diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/net/ethernet/sfc/ptp.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/net/ethernet/sfc/ptp.c')
-rw-r--r-- | drivers/net/ethernet/sfc/ptp.c | 2295 |
1 files changed, 2295 insertions, 0 deletions
diff --git a/drivers/net/ethernet/sfc/ptp.c b/drivers/net/ethernet/sfc/ptp.c new file mode 100644 index 000000000..692c7f132 --- /dev/null +++ b/drivers/net/ethernet/sfc/ptp.c @@ -0,0 +1,2295 @@ +// SPDX-License-Identifier: GPL-2.0-only +/**************************************************************************** + * Driver for Solarflare network controllers and boards + * Copyright 2011-2013 Solarflare Communications Inc. + */ + +/* Theory of operation: + * + * PTP support is assisted by firmware running on the MC, which provides + * the hardware timestamping capabilities. Both transmitted and received + * PTP event packets are queued onto internal queues for subsequent processing; + * this is because the MC operations are relatively long and would block + * block NAPI/interrupt operation. + * + * Receive event processing: + * The event contains the packet's UUID and sequence number, together + * with the hardware timestamp. The PTP receive packet queue is searched + * for this UUID/sequence number and, if found, put on a pending queue. + * Packets not matching are delivered without timestamps (MCDI events will + * always arrive after the actual packet). + * It is important for the operation of the PTP protocol that the ordering + * of packets between the event and general port is maintained. + * + * Work queue processing: + * If work waiting, synchronise host/hardware time + * + * Transmit: send packet through MC, which returns the transmission time + * that is converted to an appropriate timestamp. + * + * Receive: the packet's reception time is converted to an appropriate + * timestamp. + */ +#include <linux/ip.h> +#include <linux/udp.h> +#include <linux/time.h> +#include <linux/ktime.h> +#include <linux/module.h> +#include <linux/pps_kernel.h> +#include <linux/ptp_clock_kernel.h> +#include "net_driver.h" +#include "efx.h" +#include "mcdi.h" +#include "mcdi_pcol.h" +#include "io.h" +#include "farch_regs.h" +#include "tx.h" +#include "nic.h" /* indirectly includes ptp.h */ +#include "efx_channels.h" + +/* Maximum number of events expected to make up a PTP event */ +#define MAX_EVENT_FRAGS 3 + +/* Maximum delay, ms, to begin synchronisation */ +#define MAX_SYNCHRONISE_WAIT_MS 2 + +/* How long, at most, to spend synchronising */ +#define SYNCHRONISE_PERIOD_NS 250000 + +/* How often to update the shared memory time */ +#define SYNCHRONISATION_GRANULARITY_NS 200 + +/* Minimum permitted length of a (corrected) synchronisation time */ +#define DEFAULT_MIN_SYNCHRONISATION_NS 120 + +/* Maximum permitted length of a (corrected) synchronisation time */ +#define MAX_SYNCHRONISATION_NS 1000 + +/* How many (MC) receive events that can be queued */ +#define MAX_RECEIVE_EVENTS 8 + +/* Length of (modified) moving average. */ +#define AVERAGE_LENGTH 16 + +/* How long an unmatched event or packet can be held */ +#define PKT_EVENT_LIFETIME_MS 10 + +/* Offsets into PTP packet for identification. These offsets are from the + * start of the IP header, not the MAC header. Note that neither PTP V1 nor + * PTP V2 permit the use of IPV4 options. + */ +#define PTP_DPORT_OFFSET 22 + +#define PTP_V1_VERSION_LENGTH 2 +#define PTP_V1_VERSION_OFFSET 28 + +#define PTP_V1_UUID_LENGTH 6 +#define PTP_V1_UUID_OFFSET 50 + +#define PTP_V1_SEQUENCE_LENGTH 2 +#define PTP_V1_SEQUENCE_OFFSET 58 + +/* The minimum length of a PTP V1 packet for offsets, etc. to be valid: + * includes IP header. + */ +#define PTP_V1_MIN_LENGTH 64 + +#define PTP_V2_VERSION_LENGTH 1 +#define PTP_V2_VERSION_OFFSET 29 + +#define PTP_V2_UUID_LENGTH 8 +#define PTP_V2_UUID_OFFSET 48 + +/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2), + * the MC only captures the last six bytes of the clock identity. These values + * reflect those, not the ones used in the standard. The standard permits + * mapping of V1 UUIDs to V2 UUIDs with these same values. + */ +#define PTP_V2_MC_UUID_LENGTH 6 +#define PTP_V2_MC_UUID_OFFSET 50 + +#define PTP_V2_SEQUENCE_LENGTH 2 +#define PTP_V2_SEQUENCE_OFFSET 58 + +/* The minimum length of a PTP V2 packet for offsets, etc. to be valid: + * includes IP header. + */ +#define PTP_V2_MIN_LENGTH 63 + +#define PTP_MIN_LENGTH 63 + +#define PTP_RXFILTERS_LEN 5 + +#define PTP_ADDR_IPV4 0xe0000181 /* 224.0.1.129 */ +#define PTP_ADDR_IPV6 {0xff, 0x0e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ + 0, 0x01, 0x81} /* ff0e::181 */ +#define PTP_EVENT_PORT 319 +#define PTP_GENERAL_PORT 320 +#define PTP_ADDR_ETHER {0x01, 0x1b, 0x19, 0, 0, 0} /* 01-1B-19-00-00-00 */ + +/* Annoyingly the format of the version numbers are different between + * versions 1 and 2 so it isn't possible to simply look for 1 or 2. + */ +#define PTP_VERSION_V1 1 + +#define PTP_VERSION_V2 2 +#define PTP_VERSION_V2_MASK 0x0f + +enum ptp_packet_state { + PTP_PACKET_STATE_UNMATCHED = 0, + PTP_PACKET_STATE_MATCHED, + PTP_PACKET_STATE_TIMED_OUT, + PTP_PACKET_STATE_MATCH_UNWANTED +}; + +/* NIC synchronised with single word of time only comprising + * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds. + */ +#define MC_NANOSECOND_BITS 30 +#define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1) +#define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1) + +/* Maximum parts-per-billion adjustment that is acceptable */ +#define MAX_PPB 1000000 + +/* Precalculate scale word to avoid long long division at runtime */ +/* This is equivalent to 2^66 / 10^9. */ +#define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL) + +/* How much to shift down after scaling to convert to FP40 */ +#define PPB_SHIFT_FP40 26 +/* ... and FP44. */ +#define PPB_SHIFT_FP44 22 + +#define PTP_SYNC_ATTEMPTS 4 + +/** + * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area. + * @words: UUID and (partial) sequence number + * @expiry: Time after which the packet should be delivered irrespective of + * event arrival. + * @state: The state of the packet - whether it is ready for processing or + * whether that is of no interest. + */ +struct efx_ptp_match { + u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)]; + unsigned long expiry; + enum ptp_packet_state state; +}; + +/** + * struct efx_ptp_event_rx - A PTP receive event (from MC) + * @link: list of events + * @seq0: First part of (PTP) UUID + * @seq1: Second part of (PTP) UUID and sequence number + * @hwtimestamp: Event timestamp + * @expiry: Time which the packet arrived + */ +struct efx_ptp_event_rx { + struct list_head link; + u32 seq0; + u32 seq1; + ktime_t hwtimestamp; + unsigned long expiry; +}; + +/** + * struct efx_ptp_timeset - Synchronisation between host and MC + * @host_start: Host time immediately before hardware timestamp taken + * @major: Hardware timestamp, major + * @minor: Hardware timestamp, minor + * @host_end: Host time immediately after hardware timestamp taken + * @wait: Number of NIC clock ticks between hardware timestamp being read and + * host end time being seen + * @window: Difference of host_end and host_start + * @valid: Whether this timeset is valid + */ +struct efx_ptp_timeset { + u32 host_start; + u32 major; + u32 minor; + u32 host_end; + u32 wait; + u32 window; /* Derived: end - start, allowing for wrap */ +}; + +/** + * struct efx_ptp_data - Precision Time Protocol (PTP) state + * @efx: The NIC context + * @channel: The PTP channel (Siena only) + * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are + * separate events) + * @rxq: Receive SKB queue (awaiting timestamps) + * @txq: Transmit SKB queue + * @evt_list: List of MC receive events awaiting packets + * @evt_free_list: List of free events + * @evt_lock: Lock for manipulating evt_list and evt_free_list + * @rx_evts: Instantiated events (on evt_list and evt_free_list) + * @workwq: Work queue for processing pending PTP operations + * @work: Work task + * @reset_required: A serious error has occurred and the PTP task needs to be + * reset (disable, enable). + * @rxfilters: Receive filters when operating + * @rxfilters_count: Num of installed rxfilters, should be == PTP_RXFILTERS_LEN + * @config: Current timestamp configuration + * @enabled: PTP operation enabled + * @mode: Mode in which PTP operating (PTP version) + * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time + * @nic_to_kernel_time: Function to convert from NIC to kernel time + * @nic_time: contains time details + * @nic_time.minor_max: Wrap point for NIC minor times + * @nic_time.sync_event_diff_min: Minimum acceptable difference between time + * in packet prefix and last MCDI time sync event i.e. how much earlier than + * the last sync event time a packet timestamp can be. + * @nic_time.sync_event_diff_max: Maximum acceptable difference between time + * in packet prefix and last MCDI time sync event i.e. how much later than + * the last sync event time a packet timestamp can be. + * @nic_time.sync_event_minor_shift: Shift required to make minor time from + * field in MCDI time sync event. + * @min_synchronisation_ns: Minimum acceptable corrected sync window + * @capabilities: Capabilities flags from the NIC + * @ts_corrections: contains corrections details + * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit + * timestamps + * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive + * timestamps + * @ts_corrections.pps_out: PPS output error (information only) + * @ts_corrections.pps_in: Required driver correction of PPS input timestamps + * @ts_corrections.general_tx: Required driver correction of general packet + * transmit timestamps + * @ts_corrections.general_rx: Required driver correction of general packet + * receive timestamps + * @evt_frags: Partly assembled PTP events + * @evt_frag_idx: Current fragment number + * @evt_code: Last event code + * @start: Address at which MC indicates ready for synchronisation + * @host_time_pps: Host time at last PPS + * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion + * frequency adjustment into a fixed point fractional nanosecond format. + * @current_adjfreq: Current ppb adjustment. + * @phc_clock: Pointer to registered phc device (if primary function) + * @phc_clock_info: Registration structure for phc device + * @pps_work: pps work task for handling pps events + * @pps_workwq: pps work queue + * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled + * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids + * allocations in main data path). + * @good_syncs: Number of successful synchronisations. + * @fast_syncs: Number of synchronisations requiring short delay + * @bad_syncs: Number of failed synchronisations. + * @sync_timeouts: Number of synchronisation timeouts + * @no_time_syncs: Number of synchronisations with no good times. + * @invalid_sync_windows: Number of sync windows with bad durations. + * @undersize_sync_windows: Number of corrected sync windows that are too small + * @oversize_sync_windows: Number of corrected sync windows that are too large + * @rx_no_timestamp: Number of packets received without a timestamp. + * @timeset: Last set of synchronisation statistics. + * @xmit_skb: Transmit SKB function. + */ +struct efx_ptp_data { + struct efx_nic *efx; + struct efx_channel *channel; + bool rx_ts_inline; + struct sk_buff_head rxq; + struct sk_buff_head txq; + struct list_head evt_list; + struct list_head evt_free_list; + spinlock_t evt_lock; + struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS]; + struct workqueue_struct *workwq; + struct work_struct work; + bool reset_required; + u32 rxfilters[PTP_RXFILTERS_LEN]; + size_t rxfilters_count; + struct hwtstamp_config config; + bool enabled; + unsigned int mode; + void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor); + ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor, + s32 correction); + struct { + u32 minor_max; + u32 sync_event_diff_min; + u32 sync_event_diff_max; + unsigned int sync_event_minor_shift; + } nic_time; + unsigned int min_synchronisation_ns; + unsigned int capabilities; + struct { + s32 ptp_tx; + s32 ptp_rx; + s32 pps_out; + s32 pps_in; + s32 general_tx; + s32 general_rx; + } ts_corrections; + efx_qword_t evt_frags[MAX_EVENT_FRAGS]; + int evt_frag_idx; + int evt_code; + struct efx_buffer start; + struct pps_event_time host_time_pps; + unsigned int adjfreq_ppb_shift; + s64 current_adjfreq; + struct ptp_clock *phc_clock; + struct ptp_clock_info phc_clock_info; + struct work_struct pps_work; + struct workqueue_struct *pps_workwq; + bool nic_ts_enabled; + efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)]; + + unsigned int good_syncs; + unsigned int fast_syncs; + unsigned int bad_syncs; + unsigned int sync_timeouts; + unsigned int no_time_syncs; + unsigned int invalid_sync_windows; + unsigned int undersize_sync_windows; + unsigned int oversize_sync_windows; + unsigned int rx_no_timestamp; + struct efx_ptp_timeset + timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM]; + void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb); +}; + +static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta); +static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta); +static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts); +static int efx_phc_settime(struct ptp_clock_info *ptp, + const struct timespec64 *e_ts); +static int efx_phc_enable(struct ptp_clock_info *ptp, + struct ptp_clock_request *request, int on); + +bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx) +{ + return efx_has_cap(efx, TX_MAC_TIMESTAMPING); +} + +/* PTP 'extra' channel is still a traffic channel, but we only create TX queues + * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit. + */ +static bool efx_ptp_want_txqs(struct efx_channel *channel) +{ + return efx_ptp_use_mac_tx_timestamps(channel->efx); +} + +#define PTP_SW_STAT(ext_name, field_name) \ + { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) } +#define PTP_MC_STAT(ext_name, mcdi_name) \ + { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST } +static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = { + PTP_SW_STAT(ptp_good_syncs, good_syncs), + PTP_SW_STAT(ptp_fast_syncs, fast_syncs), + PTP_SW_STAT(ptp_bad_syncs, bad_syncs), + PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts), + PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs), + PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows), + PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows), + PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows), + PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp), + PTP_MC_STAT(ptp_tx_timestamp_packets, TX), + PTP_MC_STAT(ptp_rx_timestamp_packets, RX), + PTP_MC_STAT(ptp_timestamp_packets, TS), + PTP_MC_STAT(ptp_filter_matches, FM), + PTP_MC_STAT(ptp_non_filter_matches, NFM), +}; +#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc) +static const unsigned long efx_ptp_stat_mask[] = { + [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL, +}; + +size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings) +{ + if (!efx->ptp_data) + return 0; + + return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, + efx_ptp_stat_mask, strings); +} + +size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats) +{ + MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN); + MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN); + size_t i; + int rc; + + if (!efx->ptp_data) + return 0; + + /* Copy software statistics */ + for (i = 0; i < PTP_STAT_COUNT; i++) { + if (efx_ptp_stat_desc[i].dma_width) + continue; + stats[i] = *(unsigned int *)((char *)efx->ptp_data + + efx_ptp_stat_desc[i].offset); + } + + /* Fetch MC statistics. We *must* fill in all statistics or + * risk leaking kernel memory to userland, so if the MCDI + * request fails we pretend we got zeroes. + */ + MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS); + MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); + rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), + outbuf, sizeof(outbuf), NULL); + if (rc) + memset(outbuf, 0, sizeof(outbuf)); + efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, + efx_ptp_stat_mask, + stats, _MCDI_PTR(outbuf, 0), false); + + return PTP_STAT_COUNT; +} + +/* For Siena platforms NIC time is s and ns */ +static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor) +{ + struct timespec64 ts = ns_to_timespec64(ns); + *nic_major = (u32)ts.tv_sec; + *nic_minor = ts.tv_nsec; +} + +static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor, + s32 correction) +{ + ktime_t kt = ktime_set(nic_major, nic_minor); + if (correction >= 0) + kt = ktime_add_ns(kt, (u64)correction); + else + kt = ktime_sub_ns(kt, (u64)-correction); + return kt; +} + +/* To convert from s27 format to ns we multiply then divide by a power of 2. + * For the conversion from ns to s27, the operation is also converted to a + * multiply and shift. + */ +#define S27_TO_NS_SHIFT (27) +#define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC) +#define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT) +#define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT) + +/* For Huntington platforms NIC time is in seconds and fractions of a second + * where the minor register only uses 27 bits in units of 2^-27s. + */ +static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor) +{ + struct timespec64 ts = ns_to_timespec64(ns); + u32 maj = (u32)ts.tv_sec; + u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT + + (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT); + + /* The conversion can result in the minor value exceeding the maximum. + * In this case, round up to the next second. + */ + if (min >= S27_MINOR_MAX) { + min -= S27_MINOR_MAX; + maj++; + } + + *nic_major = maj; + *nic_minor = min; +} + +static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor) +{ + u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC + + (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT); + return ktime_set(nic_major, ns); +} + +static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor, + s32 correction) +{ + /* Apply the correction and deal with carry */ + nic_minor += correction; + if ((s32)nic_minor < 0) { + nic_minor += S27_MINOR_MAX; + nic_major--; + } else if (nic_minor >= S27_MINOR_MAX) { + nic_minor -= S27_MINOR_MAX; + nic_major++; + } + + return efx_ptp_s27_to_ktime(nic_major, nic_minor); +} + +/* For Medford2 platforms the time is in seconds and quarter nanoseconds. */ +static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor) +{ + struct timespec64 ts = ns_to_timespec64(ns); + + *nic_major = (u32)ts.tv_sec; + *nic_minor = ts.tv_nsec * 4; +} + +static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor, + s32 correction) +{ + ktime_t kt; + + nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4); + correction = DIV_ROUND_CLOSEST(correction, 4); + + kt = ktime_set(nic_major, nic_minor); + + if (correction >= 0) + kt = ktime_add_ns(kt, (u64)correction); + else + kt = ktime_sub_ns(kt, (u64)-correction); + return kt; +} + +struct efx_channel *efx_ptp_channel(struct efx_nic *efx) +{ + return efx->ptp_data ? efx->ptp_data->channel : NULL; +} + +void efx_ptp_update_channel(struct efx_nic *efx, struct efx_channel *channel) +{ + if (efx->ptp_data) + efx->ptp_data->channel = channel; +} + +static u32 last_sync_timestamp_major(struct efx_nic *efx) +{ + struct efx_channel *channel = efx_ptp_channel(efx); + u32 major = 0; + + if (channel) + major = channel->sync_timestamp_major; + return major; +} + +/* The 8000 series and later can provide the time from the MAC, which is only + * 48 bits long and provides meta-information in the top 2 bits. + */ +static ktime_t +efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx, + struct efx_ptp_data *ptp, + u32 nic_major, u32 nic_minor, + s32 correction) +{ + u32 sync_timestamp; + ktime_t kt = { 0 }; + s16 delta; + + if (!(nic_major & 0x80000000)) { + WARN_ON_ONCE(nic_major >> 16); + + /* Medford provides 48 bits of timestamp, so we must get the top + * 16 bits from the timesync event state. + * + * We only have the lower 16 bits of the time now, but we do + * have a full resolution timestamp at some point in past. As + * long as the difference between the (real) now and the sync + * is less than 2^15, then we can reconstruct the difference + * between those two numbers using only the lower 16 bits of + * each. + * + * Put another way + * + * a - b = ((a mod k) - b) mod k + * + * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know + * (a mod k) and b, so can calculate the delta, a - b. + * + */ + sync_timestamp = last_sync_timestamp_major(efx); + + /* Because delta is s16 this does an implicit mask down to + * 16 bits which is what we need, assuming + * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that + * we can deal with the (unlikely) case of sync timestamps + * arriving from the future. + */ + delta = nic_major - sync_timestamp; + + /* Recover the fully specified time now, by applying the offset + * to the (fully specified) sync time. + */ + nic_major = sync_timestamp + delta; + + kt = ptp->nic_to_kernel_time(nic_major, nic_minor, + correction); + } + return kt; +} + +ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue) +{ + struct efx_nic *efx = tx_queue->efx; + struct efx_ptp_data *ptp = efx->ptp_data; + ktime_t kt; + + if (efx_ptp_use_mac_tx_timestamps(efx)) + kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp, + tx_queue->completed_timestamp_major, + tx_queue->completed_timestamp_minor, + ptp->ts_corrections.general_tx); + else + kt = ptp->nic_to_kernel_time( + tx_queue->completed_timestamp_major, + tx_queue->completed_timestamp_minor, + ptp->ts_corrections.general_tx); + return kt; +} + +/* Get PTP attributes and set up time conversions */ +static int efx_ptp_get_attributes(struct efx_nic *efx) +{ + MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN); + MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN); + struct efx_ptp_data *ptp = efx->ptp_data; + int rc; + u32 fmt; + size_t out_len; + + /* Get the PTP attributes. If the NIC doesn't support the operation we + * use the default format for compatibility with older NICs i.e. + * seconds and nanoseconds. + */ + MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES); + MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); + rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), + outbuf, sizeof(outbuf), &out_len); + if (rc == 0) { + fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT); + } else if (rc == -EINVAL) { + fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS; + } else if (rc == -EPERM) { + pci_info(efx->pci_dev, "no PTP support\n"); + return rc; + } else { + efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), + outbuf, sizeof(outbuf), rc); + return rc; + } + + switch (fmt) { + case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION: + ptp->ns_to_nic_time = efx_ptp_ns_to_s27; + ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction; + ptp->nic_time.minor_max = 1 << 27; + ptp->nic_time.sync_event_minor_shift = 19; + break; + case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS: + ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns; + ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction; + ptp->nic_time.minor_max = 1000000000; + ptp->nic_time.sync_event_minor_shift = 22; + break; + case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS: + ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns; + ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction; + ptp->nic_time.minor_max = 4000000000UL; + ptp->nic_time.sync_event_minor_shift = 24; + break; + default: + return -ERANGE; + } + + /* Precalculate acceptable difference between the minor time in the + * packet prefix and the last MCDI time sync event. We expect the + * packet prefix timestamp to be after of sync event by up to one + * sync event interval (0.25s) but we allow it to exceed this by a + * fuzz factor of (0.1s) + */ + ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max + - (ptp->nic_time.minor_max / 10); + ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4) + + (ptp->nic_time.minor_max / 10); + + /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older + * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return + * a value to use for the minimum acceptable corrected synchronization + * window and may return further capabilities. + * If we have the extra information store it. For older firmware that + * does not implement the extended command use the default value. + */ + if (rc == 0 && + out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST) + ptp->min_synchronisation_ns = + MCDI_DWORD(outbuf, + PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN); + else + ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS; + + if (rc == 0 && + out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN) + ptp->capabilities = MCDI_DWORD(outbuf, + PTP_OUT_GET_ATTRIBUTES_CAPABILITIES); + else + ptp->capabilities = 0; + + /* Set up the shift for conversion between frequency + * adjustments in parts-per-billion and the fixed-point + * fractional ns format that the adapter uses. + */ + if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN)) + ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44; + else + ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40; + + return 0; +} + +/* Get PTP timestamp corrections */ +static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx) +{ + MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN); + MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN); + int rc; + size_t out_len; + + /* Get the timestamp corrections from the NIC. If this operation is + * not supported (older NICs) then no correction is required. + */ + MCDI_SET_DWORD(inbuf, PTP_IN_OP, + MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS); + MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); + + rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), + outbuf, sizeof(outbuf), &out_len); + if (rc == 0) { + efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf, + PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT); + efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf, + PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE); + efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf, + PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT); + efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf, + PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN); + + if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) { + efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD( + outbuf, + PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX); + efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD( + outbuf, + PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX); + } else { + efx->ptp_data->ts_corrections.general_tx = + efx->ptp_data->ts_corrections.ptp_tx; + efx->ptp_data->ts_corrections.general_rx = + efx->ptp_data->ts_corrections.ptp_rx; + } + } else if (rc == -EINVAL) { + efx->ptp_data->ts_corrections.ptp_tx = 0; + efx->ptp_data->ts_corrections.ptp_rx = 0; + efx->ptp_data->ts_corrections.pps_out = 0; + efx->ptp_data->ts_corrections.pps_in = 0; + efx->ptp_data->ts_corrections.general_tx = 0; + efx->ptp_data->ts_corrections.general_rx = 0; + } else { + efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf, + sizeof(outbuf), rc); + return rc; + } + + return 0; +} + +/* Enable MCDI PTP support. */ +static int efx_ptp_enable(struct efx_nic *efx) +{ + MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN); + MCDI_DECLARE_BUF_ERR(outbuf); + int rc; + + MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE); + MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); + MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE, + efx->ptp_data->channel ? + efx->ptp_data->channel->channel : 0); + MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode); + + rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), + outbuf, sizeof(outbuf), NULL); + rc = (rc == -EALREADY) ? 0 : rc; + if (rc) + efx_mcdi_display_error(efx, MC_CMD_PTP, + MC_CMD_PTP_IN_ENABLE_LEN, + outbuf, sizeof(outbuf), rc); + return rc; +} + +/* Disable MCDI PTP support. + * + * Note that this function should never rely on the presence of ptp_data - + * may be called before that exists. + */ +static int efx_ptp_disable(struct efx_nic *efx) +{ + MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN); + MCDI_DECLARE_BUF_ERR(outbuf); + int rc; + + MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE); + MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); + rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), + outbuf, sizeof(outbuf), NULL); + rc = (rc == -EALREADY) ? 0 : rc; + /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function + * should only have been called during probe. + */ + if (rc == -ENOSYS || rc == -EPERM) + pci_info(efx->pci_dev, "no PTP support\n"); + else if (rc) + efx_mcdi_display_error(efx, MC_CMD_PTP, + MC_CMD_PTP_IN_DISABLE_LEN, + outbuf, sizeof(outbuf), rc); + return rc; +} + +static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q) +{ + struct sk_buff *skb; + + while ((skb = skb_dequeue(q))) { + local_bh_disable(); + netif_receive_skb(skb); + local_bh_enable(); + } +} + +static void efx_ptp_handle_no_channel(struct efx_nic *efx) +{ + netif_err(efx, drv, efx->net_dev, + "ERROR: PTP requires MSI-X and 1 additional interrupt" + "vector. PTP disabled\n"); +} + +/* Repeatedly send the host time to the MC which will capture the hardware + * time. + */ +static void efx_ptp_send_times(struct efx_nic *efx, + struct pps_event_time *last_time) +{ + struct pps_event_time now; + struct timespec64 limit; + struct efx_ptp_data *ptp = efx->ptp_data; + int *mc_running = ptp->start.addr; + + pps_get_ts(&now); + limit = now.ts_real; + timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS); + + /* Write host time for specified period or until MC is done */ + while ((timespec64_compare(&now.ts_real, &limit) < 0) && + READ_ONCE(*mc_running)) { + struct timespec64 update_time; + unsigned int host_time; + + /* Don't update continuously to avoid saturating the PCIe bus */ + update_time = now.ts_real; + timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS); + do { + pps_get_ts(&now); + } while ((timespec64_compare(&now.ts_real, &update_time) < 0) && + READ_ONCE(*mc_running)); + + /* Synchronise NIC with single word of time only */ + host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS | + now.ts_real.tv_nsec); + /* Update host time in NIC memory */ + efx->type->ptp_write_host_time(efx, host_time); + } + *last_time = now; +} + +/* Read a timeset from the MC's results and partial process. */ +static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data), + struct efx_ptp_timeset *timeset) +{ + unsigned start_ns, end_ns; + + timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART); + timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR); + timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR); + timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND), + timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS); + + /* Ignore seconds */ + start_ns = timeset->host_start & MC_NANOSECOND_MASK; + end_ns = timeset->host_end & MC_NANOSECOND_MASK; + /* Allow for rollover */ + if (end_ns < start_ns) + end_ns += NSEC_PER_SEC; + /* Determine duration of operation */ + timeset->window = end_ns - start_ns; +} + +/* Process times received from MC. + * + * Extract times from returned results, and establish the minimum value + * seen. The minimum value represents the "best" possible time and events + * too much greater than this are rejected - the machine is, perhaps, too + * busy. A number of readings are taken so that, hopefully, at least one good + * synchronisation will be seen in the results. + */ +static int +efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf), + size_t response_length, + const struct pps_event_time *last_time) +{ + unsigned number_readings = + MCDI_VAR_ARRAY_LEN(response_length, + PTP_OUT_SYNCHRONIZE_TIMESET); + unsigned i; + unsigned ngood = 0; + unsigned last_good = 0; + struct efx_ptp_data *ptp = efx->ptp_data; + u32 last_sec; + u32 start_sec; + struct timespec64 delta; + ktime_t mc_time; + + if (number_readings == 0) + return -EAGAIN; + + /* Read the set of results and find the last good host-MC + * synchronization result. The MC times when it finishes reading the + * host time so the corrected window time should be fairly constant + * for a given platform. Increment stats for any results that appear + * to be erroneous. + */ + for (i = 0; i < number_readings; i++) { + s32 window, corrected; + struct timespec64 wait; + + efx_ptp_read_timeset( + MCDI_ARRAY_STRUCT_PTR(synch_buf, + PTP_OUT_SYNCHRONIZE_TIMESET, i), + &ptp->timeset[i]); + + wait = ktime_to_timespec64( + ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0)); + window = ptp->timeset[i].window; + corrected = window - wait.tv_nsec; + + /* We expect the uncorrected synchronization window to be at + * least as large as the interval between host start and end + * times. If it is smaller than this then this is mostly likely + * to be a consequence of the host's time being adjusted. + * Check that the corrected sync window is in a reasonable + * range. If it is out of range it is likely to be because an + * interrupt or other delay occurred between reading the system + * time and writing it to MC memory. + */ + if (window < SYNCHRONISATION_GRANULARITY_NS) { + ++ptp->invalid_sync_windows; + } else if (corrected >= MAX_SYNCHRONISATION_NS) { + ++ptp->oversize_sync_windows; + } else if (corrected < ptp->min_synchronisation_ns) { + ++ptp->undersize_sync_windows; + } else { + ngood++; + last_good = i; + } + } + + if (ngood == 0) { + netif_warn(efx, drv, efx->net_dev, + "PTP no suitable synchronisations\n"); + return -EAGAIN; + } + + /* Calculate delay from last good sync (host time) to last_time. + * It is possible that the seconds rolled over between taking + * the start reading and the last value written by the host. The + * timescales are such that a gap of more than one second is never + * expected. delta is *not* normalised. + */ + start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS; + last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK; + if (start_sec != last_sec && + ((start_sec + 1) & MC_SECOND_MASK) != last_sec) { + netif_warn(efx, hw, efx->net_dev, + "PTP bad synchronisation seconds\n"); + return -EAGAIN; + } + delta.tv_sec = (last_sec - start_sec) & 1; + delta.tv_nsec = + last_time->ts_real.tv_nsec - + (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK); + + /* Convert the NIC time at last good sync into kernel time. + * No correction is required - this time is the output of a + * firmware process. + */ + mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major, + ptp->timeset[last_good].minor, 0); + + /* Calculate delay from NIC top of second to last_time */ + delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec; + + /* Set PPS timestamp to match NIC top of second */ + ptp->host_time_pps = *last_time; + pps_sub_ts(&ptp->host_time_pps, delta); + + return 0; +} + +/* Synchronize times between the host and the MC */ +static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings) +{ + struct efx_ptp_data *ptp = efx->ptp_data; + MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX); + size_t response_length; + int rc; + unsigned long timeout; + struct pps_event_time last_time = {}; + unsigned int loops = 0; + int *start = ptp->start.addr; + + MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE); + MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0); + MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS, + num_readings); + MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR, + ptp->start.dma_addr); + + /* Clear flag that signals MC ready */ + WRITE_ONCE(*start, 0); + rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf, + MC_CMD_PTP_IN_SYNCHRONIZE_LEN); + EFX_WARN_ON_ONCE_PARANOID(rc); + + /* Wait for start from MCDI (or timeout) */ + timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS); + while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) { + udelay(20); /* Usually start MCDI execution quickly */ + loops++; + } + + if (loops <= 1) + ++ptp->fast_syncs; + if (!time_before(jiffies, timeout)) + ++ptp->sync_timeouts; + + if (READ_ONCE(*start)) + efx_ptp_send_times(efx, &last_time); + + /* Collect results */ + rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP, + MC_CMD_PTP_IN_SYNCHRONIZE_LEN, + synch_buf, sizeof(synch_buf), + &response_length); + if (rc == 0) { + rc = efx_ptp_process_times(efx, synch_buf, response_length, + &last_time); + if (rc == 0) + ++ptp->good_syncs; + else + ++ptp->no_time_syncs; + } + + /* Increment the bad syncs counter if the synchronize fails, whatever + * the reason. + */ + if (rc != 0) + ++ptp->bad_syncs; + + return rc; +} + +/* Transmit a PTP packet via the dedicated hardware timestamped queue. */ +static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb) +{ + struct efx_ptp_data *ptp_data = efx->ptp_data; + u8 type = efx_tx_csum_type_skb(skb); + struct efx_tx_queue *tx_queue; + + tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type); + if (tx_queue && tx_queue->timestamping) { + /* This code invokes normal driver TX code which is always + * protected from softirqs when called from generic TX code, + * which in turn disables preemption. Look at __dev_queue_xmit + * which uses rcu_read_lock_bh disabling preemption for RCU + * plus disabling softirqs. We do not need RCU reader + * protection here. + * + * Although it is theoretically safe for current PTP TX/RX code + * running without disabling softirqs, there are three good + * reasond for doing so: + * + * 1) The code invoked is mainly implemented for non-PTP + * packets and it is always executed with softirqs + * disabled. + * 2) This being a single PTP packet, better to not + * interrupt its processing by softirqs which can lead + * to high latencies. + * 3) netdev_xmit_more checks preemption is disabled and + * triggers a BUG_ON if not. + */ + local_bh_disable(); + efx_enqueue_skb(tx_queue, skb); + local_bh_enable(); + } else { + WARN_ONCE(1, "PTP channel has no timestamped tx queue\n"); + dev_kfree_skb_any(skb); + } +} + +/* Transmit a PTP packet, via the MCDI interface, to the wire. */ +static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb) +{ + struct efx_ptp_data *ptp_data = efx->ptp_data; + struct skb_shared_hwtstamps timestamps; + int rc = -EIO; + MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN); + size_t len; + + MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT); + MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0); + MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len); + if (skb_shinfo(skb)->nr_frags != 0) { + rc = skb_linearize(skb); + if (rc != 0) + goto fail; + } + + if (skb->ip_summed == CHECKSUM_PARTIAL) { + rc = skb_checksum_help(skb); + if (rc != 0) + goto fail; + } + skb_copy_from_linear_data(skb, + MCDI_PTR(ptp_data->txbuf, + PTP_IN_TRANSMIT_PACKET), + skb->len); + rc = efx_mcdi_rpc(efx, MC_CMD_PTP, + ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), + txtime, sizeof(txtime), &len); + if (rc != 0) + goto fail; + + memset(×tamps, 0, sizeof(timestamps)); + timestamps.hwtstamp = ptp_data->nic_to_kernel_time( + MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR), + MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR), + ptp_data->ts_corrections.ptp_tx); + + skb_tstamp_tx(skb, ×tamps); + + rc = 0; + +fail: + dev_kfree_skb_any(skb); + + return; +} + +static void efx_ptp_drop_time_expired_events(struct efx_nic *efx) +{ + struct efx_ptp_data *ptp = efx->ptp_data; + struct list_head *cursor; + struct list_head *next; + + if (ptp->rx_ts_inline) + return; + + /* Drop time-expired events */ + spin_lock_bh(&ptp->evt_lock); + list_for_each_safe(cursor, next, &ptp->evt_list) { + struct efx_ptp_event_rx *evt; + + evt = list_entry(cursor, struct efx_ptp_event_rx, + link); + if (time_after(jiffies, evt->expiry)) { + list_move(&evt->link, &ptp->evt_free_list); + netif_warn(efx, hw, efx->net_dev, + "PTP rx event dropped\n"); + } + } + spin_unlock_bh(&ptp->evt_lock); +} + +static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx, + struct sk_buff *skb) +{ + struct efx_ptp_data *ptp = efx->ptp_data; + bool evts_waiting; + struct list_head *cursor; + struct list_head *next; + struct efx_ptp_match *match; + enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED; + + WARN_ON_ONCE(ptp->rx_ts_inline); + + spin_lock_bh(&ptp->evt_lock); + evts_waiting = !list_empty(&ptp->evt_list); + spin_unlock_bh(&ptp->evt_lock); + + if (!evts_waiting) + return PTP_PACKET_STATE_UNMATCHED; + + match = (struct efx_ptp_match *)skb->cb; + /* Look for a matching timestamp in the event queue */ + spin_lock_bh(&ptp->evt_lock); + list_for_each_safe(cursor, next, &ptp->evt_list) { + struct efx_ptp_event_rx *evt; + + evt = list_entry(cursor, struct efx_ptp_event_rx, link); + if ((evt->seq0 == match->words[0]) && + (evt->seq1 == match->words[1])) { + struct skb_shared_hwtstamps *timestamps; + + /* Match - add in hardware timestamp */ + timestamps = skb_hwtstamps(skb); + timestamps->hwtstamp = evt->hwtimestamp; + + match->state = PTP_PACKET_STATE_MATCHED; + rc = PTP_PACKET_STATE_MATCHED; + list_move(&evt->link, &ptp->evt_free_list); + break; + } + } + spin_unlock_bh(&ptp->evt_lock); + + return rc; +} + +/* Process any queued receive events and corresponding packets + * + * q is returned with all the packets that are ready for delivery. + */ +static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q) +{ + struct efx_ptp_data *ptp = efx->ptp_data; + struct sk_buff *skb; + + while ((skb = skb_dequeue(&ptp->rxq))) { + struct efx_ptp_match *match; + + match = (struct efx_ptp_match *)skb->cb; + if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) { + __skb_queue_tail(q, skb); + } else if (efx_ptp_match_rx(efx, skb) == + PTP_PACKET_STATE_MATCHED) { + __skb_queue_tail(q, skb); + } else if (time_after(jiffies, match->expiry)) { + match->state = PTP_PACKET_STATE_TIMED_OUT; + ++ptp->rx_no_timestamp; + __skb_queue_tail(q, skb); + } else { + /* Replace unprocessed entry and stop */ + skb_queue_head(&ptp->rxq, skb); + break; + } + } +} + +/* Complete processing of a received packet */ +static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb) +{ + local_bh_disable(); + netif_receive_skb(skb); + local_bh_enable(); +} + +static void efx_ptp_remove_multicast_filters(struct efx_nic *efx) +{ + struct efx_ptp_data *ptp = efx->ptp_data; + + while (ptp->rxfilters_count) { + ptp->rxfilters_count--; + efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, + ptp->rxfilters[ptp->rxfilters_count]); + } +} + +static void efx_ptp_init_filter(struct efx_nic *efx, + struct efx_filter_spec *rxfilter) +{ + struct efx_channel *channel = efx->ptp_data->channel; + struct efx_rx_queue *queue = efx_channel_get_rx_queue(channel); + + efx_filter_init_rx(rxfilter, EFX_FILTER_PRI_REQUIRED, 0, + efx_rx_queue_index(queue)); +} + +static int efx_ptp_insert_filter(struct efx_nic *efx, + struct efx_filter_spec *rxfilter) +{ + struct efx_ptp_data *ptp = efx->ptp_data; + + int rc = efx_filter_insert_filter(efx, rxfilter, true); + if (rc < 0) + return rc; + ptp->rxfilters[ptp->rxfilters_count] = rc; + ptp->rxfilters_count++; + return 0; +} + +static int efx_ptp_insert_ipv4_filter(struct efx_nic *efx, u16 port) +{ + struct efx_filter_spec rxfilter; + + efx_ptp_init_filter(efx, &rxfilter); + efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP, htonl(PTP_ADDR_IPV4), + htons(port)); + return efx_ptp_insert_filter(efx, &rxfilter); +} + +static int efx_ptp_insert_ipv6_filter(struct efx_nic *efx, u16 port) +{ + const struct in6_addr addr = {{PTP_ADDR_IPV6}}; + struct efx_filter_spec rxfilter; + + efx_ptp_init_filter(efx, &rxfilter); + efx_filter_set_ipv6_local(&rxfilter, IPPROTO_UDP, &addr, htons(port)); + return efx_ptp_insert_filter(efx, &rxfilter); +} + +static int efx_ptp_insert_eth_filter(struct efx_nic *efx) +{ + const u8 addr[ETH_ALEN] = PTP_ADDR_ETHER; + struct efx_filter_spec rxfilter; + + efx_ptp_init_filter(efx, &rxfilter); + efx_filter_set_eth_local(&rxfilter, EFX_FILTER_VID_UNSPEC, addr); + rxfilter.match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; + rxfilter.ether_type = htons(ETH_P_1588); + return efx_ptp_insert_filter(efx, &rxfilter); +} + +static int efx_ptp_insert_multicast_filters(struct efx_nic *efx) +{ + struct efx_ptp_data *ptp = efx->ptp_data; + int rc; + + if (!ptp->channel || ptp->rxfilters_count) + return 0; + + /* Must filter on both event and general ports to ensure + * that there is no packet re-ordering. + */ + rc = efx_ptp_insert_ipv4_filter(efx, PTP_EVENT_PORT); + if (rc < 0) + goto fail; + + rc = efx_ptp_insert_ipv4_filter(efx, PTP_GENERAL_PORT); + if (rc < 0) + goto fail; + + /* if the NIC supports hw timestamps by the MAC, we can support + * PTP over IPv6 and Ethernet + */ + if (efx_ptp_use_mac_tx_timestamps(efx)) { + rc = efx_ptp_insert_ipv6_filter(efx, PTP_EVENT_PORT); + if (rc < 0) + goto fail; + + rc = efx_ptp_insert_ipv6_filter(efx, PTP_GENERAL_PORT); + if (rc < 0) + goto fail; + + rc = efx_ptp_insert_eth_filter(efx); + /* Not all firmware variants support this filter */ + if (rc < 0 && rc != -EPROTONOSUPPORT) + goto fail; + } + + return 0; + +fail: + efx_ptp_remove_multicast_filters(efx); + return rc; +} + +static int efx_ptp_start(struct efx_nic *efx) +{ + struct efx_ptp_data *ptp = efx->ptp_data; + int rc; + + ptp->reset_required = false; + + rc = efx_ptp_insert_multicast_filters(efx); + if (rc) + return rc; + + rc = efx_ptp_enable(efx); + if (rc != 0) + goto fail; + + ptp->evt_frag_idx = 0; + ptp->current_adjfreq = 0; + + return 0; + +fail: + efx_ptp_remove_multicast_filters(efx); + return rc; +} + +static int efx_ptp_stop(struct efx_nic *efx) +{ + struct efx_ptp_data *ptp = efx->ptp_data; + struct list_head *cursor; + struct list_head *next; + int rc; + + if (ptp == NULL) + return 0; + + rc = efx_ptp_disable(efx); + + efx_ptp_remove_multicast_filters(efx); + + /* Make sure RX packets are really delivered */ + efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq); + skb_queue_purge(&efx->ptp_data->txq); + + /* Drop any pending receive events */ + spin_lock_bh(&efx->ptp_data->evt_lock); + list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) { + list_move(cursor, &efx->ptp_data->evt_free_list); + } + spin_unlock_bh(&efx->ptp_data->evt_lock); + + return rc; +} + +static int efx_ptp_restart(struct efx_nic *efx) +{ + if (efx->ptp_data && efx->ptp_data->enabled) + return efx_ptp_start(efx); + return 0; +} + +static void efx_ptp_pps_worker(struct work_struct *work) +{ + struct efx_ptp_data *ptp = + container_of(work, struct efx_ptp_data, pps_work); + struct efx_nic *efx = ptp->efx; + struct ptp_clock_event ptp_evt; + + if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS)) + return; + + ptp_evt.type = PTP_CLOCK_PPSUSR; + ptp_evt.pps_times = ptp->host_time_pps; + ptp_clock_event(ptp->phc_clock, &ptp_evt); +} + +static void efx_ptp_worker(struct work_struct *work) +{ + struct efx_ptp_data *ptp_data = + container_of(work, struct efx_ptp_data, work); + struct efx_nic *efx = ptp_data->efx; + struct sk_buff *skb; + struct sk_buff_head tempq; + + if (ptp_data->reset_required) { + efx_ptp_stop(efx); + efx_ptp_start(efx); + return; + } + + efx_ptp_drop_time_expired_events(efx); + + __skb_queue_head_init(&tempq); + efx_ptp_process_events(efx, &tempq); + + while ((skb = skb_dequeue(&ptp_data->txq))) + ptp_data->xmit_skb(efx, skb); + + while ((skb = __skb_dequeue(&tempq))) + efx_ptp_process_rx(efx, skb); +} + +static const struct ptp_clock_info efx_phc_clock_info = { + .owner = THIS_MODULE, + .name = "sfc", + .max_adj = MAX_PPB, + .n_alarm = 0, + .n_ext_ts = 0, + .n_per_out = 0, + .n_pins = 0, + .pps = 1, + .adjfreq = efx_phc_adjfreq, + .adjtime = efx_phc_adjtime, + .gettime64 = efx_phc_gettime, + .settime64 = efx_phc_settime, + .enable = efx_phc_enable, +}; + +/* Initialise PTP state. */ +int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel) +{ + struct efx_ptp_data *ptp; + int rc = 0; + unsigned int pos; + + if (efx->ptp_data) { + efx->ptp_data->channel = channel; + return 0; + } + + ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL); + efx->ptp_data = ptp; + if (!efx->ptp_data) + return -ENOMEM; + + ptp->efx = efx; + ptp->channel = channel; + ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0; + + rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL); + if (rc != 0) + goto fail1; + + skb_queue_head_init(&ptp->rxq); + skb_queue_head_init(&ptp->txq); + ptp->workwq = create_singlethread_workqueue("sfc_ptp"); + if (!ptp->workwq) { + rc = -ENOMEM; + goto fail2; + } + + if (efx_ptp_use_mac_tx_timestamps(efx)) { + ptp->xmit_skb = efx_ptp_xmit_skb_queue; + /* Request sync events on this channel. */ + channel->sync_events_state = SYNC_EVENTS_QUIESCENT; + } else { + ptp->xmit_skb = efx_ptp_xmit_skb_mc; + } + + INIT_WORK(&ptp->work, efx_ptp_worker); + ptp->config.flags = 0; + ptp->config.tx_type = HWTSTAMP_TX_OFF; + ptp->config.rx_filter = HWTSTAMP_FILTER_NONE; + INIT_LIST_HEAD(&ptp->evt_list); + INIT_LIST_HEAD(&ptp->evt_free_list); + spin_lock_init(&ptp->evt_lock); + for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++) + list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list); + + /* Get the NIC PTP attributes and set up time conversions */ + rc = efx_ptp_get_attributes(efx); + if (rc < 0) + goto fail3; + + /* Get the timestamp corrections */ + rc = efx_ptp_get_timestamp_corrections(efx); + if (rc < 0) + goto fail3; + + if (efx->mcdi->fn_flags & + (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) { + ptp->phc_clock_info = efx_phc_clock_info; + ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info, + &efx->pci_dev->dev); + if (IS_ERR(ptp->phc_clock)) { + rc = PTR_ERR(ptp->phc_clock); + goto fail3; + } else if (ptp->phc_clock) { + INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker); + ptp->pps_workwq = create_singlethread_workqueue("sfc_pps"); + if (!ptp->pps_workwq) { + rc = -ENOMEM; + goto fail4; + } + } + } + ptp->nic_ts_enabled = false; + + return 0; +fail4: + ptp_clock_unregister(efx->ptp_data->phc_clock); + +fail3: + destroy_workqueue(efx->ptp_data->workwq); + +fail2: + efx_nic_free_buffer(efx, &ptp->start); + +fail1: + kfree(efx->ptp_data); + efx->ptp_data = NULL; + + return rc; +} + +/* Initialise PTP channel. + * + * Setting core_index to zero causes the queue to be initialised and doesn't + * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue. + */ +static int efx_ptp_probe_channel(struct efx_channel *channel) +{ + struct efx_nic *efx = channel->efx; + int rc; + + channel->irq_moderation_us = 0; + channel->rx_queue.core_index = 0; + + rc = efx_ptp_probe(efx, channel); + /* Failure to probe PTP is not fatal; this channel will just not be + * used for anything. + * In the case of EPERM, efx_ptp_probe will print its own message (in + * efx_ptp_get_attributes()), so we don't need to. + */ + if (rc && rc != -EPERM) + netif_warn(efx, drv, efx->net_dev, + "Failed to probe PTP, rc=%d\n", rc); + return 0; +} + +void efx_ptp_remove(struct efx_nic *efx) +{ + if (!efx->ptp_data) + return; + + (void)efx_ptp_disable(efx); + + cancel_work_sync(&efx->ptp_data->work); + if (efx->ptp_data->pps_workwq) + cancel_work_sync(&efx->ptp_data->pps_work); + + skb_queue_purge(&efx->ptp_data->rxq); + skb_queue_purge(&efx->ptp_data->txq); + + if (efx->ptp_data->phc_clock) { + destroy_workqueue(efx->ptp_data->pps_workwq); + ptp_clock_unregister(efx->ptp_data->phc_clock); + } + + destroy_workqueue(efx->ptp_data->workwq); + + efx_nic_free_buffer(efx, &efx->ptp_data->start); + kfree(efx->ptp_data); + efx->ptp_data = NULL; +} + +static void efx_ptp_remove_channel(struct efx_channel *channel) +{ + efx_ptp_remove(channel->efx); +} + +static void efx_ptp_get_channel_name(struct efx_channel *channel, + char *buf, size_t len) +{ + snprintf(buf, len, "%s-ptp", channel->efx->name); +} + +/* Determine whether this packet should be processed by the PTP module + * or transmitted conventionally. + */ +bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) +{ + return efx->ptp_data && + efx->ptp_data->enabled && + skb->len >= PTP_MIN_LENGTH && + skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM && + likely(skb->protocol == htons(ETH_P_IP)) && + skb_transport_header_was_set(skb) && + skb_network_header_len(skb) >= sizeof(struct iphdr) && + ip_hdr(skb)->protocol == IPPROTO_UDP && + skb_headlen(skb) >= + skb_transport_offset(skb) + sizeof(struct udphdr) && + udp_hdr(skb)->dest == htons(PTP_EVENT_PORT); +} + +/* Receive a PTP packet. Packets are queued until the arrival of + * the receive timestamp from the MC - this will probably occur after the + * packet arrival because of the processing in the MC. + */ +static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb) +{ + struct efx_nic *efx = channel->efx; + struct efx_ptp_data *ptp = efx->ptp_data; + struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb; + u8 *match_data_012, *match_data_345; + unsigned int version; + u8 *data; + + match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); + + /* Correct version? */ + if (ptp->mode == MC_CMD_PTP_MODE_V1) { + if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) { + return false; + } + data = skb->data; + version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]); + if (version != PTP_VERSION_V1) { + return false; + } + + /* PTP V1 uses all six bytes of the UUID to match the packet + * to the timestamp + */ + match_data_012 = data + PTP_V1_UUID_OFFSET; + match_data_345 = data + PTP_V1_UUID_OFFSET + 3; + } else { + if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) { + return false; + } + data = skb->data; + version = data[PTP_V2_VERSION_OFFSET]; + if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) { + return false; + } + + /* The original V2 implementation uses bytes 2-7 of + * the UUID to match the packet to the timestamp. This + * discards two of the bytes of the MAC address used + * to create the UUID (SF bug 33070). The PTP V2 + * enhanced mode fixes this issue and uses bytes 0-2 + * and byte 5-7 of the UUID. + */ + match_data_345 = data + PTP_V2_UUID_OFFSET + 5; + if (ptp->mode == MC_CMD_PTP_MODE_V2) { + match_data_012 = data + PTP_V2_UUID_OFFSET + 2; + } else { + match_data_012 = data + PTP_V2_UUID_OFFSET + 0; + BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED); + } + } + + /* Does this packet require timestamping? */ + if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) { + match->state = PTP_PACKET_STATE_UNMATCHED; + + /* We expect the sequence number to be in the same position in + * the packet for PTP V1 and V2 + */ + BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET); + BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH); + + /* Extract UUID/Sequence information */ + match->words[0] = (match_data_012[0] | + (match_data_012[1] << 8) | + (match_data_012[2] << 16) | + (match_data_345[0] << 24)); + match->words[1] = (match_data_345[1] | + (match_data_345[2] << 8) | + (data[PTP_V1_SEQUENCE_OFFSET + + PTP_V1_SEQUENCE_LENGTH - 1] << + 16)); + } else { + match->state = PTP_PACKET_STATE_MATCH_UNWANTED; + } + + skb_queue_tail(&ptp->rxq, skb); + queue_work(ptp->workwq, &ptp->work); + + return true; +} + +/* Transmit a PTP packet. This has to be transmitted by the MC + * itself, through an MCDI call. MCDI calls aren't permitted + * in the transmit path so defer the actual transmission to a suitable worker. + */ +int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) +{ + struct efx_ptp_data *ptp = efx->ptp_data; + + skb_queue_tail(&ptp->txq, skb); + + if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) && + (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM)) + efx_xmit_hwtstamp_pending(skb); + queue_work(ptp->workwq, &ptp->work); + + return NETDEV_TX_OK; +} + +int efx_ptp_get_mode(struct efx_nic *efx) +{ + return efx->ptp_data->mode; +} + +int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted, + unsigned int new_mode) +{ + if ((enable_wanted != efx->ptp_data->enabled) || + (enable_wanted && (efx->ptp_data->mode != new_mode))) { + int rc = 0; + + if (enable_wanted) { + /* Change of mode requires disable */ + if (efx->ptp_data->enabled && + (efx->ptp_data->mode != new_mode)) { + efx->ptp_data->enabled = false; + rc = efx_ptp_stop(efx); + if (rc != 0) + return rc; + } + + /* Set new operating mode and establish + * baseline synchronisation, which must + * succeed. + */ + efx->ptp_data->mode = new_mode; + if (netif_running(efx->net_dev)) + rc = efx_ptp_start(efx); + if (rc == 0) { + rc = efx_ptp_synchronize(efx, + PTP_SYNC_ATTEMPTS * 2); + if (rc != 0) + efx_ptp_stop(efx); + } + } else { + rc = efx_ptp_stop(efx); + } + + if (rc != 0) + return rc; + + efx->ptp_data->enabled = enable_wanted; + } + + return 0; +} + +static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init) +{ + int rc; + + if ((init->tx_type != HWTSTAMP_TX_OFF) && + (init->tx_type != HWTSTAMP_TX_ON)) + return -ERANGE; + + rc = efx->type->ptp_set_ts_config(efx, init); + if (rc) + return rc; + + efx->ptp_data->config = *init; + return 0; +} + +void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info) +{ + struct efx_ptp_data *ptp = efx->ptp_data; + struct efx_nic *primary = efx->primary; + + ASSERT_RTNL(); + + if (!ptp) + return; + + ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | + SOF_TIMESTAMPING_RX_HARDWARE | + SOF_TIMESTAMPING_RAW_HARDWARE); + /* Check licensed features. If we don't have the license for TX + * timestamps, the NIC will not support them. + */ + if (efx_ptp_use_mac_tx_timestamps(efx)) { + struct efx_ef10_nic_data *nic_data = efx->nic_data; + + if (!(nic_data->licensed_features & + (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) + ts_info->so_timestamping &= + ~SOF_TIMESTAMPING_TX_HARDWARE; + } + if (primary && primary->ptp_data && primary->ptp_data->phc_clock) + ts_info->phc_index = + ptp_clock_index(primary->ptp_data->phc_clock); + ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON; + ts_info->rx_filters = ptp->efx->type->hwtstamp_filters; +} + +int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr) +{ + struct hwtstamp_config config; + int rc; + + /* Not a PTP enabled port */ + if (!efx->ptp_data) + return -EOPNOTSUPP; + + if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) + return -EFAULT; + + rc = efx_ptp_ts_init(efx, &config); + if (rc != 0) + return rc; + + return copy_to_user(ifr->ifr_data, &config, sizeof(config)) + ? -EFAULT : 0; +} + +int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr) +{ + if (!efx->ptp_data) + return -EOPNOTSUPP; + + return copy_to_user(ifr->ifr_data, &efx->ptp_data->config, + sizeof(efx->ptp_data->config)) ? -EFAULT : 0; +} + +static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len) +{ + struct efx_ptp_data *ptp = efx->ptp_data; + + netif_err(efx, hw, efx->net_dev, + "PTP unexpected event length: got %d expected %d\n", + ptp->evt_frag_idx, expected_frag_len); + ptp->reset_required = true; + queue_work(ptp->workwq, &ptp->work); +} + +/* Process a completed receive event. Put it on the event queue and + * start worker thread. This is required because event and their + * correspoding packets may come in either order. + */ +static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp) +{ + struct efx_ptp_event_rx *evt = NULL; + + if (WARN_ON_ONCE(ptp->rx_ts_inline)) + return; + + if (ptp->evt_frag_idx != 3) { + ptp_event_failure(efx, 3); + return; + } + + spin_lock_bh(&ptp->evt_lock); + if (!list_empty(&ptp->evt_free_list)) { + evt = list_first_entry(&ptp->evt_free_list, + struct efx_ptp_event_rx, link); + list_del(&evt->link); + + evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA); + evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2], + MCDI_EVENT_SRC) | + (EFX_QWORD_FIELD(ptp->evt_frags[1], + MCDI_EVENT_SRC) << 8) | + (EFX_QWORD_FIELD(ptp->evt_frags[0], + MCDI_EVENT_SRC) << 16)); + evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time( + EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA), + EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA), + ptp->ts_corrections.ptp_rx); + evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); + list_add_tail(&evt->link, &ptp->evt_list); + + queue_work(ptp->workwq, &ptp->work); + } else if (net_ratelimit()) { + /* Log a rate-limited warning message. */ + netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n"); + } + spin_unlock_bh(&ptp->evt_lock); +} + +static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp) +{ + int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA); + if (ptp->evt_frag_idx != 1) { + ptp_event_failure(efx, 1); + return; + } + + netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code); +} + +static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp) +{ + if (ptp->nic_ts_enabled) + queue_work(ptp->pps_workwq, &ptp->pps_work); +} + +void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev) +{ + struct efx_ptp_data *ptp = efx->ptp_data; + int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE); + + if (!ptp) { + if (!efx->ptp_warned) { + netif_warn(efx, drv, efx->net_dev, + "Received PTP event but PTP not set up\n"); + efx->ptp_warned = true; + } + return; + } + + if (!ptp->enabled) + return; + + if (ptp->evt_frag_idx == 0) { + ptp->evt_code = code; + } else if (ptp->evt_code != code) { + netif_err(efx, hw, efx->net_dev, + "PTP out of sequence event %d\n", code); + ptp->evt_frag_idx = 0; + } + + ptp->evt_frags[ptp->evt_frag_idx++] = *ev; + if (!MCDI_EVENT_FIELD(*ev, CONT)) { + /* Process resulting event */ + switch (code) { + case MCDI_EVENT_CODE_PTP_RX: + ptp_event_rx(efx, ptp); + break; + case MCDI_EVENT_CODE_PTP_FAULT: + ptp_event_fault(efx, ptp); + break; + case MCDI_EVENT_CODE_PTP_PPS: + ptp_event_pps(efx, ptp); + break; + default: + netif_err(efx, hw, efx->net_dev, + "PTP unknown event %d\n", code); + break; + } + ptp->evt_frag_idx = 0; + } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) { + netif_err(efx, hw, efx->net_dev, + "PTP too many event fragments\n"); + ptp->evt_frag_idx = 0; + } +} + +void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev) +{ + struct efx_nic *efx = channel->efx; + struct efx_ptp_data *ptp = efx->ptp_data; + + /* When extracting the sync timestamp minor value, we should discard + * the least significant two bits. These are not required in order + * to reconstruct full-range timestamps and they are optionally used + * to report status depending on the options supplied when subscribing + * for sync events. + */ + channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR); + channel->sync_timestamp_minor = + (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC) + << ptp->nic_time.sync_event_minor_shift; + + /* if sync events have been disabled then we want to silently ignore + * this event, so throw away result. + */ + (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED, + SYNC_EVENTS_VALID); +} + +static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh) +{ +#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) + return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset)); +#else + const u8 *data = eh + efx->rx_packet_ts_offset; + return (u32)data[0] | + (u32)data[1] << 8 | + (u32)data[2] << 16 | + (u32)data[3] << 24; +#endif +} + +void __efx_rx_skb_attach_timestamp(struct efx_channel *channel, + struct sk_buff *skb) +{ + struct efx_nic *efx = channel->efx; + struct efx_ptp_data *ptp = efx->ptp_data; + u32 pkt_timestamp_major, pkt_timestamp_minor; + u32 diff, carry; + struct skb_shared_hwtstamps *timestamps; + + if (channel->sync_events_state != SYNC_EVENTS_VALID) + return; + + pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb)); + + /* get the difference between the packet and sync timestamps, + * modulo one second + */ + diff = pkt_timestamp_minor - channel->sync_timestamp_minor; + if (pkt_timestamp_minor < channel->sync_timestamp_minor) + diff += ptp->nic_time.minor_max; + + /* do we roll over a second boundary and need to carry the one? */ + carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ? + 1 : 0; + + if (diff <= ptp->nic_time.sync_event_diff_max) { + /* packet is ahead of the sync event by a quarter of a second or + * less (allowing for fuzz) + */ + pkt_timestamp_major = channel->sync_timestamp_major + carry; + } else if (diff >= ptp->nic_time.sync_event_diff_min) { + /* packet is behind the sync event but within the fuzz factor. + * This means the RX packet and sync event crossed as they were + * placed on the event queue, which can sometimes happen. + */ + pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry; + } else { + /* it's outside tolerance in both directions. this might be + * indicative of us missing sync events for some reason, so + * we'll call it an error rather than risk giving a bogus + * timestamp. + */ + netif_vdbg(efx, drv, efx->net_dev, + "packet timestamp %x too far from sync event %x:%x\n", + pkt_timestamp_minor, channel->sync_timestamp_major, + channel->sync_timestamp_minor); + return; + } + + /* attach the timestamps to the skb */ + timestamps = skb_hwtstamps(skb); + timestamps->hwtstamp = + ptp->nic_to_kernel_time(pkt_timestamp_major, + pkt_timestamp_minor, + ptp->ts_corrections.general_rx); +} + +static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta) +{ + struct efx_ptp_data *ptp_data = container_of(ptp, + struct efx_ptp_data, + phc_clock_info); + struct efx_nic *efx = ptp_data->efx; + MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN); + s64 adjustment_ns; + int rc; + + if (delta > MAX_PPB) + delta = MAX_PPB; + else if (delta < -MAX_PPB) + delta = -MAX_PPB; + + /* Convert ppb to fixed point ns taking care to round correctly. */ + adjustment_ns = ((s64)delta * PPB_SCALE_WORD + + (1 << (ptp_data->adjfreq_ppb_shift - 1))) >> + ptp_data->adjfreq_ppb_shift; + + MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); + MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0); + MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns); + MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0); + MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0); + rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj), + NULL, 0, NULL); + if (rc != 0) + return rc; + + ptp_data->current_adjfreq = adjustment_ns; + return 0; +} + +static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta) +{ + u32 nic_major, nic_minor; + struct efx_ptp_data *ptp_data = container_of(ptp, + struct efx_ptp_data, + phc_clock_info); + struct efx_nic *efx = ptp_data->efx; + MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN); + + efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor); + + MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); + MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); + MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq); + MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major); + MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor); + return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), + NULL, 0, NULL); +} + +static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) +{ + struct efx_ptp_data *ptp_data = container_of(ptp, + struct efx_ptp_data, + phc_clock_info); + struct efx_nic *efx = ptp_data->efx; + MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN); + MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN); + int rc; + ktime_t kt; + + MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME); + MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); + + rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), + outbuf, sizeof(outbuf), NULL); + if (rc != 0) + return rc; + + kt = ptp_data->nic_to_kernel_time( + MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR), + MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0); + *ts = ktime_to_timespec64(kt); + return 0; +} + +static int efx_phc_settime(struct ptp_clock_info *ptp, + const struct timespec64 *e_ts) +{ + /* Get the current NIC time, efx_phc_gettime. + * Subtract from the desired time to get the offset + * call efx_phc_adjtime with the offset + */ + int rc; + struct timespec64 time_now; + struct timespec64 delta; + + rc = efx_phc_gettime(ptp, &time_now); + if (rc != 0) + return rc; + + delta = timespec64_sub(*e_ts, time_now); + + rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta)); + if (rc != 0) + return rc; + + return 0; +} + +static int efx_phc_enable(struct ptp_clock_info *ptp, + struct ptp_clock_request *request, + int enable) +{ + struct efx_ptp_data *ptp_data = container_of(ptp, + struct efx_ptp_data, + phc_clock_info); + if (request->type != PTP_CLK_REQ_PPS) + return -EOPNOTSUPP; + + ptp_data->nic_ts_enabled = !!enable; + return 0; +} + +static const struct efx_channel_type efx_ptp_channel_type = { + .handle_no_channel = efx_ptp_handle_no_channel, + .pre_probe = efx_ptp_probe_channel, + .post_remove = efx_ptp_remove_channel, + .get_name = efx_ptp_get_channel_name, + .copy = efx_copy_channel, + .receive_skb = efx_ptp_rx, + .want_txqs = efx_ptp_want_txqs, + .keep_eventq = false, +}; + +void efx_ptp_defer_probe_with_channel(struct efx_nic *efx) +{ + /* Check whether PTP is implemented on this NIC. The DISABLE + * operation will succeed if and only if it is implemented. + */ + if (efx_ptp_disable(efx) == 0) + efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] = + &efx_ptp_channel_type; +} + +void efx_ptp_start_datapath(struct efx_nic *efx) +{ + if (efx_ptp_restart(efx)) + netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n"); + /* re-enable timestamping if it was previously enabled */ + if (efx->type->ptp_set_ts_sync_events) + efx->type->ptp_set_ts_sync_events(efx, true, true); +} + +void efx_ptp_stop_datapath(struct efx_nic *efx) +{ + /* temporarily disable timestamping */ + if (efx->type->ptp_set_ts_sync_events) + efx->type->ptp_set_ts_sync_events(efx, false, true); + efx_ptp_stop(efx); +} |