summaryrefslogtreecommitdiffstats
path: root/kernel/time/posix-timers.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /kernel/time/posix-timers.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'kernel/time/posix-timers.c')
-rw-r--r--kernel/time/posix-timers.c1453
1 files changed, 1453 insertions, 0 deletions
diff --git a/kernel/time/posix-timers.c b/kernel/time/posix-timers.c
new file mode 100644
index 000000000..ed3c4a954
--- /dev/null
+++ b/kernel/time/posix-timers.c
@@ -0,0 +1,1453 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * 2002-10-15 Posix Clocks & timers
+ * by George Anzinger george@mvista.com
+ * Copyright (C) 2002 2003 by MontaVista Software.
+ *
+ * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
+ * Copyright (C) 2004 Boris Hu
+ *
+ * These are all the functions necessary to implement POSIX clocks & timers
+ */
+#include <linux/mm.h>
+#include <linux/interrupt.h>
+#include <linux/slab.h>
+#include <linux/time.h>
+#include <linux/mutex.h>
+#include <linux/sched/task.h>
+
+#include <linux/uaccess.h>
+#include <linux/list.h>
+#include <linux/init.h>
+#include <linux/compiler.h>
+#include <linux/hash.h>
+#include <linux/posix-clock.h>
+#include <linux/posix-timers.h>
+#include <linux/syscalls.h>
+#include <linux/wait.h>
+#include <linux/workqueue.h>
+#include <linux/export.h>
+#include <linux/hashtable.h>
+#include <linux/compat.h>
+#include <linux/nospec.h>
+#include <linux/time_namespace.h>
+
+#include "timekeeping.h"
+#include "posix-timers.h"
+
+/*
+ * Management arrays for POSIX timers. Timers are now kept in static hash table
+ * with 512 entries.
+ * Timer ids are allocated by local routine, which selects proper hash head by
+ * key, constructed from current->signal address and per signal struct counter.
+ * This keeps timer ids unique per process, but now they can intersect between
+ * processes.
+ */
+
+/*
+ * Lets keep our timers in a slab cache :-)
+ */
+static struct kmem_cache *posix_timers_cache;
+
+static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
+static DEFINE_SPINLOCK(hash_lock);
+
+static const struct k_clock * const posix_clocks[];
+static const struct k_clock *clockid_to_kclock(const clockid_t id);
+static const struct k_clock clock_realtime, clock_monotonic;
+
+/*
+ * we assume that the new SIGEV_THREAD_ID shares no bits with the other
+ * SIGEV values. Here we put out an error if this assumption fails.
+ */
+#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
+ ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
+#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
+#endif
+
+/*
+ * The timer ID is turned into a timer address by idr_find().
+ * Verifying a valid ID consists of:
+ *
+ * a) checking that idr_find() returns other than -1.
+ * b) checking that the timer id matches the one in the timer itself.
+ * c) that the timer owner is in the callers thread group.
+ */
+
+/*
+ * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
+ * to implement others. This structure defines the various
+ * clocks.
+ *
+ * RESOLUTION: Clock resolution is used to round up timer and interval
+ * times, NOT to report clock times, which are reported with as
+ * much resolution as the system can muster. In some cases this
+ * resolution may depend on the underlying clock hardware and
+ * may not be quantifiable until run time, and only then is the
+ * necessary code is written. The standard says we should say
+ * something about this issue in the documentation...
+ *
+ * FUNCTIONS: The CLOCKs structure defines possible functions to
+ * handle various clock functions.
+ *
+ * The standard POSIX timer management code assumes the
+ * following: 1.) The k_itimer struct (sched.h) is used for
+ * the timer. 2.) The list, it_lock, it_clock, it_id and
+ * it_pid fields are not modified by timer code.
+ *
+ * Permissions: It is assumed that the clock_settime() function defined
+ * for each clock will take care of permission checks. Some
+ * clocks may be set able by any user (i.e. local process
+ * clocks) others not. Currently the only set able clock we
+ * have is CLOCK_REALTIME and its high res counter part, both of
+ * which we beg off on and pass to do_sys_settimeofday().
+ */
+static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
+
+#define lock_timer(tid, flags) \
+({ struct k_itimer *__timr; \
+ __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
+ __timr; \
+})
+
+static int hash(struct signal_struct *sig, unsigned int nr)
+{
+ return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
+}
+
+static struct k_itimer *__posix_timers_find(struct hlist_head *head,
+ struct signal_struct *sig,
+ timer_t id)
+{
+ struct k_itimer *timer;
+
+ hlist_for_each_entry_rcu(timer, head, t_hash,
+ lockdep_is_held(&hash_lock)) {
+ if ((timer->it_signal == sig) && (timer->it_id == id))
+ return timer;
+ }
+ return NULL;
+}
+
+static struct k_itimer *posix_timer_by_id(timer_t id)
+{
+ struct signal_struct *sig = current->signal;
+ struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
+
+ return __posix_timers_find(head, sig, id);
+}
+
+static int posix_timer_add(struct k_itimer *timer)
+{
+ struct signal_struct *sig = current->signal;
+ int first_free_id = sig->posix_timer_id;
+ struct hlist_head *head;
+ int ret = -ENOENT;
+
+ do {
+ spin_lock(&hash_lock);
+ head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
+ if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
+ hlist_add_head_rcu(&timer->t_hash, head);
+ ret = sig->posix_timer_id;
+ }
+ if (++sig->posix_timer_id < 0)
+ sig->posix_timer_id = 0;
+ if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
+ /* Loop over all possible ids completed */
+ ret = -EAGAIN;
+ spin_unlock(&hash_lock);
+ } while (ret == -ENOENT);
+ return ret;
+}
+
+static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
+{
+ spin_unlock_irqrestore(&timr->it_lock, flags);
+}
+
+/* Get clock_realtime */
+static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
+{
+ ktime_get_real_ts64(tp);
+ return 0;
+}
+
+static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
+{
+ return ktime_get_real();
+}
+
+/* Set clock_realtime */
+static int posix_clock_realtime_set(const clockid_t which_clock,
+ const struct timespec64 *tp)
+{
+ return do_sys_settimeofday64(tp, NULL);
+}
+
+static int posix_clock_realtime_adj(const clockid_t which_clock,
+ struct __kernel_timex *t)
+{
+ return do_adjtimex(t);
+}
+
+/*
+ * Get monotonic time for posix timers
+ */
+static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
+{
+ ktime_get_ts64(tp);
+ timens_add_monotonic(tp);
+ return 0;
+}
+
+static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
+{
+ return ktime_get();
+}
+
+/*
+ * Get monotonic-raw time for posix timers
+ */
+static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
+{
+ ktime_get_raw_ts64(tp);
+ timens_add_monotonic(tp);
+ return 0;
+}
+
+
+static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
+{
+ ktime_get_coarse_real_ts64(tp);
+ return 0;
+}
+
+static int posix_get_monotonic_coarse(clockid_t which_clock,
+ struct timespec64 *tp)
+{
+ ktime_get_coarse_ts64(tp);
+ timens_add_monotonic(tp);
+ return 0;
+}
+
+static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
+{
+ *tp = ktime_to_timespec64(KTIME_LOW_RES);
+ return 0;
+}
+
+static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
+{
+ ktime_get_boottime_ts64(tp);
+ timens_add_boottime(tp);
+ return 0;
+}
+
+static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
+{
+ return ktime_get_boottime();
+}
+
+static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
+{
+ ktime_get_clocktai_ts64(tp);
+ return 0;
+}
+
+static ktime_t posix_get_tai_ktime(clockid_t which_clock)
+{
+ return ktime_get_clocktai();
+}
+
+static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
+{
+ tp->tv_sec = 0;
+ tp->tv_nsec = hrtimer_resolution;
+ return 0;
+}
+
+/*
+ * Initialize everything, well, just everything in Posix clocks/timers ;)
+ */
+static __init int init_posix_timers(void)
+{
+ posix_timers_cache = kmem_cache_create("posix_timers_cache",
+ sizeof(struct k_itimer), 0,
+ SLAB_PANIC | SLAB_ACCOUNT, NULL);
+ return 0;
+}
+__initcall(init_posix_timers);
+
+/*
+ * The siginfo si_overrun field and the return value of timer_getoverrun(2)
+ * are of type int. Clamp the overrun value to INT_MAX
+ */
+static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
+{
+ s64 sum = timr->it_overrun_last + (s64)baseval;
+
+ return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
+}
+
+static void common_hrtimer_rearm(struct k_itimer *timr)
+{
+ struct hrtimer *timer = &timr->it.real.timer;
+
+ timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
+ timr->it_interval);
+ hrtimer_restart(timer);
+}
+
+/*
+ * This function is exported for use by the signal deliver code. It is
+ * called just prior to the info block being released and passes that
+ * block to us. It's function is to update the overrun entry AND to
+ * restart the timer. It should only be called if the timer is to be
+ * restarted (i.e. we have flagged this in the sys_private entry of the
+ * info block).
+ *
+ * To protect against the timer going away while the interrupt is queued,
+ * we require that the it_requeue_pending flag be set.
+ */
+void posixtimer_rearm(struct kernel_siginfo *info)
+{
+ struct k_itimer *timr;
+ unsigned long flags;
+
+ timr = lock_timer(info->si_tid, &flags);
+ if (!timr)
+ return;
+
+ if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
+ timr->kclock->timer_rearm(timr);
+
+ timr->it_active = 1;
+ timr->it_overrun_last = timr->it_overrun;
+ timr->it_overrun = -1LL;
+ ++timr->it_requeue_pending;
+
+ info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
+ }
+
+ unlock_timer(timr, flags);
+}
+
+int posix_timer_event(struct k_itimer *timr, int si_private)
+{
+ enum pid_type type;
+ int ret;
+ /*
+ * FIXME: if ->sigq is queued we can race with
+ * dequeue_signal()->posixtimer_rearm().
+ *
+ * If dequeue_signal() sees the "right" value of
+ * si_sys_private it calls posixtimer_rearm().
+ * We re-queue ->sigq and drop ->it_lock().
+ * posixtimer_rearm() locks the timer
+ * and re-schedules it while ->sigq is pending.
+ * Not really bad, but not that we want.
+ */
+ timr->sigq->info.si_sys_private = si_private;
+
+ type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
+ ret = send_sigqueue(timr->sigq, timr->it_pid, type);
+ /* If we failed to send the signal the timer stops. */
+ return ret > 0;
+}
+
+/*
+ * This function gets called when a POSIX.1b interval timer expires. It
+ * is used as a callback from the kernel internal timer. The
+ * run_timer_list code ALWAYS calls with interrupts on.
+
+ * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
+ */
+static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
+{
+ struct k_itimer *timr;
+ unsigned long flags;
+ int si_private = 0;
+ enum hrtimer_restart ret = HRTIMER_NORESTART;
+
+ timr = container_of(timer, struct k_itimer, it.real.timer);
+ spin_lock_irqsave(&timr->it_lock, flags);
+
+ timr->it_active = 0;
+ if (timr->it_interval != 0)
+ si_private = ++timr->it_requeue_pending;
+
+ if (posix_timer_event(timr, si_private)) {
+ /*
+ * signal was not sent because of sig_ignor
+ * we will not get a call back to restart it AND
+ * it should be restarted.
+ */
+ if (timr->it_interval != 0) {
+ ktime_t now = hrtimer_cb_get_time(timer);
+
+ /*
+ * FIXME: What we really want, is to stop this
+ * timer completely and restart it in case the
+ * SIG_IGN is removed. This is a non trivial
+ * change which involves sighand locking
+ * (sigh !), which we don't want to do late in
+ * the release cycle.
+ *
+ * For now we just let timers with an interval
+ * less than a jiffie expire every jiffie to
+ * avoid softirq starvation in case of SIG_IGN
+ * and a very small interval, which would put
+ * the timer right back on the softirq pending
+ * list. By moving now ahead of time we trick
+ * hrtimer_forward() to expire the timer
+ * later, while we still maintain the overrun
+ * accuracy, but have some inconsistency in
+ * the timer_gettime() case. This is at least
+ * better than a starved softirq. A more
+ * complex fix which solves also another related
+ * inconsistency is already in the pipeline.
+ */
+#ifdef CONFIG_HIGH_RES_TIMERS
+ {
+ ktime_t kj = NSEC_PER_SEC / HZ;
+
+ if (timr->it_interval < kj)
+ now = ktime_add(now, kj);
+ }
+#endif
+ timr->it_overrun += hrtimer_forward(timer, now,
+ timr->it_interval);
+ ret = HRTIMER_RESTART;
+ ++timr->it_requeue_pending;
+ timr->it_active = 1;
+ }
+ }
+
+ unlock_timer(timr, flags);
+ return ret;
+}
+
+static struct pid *good_sigevent(sigevent_t * event)
+{
+ struct pid *pid = task_tgid(current);
+ struct task_struct *rtn;
+
+ switch (event->sigev_notify) {
+ case SIGEV_SIGNAL | SIGEV_THREAD_ID:
+ pid = find_vpid(event->sigev_notify_thread_id);
+ rtn = pid_task(pid, PIDTYPE_PID);
+ if (!rtn || !same_thread_group(rtn, current))
+ return NULL;
+ fallthrough;
+ case SIGEV_SIGNAL:
+ case SIGEV_THREAD:
+ if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
+ return NULL;
+ fallthrough;
+ case SIGEV_NONE:
+ return pid;
+ default:
+ return NULL;
+ }
+}
+
+static struct k_itimer * alloc_posix_timer(void)
+{
+ struct k_itimer *tmr;
+ tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
+ if (!tmr)
+ return tmr;
+ if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
+ kmem_cache_free(posix_timers_cache, tmr);
+ return NULL;
+ }
+ clear_siginfo(&tmr->sigq->info);
+ return tmr;
+}
+
+static void k_itimer_rcu_free(struct rcu_head *head)
+{
+ struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
+
+ kmem_cache_free(posix_timers_cache, tmr);
+}
+
+#define IT_ID_SET 1
+#define IT_ID_NOT_SET 0
+static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
+{
+ if (it_id_set) {
+ unsigned long flags;
+ spin_lock_irqsave(&hash_lock, flags);
+ hlist_del_rcu(&tmr->t_hash);
+ spin_unlock_irqrestore(&hash_lock, flags);
+ }
+ put_pid(tmr->it_pid);
+ sigqueue_free(tmr->sigq);
+ call_rcu(&tmr->rcu, k_itimer_rcu_free);
+}
+
+static int common_timer_create(struct k_itimer *new_timer)
+{
+ hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
+ return 0;
+}
+
+/* Create a POSIX.1b interval timer. */
+static int do_timer_create(clockid_t which_clock, struct sigevent *event,
+ timer_t __user *created_timer_id)
+{
+ const struct k_clock *kc = clockid_to_kclock(which_clock);
+ struct k_itimer *new_timer;
+ int error, new_timer_id;
+ int it_id_set = IT_ID_NOT_SET;
+
+ if (!kc)
+ return -EINVAL;
+ if (!kc->timer_create)
+ return -EOPNOTSUPP;
+
+ new_timer = alloc_posix_timer();
+ if (unlikely(!new_timer))
+ return -EAGAIN;
+
+ spin_lock_init(&new_timer->it_lock);
+ new_timer_id = posix_timer_add(new_timer);
+ if (new_timer_id < 0) {
+ error = new_timer_id;
+ goto out;
+ }
+
+ it_id_set = IT_ID_SET;
+ new_timer->it_id = (timer_t) new_timer_id;
+ new_timer->it_clock = which_clock;
+ new_timer->kclock = kc;
+ new_timer->it_overrun = -1LL;
+
+ if (event) {
+ rcu_read_lock();
+ new_timer->it_pid = get_pid(good_sigevent(event));
+ rcu_read_unlock();
+ if (!new_timer->it_pid) {
+ error = -EINVAL;
+ goto out;
+ }
+ new_timer->it_sigev_notify = event->sigev_notify;
+ new_timer->sigq->info.si_signo = event->sigev_signo;
+ new_timer->sigq->info.si_value = event->sigev_value;
+ } else {
+ new_timer->it_sigev_notify = SIGEV_SIGNAL;
+ new_timer->sigq->info.si_signo = SIGALRM;
+ memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
+ new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
+ new_timer->it_pid = get_pid(task_tgid(current));
+ }
+
+ new_timer->sigq->info.si_tid = new_timer->it_id;
+ new_timer->sigq->info.si_code = SI_TIMER;
+
+ if (copy_to_user(created_timer_id,
+ &new_timer_id, sizeof (new_timer_id))) {
+ error = -EFAULT;
+ goto out;
+ }
+
+ error = kc->timer_create(new_timer);
+ if (error)
+ goto out;
+
+ spin_lock_irq(&current->sighand->siglock);
+ new_timer->it_signal = current->signal;
+ list_add(&new_timer->list, &current->signal->posix_timers);
+ spin_unlock_irq(&current->sighand->siglock);
+
+ return 0;
+ /*
+ * In the case of the timer belonging to another task, after
+ * the task is unlocked, the timer is owned by the other task
+ * and may cease to exist at any time. Don't use or modify
+ * new_timer after the unlock call.
+ */
+out:
+ release_posix_timer(new_timer, it_id_set);
+ return error;
+}
+
+SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
+ struct sigevent __user *, timer_event_spec,
+ timer_t __user *, created_timer_id)
+{
+ if (timer_event_spec) {
+ sigevent_t event;
+
+ if (copy_from_user(&event, timer_event_spec, sizeof (event)))
+ return -EFAULT;
+ return do_timer_create(which_clock, &event, created_timer_id);
+ }
+ return do_timer_create(which_clock, NULL, created_timer_id);
+}
+
+#ifdef CONFIG_COMPAT
+COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
+ struct compat_sigevent __user *, timer_event_spec,
+ timer_t __user *, created_timer_id)
+{
+ if (timer_event_spec) {
+ sigevent_t event;
+
+ if (get_compat_sigevent(&event, timer_event_spec))
+ return -EFAULT;
+ return do_timer_create(which_clock, &event, created_timer_id);
+ }
+ return do_timer_create(which_clock, NULL, created_timer_id);
+}
+#endif
+
+/*
+ * Locking issues: We need to protect the result of the id look up until
+ * we get the timer locked down so it is not deleted under us. The
+ * removal is done under the idr spinlock so we use that here to bridge
+ * the find to the timer lock. To avoid a dead lock, the timer id MUST
+ * be release with out holding the timer lock.
+ */
+static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
+{
+ struct k_itimer *timr;
+
+ /*
+ * timer_t could be any type >= int and we want to make sure any
+ * @timer_id outside positive int range fails lookup.
+ */
+ if ((unsigned long long)timer_id > INT_MAX)
+ return NULL;
+
+ rcu_read_lock();
+ timr = posix_timer_by_id(timer_id);
+ if (timr) {
+ spin_lock_irqsave(&timr->it_lock, *flags);
+ if (timr->it_signal == current->signal) {
+ rcu_read_unlock();
+ return timr;
+ }
+ spin_unlock_irqrestore(&timr->it_lock, *flags);
+ }
+ rcu_read_unlock();
+
+ return NULL;
+}
+
+static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
+{
+ struct hrtimer *timer = &timr->it.real.timer;
+
+ return __hrtimer_expires_remaining_adjusted(timer, now);
+}
+
+static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
+{
+ struct hrtimer *timer = &timr->it.real.timer;
+
+ return hrtimer_forward(timer, now, timr->it_interval);
+}
+
+/*
+ * Get the time remaining on a POSIX.1b interval timer. This function
+ * is ALWAYS called with spin_lock_irq on the timer, thus it must not
+ * mess with irq.
+ *
+ * We have a couple of messes to clean up here. First there is the case
+ * of a timer that has a requeue pending. These timers should appear to
+ * be in the timer list with an expiry as if we were to requeue them
+ * now.
+ *
+ * The second issue is the SIGEV_NONE timer which may be active but is
+ * not really ever put in the timer list (to save system resources).
+ * This timer may be expired, and if so, we will do it here. Otherwise
+ * it is the same as a requeue pending timer WRT to what we should
+ * report.
+ */
+void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
+{
+ const struct k_clock *kc = timr->kclock;
+ ktime_t now, remaining, iv;
+ bool sig_none;
+
+ sig_none = timr->it_sigev_notify == SIGEV_NONE;
+ iv = timr->it_interval;
+
+ /* interval timer ? */
+ if (iv) {
+ cur_setting->it_interval = ktime_to_timespec64(iv);
+ } else if (!timr->it_active) {
+ /*
+ * SIGEV_NONE oneshot timers are never queued. Check them
+ * below.
+ */
+ if (!sig_none)
+ return;
+ }
+
+ now = kc->clock_get_ktime(timr->it_clock);
+
+ /*
+ * When a requeue is pending or this is a SIGEV_NONE timer move the
+ * expiry time forward by intervals, so expiry is > now.
+ */
+ if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
+ timr->it_overrun += kc->timer_forward(timr, now);
+
+ remaining = kc->timer_remaining(timr, now);
+ /* Return 0 only, when the timer is expired and not pending */
+ if (remaining <= 0) {
+ /*
+ * A single shot SIGEV_NONE timer must return 0, when
+ * it is expired !
+ */
+ if (!sig_none)
+ cur_setting->it_value.tv_nsec = 1;
+ } else {
+ cur_setting->it_value = ktime_to_timespec64(remaining);
+ }
+}
+
+/* Get the time remaining on a POSIX.1b interval timer. */
+static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
+{
+ struct k_itimer *timr;
+ const struct k_clock *kc;
+ unsigned long flags;
+ int ret = 0;
+
+ timr = lock_timer(timer_id, &flags);
+ if (!timr)
+ return -EINVAL;
+
+ memset(setting, 0, sizeof(*setting));
+ kc = timr->kclock;
+ if (WARN_ON_ONCE(!kc || !kc->timer_get))
+ ret = -EINVAL;
+ else
+ kc->timer_get(timr, setting);
+
+ unlock_timer(timr, flags);
+ return ret;
+}
+
+/* Get the time remaining on a POSIX.1b interval timer. */
+SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
+ struct __kernel_itimerspec __user *, setting)
+{
+ struct itimerspec64 cur_setting;
+
+ int ret = do_timer_gettime(timer_id, &cur_setting);
+ if (!ret) {
+ if (put_itimerspec64(&cur_setting, setting))
+ ret = -EFAULT;
+ }
+ return ret;
+}
+
+#ifdef CONFIG_COMPAT_32BIT_TIME
+
+SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
+ struct old_itimerspec32 __user *, setting)
+{
+ struct itimerspec64 cur_setting;
+
+ int ret = do_timer_gettime(timer_id, &cur_setting);
+ if (!ret) {
+ if (put_old_itimerspec32(&cur_setting, setting))
+ ret = -EFAULT;
+ }
+ return ret;
+}
+
+#endif
+
+/*
+ * Get the number of overruns of a POSIX.1b interval timer. This is to
+ * be the overrun of the timer last delivered. At the same time we are
+ * accumulating overruns on the next timer. The overrun is frozen when
+ * the signal is delivered, either at the notify time (if the info block
+ * is not queued) or at the actual delivery time (as we are informed by
+ * the call back to posixtimer_rearm(). So all we need to do is
+ * to pick up the frozen overrun.
+ */
+SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
+{
+ struct k_itimer *timr;
+ int overrun;
+ unsigned long flags;
+
+ timr = lock_timer(timer_id, &flags);
+ if (!timr)
+ return -EINVAL;
+
+ overrun = timer_overrun_to_int(timr, 0);
+ unlock_timer(timr, flags);
+
+ return overrun;
+}
+
+static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
+ bool absolute, bool sigev_none)
+{
+ struct hrtimer *timer = &timr->it.real.timer;
+ enum hrtimer_mode mode;
+
+ mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
+ /*
+ * Posix magic: Relative CLOCK_REALTIME timers are not affected by
+ * clock modifications, so they become CLOCK_MONOTONIC based under the
+ * hood. See hrtimer_init(). Update timr->kclock, so the generic
+ * functions which use timr->kclock->clock_get_*() work.
+ *
+ * Note: it_clock stays unmodified, because the next timer_set() might
+ * use ABSTIME, so it needs to switch back.
+ */
+ if (timr->it_clock == CLOCK_REALTIME)
+ timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
+
+ hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
+ timr->it.real.timer.function = posix_timer_fn;
+
+ if (!absolute)
+ expires = ktime_add_safe(expires, timer->base->get_time());
+ hrtimer_set_expires(timer, expires);
+
+ if (!sigev_none)
+ hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
+}
+
+static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
+{
+ return hrtimer_try_to_cancel(&timr->it.real.timer);
+}
+
+static void common_timer_wait_running(struct k_itimer *timer)
+{
+ hrtimer_cancel_wait_running(&timer->it.real.timer);
+}
+
+/*
+ * On PREEMPT_RT this prevent priority inversion against softirq kthread in
+ * case it gets preempted while executing a timer callback. See comments in
+ * hrtimer_cancel_wait_running. For PREEMPT_RT=n this just results in a
+ * cpu_relax().
+ */
+static struct k_itimer *timer_wait_running(struct k_itimer *timer,
+ unsigned long *flags)
+{
+ const struct k_clock *kc = READ_ONCE(timer->kclock);
+ timer_t timer_id = READ_ONCE(timer->it_id);
+
+ /* Prevent kfree(timer) after dropping the lock */
+ rcu_read_lock();
+ unlock_timer(timer, *flags);
+
+ /*
+ * kc->timer_wait_running() might drop RCU lock. So @timer
+ * cannot be touched anymore after the function returns!
+ */
+ if (!WARN_ON_ONCE(!kc->timer_wait_running))
+ kc->timer_wait_running(timer);
+
+ rcu_read_unlock();
+ /* Relock the timer. It might be not longer hashed. */
+ return lock_timer(timer_id, flags);
+}
+
+/* Set a POSIX.1b interval timer. */
+int common_timer_set(struct k_itimer *timr, int flags,
+ struct itimerspec64 *new_setting,
+ struct itimerspec64 *old_setting)
+{
+ const struct k_clock *kc = timr->kclock;
+ bool sigev_none;
+ ktime_t expires;
+
+ if (old_setting)
+ common_timer_get(timr, old_setting);
+
+ /* Prevent rearming by clearing the interval */
+ timr->it_interval = 0;
+ /*
+ * Careful here. On SMP systems the timer expiry function could be
+ * active and spinning on timr->it_lock.
+ */
+ if (kc->timer_try_to_cancel(timr) < 0)
+ return TIMER_RETRY;
+
+ timr->it_active = 0;
+ timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
+ ~REQUEUE_PENDING;
+ timr->it_overrun_last = 0;
+
+ /* Switch off the timer when it_value is zero */
+ if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
+ return 0;
+
+ timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
+ expires = timespec64_to_ktime(new_setting->it_value);
+ if (flags & TIMER_ABSTIME)
+ expires = timens_ktime_to_host(timr->it_clock, expires);
+ sigev_none = timr->it_sigev_notify == SIGEV_NONE;
+
+ kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
+ timr->it_active = !sigev_none;
+ return 0;
+}
+
+static int do_timer_settime(timer_t timer_id, int tmr_flags,
+ struct itimerspec64 *new_spec64,
+ struct itimerspec64 *old_spec64)
+{
+ const struct k_clock *kc;
+ struct k_itimer *timr;
+ unsigned long flags;
+ int error = 0;
+
+ if (!timespec64_valid(&new_spec64->it_interval) ||
+ !timespec64_valid(&new_spec64->it_value))
+ return -EINVAL;
+
+ if (old_spec64)
+ memset(old_spec64, 0, sizeof(*old_spec64));
+
+ timr = lock_timer(timer_id, &flags);
+retry:
+ if (!timr)
+ return -EINVAL;
+
+ kc = timr->kclock;
+ if (WARN_ON_ONCE(!kc || !kc->timer_set))
+ error = -EINVAL;
+ else
+ error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
+
+ if (error == TIMER_RETRY) {
+ // We already got the old time...
+ old_spec64 = NULL;
+ /* Unlocks and relocks the timer if it still exists */
+ timr = timer_wait_running(timr, &flags);
+ goto retry;
+ }
+ unlock_timer(timr, flags);
+
+ return error;
+}
+
+/* Set a POSIX.1b interval timer */
+SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
+ const struct __kernel_itimerspec __user *, new_setting,
+ struct __kernel_itimerspec __user *, old_setting)
+{
+ struct itimerspec64 new_spec, old_spec;
+ struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
+ int error = 0;
+
+ if (!new_setting)
+ return -EINVAL;
+
+ if (get_itimerspec64(&new_spec, new_setting))
+ return -EFAULT;
+
+ error = do_timer_settime(timer_id, flags, &new_spec, rtn);
+ if (!error && old_setting) {
+ if (put_itimerspec64(&old_spec, old_setting))
+ error = -EFAULT;
+ }
+ return error;
+}
+
+#ifdef CONFIG_COMPAT_32BIT_TIME
+SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
+ struct old_itimerspec32 __user *, new,
+ struct old_itimerspec32 __user *, old)
+{
+ struct itimerspec64 new_spec, old_spec;
+ struct itimerspec64 *rtn = old ? &old_spec : NULL;
+ int error = 0;
+
+ if (!new)
+ return -EINVAL;
+ if (get_old_itimerspec32(&new_spec, new))
+ return -EFAULT;
+
+ error = do_timer_settime(timer_id, flags, &new_spec, rtn);
+ if (!error && old) {
+ if (put_old_itimerspec32(&old_spec, old))
+ error = -EFAULT;
+ }
+ return error;
+}
+#endif
+
+int common_timer_del(struct k_itimer *timer)
+{
+ const struct k_clock *kc = timer->kclock;
+
+ timer->it_interval = 0;
+ if (kc->timer_try_to_cancel(timer) < 0)
+ return TIMER_RETRY;
+ timer->it_active = 0;
+ return 0;
+}
+
+static inline int timer_delete_hook(struct k_itimer *timer)
+{
+ const struct k_clock *kc = timer->kclock;
+
+ if (WARN_ON_ONCE(!kc || !kc->timer_del))
+ return -EINVAL;
+ return kc->timer_del(timer);
+}
+
+/* Delete a POSIX.1b interval timer. */
+SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
+{
+ struct k_itimer *timer;
+ unsigned long flags;
+
+ timer = lock_timer(timer_id, &flags);
+
+retry_delete:
+ if (!timer)
+ return -EINVAL;
+
+ if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
+ /* Unlocks and relocks the timer if it still exists */
+ timer = timer_wait_running(timer, &flags);
+ goto retry_delete;
+ }
+
+ spin_lock(&current->sighand->siglock);
+ list_del(&timer->list);
+ spin_unlock(&current->sighand->siglock);
+ /*
+ * This keeps any tasks waiting on the spin lock from thinking
+ * they got something (see the lock code above).
+ */
+ timer->it_signal = NULL;
+
+ unlock_timer(timer, flags);
+ release_posix_timer(timer, IT_ID_SET);
+ return 0;
+}
+
+/*
+ * Delete a timer if it is armed, remove it from the hash and schedule it
+ * for RCU freeing.
+ */
+static void itimer_delete(struct k_itimer *timer)
+{
+ unsigned long flags;
+
+ /*
+ * irqsave is required to make timer_wait_running() work.
+ */
+ spin_lock_irqsave(&timer->it_lock, flags);
+
+retry_delete:
+ /*
+ * Even if the timer is not longer accessible from other tasks
+ * it still might be armed and queued in the underlying timer
+ * mechanism. Worse, that timer mechanism might run the expiry
+ * function concurrently.
+ */
+ if (timer_delete_hook(timer) == TIMER_RETRY) {
+ /*
+ * Timer is expired concurrently, prevent livelocks
+ * and pointless spinning on RT.
+ *
+ * timer_wait_running() drops timer::it_lock, which opens
+ * the possibility for another task to delete the timer.
+ *
+ * That's not possible here because this is invoked from
+ * do_exit() only for the last thread of the thread group.
+ * So no other task can access and delete that timer.
+ */
+ if (WARN_ON_ONCE(timer_wait_running(timer, &flags) != timer))
+ return;
+
+ goto retry_delete;
+ }
+ list_del(&timer->list);
+
+ spin_unlock_irqrestore(&timer->it_lock, flags);
+ release_posix_timer(timer, IT_ID_SET);
+}
+
+/*
+ * Invoked from do_exit() when the last thread of a thread group exits.
+ * At that point no other task can access the timers of the dying
+ * task anymore.
+ */
+void exit_itimers(struct task_struct *tsk)
+{
+ struct list_head timers;
+ struct k_itimer *tmr;
+
+ if (list_empty(&tsk->signal->posix_timers))
+ return;
+
+ /* Protect against concurrent read via /proc/$PID/timers */
+ spin_lock_irq(&tsk->sighand->siglock);
+ list_replace_init(&tsk->signal->posix_timers, &timers);
+ spin_unlock_irq(&tsk->sighand->siglock);
+
+ /* The timers are not longer accessible via tsk::signal */
+ while (!list_empty(&timers)) {
+ tmr = list_first_entry(&timers, struct k_itimer, list);
+ itimer_delete(tmr);
+ }
+}
+
+SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
+ const struct __kernel_timespec __user *, tp)
+{
+ const struct k_clock *kc = clockid_to_kclock(which_clock);
+ struct timespec64 new_tp;
+
+ if (!kc || !kc->clock_set)
+ return -EINVAL;
+
+ if (get_timespec64(&new_tp, tp))
+ return -EFAULT;
+
+ return kc->clock_set(which_clock, &new_tp);
+}
+
+SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
+ struct __kernel_timespec __user *, tp)
+{
+ const struct k_clock *kc = clockid_to_kclock(which_clock);
+ struct timespec64 kernel_tp;
+ int error;
+
+ if (!kc)
+ return -EINVAL;
+
+ error = kc->clock_get_timespec(which_clock, &kernel_tp);
+
+ if (!error && put_timespec64(&kernel_tp, tp))
+ error = -EFAULT;
+
+ return error;
+}
+
+int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
+{
+ const struct k_clock *kc = clockid_to_kclock(which_clock);
+
+ if (!kc)
+ return -EINVAL;
+ if (!kc->clock_adj)
+ return -EOPNOTSUPP;
+
+ return kc->clock_adj(which_clock, ktx);
+}
+
+SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
+ struct __kernel_timex __user *, utx)
+{
+ struct __kernel_timex ktx;
+ int err;
+
+ if (copy_from_user(&ktx, utx, sizeof(ktx)))
+ return -EFAULT;
+
+ err = do_clock_adjtime(which_clock, &ktx);
+
+ if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
+ return -EFAULT;
+
+ return err;
+}
+
+SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
+ struct __kernel_timespec __user *, tp)
+{
+ const struct k_clock *kc = clockid_to_kclock(which_clock);
+ struct timespec64 rtn_tp;
+ int error;
+
+ if (!kc)
+ return -EINVAL;
+
+ error = kc->clock_getres(which_clock, &rtn_tp);
+
+ if (!error && tp && put_timespec64(&rtn_tp, tp))
+ error = -EFAULT;
+
+ return error;
+}
+
+#ifdef CONFIG_COMPAT_32BIT_TIME
+
+SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
+ struct old_timespec32 __user *, tp)
+{
+ const struct k_clock *kc = clockid_to_kclock(which_clock);
+ struct timespec64 ts;
+
+ if (!kc || !kc->clock_set)
+ return -EINVAL;
+
+ if (get_old_timespec32(&ts, tp))
+ return -EFAULT;
+
+ return kc->clock_set(which_clock, &ts);
+}
+
+SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
+ struct old_timespec32 __user *, tp)
+{
+ const struct k_clock *kc = clockid_to_kclock(which_clock);
+ struct timespec64 ts;
+ int err;
+
+ if (!kc)
+ return -EINVAL;
+
+ err = kc->clock_get_timespec(which_clock, &ts);
+
+ if (!err && put_old_timespec32(&ts, tp))
+ err = -EFAULT;
+
+ return err;
+}
+
+SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
+ struct old_timex32 __user *, utp)
+{
+ struct __kernel_timex ktx;
+ int err;
+
+ err = get_old_timex32(&ktx, utp);
+ if (err)
+ return err;
+
+ err = do_clock_adjtime(which_clock, &ktx);
+
+ if (err >= 0 && put_old_timex32(utp, &ktx))
+ return -EFAULT;
+
+ return err;
+}
+
+SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
+ struct old_timespec32 __user *, tp)
+{
+ const struct k_clock *kc = clockid_to_kclock(which_clock);
+ struct timespec64 ts;
+ int err;
+
+ if (!kc)
+ return -EINVAL;
+
+ err = kc->clock_getres(which_clock, &ts);
+ if (!err && tp && put_old_timespec32(&ts, tp))
+ return -EFAULT;
+
+ return err;
+}
+
+#endif
+
+/*
+ * nanosleep for monotonic and realtime clocks
+ */
+static int common_nsleep(const clockid_t which_clock, int flags,
+ const struct timespec64 *rqtp)
+{
+ ktime_t texp = timespec64_to_ktime(*rqtp);
+
+ return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
+ HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
+ which_clock);
+}
+
+static int common_nsleep_timens(const clockid_t which_clock, int flags,
+ const struct timespec64 *rqtp)
+{
+ ktime_t texp = timespec64_to_ktime(*rqtp);
+
+ if (flags & TIMER_ABSTIME)
+ texp = timens_ktime_to_host(which_clock, texp);
+
+ return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
+ HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
+ which_clock);
+}
+
+SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
+ const struct __kernel_timespec __user *, rqtp,
+ struct __kernel_timespec __user *, rmtp)
+{
+ const struct k_clock *kc = clockid_to_kclock(which_clock);
+ struct timespec64 t;
+
+ if (!kc)
+ return -EINVAL;
+ if (!kc->nsleep)
+ return -EOPNOTSUPP;
+
+ if (get_timespec64(&t, rqtp))
+ return -EFAULT;
+
+ if (!timespec64_valid(&t))
+ return -EINVAL;
+ if (flags & TIMER_ABSTIME)
+ rmtp = NULL;
+ current->restart_block.fn = do_no_restart_syscall;
+ current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
+ current->restart_block.nanosleep.rmtp = rmtp;
+
+ return kc->nsleep(which_clock, flags, &t);
+}
+
+#ifdef CONFIG_COMPAT_32BIT_TIME
+
+SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
+ struct old_timespec32 __user *, rqtp,
+ struct old_timespec32 __user *, rmtp)
+{
+ const struct k_clock *kc = clockid_to_kclock(which_clock);
+ struct timespec64 t;
+
+ if (!kc)
+ return -EINVAL;
+ if (!kc->nsleep)
+ return -EOPNOTSUPP;
+
+ if (get_old_timespec32(&t, rqtp))
+ return -EFAULT;
+
+ if (!timespec64_valid(&t))
+ return -EINVAL;
+ if (flags & TIMER_ABSTIME)
+ rmtp = NULL;
+ current->restart_block.fn = do_no_restart_syscall;
+ current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
+ current->restart_block.nanosleep.compat_rmtp = rmtp;
+
+ return kc->nsleep(which_clock, flags, &t);
+}
+
+#endif
+
+static const struct k_clock clock_realtime = {
+ .clock_getres = posix_get_hrtimer_res,
+ .clock_get_timespec = posix_get_realtime_timespec,
+ .clock_get_ktime = posix_get_realtime_ktime,
+ .clock_set = posix_clock_realtime_set,
+ .clock_adj = posix_clock_realtime_adj,
+ .nsleep = common_nsleep,
+ .timer_create = common_timer_create,
+ .timer_set = common_timer_set,
+ .timer_get = common_timer_get,
+ .timer_del = common_timer_del,
+ .timer_rearm = common_hrtimer_rearm,
+ .timer_forward = common_hrtimer_forward,
+ .timer_remaining = common_hrtimer_remaining,
+ .timer_try_to_cancel = common_hrtimer_try_to_cancel,
+ .timer_wait_running = common_timer_wait_running,
+ .timer_arm = common_hrtimer_arm,
+};
+
+static const struct k_clock clock_monotonic = {
+ .clock_getres = posix_get_hrtimer_res,
+ .clock_get_timespec = posix_get_monotonic_timespec,
+ .clock_get_ktime = posix_get_monotonic_ktime,
+ .nsleep = common_nsleep_timens,
+ .timer_create = common_timer_create,
+ .timer_set = common_timer_set,
+ .timer_get = common_timer_get,
+ .timer_del = common_timer_del,
+ .timer_rearm = common_hrtimer_rearm,
+ .timer_forward = common_hrtimer_forward,
+ .timer_remaining = common_hrtimer_remaining,
+ .timer_try_to_cancel = common_hrtimer_try_to_cancel,
+ .timer_wait_running = common_timer_wait_running,
+ .timer_arm = common_hrtimer_arm,
+};
+
+static const struct k_clock clock_monotonic_raw = {
+ .clock_getres = posix_get_hrtimer_res,
+ .clock_get_timespec = posix_get_monotonic_raw,
+};
+
+static const struct k_clock clock_realtime_coarse = {
+ .clock_getres = posix_get_coarse_res,
+ .clock_get_timespec = posix_get_realtime_coarse,
+};
+
+static const struct k_clock clock_monotonic_coarse = {
+ .clock_getres = posix_get_coarse_res,
+ .clock_get_timespec = posix_get_monotonic_coarse,
+};
+
+static const struct k_clock clock_tai = {
+ .clock_getres = posix_get_hrtimer_res,
+ .clock_get_ktime = posix_get_tai_ktime,
+ .clock_get_timespec = posix_get_tai_timespec,
+ .nsleep = common_nsleep,
+ .timer_create = common_timer_create,
+ .timer_set = common_timer_set,
+ .timer_get = common_timer_get,
+ .timer_del = common_timer_del,
+ .timer_rearm = common_hrtimer_rearm,
+ .timer_forward = common_hrtimer_forward,
+ .timer_remaining = common_hrtimer_remaining,
+ .timer_try_to_cancel = common_hrtimer_try_to_cancel,
+ .timer_wait_running = common_timer_wait_running,
+ .timer_arm = common_hrtimer_arm,
+};
+
+static const struct k_clock clock_boottime = {
+ .clock_getres = posix_get_hrtimer_res,
+ .clock_get_ktime = posix_get_boottime_ktime,
+ .clock_get_timespec = posix_get_boottime_timespec,
+ .nsleep = common_nsleep_timens,
+ .timer_create = common_timer_create,
+ .timer_set = common_timer_set,
+ .timer_get = common_timer_get,
+ .timer_del = common_timer_del,
+ .timer_rearm = common_hrtimer_rearm,
+ .timer_forward = common_hrtimer_forward,
+ .timer_remaining = common_hrtimer_remaining,
+ .timer_try_to_cancel = common_hrtimer_try_to_cancel,
+ .timer_wait_running = common_timer_wait_running,
+ .timer_arm = common_hrtimer_arm,
+};
+
+static const struct k_clock * const posix_clocks[] = {
+ [CLOCK_REALTIME] = &clock_realtime,
+ [CLOCK_MONOTONIC] = &clock_monotonic,
+ [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
+ [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
+ [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
+ [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
+ [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
+ [CLOCK_BOOTTIME] = &clock_boottime,
+ [CLOCK_REALTIME_ALARM] = &alarm_clock,
+ [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
+ [CLOCK_TAI] = &clock_tai,
+};
+
+static const struct k_clock *clockid_to_kclock(const clockid_t id)
+{
+ clockid_t idx = id;
+
+ if (id < 0) {
+ return (id & CLOCKFD_MASK) == CLOCKFD ?
+ &clock_posix_dynamic : &clock_posix_cpu;
+ }
+
+ if (id >= ARRAY_SIZE(posix_clocks))
+ return NULL;
+
+ return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
+}