summaryrefslogtreecommitdiffstats
path: root/kernel/bpf/btf.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /kernel/bpf/btf.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--kernel/bpf/btf.c8035
1 files changed, 8035 insertions, 0 deletions
diff --git a/kernel/bpf/btf.c b/kernel/bpf/btf.c
new file mode 100644
index 000000000..7582ec4fd
--- /dev/null
+++ b/kernel/bpf/btf.c
@@ -0,0 +1,8035 @@
+// SPDX-License-Identifier: GPL-2.0
+/* Copyright (c) 2018 Facebook */
+
+#include <uapi/linux/btf.h>
+#include <uapi/linux/bpf.h>
+#include <uapi/linux/bpf_perf_event.h>
+#include <uapi/linux/types.h>
+#include <linux/seq_file.h>
+#include <linux/compiler.h>
+#include <linux/ctype.h>
+#include <linux/errno.h>
+#include <linux/slab.h>
+#include <linux/anon_inodes.h>
+#include <linux/file.h>
+#include <linux/uaccess.h>
+#include <linux/kernel.h>
+#include <linux/idr.h>
+#include <linux/sort.h>
+#include <linux/bpf_verifier.h>
+#include <linux/btf.h>
+#include <linux/btf_ids.h>
+#include <linux/skmsg.h>
+#include <linux/perf_event.h>
+#include <linux/bsearch.h>
+#include <linux/kobject.h>
+#include <linux/sysfs.h>
+#include <net/sock.h>
+#include "../tools/lib/bpf/relo_core.h"
+
+/* BTF (BPF Type Format) is the meta data format which describes
+ * the data types of BPF program/map. Hence, it basically focus
+ * on the C programming language which the modern BPF is primary
+ * using.
+ *
+ * ELF Section:
+ * ~~~~~~~~~~~
+ * The BTF data is stored under the ".BTF" ELF section
+ *
+ * struct btf_type:
+ * ~~~~~~~~~~~~~~~
+ * Each 'struct btf_type' object describes a C data type.
+ * Depending on the type it is describing, a 'struct btf_type'
+ * object may be followed by more data. F.e.
+ * To describe an array, 'struct btf_type' is followed by
+ * 'struct btf_array'.
+ *
+ * 'struct btf_type' and any extra data following it are
+ * 4 bytes aligned.
+ *
+ * Type section:
+ * ~~~~~~~~~~~~~
+ * The BTF type section contains a list of 'struct btf_type' objects.
+ * Each one describes a C type. Recall from the above section
+ * that a 'struct btf_type' object could be immediately followed by extra
+ * data in order to describe some particular C types.
+ *
+ * type_id:
+ * ~~~~~~~
+ * Each btf_type object is identified by a type_id. The type_id
+ * is implicitly implied by the location of the btf_type object in
+ * the BTF type section. The first one has type_id 1. The second
+ * one has type_id 2...etc. Hence, an earlier btf_type has
+ * a smaller type_id.
+ *
+ * A btf_type object may refer to another btf_type object by using
+ * type_id (i.e. the "type" in the "struct btf_type").
+ *
+ * NOTE that we cannot assume any reference-order.
+ * A btf_type object can refer to an earlier btf_type object
+ * but it can also refer to a later btf_type object.
+ *
+ * For example, to describe "const void *". A btf_type
+ * object describing "const" may refer to another btf_type
+ * object describing "void *". This type-reference is done
+ * by specifying type_id:
+ *
+ * [1] CONST (anon) type_id=2
+ * [2] PTR (anon) type_id=0
+ *
+ * The above is the btf_verifier debug log:
+ * - Each line started with "[?]" is a btf_type object
+ * - [?] is the type_id of the btf_type object.
+ * - CONST/PTR is the BTF_KIND_XXX
+ * - "(anon)" is the name of the type. It just
+ * happens that CONST and PTR has no name.
+ * - type_id=XXX is the 'u32 type' in btf_type
+ *
+ * NOTE: "void" has type_id 0
+ *
+ * String section:
+ * ~~~~~~~~~~~~~~
+ * The BTF string section contains the names used by the type section.
+ * Each string is referred by an "offset" from the beginning of the
+ * string section.
+ *
+ * Each string is '\0' terminated.
+ *
+ * The first character in the string section must be '\0'
+ * which is used to mean 'anonymous'. Some btf_type may not
+ * have a name.
+ */
+
+/* BTF verification:
+ *
+ * To verify BTF data, two passes are needed.
+ *
+ * Pass #1
+ * ~~~~~~~
+ * The first pass is to collect all btf_type objects to
+ * an array: "btf->types".
+ *
+ * Depending on the C type that a btf_type is describing,
+ * a btf_type may be followed by extra data. We don't know
+ * how many btf_type is there, and more importantly we don't
+ * know where each btf_type is located in the type section.
+ *
+ * Without knowing the location of each type_id, most verifications
+ * cannot be done. e.g. an earlier btf_type may refer to a later
+ * btf_type (recall the "const void *" above), so we cannot
+ * check this type-reference in the first pass.
+ *
+ * In the first pass, it still does some verifications (e.g.
+ * checking the name is a valid offset to the string section).
+ *
+ * Pass #2
+ * ~~~~~~~
+ * The main focus is to resolve a btf_type that is referring
+ * to another type.
+ *
+ * We have to ensure the referring type:
+ * 1) does exist in the BTF (i.e. in btf->types[])
+ * 2) does not cause a loop:
+ * struct A {
+ * struct B b;
+ * };
+ *
+ * struct B {
+ * struct A a;
+ * };
+ *
+ * btf_type_needs_resolve() decides if a btf_type needs
+ * to be resolved.
+ *
+ * The needs_resolve type implements the "resolve()" ops which
+ * essentially does a DFS and detects backedge.
+ *
+ * During resolve (or DFS), different C types have different
+ * "RESOLVED" conditions.
+ *
+ * When resolving a BTF_KIND_STRUCT, we need to resolve all its
+ * members because a member is always referring to another
+ * type. A struct's member can be treated as "RESOLVED" if
+ * it is referring to a BTF_KIND_PTR. Otherwise, the
+ * following valid C struct would be rejected:
+ *
+ * struct A {
+ * int m;
+ * struct A *a;
+ * };
+ *
+ * When resolving a BTF_KIND_PTR, it needs to keep resolving if
+ * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
+ * detect a pointer loop, e.g.:
+ * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
+ * ^ |
+ * +-----------------------------------------+
+ *
+ */
+
+#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
+#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
+#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
+#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
+#define BITS_ROUNDUP_BYTES(bits) \
+ (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
+
+#define BTF_INFO_MASK 0x9f00ffff
+#define BTF_INT_MASK 0x0fffffff
+#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
+#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
+
+/* 16MB for 64k structs and each has 16 members and
+ * a few MB spaces for the string section.
+ * The hard limit is S32_MAX.
+ */
+#define BTF_MAX_SIZE (16 * 1024 * 1024)
+
+#define for_each_member_from(i, from, struct_type, member) \
+ for (i = from, member = btf_type_member(struct_type) + from; \
+ i < btf_type_vlen(struct_type); \
+ i++, member++)
+
+#define for_each_vsi_from(i, from, struct_type, member) \
+ for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
+ i < btf_type_vlen(struct_type); \
+ i++, member++)
+
+DEFINE_IDR(btf_idr);
+DEFINE_SPINLOCK(btf_idr_lock);
+
+enum btf_kfunc_hook {
+ BTF_KFUNC_HOOK_XDP,
+ BTF_KFUNC_HOOK_TC,
+ BTF_KFUNC_HOOK_STRUCT_OPS,
+ BTF_KFUNC_HOOK_TRACING,
+ BTF_KFUNC_HOOK_SYSCALL,
+ BTF_KFUNC_HOOK_MAX,
+};
+
+enum {
+ BTF_KFUNC_SET_MAX_CNT = 256,
+ BTF_DTOR_KFUNC_MAX_CNT = 256,
+};
+
+struct btf_kfunc_set_tab {
+ struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
+};
+
+struct btf_id_dtor_kfunc_tab {
+ u32 cnt;
+ struct btf_id_dtor_kfunc dtors[];
+};
+
+struct btf {
+ void *data;
+ struct btf_type **types;
+ u32 *resolved_ids;
+ u32 *resolved_sizes;
+ const char *strings;
+ void *nohdr_data;
+ struct btf_header hdr;
+ u32 nr_types; /* includes VOID for base BTF */
+ u32 types_size;
+ u32 data_size;
+ refcount_t refcnt;
+ u32 id;
+ struct rcu_head rcu;
+ struct btf_kfunc_set_tab *kfunc_set_tab;
+ struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
+
+ /* split BTF support */
+ struct btf *base_btf;
+ u32 start_id; /* first type ID in this BTF (0 for base BTF) */
+ u32 start_str_off; /* first string offset (0 for base BTF) */
+ char name[MODULE_NAME_LEN];
+ bool kernel_btf;
+};
+
+enum verifier_phase {
+ CHECK_META,
+ CHECK_TYPE,
+};
+
+struct resolve_vertex {
+ const struct btf_type *t;
+ u32 type_id;
+ u16 next_member;
+};
+
+enum visit_state {
+ NOT_VISITED,
+ VISITED,
+ RESOLVED,
+};
+
+enum resolve_mode {
+ RESOLVE_TBD, /* To Be Determined */
+ RESOLVE_PTR, /* Resolving for Pointer */
+ RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
+ * or array
+ */
+};
+
+#define MAX_RESOLVE_DEPTH 32
+
+struct btf_sec_info {
+ u32 off;
+ u32 len;
+};
+
+struct btf_verifier_env {
+ struct btf *btf;
+ u8 *visit_states;
+ struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
+ struct bpf_verifier_log log;
+ u32 log_type_id;
+ u32 top_stack;
+ enum verifier_phase phase;
+ enum resolve_mode resolve_mode;
+};
+
+static const char * const btf_kind_str[NR_BTF_KINDS] = {
+ [BTF_KIND_UNKN] = "UNKNOWN",
+ [BTF_KIND_INT] = "INT",
+ [BTF_KIND_PTR] = "PTR",
+ [BTF_KIND_ARRAY] = "ARRAY",
+ [BTF_KIND_STRUCT] = "STRUCT",
+ [BTF_KIND_UNION] = "UNION",
+ [BTF_KIND_ENUM] = "ENUM",
+ [BTF_KIND_FWD] = "FWD",
+ [BTF_KIND_TYPEDEF] = "TYPEDEF",
+ [BTF_KIND_VOLATILE] = "VOLATILE",
+ [BTF_KIND_CONST] = "CONST",
+ [BTF_KIND_RESTRICT] = "RESTRICT",
+ [BTF_KIND_FUNC] = "FUNC",
+ [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
+ [BTF_KIND_VAR] = "VAR",
+ [BTF_KIND_DATASEC] = "DATASEC",
+ [BTF_KIND_FLOAT] = "FLOAT",
+ [BTF_KIND_DECL_TAG] = "DECL_TAG",
+ [BTF_KIND_TYPE_TAG] = "TYPE_TAG",
+ [BTF_KIND_ENUM64] = "ENUM64",
+};
+
+const char *btf_type_str(const struct btf_type *t)
+{
+ return btf_kind_str[BTF_INFO_KIND(t->info)];
+}
+
+/* Chunk size we use in safe copy of data to be shown. */
+#define BTF_SHOW_OBJ_SAFE_SIZE 32
+
+/*
+ * This is the maximum size of a base type value (equivalent to a
+ * 128-bit int); if we are at the end of our safe buffer and have
+ * less than 16 bytes space we can't be assured of being able
+ * to copy the next type safely, so in such cases we will initiate
+ * a new copy.
+ */
+#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
+
+/* Type name size */
+#define BTF_SHOW_NAME_SIZE 80
+
+/*
+ * Common data to all BTF show operations. Private show functions can add
+ * their own data to a structure containing a struct btf_show and consult it
+ * in the show callback. See btf_type_show() below.
+ *
+ * One challenge with showing nested data is we want to skip 0-valued
+ * data, but in order to figure out whether a nested object is all zeros
+ * we need to walk through it. As a result, we need to make two passes
+ * when handling structs, unions and arrays; the first path simply looks
+ * for nonzero data, while the second actually does the display. The first
+ * pass is signalled by show->state.depth_check being set, and if we
+ * encounter a non-zero value we set show->state.depth_to_show to
+ * the depth at which we encountered it. When we have completed the
+ * first pass, we will know if anything needs to be displayed if
+ * depth_to_show > depth. See btf_[struct,array]_show() for the
+ * implementation of this.
+ *
+ * Another problem is we want to ensure the data for display is safe to
+ * access. To support this, the anonymous "struct {} obj" tracks the data
+ * object and our safe copy of it. We copy portions of the data needed
+ * to the object "copy" buffer, but because its size is limited to
+ * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
+ * traverse larger objects for display.
+ *
+ * The various data type show functions all start with a call to
+ * btf_show_start_type() which returns a pointer to the safe copy
+ * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
+ * raw data itself). btf_show_obj_safe() is responsible for
+ * using copy_from_kernel_nofault() to update the safe data if necessary
+ * as we traverse the object's data. skbuff-like semantics are
+ * used:
+ *
+ * - obj.head points to the start of the toplevel object for display
+ * - obj.size is the size of the toplevel object
+ * - obj.data points to the current point in the original data at
+ * which our safe data starts. obj.data will advance as we copy
+ * portions of the data.
+ *
+ * In most cases a single copy will suffice, but larger data structures
+ * such as "struct task_struct" will require many copies. The logic in
+ * btf_show_obj_safe() handles the logic that determines if a new
+ * copy_from_kernel_nofault() is needed.
+ */
+struct btf_show {
+ u64 flags;
+ void *target; /* target of show operation (seq file, buffer) */
+ void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
+ const struct btf *btf;
+ /* below are used during iteration */
+ struct {
+ u8 depth;
+ u8 depth_to_show;
+ u8 depth_check;
+ u8 array_member:1,
+ array_terminated:1;
+ u16 array_encoding;
+ u32 type_id;
+ int status; /* non-zero for error */
+ const struct btf_type *type;
+ const struct btf_member *member;
+ char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
+ } state;
+ struct {
+ u32 size;
+ void *head;
+ void *data;
+ u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
+ } obj;
+};
+
+struct btf_kind_operations {
+ s32 (*check_meta)(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left);
+ int (*resolve)(struct btf_verifier_env *env,
+ const struct resolve_vertex *v);
+ int (*check_member)(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type);
+ int (*check_kflag_member)(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type);
+ void (*log_details)(struct btf_verifier_env *env,
+ const struct btf_type *t);
+ void (*show)(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offsets,
+ struct btf_show *show);
+};
+
+static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
+static struct btf_type btf_void;
+
+static int btf_resolve(struct btf_verifier_env *env,
+ const struct btf_type *t, u32 type_id);
+
+static int btf_func_check(struct btf_verifier_env *env,
+ const struct btf_type *t);
+
+static bool btf_type_is_modifier(const struct btf_type *t)
+{
+ /* Some of them is not strictly a C modifier
+ * but they are grouped into the same bucket
+ * for BTF concern:
+ * A type (t) that refers to another
+ * type through t->type AND its size cannot
+ * be determined without following the t->type.
+ *
+ * ptr does not fall into this bucket
+ * because its size is always sizeof(void *).
+ */
+ switch (BTF_INFO_KIND(t->info)) {
+ case BTF_KIND_TYPEDEF:
+ case BTF_KIND_VOLATILE:
+ case BTF_KIND_CONST:
+ case BTF_KIND_RESTRICT:
+ case BTF_KIND_TYPE_TAG:
+ return true;
+ }
+
+ return false;
+}
+
+bool btf_type_is_void(const struct btf_type *t)
+{
+ return t == &btf_void;
+}
+
+static bool btf_type_is_fwd(const struct btf_type *t)
+{
+ return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
+}
+
+static bool btf_type_nosize(const struct btf_type *t)
+{
+ return btf_type_is_void(t) || btf_type_is_fwd(t) ||
+ btf_type_is_func(t) || btf_type_is_func_proto(t);
+}
+
+static bool btf_type_nosize_or_null(const struct btf_type *t)
+{
+ return !t || btf_type_nosize(t);
+}
+
+static bool __btf_type_is_struct(const struct btf_type *t)
+{
+ return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
+}
+
+static bool btf_type_is_array(const struct btf_type *t)
+{
+ return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
+}
+
+static bool btf_type_is_datasec(const struct btf_type *t)
+{
+ return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
+}
+
+static bool btf_type_is_decl_tag(const struct btf_type *t)
+{
+ return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
+}
+
+static bool btf_type_is_decl_tag_target(const struct btf_type *t)
+{
+ return btf_type_is_func(t) || btf_type_is_struct(t) ||
+ btf_type_is_var(t) || btf_type_is_typedef(t);
+}
+
+u32 btf_nr_types(const struct btf *btf)
+{
+ u32 total = 0;
+
+ while (btf) {
+ total += btf->nr_types;
+ btf = btf->base_btf;
+ }
+
+ return total;
+}
+
+s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
+{
+ const struct btf_type *t;
+ const char *tname;
+ u32 i, total;
+
+ total = btf_nr_types(btf);
+ for (i = 1; i < total; i++) {
+ t = btf_type_by_id(btf, i);
+ if (BTF_INFO_KIND(t->info) != kind)
+ continue;
+
+ tname = btf_name_by_offset(btf, t->name_off);
+ if (!strcmp(tname, name))
+ return i;
+ }
+
+ return -ENOENT;
+}
+
+static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
+{
+ struct btf *btf;
+ s32 ret;
+ int id;
+
+ btf = bpf_get_btf_vmlinux();
+ if (IS_ERR(btf))
+ return PTR_ERR(btf);
+ if (!btf)
+ return -EINVAL;
+
+ ret = btf_find_by_name_kind(btf, name, kind);
+ /* ret is never zero, since btf_find_by_name_kind returns
+ * positive btf_id or negative error.
+ */
+ if (ret > 0) {
+ btf_get(btf);
+ *btf_p = btf;
+ return ret;
+ }
+
+ /* If name is not found in vmlinux's BTF then search in module's BTFs */
+ spin_lock_bh(&btf_idr_lock);
+ idr_for_each_entry(&btf_idr, btf, id) {
+ if (!btf_is_module(btf))
+ continue;
+ /* linear search could be slow hence unlock/lock
+ * the IDR to avoiding holding it for too long
+ */
+ btf_get(btf);
+ spin_unlock_bh(&btf_idr_lock);
+ ret = btf_find_by_name_kind(btf, name, kind);
+ if (ret > 0) {
+ *btf_p = btf;
+ return ret;
+ }
+ btf_put(btf);
+ spin_lock_bh(&btf_idr_lock);
+ }
+ spin_unlock_bh(&btf_idr_lock);
+ return ret;
+}
+
+const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
+ u32 id, u32 *res_id)
+{
+ const struct btf_type *t = btf_type_by_id(btf, id);
+
+ while (btf_type_is_modifier(t)) {
+ id = t->type;
+ t = btf_type_by_id(btf, t->type);
+ }
+
+ if (res_id)
+ *res_id = id;
+
+ return t;
+}
+
+const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
+ u32 id, u32 *res_id)
+{
+ const struct btf_type *t;
+
+ t = btf_type_skip_modifiers(btf, id, NULL);
+ if (!btf_type_is_ptr(t))
+ return NULL;
+
+ return btf_type_skip_modifiers(btf, t->type, res_id);
+}
+
+const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
+ u32 id, u32 *res_id)
+{
+ const struct btf_type *ptype;
+
+ ptype = btf_type_resolve_ptr(btf, id, res_id);
+ if (ptype && btf_type_is_func_proto(ptype))
+ return ptype;
+
+ return NULL;
+}
+
+/* Types that act only as a source, not sink or intermediate
+ * type when resolving.
+ */
+static bool btf_type_is_resolve_source_only(const struct btf_type *t)
+{
+ return btf_type_is_var(t) ||
+ btf_type_is_decl_tag(t) ||
+ btf_type_is_datasec(t);
+}
+
+/* What types need to be resolved?
+ *
+ * btf_type_is_modifier() is an obvious one.
+ *
+ * btf_type_is_struct() because its member refers to
+ * another type (through member->type).
+ *
+ * btf_type_is_var() because the variable refers to
+ * another type. btf_type_is_datasec() holds multiple
+ * btf_type_is_var() types that need resolving.
+ *
+ * btf_type_is_array() because its element (array->type)
+ * refers to another type. Array can be thought of a
+ * special case of struct while array just has the same
+ * member-type repeated by array->nelems of times.
+ */
+static bool btf_type_needs_resolve(const struct btf_type *t)
+{
+ return btf_type_is_modifier(t) ||
+ btf_type_is_ptr(t) ||
+ btf_type_is_struct(t) ||
+ btf_type_is_array(t) ||
+ btf_type_is_var(t) ||
+ btf_type_is_func(t) ||
+ btf_type_is_decl_tag(t) ||
+ btf_type_is_datasec(t);
+}
+
+/* t->size can be used */
+static bool btf_type_has_size(const struct btf_type *t)
+{
+ switch (BTF_INFO_KIND(t->info)) {
+ case BTF_KIND_INT:
+ case BTF_KIND_STRUCT:
+ case BTF_KIND_UNION:
+ case BTF_KIND_ENUM:
+ case BTF_KIND_DATASEC:
+ case BTF_KIND_FLOAT:
+ case BTF_KIND_ENUM64:
+ return true;
+ }
+
+ return false;
+}
+
+static const char *btf_int_encoding_str(u8 encoding)
+{
+ if (encoding == 0)
+ return "(none)";
+ else if (encoding == BTF_INT_SIGNED)
+ return "SIGNED";
+ else if (encoding == BTF_INT_CHAR)
+ return "CHAR";
+ else if (encoding == BTF_INT_BOOL)
+ return "BOOL";
+ else
+ return "UNKN";
+}
+
+static u32 btf_type_int(const struct btf_type *t)
+{
+ return *(u32 *)(t + 1);
+}
+
+static const struct btf_array *btf_type_array(const struct btf_type *t)
+{
+ return (const struct btf_array *)(t + 1);
+}
+
+static const struct btf_enum *btf_type_enum(const struct btf_type *t)
+{
+ return (const struct btf_enum *)(t + 1);
+}
+
+static const struct btf_var *btf_type_var(const struct btf_type *t)
+{
+ return (const struct btf_var *)(t + 1);
+}
+
+static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
+{
+ return (const struct btf_decl_tag *)(t + 1);
+}
+
+static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
+{
+ return (const struct btf_enum64 *)(t + 1);
+}
+
+static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
+{
+ return kind_ops[BTF_INFO_KIND(t->info)];
+}
+
+static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
+{
+ if (!BTF_STR_OFFSET_VALID(offset))
+ return false;
+
+ while (offset < btf->start_str_off)
+ btf = btf->base_btf;
+
+ offset -= btf->start_str_off;
+ return offset < btf->hdr.str_len;
+}
+
+static bool __btf_name_char_ok(char c, bool first)
+{
+ if ((first ? !isalpha(c) :
+ !isalnum(c)) &&
+ c != '_' &&
+ c != '.')
+ return false;
+ return true;
+}
+
+static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
+{
+ while (offset < btf->start_str_off)
+ btf = btf->base_btf;
+
+ offset -= btf->start_str_off;
+ if (offset < btf->hdr.str_len)
+ return &btf->strings[offset];
+
+ return NULL;
+}
+
+static bool __btf_name_valid(const struct btf *btf, u32 offset)
+{
+ /* offset must be valid */
+ const char *src = btf_str_by_offset(btf, offset);
+ const char *src_limit;
+
+ if (!__btf_name_char_ok(*src, true))
+ return false;
+
+ /* set a limit on identifier length */
+ src_limit = src + KSYM_NAME_LEN;
+ src++;
+ while (*src && src < src_limit) {
+ if (!__btf_name_char_ok(*src, false))
+ return false;
+ src++;
+ }
+
+ return !*src;
+}
+
+static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
+{
+ return __btf_name_valid(btf, offset);
+}
+
+static bool btf_name_valid_section(const struct btf *btf, u32 offset)
+{
+ return __btf_name_valid(btf, offset);
+}
+
+static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
+{
+ const char *name;
+
+ if (!offset)
+ return "(anon)";
+
+ name = btf_str_by_offset(btf, offset);
+ return name ?: "(invalid-name-offset)";
+}
+
+const char *btf_name_by_offset(const struct btf *btf, u32 offset)
+{
+ return btf_str_by_offset(btf, offset);
+}
+
+const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
+{
+ while (type_id < btf->start_id)
+ btf = btf->base_btf;
+
+ type_id -= btf->start_id;
+ if (type_id >= btf->nr_types)
+ return NULL;
+ return btf->types[type_id];
+}
+EXPORT_SYMBOL_GPL(btf_type_by_id);
+
+/*
+ * Regular int is not a bit field and it must be either
+ * u8/u16/u32/u64 or __int128.
+ */
+static bool btf_type_int_is_regular(const struct btf_type *t)
+{
+ u8 nr_bits, nr_bytes;
+ u32 int_data;
+
+ int_data = btf_type_int(t);
+ nr_bits = BTF_INT_BITS(int_data);
+ nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
+ if (BITS_PER_BYTE_MASKED(nr_bits) ||
+ BTF_INT_OFFSET(int_data) ||
+ (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
+ nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
+ nr_bytes != (2 * sizeof(u64)))) {
+ return false;
+ }
+
+ return true;
+}
+
+/*
+ * Check that given struct member is a regular int with expected
+ * offset and size.
+ */
+bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
+ const struct btf_member *m,
+ u32 expected_offset, u32 expected_size)
+{
+ const struct btf_type *t;
+ u32 id, int_data;
+ u8 nr_bits;
+
+ id = m->type;
+ t = btf_type_id_size(btf, &id, NULL);
+ if (!t || !btf_type_is_int(t))
+ return false;
+
+ int_data = btf_type_int(t);
+ nr_bits = BTF_INT_BITS(int_data);
+ if (btf_type_kflag(s)) {
+ u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
+ u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
+
+ /* if kflag set, int should be a regular int and
+ * bit offset should be at byte boundary.
+ */
+ return !bitfield_size &&
+ BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
+ BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
+ }
+
+ if (BTF_INT_OFFSET(int_data) ||
+ BITS_PER_BYTE_MASKED(m->offset) ||
+ BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
+ BITS_PER_BYTE_MASKED(nr_bits) ||
+ BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
+ return false;
+
+ return true;
+}
+
+/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
+static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
+ u32 id)
+{
+ const struct btf_type *t = btf_type_by_id(btf, id);
+
+ while (btf_type_is_modifier(t) &&
+ BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
+ t = btf_type_by_id(btf, t->type);
+ }
+
+ return t;
+}
+
+#define BTF_SHOW_MAX_ITER 10
+
+#define BTF_KIND_BIT(kind) (1ULL << kind)
+
+/*
+ * Populate show->state.name with type name information.
+ * Format of type name is
+ *
+ * [.member_name = ] (type_name)
+ */
+static const char *btf_show_name(struct btf_show *show)
+{
+ /* BTF_MAX_ITER array suffixes "[]" */
+ const char *array_suffixes = "[][][][][][][][][][]";
+ const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
+ /* BTF_MAX_ITER pointer suffixes "*" */
+ const char *ptr_suffixes = "**********";
+ const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
+ const char *name = NULL, *prefix = "", *parens = "";
+ const struct btf_member *m = show->state.member;
+ const struct btf_type *t;
+ const struct btf_array *array;
+ u32 id = show->state.type_id;
+ const char *member = NULL;
+ bool show_member = false;
+ u64 kinds = 0;
+ int i;
+
+ show->state.name[0] = '\0';
+
+ /*
+ * Don't show type name if we're showing an array member;
+ * in that case we show the array type so don't need to repeat
+ * ourselves for each member.
+ */
+ if (show->state.array_member)
+ return "";
+
+ /* Retrieve member name, if any. */
+ if (m) {
+ member = btf_name_by_offset(show->btf, m->name_off);
+ show_member = strlen(member) > 0;
+ id = m->type;
+ }
+
+ /*
+ * Start with type_id, as we have resolved the struct btf_type *
+ * via btf_modifier_show() past the parent typedef to the child
+ * struct, int etc it is defined as. In such cases, the type_id
+ * still represents the starting type while the struct btf_type *
+ * in our show->state points at the resolved type of the typedef.
+ */
+ t = btf_type_by_id(show->btf, id);
+ if (!t)
+ return "";
+
+ /*
+ * The goal here is to build up the right number of pointer and
+ * array suffixes while ensuring the type name for a typedef
+ * is represented. Along the way we accumulate a list of
+ * BTF kinds we have encountered, since these will inform later
+ * display; for example, pointer types will not require an
+ * opening "{" for struct, we will just display the pointer value.
+ *
+ * We also want to accumulate the right number of pointer or array
+ * indices in the format string while iterating until we get to
+ * the typedef/pointee/array member target type.
+ *
+ * We start by pointing at the end of pointer and array suffix
+ * strings; as we accumulate pointers and arrays we move the pointer
+ * or array string backwards so it will show the expected number of
+ * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
+ * and/or arrays and typedefs are supported as a precaution.
+ *
+ * We also want to get typedef name while proceeding to resolve
+ * type it points to so that we can add parentheses if it is a
+ * "typedef struct" etc.
+ */
+ for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
+
+ switch (BTF_INFO_KIND(t->info)) {
+ case BTF_KIND_TYPEDEF:
+ if (!name)
+ name = btf_name_by_offset(show->btf,
+ t->name_off);
+ kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
+ id = t->type;
+ break;
+ case BTF_KIND_ARRAY:
+ kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
+ parens = "[";
+ if (!t)
+ return "";
+ array = btf_type_array(t);
+ if (array_suffix > array_suffixes)
+ array_suffix -= 2;
+ id = array->type;
+ break;
+ case BTF_KIND_PTR:
+ kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
+ if (ptr_suffix > ptr_suffixes)
+ ptr_suffix -= 1;
+ id = t->type;
+ break;
+ default:
+ id = 0;
+ break;
+ }
+ if (!id)
+ break;
+ t = btf_type_skip_qualifiers(show->btf, id);
+ }
+ /* We may not be able to represent this type; bail to be safe */
+ if (i == BTF_SHOW_MAX_ITER)
+ return "";
+
+ if (!name)
+ name = btf_name_by_offset(show->btf, t->name_off);
+
+ switch (BTF_INFO_KIND(t->info)) {
+ case BTF_KIND_STRUCT:
+ case BTF_KIND_UNION:
+ prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
+ "struct" : "union";
+ /* if it's an array of struct/union, parens is already set */
+ if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
+ parens = "{";
+ break;
+ case BTF_KIND_ENUM:
+ case BTF_KIND_ENUM64:
+ prefix = "enum";
+ break;
+ default:
+ break;
+ }
+
+ /* pointer does not require parens */
+ if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
+ parens = "";
+ /* typedef does not require struct/union/enum prefix */
+ if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
+ prefix = "";
+
+ if (!name)
+ name = "";
+
+ /* Even if we don't want type name info, we want parentheses etc */
+ if (show->flags & BTF_SHOW_NONAME)
+ snprintf(show->state.name, sizeof(show->state.name), "%s",
+ parens);
+ else
+ snprintf(show->state.name, sizeof(show->state.name),
+ "%s%s%s(%s%s%s%s%s%s)%s",
+ /* first 3 strings comprise ".member = " */
+ show_member ? "." : "",
+ show_member ? member : "",
+ show_member ? " = " : "",
+ /* ...next is our prefix (struct, enum, etc) */
+ prefix,
+ strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
+ /* ...this is the type name itself */
+ name,
+ /* ...suffixed by the appropriate '*', '[]' suffixes */
+ strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
+ array_suffix, parens);
+
+ return show->state.name;
+}
+
+static const char *__btf_show_indent(struct btf_show *show)
+{
+ const char *indents = " ";
+ const char *indent = &indents[strlen(indents)];
+
+ if ((indent - show->state.depth) >= indents)
+ return indent - show->state.depth;
+ return indents;
+}
+
+static const char *btf_show_indent(struct btf_show *show)
+{
+ return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
+}
+
+static const char *btf_show_newline(struct btf_show *show)
+{
+ return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
+}
+
+static const char *btf_show_delim(struct btf_show *show)
+{
+ if (show->state.depth == 0)
+ return "";
+
+ if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
+ BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
+ return "|";
+
+ return ",";
+}
+
+__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
+{
+ va_list args;
+
+ if (!show->state.depth_check) {
+ va_start(args, fmt);
+ show->showfn(show, fmt, args);
+ va_end(args);
+ }
+}
+
+/* Macros are used here as btf_show_type_value[s]() prepends and appends
+ * format specifiers to the format specifier passed in; these do the work of
+ * adding indentation, delimiters etc while the caller simply has to specify
+ * the type value(s) in the format specifier + value(s).
+ */
+#define btf_show_type_value(show, fmt, value) \
+ do { \
+ if ((value) != (__typeof__(value))0 || \
+ (show->flags & BTF_SHOW_ZERO) || \
+ show->state.depth == 0) { \
+ btf_show(show, "%s%s" fmt "%s%s", \
+ btf_show_indent(show), \
+ btf_show_name(show), \
+ value, btf_show_delim(show), \
+ btf_show_newline(show)); \
+ if (show->state.depth > show->state.depth_to_show) \
+ show->state.depth_to_show = show->state.depth; \
+ } \
+ } while (0)
+
+#define btf_show_type_values(show, fmt, ...) \
+ do { \
+ btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
+ btf_show_name(show), \
+ __VA_ARGS__, btf_show_delim(show), \
+ btf_show_newline(show)); \
+ if (show->state.depth > show->state.depth_to_show) \
+ show->state.depth_to_show = show->state.depth; \
+ } while (0)
+
+/* How much is left to copy to safe buffer after @data? */
+static int btf_show_obj_size_left(struct btf_show *show, void *data)
+{
+ return show->obj.head + show->obj.size - data;
+}
+
+/* Is object pointed to by @data of @size already copied to our safe buffer? */
+static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
+{
+ return data >= show->obj.data &&
+ (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
+}
+
+/*
+ * If object pointed to by @data of @size falls within our safe buffer, return
+ * the equivalent pointer to the same safe data. Assumes
+ * copy_from_kernel_nofault() has already happened and our safe buffer is
+ * populated.
+ */
+static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
+{
+ if (btf_show_obj_is_safe(show, data, size))
+ return show->obj.safe + (data - show->obj.data);
+ return NULL;
+}
+
+/*
+ * Return a safe-to-access version of data pointed to by @data.
+ * We do this by copying the relevant amount of information
+ * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
+ *
+ * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
+ * safe copy is needed.
+ *
+ * Otherwise we need to determine if we have the required amount
+ * of data (determined by the @data pointer and the size of the
+ * largest base type we can encounter (represented by
+ * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
+ * that we will be able to print some of the current object,
+ * and if more is needed a copy will be triggered.
+ * Some objects such as structs will not fit into the buffer;
+ * in such cases additional copies when we iterate over their
+ * members may be needed.
+ *
+ * btf_show_obj_safe() is used to return a safe buffer for
+ * btf_show_start_type(); this ensures that as we recurse into
+ * nested types we always have safe data for the given type.
+ * This approach is somewhat wasteful; it's possible for example
+ * that when iterating over a large union we'll end up copying the
+ * same data repeatedly, but the goal is safety not performance.
+ * We use stack data as opposed to per-CPU buffers because the
+ * iteration over a type can take some time, and preemption handling
+ * would greatly complicate use of the safe buffer.
+ */
+static void *btf_show_obj_safe(struct btf_show *show,
+ const struct btf_type *t,
+ void *data)
+{
+ const struct btf_type *rt;
+ int size_left, size;
+ void *safe = NULL;
+
+ if (show->flags & BTF_SHOW_UNSAFE)
+ return data;
+
+ rt = btf_resolve_size(show->btf, t, &size);
+ if (IS_ERR(rt)) {
+ show->state.status = PTR_ERR(rt);
+ return NULL;
+ }
+
+ /*
+ * Is this toplevel object? If so, set total object size and
+ * initialize pointers. Otherwise check if we still fall within
+ * our safe object data.
+ */
+ if (show->state.depth == 0) {
+ show->obj.size = size;
+ show->obj.head = data;
+ } else {
+ /*
+ * If the size of the current object is > our remaining
+ * safe buffer we _may_ need to do a new copy. However
+ * consider the case of a nested struct; it's size pushes
+ * us over the safe buffer limit, but showing any individual
+ * struct members does not. In such cases, we don't need
+ * to initiate a fresh copy yet; however we definitely need
+ * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
+ * in our buffer, regardless of the current object size.
+ * The logic here is that as we resolve types we will
+ * hit a base type at some point, and we need to be sure
+ * the next chunk of data is safely available to display
+ * that type info safely. We cannot rely on the size of
+ * the current object here because it may be much larger
+ * than our current buffer (e.g. task_struct is 8k).
+ * All we want to do here is ensure that we can print the
+ * next basic type, which we can if either
+ * - the current type size is within the safe buffer; or
+ * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
+ * the safe buffer.
+ */
+ safe = __btf_show_obj_safe(show, data,
+ min(size,
+ BTF_SHOW_OBJ_BASE_TYPE_SIZE));
+ }
+
+ /*
+ * We need a new copy to our safe object, either because we haven't
+ * yet copied and are initializing safe data, or because the data
+ * we want falls outside the boundaries of the safe object.
+ */
+ if (!safe) {
+ size_left = btf_show_obj_size_left(show, data);
+ if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
+ size_left = BTF_SHOW_OBJ_SAFE_SIZE;
+ show->state.status = copy_from_kernel_nofault(show->obj.safe,
+ data, size_left);
+ if (!show->state.status) {
+ show->obj.data = data;
+ safe = show->obj.safe;
+ }
+ }
+
+ return safe;
+}
+
+/*
+ * Set the type we are starting to show and return a safe data pointer
+ * to be used for showing the associated data.
+ */
+static void *btf_show_start_type(struct btf_show *show,
+ const struct btf_type *t,
+ u32 type_id, void *data)
+{
+ show->state.type = t;
+ show->state.type_id = type_id;
+ show->state.name[0] = '\0';
+
+ return btf_show_obj_safe(show, t, data);
+}
+
+static void btf_show_end_type(struct btf_show *show)
+{
+ show->state.type = NULL;
+ show->state.type_id = 0;
+ show->state.name[0] = '\0';
+}
+
+static void *btf_show_start_aggr_type(struct btf_show *show,
+ const struct btf_type *t,
+ u32 type_id, void *data)
+{
+ void *safe_data = btf_show_start_type(show, t, type_id, data);
+
+ if (!safe_data)
+ return safe_data;
+
+ btf_show(show, "%s%s%s", btf_show_indent(show),
+ btf_show_name(show),
+ btf_show_newline(show));
+ show->state.depth++;
+ return safe_data;
+}
+
+static void btf_show_end_aggr_type(struct btf_show *show,
+ const char *suffix)
+{
+ show->state.depth--;
+ btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
+ btf_show_delim(show), btf_show_newline(show));
+ btf_show_end_type(show);
+}
+
+static void btf_show_start_member(struct btf_show *show,
+ const struct btf_member *m)
+{
+ show->state.member = m;
+}
+
+static void btf_show_start_array_member(struct btf_show *show)
+{
+ show->state.array_member = 1;
+ btf_show_start_member(show, NULL);
+}
+
+static void btf_show_end_member(struct btf_show *show)
+{
+ show->state.member = NULL;
+}
+
+static void btf_show_end_array_member(struct btf_show *show)
+{
+ show->state.array_member = 0;
+ btf_show_end_member(show);
+}
+
+static void *btf_show_start_array_type(struct btf_show *show,
+ const struct btf_type *t,
+ u32 type_id,
+ u16 array_encoding,
+ void *data)
+{
+ show->state.array_encoding = array_encoding;
+ show->state.array_terminated = 0;
+ return btf_show_start_aggr_type(show, t, type_id, data);
+}
+
+static void btf_show_end_array_type(struct btf_show *show)
+{
+ show->state.array_encoding = 0;
+ show->state.array_terminated = 0;
+ btf_show_end_aggr_type(show, "]");
+}
+
+static void *btf_show_start_struct_type(struct btf_show *show,
+ const struct btf_type *t,
+ u32 type_id,
+ void *data)
+{
+ return btf_show_start_aggr_type(show, t, type_id, data);
+}
+
+static void btf_show_end_struct_type(struct btf_show *show)
+{
+ btf_show_end_aggr_type(show, "}");
+}
+
+__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
+ const char *fmt, ...)
+{
+ va_list args;
+
+ va_start(args, fmt);
+ bpf_verifier_vlog(log, fmt, args);
+ va_end(args);
+}
+
+__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
+ const char *fmt, ...)
+{
+ struct bpf_verifier_log *log = &env->log;
+ va_list args;
+
+ if (!bpf_verifier_log_needed(log))
+ return;
+
+ va_start(args, fmt);
+ bpf_verifier_vlog(log, fmt, args);
+ va_end(args);
+}
+
+__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ bool log_details,
+ const char *fmt, ...)
+{
+ struct bpf_verifier_log *log = &env->log;
+ struct btf *btf = env->btf;
+ va_list args;
+
+ if (!bpf_verifier_log_needed(log))
+ return;
+
+ /* btf verifier prints all types it is processing via
+ * btf_verifier_log_type(..., fmt = NULL).
+ * Skip those prints for in-kernel BTF verification.
+ */
+ if (log->level == BPF_LOG_KERNEL && !fmt)
+ return;
+
+ __btf_verifier_log(log, "[%u] %s %s%s",
+ env->log_type_id,
+ btf_type_str(t),
+ __btf_name_by_offset(btf, t->name_off),
+ log_details ? " " : "");
+
+ if (log_details)
+ btf_type_ops(t)->log_details(env, t);
+
+ if (fmt && *fmt) {
+ __btf_verifier_log(log, " ");
+ va_start(args, fmt);
+ bpf_verifier_vlog(log, fmt, args);
+ va_end(args);
+ }
+
+ __btf_verifier_log(log, "\n");
+}
+
+#define btf_verifier_log_type(env, t, ...) \
+ __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
+#define btf_verifier_log_basic(env, t, ...) \
+ __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
+
+__printf(4, 5)
+static void btf_verifier_log_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const char *fmt, ...)
+{
+ struct bpf_verifier_log *log = &env->log;
+ struct btf *btf = env->btf;
+ va_list args;
+
+ if (!bpf_verifier_log_needed(log))
+ return;
+
+ if (log->level == BPF_LOG_KERNEL && !fmt)
+ return;
+ /* The CHECK_META phase already did a btf dump.
+ *
+ * If member is logged again, it must hit an error in
+ * parsing this member. It is useful to print out which
+ * struct this member belongs to.
+ */
+ if (env->phase != CHECK_META)
+ btf_verifier_log_type(env, struct_type, NULL);
+
+ if (btf_type_kflag(struct_type))
+ __btf_verifier_log(log,
+ "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
+ __btf_name_by_offset(btf, member->name_off),
+ member->type,
+ BTF_MEMBER_BITFIELD_SIZE(member->offset),
+ BTF_MEMBER_BIT_OFFSET(member->offset));
+ else
+ __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
+ __btf_name_by_offset(btf, member->name_off),
+ member->type, member->offset);
+
+ if (fmt && *fmt) {
+ __btf_verifier_log(log, " ");
+ va_start(args, fmt);
+ bpf_verifier_vlog(log, fmt, args);
+ va_end(args);
+ }
+
+ __btf_verifier_log(log, "\n");
+}
+
+__printf(4, 5)
+static void btf_verifier_log_vsi(struct btf_verifier_env *env,
+ const struct btf_type *datasec_type,
+ const struct btf_var_secinfo *vsi,
+ const char *fmt, ...)
+{
+ struct bpf_verifier_log *log = &env->log;
+ va_list args;
+
+ if (!bpf_verifier_log_needed(log))
+ return;
+ if (log->level == BPF_LOG_KERNEL && !fmt)
+ return;
+ if (env->phase != CHECK_META)
+ btf_verifier_log_type(env, datasec_type, NULL);
+
+ __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
+ vsi->type, vsi->offset, vsi->size);
+ if (fmt && *fmt) {
+ __btf_verifier_log(log, " ");
+ va_start(args, fmt);
+ bpf_verifier_vlog(log, fmt, args);
+ va_end(args);
+ }
+
+ __btf_verifier_log(log, "\n");
+}
+
+static void btf_verifier_log_hdr(struct btf_verifier_env *env,
+ u32 btf_data_size)
+{
+ struct bpf_verifier_log *log = &env->log;
+ const struct btf *btf = env->btf;
+ const struct btf_header *hdr;
+
+ if (!bpf_verifier_log_needed(log))
+ return;
+
+ if (log->level == BPF_LOG_KERNEL)
+ return;
+ hdr = &btf->hdr;
+ __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
+ __btf_verifier_log(log, "version: %u\n", hdr->version);
+ __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
+ __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
+ __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
+ __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
+ __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
+ __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
+ __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
+}
+
+static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
+{
+ struct btf *btf = env->btf;
+
+ if (btf->types_size == btf->nr_types) {
+ /* Expand 'types' array */
+
+ struct btf_type **new_types;
+ u32 expand_by, new_size;
+
+ if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
+ btf_verifier_log(env, "Exceeded max num of types");
+ return -E2BIG;
+ }
+
+ expand_by = max_t(u32, btf->types_size >> 2, 16);
+ new_size = min_t(u32, BTF_MAX_TYPE,
+ btf->types_size + expand_by);
+
+ new_types = kvcalloc(new_size, sizeof(*new_types),
+ GFP_KERNEL | __GFP_NOWARN);
+ if (!new_types)
+ return -ENOMEM;
+
+ if (btf->nr_types == 0) {
+ if (!btf->base_btf) {
+ /* lazily init VOID type */
+ new_types[0] = &btf_void;
+ btf->nr_types++;
+ }
+ } else {
+ memcpy(new_types, btf->types,
+ sizeof(*btf->types) * btf->nr_types);
+ }
+
+ kvfree(btf->types);
+ btf->types = new_types;
+ btf->types_size = new_size;
+ }
+
+ btf->types[btf->nr_types++] = t;
+
+ return 0;
+}
+
+static int btf_alloc_id(struct btf *btf)
+{
+ int id;
+
+ idr_preload(GFP_KERNEL);
+ spin_lock_bh(&btf_idr_lock);
+ id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
+ if (id > 0)
+ btf->id = id;
+ spin_unlock_bh(&btf_idr_lock);
+ idr_preload_end();
+
+ if (WARN_ON_ONCE(!id))
+ return -ENOSPC;
+
+ return id > 0 ? 0 : id;
+}
+
+static void btf_free_id(struct btf *btf)
+{
+ unsigned long flags;
+
+ /*
+ * In map-in-map, calling map_delete_elem() on outer
+ * map will call bpf_map_put on the inner map.
+ * It will then eventually call btf_free_id()
+ * on the inner map. Some of the map_delete_elem()
+ * implementation may have irq disabled, so
+ * we need to use the _irqsave() version instead
+ * of the _bh() version.
+ */
+ spin_lock_irqsave(&btf_idr_lock, flags);
+ idr_remove(&btf_idr, btf->id);
+ spin_unlock_irqrestore(&btf_idr_lock, flags);
+}
+
+static void btf_free_kfunc_set_tab(struct btf *btf)
+{
+ struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
+ int hook;
+
+ if (!tab)
+ return;
+ /* For module BTF, we directly assign the sets being registered, so
+ * there is nothing to free except kfunc_set_tab.
+ */
+ if (btf_is_module(btf))
+ goto free_tab;
+ for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
+ kfree(tab->sets[hook]);
+free_tab:
+ kfree(tab);
+ btf->kfunc_set_tab = NULL;
+}
+
+static void btf_free_dtor_kfunc_tab(struct btf *btf)
+{
+ struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
+
+ if (!tab)
+ return;
+ kfree(tab);
+ btf->dtor_kfunc_tab = NULL;
+}
+
+static void btf_free(struct btf *btf)
+{
+ btf_free_dtor_kfunc_tab(btf);
+ btf_free_kfunc_set_tab(btf);
+ kvfree(btf->types);
+ kvfree(btf->resolved_sizes);
+ kvfree(btf->resolved_ids);
+ kvfree(btf->data);
+ kfree(btf);
+}
+
+static void btf_free_rcu(struct rcu_head *rcu)
+{
+ struct btf *btf = container_of(rcu, struct btf, rcu);
+
+ btf_free(btf);
+}
+
+void btf_get(struct btf *btf)
+{
+ refcount_inc(&btf->refcnt);
+}
+
+void btf_put(struct btf *btf)
+{
+ if (btf && refcount_dec_and_test(&btf->refcnt)) {
+ btf_free_id(btf);
+ call_rcu(&btf->rcu, btf_free_rcu);
+ }
+}
+
+static int env_resolve_init(struct btf_verifier_env *env)
+{
+ struct btf *btf = env->btf;
+ u32 nr_types = btf->nr_types;
+ u32 *resolved_sizes = NULL;
+ u32 *resolved_ids = NULL;
+ u8 *visit_states = NULL;
+
+ resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
+ GFP_KERNEL | __GFP_NOWARN);
+ if (!resolved_sizes)
+ goto nomem;
+
+ resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
+ GFP_KERNEL | __GFP_NOWARN);
+ if (!resolved_ids)
+ goto nomem;
+
+ visit_states = kvcalloc(nr_types, sizeof(*visit_states),
+ GFP_KERNEL | __GFP_NOWARN);
+ if (!visit_states)
+ goto nomem;
+
+ btf->resolved_sizes = resolved_sizes;
+ btf->resolved_ids = resolved_ids;
+ env->visit_states = visit_states;
+
+ return 0;
+
+nomem:
+ kvfree(resolved_sizes);
+ kvfree(resolved_ids);
+ kvfree(visit_states);
+ return -ENOMEM;
+}
+
+static void btf_verifier_env_free(struct btf_verifier_env *env)
+{
+ kvfree(env->visit_states);
+ kfree(env);
+}
+
+static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
+ const struct btf_type *next_type)
+{
+ switch (env->resolve_mode) {
+ case RESOLVE_TBD:
+ /* int, enum or void is a sink */
+ return !btf_type_needs_resolve(next_type);
+ case RESOLVE_PTR:
+ /* int, enum, void, struct, array, func or func_proto is a sink
+ * for ptr
+ */
+ return !btf_type_is_modifier(next_type) &&
+ !btf_type_is_ptr(next_type);
+ case RESOLVE_STRUCT_OR_ARRAY:
+ /* int, enum, void, ptr, func or func_proto is a sink
+ * for struct and array
+ */
+ return !btf_type_is_modifier(next_type) &&
+ !btf_type_is_array(next_type) &&
+ !btf_type_is_struct(next_type);
+ default:
+ BUG();
+ }
+}
+
+static bool env_type_is_resolved(const struct btf_verifier_env *env,
+ u32 type_id)
+{
+ /* base BTF types should be resolved by now */
+ if (type_id < env->btf->start_id)
+ return true;
+
+ return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
+}
+
+static int env_stack_push(struct btf_verifier_env *env,
+ const struct btf_type *t, u32 type_id)
+{
+ const struct btf *btf = env->btf;
+ struct resolve_vertex *v;
+
+ if (env->top_stack == MAX_RESOLVE_DEPTH)
+ return -E2BIG;
+
+ if (type_id < btf->start_id
+ || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
+ return -EEXIST;
+
+ env->visit_states[type_id - btf->start_id] = VISITED;
+
+ v = &env->stack[env->top_stack++];
+ v->t = t;
+ v->type_id = type_id;
+ v->next_member = 0;
+
+ if (env->resolve_mode == RESOLVE_TBD) {
+ if (btf_type_is_ptr(t))
+ env->resolve_mode = RESOLVE_PTR;
+ else if (btf_type_is_struct(t) || btf_type_is_array(t))
+ env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
+ }
+
+ return 0;
+}
+
+static void env_stack_set_next_member(struct btf_verifier_env *env,
+ u16 next_member)
+{
+ env->stack[env->top_stack - 1].next_member = next_member;
+}
+
+static void env_stack_pop_resolved(struct btf_verifier_env *env,
+ u32 resolved_type_id,
+ u32 resolved_size)
+{
+ u32 type_id = env->stack[--(env->top_stack)].type_id;
+ struct btf *btf = env->btf;
+
+ type_id -= btf->start_id; /* adjust to local type id */
+ btf->resolved_sizes[type_id] = resolved_size;
+ btf->resolved_ids[type_id] = resolved_type_id;
+ env->visit_states[type_id] = RESOLVED;
+}
+
+static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
+{
+ return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
+}
+
+/* Resolve the size of a passed-in "type"
+ *
+ * type: is an array (e.g. u32 array[x][y])
+ * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
+ * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
+ * corresponds to the return type.
+ * *elem_type: u32
+ * *elem_id: id of u32
+ * *total_nelems: (x * y). Hence, individual elem size is
+ * (*type_size / *total_nelems)
+ * *type_id: id of type if it's changed within the function, 0 if not
+ *
+ * type: is not an array (e.g. const struct X)
+ * return type: type "struct X"
+ * *type_size: sizeof(struct X)
+ * *elem_type: same as return type ("struct X")
+ * *elem_id: 0
+ * *total_nelems: 1
+ * *type_id: id of type if it's changed within the function, 0 if not
+ */
+static const struct btf_type *
+__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
+ u32 *type_size, const struct btf_type **elem_type,
+ u32 *elem_id, u32 *total_nelems, u32 *type_id)
+{
+ const struct btf_type *array_type = NULL;
+ const struct btf_array *array = NULL;
+ u32 i, size, nelems = 1, id = 0;
+
+ for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
+ switch (BTF_INFO_KIND(type->info)) {
+ /* type->size can be used */
+ case BTF_KIND_INT:
+ case BTF_KIND_STRUCT:
+ case BTF_KIND_UNION:
+ case BTF_KIND_ENUM:
+ case BTF_KIND_FLOAT:
+ case BTF_KIND_ENUM64:
+ size = type->size;
+ goto resolved;
+
+ case BTF_KIND_PTR:
+ size = sizeof(void *);
+ goto resolved;
+
+ /* Modifiers */
+ case BTF_KIND_TYPEDEF:
+ case BTF_KIND_VOLATILE:
+ case BTF_KIND_CONST:
+ case BTF_KIND_RESTRICT:
+ case BTF_KIND_TYPE_TAG:
+ id = type->type;
+ type = btf_type_by_id(btf, type->type);
+ break;
+
+ case BTF_KIND_ARRAY:
+ if (!array_type)
+ array_type = type;
+ array = btf_type_array(type);
+ if (nelems && array->nelems > U32_MAX / nelems)
+ return ERR_PTR(-EINVAL);
+ nelems *= array->nelems;
+ type = btf_type_by_id(btf, array->type);
+ break;
+
+ /* type without size */
+ default:
+ return ERR_PTR(-EINVAL);
+ }
+ }
+
+ return ERR_PTR(-EINVAL);
+
+resolved:
+ if (nelems && size > U32_MAX / nelems)
+ return ERR_PTR(-EINVAL);
+
+ *type_size = nelems * size;
+ if (total_nelems)
+ *total_nelems = nelems;
+ if (elem_type)
+ *elem_type = type;
+ if (elem_id)
+ *elem_id = array ? array->type : 0;
+ if (type_id && id)
+ *type_id = id;
+
+ return array_type ? : type;
+}
+
+const struct btf_type *
+btf_resolve_size(const struct btf *btf, const struct btf_type *type,
+ u32 *type_size)
+{
+ return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
+}
+
+static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
+{
+ while (type_id < btf->start_id)
+ btf = btf->base_btf;
+
+ return btf->resolved_ids[type_id - btf->start_id];
+}
+
+/* The input param "type_id" must point to a needs_resolve type */
+static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
+ u32 *type_id)
+{
+ *type_id = btf_resolved_type_id(btf, *type_id);
+ return btf_type_by_id(btf, *type_id);
+}
+
+static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
+{
+ while (type_id < btf->start_id)
+ btf = btf->base_btf;
+
+ return btf->resolved_sizes[type_id - btf->start_id];
+}
+
+const struct btf_type *btf_type_id_size(const struct btf *btf,
+ u32 *type_id, u32 *ret_size)
+{
+ const struct btf_type *size_type;
+ u32 size_type_id = *type_id;
+ u32 size = 0;
+
+ size_type = btf_type_by_id(btf, size_type_id);
+ if (btf_type_nosize_or_null(size_type))
+ return NULL;
+
+ if (btf_type_has_size(size_type)) {
+ size = size_type->size;
+ } else if (btf_type_is_array(size_type)) {
+ size = btf_resolved_type_size(btf, size_type_id);
+ } else if (btf_type_is_ptr(size_type)) {
+ size = sizeof(void *);
+ } else {
+ if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
+ !btf_type_is_var(size_type)))
+ return NULL;
+
+ size_type_id = btf_resolved_type_id(btf, size_type_id);
+ size_type = btf_type_by_id(btf, size_type_id);
+ if (btf_type_nosize_or_null(size_type))
+ return NULL;
+ else if (btf_type_has_size(size_type))
+ size = size_type->size;
+ else if (btf_type_is_array(size_type))
+ size = btf_resolved_type_size(btf, size_type_id);
+ else if (btf_type_is_ptr(size_type))
+ size = sizeof(void *);
+ else
+ return NULL;
+ }
+
+ *type_id = size_type_id;
+ if (ret_size)
+ *ret_size = size;
+
+ return size_type;
+}
+
+static int btf_df_check_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ btf_verifier_log_basic(env, struct_type,
+ "Unsupported check_member");
+ return -EINVAL;
+}
+
+static int btf_df_check_kflag_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ btf_verifier_log_basic(env, struct_type,
+ "Unsupported check_kflag_member");
+ return -EINVAL;
+}
+
+/* Used for ptr, array struct/union and float type members.
+ * int, enum and modifier types have their specific callback functions.
+ */
+static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Invalid member bitfield_size");
+ return -EINVAL;
+ }
+
+ /* bitfield size is 0, so member->offset represents bit offset only.
+ * It is safe to call non kflag check_member variants.
+ */
+ return btf_type_ops(member_type)->check_member(env, struct_type,
+ member,
+ member_type);
+}
+
+static int btf_df_resolve(struct btf_verifier_env *env,
+ const struct resolve_vertex *v)
+{
+ btf_verifier_log_basic(env, v->t, "Unsupported resolve");
+ return -EINVAL;
+}
+
+static void btf_df_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offsets,
+ struct btf_show *show)
+{
+ btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
+}
+
+static int btf_int_check_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ u32 int_data = btf_type_int(member_type);
+ u32 struct_bits_off = member->offset;
+ u32 struct_size = struct_type->size;
+ u32 nr_copy_bits;
+ u32 bytes_offset;
+
+ if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "bits_offset exceeds U32_MAX");
+ return -EINVAL;
+ }
+
+ struct_bits_off += BTF_INT_OFFSET(int_data);
+ bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
+ nr_copy_bits = BTF_INT_BITS(int_data) +
+ BITS_PER_BYTE_MASKED(struct_bits_off);
+
+ if (nr_copy_bits > BITS_PER_U128) {
+ btf_verifier_log_member(env, struct_type, member,
+ "nr_copy_bits exceeds 128");
+ return -EINVAL;
+ }
+
+ if (struct_size < bytes_offset ||
+ struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member exceeds struct_size");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int btf_int_check_kflag_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
+ u32 int_data = btf_type_int(member_type);
+ u32 struct_size = struct_type->size;
+ u32 nr_copy_bits;
+
+ /* a regular int type is required for the kflag int member */
+ if (!btf_type_int_is_regular(member_type)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Invalid member base type");
+ return -EINVAL;
+ }
+
+ /* check sanity of bitfield size */
+ nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
+ struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
+ nr_int_data_bits = BTF_INT_BITS(int_data);
+ if (!nr_bits) {
+ /* Not a bitfield member, member offset must be at byte
+ * boundary.
+ */
+ if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Invalid member offset");
+ return -EINVAL;
+ }
+
+ nr_bits = nr_int_data_bits;
+ } else if (nr_bits > nr_int_data_bits) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Invalid member bitfield_size");
+ return -EINVAL;
+ }
+
+ bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
+ nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
+ if (nr_copy_bits > BITS_PER_U128) {
+ btf_verifier_log_member(env, struct_type, member,
+ "nr_copy_bits exceeds 128");
+ return -EINVAL;
+ }
+
+ if (struct_size < bytes_offset ||
+ struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member exceeds struct_size");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static s32 btf_int_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ u32 int_data, nr_bits, meta_needed = sizeof(int_data);
+ u16 encoding;
+
+ if (meta_left < meta_needed) {
+ btf_verifier_log_basic(env, t,
+ "meta_left:%u meta_needed:%u",
+ meta_left, meta_needed);
+ return -EINVAL;
+ }
+
+ if (btf_type_vlen(t)) {
+ btf_verifier_log_type(env, t, "vlen != 0");
+ return -EINVAL;
+ }
+
+ if (btf_type_kflag(t)) {
+ btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
+ return -EINVAL;
+ }
+
+ int_data = btf_type_int(t);
+ if (int_data & ~BTF_INT_MASK) {
+ btf_verifier_log_basic(env, t, "Invalid int_data:%x",
+ int_data);
+ return -EINVAL;
+ }
+
+ nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
+
+ if (nr_bits > BITS_PER_U128) {
+ btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
+ BITS_PER_U128);
+ return -EINVAL;
+ }
+
+ if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
+ btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
+ return -EINVAL;
+ }
+
+ /*
+ * Only one of the encoding bits is allowed and it
+ * should be sufficient for the pretty print purpose (i.e. decoding).
+ * Multiple bits can be allowed later if it is found
+ * to be insufficient.
+ */
+ encoding = BTF_INT_ENCODING(int_data);
+ if (encoding &&
+ encoding != BTF_INT_SIGNED &&
+ encoding != BTF_INT_CHAR &&
+ encoding != BTF_INT_BOOL) {
+ btf_verifier_log_type(env, t, "Unsupported encoding");
+ return -ENOTSUPP;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ return meta_needed;
+}
+
+static void btf_int_log(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ int int_data = btf_type_int(t);
+
+ btf_verifier_log(env,
+ "size=%u bits_offset=%u nr_bits=%u encoding=%s",
+ t->size, BTF_INT_OFFSET(int_data),
+ BTF_INT_BITS(int_data),
+ btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
+}
+
+static void btf_int128_print(struct btf_show *show, void *data)
+{
+ /* data points to a __int128 number.
+ * Suppose
+ * int128_num = *(__int128 *)data;
+ * The below formulas shows what upper_num and lower_num represents:
+ * upper_num = int128_num >> 64;
+ * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
+ */
+ u64 upper_num, lower_num;
+
+#ifdef __BIG_ENDIAN_BITFIELD
+ upper_num = *(u64 *)data;
+ lower_num = *(u64 *)(data + 8);
+#else
+ upper_num = *(u64 *)(data + 8);
+ lower_num = *(u64 *)data;
+#endif
+ if (upper_num == 0)
+ btf_show_type_value(show, "0x%llx", lower_num);
+ else
+ btf_show_type_values(show, "0x%llx%016llx", upper_num,
+ lower_num);
+}
+
+static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
+ u16 right_shift_bits)
+{
+ u64 upper_num, lower_num;
+
+#ifdef __BIG_ENDIAN_BITFIELD
+ upper_num = print_num[0];
+ lower_num = print_num[1];
+#else
+ upper_num = print_num[1];
+ lower_num = print_num[0];
+#endif
+
+ /* shake out un-needed bits by shift/or operations */
+ if (left_shift_bits >= 64) {
+ upper_num = lower_num << (left_shift_bits - 64);
+ lower_num = 0;
+ } else {
+ upper_num = (upper_num << left_shift_bits) |
+ (lower_num >> (64 - left_shift_bits));
+ lower_num = lower_num << left_shift_bits;
+ }
+
+ if (right_shift_bits >= 64) {
+ lower_num = upper_num >> (right_shift_bits - 64);
+ upper_num = 0;
+ } else {
+ lower_num = (lower_num >> right_shift_bits) |
+ (upper_num << (64 - right_shift_bits));
+ upper_num = upper_num >> right_shift_bits;
+ }
+
+#ifdef __BIG_ENDIAN_BITFIELD
+ print_num[0] = upper_num;
+ print_num[1] = lower_num;
+#else
+ print_num[0] = lower_num;
+ print_num[1] = upper_num;
+#endif
+}
+
+static void btf_bitfield_show(void *data, u8 bits_offset,
+ u8 nr_bits, struct btf_show *show)
+{
+ u16 left_shift_bits, right_shift_bits;
+ u8 nr_copy_bytes;
+ u8 nr_copy_bits;
+ u64 print_num[2] = {};
+
+ nr_copy_bits = nr_bits + bits_offset;
+ nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
+
+ memcpy(print_num, data, nr_copy_bytes);
+
+#ifdef __BIG_ENDIAN_BITFIELD
+ left_shift_bits = bits_offset;
+#else
+ left_shift_bits = BITS_PER_U128 - nr_copy_bits;
+#endif
+ right_shift_bits = BITS_PER_U128 - nr_bits;
+
+ btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
+ btf_int128_print(show, print_num);
+}
+
+
+static void btf_int_bits_show(const struct btf *btf,
+ const struct btf_type *t,
+ void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ u32 int_data = btf_type_int(t);
+ u8 nr_bits = BTF_INT_BITS(int_data);
+ u8 total_bits_offset;
+
+ /*
+ * bits_offset is at most 7.
+ * BTF_INT_OFFSET() cannot exceed 128 bits.
+ */
+ total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
+ data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
+ bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
+ btf_bitfield_show(data, bits_offset, nr_bits, show);
+}
+
+static void btf_int_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ u32 int_data = btf_type_int(t);
+ u8 encoding = BTF_INT_ENCODING(int_data);
+ bool sign = encoding & BTF_INT_SIGNED;
+ u8 nr_bits = BTF_INT_BITS(int_data);
+ void *safe_data;
+
+ safe_data = btf_show_start_type(show, t, type_id, data);
+ if (!safe_data)
+ return;
+
+ if (bits_offset || BTF_INT_OFFSET(int_data) ||
+ BITS_PER_BYTE_MASKED(nr_bits)) {
+ btf_int_bits_show(btf, t, safe_data, bits_offset, show);
+ goto out;
+ }
+
+ switch (nr_bits) {
+ case 128:
+ btf_int128_print(show, safe_data);
+ break;
+ case 64:
+ if (sign)
+ btf_show_type_value(show, "%lld", *(s64 *)safe_data);
+ else
+ btf_show_type_value(show, "%llu", *(u64 *)safe_data);
+ break;
+ case 32:
+ if (sign)
+ btf_show_type_value(show, "%d", *(s32 *)safe_data);
+ else
+ btf_show_type_value(show, "%u", *(u32 *)safe_data);
+ break;
+ case 16:
+ if (sign)
+ btf_show_type_value(show, "%d", *(s16 *)safe_data);
+ else
+ btf_show_type_value(show, "%u", *(u16 *)safe_data);
+ break;
+ case 8:
+ if (show->state.array_encoding == BTF_INT_CHAR) {
+ /* check for null terminator */
+ if (show->state.array_terminated)
+ break;
+ if (*(char *)data == '\0') {
+ show->state.array_terminated = 1;
+ break;
+ }
+ if (isprint(*(char *)data)) {
+ btf_show_type_value(show, "'%c'",
+ *(char *)safe_data);
+ break;
+ }
+ }
+ if (sign)
+ btf_show_type_value(show, "%d", *(s8 *)safe_data);
+ else
+ btf_show_type_value(show, "%u", *(u8 *)safe_data);
+ break;
+ default:
+ btf_int_bits_show(btf, t, safe_data, bits_offset, show);
+ break;
+ }
+out:
+ btf_show_end_type(show);
+}
+
+static const struct btf_kind_operations int_ops = {
+ .check_meta = btf_int_check_meta,
+ .resolve = btf_df_resolve,
+ .check_member = btf_int_check_member,
+ .check_kflag_member = btf_int_check_kflag_member,
+ .log_details = btf_int_log,
+ .show = btf_int_show,
+};
+
+static int btf_modifier_check_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ const struct btf_type *resolved_type;
+ u32 resolved_type_id = member->type;
+ struct btf_member resolved_member;
+ struct btf *btf = env->btf;
+
+ resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
+ if (!resolved_type) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Invalid member");
+ return -EINVAL;
+ }
+
+ resolved_member = *member;
+ resolved_member.type = resolved_type_id;
+
+ return btf_type_ops(resolved_type)->check_member(env, struct_type,
+ &resolved_member,
+ resolved_type);
+}
+
+static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ const struct btf_type *resolved_type;
+ u32 resolved_type_id = member->type;
+ struct btf_member resolved_member;
+ struct btf *btf = env->btf;
+
+ resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
+ if (!resolved_type) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Invalid member");
+ return -EINVAL;
+ }
+
+ resolved_member = *member;
+ resolved_member.type = resolved_type_id;
+
+ return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
+ &resolved_member,
+ resolved_type);
+}
+
+static int btf_ptr_check_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ u32 struct_size, struct_bits_off, bytes_offset;
+
+ struct_size = struct_type->size;
+ struct_bits_off = member->offset;
+ bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
+
+ if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member is not byte aligned");
+ return -EINVAL;
+ }
+
+ if (struct_size - bytes_offset < sizeof(void *)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member exceeds struct_size");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int btf_ref_type_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ const char *value;
+
+ if (btf_type_vlen(t)) {
+ btf_verifier_log_type(env, t, "vlen != 0");
+ return -EINVAL;
+ }
+
+ if (btf_type_kflag(t)) {
+ btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
+ return -EINVAL;
+ }
+
+ if (!BTF_TYPE_ID_VALID(t->type)) {
+ btf_verifier_log_type(env, t, "Invalid type_id");
+ return -EINVAL;
+ }
+
+ /* typedef/type_tag type must have a valid name, and other ref types,
+ * volatile, const, restrict, should have a null name.
+ */
+ if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
+ if (!t->name_off ||
+ !btf_name_valid_identifier(env->btf, t->name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+ } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
+ value = btf_name_by_offset(env->btf, t->name_off);
+ if (!value || !value[0]) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+ } else {
+ if (t->name_off) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ return 0;
+}
+
+static int btf_modifier_resolve(struct btf_verifier_env *env,
+ const struct resolve_vertex *v)
+{
+ const struct btf_type *t = v->t;
+ const struct btf_type *next_type;
+ u32 next_type_id = t->type;
+ struct btf *btf = env->btf;
+
+ next_type = btf_type_by_id(btf, next_type_id);
+ if (!next_type || btf_type_is_resolve_source_only(next_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid type_id");
+ return -EINVAL;
+ }
+
+ if (!env_type_is_resolve_sink(env, next_type) &&
+ !env_type_is_resolved(env, next_type_id))
+ return env_stack_push(env, next_type, next_type_id);
+
+ /* Figure out the resolved next_type_id with size.
+ * They will be stored in the current modifier's
+ * resolved_ids and resolved_sizes such that it can
+ * save us a few type-following when we use it later (e.g. in
+ * pretty print).
+ */
+ if (!btf_type_id_size(btf, &next_type_id, NULL)) {
+ if (env_type_is_resolved(env, next_type_id))
+ next_type = btf_type_id_resolve(btf, &next_type_id);
+
+ /* "typedef void new_void", "const void"...etc */
+ if (!btf_type_is_void(next_type) &&
+ !btf_type_is_fwd(next_type) &&
+ !btf_type_is_func_proto(next_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid type_id");
+ return -EINVAL;
+ }
+ }
+
+ env_stack_pop_resolved(env, next_type_id, 0);
+
+ return 0;
+}
+
+static int btf_var_resolve(struct btf_verifier_env *env,
+ const struct resolve_vertex *v)
+{
+ const struct btf_type *next_type;
+ const struct btf_type *t = v->t;
+ u32 next_type_id = t->type;
+ struct btf *btf = env->btf;
+
+ next_type = btf_type_by_id(btf, next_type_id);
+ if (!next_type || btf_type_is_resolve_source_only(next_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid type_id");
+ return -EINVAL;
+ }
+
+ if (!env_type_is_resolve_sink(env, next_type) &&
+ !env_type_is_resolved(env, next_type_id))
+ return env_stack_push(env, next_type, next_type_id);
+
+ if (btf_type_is_modifier(next_type)) {
+ const struct btf_type *resolved_type;
+ u32 resolved_type_id;
+
+ resolved_type_id = next_type_id;
+ resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
+
+ if (btf_type_is_ptr(resolved_type) &&
+ !env_type_is_resolve_sink(env, resolved_type) &&
+ !env_type_is_resolved(env, resolved_type_id))
+ return env_stack_push(env, resolved_type,
+ resolved_type_id);
+ }
+
+ /* We must resolve to something concrete at this point, no
+ * forward types or similar that would resolve to size of
+ * zero is allowed.
+ */
+ if (!btf_type_id_size(btf, &next_type_id, NULL)) {
+ btf_verifier_log_type(env, v->t, "Invalid type_id");
+ return -EINVAL;
+ }
+
+ env_stack_pop_resolved(env, next_type_id, 0);
+
+ return 0;
+}
+
+static int btf_ptr_resolve(struct btf_verifier_env *env,
+ const struct resolve_vertex *v)
+{
+ const struct btf_type *next_type;
+ const struct btf_type *t = v->t;
+ u32 next_type_id = t->type;
+ struct btf *btf = env->btf;
+
+ next_type = btf_type_by_id(btf, next_type_id);
+ if (!next_type || btf_type_is_resolve_source_only(next_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid type_id");
+ return -EINVAL;
+ }
+
+ if (!env_type_is_resolve_sink(env, next_type) &&
+ !env_type_is_resolved(env, next_type_id))
+ return env_stack_push(env, next_type, next_type_id);
+
+ /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
+ * the modifier may have stopped resolving when it was resolved
+ * to a ptr (last-resolved-ptr).
+ *
+ * We now need to continue from the last-resolved-ptr to
+ * ensure the last-resolved-ptr will not referring back to
+ * the current ptr (t).
+ */
+ if (btf_type_is_modifier(next_type)) {
+ const struct btf_type *resolved_type;
+ u32 resolved_type_id;
+
+ resolved_type_id = next_type_id;
+ resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
+
+ if (btf_type_is_ptr(resolved_type) &&
+ !env_type_is_resolve_sink(env, resolved_type) &&
+ !env_type_is_resolved(env, resolved_type_id))
+ return env_stack_push(env, resolved_type,
+ resolved_type_id);
+ }
+
+ if (!btf_type_id_size(btf, &next_type_id, NULL)) {
+ if (env_type_is_resolved(env, next_type_id))
+ next_type = btf_type_id_resolve(btf, &next_type_id);
+
+ if (!btf_type_is_void(next_type) &&
+ !btf_type_is_fwd(next_type) &&
+ !btf_type_is_func_proto(next_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid type_id");
+ return -EINVAL;
+ }
+ }
+
+ env_stack_pop_resolved(env, next_type_id, 0);
+
+ return 0;
+}
+
+static void btf_modifier_show(const struct btf *btf,
+ const struct btf_type *t,
+ u32 type_id, void *data,
+ u8 bits_offset, struct btf_show *show)
+{
+ if (btf->resolved_ids)
+ t = btf_type_id_resolve(btf, &type_id);
+ else
+ t = btf_type_skip_modifiers(btf, type_id, NULL);
+
+ btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
+}
+
+static void btf_var_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ t = btf_type_id_resolve(btf, &type_id);
+
+ btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
+}
+
+static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ void *safe_data;
+
+ safe_data = btf_show_start_type(show, t, type_id, data);
+ if (!safe_data)
+ return;
+
+ /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
+ if (show->flags & BTF_SHOW_PTR_RAW)
+ btf_show_type_value(show, "0x%px", *(void **)safe_data);
+ else
+ btf_show_type_value(show, "0x%p", *(void **)safe_data);
+ btf_show_end_type(show);
+}
+
+static void btf_ref_type_log(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ btf_verifier_log(env, "type_id=%u", t->type);
+}
+
+static struct btf_kind_operations modifier_ops = {
+ .check_meta = btf_ref_type_check_meta,
+ .resolve = btf_modifier_resolve,
+ .check_member = btf_modifier_check_member,
+ .check_kflag_member = btf_modifier_check_kflag_member,
+ .log_details = btf_ref_type_log,
+ .show = btf_modifier_show,
+};
+
+static struct btf_kind_operations ptr_ops = {
+ .check_meta = btf_ref_type_check_meta,
+ .resolve = btf_ptr_resolve,
+ .check_member = btf_ptr_check_member,
+ .check_kflag_member = btf_generic_check_kflag_member,
+ .log_details = btf_ref_type_log,
+ .show = btf_ptr_show,
+};
+
+static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ if (btf_type_vlen(t)) {
+ btf_verifier_log_type(env, t, "vlen != 0");
+ return -EINVAL;
+ }
+
+ if (t->type) {
+ btf_verifier_log_type(env, t, "type != 0");
+ return -EINVAL;
+ }
+
+ /* fwd type must have a valid name */
+ if (!t->name_off ||
+ !btf_name_valid_identifier(env->btf, t->name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ return 0;
+}
+
+static void btf_fwd_type_log(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
+}
+
+static struct btf_kind_operations fwd_ops = {
+ .check_meta = btf_fwd_check_meta,
+ .resolve = btf_df_resolve,
+ .check_member = btf_df_check_member,
+ .check_kflag_member = btf_df_check_kflag_member,
+ .log_details = btf_fwd_type_log,
+ .show = btf_df_show,
+};
+
+static int btf_array_check_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ u32 struct_bits_off = member->offset;
+ u32 struct_size, bytes_offset;
+ u32 array_type_id, array_size;
+ struct btf *btf = env->btf;
+
+ if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member is not byte aligned");
+ return -EINVAL;
+ }
+
+ array_type_id = member->type;
+ btf_type_id_size(btf, &array_type_id, &array_size);
+ struct_size = struct_type->size;
+ bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
+ if (struct_size - bytes_offset < array_size) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member exceeds struct_size");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static s32 btf_array_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ const struct btf_array *array = btf_type_array(t);
+ u32 meta_needed = sizeof(*array);
+
+ if (meta_left < meta_needed) {
+ btf_verifier_log_basic(env, t,
+ "meta_left:%u meta_needed:%u",
+ meta_left, meta_needed);
+ return -EINVAL;
+ }
+
+ /* array type should not have a name */
+ if (t->name_off) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ if (btf_type_vlen(t)) {
+ btf_verifier_log_type(env, t, "vlen != 0");
+ return -EINVAL;
+ }
+
+ if (btf_type_kflag(t)) {
+ btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
+ return -EINVAL;
+ }
+
+ if (t->size) {
+ btf_verifier_log_type(env, t, "size != 0");
+ return -EINVAL;
+ }
+
+ /* Array elem type and index type cannot be in type void,
+ * so !array->type and !array->index_type are not allowed.
+ */
+ if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
+ btf_verifier_log_type(env, t, "Invalid elem");
+ return -EINVAL;
+ }
+
+ if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
+ btf_verifier_log_type(env, t, "Invalid index");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ return meta_needed;
+}
+
+static int btf_array_resolve(struct btf_verifier_env *env,
+ const struct resolve_vertex *v)
+{
+ const struct btf_array *array = btf_type_array(v->t);
+ const struct btf_type *elem_type, *index_type;
+ u32 elem_type_id, index_type_id;
+ struct btf *btf = env->btf;
+ u32 elem_size;
+
+ /* Check array->index_type */
+ index_type_id = array->index_type;
+ index_type = btf_type_by_id(btf, index_type_id);
+ if (btf_type_nosize_or_null(index_type) ||
+ btf_type_is_resolve_source_only(index_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid index");
+ return -EINVAL;
+ }
+
+ if (!env_type_is_resolve_sink(env, index_type) &&
+ !env_type_is_resolved(env, index_type_id))
+ return env_stack_push(env, index_type, index_type_id);
+
+ index_type = btf_type_id_size(btf, &index_type_id, NULL);
+ if (!index_type || !btf_type_is_int(index_type) ||
+ !btf_type_int_is_regular(index_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid index");
+ return -EINVAL;
+ }
+
+ /* Check array->type */
+ elem_type_id = array->type;
+ elem_type = btf_type_by_id(btf, elem_type_id);
+ if (btf_type_nosize_or_null(elem_type) ||
+ btf_type_is_resolve_source_only(elem_type)) {
+ btf_verifier_log_type(env, v->t,
+ "Invalid elem");
+ return -EINVAL;
+ }
+
+ if (!env_type_is_resolve_sink(env, elem_type) &&
+ !env_type_is_resolved(env, elem_type_id))
+ return env_stack_push(env, elem_type, elem_type_id);
+
+ elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
+ if (!elem_type) {
+ btf_verifier_log_type(env, v->t, "Invalid elem");
+ return -EINVAL;
+ }
+
+ if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid array of int");
+ return -EINVAL;
+ }
+
+ if (array->nelems && elem_size > U32_MAX / array->nelems) {
+ btf_verifier_log_type(env, v->t,
+ "Array size overflows U32_MAX");
+ return -EINVAL;
+ }
+
+ env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
+
+ return 0;
+}
+
+static void btf_array_log(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ const struct btf_array *array = btf_type_array(t);
+
+ btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
+ array->type, array->index_type, array->nelems);
+}
+
+static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ const struct btf_array *array = btf_type_array(t);
+ const struct btf_kind_operations *elem_ops;
+ const struct btf_type *elem_type;
+ u32 i, elem_size = 0, elem_type_id;
+ u16 encoding = 0;
+
+ elem_type_id = array->type;
+ elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
+ if (elem_type && btf_type_has_size(elem_type))
+ elem_size = elem_type->size;
+
+ if (elem_type && btf_type_is_int(elem_type)) {
+ u32 int_type = btf_type_int(elem_type);
+
+ encoding = BTF_INT_ENCODING(int_type);
+
+ /*
+ * BTF_INT_CHAR encoding never seems to be set for
+ * char arrays, so if size is 1 and element is
+ * printable as a char, we'll do that.
+ */
+ if (elem_size == 1)
+ encoding = BTF_INT_CHAR;
+ }
+
+ if (!btf_show_start_array_type(show, t, type_id, encoding, data))
+ return;
+
+ if (!elem_type)
+ goto out;
+ elem_ops = btf_type_ops(elem_type);
+
+ for (i = 0; i < array->nelems; i++) {
+
+ btf_show_start_array_member(show);
+
+ elem_ops->show(btf, elem_type, elem_type_id, data,
+ bits_offset, show);
+ data += elem_size;
+
+ btf_show_end_array_member(show);
+
+ if (show->state.array_terminated)
+ break;
+ }
+out:
+ btf_show_end_array_type(show);
+}
+
+static void btf_array_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ const struct btf_member *m = show->state.member;
+
+ /*
+ * First check if any members would be shown (are non-zero).
+ * See comments above "struct btf_show" definition for more
+ * details on how this works at a high-level.
+ */
+ if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
+ if (!show->state.depth_check) {
+ show->state.depth_check = show->state.depth + 1;
+ show->state.depth_to_show = 0;
+ }
+ __btf_array_show(btf, t, type_id, data, bits_offset, show);
+ show->state.member = m;
+
+ if (show->state.depth_check != show->state.depth + 1)
+ return;
+ show->state.depth_check = 0;
+
+ if (show->state.depth_to_show <= show->state.depth)
+ return;
+ /*
+ * Reaching here indicates we have recursed and found
+ * non-zero array member(s).
+ */
+ }
+ __btf_array_show(btf, t, type_id, data, bits_offset, show);
+}
+
+static struct btf_kind_operations array_ops = {
+ .check_meta = btf_array_check_meta,
+ .resolve = btf_array_resolve,
+ .check_member = btf_array_check_member,
+ .check_kflag_member = btf_generic_check_kflag_member,
+ .log_details = btf_array_log,
+ .show = btf_array_show,
+};
+
+static int btf_struct_check_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ u32 struct_bits_off = member->offset;
+ u32 struct_size, bytes_offset;
+
+ if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member is not byte aligned");
+ return -EINVAL;
+ }
+
+ struct_size = struct_type->size;
+ bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
+ if (struct_size - bytes_offset < member_type->size) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member exceeds struct_size");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static s32 btf_struct_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
+ const struct btf_member *member;
+ u32 meta_needed, last_offset;
+ struct btf *btf = env->btf;
+ u32 struct_size = t->size;
+ u32 offset;
+ u16 i;
+
+ meta_needed = btf_type_vlen(t) * sizeof(*member);
+ if (meta_left < meta_needed) {
+ btf_verifier_log_basic(env, t,
+ "meta_left:%u meta_needed:%u",
+ meta_left, meta_needed);
+ return -EINVAL;
+ }
+
+ /* struct type either no name or a valid one */
+ if (t->name_off &&
+ !btf_name_valid_identifier(env->btf, t->name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ last_offset = 0;
+ for_each_member(i, t, member) {
+ if (!btf_name_offset_valid(btf, member->name_off)) {
+ btf_verifier_log_member(env, t, member,
+ "Invalid member name_offset:%u",
+ member->name_off);
+ return -EINVAL;
+ }
+
+ /* struct member either no name or a valid one */
+ if (member->name_off &&
+ !btf_name_valid_identifier(btf, member->name_off)) {
+ btf_verifier_log_member(env, t, member, "Invalid name");
+ return -EINVAL;
+ }
+ /* A member cannot be in type void */
+ if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
+ btf_verifier_log_member(env, t, member,
+ "Invalid type_id");
+ return -EINVAL;
+ }
+
+ offset = __btf_member_bit_offset(t, member);
+ if (is_union && offset) {
+ btf_verifier_log_member(env, t, member,
+ "Invalid member bits_offset");
+ return -EINVAL;
+ }
+
+ /*
+ * ">" instead of ">=" because the last member could be
+ * "char a[0];"
+ */
+ if (last_offset > offset) {
+ btf_verifier_log_member(env, t, member,
+ "Invalid member bits_offset");
+ return -EINVAL;
+ }
+
+ if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
+ btf_verifier_log_member(env, t, member,
+ "Member bits_offset exceeds its struct size");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_member(env, t, member, NULL);
+ last_offset = offset;
+ }
+
+ return meta_needed;
+}
+
+static int btf_struct_resolve(struct btf_verifier_env *env,
+ const struct resolve_vertex *v)
+{
+ const struct btf_member *member;
+ int err;
+ u16 i;
+
+ /* Before continue resolving the next_member,
+ * ensure the last member is indeed resolved to a
+ * type with size info.
+ */
+ if (v->next_member) {
+ const struct btf_type *last_member_type;
+ const struct btf_member *last_member;
+ u32 last_member_type_id;
+
+ last_member = btf_type_member(v->t) + v->next_member - 1;
+ last_member_type_id = last_member->type;
+ if (WARN_ON_ONCE(!env_type_is_resolved(env,
+ last_member_type_id)))
+ return -EINVAL;
+
+ last_member_type = btf_type_by_id(env->btf,
+ last_member_type_id);
+ if (btf_type_kflag(v->t))
+ err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
+ last_member,
+ last_member_type);
+ else
+ err = btf_type_ops(last_member_type)->check_member(env, v->t,
+ last_member,
+ last_member_type);
+ if (err)
+ return err;
+ }
+
+ for_each_member_from(i, v->next_member, v->t, member) {
+ u32 member_type_id = member->type;
+ const struct btf_type *member_type = btf_type_by_id(env->btf,
+ member_type_id);
+
+ if (btf_type_nosize_or_null(member_type) ||
+ btf_type_is_resolve_source_only(member_type)) {
+ btf_verifier_log_member(env, v->t, member,
+ "Invalid member");
+ return -EINVAL;
+ }
+
+ if (!env_type_is_resolve_sink(env, member_type) &&
+ !env_type_is_resolved(env, member_type_id)) {
+ env_stack_set_next_member(env, i + 1);
+ return env_stack_push(env, member_type, member_type_id);
+ }
+
+ if (btf_type_kflag(v->t))
+ err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
+ member,
+ member_type);
+ else
+ err = btf_type_ops(member_type)->check_member(env, v->t,
+ member,
+ member_type);
+ if (err)
+ return err;
+ }
+
+ env_stack_pop_resolved(env, 0, 0);
+
+ return 0;
+}
+
+static void btf_struct_log(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
+}
+
+enum btf_field_type {
+ BTF_FIELD_SPIN_LOCK,
+ BTF_FIELD_TIMER,
+ BTF_FIELD_KPTR,
+};
+
+enum {
+ BTF_FIELD_IGNORE = 0,
+ BTF_FIELD_FOUND = 1,
+};
+
+struct btf_field_info {
+ u32 type_id;
+ u32 off;
+ enum bpf_kptr_type type;
+};
+
+static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
+ u32 off, int sz, struct btf_field_info *info)
+{
+ if (!__btf_type_is_struct(t))
+ return BTF_FIELD_IGNORE;
+ if (t->size != sz)
+ return BTF_FIELD_IGNORE;
+ info->off = off;
+ return BTF_FIELD_FOUND;
+}
+
+static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
+ u32 off, int sz, struct btf_field_info *info)
+{
+ enum bpf_kptr_type type;
+ u32 res_id;
+
+ /* For PTR, sz is always == 8 */
+ if (!btf_type_is_ptr(t))
+ return BTF_FIELD_IGNORE;
+ t = btf_type_by_id(btf, t->type);
+
+ if (!btf_type_is_type_tag(t))
+ return BTF_FIELD_IGNORE;
+ /* Reject extra tags */
+ if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
+ return -EINVAL;
+ if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
+ type = BPF_KPTR_UNREF;
+ else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off)))
+ type = BPF_KPTR_REF;
+ else
+ return -EINVAL;
+
+ /* Get the base type */
+ t = btf_type_skip_modifiers(btf, t->type, &res_id);
+ /* Only pointer to struct is allowed */
+ if (!__btf_type_is_struct(t))
+ return -EINVAL;
+
+ info->type_id = res_id;
+ info->off = off;
+ info->type = type;
+ return BTF_FIELD_FOUND;
+}
+
+static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t,
+ const char *name, int sz, int align,
+ enum btf_field_type field_type,
+ struct btf_field_info *info, int info_cnt)
+{
+ const struct btf_member *member;
+ struct btf_field_info tmp;
+ int ret, idx = 0;
+ u32 i, off;
+
+ for_each_member(i, t, member) {
+ const struct btf_type *member_type = btf_type_by_id(btf,
+ member->type);
+
+ if (name && strcmp(__btf_name_by_offset(btf, member_type->name_off), name))
+ continue;
+
+ off = __btf_member_bit_offset(t, member);
+ if (off % 8)
+ /* valid C code cannot generate such BTF */
+ return -EINVAL;
+ off /= 8;
+ if (off % align)
+ return -EINVAL;
+
+ switch (field_type) {
+ case BTF_FIELD_SPIN_LOCK:
+ case BTF_FIELD_TIMER:
+ ret = btf_find_struct(btf, member_type, off, sz,
+ idx < info_cnt ? &info[idx] : &tmp);
+ if (ret < 0)
+ return ret;
+ break;
+ case BTF_FIELD_KPTR:
+ ret = btf_find_kptr(btf, member_type, off, sz,
+ idx < info_cnt ? &info[idx] : &tmp);
+ if (ret < 0)
+ return ret;
+ break;
+ default:
+ return -EFAULT;
+ }
+
+ if (ret == BTF_FIELD_IGNORE)
+ continue;
+ if (idx >= info_cnt)
+ return -E2BIG;
+ ++idx;
+ }
+ return idx;
+}
+
+static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
+ const char *name, int sz, int align,
+ enum btf_field_type field_type,
+ struct btf_field_info *info, int info_cnt)
+{
+ const struct btf_var_secinfo *vsi;
+ struct btf_field_info tmp;
+ int ret, idx = 0;
+ u32 i, off;
+
+ for_each_vsi(i, t, vsi) {
+ const struct btf_type *var = btf_type_by_id(btf, vsi->type);
+ const struct btf_type *var_type = btf_type_by_id(btf, var->type);
+
+ off = vsi->offset;
+
+ if (name && strcmp(__btf_name_by_offset(btf, var_type->name_off), name))
+ continue;
+ if (vsi->size != sz)
+ continue;
+ if (off % align)
+ return -EINVAL;
+
+ switch (field_type) {
+ case BTF_FIELD_SPIN_LOCK:
+ case BTF_FIELD_TIMER:
+ ret = btf_find_struct(btf, var_type, off, sz,
+ idx < info_cnt ? &info[idx] : &tmp);
+ if (ret < 0)
+ return ret;
+ break;
+ case BTF_FIELD_KPTR:
+ ret = btf_find_kptr(btf, var_type, off, sz,
+ idx < info_cnt ? &info[idx] : &tmp);
+ if (ret < 0)
+ return ret;
+ break;
+ default:
+ return -EFAULT;
+ }
+
+ if (ret == BTF_FIELD_IGNORE)
+ continue;
+ if (idx >= info_cnt)
+ return -E2BIG;
+ ++idx;
+ }
+ return idx;
+}
+
+static int btf_find_field(const struct btf *btf, const struct btf_type *t,
+ enum btf_field_type field_type,
+ struct btf_field_info *info, int info_cnt)
+{
+ const char *name;
+ int sz, align;
+
+ switch (field_type) {
+ case BTF_FIELD_SPIN_LOCK:
+ name = "bpf_spin_lock";
+ sz = sizeof(struct bpf_spin_lock);
+ align = __alignof__(struct bpf_spin_lock);
+ break;
+ case BTF_FIELD_TIMER:
+ name = "bpf_timer";
+ sz = sizeof(struct bpf_timer);
+ align = __alignof__(struct bpf_timer);
+ break;
+ case BTF_FIELD_KPTR:
+ name = NULL;
+ sz = sizeof(u64);
+ align = 8;
+ break;
+ default:
+ return -EFAULT;
+ }
+
+ if (__btf_type_is_struct(t))
+ return btf_find_struct_field(btf, t, name, sz, align, field_type, info, info_cnt);
+ else if (btf_type_is_datasec(t))
+ return btf_find_datasec_var(btf, t, name, sz, align, field_type, info, info_cnt);
+ return -EINVAL;
+}
+
+/* find 'struct bpf_spin_lock' in map value.
+ * return >= 0 offset if found
+ * and < 0 in case of error
+ */
+int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
+{
+ struct btf_field_info info;
+ int ret;
+
+ ret = btf_find_field(btf, t, BTF_FIELD_SPIN_LOCK, &info, 1);
+ if (ret < 0)
+ return ret;
+ if (!ret)
+ return -ENOENT;
+ return info.off;
+}
+
+int btf_find_timer(const struct btf *btf, const struct btf_type *t)
+{
+ struct btf_field_info info;
+ int ret;
+
+ ret = btf_find_field(btf, t, BTF_FIELD_TIMER, &info, 1);
+ if (ret < 0)
+ return ret;
+ if (!ret)
+ return -ENOENT;
+ return info.off;
+}
+
+struct bpf_map_value_off *btf_parse_kptrs(const struct btf *btf,
+ const struct btf_type *t)
+{
+ struct btf_field_info info_arr[BPF_MAP_VALUE_OFF_MAX];
+ struct bpf_map_value_off *tab;
+ struct btf *kernel_btf = NULL;
+ struct module *mod = NULL;
+ int ret, i, nr_off;
+
+ ret = btf_find_field(btf, t, BTF_FIELD_KPTR, info_arr, ARRAY_SIZE(info_arr));
+ if (ret < 0)
+ return ERR_PTR(ret);
+ if (!ret)
+ return NULL;
+
+ nr_off = ret;
+ tab = kzalloc(offsetof(struct bpf_map_value_off, off[nr_off]), GFP_KERNEL | __GFP_NOWARN);
+ if (!tab)
+ return ERR_PTR(-ENOMEM);
+
+ for (i = 0; i < nr_off; i++) {
+ const struct btf_type *t;
+ s32 id;
+
+ /* Find type in map BTF, and use it to look up the matching type
+ * in vmlinux or module BTFs, by name and kind.
+ */
+ t = btf_type_by_id(btf, info_arr[i].type_id);
+ id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
+ &kernel_btf);
+ if (id < 0) {
+ ret = id;
+ goto end;
+ }
+
+ /* Find and stash the function pointer for the destruction function that
+ * needs to be eventually invoked from the map free path.
+ */
+ if (info_arr[i].type == BPF_KPTR_REF) {
+ const struct btf_type *dtor_func;
+ const char *dtor_func_name;
+ unsigned long addr;
+ s32 dtor_btf_id;
+
+ /* This call also serves as a whitelist of allowed objects that
+ * can be used as a referenced pointer and be stored in a map at
+ * the same time.
+ */
+ dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id);
+ if (dtor_btf_id < 0) {
+ ret = dtor_btf_id;
+ goto end_btf;
+ }
+
+ dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id);
+ if (!dtor_func) {
+ ret = -ENOENT;
+ goto end_btf;
+ }
+
+ if (btf_is_module(kernel_btf)) {
+ mod = btf_try_get_module(kernel_btf);
+ if (!mod) {
+ ret = -ENXIO;
+ goto end_btf;
+ }
+ }
+
+ /* We already verified dtor_func to be btf_type_is_func
+ * in register_btf_id_dtor_kfuncs.
+ */
+ dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off);
+ addr = kallsyms_lookup_name(dtor_func_name);
+ if (!addr) {
+ ret = -EINVAL;
+ goto end_mod;
+ }
+ tab->off[i].kptr.dtor = (void *)addr;
+ }
+
+ tab->off[i].offset = info_arr[i].off;
+ tab->off[i].type = info_arr[i].type;
+ tab->off[i].kptr.btf_id = id;
+ tab->off[i].kptr.btf = kernel_btf;
+ tab->off[i].kptr.module = mod;
+ }
+ tab->nr_off = nr_off;
+ return tab;
+end_mod:
+ module_put(mod);
+end_btf:
+ btf_put(kernel_btf);
+end:
+ while (i--) {
+ btf_put(tab->off[i].kptr.btf);
+ if (tab->off[i].kptr.module)
+ module_put(tab->off[i].kptr.module);
+ }
+ kfree(tab);
+ return ERR_PTR(ret);
+}
+
+static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ const struct btf_member *member;
+ void *safe_data;
+ u32 i;
+
+ safe_data = btf_show_start_struct_type(show, t, type_id, data);
+ if (!safe_data)
+ return;
+
+ for_each_member(i, t, member) {
+ const struct btf_type *member_type = btf_type_by_id(btf,
+ member->type);
+ const struct btf_kind_operations *ops;
+ u32 member_offset, bitfield_size;
+ u32 bytes_offset;
+ u8 bits8_offset;
+
+ btf_show_start_member(show, member);
+
+ member_offset = __btf_member_bit_offset(t, member);
+ bitfield_size = __btf_member_bitfield_size(t, member);
+ bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
+ bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
+ if (bitfield_size) {
+ safe_data = btf_show_start_type(show, member_type,
+ member->type,
+ data + bytes_offset);
+ if (safe_data)
+ btf_bitfield_show(safe_data,
+ bits8_offset,
+ bitfield_size, show);
+ btf_show_end_type(show);
+ } else {
+ ops = btf_type_ops(member_type);
+ ops->show(btf, member_type, member->type,
+ data + bytes_offset, bits8_offset, show);
+ }
+
+ btf_show_end_member(show);
+ }
+
+ btf_show_end_struct_type(show);
+}
+
+static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ const struct btf_member *m = show->state.member;
+
+ /*
+ * First check if any members would be shown (are non-zero).
+ * See comments above "struct btf_show" definition for more
+ * details on how this works at a high-level.
+ */
+ if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
+ if (!show->state.depth_check) {
+ show->state.depth_check = show->state.depth + 1;
+ show->state.depth_to_show = 0;
+ }
+ __btf_struct_show(btf, t, type_id, data, bits_offset, show);
+ /* Restore saved member data here */
+ show->state.member = m;
+ if (show->state.depth_check != show->state.depth + 1)
+ return;
+ show->state.depth_check = 0;
+
+ if (show->state.depth_to_show <= show->state.depth)
+ return;
+ /*
+ * Reaching here indicates we have recursed and found
+ * non-zero child values.
+ */
+ }
+
+ __btf_struct_show(btf, t, type_id, data, bits_offset, show);
+}
+
+static struct btf_kind_operations struct_ops = {
+ .check_meta = btf_struct_check_meta,
+ .resolve = btf_struct_resolve,
+ .check_member = btf_struct_check_member,
+ .check_kflag_member = btf_generic_check_kflag_member,
+ .log_details = btf_struct_log,
+ .show = btf_struct_show,
+};
+
+static int btf_enum_check_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ u32 struct_bits_off = member->offset;
+ u32 struct_size, bytes_offset;
+
+ if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member is not byte aligned");
+ return -EINVAL;
+ }
+
+ struct_size = struct_type->size;
+ bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
+ if (struct_size - bytes_offset < member_type->size) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member exceeds struct_size");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ u32 struct_bits_off, nr_bits, bytes_end, struct_size;
+ u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
+
+ struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
+ nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
+ if (!nr_bits) {
+ if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member is not byte aligned");
+ return -EINVAL;
+ }
+
+ nr_bits = int_bitsize;
+ } else if (nr_bits > int_bitsize) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Invalid member bitfield_size");
+ return -EINVAL;
+ }
+
+ struct_size = struct_type->size;
+ bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
+ if (struct_size < bytes_end) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member exceeds struct_size");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static s32 btf_enum_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ const struct btf_enum *enums = btf_type_enum(t);
+ struct btf *btf = env->btf;
+ const char *fmt_str;
+ u16 i, nr_enums;
+ u32 meta_needed;
+
+ nr_enums = btf_type_vlen(t);
+ meta_needed = nr_enums * sizeof(*enums);
+
+ if (meta_left < meta_needed) {
+ btf_verifier_log_basic(env, t,
+ "meta_left:%u meta_needed:%u",
+ meta_left, meta_needed);
+ return -EINVAL;
+ }
+
+ if (t->size > 8 || !is_power_of_2(t->size)) {
+ btf_verifier_log_type(env, t, "Unexpected size");
+ return -EINVAL;
+ }
+
+ /* enum type either no name or a valid one */
+ if (t->name_off &&
+ !btf_name_valid_identifier(env->btf, t->name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ for (i = 0; i < nr_enums; i++) {
+ if (!btf_name_offset_valid(btf, enums[i].name_off)) {
+ btf_verifier_log(env, "\tInvalid name_offset:%u",
+ enums[i].name_off);
+ return -EINVAL;
+ }
+
+ /* enum member must have a valid name */
+ if (!enums[i].name_off ||
+ !btf_name_valid_identifier(btf, enums[i].name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ if (env->log.level == BPF_LOG_KERNEL)
+ continue;
+ fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
+ btf_verifier_log(env, fmt_str,
+ __btf_name_by_offset(btf, enums[i].name_off),
+ enums[i].val);
+ }
+
+ return meta_needed;
+}
+
+static void btf_enum_log(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
+}
+
+static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ const struct btf_enum *enums = btf_type_enum(t);
+ u32 i, nr_enums = btf_type_vlen(t);
+ void *safe_data;
+ int v;
+
+ safe_data = btf_show_start_type(show, t, type_id, data);
+ if (!safe_data)
+ return;
+
+ v = *(int *)safe_data;
+
+ for (i = 0; i < nr_enums; i++) {
+ if (v != enums[i].val)
+ continue;
+
+ btf_show_type_value(show, "%s",
+ __btf_name_by_offset(btf,
+ enums[i].name_off));
+
+ btf_show_end_type(show);
+ return;
+ }
+
+ if (btf_type_kflag(t))
+ btf_show_type_value(show, "%d", v);
+ else
+ btf_show_type_value(show, "%u", v);
+ btf_show_end_type(show);
+}
+
+static struct btf_kind_operations enum_ops = {
+ .check_meta = btf_enum_check_meta,
+ .resolve = btf_df_resolve,
+ .check_member = btf_enum_check_member,
+ .check_kflag_member = btf_enum_check_kflag_member,
+ .log_details = btf_enum_log,
+ .show = btf_enum_show,
+};
+
+static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ const struct btf_enum64 *enums = btf_type_enum64(t);
+ struct btf *btf = env->btf;
+ const char *fmt_str;
+ u16 i, nr_enums;
+ u32 meta_needed;
+
+ nr_enums = btf_type_vlen(t);
+ meta_needed = nr_enums * sizeof(*enums);
+
+ if (meta_left < meta_needed) {
+ btf_verifier_log_basic(env, t,
+ "meta_left:%u meta_needed:%u",
+ meta_left, meta_needed);
+ return -EINVAL;
+ }
+
+ if (t->size > 8 || !is_power_of_2(t->size)) {
+ btf_verifier_log_type(env, t, "Unexpected size");
+ return -EINVAL;
+ }
+
+ /* enum type either no name or a valid one */
+ if (t->name_off &&
+ !btf_name_valid_identifier(env->btf, t->name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ for (i = 0; i < nr_enums; i++) {
+ if (!btf_name_offset_valid(btf, enums[i].name_off)) {
+ btf_verifier_log(env, "\tInvalid name_offset:%u",
+ enums[i].name_off);
+ return -EINVAL;
+ }
+
+ /* enum member must have a valid name */
+ if (!enums[i].name_off ||
+ !btf_name_valid_identifier(btf, enums[i].name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ if (env->log.level == BPF_LOG_KERNEL)
+ continue;
+
+ fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
+ btf_verifier_log(env, fmt_str,
+ __btf_name_by_offset(btf, enums[i].name_off),
+ btf_enum64_value(enums + i));
+ }
+
+ return meta_needed;
+}
+
+static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
+ u32 type_id, void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ const struct btf_enum64 *enums = btf_type_enum64(t);
+ u32 i, nr_enums = btf_type_vlen(t);
+ void *safe_data;
+ s64 v;
+
+ safe_data = btf_show_start_type(show, t, type_id, data);
+ if (!safe_data)
+ return;
+
+ v = *(u64 *)safe_data;
+
+ for (i = 0; i < nr_enums; i++) {
+ if (v != btf_enum64_value(enums + i))
+ continue;
+
+ btf_show_type_value(show, "%s",
+ __btf_name_by_offset(btf,
+ enums[i].name_off));
+
+ btf_show_end_type(show);
+ return;
+ }
+
+ if (btf_type_kflag(t))
+ btf_show_type_value(show, "%lld", v);
+ else
+ btf_show_type_value(show, "%llu", v);
+ btf_show_end_type(show);
+}
+
+static struct btf_kind_operations enum64_ops = {
+ .check_meta = btf_enum64_check_meta,
+ .resolve = btf_df_resolve,
+ .check_member = btf_enum_check_member,
+ .check_kflag_member = btf_enum_check_kflag_member,
+ .log_details = btf_enum_log,
+ .show = btf_enum64_show,
+};
+
+static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
+
+ if (meta_left < meta_needed) {
+ btf_verifier_log_basic(env, t,
+ "meta_left:%u meta_needed:%u",
+ meta_left, meta_needed);
+ return -EINVAL;
+ }
+
+ if (t->name_off) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ if (btf_type_kflag(t)) {
+ btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ return meta_needed;
+}
+
+static void btf_func_proto_log(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ const struct btf_param *args = (const struct btf_param *)(t + 1);
+ u16 nr_args = btf_type_vlen(t), i;
+
+ btf_verifier_log(env, "return=%u args=(", t->type);
+ if (!nr_args) {
+ btf_verifier_log(env, "void");
+ goto done;
+ }
+
+ if (nr_args == 1 && !args[0].type) {
+ /* Only one vararg */
+ btf_verifier_log(env, "vararg");
+ goto done;
+ }
+
+ btf_verifier_log(env, "%u %s", args[0].type,
+ __btf_name_by_offset(env->btf,
+ args[0].name_off));
+ for (i = 1; i < nr_args - 1; i++)
+ btf_verifier_log(env, ", %u %s", args[i].type,
+ __btf_name_by_offset(env->btf,
+ args[i].name_off));
+
+ if (nr_args > 1) {
+ const struct btf_param *last_arg = &args[nr_args - 1];
+
+ if (last_arg->type)
+ btf_verifier_log(env, ", %u %s", last_arg->type,
+ __btf_name_by_offset(env->btf,
+ last_arg->name_off));
+ else
+ btf_verifier_log(env, ", vararg");
+ }
+
+done:
+ btf_verifier_log(env, ")");
+}
+
+static struct btf_kind_operations func_proto_ops = {
+ .check_meta = btf_func_proto_check_meta,
+ .resolve = btf_df_resolve,
+ /*
+ * BTF_KIND_FUNC_PROTO cannot be directly referred by
+ * a struct's member.
+ *
+ * It should be a function pointer instead.
+ * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
+ *
+ * Hence, there is no btf_func_check_member().
+ */
+ .check_member = btf_df_check_member,
+ .check_kflag_member = btf_df_check_kflag_member,
+ .log_details = btf_func_proto_log,
+ .show = btf_df_show,
+};
+
+static s32 btf_func_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ if (!t->name_off ||
+ !btf_name_valid_identifier(env->btf, t->name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
+ btf_verifier_log_type(env, t, "Invalid func linkage");
+ return -EINVAL;
+ }
+
+ if (btf_type_kflag(t)) {
+ btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ return 0;
+}
+
+static int btf_func_resolve(struct btf_verifier_env *env,
+ const struct resolve_vertex *v)
+{
+ const struct btf_type *t = v->t;
+ u32 next_type_id = t->type;
+ int err;
+
+ err = btf_func_check(env, t);
+ if (err)
+ return err;
+
+ env_stack_pop_resolved(env, next_type_id, 0);
+ return 0;
+}
+
+static struct btf_kind_operations func_ops = {
+ .check_meta = btf_func_check_meta,
+ .resolve = btf_func_resolve,
+ .check_member = btf_df_check_member,
+ .check_kflag_member = btf_df_check_kflag_member,
+ .log_details = btf_ref_type_log,
+ .show = btf_df_show,
+};
+
+static s32 btf_var_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ const struct btf_var *var;
+ u32 meta_needed = sizeof(*var);
+
+ if (meta_left < meta_needed) {
+ btf_verifier_log_basic(env, t,
+ "meta_left:%u meta_needed:%u",
+ meta_left, meta_needed);
+ return -EINVAL;
+ }
+
+ if (btf_type_vlen(t)) {
+ btf_verifier_log_type(env, t, "vlen != 0");
+ return -EINVAL;
+ }
+
+ if (btf_type_kflag(t)) {
+ btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
+ return -EINVAL;
+ }
+
+ if (!t->name_off ||
+ !__btf_name_valid(env->btf, t->name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ /* A var cannot be in type void */
+ if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
+ btf_verifier_log_type(env, t, "Invalid type_id");
+ return -EINVAL;
+ }
+
+ var = btf_type_var(t);
+ if (var->linkage != BTF_VAR_STATIC &&
+ var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
+ btf_verifier_log_type(env, t, "Linkage not supported");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ return meta_needed;
+}
+
+static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
+{
+ const struct btf_var *var = btf_type_var(t);
+
+ btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
+}
+
+static const struct btf_kind_operations var_ops = {
+ .check_meta = btf_var_check_meta,
+ .resolve = btf_var_resolve,
+ .check_member = btf_df_check_member,
+ .check_kflag_member = btf_df_check_kflag_member,
+ .log_details = btf_var_log,
+ .show = btf_var_show,
+};
+
+static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ const struct btf_var_secinfo *vsi;
+ u64 last_vsi_end_off = 0, sum = 0;
+ u32 i, meta_needed;
+
+ meta_needed = btf_type_vlen(t) * sizeof(*vsi);
+ if (meta_left < meta_needed) {
+ btf_verifier_log_basic(env, t,
+ "meta_left:%u meta_needed:%u",
+ meta_left, meta_needed);
+ return -EINVAL;
+ }
+
+ if (!t->size) {
+ btf_verifier_log_type(env, t, "size == 0");
+ return -EINVAL;
+ }
+
+ if (btf_type_kflag(t)) {
+ btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
+ return -EINVAL;
+ }
+
+ if (!t->name_off ||
+ !btf_name_valid_section(env->btf, t->name_off)) {
+ btf_verifier_log_type(env, t, "Invalid name");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ for_each_vsi(i, t, vsi) {
+ /* A var cannot be in type void */
+ if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
+ btf_verifier_log_vsi(env, t, vsi,
+ "Invalid type_id");
+ return -EINVAL;
+ }
+
+ if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
+ btf_verifier_log_vsi(env, t, vsi,
+ "Invalid offset");
+ return -EINVAL;
+ }
+
+ if (!vsi->size || vsi->size > t->size) {
+ btf_verifier_log_vsi(env, t, vsi,
+ "Invalid size");
+ return -EINVAL;
+ }
+
+ last_vsi_end_off = vsi->offset + vsi->size;
+ if (last_vsi_end_off > t->size) {
+ btf_verifier_log_vsi(env, t, vsi,
+ "Invalid offset+size");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_vsi(env, t, vsi, NULL);
+ sum += vsi->size;
+ }
+
+ if (t->size < sum) {
+ btf_verifier_log_type(env, t, "Invalid btf_info size");
+ return -EINVAL;
+ }
+
+ return meta_needed;
+}
+
+static int btf_datasec_resolve(struct btf_verifier_env *env,
+ const struct resolve_vertex *v)
+{
+ const struct btf_var_secinfo *vsi;
+ struct btf *btf = env->btf;
+ u16 i;
+
+ env->resolve_mode = RESOLVE_TBD;
+ for_each_vsi_from(i, v->next_member, v->t, vsi) {
+ u32 var_type_id = vsi->type, type_id, type_size = 0;
+ const struct btf_type *var_type = btf_type_by_id(env->btf,
+ var_type_id);
+ if (!var_type || !btf_type_is_var(var_type)) {
+ btf_verifier_log_vsi(env, v->t, vsi,
+ "Not a VAR kind member");
+ return -EINVAL;
+ }
+
+ if (!env_type_is_resolve_sink(env, var_type) &&
+ !env_type_is_resolved(env, var_type_id)) {
+ env_stack_set_next_member(env, i + 1);
+ return env_stack_push(env, var_type, var_type_id);
+ }
+
+ type_id = var_type->type;
+ if (!btf_type_id_size(btf, &type_id, &type_size)) {
+ btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
+ return -EINVAL;
+ }
+
+ if (vsi->size < type_size) {
+ btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
+ return -EINVAL;
+ }
+ }
+
+ env_stack_pop_resolved(env, 0, 0);
+ return 0;
+}
+
+static void btf_datasec_log(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
+}
+
+static void btf_datasec_show(const struct btf *btf,
+ const struct btf_type *t, u32 type_id,
+ void *data, u8 bits_offset,
+ struct btf_show *show)
+{
+ const struct btf_var_secinfo *vsi;
+ const struct btf_type *var;
+ u32 i;
+
+ if (!btf_show_start_type(show, t, type_id, data))
+ return;
+
+ btf_show_type_value(show, "section (\"%s\") = {",
+ __btf_name_by_offset(btf, t->name_off));
+ for_each_vsi(i, t, vsi) {
+ var = btf_type_by_id(btf, vsi->type);
+ if (i)
+ btf_show(show, ",");
+ btf_type_ops(var)->show(btf, var, vsi->type,
+ data + vsi->offset, bits_offset, show);
+ }
+ btf_show_end_type(show);
+}
+
+static const struct btf_kind_operations datasec_ops = {
+ .check_meta = btf_datasec_check_meta,
+ .resolve = btf_datasec_resolve,
+ .check_member = btf_df_check_member,
+ .check_kflag_member = btf_df_check_kflag_member,
+ .log_details = btf_datasec_log,
+ .show = btf_datasec_show,
+};
+
+static s32 btf_float_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ if (btf_type_vlen(t)) {
+ btf_verifier_log_type(env, t, "vlen != 0");
+ return -EINVAL;
+ }
+
+ if (btf_type_kflag(t)) {
+ btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
+ return -EINVAL;
+ }
+
+ if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
+ t->size != 16) {
+ btf_verifier_log_type(env, t, "Invalid type_size");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ return 0;
+}
+
+static int btf_float_check_member(struct btf_verifier_env *env,
+ const struct btf_type *struct_type,
+ const struct btf_member *member,
+ const struct btf_type *member_type)
+{
+ u64 start_offset_bytes;
+ u64 end_offset_bytes;
+ u64 misalign_bits;
+ u64 align_bytes;
+ u64 align_bits;
+
+ /* Different architectures have different alignment requirements, so
+ * here we check only for the reasonable minimum. This way we ensure
+ * that types after CO-RE can pass the kernel BTF verifier.
+ */
+ align_bytes = min_t(u64, sizeof(void *), member_type->size);
+ align_bits = align_bytes * BITS_PER_BYTE;
+ div64_u64_rem(member->offset, align_bits, &misalign_bits);
+ if (misalign_bits) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member is not properly aligned");
+ return -EINVAL;
+ }
+
+ start_offset_bytes = member->offset / BITS_PER_BYTE;
+ end_offset_bytes = start_offset_bytes + member_type->size;
+ if (end_offset_bytes > struct_type->size) {
+ btf_verifier_log_member(env, struct_type, member,
+ "Member exceeds struct_size");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static void btf_float_log(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ btf_verifier_log(env, "size=%u", t->size);
+}
+
+static const struct btf_kind_operations float_ops = {
+ .check_meta = btf_float_check_meta,
+ .resolve = btf_df_resolve,
+ .check_member = btf_float_check_member,
+ .check_kflag_member = btf_generic_check_kflag_member,
+ .log_details = btf_float_log,
+ .show = btf_df_show,
+};
+
+static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ const struct btf_decl_tag *tag;
+ u32 meta_needed = sizeof(*tag);
+ s32 component_idx;
+ const char *value;
+
+ if (meta_left < meta_needed) {
+ btf_verifier_log_basic(env, t,
+ "meta_left:%u meta_needed:%u",
+ meta_left, meta_needed);
+ return -EINVAL;
+ }
+
+ value = btf_name_by_offset(env->btf, t->name_off);
+ if (!value || !value[0]) {
+ btf_verifier_log_type(env, t, "Invalid value");
+ return -EINVAL;
+ }
+
+ if (btf_type_vlen(t)) {
+ btf_verifier_log_type(env, t, "vlen != 0");
+ return -EINVAL;
+ }
+
+ if (btf_type_kflag(t)) {
+ btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
+ return -EINVAL;
+ }
+
+ component_idx = btf_type_decl_tag(t)->component_idx;
+ if (component_idx < -1) {
+ btf_verifier_log_type(env, t, "Invalid component_idx");
+ return -EINVAL;
+ }
+
+ btf_verifier_log_type(env, t, NULL);
+
+ return meta_needed;
+}
+
+static int btf_decl_tag_resolve(struct btf_verifier_env *env,
+ const struct resolve_vertex *v)
+{
+ const struct btf_type *next_type;
+ const struct btf_type *t = v->t;
+ u32 next_type_id = t->type;
+ struct btf *btf = env->btf;
+ s32 component_idx;
+ u32 vlen;
+
+ next_type = btf_type_by_id(btf, next_type_id);
+ if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid type_id");
+ return -EINVAL;
+ }
+
+ if (!env_type_is_resolve_sink(env, next_type) &&
+ !env_type_is_resolved(env, next_type_id))
+ return env_stack_push(env, next_type, next_type_id);
+
+ component_idx = btf_type_decl_tag(t)->component_idx;
+ if (component_idx != -1) {
+ if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
+ btf_verifier_log_type(env, v->t, "Invalid component_idx");
+ return -EINVAL;
+ }
+
+ if (btf_type_is_struct(next_type)) {
+ vlen = btf_type_vlen(next_type);
+ } else {
+ /* next_type should be a function */
+ next_type = btf_type_by_id(btf, next_type->type);
+ vlen = btf_type_vlen(next_type);
+ }
+
+ if ((u32)component_idx >= vlen) {
+ btf_verifier_log_type(env, v->t, "Invalid component_idx");
+ return -EINVAL;
+ }
+ }
+
+ env_stack_pop_resolved(env, next_type_id, 0);
+
+ return 0;
+}
+
+static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
+{
+ btf_verifier_log(env, "type=%u component_idx=%d", t->type,
+ btf_type_decl_tag(t)->component_idx);
+}
+
+static const struct btf_kind_operations decl_tag_ops = {
+ .check_meta = btf_decl_tag_check_meta,
+ .resolve = btf_decl_tag_resolve,
+ .check_member = btf_df_check_member,
+ .check_kflag_member = btf_df_check_kflag_member,
+ .log_details = btf_decl_tag_log,
+ .show = btf_df_show,
+};
+
+static int btf_func_proto_check(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ const struct btf_type *ret_type;
+ const struct btf_param *args;
+ const struct btf *btf;
+ u16 nr_args, i;
+ int err;
+
+ btf = env->btf;
+ args = (const struct btf_param *)(t + 1);
+ nr_args = btf_type_vlen(t);
+
+ /* Check func return type which could be "void" (t->type == 0) */
+ if (t->type) {
+ u32 ret_type_id = t->type;
+
+ ret_type = btf_type_by_id(btf, ret_type_id);
+ if (!ret_type) {
+ btf_verifier_log_type(env, t, "Invalid return type");
+ return -EINVAL;
+ }
+
+ if (btf_type_is_resolve_source_only(ret_type)) {
+ btf_verifier_log_type(env, t, "Invalid return type");
+ return -EINVAL;
+ }
+
+ if (btf_type_needs_resolve(ret_type) &&
+ !env_type_is_resolved(env, ret_type_id)) {
+ err = btf_resolve(env, ret_type, ret_type_id);
+ if (err)
+ return err;
+ }
+
+ /* Ensure the return type is a type that has a size */
+ if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
+ btf_verifier_log_type(env, t, "Invalid return type");
+ return -EINVAL;
+ }
+ }
+
+ if (!nr_args)
+ return 0;
+
+ /* Last func arg type_id could be 0 if it is a vararg */
+ if (!args[nr_args - 1].type) {
+ if (args[nr_args - 1].name_off) {
+ btf_verifier_log_type(env, t, "Invalid arg#%u",
+ nr_args);
+ return -EINVAL;
+ }
+ nr_args--;
+ }
+
+ err = 0;
+ for (i = 0; i < nr_args; i++) {
+ const struct btf_type *arg_type;
+ u32 arg_type_id;
+
+ arg_type_id = args[i].type;
+ arg_type = btf_type_by_id(btf, arg_type_id);
+ if (!arg_type) {
+ btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
+ err = -EINVAL;
+ break;
+ }
+
+ if (btf_type_is_resolve_source_only(arg_type)) {
+ btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
+ return -EINVAL;
+ }
+
+ if (args[i].name_off &&
+ (!btf_name_offset_valid(btf, args[i].name_off) ||
+ !btf_name_valid_identifier(btf, args[i].name_off))) {
+ btf_verifier_log_type(env, t,
+ "Invalid arg#%u", i + 1);
+ err = -EINVAL;
+ break;
+ }
+
+ if (btf_type_needs_resolve(arg_type) &&
+ !env_type_is_resolved(env, arg_type_id)) {
+ err = btf_resolve(env, arg_type, arg_type_id);
+ if (err)
+ break;
+ }
+
+ if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
+ btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
+ err = -EINVAL;
+ break;
+ }
+ }
+
+ return err;
+}
+
+static int btf_func_check(struct btf_verifier_env *env,
+ const struct btf_type *t)
+{
+ const struct btf_type *proto_type;
+ const struct btf_param *args;
+ const struct btf *btf;
+ u16 nr_args, i;
+
+ btf = env->btf;
+ proto_type = btf_type_by_id(btf, t->type);
+
+ if (!proto_type || !btf_type_is_func_proto(proto_type)) {
+ btf_verifier_log_type(env, t, "Invalid type_id");
+ return -EINVAL;
+ }
+
+ args = (const struct btf_param *)(proto_type + 1);
+ nr_args = btf_type_vlen(proto_type);
+ for (i = 0; i < nr_args; i++) {
+ if (!args[i].name_off && args[i].type) {
+ btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
+ [BTF_KIND_INT] = &int_ops,
+ [BTF_KIND_PTR] = &ptr_ops,
+ [BTF_KIND_ARRAY] = &array_ops,
+ [BTF_KIND_STRUCT] = &struct_ops,
+ [BTF_KIND_UNION] = &struct_ops,
+ [BTF_KIND_ENUM] = &enum_ops,
+ [BTF_KIND_FWD] = &fwd_ops,
+ [BTF_KIND_TYPEDEF] = &modifier_ops,
+ [BTF_KIND_VOLATILE] = &modifier_ops,
+ [BTF_KIND_CONST] = &modifier_ops,
+ [BTF_KIND_RESTRICT] = &modifier_ops,
+ [BTF_KIND_FUNC] = &func_ops,
+ [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
+ [BTF_KIND_VAR] = &var_ops,
+ [BTF_KIND_DATASEC] = &datasec_ops,
+ [BTF_KIND_FLOAT] = &float_ops,
+ [BTF_KIND_DECL_TAG] = &decl_tag_ops,
+ [BTF_KIND_TYPE_TAG] = &modifier_ops,
+ [BTF_KIND_ENUM64] = &enum64_ops,
+};
+
+static s32 btf_check_meta(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 meta_left)
+{
+ u32 saved_meta_left = meta_left;
+ s32 var_meta_size;
+
+ if (meta_left < sizeof(*t)) {
+ btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
+ env->log_type_id, meta_left, sizeof(*t));
+ return -EINVAL;
+ }
+ meta_left -= sizeof(*t);
+
+ if (t->info & ~BTF_INFO_MASK) {
+ btf_verifier_log(env, "[%u] Invalid btf_info:%x",
+ env->log_type_id, t->info);
+ return -EINVAL;
+ }
+
+ if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
+ BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
+ btf_verifier_log(env, "[%u] Invalid kind:%u",
+ env->log_type_id, BTF_INFO_KIND(t->info));
+ return -EINVAL;
+ }
+
+ if (!btf_name_offset_valid(env->btf, t->name_off)) {
+ btf_verifier_log(env, "[%u] Invalid name_offset:%u",
+ env->log_type_id, t->name_off);
+ return -EINVAL;
+ }
+
+ var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
+ if (var_meta_size < 0)
+ return var_meta_size;
+
+ meta_left -= var_meta_size;
+
+ return saved_meta_left - meta_left;
+}
+
+static int btf_check_all_metas(struct btf_verifier_env *env)
+{
+ struct btf *btf = env->btf;
+ struct btf_header *hdr;
+ void *cur, *end;
+
+ hdr = &btf->hdr;
+ cur = btf->nohdr_data + hdr->type_off;
+ end = cur + hdr->type_len;
+
+ env->log_type_id = btf->base_btf ? btf->start_id : 1;
+ while (cur < end) {
+ struct btf_type *t = cur;
+ s32 meta_size;
+
+ meta_size = btf_check_meta(env, t, end - cur);
+ if (meta_size < 0)
+ return meta_size;
+
+ btf_add_type(env, t);
+ cur += meta_size;
+ env->log_type_id++;
+ }
+
+ return 0;
+}
+
+static bool btf_resolve_valid(struct btf_verifier_env *env,
+ const struct btf_type *t,
+ u32 type_id)
+{
+ struct btf *btf = env->btf;
+
+ if (!env_type_is_resolved(env, type_id))
+ return false;
+
+ if (btf_type_is_struct(t) || btf_type_is_datasec(t))
+ return !btf_resolved_type_id(btf, type_id) &&
+ !btf_resolved_type_size(btf, type_id);
+
+ if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
+ return btf_resolved_type_id(btf, type_id) &&
+ !btf_resolved_type_size(btf, type_id);
+
+ if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
+ btf_type_is_var(t)) {
+ t = btf_type_id_resolve(btf, &type_id);
+ return t &&
+ !btf_type_is_modifier(t) &&
+ !btf_type_is_var(t) &&
+ !btf_type_is_datasec(t);
+ }
+
+ if (btf_type_is_array(t)) {
+ const struct btf_array *array = btf_type_array(t);
+ const struct btf_type *elem_type;
+ u32 elem_type_id = array->type;
+ u32 elem_size;
+
+ elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
+ return elem_type && !btf_type_is_modifier(elem_type) &&
+ (array->nelems * elem_size ==
+ btf_resolved_type_size(btf, type_id));
+ }
+
+ return false;
+}
+
+static int btf_resolve(struct btf_verifier_env *env,
+ const struct btf_type *t, u32 type_id)
+{
+ u32 save_log_type_id = env->log_type_id;
+ const struct resolve_vertex *v;
+ int err = 0;
+
+ env->resolve_mode = RESOLVE_TBD;
+ env_stack_push(env, t, type_id);
+ while (!err && (v = env_stack_peak(env))) {
+ env->log_type_id = v->type_id;
+ err = btf_type_ops(v->t)->resolve(env, v);
+ }
+
+ env->log_type_id = type_id;
+ if (err == -E2BIG) {
+ btf_verifier_log_type(env, t,
+ "Exceeded max resolving depth:%u",
+ MAX_RESOLVE_DEPTH);
+ } else if (err == -EEXIST) {
+ btf_verifier_log_type(env, t, "Loop detected");
+ }
+
+ /* Final sanity check */
+ if (!err && !btf_resolve_valid(env, t, type_id)) {
+ btf_verifier_log_type(env, t, "Invalid resolve state");
+ err = -EINVAL;
+ }
+
+ env->log_type_id = save_log_type_id;
+ return err;
+}
+
+static int btf_check_all_types(struct btf_verifier_env *env)
+{
+ struct btf *btf = env->btf;
+ const struct btf_type *t;
+ u32 type_id, i;
+ int err;
+
+ err = env_resolve_init(env);
+ if (err)
+ return err;
+
+ env->phase++;
+ for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
+ type_id = btf->start_id + i;
+ t = btf_type_by_id(btf, type_id);
+
+ env->log_type_id = type_id;
+ if (btf_type_needs_resolve(t) &&
+ !env_type_is_resolved(env, type_id)) {
+ err = btf_resolve(env, t, type_id);
+ if (err)
+ return err;
+ }
+
+ if (btf_type_is_func_proto(t)) {
+ err = btf_func_proto_check(env, t);
+ if (err)
+ return err;
+ }
+ }
+
+ return 0;
+}
+
+static int btf_parse_type_sec(struct btf_verifier_env *env)
+{
+ const struct btf_header *hdr = &env->btf->hdr;
+ int err;
+
+ /* Type section must align to 4 bytes */
+ if (hdr->type_off & (sizeof(u32) - 1)) {
+ btf_verifier_log(env, "Unaligned type_off");
+ return -EINVAL;
+ }
+
+ if (!env->btf->base_btf && !hdr->type_len) {
+ btf_verifier_log(env, "No type found");
+ return -EINVAL;
+ }
+
+ err = btf_check_all_metas(env);
+ if (err)
+ return err;
+
+ return btf_check_all_types(env);
+}
+
+static int btf_parse_str_sec(struct btf_verifier_env *env)
+{
+ const struct btf_header *hdr;
+ struct btf *btf = env->btf;
+ const char *start, *end;
+
+ hdr = &btf->hdr;
+ start = btf->nohdr_data + hdr->str_off;
+ end = start + hdr->str_len;
+
+ if (end != btf->data + btf->data_size) {
+ btf_verifier_log(env, "String section is not at the end");
+ return -EINVAL;
+ }
+
+ btf->strings = start;
+
+ if (btf->base_btf && !hdr->str_len)
+ return 0;
+ if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
+ btf_verifier_log(env, "Invalid string section");
+ return -EINVAL;
+ }
+ if (!btf->base_btf && start[0]) {
+ btf_verifier_log(env, "Invalid string section");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static const size_t btf_sec_info_offset[] = {
+ offsetof(struct btf_header, type_off),
+ offsetof(struct btf_header, str_off),
+};
+
+static int btf_sec_info_cmp(const void *a, const void *b)
+{
+ const struct btf_sec_info *x = a;
+ const struct btf_sec_info *y = b;
+
+ return (int)(x->off - y->off) ? : (int)(x->len - y->len);
+}
+
+static int btf_check_sec_info(struct btf_verifier_env *env,
+ u32 btf_data_size)
+{
+ struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
+ u32 total, expected_total, i;
+ const struct btf_header *hdr;
+ const struct btf *btf;
+
+ btf = env->btf;
+ hdr = &btf->hdr;
+
+ /* Populate the secs from hdr */
+ for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
+ secs[i] = *(struct btf_sec_info *)((void *)hdr +
+ btf_sec_info_offset[i]);
+
+ sort(secs, ARRAY_SIZE(btf_sec_info_offset),
+ sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
+
+ /* Check for gaps and overlap among sections */
+ total = 0;
+ expected_total = btf_data_size - hdr->hdr_len;
+ for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
+ if (expected_total < secs[i].off) {
+ btf_verifier_log(env, "Invalid section offset");
+ return -EINVAL;
+ }
+ if (total < secs[i].off) {
+ /* gap */
+ btf_verifier_log(env, "Unsupported section found");
+ return -EINVAL;
+ }
+ if (total > secs[i].off) {
+ btf_verifier_log(env, "Section overlap found");
+ return -EINVAL;
+ }
+ if (expected_total - total < secs[i].len) {
+ btf_verifier_log(env,
+ "Total section length too long");
+ return -EINVAL;
+ }
+ total += secs[i].len;
+ }
+
+ /* There is data other than hdr and known sections */
+ if (expected_total != total) {
+ btf_verifier_log(env, "Unsupported section found");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int btf_parse_hdr(struct btf_verifier_env *env)
+{
+ u32 hdr_len, hdr_copy, btf_data_size;
+ const struct btf_header *hdr;
+ struct btf *btf;
+
+ btf = env->btf;
+ btf_data_size = btf->data_size;
+
+ if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
+ btf_verifier_log(env, "hdr_len not found");
+ return -EINVAL;
+ }
+
+ hdr = btf->data;
+ hdr_len = hdr->hdr_len;
+ if (btf_data_size < hdr_len) {
+ btf_verifier_log(env, "btf_header not found");
+ return -EINVAL;
+ }
+
+ /* Ensure the unsupported header fields are zero */
+ if (hdr_len > sizeof(btf->hdr)) {
+ u8 *expected_zero = btf->data + sizeof(btf->hdr);
+ u8 *end = btf->data + hdr_len;
+
+ for (; expected_zero < end; expected_zero++) {
+ if (*expected_zero) {
+ btf_verifier_log(env, "Unsupported btf_header");
+ return -E2BIG;
+ }
+ }
+ }
+
+ hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
+ memcpy(&btf->hdr, btf->data, hdr_copy);
+
+ hdr = &btf->hdr;
+
+ btf_verifier_log_hdr(env, btf_data_size);
+
+ if (hdr->magic != BTF_MAGIC) {
+ btf_verifier_log(env, "Invalid magic");
+ return -EINVAL;
+ }
+
+ if (hdr->version != BTF_VERSION) {
+ btf_verifier_log(env, "Unsupported version");
+ return -ENOTSUPP;
+ }
+
+ if (hdr->flags) {
+ btf_verifier_log(env, "Unsupported flags");
+ return -ENOTSUPP;
+ }
+
+ if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
+ btf_verifier_log(env, "No data");
+ return -EINVAL;
+ }
+
+ return btf_check_sec_info(env, btf_data_size);
+}
+
+static int btf_check_type_tags(struct btf_verifier_env *env,
+ struct btf *btf, int start_id)
+{
+ int i, n, good_id = start_id - 1;
+ bool in_tags;
+
+ n = btf_nr_types(btf);
+ for (i = start_id; i < n; i++) {
+ const struct btf_type *t;
+ int chain_limit = 32;
+ u32 cur_id = i;
+
+ t = btf_type_by_id(btf, i);
+ if (!t)
+ return -EINVAL;
+ if (!btf_type_is_modifier(t))
+ continue;
+
+ cond_resched();
+
+ in_tags = btf_type_is_type_tag(t);
+ while (btf_type_is_modifier(t)) {
+ if (!chain_limit--) {
+ btf_verifier_log(env, "Max chain length or cycle detected");
+ return -ELOOP;
+ }
+ if (btf_type_is_type_tag(t)) {
+ if (!in_tags) {
+ btf_verifier_log(env, "Type tags don't precede modifiers");
+ return -EINVAL;
+ }
+ } else if (in_tags) {
+ in_tags = false;
+ }
+ if (cur_id <= good_id)
+ break;
+ /* Move to next type */
+ cur_id = t->type;
+ t = btf_type_by_id(btf, cur_id);
+ if (!t)
+ return -EINVAL;
+ }
+ good_id = i;
+ }
+ return 0;
+}
+
+static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
+ u32 log_level, char __user *log_ubuf, u32 log_size)
+{
+ struct btf_verifier_env *env = NULL;
+ struct bpf_verifier_log *log;
+ struct btf *btf = NULL;
+ u8 *data;
+ int err;
+
+ if (btf_data_size > BTF_MAX_SIZE)
+ return ERR_PTR(-E2BIG);
+
+ env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
+ if (!env)
+ return ERR_PTR(-ENOMEM);
+
+ log = &env->log;
+ if (log_level || log_ubuf || log_size) {
+ /* user requested verbose verifier output
+ * and supplied buffer to store the verification trace
+ */
+ log->level = log_level;
+ log->ubuf = log_ubuf;
+ log->len_total = log_size;
+
+ /* log attributes have to be sane */
+ if (!bpf_verifier_log_attr_valid(log)) {
+ err = -EINVAL;
+ goto errout;
+ }
+ }
+
+ btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
+ if (!btf) {
+ err = -ENOMEM;
+ goto errout;
+ }
+ env->btf = btf;
+
+ data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
+ if (!data) {
+ err = -ENOMEM;
+ goto errout;
+ }
+
+ btf->data = data;
+ btf->data_size = btf_data_size;
+
+ if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
+ err = -EFAULT;
+ goto errout;
+ }
+
+ err = btf_parse_hdr(env);
+ if (err)
+ goto errout;
+
+ btf->nohdr_data = btf->data + btf->hdr.hdr_len;
+
+ err = btf_parse_str_sec(env);
+ if (err)
+ goto errout;
+
+ err = btf_parse_type_sec(env);
+ if (err)
+ goto errout;
+
+ err = btf_check_type_tags(env, btf, 1);
+ if (err)
+ goto errout;
+
+ if (log->level && bpf_verifier_log_full(log)) {
+ err = -ENOSPC;
+ goto errout;
+ }
+
+ btf_verifier_env_free(env);
+ refcount_set(&btf->refcnt, 1);
+ return btf;
+
+errout:
+ btf_verifier_env_free(env);
+ if (btf)
+ btf_free(btf);
+ return ERR_PTR(err);
+}
+
+extern char __weak __start_BTF[];
+extern char __weak __stop_BTF[];
+extern struct btf *btf_vmlinux;
+
+#define BPF_MAP_TYPE(_id, _ops)
+#define BPF_LINK_TYPE(_id, _name)
+static union {
+ struct bpf_ctx_convert {
+#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
+ prog_ctx_type _id##_prog; \
+ kern_ctx_type _id##_kern;
+#include <linux/bpf_types.h>
+#undef BPF_PROG_TYPE
+ } *__t;
+ /* 't' is written once under lock. Read many times. */
+ const struct btf_type *t;
+} bpf_ctx_convert;
+enum {
+#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
+ __ctx_convert##_id,
+#include <linux/bpf_types.h>
+#undef BPF_PROG_TYPE
+ __ctx_convert_unused, /* to avoid empty enum in extreme .config */
+};
+static u8 bpf_ctx_convert_map[] = {
+#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
+ [_id] = __ctx_convert##_id,
+#include <linux/bpf_types.h>
+#undef BPF_PROG_TYPE
+ 0, /* avoid empty array */
+};
+#undef BPF_MAP_TYPE
+#undef BPF_LINK_TYPE
+
+static const struct btf_member *
+btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
+ const struct btf_type *t, enum bpf_prog_type prog_type,
+ int arg)
+{
+ const struct btf_type *conv_struct;
+ const struct btf_type *ctx_struct;
+ const struct btf_member *ctx_type;
+ const char *tname, *ctx_tname;
+
+ conv_struct = bpf_ctx_convert.t;
+ if (!conv_struct) {
+ bpf_log(log, "btf_vmlinux is malformed\n");
+ return NULL;
+ }
+ t = btf_type_by_id(btf, t->type);
+ while (btf_type_is_modifier(t))
+ t = btf_type_by_id(btf, t->type);
+ if (!btf_type_is_struct(t)) {
+ /* Only pointer to struct is supported for now.
+ * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
+ * is not supported yet.
+ * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
+ */
+ return NULL;
+ }
+ tname = btf_name_by_offset(btf, t->name_off);
+ if (!tname) {
+ bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
+ return NULL;
+ }
+ /* prog_type is valid bpf program type. No need for bounds check. */
+ ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
+ /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
+ * Like 'struct __sk_buff'
+ */
+ ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
+ if (!ctx_struct)
+ /* should not happen */
+ return NULL;
+again:
+ ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
+ if (!ctx_tname) {
+ /* should not happen */
+ bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
+ return NULL;
+ }
+ /* only compare that prog's ctx type name is the same as
+ * kernel expects. No need to compare field by field.
+ * It's ok for bpf prog to do:
+ * struct __sk_buff {};
+ * int socket_filter_bpf_prog(struct __sk_buff *skb)
+ * { // no fields of skb are ever used }
+ */
+ if (strcmp(ctx_tname, tname)) {
+ /* bpf_user_pt_regs_t is a typedef, so resolve it to
+ * underlying struct and check name again
+ */
+ if (!btf_type_is_modifier(ctx_struct))
+ return NULL;
+ while (btf_type_is_modifier(ctx_struct))
+ ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type);
+ goto again;
+ }
+ return ctx_type;
+}
+
+static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
+ struct btf *btf,
+ const struct btf_type *t,
+ enum bpf_prog_type prog_type,
+ int arg)
+{
+ const struct btf_member *prog_ctx_type, *kern_ctx_type;
+
+ prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
+ if (!prog_ctx_type)
+ return -ENOENT;
+ kern_ctx_type = prog_ctx_type + 1;
+ return kern_ctx_type->type;
+}
+
+BTF_ID_LIST(bpf_ctx_convert_btf_id)
+BTF_ID(struct, bpf_ctx_convert)
+
+struct btf *btf_parse_vmlinux(void)
+{
+ struct btf_verifier_env *env = NULL;
+ struct bpf_verifier_log *log;
+ struct btf *btf = NULL;
+ int err;
+
+ env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
+ if (!env)
+ return ERR_PTR(-ENOMEM);
+
+ log = &env->log;
+ log->level = BPF_LOG_KERNEL;
+
+ btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
+ if (!btf) {
+ err = -ENOMEM;
+ goto errout;
+ }
+ env->btf = btf;
+
+ btf->data = __start_BTF;
+ btf->data_size = __stop_BTF - __start_BTF;
+ btf->kernel_btf = true;
+ snprintf(btf->name, sizeof(btf->name), "vmlinux");
+
+ err = btf_parse_hdr(env);
+ if (err)
+ goto errout;
+
+ btf->nohdr_data = btf->data + btf->hdr.hdr_len;
+
+ err = btf_parse_str_sec(env);
+ if (err)
+ goto errout;
+
+ err = btf_check_all_metas(env);
+ if (err)
+ goto errout;
+
+ err = btf_check_type_tags(env, btf, 1);
+ if (err)
+ goto errout;
+
+ /* btf_parse_vmlinux() runs under bpf_verifier_lock */
+ bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
+
+ bpf_struct_ops_init(btf, log);
+
+ refcount_set(&btf->refcnt, 1);
+
+ err = btf_alloc_id(btf);
+ if (err)
+ goto errout;
+
+ btf_verifier_env_free(env);
+ return btf;
+
+errout:
+ btf_verifier_env_free(env);
+ if (btf) {
+ kvfree(btf->types);
+ kfree(btf);
+ }
+ return ERR_PTR(err);
+}
+
+#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
+
+static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
+{
+ struct btf_verifier_env *env = NULL;
+ struct bpf_verifier_log *log;
+ struct btf *btf = NULL, *base_btf;
+ int err;
+
+ base_btf = bpf_get_btf_vmlinux();
+ if (IS_ERR(base_btf))
+ return base_btf;
+ if (!base_btf)
+ return ERR_PTR(-EINVAL);
+
+ env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
+ if (!env)
+ return ERR_PTR(-ENOMEM);
+
+ log = &env->log;
+ log->level = BPF_LOG_KERNEL;
+
+ btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
+ if (!btf) {
+ err = -ENOMEM;
+ goto errout;
+ }
+ env->btf = btf;
+
+ btf->base_btf = base_btf;
+ btf->start_id = base_btf->nr_types;
+ btf->start_str_off = base_btf->hdr.str_len;
+ btf->kernel_btf = true;
+ snprintf(btf->name, sizeof(btf->name), "%s", module_name);
+
+ btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
+ if (!btf->data) {
+ err = -ENOMEM;
+ goto errout;
+ }
+ memcpy(btf->data, data, data_size);
+ btf->data_size = data_size;
+
+ err = btf_parse_hdr(env);
+ if (err)
+ goto errout;
+
+ btf->nohdr_data = btf->data + btf->hdr.hdr_len;
+
+ err = btf_parse_str_sec(env);
+ if (err)
+ goto errout;
+
+ err = btf_check_all_metas(env);
+ if (err)
+ goto errout;
+
+ err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
+ if (err)
+ goto errout;
+
+ btf_verifier_env_free(env);
+ refcount_set(&btf->refcnt, 1);
+ return btf;
+
+errout:
+ btf_verifier_env_free(env);
+ if (btf) {
+ kvfree(btf->data);
+ kvfree(btf->types);
+ kfree(btf);
+ }
+ return ERR_PTR(err);
+}
+
+#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
+
+struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
+{
+ struct bpf_prog *tgt_prog = prog->aux->dst_prog;
+
+ if (tgt_prog)
+ return tgt_prog->aux->btf;
+ else
+ return prog->aux->attach_btf;
+}
+
+static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
+{
+ /* skip modifiers */
+ t = btf_type_skip_modifiers(btf, t->type, NULL);
+
+ return btf_type_is_int(t);
+}
+
+static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
+ int off)
+{
+ const struct btf_param *args;
+ const struct btf_type *t;
+ u32 offset = 0, nr_args;
+ int i;
+
+ if (!func_proto)
+ return off / 8;
+
+ nr_args = btf_type_vlen(func_proto);
+ args = (const struct btf_param *)(func_proto + 1);
+ for (i = 0; i < nr_args; i++) {
+ t = btf_type_skip_modifiers(btf, args[i].type, NULL);
+ offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
+ if (off < offset)
+ return i;
+ }
+
+ t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
+ offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
+ if (off < offset)
+ return nr_args;
+
+ return nr_args + 1;
+}
+
+bool btf_ctx_access(int off, int size, enum bpf_access_type type,
+ const struct bpf_prog *prog,
+ struct bpf_insn_access_aux *info)
+{
+ const struct btf_type *t = prog->aux->attach_func_proto;
+ struct bpf_prog *tgt_prog = prog->aux->dst_prog;
+ struct btf *btf = bpf_prog_get_target_btf(prog);
+ const char *tname = prog->aux->attach_func_name;
+ struct bpf_verifier_log *log = info->log;
+ const struct btf_param *args;
+ const char *tag_value;
+ u32 nr_args, arg;
+ int i, ret;
+
+ if (off % 8) {
+ bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
+ tname, off);
+ return false;
+ }
+ arg = get_ctx_arg_idx(btf, t, off);
+ args = (const struct btf_param *)(t + 1);
+ /* if (t == NULL) Fall back to default BPF prog with
+ * MAX_BPF_FUNC_REG_ARGS u64 arguments.
+ */
+ nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
+ if (prog->aux->attach_btf_trace) {
+ /* skip first 'void *__data' argument in btf_trace_##name typedef */
+ args++;
+ nr_args--;
+ }
+
+ if (arg > nr_args) {
+ bpf_log(log, "func '%s' doesn't have %d-th argument\n",
+ tname, arg + 1);
+ return false;
+ }
+
+ if (arg == nr_args) {
+ switch (prog->expected_attach_type) {
+ case BPF_LSM_CGROUP:
+ case BPF_LSM_MAC:
+ case BPF_TRACE_FEXIT:
+ /* When LSM programs are attached to void LSM hooks
+ * they use FEXIT trampolines and when attached to
+ * int LSM hooks, they use MODIFY_RETURN trampolines.
+ *
+ * While the LSM programs are BPF_MODIFY_RETURN-like
+ * the check:
+ *
+ * if (ret_type != 'int')
+ * return -EINVAL;
+ *
+ * is _not_ done here. This is still safe as LSM hooks
+ * have only void and int return types.
+ */
+ if (!t)
+ return true;
+ t = btf_type_by_id(btf, t->type);
+ break;
+ case BPF_MODIFY_RETURN:
+ /* For now the BPF_MODIFY_RETURN can only be attached to
+ * functions that return an int.
+ */
+ if (!t)
+ return false;
+
+ t = btf_type_skip_modifiers(btf, t->type, NULL);
+ if (!btf_type_is_small_int(t)) {
+ bpf_log(log,
+ "ret type %s not allowed for fmod_ret\n",
+ btf_type_str(t));
+ return false;
+ }
+ break;
+ default:
+ bpf_log(log, "func '%s' doesn't have %d-th argument\n",
+ tname, arg + 1);
+ return false;
+ }
+ } else {
+ if (!t)
+ /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
+ return true;
+ t = btf_type_by_id(btf, args[arg].type);
+ }
+
+ /* skip modifiers */
+ while (btf_type_is_modifier(t))
+ t = btf_type_by_id(btf, t->type);
+ if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
+ /* accessing a scalar */
+ return true;
+ if (!btf_type_is_ptr(t)) {
+ bpf_log(log,
+ "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
+ tname, arg,
+ __btf_name_by_offset(btf, t->name_off),
+ btf_type_str(t));
+ return false;
+ }
+
+ /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
+ for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
+ const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
+ u32 type, flag;
+
+ type = base_type(ctx_arg_info->reg_type);
+ flag = type_flag(ctx_arg_info->reg_type);
+ if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
+ (flag & PTR_MAYBE_NULL)) {
+ info->reg_type = ctx_arg_info->reg_type;
+ return true;
+ }
+ }
+
+ if (t->type == 0)
+ /* This is a pointer to void.
+ * It is the same as scalar from the verifier safety pov.
+ * No further pointer walking is allowed.
+ */
+ return true;
+
+ if (is_int_ptr(btf, t))
+ return true;
+
+ /* this is a pointer to another type */
+ for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
+ const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
+
+ if (ctx_arg_info->offset == off) {
+ if (!ctx_arg_info->btf_id) {
+ bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
+ return false;
+ }
+
+ info->reg_type = ctx_arg_info->reg_type;
+ info->btf = btf_vmlinux;
+ info->btf_id = ctx_arg_info->btf_id;
+ return true;
+ }
+ }
+
+ info->reg_type = PTR_TO_BTF_ID;
+ if (tgt_prog) {
+ enum bpf_prog_type tgt_type;
+
+ if (tgt_prog->type == BPF_PROG_TYPE_EXT)
+ tgt_type = tgt_prog->aux->saved_dst_prog_type;
+ else
+ tgt_type = tgt_prog->type;
+
+ ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
+ if (ret > 0) {
+ info->btf = btf_vmlinux;
+ info->btf_id = ret;
+ return true;
+ } else {
+ return false;
+ }
+ }
+
+ info->btf = btf;
+ info->btf_id = t->type;
+ t = btf_type_by_id(btf, t->type);
+
+ if (btf_type_is_type_tag(t)) {
+ tag_value = __btf_name_by_offset(btf, t->name_off);
+ if (strcmp(tag_value, "user") == 0)
+ info->reg_type |= MEM_USER;
+ if (strcmp(tag_value, "percpu") == 0)
+ info->reg_type |= MEM_PERCPU;
+ }
+
+ /* skip modifiers */
+ while (btf_type_is_modifier(t)) {
+ info->btf_id = t->type;
+ t = btf_type_by_id(btf, t->type);
+ }
+ if (!btf_type_is_struct(t)) {
+ bpf_log(log,
+ "func '%s' arg%d type %s is not a struct\n",
+ tname, arg, btf_type_str(t));
+ return false;
+ }
+ bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
+ tname, arg, info->btf_id, btf_type_str(t),
+ __btf_name_by_offset(btf, t->name_off));
+ return true;
+}
+
+enum bpf_struct_walk_result {
+ /* < 0 error */
+ WALK_SCALAR = 0,
+ WALK_PTR,
+ WALK_STRUCT,
+};
+
+static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
+ const struct btf_type *t, int off, int size,
+ u32 *next_btf_id, enum bpf_type_flag *flag)
+{
+ u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
+ const struct btf_type *mtype, *elem_type = NULL;
+ const struct btf_member *member;
+ const char *tname, *mname, *tag_value;
+ u32 vlen, elem_id, mid;
+
+again:
+ tname = __btf_name_by_offset(btf, t->name_off);
+ if (!btf_type_is_struct(t)) {
+ bpf_log(log, "Type '%s' is not a struct\n", tname);
+ return -EINVAL;
+ }
+
+ vlen = btf_type_vlen(t);
+ if (off + size > t->size) {
+ /* If the last element is a variable size array, we may
+ * need to relax the rule.
+ */
+ struct btf_array *array_elem;
+
+ if (vlen == 0)
+ goto error;
+
+ member = btf_type_member(t) + vlen - 1;
+ mtype = btf_type_skip_modifiers(btf, member->type,
+ NULL);
+ if (!btf_type_is_array(mtype))
+ goto error;
+
+ array_elem = (struct btf_array *)(mtype + 1);
+ if (array_elem->nelems != 0)
+ goto error;
+
+ moff = __btf_member_bit_offset(t, member) / 8;
+ if (off < moff)
+ goto error;
+
+ /* Only allow structure for now, can be relaxed for
+ * other types later.
+ */
+ t = btf_type_skip_modifiers(btf, array_elem->type,
+ NULL);
+ if (!btf_type_is_struct(t))
+ goto error;
+
+ off = (off - moff) % t->size;
+ goto again;
+
+error:
+ bpf_log(log, "access beyond struct %s at off %u size %u\n",
+ tname, off, size);
+ return -EACCES;
+ }
+
+ for_each_member(i, t, member) {
+ /* offset of the field in bytes */
+ moff = __btf_member_bit_offset(t, member) / 8;
+ if (off + size <= moff)
+ /* won't find anything, field is already too far */
+ break;
+
+ if (__btf_member_bitfield_size(t, member)) {
+ u32 end_bit = __btf_member_bit_offset(t, member) +
+ __btf_member_bitfield_size(t, member);
+
+ /* off <= moff instead of off == moff because clang
+ * does not generate a BTF member for anonymous
+ * bitfield like the ":16" here:
+ * struct {
+ * int :16;
+ * int x:8;
+ * };
+ */
+ if (off <= moff &&
+ BITS_ROUNDUP_BYTES(end_bit) <= off + size)
+ return WALK_SCALAR;
+
+ /* off may be accessing a following member
+ *
+ * or
+ *
+ * Doing partial access at either end of this
+ * bitfield. Continue on this case also to
+ * treat it as not accessing this bitfield
+ * and eventually error out as field not
+ * found to keep it simple.
+ * It could be relaxed if there was a legit
+ * partial access case later.
+ */
+ continue;
+ }
+
+ /* In case of "off" is pointing to holes of a struct */
+ if (off < moff)
+ break;
+
+ /* type of the field */
+ mid = member->type;
+ mtype = btf_type_by_id(btf, member->type);
+ mname = __btf_name_by_offset(btf, member->name_off);
+
+ mtype = __btf_resolve_size(btf, mtype, &msize,
+ &elem_type, &elem_id, &total_nelems,
+ &mid);
+ if (IS_ERR(mtype)) {
+ bpf_log(log, "field %s doesn't have size\n", mname);
+ return -EFAULT;
+ }
+
+ mtrue_end = moff + msize;
+ if (off >= mtrue_end)
+ /* no overlap with member, keep iterating */
+ continue;
+
+ if (btf_type_is_array(mtype)) {
+ u32 elem_idx;
+
+ /* __btf_resolve_size() above helps to
+ * linearize a multi-dimensional array.
+ *
+ * The logic here is treating an array
+ * in a struct as the following way:
+ *
+ * struct outer {
+ * struct inner array[2][2];
+ * };
+ *
+ * looks like:
+ *
+ * struct outer {
+ * struct inner array_elem0;
+ * struct inner array_elem1;
+ * struct inner array_elem2;
+ * struct inner array_elem3;
+ * };
+ *
+ * When accessing outer->array[1][0], it moves
+ * moff to "array_elem2", set mtype to
+ * "struct inner", and msize also becomes
+ * sizeof(struct inner). Then most of the
+ * remaining logic will fall through without
+ * caring the current member is an array or
+ * not.
+ *
+ * Unlike mtype/msize/moff, mtrue_end does not
+ * change. The naming difference ("_true") tells
+ * that it is not always corresponding to
+ * the current mtype/msize/moff.
+ * It is the true end of the current
+ * member (i.e. array in this case). That
+ * will allow an int array to be accessed like
+ * a scratch space,
+ * i.e. allow access beyond the size of
+ * the array's element as long as it is
+ * within the mtrue_end boundary.
+ */
+
+ /* skip empty array */
+ if (moff == mtrue_end)
+ continue;
+
+ msize /= total_nelems;
+ elem_idx = (off - moff) / msize;
+ moff += elem_idx * msize;
+ mtype = elem_type;
+ mid = elem_id;
+ }
+
+ /* the 'off' we're looking for is either equal to start
+ * of this field or inside of this struct
+ */
+ if (btf_type_is_struct(mtype)) {
+ /* our field must be inside that union or struct */
+ t = mtype;
+
+ /* return if the offset matches the member offset */
+ if (off == moff) {
+ *next_btf_id = mid;
+ return WALK_STRUCT;
+ }
+
+ /* adjust offset we're looking for */
+ off -= moff;
+ goto again;
+ }
+
+ if (btf_type_is_ptr(mtype)) {
+ const struct btf_type *stype, *t;
+ enum bpf_type_flag tmp_flag = 0;
+ u32 id;
+
+ if (msize != size || off != moff) {
+ bpf_log(log,
+ "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
+ mname, moff, tname, off, size);
+ return -EACCES;
+ }
+
+ /* check type tag */
+ t = btf_type_by_id(btf, mtype->type);
+ if (btf_type_is_type_tag(t)) {
+ tag_value = __btf_name_by_offset(btf, t->name_off);
+ /* check __user tag */
+ if (strcmp(tag_value, "user") == 0)
+ tmp_flag = MEM_USER;
+ /* check __percpu tag */
+ if (strcmp(tag_value, "percpu") == 0)
+ tmp_flag = MEM_PERCPU;
+ }
+
+ stype = btf_type_skip_modifiers(btf, mtype->type, &id);
+ if (btf_type_is_struct(stype)) {
+ *next_btf_id = id;
+ *flag = tmp_flag;
+ return WALK_PTR;
+ }
+ }
+
+ /* Allow more flexible access within an int as long as
+ * it is within mtrue_end.
+ * Since mtrue_end could be the end of an array,
+ * that also allows using an array of int as a scratch
+ * space. e.g. skb->cb[].
+ */
+ if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
+ bpf_log(log,
+ "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
+ mname, mtrue_end, tname, off, size);
+ return -EACCES;
+ }
+
+ return WALK_SCALAR;
+ }
+ bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
+ return -EINVAL;
+}
+
+int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
+ const struct btf_type *t, int off, int size,
+ enum bpf_access_type atype __maybe_unused,
+ u32 *next_btf_id, enum bpf_type_flag *flag)
+{
+ enum bpf_type_flag tmp_flag = 0;
+ int err;
+ u32 id;
+
+ do {
+ err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag);
+
+ switch (err) {
+ case WALK_PTR:
+ /* If we found the pointer or scalar on t+off,
+ * we're done.
+ */
+ *next_btf_id = id;
+ *flag = tmp_flag;
+ return PTR_TO_BTF_ID;
+ case WALK_SCALAR:
+ return SCALAR_VALUE;
+ case WALK_STRUCT:
+ /* We found nested struct, so continue the search
+ * by diving in it. At this point the offset is
+ * aligned with the new type, so set it to 0.
+ */
+ t = btf_type_by_id(btf, id);
+ off = 0;
+ break;
+ default:
+ /* It's either error or unknown return value..
+ * scream and leave.
+ */
+ if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
+ return -EINVAL;
+ return err;
+ }
+ } while (t);
+
+ return -EINVAL;
+}
+
+/* Check that two BTF types, each specified as an BTF object + id, are exactly
+ * the same. Trivial ID check is not enough due to module BTFs, because we can
+ * end up with two different module BTFs, but IDs point to the common type in
+ * vmlinux BTF.
+ */
+static bool btf_types_are_same(const struct btf *btf1, u32 id1,
+ const struct btf *btf2, u32 id2)
+{
+ if (id1 != id2)
+ return false;
+ if (btf1 == btf2)
+ return true;
+ return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
+}
+
+bool btf_struct_ids_match(struct bpf_verifier_log *log,
+ const struct btf *btf, u32 id, int off,
+ const struct btf *need_btf, u32 need_type_id,
+ bool strict)
+{
+ const struct btf_type *type;
+ enum bpf_type_flag flag;
+ int err;
+
+ /* Are we already done? */
+ if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
+ return true;
+ /* In case of strict type match, we do not walk struct, the top level
+ * type match must succeed. When strict is true, off should have already
+ * been 0.
+ */
+ if (strict)
+ return false;
+again:
+ type = btf_type_by_id(btf, id);
+ if (!type)
+ return false;
+ err = btf_struct_walk(log, btf, type, off, 1, &id, &flag);
+ if (err != WALK_STRUCT)
+ return false;
+
+ /* We found nested struct object. If it matches
+ * the requested ID, we're done. Otherwise let's
+ * continue the search with offset 0 in the new
+ * type.
+ */
+ if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
+ off = 0;
+ goto again;
+ }
+
+ return true;
+}
+
+static int __get_type_size(struct btf *btf, u32 btf_id,
+ const struct btf_type **ret_type)
+{
+ const struct btf_type *t;
+
+ *ret_type = btf_type_by_id(btf, 0);
+ if (!btf_id)
+ /* void */
+ return 0;
+ t = btf_type_by_id(btf, btf_id);
+ while (t && btf_type_is_modifier(t))
+ t = btf_type_by_id(btf, t->type);
+ if (!t)
+ return -EINVAL;
+ *ret_type = t;
+ if (btf_type_is_ptr(t))
+ /* kernel size of pointer. Not BPF's size of pointer*/
+ return sizeof(void *);
+ if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
+ return t->size;
+ return -EINVAL;
+}
+
+int btf_distill_func_proto(struct bpf_verifier_log *log,
+ struct btf *btf,
+ const struct btf_type *func,
+ const char *tname,
+ struct btf_func_model *m)
+{
+ const struct btf_param *args;
+ const struct btf_type *t;
+ u32 i, nargs;
+ int ret;
+
+ if (!func) {
+ /* BTF function prototype doesn't match the verifier types.
+ * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
+ */
+ for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
+ m->arg_size[i] = 8;
+ m->arg_flags[i] = 0;
+ }
+ m->ret_size = 8;
+ m->nr_args = MAX_BPF_FUNC_REG_ARGS;
+ return 0;
+ }
+ args = (const struct btf_param *)(func + 1);
+ nargs = btf_type_vlen(func);
+ if (nargs > MAX_BPF_FUNC_ARGS) {
+ bpf_log(log,
+ "The function %s has %d arguments. Too many.\n",
+ tname, nargs);
+ return -EINVAL;
+ }
+ ret = __get_type_size(btf, func->type, &t);
+ if (ret < 0 || __btf_type_is_struct(t)) {
+ bpf_log(log,
+ "The function %s return type %s is unsupported.\n",
+ tname, btf_type_str(t));
+ return -EINVAL;
+ }
+ m->ret_size = ret;
+
+ for (i = 0; i < nargs; i++) {
+ if (i == nargs - 1 && args[i].type == 0) {
+ bpf_log(log,
+ "The function %s with variable args is unsupported.\n",
+ tname);
+ return -EINVAL;
+ }
+ ret = __get_type_size(btf, args[i].type, &t);
+
+ /* No support of struct argument size greater than 16 bytes */
+ if (ret < 0 || ret > 16) {
+ bpf_log(log,
+ "The function %s arg%d type %s is unsupported.\n",
+ tname, i, btf_type_str(t));
+ return -EINVAL;
+ }
+ if (ret == 0) {
+ bpf_log(log,
+ "The function %s has malformed void argument.\n",
+ tname);
+ return -EINVAL;
+ }
+ m->arg_size[i] = ret;
+ m->arg_flags[i] = __btf_type_is_struct(t) ? BTF_FMODEL_STRUCT_ARG : 0;
+ }
+ m->nr_args = nargs;
+ return 0;
+}
+
+/* Compare BTFs of two functions assuming only scalars and pointers to context.
+ * t1 points to BTF_KIND_FUNC in btf1
+ * t2 points to BTF_KIND_FUNC in btf2
+ * Returns:
+ * EINVAL - function prototype mismatch
+ * EFAULT - verifier bug
+ * 0 - 99% match. The last 1% is validated by the verifier.
+ */
+static int btf_check_func_type_match(struct bpf_verifier_log *log,
+ struct btf *btf1, const struct btf_type *t1,
+ struct btf *btf2, const struct btf_type *t2)
+{
+ const struct btf_param *args1, *args2;
+ const char *fn1, *fn2, *s1, *s2;
+ u32 nargs1, nargs2, i;
+
+ fn1 = btf_name_by_offset(btf1, t1->name_off);
+ fn2 = btf_name_by_offset(btf2, t2->name_off);
+
+ if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
+ bpf_log(log, "%s() is not a global function\n", fn1);
+ return -EINVAL;
+ }
+ if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
+ bpf_log(log, "%s() is not a global function\n", fn2);
+ return -EINVAL;
+ }
+
+ t1 = btf_type_by_id(btf1, t1->type);
+ if (!t1 || !btf_type_is_func_proto(t1))
+ return -EFAULT;
+ t2 = btf_type_by_id(btf2, t2->type);
+ if (!t2 || !btf_type_is_func_proto(t2))
+ return -EFAULT;
+
+ args1 = (const struct btf_param *)(t1 + 1);
+ nargs1 = btf_type_vlen(t1);
+ args2 = (const struct btf_param *)(t2 + 1);
+ nargs2 = btf_type_vlen(t2);
+
+ if (nargs1 != nargs2) {
+ bpf_log(log, "%s() has %d args while %s() has %d args\n",
+ fn1, nargs1, fn2, nargs2);
+ return -EINVAL;
+ }
+
+ t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
+ t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
+ if (t1->info != t2->info) {
+ bpf_log(log,
+ "Return type %s of %s() doesn't match type %s of %s()\n",
+ btf_type_str(t1), fn1,
+ btf_type_str(t2), fn2);
+ return -EINVAL;
+ }
+
+ for (i = 0; i < nargs1; i++) {
+ t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
+ t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
+
+ if (t1->info != t2->info) {
+ bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
+ i, fn1, btf_type_str(t1),
+ fn2, btf_type_str(t2));
+ return -EINVAL;
+ }
+ if (btf_type_has_size(t1) && t1->size != t2->size) {
+ bpf_log(log,
+ "arg%d in %s() has size %d while %s() has %d\n",
+ i, fn1, t1->size,
+ fn2, t2->size);
+ return -EINVAL;
+ }
+
+ /* global functions are validated with scalars and pointers
+ * to context only. And only global functions can be replaced.
+ * Hence type check only those types.
+ */
+ if (btf_type_is_int(t1) || btf_is_any_enum(t1))
+ continue;
+ if (!btf_type_is_ptr(t1)) {
+ bpf_log(log,
+ "arg%d in %s() has unrecognized type\n",
+ i, fn1);
+ return -EINVAL;
+ }
+ t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
+ t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
+ if (!btf_type_is_struct(t1)) {
+ bpf_log(log,
+ "arg%d in %s() is not a pointer to context\n",
+ i, fn1);
+ return -EINVAL;
+ }
+ if (!btf_type_is_struct(t2)) {
+ bpf_log(log,
+ "arg%d in %s() is not a pointer to context\n",
+ i, fn2);
+ return -EINVAL;
+ }
+ /* This is an optional check to make program writing easier.
+ * Compare names of structs and report an error to the user.
+ * btf_prepare_func_args() already checked that t2 struct
+ * is a context type. btf_prepare_func_args() will check
+ * later that t1 struct is a context type as well.
+ */
+ s1 = btf_name_by_offset(btf1, t1->name_off);
+ s2 = btf_name_by_offset(btf2, t2->name_off);
+ if (strcmp(s1, s2)) {
+ bpf_log(log,
+ "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
+ i, fn1, s1, fn2, s2);
+ return -EINVAL;
+ }
+ }
+ return 0;
+}
+
+/* Compare BTFs of given program with BTF of target program */
+int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
+ struct btf *btf2, const struct btf_type *t2)
+{
+ struct btf *btf1 = prog->aux->btf;
+ const struct btf_type *t1;
+ u32 btf_id = 0;
+
+ if (!prog->aux->func_info) {
+ bpf_log(log, "Program extension requires BTF\n");
+ return -EINVAL;
+ }
+
+ btf_id = prog->aux->func_info[0].type_id;
+ if (!btf_id)
+ return -EFAULT;
+
+ t1 = btf_type_by_id(btf1, btf_id);
+ if (!t1 || !btf_type_is_func(t1))
+ return -EFAULT;
+
+ return btf_check_func_type_match(log, btf1, t1, btf2, t2);
+}
+
+static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
+#ifdef CONFIG_NET
+ [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
+ [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
+ [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
+#endif
+};
+
+/* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
+static bool __btf_type_is_scalar_struct(struct bpf_verifier_log *log,
+ const struct btf *btf,
+ const struct btf_type *t, int rec)
+{
+ const struct btf_type *member_type;
+ const struct btf_member *member;
+ u32 i;
+
+ if (!btf_type_is_struct(t))
+ return false;
+
+ for_each_member(i, t, member) {
+ const struct btf_array *array;
+
+ member_type = btf_type_skip_modifiers(btf, member->type, NULL);
+ if (btf_type_is_struct(member_type)) {
+ if (rec >= 3) {
+ bpf_log(log, "max struct nesting depth exceeded\n");
+ return false;
+ }
+ if (!__btf_type_is_scalar_struct(log, btf, member_type, rec + 1))
+ return false;
+ continue;
+ }
+ if (btf_type_is_array(member_type)) {
+ array = btf_type_array(member_type);
+ if (!array->nelems)
+ return false;
+ member_type = btf_type_skip_modifiers(btf, array->type, NULL);
+ if (!btf_type_is_scalar(member_type))
+ return false;
+ continue;
+ }
+ if (!btf_type_is_scalar(member_type))
+ return false;
+ }
+ return true;
+}
+
+static bool is_kfunc_arg_mem_size(const struct btf *btf,
+ const struct btf_param *arg,
+ const struct bpf_reg_state *reg)
+{
+ int len, sfx_len = sizeof("__sz") - 1;
+ const struct btf_type *t;
+ const char *param_name;
+
+ t = btf_type_skip_modifiers(btf, arg->type, NULL);
+ if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
+ return false;
+
+ /* In the future, this can be ported to use BTF tagging */
+ param_name = btf_name_by_offset(btf, arg->name_off);
+ if (str_is_empty(param_name))
+ return false;
+ len = strlen(param_name);
+ if (len < sfx_len)
+ return false;
+ param_name += len - sfx_len;
+ if (strncmp(param_name, "__sz", sfx_len))
+ return false;
+
+ return true;
+}
+
+static bool btf_is_kfunc_arg_mem_size(const struct btf *btf,
+ const struct btf_param *arg,
+ const struct bpf_reg_state *reg,
+ const char *name)
+{
+ int len, target_len = strlen(name);
+ const struct btf_type *t;
+ const char *param_name;
+
+ t = btf_type_skip_modifiers(btf, arg->type, NULL);
+ if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
+ return false;
+
+ param_name = btf_name_by_offset(btf, arg->name_off);
+ if (str_is_empty(param_name))
+ return false;
+ len = strlen(param_name);
+ if (len != target_len)
+ return false;
+ if (strcmp(param_name, name))
+ return false;
+
+ return true;
+}
+
+static int btf_check_func_arg_match(struct bpf_verifier_env *env,
+ const struct btf *btf, u32 func_id,
+ struct bpf_reg_state *regs,
+ bool ptr_to_mem_ok,
+ struct bpf_kfunc_arg_meta *kfunc_meta,
+ bool processing_call)
+{
+ enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
+ bool rel = false, kptr_get = false, trusted_args = false;
+ bool sleepable = false;
+ struct bpf_verifier_log *log = &env->log;
+ u32 i, nargs, ref_id, ref_obj_id = 0;
+ bool is_kfunc = btf_is_kernel(btf);
+ const char *func_name, *ref_tname;
+ const struct btf_type *t, *ref_t;
+ const struct btf_param *args;
+ int ref_regno = 0, ret;
+
+ t = btf_type_by_id(btf, func_id);
+ if (!t || !btf_type_is_func(t)) {
+ /* These checks were already done by the verifier while loading
+ * struct bpf_func_info or in add_kfunc_call().
+ */
+ bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
+ func_id);
+ return -EFAULT;
+ }
+ func_name = btf_name_by_offset(btf, t->name_off);
+
+ t = btf_type_by_id(btf, t->type);
+ if (!t || !btf_type_is_func_proto(t)) {
+ bpf_log(log, "Invalid BTF of func %s\n", func_name);
+ return -EFAULT;
+ }
+ args = (const struct btf_param *)(t + 1);
+ nargs = btf_type_vlen(t);
+ if (nargs > MAX_BPF_FUNC_REG_ARGS) {
+ bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
+ MAX_BPF_FUNC_REG_ARGS);
+ return -EINVAL;
+ }
+
+ if (is_kfunc && kfunc_meta) {
+ /* Only kfunc can be release func */
+ rel = kfunc_meta->flags & KF_RELEASE;
+ kptr_get = kfunc_meta->flags & KF_KPTR_GET;
+ trusted_args = kfunc_meta->flags & KF_TRUSTED_ARGS;
+ sleepable = kfunc_meta->flags & KF_SLEEPABLE;
+ }
+
+ /* check that BTF function arguments match actual types that the
+ * verifier sees.
+ */
+ for (i = 0; i < nargs; i++) {
+ enum bpf_arg_type arg_type = ARG_DONTCARE;
+ u32 regno = i + 1;
+ struct bpf_reg_state *reg = &regs[regno];
+ bool obj_ptr = false;
+
+ t = btf_type_skip_modifiers(btf, args[i].type, NULL);
+ if (btf_type_is_scalar(t)) {
+ if (is_kfunc && kfunc_meta) {
+ bool is_buf_size = false;
+
+ /* check for any const scalar parameter of name "rdonly_buf_size"
+ * or "rdwr_buf_size"
+ */
+ if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg,
+ "rdonly_buf_size")) {
+ kfunc_meta->r0_rdonly = true;
+ is_buf_size = true;
+ } else if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg,
+ "rdwr_buf_size"))
+ is_buf_size = true;
+
+ if (is_buf_size) {
+ if (kfunc_meta->r0_size) {
+ bpf_log(log, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
+ return -EINVAL;
+ }
+
+ if (!tnum_is_const(reg->var_off)) {
+ bpf_log(log, "R%d is not a const\n", regno);
+ return -EINVAL;
+ }
+
+ kfunc_meta->r0_size = reg->var_off.value;
+ ret = mark_chain_precision(env, regno);
+ if (ret)
+ return ret;
+ }
+ }
+
+ if (reg->type == SCALAR_VALUE)
+ continue;
+ bpf_log(log, "R%d is not a scalar\n", regno);
+ return -EINVAL;
+ }
+
+ if (!btf_type_is_ptr(t)) {
+ bpf_log(log, "Unrecognized arg#%d type %s\n",
+ i, btf_type_str(t));
+ return -EINVAL;
+ }
+
+ /* These register types have special constraints wrt ref_obj_id
+ * and offset checks. The rest of trusted args don't.
+ */
+ obj_ptr = reg->type == PTR_TO_CTX || reg->type == PTR_TO_BTF_ID ||
+ reg2btf_ids[base_type(reg->type)];
+
+ /* Check if argument must be a referenced pointer, args + i has
+ * been verified to be a pointer (after skipping modifiers).
+ * PTR_TO_CTX is ok without having non-zero ref_obj_id.
+ */
+ if (is_kfunc && trusted_args && (obj_ptr && reg->type != PTR_TO_CTX) && !reg->ref_obj_id) {
+ bpf_log(log, "R%d must be referenced\n", regno);
+ return -EINVAL;
+ }
+
+ ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
+ ref_tname = btf_name_by_offset(btf, ref_t->name_off);
+
+ /* Trusted args have the same offset checks as release arguments */
+ if ((trusted_args && obj_ptr) || (rel && reg->ref_obj_id))
+ arg_type |= OBJ_RELEASE;
+ ret = check_func_arg_reg_off(env, reg, regno, arg_type);
+ if (ret < 0)
+ return ret;
+
+ if (is_kfunc && reg->ref_obj_id) {
+ /* Ensure only one argument is referenced PTR_TO_BTF_ID */
+ if (ref_obj_id) {
+ bpf_log(log, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
+ regno, reg->ref_obj_id, ref_obj_id);
+ return -EFAULT;
+ }
+ ref_regno = regno;
+ ref_obj_id = reg->ref_obj_id;
+ }
+
+ /* kptr_get is only true for kfunc */
+ if (i == 0 && kptr_get) {
+ struct bpf_map_value_off_desc *off_desc;
+
+ if (reg->type != PTR_TO_MAP_VALUE) {
+ bpf_log(log, "arg#0 expected pointer to map value\n");
+ return -EINVAL;
+ }
+
+ /* check_func_arg_reg_off allows var_off for
+ * PTR_TO_MAP_VALUE, but we need fixed offset to find
+ * off_desc.
+ */
+ if (!tnum_is_const(reg->var_off)) {
+ bpf_log(log, "arg#0 must have constant offset\n");
+ return -EINVAL;
+ }
+
+ off_desc = bpf_map_kptr_off_contains(reg->map_ptr, reg->off + reg->var_off.value);
+ if (!off_desc || off_desc->type != BPF_KPTR_REF) {
+ bpf_log(log, "arg#0 no referenced kptr at map value offset=%llu\n",
+ reg->off + reg->var_off.value);
+ return -EINVAL;
+ }
+
+ if (!btf_type_is_ptr(ref_t)) {
+ bpf_log(log, "arg#0 BTF type must be a double pointer\n");
+ return -EINVAL;
+ }
+
+ ref_t = btf_type_skip_modifiers(btf, ref_t->type, &ref_id);
+ ref_tname = btf_name_by_offset(btf, ref_t->name_off);
+
+ if (!btf_type_is_struct(ref_t)) {
+ bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
+ func_name, i, btf_type_str(ref_t), ref_tname);
+ return -EINVAL;
+ }
+ if (!btf_struct_ids_match(log, btf, ref_id, 0, off_desc->kptr.btf,
+ off_desc->kptr.btf_id, true)) {
+ bpf_log(log, "kernel function %s args#%d expected pointer to %s %s\n",
+ func_name, i, btf_type_str(ref_t), ref_tname);
+ return -EINVAL;
+ }
+ /* rest of the arguments can be anything, like normal kfunc */
+ } else if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
+ /* If function expects ctx type in BTF check that caller
+ * is passing PTR_TO_CTX.
+ */
+ if (reg->type != PTR_TO_CTX) {
+ bpf_log(log,
+ "arg#%d expected pointer to ctx, but got %s\n",
+ i, btf_type_str(t));
+ return -EINVAL;
+ }
+ } else if (is_kfunc && (reg->type == PTR_TO_BTF_ID ||
+ (reg2btf_ids[base_type(reg->type)] && !type_flag(reg->type)))) {
+ const struct btf_type *reg_ref_t;
+ const struct btf *reg_btf;
+ const char *reg_ref_tname;
+ u32 reg_ref_id;
+
+ if (!btf_type_is_struct(ref_t)) {
+ bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
+ func_name, i, btf_type_str(ref_t),
+ ref_tname);
+ return -EINVAL;
+ }
+
+ if (reg->type == PTR_TO_BTF_ID) {
+ reg_btf = reg->btf;
+ reg_ref_id = reg->btf_id;
+ } else {
+ reg_btf = btf_vmlinux;
+ reg_ref_id = *reg2btf_ids[base_type(reg->type)];
+ }
+
+ reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
+ &reg_ref_id);
+ reg_ref_tname = btf_name_by_offset(reg_btf,
+ reg_ref_t->name_off);
+ if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
+ reg->off, btf, ref_id,
+ trusted_args || (rel && reg->ref_obj_id))) {
+ bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
+ func_name, i,
+ btf_type_str(ref_t), ref_tname,
+ regno, btf_type_str(reg_ref_t),
+ reg_ref_tname);
+ return -EINVAL;
+ }
+ } else if (ptr_to_mem_ok && processing_call) {
+ const struct btf_type *resolve_ret;
+ u32 type_size;
+
+ if (is_kfunc) {
+ bool arg_mem_size = i + 1 < nargs && is_kfunc_arg_mem_size(btf, &args[i + 1], &regs[regno + 1]);
+ bool arg_dynptr = btf_type_is_struct(ref_t) &&
+ !strcmp(ref_tname,
+ stringify_struct(bpf_dynptr_kern));
+
+ /* Permit pointer to mem, but only when argument
+ * type is pointer to scalar, or struct composed
+ * (recursively) of scalars.
+ * When arg_mem_size is true, the pointer can be
+ * void *.
+ * Also permit initialized local dynamic pointers.
+ */
+ if (!btf_type_is_scalar(ref_t) &&
+ !__btf_type_is_scalar_struct(log, btf, ref_t, 0) &&
+ !arg_dynptr &&
+ (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
+ bpf_log(log,
+ "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
+ i, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
+ return -EINVAL;
+ }
+
+ if (arg_dynptr) {
+ if (reg->type != PTR_TO_STACK) {
+ bpf_log(log, "arg#%d pointer type %s %s not to stack\n",
+ i, btf_type_str(ref_t),
+ ref_tname);
+ return -EINVAL;
+ }
+
+ if (!is_dynptr_reg_valid_init(env, reg)) {
+ bpf_log(log,
+ "arg#%d pointer type %s %s must be valid and initialized\n",
+ i, btf_type_str(ref_t),
+ ref_tname);
+ return -EINVAL;
+ }
+
+ if (!is_dynptr_type_expected(env, reg,
+ ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL)) {
+ bpf_log(log,
+ "arg#%d pointer type %s %s points to unsupported dynamic pointer type\n",
+ i, btf_type_str(ref_t),
+ ref_tname);
+ return -EINVAL;
+ }
+
+ continue;
+ }
+
+ /* Check for mem, len pair */
+ if (arg_mem_size) {
+ if (check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1)) {
+ bpf_log(log, "arg#%d arg#%d memory, len pair leads to invalid memory access\n",
+ i, i + 1);
+ return -EINVAL;
+ }
+ i++;
+ continue;
+ }
+ }
+
+ resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
+ if (IS_ERR(resolve_ret)) {
+ bpf_log(log,
+ "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
+ i, btf_type_str(ref_t), ref_tname,
+ PTR_ERR(resolve_ret));
+ return -EINVAL;
+ }
+
+ if (check_mem_reg(env, reg, regno, type_size))
+ return -EINVAL;
+ } else {
+ bpf_log(log, "reg type unsupported for arg#%d %sfunction %s#%d\n", i,
+ is_kfunc ? "kernel " : "", func_name, func_id);
+ return -EINVAL;
+ }
+ }
+
+ /* Either both are set, or neither */
+ WARN_ON_ONCE((ref_obj_id && !ref_regno) || (!ref_obj_id && ref_regno));
+ /* We already made sure ref_obj_id is set only for one argument. We do
+ * allow (!rel && ref_obj_id), so that passing such referenced
+ * PTR_TO_BTF_ID to other kfuncs works. Note that rel is only true when
+ * is_kfunc is true.
+ */
+ if (rel && !ref_obj_id) {
+ bpf_log(log, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
+ func_name);
+ return -EINVAL;
+ }
+
+ if (sleepable && !env->prog->aux->sleepable) {
+ bpf_log(log, "kernel function %s is sleepable but the program is not\n",
+ func_name);
+ return -EINVAL;
+ }
+
+ if (kfunc_meta && ref_obj_id)
+ kfunc_meta->ref_obj_id = ref_obj_id;
+
+ /* returns argument register number > 0 in case of reference release kfunc */
+ return rel ? ref_regno : 0;
+}
+
+/* Compare BTF of a function declaration with given bpf_reg_state.
+ * Returns:
+ * EFAULT - there is a verifier bug. Abort verification.
+ * EINVAL - there is a type mismatch or BTF is not available.
+ * 0 - BTF matches with what bpf_reg_state expects.
+ * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
+ */
+int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
+ struct bpf_reg_state *regs)
+{
+ struct bpf_prog *prog = env->prog;
+ struct btf *btf = prog->aux->btf;
+ bool is_global;
+ u32 btf_id;
+ int err;
+
+ if (!prog->aux->func_info)
+ return -EINVAL;
+
+ btf_id = prog->aux->func_info[subprog].type_id;
+ if (!btf_id)
+ return -EFAULT;
+
+ if (prog->aux->func_info_aux[subprog].unreliable)
+ return -EINVAL;
+
+ is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
+ err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, NULL, false);
+
+ /* Compiler optimizations can remove arguments from static functions
+ * or mismatched type can be passed into a global function.
+ * In such cases mark the function as unreliable from BTF point of view.
+ */
+ if (err)
+ prog->aux->func_info_aux[subprog].unreliable = true;
+ return err;
+}
+
+/* Compare BTF of a function call with given bpf_reg_state.
+ * Returns:
+ * EFAULT - there is a verifier bug. Abort verification.
+ * EINVAL - there is a type mismatch or BTF is not available.
+ * 0 - BTF matches with what bpf_reg_state expects.
+ * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
+ *
+ * NOTE: the code is duplicated from btf_check_subprog_arg_match()
+ * because btf_check_func_arg_match() is still doing both. Once that
+ * function is split in 2, we can call from here btf_check_subprog_arg_match()
+ * first, and then treat the calling part in a new code path.
+ */
+int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
+ struct bpf_reg_state *regs)
+{
+ struct bpf_prog *prog = env->prog;
+ struct btf *btf = prog->aux->btf;
+ bool is_global;
+ u32 btf_id;
+ int err;
+
+ if (!prog->aux->func_info)
+ return -EINVAL;
+
+ btf_id = prog->aux->func_info[subprog].type_id;
+ if (!btf_id)
+ return -EFAULT;
+
+ if (prog->aux->func_info_aux[subprog].unreliable)
+ return -EINVAL;
+
+ is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
+ err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, NULL, true);
+
+ /* Compiler optimizations can remove arguments from static functions
+ * or mismatched type can be passed into a global function.
+ * In such cases mark the function as unreliable from BTF point of view.
+ */
+ if (err)
+ prog->aux->func_info_aux[subprog].unreliable = true;
+ return err;
+}
+
+int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
+ const struct btf *btf, u32 func_id,
+ struct bpf_reg_state *regs,
+ struct bpf_kfunc_arg_meta *meta)
+{
+ return btf_check_func_arg_match(env, btf, func_id, regs, true, meta, true);
+}
+
+/* Convert BTF of a function into bpf_reg_state if possible
+ * Returns:
+ * EFAULT - there is a verifier bug. Abort verification.
+ * EINVAL - cannot convert BTF.
+ * 0 - Successfully converted BTF into bpf_reg_state
+ * (either PTR_TO_CTX or SCALAR_VALUE).
+ */
+int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
+ struct bpf_reg_state *regs)
+{
+ struct bpf_verifier_log *log = &env->log;
+ struct bpf_prog *prog = env->prog;
+ enum bpf_prog_type prog_type = prog->type;
+ struct btf *btf = prog->aux->btf;
+ const struct btf_param *args;
+ const struct btf_type *t, *ref_t;
+ u32 i, nargs, btf_id;
+ const char *tname;
+
+ if (!prog->aux->func_info ||
+ prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
+ bpf_log(log, "Verifier bug\n");
+ return -EFAULT;
+ }
+
+ btf_id = prog->aux->func_info[subprog].type_id;
+ if (!btf_id) {
+ bpf_log(log, "Global functions need valid BTF\n");
+ return -EFAULT;
+ }
+
+ t = btf_type_by_id(btf, btf_id);
+ if (!t || !btf_type_is_func(t)) {
+ /* These checks were already done by the verifier while loading
+ * struct bpf_func_info
+ */
+ bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
+ subprog);
+ return -EFAULT;
+ }
+ tname = btf_name_by_offset(btf, t->name_off);
+
+ if (log->level & BPF_LOG_LEVEL)
+ bpf_log(log, "Validating %s() func#%d...\n",
+ tname, subprog);
+
+ if (prog->aux->func_info_aux[subprog].unreliable) {
+ bpf_log(log, "Verifier bug in function %s()\n", tname);
+ return -EFAULT;
+ }
+ if (prog_type == BPF_PROG_TYPE_EXT)
+ prog_type = prog->aux->dst_prog->type;
+
+ t = btf_type_by_id(btf, t->type);
+ if (!t || !btf_type_is_func_proto(t)) {
+ bpf_log(log, "Invalid type of function %s()\n", tname);
+ return -EFAULT;
+ }
+ args = (const struct btf_param *)(t + 1);
+ nargs = btf_type_vlen(t);
+ if (nargs > MAX_BPF_FUNC_REG_ARGS) {
+ bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
+ tname, nargs, MAX_BPF_FUNC_REG_ARGS);
+ return -EINVAL;
+ }
+ /* check that function returns int */
+ t = btf_type_by_id(btf, t->type);
+ while (btf_type_is_modifier(t))
+ t = btf_type_by_id(btf, t->type);
+ if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
+ bpf_log(log,
+ "Global function %s() doesn't return scalar. Only those are supported.\n",
+ tname);
+ return -EINVAL;
+ }
+ /* Convert BTF function arguments into verifier types.
+ * Only PTR_TO_CTX and SCALAR are supported atm.
+ */
+ for (i = 0; i < nargs; i++) {
+ struct bpf_reg_state *reg = &regs[i + 1];
+
+ t = btf_type_by_id(btf, args[i].type);
+ while (btf_type_is_modifier(t))
+ t = btf_type_by_id(btf, t->type);
+ if (btf_type_is_int(t) || btf_is_any_enum(t)) {
+ reg->type = SCALAR_VALUE;
+ continue;
+ }
+ if (btf_type_is_ptr(t)) {
+ if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
+ reg->type = PTR_TO_CTX;
+ continue;
+ }
+
+ t = btf_type_skip_modifiers(btf, t->type, NULL);
+
+ ref_t = btf_resolve_size(btf, t, &reg->mem_size);
+ if (IS_ERR(ref_t)) {
+ bpf_log(log,
+ "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
+ i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
+ PTR_ERR(ref_t));
+ return -EINVAL;
+ }
+
+ reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
+ reg->id = ++env->id_gen;
+
+ continue;
+ }
+ bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
+ i, btf_type_str(t), tname);
+ return -EINVAL;
+ }
+ return 0;
+}
+
+static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
+ struct btf_show *show)
+{
+ const struct btf_type *t = btf_type_by_id(btf, type_id);
+
+ show->btf = btf;
+ memset(&show->state, 0, sizeof(show->state));
+ memset(&show->obj, 0, sizeof(show->obj));
+
+ btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
+}
+
+static void btf_seq_show(struct btf_show *show, const char *fmt,
+ va_list args)
+{
+ seq_vprintf((struct seq_file *)show->target, fmt, args);
+}
+
+int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
+ void *obj, struct seq_file *m, u64 flags)
+{
+ struct btf_show sseq;
+
+ sseq.target = m;
+ sseq.showfn = btf_seq_show;
+ sseq.flags = flags;
+
+ btf_type_show(btf, type_id, obj, &sseq);
+
+ return sseq.state.status;
+}
+
+void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
+ struct seq_file *m)
+{
+ (void) btf_type_seq_show_flags(btf, type_id, obj, m,
+ BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
+ BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
+}
+
+struct btf_show_snprintf {
+ struct btf_show show;
+ int len_left; /* space left in string */
+ int len; /* length we would have written */
+};
+
+static void btf_snprintf_show(struct btf_show *show, const char *fmt,
+ va_list args)
+{
+ struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
+ int len;
+
+ len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
+
+ if (len < 0) {
+ ssnprintf->len_left = 0;
+ ssnprintf->len = len;
+ } else if (len >= ssnprintf->len_left) {
+ /* no space, drive on to get length we would have written */
+ ssnprintf->len_left = 0;
+ ssnprintf->len += len;
+ } else {
+ ssnprintf->len_left -= len;
+ ssnprintf->len += len;
+ show->target += len;
+ }
+}
+
+int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
+ char *buf, int len, u64 flags)
+{
+ struct btf_show_snprintf ssnprintf;
+
+ ssnprintf.show.target = buf;
+ ssnprintf.show.flags = flags;
+ ssnprintf.show.showfn = btf_snprintf_show;
+ ssnprintf.len_left = len;
+ ssnprintf.len = 0;
+
+ btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
+
+ /* If we encountered an error, return it. */
+ if (ssnprintf.show.state.status)
+ return ssnprintf.show.state.status;
+
+ /* Otherwise return length we would have written */
+ return ssnprintf.len;
+}
+
+#ifdef CONFIG_PROC_FS
+static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
+{
+ const struct btf *btf = filp->private_data;
+
+ seq_printf(m, "btf_id:\t%u\n", btf->id);
+}
+#endif
+
+static int btf_release(struct inode *inode, struct file *filp)
+{
+ btf_put(filp->private_data);
+ return 0;
+}
+
+const struct file_operations btf_fops = {
+#ifdef CONFIG_PROC_FS
+ .show_fdinfo = bpf_btf_show_fdinfo,
+#endif
+ .release = btf_release,
+};
+
+static int __btf_new_fd(struct btf *btf)
+{
+ return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
+}
+
+int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
+{
+ struct btf *btf;
+ int ret;
+
+ btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
+ attr->btf_size, attr->btf_log_level,
+ u64_to_user_ptr(attr->btf_log_buf),
+ attr->btf_log_size);
+ if (IS_ERR(btf))
+ return PTR_ERR(btf);
+
+ ret = btf_alloc_id(btf);
+ if (ret) {
+ btf_free(btf);
+ return ret;
+ }
+
+ /*
+ * The BTF ID is published to the userspace.
+ * All BTF free must go through call_rcu() from
+ * now on (i.e. free by calling btf_put()).
+ */
+
+ ret = __btf_new_fd(btf);
+ if (ret < 0)
+ btf_put(btf);
+
+ return ret;
+}
+
+struct btf *btf_get_by_fd(int fd)
+{
+ struct btf *btf;
+ struct fd f;
+
+ f = fdget(fd);
+
+ if (!f.file)
+ return ERR_PTR(-EBADF);
+
+ if (f.file->f_op != &btf_fops) {
+ fdput(f);
+ return ERR_PTR(-EINVAL);
+ }
+
+ btf = f.file->private_data;
+ refcount_inc(&btf->refcnt);
+ fdput(f);
+
+ return btf;
+}
+
+int btf_get_info_by_fd(const struct btf *btf,
+ const union bpf_attr *attr,
+ union bpf_attr __user *uattr)
+{
+ struct bpf_btf_info __user *uinfo;
+ struct bpf_btf_info info;
+ u32 info_copy, btf_copy;
+ void __user *ubtf;
+ char __user *uname;
+ u32 uinfo_len, uname_len, name_len;
+ int ret = 0;
+
+ uinfo = u64_to_user_ptr(attr->info.info);
+ uinfo_len = attr->info.info_len;
+
+ info_copy = min_t(u32, uinfo_len, sizeof(info));
+ memset(&info, 0, sizeof(info));
+ if (copy_from_user(&info, uinfo, info_copy))
+ return -EFAULT;
+
+ info.id = btf->id;
+ ubtf = u64_to_user_ptr(info.btf);
+ btf_copy = min_t(u32, btf->data_size, info.btf_size);
+ if (copy_to_user(ubtf, btf->data, btf_copy))
+ return -EFAULT;
+ info.btf_size = btf->data_size;
+
+ info.kernel_btf = btf->kernel_btf;
+
+ uname = u64_to_user_ptr(info.name);
+ uname_len = info.name_len;
+ if (!uname ^ !uname_len)
+ return -EINVAL;
+
+ name_len = strlen(btf->name);
+ info.name_len = name_len;
+
+ if (uname) {
+ if (uname_len >= name_len + 1) {
+ if (copy_to_user(uname, btf->name, name_len + 1))
+ return -EFAULT;
+ } else {
+ char zero = '\0';
+
+ if (copy_to_user(uname, btf->name, uname_len - 1))
+ return -EFAULT;
+ if (put_user(zero, uname + uname_len - 1))
+ return -EFAULT;
+ /* let user-space know about too short buffer */
+ ret = -ENOSPC;
+ }
+ }
+
+ if (copy_to_user(uinfo, &info, info_copy) ||
+ put_user(info_copy, &uattr->info.info_len))
+ return -EFAULT;
+
+ return ret;
+}
+
+int btf_get_fd_by_id(u32 id)
+{
+ struct btf *btf;
+ int fd;
+
+ rcu_read_lock();
+ btf = idr_find(&btf_idr, id);
+ if (!btf || !refcount_inc_not_zero(&btf->refcnt))
+ btf = ERR_PTR(-ENOENT);
+ rcu_read_unlock();
+
+ if (IS_ERR(btf))
+ return PTR_ERR(btf);
+
+ fd = __btf_new_fd(btf);
+ if (fd < 0)
+ btf_put(btf);
+
+ return fd;
+}
+
+u32 btf_obj_id(const struct btf *btf)
+{
+ return btf->id;
+}
+
+bool btf_is_kernel(const struct btf *btf)
+{
+ return btf->kernel_btf;
+}
+
+bool btf_is_module(const struct btf *btf)
+{
+ return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
+}
+
+static int btf_id_cmp_func(const void *a, const void *b)
+{
+ const int *pa = a, *pb = b;
+
+ return *pa - *pb;
+}
+
+bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
+{
+ return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
+}
+
+static void *btf_id_set8_contains(const struct btf_id_set8 *set, u32 id)
+{
+ return bsearch(&id, set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func);
+}
+
+enum {
+ BTF_MODULE_F_LIVE = (1 << 0),
+};
+
+#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
+struct btf_module {
+ struct list_head list;
+ struct module *module;
+ struct btf *btf;
+ struct bin_attribute *sysfs_attr;
+ int flags;
+};
+
+static LIST_HEAD(btf_modules);
+static DEFINE_MUTEX(btf_module_mutex);
+
+static ssize_t
+btf_module_read(struct file *file, struct kobject *kobj,
+ struct bin_attribute *bin_attr,
+ char *buf, loff_t off, size_t len)
+{
+ const struct btf *btf = bin_attr->private;
+
+ memcpy(buf, btf->data + off, len);
+ return len;
+}
+
+static void purge_cand_cache(struct btf *btf);
+
+static int btf_module_notify(struct notifier_block *nb, unsigned long op,
+ void *module)
+{
+ struct btf_module *btf_mod, *tmp;
+ struct module *mod = module;
+ struct btf *btf;
+ int err = 0;
+
+ if (mod->btf_data_size == 0 ||
+ (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
+ op != MODULE_STATE_GOING))
+ goto out;
+
+ switch (op) {
+ case MODULE_STATE_COMING:
+ btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
+ if (!btf_mod) {
+ err = -ENOMEM;
+ goto out;
+ }
+ btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
+ if (IS_ERR(btf)) {
+ pr_warn("failed to validate module [%s] BTF: %ld\n",
+ mod->name, PTR_ERR(btf));
+ kfree(btf_mod);
+ if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
+ err = PTR_ERR(btf);
+ goto out;
+ }
+ err = btf_alloc_id(btf);
+ if (err) {
+ btf_free(btf);
+ kfree(btf_mod);
+ goto out;
+ }
+
+ purge_cand_cache(NULL);
+ mutex_lock(&btf_module_mutex);
+ btf_mod->module = module;
+ btf_mod->btf = btf;
+ list_add(&btf_mod->list, &btf_modules);
+ mutex_unlock(&btf_module_mutex);
+
+ if (IS_ENABLED(CONFIG_SYSFS)) {
+ struct bin_attribute *attr;
+
+ attr = kzalloc(sizeof(*attr), GFP_KERNEL);
+ if (!attr)
+ goto out;
+
+ sysfs_bin_attr_init(attr);
+ attr->attr.name = btf->name;
+ attr->attr.mode = 0444;
+ attr->size = btf->data_size;
+ attr->private = btf;
+ attr->read = btf_module_read;
+
+ err = sysfs_create_bin_file(btf_kobj, attr);
+ if (err) {
+ pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
+ mod->name, err);
+ kfree(attr);
+ err = 0;
+ goto out;
+ }
+
+ btf_mod->sysfs_attr = attr;
+ }
+
+ break;
+ case MODULE_STATE_LIVE:
+ mutex_lock(&btf_module_mutex);
+ list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
+ if (btf_mod->module != module)
+ continue;
+
+ btf_mod->flags |= BTF_MODULE_F_LIVE;
+ break;
+ }
+ mutex_unlock(&btf_module_mutex);
+ break;
+ case MODULE_STATE_GOING:
+ mutex_lock(&btf_module_mutex);
+ list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
+ if (btf_mod->module != module)
+ continue;
+
+ list_del(&btf_mod->list);
+ if (btf_mod->sysfs_attr)
+ sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
+ purge_cand_cache(btf_mod->btf);
+ btf_put(btf_mod->btf);
+ kfree(btf_mod->sysfs_attr);
+ kfree(btf_mod);
+ break;
+ }
+ mutex_unlock(&btf_module_mutex);
+ break;
+ }
+out:
+ return notifier_from_errno(err);
+}
+
+static struct notifier_block btf_module_nb = {
+ .notifier_call = btf_module_notify,
+};
+
+static int __init btf_module_init(void)
+{
+ register_module_notifier(&btf_module_nb);
+ return 0;
+}
+
+fs_initcall(btf_module_init);
+#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
+
+struct module *btf_try_get_module(const struct btf *btf)
+{
+ struct module *res = NULL;
+#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
+ struct btf_module *btf_mod, *tmp;
+
+ mutex_lock(&btf_module_mutex);
+ list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
+ if (btf_mod->btf != btf)
+ continue;
+
+ /* We must only consider module whose __init routine has
+ * finished, hence we must check for BTF_MODULE_F_LIVE flag,
+ * which is set from the notifier callback for
+ * MODULE_STATE_LIVE.
+ */
+ if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
+ res = btf_mod->module;
+
+ break;
+ }
+ mutex_unlock(&btf_module_mutex);
+#endif
+
+ return res;
+}
+
+/* Returns struct btf corresponding to the struct module.
+ * This function can return NULL or ERR_PTR.
+ */
+static struct btf *btf_get_module_btf(const struct module *module)
+{
+#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
+ struct btf_module *btf_mod, *tmp;
+#endif
+ struct btf *btf = NULL;
+
+ if (!module) {
+ btf = bpf_get_btf_vmlinux();
+ if (!IS_ERR_OR_NULL(btf))
+ btf_get(btf);
+ return btf;
+ }
+
+#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
+ mutex_lock(&btf_module_mutex);
+ list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
+ if (btf_mod->module != module)
+ continue;
+
+ btf_get(btf_mod->btf);
+ btf = btf_mod->btf;
+ break;
+ }
+ mutex_unlock(&btf_module_mutex);
+#endif
+
+ return btf;
+}
+
+BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
+{
+ struct btf *btf = NULL;
+ int btf_obj_fd = 0;
+ long ret;
+
+ if (flags)
+ return -EINVAL;
+
+ if (name_sz <= 1 || name[name_sz - 1])
+ return -EINVAL;
+
+ ret = bpf_find_btf_id(name, kind, &btf);
+ if (ret > 0 && btf_is_module(btf)) {
+ btf_obj_fd = __btf_new_fd(btf);
+ if (btf_obj_fd < 0) {
+ btf_put(btf);
+ return btf_obj_fd;
+ }
+ return ret | (((u64)btf_obj_fd) << 32);
+ }
+ if (ret > 0)
+ btf_put(btf);
+ return ret;
+}
+
+const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
+ .func = bpf_btf_find_by_name_kind,
+ .gpl_only = false,
+ .ret_type = RET_INTEGER,
+ .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
+ .arg2_type = ARG_CONST_SIZE,
+ .arg3_type = ARG_ANYTHING,
+ .arg4_type = ARG_ANYTHING,
+};
+
+BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
+#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
+BTF_TRACING_TYPE_xxx
+#undef BTF_TRACING_TYPE
+
+/* Kernel Function (kfunc) BTF ID set registration API */
+
+static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
+ struct btf_id_set8 *add_set)
+{
+ bool vmlinux_set = !btf_is_module(btf);
+ struct btf_kfunc_set_tab *tab;
+ struct btf_id_set8 *set;
+ u32 set_cnt;
+ int ret;
+
+ if (hook >= BTF_KFUNC_HOOK_MAX) {
+ ret = -EINVAL;
+ goto end;
+ }
+
+ if (!add_set->cnt)
+ return 0;
+
+ tab = btf->kfunc_set_tab;
+ if (!tab) {
+ tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
+ if (!tab)
+ return -ENOMEM;
+ btf->kfunc_set_tab = tab;
+ }
+
+ set = tab->sets[hook];
+ /* Warn when register_btf_kfunc_id_set is called twice for the same hook
+ * for module sets.
+ */
+ if (WARN_ON_ONCE(set && !vmlinux_set)) {
+ ret = -EINVAL;
+ goto end;
+ }
+
+ /* We don't need to allocate, concatenate, and sort module sets, because
+ * only one is allowed per hook. Hence, we can directly assign the
+ * pointer and return.
+ */
+ if (!vmlinux_set) {
+ tab->sets[hook] = add_set;
+ return 0;
+ }
+
+ /* In case of vmlinux sets, there may be more than one set being
+ * registered per hook. To create a unified set, we allocate a new set
+ * and concatenate all individual sets being registered. While each set
+ * is individually sorted, they may become unsorted when concatenated,
+ * hence re-sorting the final set again is required to make binary
+ * searching the set using btf_id_set8_contains function work.
+ */
+ set_cnt = set ? set->cnt : 0;
+
+ if (set_cnt > U32_MAX - add_set->cnt) {
+ ret = -EOVERFLOW;
+ goto end;
+ }
+
+ if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
+ ret = -E2BIG;
+ goto end;
+ }
+
+ /* Grow set */
+ set = krealloc(tab->sets[hook],
+ offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
+ GFP_KERNEL | __GFP_NOWARN);
+ if (!set) {
+ ret = -ENOMEM;
+ goto end;
+ }
+
+ /* For newly allocated set, initialize set->cnt to 0 */
+ if (!tab->sets[hook])
+ set->cnt = 0;
+ tab->sets[hook] = set;
+
+ /* Concatenate the two sets */
+ memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
+ set->cnt += add_set->cnt;
+
+ sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
+
+ return 0;
+end:
+ btf_free_kfunc_set_tab(btf);
+ return ret;
+}
+
+static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
+ enum btf_kfunc_hook hook,
+ u32 kfunc_btf_id)
+{
+ struct btf_id_set8 *set;
+ u32 *id;
+
+ if (hook >= BTF_KFUNC_HOOK_MAX)
+ return NULL;
+ if (!btf->kfunc_set_tab)
+ return NULL;
+ set = btf->kfunc_set_tab->sets[hook];
+ if (!set)
+ return NULL;
+ id = btf_id_set8_contains(set, kfunc_btf_id);
+ if (!id)
+ return NULL;
+ /* The flags for BTF ID are located next to it */
+ return id + 1;
+}
+
+static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
+{
+ switch (prog_type) {
+ case BPF_PROG_TYPE_XDP:
+ return BTF_KFUNC_HOOK_XDP;
+ case BPF_PROG_TYPE_SCHED_CLS:
+ return BTF_KFUNC_HOOK_TC;
+ case BPF_PROG_TYPE_STRUCT_OPS:
+ return BTF_KFUNC_HOOK_STRUCT_OPS;
+ case BPF_PROG_TYPE_TRACING:
+ case BPF_PROG_TYPE_LSM:
+ return BTF_KFUNC_HOOK_TRACING;
+ case BPF_PROG_TYPE_SYSCALL:
+ return BTF_KFUNC_HOOK_SYSCALL;
+ default:
+ return BTF_KFUNC_HOOK_MAX;
+ }
+}
+
+/* Caution:
+ * Reference to the module (obtained using btf_try_get_module) corresponding to
+ * the struct btf *MUST* be held when calling this function from verifier
+ * context. This is usually true as we stash references in prog's kfunc_btf_tab;
+ * keeping the reference for the duration of the call provides the necessary
+ * protection for looking up a well-formed btf->kfunc_set_tab.
+ */
+u32 *btf_kfunc_id_set_contains(const struct btf *btf,
+ enum bpf_prog_type prog_type,
+ u32 kfunc_btf_id)
+{
+ enum btf_kfunc_hook hook;
+
+ hook = bpf_prog_type_to_kfunc_hook(prog_type);
+ return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id);
+}
+
+/* This function must be invoked only from initcalls/module init functions */
+int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
+ const struct btf_kfunc_id_set *kset)
+{
+ enum btf_kfunc_hook hook;
+ struct btf *btf;
+ int ret;
+
+ btf = btf_get_module_btf(kset->owner);
+ if (!btf) {
+ if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
+ pr_err("missing vmlinux BTF, cannot register kfuncs\n");
+ return -ENOENT;
+ }
+ if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
+ pr_warn("missing module BTF, cannot register kfuncs\n");
+ return 0;
+ }
+ if (IS_ERR(btf))
+ return PTR_ERR(btf);
+
+ hook = bpf_prog_type_to_kfunc_hook(prog_type);
+ ret = btf_populate_kfunc_set(btf, hook, kset->set);
+ btf_put(btf);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
+
+s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
+{
+ struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
+ struct btf_id_dtor_kfunc *dtor;
+
+ if (!tab)
+ return -ENOENT;
+ /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
+ * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
+ */
+ BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
+ dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
+ if (!dtor)
+ return -ENOENT;
+ return dtor->kfunc_btf_id;
+}
+
+static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
+{
+ const struct btf_type *dtor_func, *dtor_func_proto, *t;
+ const struct btf_param *args;
+ s32 dtor_btf_id;
+ u32 nr_args, i;
+
+ for (i = 0; i < cnt; i++) {
+ dtor_btf_id = dtors[i].kfunc_btf_id;
+
+ dtor_func = btf_type_by_id(btf, dtor_btf_id);
+ if (!dtor_func || !btf_type_is_func(dtor_func))
+ return -EINVAL;
+
+ dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
+ if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
+ return -EINVAL;
+
+ /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
+ t = btf_type_by_id(btf, dtor_func_proto->type);
+ if (!t || !btf_type_is_void(t))
+ return -EINVAL;
+
+ nr_args = btf_type_vlen(dtor_func_proto);
+ if (nr_args != 1)
+ return -EINVAL;
+ args = btf_params(dtor_func_proto);
+ t = btf_type_by_id(btf, args[0].type);
+ /* Allow any pointer type, as width on targets Linux supports
+ * will be same for all pointer types (i.e. sizeof(void *))
+ */
+ if (!t || !btf_type_is_ptr(t))
+ return -EINVAL;
+ }
+ return 0;
+}
+
+/* This function must be invoked only from initcalls/module init functions */
+int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
+ struct module *owner)
+{
+ struct btf_id_dtor_kfunc_tab *tab;
+ struct btf *btf;
+ u32 tab_cnt;
+ int ret;
+
+ btf = btf_get_module_btf(owner);
+ if (!btf) {
+ if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
+ pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
+ return -ENOENT;
+ }
+ if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
+ pr_err("missing module BTF, cannot register dtor kfuncs\n");
+ return -ENOENT;
+ }
+ return 0;
+ }
+ if (IS_ERR(btf))
+ return PTR_ERR(btf);
+
+ if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
+ pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
+ ret = -E2BIG;
+ goto end;
+ }
+
+ /* Ensure that the prototype of dtor kfuncs being registered is sane */
+ ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
+ if (ret < 0)
+ goto end;
+
+ tab = btf->dtor_kfunc_tab;
+ /* Only one call allowed for modules */
+ if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
+ ret = -EINVAL;
+ goto end;
+ }
+
+ tab_cnt = tab ? tab->cnt : 0;
+ if (tab_cnt > U32_MAX - add_cnt) {
+ ret = -EOVERFLOW;
+ goto end;
+ }
+ if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
+ pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
+ ret = -E2BIG;
+ goto end;
+ }
+
+ tab = krealloc(btf->dtor_kfunc_tab,
+ offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
+ GFP_KERNEL | __GFP_NOWARN);
+ if (!tab) {
+ ret = -ENOMEM;
+ goto end;
+ }
+
+ if (!btf->dtor_kfunc_tab)
+ tab->cnt = 0;
+ btf->dtor_kfunc_tab = tab;
+
+ memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
+ tab->cnt += add_cnt;
+
+ sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
+
+end:
+ if (ret)
+ btf_free_dtor_kfunc_tab(btf);
+ btf_put(btf);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
+
+#define MAX_TYPES_ARE_COMPAT_DEPTH 2
+
+/* Check local and target types for compatibility. This check is used for
+ * type-based CO-RE relocations and follow slightly different rules than
+ * field-based relocations. This function assumes that root types were already
+ * checked for name match. Beyond that initial root-level name check, names
+ * are completely ignored. Compatibility rules are as follows:
+ * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
+ * kind should match for local and target types (i.e., STRUCT is not
+ * compatible with UNION);
+ * - for ENUMs/ENUM64s, the size is ignored;
+ * - for INT, size and signedness are ignored;
+ * - for ARRAY, dimensionality is ignored, element types are checked for
+ * compatibility recursively;
+ * - CONST/VOLATILE/RESTRICT modifiers are ignored;
+ * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
+ * - FUNC_PROTOs are compatible if they have compatible signature: same
+ * number of input args and compatible return and argument types.
+ * These rules are not set in stone and probably will be adjusted as we get
+ * more experience with using BPF CO-RE relocations.
+ */
+int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
+ const struct btf *targ_btf, __u32 targ_id)
+{
+ return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
+ MAX_TYPES_ARE_COMPAT_DEPTH);
+}
+
+#define MAX_TYPES_MATCH_DEPTH 2
+
+int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
+ const struct btf *targ_btf, u32 targ_id)
+{
+ return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
+ MAX_TYPES_MATCH_DEPTH);
+}
+
+static bool bpf_core_is_flavor_sep(const char *s)
+{
+ /* check X___Y name pattern, where X and Y are not underscores */
+ return s[0] != '_' && /* X */
+ s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
+ s[4] != '_'; /* Y */
+}
+
+size_t bpf_core_essential_name_len(const char *name)
+{
+ size_t n = strlen(name);
+ int i;
+
+ for (i = n - 5; i >= 0; i--) {
+ if (bpf_core_is_flavor_sep(name + i))
+ return i + 1;
+ }
+ return n;
+}
+
+struct bpf_cand_cache {
+ const char *name;
+ u32 name_len;
+ u16 kind;
+ u16 cnt;
+ struct {
+ const struct btf *btf;
+ u32 id;
+ } cands[];
+};
+
+static void bpf_free_cands(struct bpf_cand_cache *cands)
+{
+ if (!cands->cnt)
+ /* empty candidate array was allocated on stack */
+ return;
+ kfree(cands);
+}
+
+static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
+{
+ kfree(cands->name);
+ kfree(cands);
+}
+
+#define VMLINUX_CAND_CACHE_SIZE 31
+static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
+
+#define MODULE_CAND_CACHE_SIZE 31
+static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
+
+static DEFINE_MUTEX(cand_cache_mutex);
+
+static void __print_cand_cache(struct bpf_verifier_log *log,
+ struct bpf_cand_cache **cache,
+ int cache_size)
+{
+ struct bpf_cand_cache *cc;
+ int i, j;
+
+ for (i = 0; i < cache_size; i++) {
+ cc = cache[i];
+ if (!cc)
+ continue;
+ bpf_log(log, "[%d]%s(", i, cc->name);
+ for (j = 0; j < cc->cnt; j++) {
+ bpf_log(log, "%d", cc->cands[j].id);
+ if (j < cc->cnt - 1)
+ bpf_log(log, " ");
+ }
+ bpf_log(log, "), ");
+ }
+}
+
+static void print_cand_cache(struct bpf_verifier_log *log)
+{
+ mutex_lock(&cand_cache_mutex);
+ bpf_log(log, "vmlinux_cand_cache:");
+ __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
+ bpf_log(log, "\nmodule_cand_cache:");
+ __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
+ bpf_log(log, "\n");
+ mutex_unlock(&cand_cache_mutex);
+}
+
+static u32 hash_cands(struct bpf_cand_cache *cands)
+{
+ return jhash(cands->name, cands->name_len, 0);
+}
+
+static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
+ struct bpf_cand_cache **cache,
+ int cache_size)
+{
+ struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
+
+ if (cc && cc->name_len == cands->name_len &&
+ !strncmp(cc->name, cands->name, cands->name_len))
+ return cc;
+ return NULL;
+}
+
+static size_t sizeof_cands(int cnt)
+{
+ return offsetof(struct bpf_cand_cache, cands[cnt]);
+}
+
+static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
+ struct bpf_cand_cache **cache,
+ int cache_size)
+{
+ struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
+
+ if (*cc) {
+ bpf_free_cands_from_cache(*cc);
+ *cc = NULL;
+ }
+ new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
+ if (!new_cands) {
+ bpf_free_cands(cands);
+ return ERR_PTR(-ENOMEM);
+ }
+ /* strdup the name, since it will stay in cache.
+ * the cands->name points to strings in prog's BTF and the prog can be unloaded.
+ */
+ new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
+ bpf_free_cands(cands);
+ if (!new_cands->name) {
+ kfree(new_cands);
+ return ERR_PTR(-ENOMEM);
+ }
+ *cc = new_cands;
+ return new_cands;
+}
+
+#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
+static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
+ int cache_size)
+{
+ struct bpf_cand_cache *cc;
+ int i, j;
+
+ for (i = 0; i < cache_size; i++) {
+ cc = cache[i];
+ if (!cc)
+ continue;
+ if (!btf) {
+ /* when new module is loaded purge all of module_cand_cache,
+ * since new module might have candidates with the name
+ * that matches cached cands.
+ */
+ bpf_free_cands_from_cache(cc);
+ cache[i] = NULL;
+ continue;
+ }
+ /* when module is unloaded purge cache entries
+ * that match module's btf
+ */
+ for (j = 0; j < cc->cnt; j++)
+ if (cc->cands[j].btf == btf) {
+ bpf_free_cands_from_cache(cc);
+ cache[i] = NULL;
+ break;
+ }
+ }
+
+}
+
+static void purge_cand_cache(struct btf *btf)
+{
+ mutex_lock(&cand_cache_mutex);
+ __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
+ mutex_unlock(&cand_cache_mutex);
+}
+#endif
+
+static struct bpf_cand_cache *
+bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
+ int targ_start_id)
+{
+ struct bpf_cand_cache *new_cands;
+ const struct btf_type *t;
+ const char *targ_name;
+ size_t targ_essent_len;
+ int n, i;
+
+ n = btf_nr_types(targ_btf);
+ for (i = targ_start_id; i < n; i++) {
+ t = btf_type_by_id(targ_btf, i);
+ if (btf_kind(t) != cands->kind)
+ continue;
+
+ targ_name = btf_name_by_offset(targ_btf, t->name_off);
+ if (!targ_name)
+ continue;
+
+ /* the resched point is before strncmp to make sure that search
+ * for non-existing name will have a chance to schedule().
+ */
+ cond_resched();
+
+ if (strncmp(cands->name, targ_name, cands->name_len) != 0)
+ continue;
+
+ targ_essent_len = bpf_core_essential_name_len(targ_name);
+ if (targ_essent_len != cands->name_len)
+ continue;
+
+ /* most of the time there is only one candidate for a given kind+name pair */
+ new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
+ if (!new_cands) {
+ bpf_free_cands(cands);
+ return ERR_PTR(-ENOMEM);
+ }
+
+ memcpy(new_cands, cands, sizeof_cands(cands->cnt));
+ bpf_free_cands(cands);
+ cands = new_cands;
+ cands->cands[cands->cnt].btf = targ_btf;
+ cands->cands[cands->cnt].id = i;
+ cands->cnt++;
+ }
+ return cands;
+}
+
+static struct bpf_cand_cache *
+bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
+{
+ struct bpf_cand_cache *cands, *cc, local_cand = {};
+ const struct btf *local_btf = ctx->btf;
+ const struct btf_type *local_type;
+ const struct btf *main_btf;
+ size_t local_essent_len;
+ struct btf *mod_btf;
+ const char *name;
+ int id;
+
+ main_btf = bpf_get_btf_vmlinux();
+ if (IS_ERR(main_btf))
+ return ERR_CAST(main_btf);
+ if (!main_btf)
+ return ERR_PTR(-EINVAL);
+
+ local_type = btf_type_by_id(local_btf, local_type_id);
+ if (!local_type)
+ return ERR_PTR(-EINVAL);
+
+ name = btf_name_by_offset(local_btf, local_type->name_off);
+ if (str_is_empty(name))
+ return ERR_PTR(-EINVAL);
+ local_essent_len = bpf_core_essential_name_len(name);
+
+ cands = &local_cand;
+ cands->name = name;
+ cands->kind = btf_kind(local_type);
+ cands->name_len = local_essent_len;
+
+ cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
+ /* cands is a pointer to stack here */
+ if (cc) {
+ if (cc->cnt)
+ return cc;
+ goto check_modules;
+ }
+
+ /* Attempt to find target candidates in vmlinux BTF first */
+ cands = bpf_core_add_cands(cands, main_btf, 1);
+ if (IS_ERR(cands))
+ return ERR_CAST(cands);
+
+ /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
+
+ /* populate cache even when cands->cnt == 0 */
+ cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
+ if (IS_ERR(cc))
+ return ERR_CAST(cc);
+
+ /* if vmlinux BTF has any candidate, don't go for module BTFs */
+ if (cc->cnt)
+ return cc;
+
+check_modules:
+ /* cands is a pointer to stack here and cands->cnt == 0 */
+ cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
+ if (cc)
+ /* if cache has it return it even if cc->cnt == 0 */
+ return cc;
+
+ /* If candidate is not found in vmlinux's BTF then search in module's BTFs */
+ spin_lock_bh(&btf_idr_lock);
+ idr_for_each_entry(&btf_idr, mod_btf, id) {
+ if (!btf_is_module(mod_btf))
+ continue;
+ /* linear search could be slow hence unlock/lock
+ * the IDR to avoiding holding it for too long
+ */
+ btf_get(mod_btf);
+ spin_unlock_bh(&btf_idr_lock);
+ cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
+ btf_put(mod_btf);
+ if (IS_ERR(cands))
+ return ERR_CAST(cands);
+ spin_lock_bh(&btf_idr_lock);
+ }
+ spin_unlock_bh(&btf_idr_lock);
+ /* cands is a pointer to kmalloced memory here if cands->cnt > 0
+ * or pointer to stack if cands->cnd == 0.
+ * Copy it into the cache even when cands->cnt == 0 and
+ * return the result.
+ */
+ return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
+}
+
+int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
+ int relo_idx, void *insn)
+{
+ bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
+ struct bpf_core_cand_list cands = {};
+ struct bpf_core_relo_res targ_res;
+ struct bpf_core_spec *specs;
+ int err;
+
+ /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
+ * into arrays of btf_ids of struct fields and array indices.
+ */
+ specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
+ if (!specs)
+ return -ENOMEM;
+
+ if (need_cands) {
+ struct bpf_cand_cache *cc;
+ int i;
+
+ mutex_lock(&cand_cache_mutex);
+ cc = bpf_core_find_cands(ctx, relo->type_id);
+ if (IS_ERR(cc)) {
+ bpf_log(ctx->log, "target candidate search failed for %d\n",
+ relo->type_id);
+ err = PTR_ERR(cc);
+ goto out;
+ }
+ if (cc->cnt) {
+ cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
+ if (!cands.cands) {
+ err = -ENOMEM;
+ goto out;
+ }
+ }
+ for (i = 0; i < cc->cnt; i++) {
+ bpf_log(ctx->log,
+ "CO-RE relocating %s %s: found target candidate [%d]\n",
+ btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
+ cands.cands[i].btf = cc->cands[i].btf;
+ cands.cands[i].id = cc->cands[i].id;
+ }
+ cands.len = cc->cnt;
+ /* cand_cache_mutex needs to span the cache lookup and
+ * copy of btf pointer into bpf_core_cand_list,
+ * since module can be unloaded while bpf_core_calc_relo_insn
+ * is working with module's btf.
+ */
+ }
+
+ err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
+ &targ_res);
+ if (err)
+ goto out;
+
+ err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
+ &targ_res);
+
+out:
+ kfree(specs);
+ if (need_cands) {
+ kfree(cands.cands);
+ mutex_unlock(&cand_cache_mutex);
+ if (ctx->log->level & BPF_LOG_LEVEL2)
+ print_cand_cache(ctx->log);
+ }
+ return err;
+}