summaryrefslogtreecommitdiffstats
path: root/drivers/misc/habanalabs/common/hw_queue.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/misc/habanalabs/common/hw_queue.c
parentInitial commit. (diff)
downloadlinux-upstream.tar.xz
linux-upstream.zip
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--drivers/misc/habanalabs/common/hw_queue.c1137
1 files changed, 1137 insertions, 0 deletions
diff --git a/drivers/misc/habanalabs/common/hw_queue.c b/drivers/misc/habanalabs/common/hw_queue.c
new file mode 100644
index 000000000..d0087c0ec
--- /dev/null
+++ b/drivers/misc/habanalabs/common/hw_queue.c
@@ -0,0 +1,1137 @@
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Copyright 2016-2019 HabanaLabs, Ltd.
+ * All Rights Reserved.
+ */
+
+#include "habanalabs.h"
+
+#include <linux/slab.h>
+
+/*
+ * hl_queue_add_ptr - add to pi or ci and checks if it wraps around
+ *
+ * @ptr: the current pi/ci value
+ * @val: the amount to add
+ *
+ * Add val to ptr. It can go until twice the queue length.
+ */
+inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val)
+{
+ ptr += val;
+ ptr &= ((HL_QUEUE_LENGTH << 1) - 1);
+ return ptr;
+}
+static inline int queue_ci_get(atomic_t *ci, u32 queue_len)
+{
+ return atomic_read(ci) & ((queue_len << 1) - 1);
+}
+
+static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len)
+{
+ int delta = (q->pi - queue_ci_get(&q->ci, queue_len));
+
+ if (delta >= 0)
+ return (queue_len - delta);
+ else
+ return (abs(delta) - queue_len);
+}
+
+void hl_hw_queue_update_ci(struct hl_cs *cs)
+{
+ struct hl_device *hdev = cs->ctx->hdev;
+ struct hl_hw_queue *q;
+ int i;
+
+ if (hdev->disabled)
+ return;
+
+ q = &hdev->kernel_queues[0];
+
+ /* There are no internal queues if H/W queues are being used */
+ if (!hdev->asic_prop.max_queues || q->queue_type == QUEUE_TYPE_HW)
+ return;
+
+ /* We must increment CI for every queue that will never get a
+ * completion, there are 2 scenarios this can happen:
+ * 1. All queues of a non completion CS will never get a completion.
+ * 2. Internal queues never gets completion.
+ */
+ for (i = 0 ; i < hdev->asic_prop.max_queues ; i++, q++) {
+ if (!cs_needs_completion(cs) || q->queue_type == QUEUE_TYPE_INT)
+ atomic_add(cs->jobs_in_queue_cnt[i], &q->ci);
+ }
+}
+
+/*
+ * hl_hw_queue_submit_bd() - Submit a buffer descriptor to an external or a
+ * H/W queue.
+ * @hdev: pointer to habanalabs device structure
+ * @q: pointer to habanalabs queue structure
+ * @ctl: BD's control word
+ * @len: BD's length
+ * @ptr: BD's pointer
+ *
+ * This function assumes there is enough space on the queue to submit a new
+ * BD to it. It initializes the next BD and calls the device specific
+ * function to set the pi (and doorbell)
+ *
+ * This function must be called when the scheduler mutex is taken
+ *
+ */
+void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
+ u32 ctl, u32 len, u64 ptr)
+{
+ struct hl_bd *bd;
+
+ bd = q->kernel_address;
+ bd += hl_pi_2_offset(q->pi);
+ bd->ctl = cpu_to_le32(ctl);
+ bd->len = cpu_to_le32(len);
+ bd->ptr = cpu_to_le64(ptr);
+
+ q->pi = hl_queue_inc_ptr(q->pi);
+ hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
+}
+
+/*
+ * ext_queue_sanity_checks - perform some sanity checks on external queue
+ *
+ * @hdev : pointer to hl_device structure
+ * @q : pointer to hl_hw_queue structure
+ * @num_of_entries : how many entries to check for space
+ * @reserve_cq_entry : whether to reserve an entry in the cq
+ *
+ * H/W queues spinlock should be taken before calling this function
+ *
+ * Perform the following:
+ * - Make sure we have enough space in the h/w queue
+ * - Make sure we have enough space in the completion queue
+ * - Reserve space in the completion queue (needs to be reversed if there
+ * is a failure down the road before the actual submission of work). Only
+ * do this action if reserve_cq_entry is true
+ *
+ */
+static int ext_queue_sanity_checks(struct hl_device *hdev,
+ struct hl_hw_queue *q, int num_of_entries,
+ bool reserve_cq_entry)
+{
+ atomic_t *free_slots =
+ &hdev->completion_queue[q->cq_id].free_slots_cnt;
+ int free_slots_cnt;
+
+ /* Check we have enough space in the queue */
+ free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
+
+ if (free_slots_cnt < num_of_entries) {
+ dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
+ q->hw_queue_id, num_of_entries);
+ return -EAGAIN;
+ }
+
+ if (reserve_cq_entry) {
+ /*
+ * Check we have enough space in the completion queue
+ * Add -1 to counter (decrement) unless counter was already 0
+ * In that case, CQ is full so we can't submit a new CB because
+ * we won't get ack on its completion
+ * atomic_add_unless will return 0 if counter was already 0
+ */
+ if (atomic_add_negative(num_of_entries * -1, free_slots)) {
+ dev_dbg(hdev->dev, "No space for %d on CQ %d\n",
+ num_of_entries, q->hw_queue_id);
+ atomic_add(num_of_entries, free_slots);
+ return -EAGAIN;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * int_queue_sanity_checks - perform some sanity checks on internal queue
+ *
+ * @hdev : pointer to hl_device structure
+ * @q : pointer to hl_hw_queue structure
+ * @num_of_entries : how many entries to check for space
+ *
+ * H/W queues spinlock should be taken before calling this function
+ *
+ * Perform the following:
+ * - Make sure we have enough space in the h/w queue
+ *
+ */
+static int int_queue_sanity_checks(struct hl_device *hdev,
+ struct hl_hw_queue *q,
+ int num_of_entries)
+{
+ int free_slots_cnt;
+
+ if (num_of_entries > q->int_queue_len) {
+ dev_err(hdev->dev,
+ "Cannot populate queue %u with %u jobs\n",
+ q->hw_queue_id, num_of_entries);
+ return -ENOMEM;
+ }
+
+ /* Check we have enough space in the queue */
+ free_slots_cnt = queue_free_slots(q, q->int_queue_len);
+
+ if (free_slots_cnt < num_of_entries) {
+ dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
+ q->hw_queue_id, num_of_entries);
+ return -EAGAIN;
+ }
+
+ return 0;
+}
+
+/*
+ * hw_queue_sanity_checks() - Make sure we have enough space in the h/w queue
+ * @hdev: Pointer to hl_device structure.
+ * @q: Pointer to hl_hw_queue structure.
+ * @num_of_entries: How many entries to check for space.
+ *
+ * Notice: We do not reserve queue entries so this function mustn't be called
+ * more than once per CS for the same queue
+ *
+ */
+static int hw_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q,
+ int num_of_entries)
+{
+ int free_slots_cnt;
+
+ /* Check we have enough space in the queue */
+ free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
+
+ if (free_slots_cnt < num_of_entries) {
+ dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
+ q->hw_queue_id, num_of_entries);
+ return -EAGAIN;
+ }
+
+ return 0;
+}
+
+/*
+ * hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion
+ *
+ * @hdev: pointer to hl_device structure
+ * @hw_queue_id: Queue's type
+ * @cb_size: size of CB
+ * @cb_ptr: pointer to CB location
+ *
+ * This function sends a single CB, that must NOT generate a completion entry.
+ * Sending CPU messages can be done instead via 'hl_hw_queue_submit_bd()'
+ */
+int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
+ u32 cb_size, u64 cb_ptr)
+{
+ struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
+ int rc = 0;
+
+ hdev->asic_funcs->hw_queues_lock(hdev);
+
+ if (hdev->disabled) {
+ rc = -EPERM;
+ goto out;
+ }
+
+ /*
+ * hl_hw_queue_send_cb_no_cmpl() is called for queues of a H/W queue
+ * type only on init phase, when the queues are empty and being tested,
+ * so there is no need for sanity checks.
+ */
+ if (q->queue_type != QUEUE_TYPE_HW) {
+ rc = ext_queue_sanity_checks(hdev, q, 1, false);
+ if (rc)
+ goto out;
+ }
+
+ hl_hw_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr);
+
+out:
+ hdev->asic_funcs->hw_queues_unlock(hdev);
+
+ return rc;
+}
+
+/*
+ * ext_queue_schedule_job - submit a JOB to an external queue
+ *
+ * @job: pointer to the job that needs to be submitted to the queue
+ *
+ * This function must be called when the scheduler mutex is taken
+ *
+ */
+static void ext_queue_schedule_job(struct hl_cs_job *job)
+{
+ struct hl_device *hdev = job->cs->ctx->hdev;
+ struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
+ struct hl_cq_entry cq_pkt;
+ struct hl_cq *cq;
+ u64 cq_addr;
+ struct hl_cb *cb;
+ u32 ctl;
+ u32 len;
+ u64 ptr;
+
+ /*
+ * Update the JOB ID inside the BD CTL so the device would know what
+ * to write in the completion queue
+ */
+ ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK);
+
+ cb = job->patched_cb;
+ len = job->job_cb_size;
+ ptr = cb->bus_address;
+
+ /* Skip completion flow in case this is a non completion CS */
+ if (!cs_needs_completion(job->cs))
+ goto submit_bd;
+
+ cq_pkt.data = cpu_to_le32(
+ ((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT)
+ & CQ_ENTRY_SHADOW_INDEX_MASK) |
+ FIELD_PREP(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, 1) |
+ FIELD_PREP(CQ_ENTRY_READY_MASK, 1));
+
+ /*
+ * No need to protect pi_offset because scheduling to the
+ * H/W queues is done under the scheduler mutex
+ *
+ * No need to check if CQ is full because it was already
+ * checked in ext_queue_sanity_checks
+ */
+ cq = &hdev->completion_queue[q->cq_id];
+ cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry);
+
+ hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len,
+ job->user_cb_size,
+ cq_addr,
+ le32_to_cpu(cq_pkt.data),
+ q->msi_vec,
+ job->contains_dma_pkt);
+
+ q->shadow_queue[hl_pi_2_offset(q->pi)] = job;
+
+ cq->pi = hl_cq_inc_ptr(cq->pi);
+
+submit_bd:
+ hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
+}
+
+/*
+ * int_queue_schedule_job - submit a JOB to an internal queue
+ *
+ * @job: pointer to the job that needs to be submitted to the queue
+ *
+ * This function must be called when the scheduler mutex is taken
+ *
+ */
+static void int_queue_schedule_job(struct hl_cs_job *job)
+{
+ struct hl_device *hdev = job->cs->ctx->hdev;
+ struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
+ struct hl_bd bd;
+ __le64 *pi;
+
+ bd.ctl = 0;
+ bd.len = cpu_to_le32(job->job_cb_size);
+
+ if (job->is_kernel_allocated_cb)
+ /* bus_address is actually a mmu mapped address
+ * allocated from an internal pool
+ */
+ bd.ptr = cpu_to_le64(job->user_cb->bus_address);
+ else
+ bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb);
+
+ pi = q->kernel_address + (q->pi & (q->int_queue_len - 1)) * sizeof(bd);
+
+ q->pi++;
+ q->pi &= ((q->int_queue_len << 1) - 1);
+
+ hdev->asic_funcs->pqe_write(hdev, pi, &bd);
+
+ hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
+}
+
+/*
+ * hw_queue_schedule_job - submit a JOB to a H/W queue
+ *
+ * @job: pointer to the job that needs to be submitted to the queue
+ *
+ * This function must be called when the scheduler mutex is taken
+ *
+ */
+static void hw_queue_schedule_job(struct hl_cs_job *job)
+{
+ struct hl_device *hdev = job->cs->ctx->hdev;
+ struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
+ u64 ptr;
+ u32 offset, ctl, len;
+
+ /*
+ * Upon PQE completion, COMP_DATA is used as the write data to the
+ * completion queue (QMAN HBW message), and COMP_OFFSET is used as the
+ * write address offset in the SM block (QMAN LBW message).
+ * The write address offset is calculated as "COMP_OFFSET << 2".
+ */
+ offset = job->cs->sequence & (hdev->asic_prop.max_pending_cs - 1);
+ ctl = ((offset << BD_CTL_COMP_OFFSET_SHIFT) & BD_CTL_COMP_OFFSET_MASK) |
+ ((q->pi << BD_CTL_COMP_DATA_SHIFT) & BD_CTL_COMP_DATA_MASK);
+
+ len = job->job_cb_size;
+
+ /*
+ * A patched CB is created only if a user CB was allocated by driver and
+ * MMU is disabled. If MMU is enabled, the user CB should be used
+ * instead. If the user CB wasn't allocated by driver, assume that it
+ * holds an address.
+ */
+ if (job->patched_cb)
+ ptr = job->patched_cb->bus_address;
+ else if (job->is_kernel_allocated_cb)
+ ptr = job->user_cb->bus_address;
+ else
+ ptr = (u64) (uintptr_t) job->user_cb;
+
+ hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
+}
+
+static int init_signal_cs(struct hl_device *hdev,
+ struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
+{
+ struct hl_sync_stream_properties *prop;
+ struct hl_hw_sob *hw_sob;
+ u32 q_idx;
+ int rc = 0;
+
+ q_idx = job->hw_queue_id;
+ prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
+ hw_sob = &prop->hw_sob[prop->curr_sob_offset];
+
+ cs_cmpl->hw_sob = hw_sob;
+ cs_cmpl->sob_val = prop->next_sob_val;
+
+ dev_dbg(hdev->dev,
+ "generate signal CB, sob_id: %d, sob val: %u, q_idx: %d, seq: %llu\n",
+ cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, q_idx,
+ cs_cmpl->cs_seq);
+
+ /* we set an EB since we must make sure all oeprations are done
+ * when sending the signal
+ */
+ hdev->asic_funcs->gen_signal_cb(hdev, job->patched_cb,
+ cs_cmpl->hw_sob->sob_id, 0, true);
+
+ rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, 1,
+ false);
+
+ job->cs->sob_addr_offset = hw_sob->sob_addr;
+ job->cs->initial_sob_count = prop->next_sob_val - 1;
+
+ return rc;
+}
+
+void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
+ struct hl_cs *cs, struct hl_cs_job *job,
+ struct hl_cs_compl *cs_cmpl)
+{
+ struct hl_cs_encaps_sig_handle *handle = cs->encaps_sig_hdl;
+ u32 offset = 0;
+
+ cs_cmpl->hw_sob = handle->hw_sob;
+
+ /* Note that encaps_sig_wait_offset was validated earlier in the flow
+ * for offset value which exceeds the max reserved signal count.
+ * always decrement 1 of the offset since when the user
+ * set offset 1 for example he mean to wait only for the first
+ * signal only, which will be pre_sob_val, and if he set offset 2
+ * then the value required is (pre_sob_val + 1) and so on...
+ * if user set wait offset to 0, then treat it as legacy wait cs,
+ * wait for the next signal.
+ */
+ if (job->encaps_sig_wait_offset)
+ offset = job->encaps_sig_wait_offset - 1;
+
+ cs_cmpl->sob_val = handle->pre_sob_val + offset;
+}
+
+static int init_wait_cs(struct hl_device *hdev, struct hl_cs *cs,
+ struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
+{
+ struct hl_gen_wait_properties wait_prop;
+ struct hl_sync_stream_properties *prop;
+ struct hl_cs_compl *signal_cs_cmpl;
+ u32 q_idx;
+
+ q_idx = job->hw_queue_id;
+ prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
+
+ signal_cs_cmpl = container_of(cs->signal_fence,
+ struct hl_cs_compl,
+ base_fence);
+
+ if (cs->encaps_signals) {
+ /* use the encaps signal handle stored earlier in the flow
+ * and set the SOB information from the encaps
+ * signals handle
+ */
+ hl_hw_queue_encaps_sig_set_sob_info(hdev, cs, job, cs_cmpl);
+
+ dev_dbg(hdev->dev, "Wait for encaps signals handle, qidx(%u), CS sequence(%llu), sob val: 0x%x, offset: %u\n",
+ cs->encaps_sig_hdl->q_idx,
+ cs->encaps_sig_hdl->cs_seq,
+ cs_cmpl->sob_val,
+ job->encaps_sig_wait_offset);
+ } else {
+ /* Copy the SOB id and value of the signal CS */
+ cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob;
+ cs_cmpl->sob_val = signal_cs_cmpl->sob_val;
+ }
+
+ /* check again if the signal cs already completed.
+ * if yes then don't send any wait cs since the hw_sob
+ * could be in reset already. if signal is not completed
+ * then get refcount to hw_sob to prevent resetting the sob
+ * while wait cs is not submitted.
+ * note that this check is protected by two locks,
+ * hw queue lock and completion object lock,
+ * and the same completion object lock also protects
+ * the hw_sob reset handler function.
+ * The hw_queue lock prevent out of sync of hw_sob
+ * refcount value, changed by signal/wait flows.
+ */
+ spin_lock(&signal_cs_cmpl->lock);
+
+ if (completion_done(&cs->signal_fence->completion)) {
+ spin_unlock(&signal_cs_cmpl->lock);
+ return -EINVAL;
+ }
+
+ kref_get(&cs_cmpl->hw_sob->kref);
+
+ spin_unlock(&signal_cs_cmpl->lock);
+
+ dev_dbg(hdev->dev,
+ "generate wait CB, sob_id: %d, sob_val: 0x%x, mon_id: %d, q_idx: %d, seq: %llu\n",
+ cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val,
+ prop->base_mon_id, q_idx, cs->sequence);
+
+ wait_prop.data = (void *) job->patched_cb;
+ wait_prop.sob_base = cs_cmpl->hw_sob->sob_id;
+ wait_prop.sob_mask = 0x1;
+ wait_prop.sob_val = cs_cmpl->sob_val;
+ wait_prop.mon_id = prop->base_mon_id;
+ wait_prop.q_idx = q_idx;
+ wait_prop.size = 0;
+
+ hdev->asic_funcs->gen_wait_cb(hdev, &wait_prop);
+
+ mb();
+ hl_fence_put(cs->signal_fence);
+ cs->signal_fence = NULL;
+
+ return 0;
+}
+
+/*
+ * init_signal_wait_cs - initialize a signal/wait CS
+ * @cs: pointer to the signal/wait CS
+ *
+ * H/W queues spinlock should be taken before calling this function
+ */
+static int init_signal_wait_cs(struct hl_cs *cs)
+{
+ struct hl_ctx *ctx = cs->ctx;
+ struct hl_device *hdev = ctx->hdev;
+ struct hl_cs_job *job;
+ struct hl_cs_compl *cs_cmpl =
+ container_of(cs->fence, struct hl_cs_compl, base_fence);
+ int rc = 0;
+
+ /* There is only one job in a signal/wait CS */
+ job = list_first_entry(&cs->job_list, struct hl_cs_job,
+ cs_node);
+
+ if (cs->type & CS_TYPE_SIGNAL)
+ rc = init_signal_cs(hdev, job, cs_cmpl);
+ else if (cs->type & CS_TYPE_WAIT)
+ rc = init_wait_cs(hdev, cs, job, cs_cmpl);
+
+ return rc;
+}
+
+static int encaps_sig_first_staged_cs_handler
+ (struct hl_device *hdev, struct hl_cs *cs)
+{
+ struct hl_cs_compl *cs_cmpl =
+ container_of(cs->fence,
+ struct hl_cs_compl, base_fence);
+ struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
+ struct hl_encaps_signals_mgr *mgr;
+ int rc = 0;
+
+ mgr = &cs->ctx->sig_mgr;
+
+ spin_lock(&mgr->lock);
+ encaps_sig_hdl = idr_find(&mgr->handles, cs->encaps_sig_hdl_id);
+ if (encaps_sig_hdl) {
+ /*
+ * Set handler CS sequence,
+ * the CS which contains the encapsulated signals.
+ */
+ encaps_sig_hdl->cs_seq = cs->sequence;
+ /* store the handle and set encaps signal indication,
+ * to be used later in cs_do_release to put the last
+ * reference to encaps signals handlers.
+ */
+ cs_cmpl->encaps_signals = true;
+ cs_cmpl->encaps_sig_hdl = encaps_sig_hdl;
+
+ /* set hw_sob pointer in completion object
+ * since it's used in cs_do_release flow to put
+ * refcount to sob
+ */
+ cs_cmpl->hw_sob = encaps_sig_hdl->hw_sob;
+ cs_cmpl->sob_val = encaps_sig_hdl->pre_sob_val +
+ encaps_sig_hdl->count;
+
+ dev_dbg(hdev->dev, "CS seq (%llu) added to encaps signal handler id (%u), count(%u), qidx(%u), sob(%u), val(%u)\n",
+ cs->sequence, encaps_sig_hdl->id,
+ encaps_sig_hdl->count,
+ encaps_sig_hdl->q_idx,
+ cs_cmpl->hw_sob->sob_id,
+ cs_cmpl->sob_val);
+
+ } else {
+ dev_err(hdev->dev, "encaps handle id(%u) wasn't found!\n",
+ cs->encaps_sig_hdl_id);
+ rc = -EINVAL;
+ }
+
+ spin_unlock(&mgr->lock);
+
+ return rc;
+}
+
+/*
+ * hl_hw_queue_schedule_cs - schedule a command submission
+ * @cs: pointer to the CS
+ */
+int hl_hw_queue_schedule_cs(struct hl_cs *cs)
+{
+ enum hl_device_status status;
+ struct hl_cs_counters_atomic *cntr;
+ struct hl_ctx *ctx = cs->ctx;
+ struct hl_device *hdev = ctx->hdev;
+ struct hl_cs_job *job, *tmp;
+ struct hl_hw_queue *q;
+ int rc = 0, i, cq_cnt;
+ bool first_entry;
+ u32 max_queues;
+
+ cntr = &hdev->aggregated_cs_counters;
+
+ hdev->asic_funcs->hw_queues_lock(hdev);
+
+ if (!hl_device_operational(hdev, &status)) {
+ atomic64_inc(&cntr->device_in_reset_drop_cnt);
+ atomic64_inc(&ctx->cs_counters.device_in_reset_drop_cnt);
+ dev_err(hdev->dev,
+ "device is %s, CS rejected!\n", hdev->status[status]);
+ rc = -EPERM;
+ goto out;
+ }
+
+ max_queues = hdev->asic_prop.max_queues;
+
+ q = &hdev->kernel_queues[0];
+ for (i = 0, cq_cnt = 0 ; i < max_queues ; i++, q++) {
+ if (cs->jobs_in_queue_cnt[i]) {
+ switch (q->queue_type) {
+ case QUEUE_TYPE_EXT:
+ rc = ext_queue_sanity_checks(hdev, q,
+ cs->jobs_in_queue_cnt[i],
+ cs_needs_completion(cs) ?
+ true : false);
+ break;
+ case QUEUE_TYPE_INT:
+ rc = int_queue_sanity_checks(hdev, q,
+ cs->jobs_in_queue_cnt[i]);
+ break;
+ case QUEUE_TYPE_HW:
+ rc = hw_queue_sanity_checks(hdev, q,
+ cs->jobs_in_queue_cnt[i]);
+ break;
+ default:
+ dev_err(hdev->dev, "Queue type %d is invalid\n",
+ q->queue_type);
+ rc = -EINVAL;
+ break;
+ }
+
+ if (rc) {
+ atomic64_inc(
+ &ctx->cs_counters.queue_full_drop_cnt);
+ atomic64_inc(&cntr->queue_full_drop_cnt);
+ goto unroll_cq_resv;
+ }
+
+ if (q->queue_type == QUEUE_TYPE_EXT)
+ cq_cnt++;
+ }
+ }
+
+ if ((cs->type == CS_TYPE_SIGNAL) || (cs->type == CS_TYPE_WAIT)) {
+ rc = init_signal_wait_cs(cs);
+ if (rc)
+ goto unroll_cq_resv;
+ } else if (cs->type == CS_TYPE_COLLECTIVE_WAIT) {
+ rc = hdev->asic_funcs->collective_wait_init_cs(cs);
+ if (rc)
+ goto unroll_cq_resv;
+ }
+
+ rc = hdev->asic_funcs->pre_schedule_cs(cs);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed in pre-submission operations of CS %d.%llu\n",
+ ctx->asid, cs->sequence);
+ goto unroll_cq_resv;
+ }
+
+ hdev->shadow_cs_queue[cs->sequence &
+ (hdev->asic_prop.max_pending_cs - 1)] = cs;
+
+ if (cs->encaps_signals && cs->staged_first) {
+ rc = encaps_sig_first_staged_cs_handler(hdev, cs);
+ if (rc)
+ goto unroll_cq_resv;
+ }
+
+ spin_lock(&hdev->cs_mirror_lock);
+
+ /* Verify staged CS exists and add to the staged list */
+ if (cs->staged_cs && !cs->staged_first) {
+ struct hl_cs *staged_cs;
+
+ staged_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
+ if (!staged_cs) {
+ dev_err(hdev->dev,
+ "Cannot find staged submission sequence %llu",
+ cs->staged_sequence);
+ rc = -EINVAL;
+ goto unlock_cs_mirror;
+ }
+
+ if (is_staged_cs_last_exists(hdev, staged_cs)) {
+ dev_err(hdev->dev,
+ "Staged submission sequence %llu already submitted",
+ cs->staged_sequence);
+ rc = -EINVAL;
+ goto unlock_cs_mirror;
+ }
+
+ list_add_tail(&cs->staged_cs_node, &staged_cs->staged_cs_node);
+
+ /* update stream map of the first CS */
+ if (hdev->supports_wait_for_multi_cs)
+ staged_cs->fence->stream_master_qid_map |=
+ cs->fence->stream_master_qid_map;
+ }
+
+ list_add_tail(&cs->mirror_node, &hdev->cs_mirror_list);
+
+ /* Queue TDR if the CS is the first entry and if timeout is wanted */
+ first_entry = list_first_entry(&hdev->cs_mirror_list,
+ struct hl_cs, mirror_node) == cs;
+ if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) &&
+ first_entry && cs_needs_timeout(cs)) {
+ cs->tdr_active = true;
+ schedule_delayed_work(&cs->work_tdr, cs->timeout_jiffies);
+
+ }
+
+ spin_unlock(&hdev->cs_mirror_lock);
+
+ list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
+ switch (job->queue_type) {
+ case QUEUE_TYPE_EXT:
+ ext_queue_schedule_job(job);
+ break;
+ case QUEUE_TYPE_INT:
+ int_queue_schedule_job(job);
+ break;
+ case QUEUE_TYPE_HW:
+ hw_queue_schedule_job(job);
+ break;
+ default:
+ break;
+ }
+
+ cs->submitted = true;
+
+ goto out;
+
+unlock_cs_mirror:
+ spin_unlock(&hdev->cs_mirror_lock);
+unroll_cq_resv:
+ q = &hdev->kernel_queues[0];
+ for (i = 0 ; (i < max_queues) && (cq_cnt > 0) ; i++, q++) {
+ if ((q->queue_type == QUEUE_TYPE_EXT) &&
+ (cs->jobs_in_queue_cnt[i])) {
+ atomic_t *free_slots =
+ &hdev->completion_queue[i].free_slots_cnt;
+ atomic_add(cs->jobs_in_queue_cnt[i], free_slots);
+ cq_cnt--;
+ }
+ }
+
+out:
+ hdev->asic_funcs->hw_queues_unlock(hdev);
+
+ return rc;
+}
+
+/*
+ * hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue
+ *
+ * @hdev: pointer to hl_device structure
+ * @hw_queue_id: which queue to increment its ci
+ */
+void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
+{
+ struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
+
+ atomic_inc(&q->ci);
+}
+
+static int ext_and_cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
+ bool is_cpu_queue)
+{
+ void *p;
+ int rc;
+
+ if (is_cpu_queue)
+ p = hl_cpu_accessible_dma_pool_alloc(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address);
+ else
+ p = hl_asic_dma_alloc_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address,
+ GFP_KERNEL | __GFP_ZERO);
+ if (!p)
+ return -ENOMEM;
+
+ q->kernel_address = p;
+
+ q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH, sizeof(struct hl_cs_job *), GFP_KERNEL);
+ if (!q->shadow_queue) {
+ dev_err(hdev->dev,
+ "Failed to allocate shadow queue for H/W queue %d\n",
+ q->hw_queue_id);
+ rc = -ENOMEM;
+ goto free_queue;
+ }
+
+ /* Make sure read/write pointers are initialized to start of queue */
+ atomic_set(&q->ci, 0);
+ q->pi = 0;
+
+ return 0;
+
+free_queue:
+ if (is_cpu_queue)
+ hl_cpu_accessible_dma_pool_free(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address);
+ else
+ hl_asic_dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address,
+ q->bus_address);
+
+ return rc;
+}
+
+static int int_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
+{
+ void *p;
+
+ p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id,
+ &q->bus_address, &q->int_queue_len);
+ if (!p) {
+ dev_err(hdev->dev,
+ "Failed to get base address for internal queue %d\n",
+ q->hw_queue_id);
+ return -EFAULT;
+ }
+
+ q->kernel_address = p;
+ q->pi = 0;
+ atomic_set(&q->ci, 0);
+
+ return 0;
+}
+
+static int cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
+{
+ return ext_and_cpu_queue_init(hdev, q, true);
+}
+
+static int ext_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
+{
+ return ext_and_cpu_queue_init(hdev, q, false);
+}
+
+static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
+{
+ void *p;
+
+ p = hl_asic_dma_alloc_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address,
+ GFP_KERNEL | __GFP_ZERO);
+ if (!p)
+ return -ENOMEM;
+
+ q->kernel_address = p;
+
+ /* Make sure read/write pointers are initialized to start of queue */
+ atomic_set(&q->ci, 0);
+ q->pi = 0;
+
+ return 0;
+}
+
+static void sync_stream_queue_init(struct hl_device *hdev, u32 q_idx)
+{
+ struct hl_sync_stream_properties *sync_stream_prop;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hl_hw_sob *hw_sob;
+ int sob, reserved_mon_idx, queue_idx;
+
+ sync_stream_prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
+
+ /* We use 'collective_mon_idx' as a running index in order to reserve
+ * monitors for collective master/slave queues.
+ * collective master queue gets 2 reserved monitors
+ * collective slave queue gets 1 reserved monitor
+ */
+ if (hdev->kernel_queues[q_idx].collective_mode ==
+ HL_COLLECTIVE_MASTER) {
+ reserved_mon_idx = hdev->collective_mon_idx;
+
+ /* reserve the first monitor for collective master queue */
+ sync_stream_prop->collective_mstr_mon_id[0] =
+ prop->collective_first_mon + reserved_mon_idx;
+
+ /* reserve the second monitor for collective master queue */
+ sync_stream_prop->collective_mstr_mon_id[1] =
+ prop->collective_first_mon + reserved_mon_idx + 1;
+
+ hdev->collective_mon_idx += HL_COLLECTIVE_RSVD_MSTR_MONS;
+ } else if (hdev->kernel_queues[q_idx].collective_mode ==
+ HL_COLLECTIVE_SLAVE) {
+ reserved_mon_idx = hdev->collective_mon_idx++;
+
+ /* reserve a monitor for collective slave queue */
+ sync_stream_prop->collective_slave_mon_id =
+ prop->collective_first_mon + reserved_mon_idx;
+ }
+
+ if (!hdev->kernel_queues[q_idx].supports_sync_stream)
+ return;
+
+ queue_idx = hdev->sync_stream_queue_idx++;
+
+ sync_stream_prop->base_sob_id = prop->sync_stream_first_sob +
+ (queue_idx * HL_RSVD_SOBS);
+ sync_stream_prop->base_mon_id = prop->sync_stream_first_mon +
+ (queue_idx * HL_RSVD_MONS);
+ sync_stream_prop->next_sob_val = 1;
+ sync_stream_prop->curr_sob_offset = 0;
+
+ for (sob = 0 ; sob < HL_RSVD_SOBS ; sob++) {
+ hw_sob = &sync_stream_prop->hw_sob[sob];
+ hw_sob->hdev = hdev;
+ hw_sob->sob_id = sync_stream_prop->base_sob_id + sob;
+ hw_sob->sob_addr =
+ hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
+ hw_sob->q_idx = q_idx;
+ kref_init(&hw_sob->kref);
+ }
+}
+
+static void sync_stream_queue_reset(struct hl_device *hdev, u32 q_idx)
+{
+ struct hl_sync_stream_properties *prop =
+ &hdev->kernel_queues[q_idx].sync_stream_prop;
+
+ /*
+ * In case we got here due to a stuck CS, the refcnt might be bigger
+ * than 1 and therefore we reset it.
+ */
+ kref_init(&prop->hw_sob[prop->curr_sob_offset].kref);
+ prop->curr_sob_offset = 0;
+ prop->next_sob_val = 1;
+}
+
+/*
+ * queue_init - main initialization function for H/W queue object
+ *
+ * @hdev: pointer to hl_device device structure
+ * @q: pointer to hl_hw_queue queue structure
+ * @hw_queue_id: The id of the H/W queue
+ *
+ * Allocate dma-able memory for the queue and initialize fields
+ * Returns 0 on success
+ */
+static int queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
+ u32 hw_queue_id)
+{
+ int rc;
+
+ q->hw_queue_id = hw_queue_id;
+
+ switch (q->queue_type) {
+ case QUEUE_TYPE_EXT:
+ rc = ext_queue_init(hdev, q);
+ break;
+ case QUEUE_TYPE_INT:
+ rc = int_queue_init(hdev, q);
+ break;
+ case QUEUE_TYPE_CPU:
+ rc = cpu_queue_init(hdev, q);
+ break;
+ case QUEUE_TYPE_HW:
+ rc = hw_queue_init(hdev, q);
+ break;
+ case QUEUE_TYPE_NA:
+ q->valid = 0;
+ return 0;
+ default:
+ dev_crit(hdev->dev, "wrong queue type %d during init\n",
+ q->queue_type);
+ rc = -EINVAL;
+ break;
+ }
+
+ sync_stream_queue_init(hdev, q->hw_queue_id);
+
+ if (rc)
+ return rc;
+
+ q->valid = 1;
+
+ return 0;
+}
+
+/*
+ * hw_queue_fini - destroy queue
+ *
+ * @hdev: pointer to hl_device device structure
+ * @q: pointer to hl_hw_queue queue structure
+ *
+ * Free the queue memory
+ */
+static void queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
+{
+ if (!q->valid)
+ return;
+
+ /*
+ * If we arrived here, there are no jobs waiting on this queue
+ * so we can safely remove it.
+ * This is because this function can only called when:
+ * 1. Either a context is deleted, which only can occur if all its
+ * jobs were finished
+ * 2. A context wasn't able to be created due to failure or timeout,
+ * which means there are no jobs on the queue yet
+ *
+ * The only exception are the queues of the kernel context, but
+ * if they are being destroyed, it means that the entire module is
+ * being removed. If the module is removed, it means there is no open
+ * user context. It also means that if a job was submitted by
+ * the kernel driver (e.g. context creation), the job itself was
+ * released by the kernel driver when a timeout occurred on its
+ * Completion. Thus, we don't need to release it again.
+ */
+
+ if (q->queue_type == QUEUE_TYPE_INT)
+ return;
+
+ kfree(q->shadow_queue);
+
+ if (q->queue_type == QUEUE_TYPE_CPU)
+ hl_cpu_accessible_dma_pool_free(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address);
+ else
+ hl_asic_dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address,
+ q->bus_address);
+}
+
+int hl_hw_queues_create(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *asic = &hdev->asic_prop;
+ struct hl_hw_queue *q;
+ int i, rc, q_ready_cnt;
+
+ hdev->kernel_queues = kcalloc(asic->max_queues,
+ sizeof(*hdev->kernel_queues), GFP_KERNEL);
+
+ if (!hdev->kernel_queues) {
+ dev_err(hdev->dev, "Not enough memory for H/W queues\n");
+ return -ENOMEM;
+ }
+
+ /* Initialize the H/W queues */
+ for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues;
+ i < asic->max_queues ; i++, q_ready_cnt++, q++) {
+
+ q->queue_type = asic->hw_queues_props[i].type;
+ q->supports_sync_stream =
+ asic->hw_queues_props[i].supports_sync_stream;
+ q->collective_mode = asic->hw_queues_props[i].collective_mode;
+ rc = queue_init(hdev, q, i);
+ if (rc) {
+ dev_err(hdev->dev,
+ "failed to initialize queue %d\n", i);
+ goto release_queues;
+ }
+ }
+
+ return 0;
+
+release_queues:
+ for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++)
+ queue_fini(hdev, q);
+
+ kfree(hdev->kernel_queues);
+
+ return rc;
+}
+
+void hl_hw_queues_destroy(struct hl_device *hdev)
+{
+ struct hl_hw_queue *q;
+ u32 max_queues = hdev->asic_prop.max_queues;
+ int i;
+
+ for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++)
+ queue_fini(hdev, q);
+
+ kfree(hdev->kernel_queues);
+}
+
+void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset)
+{
+ struct hl_hw_queue *q;
+ u32 max_queues = hdev->asic_prop.max_queues;
+ int i;
+
+ for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++) {
+ if ((!q->valid) ||
+ ((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU)))
+ continue;
+ q->pi = 0;
+ atomic_set(&q->ci, 0);
+
+ if (q->supports_sync_stream)
+ sync_stream_queue_reset(hdev, q->hw_queue_id);
+ }
+}