diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/misc/habanalabs/common/hw_queue.c | |
parent | Initial commit. (diff) | |
download | linux-upstream.tar.xz linux-upstream.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | drivers/misc/habanalabs/common/hw_queue.c | 1137 |
1 files changed, 1137 insertions, 0 deletions
diff --git a/drivers/misc/habanalabs/common/hw_queue.c b/drivers/misc/habanalabs/common/hw_queue.c new file mode 100644 index 000000000..d0087c0ec --- /dev/null +++ b/drivers/misc/habanalabs/common/hw_queue.c @@ -0,0 +1,1137 @@ +// SPDX-License-Identifier: GPL-2.0 + +/* + * Copyright 2016-2019 HabanaLabs, Ltd. + * All Rights Reserved. + */ + +#include "habanalabs.h" + +#include <linux/slab.h> + +/* + * hl_queue_add_ptr - add to pi or ci and checks if it wraps around + * + * @ptr: the current pi/ci value + * @val: the amount to add + * + * Add val to ptr. It can go until twice the queue length. + */ +inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val) +{ + ptr += val; + ptr &= ((HL_QUEUE_LENGTH << 1) - 1); + return ptr; +} +static inline int queue_ci_get(atomic_t *ci, u32 queue_len) +{ + return atomic_read(ci) & ((queue_len << 1) - 1); +} + +static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len) +{ + int delta = (q->pi - queue_ci_get(&q->ci, queue_len)); + + if (delta >= 0) + return (queue_len - delta); + else + return (abs(delta) - queue_len); +} + +void hl_hw_queue_update_ci(struct hl_cs *cs) +{ + struct hl_device *hdev = cs->ctx->hdev; + struct hl_hw_queue *q; + int i; + + if (hdev->disabled) + return; + + q = &hdev->kernel_queues[0]; + + /* There are no internal queues if H/W queues are being used */ + if (!hdev->asic_prop.max_queues || q->queue_type == QUEUE_TYPE_HW) + return; + + /* We must increment CI for every queue that will never get a + * completion, there are 2 scenarios this can happen: + * 1. All queues of a non completion CS will never get a completion. + * 2. Internal queues never gets completion. + */ + for (i = 0 ; i < hdev->asic_prop.max_queues ; i++, q++) { + if (!cs_needs_completion(cs) || q->queue_type == QUEUE_TYPE_INT) + atomic_add(cs->jobs_in_queue_cnt[i], &q->ci); + } +} + +/* + * hl_hw_queue_submit_bd() - Submit a buffer descriptor to an external or a + * H/W queue. + * @hdev: pointer to habanalabs device structure + * @q: pointer to habanalabs queue structure + * @ctl: BD's control word + * @len: BD's length + * @ptr: BD's pointer + * + * This function assumes there is enough space on the queue to submit a new + * BD to it. It initializes the next BD and calls the device specific + * function to set the pi (and doorbell) + * + * This function must be called when the scheduler mutex is taken + * + */ +void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q, + u32 ctl, u32 len, u64 ptr) +{ + struct hl_bd *bd; + + bd = q->kernel_address; + bd += hl_pi_2_offset(q->pi); + bd->ctl = cpu_to_le32(ctl); + bd->len = cpu_to_le32(len); + bd->ptr = cpu_to_le64(ptr); + + q->pi = hl_queue_inc_ptr(q->pi); + hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi); +} + +/* + * ext_queue_sanity_checks - perform some sanity checks on external queue + * + * @hdev : pointer to hl_device structure + * @q : pointer to hl_hw_queue structure + * @num_of_entries : how many entries to check for space + * @reserve_cq_entry : whether to reserve an entry in the cq + * + * H/W queues spinlock should be taken before calling this function + * + * Perform the following: + * - Make sure we have enough space in the h/w queue + * - Make sure we have enough space in the completion queue + * - Reserve space in the completion queue (needs to be reversed if there + * is a failure down the road before the actual submission of work). Only + * do this action if reserve_cq_entry is true + * + */ +static int ext_queue_sanity_checks(struct hl_device *hdev, + struct hl_hw_queue *q, int num_of_entries, + bool reserve_cq_entry) +{ + atomic_t *free_slots = + &hdev->completion_queue[q->cq_id].free_slots_cnt; + int free_slots_cnt; + + /* Check we have enough space in the queue */ + free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH); + + if (free_slots_cnt < num_of_entries) { + dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n", + q->hw_queue_id, num_of_entries); + return -EAGAIN; + } + + if (reserve_cq_entry) { + /* + * Check we have enough space in the completion queue + * Add -1 to counter (decrement) unless counter was already 0 + * In that case, CQ is full so we can't submit a new CB because + * we won't get ack on its completion + * atomic_add_unless will return 0 if counter was already 0 + */ + if (atomic_add_negative(num_of_entries * -1, free_slots)) { + dev_dbg(hdev->dev, "No space for %d on CQ %d\n", + num_of_entries, q->hw_queue_id); + atomic_add(num_of_entries, free_slots); + return -EAGAIN; + } + } + + return 0; +} + +/* + * int_queue_sanity_checks - perform some sanity checks on internal queue + * + * @hdev : pointer to hl_device structure + * @q : pointer to hl_hw_queue structure + * @num_of_entries : how many entries to check for space + * + * H/W queues spinlock should be taken before calling this function + * + * Perform the following: + * - Make sure we have enough space in the h/w queue + * + */ +static int int_queue_sanity_checks(struct hl_device *hdev, + struct hl_hw_queue *q, + int num_of_entries) +{ + int free_slots_cnt; + + if (num_of_entries > q->int_queue_len) { + dev_err(hdev->dev, + "Cannot populate queue %u with %u jobs\n", + q->hw_queue_id, num_of_entries); + return -ENOMEM; + } + + /* Check we have enough space in the queue */ + free_slots_cnt = queue_free_slots(q, q->int_queue_len); + + if (free_slots_cnt < num_of_entries) { + dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n", + q->hw_queue_id, num_of_entries); + return -EAGAIN; + } + + return 0; +} + +/* + * hw_queue_sanity_checks() - Make sure we have enough space in the h/w queue + * @hdev: Pointer to hl_device structure. + * @q: Pointer to hl_hw_queue structure. + * @num_of_entries: How many entries to check for space. + * + * Notice: We do not reserve queue entries so this function mustn't be called + * more than once per CS for the same queue + * + */ +static int hw_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q, + int num_of_entries) +{ + int free_slots_cnt; + + /* Check we have enough space in the queue */ + free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH); + + if (free_slots_cnt < num_of_entries) { + dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n", + q->hw_queue_id, num_of_entries); + return -EAGAIN; + } + + return 0; +} + +/* + * hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion + * + * @hdev: pointer to hl_device structure + * @hw_queue_id: Queue's type + * @cb_size: size of CB + * @cb_ptr: pointer to CB location + * + * This function sends a single CB, that must NOT generate a completion entry. + * Sending CPU messages can be done instead via 'hl_hw_queue_submit_bd()' + */ +int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id, + u32 cb_size, u64 cb_ptr) +{ + struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id]; + int rc = 0; + + hdev->asic_funcs->hw_queues_lock(hdev); + + if (hdev->disabled) { + rc = -EPERM; + goto out; + } + + /* + * hl_hw_queue_send_cb_no_cmpl() is called for queues of a H/W queue + * type only on init phase, when the queues are empty and being tested, + * so there is no need for sanity checks. + */ + if (q->queue_type != QUEUE_TYPE_HW) { + rc = ext_queue_sanity_checks(hdev, q, 1, false); + if (rc) + goto out; + } + + hl_hw_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr); + +out: + hdev->asic_funcs->hw_queues_unlock(hdev); + + return rc; +} + +/* + * ext_queue_schedule_job - submit a JOB to an external queue + * + * @job: pointer to the job that needs to be submitted to the queue + * + * This function must be called when the scheduler mutex is taken + * + */ +static void ext_queue_schedule_job(struct hl_cs_job *job) +{ + struct hl_device *hdev = job->cs->ctx->hdev; + struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id]; + struct hl_cq_entry cq_pkt; + struct hl_cq *cq; + u64 cq_addr; + struct hl_cb *cb; + u32 ctl; + u32 len; + u64 ptr; + + /* + * Update the JOB ID inside the BD CTL so the device would know what + * to write in the completion queue + */ + ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK); + + cb = job->patched_cb; + len = job->job_cb_size; + ptr = cb->bus_address; + + /* Skip completion flow in case this is a non completion CS */ + if (!cs_needs_completion(job->cs)) + goto submit_bd; + + cq_pkt.data = cpu_to_le32( + ((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT) + & CQ_ENTRY_SHADOW_INDEX_MASK) | + FIELD_PREP(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, 1) | + FIELD_PREP(CQ_ENTRY_READY_MASK, 1)); + + /* + * No need to protect pi_offset because scheduling to the + * H/W queues is done under the scheduler mutex + * + * No need to check if CQ is full because it was already + * checked in ext_queue_sanity_checks + */ + cq = &hdev->completion_queue[q->cq_id]; + cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry); + + hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len, + job->user_cb_size, + cq_addr, + le32_to_cpu(cq_pkt.data), + q->msi_vec, + job->contains_dma_pkt); + + q->shadow_queue[hl_pi_2_offset(q->pi)] = job; + + cq->pi = hl_cq_inc_ptr(cq->pi); + +submit_bd: + hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr); +} + +/* + * int_queue_schedule_job - submit a JOB to an internal queue + * + * @job: pointer to the job that needs to be submitted to the queue + * + * This function must be called when the scheduler mutex is taken + * + */ +static void int_queue_schedule_job(struct hl_cs_job *job) +{ + struct hl_device *hdev = job->cs->ctx->hdev; + struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id]; + struct hl_bd bd; + __le64 *pi; + + bd.ctl = 0; + bd.len = cpu_to_le32(job->job_cb_size); + + if (job->is_kernel_allocated_cb) + /* bus_address is actually a mmu mapped address + * allocated from an internal pool + */ + bd.ptr = cpu_to_le64(job->user_cb->bus_address); + else + bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb); + + pi = q->kernel_address + (q->pi & (q->int_queue_len - 1)) * sizeof(bd); + + q->pi++; + q->pi &= ((q->int_queue_len << 1) - 1); + + hdev->asic_funcs->pqe_write(hdev, pi, &bd); + + hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi); +} + +/* + * hw_queue_schedule_job - submit a JOB to a H/W queue + * + * @job: pointer to the job that needs to be submitted to the queue + * + * This function must be called when the scheduler mutex is taken + * + */ +static void hw_queue_schedule_job(struct hl_cs_job *job) +{ + struct hl_device *hdev = job->cs->ctx->hdev; + struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id]; + u64 ptr; + u32 offset, ctl, len; + + /* + * Upon PQE completion, COMP_DATA is used as the write data to the + * completion queue (QMAN HBW message), and COMP_OFFSET is used as the + * write address offset in the SM block (QMAN LBW message). + * The write address offset is calculated as "COMP_OFFSET << 2". + */ + offset = job->cs->sequence & (hdev->asic_prop.max_pending_cs - 1); + ctl = ((offset << BD_CTL_COMP_OFFSET_SHIFT) & BD_CTL_COMP_OFFSET_MASK) | + ((q->pi << BD_CTL_COMP_DATA_SHIFT) & BD_CTL_COMP_DATA_MASK); + + len = job->job_cb_size; + + /* + * A patched CB is created only if a user CB was allocated by driver and + * MMU is disabled. If MMU is enabled, the user CB should be used + * instead. If the user CB wasn't allocated by driver, assume that it + * holds an address. + */ + if (job->patched_cb) + ptr = job->patched_cb->bus_address; + else if (job->is_kernel_allocated_cb) + ptr = job->user_cb->bus_address; + else + ptr = (u64) (uintptr_t) job->user_cb; + + hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr); +} + +static int init_signal_cs(struct hl_device *hdev, + struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl) +{ + struct hl_sync_stream_properties *prop; + struct hl_hw_sob *hw_sob; + u32 q_idx; + int rc = 0; + + q_idx = job->hw_queue_id; + prop = &hdev->kernel_queues[q_idx].sync_stream_prop; + hw_sob = &prop->hw_sob[prop->curr_sob_offset]; + + cs_cmpl->hw_sob = hw_sob; + cs_cmpl->sob_val = prop->next_sob_val; + + dev_dbg(hdev->dev, + "generate signal CB, sob_id: %d, sob val: %u, q_idx: %d, seq: %llu\n", + cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, q_idx, + cs_cmpl->cs_seq); + + /* we set an EB since we must make sure all oeprations are done + * when sending the signal + */ + hdev->asic_funcs->gen_signal_cb(hdev, job->patched_cb, + cs_cmpl->hw_sob->sob_id, 0, true); + + rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, 1, + false); + + job->cs->sob_addr_offset = hw_sob->sob_addr; + job->cs->initial_sob_count = prop->next_sob_val - 1; + + return rc; +} + +void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev, + struct hl_cs *cs, struct hl_cs_job *job, + struct hl_cs_compl *cs_cmpl) +{ + struct hl_cs_encaps_sig_handle *handle = cs->encaps_sig_hdl; + u32 offset = 0; + + cs_cmpl->hw_sob = handle->hw_sob; + + /* Note that encaps_sig_wait_offset was validated earlier in the flow + * for offset value which exceeds the max reserved signal count. + * always decrement 1 of the offset since when the user + * set offset 1 for example he mean to wait only for the first + * signal only, which will be pre_sob_val, and if he set offset 2 + * then the value required is (pre_sob_val + 1) and so on... + * if user set wait offset to 0, then treat it as legacy wait cs, + * wait for the next signal. + */ + if (job->encaps_sig_wait_offset) + offset = job->encaps_sig_wait_offset - 1; + + cs_cmpl->sob_val = handle->pre_sob_val + offset; +} + +static int init_wait_cs(struct hl_device *hdev, struct hl_cs *cs, + struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl) +{ + struct hl_gen_wait_properties wait_prop; + struct hl_sync_stream_properties *prop; + struct hl_cs_compl *signal_cs_cmpl; + u32 q_idx; + + q_idx = job->hw_queue_id; + prop = &hdev->kernel_queues[q_idx].sync_stream_prop; + + signal_cs_cmpl = container_of(cs->signal_fence, + struct hl_cs_compl, + base_fence); + + if (cs->encaps_signals) { + /* use the encaps signal handle stored earlier in the flow + * and set the SOB information from the encaps + * signals handle + */ + hl_hw_queue_encaps_sig_set_sob_info(hdev, cs, job, cs_cmpl); + + dev_dbg(hdev->dev, "Wait for encaps signals handle, qidx(%u), CS sequence(%llu), sob val: 0x%x, offset: %u\n", + cs->encaps_sig_hdl->q_idx, + cs->encaps_sig_hdl->cs_seq, + cs_cmpl->sob_val, + job->encaps_sig_wait_offset); + } else { + /* Copy the SOB id and value of the signal CS */ + cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob; + cs_cmpl->sob_val = signal_cs_cmpl->sob_val; + } + + /* check again if the signal cs already completed. + * if yes then don't send any wait cs since the hw_sob + * could be in reset already. if signal is not completed + * then get refcount to hw_sob to prevent resetting the sob + * while wait cs is not submitted. + * note that this check is protected by two locks, + * hw queue lock and completion object lock, + * and the same completion object lock also protects + * the hw_sob reset handler function. + * The hw_queue lock prevent out of sync of hw_sob + * refcount value, changed by signal/wait flows. + */ + spin_lock(&signal_cs_cmpl->lock); + + if (completion_done(&cs->signal_fence->completion)) { + spin_unlock(&signal_cs_cmpl->lock); + return -EINVAL; + } + + kref_get(&cs_cmpl->hw_sob->kref); + + spin_unlock(&signal_cs_cmpl->lock); + + dev_dbg(hdev->dev, + "generate wait CB, sob_id: %d, sob_val: 0x%x, mon_id: %d, q_idx: %d, seq: %llu\n", + cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, + prop->base_mon_id, q_idx, cs->sequence); + + wait_prop.data = (void *) job->patched_cb; + wait_prop.sob_base = cs_cmpl->hw_sob->sob_id; + wait_prop.sob_mask = 0x1; + wait_prop.sob_val = cs_cmpl->sob_val; + wait_prop.mon_id = prop->base_mon_id; + wait_prop.q_idx = q_idx; + wait_prop.size = 0; + + hdev->asic_funcs->gen_wait_cb(hdev, &wait_prop); + + mb(); + hl_fence_put(cs->signal_fence); + cs->signal_fence = NULL; + + return 0; +} + +/* + * init_signal_wait_cs - initialize a signal/wait CS + * @cs: pointer to the signal/wait CS + * + * H/W queues spinlock should be taken before calling this function + */ +static int init_signal_wait_cs(struct hl_cs *cs) +{ + struct hl_ctx *ctx = cs->ctx; + struct hl_device *hdev = ctx->hdev; + struct hl_cs_job *job; + struct hl_cs_compl *cs_cmpl = + container_of(cs->fence, struct hl_cs_compl, base_fence); + int rc = 0; + + /* There is only one job in a signal/wait CS */ + job = list_first_entry(&cs->job_list, struct hl_cs_job, + cs_node); + + if (cs->type & CS_TYPE_SIGNAL) + rc = init_signal_cs(hdev, job, cs_cmpl); + else if (cs->type & CS_TYPE_WAIT) + rc = init_wait_cs(hdev, cs, job, cs_cmpl); + + return rc; +} + +static int encaps_sig_first_staged_cs_handler + (struct hl_device *hdev, struct hl_cs *cs) +{ + struct hl_cs_compl *cs_cmpl = + container_of(cs->fence, + struct hl_cs_compl, base_fence); + struct hl_cs_encaps_sig_handle *encaps_sig_hdl; + struct hl_encaps_signals_mgr *mgr; + int rc = 0; + + mgr = &cs->ctx->sig_mgr; + + spin_lock(&mgr->lock); + encaps_sig_hdl = idr_find(&mgr->handles, cs->encaps_sig_hdl_id); + if (encaps_sig_hdl) { + /* + * Set handler CS sequence, + * the CS which contains the encapsulated signals. + */ + encaps_sig_hdl->cs_seq = cs->sequence; + /* store the handle and set encaps signal indication, + * to be used later in cs_do_release to put the last + * reference to encaps signals handlers. + */ + cs_cmpl->encaps_signals = true; + cs_cmpl->encaps_sig_hdl = encaps_sig_hdl; + + /* set hw_sob pointer in completion object + * since it's used in cs_do_release flow to put + * refcount to sob + */ + cs_cmpl->hw_sob = encaps_sig_hdl->hw_sob; + cs_cmpl->sob_val = encaps_sig_hdl->pre_sob_val + + encaps_sig_hdl->count; + + dev_dbg(hdev->dev, "CS seq (%llu) added to encaps signal handler id (%u), count(%u), qidx(%u), sob(%u), val(%u)\n", + cs->sequence, encaps_sig_hdl->id, + encaps_sig_hdl->count, + encaps_sig_hdl->q_idx, + cs_cmpl->hw_sob->sob_id, + cs_cmpl->sob_val); + + } else { + dev_err(hdev->dev, "encaps handle id(%u) wasn't found!\n", + cs->encaps_sig_hdl_id); + rc = -EINVAL; + } + + spin_unlock(&mgr->lock); + + return rc; +} + +/* + * hl_hw_queue_schedule_cs - schedule a command submission + * @cs: pointer to the CS + */ +int hl_hw_queue_schedule_cs(struct hl_cs *cs) +{ + enum hl_device_status status; + struct hl_cs_counters_atomic *cntr; + struct hl_ctx *ctx = cs->ctx; + struct hl_device *hdev = ctx->hdev; + struct hl_cs_job *job, *tmp; + struct hl_hw_queue *q; + int rc = 0, i, cq_cnt; + bool first_entry; + u32 max_queues; + + cntr = &hdev->aggregated_cs_counters; + + hdev->asic_funcs->hw_queues_lock(hdev); + + if (!hl_device_operational(hdev, &status)) { + atomic64_inc(&cntr->device_in_reset_drop_cnt); + atomic64_inc(&ctx->cs_counters.device_in_reset_drop_cnt); + dev_err(hdev->dev, + "device is %s, CS rejected!\n", hdev->status[status]); + rc = -EPERM; + goto out; + } + + max_queues = hdev->asic_prop.max_queues; + + q = &hdev->kernel_queues[0]; + for (i = 0, cq_cnt = 0 ; i < max_queues ; i++, q++) { + if (cs->jobs_in_queue_cnt[i]) { + switch (q->queue_type) { + case QUEUE_TYPE_EXT: + rc = ext_queue_sanity_checks(hdev, q, + cs->jobs_in_queue_cnt[i], + cs_needs_completion(cs) ? + true : false); + break; + case QUEUE_TYPE_INT: + rc = int_queue_sanity_checks(hdev, q, + cs->jobs_in_queue_cnt[i]); + break; + case QUEUE_TYPE_HW: + rc = hw_queue_sanity_checks(hdev, q, + cs->jobs_in_queue_cnt[i]); + break; + default: + dev_err(hdev->dev, "Queue type %d is invalid\n", + q->queue_type); + rc = -EINVAL; + break; + } + + if (rc) { + atomic64_inc( + &ctx->cs_counters.queue_full_drop_cnt); + atomic64_inc(&cntr->queue_full_drop_cnt); + goto unroll_cq_resv; + } + + if (q->queue_type == QUEUE_TYPE_EXT) + cq_cnt++; + } + } + + if ((cs->type == CS_TYPE_SIGNAL) || (cs->type == CS_TYPE_WAIT)) { + rc = init_signal_wait_cs(cs); + if (rc) + goto unroll_cq_resv; + } else if (cs->type == CS_TYPE_COLLECTIVE_WAIT) { + rc = hdev->asic_funcs->collective_wait_init_cs(cs); + if (rc) + goto unroll_cq_resv; + } + + rc = hdev->asic_funcs->pre_schedule_cs(cs); + if (rc) { + dev_err(hdev->dev, + "Failed in pre-submission operations of CS %d.%llu\n", + ctx->asid, cs->sequence); + goto unroll_cq_resv; + } + + hdev->shadow_cs_queue[cs->sequence & + (hdev->asic_prop.max_pending_cs - 1)] = cs; + + if (cs->encaps_signals && cs->staged_first) { + rc = encaps_sig_first_staged_cs_handler(hdev, cs); + if (rc) + goto unroll_cq_resv; + } + + spin_lock(&hdev->cs_mirror_lock); + + /* Verify staged CS exists and add to the staged list */ + if (cs->staged_cs && !cs->staged_first) { + struct hl_cs *staged_cs; + + staged_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence); + if (!staged_cs) { + dev_err(hdev->dev, + "Cannot find staged submission sequence %llu", + cs->staged_sequence); + rc = -EINVAL; + goto unlock_cs_mirror; + } + + if (is_staged_cs_last_exists(hdev, staged_cs)) { + dev_err(hdev->dev, + "Staged submission sequence %llu already submitted", + cs->staged_sequence); + rc = -EINVAL; + goto unlock_cs_mirror; + } + + list_add_tail(&cs->staged_cs_node, &staged_cs->staged_cs_node); + + /* update stream map of the first CS */ + if (hdev->supports_wait_for_multi_cs) + staged_cs->fence->stream_master_qid_map |= + cs->fence->stream_master_qid_map; + } + + list_add_tail(&cs->mirror_node, &hdev->cs_mirror_list); + + /* Queue TDR if the CS is the first entry and if timeout is wanted */ + first_entry = list_first_entry(&hdev->cs_mirror_list, + struct hl_cs, mirror_node) == cs; + if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) && + first_entry && cs_needs_timeout(cs)) { + cs->tdr_active = true; + schedule_delayed_work(&cs->work_tdr, cs->timeout_jiffies); + + } + + spin_unlock(&hdev->cs_mirror_lock); + + list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) + switch (job->queue_type) { + case QUEUE_TYPE_EXT: + ext_queue_schedule_job(job); + break; + case QUEUE_TYPE_INT: + int_queue_schedule_job(job); + break; + case QUEUE_TYPE_HW: + hw_queue_schedule_job(job); + break; + default: + break; + } + + cs->submitted = true; + + goto out; + +unlock_cs_mirror: + spin_unlock(&hdev->cs_mirror_lock); +unroll_cq_resv: + q = &hdev->kernel_queues[0]; + for (i = 0 ; (i < max_queues) && (cq_cnt > 0) ; i++, q++) { + if ((q->queue_type == QUEUE_TYPE_EXT) && + (cs->jobs_in_queue_cnt[i])) { + atomic_t *free_slots = + &hdev->completion_queue[i].free_slots_cnt; + atomic_add(cs->jobs_in_queue_cnt[i], free_slots); + cq_cnt--; + } + } + +out: + hdev->asic_funcs->hw_queues_unlock(hdev); + + return rc; +} + +/* + * hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue + * + * @hdev: pointer to hl_device structure + * @hw_queue_id: which queue to increment its ci + */ +void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id) +{ + struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id]; + + atomic_inc(&q->ci); +} + +static int ext_and_cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q, + bool is_cpu_queue) +{ + void *p; + int rc; + + if (is_cpu_queue) + p = hl_cpu_accessible_dma_pool_alloc(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address); + else + p = hl_asic_dma_alloc_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address, + GFP_KERNEL | __GFP_ZERO); + if (!p) + return -ENOMEM; + + q->kernel_address = p; + + q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH, sizeof(struct hl_cs_job *), GFP_KERNEL); + if (!q->shadow_queue) { + dev_err(hdev->dev, + "Failed to allocate shadow queue for H/W queue %d\n", + q->hw_queue_id); + rc = -ENOMEM; + goto free_queue; + } + + /* Make sure read/write pointers are initialized to start of queue */ + atomic_set(&q->ci, 0); + q->pi = 0; + + return 0; + +free_queue: + if (is_cpu_queue) + hl_cpu_accessible_dma_pool_free(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address); + else + hl_asic_dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address, + q->bus_address); + + return rc; +} + +static int int_queue_init(struct hl_device *hdev, struct hl_hw_queue *q) +{ + void *p; + + p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id, + &q->bus_address, &q->int_queue_len); + if (!p) { + dev_err(hdev->dev, + "Failed to get base address for internal queue %d\n", + q->hw_queue_id); + return -EFAULT; + } + + q->kernel_address = p; + q->pi = 0; + atomic_set(&q->ci, 0); + + return 0; +} + +static int cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q) +{ + return ext_and_cpu_queue_init(hdev, q, true); +} + +static int ext_queue_init(struct hl_device *hdev, struct hl_hw_queue *q) +{ + return ext_and_cpu_queue_init(hdev, q, false); +} + +static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q) +{ + void *p; + + p = hl_asic_dma_alloc_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address, + GFP_KERNEL | __GFP_ZERO); + if (!p) + return -ENOMEM; + + q->kernel_address = p; + + /* Make sure read/write pointers are initialized to start of queue */ + atomic_set(&q->ci, 0); + q->pi = 0; + + return 0; +} + +static void sync_stream_queue_init(struct hl_device *hdev, u32 q_idx) +{ + struct hl_sync_stream_properties *sync_stream_prop; + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct hl_hw_sob *hw_sob; + int sob, reserved_mon_idx, queue_idx; + + sync_stream_prop = &hdev->kernel_queues[q_idx].sync_stream_prop; + + /* We use 'collective_mon_idx' as a running index in order to reserve + * monitors for collective master/slave queues. + * collective master queue gets 2 reserved monitors + * collective slave queue gets 1 reserved monitor + */ + if (hdev->kernel_queues[q_idx].collective_mode == + HL_COLLECTIVE_MASTER) { + reserved_mon_idx = hdev->collective_mon_idx; + + /* reserve the first monitor for collective master queue */ + sync_stream_prop->collective_mstr_mon_id[0] = + prop->collective_first_mon + reserved_mon_idx; + + /* reserve the second monitor for collective master queue */ + sync_stream_prop->collective_mstr_mon_id[1] = + prop->collective_first_mon + reserved_mon_idx + 1; + + hdev->collective_mon_idx += HL_COLLECTIVE_RSVD_MSTR_MONS; + } else if (hdev->kernel_queues[q_idx].collective_mode == + HL_COLLECTIVE_SLAVE) { + reserved_mon_idx = hdev->collective_mon_idx++; + + /* reserve a monitor for collective slave queue */ + sync_stream_prop->collective_slave_mon_id = + prop->collective_first_mon + reserved_mon_idx; + } + + if (!hdev->kernel_queues[q_idx].supports_sync_stream) + return; + + queue_idx = hdev->sync_stream_queue_idx++; + + sync_stream_prop->base_sob_id = prop->sync_stream_first_sob + + (queue_idx * HL_RSVD_SOBS); + sync_stream_prop->base_mon_id = prop->sync_stream_first_mon + + (queue_idx * HL_RSVD_MONS); + sync_stream_prop->next_sob_val = 1; + sync_stream_prop->curr_sob_offset = 0; + + for (sob = 0 ; sob < HL_RSVD_SOBS ; sob++) { + hw_sob = &sync_stream_prop->hw_sob[sob]; + hw_sob->hdev = hdev; + hw_sob->sob_id = sync_stream_prop->base_sob_id + sob; + hw_sob->sob_addr = + hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id); + hw_sob->q_idx = q_idx; + kref_init(&hw_sob->kref); + } +} + +static void sync_stream_queue_reset(struct hl_device *hdev, u32 q_idx) +{ + struct hl_sync_stream_properties *prop = + &hdev->kernel_queues[q_idx].sync_stream_prop; + + /* + * In case we got here due to a stuck CS, the refcnt might be bigger + * than 1 and therefore we reset it. + */ + kref_init(&prop->hw_sob[prop->curr_sob_offset].kref); + prop->curr_sob_offset = 0; + prop->next_sob_val = 1; +} + +/* + * queue_init - main initialization function for H/W queue object + * + * @hdev: pointer to hl_device device structure + * @q: pointer to hl_hw_queue queue structure + * @hw_queue_id: The id of the H/W queue + * + * Allocate dma-able memory for the queue and initialize fields + * Returns 0 on success + */ +static int queue_init(struct hl_device *hdev, struct hl_hw_queue *q, + u32 hw_queue_id) +{ + int rc; + + q->hw_queue_id = hw_queue_id; + + switch (q->queue_type) { + case QUEUE_TYPE_EXT: + rc = ext_queue_init(hdev, q); + break; + case QUEUE_TYPE_INT: + rc = int_queue_init(hdev, q); + break; + case QUEUE_TYPE_CPU: + rc = cpu_queue_init(hdev, q); + break; + case QUEUE_TYPE_HW: + rc = hw_queue_init(hdev, q); + break; + case QUEUE_TYPE_NA: + q->valid = 0; + return 0; + default: + dev_crit(hdev->dev, "wrong queue type %d during init\n", + q->queue_type); + rc = -EINVAL; + break; + } + + sync_stream_queue_init(hdev, q->hw_queue_id); + + if (rc) + return rc; + + q->valid = 1; + + return 0; +} + +/* + * hw_queue_fini - destroy queue + * + * @hdev: pointer to hl_device device structure + * @q: pointer to hl_hw_queue queue structure + * + * Free the queue memory + */ +static void queue_fini(struct hl_device *hdev, struct hl_hw_queue *q) +{ + if (!q->valid) + return; + + /* + * If we arrived here, there are no jobs waiting on this queue + * so we can safely remove it. + * This is because this function can only called when: + * 1. Either a context is deleted, which only can occur if all its + * jobs were finished + * 2. A context wasn't able to be created due to failure or timeout, + * which means there are no jobs on the queue yet + * + * The only exception are the queues of the kernel context, but + * if they are being destroyed, it means that the entire module is + * being removed. If the module is removed, it means there is no open + * user context. It also means that if a job was submitted by + * the kernel driver (e.g. context creation), the job itself was + * released by the kernel driver when a timeout occurred on its + * Completion. Thus, we don't need to release it again. + */ + + if (q->queue_type == QUEUE_TYPE_INT) + return; + + kfree(q->shadow_queue); + + if (q->queue_type == QUEUE_TYPE_CPU) + hl_cpu_accessible_dma_pool_free(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address); + else + hl_asic_dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address, + q->bus_address); +} + +int hl_hw_queues_create(struct hl_device *hdev) +{ + struct asic_fixed_properties *asic = &hdev->asic_prop; + struct hl_hw_queue *q; + int i, rc, q_ready_cnt; + + hdev->kernel_queues = kcalloc(asic->max_queues, + sizeof(*hdev->kernel_queues), GFP_KERNEL); + + if (!hdev->kernel_queues) { + dev_err(hdev->dev, "Not enough memory for H/W queues\n"); + return -ENOMEM; + } + + /* Initialize the H/W queues */ + for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues; + i < asic->max_queues ; i++, q_ready_cnt++, q++) { + + q->queue_type = asic->hw_queues_props[i].type; + q->supports_sync_stream = + asic->hw_queues_props[i].supports_sync_stream; + q->collective_mode = asic->hw_queues_props[i].collective_mode; + rc = queue_init(hdev, q, i); + if (rc) { + dev_err(hdev->dev, + "failed to initialize queue %d\n", i); + goto release_queues; + } + } + + return 0; + +release_queues: + for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++) + queue_fini(hdev, q); + + kfree(hdev->kernel_queues); + + return rc; +} + +void hl_hw_queues_destroy(struct hl_device *hdev) +{ + struct hl_hw_queue *q; + u32 max_queues = hdev->asic_prop.max_queues; + int i; + + for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++) + queue_fini(hdev, q); + + kfree(hdev->kernel_queues); +} + +void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset) +{ + struct hl_hw_queue *q; + u32 max_queues = hdev->asic_prop.max_queues; + int i; + + for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++) { + if ((!q->valid) || + ((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU))) + continue; + q->pi = 0; + atomic_set(&q->ci, 0); + + if (q->supports_sync_stream) + sync_stream_queue_reset(hdev, q->hw_queue_id); + } +} |