summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_mount.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /fs/xfs/xfs_mount.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'fs/xfs/xfs_mount.c')
-rw-r--r--fs/xfs/xfs_mount.c1389
1 files changed, 1389 insertions, 0 deletions
diff --git a/fs/xfs/xfs_mount.c b/fs/xfs/xfs_mount.c
new file mode 100644
index 000000000..e8bb3c2e8
--- /dev/null
+++ b/fs/xfs/xfs_mount.c
@@ -0,0 +1,1389 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2000-2005 Silicon Graphics, Inc.
+ * All Rights Reserved.
+ */
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_shared.h"
+#include "xfs_format.h"
+#include "xfs_log_format.h"
+#include "xfs_trans_resv.h"
+#include "xfs_bit.h"
+#include "xfs_sb.h"
+#include "xfs_mount.h"
+#include "xfs_inode.h"
+#include "xfs_dir2.h"
+#include "xfs_ialloc.h"
+#include "xfs_alloc.h"
+#include "xfs_rtalloc.h"
+#include "xfs_bmap.h"
+#include "xfs_trans.h"
+#include "xfs_trans_priv.h"
+#include "xfs_log.h"
+#include "xfs_log_priv.h"
+#include "xfs_error.h"
+#include "xfs_quota.h"
+#include "xfs_fsops.h"
+#include "xfs_icache.h"
+#include "xfs_sysfs.h"
+#include "xfs_rmap_btree.h"
+#include "xfs_refcount_btree.h"
+#include "xfs_reflink.h"
+#include "xfs_extent_busy.h"
+#include "xfs_health.h"
+#include "xfs_trace.h"
+#include "xfs_ag.h"
+
+static DEFINE_MUTEX(xfs_uuid_table_mutex);
+static int xfs_uuid_table_size;
+static uuid_t *xfs_uuid_table;
+
+void
+xfs_uuid_table_free(void)
+{
+ if (xfs_uuid_table_size == 0)
+ return;
+ kmem_free(xfs_uuid_table);
+ xfs_uuid_table = NULL;
+ xfs_uuid_table_size = 0;
+}
+
+/*
+ * See if the UUID is unique among mounted XFS filesystems.
+ * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
+ */
+STATIC int
+xfs_uuid_mount(
+ struct xfs_mount *mp)
+{
+ uuid_t *uuid = &mp->m_sb.sb_uuid;
+ int hole, i;
+
+ /* Publish UUID in struct super_block */
+ uuid_copy(&mp->m_super->s_uuid, uuid);
+
+ if (xfs_has_nouuid(mp))
+ return 0;
+
+ if (uuid_is_null(uuid)) {
+ xfs_warn(mp, "Filesystem has null UUID - can't mount");
+ return -EINVAL;
+ }
+
+ mutex_lock(&xfs_uuid_table_mutex);
+ for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
+ if (uuid_is_null(&xfs_uuid_table[i])) {
+ hole = i;
+ continue;
+ }
+ if (uuid_equal(uuid, &xfs_uuid_table[i]))
+ goto out_duplicate;
+ }
+
+ if (hole < 0) {
+ xfs_uuid_table = krealloc(xfs_uuid_table,
+ (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
+ GFP_KERNEL | __GFP_NOFAIL);
+ hole = xfs_uuid_table_size++;
+ }
+ xfs_uuid_table[hole] = *uuid;
+ mutex_unlock(&xfs_uuid_table_mutex);
+
+ return 0;
+
+ out_duplicate:
+ mutex_unlock(&xfs_uuid_table_mutex);
+ xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
+ return -EINVAL;
+}
+
+STATIC void
+xfs_uuid_unmount(
+ struct xfs_mount *mp)
+{
+ uuid_t *uuid = &mp->m_sb.sb_uuid;
+ int i;
+
+ if (xfs_has_nouuid(mp))
+ return;
+
+ mutex_lock(&xfs_uuid_table_mutex);
+ for (i = 0; i < xfs_uuid_table_size; i++) {
+ if (uuid_is_null(&xfs_uuid_table[i]))
+ continue;
+ if (!uuid_equal(uuid, &xfs_uuid_table[i]))
+ continue;
+ memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
+ break;
+ }
+ ASSERT(i < xfs_uuid_table_size);
+ mutex_unlock(&xfs_uuid_table_mutex);
+}
+
+/*
+ * Check size of device based on the (data/realtime) block count.
+ * Note: this check is used by the growfs code as well as mount.
+ */
+int
+xfs_sb_validate_fsb_count(
+ xfs_sb_t *sbp,
+ uint64_t nblocks)
+{
+ ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
+ ASSERT(sbp->sb_blocklog >= BBSHIFT);
+
+ /* Limited by ULONG_MAX of page cache index */
+ if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
+ return -EFBIG;
+ return 0;
+}
+
+/*
+ * xfs_readsb
+ *
+ * Does the initial read of the superblock.
+ */
+int
+xfs_readsb(
+ struct xfs_mount *mp,
+ int flags)
+{
+ unsigned int sector_size;
+ struct xfs_buf *bp;
+ struct xfs_sb *sbp = &mp->m_sb;
+ int error;
+ int loud = !(flags & XFS_MFSI_QUIET);
+ const struct xfs_buf_ops *buf_ops;
+
+ ASSERT(mp->m_sb_bp == NULL);
+ ASSERT(mp->m_ddev_targp != NULL);
+
+ /*
+ * For the initial read, we must guess at the sector
+ * size based on the block device. It's enough to
+ * get the sb_sectsize out of the superblock and
+ * then reread with the proper length.
+ * We don't verify it yet, because it may not be complete.
+ */
+ sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
+ buf_ops = NULL;
+
+ /*
+ * Allocate a (locked) buffer to hold the superblock. This will be kept
+ * around at all times to optimize access to the superblock. Therefore,
+ * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
+ * elevated.
+ */
+reread:
+ error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
+ BTOBB(sector_size), XBF_NO_IOACCT, &bp,
+ buf_ops);
+ if (error) {
+ if (loud)
+ xfs_warn(mp, "SB validate failed with error %d.", error);
+ /* bad CRC means corrupted metadata */
+ if (error == -EFSBADCRC)
+ error = -EFSCORRUPTED;
+ return error;
+ }
+
+ /*
+ * Initialize the mount structure from the superblock.
+ */
+ xfs_sb_from_disk(sbp, bp->b_addr);
+
+ /*
+ * If we haven't validated the superblock, do so now before we try
+ * to check the sector size and reread the superblock appropriately.
+ */
+ if (sbp->sb_magicnum != XFS_SB_MAGIC) {
+ if (loud)
+ xfs_warn(mp, "Invalid superblock magic number");
+ error = -EINVAL;
+ goto release_buf;
+ }
+
+ /*
+ * We must be able to do sector-sized and sector-aligned IO.
+ */
+ if (sector_size > sbp->sb_sectsize) {
+ if (loud)
+ xfs_warn(mp, "device supports %u byte sectors (not %u)",
+ sector_size, sbp->sb_sectsize);
+ error = -ENOSYS;
+ goto release_buf;
+ }
+
+ if (buf_ops == NULL) {
+ /*
+ * Re-read the superblock so the buffer is correctly sized,
+ * and properly verified.
+ */
+ xfs_buf_relse(bp);
+ sector_size = sbp->sb_sectsize;
+ buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
+ goto reread;
+ }
+
+ mp->m_features |= xfs_sb_version_to_features(sbp);
+ xfs_reinit_percpu_counters(mp);
+
+ /* no need to be quiet anymore, so reset the buf ops */
+ bp->b_ops = &xfs_sb_buf_ops;
+
+ mp->m_sb_bp = bp;
+ xfs_buf_unlock(bp);
+ return 0;
+
+release_buf:
+ xfs_buf_relse(bp);
+ return error;
+}
+
+/*
+ * If the sunit/swidth change would move the precomputed root inode value, we
+ * must reject the ondisk change because repair will stumble over that.
+ * However, we allow the mount to proceed because we never rejected this
+ * combination before. Returns true to update the sb, false otherwise.
+ */
+static inline int
+xfs_check_new_dalign(
+ struct xfs_mount *mp,
+ int new_dalign,
+ bool *update_sb)
+{
+ struct xfs_sb *sbp = &mp->m_sb;
+ xfs_ino_t calc_ino;
+
+ calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
+ trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
+
+ if (sbp->sb_rootino == calc_ino) {
+ *update_sb = true;
+ return 0;
+ }
+
+ xfs_warn(mp,
+"Cannot change stripe alignment; would require moving root inode.");
+
+ /*
+ * XXX: Next time we add a new incompat feature, this should start
+ * returning -EINVAL to fail the mount. Until then, spit out a warning
+ * that we're ignoring the administrator's instructions.
+ */
+ xfs_warn(mp, "Skipping superblock stripe alignment update.");
+ *update_sb = false;
+ return 0;
+}
+
+/*
+ * If we were provided with new sunit/swidth values as mount options, make sure
+ * that they pass basic alignment and superblock feature checks, and convert
+ * them into the same units (FSB) that everything else expects. This step
+ * /must/ be done before computing the inode geometry.
+ */
+STATIC int
+xfs_validate_new_dalign(
+ struct xfs_mount *mp)
+{
+ if (mp->m_dalign == 0)
+ return 0;
+
+ /*
+ * If stripe unit and stripe width are not multiples
+ * of the fs blocksize turn off alignment.
+ */
+ if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
+ (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
+ xfs_warn(mp,
+ "alignment check failed: sunit/swidth vs. blocksize(%d)",
+ mp->m_sb.sb_blocksize);
+ return -EINVAL;
+ }
+
+ /*
+ * Convert the stripe unit and width to FSBs.
+ */
+ mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
+ if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
+ xfs_warn(mp,
+ "alignment check failed: sunit/swidth vs. agsize(%d)",
+ mp->m_sb.sb_agblocks);
+ return -EINVAL;
+ }
+
+ if (!mp->m_dalign) {
+ xfs_warn(mp,
+ "alignment check failed: sunit(%d) less than bsize(%d)",
+ mp->m_dalign, mp->m_sb.sb_blocksize);
+ return -EINVAL;
+ }
+
+ mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
+
+ if (!xfs_has_dalign(mp)) {
+ xfs_warn(mp,
+"cannot change alignment: superblock does not support data alignment");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/* Update alignment values based on mount options and sb values. */
+STATIC int
+xfs_update_alignment(
+ struct xfs_mount *mp)
+{
+ struct xfs_sb *sbp = &mp->m_sb;
+
+ if (mp->m_dalign) {
+ bool update_sb;
+ int error;
+
+ if (sbp->sb_unit == mp->m_dalign &&
+ sbp->sb_width == mp->m_swidth)
+ return 0;
+
+ error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
+ if (error || !update_sb)
+ return error;
+
+ sbp->sb_unit = mp->m_dalign;
+ sbp->sb_width = mp->m_swidth;
+ mp->m_update_sb = true;
+ } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
+ mp->m_dalign = sbp->sb_unit;
+ mp->m_swidth = sbp->sb_width;
+ }
+
+ return 0;
+}
+
+/*
+ * precalculate the low space thresholds for dynamic speculative preallocation.
+ */
+void
+xfs_set_low_space_thresholds(
+ struct xfs_mount *mp)
+{
+ uint64_t dblocks = mp->m_sb.sb_dblocks;
+ uint64_t rtexts = mp->m_sb.sb_rextents;
+ int i;
+
+ do_div(dblocks, 100);
+ do_div(rtexts, 100);
+
+ for (i = 0; i < XFS_LOWSP_MAX; i++) {
+ mp->m_low_space[i] = dblocks * (i + 1);
+ mp->m_low_rtexts[i] = rtexts * (i + 1);
+ }
+}
+
+/*
+ * Check that the data (and log if separate) is an ok size.
+ */
+STATIC int
+xfs_check_sizes(
+ struct xfs_mount *mp)
+{
+ struct xfs_buf *bp;
+ xfs_daddr_t d;
+ int error;
+
+ d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
+ if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
+ xfs_warn(mp, "filesystem size mismatch detected");
+ return -EFBIG;
+ }
+ error = xfs_buf_read_uncached(mp->m_ddev_targp,
+ d - XFS_FSS_TO_BB(mp, 1),
+ XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
+ if (error) {
+ xfs_warn(mp, "last sector read failed");
+ return error;
+ }
+ xfs_buf_relse(bp);
+
+ if (mp->m_logdev_targp == mp->m_ddev_targp)
+ return 0;
+
+ d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
+ if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
+ xfs_warn(mp, "log size mismatch detected");
+ return -EFBIG;
+ }
+ error = xfs_buf_read_uncached(mp->m_logdev_targp,
+ d - XFS_FSB_TO_BB(mp, 1),
+ XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
+ if (error) {
+ xfs_warn(mp, "log device read failed");
+ return error;
+ }
+ xfs_buf_relse(bp);
+ return 0;
+}
+
+/*
+ * Clear the quotaflags in memory and in the superblock.
+ */
+int
+xfs_mount_reset_sbqflags(
+ struct xfs_mount *mp)
+{
+ mp->m_qflags = 0;
+
+ /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
+ if (mp->m_sb.sb_qflags == 0)
+ return 0;
+ spin_lock(&mp->m_sb_lock);
+ mp->m_sb.sb_qflags = 0;
+ spin_unlock(&mp->m_sb_lock);
+
+ if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
+ return 0;
+
+ return xfs_sync_sb(mp, false);
+}
+
+uint64_t
+xfs_default_resblks(xfs_mount_t *mp)
+{
+ uint64_t resblks;
+
+ /*
+ * We default to 5% or 8192 fsbs of space reserved, whichever is
+ * smaller. This is intended to cover concurrent allocation
+ * transactions when we initially hit enospc. These each require a 4
+ * block reservation. Hence by default we cover roughly 2000 concurrent
+ * allocation reservations.
+ */
+ resblks = mp->m_sb.sb_dblocks;
+ do_div(resblks, 20);
+ resblks = min_t(uint64_t, resblks, 8192);
+ return resblks;
+}
+
+/* Ensure the summary counts are correct. */
+STATIC int
+xfs_check_summary_counts(
+ struct xfs_mount *mp)
+{
+ int error = 0;
+
+ /*
+ * The AG0 superblock verifier rejects in-progress filesystems,
+ * so we should never see the flag set this far into mounting.
+ */
+ if (mp->m_sb.sb_inprogress) {
+ xfs_err(mp, "sb_inprogress set after log recovery??");
+ WARN_ON(1);
+ return -EFSCORRUPTED;
+ }
+
+ /*
+ * Now the log is mounted, we know if it was an unclean shutdown or
+ * not. If it was, with the first phase of recovery has completed, we
+ * have consistent AG blocks on disk. We have not recovered EFIs yet,
+ * but they are recovered transactionally in the second recovery phase
+ * later.
+ *
+ * If the log was clean when we mounted, we can check the summary
+ * counters. If any of them are obviously incorrect, we can recompute
+ * them from the AGF headers in the next step.
+ */
+ if (xfs_is_clean(mp) &&
+ (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
+ !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
+ mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
+ xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
+
+ /*
+ * We can safely re-initialise incore superblock counters from the
+ * per-ag data. These may not be correct if the filesystem was not
+ * cleanly unmounted, so we waited for recovery to finish before doing
+ * this.
+ *
+ * If the filesystem was cleanly unmounted or the previous check did
+ * not flag anything weird, then we can trust the values in the
+ * superblock to be correct and we don't need to do anything here.
+ * Otherwise, recalculate the summary counters.
+ */
+ if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
+ xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
+ error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
+ if (error)
+ return error;
+ }
+
+ /*
+ * Older kernels misused sb_frextents to reflect both incore
+ * reservations made by running transactions and the actual count of
+ * free rt extents in the ondisk metadata. Transactions committed
+ * during runtime can therefore contain a superblock update that
+ * undercounts the number of free rt extents tracked in the rt bitmap.
+ * A clean unmount record will have the correct frextents value since
+ * there can be no other transactions running at that point.
+ *
+ * If we're mounting the rt volume after recovering the log, recompute
+ * frextents from the rtbitmap file to fix the inconsistency.
+ */
+ if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
+ error = xfs_rtalloc_reinit_frextents(mp);
+ if (error)
+ return error;
+ }
+
+ return 0;
+}
+
+/*
+ * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
+ * internal inode structures can be sitting in the CIL and AIL at this point,
+ * so we need to unpin them, write them back and/or reclaim them before unmount
+ * can proceed. In other words, callers are required to have inactivated all
+ * inodes.
+ *
+ * An inode cluster that has been freed can have its buffer still pinned in
+ * memory because the transaction is still sitting in a iclog. The stale inodes
+ * on that buffer will be pinned to the buffer until the transaction hits the
+ * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
+ * may never see the pinned buffer, so nothing will push out the iclog and
+ * unpin the buffer.
+ *
+ * Hence we need to force the log to unpin everything first. However, log
+ * forces don't wait for the discards they issue to complete, so we have to
+ * explicitly wait for them to complete here as well.
+ *
+ * Then we can tell the world we are unmounting so that error handling knows
+ * that the filesystem is going away and we should error out anything that we
+ * have been retrying in the background. This will prevent never-ending
+ * retries in AIL pushing from hanging the unmount.
+ *
+ * Finally, we can push the AIL to clean all the remaining dirty objects, then
+ * reclaim the remaining inodes that are still in memory at this point in time.
+ */
+static void
+xfs_unmount_flush_inodes(
+ struct xfs_mount *mp)
+{
+ xfs_log_force(mp, XFS_LOG_SYNC);
+ xfs_extent_busy_wait_all(mp);
+ flush_workqueue(xfs_discard_wq);
+
+ set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
+
+ xfs_ail_push_all_sync(mp->m_ail);
+ xfs_inodegc_stop(mp);
+ cancel_delayed_work_sync(&mp->m_reclaim_work);
+ xfs_reclaim_inodes(mp);
+ xfs_health_unmount(mp);
+}
+
+static void
+xfs_mount_setup_inode_geom(
+ struct xfs_mount *mp)
+{
+ struct xfs_ino_geometry *igeo = M_IGEO(mp);
+
+ igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
+ ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
+
+ xfs_ialloc_setup_geometry(mp);
+}
+
+/* Compute maximum possible height for per-AG btree types for this fs. */
+static inline void
+xfs_agbtree_compute_maxlevels(
+ struct xfs_mount *mp)
+{
+ unsigned int levels;
+
+ levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
+ levels = max(levels, mp->m_rmap_maxlevels);
+ mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
+}
+
+/*
+ * This function does the following on an initial mount of a file system:
+ * - reads the superblock from disk and init the mount struct
+ * - if we're a 32-bit kernel, do a size check on the superblock
+ * so we don't mount terabyte filesystems
+ * - init mount struct realtime fields
+ * - allocate inode hash table for fs
+ * - init directory manager
+ * - perform recovery and init the log manager
+ */
+int
+xfs_mountfs(
+ struct xfs_mount *mp)
+{
+ struct xfs_sb *sbp = &(mp->m_sb);
+ struct xfs_inode *rip;
+ struct xfs_ino_geometry *igeo = M_IGEO(mp);
+ uint64_t resblks;
+ uint quotamount = 0;
+ uint quotaflags = 0;
+ int error = 0;
+
+ xfs_sb_mount_common(mp, sbp);
+
+ /*
+ * Check for a mismatched features2 values. Older kernels read & wrote
+ * into the wrong sb offset for sb_features2 on some platforms due to
+ * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
+ * which made older superblock reading/writing routines swap it as a
+ * 64-bit value.
+ *
+ * For backwards compatibility, we make both slots equal.
+ *
+ * If we detect a mismatched field, we OR the set bits into the existing
+ * features2 field in case it has already been modified; we don't want
+ * to lose any features. We then update the bad location with the ORed
+ * value so that older kernels will see any features2 flags. The
+ * superblock writeback code ensures the new sb_features2 is copied to
+ * sb_bad_features2 before it is logged or written to disk.
+ */
+ if (xfs_sb_has_mismatched_features2(sbp)) {
+ xfs_warn(mp, "correcting sb_features alignment problem");
+ sbp->sb_features2 |= sbp->sb_bad_features2;
+ mp->m_update_sb = true;
+ }
+
+
+ /* always use v2 inodes by default now */
+ if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
+ mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
+ mp->m_features |= XFS_FEAT_NLINK;
+ mp->m_update_sb = true;
+ }
+
+ /*
+ * If we were given new sunit/swidth options, do some basic validation
+ * checks and convert the incore dalign and swidth values to the
+ * same units (FSB) that everything else uses. This /must/ happen
+ * before computing the inode geometry.
+ */
+ error = xfs_validate_new_dalign(mp);
+ if (error)
+ goto out;
+
+ xfs_alloc_compute_maxlevels(mp);
+ xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
+ xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
+ xfs_mount_setup_inode_geom(mp);
+ xfs_rmapbt_compute_maxlevels(mp);
+ xfs_refcountbt_compute_maxlevels(mp);
+
+ xfs_agbtree_compute_maxlevels(mp);
+
+ /*
+ * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
+ * is NOT aligned turn off m_dalign since allocator alignment is within
+ * an ag, therefore ag has to be aligned at stripe boundary. Note that
+ * we must compute the free space and rmap btree geometry before doing
+ * this.
+ */
+ error = xfs_update_alignment(mp);
+ if (error)
+ goto out;
+
+ /* enable fail_at_unmount as default */
+ mp->m_fail_unmount = true;
+
+ error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
+ NULL, mp->m_super->s_id);
+ if (error)
+ goto out;
+
+ error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
+ &mp->m_kobj, "stats");
+ if (error)
+ goto out_remove_sysfs;
+
+ error = xfs_error_sysfs_init(mp);
+ if (error)
+ goto out_del_stats;
+
+ error = xfs_errortag_init(mp);
+ if (error)
+ goto out_remove_error_sysfs;
+
+ error = xfs_uuid_mount(mp);
+ if (error)
+ goto out_remove_errortag;
+
+ /*
+ * Update the preferred write size based on the information from the
+ * on-disk superblock.
+ */
+ mp->m_allocsize_log =
+ max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
+ mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
+
+ /* set the low space thresholds for dynamic preallocation */
+ xfs_set_low_space_thresholds(mp);
+
+ /*
+ * If enabled, sparse inode chunk alignment is expected to match the
+ * cluster size. Full inode chunk alignment must match the chunk size,
+ * but that is checked on sb read verification...
+ */
+ if (xfs_has_sparseinodes(mp) &&
+ mp->m_sb.sb_spino_align !=
+ XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
+ xfs_warn(mp,
+ "Sparse inode block alignment (%u) must match cluster size (%llu).",
+ mp->m_sb.sb_spino_align,
+ XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
+ error = -EINVAL;
+ goto out_remove_uuid;
+ }
+
+ /*
+ * Check that the data (and log if separate) is an ok size.
+ */
+ error = xfs_check_sizes(mp);
+ if (error)
+ goto out_remove_uuid;
+
+ /*
+ * Initialize realtime fields in the mount structure
+ */
+ error = xfs_rtmount_init(mp);
+ if (error) {
+ xfs_warn(mp, "RT mount failed");
+ goto out_remove_uuid;
+ }
+
+ /*
+ * Copies the low order bits of the timestamp and the randomly
+ * set "sequence" number out of a UUID.
+ */
+ mp->m_fixedfsid[0] =
+ (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
+ get_unaligned_be16(&sbp->sb_uuid.b[4]);
+ mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
+
+ error = xfs_da_mount(mp);
+ if (error) {
+ xfs_warn(mp, "Failed dir/attr init: %d", error);
+ goto out_remove_uuid;
+ }
+
+ /*
+ * Initialize the precomputed transaction reservations values.
+ */
+ xfs_trans_init(mp);
+
+ /*
+ * Allocate and initialize the per-ag data.
+ */
+ error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
+ &mp->m_maxagi);
+ if (error) {
+ xfs_warn(mp, "Failed per-ag init: %d", error);
+ goto out_free_dir;
+ }
+
+ if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
+ xfs_warn(mp, "no log defined");
+ error = -EFSCORRUPTED;
+ goto out_free_perag;
+ }
+
+ error = xfs_inodegc_register_shrinker(mp);
+ if (error)
+ goto out_fail_wait;
+
+ /*
+ * Log's mount-time initialization. The first part of recovery can place
+ * some items on the AIL, to be handled when recovery is finished or
+ * cancelled.
+ */
+ error = xfs_log_mount(mp, mp->m_logdev_targp,
+ XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
+ XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
+ if (error) {
+ xfs_warn(mp, "log mount failed");
+ goto out_inodegc_shrinker;
+ }
+
+ /* Enable background inode inactivation workers. */
+ xfs_inodegc_start(mp);
+ xfs_blockgc_start(mp);
+
+ /*
+ * Now that we've recovered any pending superblock feature bit
+ * additions, we can finish setting up the attr2 behaviour for the
+ * mount. The noattr2 option overrides the superblock flag, so only
+ * check the superblock feature flag if the mount option is not set.
+ */
+ if (xfs_has_noattr2(mp)) {
+ mp->m_features &= ~XFS_FEAT_ATTR2;
+ } else if (!xfs_has_attr2(mp) &&
+ (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
+ mp->m_features |= XFS_FEAT_ATTR2;
+ }
+
+ /*
+ * Get and sanity-check the root inode.
+ * Save the pointer to it in the mount structure.
+ */
+ error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
+ XFS_ILOCK_EXCL, &rip);
+ if (error) {
+ xfs_warn(mp,
+ "Failed to read root inode 0x%llx, error %d",
+ sbp->sb_rootino, -error);
+ goto out_log_dealloc;
+ }
+
+ ASSERT(rip != NULL);
+
+ if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
+ xfs_warn(mp, "corrupted root inode %llu: not a directory",
+ (unsigned long long)rip->i_ino);
+ xfs_iunlock(rip, XFS_ILOCK_EXCL);
+ error = -EFSCORRUPTED;
+ goto out_rele_rip;
+ }
+ mp->m_rootip = rip; /* save it */
+
+ xfs_iunlock(rip, XFS_ILOCK_EXCL);
+
+ /*
+ * Initialize realtime inode pointers in the mount structure
+ */
+ error = xfs_rtmount_inodes(mp);
+ if (error) {
+ /*
+ * Free up the root inode.
+ */
+ xfs_warn(mp, "failed to read RT inodes");
+ goto out_rele_rip;
+ }
+
+ /* Make sure the summary counts are ok. */
+ error = xfs_check_summary_counts(mp);
+ if (error)
+ goto out_rtunmount;
+
+ /*
+ * If this is a read-only mount defer the superblock updates until
+ * the next remount into writeable mode. Otherwise we would never
+ * perform the update e.g. for the root filesystem.
+ */
+ if (mp->m_update_sb && !xfs_is_readonly(mp)) {
+ error = xfs_sync_sb(mp, false);
+ if (error) {
+ xfs_warn(mp, "failed to write sb changes");
+ goto out_rtunmount;
+ }
+ }
+
+ /*
+ * Initialise the XFS quota management subsystem for this mount
+ */
+ if (XFS_IS_QUOTA_ON(mp)) {
+ error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
+ if (error)
+ goto out_rtunmount;
+ } else {
+ /*
+ * If a file system had quotas running earlier, but decided to
+ * mount without -o uquota/pquota/gquota options, revoke the
+ * quotachecked license.
+ */
+ if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
+ xfs_notice(mp, "resetting quota flags");
+ error = xfs_mount_reset_sbqflags(mp);
+ if (error)
+ goto out_rtunmount;
+ }
+ }
+
+ /*
+ * Finish recovering the file system. This part needed to be delayed
+ * until after the root and real-time bitmap inodes were consistently
+ * read in. Temporarily create per-AG space reservations for metadata
+ * btree shape changes because space freeing transactions (for inode
+ * inactivation) require the per-AG reservation in lieu of reserving
+ * blocks.
+ */
+ error = xfs_fs_reserve_ag_blocks(mp);
+ if (error && error == -ENOSPC)
+ xfs_warn(mp,
+ "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
+ error = xfs_log_mount_finish(mp);
+ xfs_fs_unreserve_ag_blocks(mp);
+ if (error) {
+ xfs_warn(mp, "log mount finish failed");
+ goto out_rtunmount;
+ }
+
+ /*
+ * Now the log is fully replayed, we can transition to full read-only
+ * mode for read-only mounts. This will sync all the metadata and clean
+ * the log so that the recovery we just performed does not have to be
+ * replayed again on the next mount.
+ *
+ * We use the same quiesce mechanism as the rw->ro remount, as they are
+ * semantically identical operations.
+ */
+ if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
+ xfs_log_clean(mp);
+
+ /*
+ * Complete the quota initialisation, post-log-replay component.
+ */
+ if (quotamount) {
+ ASSERT(mp->m_qflags == 0);
+ mp->m_qflags = quotaflags;
+
+ xfs_qm_mount_quotas(mp);
+ }
+
+ /*
+ * Now we are mounted, reserve a small amount of unused space for
+ * privileged transactions. This is needed so that transaction
+ * space required for critical operations can dip into this pool
+ * when at ENOSPC. This is needed for operations like create with
+ * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
+ * are not allowed to use this reserved space.
+ *
+ * This may drive us straight to ENOSPC on mount, but that implies
+ * we were already there on the last unmount. Warn if this occurs.
+ */
+ if (!xfs_is_readonly(mp)) {
+ resblks = xfs_default_resblks(mp);
+ error = xfs_reserve_blocks(mp, &resblks, NULL);
+ if (error)
+ xfs_warn(mp,
+ "Unable to allocate reserve blocks. Continuing without reserve pool.");
+
+ /* Reserve AG blocks for future btree expansion. */
+ error = xfs_fs_reserve_ag_blocks(mp);
+ if (error && error != -ENOSPC)
+ goto out_agresv;
+ }
+
+ return 0;
+
+ out_agresv:
+ xfs_fs_unreserve_ag_blocks(mp);
+ xfs_qm_unmount_quotas(mp);
+ out_rtunmount:
+ xfs_rtunmount_inodes(mp);
+ out_rele_rip:
+ xfs_irele(rip);
+ /* Clean out dquots that might be in memory after quotacheck. */
+ xfs_qm_unmount(mp);
+
+ /*
+ * Inactivate all inodes that might still be in memory after a log
+ * intent recovery failure so that reclaim can free them. Metadata
+ * inodes and the root directory shouldn't need inactivation, but the
+ * mount failed for some reason, so pull down all the state and flee.
+ */
+ xfs_inodegc_flush(mp);
+
+ /*
+ * Flush all inode reclamation work and flush the log.
+ * We have to do this /after/ rtunmount and qm_unmount because those
+ * two will have scheduled delayed reclaim for the rt/quota inodes.
+ *
+ * This is slightly different from the unmountfs call sequence
+ * because we could be tearing down a partially set up mount. In
+ * particular, if log_mount_finish fails we bail out without calling
+ * qm_unmount_quotas and therefore rely on qm_unmount to release the
+ * quota inodes.
+ */
+ xfs_unmount_flush_inodes(mp);
+ out_log_dealloc:
+ xfs_log_mount_cancel(mp);
+ out_inodegc_shrinker:
+ unregister_shrinker(&mp->m_inodegc_shrinker);
+ out_fail_wait:
+ if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
+ xfs_buftarg_drain(mp->m_logdev_targp);
+ xfs_buftarg_drain(mp->m_ddev_targp);
+ out_free_perag:
+ xfs_free_perag(mp);
+ out_free_dir:
+ xfs_da_unmount(mp);
+ out_remove_uuid:
+ xfs_uuid_unmount(mp);
+ out_remove_errortag:
+ xfs_errortag_del(mp);
+ out_remove_error_sysfs:
+ xfs_error_sysfs_del(mp);
+ out_del_stats:
+ xfs_sysfs_del(&mp->m_stats.xs_kobj);
+ out_remove_sysfs:
+ xfs_sysfs_del(&mp->m_kobj);
+ out:
+ return error;
+}
+
+/*
+ * This flushes out the inodes,dquots and the superblock, unmounts the
+ * log and makes sure that incore structures are freed.
+ */
+void
+xfs_unmountfs(
+ struct xfs_mount *mp)
+{
+ uint64_t resblks;
+ int error;
+
+ /*
+ * Perform all on-disk metadata updates required to inactivate inodes
+ * that the VFS evicted earlier in the unmount process. Freeing inodes
+ * and discarding CoW fork preallocations can cause shape changes to
+ * the free inode and refcount btrees, respectively, so we must finish
+ * this before we discard the metadata space reservations. Metadata
+ * inodes and the root directory do not require inactivation.
+ */
+ xfs_inodegc_flush(mp);
+
+ xfs_blockgc_stop(mp);
+ xfs_fs_unreserve_ag_blocks(mp);
+ xfs_qm_unmount_quotas(mp);
+ xfs_rtunmount_inodes(mp);
+ xfs_irele(mp->m_rootip);
+
+ xfs_unmount_flush_inodes(mp);
+
+ xfs_qm_unmount(mp);
+
+ /*
+ * Unreserve any blocks we have so that when we unmount we don't account
+ * the reserved free space as used. This is really only necessary for
+ * lazy superblock counting because it trusts the incore superblock
+ * counters to be absolutely correct on clean unmount.
+ *
+ * We don't bother correcting this elsewhere for lazy superblock
+ * counting because on mount of an unclean filesystem we reconstruct the
+ * correct counter value and this is irrelevant.
+ *
+ * For non-lazy counter filesystems, this doesn't matter at all because
+ * we only every apply deltas to the superblock and hence the incore
+ * value does not matter....
+ */
+ resblks = 0;
+ error = xfs_reserve_blocks(mp, &resblks, NULL);
+ if (error)
+ xfs_warn(mp, "Unable to free reserved block pool. "
+ "Freespace may not be correct on next mount.");
+
+ xfs_log_unmount(mp);
+ xfs_da_unmount(mp);
+ xfs_uuid_unmount(mp);
+
+#if defined(DEBUG)
+ xfs_errortag_clearall(mp);
+#endif
+ unregister_shrinker(&mp->m_inodegc_shrinker);
+ xfs_free_perag(mp);
+
+ xfs_errortag_del(mp);
+ xfs_error_sysfs_del(mp);
+ xfs_sysfs_del(&mp->m_stats.xs_kobj);
+ xfs_sysfs_del(&mp->m_kobj);
+}
+
+/*
+ * Determine whether modifications can proceed. The caller specifies the minimum
+ * freeze level for which modifications should not be allowed. This allows
+ * certain operations to proceed while the freeze sequence is in progress, if
+ * necessary.
+ */
+bool
+xfs_fs_writable(
+ struct xfs_mount *mp,
+ int level)
+{
+ ASSERT(level > SB_UNFROZEN);
+ if ((mp->m_super->s_writers.frozen >= level) ||
+ xfs_is_shutdown(mp) || xfs_is_readonly(mp))
+ return false;
+
+ return true;
+}
+
+/* Adjust m_fdblocks or m_frextents. */
+int
+xfs_mod_freecounter(
+ struct xfs_mount *mp,
+ struct percpu_counter *counter,
+ int64_t delta,
+ bool rsvd)
+{
+ int64_t lcounter;
+ long long res_used;
+ uint64_t set_aside = 0;
+ s32 batch;
+ bool has_resv_pool;
+
+ ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
+ has_resv_pool = (counter == &mp->m_fdblocks);
+ if (rsvd)
+ ASSERT(has_resv_pool);
+
+ if (delta > 0) {
+ /*
+ * If the reserve pool is depleted, put blocks back into it
+ * first. Most of the time the pool is full.
+ */
+ if (likely(!has_resv_pool ||
+ mp->m_resblks == mp->m_resblks_avail)) {
+ percpu_counter_add(counter, delta);
+ return 0;
+ }
+
+ spin_lock(&mp->m_sb_lock);
+ res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
+
+ if (res_used > delta) {
+ mp->m_resblks_avail += delta;
+ } else {
+ delta -= res_used;
+ mp->m_resblks_avail = mp->m_resblks;
+ percpu_counter_add(counter, delta);
+ }
+ spin_unlock(&mp->m_sb_lock);
+ return 0;
+ }
+
+ /*
+ * Taking blocks away, need to be more accurate the closer we
+ * are to zero.
+ *
+ * If the counter has a value of less than 2 * max batch size,
+ * then make everything serialise as we are real close to
+ * ENOSPC.
+ */
+ if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
+ XFS_FDBLOCKS_BATCH) < 0)
+ batch = 1;
+ else
+ batch = XFS_FDBLOCKS_BATCH;
+
+ /*
+ * Set aside allocbt blocks because these blocks are tracked as free
+ * space but not available for allocation. Technically this means that a
+ * single reservation cannot consume all remaining free space, but the
+ * ratio of allocbt blocks to usable free blocks should be rather small.
+ * The tradeoff without this is that filesystems that maintain high
+ * perag block reservations can over reserve physical block availability
+ * and fail physical allocation, which leads to much more serious
+ * problems (i.e. transaction abort, pagecache discards, etc.) than
+ * slightly premature -ENOSPC.
+ */
+ if (has_resv_pool)
+ set_aside = xfs_fdblocks_unavailable(mp);
+ percpu_counter_add_batch(counter, delta, batch);
+ if (__percpu_counter_compare(counter, set_aside,
+ XFS_FDBLOCKS_BATCH) >= 0) {
+ /* we had space! */
+ return 0;
+ }
+
+ /*
+ * lock up the sb for dipping into reserves before releasing the space
+ * that took us to ENOSPC.
+ */
+ spin_lock(&mp->m_sb_lock);
+ percpu_counter_add(counter, -delta);
+ if (!has_resv_pool || !rsvd)
+ goto fdblocks_enospc;
+
+ lcounter = (long long)mp->m_resblks_avail + delta;
+ if (lcounter >= 0) {
+ mp->m_resblks_avail = lcounter;
+ spin_unlock(&mp->m_sb_lock);
+ return 0;
+ }
+ xfs_warn_once(mp,
+"Reserve blocks depleted! Consider increasing reserve pool size.");
+
+fdblocks_enospc:
+ spin_unlock(&mp->m_sb_lock);
+ return -ENOSPC;
+}
+
+/*
+ * Used to free the superblock along various error paths.
+ */
+void
+xfs_freesb(
+ struct xfs_mount *mp)
+{
+ struct xfs_buf *bp = mp->m_sb_bp;
+
+ xfs_buf_lock(bp);
+ mp->m_sb_bp = NULL;
+ xfs_buf_relse(bp);
+}
+
+/*
+ * If the underlying (data/log/rt) device is readonly, there are some
+ * operations that cannot proceed.
+ */
+int
+xfs_dev_is_read_only(
+ struct xfs_mount *mp,
+ char *message)
+{
+ if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
+ xfs_readonly_buftarg(mp->m_logdev_targp) ||
+ (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
+ xfs_notice(mp, "%s required on read-only device.", message);
+ xfs_notice(mp, "write access unavailable, cannot proceed.");
+ return -EROFS;
+ }
+ return 0;
+}
+
+/* Force the summary counters to be recalculated at next mount. */
+void
+xfs_force_summary_recalc(
+ struct xfs_mount *mp)
+{
+ if (!xfs_has_lazysbcount(mp))
+ return;
+
+ xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
+}
+
+/*
+ * Enable a log incompat feature flag in the primary superblock. The caller
+ * cannot have any other transactions in progress.
+ */
+int
+xfs_add_incompat_log_feature(
+ struct xfs_mount *mp,
+ uint32_t feature)
+{
+ struct xfs_dsb *dsb;
+ int error;
+
+ ASSERT(hweight32(feature) == 1);
+ ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
+
+ /*
+ * Force the log to disk and kick the background AIL thread to reduce
+ * the chances that the bwrite will stall waiting for the AIL to unpin
+ * the primary superblock buffer. This isn't a data integrity
+ * operation, so we don't need a synchronous push.
+ */
+ error = xfs_log_force(mp, XFS_LOG_SYNC);
+ if (error)
+ return error;
+ xfs_ail_push_all(mp->m_ail);
+
+ /*
+ * Lock the primary superblock buffer to serialize all callers that
+ * are trying to set feature bits.
+ */
+ xfs_buf_lock(mp->m_sb_bp);
+ xfs_buf_hold(mp->m_sb_bp);
+
+ if (xfs_is_shutdown(mp)) {
+ error = -EIO;
+ goto rele;
+ }
+
+ if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
+ goto rele;
+
+ /*
+ * Write the primary superblock to disk immediately, because we need
+ * the log_incompat bit to be set in the primary super now to protect
+ * the log items that we're going to commit later.
+ */
+ dsb = mp->m_sb_bp->b_addr;
+ xfs_sb_to_disk(dsb, &mp->m_sb);
+ dsb->sb_features_log_incompat |= cpu_to_be32(feature);
+ error = xfs_bwrite(mp->m_sb_bp);
+ if (error)
+ goto shutdown;
+
+ /*
+ * Add the feature bits to the incore superblock before we unlock the
+ * buffer.
+ */
+ xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
+ xfs_buf_relse(mp->m_sb_bp);
+
+ /* Log the superblock to disk. */
+ return xfs_sync_sb(mp, false);
+shutdown:
+ xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
+rele:
+ xfs_buf_relse(mp->m_sb_bp);
+ return error;
+}
+
+/*
+ * Clear all the log incompat flags from the superblock.
+ *
+ * The caller cannot be in a transaction, must ensure that the log does not
+ * contain any log items protected by any log incompat bit, and must ensure
+ * that there are no other threads that depend on the state of the log incompat
+ * feature flags in the primary super.
+ *
+ * Returns true if the superblock is dirty.
+ */
+bool
+xfs_clear_incompat_log_features(
+ struct xfs_mount *mp)
+{
+ bool ret = false;
+
+ if (!xfs_has_crc(mp) ||
+ !xfs_sb_has_incompat_log_feature(&mp->m_sb,
+ XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
+ xfs_is_shutdown(mp))
+ return false;
+
+ /*
+ * Update the incore superblock. We synchronize on the primary super
+ * buffer lock to be consistent with the add function, though at least
+ * in theory this shouldn't be necessary.
+ */
+ xfs_buf_lock(mp->m_sb_bp);
+ xfs_buf_hold(mp->m_sb_bp);
+
+ if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
+ XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
+ xfs_sb_remove_incompat_log_features(&mp->m_sb);
+ ret = true;
+ }
+
+ xfs_buf_relse(mp->m_sb_bp);
+ return ret;
+}
+
+/*
+ * Update the in-core delayed block counter.
+ *
+ * We prefer to update the counter without having to take a spinlock for every
+ * counter update (i.e. batching). Each change to delayed allocation
+ * reservations can change can easily exceed the default percpu counter
+ * batching, so we use a larger batch factor here.
+ *
+ * Note that we don't currently have any callers requiring fast summation
+ * (e.g. percpu_counter_read) so we can use a big batch value here.
+ */
+#define XFS_DELALLOC_BATCH (4096)
+void
+xfs_mod_delalloc(
+ struct xfs_mount *mp,
+ int64_t delta)
+{
+ percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
+ XFS_DELALLOC_BATCH);
+}