diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /kernel/sched/pelt.h | |
parent | Initial commit. (diff) | |
download | linux-b8823030eac27fc7a3d149e3a443a0b68810a78f.tar.xz linux-b8823030eac27fc7a3d149e3a443a0b68810a78f.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'kernel/sched/pelt.h')
-rw-r--r-- | kernel/sched/pelt.h | 235 |
1 files changed, 235 insertions, 0 deletions
diff --git a/kernel/sched/pelt.h b/kernel/sched/pelt.h new file mode 100644 index 000000000..3a0e0dc28 --- /dev/null +++ b/kernel/sched/pelt.h @@ -0,0 +1,235 @@ +#ifdef CONFIG_SMP +#include "sched-pelt.h" + +int __update_load_avg_blocked_se(u64 now, struct sched_entity *se); +int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se); +int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq); +int update_rt_rq_load_avg(u64 now, struct rq *rq, int running); +int update_dl_rq_load_avg(u64 now, struct rq *rq, int running); + +#ifdef CONFIG_SCHED_THERMAL_PRESSURE +int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity); + +static inline u64 thermal_load_avg(struct rq *rq) +{ + return READ_ONCE(rq->avg_thermal.load_avg); +} +#else +static inline int +update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity) +{ + return 0; +} + +static inline u64 thermal_load_avg(struct rq *rq) +{ + return 0; +} +#endif + +#ifdef CONFIG_HAVE_SCHED_AVG_IRQ +int update_irq_load_avg(struct rq *rq, u64 running); +#else +static inline int +update_irq_load_avg(struct rq *rq, u64 running) +{ + return 0; +} +#endif + +#define PELT_MIN_DIVIDER (LOAD_AVG_MAX - 1024) + +static inline u32 get_pelt_divider(struct sched_avg *avg) +{ + return PELT_MIN_DIVIDER + avg->period_contrib; +} + +static inline void cfs_se_util_change(struct sched_avg *avg) +{ + unsigned int enqueued; + + if (!sched_feat(UTIL_EST)) + return; + + /* Avoid store if the flag has been already reset */ + enqueued = avg->util_est.enqueued; + if (!(enqueued & UTIL_AVG_UNCHANGED)) + return; + + /* Reset flag to report util_avg has been updated */ + enqueued &= ~UTIL_AVG_UNCHANGED; + WRITE_ONCE(avg->util_est.enqueued, enqueued); +} + +static inline u64 rq_clock_pelt(struct rq *rq) +{ + lockdep_assert_rq_held(rq); + assert_clock_updated(rq); + + return rq->clock_pelt - rq->lost_idle_time; +} + +/* The rq is idle, we can sync to clock_task */ +static inline void _update_idle_rq_clock_pelt(struct rq *rq) +{ + rq->clock_pelt = rq_clock_task(rq); + + u64_u32_store(rq->clock_idle, rq_clock(rq)); + /* Paired with smp_rmb in migrate_se_pelt_lag() */ + smp_wmb(); + u64_u32_store(rq->clock_pelt_idle, rq_clock_pelt(rq)); +} + +/* + * The clock_pelt scales the time to reflect the effective amount of + * computation done during the running delta time but then sync back to + * clock_task when rq is idle. + * + * + * absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16 + * @ max capacity ------******---------------******--------------- + * @ half capacity ------************---------************--------- + * clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16 + * + */ +static inline void update_rq_clock_pelt(struct rq *rq, s64 delta) +{ + if (unlikely(is_idle_task(rq->curr))) { + _update_idle_rq_clock_pelt(rq); + return; + } + + /* + * When a rq runs at a lower compute capacity, it will need + * more time to do the same amount of work than at max + * capacity. In order to be invariant, we scale the delta to + * reflect how much work has been really done. + * Running longer results in stealing idle time that will + * disturb the load signal compared to max capacity. This + * stolen idle time will be automatically reflected when the + * rq will be idle and the clock will be synced with + * rq_clock_task. + */ + + /* + * Scale the elapsed time to reflect the real amount of + * computation + */ + delta = cap_scale(delta, arch_scale_cpu_capacity(cpu_of(rq))); + delta = cap_scale(delta, arch_scale_freq_capacity(cpu_of(rq))); + + rq->clock_pelt += delta; +} + +/* + * When rq becomes idle, we have to check if it has lost idle time + * because it was fully busy. A rq is fully used when the /Sum util_sum + * is greater or equal to: + * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT; + * For optimization and computing rounding purpose, we don't take into account + * the position in the current window (period_contrib) and we use the higher + * bound of util_sum to decide. + */ +static inline void update_idle_rq_clock_pelt(struct rq *rq) +{ + u32 divider = ((LOAD_AVG_MAX - 1024) << SCHED_CAPACITY_SHIFT) - LOAD_AVG_MAX; + u32 util_sum = rq->cfs.avg.util_sum; + util_sum += rq->avg_rt.util_sum; + util_sum += rq->avg_dl.util_sum; + + /* + * Reflecting stolen time makes sense only if the idle + * phase would be present at max capacity. As soon as the + * utilization of a rq has reached the maximum value, it is + * considered as an always running rq without idle time to + * steal. This potential idle time is considered as lost in + * this case. We keep track of this lost idle time compare to + * rq's clock_task. + */ + if (util_sum >= divider) + rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt; + + _update_idle_rq_clock_pelt(rq); +} + +#ifdef CONFIG_CFS_BANDWIDTH +static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) +{ + u64 throttled; + + if (unlikely(cfs_rq->throttle_count)) + throttled = U64_MAX; + else + throttled = cfs_rq->throttled_clock_pelt_time; + + u64_u32_store(cfs_rq->throttled_pelt_idle, throttled); +} + +/* rq->task_clock normalized against any time this cfs_rq has spent throttled */ +static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) +{ + if (unlikely(cfs_rq->throttle_count)) + return cfs_rq->throttled_clock_pelt - cfs_rq->throttled_clock_pelt_time; + + return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_pelt_time; +} +#else +static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { } +static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) +{ + return rq_clock_pelt(rq_of(cfs_rq)); +} +#endif + +#else + +static inline int +update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) +{ + return 0; +} + +static inline int +update_rt_rq_load_avg(u64 now, struct rq *rq, int running) +{ + return 0; +} + +static inline int +update_dl_rq_load_avg(u64 now, struct rq *rq, int running) +{ + return 0; +} + +static inline int +update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity) +{ + return 0; +} + +static inline u64 thermal_load_avg(struct rq *rq) +{ + return 0; +} + +static inline int +update_irq_load_avg(struct rq *rq, u64 running) +{ + return 0; +} + +static inline u64 rq_clock_pelt(struct rq *rq) +{ + return rq_clock_task(rq); +} + +static inline void +update_rq_clock_pelt(struct rq *rq, s64 delta) { } + +static inline void +update_idle_rq_clock_pelt(struct rq *rq) { } + +static inline void update_idle_cfs_rq_clock_pelt(struct cfs_rq *cfs_rq) { } +#endif + + |