diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/mtd/nand/raw/gpmi-nand | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/mtd/nand/raw/gpmi-nand')
-rw-r--r-- | drivers/mtd/nand/raw/gpmi-nand/Makefile | 2 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/gpmi-nand/bch-regs.h | 115 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c | 2873 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h | 179 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h | 180 |
5 files changed, 3349 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/gpmi-nand/Makefile b/drivers/mtd/nand/raw/gpmi-nand/Makefile new file mode 100644 index 000000000..247cbfcea --- /dev/null +++ b/drivers/mtd/nand/raw/gpmi-nand/Makefile @@ -0,0 +1,2 @@ +# SPDX-License-Identifier: GPL-2.0-only +obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand.o diff --git a/drivers/mtd/nand/raw/gpmi-nand/bch-regs.h b/drivers/mtd/nand/raw/gpmi-nand/bch-regs.h new file mode 100644 index 000000000..a22b8a506 --- /dev/null +++ b/drivers/mtd/nand/raw/gpmi-nand/bch-regs.h @@ -0,0 +1,115 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright 2008-2011 Freescale Semiconductor, Inc. + * Copyright 2008 Embedded Alley Solutions, Inc. + */ +#ifndef __GPMI_NAND_BCH_REGS_H +#define __GPMI_NAND_BCH_REGS_H + +#define HW_BCH_CTRL 0x00000000 +#define HW_BCH_CTRL_SET 0x00000004 +#define HW_BCH_CTRL_CLR 0x00000008 +#define HW_BCH_CTRL_TOG 0x0000000c + +#define BM_BCH_CTRL_COMPLETE_IRQ_EN (1 << 8) +#define BM_BCH_CTRL_COMPLETE_IRQ (1 << 0) + +#define HW_BCH_STATUS0 0x00000010 +#define HW_BCH_MODE 0x00000020 +#define HW_BCH_ENCODEPTR 0x00000030 +#define HW_BCH_DATAPTR 0x00000040 +#define HW_BCH_METAPTR 0x00000050 +#define HW_BCH_LAYOUTSELECT 0x00000070 + +#define HW_BCH_FLASH0LAYOUT0 0x00000080 + +#define BP_BCH_FLASH0LAYOUT0_NBLOCKS 24 +#define BM_BCH_FLASH0LAYOUT0_NBLOCKS (0xff << BP_BCH_FLASH0LAYOUT0_NBLOCKS) +#define BF_BCH_FLASH0LAYOUT0_NBLOCKS(v) \ + (((v) << BP_BCH_FLASH0LAYOUT0_NBLOCKS) & BM_BCH_FLASH0LAYOUT0_NBLOCKS) + +#define BP_BCH_FLASH0LAYOUT0_META_SIZE 16 +#define BM_BCH_FLASH0LAYOUT0_META_SIZE (0xff << BP_BCH_FLASH0LAYOUT0_META_SIZE) +#define BF_BCH_FLASH0LAYOUT0_META_SIZE(v) \ + (((v) << BP_BCH_FLASH0LAYOUT0_META_SIZE)\ + & BM_BCH_FLASH0LAYOUT0_META_SIZE) + +#define BP_BCH_FLASH0LAYOUT0_ECC0 12 +#define BM_BCH_FLASH0LAYOUT0_ECC0 (0xf << BP_BCH_FLASH0LAYOUT0_ECC0) +#define MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0 11 +#define MX6Q_BM_BCH_FLASH0LAYOUT0_ECC0 (0x1f << MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0) +#define BF_BCH_FLASH0LAYOUT0_ECC0(v, x) \ + (GPMI_IS_MX6(x) \ + ? (((v) << MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0) \ + & MX6Q_BM_BCH_FLASH0LAYOUT0_ECC0) \ + : (((v) << BP_BCH_FLASH0LAYOUT0_ECC0) \ + & BM_BCH_FLASH0LAYOUT0_ECC0) \ + ) + +#define MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14 10 +#define MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14 \ + (0x1 << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14) +#define BF_BCH_FLASH0LAYOUT0_GF(v, x) \ + ((GPMI_IS_MX6(x) && ((v) == 14)) \ + ? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14) \ + & MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14) \ + : 0 \ + ) + +#define BP_BCH_FLASH0LAYOUT0_DATA0_SIZE 0 +#define BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \ + (0xfff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE) +#define MX6Q_BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \ + (0x3ff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE) +#define BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(v, x) \ + (GPMI_IS_MX6(x) \ + ? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) \ + : ((v) & BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) \ + ) + +#define HW_BCH_FLASH0LAYOUT1 0x00000090 + +#define BP_BCH_FLASH0LAYOUT1_PAGE_SIZE 16 +#define BM_BCH_FLASH0LAYOUT1_PAGE_SIZE \ + (0xffff << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE) +#define BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(v) \ + (((v) << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE) \ + & BM_BCH_FLASH0LAYOUT1_PAGE_SIZE) + +#define BP_BCH_FLASH0LAYOUT1_ECCN 12 +#define BM_BCH_FLASH0LAYOUT1_ECCN (0xf << BP_BCH_FLASH0LAYOUT1_ECCN) +#define MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN 11 +#define MX6Q_BM_BCH_FLASH0LAYOUT1_ECCN (0x1f << MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN) +#define BF_BCH_FLASH0LAYOUT1_ECCN(v, x) \ + (GPMI_IS_MX6(x) \ + ? (((v) << MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN) \ + & MX6Q_BM_BCH_FLASH0LAYOUT1_ECCN) \ + : (((v) << BP_BCH_FLASH0LAYOUT1_ECCN) \ + & BM_BCH_FLASH0LAYOUT1_ECCN) \ + ) + +#define MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14 10 +#define MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14 \ + (0x1 << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14) +#define BF_BCH_FLASH0LAYOUT1_GF(v, x) \ + ((GPMI_IS_MX6(x) && ((v) == 14)) \ + ? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14) \ + & MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14) \ + : 0 \ + ) + +#define BP_BCH_FLASH0LAYOUT1_DATAN_SIZE 0 +#define BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \ + (0xfff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE) +#define MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \ + (0x3ff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE) +#define BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(v, x) \ + (GPMI_IS_MX6(x) \ + ? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \ + : ((v) & BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \ + ) + +#define HW_BCH_VERSION 0x00000160 +#endif diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c new file mode 100644 index 000000000..01ccbde74 --- /dev/null +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c @@ -0,0 +1,2873 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright (C) 2010-2015 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + */ +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/slab.h> +#include <linux/sched/task_stack.h> +#include <linux/interrupt.h> +#include <linux/module.h> +#include <linux/mtd/partitions.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/pm_runtime.h> +#include <linux/dma/mxs-dma.h> +#include "gpmi-nand.h" +#include "gpmi-regs.h" +#include "bch-regs.h" + +/* Resource names for the GPMI NAND driver. */ +#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" +#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" +#define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" + +/* Converts time to clock cycles */ +#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period) + +#define MXS_SET_ADDR 0x4 +#define MXS_CLR_ADDR 0x8 +/* + * Clear the bit and poll it cleared. This is usually called with + * a reset address and mask being either SFTRST(bit 31) or CLKGATE + * (bit 30). + */ +static int clear_poll_bit(void __iomem *addr, u32 mask) +{ + int timeout = 0x400; + + /* clear the bit */ + writel(mask, addr + MXS_CLR_ADDR); + + /* + * SFTRST needs 3 GPMI clocks to settle, the reference manual + * recommends to wait 1us. + */ + udelay(1); + + /* poll the bit becoming clear */ + while ((readl(addr) & mask) && --timeout) + /* nothing */; + + return !timeout; +} + +#define MODULE_CLKGATE (1 << 30) +#define MODULE_SFTRST (1 << 31) +/* + * The current mxs_reset_block() will do two things: + * [1] enable the module. + * [2] reset the module. + * + * In most of the cases, it's ok. + * But in MX23, there is a hardware bug in the BCH block (see erratum #2847). + * If you try to soft reset the BCH block, it becomes unusable until + * the next hard reset. This case occurs in the NAND boot mode. When the board + * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. + * So If the driver tries to reset the BCH again, the BCH will not work anymore. + * You will see a DMA timeout in this case. The bug has been fixed + * in the following chips, such as MX28. + * + * To avoid this bug, just add a new parameter `just_enable` for + * the mxs_reset_block(), and rewrite it here. + */ +static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) +{ + int ret; + int timeout = 0x400; + + /* clear and poll SFTRST */ + ret = clear_poll_bit(reset_addr, MODULE_SFTRST); + if (unlikely(ret)) + goto error; + + /* clear CLKGATE */ + writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR); + + if (!just_enable) { + /* set SFTRST to reset the block */ + writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR); + udelay(1); + + /* poll CLKGATE becoming set */ + while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) + /* nothing */; + if (unlikely(!timeout)) + goto error; + } + + /* clear and poll SFTRST */ + ret = clear_poll_bit(reset_addr, MODULE_SFTRST); + if (unlikely(ret)) + goto error; + + /* clear and poll CLKGATE */ + ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); + if (unlikely(ret)) + goto error; + + return 0; + +error: + pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); + return -ETIMEDOUT; +} + +static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) +{ + struct clk *clk; + int ret; + int i; + + for (i = 0; i < GPMI_CLK_MAX; i++) { + clk = this->resources.clock[i]; + if (!clk) + break; + + if (v) { + ret = clk_prepare_enable(clk); + if (ret) + goto err_clk; + } else { + clk_disable_unprepare(clk); + } + } + return 0; + +err_clk: + for (; i > 0; i--) + clk_disable_unprepare(this->resources.clock[i - 1]); + return ret; +} + +static int gpmi_init(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + int ret; + + ret = pm_runtime_get_sync(this->dev); + if (ret < 0) { + pm_runtime_put_noidle(this->dev); + return ret; + } + + ret = gpmi_reset_block(r->gpmi_regs, false); + if (ret) + goto err_out; + + /* + * Reset BCH here, too. We got failures otherwise :( + * See later BCH reset for explanation of MX23 and MX28 handling + */ + ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); + if (ret) + goto err_out; + + /* Choose NAND mode. */ + writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* Set the IRQ polarity. */ + writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, + r->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Disable Write-Protection. */ + writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Select BCH ECC. */ + writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* + * Decouple the chip select from dma channel. We use dma0 for all + * the chips, force all NAND RDY_BUSY inputs to be sourced from + * RDY_BUSY0. + */ + writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY, + r->gpmi_regs + HW_GPMI_CTRL1_SET); + +err_out: + pm_runtime_mark_last_busy(this->dev); + pm_runtime_put_autosuspend(this->dev); + return ret; +} + +/* This function is very useful. It is called only when the bug occur. */ +static void gpmi_dump_info(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + struct bch_geometry *geo = &this->bch_geometry; + u32 reg; + int i; + + dev_err(this->dev, "Show GPMI registers :\n"); + for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { + reg = readl(r->gpmi_regs + i * 0x10); + dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); + } + + /* start to print out the BCH info */ + dev_err(this->dev, "Show BCH registers :\n"); + for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) { + reg = readl(r->bch_regs + i * 0x10); + dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); + } + dev_err(this->dev, "BCH Geometry :\n" + "GF length : %u\n" + "ECC Strength : %u\n" + "Page Size in Bytes : %u\n" + "Metadata Size in Bytes : %u\n" + "ECC0 Chunk Size in Bytes: %u\n" + "ECCn Chunk Size in Bytes: %u\n" + "ECC Chunk Count : %u\n" + "Payload Size in Bytes : %u\n" + "Auxiliary Size in Bytes: %u\n" + "Auxiliary Status Offset: %u\n" + "Block Mark Byte Offset : %u\n" + "Block Mark Bit Offset : %u\n", + geo->gf_len, + geo->ecc_strength, + geo->page_size, + geo->metadata_size, + geo->ecc0_chunk_size, + geo->eccn_chunk_size, + geo->ecc_chunk_count, + geo->payload_size, + geo->auxiliary_size, + geo->auxiliary_status_offset, + geo->block_mark_byte_offset, + geo->block_mark_bit_offset); +} + +static bool gpmi_check_ecc(struct gpmi_nand_data *this) +{ + struct nand_chip *chip = &this->nand; + struct bch_geometry *geo = &this->bch_geometry; + struct nand_device *nand = &chip->base; + struct nand_ecc_props *conf = &nand->ecc.ctx.conf; + + conf->step_size = geo->eccn_chunk_size; + conf->strength = geo->ecc_strength; + + /* Do the sanity check. */ + if (GPMI_IS_MXS(this)) { + /* The mx23/mx28 only support the GF13. */ + if (geo->gf_len == 14) + return false; + } + + if (geo->ecc_strength > this->devdata->bch_max_ecc_strength) + return false; + + if (!nand_ecc_is_strong_enough(nand)) + return false; + + return true; +} + +/* check if bbm locates in data chunk rather than ecc chunk */ +static bool bbm_in_data_chunk(struct gpmi_nand_data *this, + unsigned int *chunk_num) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int i, j; + + if (geo->ecc0_chunk_size != geo->eccn_chunk_size) { + dev_err(this->dev, + "The size of ecc0_chunk must equal to eccn_chunk\n"); + return false; + } + + i = (mtd->writesize * 8 - geo->metadata_size * 8) / + (geo->gf_len * geo->ecc_strength + + geo->eccn_chunk_size * 8); + + j = (mtd->writesize * 8 - geo->metadata_size * 8) - + (geo->gf_len * geo->ecc_strength + + geo->eccn_chunk_size * 8) * i; + + if (j < geo->eccn_chunk_size * 8) { + *chunk_num = i+1; + dev_dbg(this->dev, "Set ecc to %d and bbm in chunk %d\n", + geo->ecc_strength, *chunk_num); + return true; + } + + return false; +} + +/* + * If we can get the ECC information from the nand chip, we do not + * need to calculate them ourselves. + * + * We may have available oob space in this case. + */ +static int set_geometry_by_ecc_info(struct gpmi_nand_data *this, + unsigned int ecc_strength, + unsigned int ecc_step) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int block_mark_bit_offset; + + switch (ecc_step) { + case SZ_512: + geo->gf_len = 13; + break; + case SZ_1K: + geo->gf_len = 14; + break; + default: + dev_err(this->dev, + "unsupported nand chip. ecc bits : %d, ecc size : %d\n", + nanddev_get_ecc_requirements(&chip->base)->strength, + nanddev_get_ecc_requirements(&chip->base)->step_size); + return -EINVAL; + } + geo->ecc0_chunk_size = ecc_step; + geo->eccn_chunk_size = ecc_step; + geo->ecc_strength = round_up(ecc_strength, 2); + if (!gpmi_check_ecc(this)) + return -EINVAL; + + /* Keep the C >= O */ + if (geo->eccn_chunk_size < mtd->oobsize) { + dev_err(this->dev, + "unsupported nand chip. ecc size: %d, oob size : %d\n", + ecc_step, mtd->oobsize); + return -EINVAL; + } + + /* The default value, see comment in the legacy_set_geometry(). */ + geo->metadata_size = 10; + + geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size; + + /* + * Now, the NAND chip with 2K page(data chunk is 512byte) shows below: + * + * | P | + * |<----------------------------------------------------->| + * | | + * | (Block Mark) | + * | P' | | | | + * |<-------------------------------------------->| D | | O' | + * | |<---->| |<--->| + * V V V V V + * +---+----------+-+----------+-+----------+-+----------+-+-----+ + * | M | data |E| data |E| data |E| data |E| | + * +---+----------+-+----------+-+----------+-+----------+-+-----+ + * ^ ^ + * | O | + * |<------------>| + * | | + * + * P : the page size for BCH module. + * E : The ECC strength. + * G : the length of Galois Field. + * N : The chunk count of per page. + * M : the metasize of per page. + * C : the ecc chunk size, aka the "data" above. + * P': the nand chip's page size. + * O : the nand chip's oob size. + * O': the free oob. + * + * The formula for P is : + * + * E * G * N + * P = ------------ + P' + M + * 8 + * + * The position of block mark moves forward in the ECC-based view + * of page, and the delta is: + * + * E * G * (N - 1) + * D = (---------------- + M) + * 8 + * + * Please see the comment in legacy_set_geometry(). + * With the condition C >= O , we still can get same result. + * So the bit position of the physical block mark within the ECC-based + * view of the page is : + * (P' - D) * 8 + */ + geo->page_size = mtd->writesize + geo->metadata_size + + (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; + + geo->payload_size = mtd->writesize; + + geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); + geo->auxiliary_size = ALIGN(geo->metadata_size, 4) + + ALIGN(geo->ecc_chunk_count, 4); + + if (!this->swap_block_mark) + return 0; + + /* For bit swap. */ + block_mark_bit_offset = mtd->writesize * 8 - + (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) + + geo->metadata_size * 8); + + geo->block_mark_byte_offset = block_mark_bit_offset / 8; + geo->block_mark_bit_offset = block_mark_bit_offset % 8; + return 0; +} + +/* + * Calculate the ECC strength by hand: + * E : The ECC strength. + * G : the length of Galois Field. + * N : The chunk count of per page. + * O : the oobsize of the NAND chip. + * M : the metasize of per page. + * + * The formula is : + * E * G * N + * ------------ <= (O - M) + * 8 + * + * So, we get E by: + * (O - M) * 8 + * E <= ------------- + * G * N + */ +static inline int get_ecc_strength(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct mtd_info *mtd = nand_to_mtd(&this->nand); + int ecc_strength; + + ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) + / (geo->gf_len * geo->ecc_chunk_count); + + /* We need the minor even number. */ + return round_down(ecc_strength, 2); +} + +static int set_geometry_for_large_oob(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&chip->base); + unsigned int block_mark_bit_offset; + unsigned int max_ecc; + unsigned int bbm_chunk; + unsigned int i; + + /* sanity check for the minimum ecc nand required */ + if (!(requirements->strength > 0 && + requirements->step_size > 0)) + return -EINVAL; + geo->ecc_strength = requirements->strength; + + /* check if platform can support this nand */ + if (!gpmi_check_ecc(this)) { + dev_err(this->dev, + "unsupported NAND chip, minimum ecc required %d\n", + geo->ecc_strength); + return -EINVAL; + } + + /* calculate the maximum ecc platform can support*/ + geo->metadata_size = 10; + geo->gf_len = 14; + geo->ecc0_chunk_size = 1024; + geo->eccn_chunk_size = 1024; + geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size; + max_ecc = min(get_ecc_strength(this), + this->devdata->bch_max_ecc_strength); + + /* + * search a supported ecc strength that makes bbm + * located in data chunk + */ + geo->ecc_strength = max_ecc; + while (!(geo->ecc_strength < requirements->strength)) { + if (bbm_in_data_chunk(this, &bbm_chunk)) + goto geo_setting; + geo->ecc_strength -= 2; + } + + /* if none of them works, keep using the minimum ecc */ + /* nand required but changing ecc page layout */ + geo->ecc_strength = requirements->strength; + /* add extra ecc for meta data */ + geo->ecc0_chunk_size = 0; + geo->ecc_chunk_count = (mtd->writesize / geo->eccn_chunk_size) + 1; + geo->ecc_for_meta = 1; + /* check if oob can afford this extra ecc chunk */ + if (mtd->oobsize * 8 < geo->metadata_size * 8 + + geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) { + dev_err(this->dev, "unsupported NAND chip with new layout\n"); + return -EINVAL; + } + + /* calculate in which chunk bbm located */ + bbm_chunk = (mtd->writesize * 8 - geo->metadata_size * 8 - + geo->gf_len * geo->ecc_strength) / + (geo->gf_len * geo->ecc_strength + + geo->eccn_chunk_size * 8) + 1; + +geo_setting: + + geo->page_size = mtd->writesize + geo->metadata_size + + (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; + geo->payload_size = mtd->writesize; + + /* + * The auxiliary buffer contains the metadata and the ECC status. The + * metadata is padded to the nearest 32-bit boundary. The ECC status + * contains one byte for every ECC chunk, and is also padded to the + * nearest 32-bit boundary. + */ + geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); + geo->auxiliary_size = ALIGN(geo->metadata_size, 4) + + ALIGN(geo->ecc_chunk_count, 4); + + if (!this->swap_block_mark) + return 0; + + /* calculate the number of ecc chunk behind the bbm */ + i = (mtd->writesize / geo->eccn_chunk_size) - bbm_chunk + 1; + + block_mark_bit_offset = mtd->writesize * 8 - + (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - i) + + geo->metadata_size * 8); + + geo->block_mark_byte_offset = block_mark_bit_offset / 8; + geo->block_mark_bit_offset = block_mark_bit_offset % 8; + + dev_dbg(this->dev, "BCH Geometry :\n" + "GF length : %u\n" + "ECC Strength : %u\n" + "Page Size in Bytes : %u\n" + "Metadata Size in Bytes : %u\n" + "ECC0 Chunk Size in Bytes: %u\n" + "ECCn Chunk Size in Bytes: %u\n" + "ECC Chunk Count : %u\n" + "Payload Size in Bytes : %u\n" + "Auxiliary Size in Bytes: %u\n" + "Auxiliary Status Offset: %u\n" + "Block Mark Byte Offset : %u\n" + "Block Mark Bit Offset : %u\n" + "Block Mark in chunk : %u\n" + "Ecc for Meta data : %u\n", + geo->gf_len, + geo->ecc_strength, + geo->page_size, + geo->metadata_size, + geo->ecc0_chunk_size, + geo->eccn_chunk_size, + geo->ecc_chunk_count, + geo->payload_size, + geo->auxiliary_size, + geo->auxiliary_status_offset, + geo->block_mark_byte_offset, + geo->block_mark_bit_offset, + bbm_chunk, + geo->ecc_for_meta); + + return 0; +} + +static int legacy_set_geometry(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct mtd_info *mtd = nand_to_mtd(&this->nand); + unsigned int metadata_size; + unsigned int status_size; + unsigned int block_mark_bit_offset; + + /* + * The size of the metadata can be changed, though we set it to 10 + * bytes now. But it can't be too large, because we have to save + * enough space for BCH. + */ + geo->metadata_size = 10; + + /* The default for the length of Galois Field. */ + geo->gf_len = 13; + + /* The default for chunk size. */ + geo->ecc0_chunk_size = 512; + geo->eccn_chunk_size = 512; + while (geo->eccn_chunk_size < mtd->oobsize) { + geo->ecc0_chunk_size *= 2; /* keep C >= O */ + geo->eccn_chunk_size *= 2; /* keep C >= O */ + geo->gf_len = 14; + } + + geo->ecc_chunk_count = mtd->writesize / geo->eccn_chunk_size; + + /* We use the same ECC strength for all chunks. */ + geo->ecc_strength = get_ecc_strength(this); + if (!gpmi_check_ecc(this)) { + dev_err(this->dev, + "ecc strength: %d cannot be supported by the controller (%d)\n" + "try to use minimum ecc strength that NAND chip required\n", + geo->ecc_strength, + this->devdata->bch_max_ecc_strength); + return -EINVAL; + } + + geo->page_size = mtd->writesize + geo->metadata_size + + (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; + geo->payload_size = mtd->writesize; + + /* + * The auxiliary buffer contains the metadata and the ECC status. The + * metadata is padded to the nearest 32-bit boundary. The ECC status + * contains one byte for every ECC chunk, and is also padded to the + * nearest 32-bit boundary. + */ + metadata_size = ALIGN(geo->metadata_size, 4); + status_size = ALIGN(geo->ecc_chunk_count, 4); + + geo->auxiliary_size = metadata_size + status_size; + geo->auxiliary_status_offset = metadata_size; + + if (!this->swap_block_mark) + return 0; + + /* + * We need to compute the byte and bit offsets of + * the physical block mark within the ECC-based view of the page. + * + * NAND chip with 2K page shows below: + * (Block Mark) + * | | + * | D | + * |<---->| + * V V + * +---+----------+-+----------+-+----------+-+----------+-+ + * | M | data |E| data |E| data |E| data |E| + * +---+----------+-+----------+-+----------+-+----------+-+ + * + * The position of block mark moves forward in the ECC-based view + * of page, and the delta is: + * + * E * G * (N - 1) + * D = (---------------- + M) + * 8 + * + * With the formula to compute the ECC strength, and the condition + * : C >= O (C is the ecc chunk size) + * + * It's easy to deduce to the following result: + * + * E * G (O - M) C - M C - M + * ----------- <= ------- <= -------- < --------- + * 8 N N (N - 1) + * + * So, we get: + * + * E * G * (N - 1) + * D = (---------------- + M) < C + * 8 + * + * The above inequality means the position of block mark + * within the ECC-based view of the page is still in the data chunk, + * and it's NOT in the ECC bits of the chunk. + * + * Use the following to compute the bit position of the + * physical block mark within the ECC-based view of the page: + * (page_size - D) * 8 + * + * --Huang Shijie + */ + block_mark_bit_offset = mtd->writesize * 8 - + (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) + + geo->metadata_size * 8); + + geo->block_mark_byte_offset = block_mark_bit_offset / 8; + geo->block_mark_bit_offset = block_mark_bit_offset % 8; + return 0; +} + +static int common_nfc_set_geometry(struct gpmi_nand_data *this) +{ + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(&this->nand); + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&chip->base); + bool use_minimun_ecc; + int err; + + use_minimun_ecc = of_property_read_bool(this->dev->of_node, + "fsl,use-minimum-ecc"); + + /* use legacy bch geometry settings by default*/ + if ((!use_minimun_ecc && mtd->oobsize < 1024) || + !(requirements->strength > 0 && requirements->step_size > 0)) { + dev_dbg(this->dev, "use legacy bch geometry\n"); + err = legacy_set_geometry(this); + if (!err) + return 0; + } + + /* for large oob nand */ + if (mtd->oobsize > 1024) { + dev_dbg(this->dev, "use large oob bch geometry\n"); + err = set_geometry_for_large_oob(this); + if (!err) + return 0; + } + + /* otherwise use the minimum ecc nand chip required */ + dev_dbg(this->dev, "use minimum ecc bch geometry\n"); + err = set_geometry_by_ecc_info(this, requirements->strength, + requirements->step_size); + if (err) + dev_err(this->dev, "none of the bch geometry setting works\n"); + + return err; +} + +/* Configures the geometry for BCH. */ +static int bch_set_geometry(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + int ret; + + ret = common_nfc_set_geometry(this); + if (ret) + return ret; + + ret = pm_runtime_get_sync(this->dev); + if (ret < 0) { + pm_runtime_put_autosuspend(this->dev); + return ret; + } + + /* + * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this + * chip, otherwise it will lock up. So we skip resetting BCH on the MX23. + * and MX28. + */ + ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); + if (ret) + goto err_out; + + /* Set *all* chip selects to use layout 0. */ + writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); + + ret = 0; +err_out: + pm_runtime_mark_last_busy(this->dev); + pm_runtime_put_autosuspend(this->dev); + + return ret; +} + +/* + * <1> Firstly, we should know what's the GPMI-clock means. + * The GPMI-clock is the internal clock in the gpmi nand controller. + * If you set 100MHz to gpmi nand controller, the GPMI-clock's period + * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. + * + * <2> Secondly, we should know what's the frequency on the nand chip pins. + * The frequency on the nand chip pins is derived from the GPMI-clock. + * We can get it from the following equation: + * + * F = G / (DS + DH) + * + * F : the frequency on the nand chip pins. + * G : the GPMI clock, such as 100MHz. + * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP + * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD + * + * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, + * the nand EDO(extended Data Out) timing could be applied. + * The GPMI implements a feedback read strobe to sample the read data. + * The feedback read strobe can be delayed to support the nand EDO timing + * where the read strobe may deasserts before the read data is valid, and + * read data is valid for some time after read strobe. + * + * The following figure illustrates some aspects of a NAND Flash read: + * + * |<---tREA---->| + * | | + * | | | + * |<--tRP-->| | + * | | | + * __ ___|__________________________________ + * RDN \________/ | + * | + * /---------\ + * Read Data --------------< >--------- + * \---------/ + * | | + * |<-D->| + * FeedbackRDN ________ ____________ + * \___________/ + * + * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. + * + * + * <4> Now, we begin to describe how to compute the right RDN_DELAY. + * + * 4.1) From the aspect of the nand chip pins: + * Delay = (tREA + C - tRP) {1} + * + * tREA : the maximum read access time. + * C : a constant to adjust the delay. default is 4000ps. + * tRP : the read pulse width, which is exactly: + * tRP = (GPMI-clock-period) * DATA_SETUP + * + * 4.2) From the aspect of the GPMI nand controller: + * Delay = RDN_DELAY * 0.125 * RP {2} + * + * RP : the DLL reference period. + * if (GPMI-clock-period > DLL_THRETHOLD) + * RP = GPMI-clock-period / 2; + * else + * RP = GPMI-clock-period; + * + * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period + * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD + * is 16000ps, but in mx6q, we use 12000ps. + * + * 4.3) since {1} equals {2}, we get: + * + * (tREA + 4000 - tRP) * 8 + * RDN_DELAY = ----------------------- {3} + * RP + */ +static int gpmi_nfc_compute_timings(struct gpmi_nand_data *this, + const struct nand_sdr_timings *sdr) +{ + struct gpmi_nfc_hardware_timing *hw = &this->hw; + struct resources *r = &this->resources; + unsigned int dll_threshold_ps = this->devdata->max_chain_delay; + unsigned int period_ps, reference_period_ps; + unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles; + unsigned int tRP_ps; + bool use_half_period; + int sample_delay_ps, sample_delay_factor; + unsigned int busy_timeout_cycles; + u8 wrn_dly_sel; + unsigned long clk_rate, min_rate; + u64 busy_timeout_ps; + + if (sdr->tRC_min >= 30000) { + /* ONFI non-EDO modes [0-3] */ + hw->clk_rate = 22000000; + min_rate = 0; + wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; + } else if (sdr->tRC_min >= 25000) { + /* ONFI EDO mode 4 */ + hw->clk_rate = 80000000; + min_rate = 22000000; + wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; + } else { + /* ONFI EDO mode 5 */ + hw->clk_rate = 100000000; + min_rate = 80000000; + wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; + } + + clk_rate = clk_round_rate(r->clock[0], hw->clk_rate); + if (clk_rate <= min_rate) { + dev_err(this->dev, "clock setting: expected %ld, got %ld\n", + hw->clk_rate, clk_rate); + return -ENOTSUPP; + } + + hw->clk_rate = clk_rate; + /* SDR core timings are given in picoseconds */ + period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate); + + addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps); + data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps); + data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps); + busy_timeout_ps = max(sdr->tBERS_max, sdr->tPROG_max); + busy_timeout_cycles = TO_CYCLES(busy_timeout_ps, period_ps); + + hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) | + BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) | + BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles); + hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(DIV_ROUND_UP(busy_timeout_cycles, 4096)); + + /* + * Derive NFC ideal delay from {3}: + * + * (tREA + 4000 - tRP) * 8 + * RDN_DELAY = ----------------------- + * RP + */ + if (period_ps > dll_threshold_ps) { + use_half_period = true; + reference_period_ps = period_ps / 2; + } else { + use_half_period = false; + reference_period_ps = period_ps; + } + + tRP_ps = data_setup_cycles * period_ps; + sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8; + if (sample_delay_ps > 0) + sample_delay_factor = sample_delay_ps / reference_period_ps; + else + sample_delay_factor = 0; + + hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel); + if (sample_delay_factor) + hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) | + BM_GPMI_CTRL1_DLL_ENABLE | + (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0); + return 0; +} + +static int gpmi_nfc_apply_timings(struct gpmi_nand_data *this) +{ + struct gpmi_nfc_hardware_timing *hw = &this->hw; + struct resources *r = &this->resources; + void __iomem *gpmi_regs = r->gpmi_regs; + unsigned int dll_wait_time_us; + int ret; + + /* Clock dividers do NOT guarantee a clean clock signal on its output + * during the change of the divide factor on i.MX6Q/UL/SX. On i.MX7/8, + * all clock dividers provide these guarantee. + */ + if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) + clk_disable_unprepare(r->clock[0]); + + ret = clk_set_rate(r->clock[0], hw->clk_rate); + if (ret) { + dev_err(this->dev, "cannot set clock rate to %lu Hz: %d\n", hw->clk_rate, ret); + return ret; + } + + if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) { + ret = clk_prepare_enable(r->clock[0]); + if (ret) + return ret; + } + + writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0); + writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1); + + /* + * Clear several CTRL1 fields, DLL must be disabled when setting + * RDN_DELAY or HALF_PERIOD. + */ + writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR); + writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Wait 64 clock cycles before using the GPMI after enabling the DLL */ + dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64; + if (!dll_wait_time_us) + dll_wait_time_us = 1; + + /* Wait for the DLL to settle. */ + udelay(dll_wait_time_us); + + return 0; +} + +static int gpmi_setup_interface(struct nand_chip *chip, int chipnr, + const struct nand_interface_config *conf) +{ + struct gpmi_nand_data *this = nand_get_controller_data(chip); + const struct nand_sdr_timings *sdr; + int ret; + + /* Retrieve required NAND timings */ + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + /* Only MX28/MX6 GPMI controller can reach EDO timings */ + if (sdr->tRC_min <= 25000 && !GPMI_IS_MX28(this) && !GPMI_IS_MX6(this)) + return -ENOTSUPP; + + /* Stop here if this call was just a check */ + if (chipnr < 0) + return 0; + + /* Do the actual derivation of the controller timings */ + ret = gpmi_nfc_compute_timings(this, sdr); + if (ret) + return ret; + + this->hw.must_apply_timings = true; + + return 0; +} + +/* Clears a BCH interrupt. */ +static void gpmi_clear_bch(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); +} + +static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) +{ + /* We use the DMA channel 0 to access all the nand chips. */ + return this->dma_chans[0]; +} + +/* This will be called after the DMA operation is finished. */ +static void dma_irq_callback(void *param) +{ + struct gpmi_nand_data *this = param; + struct completion *dma_c = &this->dma_done; + + complete(dma_c); +} + +static irqreturn_t bch_irq(int irq, void *cookie) +{ + struct gpmi_nand_data *this = cookie; + + gpmi_clear_bch(this); + complete(&this->bch_done); + return IRQ_HANDLED; +} + +static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len) +{ + /* + * raw_len is the length to read/write including bch data which + * we are passed in exec_op. Calculate the data length from it. + */ + if (this->bch) + return ALIGN_DOWN(raw_len, this->bch_geometry.eccn_chunk_size); + else + return raw_len; +} + +/* Can we use the upper's buffer directly for DMA? */ +static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, + int raw_len, struct scatterlist *sgl, + enum dma_data_direction dr) +{ + int ret; + int len = gpmi_raw_len_to_len(this, raw_len); + + /* first try to map the upper buffer directly */ + if (virt_addr_valid(buf) && !object_is_on_stack(buf)) { + sg_init_one(sgl, buf, len); + ret = dma_map_sg(this->dev, sgl, 1, dr); + if (ret == 0) + goto map_fail; + + return true; + } + +map_fail: + /* We have to use our own DMA buffer. */ + sg_init_one(sgl, this->data_buffer_dma, len); + + if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma) + memcpy(this->data_buffer_dma, buf, len); + + dma_map_sg(this->dev, sgl, 1, dr); + + return false; +} + +/* add our owner bbt descriptor */ +static uint8_t scan_ff_pattern[] = { 0xff }; +static struct nand_bbt_descr gpmi_bbt_descr = { + .options = 0, + .offs = 0, + .len = 1, + .pattern = scan_ff_pattern +}; + +/* + * We may change the layout if we can get the ECC info from the datasheet, + * else we will use all the (page + OOB). + */ +static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *geo = &this->bch_geometry; + + if (section) + return -ERANGE; + + oobregion->offset = 0; + oobregion->length = geo->page_size - mtd->writesize; + + return 0; +} + +static int gpmi_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *geo = &this->bch_geometry; + + if (section) + return -ERANGE; + + /* The available oob size we have. */ + if (geo->page_size < mtd->writesize + mtd->oobsize) { + oobregion->offset = geo->page_size - mtd->writesize; + oobregion->length = mtd->oobsize - oobregion->offset; + } + + return 0; +} + +static const char * const gpmi_clks_for_mx2x[] = { + "gpmi_io", +}; + +static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { + .ecc = gpmi_ooblayout_ecc, + .free = gpmi_ooblayout_free, +}; + +static const struct gpmi_devdata gpmi_devdata_imx23 = { + .type = IS_MX23, + .bch_max_ecc_strength = 20, + .max_chain_delay = 16000, + .clks = gpmi_clks_for_mx2x, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), +}; + +static const struct gpmi_devdata gpmi_devdata_imx28 = { + .type = IS_MX28, + .bch_max_ecc_strength = 20, + .max_chain_delay = 16000, + .clks = gpmi_clks_for_mx2x, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), +}; + +static const char * const gpmi_clks_for_mx6[] = { + "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", +}; + +static const struct gpmi_devdata gpmi_devdata_imx6q = { + .type = IS_MX6Q, + .bch_max_ecc_strength = 40, + .max_chain_delay = 12000, + .clks = gpmi_clks_for_mx6, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), +}; + +static const struct gpmi_devdata gpmi_devdata_imx6sx = { + .type = IS_MX6SX, + .bch_max_ecc_strength = 62, + .max_chain_delay = 12000, + .clks = gpmi_clks_for_mx6, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), +}; + +static const char * const gpmi_clks_for_mx7d[] = { + "gpmi_io", "gpmi_bch_apb", +}; + +static const struct gpmi_devdata gpmi_devdata_imx7d = { + .type = IS_MX7D, + .bch_max_ecc_strength = 62, + .max_chain_delay = 12000, + .clks = gpmi_clks_for_mx7d, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), +}; + +static int acquire_register_block(struct gpmi_nand_data *this, + const char *res_name) +{ + struct platform_device *pdev = this->pdev; + struct resources *res = &this->resources; + void __iomem *p; + + p = devm_platform_ioremap_resource_byname(pdev, res_name); + if (IS_ERR(p)) + return PTR_ERR(p); + + if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) + res->gpmi_regs = p; + else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) + res->bch_regs = p; + else + dev_err(this->dev, "unknown resource name : %s\n", res_name); + + return 0; +} + +static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) +{ + struct platform_device *pdev = this->pdev; + const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; + int err; + + err = platform_get_irq_byname(pdev, res_name); + if (err < 0) + return err; + + err = devm_request_irq(this->dev, err, irq_h, 0, res_name, this); + if (err) + dev_err(this->dev, "error requesting BCH IRQ\n"); + + return err; +} + +static void release_dma_channels(struct gpmi_nand_data *this) +{ + unsigned int i; + for (i = 0; i < DMA_CHANS; i++) + if (this->dma_chans[i]) { + dma_release_channel(this->dma_chans[i]); + this->dma_chans[i] = NULL; + } +} + +static int acquire_dma_channels(struct gpmi_nand_data *this) +{ + struct platform_device *pdev = this->pdev; + struct dma_chan *dma_chan; + int ret = 0; + + /* request dma channel */ + dma_chan = dma_request_chan(&pdev->dev, "rx-tx"); + if (IS_ERR(dma_chan)) { + ret = dev_err_probe(this->dev, PTR_ERR(dma_chan), + "DMA channel request failed\n"); + release_dma_channels(this); + } else { + this->dma_chans[0] = dma_chan; + } + + return ret; +} + +static int gpmi_get_clks(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + struct clk *clk; + int err, i; + + for (i = 0; i < this->devdata->clks_count; i++) { + clk = devm_clk_get(this->dev, this->devdata->clks[i]); + if (IS_ERR(clk)) { + err = PTR_ERR(clk); + goto err_clock; + } + + r->clock[i] = clk; + } + + return 0; + +err_clock: + dev_dbg(this->dev, "failed in finding the clocks.\n"); + return err; +} + +static int acquire_resources(struct gpmi_nand_data *this) +{ + int ret; + + ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); + if (ret) + goto exit_regs; + + ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); + if (ret) + goto exit_regs; + + ret = acquire_bch_irq(this, bch_irq); + if (ret) + goto exit_regs; + + ret = acquire_dma_channels(this); + if (ret) + goto exit_regs; + + ret = gpmi_get_clks(this); + if (ret) + goto exit_clock; + return 0; + +exit_clock: + release_dma_channels(this); +exit_regs: + return ret; +} + +static void release_resources(struct gpmi_nand_data *this) +{ + release_dma_channels(this); +} + +static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) +{ + struct device *dev = this->dev; + struct bch_geometry *geo = &this->bch_geometry; + + if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt)) + dma_free_coherent(dev, geo->auxiliary_size, + this->auxiliary_virt, + this->auxiliary_phys); + kfree(this->data_buffer_dma); + kfree(this->raw_buffer); + + this->data_buffer_dma = NULL; + this->raw_buffer = NULL; +} + +/* Allocate the DMA buffers */ +static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct device *dev = this->dev; + struct mtd_info *mtd = nand_to_mtd(&this->nand); + + /* + * [2] Allocate a read/write data buffer. + * The gpmi_alloc_dma_buffer can be called twice. + * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer + * is called before the NAND identification; and we allocate a + * buffer of the real NAND page size when the gpmi_alloc_dma_buffer + * is called after. + */ + this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE, + GFP_DMA | GFP_KERNEL); + if (this->data_buffer_dma == NULL) + goto error_alloc; + + this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size, + &this->auxiliary_phys, GFP_DMA); + if (!this->auxiliary_virt) + goto error_alloc; + + this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL); + if (!this->raw_buffer) + goto error_alloc; + + return 0; + +error_alloc: + gpmi_free_dma_buffer(this); + return -ENOMEM; +} + +/* + * Handles block mark swapping. + * It can be called in swapping the block mark, or swapping it back, + * because the operations are the same. + */ +static void block_mark_swapping(struct gpmi_nand_data *this, + void *payload, void *auxiliary) +{ + struct bch_geometry *nfc_geo = &this->bch_geometry; + unsigned char *p; + unsigned char *a; + unsigned int bit; + unsigned char mask; + unsigned char from_data; + unsigned char from_oob; + + if (!this->swap_block_mark) + return; + + /* + * If control arrives here, we're swapping. Make some convenience + * variables. + */ + bit = nfc_geo->block_mark_bit_offset; + p = payload + nfc_geo->block_mark_byte_offset; + a = auxiliary; + + /* + * Get the byte from the data area that overlays the block mark. Since + * the ECC engine applies its own view to the bits in the page, the + * physical block mark won't (in general) appear on a byte boundary in + * the data. + */ + from_data = (p[0] >> bit) | (p[1] << (8 - bit)); + + /* Get the byte from the OOB. */ + from_oob = a[0]; + + /* Swap them. */ + a[0] = from_data; + + mask = (0x1 << bit) - 1; + p[0] = (p[0] & mask) | (from_oob << bit); + + mask = ~0 << bit; + p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); +} + +static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first, + int last, int meta) +{ + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *nfc_geo = &this->bch_geometry; + struct mtd_info *mtd = nand_to_mtd(chip); + int i; + unsigned char *status; + unsigned int max_bitflips = 0; + + /* Loop over status bytes, accumulating ECC status. */ + status = this->auxiliary_virt + ALIGN(meta, 4); + + for (i = first; i < last; i++, status++) { + if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) + continue; + + if (*status == STATUS_UNCORRECTABLE) { + int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; + u8 *eccbuf = this->raw_buffer; + int offset, bitoffset; + int eccbytes; + int flips; + + /* Read ECC bytes into our internal raw_buffer */ + offset = nfc_geo->metadata_size * 8; + offset += ((8 * nfc_geo->eccn_chunk_size) + eccbits) * (i + 1); + offset -= eccbits; + bitoffset = offset % 8; + eccbytes = DIV_ROUND_UP(offset + eccbits, 8); + offset /= 8; + eccbytes -= offset; + nand_change_read_column_op(chip, offset, eccbuf, + eccbytes, false); + + /* + * ECC data are not byte aligned and we may have + * in-band data in the first and last byte of + * eccbuf. Set non-eccbits to one so that + * nand_check_erased_ecc_chunk() does not count them + * as bitflips. + */ + if (bitoffset) + eccbuf[0] |= GENMASK(bitoffset - 1, 0); + + bitoffset = (bitoffset + eccbits) % 8; + if (bitoffset) + eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset); + + /* + * The ECC hardware has an uncorrectable ECC status + * code in case we have bitflips in an erased page. As + * nothing was written into this subpage the ECC is + * obviously wrong and we can not trust it. We assume + * at this point that we are reading an erased page and + * try to correct the bitflips in buffer up to + * ecc_strength bitflips. If this is a page with random + * data, we exceed this number of bitflips and have a + * ECC failure. Otherwise we use the corrected buffer. + */ + if (i == 0) { + /* The first block includes metadata */ + flips = nand_check_erased_ecc_chunk( + buf + i * nfc_geo->eccn_chunk_size, + nfc_geo->eccn_chunk_size, + eccbuf, eccbytes, + this->auxiliary_virt, + nfc_geo->metadata_size, + nfc_geo->ecc_strength); + } else { + flips = nand_check_erased_ecc_chunk( + buf + i * nfc_geo->eccn_chunk_size, + nfc_geo->eccn_chunk_size, + eccbuf, eccbytes, + NULL, 0, + nfc_geo->ecc_strength); + } + + if (flips > 0) { + max_bitflips = max_t(unsigned int, max_bitflips, + flips); + mtd->ecc_stats.corrected += flips; + continue; + } + + mtd->ecc_stats.failed++; + continue; + } + + mtd->ecc_stats.corrected += *status; + max_bitflips = max_t(unsigned int, max_bitflips, *status); + } + + return max_bitflips; +} + +static void gpmi_bch_layout_std(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + unsigned int ecc_strength = geo->ecc_strength >> 1; + unsigned int gf_len = geo->gf_len; + unsigned int block0_size = geo->ecc0_chunk_size; + unsigned int blockn_size = geo->eccn_chunk_size; + + this->bch_flashlayout0 = + BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) | + BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) | + BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) | + BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) | + BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block0_size, this); + + this->bch_flashlayout1 = + BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) | + BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) | + BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) | + BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(blockn_size, this); +} + +static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct bch_geometry *geo = &this->bch_geometry; + unsigned int max_bitflips; + int ret; + + gpmi_bch_layout_std(this); + this->bch = true; + + ret = nand_read_page_op(chip, page, 0, buf, geo->page_size); + if (ret) + return ret; + + max_bitflips = gpmi_count_bitflips(chip, buf, 0, + geo->ecc_chunk_count, + geo->auxiliary_status_offset); + + /* handle the block mark swapping */ + block_mark_swapping(this, buf, this->auxiliary_virt); + + if (oob_required) { + /* + * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() + * for details about our policy for delivering the OOB. + * + * We fill the caller's buffer with set bits, and then copy the + * block mark to th caller's buffer. Note that, if block mark + * swapping was necessary, it has already been done, so we can + * rely on the first byte of the auxiliary buffer to contain + * the block mark. + */ + memset(chip->oob_poi, ~0, mtd->oobsize); + chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0]; + } + + return max_bitflips; +} + +/* Fake a virtual small page for the subpage read */ +static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs, + uint32_t len, uint8_t *buf, int page) +{ + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *geo = &this->bch_geometry; + int size = chip->ecc.size; /* ECC chunk size */ + int meta, n, page_size; + unsigned int max_bitflips; + unsigned int ecc_strength; + int first, last, marker_pos; + int ecc_parity_size; + int col = 0; + int ret; + + /* The size of ECC parity */ + ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; + + /* Align it with the chunk size */ + first = offs / size; + last = (offs + len - 1) / size; + + if (this->swap_block_mark) { + /* + * Find the chunk which contains the Block Marker. + * If this chunk is in the range of [first, last], + * we have to read out the whole page. + * Why? since we had swapped the data at the position of Block + * Marker to the metadata which is bound with the chunk 0. + */ + marker_pos = geo->block_mark_byte_offset / size; + if (last >= marker_pos && first <= marker_pos) { + dev_dbg(this->dev, + "page:%d, first:%d, last:%d, marker at:%d\n", + page, first, last, marker_pos); + return gpmi_ecc_read_page(chip, buf, 0, page); + } + } + + /* + * if there is an ECC dedicate for meta: + * - need to add an extra ECC size when calculating col and page_size, + * if the meta size is NOT zero. + * - ecc0_chunk size need to set to the same size as other chunks, + * if the meta size is zero. + */ + + meta = geo->metadata_size; + if (first) { + if (geo->ecc_for_meta) + col = meta + ecc_parity_size + + (size + ecc_parity_size) * first; + else + col = meta + (size + ecc_parity_size) * first; + + meta = 0; + buf = buf + first * size; + } + + ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; + n = last - first + 1; + + if (geo->ecc_for_meta && meta) + page_size = meta + ecc_parity_size + + (size + ecc_parity_size) * n; + else + page_size = meta + (size + ecc_parity_size) * n; + + ecc_strength = geo->ecc_strength >> 1; + + this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS( + (geo->ecc_for_meta ? n : n - 1)) | + BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) | + BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) | + BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) | + BF_BCH_FLASH0LAYOUT0_DATA0_SIZE((geo->ecc_for_meta ? + 0 : geo->ecc0_chunk_size), this); + + this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) | + BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) | + BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) | + BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->eccn_chunk_size, this); + + this->bch = true; + + ret = nand_read_page_op(chip, page, col, buf, page_size); + if (ret) + return ret; + + dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n", + page, offs, len, col, first, n, page_size); + + max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta); + + return max_bitflips; +} + +static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *nfc_geo = &this->bch_geometry; + + dev_dbg(this->dev, "ecc write page.\n"); + + gpmi_bch_layout_std(this); + this->bch = true; + + memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size); + + if (this->swap_block_mark) { + /* + * When doing bad block marker swapping we must always copy the + * input buffer as we can't modify the const buffer. + */ + memcpy(this->data_buffer_dma, buf, mtd->writesize); + buf = this->data_buffer_dma; + block_mark_swapping(this, this->data_buffer_dma, + this->auxiliary_virt); + } + + return nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size); +} + +/* + * There are several places in this driver where we have to handle the OOB and + * block marks. This is the function where things are the most complicated, so + * this is where we try to explain it all. All the other places refer back to + * here. + * + * These are the rules, in order of decreasing importance: + * + * 1) Nothing the caller does can be allowed to imperil the block mark. + * + * 2) In read operations, the first byte of the OOB we return must reflect the + * true state of the block mark, no matter where that block mark appears in + * the physical page. + * + * 3) ECC-based read operations return an OOB full of set bits (since we never + * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads + * return). + * + * 4) "Raw" read operations return a direct view of the physical bytes in the + * page, using the conventional definition of which bytes are data and which + * are OOB. This gives the caller a way to see the actual, physical bytes + * in the page, without the distortions applied by our ECC engine. + * + * + * What we do for this specific read operation depends on two questions: + * + * 1) Are we doing a "raw" read, or an ECC-based read? + * + * 2) Are we using block mark swapping or transcription? + * + * There are four cases, illustrated by the following Karnaugh map: + * + * | Raw | ECC-based | + * -------------+-------------------------+-------------------------+ + * | Read the conventional | | + * | OOB at the end of the | | + * Swapping | page and return it. It | | + * | contains exactly what | | + * | we want. | Read the block mark and | + * -------------+-------------------------+ return it in a buffer | + * | Read the conventional | full of set bits. | + * | OOB at the end of the | | + * | page and also the block | | + * Transcribing | mark in the metadata. | | + * | Copy the block mark | | + * | into the first byte of | | + * | the OOB. | | + * -------------+-------------------------+-------------------------+ + * + * Note that we break rule #4 in the Transcribing/Raw case because we're not + * giving an accurate view of the actual, physical bytes in the page (we're + * overwriting the block mark). That's OK because it's more important to follow + * rule #2. + * + * It turns out that knowing whether we want an "ECC-based" or "raw" read is not + * easy. When reading a page, for example, the NAND Flash MTD code calls our + * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an + * ECC-based or raw view of the page is implicit in which function it calls + * (there is a similar pair of ECC-based/raw functions for writing). + */ +static int gpmi_ecc_read_oob(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + int ret; + + /* clear the OOB buffer */ + memset(chip->oob_poi, ~0, mtd->oobsize); + + /* Read out the conventional OOB. */ + ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi, + mtd->oobsize); + if (ret) + return ret; + + /* + * Now, we want to make sure the block mark is correct. In the + * non-transcribing case (!GPMI_IS_MX23()), we already have it. + * Otherwise, we need to explicitly read it. + */ + if (GPMI_IS_MX23(this)) { + /* Read the block mark into the first byte of the OOB buffer. */ + ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1); + if (ret) + return ret; + } + + return 0; +} + +static int gpmi_ecc_write_oob(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mtd_oob_region of = { }; + + /* Do we have available oob area? */ + mtd_ooblayout_free(mtd, 0, &of); + if (!of.length) + return -EPERM; + + if (!nand_is_slc(chip)) + return -EPERM; + + return nand_prog_page_op(chip, page, mtd->writesize + of.offset, + chip->oob_poi + of.offset, of.length); +} + +/* + * This function reads a NAND page without involving the ECC engine (no HW + * ECC correction). + * The tricky part in the GPMI/BCH controller is that it stores ECC bits + * inline (interleaved with payload DATA), and do not align data chunk on + * byte boundaries. + * We thus need to take care moving the payload data and ECC bits stored in the + * page into the provided buffers, which is why we're using nand_extract_bits(). + * + * See set_geometry_by_ecc_info inline comments to have a full description + * of the layout used by the GPMI controller. + */ +static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *nfc_geo = &this->bch_geometry; + int eccsize = nfc_geo->eccn_chunk_size; + int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; + u8 *tmp_buf = this->raw_buffer; + size_t src_bit_off; + size_t oob_bit_off; + size_t oob_byte_off; + uint8_t *oob = chip->oob_poi; + int step; + int ret; + + ret = nand_read_page_op(chip, page, 0, tmp_buf, + mtd->writesize + mtd->oobsize); + if (ret) + return ret; + + /* + * If required, swap the bad block marker and the data stored in the + * metadata section, so that we don't wrongly consider a block as bad. + * + * See the layout description for a detailed explanation on why this + * is needed. + */ + if (this->swap_block_mark) + swap(tmp_buf[0], tmp_buf[mtd->writesize]); + + /* + * Copy the metadata section into the oob buffer (this section is + * guaranteed to be aligned on a byte boundary). + */ + if (oob_required) + memcpy(oob, tmp_buf, nfc_geo->metadata_size); + + oob_bit_off = nfc_geo->metadata_size * 8; + src_bit_off = oob_bit_off; + + /* Extract interleaved payload data and ECC bits */ + for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { + if (buf) + nand_extract_bits(buf, step * eccsize * 8, tmp_buf, + src_bit_off, eccsize * 8); + src_bit_off += eccsize * 8; + + /* Align last ECC block to align a byte boundary */ + if (step == nfc_geo->ecc_chunk_count - 1 && + (oob_bit_off + eccbits) % 8) + eccbits += 8 - ((oob_bit_off + eccbits) % 8); + + if (oob_required) + nand_extract_bits(oob, oob_bit_off, tmp_buf, + src_bit_off, eccbits); + + src_bit_off += eccbits; + oob_bit_off += eccbits; + } + + if (oob_required) { + oob_byte_off = oob_bit_off / 8; + + if (oob_byte_off < mtd->oobsize) + memcpy(oob + oob_byte_off, + tmp_buf + mtd->writesize + oob_byte_off, + mtd->oobsize - oob_byte_off); + } + + return 0; +} + +/* + * This function writes a NAND page without involving the ECC engine (no HW + * ECC generation). + * The tricky part in the GPMI/BCH controller is that it stores ECC bits + * inline (interleaved with payload DATA), and do not align data chunk on + * byte boundaries. + * We thus need to take care moving the OOB area at the right place in the + * final page, which is why we're using nand_extract_bits(). + * + * See set_geometry_by_ecc_info inline comments to have a full description + * of the layout used by the GPMI controller. + */ +static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *nfc_geo = &this->bch_geometry; + int eccsize = nfc_geo->eccn_chunk_size; + int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; + u8 *tmp_buf = this->raw_buffer; + uint8_t *oob = chip->oob_poi; + size_t dst_bit_off; + size_t oob_bit_off; + size_t oob_byte_off; + int step; + + /* + * Initialize all bits to 1 in case we don't have a buffer for the + * payload or oob data in order to leave unspecified bits of data + * to their initial state. + */ + if (!buf || !oob_required) + memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize); + + /* + * First copy the metadata section (stored in oob buffer) at the + * beginning of the page, as imposed by the GPMI layout. + */ + memcpy(tmp_buf, oob, nfc_geo->metadata_size); + oob_bit_off = nfc_geo->metadata_size * 8; + dst_bit_off = oob_bit_off; + + /* Interleave payload data and ECC bits */ + for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { + if (buf) + nand_extract_bits(tmp_buf, dst_bit_off, buf, + step * eccsize * 8, eccsize * 8); + dst_bit_off += eccsize * 8; + + /* Align last ECC block to align a byte boundary */ + if (step == nfc_geo->ecc_chunk_count - 1 && + (oob_bit_off + eccbits) % 8) + eccbits += 8 - ((oob_bit_off + eccbits) % 8); + + if (oob_required) + nand_extract_bits(tmp_buf, dst_bit_off, oob, + oob_bit_off, eccbits); + + dst_bit_off += eccbits; + oob_bit_off += eccbits; + } + + oob_byte_off = oob_bit_off / 8; + + if (oob_required && oob_byte_off < mtd->oobsize) + memcpy(tmp_buf + mtd->writesize + oob_byte_off, + oob + oob_byte_off, mtd->oobsize - oob_byte_off); + + /* + * If required, swap the bad block marker and the first byte of the + * metadata section, so that we don't modify the bad block marker. + * + * See the layout description for a detailed explanation on why this + * is needed. + */ + if (this->swap_block_mark) + swap(tmp_buf[0], tmp_buf[mtd->writesize]); + + return nand_prog_page_op(chip, page, 0, tmp_buf, + mtd->writesize + mtd->oobsize); +} + +static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page) +{ + return gpmi_ecc_read_page_raw(chip, NULL, 1, page); +} + +static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page) +{ + return gpmi_ecc_write_page_raw(chip, NULL, 1, page); +} + +static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + int ret = 0; + uint8_t *block_mark; + int column, page, chipnr; + + chipnr = (int)(ofs >> chip->chip_shift); + nand_select_target(chip, chipnr); + + column = !GPMI_IS_MX23(this) ? mtd->writesize : 0; + + /* Write the block mark. */ + block_mark = this->data_buffer_dma; + block_mark[0] = 0; /* bad block marker */ + + /* Shift to get page */ + page = (int)(ofs >> chip->page_shift); + + ret = nand_prog_page_op(chip, page, column, block_mark, 1); + + nand_deselect_target(chip); + + return ret; +} + +static int nand_boot_set_geometry(struct gpmi_nand_data *this) +{ + struct boot_rom_geometry *geometry = &this->rom_geometry; + + /* + * Set the boot block stride size. + * + * In principle, we should be reading this from the OTP bits, since + * that's where the ROM is going to get it. In fact, we don't have any + * way to read the OTP bits, so we go with the default and hope for the + * best. + */ + geometry->stride_size_in_pages = 64; + + /* + * Set the search area stride exponent. + * + * In principle, we should be reading this from the OTP bits, since + * that's where the ROM is going to get it. In fact, we don't have any + * way to read the OTP bits, so we go with the default and hope for the + * best. + */ + geometry->search_area_stride_exponent = 2; + return 0; +} + +static const char *fingerprint = "STMP"; +static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) +{ + struct boot_rom_geometry *rom_geo = &this->rom_geometry; + struct device *dev = this->dev; + struct nand_chip *chip = &this->nand; + unsigned int search_area_size_in_strides; + unsigned int stride; + unsigned int page; + u8 *buffer = nand_get_data_buf(chip); + int found_an_ncb_fingerprint = false; + int ret; + + /* Compute the number of strides in a search area. */ + search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; + + nand_select_target(chip, 0); + + /* + * Loop through the first search area, looking for the NCB fingerprint. + */ + dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); + + for (stride = 0; stride < search_area_size_in_strides; stride++) { + /* Compute the page addresses. */ + page = stride * rom_geo->stride_size_in_pages; + + dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); + + /* + * Read the NCB fingerprint. The fingerprint is four bytes long + * and starts in the 12th byte of the page. + */ + ret = nand_read_page_op(chip, page, 12, buffer, + strlen(fingerprint)); + if (ret) + continue; + + /* Look for the fingerprint. */ + if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { + found_an_ncb_fingerprint = true; + break; + } + + } + + nand_deselect_target(chip); + + if (found_an_ncb_fingerprint) + dev_dbg(dev, "\tFound a fingerprint\n"); + else + dev_dbg(dev, "\tNo fingerprint found\n"); + return found_an_ncb_fingerprint; +} + +/* Writes a transcription stamp. */ +static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) +{ + struct device *dev = this->dev; + struct boot_rom_geometry *rom_geo = &this->rom_geometry; + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int block_size_in_pages; + unsigned int search_area_size_in_strides; + unsigned int search_area_size_in_pages; + unsigned int search_area_size_in_blocks; + unsigned int block; + unsigned int stride; + unsigned int page; + u8 *buffer = nand_get_data_buf(chip); + int status; + + /* Compute the search area geometry. */ + block_size_in_pages = mtd->erasesize / mtd->writesize; + search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; + search_area_size_in_pages = search_area_size_in_strides * + rom_geo->stride_size_in_pages; + search_area_size_in_blocks = + (search_area_size_in_pages + (block_size_in_pages - 1)) / + block_size_in_pages; + + dev_dbg(dev, "Search Area Geometry :\n"); + dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); + dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); + dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); + + nand_select_target(chip, 0); + + /* Loop over blocks in the first search area, erasing them. */ + dev_dbg(dev, "Erasing the search area...\n"); + + for (block = 0; block < search_area_size_in_blocks; block++) { + /* Erase this block. */ + dev_dbg(dev, "\tErasing block 0x%x\n", block); + status = nand_erase_op(chip, block); + if (status) + dev_err(dev, "[%s] Erase failed.\n", __func__); + } + + /* Write the NCB fingerprint into the page buffer. */ + memset(buffer, ~0, mtd->writesize); + memcpy(buffer + 12, fingerprint, strlen(fingerprint)); + + /* Loop through the first search area, writing NCB fingerprints. */ + dev_dbg(dev, "Writing NCB fingerprints...\n"); + for (stride = 0; stride < search_area_size_in_strides; stride++) { + /* Compute the page addresses. */ + page = stride * rom_geo->stride_size_in_pages; + + /* Write the first page of the current stride. */ + dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); + + status = chip->ecc.write_page_raw(chip, buffer, 0, page); + if (status) + dev_err(dev, "[%s] Write failed.\n", __func__); + } + + nand_deselect_target(chip); + + return 0; +} + +static int mx23_boot_init(struct gpmi_nand_data *this) +{ + struct device *dev = this->dev; + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int block_count; + unsigned int block; + int chipnr; + int page; + loff_t byte; + uint8_t block_mark; + int ret = 0; + + /* + * If control arrives here, we can't use block mark swapping, which + * means we're forced to use transcription. First, scan for the + * transcription stamp. If we find it, then we don't have to do + * anything -- the block marks are already transcribed. + */ + if (mx23_check_transcription_stamp(this)) + return 0; + + /* + * If control arrives here, we couldn't find a transcription stamp, so + * so we presume the block marks are in the conventional location. + */ + dev_dbg(dev, "Transcribing bad block marks...\n"); + + /* Compute the number of blocks in the entire medium. */ + block_count = nanddev_eraseblocks_per_target(&chip->base); + + /* + * Loop over all the blocks in the medium, transcribing block marks as + * we go. + */ + for (block = 0; block < block_count; block++) { + /* + * Compute the chip, page and byte addresses for this block's + * conventional mark. + */ + chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); + page = block << (chip->phys_erase_shift - chip->page_shift); + byte = block << chip->phys_erase_shift; + + /* Send the command to read the conventional block mark. */ + nand_select_target(chip, chipnr); + ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark, + 1); + nand_deselect_target(chip); + + if (ret) + continue; + + /* + * Check if the block is marked bad. If so, we need to mark it + * again, but this time the result will be a mark in the + * location where we transcribe block marks. + */ + if (block_mark != 0xff) { + dev_dbg(dev, "Transcribing mark in block %u\n", block); + ret = chip->legacy.block_markbad(chip, byte); + if (ret) + dev_err(dev, + "Failed to mark block bad with ret %d\n", + ret); + } + } + + /* Write the stamp that indicates we've transcribed the block marks. */ + mx23_write_transcription_stamp(this); + return 0; +} + +static int nand_boot_init(struct gpmi_nand_data *this) +{ + nand_boot_set_geometry(this); + + /* This is ROM arch-specific initilization before the BBT scanning. */ + if (GPMI_IS_MX23(this)) + return mx23_boot_init(this); + return 0; +} + +static int gpmi_set_geometry(struct gpmi_nand_data *this) +{ + int ret; + + /* Free the temporary DMA memory for reading ID. */ + gpmi_free_dma_buffer(this); + + /* Set up the NFC geometry which is used by BCH. */ + ret = bch_set_geometry(this); + if (ret) { + dev_err(this->dev, "Error setting BCH geometry : %d\n", ret); + return ret; + } + + /* Alloc the new DMA buffers according to the pagesize and oobsize */ + return gpmi_alloc_dma_buffer(this); +} + +static int gpmi_init_last(struct gpmi_nand_data *this) +{ + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + struct bch_geometry *bch_geo = &this->bch_geometry; + int ret; + + /* Set up the medium geometry */ + ret = gpmi_set_geometry(this); + if (ret) + return ret; + + /* Init the nand_ecc_ctrl{} */ + ecc->read_page = gpmi_ecc_read_page; + ecc->write_page = gpmi_ecc_write_page; + ecc->read_oob = gpmi_ecc_read_oob; + ecc->write_oob = gpmi_ecc_write_oob; + ecc->read_page_raw = gpmi_ecc_read_page_raw; + ecc->write_page_raw = gpmi_ecc_write_page_raw; + ecc->read_oob_raw = gpmi_ecc_read_oob_raw; + ecc->write_oob_raw = gpmi_ecc_write_oob_raw; + ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + ecc->size = bch_geo->eccn_chunk_size; + ecc->strength = bch_geo->ecc_strength; + mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops); + + /* + * We only enable the subpage read when: + * (1) the chip is imx6, and + * (2) the size of the ECC parity is byte aligned. + */ + if (GPMI_IS_MX6(this) && + ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) { + ecc->read_subpage = gpmi_ecc_read_subpage; + chip->options |= NAND_SUBPAGE_READ; + } + + return 0; +} + +static int gpmi_nand_attach_chip(struct nand_chip *chip) +{ + struct gpmi_nand_data *this = nand_get_controller_data(chip); + int ret; + + if (chip->bbt_options & NAND_BBT_USE_FLASH) { + chip->bbt_options |= NAND_BBT_NO_OOB; + + if (of_property_read_bool(this->dev->of_node, + "fsl,no-blockmark-swap")) + this->swap_block_mark = false; + } + dev_dbg(this->dev, "Blockmark swapping %sabled\n", + this->swap_block_mark ? "en" : "dis"); + + ret = gpmi_init_last(this); + if (ret) + return ret; + + chip->options |= NAND_SKIP_BBTSCAN; + + return 0; +} + +static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this) +{ + struct gpmi_transfer *transfer = &this->transfers[this->ntransfers]; + + this->ntransfers++; + + if (this->ntransfers == GPMI_MAX_TRANSFERS) + return NULL; + + return transfer; +} + +static struct dma_async_tx_descriptor *gpmi_chain_command( + struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr) +{ + struct dma_chan *channel = get_dma_chan(this); + struct dma_async_tx_descriptor *desc; + struct gpmi_transfer *transfer; + int chip = this->nand.cur_cs; + u32 pio[3]; + + /* [1] send out the PIO words */ + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) + | BM_GPMI_CTRL0_ADDRESS_INCREMENT + | BF_GPMI_CTRL0_XFER_COUNT(naddr + 1); + pio[1] = 0; + pio[2] = 0; + desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), + DMA_TRANS_NONE, 0); + if (!desc) + return NULL; + + transfer = get_next_transfer(this); + if (!transfer) + return NULL; + + transfer->cmdbuf[0] = cmd; + if (naddr) + memcpy(&transfer->cmdbuf[1], addr, naddr); + + sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1); + dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE); + + transfer->direction = DMA_TO_DEVICE; + + desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV, + MXS_DMA_CTRL_WAIT4END); + return desc; +} + +static struct dma_async_tx_descriptor *gpmi_chain_wait_ready( + struct gpmi_nand_data *this) +{ + struct dma_chan *channel = get_dma_chan(this); + u32 pio[2]; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) + | BF_GPMI_CTRL0_XFER_COUNT(0); + pio[1] = 0; + + return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE, + MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY); +} + +static struct dma_async_tx_descriptor *gpmi_chain_data_read( + struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct) +{ + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + struct gpmi_transfer *transfer; + u32 pio[6] = {}; + + transfer = get_next_transfer(this); + if (!transfer) + return NULL; + + transfer->direction = DMA_FROM_DEVICE; + + *direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl, + DMA_FROM_DEVICE); + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) + | BF_GPMI_CTRL0_XFER_COUNT(raw_len); + + if (this->bch) { + pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC + | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE) + | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE + | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY); + pio[3] = raw_len; + pio[4] = transfer->sgl.dma_address; + pio[5] = this->auxiliary_phys; + } + + desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), + DMA_TRANS_NONE, 0); + if (!desc) + return NULL; + + if (!this->bch) + desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, + DMA_DEV_TO_MEM, + MXS_DMA_CTRL_WAIT4END); + + return desc; +} + +static struct dma_async_tx_descriptor *gpmi_chain_data_write( + struct gpmi_nand_data *this, const void *buf, int raw_len) +{ + struct dma_chan *channel = get_dma_chan(this); + struct dma_async_tx_descriptor *desc; + struct gpmi_transfer *transfer; + u32 pio[6] = {}; + + transfer = get_next_transfer(this); + if (!transfer) + return NULL; + + transfer->direction = DMA_TO_DEVICE; + + prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE); + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) + | BF_GPMI_CTRL0_XFER_COUNT(raw_len); + + if (this->bch) { + pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC + | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE) + | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | + BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY); + pio[3] = raw_len; + pio[4] = transfer->sgl.dma_address; + pio[5] = this->auxiliary_phys; + } + + desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), + DMA_TRANS_NONE, + (this->bch ? MXS_DMA_CTRL_WAIT4END : 0)); + if (!desc) + return NULL; + + if (!this->bch) + desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, + DMA_MEM_TO_DEV, + MXS_DMA_CTRL_WAIT4END); + + return desc; +} + +static int gpmi_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + const struct nand_op_instr *instr; + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct dma_async_tx_descriptor *desc = NULL; + int i, ret, buf_len = 0, nbufs = 0; + u8 cmd = 0; + void *buf_read = NULL; + const void *buf_write = NULL; + bool direct = false; + struct completion *dma_completion, *bch_completion; + unsigned long to; + + if (check_only) + return 0; + + this->ntransfers = 0; + for (i = 0; i < GPMI_MAX_TRANSFERS; i++) + this->transfers[i].direction = DMA_NONE; + + ret = pm_runtime_get_sync(this->dev); + if (ret < 0) { + pm_runtime_put_noidle(this->dev); + return ret; + } + + /* + * This driver currently supports only one NAND chip. Plus, dies share + * the same configuration. So once timings have been applied on the + * controller side, they will not change anymore. When the time will + * come, the check on must_apply_timings will have to be dropped. + */ + if (this->hw.must_apply_timings) { + this->hw.must_apply_timings = false; + ret = gpmi_nfc_apply_timings(this); + if (ret) + goto out_pm; + } + + dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs); + + for (i = 0; i < op->ninstrs; i++) { + instr = &op->instrs[i]; + + nand_op_trace(" ", instr); + + switch (instr->type) { + case NAND_OP_WAITRDY_INSTR: + desc = gpmi_chain_wait_ready(this); + break; + case NAND_OP_CMD_INSTR: + cmd = instr->ctx.cmd.opcode; + + /* + * When this command has an address cycle chain it + * together with the address cycle + */ + if (i + 1 != op->ninstrs && + op->instrs[i + 1].type == NAND_OP_ADDR_INSTR) + continue; + + desc = gpmi_chain_command(this, cmd, NULL, 0); + + break; + case NAND_OP_ADDR_INSTR: + desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs, + instr->ctx.addr.naddrs); + break; + case NAND_OP_DATA_OUT_INSTR: + buf_write = instr->ctx.data.buf.out; + buf_len = instr->ctx.data.len; + nbufs++; + + desc = gpmi_chain_data_write(this, buf_write, buf_len); + + break; + case NAND_OP_DATA_IN_INSTR: + if (!instr->ctx.data.len) + break; + buf_read = instr->ctx.data.buf.in; + buf_len = instr->ctx.data.len; + nbufs++; + + desc = gpmi_chain_data_read(this, buf_read, buf_len, + &direct); + break; + } + + if (!desc) { + ret = -ENXIO; + goto unmap; + } + } + + dev_dbg(this->dev, "%s setup done\n", __func__); + + if (nbufs > 1) { + dev_err(this->dev, "Multiple data instructions not supported\n"); + ret = -EINVAL; + goto unmap; + } + + if (this->bch) { + writel(this->bch_flashlayout0, + this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0); + writel(this->bch_flashlayout1, + this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1); + } + + desc->callback = dma_irq_callback; + desc->callback_param = this; + dma_completion = &this->dma_done; + bch_completion = NULL; + + init_completion(dma_completion); + + if (this->bch && buf_read) { + writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, + this->resources.bch_regs + HW_BCH_CTRL_SET); + bch_completion = &this->bch_done; + init_completion(bch_completion); + } + + dmaengine_submit(desc); + dma_async_issue_pending(get_dma_chan(this)); + + to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000)); + if (!to) { + dev_err(this->dev, "DMA timeout, last DMA\n"); + gpmi_dump_info(this); + ret = -ETIMEDOUT; + goto unmap; + } + + if (this->bch && buf_read) { + to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000)); + if (!to) { + dev_err(this->dev, "BCH timeout, last DMA\n"); + gpmi_dump_info(this); + ret = -ETIMEDOUT; + goto unmap; + } + } + + writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, + this->resources.bch_regs + HW_BCH_CTRL_CLR); + gpmi_clear_bch(this); + + ret = 0; + +unmap: + for (i = 0; i < this->ntransfers; i++) { + struct gpmi_transfer *transfer = &this->transfers[i]; + + if (transfer->direction != DMA_NONE) + dma_unmap_sg(this->dev, &transfer->sgl, 1, + transfer->direction); + } + + if (!ret && buf_read && !direct) + memcpy(buf_read, this->data_buffer_dma, + gpmi_raw_len_to_len(this, buf_len)); + + this->bch = false; + +out_pm: + pm_runtime_mark_last_busy(this->dev); + pm_runtime_put_autosuspend(this->dev); + + return ret; +} + +static const struct nand_controller_ops gpmi_nand_controller_ops = { + .attach_chip = gpmi_nand_attach_chip, + .setup_interface = gpmi_setup_interface, + .exec_op = gpmi_nfc_exec_op, +}; + +static int gpmi_nand_init(struct gpmi_nand_data *this) +{ + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + /* init the MTD data structures */ + mtd->name = "gpmi-nand"; + mtd->dev.parent = this->dev; + + /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ + nand_set_controller_data(chip, this); + nand_set_flash_node(chip, this->pdev->dev.of_node); + chip->legacy.block_markbad = gpmi_block_markbad; + chip->badblock_pattern = &gpmi_bbt_descr; + chip->options |= NAND_NO_SUBPAGE_WRITE; + + /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ + this->swap_block_mark = !GPMI_IS_MX23(this); + + /* + * Allocate a temporary DMA buffer for reading ID in the + * nand_scan_ident(). + */ + this->bch_geometry.payload_size = 1024; + this->bch_geometry.auxiliary_size = 128; + ret = gpmi_alloc_dma_buffer(this); + if (ret) + return ret; + + nand_controller_init(&this->base); + this->base.ops = &gpmi_nand_controller_ops; + chip->controller = &this->base; + + ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1); + if (ret) + goto err_out; + + ret = nand_boot_init(this); + if (ret) + goto err_nand_cleanup; + ret = nand_create_bbt(chip); + if (ret) + goto err_nand_cleanup; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) + goto err_nand_cleanup; + return 0; + +err_nand_cleanup: + nand_cleanup(chip); +err_out: + gpmi_free_dma_buffer(this); + return ret; +} + +static const struct of_device_id gpmi_nand_id_table[] = { + { .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, }, + { .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, }, + { .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, }, + { .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, }, + { .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,}, + {} +}; +MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); + +static int gpmi_nand_probe(struct platform_device *pdev) +{ + struct gpmi_nand_data *this; + int ret; + + this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); + if (!this) + return -ENOMEM; + + this->devdata = of_device_get_match_data(&pdev->dev); + platform_set_drvdata(pdev, this); + this->pdev = pdev; + this->dev = &pdev->dev; + + ret = acquire_resources(this); + if (ret) + goto exit_acquire_resources; + + ret = __gpmi_enable_clk(this, true); + if (ret) + goto exit_acquire_resources; + + pm_runtime_set_autosuspend_delay(&pdev->dev, 500); + pm_runtime_use_autosuspend(&pdev->dev); + pm_runtime_set_active(&pdev->dev); + pm_runtime_enable(&pdev->dev); + pm_runtime_get_sync(&pdev->dev); + + ret = gpmi_init(this); + if (ret) + goto exit_nfc_init; + + ret = gpmi_nand_init(this); + if (ret) + goto exit_nfc_init; + + pm_runtime_mark_last_busy(&pdev->dev); + pm_runtime_put_autosuspend(&pdev->dev); + + dev_info(this->dev, "driver registered.\n"); + + return 0; + +exit_nfc_init: + pm_runtime_put(&pdev->dev); + pm_runtime_disable(&pdev->dev); + release_resources(this); +exit_acquire_resources: + + return ret; +} + +static int gpmi_nand_remove(struct platform_device *pdev) +{ + struct gpmi_nand_data *this = platform_get_drvdata(pdev); + struct nand_chip *chip = &this->nand; + int ret; + + pm_runtime_put_sync(&pdev->dev); + pm_runtime_disable(&pdev->dev); + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + gpmi_free_dma_buffer(this); + release_resources(this); + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int gpmi_pm_suspend(struct device *dev) +{ + struct gpmi_nand_data *this = dev_get_drvdata(dev); + + release_dma_channels(this); + return 0; +} + +static int gpmi_pm_resume(struct device *dev) +{ + struct gpmi_nand_data *this = dev_get_drvdata(dev); + int ret; + + ret = acquire_dma_channels(this); + if (ret < 0) + return ret; + + /* re-init the GPMI registers */ + ret = gpmi_init(this); + if (ret) { + dev_err(this->dev, "Error setting GPMI : %d\n", ret); + return ret; + } + + /* Set flag to get timing setup restored for next exec_op */ + if (this->hw.clk_rate) + this->hw.must_apply_timings = true; + + /* re-init the BCH registers */ + ret = bch_set_geometry(this); + if (ret) { + dev_err(this->dev, "Error setting BCH : %d\n", ret); + return ret; + } + + return 0; +} +#endif /* CONFIG_PM_SLEEP */ + +static int __maybe_unused gpmi_runtime_suspend(struct device *dev) +{ + struct gpmi_nand_data *this = dev_get_drvdata(dev); + + return __gpmi_enable_clk(this, false); +} + +static int __maybe_unused gpmi_runtime_resume(struct device *dev) +{ + struct gpmi_nand_data *this = dev_get_drvdata(dev); + + return __gpmi_enable_clk(this, true); +} + +static const struct dev_pm_ops gpmi_pm_ops = { + SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume) + SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL) +}; + +static struct platform_driver gpmi_nand_driver = { + .driver = { + .name = "gpmi-nand", + .pm = &gpmi_pm_ops, + .of_match_table = gpmi_nand_id_table, + }, + .probe = gpmi_nand_probe, + .remove = gpmi_nand_remove, +}; +module_platform_driver(gpmi_nand_driver); + +MODULE_AUTHOR("Freescale Semiconductor, Inc."); +MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h new file mode 100644 index 000000000..c3ff56ac6 --- /dev/null +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h @@ -0,0 +1,179 @@ +/* SPDX-License-Identifier: GPL-2.0+ */ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + */ +#ifndef __DRIVERS_MTD_NAND_GPMI_NAND_H +#define __DRIVERS_MTD_NAND_GPMI_NAND_H + +#include <linux/mtd/rawnand.h> +#include <linux/platform_device.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> + +#define GPMI_CLK_MAX 5 /* MX6Q needs five clocks */ +struct resources { + void __iomem *gpmi_regs; + void __iomem *bch_regs; + unsigned int dma_low_channel; + unsigned int dma_high_channel; + struct clk *clock[GPMI_CLK_MAX]; +}; + +/** + * struct bch_geometry - BCH geometry description. + * @gf_len: The length of Galois Field. (e.g., 13 or 14) + * @ecc_strength: A number that describes the strength of the ECC + * algorithm. + * @page_size: The size, in bytes, of a physical page, including + * both data and OOB. + * @metadata_size: The size, in bytes, of the metadata. + * @ecc0_chunk_size: The size, in bytes, of a first ECC chunk. + * @eccn_chunk_size: The size, in bytes, of a single ECC chunk after + * the first chunk in the page. + * @ecc_chunk_count: The number of ECC chunks in the page, + * @payload_size: The size, in bytes, of the payload buffer. + * @auxiliary_size: The size, in bytes, of the auxiliary buffer. + * @auxiliary_status_offset: The offset into the auxiliary buffer at which + * the ECC status appears. + * @block_mark_byte_offset: The byte offset in the ECC-based page view at + * which the underlying physical block mark appears. + * @block_mark_bit_offset: The bit offset into the ECC-based page view at + * which the underlying physical block mark appears. + * @ecc_for_meta: The flag to indicate if there is a dedicate ecc + * for meta. + */ +struct bch_geometry { + unsigned int gf_len; + unsigned int ecc_strength; + unsigned int page_size; + unsigned int metadata_size; + unsigned int ecc0_chunk_size; + unsigned int eccn_chunk_size; + unsigned int ecc_chunk_count; + unsigned int payload_size; + unsigned int auxiliary_size; + unsigned int auxiliary_status_offset; + unsigned int block_mark_byte_offset; + unsigned int block_mark_bit_offset; + unsigned int ecc_for_meta; /* ECC for meta data */ +}; + +/** + * struct boot_rom_geometry - Boot ROM geometry description. + * @stride_size_in_pages: The size of a boot block stride, in pages. + * @search_area_stride_exponent: The logarithm to base 2 of the size of a + * search area in boot block strides. + */ +struct boot_rom_geometry { + unsigned int stride_size_in_pages; + unsigned int search_area_stride_exponent; +}; + +enum gpmi_type { + IS_MX23, + IS_MX28, + IS_MX6Q, + IS_MX6SX, + IS_MX7D, +}; + +struct gpmi_devdata { + enum gpmi_type type; + int bch_max_ecc_strength; + int max_chain_delay; /* See the SDR EDO mode */ + const char * const *clks; + const int clks_count; +}; + +/** + * struct gpmi_nfc_hardware_timing - GPMI hardware timing parameters. + * @must_apply_timings: Whether controller timings have already been + * applied or not (useful only while there is + * support for only one chip select) + * @clk_rate: The clock rate that must be used to derive the + * following parameters + * @timing0: HW_GPMI_TIMING0 register + * @timing1: HW_GPMI_TIMING1 register + * @ctrl1n: HW_GPMI_CTRL1n register + */ +struct gpmi_nfc_hardware_timing { + bool must_apply_timings; + unsigned long int clk_rate; + u32 timing0; + u32 timing1; + u32 ctrl1n; +}; + +#define GPMI_MAX_TRANSFERS 8 + +struct gpmi_transfer { + u8 cmdbuf[8]; + struct scatterlist sgl; + enum dma_data_direction direction; +}; + +struct gpmi_nand_data { + /* Devdata */ + const struct gpmi_devdata *devdata; + + /* System Interface */ + struct device *dev; + struct platform_device *pdev; + + /* Resources */ + struct resources resources; + + /* Flash Hardware */ + struct gpmi_nfc_hardware_timing hw; + + /* BCH */ + struct bch_geometry bch_geometry; + struct completion bch_done; + + /* NAND Boot issue */ + bool swap_block_mark; + struct boot_rom_geometry rom_geometry; + + /* MTD / NAND */ + struct nand_controller base; + struct nand_chip nand; + + struct gpmi_transfer transfers[GPMI_MAX_TRANSFERS]; + int ntransfers; + + bool bch; + uint32_t bch_flashlayout0; + uint32_t bch_flashlayout1; + + char *data_buffer_dma; + + void *auxiliary_virt; + dma_addr_t auxiliary_phys; + + void *raw_buffer; + + /* DMA channels */ +#define DMA_CHANS 8 + struct dma_chan *dma_chans[DMA_CHANS]; + struct completion dma_done; +}; + +/* BCH : Status Block Completion Codes */ +#define STATUS_GOOD 0x00 +#define STATUS_ERASED 0xff +#define STATUS_UNCORRECTABLE 0xfe + +/* Use the devdata to distinguish different Archs. */ +#define GPMI_IS_MX23(x) ((x)->devdata->type == IS_MX23) +#define GPMI_IS_MX28(x) ((x)->devdata->type == IS_MX28) +#define GPMI_IS_MX6Q(x) ((x)->devdata->type == IS_MX6Q) +#define GPMI_IS_MX6SX(x) ((x)->devdata->type == IS_MX6SX) +#define GPMI_IS_MX7D(x) ((x)->devdata->type == IS_MX7D) + +#define GPMI_IS_MX6(x) (GPMI_IS_MX6Q(x) || GPMI_IS_MX6SX(x) || \ + GPMI_IS_MX7D(x)) +#define GPMI_IS_MXS(x) (GPMI_IS_MX23(x) || GPMI_IS_MX28(x)) +#endif diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h new file mode 100644 index 000000000..fc31fd084 --- /dev/null +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h @@ -0,0 +1,180 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright 2008-2011 Freescale Semiconductor, Inc. + * Copyright 2008 Embedded Alley Solutions, Inc. + */ +#ifndef __GPMI_NAND_GPMI_REGS_H +#define __GPMI_NAND_GPMI_REGS_H + +#define HW_GPMI_CTRL0 0x00000000 +#define HW_GPMI_CTRL0_SET 0x00000004 +#define HW_GPMI_CTRL0_CLR 0x00000008 +#define HW_GPMI_CTRL0_TOG 0x0000000c + +#define BP_GPMI_CTRL0_COMMAND_MODE 24 +#define BM_GPMI_CTRL0_COMMAND_MODE (3 << BP_GPMI_CTRL0_COMMAND_MODE) +#define BF_GPMI_CTRL0_COMMAND_MODE(v) \ + (((v) << BP_GPMI_CTRL0_COMMAND_MODE) & BM_GPMI_CTRL0_COMMAND_MODE) +#define BV_GPMI_CTRL0_COMMAND_MODE__WRITE 0x0 +#define BV_GPMI_CTRL0_COMMAND_MODE__READ 0x1 +#define BV_GPMI_CTRL0_COMMAND_MODE__READ_AND_COMPARE 0x2 +#define BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY 0x3 + +#define BM_GPMI_CTRL0_WORD_LENGTH (1 << 23) +#define BV_GPMI_CTRL0_WORD_LENGTH__16_BIT 0x0 +#define BV_GPMI_CTRL0_WORD_LENGTH__8_BIT 0x1 + +/* + * Difference in LOCK_CS between imx23 and imx28 : + * This bit may impact the _POWER_ consumption. So some chips + * do not set it. + */ +#define MX23_BP_GPMI_CTRL0_LOCK_CS 22 +#define MX28_BP_GPMI_CTRL0_LOCK_CS 27 +#define LOCK_CS_ENABLE 0x1 +#define BF_GPMI_CTRL0_LOCK_CS(v, x) 0x0 + +/* Difference in CS between imx23 and imx28 */ +#define BP_GPMI_CTRL0_CS 20 +#define MX23_BM_GPMI_CTRL0_CS (3 << BP_GPMI_CTRL0_CS) +#define MX28_BM_GPMI_CTRL0_CS (7 << BP_GPMI_CTRL0_CS) +#define BF_GPMI_CTRL0_CS(v, x) (((v) << BP_GPMI_CTRL0_CS) & \ + (GPMI_IS_MX23((x)) \ + ? MX23_BM_GPMI_CTRL0_CS \ + : MX28_BM_GPMI_CTRL0_CS)) + +#define BP_GPMI_CTRL0_ADDRESS 17 +#define BM_GPMI_CTRL0_ADDRESS (3 << BP_GPMI_CTRL0_ADDRESS) +#define BF_GPMI_CTRL0_ADDRESS(v) \ + (((v) << BP_GPMI_CTRL0_ADDRESS) & BM_GPMI_CTRL0_ADDRESS) +#define BV_GPMI_CTRL0_ADDRESS__NAND_DATA 0x0 +#define BV_GPMI_CTRL0_ADDRESS__NAND_CLE 0x1 +#define BV_GPMI_CTRL0_ADDRESS__NAND_ALE 0x2 + +#define BM_GPMI_CTRL0_ADDRESS_INCREMENT (1 << 16) +#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__DISABLED 0x0 +#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__ENABLED 0x1 + +#define BP_GPMI_CTRL0_XFER_COUNT 0 +#define BM_GPMI_CTRL0_XFER_COUNT (0xffff << BP_GPMI_CTRL0_XFER_COUNT) +#define BF_GPMI_CTRL0_XFER_COUNT(v) \ + (((v) << BP_GPMI_CTRL0_XFER_COUNT) & BM_GPMI_CTRL0_XFER_COUNT) + +#define HW_GPMI_COMPARE 0x00000010 + +#define HW_GPMI_ECCCTRL 0x00000020 +#define HW_GPMI_ECCCTRL_SET 0x00000024 +#define HW_GPMI_ECCCTRL_CLR 0x00000028 +#define HW_GPMI_ECCCTRL_TOG 0x0000002c + +#define BP_GPMI_ECCCTRL_ECC_CMD 13 +#define BM_GPMI_ECCCTRL_ECC_CMD (3 << BP_GPMI_ECCCTRL_ECC_CMD) +#define BF_GPMI_ECCCTRL_ECC_CMD(v) \ + (((v) << BP_GPMI_ECCCTRL_ECC_CMD) & BM_GPMI_ECCCTRL_ECC_CMD) +#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE 0x0 +#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE 0x1 + +#define BM_GPMI_ECCCTRL_ENABLE_ECC (1 << 12) +#define BV_GPMI_ECCCTRL_ENABLE_ECC__ENABLE 0x1 +#define BV_GPMI_ECCCTRL_ENABLE_ECC__DISABLE 0x0 + +#define BP_GPMI_ECCCTRL_BUFFER_MASK 0 +#define BM_GPMI_ECCCTRL_BUFFER_MASK (0x1ff << BP_GPMI_ECCCTRL_BUFFER_MASK) +#define BF_GPMI_ECCCTRL_BUFFER_MASK(v) \ + (((v) << BP_GPMI_ECCCTRL_BUFFER_MASK) & BM_GPMI_ECCCTRL_BUFFER_MASK) +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY 0x100 +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE 0x1FF + +#define HW_GPMI_ECCCOUNT 0x00000030 +#define HW_GPMI_PAYLOAD 0x00000040 +#define HW_GPMI_AUXILIARY 0x00000050 +#define HW_GPMI_CTRL1 0x00000060 +#define HW_GPMI_CTRL1_SET 0x00000064 +#define HW_GPMI_CTRL1_CLR 0x00000068 +#define HW_GPMI_CTRL1_TOG 0x0000006c + +#define BP_GPMI_CTRL1_DECOUPLE_CS 24 +#define BM_GPMI_CTRL1_DECOUPLE_CS (1 << BP_GPMI_CTRL1_DECOUPLE_CS) + +#define BP_GPMI_CTRL1_WRN_DLY_SEL 22 +#define BM_GPMI_CTRL1_WRN_DLY_SEL (0x3 << BP_GPMI_CTRL1_WRN_DLY_SEL) +#define BF_GPMI_CTRL1_WRN_DLY_SEL(v) \ + (((v) << BP_GPMI_CTRL1_WRN_DLY_SEL) & BM_GPMI_CTRL1_WRN_DLY_SEL) +#define BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS 0x0 +#define BV_GPMI_CTRL1_WRN_DLY_SEL_6_TO_10NS 0x1 +#define BV_GPMI_CTRL1_WRN_DLY_SEL_7_TO_12NS 0x2 +#define BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY 0x3 + +#define BM_GPMI_CTRL1_GANGED_RDYBUSY (1 << 19) +#define BM_GPMI_CTRL1_BCH_MODE (1 << 18) + +#define BP_GPMI_CTRL1_DLL_ENABLE 17 +#define BM_GPMI_CTRL1_DLL_ENABLE (1 << BP_GPMI_CTRL1_DLL_ENABLE) + +#define BP_GPMI_CTRL1_HALF_PERIOD 16 +#define BM_GPMI_CTRL1_HALF_PERIOD (1 << BP_GPMI_CTRL1_HALF_PERIOD) + +#define BP_GPMI_CTRL1_RDN_DELAY 12 +#define BM_GPMI_CTRL1_RDN_DELAY (0xf << BP_GPMI_CTRL1_RDN_DELAY) +#define BF_GPMI_CTRL1_RDN_DELAY(v) \ + (((v) << BP_GPMI_CTRL1_RDN_DELAY) & BM_GPMI_CTRL1_RDN_DELAY) + +#define BM_GPMI_CTRL1_DEV_RESET (1 << 3) +#define BV_GPMI_CTRL1_DEV_RESET__ENABLED 0x0 +#define BV_GPMI_CTRL1_DEV_RESET__DISABLED 0x1 + +#define BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY (1 << 2) +#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVELOW 0x0 +#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVEHIGH 0x1 + +#define BM_GPMI_CTRL1_CAMERA_MODE (1 << 1) +#define BV_GPMI_CTRL1_GPMI_MODE__NAND 0x0 +#define BV_GPMI_CTRL1_GPMI_MODE__ATA 0x1 + +#define BM_GPMI_CTRL1_GPMI_MODE (1 << 0) + +#define BM_GPMI_CTRL1_CLEAR_MASK (BM_GPMI_CTRL1_WRN_DLY_SEL | \ + BM_GPMI_CTRL1_DLL_ENABLE | \ + BM_GPMI_CTRL1_RDN_DELAY | \ + BM_GPMI_CTRL1_HALF_PERIOD) + +#define HW_GPMI_TIMING0 0x00000070 + +#define BP_GPMI_TIMING0_ADDRESS_SETUP 16 +#define BM_GPMI_TIMING0_ADDRESS_SETUP (0xff << BP_GPMI_TIMING0_ADDRESS_SETUP) +#define BF_GPMI_TIMING0_ADDRESS_SETUP(v) \ + (((v) << BP_GPMI_TIMING0_ADDRESS_SETUP) & BM_GPMI_TIMING0_ADDRESS_SETUP) + +#define BP_GPMI_TIMING0_DATA_HOLD 8 +#define BM_GPMI_TIMING0_DATA_HOLD (0xff << BP_GPMI_TIMING0_DATA_HOLD) +#define BF_GPMI_TIMING0_DATA_HOLD(v) \ + (((v) << BP_GPMI_TIMING0_DATA_HOLD) & BM_GPMI_TIMING0_DATA_HOLD) + +#define BP_GPMI_TIMING0_DATA_SETUP 0 +#define BM_GPMI_TIMING0_DATA_SETUP (0xff << BP_GPMI_TIMING0_DATA_SETUP) +#define BF_GPMI_TIMING0_DATA_SETUP(v) \ + (((v) << BP_GPMI_TIMING0_DATA_SETUP) & BM_GPMI_TIMING0_DATA_SETUP) + +#define HW_GPMI_TIMING1 0x00000080 +#define BP_GPMI_TIMING1_BUSY_TIMEOUT 16 +#define BM_GPMI_TIMING1_BUSY_TIMEOUT (0xffff << BP_GPMI_TIMING1_BUSY_TIMEOUT) +#define BF_GPMI_TIMING1_BUSY_TIMEOUT(v) \ + (((v) << BP_GPMI_TIMING1_BUSY_TIMEOUT) & BM_GPMI_TIMING1_BUSY_TIMEOUT) + +#define HW_GPMI_TIMING2 0x00000090 +#define HW_GPMI_DATA 0x000000a0 + +/* MX28 uses this to detect READY. */ +#define HW_GPMI_STAT 0x000000b0 +#define MX28_BP_GPMI_STAT_READY_BUSY 24 +#define MX28_BM_GPMI_STAT_READY_BUSY (0xff << MX28_BP_GPMI_STAT_READY_BUSY) +#define MX28_BF_GPMI_STAT_READY_BUSY(v) \ + (((v) << MX28_BP_GPMI_STAT_READY_BUSY) & MX28_BM_GPMI_STAT_READY_BUSY) + +/* MX23 uses this to detect READY. */ +#define HW_GPMI_DEBUG 0x000000c0 +#define MX23_BP_GPMI_DEBUG_READY0 28 +#define MX23_BM_GPMI_DEBUG_READY0 (1 << MX23_BP_GPMI_DEBUG_READY0) +#endif |