summaryrefslogtreecommitdiffstats
path: root/drivers/remoteproc/ti_k3_r5_remoteproc.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/remoteproc/ti_k3_r5_remoteproc.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/remoteproc/ti_k3_r5_remoteproc.c')
-rw-r--r--drivers/remoteproc/ti_k3_r5_remoteproc.c1799
1 files changed, 1799 insertions, 0 deletions
diff --git a/drivers/remoteproc/ti_k3_r5_remoteproc.c b/drivers/remoteproc/ti_k3_r5_remoteproc.c
new file mode 100644
index 000000000..0481926c6
--- /dev/null
+++ b/drivers/remoteproc/ti_k3_r5_remoteproc.c
@@ -0,0 +1,1799 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * TI K3 R5F (MCU) Remote Processor driver
+ *
+ * Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/
+ * Suman Anna <s-anna@ti.com>
+ */
+
+#include <linux/dma-mapping.h>
+#include <linux/err.h>
+#include <linux/interrupt.h>
+#include <linux/kernel.h>
+#include <linux/mailbox_client.h>
+#include <linux/module.h>
+#include <linux/of_address.h>
+#include <linux/of_device.h>
+#include <linux/of_reserved_mem.h>
+#include <linux/omap-mailbox.h>
+#include <linux/platform_device.h>
+#include <linux/pm_runtime.h>
+#include <linux/remoteproc.h>
+#include <linux/reset.h>
+#include <linux/slab.h>
+
+#include "omap_remoteproc.h"
+#include "remoteproc_internal.h"
+#include "ti_sci_proc.h"
+
+/* This address can either be for ATCM or BTCM with the other at address 0x0 */
+#define K3_R5_TCM_DEV_ADDR 0x41010000
+
+/* R5 TI-SCI Processor Configuration Flags */
+#define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001
+#define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002
+#define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100
+#define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200
+#define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400
+#define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800
+#define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000
+#define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000
+/* Available from J7200 SoCs onwards */
+#define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS 0x00004000
+/* Applicable to only AM64x SoCs */
+#define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE 0x00008000
+
+/* R5 TI-SCI Processor Control Flags */
+#define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001
+
+/* R5 TI-SCI Processor Status Flags */
+#define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001
+#define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002
+#define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004
+#define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100
+/* Applicable to only AM64x SoCs */
+#define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY 0x00000200
+
+/**
+ * struct k3_r5_mem - internal memory structure
+ * @cpu_addr: MPU virtual address of the memory region
+ * @bus_addr: Bus address used to access the memory region
+ * @dev_addr: Device address from remoteproc view
+ * @size: Size of the memory region
+ */
+struct k3_r5_mem {
+ void __iomem *cpu_addr;
+ phys_addr_t bus_addr;
+ u32 dev_addr;
+ size_t size;
+};
+
+/*
+ * All cluster mode values are not applicable on all SoCs. The following
+ * are the modes supported on various SoCs:
+ * Split mode : AM65x, J721E, J7200 and AM64x SoCs
+ * LockStep mode : AM65x, J721E and J7200 SoCs
+ * Single-CPU mode : AM64x SoCs only
+ */
+enum cluster_mode {
+ CLUSTER_MODE_SPLIT = 0,
+ CLUSTER_MODE_LOCKSTEP,
+ CLUSTER_MODE_SINGLECPU,
+};
+
+/**
+ * struct k3_r5_soc_data - match data to handle SoC variations
+ * @tcm_is_double: flag to denote the larger unified TCMs in certain modes
+ * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC
+ * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode
+ */
+struct k3_r5_soc_data {
+ bool tcm_is_double;
+ bool tcm_ecc_autoinit;
+ bool single_cpu_mode;
+};
+
+/**
+ * struct k3_r5_cluster - K3 R5F Cluster structure
+ * @dev: cached device pointer
+ * @mode: Mode to configure the Cluster - Split or LockStep
+ * @cores: list of R5 cores within the cluster
+ * @soc_data: SoC-specific feature data for a R5FSS
+ */
+struct k3_r5_cluster {
+ struct device *dev;
+ enum cluster_mode mode;
+ struct list_head cores;
+ const struct k3_r5_soc_data *soc_data;
+};
+
+/**
+ * struct k3_r5_core - K3 R5 core structure
+ * @elem: linked list item
+ * @dev: cached device pointer
+ * @rproc: rproc handle representing this core
+ * @mem: internal memory regions data
+ * @sram: on-chip SRAM memory regions data
+ * @num_mems: number of internal memory regions
+ * @num_sram: number of on-chip SRAM memory regions
+ * @reset: reset control handle
+ * @tsp: TI-SCI processor control handle
+ * @ti_sci: TI-SCI handle
+ * @ti_sci_id: TI-SCI device identifier
+ * @atcm_enable: flag to control ATCM enablement
+ * @btcm_enable: flag to control BTCM enablement
+ * @loczrama: flag to dictate which TCM is at device address 0x0
+ */
+struct k3_r5_core {
+ struct list_head elem;
+ struct device *dev;
+ struct rproc *rproc;
+ struct k3_r5_mem *mem;
+ struct k3_r5_mem *sram;
+ int num_mems;
+ int num_sram;
+ struct reset_control *reset;
+ struct ti_sci_proc *tsp;
+ const struct ti_sci_handle *ti_sci;
+ u32 ti_sci_id;
+ u32 atcm_enable;
+ u32 btcm_enable;
+ u32 loczrama;
+};
+
+/**
+ * struct k3_r5_rproc - K3 remote processor state
+ * @dev: cached device pointer
+ * @cluster: cached pointer to parent cluster structure
+ * @mbox: mailbox channel handle
+ * @client: mailbox client to request the mailbox channel
+ * @rproc: rproc handle
+ * @core: cached pointer to r5 core structure being used
+ * @rmem: reserved memory regions data
+ * @num_rmems: number of reserved memory regions
+ */
+struct k3_r5_rproc {
+ struct device *dev;
+ struct k3_r5_cluster *cluster;
+ struct mbox_chan *mbox;
+ struct mbox_client client;
+ struct rproc *rproc;
+ struct k3_r5_core *core;
+ struct k3_r5_mem *rmem;
+ int num_rmems;
+};
+
+/**
+ * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
+ * @client: mailbox client pointer used for requesting the mailbox channel
+ * @data: mailbox payload
+ *
+ * This handler is invoked by the OMAP mailbox driver whenever a mailbox
+ * message is received. Usually, the mailbox payload simply contains
+ * the index of the virtqueue that is kicked by the remote processor,
+ * and we let remoteproc core handle it.
+ *
+ * In addition to virtqueue indices, we also have some out-of-band values
+ * that indicate different events. Those values are deliberately very
+ * large so they don't coincide with virtqueue indices.
+ */
+static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data)
+{
+ struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc,
+ client);
+ struct device *dev = kproc->rproc->dev.parent;
+ const char *name = kproc->rproc->name;
+ u32 msg = omap_mbox_message(data);
+
+ dev_dbg(dev, "mbox msg: 0x%x\n", msg);
+
+ switch (msg) {
+ case RP_MBOX_CRASH:
+ /*
+ * remoteproc detected an exception, but error recovery is not
+ * supported. So, just log this for now
+ */
+ dev_err(dev, "K3 R5F rproc %s crashed\n", name);
+ break;
+ case RP_MBOX_ECHO_REPLY:
+ dev_info(dev, "received echo reply from %s\n", name);
+ break;
+ default:
+ /* silently handle all other valid messages */
+ if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
+ return;
+ if (msg > kproc->rproc->max_notifyid) {
+ dev_dbg(dev, "dropping unknown message 0x%x", msg);
+ return;
+ }
+ /* msg contains the index of the triggered vring */
+ if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
+ dev_dbg(dev, "no message was found in vqid %d\n", msg);
+ }
+}
+
+/* kick a virtqueue */
+static void k3_r5_rproc_kick(struct rproc *rproc, int vqid)
+{
+ struct k3_r5_rproc *kproc = rproc->priv;
+ struct device *dev = rproc->dev.parent;
+ mbox_msg_t msg = (mbox_msg_t)vqid;
+ int ret;
+
+ /* send the index of the triggered virtqueue in the mailbox payload */
+ ret = mbox_send_message(kproc->mbox, (void *)msg);
+ if (ret < 0)
+ dev_err(dev, "failed to send mailbox message, status = %d\n",
+ ret);
+}
+
+static int k3_r5_split_reset(struct k3_r5_core *core)
+{
+ int ret;
+
+ ret = reset_control_assert(core->reset);
+ if (ret) {
+ dev_err(core->dev, "local-reset assert failed, ret = %d\n",
+ ret);
+ return ret;
+ }
+
+ ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
+ core->ti_sci_id);
+ if (ret) {
+ dev_err(core->dev, "module-reset assert failed, ret = %d\n",
+ ret);
+ if (reset_control_deassert(core->reset))
+ dev_warn(core->dev, "local-reset deassert back failed\n");
+ }
+
+ return ret;
+}
+
+static int k3_r5_split_release(struct k3_r5_core *core)
+{
+ int ret;
+
+ ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
+ core->ti_sci_id);
+ if (ret) {
+ dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
+ ret);
+ return ret;
+ }
+
+ ret = reset_control_deassert(core->reset);
+ if (ret) {
+ dev_err(core->dev, "local-reset deassert failed, ret = %d\n",
+ ret);
+ if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
+ core->ti_sci_id))
+ dev_warn(core->dev, "module-reset assert back failed\n");
+ }
+
+ return ret;
+}
+
+static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster)
+{
+ struct k3_r5_core *core;
+ int ret;
+
+ /* assert local reset on all applicable cores */
+ list_for_each_entry(core, &cluster->cores, elem) {
+ ret = reset_control_assert(core->reset);
+ if (ret) {
+ dev_err(core->dev, "local-reset assert failed, ret = %d\n",
+ ret);
+ core = list_prev_entry(core, elem);
+ goto unroll_local_reset;
+ }
+ }
+
+ /* disable PSC modules on all applicable cores */
+ list_for_each_entry(core, &cluster->cores, elem) {
+ ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
+ core->ti_sci_id);
+ if (ret) {
+ dev_err(core->dev, "module-reset assert failed, ret = %d\n",
+ ret);
+ goto unroll_module_reset;
+ }
+ }
+
+ return 0;
+
+unroll_module_reset:
+ list_for_each_entry_continue_reverse(core, &cluster->cores, elem) {
+ if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
+ core->ti_sci_id))
+ dev_warn(core->dev, "module-reset assert back failed\n");
+ }
+ core = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
+unroll_local_reset:
+ list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
+ if (reset_control_deassert(core->reset))
+ dev_warn(core->dev, "local-reset deassert back failed\n");
+ }
+
+ return ret;
+}
+
+static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster)
+{
+ struct k3_r5_core *core;
+ int ret;
+
+ /* enable PSC modules on all applicable cores */
+ list_for_each_entry_reverse(core, &cluster->cores, elem) {
+ ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
+ core->ti_sci_id);
+ if (ret) {
+ dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
+ ret);
+ core = list_next_entry(core, elem);
+ goto unroll_module_reset;
+ }
+ }
+
+ /* deassert local reset on all applicable cores */
+ list_for_each_entry_reverse(core, &cluster->cores, elem) {
+ ret = reset_control_deassert(core->reset);
+ if (ret) {
+ dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
+ ret);
+ goto unroll_local_reset;
+ }
+ }
+
+ return 0;
+
+unroll_local_reset:
+ list_for_each_entry_continue(core, &cluster->cores, elem) {
+ if (reset_control_assert(core->reset))
+ dev_warn(core->dev, "local-reset assert back failed\n");
+ }
+ core = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
+unroll_module_reset:
+ list_for_each_entry_from(core, &cluster->cores, elem) {
+ if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
+ core->ti_sci_id))
+ dev_warn(core->dev, "module-reset assert back failed\n");
+ }
+
+ return ret;
+}
+
+static inline int k3_r5_core_halt(struct k3_r5_core *core)
+{
+ return ti_sci_proc_set_control(core->tsp,
+ PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0);
+}
+
+static inline int k3_r5_core_run(struct k3_r5_core *core)
+{
+ return ti_sci_proc_set_control(core->tsp,
+ 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT);
+}
+
+static int k3_r5_rproc_request_mbox(struct rproc *rproc)
+{
+ struct k3_r5_rproc *kproc = rproc->priv;
+ struct mbox_client *client = &kproc->client;
+ struct device *dev = kproc->dev;
+ int ret;
+
+ client->dev = dev;
+ client->tx_done = NULL;
+ client->rx_callback = k3_r5_rproc_mbox_callback;
+ client->tx_block = false;
+ client->knows_txdone = false;
+
+ kproc->mbox = mbox_request_channel(client, 0);
+ if (IS_ERR(kproc->mbox)) {
+ ret = -EBUSY;
+ dev_err(dev, "mbox_request_channel failed: %ld\n",
+ PTR_ERR(kproc->mbox));
+ return ret;
+ }
+
+ /*
+ * Ping the remote processor, this is only for sanity-sake for now;
+ * there is no functional effect whatsoever.
+ *
+ * Note that the reply will _not_ arrive immediately: this message
+ * will wait in the mailbox fifo until the remote processor is booted.
+ */
+ ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
+ if (ret < 0) {
+ dev_err(dev, "mbox_send_message failed: %d\n", ret);
+ mbox_free_channel(kproc->mbox);
+ return ret;
+ }
+
+ return 0;
+}
+
+/*
+ * The R5F cores have controls for both a reset and a halt/run. The code
+ * execution from DDR requires the initial boot-strapping code to be run
+ * from the internal TCMs. This function is used to release the resets on
+ * applicable cores to allow loading into the TCMs. The .prepare() ops is
+ * invoked by remoteproc core before any firmware loading, and is followed
+ * by the .start() ops after loading to actually let the R5 cores run.
+ *
+ * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to
+ * execute code, but combines the TCMs from both cores. The resets for both
+ * cores need to be released to make this possible, as the TCMs are in general
+ * private to each core. Only Core0 needs to be unhalted for running the
+ * cluster in this mode. The function uses the same reset logic as LockStep
+ * mode for this (though the behavior is agnostic of the reset release order).
+ * This callback is invoked only in remoteproc mode.
+ */
+static int k3_r5_rproc_prepare(struct rproc *rproc)
+{
+ struct k3_r5_rproc *kproc = rproc->priv;
+ struct k3_r5_cluster *cluster = kproc->cluster;
+ struct k3_r5_core *core = kproc->core;
+ struct device *dev = kproc->dev;
+ u32 ctrl = 0, cfg = 0, stat = 0;
+ u64 boot_vec = 0;
+ bool mem_init_dis;
+ int ret;
+
+ ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat);
+ if (ret < 0)
+ return ret;
+ mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS);
+
+ /* Re-use LockStep-mode reset logic for Single-CPU mode */
+ ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
+ cluster->mode == CLUSTER_MODE_SINGLECPU) ?
+ k3_r5_lockstep_release(cluster) : k3_r5_split_release(core);
+ if (ret) {
+ dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n",
+ ret);
+ return ret;
+ }
+
+ /*
+ * Newer IP revisions like on J7200 SoCs support h/w auto-initialization
+ * of TCMs, so there is no need to perform the s/w memzero. This bit is
+ * configurable through System Firmware, the default value does perform
+ * auto-init, but account for it in case it is disabled
+ */
+ if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) {
+ dev_dbg(dev, "leveraging h/w init for TCM memories\n");
+ return 0;
+ }
+
+ /*
+ * Zero out both TCMs unconditionally (access from v8 Arm core is not
+ * affected by ATCM & BTCM enable configuration values) so that ECC
+ * can be effective on all TCM addresses.
+ */
+ dev_dbg(dev, "zeroing out ATCM memory\n");
+ memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size);
+
+ dev_dbg(dev, "zeroing out BTCM memory\n");
+ memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size);
+
+ return 0;
+}
+
+/*
+ * This function implements the .unprepare() ops and performs the complimentary
+ * operations to that of the .prepare() ops. The function is used to assert the
+ * resets on all applicable cores for the rproc device (depending on LockStep
+ * or Split mode). This completes the second portion of powering down the R5F
+ * cores. The cores themselves are only halted in the .stop() ops, and the
+ * .unprepare() ops is invoked by the remoteproc core after the remoteproc is
+ * stopped.
+ *
+ * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from
+ * both cores. The access is made possible only with releasing the resets for
+ * both cores, but with only Core0 unhalted. This function re-uses the same
+ * reset assert logic as LockStep mode for this mode (though the behavior is
+ * agnostic of the reset assert order). This callback is invoked only in
+ * remoteproc mode.
+ */
+static int k3_r5_rproc_unprepare(struct rproc *rproc)
+{
+ struct k3_r5_rproc *kproc = rproc->priv;
+ struct k3_r5_cluster *cluster = kproc->cluster;
+ struct k3_r5_core *core = kproc->core;
+ struct device *dev = kproc->dev;
+ int ret;
+
+ /* Re-use LockStep-mode reset logic for Single-CPU mode */
+ ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
+ cluster->mode == CLUSTER_MODE_SINGLECPU) ?
+ k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core);
+ if (ret)
+ dev_err(dev, "unable to disable cores, ret = %d\n", ret);
+
+ return ret;
+}
+
+/*
+ * The R5F start sequence includes two different operations
+ * 1. Configure the boot vector for R5F core(s)
+ * 2. Unhalt/Run the R5F core(s)
+ *
+ * The sequence is different between LockStep and Split modes. The LockStep
+ * mode requires the boot vector to be configured only for Core0, and then
+ * unhalt both the cores to start the execution - Core1 needs to be unhalted
+ * first followed by Core0. The Split-mode requires that Core0 to be maintained
+ * always in a higher power state that Core1 (implying Core1 needs to be started
+ * always only after Core0 is started).
+ *
+ * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
+ * code, so only Core0 needs to be unhalted. The function uses the same logic
+ * flow as Split-mode for this. This callback is invoked only in remoteproc
+ * mode.
+ */
+static int k3_r5_rproc_start(struct rproc *rproc)
+{
+ struct k3_r5_rproc *kproc = rproc->priv;
+ struct k3_r5_cluster *cluster = kproc->cluster;
+ struct device *dev = kproc->dev;
+ struct k3_r5_core *core;
+ u32 boot_addr;
+ int ret;
+
+ ret = k3_r5_rproc_request_mbox(rproc);
+ if (ret)
+ return ret;
+
+ boot_addr = rproc->bootaddr;
+ /* TODO: add boot_addr sanity checking */
+ dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr);
+
+ /* boot vector need not be programmed for Core1 in LockStep mode */
+ core = kproc->core;
+ ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0);
+ if (ret)
+ goto put_mbox;
+
+ /* unhalt/run all applicable cores */
+ if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
+ list_for_each_entry_reverse(core, &cluster->cores, elem) {
+ ret = k3_r5_core_run(core);
+ if (ret)
+ goto unroll_core_run;
+ }
+ } else {
+ ret = k3_r5_core_run(core);
+ if (ret)
+ goto put_mbox;
+ }
+
+ return 0;
+
+unroll_core_run:
+ list_for_each_entry_continue(core, &cluster->cores, elem) {
+ if (k3_r5_core_halt(core))
+ dev_warn(core->dev, "core halt back failed\n");
+ }
+put_mbox:
+ mbox_free_channel(kproc->mbox);
+ return ret;
+}
+
+/*
+ * The R5F stop function includes the following operations
+ * 1. Halt R5F core(s)
+ *
+ * The sequence is different between LockStep and Split modes, and the order
+ * of cores the operations are performed are also in general reverse to that
+ * of the start function. The LockStep mode requires each operation to be
+ * performed first on Core0 followed by Core1. The Split-mode requires that
+ * Core0 to be maintained always in a higher power state that Core1 (implying
+ * Core1 needs to be stopped first before Core0).
+ *
+ * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
+ * code, so only Core0 needs to be halted. The function uses the same logic
+ * flow as Split-mode for this.
+ *
+ * Note that the R5F halt operation in general is not effective when the R5F
+ * core is running, but is needed to make sure the core won't run after
+ * deasserting the reset the subsequent time. The asserting of reset can
+ * be done here, but is preferred to be done in the .unprepare() ops - this
+ * maintains the symmetric behavior between the .start(), .stop(), .prepare()
+ * and .unprepare() ops, and also balances them well between sysfs 'state'
+ * flow and device bind/unbind or module removal. This callback is invoked
+ * only in remoteproc mode.
+ */
+static int k3_r5_rproc_stop(struct rproc *rproc)
+{
+ struct k3_r5_rproc *kproc = rproc->priv;
+ struct k3_r5_cluster *cluster = kproc->cluster;
+ struct k3_r5_core *core = kproc->core;
+ int ret;
+
+ /* halt all applicable cores */
+ if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
+ list_for_each_entry(core, &cluster->cores, elem) {
+ ret = k3_r5_core_halt(core);
+ if (ret) {
+ core = list_prev_entry(core, elem);
+ goto unroll_core_halt;
+ }
+ }
+ } else {
+ ret = k3_r5_core_halt(core);
+ if (ret)
+ goto out;
+ }
+
+ mbox_free_channel(kproc->mbox);
+
+ return 0;
+
+unroll_core_halt:
+ list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
+ if (k3_r5_core_run(core))
+ dev_warn(core->dev, "core run back failed\n");
+ }
+out:
+ return ret;
+}
+
+/*
+ * Attach to a running R5F remote processor (IPC-only mode)
+ *
+ * The R5F attach callback only needs to request the mailbox, the remote
+ * processor is already booted, so there is no need to issue any TI-SCI
+ * commands to boot the R5F cores in IPC-only mode. This callback is invoked
+ * only in IPC-only mode.
+ */
+static int k3_r5_rproc_attach(struct rproc *rproc)
+{
+ struct k3_r5_rproc *kproc = rproc->priv;
+ struct device *dev = kproc->dev;
+ int ret;
+
+ ret = k3_r5_rproc_request_mbox(rproc);
+ if (ret)
+ return ret;
+
+ dev_info(dev, "R5F core initialized in IPC-only mode\n");
+ return 0;
+}
+
+/*
+ * Detach from a running R5F remote processor (IPC-only mode)
+ *
+ * The R5F detach callback performs the opposite operation to attach callback
+ * and only needs to release the mailbox, the R5F cores are not stopped and
+ * will be left in booted state in IPC-only mode. This callback is invoked
+ * only in IPC-only mode.
+ */
+static int k3_r5_rproc_detach(struct rproc *rproc)
+{
+ struct k3_r5_rproc *kproc = rproc->priv;
+ struct device *dev = kproc->dev;
+
+ mbox_free_channel(kproc->mbox);
+ dev_info(dev, "R5F core deinitialized in IPC-only mode\n");
+ return 0;
+}
+
+/*
+ * This function implements the .get_loaded_rsc_table() callback and is used
+ * to provide the resource table for the booted R5F in IPC-only mode. The K3 R5F
+ * firmwares follow a design-by-contract approach and are expected to have the
+ * resource table at the base of the DDR region reserved for firmware usage.
+ * This provides flexibility for the remote processor to be booted by different
+ * bootloaders that may or may not have the ability to publish the resource table
+ * address and size through a DT property. This callback is invoked only in
+ * IPC-only mode.
+ */
+static struct resource_table *k3_r5_get_loaded_rsc_table(struct rproc *rproc,
+ size_t *rsc_table_sz)
+{
+ struct k3_r5_rproc *kproc = rproc->priv;
+ struct device *dev = kproc->dev;
+
+ if (!kproc->rmem[0].cpu_addr) {
+ dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
+ return ERR_PTR(-ENOMEM);
+ }
+
+ /*
+ * NOTE: The resource table size is currently hard-coded to a maximum
+ * of 256 bytes. The most common resource table usage for K3 firmwares
+ * is to only have the vdev resource entry and an optional trace entry.
+ * The exact size could be computed based on resource table address, but
+ * the hard-coded value suffices to support the IPC-only mode.
+ */
+ *rsc_table_sz = 256;
+ return (struct resource_table *)kproc->rmem[0].cpu_addr;
+}
+
+/*
+ * Internal Memory translation helper
+ *
+ * Custom function implementing the rproc .da_to_va ops to provide address
+ * translation (device address to kernel virtual address) for internal RAMs
+ * present in a DSP or IPU device). The translated addresses can be used
+ * either by the remoteproc core for loading, or by any rpmsg bus drivers.
+ */
+static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
+{
+ struct k3_r5_rproc *kproc = rproc->priv;
+ struct k3_r5_core *core = kproc->core;
+ void __iomem *va = NULL;
+ phys_addr_t bus_addr;
+ u32 dev_addr, offset;
+ size_t size;
+ int i;
+
+ if (len == 0)
+ return NULL;
+
+ /* handle both R5 and SoC views of ATCM and BTCM */
+ for (i = 0; i < core->num_mems; i++) {
+ bus_addr = core->mem[i].bus_addr;
+ dev_addr = core->mem[i].dev_addr;
+ size = core->mem[i].size;
+
+ /* handle R5-view addresses of TCMs */
+ if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
+ offset = da - dev_addr;
+ va = core->mem[i].cpu_addr + offset;
+ return (__force void *)va;
+ }
+
+ /* handle SoC-view addresses of TCMs */
+ if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
+ offset = da - bus_addr;
+ va = core->mem[i].cpu_addr + offset;
+ return (__force void *)va;
+ }
+ }
+
+ /* handle any SRAM regions using SoC-view addresses */
+ for (i = 0; i < core->num_sram; i++) {
+ dev_addr = core->sram[i].dev_addr;
+ size = core->sram[i].size;
+
+ if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
+ offset = da - dev_addr;
+ va = core->sram[i].cpu_addr + offset;
+ return (__force void *)va;
+ }
+ }
+
+ /* handle static DDR reserved memory regions */
+ for (i = 0; i < kproc->num_rmems; i++) {
+ dev_addr = kproc->rmem[i].dev_addr;
+ size = kproc->rmem[i].size;
+
+ if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
+ offset = da - dev_addr;
+ va = kproc->rmem[i].cpu_addr + offset;
+ return (__force void *)va;
+ }
+ }
+
+ return NULL;
+}
+
+static const struct rproc_ops k3_r5_rproc_ops = {
+ .prepare = k3_r5_rproc_prepare,
+ .unprepare = k3_r5_rproc_unprepare,
+ .start = k3_r5_rproc_start,
+ .stop = k3_r5_rproc_stop,
+ .kick = k3_r5_rproc_kick,
+ .da_to_va = k3_r5_rproc_da_to_va,
+};
+
+/*
+ * Internal R5F Core configuration
+ *
+ * Each R5FSS has a cluster-level setting for configuring the processor
+ * subsystem either in a safety/fault-tolerant LockStep mode or a performance
+ * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode
+ * as an alternate for LockStep mode that exercises only a single R5F core
+ * called Single-CPU mode. Each R5F core has a number of settings to either
+ * enable/disable each of the TCMs, control which TCM appears at the R5F core's
+ * address 0x0. These settings need to be configured before the resets for the
+ * corresponding core are released. These settings are all protected and managed
+ * by the System Processor.
+ *
+ * This function is used to pre-configure these settings for each R5F core, and
+ * the configuration is all done through various ti_sci_proc functions that
+ * communicate with the System Processor. The function also ensures that both
+ * the cores are halted before the .prepare() step.
+ *
+ * The function is called from k3_r5_cluster_rproc_init() and is invoked either
+ * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support
+ * for LockStep-mode is dictated by an eFUSE register bit, and the config
+ * settings retrieved from DT are adjusted accordingly as per the permitted
+ * cluster mode. Another eFUSE register bit dictates if the R5F cluster only
+ * supports a Single-CPU mode. All cluster level settings like Cluster mode and
+ * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set
+ * and retrieved using Core0.
+ *
+ * The function behavior is different based on the cluster mode. The R5F cores
+ * are configured independently as per their individual settings in Split mode.
+ * They are identically configured in LockStep mode using the primary Core0
+ * settings. However, some individual settings cannot be set in LockStep mode.
+ * This is overcome by switching to Split-mode initially and then programming
+ * both the cores with the same settings, before reconfiguing again for
+ * LockStep mode.
+ */
+static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc)
+{
+ struct k3_r5_cluster *cluster = kproc->cluster;
+ struct device *dev = kproc->dev;
+ struct k3_r5_core *core0, *core, *temp;
+ u32 ctrl = 0, cfg = 0, stat = 0;
+ u32 set_cfg = 0, clr_cfg = 0;
+ u64 boot_vec = 0;
+ bool lockstep_en;
+ bool single_cpu;
+ int ret;
+
+ core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
+ if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
+ cluster->mode == CLUSTER_MODE_SINGLECPU) {
+ core = core0;
+ } else {
+ core = kproc->core;
+ }
+
+ ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
+ &stat);
+ if (ret < 0)
+ return ret;
+
+ dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
+ boot_vec, cfg, ctrl, stat);
+
+ /* check if only Single-CPU mode is supported on applicable SoCs */
+ if (cluster->soc_data->single_cpu_mode) {
+ single_cpu =
+ !!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY);
+ if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) {
+ dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n");
+ cluster->mode = CLUSTER_MODE_SINGLECPU;
+ }
+ goto config;
+ }
+
+ /* check conventional LockStep vs Split mode configuration */
+ lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED);
+ if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) {
+ dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n");
+ cluster->mode = CLUSTER_MODE_SPLIT;
+ }
+
+config:
+ /* always enable ARM mode and set boot vector to 0 */
+ boot_vec = 0x0;
+ if (core == core0) {
+ clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT;
+ if (cluster->soc_data->single_cpu_mode) {
+ /*
+ * Single-CPU configuration bit can only be configured
+ * on Core0 and system firmware will NACK any requests
+ * with the bit configured, so program it only on
+ * permitted cores
+ */
+ if (cluster->mode == CLUSTER_MODE_SINGLECPU)
+ set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE;
+ } else {
+ /*
+ * LockStep configuration bit is Read-only on Split-mode
+ * _only_ devices and system firmware will NACK any
+ * requests with the bit configured, so program it only
+ * on permitted devices
+ */
+ if (lockstep_en)
+ clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
+ }
+ }
+
+ if (core->atcm_enable)
+ set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
+ else
+ clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
+
+ if (core->btcm_enable)
+ set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
+ else
+ clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
+
+ if (core->loczrama)
+ set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
+ else
+ clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
+
+ if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
+ /*
+ * work around system firmware limitations to make sure both
+ * cores are programmed symmetrically in LockStep. LockStep
+ * and TEINIT config is only allowed with Core0.
+ */
+ list_for_each_entry(temp, &cluster->cores, elem) {
+ ret = k3_r5_core_halt(temp);
+ if (ret)
+ goto out;
+
+ if (temp != core) {
+ clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
+ clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT;
+ }
+ ret = ti_sci_proc_set_config(temp->tsp, boot_vec,
+ set_cfg, clr_cfg);
+ if (ret)
+ goto out;
+ }
+
+ set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
+ clr_cfg = 0;
+ ret = ti_sci_proc_set_config(core->tsp, boot_vec,
+ set_cfg, clr_cfg);
+ } else {
+ ret = k3_r5_core_halt(core);
+ if (ret)
+ goto out;
+
+ ret = ti_sci_proc_set_config(core->tsp, boot_vec,
+ set_cfg, clr_cfg);
+ }
+
+out:
+ return ret;
+}
+
+static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc)
+{
+ struct device *dev = kproc->dev;
+ struct device_node *np = dev_of_node(dev);
+ struct device_node *rmem_np;
+ struct reserved_mem *rmem;
+ int num_rmems;
+ int ret, i;
+
+ num_rmems = of_property_count_elems_of_size(np, "memory-region",
+ sizeof(phandle));
+ if (num_rmems <= 0) {
+ dev_err(dev, "device does not have reserved memory regions, ret = %d\n",
+ num_rmems);
+ return -EINVAL;
+ }
+ if (num_rmems < 2) {
+ dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
+ num_rmems);
+ return -EINVAL;
+ }
+
+ /* use reserved memory region 0 for vring DMA allocations */
+ ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
+ if (ret) {
+ dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
+ ret);
+ return ret;
+ }
+
+ num_rmems--;
+ kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
+ if (!kproc->rmem) {
+ ret = -ENOMEM;
+ goto release_rmem;
+ }
+
+ /* use remaining reserved memory regions for static carveouts */
+ for (i = 0; i < num_rmems; i++) {
+ rmem_np = of_parse_phandle(np, "memory-region", i + 1);
+ if (!rmem_np) {
+ ret = -EINVAL;
+ goto unmap_rmem;
+ }
+
+ rmem = of_reserved_mem_lookup(rmem_np);
+ if (!rmem) {
+ of_node_put(rmem_np);
+ ret = -EINVAL;
+ goto unmap_rmem;
+ }
+ of_node_put(rmem_np);
+
+ kproc->rmem[i].bus_addr = rmem->base;
+ /*
+ * R5Fs do not have an MMU, but have a Region Address Translator
+ * (RAT) module that provides a fixed entry translation between
+ * the 32-bit processor addresses to 64-bit bus addresses. The
+ * RAT is programmable only by the R5F cores. Support for RAT
+ * is currently not supported, so 64-bit address regions are not
+ * supported. The absence of MMUs implies that the R5F device
+ * addresses/supported memory regions are restricted to 32-bit
+ * bus addresses, and are identical
+ */
+ kproc->rmem[i].dev_addr = (u32)rmem->base;
+ kproc->rmem[i].size = rmem->size;
+ kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
+ if (!kproc->rmem[i].cpu_addr) {
+ dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
+ i + 1, &rmem->base, &rmem->size);
+ ret = -ENOMEM;
+ goto unmap_rmem;
+ }
+
+ dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
+ i + 1, &kproc->rmem[i].bus_addr,
+ kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
+ kproc->rmem[i].dev_addr);
+ }
+ kproc->num_rmems = num_rmems;
+
+ return 0;
+
+unmap_rmem:
+ for (i--; i >= 0; i--)
+ iounmap(kproc->rmem[i].cpu_addr);
+ kfree(kproc->rmem);
+release_rmem:
+ of_reserved_mem_device_release(dev);
+ return ret;
+}
+
+static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc)
+{
+ int i;
+
+ for (i = 0; i < kproc->num_rmems; i++)
+ iounmap(kproc->rmem[i].cpu_addr);
+ kfree(kproc->rmem);
+
+ of_reserved_mem_device_release(kproc->dev);
+}
+
+/*
+ * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs,
+ * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both
+ * cores are usable in Split-mode, but only the Core0 TCMs can be used in
+ * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by
+ * leveraging the Core1 TCMs as well in certain modes where they would have
+ * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on
+ * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the
+ * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for
+ * the Core0 TCMs, and the dts representation reflects this increased size on
+ * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only
+ * half the original size in Split mode.
+ */
+static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc)
+{
+ struct k3_r5_cluster *cluster = kproc->cluster;
+ struct k3_r5_core *core = kproc->core;
+ struct device *cdev = core->dev;
+ struct k3_r5_core *core0;
+
+ if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
+ cluster->mode == CLUSTER_MODE_SINGLECPU ||
+ !cluster->soc_data->tcm_is_double)
+ return;
+
+ core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
+ if (core == core0) {
+ WARN_ON(core->mem[0].size != SZ_64K);
+ WARN_ON(core->mem[1].size != SZ_64K);
+
+ core->mem[0].size /= 2;
+ core->mem[1].size /= 2;
+
+ dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n",
+ core->mem[0].size, core->mem[1].size);
+ }
+}
+
+/*
+ * This function checks and configures a R5F core for IPC-only or remoteproc
+ * mode. The driver is configured to be in IPC-only mode for a R5F core when
+ * the core has been loaded and started by a bootloader. The IPC-only mode is
+ * detected by querying the System Firmware for reset, power on and halt status
+ * and ensuring that the core is running. Any incomplete steps at bootloader
+ * are validated and errored out.
+ *
+ * In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings
+ * and cluster mode parsed originally from kernel DT are updated to reflect the
+ * actual values configured by bootloader. The driver internal device memory
+ * addresses for TCMs are also updated.
+ */
+static int k3_r5_rproc_configure_mode(struct k3_r5_rproc *kproc)
+{
+ struct k3_r5_cluster *cluster = kproc->cluster;
+ struct k3_r5_core *core = kproc->core;
+ struct device *cdev = core->dev;
+ bool r_state = false, c_state = false;
+ u32 ctrl = 0, cfg = 0, stat = 0, halted = 0;
+ u64 boot_vec = 0;
+ u32 atcm_enable, btcm_enable, loczrama;
+ struct k3_r5_core *core0;
+ enum cluster_mode mode;
+ int ret;
+
+ core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
+
+ ret = core->ti_sci->ops.dev_ops.is_on(core->ti_sci, core->ti_sci_id,
+ &r_state, &c_state);
+ if (ret) {
+ dev_err(cdev, "failed to get initial state, mode cannot be determined, ret = %d\n",
+ ret);
+ return ret;
+ }
+ if (r_state != c_state) {
+ dev_warn(cdev, "R5F core may have been powered on by a different host, programmed state (%d) != actual state (%d)\n",
+ r_state, c_state);
+ }
+
+ ret = reset_control_status(core->reset);
+ if (ret < 0) {
+ dev_err(cdev, "failed to get initial local reset status, ret = %d\n",
+ ret);
+ return ret;
+ }
+
+ ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
+ &stat);
+ if (ret < 0) {
+ dev_err(cdev, "failed to get initial processor status, ret = %d\n",
+ ret);
+ return ret;
+ }
+ atcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_ATCM_EN ? 1 : 0;
+ btcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_BTCM_EN ? 1 : 0;
+ loczrama = cfg & PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE ? 1 : 0;
+ if (cluster->soc_data->single_cpu_mode) {
+ mode = cfg & PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE ?
+ CLUSTER_MODE_SINGLECPU : CLUSTER_MODE_SPLIT;
+ } else {
+ mode = cfg & PROC_BOOT_CFG_FLAG_R5_LOCKSTEP ?
+ CLUSTER_MODE_LOCKSTEP : CLUSTER_MODE_SPLIT;
+ }
+ halted = ctrl & PROC_BOOT_CTRL_FLAG_R5_CORE_HALT;
+
+ /*
+ * IPC-only mode detection requires both local and module resets to
+ * be deasserted and R5F core to be unhalted. Local reset status is
+ * irrelevant if module reset is asserted (POR value has local reset
+ * deasserted), and is deemed as remoteproc mode
+ */
+ if (c_state && !ret && !halted) {
+ dev_info(cdev, "configured R5F for IPC-only mode\n");
+ kproc->rproc->state = RPROC_DETACHED;
+ ret = 1;
+ /* override rproc ops with only required IPC-only mode ops */
+ kproc->rproc->ops->prepare = NULL;
+ kproc->rproc->ops->unprepare = NULL;
+ kproc->rproc->ops->start = NULL;
+ kproc->rproc->ops->stop = NULL;
+ kproc->rproc->ops->attach = k3_r5_rproc_attach;
+ kproc->rproc->ops->detach = k3_r5_rproc_detach;
+ kproc->rproc->ops->get_loaded_rsc_table =
+ k3_r5_get_loaded_rsc_table;
+ } else if (!c_state) {
+ dev_info(cdev, "configured R5F for remoteproc mode\n");
+ ret = 0;
+ } else {
+ dev_err(cdev, "mismatched mode: local_reset = %s, module_reset = %s, core_state = %s\n",
+ !ret ? "deasserted" : "asserted",
+ c_state ? "deasserted" : "asserted",
+ halted ? "halted" : "unhalted");
+ ret = -EINVAL;
+ }
+
+ /* fixup TCMs, cluster & core flags to actual values in IPC-only mode */
+ if (ret > 0) {
+ if (core == core0)
+ cluster->mode = mode;
+ core->atcm_enable = atcm_enable;
+ core->btcm_enable = btcm_enable;
+ core->loczrama = loczrama;
+ core->mem[0].dev_addr = loczrama ? 0 : K3_R5_TCM_DEV_ADDR;
+ core->mem[1].dev_addr = loczrama ? K3_R5_TCM_DEV_ADDR : 0;
+ }
+
+ return ret;
+}
+
+static int k3_r5_cluster_rproc_init(struct platform_device *pdev)
+{
+ struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
+ struct device *dev = &pdev->dev;
+ struct k3_r5_rproc *kproc;
+ struct k3_r5_core *core, *core1;
+ struct device *cdev;
+ const char *fw_name;
+ struct rproc *rproc;
+ int ret, ret1;
+
+ core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
+ list_for_each_entry(core, &cluster->cores, elem) {
+ cdev = core->dev;
+ ret = rproc_of_parse_firmware(cdev, 0, &fw_name);
+ if (ret) {
+ dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
+ ret);
+ goto out;
+ }
+
+ rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops,
+ fw_name, sizeof(*kproc));
+ if (!rproc) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ /* K3 R5s have a Region Address Translator (RAT) but no MMU */
+ rproc->has_iommu = false;
+ /* error recovery is not supported at present */
+ rproc->recovery_disabled = true;
+
+ kproc = rproc->priv;
+ kproc->cluster = cluster;
+ kproc->core = core;
+ kproc->dev = cdev;
+ kproc->rproc = rproc;
+ core->rproc = rproc;
+
+ ret = k3_r5_rproc_configure_mode(kproc);
+ if (ret < 0)
+ goto err_config;
+ if (ret)
+ goto init_rmem;
+
+ ret = k3_r5_rproc_configure(kproc);
+ if (ret) {
+ dev_err(dev, "initial configure failed, ret = %d\n",
+ ret);
+ goto err_config;
+ }
+
+init_rmem:
+ k3_r5_adjust_tcm_sizes(kproc);
+
+ ret = k3_r5_reserved_mem_init(kproc);
+ if (ret) {
+ dev_err(dev, "reserved memory init failed, ret = %d\n",
+ ret);
+ goto err_config;
+ }
+
+ ret = rproc_add(rproc);
+ if (ret) {
+ dev_err(dev, "rproc_add failed, ret = %d\n", ret);
+ goto err_add;
+ }
+
+ /* create only one rproc in lockstep mode or single-cpu mode */
+ if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
+ cluster->mode == CLUSTER_MODE_SINGLECPU)
+ break;
+ }
+
+ return 0;
+
+err_split:
+ if (rproc->state == RPROC_ATTACHED) {
+ ret1 = rproc_detach(rproc);
+ if (ret1) {
+ dev_err(kproc->dev, "failed to detach rproc, ret = %d\n",
+ ret1);
+ return ret1;
+ }
+ }
+
+ rproc_del(rproc);
+err_add:
+ k3_r5_reserved_mem_exit(kproc);
+err_config:
+ rproc_free(rproc);
+ core->rproc = NULL;
+out:
+ /* undo core0 upon any failures on core1 in split-mode */
+ if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) {
+ core = list_prev_entry(core, elem);
+ rproc = core->rproc;
+ kproc = rproc->priv;
+ goto err_split;
+ }
+ return ret;
+}
+
+static void k3_r5_cluster_rproc_exit(void *data)
+{
+ struct k3_r5_cluster *cluster = platform_get_drvdata(data);
+ struct k3_r5_rproc *kproc;
+ struct k3_r5_core *core;
+ struct rproc *rproc;
+ int ret;
+
+ /*
+ * lockstep mode and single-cpu modes have only one rproc associated
+ * with first core, whereas split-mode has two rprocs associated with
+ * each core, and requires that core1 be powered down first
+ */
+ core = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
+ cluster->mode == CLUSTER_MODE_SINGLECPU) ?
+ list_first_entry(&cluster->cores, struct k3_r5_core, elem) :
+ list_last_entry(&cluster->cores, struct k3_r5_core, elem);
+
+ list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
+ rproc = core->rproc;
+ kproc = rproc->priv;
+
+ if (rproc->state == RPROC_ATTACHED) {
+ ret = rproc_detach(rproc);
+ if (ret) {
+ dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret);
+ return;
+ }
+ }
+
+ rproc_del(rproc);
+
+ k3_r5_reserved_mem_exit(kproc);
+
+ rproc_free(rproc);
+ core->rproc = NULL;
+ }
+}
+
+static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev,
+ struct k3_r5_core *core)
+{
+ static const char * const mem_names[] = {"atcm", "btcm"};
+ struct device *dev = &pdev->dev;
+ struct resource *res;
+ int num_mems;
+ int i;
+
+ num_mems = ARRAY_SIZE(mem_names);
+ core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL);
+ if (!core->mem)
+ return -ENOMEM;
+
+ for (i = 0; i < num_mems; i++) {
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+ mem_names[i]);
+ if (!res) {
+ dev_err(dev, "found no memory resource for %s\n",
+ mem_names[i]);
+ return -EINVAL;
+ }
+ if (!devm_request_mem_region(dev, res->start,
+ resource_size(res),
+ dev_name(dev))) {
+ dev_err(dev, "could not request %s region for resource\n",
+ mem_names[i]);
+ return -EBUSY;
+ }
+
+ /*
+ * TCMs are designed in general to support RAM-like backing
+ * memories. So, map these as Normal Non-Cached memories. This
+ * also avoids/fixes any potential alignment faults due to
+ * unaligned data accesses when using memcpy() or memset()
+ * functions (normally seen with device type memory).
+ */
+ core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
+ resource_size(res));
+ if (!core->mem[i].cpu_addr) {
+ dev_err(dev, "failed to map %s memory\n", mem_names[i]);
+ return -ENOMEM;
+ }
+ core->mem[i].bus_addr = res->start;
+
+ /*
+ * TODO:
+ * The R5F cores can place ATCM & BTCM anywhere in its address
+ * based on the corresponding Region Registers in the System
+ * Control coprocessor. For now, place ATCM and BTCM at
+ * addresses 0 and 0x41010000 (same as the bus address on AM65x
+ * SoCs) based on loczrama setting
+ */
+ if (!strcmp(mem_names[i], "atcm")) {
+ core->mem[i].dev_addr = core->loczrama ?
+ 0 : K3_R5_TCM_DEV_ADDR;
+ } else {
+ core->mem[i].dev_addr = core->loczrama ?
+ K3_R5_TCM_DEV_ADDR : 0;
+ }
+ core->mem[i].size = resource_size(res);
+
+ dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
+ mem_names[i], &core->mem[i].bus_addr,
+ core->mem[i].size, core->mem[i].cpu_addr,
+ core->mem[i].dev_addr);
+ }
+ core->num_mems = num_mems;
+
+ return 0;
+}
+
+static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev,
+ struct k3_r5_core *core)
+{
+ struct device_node *np = pdev->dev.of_node;
+ struct device *dev = &pdev->dev;
+ struct device_node *sram_np;
+ struct resource res;
+ int num_sram;
+ int i, ret;
+
+ num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
+ if (num_sram <= 0) {
+ dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n",
+ num_sram);
+ return 0;
+ }
+
+ core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL);
+ if (!core->sram)
+ return -ENOMEM;
+
+ for (i = 0; i < num_sram; i++) {
+ sram_np = of_parse_phandle(np, "sram", i);
+ if (!sram_np)
+ return -EINVAL;
+
+ if (!of_device_is_available(sram_np)) {
+ of_node_put(sram_np);
+ return -EINVAL;
+ }
+
+ ret = of_address_to_resource(sram_np, 0, &res);
+ of_node_put(sram_np);
+ if (ret)
+ return -EINVAL;
+
+ core->sram[i].bus_addr = res.start;
+ core->sram[i].dev_addr = res.start;
+ core->sram[i].size = resource_size(&res);
+ core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start,
+ resource_size(&res));
+ if (!core->sram[i].cpu_addr) {
+ dev_err(dev, "failed to parse and map sram%d memory at %pad\n",
+ i, &res.start);
+ return -ENOMEM;
+ }
+
+ dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
+ i, &core->sram[i].bus_addr,
+ core->sram[i].size, core->sram[i].cpu_addr,
+ core->sram[i].dev_addr);
+ }
+ core->num_sram = num_sram;
+
+ return 0;
+}
+
+static
+struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev,
+ const struct ti_sci_handle *sci)
+{
+ struct ti_sci_proc *tsp;
+ u32 temp[2];
+ int ret;
+
+ ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids",
+ temp, 2);
+ if (ret < 0)
+ return ERR_PTR(ret);
+
+ tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL);
+ if (!tsp)
+ return ERR_PTR(-ENOMEM);
+
+ tsp->dev = dev;
+ tsp->sci = sci;
+ tsp->ops = &sci->ops.proc_ops;
+ tsp->proc_id = temp[0];
+ tsp->host_id = temp[1];
+
+ return tsp;
+}
+
+static int k3_r5_core_of_init(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct device_node *np = dev_of_node(dev);
+ struct k3_r5_core *core;
+ int ret;
+
+ if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL))
+ return -ENOMEM;
+
+ core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
+ if (!core) {
+ ret = -ENOMEM;
+ goto err;
+ }
+
+ core->dev = dev;
+ /*
+ * Use SoC Power-on-Reset values as default if no DT properties are
+ * used to dictate the TCM configurations
+ */
+ core->atcm_enable = 0;
+ core->btcm_enable = 1;
+ core->loczrama = 1;
+
+ ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable);
+ if (ret < 0 && ret != -EINVAL) {
+ dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n",
+ ret);
+ goto err;
+ }
+
+ ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable);
+ if (ret < 0 && ret != -EINVAL) {
+ dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n",
+ ret);
+ goto err;
+ }
+
+ ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama);
+ if (ret < 0 && ret != -EINVAL) {
+ dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret);
+ goto err;
+ }
+
+ core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
+ if (IS_ERR(core->ti_sci)) {
+ ret = PTR_ERR(core->ti_sci);
+ if (ret != -EPROBE_DEFER) {
+ dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
+ ret);
+ }
+ core->ti_sci = NULL;
+ goto err;
+ }
+
+ ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id);
+ if (ret) {
+ dev_err(dev, "missing 'ti,sci-dev-id' property\n");
+ goto err;
+ }
+
+ core->reset = devm_reset_control_get_exclusive(dev, NULL);
+ if (IS_ERR_OR_NULL(core->reset)) {
+ ret = PTR_ERR_OR_ZERO(core->reset);
+ if (!ret)
+ ret = -ENODEV;
+ if (ret != -EPROBE_DEFER) {
+ dev_err(dev, "failed to get reset handle, ret = %d\n",
+ ret);
+ }
+ goto err;
+ }
+
+ core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci);
+ if (IS_ERR(core->tsp)) {
+ ret = PTR_ERR(core->tsp);
+ dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
+ ret);
+ goto err;
+ }
+
+ ret = k3_r5_core_of_get_internal_memories(pdev, core);
+ if (ret) {
+ dev_err(dev, "failed to get internal memories, ret = %d\n",
+ ret);
+ goto err;
+ }
+
+ ret = k3_r5_core_of_get_sram_memories(pdev, core);
+ if (ret) {
+ dev_err(dev, "failed to get sram memories, ret = %d\n", ret);
+ goto err;
+ }
+
+ ret = ti_sci_proc_request(core->tsp);
+ if (ret < 0) {
+ dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
+ goto err;
+ }
+
+ platform_set_drvdata(pdev, core);
+ devres_close_group(dev, k3_r5_core_of_init);
+
+ return 0;
+
+err:
+ devres_release_group(dev, k3_r5_core_of_init);
+ return ret;
+}
+
+/*
+ * free the resources explicitly since driver model is not being used
+ * for the child R5F devices
+ */
+static void k3_r5_core_of_exit(struct platform_device *pdev)
+{
+ struct k3_r5_core *core = platform_get_drvdata(pdev);
+ struct device *dev = &pdev->dev;
+ int ret;
+
+ ret = ti_sci_proc_release(core->tsp);
+ if (ret)
+ dev_err(dev, "failed to release proc, ret = %d\n", ret);
+
+ platform_set_drvdata(pdev, NULL);
+ devres_release_group(dev, k3_r5_core_of_init);
+}
+
+static void k3_r5_cluster_of_exit(void *data)
+{
+ struct k3_r5_cluster *cluster = platform_get_drvdata(data);
+ struct platform_device *cpdev;
+ struct k3_r5_core *core, *temp;
+
+ list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
+ list_del(&core->elem);
+ cpdev = to_platform_device(core->dev);
+ k3_r5_core_of_exit(cpdev);
+ }
+}
+
+static int k3_r5_cluster_of_init(struct platform_device *pdev)
+{
+ struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
+ struct device *dev = &pdev->dev;
+ struct device_node *np = dev_of_node(dev);
+ struct platform_device *cpdev;
+ struct device_node *child;
+ struct k3_r5_core *core;
+ int ret;
+
+ for_each_available_child_of_node(np, child) {
+ cpdev = of_find_device_by_node(child);
+ if (!cpdev) {
+ ret = -ENODEV;
+ dev_err(dev, "could not get R5 core platform device\n");
+ of_node_put(child);
+ goto fail;
+ }
+
+ ret = k3_r5_core_of_init(cpdev);
+ if (ret) {
+ dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n",
+ ret);
+ put_device(&cpdev->dev);
+ of_node_put(child);
+ goto fail;
+ }
+
+ core = platform_get_drvdata(cpdev);
+ put_device(&cpdev->dev);
+ list_add_tail(&core->elem, &cluster->cores);
+ }
+
+ return 0;
+
+fail:
+ k3_r5_cluster_of_exit(pdev);
+ return ret;
+}
+
+static int k3_r5_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct device_node *np = dev_of_node(dev);
+ struct k3_r5_cluster *cluster;
+ const struct k3_r5_soc_data *data;
+ int ret;
+ int num_cores;
+
+ data = of_device_get_match_data(&pdev->dev);
+ if (!data) {
+ dev_err(dev, "SoC-specific data is not defined\n");
+ return -ENODEV;
+ }
+
+ cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL);
+ if (!cluster)
+ return -ENOMEM;
+
+ cluster->dev = dev;
+ /*
+ * default to most common efuse configurations - Split-mode on AM64x
+ * and LockStep-mode on all others
+ */
+ cluster->mode = data->single_cpu_mode ?
+ CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP;
+ cluster->soc_data = data;
+ INIT_LIST_HEAD(&cluster->cores);
+
+ ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode);
+ if (ret < 0 && ret != -EINVAL) {
+ dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n",
+ ret);
+ return ret;
+ }
+
+ num_cores = of_get_available_child_count(np);
+ if (num_cores != 2) {
+ dev_err(dev, "MCU cluster requires both R5F cores to be enabled, num_cores = %d\n",
+ num_cores);
+ return -ENODEV;
+ }
+
+ platform_set_drvdata(pdev, cluster);
+
+ ret = devm_of_platform_populate(dev);
+ if (ret) {
+ dev_err(dev, "devm_of_platform_populate failed, ret = %d\n",
+ ret);
+ return ret;
+ }
+
+ ret = k3_r5_cluster_of_init(pdev);
+ if (ret) {
+ dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret);
+ return ret;
+ }
+
+ ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev);
+ if (ret)
+ return ret;
+
+ ret = k3_r5_cluster_rproc_init(pdev);
+ if (ret) {
+ dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n",
+ ret);
+ return ret;
+ }
+
+ ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+static const struct k3_r5_soc_data am65_j721e_soc_data = {
+ .tcm_is_double = false,
+ .tcm_ecc_autoinit = false,
+ .single_cpu_mode = false,
+};
+
+static const struct k3_r5_soc_data j7200_j721s2_soc_data = {
+ .tcm_is_double = true,
+ .tcm_ecc_autoinit = true,
+ .single_cpu_mode = false,
+};
+
+static const struct k3_r5_soc_data am64_soc_data = {
+ .tcm_is_double = true,
+ .tcm_ecc_autoinit = true,
+ .single_cpu_mode = true,
+};
+
+static const struct of_device_id k3_r5_of_match[] = {
+ { .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, },
+ { .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, },
+ { .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, },
+ { .compatible = "ti,am64-r5fss", .data = &am64_soc_data, },
+ { .compatible = "ti,j721s2-r5fss", .data = &j7200_j721s2_soc_data, },
+ { /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(of, k3_r5_of_match);
+
+static struct platform_driver k3_r5_rproc_driver = {
+ .probe = k3_r5_probe,
+ .driver = {
+ .name = "k3_r5_rproc",
+ .of_match_table = k3_r5_of_match,
+ },
+};
+
+module_platform_driver(k3_r5_rproc_driver);
+
+MODULE_LICENSE("GPL v2");
+MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
+MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");