diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/scsi/sym53c8xx_2/sym_malloc.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/scsi/sym53c8xx_2/sym_malloc.c')
-rw-r--r-- | drivers/scsi/sym53c8xx_2/sym_malloc.c | 365 |
1 files changed, 365 insertions, 0 deletions
diff --git a/drivers/scsi/sym53c8xx_2/sym_malloc.c b/drivers/scsi/sym53c8xx_2/sym_malloc.c new file mode 100644 index 000000000..eb5c045c7 --- /dev/null +++ b/drivers/scsi/sym53c8xx_2/sym_malloc.c @@ -0,0 +1,365 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family + * of PCI-SCSI IO processors. + * + * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> + * + * This driver is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-2000 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier <wolf@cologne.de> + * Stefan Esser <se@mi.Uni-Koeln.de> + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> + * + *----------------------------------------------------------------------------- + */ + +#include "sym_glue.h" + +/* + * Simple power of two buddy-like generic allocator. + * Provides naturally aligned memory chunks. + * + * This simple code is not intended to be fast, but to + * provide power of 2 aligned memory allocations. + * Since the SCRIPTS processor only supplies 8 bit arithmetic, + * this allocator allows simple and fast address calculations + * from the SCRIPTS code. In addition, cache line alignment + * is guaranteed for power of 2 cache line size. + * + * This allocator has been developed for the Linux sym53c8xx + * driver, since this O/S does not provide naturally aligned + * allocations. + * It has the advantage of allowing the driver to use private + * pages of memory that will be useful if we ever need to deal + * with IO MMUs for PCI. + */ +static void *___sym_malloc(m_pool_p mp, int size) +{ + int i = 0; + int s = (1 << SYM_MEM_SHIFT); + int j; + void *a; + m_link_p h = mp->h; + + if (size > SYM_MEM_CLUSTER_SIZE) + return NULL; + + while (size > s) { + s <<= 1; + ++i; + } + + j = i; + while (!h[j].next) { + if (s == SYM_MEM_CLUSTER_SIZE) { + h[j].next = (m_link_p) M_GET_MEM_CLUSTER(); + if (h[j].next) + h[j].next->next = NULL; + break; + } + ++j; + s <<= 1; + } + a = h[j].next; + if (a) { + h[j].next = h[j].next->next; + while (j > i) { + j -= 1; + s >>= 1; + h[j].next = (m_link_p) (a+s); + h[j].next->next = NULL; + } + } +#ifdef DEBUG + printf("___sym_malloc(%d) = %p\n", size, (void *) a); +#endif + return a; +} + +/* + * Counter-part of the generic allocator. + */ +static void ___sym_mfree(m_pool_p mp, void *ptr, int size) +{ + int i = 0; + int s = (1 << SYM_MEM_SHIFT); + m_link_p q; + unsigned long a, b; + m_link_p h = mp->h; + +#ifdef DEBUG + printf("___sym_mfree(%p, %d)\n", ptr, size); +#endif + + if (size > SYM_MEM_CLUSTER_SIZE) + return; + + while (size > s) { + s <<= 1; + ++i; + } + + a = (unsigned long)ptr; + + while (1) { + if (s == SYM_MEM_CLUSTER_SIZE) { +#ifdef SYM_MEM_FREE_UNUSED + M_FREE_MEM_CLUSTER((void *)a); +#else + ((m_link_p) a)->next = h[i].next; + h[i].next = (m_link_p) a; +#endif + break; + } + b = a ^ s; + q = &h[i]; + while (q->next && q->next != (m_link_p) b) { + q = q->next; + } + if (!q->next) { + ((m_link_p) a)->next = h[i].next; + h[i].next = (m_link_p) a; + break; + } + q->next = q->next->next; + a = a & b; + s <<= 1; + ++i; + } +} + +/* + * Verbose and zeroing allocator that wrapps to the generic allocator. + */ +static void *__sym_calloc2(m_pool_p mp, int size, char *name, int uflags) +{ + void *p; + + p = ___sym_malloc(mp, size); + + if (DEBUG_FLAGS & DEBUG_ALLOC) { + printf ("new %-10s[%4d] @%p.\n", name, size, p); + } + + if (p) + memset(p, 0, size); + else if (uflags & SYM_MEM_WARN) + printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); + return p; +} +#define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, SYM_MEM_WARN) + +/* + * Its counter-part. + */ +static void __sym_mfree(m_pool_p mp, void *ptr, int size, char *name) +{ + if (DEBUG_FLAGS & DEBUG_ALLOC) + printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); + + ___sym_mfree(mp, ptr, size); +} + +/* + * Default memory pool we donnot need to involve in DMA. + * + * With DMA abstraction, we use functions (methods), to + * distinguish between non DMAable memory and DMAable memory. + */ +static void *___mp0_get_mem_cluster(m_pool_p mp) +{ + void *m = sym_get_mem_cluster(); + if (m) + ++mp->nump; + return m; +} + +#ifdef SYM_MEM_FREE_UNUSED +static void ___mp0_free_mem_cluster(m_pool_p mp, void *m) +{ + sym_free_mem_cluster(m); + --mp->nump; +} +#else +#define ___mp0_free_mem_cluster NULL +#endif + +static struct sym_m_pool mp0 = { + NULL, + ___mp0_get_mem_cluster, + ___mp0_free_mem_cluster +}; + +/* + * Methods that maintains DMAable pools according to user allocations. + * New pools are created on the fly when a new pool id is provided. + * They are deleted on the fly when they get emptied. + */ +/* Get a memory cluster that matches the DMA constraints of a given pool */ +static void * ___get_dma_mem_cluster(m_pool_p mp) +{ + m_vtob_p vbp; + void *vaddr; + + vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); + if (!vbp) + goto out_err; + + vaddr = sym_m_get_dma_mem_cluster(mp, vbp); + if (vaddr) { + int hc = VTOB_HASH_CODE(vaddr); + vbp->next = mp->vtob[hc]; + mp->vtob[hc] = vbp; + ++mp->nump; + } + return vaddr; +out_err: + return NULL; +} + +#ifdef SYM_MEM_FREE_UNUSED +/* Free a memory cluster and associated resources for DMA */ +static void ___free_dma_mem_cluster(m_pool_p mp, void *m) +{ + m_vtob_p *vbpp, vbp; + int hc = VTOB_HASH_CODE(m); + + vbpp = &mp->vtob[hc]; + while (*vbpp && (*vbpp)->vaddr != m) + vbpp = &(*vbpp)->next; + if (*vbpp) { + vbp = *vbpp; + *vbpp = (*vbpp)->next; + sym_m_free_dma_mem_cluster(mp, vbp); + __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); + --mp->nump; + } +} +#endif + +/* Fetch the memory pool for a given pool id (i.e. DMA constraints) */ +static inline m_pool_p ___get_dma_pool(m_pool_ident_t dev_dmat) +{ + m_pool_p mp; + for (mp = mp0.next; + mp && !sym_m_pool_match(mp->dev_dmat, dev_dmat); + mp = mp->next); + return mp; +} + +/* Create a new memory DMAable pool (when fetch failed) */ +static m_pool_p ___cre_dma_pool(m_pool_ident_t dev_dmat) +{ + m_pool_p mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); + if (mp) { + mp->dev_dmat = dev_dmat; + mp->get_mem_cluster = ___get_dma_mem_cluster; +#ifdef SYM_MEM_FREE_UNUSED + mp->free_mem_cluster = ___free_dma_mem_cluster; +#endif + mp->next = mp0.next; + mp0.next = mp; + return mp; + } + return NULL; +} + +#ifdef SYM_MEM_FREE_UNUSED +/* Destroy a DMAable memory pool (when got emptied) */ +static void ___del_dma_pool(m_pool_p p) +{ + m_pool_p *pp = &mp0.next; + + while (*pp && *pp != p) + pp = &(*pp)->next; + if (*pp) { + *pp = (*pp)->next; + __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); + } +} +#endif + +/* This lock protects only the memory allocation/free. */ +static DEFINE_SPINLOCK(sym53c8xx_lock); + +/* + * Actual allocator for DMAable memory. + */ +void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name) +{ + unsigned long flags; + m_pool_p mp; + void *m = NULL; + + spin_lock_irqsave(&sym53c8xx_lock, flags); + mp = ___get_dma_pool(dev_dmat); + if (!mp) + mp = ___cre_dma_pool(dev_dmat); + if (!mp) + goto out; + m = __sym_calloc(mp, size, name); +#ifdef SYM_MEM_FREE_UNUSED + if (!mp->nump) + ___del_dma_pool(mp); +#endif + + out: + spin_unlock_irqrestore(&sym53c8xx_lock, flags); + return m; +} + +void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name) +{ + unsigned long flags; + m_pool_p mp; + + spin_lock_irqsave(&sym53c8xx_lock, flags); + mp = ___get_dma_pool(dev_dmat); + if (!mp) + goto out; + __sym_mfree(mp, m, size, name); +#ifdef SYM_MEM_FREE_UNUSED + if (!mp->nump) + ___del_dma_pool(mp); +#endif + out: + spin_unlock_irqrestore(&sym53c8xx_lock, flags); +} + +/* + * Actual virtual to bus physical address translator + * for 32 bit addressable DMAable memory. + */ +dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m) +{ + unsigned long flags; + m_pool_p mp; + int hc = VTOB_HASH_CODE(m); + m_vtob_p vp = NULL; + void *a = (void *)((unsigned long)m & ~SYM_MEM_CLUSTER_MASK); + dma_addr_t b; + + spin_lock_irqsave(&sym53c8xx_lock, flags); + mp = ___get_dma_pool(dev_dmat); + if (mp) { + vp = mp->vtob[hc]; + while (vp && vp->vaddr != a) + vp = vp->next; + } + if (!vp) + panic("sym: VTOBUS FAILED!\n"); + b = vp->baddr + (m - a); + spin_unlock_irqrestore(&sym53c8xx_lock, flags); + return b; +} |