diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/soc/qcom/smem.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/soc/qcom/smem.c')
-rw-r--r-- | drivers/soc/qcom/smem.c | 1197 |
1 files changed, 1197 insertions, 0 deletions
diff --git a/drivers/soc/qcom/smem.c b/drivers/soc/qcom/smem.c new file mode 100644 index 000000000..af8d90efd --- /dev/null +++ b/drivers/soc/qcom/smem.c @@ -0,0 +1,1197 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (c) 2015, Sony Mobile Communications AB. + * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. + */ + +#include <linux/hwspinlock.h> +#include <linux/io.h> +#include <linux/module.h> +#include <linux/of.h> +#include <linux/of_address.h> +#include <linux/of_reserved_mem.h> +#include <linux/platform_device.h> +#include <linux/sizes.h> +#include <linux/slab.h> +#include <linux/soc/qcom/smem.h> + +/* + * The Qualcomm shared memory system is a allocate only heap structure that + * consists of one of more memory areas that can be accessed by the processors + * in the SoC. + * + * All systems contains a global heap, accessible by all processors in the SoC, + * with a table of contents data structure (@smem_header) at the beginning of + * the main shared memory block. + * + * The global header contains meta data for allocations as well as a fixed list + * of 512 entries (@smem_global_entry) that can be initialized to reference + * parts of the shared memory space. + * + * + * In addition to this global heap a set of "private" heaps can be set up at + * boot time with access restrictions so that only certain processor pairs can + * access the data. + * + * These partitions are referenced from an optional partition table + * (@smem_ptable), that is found 4kB from the end of the main smem region. The + * partition table entries (@smem_ptable_entry) lists the involved processors + * (or hosts) and their location in the main shared memory region. + * + * Each partition starts with a header (@smem_partition_header) that identifies + * the partition and holds properties for the two internal memory regions. The + * two regions are cached and non-cached memory respectively. Each region + * contain a link list of allocation headers (@smem_private_entry) followed by + * their data. + * + * Items in the non-cached region are allocated from the start of the partition + * while items in the cached region are allocated from the end. The free area + * is hence the region between the cached and non-cached offsets. The header of + * cached items comes after the data. + * + * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure + * for the global heap. A new global partition is created from the global heap + * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is + * set by the bootloader. + * + * To synchronize allocations in the shared memory heaps a remote spinlock must + * be held - currently lock number 3 of the sfpb or tcsr is used for this on all + * platforms. + * + */ + +/* + * The version member of the smem header contains an array of versions for the + * various software components in the SoC. We verify that the boot loader + * version is a valid version as a sanity check. + */ +#define SMEM_MASTER_SBL_VERSION_INDEX 7 +#define SMEM_GLOBAL_HEAP_VERSION 11 +#define SMEM_GLOBAL_PART_VERSION 12 + +/* + * The first 8 items are only to be allocated by the boot loader while + * initializing the heap. + */ +#define SMEM_ITEM_LAST_FIXED 8 + +/* Highest accepted item number, for both global and private heaps */ +#define SMEM_ITEM_COUNT 512 + +/* Processor/host identifier for the application processor */ +#define SMEM_HOST_APPS 0 + +/* Processor/host identifier for the global partition */ +#define SMEM_GLOBAL_HOST 0xfffe + +/* Max number of processors/hosts in a system */ +#define SMEM_HOST_COUNT 15 + +/** + * struct smem_proc_comm - proc_comm communication struct (legacy) + * @command: current command to be executed + * @status: status of the currently requested command + * @params: parameters to the command + */ +struct smem_proc_comm { + __le32 command; + __le32 status; + __le32 params[2]; +}; + +/** + * struct smem_global_entry - entry to reference smem items on the heap + * @allocated: boolean to indicate if this entry is used + * @offset: offset to the allocated space + * @size: size of the allocated space, 8 byte aligned + * @aux_base: base address for the memory region used by this unit, or 0 for + * the default region. bits 0,1 are reserved + */ +struct smem_global_entry { + __le32 allocated; + __le32 offset; + __le32 size; + __le32 aux_base; /* bits 1:0 reserved */ +}; +#define AUX_BASE_MASK 0xfffffffc + +/** + * struct smem_header - header found in beginning of primary smem region + * @proc_comm: proc_comm communication interface (legacy) + * @version: array of versions for the various subsystems + * @initialized: boolean to indicate that smem is initialized + * @free_offset: index of the first unallocated byte in smem + * @available: number of bytes available for allocation + * @reserved: reserved field, must be 0 + * @toc: array of references to items + */ +struct smem_header { + struct smem_proc_comm proc_comm[4]; + __le32 version[32]; + __le32 initialized; + __le32 free_offset; + __le32 available; + __le32 reserved; + struct smem_global_entry toc[SMEM_ITEM_COUNT]; +}; + +/** + * struct smem_ptable_entry - one entry in the @smem_ptable list + * @offset: offset, within the main shared memory region, of the partition + * @size: size of the partition + * @flags: flags for the partition (currently unused) + * @host0: first processor/host with access to this partition + * @host1: second processor/host with access to this partition + * @cacheline: alignment for "cached" entries + * @reserved: reserved entries for later use + */ +struct smem_ptable_entry { + __le32 offset; + __le32 size; + __le32 flags; + __le16 host0; + __le16 host1; + __le32 cacheline; + __le32 reserved[7]; +}; + +/** + * struct smem_ptable - partition table for the private partitions + * @magic: magic number, must be SMEM_PTABLE_MAGIC + * @version: version of the partition table + * @num_entries: number of partitions in the table + * @reserved: for now reserved entries + * @entry: list of @smem_ptable_entry for the @num_entries partitions + */ +struct smem_ptable { + u8 magic[4]; + __le32 version; + __le32 num_entries; + __le32 reserved[5]; + struct smem_ptable_entry entry[]; +}; + +static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */ + +/** + * struct smem_partition_header - header of the partitions + * @magic: magic number, must be SMEM_PART_MAGIC + * @host0: first processor/host with access to this partition + * @host1: second processor/host with access to this partition + * @size: size of the partition + * @offset_free_uncached: offset to the first free byte of uncached memory in + * this partition + * @offset_free_cached: offset to the first free byte of cached memory in this + * partition + * @reserved: for now reserved entries + */ +struct smem_partition_header { + u8 magic[4]; + __le16 host0; + __le16 host1; + __le32 size; + __le32 offset_free_uncached; + __le32 offset_free_cached; + __le32 reserved[3]; +}; + +/** + * struct smem_partition - describes smem partition + * @virt_base: starting virtual address of partition + * @phys_base: starting physical address of partition + * @cacheline: alignment for "cached" entries + * @size: size of partition + */ +struct smem_partition { + void __iomem *virt_base; + phys_addr_t phys_base; + size_t cacheline; + size_t size; +}; + +static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 }; + +/** + * struct smem_private_entry - header of each item in the private partition + * @canary: magic number, must be SMEM_PRIVATE_CANARY + * @item: identifying number of the smem item + * @size: size of the data, including padding bytes + * @padding_data: number of bytes of padding of data + * @padding_hdr: number of bytes of padding between the header and the data + * @reserved: for now reserved entry + */ +struct smem_private_entry { + u16 canary; /* bytes are the same so no swapping needed */ + __le16 item; + __le32 size; /* includes padding bytes */ + __le16 padding_data; + __le16 padding_hdr; + __le32 reserved; +}; +#define SMEM_PRIVATE_CANARY 0xa5a5 + +/** + * struct smem_info - smem region info located after the table of contents + * @magic: magic number, must be SMEM_INFO_MAGIC + * @size: size of the smem region + * @base_addr: base address of the smem region + * @reserved: for now reserved entry + * @num_items: highest accepted item number + */ +struct smem_info { + u8 magic[4]; + __le32 size; + __le32 base_addr; + __le32 reserved; + __le16 num_items; +}; + +static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */ + +/** + * struct smem_region - representation of a chunk of memory used for smem + * @aux_base: identifier of aux_mem base + * @virt_base: virtual base address of memory with this aux_mem identifier + * @size: size of the memory region + */ +struct smem_region { + phys_addr_t aux_base; + void __iomem *virt_base; + size_t size; +}; + +/** + * struct qcom_smem - device data for the smem device + * @dev: device pointer + * @hwlock: reference to a hwspinlock + * @ptable: virtual base of partition table + * @global_partition: describes for global partition when in use + * @partitions: list of partitions of current processor/host + * @item_count: max accepted item number + * @socinfo: platform device pointer + * @num_regions: number of @regions + * @regions: list of the memory regions defining the shared memory + */ +struct qcom_smem { + struct device *dev; + + struct hwspinlock *hwlock; + + u32 item_count; + struct platform_device *socinfo; + struct smem_ptable *ptable; + struct smem_partition global_partition; + struct smem_partition partitions[SMEM_HOST_COUNT]; + + unsigned num_regions; + struct smem_region regions[]; +}; + +static void * +phdr_to_last_uncached_entry(struct smem_partition_header *phdr) +{ + void *p = phdr; + + return p + le32_to_cpu(phdr->offset_free_uncached); +} + +static struct smem_private_entry * +phdr_to_first_cached_entry(struct smem_partition_header *phdr, + size_t cacheline) +{ + void *p = phdr; + struct smem_private_entry *e; + + return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*e), cacheline); +} + +static void * +phdr_to_last_cached_entry(struct smem_partition_header *phdr) +{ + void *p = phdr; + + return p + le32_to_cpu(phdr->offset_free_cached); +} + +static struct smem_private_entry * +phdr_to_first_uncached_entry(struct smem_partition_header *phdr) +{ + void *p = phdr; + + return p + sizeof(*phdr); +} + +static struct smem_private_entry * +uncached_entry_next(struct smem_private_entry *e) +{ + void *p = e; + + return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) + + le32_to_cpu(e->size); +} + +static struct smem_private_entry * +cached_entry_next(struct smem_private_entry *e, size_t cacheline) +{ + void *p = e; + + return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline); +} + +static void *uncached_entry_to_item(struct smem_private_entry *e) +{ + void *p = e; + + return p + sizeof(*e) + le16_to_cpu(e->padding_hdr); +} + +static void *cached_entry_to_item(struct smem_private_entry *e) +{ + void *p = e; + + return p - le32_to_cpu(e->size); +} + +/* Pointer to the one and only smem handle */ +static struct qcom_smem *__smem; + +/* Timeout (ms) for the trylock of remote spinlocks */ +#define HWSPINLOCK_TIMEOUT 1000 + +static int qcom_smem_alloc_private(struct qcom_smem *smem, + struct smem_partition *part, + unsigned item, + size_t size) +{ + struct smem_private_entry *hdr, *end; + struct smem_partition_header *phdr; + size_t alloc_size; + void *cached; + void *p_end; + + phdr = (struct smem_partition_header __force *)part->virt_base; + p_end = (void *)phdr + part->size; + + hdr = phdr_to_first_uncached_entry(phdr); + end = phdr_to_last_uncached_entry(phdr); + cached = phdr_to_last_cached_entry(phdr); + + if (WARN_ON((void *)end > p_end || cached > p_end)) + return -EINVAL; + + while (hdr < end) { + if (hdr->canary != SMEM_PRIVATE_CANARY) + goto bad_canary; + if (le16_to_cpu(hdr->item) == item) + return -EEXIST; + + hdr = uncached_entry_next(hdr); + } + + if (WARN_ON((void *)hdr > p_end)) + return -EINVAL; + + /* Check that we don't grow into the cached region */ + alloc_size = sizeof(*hdr) + ALIGN(size, 8); + if ((void *)hdr + alloc_size > cached) { + dev_err(smem->dev, "Out of memory\n"); + return -ENOSPC; + } + + hdr->canary = SMEM_PRIVATE_CANARY; + hdr->item = cpu_to_le16(item); + hdr->size = cpu_to_le32(ALIGN(size, 8)); + hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size); + hdr->padding_hdr = 0; + + /* + * Ensure the header is written before we advance the free offset, so + * that remote processors that does not take the remote spinlock still + * gets a consistent view of the linked list. + */ + wmb(); + le32_add_cpu(&phdr->offset_free_uncached, alloc_size); + + return 0; +bad_canary: + dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n", + le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1)); + + return -EINVAL; +} + +static int qcom_smem_alloc_global(struct qcom_smem *smem, + unsigned item, + size_t size) +{ + struct smem_global_entry *entry; + struct smem_header *header; + + header = smem->regions[0].virt_base; + entry = &header->toc[item]; + if (entry->allocated) + return -EEXIST; + + size = ALIGN(size, 8); + if (WARN_ON(size > le32_to_cpu(header->available))) + return -ENOMEM; + + entry->offset = header->free_offset; + entry->size = cpu_to_le32(size); + + /* + * Ensure the header is consistent before we mark the item allocated, + * so that remote processors will get a consistent view of the item + * even though they do not take the spinlock on read. + */ + wmb(); + entry->allocated = cpu_to_le32(1); + + le32_add_cpu(&header->free_offset, size); + le32_add_cpu(&header->available, -size); + + return 0; +} + +/** + * qcom_smem_alloc() - allocate space for a smem item + * @host: remote processor id, or -1 + * @item: smem item handle + * @size: number of bytes to be allocated + * + * Allocate space for a given smem item of size @size, given that the item is + * not yet allocated. + */ +int qcom_smem_alloc(unsigned host, unsigned item, size_t size) +{ + struct smem_partition *part; + unsigned long flags; + int ret; + + if (!__smem) + return -EPROBE_DEFER; + + if (item < SMEM_ITEM_LAST_FIXED) { + dev_err(__smem->dev, + "Rejecting allocation of static entry %d\n", item); + return -EINVAL; + } + + if (WARN_ON(item >= __smem->item_count)) + return -EINVAL; + + ret = hwspin_lock_timeout_irqsave(__smem->hwlock, + HWSPINLOCK_TIMEOUT, + &flags); + if (ret) + return ret; + + if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { + part = &__smem->partitions[host]; + ret = qcom_smem_alloc_private(__smem, part, item, size); + } else if (__smem->global_partition.virt_base) { + part = &__smem->global_partition; + ret = qcom_smem_alloc_private(__smem, part, item, size); + } else { + ret = qcom_smem_alloc_global(__smem, item, size); + } + + hwspin_unlock_irqrestore(__smem->hwlock, &flags); + + return ret; +} +EXPORT_SYMBOL(qcom_smem_alloc); + +static void *qcom_smem_get_global(struct qcom_smem *smem, + unsigned item, + size_t *size) +{ + struct smem_header *header; + struct smem_region *region; + struct smem_global_entry *entry; + u64 entry_offset; + u32 e_size; + u32 aux_base; + unsigned i; + + header = smem->regions[0].virt_base; + entry = &header->toc[item]; + if (!entry->allocated) + return ERR_PTR(-ENXIO); + + aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK; + + for (i = 0; i < smem->num_regions; i++) { + region = &smem->regions[i]; + + if ((u32)region->aux_base == aux_base || !aux_base) { + e_size = le32_to_cpu(entry->size); + entry_offset = le32_to_cpu(entry->offset); + + if (WARN_ON(e_size + entry_offset > region->size)) + return ERR_PTR(-EINVAL); + + if (size != NULL) + *size = e_size; + + return region->virt_base + entry_offset; + } + } + + return ERR_PTR(-ENOENT); +} + +static void *qcom_smem_get_private(struct qcom_smem *smem, + struct smem_partition *part, + unsigned item, + size_t *size) +{ + struct smem_private_entry *e, *end; + struct smem_partition_header *phdr; + void *item_ptr, *p_end; + u32 padding_data; + u32 e_size; + + phdr = (struct smem_partition_header __force *)part->virt_base; + p_end = (void *)phdr + part->size; + + e = phdr_to_first_uncached_entry(phdr); + end = phdr_to_last_uncached_entry(phdr); + + while (e < end) { + if (e->canary != SMEM_PRIVATE_CANARY) + goto invalid_canary; + + if (le16_to_cpu(e->item) == item) { + if (size != NULL) { + e_size = le32_to_cpu(e->size); + padding_data = le16_to_cpu(e->padding_data); + + if (WARN_ON(e_size > part->size || padding_data > e_size)) + return ERR_PTR(-EINVAL); + + *size = e_size - padding_data; + } + + item_ptr = uncached_entry_to_item(e); + if (WARN_ON(item_ptr > p_end)) + return ERR_PTR(-EINVAL); + + return item_ptr; + } + + e = uncached_entry_next(e); + } + + if (WARN_ON((void *)e > p_end)) + return ERR_PTR(-EINVAL); + + /* Item was not found in the uncached list, search the cached list */ + + e = phdr_to_first_cached_entry(phdr, part->cacheline); + end = phdr_to_last_cached_entry(phdr); + + if (WARN_ON((void *)e < (void *)phdr || (void *)end > p_end)) + return ERR_PTR(-EINVAL); + + while (e > end) { + if (e->canary != SMEM_PRIVATE_CANARY) + goto invalid_canary; + + if (le16_to_cpu(e->item) == item) { + if (size != NULL) { + e_size = le32_to_cpu(e->size); + padding_data = le16_to_cpu(e->padding_data); + + if (WARN_ON(e_size > part->size || padding_data > e_size)) + return ERR_PTR(-EINVAL); + + *size = e_size - padding_data; + } + + item_ptr = cached_entry_to_item(e); + if (WARN_ON(item_ptr < (void *)phdr)) + return ERR_PTR(-EINVAL); + + return item_ptr; + } + + e = cached_entry_next(e, part->cacheline); + } + + if (WARN_ON((void *)e < (void *)phdr)) + return ERR_PTR(-EINVAL); + + return ERR_PTR(-ENOENT); + +invalid_canary: + dev_err(smem->dev, "Found invalid canary in hosts %hu:%hu partition\n", + le16_to_cpu(phdr->host0), le16_to_cpu(phdr->host1)); + + return ERR_PTR(-EINVAL); +} + +/** + * qcom_smem_get() - resolve ptr of size of a smem item + * @host: the remote processor, or -1 + * @item: smem item handle + * @size: pointer to be filled out with size of the item + * + * Looks up smem item and returns pointer to it. Size of smem + * item is returned in @size. + */ +void *qcom_smem_get(unsigned host, unsigned item, size_t *size) +{ + struct smem_partition *part; + unsigned long flags; + int ret; + void *ptr = ERR_PTR(-EPROBE_DEFER); + + if (!__smem) + return ptr; + + if (WARN_ON(item >= __smem->item_count)) + return ERR_PTR(-EINVAL); + + ret = hwspin_lock_timeout_irqsave(__smem->hwlock, + HWSPINLOCK_TIMEOUT, + &flags); + if (ret) + return ERR_PTR(ret); + + if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { + part = &__smem->partitions[host]; + ptr = qcom_smem_get_private(__smem, part, item, size); + } else if (__smem->global_partition.virt_base) { + part = &__smem->global_partition; + ptr = qcom_smem_get_private(__smem, part, item, size); + } else { + ptr = qcom_smem_get_global(__smem, item, size); + } + + hwspin_unlock_irqrestore(__smem->hwlock, &flags); + + return ptr; + +} +EXPORT_SYMBOL(qcom_smem_get); + +/** + * qcom_smem_get_free_space() - retrieve amount of free space in a partition + * @host: the remote processor identifying a partition, or -1 + * + * To be used by smem clients as a quick way to determine if any new + * allocations has been made. + */ +int qcom_smem_get_free_space(unsigned host) +{ + struct smem_partition *part; + struct smem_partition_header *phdr; + struct smem_header *header; + unsigned ret; + + if (!__smem) + return -EPROBE_DEFER; + + if (host < SMEM_HOST_COUNT && __smem->partitions[host].virt_base) { + part = &__smem->partitions[host]; + phdr = part->virt_base; + ret = le32_to_cpu(phdr->offset_free_cached) - + le32_to_cpu(phdr->offset_free_uncached); + + if (ret > le32_to_cpu(part->size)) + return -EINVAL; + } else if (__smem->global_partition.virt_base) { + part = &__smem->global_partition; + phdr = part->virt_base; + ret = le32_to_cpu(phdr->offset_free_cached) - + le32_to_cpu(phdr->offset_free_uncached); + + if (ret > le32_to_cpu(part->size)) + return -EINVAL; + } else { + header = __smem->regions[0].virt_base; + ret = le32_to_cpu(header->available); + + if (ret > __smem->regions[0].size) + return -EINVAL; + } + + return ret; +} +EXPORT_SYMBOL(qcom_smem_get_free_space); + +static bool addr_in_range(void __iomem *base, size_t size, void *addr) +{ + return base && ((void __iomem *)addr >= base && (void __iomem *)addr < base + size); +} + +/** + * qcom_smem_virt_to_phys() - return the physical address associated + * with an smem item pointer (previously returned by qcom_smem_get() + * @p: the virtual address to convert + * + * Returns 0 if the pointer provided is not within any smem region. + */ +phys_addr_t qcom_smem_virt_to_phys(void *p) +{ + struct smem_partition *part; + struct smem_region *area; + u64 offset; + u32 i; + + for (i = 0; i < SMEM_HOST_COUNT; i++) { + part = &__smem->partitions[i]; + + if (addr_in_range(part->virt_base, part->size, p)) { + offset = p - part->virt_base; + + return (phys_addr_t)part->phys_base + offset; + } + } + + part = &__smem->global_partition; + + if (addr_in_range(part->virt_base, part->size, p)) { + offset = p - part->virt_base; + + return (phys_addr_t)part->phys_base + offset; + } + + for (i = 0; i < __smem->num_regions; i++) { + area = &__smem->regions[i]; + + if (addr_in_range(area->virt_base, area->size, p)) { + offset = p - area->virt_base; + + return (phys_addr_t)area->aux_base + offset; + } + } + + return 0; +} +EXPORT_SYMBOL(qcom_smem_virt_to_phys); + +static int qcom_smem_get_sbl_version(struct qcom_smem *smem) +{ + struct smem_header *header; + __le32 *versions; + + header = smem->regions[0].virt_base; + versions = header->version; + + return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]); +} + +static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem) +{ + struct smem_ptable *ptable; + u32 version; + + ptable = smem->ptable; + if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic))) + return ERR_PTR(-ENOENT); + + version = le32_to_cpu(ptable->version); + if (version != 1) { + dev_err(smem->dev, + "Unsupported partition header version %d\n", version); + return ERR_PTR(-EINVAL); + } + return ptable; +} + +static u32 qcom_smem_get_item_count(struct qcom_smem *smem) +{ + struct smem_ptable *ptable; + struct smem_info *info; + + ptable = qcom_smem_get_ptable(smem); + if (IS_ERR_OR_NULL(ptable)) + return SMEM_ITEM_COUNT; + + info = (struct smem_info *)&ptable->entry[ptable->num_entries]; + if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic))) + return SMEM_ITEM_COUNT; + + return le16_to_cpu(info->num_items); +} + +/* + * Validate the partition header for a partition whose partition + * table entry is supplied. Returns a pointer to its header if + * valid, or a null pointer otherwise. + */ +static struct smem_partition_header * +qcom_smem_partition_header(struct qcom_smem *smem, + struct smem_ptable_entry *entry, u16 host0, u16 host1) +{ + struct smem_partition_header *header; + u32 phys_addr; + u32 size; + + phys_addr = smem->regions[0].aux_base + le32_to_cpu(entry->offset); + header = devm_ioremap_wc(smem->dev, phys_addr, le32_to_cpu(entry->size)); + + if (!header) + return NULL; + + if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) { + dev_err(smem->dev, "bad partition magic %4ph\n", header->magic); + return NULL; + } + + if (host0 != le16_to_cpu(header->host0)) { + dev_err(smem->dev, "bad host0 (%hu != %hu)\n", + host0, le16_to_cpu(header->host0)); + return NULL; + } + if (host1 != le16_to_cpu(header->host1)) { + dev_err(smem->dev, "bad host1 (%hu != %hu)\n", + host1, le16_to_cpu(header->host1)); + return NULL; + } + + size = le32_to_cpu(header->size); + if (size != le32_to_cpu(entry->size)) { + dev_err(smem->dev, "bad partition size (%u != %u)\n", + size, le32_to_cpu(entry->size)); + return NULL; + } + + if (le32_to_cpu(header->offset_free_uncached) > size) { + dev_err(smem->dev, "bad partition free uncached (%u > %u)\n", + le32_to_cpu(header->offset_free_uncached), size); + return NULL; + } + + return header; +} + +static int qcom_smem_set_global_partition(struct qcom_smem *smem) +{ + struct smem_partition_header *header; + struct smem_ptable_entry *entry; + struct smem_ptable *ptable; + bool found = false; + int i; + + if (smem->global_partition.virt_base) { + dev_err(smem->dev, "Already found the global partition\n"); + return -EINVAL; + } + + ptable = qcom_smem_get_ptable(smem); + if (IS_ERR(ptable)) + return PTR_ERR(ptable); + + for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) { + entry = &ptable->entry[i]; + if (!le32_to_cpu(entry->offset)) + continue; + if (!le32_to_cpu(entry->size)) + continue; + + if (le16_to_cpu(entry->host0) != SMEM_GLOBAL_HOST) + continue; + + if (le16_to_cpu(entry->host1) == SMEM_GLOBAL_HOST) { + found = true; + break; + } + } + + if (!found) { + dev_err(smem->dev, "Missing entry for global partition\n"); + return -EINVAL; + } + + header = qcom_smem_partition_header(smem, entry, + SMEM_GLOBAL_HOST, SMEM_GLOBAL_HOST); + if (!header) + return -EINVAL; + + smem->global_partition.virt_base = (void __iomem *)header; + smem->global_partition.phys_base = smem->regions[0].aux_base + + le32_to_cpu(entry->offset); + smem->global_partition.size = le32_to_cpu(entry->size); + smem->global_partition.cacheline = le32_to_cpu(entry->cacheline); + + return 0; +} + +static int +qcom_smem_enumerate_partitions(struct qcom_smem *smem, u16 local_host) +{ + struct smem_partition_header *header; + struct smem_ptable_entry *entry; + struct smem_ptable *ptable; + u16 remote_host; + u16 host0, host1; + int i; + + ptable = qcom_smem_get_ptable(smem); + if (IS_ERR(ptable)) + return PTR_ERR(ptable); + + for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) { + entry = &ptable->entry[i]; + if (!le32_to_cpu(entry->offset)) + continue; + if (!le32_to_cpu(entry->size)) + continue; + + host0 = le16_to_cpu(entry->host0); + host1 = le16_to_cpu(entry->host1); + if (host0 == local_host) + remote_host = host1; + else if (host1 == local_host) + remote_host = host0; + else + continue; + + if (remote_host >= SMEM_HOST_COUNT) { + dev_err(smem->dev, "bad host %u\n", remote_host); + return -EINVAL; + } + + if (smem->partitions[remote_host].virt_base) { + dev_err(smem->dev, "duplicate host %u\n", remote_host); + return -EINVAL; + } + + header = qcom_smem_partition_header(smem, entry, host0, host1); + if (!header) + return -EINVAL; + + smem->partitions[remote_host].virt_base = (void __iomem *)header; + smem->partitions[remote_host].phys_base = smem->regions[0].aux_base + + le32_to_cpu(entry->offset); + smem->partitions[remote_host].size = le32_to_cpu(entry->size); + smem->partitions[remote_host].cacheline = le32_to_cpu(entry->cacheline); + } + + return 0; +} + +static int qcom_smem_map_toc(struct qcom_smem *smem, struct smem_region *region) +{ + u32 ptable_start; + + /* map starting 4K for smem header */ + region->virt_base = devm_ioremap_wc(smem->dev, region->aux_base, SZ_4K); + ptable_start = region->aux_base + region->size - SZ_4K; + /* map last 4k for toc */ + smem->ptable = devm_ioremap_wc(smem->dev, ptable_start, SZ_4K); + + if (!region->virt_base || !smem->ptable) + return -ENOMEM; + + return 0; +} + +static int qcom_smem_map_global(struct qcom_smem *smem, u32 size) +{ + u32 phys_addr; + + phys_addr = smem->regions[0].aux_base; + + smem->regions[0].size = size; + smem->regions[0].virt_base = devm_ioremap_wc(smem->dev, phys_addr, size); + + if (!smem->regions[0].virt_base) + return -ENOMEM; + + return 0; +} + +static int qcom_smem_resolve_mem(struct qcom_smem *smem, const char *name, + struct smem_region *region) +{ + struct device *dev = smem->dev; + struct device_node *np; + struct resource r; + int ret; + + np = of_parse_phandle(dev->of_node, name, 0); + if (!np) { + dev_err(dev, "No %s specified\n", name); + return -EINVAL; + } + + ret = of_address_to_resource(np, 0, &r); + of_node_put(np); + if (ret) + return ret; + + region->aux_base = r.start; + region->size = resource_size(&r); + + return 0; +} + +static int qcom_smem_probe(struct platform_device *pdev) +{ + struct smem_header *header; + struct reserved_mem *rmem; + struct qcom_smem *smem; + unsigned long flags; + size_t array_size; + int num_regions; + int hwlock_id; + u32 version; + u32 size; + int ret; + int i; + + num_regions = 1; + if (of_find_property(pdev->dev.of_node, "qcom,rpm-msg-ram", NULL)) + num_regions++; + + array_size = num_regions * sizeof(struct smem_region); + smem = devm_kzalloc(&pdev->dev, sizeof(*smem) + array_size, GFP_KERNEL); + if (!smem) + return -ENOMEM; + + smem->dev = &pdev->dev; + smem->num_regions = num_regions; + + rmem = of_reserved_mem_lookup(pdev->dev.of_node); + if (rmem) { + smem->regions[0].aux_base = rmem->base; + smem->regions[0].size = rmem->size; + } else { + /* + * Fall back to the memory-region reference, if we're not a + * reserved-memory node. + */ + ret = qcom_smem_resolve_mem(smem, "memory-region", &smem->regions[0]); + if (ret) + return ret; + } + + if (num_regions > 1) { + ret = qcom_smem_resolve_mem(smem, "qcom,rpm-msg-ram", &smem->regions[1]); + if (ret) + return ret; + } + + + ret = qcom_smem_map_toc(smem, &smem->regions[0]); + if (ret) + return ret; + + for (i = 1; i < num_regions; i++) { + smem->regions[i].virt_base = devm_ioremap_wc(&pdev->dev, + smem->regions[i].aux_base, + smem->regions[i].size); + if (!smem->regions[i].virt_base) { + dev_err(&pdev->dev, "failed to remap %pa\n", &smem->regions[i].aux_base); + return -ENOMEM; + } + } + + header = smem->regions[0].virt_base; + if (le32_to_cpu(header->initialized) != 1 || + le32_to_cpu(header->reserved)) { + dev_err(&pdev->dev, "SMEM is not initialized by SBL\n"); + return -EINVAL; + } + + hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0); + if (hwlock_id < 0) { + if (hwlock_id != -EPROBE_DEFER) + dev_err(&pdev->dev, "failed to retrieve hwlock\n"); + return hwlock_id; + } + + smem->hwlock = hwspin_lock_request_specific(hwlock_id); + if (!smem->hwlock) + return -ENXIO; + + ret = hwspin_lock_timeout_irqsave(smem->hwlock, HWSPINLOCK_TIMEOUT, &flags); + if (ret) + return ret; + size = readl_relaxed(&header->available) + readl_relaxed(&header->free_offset); + hwspin_unlock_irqrestore(smem->hwlock, &flags); + + version = qcom_smem_get_sbl_version(smem); + /* + * smem header mapping is required only in heap version scheme, so unmap + * it here. It will be remapped in qcom_smem_map_global() when whole + * partition is mapped again. + */ + devm_iounmap(smem->dev, smem->regions[0].virt_base); + switch (version >> 16) { + case SMEM_GLOBAL_PART_VERSION: + ret = qcom_smem_set_global_partition(smem); + if (ret < 0) + return ret; + smem->item_count = qcom_smem_get_item_count(smem); + break; + case SMEM_GLOBAL_HEAP_VERSION: + qcom_smem_map_global(smem, size); + smem->item_count = SMEM_ITEM_COUNT; + break; + default: + dev_err(&pdev->dev, "Unsupported SMEM version 0x%x\n", version); + return -EINVAL; + } + + BUILD_BUG_ON(SMEM_HOST_APPS >= SMEM_HOST_COUNT); + ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS); + if (ret < 0 && ret != -ENOENT) + return ret; + + __smem = smem; + + smem->socinfo = platform_device_register_data(&pdev->dev, "qcom-socinfo", + PLATFORM_DEVID_NONE, NULL, + 0); + if (IS_ERR(smem->socinfo)) + dev_dbg(&pdev->dev, "failed to register socinfo device\n"); + + return 0; +} + +static int qcom_smem_remove(struct platform_device *pdev) +{ + platform_device_unregister(__smem->socinfo); + + hwspin_lock_free(__smem->hwlock); + __smem = NULL; + + return 0; +} + +static const struct of_device_id qcom_smem_of_match[] = { + { .compatible = "qcom,smem" }, + {} +}; +MODULE_DEVICE_TABLE(of, qcom_smem_of_match); + +static struct platform_driver qcom_smem_driver = { + .probe = qcom_smem_probe, + .remove = qcom_smem_remove, + .driver = { + .name = "qcom-smem", + .of_match_table = qcom_smem_of_match, + .suppress_bind_attrs = true, + }, +}; + +static int __init qcom_smem_init(void) +{ + return platform_driver_register(&qcom_smem_driver); +} +arch_initcall(qcom_smem_init); + +static void __exit qcom_smem_exit(void) +{ + platform_driver_unregister(&qcom_smem_driver); +} +module_exit(qcom_smem_exit) + +MODULE_AUTHOR("Bjorn Andersson <bjorn.andersson@sonymobile.com>"); +MODULE_DESCRIPTION("Qualcomm Shared Memory Manager"); +MODULE_LICENSE("GPL v2"); |