diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /lib/reed_solomon | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | lib/reed_solomon/Makefile | 7 | ||||
-rw-r--r-- | lib/reed_solomon/decode_rs.c | 326 | ||||
-rw-r--r-- | lib/reed_solomon/encode_rs.c | 47 | ||||
-rw-r--r-- | lib/reed_solomon/reed_solomon.c | 424 | ||||
-rw-r--r-- | lib/reed_solomon/test_rslib.c | 518 |
5 files changed, 1322 insertions, 0 deletions
diff --git a/lib/reed_solomon/Makefile b/lib/reed_solomon/Makefile new file mode 100644 index 000000000..5d4fa68f2 --- /dev/null +++ b/lib/reed_solomon/Makefile @@ -0,0 +1,7 @@ +# SPDX-License-Identifier: GPL-2.0-only +# +# This is a modified version of reed solomon lib, +# + +obj-$(CONFIG_REED_SOLOMON) += reed_solomon.o +obj-$(CONFIG_REED_SOLOMON_TEST) += test_rslib.o diff --git a/lib/reed_solomon/decode_rs.c b/lib/reed_solomon/decode_rs.c new file mode 100644 index 000000000..805de84ae --- /dev/null +++ b/lib/reed_solomon/decode_rs.c @@ -0,0 +1,326 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Generic Reed Solomon encoder / decoder library + * + * Copyright 2002, Phil Karn, KA9Q + * May be used under the terms of the GNU General Public License (GPL) + * + * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de) + * + * Generic data width independent code which is included by the wrappers. + */ +{ + struct rs_codec *rs = rsc->codec; + int deg_lambda, el, deg_omega; + int i, j, r, k, pad; + int nn = rs->nn; + int nroots = rs->nroots; + int fcr = rs->fcr; + int prim = rs->prim; + int iprim = rs->iprim; + uint16_t *alpha_to = rs->alpha_to; + uint16_t *index_of = rs->index_of; + uint16_t u, q, tmp, num1, num2, den, discr_r, syn_error; + int count = 0; + int num_corrected; + uint16_t msk = (uint16_t) rs->nn; + + /* + * The decoder buffers are in the rs control struct. They are + * arrays sized [nroots + 1] + */ + uint16_t *lambda = rsc->buffers + RS_DECODE_LAMBDA * (nroots + 1); + uint16_t *syn = rsc->buffers + RS_DECODE_SYN * (nroots + 1); + uint16_t *b = rsc->buffers + RS_DECODE_B * (nroots + 1); + uint16_t *t = rsc->buffers + RS_DECODE_T * (nroots + 1); + uint16_t *omega = rsc->buffers + RS_DECODE_OMEGA * (nroots + 1); + uint16_t *root = rsc->buffers + RS_DECODE_ROOT * (nroots + 1); + uint16_t *reg = rsc->buffers + RS_DECODE_REG * (nroots + 1); + uint16_t *loc = rsc->buffers + RS_DECODE_LOC * (nroots + 1); + + /* Check length parameter for validity */ + pad = nn - nroots - len; + BUG_ON(pad < 0 || pad >= nn - nroots); + + /* Does the caller provide the syndrome ? */ + if (s != NULL) { + for (i = 0; i < nroots; i++) { + /* The syndrome is in index form, + * so nn represents zero + */ + if (s[i] != nn) + goto decode; + } + + /* syndrome is zero, no errors to correct */ + return 0; + } + + /* form the syndromes; i.e., evaluate data(x) at roots of + * g(x) */ + for (i = 0; i < nroots; i++) + syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk; + + for (j = 1; j < len; j++) { + for (i = 0; i < nroots; i++) { + if (syn[i] == 0) { + syn[i] = (((uint16_t) data[j]) ^ + invmsk) & msk; + } else { + syn[i] = ((((uint16_t) data[j]) ^ + invmsk) & msk) ^ + alpha_to[rs_modnn(rs, index_of[syn[i]] + + (fcr + i) * prim)]; + } + } + } + + for (j = 0; j < nroots; j++) { + for (i = 0; i < nroots; i++) { + if (syn[i] == 0) { + syn[i] = ((uint16_t) par[j]) & msk; + } else { + syn[i] = (((uint16_t) par[j]) & msk) ^ + alpha_to[rs_modnn(rs, index_of[syn[i]] + + (fcr+i)*prim)]; + } + } + } + s = syn; + + /* Convert syndromes to index form, checking for nonzero condition */ + syn_error = 0; + for (i = 0; i < nroots; i++) { + syn_error |= s[i]; + s[i] = index_of[s[i]]; + } + + if (!syn_error) { + /* if syndrome is zero, data[] is a codeword and there are no + * errors to correct. So return data[] unmodified + */ + return 0; + } + + decode: + memset(&lambda[1], 0, nroots * sizeof(lambda[0])); + lambda[0] = 1; + + if (no_eras > 0) { + /* Init lambda to be the erasure locator polynomial */ + lambda[1] = alpha_to[rs_modnn(rs, + prim * (nn - 1 - (eras_pos[0] + pad)))]; + for (i = 1; i < no_eras; i++) { + u = rs_modnn(rs, prim * (nn - 1 - (eras_pos[i] + pad))); + for (j = i + 1; j > 0; j--) { + tmp = index_of[lambda[j - 1]]; + if (tmp != nn) { + lambda[j] ^= + alpha_to[rs_modnn(rs, u + tmp)]; + } + } + } + } + + for (i = 0; i < nroots + 1; i++) + b[i] = index_of[lambda[i]]; + + /* + * Begin Berlekamp-Massey algorithm to determine error+erasure + * locator polynomial + */ + r = no_eras; + el = no_eras; + while (++r <= nroots) { /* r is the step number */ + /* Compute discrepancy at the r-th step in poly-form */ + discr_r = 0; + for (i = 0; i < r; i++) { + if ((lambda[i] != 0) && (s[r - i - 1] != nn)) { + discr_r ^= + alpha_to[rs_modnn(rs, + index_of[lambda[i]] + + s[r - i - 1])]; + } + } + discr_r = index_of[discr_r]; /* Index form */ + if (discr_r == nn) { + /* 2 lines below: B(x) <-- x*B(x) */ + memmove (&b[1], b, nroots * sizeof (b[0])); + b[0] = nn; + } else { + /* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */ + t[0] = lambda[0]; + for (i = 0; i < nroots; i++) { + if (b[i] != nn) { + t[i + 1] = lambda[i + 1] ^ + alpha_to[rs_modnn(rs, discr_r + + b[i])]; + } else + t[i + 1] = lambda[i + 1]; + } + if (2 * el <= r + no_eras - 1) { + el = r + no_eras - el; + /* + * 2 lines below: B(x) <-- inv(discr_r) * + * lambda(x) + */ + for (i = 0; i <= nroots; i++) { + b[i] = (lambda[i] == 0) ? nn : + rs_modnn(rs, index_of[lambda[i]] + - discr_r + nn); + } + } else { + /* 2 lines below: B(x) <-- x*B(x) */ + memmove(&b[1], b, nroots * sizeof(b[0])); + b[0] = nn; + } + memcpy(lambda, t, (nroots + 1) * sizeof(t[0])); + } + } + + /* Convert lambda to index form and compute deg(lambda(x)) */ + deg_lambda = 0; + for (i = 0; i < nroots + 1; i++) { + lambda[i] = index_of[lambda[i]]; + if (lambda[i] != nn) + deg_lambda = i; + } + + if (deg_lambda == 0) { + /* + * deg(lambda) is zero even though the syndrome is non-zero + * => uncorrectable error detected + */ + return -EBADMSG; + } + + /* Find roots of error+erasure locator polynomial by Chien search */ + memcpy(®[1], &lambda[1], nroots * sizeof(reg[0])); + count = 0; /* Number of roots of lambda(x) */ + for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) { + q = 1; /* lambda[0] is always 0 */ + for (j = deg_lambda; j > 0; j--) { + if (reg[j] != nn) { + reg[j] = rs_modnn(rs, reg[j] + j); + q ^= alpha_to[reg[j]]; + } + } + if (q != 0) + continue; /* Not a root */ + + if (k < pad) { + /* Impossible error location. Uncorrectable error. */ + return -EBADMSG; + } + + /* store root (index-form) and error location number */ + root[count] = i; + loc[count] = k; + /* If we've already found max possible roots, + * abort the search to save time + */ + if (++count == deg_lambda) + break; + } + if (deg_lambda != count) { + /* + * deg(lambda) unequal to number of roots => uncorrectable + * error detected + */ + return -EBADMSG; + } + /* + * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo + * x**nroots). in index form. Also find deg(omega). + */ + deg_omega = deg_lambda - 1; + for (i = 0; i <= deg_omega; i++) { + tmp = 0; + for (j = i; j >= 0; j--) { + if ((s[i - j] != nn) && (lambda[j] != nn)) + tmp ^= + alpha_to[rs_modnn(rs, s[i - j] + lambda[j])]; + } + omega[i] = index_of[tmp]; + } + + /* + * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = + * inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form + * Note: we reuse the buffer for b to store the correction pattern + */ + num_corrected = 0; + for (j = count - 1; j >= 0; j--) { + num1 = 0; + for (i = deg_omega; i >= 0; i--) { + if (omega[i] != nn) + num1 ^= alpha_to[rs_modnn(rs, omega[i] + + i * root[j])]; + } + + if (num1 == 0) { + /* Nothing to correct at this position */ + b[j] = 0; + continue; + } + + num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)]; + den = 0; + + /* lambda[i+1] for i even is the formal derivative + * lambda_pr of lambda[i] */ + for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) { + if (lambda[i + 1] != nn) { + den ^= alpha_to[rs_modnn(rs, lambda[i + 1] + + i * root[j])]; + } + } + + b[j] = alpha_to[rs_modnn(rs, index_of[num1] + + index_of[num2] + + nn - index_of[den])]; + num_corrected++; + } + + /* + * We compute the syndrome of the 'error' and check that it matches + * the syndrome of the received word + */ + for (i = 0; i < nroots; i++) { + tmp = 0; + for (j = 0; j < count; j++) { + if (b[j] == 0) + continue; + + k = (fcr + i) * prim * (nn-loc[j]-1); + tmp ^= alpha_to[rs_modnn(rs, index_of[b[j]] + k)]; + } + + if (tmp != alpha_to[s[i]]) + return -EBADMSG; + } + + /* + * Store the error correction pattern, if a + * correction buffer is available + */ + if (corr && eras_pos) { + j = 0; + for (i = 0; i < count; i++) { + if (b[i]) { + corr[j] = b[i]; + eras_pos[j++] = loc[i] - pad; + } + } + } else if (data && par) { + /* Apply error to data and parity */ + for (i = 0; i < count; i++) { + if (loc[i] < (nn - nroots)) + data[loc[i] - pad] ^= b[i]; + else + par[loc[i] - pad - len] ^= b[i]; + } + } + + return num_corrected; +} diff --git a/lib/reed_solomon/encode_rs.c b/lib/reed_solomon/encode_rs.c new file mode 100644 index 000000000..9112d46e8 --- /dev/null +++ b/lib/reed_solomon/encode_rs.c @@ -0,0 +1,47 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Generic Reed Solomon encoder / decoder library + * + * Copyright 2002, Phil Karn, KA9Q + * May be used under the terms of the GNU General Public License (GPL) + * + * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de) + * + * Generic data width independent code which is included by the wrappers. + */ +{ + struct rs_codec *rs = rsc->codec; + int i, j, pad; + int nn = rs->nn; + int nroots = rs->nroots; + uint16_t *alpha_to = rs->alpha_to; + uint16_t *index_of = rs->index_of; + uint16_t *genpoly = rs->genpoly; + uint16_t fb; + uint16_t msk = (uint16_t) rs->nn; + + /* Check length parameter for validity */ + pad = nn - nroots - len; + if (pad < 0 || pad >= nn) + return -ERANGE; + + for (i = 0; i < len; i++) { + fb = index_of[((((uint16_t) data[i])^invmsk) & msk) ^ par[0]]; + /* feedback term is non-zero */ + if (fb != nn) { + for (j = 1; j < nroots; j++) { + par[j] ^= alpha_to[rs_modnn(rs, fb + + genpoly[nroots - j])]; + } + } + /* Shift */ + memmove(&par[0], &par[1], sizeof(uint16_t) * (nroots - 1)); + if (fb != nn) { + par[nroots - 1] = alpha_to[rs_modnn(rs, + fb + genpoly[0])]; + } else { + par[nroots - 1] = 0; + } + } + return 0; +} diff --git a/lib/reed_solomon/reed_solomon.c b/lib/reed_solomon/reed_solomon.c new file mode 100644 index 000000000..bbc01bad3 --- /dev/null +++ b/lib/reed_solomon/reed_solomon.c @@ -0,0 +1,424 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Generic Reed Solomon encoder / decoder library + * + * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) + * + * Reed Solomon code lifted from reed solomon library written by Phil Karn + * Copyright 2002 Phil Karn, KA9Q + * + * Description: + * + * The generic Reed Solomon library provides runtime configurable + * encoding / decoding of RS codes. + * + * Each user must call init_rs to get a pointer to a rs_control structure + * for the given rs parameters. The control struct is unique per instance. + * It points to a codec which can be shared by multiple control structures. + * If a codec is newly allocated then the polynomial arrays for fast + * encoding / decoding are built. This can take some time so make sure not + * to call this function from a time critical path. Usually a module / + * driver should initialize the necessary rs_control structure on module / + * driver init and release it on exit. + * + * The encoding puts the calculated syndrome into a given syndrome buffer. + * + * The decoding is a two step process. The first step calculates the + * syndrome over the received (data + syndrome) and calls the second stage, + * which does the decoding / error correction itself. Many hw encoders + * provide a syndrome calculation over the received data + syndrome and can + * call the second stage directly. + */ +#include <linux/errno.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/rslib.h> +#include <linux/slab.h> +#include <linux/mutex.h> + +enum { + RS_DECODE_LAMBDA, + RS_DECODE_SYN, + RS_DECODE_B, + RS_DECODE_T, + RS_DECODE_OMEGA, + RS_DECODE_ROOT, + RS_DECODE_REG, + RS_DECODE_LOC, + RS_DECODE_NUM_BUFFERS +}; + +/* This list holds all currently allocated rs codec structures */ +static LIST_HEAD(codec_list); +/* Protection for the list */ +static DEFINE_MUTEX(rslistlock); + +/** + * codec_init - Initialize a Reed-Solomon codec + * @symsize: symbol size, bits (1-8) + * @gfpoly: Field generator polynomial coefficients + * @gffunc: Field generator function + * @fcr: first root of RS code generator polynomial, index form + * @prim: primitive element to generate polynomial roots + * @nroots: RS code generator polynomial degree (number of roots) + * @gfp: GFP_ flags for allocations + * + * Allocate a codec structure and the polynom arrays for faster + * en/decoding. Fill the arrays according to the given parameters. + */ +static struct rs_codec *codec_init(int symsize, int gfpoly, int (*gffunc)(int), + int fcr, int prim, int nroots, gfp_t gfp) +{ + int i, j, sr, root, iprim; + struct rs_codec *rs; + + rs = kzalloc(sizeof(*rs), gfp); + if (!rs) + return NULL; + + INIT_LIST_HEAD(&rs->list); + + rs->mm = symsize; + rs->nn = (1 << symsize) - 1; + rs->fcr = fcr; + rs->prim = prim; + rs->nroots = nroots; + rs->gfpoly = gfpoly; + rs->gffunc = gffunc; + + /* Allocate the arrays */ + rs->alpha_to = kmalloc_array(rs->nn + 1, sizeof(uint16_t), gfp); + if (rs->alpha_to == NULL) + goto err; + + rs->index_of = kmalloc_array(rs->nn + 1, sizeof(uint16_t), gfp); + if (rs->index_of == NULL) + goto err; + + rs->genpoly = kmalloc_array(rs->nroots + 1, sizeof(uint16_t), gfp); + if(rs->genpoly == NULL) + goto err; + + /* Generate Galois field lookup tables */ + rs->index_of[0] = rs->nn; /* log(zero) = -inf */ + rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */ + if (gfpoly) { + sr = 1; + for (i = 0; i < rs->nn; i++) { + rs->index_of[sr] = i; + rs->alpha_to[i] = sr; + sr <<= 1; + if (sr & (1 << symsize)) + sr ^= gfpoly; + sr &= rs->nn; + } + } else { + sr = gffunc(0); + for (i = 0; i < rs->nn; i++) { + rs->index_of[sr] = i; + rs->alpha_to[i] = sr; + sr = gffunc(sr); + } + } + /* If it's not primitive, exit */ + if(sr != rs->alpha_to[0]) + goto err; + + /* Find prim-th root of 1, used in decoding */ + for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn); + /* prim-th root of 1, index form */ + rs->iprim = iprim / prim; + + /* Form RS code generator polynomial from its roots */ + rs->genpoly[0] = 1; + for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) { + rs->genpoly[i + 1] = 1; + /* Multiply rs->genpoly[] by @**(root + x) */ + for (j = i; j > 0; j--) { + if (rs->genpoly[j] != 0) { + rs->genpoly[j] = rs->genpoly[j -1] ^ + rs->alpha_to[rs_modnn(rs, + rs->index_of[rs->genpoly[j]] + root)]; + } else + rs->genpoly[j] = rs->genpoly[j - 1]; + } + /* rs->genpoly[0] can never be zero */ + rs->genpoly[0] = + rs->alpha_to[rs_modnn(rs, + rs->index_of[rs->genpoly[0]] + root)]; + } + /* convert rs->genpoly[] to index form for quicker encoding */ + for (i = 0; i <= nroots; i++) + rs->genpoly[i] = rs->index_of[rs->genpoly[i]]; + + rs->users = 1; + list_add(&rs->list, &codec_list); + return rs; + +err: + kfree(rs->genpoly); + kfree(rs->index_of); + kfree(rs->alpha_to); + kfree(rs); + return NULL; +} + + +/** + * free_rs - Free the rs control structure + * @rs: The control structure which is not longer used by the + * caller + * + * Free the control structure. If @rs is the last user of the associated + * codec, free the codec as well. + */ +void free_rs(struct rs_control *rs) +{ + struct rs_codec *cd; + + if (!rs) + return; + + cd = rs->codec; + mutex_lock(&rslistlock); + cd->users--; + if(!cd->users) { + list_del(&cd->list); + kfree(cd->alpha_to); + kfree(cd->index_of); + kfree(cd->genpoly); + kfree(cd); + } + mutex_unlock(&rslistlock); + kfree(rs); +} +EXPORT_SYMBOL_GPL(free_rs); + +/** + * init_rs_internal - Allocate rs control, find a matching codec or allocate a new one + * @symsize: the symbol size (number of bits) + * @gfpoly: the extended Galois field generator polynomial coefficients, + * with the 0th coefficient in the low order bit. The polynomial + * must be primitive; + * @gffunc: pointer to function to generate the next field element, + * or the multiplicative identity element if given 0. Used + * instead of gfpoly if gfpoly is 0 + * @fcr: the first consecutive root of the rs code generator polynomial + * in index form + * @prim: primitive element to generate polynomial roots + * @nroots: RS code generator polynomial degree (number of roots) + * @gfp: GFP_ flags for allocations + */ +static struct rs_control *init_rs_internal(int symsize, int gfpoly, + int (*gffunc)(int), int fcr, + int prim, int nroots, gfp_t gfp) +{ + struct list_head *tmp; + struct rs_control *rs; + unsigned int bsize; + + /* Sanity checks */ + if (symsize < 1) + return NULL; + if (fcr < 0 || fcr >= (1<<symsize)) + return NULL; + if (prim <= 0 || prim >= (1<<symsize)) + return NULL; + if (nroots < 0 || nroots >= (1<<symsize)) + return NULL; + + /* + * The decoder needs buffers in each control struct instance to + * avoid variable size or large fixed size allocations on + * stack. Size the buffers to arrays of [nroots + 1]. + */ + bsize = sizeof(uint16_t) * RS_DECODE_NUM_BUFFERS * (nroots + 1); + rs = kzalloc(sizeof(*rs) + bsize, gfp); + if (!rs) + return NULL; + + mutex_lock(&rslistlock); + + /* Walk through the list and look for a matching entry */ + list_for_each(tmp, &codec_list) { + struct rs_codec *cd = list_entry(tmp, struct rs_codec, list); + + if (symsize != cd->mm) + continue; + if (gfpoly != cd->gfpoly) + continue; + if (gffunc != cd->gffunc) + continue; + if (fcr != cd->fcr) + continue; + if (prim != cd->prim) + continue; + if (nroots != cd->nroots) + continue; + /* We have a matching one already */ + cd->users++; + rs->codec = cd; + goto out; + } + + /* Create a new one */ + rs->codec = codec_init(symsize, gfpoly, gffunc, fcr, prim, nroots, gfp); + if (!rs->codec) { + kfree(rs); + rs = NULL; + } +out: + mutex_unlock(&rslistlock); + return rs; +} + +/** + * init_rs_gfp - Create a RS control struct and initialize it + * @symsize: the symbol size (number of bits) + * @gfpoly: the extended Galois field generator polynomial coefficients, + * with the 0th coefficient in the low order bit. The polynomial + * must be primitive; + * @fcr: the first consecutive root of the rs code generator polynomial + * in index form + * @prim: primitive element to generate polynomial roots + * @nroots: RS code generator polynomial degree (number of roots) + * @gfp: Memory allocation flags. + */ +struct rs_control *init_rs_gfp(int symsize, int gfpoly, int fcr, int prim, + int nroots, gfp_t gfp) +{ + return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots, gfp); +} +EXPORT_SYMBOL_GPL(init_rs_gfp); + +/** + * init_rs_non_canonical - Allocate rs control struct for fields with + * non-canonical representation + * @symsize: the symbol size (number of bits) + * @gffunc: pointer to function to generate the next field element, + * or the multiplicative identity element if given 0. Used + * instead of gfpoly if gfpoly is 0 + * @fcr: the first consecutive root of the rs code generator polynomial + * in index form + * @prim: primitive element to generate polynomial roots + * @nroots: RS code generator polynomial degree (number of roots) + */ +struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int), + int fcr, int prim, int nroots) +{ + return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots, + GFP_KERNEL); +} +EXPORT_SYMBOL_GPL(init_rs_non_canonical); + +#ifdef CONFIG_REED_SOLOMON_ENC8 +/** + * encode_rs8 - Calculate the parity for data values (8bit data width) + * @rsc: the rs control structure + * @data: data field of a given type + * @len: data length + * @par: parity data, must be initialized by caller (usually all 0) + * @invmsk: invert data mask (will be xored on data) + * + * The parity uses a uint16_t data type to enable + * symbol size > 8. The calling code must take care of encoding of the + * syndrome result for storage itself. + */ +int encode_rs8(struct rs_control *rsc, uint8_t *data, int len, uint16_t *par, + uint16_t invmsk) +{ +#include "encode_rs.c" +} +EXPORT_SYMBOL_GPL(encode_rs8); +#endif + +#ifdef CONFIG_REED_SOLOMON_DEC8 +/** + * decode_rs8 - Decode codeword (8bit data width) + * @rsc: the rs control structure + * @data: data field of a given type + * @par: received parity data field + * @len: data length + * @s: syndrome data field, must be in index form + * (if NULL, syndrome is calculated) + * @no_eras: number of erasures + * @eras_pos: position of erasures, can be NULL + * @invmsk: invert data mask (will be xored on data, not on parity!) + * @corr: buffer to store correction bitmask on eras_pos + * + * The syndrome and parity uses a uint16_t data type to enable + * symbol size > 8. The calling code must take care of decoding of the + * syndrome result and the received parity before calling this code. + * + * Note: The rs_control struct @rsc contains buffers which are used for + * decoding, so the caller has to ensure that decoder invocations are + * serialized. + * + * Returns the number of corrected symbols or -EBADMSG for uncorrectable + * errors. The count includes errors in the parity. + */ +int decode_rs8(struct rs_control *rsc, uint8_t *data, uint16_t *par, int len, + uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, + uint16_t *corr) +{ +#include "decode_rs.c" +} +EXPORT_SYMBOL_GPL(decode_rs8); +#endif + +#ifdef CONFIG_REED_SOLOMON_ENC16 +/** + * encode_rs16 - Calculate the parity for data values (16bit data width) + * @rsc: the rs control structure + * @data: data field of a given type + * @len: data length + * @par: parity data, must be initialized by caller (usually all 0) + * @invmsk: invert data mask (will be xored on data, not on parity!) + * + * Each field in the data array contains up to symbol size bits of valid data. + */ +int encode_rs16(struct rs_control *rsc, uint16_t *data, int len, uint16_t *par, + uint16_t invmsk) +{ +#include "encode_rs.c" +} +EXPORT_SYMBOL_GPL(encode_rs16); +#endif + +#ifdef CONFIG_REED_SOLOMON_DEC16 +/** + * decode_rs16 - Decode codeword (16bit data width) + * @rsc: the rs control structure + * @data: data field of a given type + * @par: received parity data field + * @len: data length + * @s: syndrome data field, must be in index form + * (if NULL, syndrome is calculated) + * @no_eras: number of erasures + * @eras_pos: position of erasures, can be NULL + * @invmsk: invert data mask (will be xored on data, not on parity!) + * @corr: buffer to store correction bitmask on eras_pos + * + * Each field in the data array contains up to symbol size bits of valid data. + * + * Note: The rc_control struct @rsc contains buffers which are used for + * decoding, so the caller has to ensure that decoder invocations are + * serialized. + * + * Returns the number of corrected symbols or -EBADMSG for uncorrectable + * errors. The count includes errors in the parity. + */ +int decode_rs16(struct rs_control *rsc, uint16_t *data, uint16_t *par, int len, + uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, + uint16_t *corr) +{ +#include "decode_rs.c" +} +EXPORT_SYMBOL_GPL(decode_rs16); +#endif + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Reed Solomon encoder/decoder"); +MODULE_AUTHOR("Phil Karn, Thomas Gleixner"); + diff --git a/lib/reed_solomon/test_rslib.c b/lib/reed_solomon/test_rslib.c new file mode 100644 index 000000000..848e7eb5d --- /dev/null +++ b/lib/reed_solomon/test_rslib.c @@ -0,0 +1,518 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Tests for Generic Reed Solomon encoder / decoder library + * + * Written by Ferdinand Blomqvist + * Based on previous work by Phil Karn, KA9Q + */ +#include <linux/rslib.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/random.h> +#include <linux/slab.h> + +enum verbosity { + V_SILENT, + V_PROGRESS, + V_CSUMMARY +}; + +enum method { + CORR_BUFFER, + CALLER_SYNDROME, + IN_PLACE +}; + +#define __param(type, name, init, msg) \ + static type name = init; \ + module_param(name, type, 0444); \ + MODULE_PARM_DESC(name, msg) + +__param(int, v, V_PROGRESS, "Verbosity level"); +__param(int, ewsc, 1, "Erasures without symbol corruption"); +__param(int, bc, 1, "Test for correct behaviour beyond error correction capacity"); + +struct etab { + int symsize; + int genpoly; + int fcs; + int prim; + int nroots; + int ntrials; +}; + +/* List of codes to test */ +static struct etab Tab[] = { + {2, 0x7, 1, 1, 1, 100000 }, + {3, 0xb, 1, 1, 2, 100000 }, + {3, 0xb, 1, 1, 3, 100000 }, + {3, 0xb, 2, 1, 4, 100000 }, + {4, 0x13, 1, 1, 4, 10000 }, + {5, 0x25, 1, 1, 6, 1000 }, + {6, 0x43, 3, 1, 8, 1000 }, + {7, 0x89, 1, 1, 14, 500 }, + {8, 0x11d, 1, 1, 30, 100 }, + {8, 0x187, 112, 11, 32, 100 }, + {9, 0x211, 1, 1, 33, 80 }, + {0, 0, 0, 0, 0, 0}, +}; + + +struct estat { + int dwrong; + int irv; + int wepos; + int nwords; +}; + +struct bcstat { + int rfail; + int rsuccess; + int noncw; + int nwords; +}; + +struct wspace { + uint16_t *c; /* sent codeword */ + uint16_t *r; /* received word */ + uint16_t *s; /* syndrome */ + uint16_t *corr; /* correction buffer */ + int *errlocs; + int *derrlocs; +}; + +struct pad { + int mult; + int shift; +}; + +static struct pad pad_coef[] = { + { 0, 0 }, + { 1, 2 }, + { 1, 1 }, + { 3, 2 }, + { 1, 0 }, +}; + +static void free_ws(struct wspace *ws) +{ + if (!ws) + return; + + kfree(ws->errlocs); + kfree(ws->c); + kfree(ws); +} + +static struct wspace *alloc_ws(struct rs_codec *rs) +{ + int nroots = rs->nroots; + struct wspace *ws; + int nn = rs->nn; + + ws = kzalloc(sizeof(*ws), GFP_KERNEL); + if (!ws) + return NULL; + + ws->c = kmalloc_array(2 * (nn + nroots), + sizeof(uint16_t), GFP_KERNEL); + if (!ws->c) + goto err; + + ws->r = ws->c + nn; + ws->s = ws->r + nn; + ws->corr = ws->s + nroots; + + ws->errlocs = kmalloc_array(nn + nroots, sizeof(int), GFP_KERNEL); + if (!ws->errlocs) + goto err; + + ws->derrlocs = ws->errlocs + nn; + return ws; + +err: + free_ws(ws); + return NULL; +} + + +/* + * Generates a random codeword and stores it in c. Generates random errors and + * erasures, and stores the random word with errors in r. Erasure positions are + * stored in derrlocs, while errlocs has one of three values in every position: + * + * 0 if there is no error in this position; + * 1 if there is a symbol error in this position; + * 2 if there is an erasure without symbol corruption. + * + * Returns the number of corrupted symbols. + */ +static int get_rcw_we(struct rs_control *rs, struct wspace *ws, + int len, int errs, int eras) +{ + int nroots = rs->codec->nroots; + int *derrlocs = ws->derrlocs; + int *errlocs = ws->errlocs; + int dlen = len - nroots; + int nn = rs->codec->nn; + uint16_t *c = ws->c; + uint16_t *r = ws->r; + int errval; + int errloc; + int i; + + /* Load c with random data and encode */ + for (i = 0; i < dlen; i++) + c[i] = get_random_u32() & nn; + + memset(c + dlen, 0, nroots * sizeof(*c)); + encode_rs16(rs, c, dlen, c + dlen, 0); + + /* Make copyand add errors and erasures */ + memcpy(r, c, len * sizeof(*r)); + memset(errlocs, 0, len * sizeof(*errlocs)); + memset(derrlocs, 0, nroots * sizeof(*derrlocs)); + + /* Generating random errors */ + for (i = 0; i < errs; i++) { + do { + /* Error value must be nonzero */ + errval = get_random_u32() & nn; + } while (errval == 0); + + do { + /* Must not choose the same location twice */ + errloc = prandom_u32_max(len); + } while (errlocs[errloc] != 0); + + errlocs[errloc] = 1; + r[errloc] ^= errval; + } + + /* Generating random erasures */ + for (i = 0; i < eras; i++) { + do { + /* Must not choose the same location twice */ + errloc = prandom_u32_max(len); + } while (errlocs[errloc] != 0); + + derrlocs[i] = errloc; + + if (ewsc && prandom_u32_max(2)) { + /* Erasure with the symbol intact */ + errlocs[errloc] = 2; + } else { + /* Erasure with corrupted symbol */ + do { + /* Error value must be nonzero */ + errval = get_random_u32() & nn; + } while (errval == 0); + + errlocs[errloc] = 1; + r[errloc] ^= errval; + errs++; + } + } + + return errs; +} + +static void fix_err(uint16_t *data, int nerrs, uint16_t *corr, int *errlocs) +{ + int i; + + for (i = 0; i < nerrs; i++) + data[errlocs[i]] ^= corr[i]; +} + +static void compute_syndrome(struct rs_control *rsc, uint16_t *data, + int len, uint16_t *syn) +{ + struct rs_codec *rs = rsc->codec; + uint16_t *alpha_to = rs->alpha_to; + uint16_t *index_of = rs->index_of; + int nroots = rs->nroots; + int prim = rs->prim; + int fcr = rs->fcr; + int i, j; + + /* Calculating syndrome */ + for (i = 0; i < nroots; i++) { + syn[i] = data[0]; + for (j = 1; j < len; j++) { + if (syn[i] == 0) { + syn[i] = data[j]; + } else { + syn[i] = data[j] ^ + alpha_to[rs_modnn(rs, index_of[syn[i]] + + (fcr + i) * prim)]; + } + } + } + + /* Convert to index form */ + for (i = 0; i < nroots; i++) + syn[i] = rs->index_of[syn[i]]; +} + +/* Test up to error correction capacity */ +static void test_uc(struct rs_control *rs, int len, int errs, + int eras, int trials, struct estat *stat, + struct wspace *ws, int method) +{ + int dlen = len - rs->codec->nroots; + int *derrlocs = ws->derrlocs; + int *errlocs = ws->errlocs; + uint16_t *corr = ws->corr; + uint16_t *c = ws->c; + uint16_t *r = ws->r; + uint16_t *s = ws->s; + int derrs, nerrs; + int i, j; + + for (j = 0; j < trials; j++) { + nerrs = get_rcw_we(rs, ws, len, errs, eras); + + switch (method) { + case CORR_BUFFER: + derrs = decode_rs16(rs, r, r + dlen, dlen, + NULL, eras, derrlocs, 0, corr); + fix_err(r, derrs, corr, derrlocs); + break; + case CALLER_SYNDROME: + compute_syndrome(rs, r, len, s); + derrs = decode_rs16(rs, NULL, NULL, dlen, + s, eras, derrlocs, 0, corr); + fix_err(r, derrs, corr, derrlocs); + break; + case IN_PLACE: + derrs = decode_rs16(rs, r, r + dlen, dlen, + NULL, eras, derrlocs, 0, NULL); + break; + default: + continue; + } + + if (derrs != nerrs) + stat->irv++; + + if (method != IN_PLACE) { + for (i = 0; i < derrs; i++) { + if (errlocs[derrlocs[i]] != 1) + stat->wepos++; + } + } + + if (memcmp(r, c, len * sizeof(*r))) + stat->dwrong++; + } + stat->nwords += trials; +} + +static int ex_rs_helper(struct rs_control *rs, struct wspace *ws, + int len, int trials, int method) +{ + static const char * const desc[] = { + "Testing correction buffer interface...", + "Testing with caller provided syndrome...", + "Testing in-place interface..." + }; + + struct estat stat = {0, 0, 0, 0}; + int nroots = rs->codec->nroots; + int errs, eras, retval; + + if (v >= V_PROGRESS) + pr_info(" %s\n", desc[method]); + + for (errs = 0; errs <= nroots / 2; errs++) + for (eras = 0; eras <= nroots - 2 * errs; eras++) + test_uc(rs, len, errs, eras, trials, &stat, ws, method); + + if (v >= V_CSUMMARY) { + pr_info(" Decodes wrong: %d / %d\n", + stat.dwrong, stat.nwords); + pr_info(" Wrong return value: %d / %d\n", + stat.irv, stat.nwords); + if (method != IN_PLACE) + pr_info(" Wrong error position: %d\n", stat.wepos); + } + + retval = stat.dwrong + stat.wepos + stat.irv; + if (retval && v >= V_PROGRESS) + pr_warn(" FAIL: %d decoding failures!\n", retval); + + return retval; +} + +static int exercise_rs(struct rs_control *rs, struct wspace *ws, + int len, int trials) +{ + + int retval = 0; + int i; + + if (v >= V_PROGRESS) + pr_info("Testing up to error correction capacity...\n"); + + for (i = 0; i <= IN_PLACE; i++) + retval |= ex_rs_helper(rs, ws, len, trials, i); + + return retval; +} + +/* Tests for correct behaviour beyond error correction capacity */ +static void test_bc(struct rs_control *rs, int len, int errs, + int eras, int trials, struct bcstat *stat, + struct wspace *ws) +{ + int nroots = rs->codec->nroots; + int dlen = len - nroots; + int *derrlocs = ws->derrlocs; + uint16_t *corr = ws->corr; + uint16_t *r = ws->r; + int derrs, j; + + for (j = 0; j < trials; j++) { + get_rcw_we(rs, ws, len, errs, eras); + derrs = decode_rs16(rs, r, r + dlen, dlen, + NULL, eras, derrlocs, 0, corr); + fix_err(r, derrs, corr, derrlocs); + + if (derrs >= 0) { + stat->rsuccess++; + + /* + * We check that the returned word is actually a + * codeword. The obvious way to do this would be to + * compute the syndrome, but we don't want to replicate + * that code here. However, all the codes are in + * systematic form, and therefore we can encode the + * returned word, and see whether the parity changes or + * not. + */ + memset(corr, 0, nroots * sizeof(*corr)); + encode_rs16(rs, r, dlen, corr, 0); + + if (memcmp(r + dlen, corr, nroots * sizeof(*corr))) + stat->noncw++; + } else { + stat->rfail++; + } + } + stat->nwords += trials; +} + +static int exercise_rs_bc(struct rs_control *rs, struct wspace *ws, + int len, int trials) +{ + struct bcstat stat = {0, 0, 0, 0}; + int nroots = rs->codec->nroots; + int errs, eras, cutoff; + + if (v >= V_PROGRESS) + pr_info("Testing beyond error correction capacity...\n"); + + for (errs = 1; errs <= nroots; errs++) { + eras = nroots - 2 * errs + 1; + if (eras < 0) + eras = 0; + + cutoff = nroots <= len - errs ? nroots : len - errs; + for (; eras <= cutoff; eras++) + test_bc(rs, len, errs, eras, trials, &stat, ws); + } + + if (v >= V_CSUMMARY) { + pr_info(" decoder gives up: %d / %d\n", + stat.rfail, stat.nwords); + pr_info(" decoder returns success: %d / %d\n", + stat.rsuccess, stat.nwords); + pr_info(" not a codeword: %d / %d\n", + stat.noncw, stat.rsuccess); + } + + if (stat.noncw && v >= V_PROGRESS) + pr_warn(" FAIL: %d silent failures!\n", stat.noncw); + + return stat.noncw; +} + +static int run_exercise(struct etab *e) +{ + int nn = (1 << e->symsize) - 1; + int kk = nn - e->nroots; + struct rs_control *rsc; + int retval = -ENOMEM; + int max_pad = kk - 1; + int prev_pad = -1; + struct wspace *ws; + int i; + + rsc = init_rs(e->symsize, e->genpoly, e->fcs, e->prim, e->nroots); + if (!rsc) + return retval; + + ws = alloc_ws(rsc->codec); + if (!ws) + goto err; + + retval = 0; + for (i = 0; i < ARRAY_SIZE(pad_coef); i++) { + int pad = (pad_coef[i].mult * max_pad) >> pad_coef[i].shift; + int len = nn - pad; + + if (pad == prev_pad) + continue; + + prev_pad = pad; + if (v >= V_PROGRESS) { + pr_info("Testing (%d,%d)_%d code...\n", + len, kk - pad, nn + 1); + } + + retval |= exercise_rs(rsc, ws, len, e->ntrials); + if (bc) + retval |= exercise_rs_bc(rsc, ws, len, e->ntrials); + } + + free_ws(ws); + +err: + free_rs(rsc); + return retval; +} + +static int __init test_rslib_init(void) +{ + int i, fail = 0; + + for (i = 0; Tab[i].symsize != 0 ; i++) { + int retval; + + retval = run_exercise(Tab + i); + if (retval < 0) + return -ENOMEM; + + fail |= retval; + } + + if (fail) + pr_warn("rslib: test failed\n"); + else + pr_info("rslib: test ok\n"); + + return -EAGAIN; /* Fail will directly unload the module */ +} + +static void __exit test_rslib_exit(void) +{ +} + +module_init(test_rslib_init) +module_exit(test_rslib_exit) + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Ferdinand Blomqvist"); +MODULE_DESCRIPTION("Reed-Solomon library test"); |