 0)) {
+ if (is_bad < 0)
+ set_bit(BlockedBadBlocks,
+ &rdev->flags);
+ s->blocked_rdev = rdev;
+ atomic_inc(&rdev->nr_pending);
+ }
+ }
+ clear_bit(R5_Insync, &dev->flags);
+ if (!rdev)
+ /* Not in-sync */;
+ else if (is_bad) {
+ /* also not in-sync */
+ if (!test_bit(WriteErrorSeen, &rdev->flags) &&
+ test_bit(R5_UPTODATE, &dev->flags)) {
+ /* treat as in-sync, but with a read error
+ * which we can now try to correct
+ */
+ set_bit(R5_Insync, &dev->flags);
+ set_bit(R5_ReadError, &dev->flags);
+ }
+ } else if (test_bit(In_sync, &rdev->flags))
+ set_bit(R5_Insync, &dev->flags);
+ else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
+ /* in sync if before recovery_offset */
+ set_bit(R5_Insync, &dev->flags);
+ else if (test_bit(R5_UPTODATE, &dev->flags) &&
+ test_bit(R5_Expanded, &dev->flags))
+ /* If we've reshaped into here, we assume it is Insync.
+ * We will shortly update recovery_offset to make
+ * it official.
+ */
+ set_bit(R5_Insync, &dev->flags);
+
+ if (test_bit(R5_WriteError, &dev->flags)) {
+ /* This flag does not apply to '.replacement'
+ * only to .rdev, so make sure to check that*/
+ struct md_rdev *rdev2 = rcu_dereference(
+ conf->disks[i].rdev);
+ if (rdev2 == rdev)
+ clear_bit(R5_Insync, &dev->flags);
+ if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
+ s->handle_bad_blocks = 1;
+ atomic_inc(&rdev2->nr_pending);
+ } else
+ clear_bit(R5_WriteError, &dev->flags);
+ }
+ if (test_bit(R5_MadeGood, &dev->flags)) {
+ /* This flag does not apply to '.replacement'
+ * only to .rdev, so make sure to check that*/
+ struct md_rdev *rdev2 = rcu_dereference(
+ conf->disks[i].rdev);
+ if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
+ s->handle_bad_blocks = 1;
+ atomic_inc(&rdev2->nr_pending);
+ } else
+ clear_bit(R5_MadeGood, &dev->flags);
+ }
+ if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
+ struct md_rdev *rdev2 = rcu_dereference(
+ conf->disks[i].replacement);
+ if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
+ s->handle_bad_blocks = 1;
+ atomic_inc(&rdev2->nr_pending);
+ } else
+ clear_bit(R5_MadeGoodRepl, &dev->flags);
+ }
+ if (!test_bit(R5_Insync, &dev->flags)) {
+ /* The ReadError flag will just be confusing now */
+ clear_bit(R5_ReadError, &dev->flags);
+ clear_bit(R5_ReWrite, &dev->flags);
+ }
+ if (test_bit(R5_ReadError, &dev->flags))
+ clear_bit(R5_Insync, &dev->flags);
+ if (!test_bit(R5_Insync, &dev->flags)) {
+ if (s->failed < 2)
+ s->failed_num[s->failed] = i;
+ s->failed++;
+ if (rdev && !test_bit(Faulty, &rdev->flags))
+ do_recovery = 1;
+ else if (!rdev) {
+ rdev = rcu_dereference(
+ conf->disks[i].replacement);
+ if (rdev && !test_bit(Faulty, &rdev->flags))
+ do_recovery = 1;
+ }
+ }
+
+ if (test_bit(R5_InJournal, &dev->flags))
+ s->injournal++;
+ if (test_bit(R5_InJournal, &dev->flags) && dev->written)
+ s->just_cached++;
+ }
+ if (test_bit(STRIPE_SYNCING, &sh->state)) {
+ /* If there is a failed device being replaced,
+ * we must be recovering.
+ * else if we are after recovery_cp, we must be syncing
+ * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
+ * else we can only be replacing
+ * sync and recovery both need to read all devices, and so
+ * use the same flag.
+ */
+ if (do_recovery ||
+ sh->sector >= conf->mddev->recovery_cp ||
+ test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
+ s->syncing = 1;
+ else
+ s->replacing = 1;
+ }
+ rcu_read_unlock();
+}
+
+/*
+ * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
+ * a head which can now be handled.
+ */
+static int clear_batch_ready(struct stripe_head *sh)
+{
+ struct stripe_head *tmp;
+ if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
+ return (sh->batch_head && sh->batch_head != sh);
+ spin_lock(&sh->stripe_lock);
+ if (!sh->batch_head) {
+ spin_unlock(&sh->stripe_lock);
+ return 0;
+ }
+
+ /*
+ * this stripe could be added to a batch list before we check
+ * BATCH_READY, skips it
+ */
+ if (sh->batch_head != sh) {
+ spin_unlock(&sh->stripe_lock);
+ return 1;
+ }
+ spin_lock(&sh->batch_lock);
+ list_for_each_entry(tmp, &sh->batch_list, batch_list)
+ clear_bit(STRIPE_BATCH_READY, &tmp->state);
+ spin_unlock(&sh->batch_lock);
+ spin_unlock(&sh->stripe_lock);
+
+ /*
+ * BATCH_READY is cleared, no new stripes can be added.
+ * batch_list can be accessed without lock
+ */
+ return 0;
+}
+
+static void break_stripe_batch_list(struct stripe_head *head_sh,
+ unsigned long handle_flags)
+{
+ struct stripe_head *sh, *next;
+ int i;
+ int do_wakeup = 0;
+
+ list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
+
+ list_del_init(&sh->batch_list);
+
+ WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
+ (1 << STRIPE_SYNCING) |
+ (1 << STRIPE_REPLACED) |
+ (1 << STRIPE_DELAYED) |
+ (1 << STRIPE_BIT_DELAY) |
+ (1 << STRIPE_FULL_WRITE) |
+ (1 << STRIPE_BIOFILL_RUN) |
+ (1 << STRIPE_COMPUTE_RUN) |
+ (1 << STRIPE_DISCARD) |
+ (1 << STRIPE_BATCH_READY) |
+ (1 << STRIPE_BATCH_ERR) |
+ (1 << STRIPE_BITMAP_PENDING)),
+ "stripe state: %lx\n", sh->state);
+ WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
+ (1 << STRIPE_REPLACED)),
+ "head stripe state: %lx\n", head_sh->state);
+
+ set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
+ (1 << STRIPE_PREREAD_ACTIVE) |
+ (1 << STRIPE_DEGRADED) |
+ (1 << STRIPE_ON_UNPLUG_LIST)),
+ head_sh->state & (1 << STRIPE_INSYNC));
+
+ sh->check_state = head_sh->check_state;
+ sh->reconstruct_state = head_sh->reconstruct_state;
+ spin_lock_irq(&sh->stripe_lock);
+ sh->batch_head = NULL;
+ spin_unlock_irq(&sh->stripe_lock);
+ for (i = 0; i < sh->disks; i++) {
+ if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
+ do_wakeup = 1;
+ sh->dev[i].flags = head_sh->dev[i].flags &
+ (~((1 << R5_WriteError) | (1 << R5_Overlap)));
+ }
+ if (handle_flags == 0 ||
+ sh->state & handle_flags)
+ set_bit(STRIPE_HANDLE, &sh->state);
+ raid5_release_stripe(sh);
+ }
+ spin_lock_irq(&head_sh->stripe_lock);
+ head_sh->batch_head = NULL;
+ spin_unlock_irq(&head_sh->stripe_lock);
+ for (i = 0; i < head_sh->disks; i++)
+ if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
+ do_wakeup = 1;
+ if (head_sh->state & handle_flags)
+ set_bit(STRIPE_HANDLE, &head_sh->state);
+
+ if (do_wakeup)
+ wake_up(&head_sh->raid_conf->wait_for_overlap);
+}
+
+static void handle_stripe(struct stripe_head *sh)
+{
+ struct stripe_head_state s;
+ struct r5conf *conf = sh->raid_conf;
+ int i;
+ int prexor;
+ int disks = sh->disks;
+ struct r5dev *pdev, *qdev;
+
+ clear_bit(STRIPE_HANDLE, &sh->state);
+
+ /*
+ * handle_stripe should not continue handle the batched stripe, only
+ * the head of batch list or lone stripe can continue. Otherwise we
+ * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
+ * is set for the batched stripe.
+ */
+ if (clear_batch_ready(sh))
+ return;
+
+ if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
+ /* already being handled, ensure it gets handled
+ * again when current action finishes */
+ set_bit(STRIPE_HANDLE, &sh->state);
+ return;
+ }
+
+ if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
+ break_stripe_batch_list(sh, 0);
+
+ if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
+ spin_lock(&sh->stripe_lock);
+ /*
+ * Cannot process 'sync' concurrently with 'discard'.
+ * Flush data in r5cache before 'sync'.
+ */
+ if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
+ !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
+ !test_bit(STRIPE_DISCARD, &sh->state) &&
+ test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
+ set_bit(STRIPE_SYNCING, &sh->state);
+ clear_bit(STRIPE_INSYNC, &sh->state);
+ clear_bit(STRIPE_REPLACED, &sh->state);
+ }
+ spin_unlock(&sh->stripe_lock);
+ }
+ clear_bit(STRIPE_DELAYED, &sh->state);
+
+ pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
+ "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
+ (unsigned long long)sh->sector, sh->state,
+ atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
+ sh->check_state, sh->reconstruct_state);
+
+ analyse_stripe(sh, &s);
+
+ if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
+ goto finish;
+
+ if (s.handle_bad_blocks ||
+ test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
+ set_bit(STRIPE_HANDLE, &sh->state);
+ goto finish;
+ }
+
+ if (unlikely(s.blocked_rdev)) {
+ if (s.syncing || s.expanding || s.expanded ||
+ s.replacing || s.to_write || s.written) {
+ set_bit(STRIPE_HANDLE, &sh->state);
+ goto finish;
+ }
+ /* There is nothing for the blocked_rdev to block */
+ rdev_dec_pending(s.blocked_rdev, conf->mddev);
+ s.blocked_rdev = NULL;
+ }
+
+ if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
+ set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
+ set_bit(STRIPE_BIOFILL_RUN, &sh->state);
+ }
+
+ pr_debug("locked=%d uptodate=%d to_read=%d"
+ " to_write=%d failed=%d failed_num=%d,%d\n",
+ s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
+ s.failed_num[0], s.failed_num[1]);
+ /*
+ * check if the array has lost more than max_degraded devices and,
+ * if so, some requests might need to be failed.
+ *
+ * When journal device failed (log_failed), we will only process
+ * the stripe if there is data need write to raid disks
+ */
+ if (s.failed > conf->max_degraded ||
+ (s.log_failed && s.injournal == 0)) {
+ sh->check_state = 0;
+ sh->reconstruct_state = 0;
+ break_stripe_batch_list(sh, 0);
+ if (s.to_read+s.to_write+s.written)
+ handle_failed_stripe(conf, sh, &s, disks);
+ if (s.syncing + s.replacing)
+ handle_failed_sync(conf, sh, &s);
+ }
+
+ /* Now we check to see if any write operations have recently
+ * completed
+ */
+ prexor = 0;
+ if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
+ prexor = 1;
+ if (sh->reconstruct_state == reconstruct_state_drain_result ||
+ sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
+ sh->reconstruct_state = reconstruct_state_idle;
+
+ /* All the 'written' buffers and the parity block are ready to
+ * be written back to disk
+ */
+ BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
+ !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
+ BUG_ON(sh->qd_idx >= 0 &&
+ !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
+ !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
+ for (i = disks; i--; ) {
+ struct r5dev *dev = &sh->dev[i];
+ if (test_bit(R5_LOCKED, &dev->flags) &&
+ (i == sh->pd_idx || i == sh->qd_idx ||
+ dev->written || test_bit(R5_InJournal,
+ &dev->flags))) {
+ pr_debug("Writing block %d\n", i);
+ set_bit(R5_Wantwrite, &dev->flags);
+ if (prexor)
+ continue;
+ if (s.failed > 1)
+ continue;
+ if (!test_bit(R5_Insync, &dev->flags) ||
+ ((i == sh->pd_idx || i == sh->qd_idx) &&
+ s.failed == 0))
+ set_bit(STRIPE_INSYNC, &sh->state);
+ }
+ }
+ if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
+ s.dec_preread_active = 1;
+ }
+
+ /*
+ * might be able to return some write requests if the parity blocks
+ * are safe, or on a failed drive
+ */
+ pdev = &sh->dev[sh->pd_idx];
+ s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
+ || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
+ qdev = &sh->dev[sh->qd_idx];
+ s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
+ || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
+ || conf->level < 6;
+
+ if (s.written &&
+ (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
+ && !test_bit(R5_LOCKED, &pdev->flags)
+ && (test_bit(R5_UPTODATE, &pdev->flags) ||
+ test_bit(R5_Discard, &pdev->flags))))) &&
+ (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
+ && !test_bit(R5_LOCKED, &qdev->flags)
+ && (test_bit(R5_UPTODATE, &qdev->flags) ||
+ test_bit(R5_Discard, &qdev->flags))))))
+ handle_stripe_clean_event(conf, sh, disks);
+
+ if (s.just_cached)
+ r5c_handle_cached_data_endio(conf, sh, disks);
+ log_stripe_write_finished(sh);
+
+ /* Now we might consider reading some blocks, either to check/generate
+ * parity, or to satisfy requests
+ * or to load a block that is being partially written.
+ */
+ if (s.to_read || s.non_overwrite
+ || (s.to_write && s.failed)
+ || (s.syncing && (s.uptodate + s.compute < disks))
+ || s.replacing
+ || s.expanding)
+ handle_stripe_fill(sh, &s, disks);
+
+ /*
+ * When the stripe finishes full journal write cycle (write to journal
+ * and raid disk), this is the clean up procedure so it is ready for
+ * next operation.
+ */
+ r5c_finish_stripe_write_out(conf, sh, &s);
+
+ /*
+ * Now to consider new write requests, cache write back and what else,
+ * if anything should be read. We do not handle new writes when:
+ * 1/ A 'write' operation (copy+xor) is already in flight.
+ * 2/ A 'check' operation is in flight, as it may clobber the parity
+ * block.
+ * 3/ A r5c cache log write is in flight.
+ */
+
+ if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
+ if (!r5c_is_writeback(conf->log)) {
+ if (s.to_write)
+ handle_stripe_dirtying(conf, sh, &s, disks);
+ } else { /* write back cache */
+ int ret = 0;
+
+ /* First, try handle writes in caching phase */
+ if (s.to_write)
+ ret = r5c_try_caching_write(conf, sh, &s,
+ disks);
+ /*
+ * If caching phase failed: ret == -EAGAIN
+ * OR
+ * stripe under reclaim: !caching && injournal
+ *
+ * fall back to handle_stripe_dirtying()
+ */
+ if (ret == -EAGAIN ||
+ /* stripe under reclaim: !caching && injournal */
+ (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
+ s.injournal > 0)) {
+ ret = handle_stripe_dirtying(conf, sh, &s,
+ disks);
+ if (ret == -EAGAIN)
+ goto finish;
+ }
+ }
+ }
+
+ /* maybe we need to check and possibly fix the parity for this stripe
+ * Any reads will already have been scheduled, so we just see if enough
+ * data is available. The parity check is held off while parity
+ * dependent operations are in flight.
+ */
+ if (sh->check_state ||
+ (s.syncing && s.locked == 0 &&
+ !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
+ !test_bit(STRIPE_INSYNC, &sh->state))) {
+ if (conf->level == 6)
+ handle_parity_checks6(conf, sh, &s, disks);
+ else
+ handle_parity_checks5(conf, sh, &s, disks);
+ }
+
+ if ((s.replacing || s.syncing) && s.locked == 0
+ && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
+ && !test_bit(STRIPE_REPLACED, &sh->state)) {
+ /* Write out to replacement devices where possible */
+ for (i = 0; i < conf->raid_disks; i++)
+ if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
+ WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
+ set_bit(R5_WantReplace, &sh->dev[i].flags);
+ set_bit(R5_LOCKED, &sh->dev[i].flags);
+ s.locked++;
+ }
+ if (s.replacing)
+ set_bit(STRIPE_INSYNC, &sh->state);
+ set_bit(STRIPE_REPLACED, &sh->state);
+ }
+ if ((s.syncing || s.replacing) && s.locked == 0 &&
+ !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
+ test_bit(STRIPE_INSYNC, &sh->state)) {
+ md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
+ clear_bit(STRIPE_SYNCING, &sh->state);
+ if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
+ wake_up(&conf->wait_for_overlap);
+ }
+
+ /* If the failed drives are just a ReadError, then we might need
+ * to progress the repair/check process
+ */
+ if (s.failed <= conf->max_degraded && !conf->mddev->ro)
+ for (i = 0; i < s.failed; i++) {
+ struct r5dev *dev = &sh->dev[s.failed_num[i]];
+ if (test_bit(R5_ReadError, &dev->flags)
+ && !test_bit(R5_LOCKED, &dev->flags)
+ && test_bit(R5_UPTODATE, &dev->flags)
+ ) {
+ if (!test_bit(R5_ReWrite, &dev->flags)) {
+ set_bit(R5_Wantwrite, &dev->flags);
+ set_bit(R5_ReWrite, &dev->flags);
+ } else
+ /* let's read it back */
+ set_bit(R5_Wantread, &dev->flags);
+ set_bit(R5_LOCKED, &dev->flags);
+ s.locked++;
+ }
+ }
+
+ /* Finish reconstruct operations initiated by the expansion process */
+ if (sh->reconstruct_state == reconstruct_state_result) {
+ struct stripe_head *sh_src
+ = raid5_get_active_stripe(conf, NULL, sh->sector,
+ R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
+ R5_GAS_NOQUIESCE);
+ if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
+ /* sh cannot be written until sh_src has been read.
+ * so arrange for sh to be delayed a little
+ */
+ set_bit(STRIPE_DELAYED, &sh->state);
+ set_bit(STRIPE_HANDLE, &sh->state);
+ if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
+ &sh_src->state))
+ atomic_inc(&conf->preread_active_stripes);
+ raid5_release_stripe(sh_src);
+ goto finish;
+ }
+ if (sh_src)
+ raid5_release_stripe(sh_src);
+
+ sh->reconstruct_state = reconstruct_state_idle;
+ clear_bit(STRIPE_EXPANDING, &sh->state);
+ for (i = conf->raid_disks; i--; ) {
+ set_bit(R5_Wantwrite, &sh->dev[i].flags);
+ set_bit(R5_LOCKED, &sh->dev[i].flags);
+ s.locked++;
+ }
+ }
+
+ if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
+ !sh->reconstruct_state) {
+ /* Need to write out all blocks after computing parity */
+ sh->disks = conf->raid_disks;
+ stripe_set_idx(sh->sector, conf, 0, sh);
+ schedule_reconstruction(sh, &s, 1, 1);
+ } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
+ clear_bit(STRIPE_EXPAND_READY, &sh->state);
+ atomic_dec(&conf->reshape_stripes);
+ wake_up(&conf->wait_for_overlap);
+ md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
+ }
+
+ if (s.expanding && s.locked == 0 &&
+ !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
+ handle_stripe_expansion(conf, sh);
+
+finish:
+ /* wait for this device to become unblocked */
+ if (unlikely(s.blocked_rdev)) {
+ if (conf->mddev->external)
+ md_wait_for_blocked_rdev(s.blocked_rdev,
+ conf->mddev);
+ else
+ /* Internal metadata will immediately
+ * be written by raid5d, so we don't
+ * need to wait here.
+ */
+ rdev_dec_pending(s.blocked_rdev,
+ conf->mddev);
+ }
+
+ if (s.handle_bad_blocks)
+ for (i = disks; i--; ) {
+ struct md_rdev *rdev;
+ struct r5dev *dev = &sh->dev[i];
+ if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
+ /* We own a safe reference to the rdev */
+ rdev = rdev_pend_deref(conf->disks[i].rdev);
+ if (!rdev_set_badblocks(rdev, sh->sector,
+ RAID5_STRIPE_SECTORS(conf), 0))
+ md_error(conf->mddev, rdev);
+ rdev_dec_pending(rdev, conf->mddev);
+ }
+ if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
+ rdev = rdev_pend_deref(conf->disks[i].rdev);
+ rdev_clear_badblocks(rdev, sh->sector,
+ RAID5_STRIPE_SECTORS(conf), 0);
+ rdev_dec_pending(rdev, conf->mddev);
+ }
+ if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
+ rdev = rdev_pend_deref(conf->disks[i].replacement);
+ if (!rdev)
+ /* rdev have been moved down */
+ rdev = rdev_pend_deref(conf->disks[i].rdev);
+ rdev_clear_badblocks(rdev, sh->sector,
+ RAID5_STRIPE_SECTORS(conf), 0);
+ rdev_dec_pending(rdev, conf->mddev);
+ }
+ }
+
+ if (s.ops_request)
+ raid_run_ops(sh, s.ops_request);
+
+ ops_run_io(sh, &s);
+
+ if (s.dec_preread_active) {
+ /* We delay this until after ops_run_io so that if make_request
+ * is waiting on a flush, it won't continue until the writes
+ * have actually been submitted.
+ */
+ atomic_dec(&conf->preread_active_stripes);
+ if (atomic_read(&conf->preread_active_stripes) <
+ IO_THRESHOLD)
+ md_wakeup_thread(conf->mddev->thread);
+ }
+
+ clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
+}
+
+static void raid5_activate_delayed(struct r5conf *conf)
+ __must_hold(&conf->device_lock)
+{
+ if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
+ while (!list_empty(&conf->delayed_list)) {
+ struct list_head *l = conf->delayed_list.next;
+ struct stripe_head *sh;
+ sh = list_entry(l, struct stripe_head, lru);
+ list_del_init(l);
+ clear_bit(STRIPE_DELAYED, &sh->state);
+ if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
+ atomic_inc(&conf->preread_active_stripes);
+ list_add_tail(&sh->lru, &conf->hold_list);
+ raid5_wakeup_stripe_thread(sh);
+ }
+ }
+}
+
+static void activate_bit_delay(struct r5conf *conf,
+ struct list_head *temp_inactive_list)
+ __must_hold(&conf->device_lock)
+{
+ struct list_head head;
+ list_add(&head, &conf->bitmap_list);
+ list_del_init(&conf->bitmap_list);
+ while (!list_empty(&head)) {
+ struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
+ int hash;
+ list_del_init(&sh->lru);
+ atomic_inc(&sh->count);
+ hash = sh->hash_lock_index;
+ __release_stripe(conf, sh, &temp_inactive_list[hash]);
+ }
+}
+
+static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
+{
+ struct r5conf *conf = mddev->private;
+ sector_t sector = bio->bi_iter.bi_sector;
+ unsigned int chunk_sectors;
+ unsigned int bio_sectors = bio_sectors(bio);
+
+ chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
+ return chunk_sectors >=
+ ((sector & (chunk_sectors - 1)) + bio_sectors);
+}
+
+/*
+ * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
+ * later sampled by raid5d.
+ */
+static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&conf->device_lock, flags);
+
+ bi->bi_next = conf->retry_read_aligned_list;
+ conf->retry_read_aligned_list = bi;
+
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ md_wakeup_thread(conf->mddev->thread);
+}
+
+static struct bio *remove_bio_from_retry(struct r5conf *conf,
+ unsigned int *offset)
+{
+ struct bio *bi;
+
+ bi = conf->retry_read_aligned;
+ if (bi) {
+ *offset = conf->retry_read_offset;
+ conf->retry_read_aligned = NULL;
+ return bi;
+ }
+ bi = conf->retry_read_aligned_list;
+ if(bi) {
+ conf->retry_read_aligned_list = bi->bi_next;
+ bi->bi_next = NULL;
+ *offset = 0;
+ }
+
+ return bi;
+}
+
+/*
+ * The "raid5_align_endio" should check if the read succeeded and if it
+ * did, call bio_endio on the original bio (having bio_put the new bio
+ * first).
+ * If the read failed..
+ */
+static void raid5_align_endio(struct bio *bi)
+{
+ struct md_io_acct *md_io_acct = bi->bi_private;
+ struct bio *raid_bi = md_io_acct->orig_bio;
+ struct mddev *mddev;
+ struct r5conf *conf;
+ struct md_rdev *rdev;
+ blk_status_t error = bi->bi_status;
+ unsigned long start_time = md_io_acct->start_time;
+
+ bio_put(bi);
+
+ rdev = (void*)raid_bi->bi_next;
+ raid_bi->bi_next = NULL;
+ mddev = rdev->mddev;
+ conf = mddev->private;
+
+ rdev_dec_pending(rdev, conf->mddev);
+
+ if (!error) {
+ if (blk_queue_io_stat(raid_bi->bi_bdev->bd_disk->queue))
+ bio_end_io_acct(raid_bi, start_time);
+ bio_endio(raid_bi);
+ if (atomic_dec_and_test(&conf->active_aligned_reads))
+ wake_up(&conf->wait_for_quiescent);
+ return;
+ }
+
+ pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
+
+ add_bio_to_retry(raid_bi, conf);
+}
+
+static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
+{
+ struct r5conf *conf = mddev->private;
+ struct bio *align_bio;
+ struct md_rdev *rdev;
+ sector_t sector, end_sector, first_bad;
+ int bad_sectors, dd_idx;
+ struct md_io_acct *md_io_acct;
+ bool did_inc;
+
+ if (!in_chunk_boundary(mddev, raid_bio)) {
+ pr_debug("%s: non aligned\n", __func__);
+ return 0;
+ }
+
+ sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
+ &dd_idx, NULL);
+ end_sector = sector + bio_sectors(raid_bio);
+
+ rcu_read_lock();
+ if (r5c_big_stripe_cached(conf, sector))
+ goto out_rcu_unlock;
+
+ rdev = rcu_dereference(conf->disks[dd_idx].replacement);
+ if (!rdev || test_bit(Faulty, &rdev->flags) ||
+ rdev->recovery_offset < end_sector) {
+ rdev = rcu_dereference(conf->disks[dd_idx].rdev);
+ if (!rdev)
+ goto out_rcu_unlock;
+ if (test_bit(Faulty, &rdev->flags) ||
+ !(test_bit(In_sync, &rdev->flags) ||
+ rdev->recovery_offset >= end_sector))
+ goto out_rcu_unlock;
+ }
+
+ atomic_inc(&rdev->nr_pending);
+ rcu_read_unlock();
+
+ if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
+ &bad_sectors)) {
+ rdev_dec_pending(rdev, mddev);
+ return 0;
+ }
+
+ align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
+ &mddev->io_acct_set);
+ md_io_acct = container_of(align_bio, struct md_io_acct, bio_clone);
+ raid_bio->bi_next = (void *)rdev;
+ if (blk_queue_io_stat(raid_bio->bi_bdev->bd_disk->queue))
+ md_io_acct->start_time = bio_start_io_acct(raid_bio);
+ md_io_acct->orig_bio = raid_bio;
+
+ align_bio->bi_end_io = raid5_align_endio;
+ align_bio->bi_private = md_io_acct;
+ align_bio->bi_iter.bi_sector = sector;
+
+ /* No reshape active, so we can trust rdev->data_offset */
+ align_bio->bi_iter.bi_sector += rdev->data_offset;
+
+ did_inc = false;
+ if (conf->quiesce == 0) {
+ atomic_inc(&conf->active_aligned_reads);
+ did_inc = true;
+ }
+ /* need a memory barrier to detect the race with raid5_quiesce() */
+ if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
+ /* quiesce is in progress, so we need to undo io activation and wait
+ * for it to finish
+ */
+ if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
+ wake_up(&conf->wait_for_quiescent);
+ spin_lock_irq(&conf->device_lock);
+ wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
+ conf->device_lock);
+ atomic_inc(&conf->active_aligned_reads);
+ spin_unlock_irq(&conf->device_lock);
+ }
+
+ if (mddev->gendisk)
+ trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
+ raid_bio->bi_iter.bi_sector);
+ submit_bio_noacct(align_bio);
+ return 1;
+
+out_rcu_unlock:
+ rcu_read_unlock();
+ return 0;
+}
+
+static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
+{
+ struct bio *split;
+ sector_t sector = raid_bio->bi_iter.bi_sector;
+ unsigned chunk_sects = mddev->chunk_sectors;
+ unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
+
+ if (sectors < bio_sectors(raid_bio)) {
+ struct r5conf *conf = mddev->private;
+ split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
+ bio_chain(split, raid_bio);
+ submit_bio_noacct(raid_bio);
+ raid_bio = split;
+ }
+
+ if (!raid5_read_one_chunk(mddev, raid_bio))
+ return raid_bio;
+
+ return NULL;
+}
+
+/* __get_priority_stripe - get the next stripe to process
+ *
+ * Full stripe writes are allowed to pass preread active stripes up until
+ * the bypass_threshold is exceeded. In general the bypass_count
+ * increments when the handle_list is handled before the hold_list; however, it
+ * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
+ * stripe with in flight i/o. The bypass_count will be reset when the
+ * head of the hold_list has changed, i.e. the head was promoted to the
+ * handle_list.
+ */
+static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
+ __must_hold(&conf->device_lock)
+{
+ struct stripe_head *sh, *tmp;
+ struct list_head *handle_list = NULL;
+ struct r5worker_group *wg;
+ bool second_try = !r5c_is_writeback(conf->log) &&
+ !r5l_log_disk_error(conf);
+ bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
+ r5l_log_disk_error(conf);
+
+again:
+ wg = NULL;
+ sh = NULL;
+ if (conf->worker_cnt_per_group == 0) {
+ handle_list = try_loprio ? &conf->loprio_list :
+ &conf->handle_list;
+ } else if (group != ANY_GROUP) {
+ handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
+ &conf->worker_groups[group].handle_list;
+ wg = &conf->worker_groups[group];
+ } else {
+ int i;
+ for (i = 0; i < conf->group_cnt; i++) {
+ handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
+ &conf->worker_groups[i].handle_list;
+ wg = &conf->worker_groups[i];
+ if (!list_empty(handle_list))
+ break;
+ }
+ }
+
+ pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
+ __func__,
+ list_empty(handle_list) ? "empty" : "busy",
+ list_empty(&conf->hold_list) ? "empty" : "busy",
+ atomic_read(&conf->pending_full_writes), conf->bypass_count);
+
+ if (!list_empty(handle_list)) {
+ sh = list_entry(handle_list->next, typeof(*sh), lru);
+
+ if (list_empty(&conf->hold_list))
+ conf->bypass_count = 0;
+ else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
+ if (conf->hold_list.next == conf->last_hold)
+ conf->bypass_count++;
+ else {
+ conf->last_hold = conf->hold_list.next;
+ conf->bypass_count -= conf->bypass_threshold;
+ if (conf->bypass_count < 0)
+ conf->bypass_count = 0;
+ }
+ }
+ } else if (!list_empty(&conf->hold_list) &&
+ ((conf->bypass_threshold &&
+ conf->bypass_count > conf->bypass_threshold) ||
+ atomic_read(&conf->pending_full_writes) == 0)) {
+
+ list_for_each_entry(tmp, &conf->hold_list, lru) {
+ if (conf->worker_cnt_per_group == 0 ||
+ group == ANY_GROUP ||
+ !cpu_online(tmp->cpu) ||
+ cpu_to_group(tmp->cpu) == group) {
+ sh = tmp;
+ break;
+ }
+ }
+
+ if (sh) {
+ conf->bypass_count -= conf->bypass_threshold;
+ if (conf->bypass_count < 0)
+ conf->bypass_count = 0;
+ }
+ wg = NULL;
+ }
+
+ if (!sh) {
+ if (second_try)
+ return NULL;
+ second_try = true;
+ try_loprio = !try_loprio;
+ goto again;
+ }
+
+ if (wg) {
+ wg->stripes_cnt--;
+ sh->group = NULL;
+ }
+ list_del_init(&sh->lru);
+ BUG_ON(atomic_inc_return(&sh->count) != 1);
+ return sh;
+}
+
+struct raid5_plug_cb {
+ struct blk_plug_cb cb;
+ struct list_head list;
+ struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
+};
+
+static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
+{
+ struct raid5_plug_cb *cb = container_of(
+ blk_cb, struct raid5_plug_cb, cb);
+ struct stripe_head *sh;
+ struct mddev *mddev = cb->cb.data;
+ struct r5conf *conf = mddev->private;
+ int cnt = 0;
+ int hash;
+
+ if (cb->list.next && !list_empty(&cb->list)) {
+ spin_lock_irq(&conf->device_lock);
+ while (!list_empty(&cb->list)) {
+ sh = list_first_entry(&cb->list, struct stripe_head, lru);
+ list_del_init(&sh->lru);
+ /*
+ * avoid race release_stripe_plug() sees
+ * STRIPE_ON_UNPLUG_LIST clear but the stripe
+ * is still in our list
+ */
+ smp_mb__before_atomic();
+ clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
+ /*
+ * STRIPE_ON_RELEASE_LIST could be set here. In that
+ * case, the count is always > 1 here
+ */
+ hash = sh->hash_lock_index;
+ __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
+ cnt++;
+ }
+ spin_unlock_irq(&conf->device_lock);
+ }
+ release_inactive_stripe_list(conf, cb->temp_inactive_list,
+ NR_STRIPE_HASH_LOCKS);
+ if (mddev->queue)
+ trace_block_unplug(mddev->queue, cnt, !from_schedule);
+ kfree(cb);
+}
+
+static void release_stripe_plug(struct mddev *mddev,
+ struct stripe_head *sh)
+{
+ struct blk_plug_cb *blk_cb = blk_check_plugged(
+ raid5_unplug, mddev,
+ sizeof(struct raid5_plug_cb));
+ struct raid5_plug_cb *cb;
+
+ if (!blk_cb) {
+ raid5_release_stripe(sh);
+ return;
+ }
+
+ cb = container_of(blk_cb, struct raid5_plug_cb, cb);
+
+ if (cb->list.next == NULL) {
+ int i;
+ INIT_LIST_HEAD(&cb->list);
+ for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
+ INIT_LIST_HEAD(cb->temp_inactive_list + i);
+ }
+
+ if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
+ list_add_tail(&sh->lru, &cb->list);
+ else
+ raid5_release_stripe(sh);
+}
+
+static void make_discard_request(struct mddev *mddev, struct bio *bi)
+{
+ struct r5conf *conf = mddev->private;
+ sector_t logical_sector, last_sector;
+ struct stripe_head *sh;
+ int stripe_sectors;
+
+ /* We need to handle this when io_uring supports discard/trim */
+ if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
+ return;
+
+ if (mddev->reshape_position != MaxSector)
+ /* Skip discard while reshape is happening */
+ return;
+
+ logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
+ last_sector = bio_end_sector(bi);
+
+ bi->bi_next = NULL;
+
+ stripe_sectors = conf->chunk_sectors *
+ (conf->raid_disks - conf->max_degraded);
+ logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
+ stripe_sectors);
+ sector_div(last_sector, stripe_sectors);
+
+ logical_sector *= conf->chunk_sectors;
+ last_sector *= conf->chunk_sectors;
+
+ for (; logical_sector < last_sector;
+ logical_sector += RAID5_STRIPE_SECTORS(conf)) {
+ DEFINE_WAIT(w);
+ int d;
+ again:
+ sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
+ prepare_to_wait(&conf->wait_for_overlap, &w,
+ TASK_UNINTERRUPTIBLE);
+ set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
+ if (test_bit(STRIPE_SYNCING, &sh->state)) {
+ raid5_release_stripe(sh);
+ schedule();
+ goto again;
+ }
+ clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
+ spin_lock_irq(&sh->stripe_lock);
+ for (d = 0; d < conf->raid_disks; d++) {
+ if (d == sh->pd_idx || d == sh->qd_idx)
+ continue;
+ if (sh->dev[d].towrite || sh->dev[d].toread) {
+ set_bit(R5_Overlap, &sh->dev[d].flags);
+ spin_unlock_irq(&sh->stripe_lock);
+ raid5_release_stripe(sh);
+ schedule();
+ goto again;
+ }
+ }
+ set_bit(STRIPE_DISCARD, &sh->state);
+ finish_wait(&conf->wait_for_overlap, &w);
+ sh->overwrite_disks = 0;
+ for (d = 0; d < conf->raid_disks; d++) {
+ if (d == sh->pd_idx || d == sh->qd_idx)
+ continue;
+ sh->dev[d].towrite = bi;
+ set_bit(R5_OVERWRITE, &sh->dev[d].flags);
+ bio_inc_remaining(bi);
+ md_write_inc(mddev, bi);
+ sh->overwrite_disks++;
+ }
+ spin_unlock_irq(&sh->stripe_lock);
+ if (conf->mddev->bitmap) {
+ for (d = 0;
+ d < conf->raid_disks - conf->max_degraded;
+ d++)
+ md_bitmap_startwrite(mddev->bitmap,
+ sh->sector,
+ RAID5_STRIPE_SECTORS(conf),
+ 0);
+ sh->bm_seq = conf->seq_flush + 1;
+ set_bit(STRIPE_BIT_DELAY, &sh->state);
+ }
+
+ set_bit(STRIPE_HANDLE, &sh->state);
+ clear_bit(STRIPE_DELAYED, &sh->state);
+ if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
+ atomic_inc(&conf->preread_active_stripes);
+ release_stripe_plug(mddev, sh);
+ }
+
+ bio_endio(bi);
+}
+
+static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
+ sector_t reshape_sector)
+{
+ return mddev->reshape_backwards ? sector < reshape_sector :
+ sector >= reshape_sector;
+}
+
+static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
+ sector_t max, sector_t reshape_sector)
+{
+ return mddev->reshape_backwards ? max < reshape_sector :
+ min >= reshape_sector;
+}
+
+static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
+ struct stripe_head *sh)
+{
+ sector_t max_sector = 0, min_sector = MaxSector;
+ bool ret = false;
+ int dd_idx;
+
+ for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
+ if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
+ continue;
+
+ min_sector = min(min_sector, sh->dev[dd_idx].sector);
+ max_sector = max(max_sector, sh->dev[dd_idx].sector);
+ }
+
+ spin_lock_irq(&conf->device_lock);
+
+ if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
+ conf->reshape_progress))
+ /* mismatch, need to try again */
+ ret = true;
+
+ spin_unlock_irq(&conf->device_lock);
+
+ return ret;
+}
+
+static int add_all_stripe_bios(struct r5conf *conf,
+ struct stripe_request_ctx *ctx, struct stripe_head *sh,
+ struct bio *bi, int forwrite, int previous)
+{
+ int dd_idx;
+ int ret = 1;
+
+ spin_lock_irq(&sh->stripe_lock);
+
+ for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
+ struct r5dev *dev = &sh->dev[dd_idx];
+
+ if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
+ continue;
+
+ if (dev->sector < ctx->first_sector ||
+ dev->sector >= ctx->last_sector)
+ continue;
+
+ if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
+ set_bit(R5_Overlap, &dev->flags);
+ ret = 0;
+ continue;
+ }
+ }
+
+ if (!ret)
+ goto out;
+
+ for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
+ struct r5dev *dev = &sh->dev[dd_idx];
+
+ if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
+ continue;
+
+ if (dev->sector < ctx->first_sector ||
+ dev->sector >= ctx->last_sector)
+ continue;
+
+ __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
+ clear_bit((dev->sector - ctx->first_sector) >>
+ RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
+ }
+
+out:
+ spin_unlock_irq(&sh->stripe_lock);
+ return ret;
+}
+
+static enum stripe_result make_stripe_request(struct mddev *mddev,
+ struct r5conf *conf, struct stripe_request_ctx *ctx,
+ sector_t logical_sector, struct bio *bi)
+{
+ const int rw = bio_data_dir(bi);
+ enum stripe_result ret;
+ struct stripe_head *sh;
+ sector_t new_sector;
+ int previous = 0, flags = 0;
+ int seq, dd_idx;
+
+ seq = read_seqcount_begin(&conf->gen_lock);
+
+ if (unlikely(conf->reshape_progress != MaxSector)) {
+ /*
+ * Spinlock is needed as reshape_progress may be
+ * 64bit on a 32bit platform, and so it might be
+ * possible to see a half-updated value
+ * Of course reshape_progress could change after
+ * the lock is dropped, so once we get a reference
+ * to the stripe that we think it is, we will have
+ * to check again.
+ */
+ spin_lock_irq(&conf->device_lock);
+ if (ahead_of_reshape(mddev, logical_sector,
+ conf->reshape_progress)) {
+ previous = 1;
+ } else {
+ if (ahead_of_reshape(mddev, logical_sector,
+ conf->reshape_safe)) {
+ spin_unlock_irq(&conf->device_lock);
+ return STRIPE_SCHEDULE_AND_RETRY;
+ }
+ }
+ spin_unlock_irq(&conf->device_lock);
+ }
+
+ new_sector = raid5_compute_sector(conf, logical_sector, previous,
+ &dd_idx, NULL);
+ pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
+ new_sector, logical_sector);
+
+ if (previous)
+ flags |= R5_GAS_PREVIOUS;
+ if (bi->bi_opf & REQ_RAHEAD)
+ flags |= R5_GAS_NOBLOCK;
+ sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
+ if (unlikely(!sh)) {
+ /* cannot get stripe, just give-up */
+ bi->bi_status = BLK_STS_IOERR;
+ return STRIPE_FAIL;
+ }
+
+ if (unlikely(previous) &&
+ stripe_ahead_of_reshape(mddev, conf, sh)) {
+ /*
+ * Expansion moved on while waiting for a stripe.
+ * Expansion could still move past after this
+ * test, but as we are holding a reference to
+ * 'sh', we know that if that happens,
+ * STRIPE_EXPANDING will get set and the expansion
+ * won't proceed until we finish with the stripe.
+ */
+ ret = STRIPE_SCHEDULE_AND_RETRY;
+ goto out_release;
+ }
+
+ if (read_seqcount_retry(&conf->gen_lock, seq)) {
+ /* Might have got the wrong stripe_head by accident */
+ ret = STRIPE_RETRY;
+ goto out_release;
+ }
+
+ if (test_bit(STRIPE_EXPANDING, &sh->state) ||
+ !add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
+ /*
+ * Stripe is busy expanding or add failed due to
+ * overlap. Flush everything and wait a while.
+ */
+ md_wakeup_thread(mddev->thread);
+ ret = STRIPE_SCHEDULE_AND_RETRY;
+ goto out_release;
+ }
+
+ if (stripe_can_batch(sh)) {
+ stripe_add_to_batch_list(conf, sh, ctx->batch_last);
+ if (ctx->batch_last)
+ raid5_release_stripe(ctx->batch_last);
+ atomic_inc(&sh->count);
+ ctx->batch_last = sh;
+ }
+
+ if (ctx->do_flush) {
+ set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
+ /* we only need flush for one stripe */
+ ctx->do_flush = false;
+ }
+
+ set_bit(STRIPE_HANDLE, &sh->state);
+ clear_bit(STRIPE_DELAYED, &sh->state);
+ if ((!sh->batch_head || sh == sh->batch_head) &&
+ (bi->bi_opf & REQ_SYNC) &&
+ !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
+ atomic_inc(&conf->preread_active_stripes);
+
+ release_stripe_plug(mddev, sh);
+ return STRIPE_SUCCESS;
+
+out_release:
+ raid5_release_stripe(sh);
+ return ret;
+}
+
+/*
+ * If the bio covers multiple data disks, find sector within the bio that has
+ * the lowest chunk offset in the first chunk.
+ */
+static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
+ struct bio *bi)
+{
+ int sectors_per_chunk = conf->chunk_sectors;
+ int raid_disks = conf->raid_disks;
+ int dd_idx;
+ struct stripe_head sh;
+ unsigned int chunk_offset;
+ sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
+ sector_t sector;
+
+ /* We pass in fake stripe_head to get back parity disk numbers */
+ sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh);
+ chunk_offset = sector_div(sector, sectors_per_chunk);
+ if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
+ return r_sector;
+ /*
+ * Bio crosses to the next data disk. Check whether it's in the same
+ * chunk.
+ */
+ dd_idx++;
+ while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
+ dd_idx++;
+ if (dd_idx >= raid_disks)
+ return r_sector;
+ return r_sector + sectors_per_chunk - chunk_offset;
+}
+
+static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
+{
+ DEFINE_WAIT_FUNC(wait, woken_wake_function);
+ struct r5conf *conf = mddev->private;
+ sector_t logical_sector;
+ struct stripe_request_ctx ctx = {};
+ const int rw = bio_data_dir(bi);
+ enum stripe_result res;
+ int s, stripe_cnt;
+
+ if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
+ int ret = log_handle_flush_request(conf, bi);
+
+ if (ret == 0)
+ return true;
+ if (ret == -ENODEV) {
+ if (md_flush_request(mddev, bi))
+ return true;
+ }
+ /* ret == -EAGAIN, fallback */
+ /*
+ * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
+ * we need to flush journal device
+ */
+ ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
+ }
+
+ if (!md_write_start(mddev, bi))
+ return false;
+ /*
+ * If array is degraded, better not do chunk aligned read because
+ * later we might have to read it again in order to reconstruct
+ * data on failed drives.
+ */
+ if (rw == READ && mddev->degraded == 0 &&
+ mddev->reshape_position == MaxSector) {
+ bi = chunk_aligned_read(mddev, bi);
+ if (!bi)
+ return true;
+ }
+
+ if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
+ make_discard_request(mddev, bi);
+ md_write_end(mddev);
+ return true;
+ }
+
+ logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
+ ctx.first_sector = logical_sector;
+ ctx.last_sector = bio_end_sector(bi);
+ bi->bi_next = NULL;
+
+ stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
+ RAID5_STRIPE_SECTORS(conf));
+ bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
+
+ pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
+ bi->bi_iter.bi_sector, ctx.last_sector);
+
+ /* Bail out if conflicts with reshape and REQ_NOWAIT is set */
+ if ((bi->bi_opf & REQ_NOWAIT) &&
+ (conf->reshape_progress != MaxSector) &&
+ !ahead_of_reshape(mddev, logical_sector, conf->reshape_progress) &&
+ ahead_of_reshape(mddev, logical_sector, conf->reshape_safe)) {
+ bio_wouldblock_error(bi);
+ if (rw == WRITE)
+ md_write_end(mddev);
+ return true;
+ }
+ md_account_bio(mddev, &bi);
+
+ /*
+ * Lets start with the stripe with the lowest chunk offset in the first
+ * chunk. That has the best chances of creating IOs adjacent to
+ * previous IOs in case of sequential IO and thus creates the most
+ * sequential IO pattern. We don't bother with the optimization when
+ * reshaping as the performance benefit is not worth the complexity.
+ */
+ if (likely(conf->reshape_progress == MaxSector))
+ logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
+ s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
+
+ add_wait_queue(&conf->wait_for_overlap, &wait);
+ while (1) {
+ res = make_stripe_request(mddev, conf, &ctx, logical_sector,
+ bi);
+ if (res == STRIPE_FAIL)
+ break;
+
+ if (res == STRIPE_RETRY)
+ continue;
+
+ if (res == STRIPE_SCHEDULE_AND_RETRY) {
+ /*
+ * Must release the reference to batch_last before
+ * scheduling and waiting for work to be done,
+ * otherwise the batch_last stripe head could prevent
+ * raid5_activate_delayed() from making progress
+ * and thus deadlocking.
+ */
+ if (ctx.batch_last) {
+ raid5_release_stripe(ctx.batch_last);
+ ctx.batch_last = NULL;
+ }
+
+ wait_woken(&wait, TASK_UNINTERRUPTIBLE,
+ MAX_SCHEDULE_TIMEOUT);
+ continue;
+ }
+
+ s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s);
+ if (s == stripe_cnt)
+ break;
+
+ logical_sector = ctx.first_sector +
+ (s << RAID5_STRIPE_SHIFT(conf));
+ }
+ remove_wait_queue(&conf->wait_for_overlap, &wait);
+
+ if (ctx.batch_last)
+ raid5_release_stripe(ctx.batch_last);
+
+ if (rw == WRITE)
+ md_write_end(mddev);
+ bio_endio(bi);
+ return true;
+}
+
+static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
+
+static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
+{
+ /* reshaping is quite different to recovery/resync so it is
+ * handled quite separately ... here.
+ *
+ * On each call to sync_request, we gather one chunk worth of
+ * destination stripes and flag them as expanding.
+ * Then we find all the source stripes and request reads.
+ * As the reads complete, handle_stripe will copy the data
+ * into the destination stripe and release that stripe.
+ */
+ struct r5conf *conf = mddev->private;
+ struct stripe_head *sh;
+ struct md_rdev *rdev;
+ sector_t first_sector, last_sector;
+ int raid_disks = conf->previous_raid_disks;
+ int data_disks = raid_disks - conf->max_degraded;
+ int new_data_disks = conf->raid_disks - conf->max_degraded;
+ int i;
+ int dd_idx;
+ sector_t writepos, readpos, safepos;
+ sector_t stripe_addr;
+ int reshape_sectors;
+ struct list_head stripes;
+ sector_t retn;
+
+ if (sector_nr == 0) {
+ /* If restarting in the middle, skip the initial sectors */
+ if (mddev->reshape_backwards &&
+ conf->reshape_progress < raid5_size(mddev, 0, 0)) {
+ sector_nr = raid5_size(mddev, 0, 0)
+ - conf->reshape_progress;
+ } else if (mddev->reshape_backwards &&
+ conf->reshape_progress == MaxSector) {
+ /* shouldn't happen, but just in case, finish up.*/
+ sector_nr = MaxSector;
+ } else if (!mddev->reshape_backwards &&
+ conf->reshape_progress > 0)
+ sector_nr = conf->reshape_progress;
+ sector_div(sector_nr, new_data_disks);
+ if (sector_nr) {
+ mddev->curr_resync_completed = sector_nr;
+ sysfs_notify_dirent_safe(mddev->sysfs_completed);
+ *skipped = 1;
+ retn = sector_nr;
+ goto finish;
+ }
+ }
+
+ /* We need to process a full chunk at a time.
+ * If old and new chunk sizes differ, we need to process the
+ * largest of these
+ */
+
+ reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
+
+ /* We update the metadata at least every 10 seconds, or when
+ * the data about to be copied would over-write the source of
+ * the data at the front of the range. i.e. one new_stripe
+ * along from reshape_progress new_maps to after where
+ * reshape_safe old_maps to
+ */
+ writepos = conf->reshape_progress;
+ sector_div(writepos, new_data_disks);
+ readpos = conf->reshape_progress;
+ sector_div(readpos, data_disks);
+ safepos = conf->reshape_safe;
+ sector_div(safepos, data_disks);
+ if (mddev->reshape_backwards) {
+ BUG_ON(writepos < reshape_sectors);
+ writepos -= reshape_sectors;
+ readpos += reshape_sectors;
+ safepos += reshape_sectors;
+ } else {
+ writepos += reshape_sectors;
+ /* readpos and safepos are worst-case calculations.
+ * A negative number is overly pessimistic, and causes
+ * obvious problems for unsigned storage. So clip to 0.
+ */
+ readpos -= min_t(sector_t, reshape_sectors, readpos);
+ safepos -= min_t(sector_t, reshape_sectors, safepos);
+ }
+
+ /* Having calculated the 'writepos' possibly use it
+ * to set 'stripe_addr' which is where we will write to.
+ */
+ if (mddev->reshape_backwards) {
+ BUG_ON(conf->reshape_progress == 0);
+ stripe_addr = writepos;
+ BUG_ON((mddev->dev_sectors &
+ ~((sector_t)reshape_sectors - 1))
+ - reshape_sectors - stripe_addr
+ != sector_nr);
+ } else {
+ BUG_ON(writepos != sector_nr + reshape_sectors);
+ stripe_addr = sector_nr;
+ }
+
+ /* 'writepos' is the most advanced device address we might write.
+ * 'readpos' is the least advanced device address we might read.
+ * 'safepos' is the least address recorded in the metadata as having
+ * been reshaped.
+ * If there is a min_offset_diff, these are adjusted either by
+ * increasing the safepos/readpos if diff is negative, or
+ * increasing writepos if diff is positive.
+ * If 'readpos' is then behind 'writepos', there is no way that we can
+ * ensure safety in the face of a crash - that must be done by userspace
+ * making a backup of the data. So in that case there is no particular
+ * rush to update metadata.
+ * Otherwise if 'safepos' is behind 'writepos', then we really need to
+ * update the metadata to advance 'safepos' to match 'readpos' so that
+ * we can be safe in the event of a crash.
+ * So we insist on updating metadata if safepos is behind writepos and
+ * readpos is beyond writepos.
+ * In any case, update the metadata every 10 seconds.
+ * Maybe that number should be configurable, but I'm not sure it is
+ * worth it.... maybe it could be a multiple of safemode_delay???
+ */
+ if (conf->min_offset_diff < 0) {
+ safepos += -conf->min_offset_diff;
+ readpos += -conf->min_offset_diff;
+ } else
+ writepos += conf->min_offset_diff;
+
+ if ((mddev->reshape_backwards
+ ? (safepos > writepos && readpos < writepos)
+ : (safepos < writepos && readpos > writepos)) ||
+ time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
+ /* Cannot proceed until we've updated the superblock... */
+ wait_event(conf->wait_for_overlap,
+ atomic_read(&conf->reshape_stripes)==0
+ || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
+ if (atomic_read(&conf->reshape_stripes) != 0)
+ return 0;
+ mddev->reshape_position = conf->reshape_progress;
+ mddev->curr_resync_completed = sector_nr;
+ if (!mddev->reshape_backwards)
+ /* Can update recovery_offset */
+ rdev_for_each(rdev, mddev)
+ if (rdev->raid_disk >= 0 &&
+ !test_bit(Journal, &rdev->flags) &&
+ !test_bit(In_sync, &rdev->flags) &&
+ rdev->recovery_offset < sector_nr)
+ rdev->recovery_offset = sector_nr;
+
+ conf->reshape_checkpoint = jiffies;
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+ md_wakeup_thread(mddev->thread);
+ wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
+ test_bit(MD_RECOVERY_INTR, &mddev->recovery));
+ if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
+ return 0;
+ spin_lock_irq(&conf->device_lock);
+ conf->reshape_safe = mddev->reshape_position;
+ spin_unlock_irq(&conf->device_lock);
+ wake_up(&conf->wait_for_overlap);
+ sysfs_notify_dirent_safe(mddev->sysfs_completed);
+ }
+
+ INIT_LIST_HEAD(&stripes);
+ for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
+ int j;
+ int skipped_disk = 0;
+ sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
+ R5_GAS_NOQUIESCE);
+ set_bit(STRIPE_EXPANDING, &sh->state);
+ atomic_inc(&conf->reshape_stripes);
+ /* If any of this stripe is beyond the end of the old
+ * array, then we need to zero those blocks
+ */
+ for (j=sh->disks; j--;) {
+ sector_t s;
+ if (j == sh->pd_idx)
+ continue;
+ if (conf->level == 6 &&
+ j == sh->qd_idx)
+ continue;
+ s = raid5_compute_blocknr(sh, j, 0);
+ if (s < raid5_size(mddev, 0, 0)) {
+ skipped_disk = 1;
+ continue;
+ }
+ memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
+ set_bit(R5_Expanded, &sh->dev[j].flags);
+ set_bit(R5_UPTODATE, &sh->dev[j].flags);
+ }
+ if (!skipped_disk) {
+ set_bit(STRIPE_EXPAND_READY, &sh->state);
+ set_bit(STRIPE_HANDLE, &sh->state);
+ }
+ list_add(&sh->lru, &stripes);
+ }
+ spin_lock_irq(&conf->device_lock);
+ if (mddev->reshape_backwards)
+ conf->reshape_progress -= reshape_sectors * new_data_disks;
+ else
+ conf->reshape_progress += reshape_sectors * new_data_disks;
+ spin_unlock_irq(&conf->device_lock);
+ /* Ok, those stripe are ready. We can start scheduling
+ * reads on the source stripes.
+ * The source stripes are determined by mapping the first and last
+ * block on the destination stripes.
+ */
+ first_sector =
+ raid5_compute_sector(conf, stripe_addr*(new_data_disks),
+ 1, &dd_idx, NULL);
+ last_sector =
+ raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
+ * new_data_disks - 1),
+ 1, &dd_idx, NULL);
+ if (last_sector >= mddev->dev_sectors)
+ last_sector = mddev->dev_sectors - 1;
+ while (first_sector <= last_sector) {
+ sh = raid5_get_active_stripe(conf, NULL, first_sector,
+ R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
+ set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
+ set_bit(STRIPE_HANDLE, &sh->state);
+ raid5_release_stripe(sh);
+ first_sector += RAID5_STRIPE_SECTORS(conf);
+ }
+ /* Now that the sources are clearly marked, we can release
+ * the destination stripes
+ */
+ while (!list_empty(&stripes)) {
+ sh = list_entry(stripes.next, struct stripe_head, lru);
+ list_del_init(&sh->lru);
+ raid5_release_stripe(sh);
+ }
+ /* If this takes us to the resync_max point where we have to pause,
+ * then we need to write out the superblock.
+ */
+ sector_nr += reshape_sectors;
+ retn = reshape_sectors;
+finish:
+ if (mddev->curr_resync_completed > mddev->resync_max ||
+ (sector_nr - mddev->curr_resync_completed) * 2
+ >= mddev->resync_max - mddev->curr_resync_completed) {
+ /* Cannot proceed until we've updated the superblock... */
+ wait_event(conf->wait_for_overlap,
+ atomic_read(&conf->reshape_stripes) == 0
+ || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
+ if (atomic_read(&conf->reshape_stripes) != 0)
+ goto ret;
+ mddev->reshape_position = conf->reshape_progress;
+ mddev->curr_resync_completed = sector_nr;
+ if (!mddev->reshape_backwards)
+ /* Can update recovery_offset */
+ rdev_for_each(rdev, mddev)
+ if (rdev->raid_disk >= 0 &&
+ !test_bit(Journal, &rdev->flags) &&
+ !test_bit(In_sync, &rdev->flags) &&
+ rdev->recovery_offset < sector_nr)
+ rdev->recovery_offset = sector_nr;
+ conf->reshape_checkpoint = jiffies;
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+ md_wakeup_thread(mddev->thread);
+ wait_event(mddev->sb_wait,
+ !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
+ || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
+ if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
+ goto ret;
+ spin_lock_irq(&conf->device_lock);
+ conf->reshape_safe = mddev->reshape_position;
+ spin_unlock_irq(&conf->device_lock);
+ wake_up(&conf->wait_for_overlap);
+ sysfs_notify_dirent_safe(mddev->sysfs_completed);
+ }
+ret:
+ return retn;
+}
+
+static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
+ int *skipped)
+{
+ struct r5conf *conf = mddev->private;
+ struct stripe_head *sh;
+ sector_t max_sector = mddev->dev_sectors;
+ sector_t sync_blocks;
+ int still_degraded = 0;
+ int i;
+
+ if (sector_nr >= max_sector) {
+ /* just being told to finish up .. nothing much to do */
+
+ if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
+ end_reshape(conf);
+ return 0;
+ }
+
+ if (mddev->curr_resync < max_sector) /* aborted */
+ md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
+ &sync_blocks, 1);
+ else /* completed sync */
+ conf->fullsync = 0;
+ md_bitmap_close_sync(mddev->bitmap);
+
+ return 0;
+ }
+
+ /* Allow raid5_quiesce to complete */
+ wait_event(conf->wait_for_overlap, conf->quiesce != 2);
+
+ if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
+ return reshape_request(mddev, sector_nr, skipped);
+
+ /* No need to check resync_max as we never do more than one
+ * stripe, and as resync_max will always be on a chunk boundary,
+ * if the check in md_do_sync didn't fire, there is no chance
+ * of overstepping resync_max here
+ */
+
+ /* if there is too many failed drives and we are trying
+ * to resync, then assert that we are finished, because there is
+ * nothing we can do.
+ */
+ if (mddev->degraded >= conf->max_degraded &&
+ test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
+ sector_t rv = mddev->dev_sectors - sector_nr;
+ *skipped = 1;
+ return rv;
+ }
+ if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
+ !conf->fullsync &&
+ !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
+ sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
+ /* we can skip this block, and probably more */
+ do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
+ *skipped = 1;
+ /* keep things rounded to whole stripes */
+ return sync_blocks * RAID5_STRIPE_SECTORS(conf);
+ }
+
+ md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
+
+ sh = raid5_get_active_stripe(conf, NULL, sector_nr,
+ R5_GAS_NOBLOCK);
+ if (sh == NULL) {
+ sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
+ /* make sure we don't swamp the stripe cache if someone else
+ * is trying to get access
+ */
+ schedule_timeout_uninterruptible(1);
+ }
+ /* Need to check if array will still be degraded after recovery/resync
+ * Note in case of > 1 drive failures it's possible we're rebuilding
+ * one drive while leaving another faulty drive in array.
+ */
+ rcu_read_lock();
+ for (i = 0; i < conf->raid_disks; i++) {
+ struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
+
+ if (rdev == NULL || test_bit(Faulty, &rdev->flags))
+ still_degraded = 1;
+ }
+ rcu_read_unlock();
+
+ md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
+
+ set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
+ set_bit(STRIPE_HANDLE, &sh->state);
+
+ raid5_release_stripe(sh);
+
+ return RAID5_STRIPE_SECTORS(conf);
+}
+
+static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
+ unsigned int offset)
+{
+ /* We may not be able to submit a whole bio at once as there
+ * may not be enough stripe_heads available.
+ * We cannot pre-allocate enough stripe_heads as we may need
+ * more than exist in the cache (if we allow ever large chunks).
+ * So we do one stripe head at a time and record in
+ * ->bi_hw_segments how many have been done.
+ *
+ * We *know* that this entire raid_bio is in one chunk, so
+ * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
+ */
+ struct stripe_head *sh;
+ int dd_idx;
+ sector_t sector, logical_sector, last_sector;
+ int scnt = 0;
+ int handled = 0;
+
+ logical_sector = raid_bio->bi_iter.bi_sector &
+ ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
+ sector = raid5_compute_sector(conf, logical_sector,
+ 0, &dd_idx, NULL);
+ last_sector = bio_end_sector(raid_bio);
+
+ for (; logical_sector < last_sector;
+ logical_sector += RAID5_STRIPE_SECTORS(conf),
+ sector += RAID5_STRIPE_SECTORS(conf),
+ scnt++) {
+
+ if (scnt < offset)
+ /* already done this stripe */
+ continue;
+
+ sh = raid5_get_active_stripe(conf, NULL, sector,
+ R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
+ if (!sh) {
+ /* failed to get a stripe - must wait */
+ conf->retry_read_aligned = raid_bio;
+ conf->retry_read_offset = scnt;
+ return handled;
+ }
+
+ if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
+ raid5_release_stripe(sh);
+ conf->retry_read_aligned = raid_bio;
+ conf->retry_read_offset = scnt;
+ return handled;
+ }
+
+ set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
+ handle_stripe(sh);
+ raid5_release_stripe(sh);
+ handled++;
+ }
+
+ bio_endio(raid_bio);
+
+ if (atomic_dec_and_test(&conf->active_aligned_reads))
+ wake_up(&conf->wait_for_quiescent);
+ return handled;
+}
+
+static int handle_active_stripes(struct r5conf *conf, int group,
+ struct r5worker *worker,
+ struct list_head *temp_inactive_list)
+ __must_hold(&conf->device_lock)
+{
+ struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
+ int i, batch_size = 0, hash;
+ bool release_inactive = false;
+
+ while (batch_size < MAX_STRIPE_BATCH &&
+ (sh = __get_priority_stripe(conf, group)) != NULL)
+ batch[batch_size++] = sh;
+
+ if (batch_size == 0) {
+ for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
+ if (!list_empty(temp_inactive_list + i))
+ break;
+ if (i == NR_STRIPE_HASH_LOCKS) {
+ spin_unlock_irq(&conf->device_lock);
+ log_flush_stripe_to_raid(conf);
+ spin_lock_irq(&conf->device_lock);
+ return batch_size;
+ }
+ release_inactive = true;
+ }
+ spin_unlock_irq(&conf->device_lock);
+
+ release_inactive_stripe_list(conf, temp_inactive_list,
+ NR_STRIPE_HASH_LOCKS);
+
+ r5l_flush_stripe_to_raid(conf->log);
+ if (release_inactive) {
+ spin_lock_irq(&conf->device_lock);
+ return 0;
+ }
+
+ for (i = 0; i < batch_size; i++)
+ handle_stripe(batch[i]);
+ log_write_stripe_run(conf);
+
+ cond_resched();
+
+ spin_lock_irq(&conf->device_lock);
+ for (i = 0; i < batch_size; i++) {
+ hash = batch[i]->hash_lock_index;
+ __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
+ }
+ return batch_size;
+}
+
+static void raid5_do_work(struct work_struct *work)
+{
+ struct r5worker *worker = container_of(work, struct r5worker, work);
+ struct r5worker_group *group = worker->group;
+ struct r5conf *conf = group->conf;
+ struct mddev *mddev = conf->mddev;
+ int group_id = group - conf->worker_groups;
+ int handled;
+ struct blk_plug plug;
+
+ pr_debug("+++ raid5worker active\n");
+
+ blk_start_plug(&plug);
+ handled = 0;
+ spin_lock_irq(&conf->device_lock);
+ while (1) {
+ int batch_size, released;
+
+ released = release_stripe_list(conf, worker->temp_inactive_list);
+
+ batch_size = handle_active_stripes(conf, group_id, worker,
+ worker->temp_inactive_list);
+ worker->working = false;
+ if (!batch_size && !released)
+ break;
+ handled += batch_size;
+ wait_event_lock_irq(mddev->sb_wait,
+ !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
+ conf->device_lock);
+ }
+ pr_debug("%d stripes handled\n", handled);
+
+ spin_unlock_irq(&conf->device_lock);
+
+ flush_deferred_bios(conf);
+
+ r5l_flush_stripe_to_raid(conf->log);
+
+ async_tx_issue_pending_all();
+ blk_finish_plug(&plug);
+
+ pr_debug("--- raid5worker inactive\n");
+}
+
+/*
+ * This is our raid5 kernel thread.
+ *
+ * We scan the hash table for stripes which can be handled now.
+ * During the scan, completed stripes are saved for us by the interrupt
+ * handler, so that they will not have to wait for our next wakeup.
+ */
+static void raid5d(struct md_thread *thread)
+{
+ struct mddev *mddev = thread->mddev;
+ struct r5conf *conf = mddev->private;
+ int handled;
+ struct blk_plug plug;
+
+ pr_debug("+++ raid5d active\n");
+
+ md_check_recovery(mddev);
+
+ blk_start_plug(&plug);
+ handled = 0;
+ spin_lock_irq(&conf->device_lock);
+ while (1) {
+ struct bio *bio;
+ int batch_size, released;
+ unsigned int offset;
+
+ released = release_stripe_list(conf, conf->temp_inactive_list);
+ if (released)
+ clear_bit(R5_DID_ALLOC, &conf->cache_state);
+
+ if (
+ !list_empty(&conf->bitmap_list)) {
+ /* Now is a good time to flush some bitmap updates */
+ conf->seq_flush++;
+ spin_unlock_irq(&conf->device_lock);
+ md_bitmap_unplug(mddev->bitmap);
+ spin_lock_irq(&conf->device_lock);
+ conf->seq_write = conf->seq_flush;
+ activate_bit_delay(conf, conf->temp_inactive_list);
+ }
+ raid5_activate_delayed(conf);
+
+ while ((bio = remove_bio_from_retry(conf, &offset))) {
+ int ok;
+ spin_unlock_irq(&conf->device_lock);
+ ok = retry_aligned_read(conf, bio, offset);
+ spin_lock_irq(&conf->device_lock);
+ if (!ok)
+ break;
+ handled++;
+ }
+
+ batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
+ conf->temp_inactive_list);
+ if (!batch_size && !released)
+ break;
+ handled += batch_size;
+
+ if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
+ spin_unlock_irq(&conf->device_lock);
+ md_check_recovery(mddev);
+ spin_lock_irq(&conf->device_lock);
+
+ /*
+ * Waiting on MD_SB_CHANGE_PENDING below may deadlock
+ * seeing md_check_recovery() is needed to clear
+ * the flag when using mdmon.
+ */
+ continue;
+ }
+
+ wait_event_lock_irq(mddev->sb_wait,
+ !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
+ conf->device_lock);
+ }
+ pr_debug("%d stripes handled\n", handled);
+
+ spin_unlock_irq(&conf->device_lock);
+ if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
+ mutex_trylock(&conf->cache_size_mutex)) {
+ grow_one_stripe(conf, __GFP_NOWARN);
+ /* Set flag even if allocation failed. This helps
+ * slow down allocation requests when mem is short
+ */
+ set_bit(R5_DID_ALLOC, &conf->cache_state);
+ mutex_unlock(&conf->cache_size_mutex);
+ }
+
+ flush_deferred_bios(conf);
+
+ r5l_flush_stripe_to_raid(conf->log);
+
+ async_tx_issue_pending_all();
+ blk_finish_plug(&plug);
+
+ pr_debug("--- raid5d inactive\n");
+}
+
+static ssize_t
+raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
+{
+ struct r5conf *conf;
+ int ret = 0;
+ spin_lock(&mddev->lock);
+ conf = mddev->private;
+ if (conf)
+ ret = sprintf(page, "%d\n", conf->min_nr_stripes);
+ spin_unlock(&mddev->lock);
+ return ret;
+}
+
+int
+raid5_set_cache_size(struct mddev *mddev, int size)
+{
+ int result = 0;
+ struct r5conf *conf = mddev->private;
+
+ if (size <= 16 || size > 32768)
+ return -EINVAL;
+
+ conf->min_nr_stripes = size;
+ mutex_lock(&conf->cache_size_mutex);
+ while (size < conf->max_nr_stripes &&
+ drop_one_stripe(conf))
+ ;
+ mutex_unlock(&conf->cache_size_mutex);
+
+ md_allow_write(mddev);
+
+ mutex_lock(&conf->cache_size_mutex);
+ while (size > conf->max_nr_stripes)
+ if (!grow_one_stripe(conf, GFP_KERNEL)) {
+ conf->min_nr_stripes = conf->max_nr_stripes;
+ result = -ENOMEM;
+ break;
+ }
+ mutex_unlock(&conf->cache_size_mutex);
+
+ return result;
+}
+EXPORT_SYMBOL(raid5_set_cache_size);
+
+static ssize_t
+raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
+{
+ struct r5conf *conf;
+ unsigned long new;
+ int err;
+
+ if (len >= PAGE_SIZE)
+ return -EINVAL;
+ if (kstrtoul(page, 10, &new))
+ return -EINVAL;
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+ conf = mddev->private;
+ if (!conf)
+ err = -ENODEV;
+ else
+ err = raid5_set_cache_size(mddev, new);
+ mddev_unlock(mddev);
+
+ return err ?: len;
+}
+
+static struct md_sysfs_entry
+raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
+ raid5_show_stripe_cache_size,
+ raid5_store_stripe_cache_size);
+
+static ssize_t
+raid5_show_rmw_level(struct mddev *mddev, char *page)
+{
+ struct r5conf *conf = mddev->private;
+ if (conf)
+ return sprintf(page, "%d\n", conf->rmw_level);
+ else
+ return 0;
+}
+
+static ssize_t
+raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
+{
+ struct r5conf *conf = mddev->private;
+ unsigned long new;
+
+ if (!conf)
+ return -ENODEV;
+
+ if (len >= PAGE_SIZE)
+ return -EINVAL;
+
+ if (kstrtoul(page, 10, &new))
+ return -EINVAL;
+
+ if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
+ return -EINVAL;
+
+ if (new != PARITY_DISABLE_RMW &&
+ new != PARITY_ENABLE_RMW &&
+ new != PARITY_PREFER_RMW)
+ return -EINVAL;
+
+ conf->rmw_level = new;
+ return len;
+}
+
+static struct md_sysfs_entry
+raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
+ raid5_show_rmw_level,
+ raid5_store_rmw_level);
+
+static ssize_t
+raid5_show_stripe_size(struct mddev *mddev, char *page)
+{
+ struct r5conf *conf;
+ int ret = 0;
+
+ spin_lock(&mddev->lock);
+ conf = mddev->private;
+ if (conf)
+ ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
+ spin_unlock(&mddev->lock);
+ return ret;
+}
+
+#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
+static ssize_t
+raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
+{
+ struct r5conf *conf;
+ unsigned long new;
+ int err;
+ int size;
+
+ if (len >= PAGE_SIZE)
+ return -EINVAL;
+ if (kstrtoul(page, 10, &new))
+ return -EINVAL;
+
+ /*
+ * The value should not be bigger than PAGE_SIZE. It requires to
+ * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
+ * of two.
+ */
+ if (new % DEFAULT_STRIPE_SIZE != 0 ||
+ new > PAGE_SIZE || new == 0 ||
+ new != roundup_pow_of_two(new))
+ return -EINVAL;
+
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+
+ conf = mddev->private;
+ if (!conf) {
+ err = -ENODEV;
+ goto out_unlock;
+ }
+
+ if (new == conf->stripe_size)
+ goto out_unlock;
+
+ pr_debug("md/raid: change stripe_size from %lu to %lu\n",
+ conf->stripe_size, new);
+
+ if (mddev->sync_thread ||
+ test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
+ mddev->reshape_position != MaxSector ||
+ mddev->sysfs_active) {
+ err = -EBUSY;
+ goto out_unlock;
+ }
+
+ mddev_suspend(mddev);
+ mutex_lock(&conf->cache_size_mutex);
+ size = conf->max_nr_stripes;
+
+ shrink_stripes(conf);
+
+ conf->stripe_size = new;
+ conf->stripe_shift = ilog2(new) - 9;
+ conf->stripe_sectors = new >> 9;
+ if (grow_stripes(conf, size)) {
+ pr_warn("md/raid:%s: couldn't allocate buffers\n",
+ mdname(mddev));
+ err = -ENOMEM;
+ }
+ mutex_unlock(&conf->cache_size_mutex);
+ mddev_resume(mddev);
+
+out_unlock:
+ mddev_unlock(mddev);
+ return err ?: len;
+}
+
+static struct md_sysfs_entry
+raid5_stripe_size = __ATTR(stripe_size, 0644,
+ raid5_show_stripe_size,
+ raid5_store_stripe_size);
+#else
+static struct md_sysfs_entry
+raid5_stripe_size = __ATTR(stripe_size, 0444,
+ raid5_show_stripe_size,
+ NULL);
+#endif
+
+static ssize_t
+raid5_show_preread_threshold(struct mddev *mddev, char *page)
+{
+ struct r5conf *conf;
+ int ret = 0;
+ spin_lock(&mddev->lock);
+ conf = mddev->private;
+ if (conf)
+ ret = sprintf(page, "%d\n", conf->bypass_threshold);
+ spin_unlock(&mddev->lock);
+ return ret;
+}
+
+static ssize_t
+raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
+{
+ struct r5conf *conf;
+ unsigned long new;
+ int err;
+
+ if (len >= PAGE_SIZE)
+ return -EINVAL;
+ if (kstrtoul(page, 10, &new))
+ return -EINVAL;
+
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+ conf = mddev->private;
+ if (!conf)
+ err = -ENODEV;
+ else if (new > conf->min_nr_stripes)
+ err = -EINVAL;
+ else
+ conf->bypass_threshold = new;
+ mddev_unlock(mddev);
+ return err ?: len;
+}
+
+static struct md_sysfs_entry
+raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
+ S_IRUGO | S_IWUSR,
+ raid5_show_preread_threshold,
+ raid5_store_preread_threshold);
+
+static ssize_t
+raid5_show_skip_copy(struct mddev *mddev, char *page)
+{
+ struct r5conf *conf;
+ int ret = 0;
+ spin_lock(&mddev->lock);
+ conf = mddev->private;
+ if (conf)
+ ret = sprintf(page, "%d\n", conf->skip_copy);
+ spin_unlock(&mddev->lock);
+ return ret;
+}
+
+static ssize_t
+raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
+{
+ struct r5conf *conf;
+ unsigned long new;
+ int err;
+
+ if (len >= PAGE_SIZE)
+ return -EINVAL;
+ if (kstrtoul(page, 10, &new))
+ return -EINVAL;
+ new = !!new;
+
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+ conf = mddev->private;
+ if (!conf)
+ err = -ENODEV;
+ else if (new != conf->skip_copy) {
+ struct request_queue *q = mddev->queue;
+
+ mddev_suspend(mddev);
+ conf->skip_copy = new;
+ if (new)
+ blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
+ else
+ blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
+ mddev_resume(mddev);
+ }
+ mddev_unlock(mddev);
+ return err ?: len;
+}
+
+static struct md_sysfs_entry
+raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
+ raid5_show_skip_copy,
+ raid5_store_skip_copy);
+
+static ssize_t
+stripe_cache_active_show(struct mddev *mddev, char *page)
+{
+ struct r5conf *conf = mddev->private;
+ if (conf)
+ return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
+ else
+ return 0;
+}
+
+static struct md_sysfs_entry
+raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
+
+static ssize_t
+raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
+{
+ struct r5conf *conf;
+ int ret = 0;
+ spin_lock(&mddev->lock);
+ conf = mddev->private;
+ if (conf)
+ ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
+ spin_unlock(&mddev->lock);
+ return ret;
+}
+
+static int alloc_thread_groups(struct r5conf *conf, int cnt,
+ int *group_cnt,
+ struct r5worker_group **worker_groups);
+static ssize_t
+raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
+{
+ struct r5conf *conf;
+ unsigned int new;
+ int err;
+ struct r5worker_group *new_groups, *old_groups;
+ int group_cnt;
+
+ if (len >= PAGE_SIZE)
+ return -EINVAL;
+ if (kstrtouint(page, 10, &new))
+ return -EINVAL;
+ /* 8192 should be big enough */
+ if (new > 8192)
+ return -EINVAL;
+
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+ conf = mddev->private;
+ if (!conf)
+ err = -ENODEV;
+ else if (new != conf->worker_cnt_per_group) {
+ mddev_suspend(mddev);
+
+ old_groups = conf->worker_groups;
+ if (old_groups)
+ flush_workqueue(raid5_wq);
+
+ err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
+ if (!err) {
+ spin_lock_irq(&conf->device_lock);
+ conf->group_cnt = group_cnt;
+ conf->worker_cnt_per_group = new;
+ conf->worker_groups = new_groups;
+ spin_unlock_irq(&conf->device_lock);
+
+ if (old_groups)
+ kfree(old_groups[0].workers);
+ kfree(old_groups);
+ }
+ mddev_resume(mddev);
+ }
+ mddev_unlock(mddev);
+
+ return err ?: len;
+}
+
+static struct md_sysfs_entry
+raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
+ raid5_show_group_thread_cnt,
+ raid5_store_group_thread_cnt);
+
+static struct attribute *raid5_attrs[] = {
+ &raid5_stripecache_size.attr,
+ &raid5_stripecache_active.attr,
+ &raid5_preread_bypass_threshold.attr,
+ &raid5_group_thread_cnt.attr,
+ &raid5_skip_copy.attr,
+ &raid5_rmw_level.attr,
+ &raid5_stripe_size.attr,
+ &r5c_journal_mode.attr,
+ &ppl_write_hint.attr,
+ NULL,
+};
+static const struct attribute_group raid5_attrs_group = {
+ .name = NULL,
+ .attrs = raid5_attrs,
+};
+
+static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
+ struct r5worker_group **worker_groups)
+{
+ int i, j, k;
+ ssize_t size;
+ struct r5worker *workers;
+
+ if (cnt == 0) {
+ *group_cnt = 0;
+ *worker_groups = NULL;
+ return 0;
+ }
+ *group_cnt = num_possible_nodes();
+ size = sizeof(struct r5worker) * cnt;
+ workers = kcalloc(size, *group_cnt, GFP_NOIO);
+ *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
+ GFP_NOIO);
+ if (!*worker_groups || !workers) {
+ kfree(workers);
+ kfree(*worker_groups);
+ return -ENOMEM;
+ }
+
+ for (i = 0; i < *group_cnt; i++) {
+ struct r5worker_group *group;
+
+ group = &(*worker_groups)[i];
+ INIT_LIST_HEAD(&group->handle_list);
+ INIT_LIST_HEAD(&group->loprio_list);
+ group->conf = conf;
+ group->workers = workers + i * cnt;
+
+ for (j = 0; j < cnt; j++) {
+ struct r5worker *worker = group->workers + j;
+ worker->group = group;
+ INIT_WORK(&worker->work, raid5_do_work);
+
+ for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
+ INIT_LIST_HEAD(worker->temp_inactive_list + k);
+ }
+ }
+
+ return 0;
+}
+
+static void free_thread_groups(struct r5conf *conf)
+{
+ if (conf->worker_groups)
+ kfree(conf->worker_groups[0].workers);
+ kfree(conf->worker_groups);
+ conf->worker_groups = NULL;
+}
+
+static sector_t
+raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
+{
+ struct r5conf *conf = mddev->private;
+
+ if (!sectors)
+ sectors = mddev->dev_sectors;
+ if (!raid_disks)
+ /* size is defined by the smallest of previous and new size */
+ raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
+
+ sectors &= ~((sector_t)conf->chunk_sectors - 1);
+ sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
+ return sectors * (raid_disks - conf->max_degraded);
+}
+
+static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
+{
+ safe_put_page(percpu->spare_page);
+ percpu->spare_page = NULL;
+ kvfree(percpu->scribble);
+ percpu->scribble = NULL;
+}
+
+static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
+{
+ if (conf->level == 6 && !percpu->spare_page) {
+ percpu->spare_page = alloc_page(GFP_KERNEL);
+ if (!percpu->spare_page)
+ return -ENOMEM;
+ }
+
+ if (scribble_alloc(percpu,
+ max(conf->raid_disks,
+ conf->previous_raid_disks),
+ max(conf->chunk_sectors,
+ conf->prev_chunk_sectors)
+ / RAID5_STRIPE_SECTORS(conf))) {
+ free_scratch_buffer(conf, percpu);
+ return -ENOMEM;
+ }
+
+ local_lock_init(&percpu->lock);
+ return 0;
+}
+
+static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
+{
+ struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
+
+ free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
+ return 0;
+}
+
+static void raid5_free_percpu(struct r5conf *conf)
+{
+ if (!conf->percpu)
+ return;
+
+ cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
+ free_percpu(conf->percpu);
+}
+
+static void free_conf(struct r5conf *conf)
+{
+ int i;
+
+ log_exit(conf);
+
+ unregister_shrinker(&conf->shrinker);
+ free_thread_groups(conf);
+ shrink_stripes(conf);
+ raid5_free_percpu(conf);
+ for (i = 0; i < conf->pool_size; i++)
+ if (conf->disks[i].extra_page)
+ put_page(conf->disks[i].extra_page);
+ kfree(conf->disks);
+ bioset_exit(&conf->bio_split);
+ kfree(conf->stripe_hashtbl);
+ kfree(conf->pending_data);
+ kfree(conf);
+}
+
+static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
+{
+ struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
+ struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
+
+ if (alloc_scratch_buffer(conf, percpu)) {
+ pr_warn("%s: failed memory allocation for cpu%u\n",
+ __func__, cpu);
+ return -ENOMEM;
+ }
+ return 0;
+}
+
+static int raid5_alloc_percpu(struct r5conf *conf)
+{
+ int err = 0;
+
+ conf->percpu = alloc_percpu(struct raid5_percpu);
+ if (!conf->percpu)
+ return -ENOMEM;
+
+ err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
+ if (!err) {
+ conf->scribble_disks = max(conf->raid_disks,
+ conf->previous_raid_disks);
+ conf->scribble_sectors = max(conf->chunk_sectors,
+ conf->prev_chunk_sectors);
+ }
+ return err;
+}
+
+static unsigned long raid5_cache_scan(struct shrinker *shrink,
+ struct shrink_control *sc)
+{
+ struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
+ unsigned long ret = SHRINK_STOP;
+
+ if (mutex_trylock(&conf->cache_size_mutex)) {
+ ret= 0;
+ while (ret < sc->nr_to_scan &&
+ conf->max_nr_stripes > conf->min_nr_stripes) {
+ if (drop_one_stripe(conf) == 0) {
+ ret = SHRINK_STOP;
+ break;
+ }
+ ret++;
+ }
+ mutex_unlock(&conf->cache_size_mutex);
+ }
+ return ret;
+}
+
+static unsigned long raid5_cache_count(struct shrinker *shrink,
+ struct shrink_control *sc)
+{
+ struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
+
+ if (conf->max_nr_stripes < conf->min_nr_stripes)
+ /* unlikely, but not impossible */
+ return 0;
+ return conf->max_nr_stripes - conf->min_nr_stripes;
+}
+
+static struct r5conf *setup_conf(struct mddev *mddev)
+{
+ struct r5conf *conf;
+ int raid_disk, memory, max_disks;
+ struct md_rdev *rdev;
+ struct disk_info *disk;
+ char pers_name[6];
+ int i;
+ int group_cnt;
+ struct r5worker_group *new_group;
+ int ret = -ENOMEM;
+
+ if (mddev->new_level != 5
+ && mddev->new_level != 4
+ && mddev->new_level != 6) {
+ pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
+ mdname(mddev), mddev->new_level);
+ return ERR_PTR(-EIO);
+ }
+ if ((mddev->new_level == 5
+ && !algorithm_valid_raid5(mddev->new_layout)) ||
+ (mddev->new_level == 6
+ && !algorithm_valid_raid6(mddev->new_layout))) {
+ pr_warn("md/raid:%s: layout %d not supported\n",
+ mdname(mddev), mddev->new_layout);
+ return ERR_PTR(-EIO);
+ }
+ if (mddev->new_level == 6 && mddev->raid_disks < 4) {
+ pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
+ mdname(mddev), mddev->raid_disks);
+ return ERR_PTR(-EINVAL);
+ }
+
+ if (!mddev->new_chunk_sectors ||
+ (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
+ !is_power_of_2(mddev->new_chunk_sectors)) {
+ pr_warn("md/raid:%s: invalid chunk size %d\n",
+ mdname(mddev), mddev->new_chunk_sectors << 9);
+ return ERR_PTR(-EINVAL);
+ }
+
+ conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
+ if (conf == NULL)
+ goto abort;
+
+#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
+ conf->stripe_size = DEFAULT_STRIPE_SIZE;
+ conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
+ conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
+#endif
+ INIT_LIST_HEAD(&conf->free_list);
+ INIT_LIST_HEAD(&conf->pending_list);
+ conf->pending_data = kcalloc(PENDING_IO_MAX,
+ sizeof(struct r5pending_data),
+ GFP_KERNEL);
+ if (!conf->pending_data)
+ goto abort;
+ for (i = 0; i < PENDING_IO_MAX; i++)
+ list_add(&conf->pending_data[i].sibling, &conf->free_list);
+ /* Don't enable multi-threading by default*/
+ if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
+ conf->group_cnt = group_cnt;
+ conf->worker_cnt_per_group = 0;
+ conf->worker_groups = new_group;
+ } else
+ goto abort;
+ spin_lock_init(&conf->device_lock);
+ seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
+ mutex_init(&conf->cache_size_mutex);
+
+ init_waitqueue_head(&conf->wait_for_quiescent);
+ init_waitqueue_head(&conf->wait_for_stripe);
+ init_waitqueue_head(&conf->wait_for_overlap);
+ INIT_LIST_HEAD(&conf->handle_list);
+ INIT_LIST_HEAD(&conf->loprio_list);
+ INIT_LIST_HEAD(&conf->hold_list);
+ INIT_LIST_HEAD(&conf->delayed_list);
+ INIT_LIST_HEAD(&conf->bitmap_list);
+ init_llist_head(&conf->released_stripes);
+ atomic_set(&conf->active_stripes, 0);
+ atomic_set(&conf->preread_active_stripes, 0);
+ atomic_set(&conf->active_aligned_reads, 0);
+ spin_lock_init(&conf->pending_bios_lock);
+ conf->batch_bio_dispatch = true;
+ rdev_for_each(rdev, mddev) {
+ if (test_bit(Journal, &rdev->flags))
+ continue;
+ if (bdev_nonrot(rdev->bdev)) {
+ conf->batch_bio_dispatch = false;
+ break;
+ }
+ }
+
+ conf->bypass_threshold = BYPASS_THRESHOLD;
+ conf->recovery_disabled = mddev->recovery_disabled - 1;
+
+ conf->raid_disks = mddev->raid_disks;
+ if (mddev->reshape_position == MaxSector)
+ conf->previous_raid_disks = mddev->raid_disks;
+ else
+ conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
+ max_disks = max(conf->raid_disks, conf->previous_raid_disks);
+
+ conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
+ GFP_KERNEL);
+
+ if (!conf->disks)
+ goto abort;
+
+ for (i = 0; i < max_disks; i++) {
+ conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
+ if (!conf->disks[i].extra_page)
+ goto abort;
+ }
+
+ ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
+ if (ret)
+ goto abort;
+ conf->mddev = mddev;
+
+ ret = -ENOMEM;
+ conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
+ if (!conf->stripe_hashtbl)
+ goto abort;
+
+ /* We init hash_locks[0] separately to that it can be used
+ * as the reference lock in the spin_lock_nest_lock() call
+ * in lock_all_device_hash_locks_irq in order to convince
+ * lockdep that we know what we are doing.
+ */
+ spin_lock_init(conf->hash_locks);
+ for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
+ spin_lock_init(conf->hash_locks + i);
+
+ for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
+ INIT_LIST_HEAD(conf->inactive_list + i);
+
+ for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
+ INIT_LIST_HEAD(conf->temp_inactive_list + i);
+
+ atomic_set(&conf->r5c_cached_full_stripes, 0);
+ INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
+ atomic_set(&conf->r5c_cached_partial_stripes, 0);
+ INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
+ atomic_set(&conf->r5c_flushing_full_stripes, 0);
+ atomic_set(&conf->r5c_flushing_partial_stripes, 0);
+
+ conf->level = mddev->new_level;
+ conf->chunk_sectors = mddev->new_chunk_sectors;
+ ret = raid5_alloc_percpu(conf);
+ if (ret)
+ goto abort;
+
+ pr_debug("raid456: run(%s) called.\n", mdname(mddev));
+
+ ret = -EIO;
+ rdev_for_each(rdev, mddev) {
+ raid_disk = rdev->raid_disk;
+ if (raid_disk >= max_disks
+ || raid_disk < 0 || test_bit(Journal, &rdev->flags))
+ continue;
+ disk = conf->disks + raid_disk;
+
+ if (test_bit(Replacement, &rdev->flags)) {
+ if (disk->replacement)
+ goto abort;
+ RCU_INIT_POINTER(disk->replacement, rdev);
+ } else {
+ if (disk->rdev)
+ goto abort;
+ RCU_INIT_POINTER(disk->rdev, rdev);
+ }
+
+ if (test_bit(In_sync, &rdev->flags)) {
+ pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
+ mdname(mddev), rdev->bdev, raid_disk);
+ } else if (rdev->saved_raid_disk != raid_disk)
+ /* Cannot rely on bitmap to complete recovery */
+ conf->fullsync = 1;
+ }
+
+ conf->level = mddev->new_level;
+ if (conf->level == 6) {
+ conf->max_degraded = 2;
+ if (raid6_call.xor_syndrome)
+ conf->rmw_level = PARITY_ENABLE_RMW;
+ else
+ conf->rmw_level = PARITY_DISABLE_RMW;
+ } else {
+ conf->max_degraded = 1;
+ conf->rmw_level = PARITY_ENABLE_RMW;
+ }
+ conf->algorithm = mddev->new_layout;
+ conf->reshape_progress = mddev->reshape_position;
+ if (conf->reshape_progress != MaxSector) {
+ conf->prev_chunk_sectors = mddev->chunk_sectors;
+ conf->prev_algo = mddev->layout;
+ } else {
+ conf->prev_chunk_sectors = conf->chunk_sectors;
+ conf->prev_algo = conf->algorithm;
+ }
+
+ conf->min_nr_stripes = NR_STRIPES;
+ if (mddev->reshape_position != MaxSector) {
+ int stripes = max_t(int,
+ ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
+ ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
+ conf->min_nr_stripes = max(NR_STRIPES, stripes);
+ if (conf->min_nr_stripes != NR_STRIPES)
+ pr_info("md/raid:%s: force stripe size %d for reshape\n",
+ mdname(mddev), conf->min_nr_stripes);
+ }
+ memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
+ max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
+ atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
+ if (grow_stripes(conf, conf->min_nr_stripes)) {
+ pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
+ mdname(mddev), memory);
+ ret = -ENOMEM;
+ goto abort;
+ } else
+ pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
+ /*
+ * Losing a stripe head costs more than the time to refill it,
+ * it reduces the queue depth and so can hurt throughput.
+ * So set it rather large, scaled by number of devices.
+ */
+ conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
+ conf->shrinker.scan_objects = raid5_cache_scan;
+ conf->shrinker.count_objects = raid5_cache_count;
+ conf->shrinker.batch = 128;
+ conf->shrinker.flags = 0;
+ ret = register_shrinker(&conf->shrinker, "md-raid5:%s", mdname(mddev));
+ if (ret) {
+ pr_warn("md/raid:%s: couldn't register shrinker.\n",
+ mdname(mddev));
+ goto abort;
+ }
+
+ sprintf(pers_name, "raid%d", mddev->new_level);
+ conf->thread = md_register_thread(raid5d, mddev, pers_name);
+ if (!conf->thread) {
+ pr_warn("md/raid:%s: couldn't allocate thread.\n",
+ mdname(mddev));
+ ret = -ENOMEM;
+ goto abort;
+ }
+
+ return conf;
+
+ abort:
+ if (conf)
+ free_conf(conf);
+ return ERR_PTR(ret);
+}
+
+static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
+{
+ switch (algo) {
+ case ALGORITHM_PARITY_0:
+ if (raid_disk < max_degraded)
+ return 1;
+ break;
+ case ALGORITHM_PARITY_N:
+ if (raid_disk >= raid_disks - max_degraded)
+ return 1;
+ break;
+ case ALGORITHM_PARITY_0_6:
+ if (raid_disk == 0 ||
+ raid_disk == raid_disks - 1)
+ return 1;
+ break;
+ case ALGORITHM_LEFT_ASYMMETRIC_6:
+ case ALGORITHM_RIGHT_ASYMMETRIC_6:
+ case ALGORITHM_LEFT_SYMMETRIC_6:
+ case ALGORITHM_RIGHT_SYMMETRIC_6:
+ if (raid_disk == raid_disks - 1)
+ return 1;
+ }
+ return 0;
+}
+
+static void raid5_set_io_opt(struct r5conf *conf)
+{
+ blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
+ (conf->raid_disks - conf->max_degraded));
+}
+
+static int raid5_run(struct mddev *mddev)
+{
+ struct r5conf *conf;
+ int working_disks = 0;
+ int dirty_parity_disks = 0;
+ struct md_rdev *rdev;
+ struct md_rdev *journal_dev = NULL;
+ sector_t reshape_offset = 0;
+ int i, ret = 0;
+ long long min_offset_diff = 0;
+ int first = 1;
+
+ if (acct_bioset_init(mddev)) {
+ pr_err("md/raid456:%s: alloc acct bioset failed.\n", mdname(mddev));
+ return -ENOMEM;
+ }
+
+ if (mddev_init_writes_pending(mddev) < 0) {
+ ret = -ENOMEM;
+ goto exit_acct_set;
+ }
+
+ if (mddev->recovery_cp != MaxSector)
+ pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
+ mdname(mddev));
+
+ rdev_for_each(rdev, mddev) {
+ long long diff;
+
+ if (test_bit(Journal, &rdev->flags)) {
+ journal_dev = rdev;
+ continue;
+ }
+ if (rdev->raid_disk < 0)
+ continue;
+ diff = (rdev->new_data_offset - rdev->data_offset);
+ if (first) {
+ min_offset_diff = diff;
+ first = 0;
+ } else if (mddev->reshape_backwards &&
+ diff < min_offset_diff)
+ min_offset_diff = diff;
+ else if (!mddev->reshape_backwards &&
+ diff > min_offset_diff)
+ min_offset_diff = diff;
+ }
+
+ if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
+ (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
+ pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
+ mdname(mddev));
+ ret = -EINVAL;
+ goto exit_acct_set;
+ }
+
+ if (mddev->reshape_position != MaxSector) {
+ /* Check that we can continue the reshape.
+ * Difficulties arise if the stripe we would write to
+ * next is at or after the stripe we would read from next.
+ * For a reshape that changes the number of devices, this
+ * is only possible for a very short time, and mdadm makes
+ * sure that time appears to have past before assembling
+ * the array. So we fail if that time hasn't passed.
+ * For a reshape that keeps the number of devices the same
+ * mdadm must be monitoring the reshape can keeping the
+ * critical areas read-only and backed up. It will start
+ * the array in read-only mode, so we check for that.
+ */
+ sector_t here_new, here_old;
+ int old_disks;
+ int max_degraded = (mddev->level == 6 ? 2 : 1);
+ int chunk_sectors;
+ int new_data_disks;
+
+ if (journal_dev) {
+ pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
+ mdname(mddev));
+ ret = -EINVAL;
+ goto exit_acct_set;
+ }
+
+ if (mddev->new_level != mddev->level) {
+ pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
+ mdname(mddev));
+ ret = -EINVAL;
+ goto exit_acct_set;
+ }
+ old_disks = mddev->raid_disks - mddev->delta_disks;
+ /* reshape_position must be on a new-stripe boundary, and one
+ * further up in new geometry must map after here in old
+ * geometry.
+ * If the chunk sizes are different, then as we perform reshape
+ * in units of the largest of the two, reshape_position needs
+ * be a multiple of the largest chunk size times new data disks.
+ */
+ here_new = mddev->reshape_position;
+ chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
+ new_data_disks = mddev->raid_disks - max_degraded;
+ if (sector_div(here_new, chunk_sectors * new_data_disks)) {
+ pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
+ mdname(mddev));
+ ret = -EINVAL;
+ goto exit_acct_set;
+ }
+ reshape_offset = here_new * chunk_sectors;
+ /* here_new is the stripe we will write to */
+ here_old = mddev->reshape_position;
+ sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
+ /* here_old is the first stripe that we might need to read
+ * from */
+ if (mddev->delta_disks == 0) {
+ /* We cannot be sure it is safe to start an in-place
+ * reshape. It is only safe if user-space is monitoring
+ * and taking constant backups.
+ * mdadm always starts a situation like this in
+ * readonly mode so it can take control before
+ * allowing any writes. So just check for that.
+ */
+ if (abs(min_offset_diff) >= mddev->chunk_sectors &&
+ abs(min_offset_diff) >= mddev->new_chunk_sectors)
+ /* not really in-place - so OK */;
+ else if (mddev->ro == 0) {
+ pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
+ mdname(mddev));
+ ret = -EINVAL;
+ goto exit_acct_set;
+ }
+ } else if (mddev->reshape_backwards
+ ? (here_new * chunk_sectors + min_offset_diff <=
+ here_old * chunk_sectors)
+ : (here_new * chunk_sectors >=
+ here_old * chunk_sectors + (-min_offset_diff))) {
+ /* Reading from the same stripe as writing to - bad */
+ pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
+ mdname(mddev));
+ ret = -EINVAL;
+ goto exit_acct_set;
+ }
+ pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
+ /* OK, we should be able to continue; */
+ } else {
+ BUG_ON(mddev->level != mddev->new_level);
+ BUG_ON(mddev->layout != mddev->new_layout);
+ BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
+ BUG_ON(mddev->delta_disks != 0);
+ }
+
+ if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
+ test_bit(MD_HAS_PPL, &mddev->flags)) {
+ pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
+ mdname(mddev));
+ clear_bit(MD_HAS_PPL, &mddev->flags);
+ clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
+ }
+
+ if (mddev->private == NULL)
+ conf = setup_conf(mddev);
+ else
+ conf = mddev->private;
+
+ if (IS_ERR(conf)) {
+ ret = PTR_ERR(conf);
+ goto exit_acct_set;
+ }
+
+ if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
+ if (!journal_dev) {
+ pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
+ mdname(mddev));
+ mddev->ro = 1;
+ set_disk_ro(mddev->gendisk, 1);
+ } else if (mddev->recovery_cp == MaxSector)
+ set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
+ }
+
+ conf->min_offset_diff = min_offset_diff;
+ mddev->thread = conf->thread;
+ conf->thread = NULL;
+ mddev->private = conf;
+
+ for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
+ i++) {
+ rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
+ if (!rdev && conf->disks[i].replacement) {
+ /* The replacement is all we have yet */
+ rdev = rdev_mdlock_deref(mddev,
+ conf->disks[i].replacement);
+ conf->disks[i].replacement = NULL;
+ clear_bit(Replacement, &rdev->flags);
+ rcu_assign_pointer(conf->disks[i].rdev, rdev);
+ }
+ if (!rdev)
+ continue;
+ if (rcu_access_pointer(conf->disks[i].replacement) &&
+ conf->reshape_progress != MaxSector) {
+ /* replacements and reshape simply do not mix. */
+ pr_warn("md: cannot handle concurrent replacement and reshape.\n");
+ goto abort;
+ }
+ if (test_bit(In_sync, &rdev->flags)) {
+ working_disks++;
+ continue;
+ }
+ /* This disc is not fully in-sync. However if it
+ * just stored parity (beyond the recovery_offset),
+ * when we don't need to be concerned about the
+ * array being dirty.
+ * When reshape goes 'backwards', we never have
+ * partially completed devices, so we only need
+ * to worry about reshape going forwards.
+ */
+ /* Hack because v0.91 doesn't store recovery_offset properly. */
+ if (mddev->major_version == 0 &&
+ mddev->minor_version > 90)
+ rdev->recovery_offset = reshape_offset;
+
+ if (rdev->recovery_offset < reshape_offset) {
+ /* We need to check old and new layout */
+ if (!only_parity(rdev->raid_disk,
+ conf->algorithm,
+ conf->raid_disks,
+ conf->max_degraded))
+ continue;
+ }
+ if (!only_parity(rdev->raid_disk,
+ conf->prev_algo,
+ conf->previous_raid_disks,
+ conf->max_degraded))
+ continue;
+ dirty_parity_disks++;
+ }
+
+ /*
+ * 0 for a fully functional array, 1 or 2 for a degraded array.
+ */
+ mddev->degraded = raid5_calc_degraded(conf);
+
+ if (has_failed(conf)) {
+ pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
+ mdname(mddev), mddev->degraded, conf->raid_disks);
+ goto abort;
+ }
+
+ /* device size must be a multiple of chunk size */
+ mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
+ mddev->resync_max_sectors = mddev->dev_sectors;
+
+ if (mddev->degraded > dirty_parity_disks &&
+ mddev->recovery_cp != MaxSector) {
+ if (test_bit(MD_HAS_PPL, &mddev->flags))
+ pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
+ mdname(mddev));
+ else if (mddev->ok_start_degraded)
+ pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
+ mdname(mddev));
+ else {
+ pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
+ mdname(mddev));
+ goto abort;
+ }
+ }
+
+ pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
+ mdname(mddev), conf->level,
+ mddev->raid_disks-mddev->degraded, mddev->raid_disks,
+ mddev->new_layout);
+
+ print_raid5_conf(conf);
+
+ if (conf->reshape_progress != MaxSector) {
+ conf->reshape_safe = conf->reshape_progress;
+ atomic_set(&conf->reshape_stripes, 0);
+ clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+ clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
+ set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
+ set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
+ mddev->sync_thread = md_register_thread(md_do_sync, mddev,
+ "reshape");
+ if (!mddev->sync_thread)
+ goto abort;
+ }
+
+ /* Ok, everything is just fine now */
+ if (mddev->to_remove == &raid5_attrs_group)
+ mddev->to_remove = NULL;
+ else if (mddev->kobj.sd &&
+ sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
+ pr_warn("raid5: failed to create sysfs attributes for %s\n",
+ mdname(mddev));
+ md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
+
+ if (mddev->queue) {
+ int chunk_size;
+ /* read-ahead size must cover two whole stripes, which
+ * is 2 * (datadisks) * chunksize where 'n' is the
+ * number of raid devices
+ */
+ int data_disks = conf->previous_raid_disks - conf->max_degraded;
+ int stripe = data_disks *
+ ((mddev->chunk_sectors << 9) / PAGE_SIZE);
+
+ chunk_size = mddev->chunk_sectors << 9;
+ blk_queue_io_min(mddev->queue, chunk_size);
+ raid5_set_io_opt(conf);
+ mddev->queue->limits.raid_partial_stripes_expensive = 1;
+ /*
+ * We can only discard a whole stripe. It doesn't make sense to
+ * discard data disk but write parity disk
+ */
+ stripe = stripe * PAGE_SIZE;
+ stripe = roundup_pow_of_two(stripe);
+ mddev->queue->limits.discard_granularity = stripe;
+
+ blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
+
+ rdev_for_each(rdev, mddev) {
+ disk_stack_limits(mddev->gendisk, rdev->bdev,
+ rdev->data_offset << 9);
+ disk_stack_limits(mddev->gendisk, rdev->bdev,
+ rdev->new_data_offset << 9);
+ }
+
+ /*
+ * zeroing is required, otherwise data
+ * could be lost. Consider a scenario: discard a stripe
+ * (the stripe could be inconsistent if
+ * discard_zeroes_data is 0); write one disk of the
+ * stripe (the stripe could be inconsistent again
+ * depending on which disks are used to calculate
+ * parity); the disk is broken; The stripe data of this
+ * disk is lost.
+ *
+ * We only allow DISCARD if the sysadmin has confirmed that
+ * only safe devices are in use by setting a module parameter.
+ * A better idea might be to turn DISCARD into WRITE_ZEROES
+ * requests, as that is required to be safe.
+ */
+ if (!devices_handle_discard_safely ||
+ mddev->queue->limits.max_discard_sectors < (stripe >> 9) ||
+ mddev->queue->limits.discard_granularity < stripe)
+ blk_queue_max_discard_sectors(mddev->queue, 0);
+
+ /*
+ * Requests require having a bitmap for each stripe.
+ * Limit the max sectors based on this.
+ */
+ blk_queue_max_hw_sectors(mddev->queue,
+ RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf));
+
+ /* No restrictions on the number of segments in the request */
+ blk_queue_max_segments(mddev->queue, USHRT_MAX);
+ }
+
+ if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
+ goto abort;
+
+ return 0;
+abort:
+ md_unregister_thread(&mddev->thread);
+ print_raid5_conf(conf);
+ free_conf(conf);
+ mddev->private = NULL;
+ pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
+ ret = -EIO;
+exit_acct_set:
+ acct_bioset_exit(mddev);
+ return ret;
+}
+
+static void raid5_free(struct mddev *mddev, void *priv)
+{
+ struct r5conf *conf = priv;
+
+ free_conf(conf);
+ acct_bioset_exit(mddev);
+ mddev->to_remove = &raid5_attrs_group;
+}
+
+static void raid5_status(struct seq_file *seq, struct mddev *mddev)
+{
+ struct r5conf *conf = mddev->private;
+ int i;
+
+ seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
+ conf->chunk_sectors / 2, mddev->layout);
+ seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
+ rcu_read_lock();
+ for (i = 0; i < conf->raid_disks; i++) {
+ struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
+ seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
+ }
+ rcu_read_unlock();
+ seq_printf (seq, "]");
+}
+
+static void print_raid5_conf (struct r5conf *conf)
+{
+ struct md_rdev *rdev;
+ int i;
+
+ pr_debug("RAID conf printout:\n");
+ if (!conf) {
+ pr_debug("(conf==NULL)\n");
+ return;
+ }
+ pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
+ conf->raid_disks,
+ conf->raid_disks - conf->mddev->degraded);
+
+ rcu_read_lock();
+ for (i = 0; i < conf->raid_disks; i++) {
+ rdev = rcu_dereference(conf->disks[i].rdev);
+ if (rdev)
+ pr_debug(" disk %d, o:%d, dev:%pg\n",
+ i, !test_bit(Faulty, &rdev->flags),
+ rdev->bdev);
+ }
+ rcu_read_unlock();
+}
+
+static int raid5_spare_active(struct mddev *mddev)
+{
+ int i;
+ struct r5conf *conf = mddev->private;
+ struct md_rdev *rdev, *replacement;
+ int count = 0;
+ unsigned long flags;
+
+ for (i = 0; i < conf->raid_disks; i++) {
+ rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
+ replacement = rdev_mdlock_deref(mddev,
+ conf->disks[i].replacement);
+ if (replacement
+ && replacement->recovery_offset == MaxSector
+ && !test_bit(Faulty, &replacement->flags)
+ && !test_and_set_bit(In_sync, &replacement->flags)) {
+ /* Replacement has just become active. */
+ if (!rdev
+ || !test_and_clear_bit(In_sync, &rdev->flags))
+ count++;
+ if (rdev) {
+ /* Replaced device not technically faulty,
+ * but we need to be sure it gets removed
+ * and never re-added.
+ */
+ set_bit(Faulty, &rdev->flags);
+ sysfs_notify_dirent_safe(
+ rdev->sysfs_state);
+ }
+ sysfs_notify_dirent_safe(replacement->sysfs_state);
+ } else if (rdev
+ && rdev->recovery_offset == MaxSector
+ && !test_bit(Faulty, &rdev->flags)
+ && !test_and_set_bit(In_sync, &rdev->flags)) {
+ count++;
+ sysfs_notify_dirent_safe(rdev->sysfs_state);
+ }
+ }
+ spin_lock_irqsave(&conf->device_lock, flags);
+ mddev->degraded = raid5_calc_degraded(conf);
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ print_raid5_conf(conf);
+ return count;
+}
+
+static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct r5conf *conf = mddev->private;
+ int err = 0;
+ int number = rdev->raid_disk;
+ struct md_rdev __rcu **rdevp;
+ struct disk_info *p;
+ struct md_rdev *tmp;
+
+ print_raid5_conf(conf);
+ if (test_bit(Journal, &rdev->flags) && conf->log) {
+ /*
+ * we can't wait pending write here, as this is called in
+ * raid5d, wait will deadlock.
+ * neilb: there is no locking about new writes here,
+ * so this cannot be safe.
+ */
+ if (atomic_read(&conf->active_stripes) ||
+ atomic_read(&conf->r5c_cached_full_stripes) ||
+ atomic_read(&conf->r5c_cached_partial_stripes)) {
+ return -EBUSY;
+ }
+ log_exit(conf);
+ return 0;
+ }
+ if (unlikely(number >= conf->pool_size))
+ return 0;
+ p = conf->disks + number;
+ if (rdev == rcu_access_pointer(p->rdev))
+ rdevp = &p->rdev;
+ else if (rdev == rcu_access_pointer(p->replacement))
+ rdevp = &p->replacement;
+ else
+ return 0;
+
+ if (number >= conf->raid_disks &&
+ conf->reshape_progress == MaxSector)
+ clear_bit(In_sync, &rdev->flags);
+
+ if (test_bit(In_sync, &rdev->flags) ||
+ atomic_read(&rdev->nr_pending)) {
+ err = -EBUSY;
+ goto abort;
+ }
+ /* Only remove non-faulty devices if recovery
+ * isn't possible.
+ */
+ if (!test_bit(Faulty, &rdev->flags) &&
+ mddev->recovery_disabled != conf->recovery_disabled &&
+ !has_failed(conf) &&
+ (!rcu_access_pointer(p->replacement) ||
+ rcu_access_pointer(p->replacement) == rdev) &&
+ number < conf->raid_disks) {
+ err = -EBUSY;
+ goto abort;
+ }
+ *rdevp = NULL;
+ if (!test_bit(RemoveSynchronized, &rdev->flags)) {
+ lockdep_assert_held(&mddev->reconfig_mutex);
+ synchronize_rcu();
+ if (atomic_read(&rdev->nr_pending)) {
+ /* lost the race, try later */
+ err = -EBUSY;
+ rcu_assign_pointer(*rdevp, rdev);
+ }
+ }
+ if (!err) {
+ err = log_modify(conf, rdev, false);
+ if (err)
+ goto abort;
+ }
+
+ tmp = rcu_access_pointer(p->replacement);
+ if (tmp) {
+ /* We must have just cleared 'rdev' */
+ rcu_assign_pointer(p->rdev, tmp);
+ clear_bit(Replacement, &tmp->flags);
+ smp_mb(); /* Make sure other CPUs may see both as identical
+ * but will never see neither - if they are careful
+ */
+ rcu_assign_pointer(p->replacement, NULL);
+
+ if (!err)
+ err = log_modify(conf, tmp, true);
+ }
+
+ clear_bit(WantReplacement, &rdev->flags);
+abort:
+
+ print_raid5_conf(conf);
+ return err;
+}
+
+static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+ struct r5conf *conf = mddev->private;
+ int ret, err = -EEXIST;
+ int disk;
+ struct disk_info *p;
+ struct md_rdev *tmp;
+ int first = 0;
+ int last = conf->raid_disks - 1;
+
+ if (test_bit(Journal, &rdev->flags)) {
+ if (conf->log)
+ return -EBUSY;
+
+ rdev->raid_disk = 0;
+ /*
+ * The array is in readonly mode if journal is missing, so no
+ * write requests running. We should be safe
+ */
+ ret = log_init(conf, rdev, false);
+ if (ret)
+ return ret;
+
+ ret = r5l_start(conf->log);
+ if (ret)
+ return ret;
+
+ return 0;
+ }
+ if (mddev->recovery_disabled == conf->recovery_disabled)
+ return -EBUSY;
+
+ if (rdev->saved_raid_disk < 0 && has_failed(conf))
+ /* no point adding a device */
+ return -EINVAL;
+
+ if (rdev->raid_disk >= 0)
+ first = last = rdev->raid_disk;
+
+ /*
+ * find the disk ... but prefer rdev->saved_raid_disk
+ * if possible.
+ */
+ if (rdev->saved_raid_disk >= first &&
+ rdev->saved_raid_disk <= last &&
+ conf->disks[rdev->saved_raid_disk].rdev == NULL)
+ first = rdev->saved_raid_disk;
+
+ for (disk = first; disk <= last; disk++) {
+ p = conf->disks + disk;
+ if (p->rdev == NULL) {
+ clear_bit(In_sync, &rdev->flags);
+ rdev->raid_disk = disk;
+ if (rdev->saved_raid_disk != disk)
+ conf->fullsync = 1;
+ rcu_assign_pointer(p->rdev, rdev);
+
+ err = log_modify(conf, rdev, true);
+
+ goto out;
+ }
+ }
+ for (disk = first; disk <= last; disk++) {
+ p = conf->disks + disk;
+ tmp = rdev_mdlock_deref(mddev, p->rdev);
+ if (test_bit(WantReplacement, &tmp->flags) &&
+ p->replacement == NULL) {
+ clear_bit(In_sync, &rdev->flags);
+ set_bit(Replacement, &rdev->flags);
+ rdev->raid_disk = disk;
+ err = 0;
+ conf->fullsync = 1;
+ rcu_assign_pointer(p->replacement, rdev);
+ break;
+ }
+ }
+out:
+ print_raid5_conf(conf);
+ return err;
+}
+
+static int raid5_resize(struct mddev *mddev, sector_t sectors)
+{
+ /* no resync is happening, and there is enough space
+ * on all devices, so we can resize.
+ * We need to make sure resync covers any new space.
+ * If the array is shrinking we should possibly wait until
+ * any io in the removed space completes, but it hardly seems
+ * worth it.
+ */
+ sector_t newsize;
+ struct r5conf *conf = mddev->private;
+
+ if (raid5_has_log(conf) || raid5_has_ppl(conf))
+ return -EINVAL;
+ sectors &= ~((sector_t)conf->chunk_sectors - 1);
+ newsize = raid5_size(mddev, sectors, mddev->raid_disks);
+ if (mddev->external_size &&
+ mddev->array_sectors > newsize)
+ return -EINVAL;
+ if (mddev->bitmap) {
+ int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
+ if (ret)
+ return ret;
+ }
+ md_set_array_sectors(mddev, newsize);
+ if (sectors > mddev->dev_sectors &&
+ mddev->recovery_cp > mddev->dev_sectors) {
+ mddev->recovery_cp = mddev->dev_sectors;
+ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+ }
+ mddev->dev_sectors = sectors;
+ mddev->resync_max_sectors = sectors;
+ return 0;
+}
+
+static int check_stripe_cache(struct mddev *mddev)
+{
+ /* Can only proceed if there are plenty of stripe_heads.
+ * We need a minimum of one full stripe,, and for sensible progress
+ * it is best to have about 4 times that.
+ * If we require 4 times, then the default 256 4K stripe_heads will
+ * allow for chunk sizes up to 256K, which is probably OK.
+ * If the chunk size is greater, user-space should request more
+ * stripe_heads first.
+ */
+ struct r5conf *conf = mddev->private;
+ if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
+ > conf->min_nr_stripes ||
+ ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
+ > conf->min_nr_stripes) {
+ pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
+ mdname(mddev),
+ ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
+ / RAID5_STRIPE_SIZE(conf))*4);
+ return 0;
+ }
+ return 1;
+}
+
+static int check_reshape(struct mddev *mddev)
+{
+ struct r5conf *conf = mddev->private;
+
+ if (raid5_has_log(conf) || raid5_has_ppl(conf))
+ return -EINVAL;
+ if (mddev->delta_disks == 0 &&
+ mddev->new_layout == mddev->layout &&
+ mddev->new_chunk_sectors == mddev->chunk_sectors)
+ return 0; /* nothing to do */
+ if (has_failed(conf))
+ return -EINVAL;
+ if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
+ /* We might be able to shrink, but the devices must
+ * be made bigger first.
+ * For raid6, 4 is the minimum size.
+ * Otherwise 2 is the minimum
+ */
+ int min = 2;
+ if (mddev->level == 6)
+ min = 4;
+ if (mddev->raid_disks + mddev->delta_disks < min)
+ return -EINVAL;
+ }
+
+ if (!check_stripe_cache(mddev))
+ return -ENOSPC;
+
+ if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
+ mddev->delta_disks > 0)
+ if (resize_chunks(conf,
+ conf->previous_raid_disks
+ + max(0, mddev->delta_disks),
+ max(mddev->new_chunk_sectors,
+ mddev->chunk_sectors)
+ ) < 0)
+ return -ENOMEM;
+
+ if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
+ return 0; /* never bother to shrink */
+ return resize_stripes(conf, (conf->previous_raid_disks
+ + mddev->delta_disks));
+}
+
+static int raid5_start_reshape(struct mddev *mddev)
+{
+ struct r5conf *conf = mddev->private;
+ struct md_rdev *rdev;
+ int spares = 0;
+ unsigned long flags;
+
+ if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
+ return -EBUSY;
+
+ if (!check_stripe_cache(mddev))
+ return -ENOSPC;
+
+ if (has_failed(conf))
+ return -EINVAL;
+
+ rdev_for_each(rdev, mddev) {
+ if (!test_bit(In_sync, &rdev->flags)
+ && !test_bit(Faulty, &rdev->flags))
+ spares++;
+ }
+
+ if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
+ /* Not enough devices even to make a degraded array
+ * of that size
+ */
+ return -EINVAL;
+
+ /* Refuse to reduce size of the array. Any reductions in
+ * array size must be through explicit setting of array_size
+ * attribute.
+ */
+ if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
+ < mddev->array_sectors) {
+ pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
+ mdname(mddev));
+ return -EINVAL;
+ }
+
+ atomic_set(&conf->reshape_stripes, 0);
+ spin_lock_irq(&conf->device_lock);
+ write_seqcount_begin(&conf->gen_lock);
+ conf->previous_raid_disks = conf->raid_disks;
+ conf->raid_disks += mddev->delta_disks;
+ conf->prev_chunk_sectors = conf->chunk_sectors;
+ conf->chunk_sectors = mddev->new_chunk_sectors;
+ conf->prev_algo = conf->algorithm;
+ conf->algorithm = mddev->new_layout;
+ conf->generation++;
+ /* Code that selects data_offset needs to see the generation update
+ * if reshape_progress has been set - so a memory barrier needed.
+ */
+ smp_mb();
+ if (mddev->reshape_backwards)
+ conf->reshape_progress = raid5_size(mddev, 0, 0);
+ else
+ conf->reshape_progress = 0;
+ conf->reshape_safe = conf->reshape_progress;
+ write_seqcount_end(&conf->gen_lock);
+ spin_unlock_irq(&conf->device_lock);
+
+ /* Now make sure any requests that proceeded on the assumption
+ * the reshape wasn't running - like Discard or Read - have
+ * completed.
+ */
+ mddev_suspend(mddev);
+ mddev_resume(mddev);
+
+ /* Add some new drives, as many as will fit.
+ * We know there are enough to make the newly sized array work.
+ * Don't add devices if we are reducing the number of
+ * devices in the array. This is because it is not possible
+ * to correctly record the "partially reconstructed" state of
+ * such devices during the reshape and confusion could result.
+ */
+ if (mddev->delta_disks >= 0) {
+ rdev_for_each(rdev, mddev)
+ if (rdev->raid_disk < 0 &&
+ !test_bit(Faulty, &rdev->flags)) {
+ if (raid5_add_disk(mddev, rdev) == 0) {
+ if (rdev->raid_disk
+ >= conf->previous_raid_disks)
+ set_bit(In_sync, &rdev->flags);
+ else
+ rdev->recovery_offset = 0;
+
+ /* Failure here is OK */
+ sysfs_link_rdev(mddev, rdev);
+ }
+ } else if (rdev->raid_disk >= conf->previous_raid_disks
+ && !test_bit(Faulty, &rdev->flags)) {
+ /* This is a spare that was manually added */
+ set_bit(In_sync, &rdev->flags);
+ }
+
+ /* When a reshape changes the number of devices,
+ * ->degraded is measured against the larger of the
+ * pre and post number of devices.
+ */
+ spin_lock_irqsave(&conf->device_lock, flags);
+ mddev->degraded = raid5_calc_degraded(conf);
+ spin_unlock_irqrestore(&conf->device_lock, flags);
+ }
+ mddev->raid_disks = conf->raid_disks;
+ mddev->reshape_position = conf->reshape_progress;
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+
+ clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+ clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
+ clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
+ set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
+ set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
+ mddev->sync_thread = md_register_thread(md_do_sync, mddev,
+ "reshape");
+ if (!mddev->sync_thread) {
+ mddev->recovery = 0;
+ spin_lock_irq(&conf->device_lock);
+ write_seqcount_begin(&conf->gen_lock);
+ mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
+ mddev->new_chunk_sectors =
+ conf->chunk_sectors = conf->prev_chunk_sectors;
+ mddev->new_layout = conf->algorithm = conf->prev_algo;
+ rdev_for_each(rdev, mddev)
+ rdev->new_data_offset = rdev->data_offset;
+ smp_wmb();
+ conf->generation --;
+ conf->reshape_progress = MaxSector;
+ mddev->reshape_position = MaxSector;
+ write_seqcount_end(&conf->gen_lock);
+ spin_unlock_irq(&conf->device_lock);
+ return -EAGAIN;
+ }
+ conf->reshape_checkpoint = jiffies;
+ md_wakeup_thread(mddev->sync_thread);
+ md_new_event();
+ return 0;
+}
+
+/* This is called from the reshape thread and should make any
+ * changes needed in 'conf'
+ */
+static void end_reshape(struct r5conf *conf)
+{
+
+ if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
+ struct md_rdev *rdev;
+
+ spin_lock_irq(&conf->device_lock);
+ conf->previous_raid_disks = conf->raid_disks;
+ md_finish_reshape(conf->mddev);
+ smp_wmb();
+ conf->reshape_progress = MaxSector;
+ conf->mddev->reshape_position = MaxSector;
+ rdev_for_each(rdev, conf->mddev)
+ if (rdev->raid_disk >= 0 &&
+ !test_bit(Journal, &rdev->flags) &&
+ !test_bit(In_sync, &rdev->flags))
+ rdev->recovery_offset = MaxSector;
+ spin_unlock_irq(&conf->device_lock);
+ wake_up(&conf->wait_for_overlap);
+
+ if (conf->mddev->queue)
+ raid5_set_io_opt(conf);
+ }
+}
+
+/* This is called from the raid5d thread with mddev_lock held.
+ * It makes config changes to the device.
+ */
+static void raid5_finish_reshape(struct mddev *mddev)
+{
+ struct r5conf *conf = mddev->private;
+ struct md_rdev *rdev;
+
+ if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
+
+ if (mddev->delta_disks <= 0) {
+ int d;
+ spin_lock_irq(&conf->device_lock);
+ mddev->degraded = raid5_calc_degraded(conf);
+ spin_unlock_irq(&conf->device_lock);
+ for (d = conf->raid_disks ;
+ d < conf->raid_disks - mddev->delta_disks;
+ d++) {
+ rdev = rdev_mdlock_deref(mddev,
+ conf->disks[d].rdev);
+ if (rdev)
+ clear_bit(In_sync, &rdev->flags);
+ rdev = rdev_mdlock_deref(mddev,
+ conf->disks[d].replacement);
+ if (rdev)
+ clear_bit(In_sync, &rdev->flags);
+ }
+ }
+ mddev->layout = conf->algorithm;
+ mddev->chunk_sectors = conf->chunk_sectors;
+ mddev->reshape_position = MaxSector;
+ mddev->delta_disks = 0;
+ mddev->reshape_backwards = 0;
+ }
+}
+
+static void raid5_quiesce(struct mddev *mddev, int quiesce)
+{
+ struct r5conf *conf = mddev->private;
+
+ if (quiesce) {
+ /* stop all writes */
+ lock_all_device_hash_locks_irq(conf);
+ /* '2' tells resync/reshape to pause so that all
+ * active stripes can drain
+ */
+ r5c_flush_cache(conf, INT_MAX);
+ /* need a memory barrier to make sure read_one_chunk() sees
+ * quiesce started and reverts to slow (locked) path.
+ */
+ smp_store_release(&conf->quiesce, 2);
+ wait_event_cmd(conf->wait_for_quiescent,
+ atomic_read(&conf->active_stripes) == 0 &&
+ atomic_read(&conf->active_aligned_reads) == 0,
+ unlock_all_device_hash_locks_irq(conf),
+ lock_all_device_hash_locks_irq(conf));
+ conf->quiesce = 1;
+ unlock_all_device_hash_locks_irq(conf);
+ /* allow reshape to continue */
+ wake_up(&conf->wait_for_overlap);
+ } else {
+ /* re-enable writes */
+ lock_all_device_hash_locks_irq(conf);
+ conf->quiesce = 0;
+ wake_up(&conf->wait_for_quiescent);
+ wake_up(&conf->wait_for_overlap);
+ unlock_all_device_hash_locks_irq(conf);
+ }
+ log_quiesce(conf, quiesce);
+}
+
+static void *raid45_takeover_raid0(struct mddev *mddev, int level)
+{
+ struct r0conf *raid0_conf = mddev->private;
+ sector_t sectors;
+
+ /* for raid0 takeover only one zone is supported */
+ if (raid0_conf->nr_strip_zones > 1) {
+ pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
+ mdname(mddev));
+ return ERR_PTR(-EINVAL);
+ }
+
+ sectors = raid0_conf->strip_zone[0].zone_end;
+ sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
+ mddev->dev_sectors = sectors;
+ mddev->new_level = level;
+ mddev->new_layout = ALGORITHM_PARITY_N;
+ mddev->new_chunk_sectors = mddev->chunk_sectors;
+ mddev->raid_disks += 1;
+ mddev->delta_disks = 1;
+ /* make sure it will be not marked as dirty */
+ mddev->recovery_cp = MaxSector;
+
+ return setup_conf(mddev);
+}
+
+static void *raid5_takeover_raid1(struct mddev *mddev)
+{
+ int chunksect;
+ void *ret;
+
+ if (mddev->raid_disks != 2 ||
+ mddev->degraded > 1)
+ return ERR_PTR(-EINVAL);
+
+ /* Should check if there are write-behind devices? */
+
+ chunksect = 64*2; /* 64K by default */
+
+ /* The array must be an exact multiple of chunksize */
+ while (chunksect && (mddev->array_sectors & (chunksect-1)))
+ chunksect >>= 1;
+
+ if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
+ /* array size does not allow a suitable chunk size */
+ return ERR_PTR(-EINVAL);
+
+ mddev->new_level = 5;
+ mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
+ mddev->new_chunk_sectors = chunksect;
+
+ ret = setup_conf(mddev);
+ if (!IS_ERR(ret))
+ mddev_clear_unsupported_flags(mddev,
+ UNSUPPORTED_MDDEV_FLAGS);
+ return ret;
+}
+
+static void *raid5_takeover_raid6(struct mddev *mddev)
+{
+ int new_layout;
+
+ switch (mddev->layout) {
+ case ALGORITHM_LEFT_ASYMMETRIC_6:
+ new_layout = ALGORITHM_LEFT_ASYMMETRIC;
+ break;
+ case ALGORITHM_RIGHT_ASYMMETRIC_6:
+ new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
+ break;
+ case ALGORITHM_LEFT_SYMMETRIC_6:
+ new_layout = ALGORITHM_LEFT_SYMMETRIC;
+ break;
+ case ALGORITHM_RIGHT_SYMMETRIC_6:
+ new_layout = ALGORITHM_RIGHT_SYMMETRIC;
+ break;
+ case ALGORITHM_PARITY_0_6:
+ new_layout = ALGORITHM_PARITY_0;
+ break;
+ case ALGORITHM_PARITY_N:
+ new_layout = ALGORITHM_PARITY_N;
+ break;
+ default:
+ return ERR_PTR(-EINVAL);
+ }
+ mddev->new_level = 5;
+ mddev->new_layout = new_layout;
+ mddev->delta_disks = -1;
+ mddev->raid_disks -= 1;
+ return setup_conf(mddev);
+}
+
+static int raid5_check_reshape(struct mddev *mddev)
+{
+ /* For a 2-drive array, the layout and chunk size can be changed
+ * immediately as not restriping is needed.
+ * For larger arrays we record the new value - after validation
+ * to be used by a reshape pass.
+ */
+ struct r5conf *conf = mddev->private;
+ int new_chunk = mddev->new_chunk_sectors;
+
+ if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
+ return -EINVAL;
+ if (new_chunk > 0) {
+ if (!is_power_of_2(new_chunk))
+ return -EINVAL;
+ if (new_chunk < (PAGE_SIZE>>9))
+ return -EINVAL;
+ if (mddev->array_sectors & (new_chunk-1))
+ /* not factor of array size */
+ return -EINVAL;
+ }
+
+ /* They look valid */
+
+ if (mddev->raid_disks == 2) {
+ /* can make the change immediately */
+ if (mddev->new_layout >= 0) {
+ conf->algorithm = mddev->new_layout;
+ mddev->layout = mddev->new_layout;
+ }
+ if (new_chunk > 0) {
+ conf->chunk_sectors = new_chunk ;
+ mddev->chunk_sectors = new_chunk;
+ }
+ set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
+ md_wakeup_thread(mddev->thread);
+ }
+ return check_reshape(mddev);
+}
+
+static int raid6_check_reshape(struct mddev *mddev)
+{
+ int new_chunk = mddev->new_chunk_sectors;
+
+ if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
+ return -EINVAL;
+ if (new_chunk > 0) {
+ if (!is_power_of_2(new_chunk))
+ return -EINVAL;
+ if (new_chunk < (PAGE_SIZE >> 9))
+ return -EINVAL;
+ if (mddev->array_sectors & (new_chunk-1))
+ /* not factor of array size */
+ return -EINVAL;
+ }
+
+ /* They look valid */
+ return check_reshape(mddev);
+}
+
+static void *raid5_takeover(struct mddev *mddev)
+{
+ /* raid5 can take over:
+ * raid0 - if there is only one strip zone - make it a raid4 layout
+ * raid1 - if there are two drives. We need to know the chunk size
+ * raid4 - trivial - just use a raid4 layout.
+ * raid6 - Providing it is a *_6 layout
+ */
+ if (mddev->level == 0)
+ return raid45_takeover_raid0(mddev, 5);
+ if (mddev->level == 1)
+ return raid5_takeover_raid1(mddev);
+ if (mddev->level == 4) {
+ mddev->new_layout = ALGORITHM_PARITY_N;
+ mddev->new_level = 5;
+ return setup_conf(mddev);
+ }
+ if (mddev->level == 6)
+ return raid5_takeover_raid6(mddev);
+
+ return ERR_PTR(-EINVAL);
+}
+
+static void *raid4_takeover(struct mddev *mddev)
+{
+ /* raid4 can take over:
+ * raid0 - if there is only one strip zone
+ * raid5 - if layout is right
+ */
+ if (mddev->level == 0)
+ return raid45_takeover_raid0(mddev, 4);
+ if (mddev->level == 5 &&
+ mddev->layout == ALGORITHM_PARITY_N) {
+ mddev->new_layout = 0;
+ mddev->new_level = 4;
+ return setup_conf(mddev);
+ }
+ return ERR_PTR(-EINVAL);
+}
+
+static struct md_personality raid5_personality;
+
+static void *raid6_takeover(struct mddev *mddev)
+{
+ /* Currently can only take over a raid5. We map the
+ * personality to an equivalent raid6 personality
+ * with the Q block at the end.
+ */
+ int new_layout;
+
+ if (mddev->pers != &raid5_personality)
+ return ERR_PTR(-EINVAL);
+ if (mddev->degraded > 1)
+ return ERR_PTR(-EINVAL);
+ if (mddev->raid_disks > 253)
+ return ERR_PTR(-EINVAL);
+ if (mddev->raid_disks < 3)
+ return ERR_PTR(-EINVAL);
+
+ switch (mddev->layout) {
+ case ALGORITHM_LEFT_ASYMMETRIC:
+ new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
+ break;
+ case ALGORITHM_RIGHT_ASYMMETRIC:
+ new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
+ break;
+ case ALGORITHM_LEFT_SYMMETRIC:
+ new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
+ break;
+ case ALGORITHM_RIGHT_SYMMETRIC:
+ new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
+ break;
+ case ALGORITHM_PARITY_0:
+ new_layout = ALGORITHM_PARITY_0_6;
+ break;
+ case ALGORITHM_PARITY_N:
+ new_layout = ALGORITHM_PARITY_N;
+ break;
+ default:
+ return ERR_PTR(-EINVAL);
+ }
+ mddev->new_level = 6;
+ mddev->new_layout = new_layout;
+ mddev->delta_disks = 1;
+ mddev->raid_disks += 1;
+ return setup_conf(mddev);
+}
+
+static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
+{
+ struct r5conf *conf;
+ int err;
+
+ err = mddev_lock(mddev);
+ if (err)
+ return err;
+ conf = mddev->private;
+ if (!conf) {
+ mddev_unlock(mddev);
+ return -ENODEV;
+ }
+
+ if (strncmp(buf, "ppl", 3) == 0) {
+ /* ppl only works with RAID 5 */
+ if (!raid5_has_ppl(conf) && conf->level == 5) {
+ err = log_init(conf, NULL, true);
+ if (!err) {
+ err = resize_stripes(conf, conf->pool_size);
+ if (err) {
+ mddev_suspend(mddev);
+ log_exit(conf);
+ mddev_resume(mddev);
+ }
+ }
+ } else
+ err = -EINVAL;
+ } else if (strncmp(buf, "resync", 6) == 0) {
+ if (raid5_has_ppl(conf)) {
+ mddev_suspend(mddev);
+ log_exit(conf);
+ mddev_resume(mddev);
+ err = resize_stripes(conf, conf->pool_size);
+ } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
+ r5l_log_disk_error(conf)) {
+ bool journal_dev_exists = false;
+ struct md_rdev *rdev;
+
+ rdev_for_each(rdev, mddev)
+ if (test_bit(Journal, &rdev->flags)) {
+ journal_dev_exists = true;
+ break;
+ }
+
+ if (!journal_dev_exists) {
+ mddev_suspend(mddev);
+ clear_bit(MD_HAS_JOURNAL, &mddev->flags);
+ mddev_resume(mddev);
+ } else /* need remove journal device first */
+ err = -EBUSY;
+ } else
+ err = -EINVAL;
+ } else {
+ err = -EINVAL;
+ }
+
+ if (!err)
+ md_update_sb(mddev, 1);
+
+ mddev_unlock(mddev);
+
+ return err;
+}
+
+static int raid5_start(struct mddev *mddev)
+{
+ struct r5conf *conf = mddev->private;
+
+ return r5l_start(conf->log);
+}
+
+static struct md_personality raid6_personality =
+{
+ .name = "raid6",
+ .level = 6,
+ .owner = THIS_MODULE,
+ .make_request = raid5_make_request,
+ .run = raid5_run,
+ .start = raid5_start,
+ .free = raid5_free,
+ .status = raid5_status,
+ .error_handler = raid5_error,
+ .hot_add_disk = raid5_add_disk,
+ .hot_remove_disk= raid5_remove_disk,
+ .spare_active = raid5_spare_active,
+ .sync_request = raid5_sync_request,
+ .resize = raid5_resize,
+ .size = raid5_size,
+ .check_reshape = raid6_check_reshape,
+ .start_reshape = raid5_start_reshape,
+ .finish_reshape = raid5_finish_reshape,
+ .quiesce = raid5_quiesce,
+ .takeover = raid6_takeover,
+ .change_consistency_policy = raid5_change_consistency_policy,
+};
+static struct md_personality raid5_personality =
+{
+ .name = "raid5",
+ .level = 5,
+ .owner = THIS_MODULE,
+ .make_request = raid5_make_request,
+ .run = raid5_run,
+ .start = raid5_start,
+ .free = raid5_free,
+ .status = raid5_status,
+ .error_handler = raid5_error,
+ .hot_add_disk = raid5_add_disk,
+ .hot_remove_disk= raid5_remove_disk,
+ .spare_active = raid5_spare_active,
+ .sync_request = raid5_sync_request,
+ .resize = raid5_resize,
+ .size = raid5_size,
+ .check_reshape = raid5_check_reshape,
+ .start_reshape = raid5_start_reshape,
+ .finish_reshape = raid5_finish_reshape,
+ .quiesce = raid5_quiesce,
+ .takeover = raid5_takeover,
+ .change_consistency_policy = raid5_change_consistency_policy,
+};
+
+static struct md_personality raid4_personality =
+{
+ .name = "raid4",
+ .level = 4,
+ .owner = THIS_MODULE,
+ .make_request = raid5_make_request,
+ .run = raid5_run,
+ .start = raid5_start,
+ .free = raid5_free,
+ .status = raid5_status,
+ .error_handler = raid5_error,
+ .hot_add_disk = raid5_add_disk,
+ .hot_remove_disk= raid5_remove_disk,
+ .spare_active = raid5_spare_active,
+ .sync_request = raid5_sync_request,
+ .resize = raid5_resize,
+ .size = raid5_size,
+ .check_reshape = raid5_check_reshape,
+ .start_reshape = raid5_start_reshape,
+ .finish_reshape = raid5_finish_reshape,
+ .quiesce = raid5_quiesce,
+ .takeover = raid4_takeover,
+ .change_consistency_policy = raid5_change_consistency_policy,
+};
+
+static int __init raid5_init(void)
+{
+ int ret;
+
+ raid5_wq = alloc_workqueue("raid5wq",
+ WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
+ if (!raid5_wq)
+ return -ENOMEM;
+
+ ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
+ "md/raid5:prepare",
+ raid456_cpu_up_prepare,
+ raid456_cpu_dead);
+ if (ret) {
+ destroy_workqueue(raid5_wq);
+ return ret;
+ }
+ register_md_personality(&raid6_personality);
+ register_md_personality(&raid5_personality);
+ register_md_personality(&raid4_personality);
+ return 0;
+}
+
+static void raid5_exit(void)
+{
+ unregister_md_personality(&raid6_personality);
+ unregister_md_personality(&raid5_personality);
+ unregister_md_personality(&raid4_personality);
+ cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
+ destroy_workqueue(raid5_wq);
+}
+
+module_init(raid5_init);
+module_exit(raid5_exit);
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
+MODULE_ALIAS("md-personality-4"); /* RAID5 */
+MODULE_ALIAS("md-raid5");
+MODULE_ALIAS("md-raid4");
+MODULE_ALIAS("md-level-5");
+MODULE_ALIAS("md-level-4");
+MODULE_ALIAS("md-personality-8"); /* RAID6 */
+MODULE_ALIAS("md-raid6");
+MODULE_ALIAS("md-level-6");
+
+/* This used to be two separate modules, they were: */
+MODULE_ALIAS("raid5");
+MODULE_ALIAS("raid6");
diff --git a/drivers/md/raid5.h b/drivers/md/raid5.h
new file mode 100644
index 000000000..e873938a6
--- /dev/null
+++ b/drivers/md/raid5.h
@@ -0,0 +1,826 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _RAID5_H
+#define _RAID5_H
+
+#include <linux/raid/xor.h>
+#include <linux/dmaengine.h>
+#include <linux/local_lock.h>
+
+/*
+ *
+ * Each stripe contains one buffer per device. Each buffer can be in
+ * one of a number of states stored in "flags". Changes between
+ * these states happen *almost* exclusively under the protection of the
+ * STRIPE_ACTIVE flag. Some very specific changes can happen in bi_end_io, and
+ * these are not protected by STRIPE_ACTIVE.
+ *
+ * The flag bits that are used to represent these states are:
+ * R5_UPTODATE and R5_LOCKED
+ *
+ * State Empty == !UPTODATE, !LOCK
+ * We have no data, and there is no active request
+ * State Want == !UPTODATE, LOCK
+ * A read request is being submitted for this block
+ * State Dirty == UPTODATE, LOCK
+ * Some new data is in this buffer, and it is being written out
+ * State Clean == UPTODATE, !LOCK
+ * We have valid data which is the same as on disc
+ *
+ * The possible state transitions are:
+ *
+ * Empty -> Want - on read or write to get old data for parity calc
+ * Empty -> Dirty - on compute_parity to satisfy write/sync request.
+ * Empty -> Clean - on compute_block when computing a block for failed drive
+ * Want -> Empty - on failed read
+ * Want -> Clean - on successful completion of read request
+ * Dirty -> Clean - on successful completion of write request
+ * Dirty -> Clean - on failed write
+ * Clean -> Dirty - on compute_parity to satisfy write/sync (RECONSTRUCT or RMW)
+ *
+ * The Want->Empty, Want->Clean, Dirty->Clean, transitions
+ * all happen in b_end_io at interrupt time.
+ * Each sets the Uptodate bit before releasing the Lock bit.
+ * This leaves one multi-stage transition:
+ * Want->Dirty->Clean
+ * This is safe because thinking that a Clean buffer is actually dirty
+ * will at worst delay some action, and the stripe will be scheduled
+ * for attention after the transition is complete.
+ *
+ * There is one possibility that is not covered by these states. That
+ * is if one drive has failed and there is a spare being rebuilt. We
+ * can't distinguish between a clean block that has been generated
+ * from parity calculations, and a clean block that has been
+ * successfully written to the spare ( or to parity when resyncing).
+ * To distinguish these states we have a stripe bit STRIPE_INSYNC that
+ * is set whenever a write is scheduled to the spare, or to the parity
+ * disc if there is no spare. A sync request clears this bit, and
+ * when we find it set with no buffers locked, we know the sync is
+ * complete.
+ *
+ * Buffers for the md device that arrive via make_request are attached
+ * to the appropriate stripe in one of two lists linked on b_reqnext.
+ * One list (bh_read) for read requests, one (bh_write) for write.
+ * There should never be more than one buffer on the two lists
+ * together, but we are not guaranteed of that so we allow for more.
+ *
+ * If a buffer is on the read list when the associated cache buffer is
+ * Uptodate, the data is copied into the read buffer and it's b_end_io
+ * routine is called. This may happen in the end_request routine only
+ * if the buffer has just successfully been read. end_request should
+ * remove the buffers from the list and then set the Uptodate bit on
+ * the buffer. Other threads may do this only if they first check
+ * that the Uptodate bit is set. Once they have checked that they may
+ * take buffers off the read queue.
+ *
+ * When a buffer on the write list is committed for write it is copied
+ * into the cache buffer, which is then marked dirty, and moved onto a
+ * third list, the written list (bh_written). Once both the parity
+ * block and the cached buffer are successfully written, any buffer on
+ * a written list can be returned with b_end_io.
+ *
+ * The write list and read list both act as fifos. The read list,
+ * write list and written list are protected by the device_lock.
+ * The device_lock is only for list manipulations and will only be
+ * held for a very short time. It can be claimed from interrupts.
+ *
+ *
+ * Stripes in the stripe cache can be on one of two lists (or on
+ * neither). The "inactive_list" contains stripes which are not
+ * currently being used for any request. They can freely be reused
+ * for another stripe. The "handle_list" contains stripes that need
+ * to be handled in some way. Both of these are fifo queues. Each
+ * stripe is also (potentially) linked to a hash bucket in the hash
+ * table so that it can be found by sector number. Stripes that are
+ * not hashed must be on the inactive_list, and will normally be at
+ * the front. All stripes start life this way.
+ *
+ * The inactive_list, handle_list and hash bucket lists are all protected by the
+ * device_lock.
+ * - stripes have a reference counter. If count==0, they are on a list.
+ * - If a stripe might need handling, STRIPE_HANDLE is set.
+ * - When refcount reaches zero, then if STRIPE_HANDLE it is put on
+ * handle_list else inactive_list
+ *
+ * This, combined with the fact that STRIPE_HANDLE is only ever
+ * cleared while a stripe has a non-zero count means that if the
+ * refcount is 0 and STRIPE_HANDLE is set, then it is on the
+ * handle_list and if recount is 0 and STRIPE_HANDLE is not set, then
+ * the stripe is on inactive_list.
+ *
+ * The possible transitions are:
+ * activate an unhashed/inactive stripe (get_active_stripe())
+ * lockdev check-hash unlink-stripe cnt++ clean-stripe hash-stripe unlockdev
+ * activate a hashed, possibly active stripe (get_active_stripe())
+ * lockdev check-hash if(!cnt++)unlink-stripe unlockdev
+ * attach a request to an active stripe (add_stripe_bh())
+ * lockdev attach-buffer unlockdev
+ * handle a stripe (handle_stripe())
+ * setSTRIPE_ACTIVE, clrSTRIPE_HANDLE ...
+ * (lockdev check-buffers unlockdev) ..
+ * change-state ..
+ * record io/ops needed clearSTRIPE_ACTIVE schedule io/ops
+ * release an active stripe (release_stripe())
+ * lockdev if (!--cnt) { if STRIPE_HANDLE, add to handle_list else add to inactive-list } unlockdev
+ *
+ * The refcount counts each thread that have activated the stripe,
+ * plus raid5d if it is handling it, plus one for each active request
+ * on a cached buffer, and plus one if the stripe is undergoing stripe
+ * operations.
+ *
+ * The stripe operations are:
+ * -copying data between the stripe cache and user application buffers
+ * -computing blocks to save a disk access, or to recover a missing block
+ * -updating the parity on a write operation (reconstruct write and
+ * read-modify-write)
+ * -checking parity correctness
+ * -running i/o to disk
+ * These operations are carried out by raid5_run_ops which uses the async_tx
+ * api to (optionally) offload operations to dedicated hardware engines.
+ * When requesting an operation handle_stripe sets the pending bit for the
+ * operation and increments the count. raid5_run_ops is then run whenever
+ * the count is non-zero.
+ * There are some critical dependencies between the operations that prevent some
+ * from being requested while another is in flight.
+ * 1/ Parity check operations destroy the in cache version of the parity block,
+ * so we prevent parity dependent operations like writes and compute_blocks
+ * from starting while a check is in progress. Some dma engines can perform
+ * the check without damaging the parity block, in these cases the parity
+ * block is re-marked up to date (assuming the check was successful) and is
+ * not re-read from disk.
+ * 2/ When a write operation is requested we immediately lock the affected
+ * blocks, and mark them as not up to date. This causes new read requests
+ * to be held off, as well as parity checks and compute block operations.
+ * 3/ Once a compute block operation has been requested handle_stripe treats
+ * that block as if it is up to date. raid5_run_ops guaruntees that any
+ * operation that is dependent on the compute block result is initiated after
+ * the compute block completes.
+ */
+
+/*
+ * Operations state - intermediate states that are visible outside of
+ * STRIPE_ACTIVE.
+ * In general _idle indicates nothing is running, _run indicates a data
+ * processing operation is active, and _result means the data processing result
+ * is stable and can be acted upon. For simple operations like biofill and
+ * compute that only have an _idle and _run state they are indicated with
+ * sh->state flags (STRIPE_BIOFILL_RUN and STRIPE_COMPUTE_RUN)
+ */
+/**
+ * enum check_states - handles syncing / repairing a stripe
+ * @check_state_idle - check operations are quiesced
+ * @check_state_run - check operation is running
+ * @check_state_result - set outside lock when check result is valid
+ * @check_state_compute_run - check failed and we are repairing
+ * @check_state_compute_result - set outside lock when compute result is valid
+ */
+enum check_states {
+ check_state_idle = 0,
+ check_state_run, /* xor parity check */
+ check_state_run_q, /* q-parity check */
+ check_state_run_pq, /* pq dual parity check */
+ check_state_check_result,
+ check_state_compute_run, /* parity repair */
+ check_state_compute_result,
+};
+
+/**
+ * enum reconstruct_states - handles writing or expanding a stripe
+ */
+enum reconstruct_states {
+ reconstruct_state_idle = 0,
+ reconstruct_state_prexor_drain_run, /* prexor-write */
+ reconstruct_state_drain_run, /* write */
+ reconstruct_state_run, /* expand */
+ reconstruct_state_prexor_drain_result,
+ reconstruct_state_drain_result,
+ reconstruct_state_result,
+};
+
+#define DEFAULT_STRIPE_SIZE 4096
+struct stripe_head {
+ struct hlist_node hash;
+ struct list_head lru; /* inactive_list or handle_list */
+ struct llist_node release_list;
+ struct r5conf *raid_conf;
+ short generation; /* increments with every
+ * reshape */
+ sector_t sector; /* sector of this row */
+ short pd_idx; /* parity disk index */
+ short qd_idx; /* 'Q' disk index for raid6 */
+ short ddf_layout;/* use DDF ordering to calculate Q */
+ short hash_lock_index;
+ unsigned long state; /* state flags */
+ atomic_t count; /* nr of active thread/requests */
+ int bm_seq; /* sequence number for bitmap flushes */
+ int disks; /* disks in stripe */
+ int overwrite_disks; /* total overwrite disks in stripe,
+ * this is only checked when stripe
+ * has STRIPE_BATCH_READY
+ */
+ enum check_states check_state;
+ enum reconstruct_states reconstruct_state;
+ spinlock_t stripe_lock;
+ int cpu;
+ struct r5worker_group *group;
+
+ struct stripe_head *batch_head; /* protected by stripe lock */
+ spinlock_t batch_lock; /* only header's lock is useful */
+ struct list_head batch_list; /* protected by head's batch lock*/
+
+ union {
+ struct r5l_io_unit *log_io;
+ struct ppl_io_unit *ppl_io;
+ };
+
+ struct list_head log_list;
+ sector_t log_start; /* first meta block on the journal */
+ struct list_head r5c; /* for r5c_cache->stripe_in_journal */
+
+ struct page *ppl_page; /* partial parity of this stripe */
+ /**
+ * struct stripe_operations
+ * @target - STRIPE_OP_COMPUTE_BLK target
+ * @target2 - 2nd compute target in the raid6 case
+ * @zero_sum_result - P and Q verification flags
+ * @request - async service request flags for raid_run_ops
+ */
+ struct stripe_operations {
+ int target, target2;
+ enum sum_check_flags zero_sum_result;
+ } ops;
+
+#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
+ /* These pages will be used by bios in dev[i] */
+ struct page **pages;
+ int nr_pages; /* page array size */
+ int stripes_per_page;
+#endif
+ struct r5dev {
+ /* rreq and rvec are used for the replacement device when
+ * writing data to both devices.
+ */
+ struct bio req, rreq;
+ struct bio_vec vec, rvec;
+ struct page *page, *orig_page;
+ unsigned int offset; /* offset of the page */
+ struct bio *toread, *read, *towrite, *written;
+ sector_t sector; /* sector of this page */
+ unsigned long flags;
+ u32 log_checksum;
+ unsigned short write_hint;
+ } dev[1]; /* allocated with extra space depending of RAID geometry */
+};
+
+/* stripe_head_state - collects and tracks the dynamic state of a stripe_head
+ * for handle_stripe.
+ */
+struct stripe_head_state {
+ /* 'syncing' means that we need to read all devices, either
+ * to check/correct parity, or to reconstruct a missing device.
+ * 'replacing' means we are replacing one or more drives and
+ * the source is valid at this point so we don't need to
+ * read all devices, just the replacement targets.
+ */
+ int syncing, expanding, expanded, replacing;
+ int locked, uptodate, to_read, to_write, failed, written;
+ int to_fill, compute, req_compute, non_overwrite;
+ int injournal, just_cached;
+ int failed_num[2];
+ int p_failed, q_failed;
+ int dec_preread_active;
+ unsigned long ops_request;
+
+ struct md_rdev *blocked_rdev;
+ int handle_bad_blocks;
+ int log_failed;
+ int waiting_extra_page;
+};
+
+/* Flags for struct r5dev.flags */
+enum r5dev_flags {
+ R5_UPTODATE, /* page contains current data */
+ R5_LOCKED, /* IO has been submitted on "req" */
+ R5_DOUBLE_LOCKED,/* Cannot clear R5_LOCKED until 2 writes complete */
+ R5_OVERWRITE, /* towrite covers whole page */
+/* and some that are internal to handle_stripe */
+ R5_Insync, /* rdev && rdev->in_sync at start */
+ R5_Wantread, /* want to schedule a read */
+ R5_Wantwrite,
+ R5_Overlap, /* There is a pending overlapping request
+ * on this block */
+ R5_ReadNoMerge, /* prevent bio from merging in block-layer */
+ R5_ReadError, /* seen a read error here recently */
+ R5_ReWrite, /* have tried to over-write the readerror */
+
+ R5_Expanded, /* This block now has post-expand data */
+ R5_Wantcompute, /* compute_block in progress treat as
+ * uptodate
+ */
+ R5_Wantfill, /* dev->toread contains a bio that needs
+ * filling
+ */
+ R5_Wantdrain, /* dev->towrite needs to be drained */
+ R5_WantFUA, /* Write should be FUA */
+ R5_SyncIO, /* The IO is sync */
+ R5_WriteError, /* got a write error - need to record it */
+ R5_MadeGood, /* A bad block has been fixed by writing to it */
+ R5_ReadRepl, /* Will/did read from replacement rather than orig */
+ R5_MadeGoodRepl,/* A bad block on the replacement device has been
+ * fixed by writing to it */
+ R5_NeedReplace, /* This device has a replacement which is not
+ * up-to-date at this stripe. */
+ R5_WantReplace, /* We need to update the replacement, we have read
+ * data in, and now is a good time to write it out.
+ */
+ R5_Discard, /* Discard the stripe */
+ R5_SkipCopy, /* Don't copy data from bio to stripe cache */
+ R5_InJournal, /* data being written is in the journal device.
+ * if R5_InJournal is set for parity pd_idx, all the
+ * data and parity being written are in the journal
+ * device
+ */
+ R5_OrigPageUPTDODATE, /* with write back cache, we read old data into
+ * dev->orig_page for prexor. When this flag is
+ * set, orig_page contains latest data in the
+ * raid disk.
+ */
+};
+
+/*
+ * Stripe state
+ */
+enum {
+ STRIPE_ACTIVE,
+ STRIPE_HANDLE,
+ STRIPE_SYNC_REQUESTED,
+ STRIPE_SYNCING,
+ STRIPE_INSYNC,
+ STRIPE_REPLACED,
+ STRIPE_PREREAD_ACTIVE,
+ STRIPE_DELAYED,
+ STRIPE_DEGRADED,
+ STRIPE_BIT_DELAY,
+ STRIPE_EXPANDING,
+ STRIPE_EXPAND_SOURCE,
+ STRIPE_EXPAND_READY,
+ STRIPE_IO_STARTED, /* do not count towards 'bypass_count' */
+ STRIPE_FULL_WRITE, /* all blocks are set to be overwritten */
+ STRIPE_BIOFILL_RUN,
+ STRIPE_COMPUTE_RUN,
+ STRIPE_ON_UNPLUG_LIST,
+ STRIPE_DISCARD,
+ STRIPE_ON_RELEASE_LIST,
+ STRIPE_BATCH_READY,
+ STRIPE_BATCH_ERR,
+ STRIPE_BITMAP_PENDING, /* Being added to bitmap, don't add
+ * to batch yet.
+ */
+ STRIPE_LOG_TRAPPED, /* trapped into log (see raid5-cache.c)
+ * this bit is used in two scenarios:
+ *
+ * 1. write-out phase
+ * set in first entry of r5l_write_stripe
+ * clear in second entry of r5l_write_stripe
+ * used to bypass logic in handle_stripe
+ *
+ * 2. caching phase
+ * set in r5c_try_caching_write()
+ * clear when journal write is done
+ * used to initiate r5c_cache_data()
+ * also used to bypass logic in handle_stripe
+ */
+ STRIPE_R5C_CACHING, /* the stripe is in caching phase
+ * see more detail in the raid5-cache.c
+ */
+ STRIPE_R5C_PARTIAL_STRIPE, /* in r5c cache (to-be/being handled or
+ * in conf->r5c_partial_stripe_list)
+ */
+ STRIPE_R5C_FULL_STRIPE, /* in r5c cache (to-be/being handled or
+ * in conf->r5c_full_stripe_list)
+ */
+ STRIPE_R5C_PREFLUSH, /* need to flush journal device */
+};
+
+#define STRIPE_EXPAND_SYNC_FLAGS \
+ ((1 << STRIPE_EXPAND_SOURCE) |\
+ (1 << STRIPE_EXPAND_READY) |\
+ (1 << STRIPE_EXPANDING) |\
+ (1 << STRIPE_SYNC_REQUESTED))
+/*
+ * Operation request flags
+ */
+enum {
+ STRIPE_OP_BIOFILL,
+ STRIPE_OP_COMPUTE_BLK,
+ STRIPE_OP_PREXOR,
+ STRIPE_OP_BIODRAIN,
+ STRIPE_OP_RECONSTRUCT,
+ STRIPE_OP_CHECK,
+ STRIPE_OP_PARTIAL_PARITY,
+};
+
+/*
+ * RAID parity calculation preferences
+ */
+enum {
+ PARITY_DISABLE_RMW = 0,
+ PARITY_ENABLE_RMW,
+ PARITY_PREFER_RMW,
+};
+
+/*
+ * Pages requested from set_syndrome_sources()
+ */
+enum {
+ SYNDROME_SRC_ALL,
+ SYNDROME_SRC_WANT_DRAIN,
+ SYNDROME_SRC_WRITTEN,
+};
+/*
+ * Plugging:
+ *
+ * To improve write throughput, we need to delay the handling of some
+ * stripes until there has been a chance that several write requests
+ * for the one stripe have all been collected.
+ * In particular, any write request that would require pre-reading
+ * is put on a "delayed" queue until there are no stripes currently
+ * in a pre-read phase. Further, if the "delayed" queue is empty when
+ * a stripe is put on it then we "plug" the queue and do not process it
+ * until an unplug call is made. (the unplug_io_fn() is called).
+ *
+ * When preread is initiated on a stripe, we set PREREAD_ACTIVE and add
+ * it to the count of prereading stripes.
+ * When write is initiated, or the stripe refcnt == 0 (just in case) we
+ * clear the PREREAD_ACTIVE flag and decrement the count
+ * Whenever the 'handle' queue is empty and the device is not plugged, we
+ * move any strips from delayed to handle and clear the DELAYED flag and set
+ * PREREAD_ACTIVE.
+ * In stripe_handle, if we find pre-reading is necessary, we do it if
+ * PREREAD_ACTIVE is set, else we set DELAYED which will send it to the delayed queue.
+ * HANDLE gets cleared if stripe_handle leaves nothing locked.
+ */
+
+/* Note: disk_info.rdev can be set to NULL asynchronously by raid5_remove_disk.
+ * There are three safe ways to access disk_info.rdev.
+ * 1/ when holding mddev->reconfig_mutex
+ * 2/ when resync/recovery/reshape is known to be happening - i.e. in code that
+ * is called as part of performing resync/recovery/reshape.
+ * 3/ while holding rcu_read_lock(), use rcu_dereference to get the pointer
+ * and if it is non-NULL, increment rdev->nr_pending before dropping the RCU
+ * lock.
+ * When .rdev is set to NULL, the nr_pending count checked again and if
+ * it has been incremented, the pointer is put back in .rdev.
+ */
+
+struct disk_info {
+ struct md_rdev __rcu *rdev;
+ struct md_rdev __rcu *replacement;
+ struct page *extra_page; /* extra page to use in prexor */
+};
+
+/*
+ * Stripe cache
+ */
+
+#define NR_STRIPES 256
+
+#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
+#define STRIPE_SIZE PAGE_SIZE
+#define STRIPE_SHIFT (PAGE_SHIFT - 9)
+#define STRIPE_SECTORS (STRIPE_SIZE>>9)
+#endif
+
+#define IO_THRESHOLD 1
+#define BYPASS_THRESHOLD 1
+#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
+#define HASH_MASK (NR_HASH - 1)
+#define MAX_STRIPE_BATCH 8
+
+/* NOTE NR_STRIPE_HASH_LOCKS must remain below 64.
+ * This is because we sometimes take all the spinlocks
+ * and creating that much locking depth can cause
+ * problems.
+ */
+#define NR_STRIPE_HASH_LOCKS 8
+#define STRIPE_HASH_LOCKS_MASK (NR_STRIPE_HASH_LOCKS - 1)
+
+struct r5worker {
+ struct work_struct work;
+ struct r5worker_group *group;
+ struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
+ bool working;
+};
+
+struct r5worker_group {
+ struct list_head handle_list;
+ struct list_head loprio_list;
+ struct r5conf *conf;
+ struct r5worker *workers;
+ int stripes_cnt;
+};
+
+/*
+ * r5c journal modes of the array: write-back or write-through.
+ * write-through mode has identical behavior as existing log only
+ * implementation.
+ */
+enum r5c_journal_mode {
+ R5C_JOURNAL_MODE_WRITE_THROUGH = 0,
+ R5C_JOURNAL_MODE_WRITE_BACK = 1,
+};
+
+enum r5_cache_state {
+ R5_INACTIVE_BLOCKED, /* release of inactive stripes blocked,
+ * waiting for 25% to be free
+ */
+ R5_ALLOC_MORE, /* It might help to allocate another
+ * stripe.
+ */
+ R5_DID_ALLOC, /* A stripe was allocated, don't allocate
+ * more until at least one has been
+ * released. This avoids flooding
+ * the cache.
+ */
+ R5C_LOG_TIGHT, /* log device space tight, need to
+ * prioritize stripes at last_checkpoint
+ */
+ R5C_LOG_CRITICAL, /* log device is running out of space,
+ * only process stripes that are already
+ * occupying the log
+ */
+ R5C_EXTRA_PAGE_IN_USE, /* a stripe is using disk_info.extra_page
+ * for prexor
+ */
+};
+
+#define PENDING_IO_MAX 512
+#define PENDING_IO_ONE_FLUSH 128
+struct r5pending_data {
+ struct list_head sibling;
+ sector_t sector; /* stripe sector */
+ struct bio_list bios;
+};
+
+struct raid5_percpu {
+ struct page *spare_page; /* Used when checking P/Q in raid6 */
+ void *scribble; /* space for constructing buffer
+ * lists and performing address
+ * conversions
+ */
+ int scribble_obj_size;
+ local_lock_t lock;
+};
+
+struct r5conf {
+ struct hlist_head *stripe_hashtbl;
+ /* only protect corresponding hash list and inactive_list */
+ spinlock_t hash_locks[NR_STRIPE_HASH_LOCKS];
+ struct mddev *mddev;
+ int chunk_sectors;
+ int level, algorithm, rmw_level;
+ int max_degraded;
+ int raid_disks;
+ int max_nr_stripes;
+ int min_nr_stripes;
+#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
+ unsigned long stripe_size;
+ unsigned int stripe_shift;
+ unsigned long stripe_sectors;
+#endif
+
+ /* reshape_progress is the leading edge of a 'reshape'
+ * It has value MaxSector when no reshape is happening
+ * If delta_disks < 0, it is the last sector we started work on,
+ * else is it the next sector to work on.
+ */
+ sector_t reshape_progress;
+ /* reshape_safe is the trailing edge of a reshape. We know that
+ * before (or after) this address, all reshape has completed.
+ */
+ sector_t reshape_safe;
+ int previous_raid_disks;
+ int prev_chunk_sectors;
+ int prev_algo;
+ short generation; /* increments with every reshape */
+ seqcount_spinlock_t gen_lock; /* lock against generation changes */
+ unsigned long reshape_checkpoint; /* Time we last updated
+ * metadata */
+ long long min_offset_diff; /* minimum difference between
+ * data_offset and
+ * new_data_offset across all
+ * devices. May be negative,
+ * but is closest to zero.
+ */
+
+ struct list_head handle_list; /* stripes needing handling */
+ struct list_head loprio_list; /* low priority stripes */
+ struct list_head hold_list; /* preread ready stripes */
+ struct list_head delayed_list; /* stripes that have plugged requests */
+ struct list_head bitmap_list; /* stripes delaying awaiting bitmap update */
+ struct bio *retry_read_aligned; /* currently retrying aligned bios */
+ unsigned int retry_read_offset; /* sector offset into retry_read_aligned */
+ struct bio *retry_read_aligned_list; /* aligned bios retry list */
+ atomic_t preread_active_stripes; /* stripes with scheduled io */
+ atomic_t active_aligned_reads;
+ atomic_t pending_full_writes; /* full write backlog */
+ int bypass_count; /* bypassed prereads */
+ int bypass_threshold; /* preread nice */
+ int skip_copy; /* Don't copy data from bio to stripe cache */
+ struct list_head *last_hold; /* detect hold_list promotions */
+
+ atomic_t reshape_stripes; /* stripes with pending writes for reshape */
+ /* unfortunately we need two cache names as we temporarily have
+ * two caches.
+ */
+ int active_name;
+ char cache_name[2][32];
+ struct kmem_cache *slab_cache; /* for allocating stripes */
+ struct mutex cache_size_mutex; /* Protect changes to cache size */
+
+ int seq_flush, seq_write;
+ int quiesce;
+
+ int fullsync; /* set to 1 if a full sync is needed,
+ * (fresh device added).
+ * Cleared when a sync completes.
+ */
+ int recovery_disabled;
+ /* per cpu variables */
+ struct raid5_percpu __percpu *percpu;
+ int scribble_disks;
+ int scribble_sectors;
+ struct hlist_node node;
+
+ /*
+ * Free stripes pool
+ */
+ atomic_t active_stripes;
+ struct list_head inactive_list[NR_STRIPE_HASH_LOCKS];
+
+ atomic_t r5c_cached_full_stripes;
+ struct list_head r5c_full_stripe_list;
+ atomic_t r5c_cached_partial_stripes;
+ struct list_head r5c_partial_stripe_list;
+ atomic_t r5c_flushing_full_stripes;
+ atomic_t r5c_flushing_partial_stripes;
+
+ atomic_t empty_inactive_list_nr;
+ struct llist_head released_stripes;
+ wait_queue_head_t wait_for_quiescent;
+ wait_queue_head_t wait_for_stripe;
+ wait_queue_head_t wait_for_overlap;
+ unsigned long cache_state;
+ struct shrinker shrinker;
+ int pool_size; /* number of disks in stripeheads in pool */
+ spinlock_t device_lock;
+ struct disk_info *disks;
+ struct bio_set bio_split;
+
+ /* When taking over an array from a different personality, we store
+ * the new thread here until we fully activate the array.
+ */
+ struct md_thread *thread;
+ struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
+ struct r5worker_group *worker_groups;
+ int group_cnt;
+ int worker_cnt_per_group;
+ struct r5l_log *log;
+ void *log_private;
+
+ spinlock_t pending_bios_lock;
+ bool batch_bio_dispatch;
+ struct r5pending_data *pending_data;
+ struct list_head free_list;
+ struct list_head pending_list;
+ int pending_data_cnt;
+ struct r5pending_data *next_pending_data;
+};
+
+#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
+#define RAID5_STRIPE_SIZE(conf) STRIPE_SIZE
+#define RAID5_STRIPE_SHIFT(conf) STRIPE_SHIFT
+#define RAID5_STRIPE_SECTORS(conf) STRIPE_SECTORS
+#else
+#define RAID5_STRIPE_SIZE(conf) ((conf)->stripe_size)
+#define RAID5_STRIPE_SHIFT(conf) ((conf)->stripe_shift)
+#define RAID5_STRIPE_SECTORS(conf) ((conf)->stripe_sectors)
+#endif
+
+/* bio's attached to a stripe+device for I/O are linked together in bi_sector
+ * order without overlap. There may be several bio's per stripe+device, and
+ * a bio could span several devices.
+ * When walking this list for a particular stripe+device, we must never proceed
+ * beyond a bio that extends past this device, as the next bio might no longer
+ * be valid.
+ * This function is used to determine the 'next' bio in the list, given the
+ * sector of the current stripe+device
+ */
+static inline struct bio *r5_next_bio(struct r5conf *conf, struct bio *bio, sector_t sector)
+{
+ if (bio_end_sector(bio) < sector + RAID5_STRIPE_SECTORS(conf))
+ return bio->bi_next;
+ else
+ return NULL;
+}
+
+/*
+ * Our supported algorithms
+ */
+#define ALGORITHM_LEFT_ASYMMETRIC 0 /* Rotating Parity N with Data Restart */
+#define ALGORITHM_RIGHT_ASYMMETRIC 1 /* Rotating Parity 0 with Data Restart */
+#define ALGORITHM_LEFT_SYMMETRIC 2 /* Rotating Parity N with Data Continuation */
+#define ALGORITHM_RIGHT_SYMMETRIC 3 /* Rotating Parity 0 with Data Continuation */
+
+/* Define non-rotating (raid4) algorithms. These allow
+ * conversion of raid4 to raid5.
+ */
+#define ALGORITHM_PARITY_0 4 /* P or P,Q are initial devices */
+#define ALGORITHM_PARITY_N 5 /* P or P,Q are final devices. */
+
+/* DDF RAID6 layouts differ from md/raid6 layouts in two ways.
+ * Firstly, the exact positioning of the parity block is slightly
+ * different between the 'LEFT_*' modes of md and the "_N_*" modes
+ * of DDF.
+ * Secondly, or order of datablocks over which the Q syndrome is computed
+ * is different.
+ * Consequently we have different layouts for DDF/raid6 than md/raid6.
+ * These layouts are from the DDFv1.2 spec.
+ * Interestingly DDFv1.2-Errata-A does not specify N_CONTINUE but
+ * leaves RLQ=3 as 'Vendor Specific'
+ */
+
+#define ALGORITHM_ROTATING_ZERO_RESTART 8 /* DDF PRL=6 RLQ=1 */
+#define ALGORITHM_ROTATING_N_RESTART 9 /* DDF PRL=6 RLQ=2 */
+#define ALGORITHM_ROTATING_N_CONTINUE 10 /*DDF PRL=6 RLQ=3 */
+
+/* For every RAID5 algorithm we define a RAID6 algorithm
+ * with exactly the same layout for data and parity, and
+ * with the Q block always on the last device (N-1).
+ * This allows trivial conversion from RAID5 to RAID6
+ */
+#define ALGORITHM_LEFT_ASYMMETRIC_6 16
+#define ALGORITHM_RIGHT_ASYMMETRIC_6 17
+#define ALGORITHM_LEFT_SYMMETRIC_6 18
+#define ALGORITHM_RIGHT_SYMMETRIC_6 19
+#define ALGORITHM_PARITY_0_6 20
+#define ALGORITHM_PARITY_N_6 ALGORITHM_PARITY_N
+
+static inline int algorithm_valid_raid5(int layout)
+{
+ return (layout >= 0) &&
+ (layout <= 5);
+}
+static inline int algorithm_valid_raid6(int layout)
+{
+ return (layout >= 0 && layout <= 5)
+ ||
+ (layout >= 8 && layout <= 10)
+ ||
+ (layout >= 16 && layout <= 20);
+}
+
+static inline int algorithm_is_DDF(int layout)
+{
+ return layout >= 8 && layout <= 10;
+}
+
+#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
+/*
+ * Return offset of the corresponding page for r5dev.
+ */
+static inline int raid5_get_page_offset(struct stripe_head *sh, int disk_idx)
+{
+ return (disk_idx % sh->stripes_per_page) * RAID5_STRIPE_SIZE(sh->raid_conf);
+}
+
+/*
+ * Return corresponding page address for r5dev.
+ */
+static inline struct page *
+raid5_get_dev_page(struct stripe_head *sh, int disk_idx)
+{
+ return sh->pages[disk_idx / sh->stripes_per_page];
+}
+#endif
+
+void md_raid5_kick_device(struct r5conf *conf);
+int raid5_set_cache_size(struct mddev *mddev, int size);
+sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous);
+void raid5_release_stripe(struct stripe_head *sh);
+sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
+ int previous, int *dd_idx, struct stripe_head *sh);
+
+struct stripe_request_ctx;
+/* get stripe from previous generation (when reshaping) */
+#define R5_GAS_PREVIOUS (1 << 0)
+/* do not block waiting for a free stripe */
+#define R5_GAS_NOBLOCK (1 << 1)
+/* do not block waiting for quiesce to be released */
+#define R5_GAS_NOQUIESCE (1 << 2)
+struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
+ struct stripe_request_ctx *ctx, sector_t sector,
+ unsigned int flags);
+
+int raid5_calc_degraded(struct r5conf *conf);
+int r5c_journal_mode_set(struct mddev *mddev, int journal_mode);
+#endif