diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /lib/zlib_deflate | |
parent | Initial commit. (diff) | |
download | linux-b8823030eac27fc7a3d149e3a443a0b68810a78f.tar.xz linux-b8823030eac27fc7a3d149e3a443a0b68810a78f.zip |
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'lib/zlib_deflate')
-rw-r--r-- | lib/zlib_deflate/Makefile | 12 | ||||
-rw-r--r-- | lib/zlib_deflate/deflate.c | 1146 | ||||
-rw-r--r-- | lib/zlib_deflate/deflate_syms.c | 20 | ||||
-rw-r--r-- | lib/zlib_deflate/deftree.c | 1059 | ||||
-rw-r--r-- | lib/zlib_deflate/defutil.h | 441 |
5 files changed, 2678 insertions, 0 deletions
diff --git a/lib/zlib_deflate/Makefile b/lib/zlib_deflate/Makefile new file mode 100644 index 000000000..2622e03c0 --- /dev/null +++ b/lib/zlib_deflate/Makefile @@ -0,0 +1,12 @@ +# SPDX-License-Identifier: GPL-2.0-only +# +# This is a modified version of zlib, which does all memory +# allocation ahead of time. +# +# This is the compression code, see zlib_inflate for the +# decompression code. +# + +obj-$(CONFIG_ZLIB_DEFLATE) += zlib_deflate.o + +zlib_deflate-objs := deflate.o deftree.o deflate_syms.o diff --git a/lib/zlib_deflate/deflate.c b/lib/zlib_deflate/deflate.c new file mode 100644 index 000000000..8a878d0d8 --- /dev/null +++ b/lib/zlib_deflate/deflate.c @@ -0,0 +1,1146 @@ +/* +++ deflate.c */ +/* deflate.c -- compress data using the deflation algorithm + * Copyright (C) 1995-1996 Jean-loup Gailly. + * For conditions of distribution and use, see copyright notice in zlib.h + */ + +/* + * ALGORITHM + * + * The "deflation" process depends on being able to identify portions + * of the input text which are identical to earlier input (within a + * sliding window trailing behind the input currently being processed). + * + * The most straightforward technique turns out to be the fastest for + * most input files: try all possible matches and select the longest. + * The key feature of this algorithm is that insertions into the string + * dictionary are very simple and thus fast, and deletions are avoided + * completely. Insertions are performed at each input character, whereas + * string matches are performed only when the previous match ends. So it + * is preferable to spend more time in matches to allow very fast string + * insertions and avoid deletions. The matching algorithm for small + * strings is inspired from that of Rabin & Karp. A brute force approach + * is used to find longer strings when a small match has been found. + * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze + * (by Leonid Broukhis). + * A previous version of this file used a more sophisticated algorithm + * (by Fiala and Greene) which is guaranteed to run in linear amortized + * time, but has a larger average cost, uses more memory and is patented. + * However the F&G algorithm may be faster for some highly redundant + * files if the parameter max_chain_length (described below) is too large. + * + * ACKNOWLEDGEMENTS + * + * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and + * I found it in 'freeze' written by Leonid Broukhis. + * Thanks to many people for bug reports and testing. + * + * REFERENCES + * + * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". + * Available in ftp://ds.internic.net/rfc/rfc1951.txt + * + * A description of the Rabin and Karp algorithm is given in the book + * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. + * + * Fiala,E.R., and Greene,D.H. + * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 + * + */ + +#include <linux/module.h> +#include <linux/zutil.h> +#include "defutil.h" + +/* architecture-specific bits */ +#ifdef CONFIG_ZLIB_DFLTCC +# include "../zlib_dfltcc/dfltcc.h" +#else +#define DEFLATE_RESET_HOOK(strm) do {} while (0) +#define DEFLATE_HOOK(strm, flush, bstate) 0 +#define DEFLATE_NEED_CHECKSUM(strm) 1 +#define DEFLATE_DFLTCC_ENABLED() 0 +#endif + +/* =========================================================================== + * Function prototypes. + */ + +typedef block_state (*compress_func) (deflate_state *s, int flush); +/* Compression function. Returns the block state after the call. */ + +static void fill_window (deflate_state *s); +static block_state deflate_stored (deflate_state *s, int flush); +static block_state deflate_fast (deflate_state *s, int flush); +static block_state deflate_slow (deflate_state *s, int flush); +static void lm_init (deflate_state *s); +static void putShortMSB (deflate_state *s, uInt b); +static int read_buf (z_streamp strm, Byte *buf, unsigned size); +static uInt longest_match (deflate_state *s, IPos cur_match); + +#ifdef DEBUG_ZLIB +static void check_match (deflate_state *s, IPos start, IPos match, + int length); +#endif + +/* =========================================================================== + * Local data + */ + +#define NIL 0 +/* Tail of hash chains */ + +#ifndef TOO_FAR +# define TOO_FAR 4096 +#endif +/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ + +#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) +/* Minimum amount of lookahead, except at the end of the input file. + * See deflate.c for comments about the MIN_MATCH+1. + */ + +/* Workspace to be allocated for deflate processing */ +typedef struct deflate_workspace { + /* State memory for the deflator */ + deflate_state deflate_memory; +#ifdef CONFIG_ZLIB_DFLTCC + /* State memory for s390 hardware deflate */ + struct dfltcc_state dfltcc_memory; +#endif + Byte *window_memory; + Pos *prev_memory; + Pos *head_memory; + char *overlay_memory; +} deflate_workspace; + +#ifdef CONFIG_ZLIB_DFLTCC +/* dfltcc_state must be doubleword aligned for DFLTCC call */ +static_assert(offsetof(struct deflate_workspace, dfltcc_memory) % 8 == 0); +#endif + +/* Values for max_lazy_match, good_match and max_chain_length, depending on + * the desired pack level (0..9). The values given below have been tuned to + * exclude worst case performance for pathological files. Better values may be + * found for specific files. + */ +typedef struct config_s { + ush good_length; /* reduce lazy search above this match length */ + ush max_lazy; /* do not perform lazy search above this match length */ + ush nice_length; /* quit search above this match length */ + ush max_chain; + compress_func func; +} config; + +static const config configuration_table[10] = { +/* good lazy nice chain */ +/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ +/* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */ +/* 2 */ {4, 5, 16, 8, deflate_fast}, +/* 3 */ {4, 6, 32, 32, deflate_fast}, + +/* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ +/* 5 */ {8, 16, 32, 32, deflate_slow}, +/* 6 */ {8, 16, 128, 128, deflate_slow}, +/* 7 */ {8, 32, 128, 256, deflate_slow}, +/* 8 */ {32, 128, 258, 1024, deflate_slow}, +/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */ + +/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 + * For deflate_fast() (levels <= 3) good is ignored and lazy has a different + * meaning. + */ + +#define EQUAL 0 +/* result of memcmp for equal strings */ + +/* =========================================================================== + * Update a hash value with the given input byte + * IN assertion: all calls to UPDATE_HASH are made with consecutive + * input characters, so that a running hash key can be computed from the + * previous key instead of complete recalculation each time. + */ +#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) + + +/* =========================================================================== + * Insert string str in the dictionary and set match_head to the previous head + * of the hash chain (the most recent string with same hash key). Return + * the previous length of the hash chain. + * IN assertion: all calls to INSERT_STRING are made with consecutive + * input characters and the first MIN_MATCH bytes of str are valid + * (except for the last MIN_MATCH-1 bytes of the input file). + */ +#define INSERT_STRING(s, str, match_head) \ + (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ + s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \ + s->head[s->ins_h] = (Pos)(str)) + +/* =========================================================================== + * Initialize the hash table (avoiding 64K overflow for 16 bit systems). + * prev[] will be initialized on the fly. + */ +#define CLEAR_HASH(s) \ + s->head[s->hash_size-1] = NIL; \ + memset((char *)s->head, 0, (unsigned)(s->hash_size-1)*sizeof(*s->head)); + +/* ========================================================================= */ +int zlib_deflateInit2( + z_streamp strm, + int level, + int method, + int windowBits, + int memLevel, + int strategy +) +{ + deflate_state *s; + int noheader = 0; + deflate_workspace *mem; + char *next; + + ush *overlay; + /* We overlay pending_buf and d_buf+l_buf. This works since the average + * output size for (length,distance) codes is <= 24 bits. + */ + + if (strm == NULL) return Z_STREAM_ERROR; + + strm->msg = NULL; + + if (level == Z_DEFAULT_COMPRESSION) level = 6; + + mem = (deflate_workspace *) strm->workspace; + + if (windowBits < 0) { /* undocumented feature: suppress zlib header */ + noheader = 1; + windowBits = -windowBits; + } + if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || + windowBits < 9 || windowBits > 15 || level < 0 || level > 9 || + strategy < 0 || strategy > Z_HUFFMAN_ONLY) { + return Z_STREAM_ERROR; + } + + /* + * Direct the workspace's pointers to the chunks that were allocated + * along with the deflate_workspace struct. + */ + next = (char *) mem; + next += sizeof(*mem); +#ifdef CONFIG_ZLIB_DFLTCC + /* + * DFLTCC requires the window to be page aligned. + * Thus, we overallocate and take the aligned portion of the buffer. + */ + mem->window_memory = (Byte *) PTR_ALIGN(next, PAGE_SIZE); +#else + mem->window_memory = (Byte *) next; +#endif + next += zlib_deflate_window_memsize(windowBits); + mem->prev_memory = (Pos *) next; + next += zlib_deflate_prev_memsize(windowBits); + mem->head_memory = (Pos *) next; + next += zlib_deflate_head_memsize(memLevel); + mem->overlay_memory = next; + + s = (deflate_state *) &(mem->deflate_memory); + strm->state = (struct internal_state *)s; + s->strm = strm; + + s->noheader = noheader; + s->w_bits = windowBits; + s->w_size = 1 << s->w_bits; + s->w_mask = s->w_size - 1; + + s->hash_bits = memLevel + 7; + s->hash_size = 1 << s->hash_bits; + s->hash_mask = s->hash_size - 1; + s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); + + s->window = (Byte *) mem->window_memory; + s->prev = (Pos *) mem->prev_memory; + s->head = (Pos *) mem->head_memory; + + s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ + + overlay = (ush *) mem->overlay_memory; + s->pending_buf = (uch *) overlay; + s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); + + s->d_buf = overlay + s->lit_bufsize/sizeof(ush); + s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; + + s->level = level; + s->strategy = strategy; + s->method = (Byte)method; + + return zlib_deflateReset(strm); +} + +/* ========================================================================= */ +int zlib_deflateReset( + z_streamp strm +) +{ + deflate_state *s; + + if (strm == NULL || strm->state == NULL) + return Z_STREAM_ERROR; + + strm->total_in = strm->total_out = 0; + strm->msg = NULL; + strm->data_type = Z_UNKNOWN; + + s = (deflate_state *)strm->state; + s->pending = 0; + s->pending_out = s->pending_buf; + + if (s->noheader < 0) { + s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */ + } + s->status = s->noheader ? BUSY_STATE : INIT_STATE; + strm->adler = 1; + s->last_flush = Z_NO_FLUSH; + + zlib_tr_init(s); + lm_init(s); + + DEFLATE_RESET_HOOK(strm); + + return Z_OK; +} + +/* ========================================================================= + * Put a short in the pending buffer. The 16-bit value is put in MSB order. + * IN assertion: the stream state is correct and there is enough room in + * pending_buf. + */ +static void putShortMSB( + deflate_state *s, + uInt b +) +{ + put_byte(s, (Byte)(b >> 8)); + put_byte(s, (Byte)(b & 0xff)); +} + +/* ========================================================================= */ +int zlib_deflate( + z_streamp strm, + int flush +) +{ + int old_flush; /* value of flush param for previous deflate call */ + deflate_state *s; + + if (strm == NULL || strm->state == NULL || + flush > Z_FINISH || flush < 0) { + return Z_STREAM_ERROR; + } + s = (deflate_state *) strm->state; + + if ((strm->next_in == NULL && strm->avail_in != 0) || + (s->status == FINISH_STATE && flush != Z_FINISH)) { + return Z_STREAM_ERROR; + } + if (strm->avail_out == 0) return Z_BUF_ERROR; + + s->strm = strm; /* just in case */ + old_flush = s->last_flush; + s->last_flush = flush; + + /* Write the zlib header */ + if (s->status == INIT_STATE) { + + uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; + uInt level_flags = (s->level-1) >> 1; + + if (level_flags > 3) level_flags = 3; + header |= (level_flags << 6); + if (s->strstart != 0) header |= PRESET_DICT; + header += 31 - (header % 31); + + s->status = BUSY_STATE; + putShortMSB(s, header); + + /* Save the adler32 of the preset dictionary: */ + if (s->strstart != 0) { + putShortMSB(s, (uInt)(strm->adler >> 16)); + putShortMSB(s, (uInt)(strm->adler & 0xffff)); + } + strm->adler = 1L; + } + + /* Flush as much pending output as possible */ + if (s->pending != 0) { + flush_pending(strm); + if (strm->avail_out == 0) { + /* Since avail_out is 0, deflate will be called again with + * more output space, but possibly with both pending and + * avail_in equal to zero. There won't be anything to do, + * but this is not an error situation so make sure we + * return OK instead of BUF_ERROR at next call of deflate: + */ + s->last_flush = -1; + return Z_OK; + } + + /* Make sure there is something to do and avoid duplicate consecutive + * flushes. For repeated and useless calls with Z_FINISH, we keep + * returning Z_STREAM_END instead of Z_BUFF_ERROR. + */ + } else if (strm->avail_in == 0 && flush <= old_flush && + flush != Z_FINISH) { + return Z_BUF_ERROR; + } + + /* User must not provide more input after the first FINISH: */ + if (s->status == FINISH_STATE && strm->avail_in != 0) { + return Z_BUF_ERROR; + } + + /* Start a new block or continue the current one. + */ + if (strm->avail_in != 0 || s->lookahead != 0 || + (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { + block_state bstate; + + bstate = DEFLATE_HOOK(strm, flush, &bstate) ? bstate : + (*(configuration_table[s->level].func))(s, flush); + + if (bstate == finish_started || bstate == finish_done) { + s->status = FINISH_STATE; + } + if (bstate == need_more || bstate == finish_started) { + if (strm->avail_out == 0) { + s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ + } + return Z_OK; + /* If flush != Z_NO_FLUSH && avail_out == 0, the next call + * of deflate should use the same flush parameter to make sure + * that the flush is complete. So we don't have to output an + * empty block here, this will be done at next call. This also + * ensures that for a very small output buffer, we emit at most + * one empty block. + */ + } + if (bstate == block_done) { + if (flush == Z_PARTIAL_FLUSH) { + zlib_tr_align(s); + } else if (flush == Z_PACKET_FLUSH) { + /* Output just the 3-bit `stored' block type value, + but not a zero length. */ + zlib_tr_stored_type_only(s); + } else { /* FULL_FLUSH or SYNC_FLUSH */ + zlib_tr_stored_block(s, (char*)0, 0L, 0); + /* For a full flush, this empty block will be recognized + * as a special marker by inflate_sync(). + */ + if (flush == Z_FULL_FLUSH) { + CLEAR_HASH(s); /* forget history */ + } + } + flush_pending(strm); + if (strm->avail_out == 0) { + s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ + return Z_OK; + } + } + } + Assert(strm->avail_out > 0, "bug2"); + + if (flush != Z_FINISH) return Z_OK; + if (s->noheader) return Z_STREAM_END; + + /* Write the zlib trailer (adler32) */ + putShortMSB(s, (uInt)(strm->adler >> 16)); + putShortMSB(s, (uInt)(strm->adler & 0xffff)); + flush_pending(strm); + /* If avail_out is zero, the application will call deflate again + * to flush the rest. + */ + s->noheader = -1; /* write the trailer only once! */ + return s->pending != 0 ? Z_OK : Z_STREAM_END; +} + +/* ========================================================================= */ +int zlib_deflateEnd( + z_streamp strm +) +{ + int status; + deflate_state *s; + + if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR; + s = (deflate_state *) strm->state; + + status = s->status; + if (status != INIT_STATE && status != BUSY_STATE && + status != FINISH_STATE) { + return Z_STREAM_ERROR; + } + + strm->state = NULL; + + return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; +} + +/* =========================================================================== + * Read a new buffer from the current input stream, update the adler32 + * and total number of bytes read. All deflate() input goes through + * this function so some applications may wish to modify it to avoid + * allocating a large strm->next_in buffer and copying from it. + * (See also flush_pending()). + */ +static int read_buf( + z_streamp strm, + Byte *buf, + unsigned size +) +{ + unsigned len = strm->avail_in; + + if (len > size) len = size; + if (len == 0) return 0; + + strm->avail_in -= len; + + if (!DEFLATE_NEED_CHECKSUM(strm)) {} + else if (!((deflate_state *)(strm->state))->noheader) { + strm->adler = zlib_adler32(strm->adler, strm->next_in, len); + } + memcpy(buf, strm->next_in, len); + strm->next_in += len; + strm->total_in += len; + + return (int)len; +} + +/* =========================================================================== + * Initialize the "longest match" routines for a new zlib stream + */ +static void lm_init( + deflate_state *s +) +{ + s->window_size = (ulg)2L*s->w_size; + + CLEAR_HASH(s); + + /* Set the default configuration parameters: + */ + s->max_lazy_match = configuration_table[s->level].max_lazy; + s->good_match = configuration_table[s->level].good_length; + s->nice_match = configuration_table[s->level].nice_length; + s->max_chain_length = configuration_table[s->level].max_chain; + + s->strstart = 0; + s->block_start = 0L; + s->lookahead = 0; + s->match_length = s->prev_length = MIN_MATCH-1; + s->match_available = 0; + s->ins_h = 0; +} + +/* =========================================================================== + * Set match_start to the longest match starting at the given string and + * return its length. Matches shorter or equal to prev_length are discarded, + * in which case the result is equal to prev_length and match_start is + * garbage. + * IN assertions: cur_match is the head of the hash chain for the current + * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 + * OUT assertion: the match length is not greater than s->lookahead. + */ +/* For 80x86 and 680x0, an optimized version will be provided in match.asm or + * match.S. The code will be functionally equivalent. + */ +static uInt longest_match( + deflate_state *s, + IPos cur_match /* current match */ +) +{ + unsigned chain_length = s->max_chain_length;/* max hash chain length */ + register Byte *scan = s->window + s->strstart; /* current string */ + register Byte *match; /* matched string */ + register int len; /* length of current match */ + int best_len = s->prev_length; /* best match length so far */ + int nice_match = s->nice_match; /* stop if match long enough */ + IPos limit = s->strstart > (IPos)MAX_DIST(s) ? + s->strstart - (IPos)MAX_DIST(s) : NIL; + /* Stop when cur_match becomes <= limit. To simplify the code, + * we prevent matches with the string of window index 0. + */ + Pos *prev = s->prev; + uInt wmask = s->w_mask; + +#ifdef UNALIGNED_OK + /* Compare two bytes at a time. Note: this is not always beneficial. + * Try with and without -DUNALIGNED_OK to check. + */ + register Byte *strend = s->window + s->strstart + MAX_MATCH - 1; + register ush scan_start = *(ush*)scan; + register ush scan_end = *(ush*)(scan+best_len-1); +#else + register Byte *strend = s->window + s->strstart + MAX_MATCH; + register Byte scan_end1 = scan[best_len-1]; + register Byte scan_end = scan[best_len]; +#endif + + /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. + * It is easy to get rid of this optimization if necessary. + */ + Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); + + /* Do not waste too much time if we already have a good match: */ + if (s->prev_length >= s->good_match) { + chain_length >>= 2; + } + /* Do not look for matches beyond the end of the input. This is necessary + * to make deflate deterministic. + */ + if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; + + Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); + + do { + Assert(cur_match < s->strstart, "no future"); + match = s->window + cur_match; + + /* Skip to next match if the match length cannot increase + * or if the match length is less than 2: + */ +#if (defined(UNALIGNED_OK) && MAX_MATCH == 258) + /* This code assumes sizeof(unsigned short) == 2. Do not use + * UNALIGNED_OK if your compiler uses a different size. + */ + if (*(ush*)(match+best_len-1) != scan_end || + *(ush*)match != scan_start) continue; + + /* It is not necessary to compare scan[2] and match[2] since they are + * always equal when the other bytes match, given that the hash keys + * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at + * strstart+3, +5, ... up to strstart+257. We check for insufficient + * lookahead only every 4th comparison; the 128th check will be made + * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is + * necessary to put more guard bytes at the end of the window, or + * to check more often for insufficient lookahead. + */ + Assert(scan[2] == match[2], "scan[2]?"); + scan++, match++; + do { + } while (*(ush*)(scan+=2) == *(ush*)(match+=2) && + *(ush*)(scan+=2) == *(ush*)(match+=2) && + *(ush*)(scan+=2) == *(ush*)(match+=2) && + *(ush*)(scan+=2) == *(ush*)(match+=2) && + scan < strend); + /* The funny "do {}" generates better code on most compilers */ + + /* Here, scan <= window+strstart+257 */ + Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); + if (*scan == *match) scan++; + + len = (MAX_MATCH - 1) - (int)(strend-scan); + scan = strend - (MAX_MATCH-1); + +#else /* UNALIGNED_OK */ + + if (match[best_len] != scan_end || + match[best_len-1] != scan_end1 || + *match != *scan || + *++match != scan[1]) continue; + + /* The check at best_len-1 can be removed because it will be made + * again later. (This heuristic is not always a win.) + * It is not necessary to compare scan[2] and match[2] since they + * are always equal when the other bytes match, given that + * the hash keys are equal and that HASH_BITS >= 8. + */ + scan += 2, match++; + Assert(*scan == *match, "match[2]?"); + + /* We check for insufficient lookahead only every 8th comparison; + * the 256th check will be made at strstart+258. + */ + do { + } while (*++scan == *++match && *++scan == *++match && + *++scan == *++match && *++scan == *++match && + *++scan == *++match && *++scan == *++match && + *++scan == *++match && *++scan == *++match && + scan < strend); + + Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); + + len = MAX_MATCH - (int)(strend - scan); + scan = strend - MAX_MATCH; + +#endif /* UNALIGNED_OK */ + + if (len > best_len) { + s->match_start = cur_match; + best_len = len; + if (len >= nice_match) break; +#ifdef UNALIGNED_OK + scan_end = *(ush*)(scan+best_len-1); +#else + scan_end1 = scan[best_len-1]; + scan_end = scan[best_len]; +#endif + } + } while ((cur_match = prev[cur_match & wmask]) > limit + && --chain_length != 0); + + if ((uInt)best_len <= s->lookahead) return best_len; + return s->lookahead; +} + +#ifdef DEBUG_ZLIB +/* =========================================================================== + * Check that the match at match_start is indeed a match. + */ +static void check_match( + deflate_state *s, + IPos start, + IPos match, + int length +) +{ + /* check that the match is indeed a match */ + if (memcmp((char *)s->window + match, + (char *)s->window + start, length) != EQUAL) { + fprintf(stderr, " start %u, match %u, length %d\n", + start, match, length); + do { + fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); + } while (--length != 0); + z_error("invalid match"); + } + if (z_verbose > 1) { + fprintf(stderr,"\\[%d,%d]", start-match, length); + do { putc(s->window[start++], stderr); } while (--length != 0); + } +} +#else +# define check_match(s, start, match, length) +#endif + +/* =========================================================================== + * Fill the window when the lookahead becomes insufficient. + * Updates strstart and lookahead. + * + * IN assertion: lookahead < MIN_LOOKAHEAD + * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD + * At least one byte has been read, or avail_in == 0; reads are + * performed for at least two bytes (required for the zip translate_eol + * option -- not supported here). + */ +static void fill_window( + deflate_state *s +) +{ + register unsigned n, m; + register Pos *p; + unsigned more; /* Amount of free space at the end of the window. */ + uInt wsize = s->w_size; + + do { + more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); + + /* Deal with !@#$% 64K limit: */ + if (more == 0 && s->strstart == 0 && s->lookahead == 0) { + more = wsize; + + } else if (more == (unsigned)(-1)) { + /* Very unlikely, but possible on 16 bit machine if strstart == 0 + * and lookahead == 1 (input done one byte at time) + */ + more--; + + /* If the window is almost full and there is insufficient lookahead, + * move the upper half to the lower one to make room in the upper half. + */ + } else if (s->strstart >= wsize+MAX_DIST(s)) { + + memcpy((char *)s->window, (char *)s->window+wsize, + (unsigned)wsize); + s->match_start -= wsize; + s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ + s->block_start -= (long) wsize; + + /* Slide the hash table (could be avoided with 32 bit values + at the expense of memory usage). We slide even when level == 0 + to keep the hash table consistent if we switch back to level > 0 + later. (Using level 0 permanently is not an optimal usage of + zlib, so we don't care about this pathological case.) + */ + n = s->hash_size; + p = &s->head[n]; + do { + m = *--p; + *p = (Pos)(m >= wsize ? m-wsize : NIL); + } while (--n); + + n = wsize; + p = &s->prev[n]; + do { + m = *--p; + *p = (Pos)(m >= wsize ? m-wsize : NIL); + /* If n is not on any hash chain, prev[n] is garbage but + * its value will never be used. + */ + } while (--n); + more += wsize; + } + if (s->strm->avail_in == 0) return; + + /* If there was no sliding: + * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && + * more == window_size - lookahead - strstart + * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) + * => more >= window_size - 2*WSIZE + 2 + * In the BIG_MEM or MMAP case (not yet supported), + * window_size == input_size + MIN_LOOKAHEAD && + * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. + * Otherwise, window_size == 2*WSIZE so more >= 2. + * If there was sliding, more >= WSIZE. So in all cases, more >= 2. + */ + Assert(more >= 2, "more < 2"); + + n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); + s->lookahead += n; + + /* Initialize the hash value now that we have some input: */ + if (s->lookahead >= MIN_MATCH) { + s->ins_h = s->window[s->strstart]; + UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); +#if MIN_MATCH != 3 + Call UPDATE_HASH() MIN_MATCH-3 more times +#endif + } + /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, + * but this is not important since only literal bytes will be emitted. + */ + + } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); +} + +/* =========================================================================== + * Flush the current block, with given end-of-file flag. + * IN assertion: strstart is set to the end of the current match. + */ +#define FLUSH_BLOCK_ONLY(s, eof) { \ + zlib_tr_flush_block(s, (s->block_start >= 0L ? \ + (char *)&s->window[(unsigned)s->block_start] : \ + NULL), \ + (ulg)((long)s->strstart - s->block_start), \ + (eof)); \ + s->block_start = s->strstart; \ + flush_pending(s->strm); \ + Tracev((stderr,"[FLUSH]")); \ +} + +/* Same but force premature exit if necessary. */ +#define FLUSH_BLOCK(s, eof) { \ + FLUSH_BLOCK_ONLY(s, eof); \ + if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \ +} + +/* =========================================================================== + * Copy without compression as much as possible from the input stream, return + * the current block state. + * This function does not insert new strings in the dictionary since + * uncompressible data is probably not useful. This function is used + * only for the level=0 compression option. + * NOTE: this function should be optimized to avoid extra copying from + * window to pending_buf. + */ +static block_state deflate_stored( + deflate_state *s, + int flush +) +{ + /* Stored blocks are limited to 0xffff bytes, pending_buf is limited + * to pending_buf_size, and each stored block has a 5 byte header: + */ + ulg max_block_size = 0xffff; + ulg max_start; + + if (max_block_size > s->pending_buf_size - 5) { + max_block_size = s->pending_buf_size - 5; + } + + /* Copy as much as possible from input to output: */ + for (;;) { + /* Fill the window as much as possible: */ + if (s->lookahead <= 1) { + + Assert(s->strstart < s->w_size+MAX_DIST(s) || + s->block_start >= (long)s->w_size, "slide too late"); + + fill_window(s); + if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; + + if (s->lookahead == 0) break; /* flush the current block */ + } + Assert(s->block_start >= 0L, "block gone"); + + s->strstart += s->lookahead; + s->lookahead = 0; + + /* Emit a stored block if pending_buf will be full: */ + max_start = s->block_start + max_block_size; + if (s->strstart == 0 || (ulg)s->strstart >= max_start) { + /* strstart == 0 is possible when wraparound on 16-bit machine */ + s->lookahead = (uInt)(s->strstart - max_start); + s->strstart = (uInt)max_start; + FLUSH_BLOCK(s, 0); + } + /* Flush if we may have to slide, otherwise block_start may become + * negative and the data will be gone: + */ + if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { + FLUSH_BLOCK(s, 0); + } + } + FLUSH_BLOCK(s, flush == Z_FINISH); + return flush == Z_FINISH ? finish_done : block_done; +} + +/* =========================================================================== + * Compress as much as possible from the input stream, return the current + * block state. + * This function does not perform lazy evaluation of matches and inserts + * new strings in the dictionary only for unmatched strings or for short + * matches. It is used only for the fast compression options. + */ +static block_state deflate_fast( + deflate_state *s, + int flush +) +{ + IPos hash_head = NIL; /* head of the hash chain */ + int bflush; /* set if current block must be flushed */ + + for (;;) { + /* Make sure that we always have enough lookahead, except + * at the end of the input file. We need MAX_MATCH bytes + * for the next match, plus MIN_MATCH bytes to insert the + * string following the next match. + */ + if (s->lookahead < MIN_LOOKAHEAD) { + fill_window(s); + if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { + return need_more; + } + if (s->lookahead == 0) break; /* flush the current block */ + } + + /* Insert the string window[strstart .. strstart+2] in the + * dictionary, and set hash_head to the head of the hash chain: + */ + if (s->lookahead >= MIN_MATCH) { + INSERT_STRING(s, s->strstart, hash_head); + } + + /* Find the longest match, discarding those <= prev_length. + * At this point we have always match_length < MIN_MATCH + */ + if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { + /* To simplify the code, we prevent matches with the string + * of window index 0 (in particular we have to avoid a match + * of the string with itself at the start of the input file). + */ + if (s->strategy != Z_HUFFMAN_ONLY) { + s->match_length = longest_match (s, hash_head); + } + /* longest_match() sets match_start */ + } + if (s->match_length >= MIN_MATCH) { + check_match(s, s->strstart, s->match_start, s->match_length); + + bflush = zlib_tr_tally(s, s->strstart - s->match_start, + s->match_length - MIN_MATCH); + + s->lookahead -= s->match_length; + + /* Insert new strings in the hash table only if the match length + * is not too large. This saves time but degrades compression. + */ + if (s->match_length <= s->max_insert_length && + s->lookahead >= MIN_MATCH) { + s->match_length--; /* string at strstart already in hash table */ + do { + s->strstart++; + INSERT_STRING(s, s->strstart, hash_head); + /* strstart never exceeds WSIZE-MAX_MATCH, so there are + * always MIN_MATCH bytes ahead. + */ + } while (--s->match_length != 0); + s->strstart++; + } else { + s->strstart += s->match_length; + s->match_length = 0; + s->ins_h = s->window[s->strstart]; + UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); +#if MIN_MATCH != 3 + Call UPDATE_HASH() MIN_MATCH-3 more times +#endif + /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not + * matter since it will be recomputed at next deflate call. + */ + } + } else { + /* No match, output a literal byte */ + Tracevv((stderr,"%c", s->window[s->strstart])); + bflush = zlib_tr_tally (s, 0, s->window[s->strstart]); + s->lookahead--; + s->strstart++; + } + if (bflush) FLUSH_BLOCK(s, 0); + } + FLUSH_BLOCK(s, flush == Z_FINISH); + return flush == Z_FINISH ? finish_done : block_done; +} + +/* =========================================================================== + * Same as above, but achieves better compression. We use a lazy + * evaluation for matches: a match is finally adopted only if there is + * no better match at the next window position. + */ +static block_state deflate_slow( + deflate_state *s, + int flush +) +{ + IPos hash_head = NIL; /* head of hash chain */ + int bflush; /* set if current block must be flushed */ + + /* Process the input block. */ + for (;;) { + /* Make sure that we always have enough lookahead, except + * at the end of the input file. We need MAX_MATCH bytes + * for the next match, plus MIN_MATCH bytes to insert the + * string following the next match. + */ + if (s->lookahead < MIN_LOOKAHEAD) { + fill_window(s); + if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { + return need_more; + } + if (s->lookahead == 0) break; /* flush the current block */ + } + + /* Insert the string window[strstart .. strstart+2] in the + * dictionary, and set hash_head to the head of the hash chain: + */ + if (s->lookahead >= MIN_MATCH) { + INSERT_STRING(s, s->strstart, hash_head); + } + + /* Find the longest match, discarding those <= prev_length. + */ + s->prev_length = s->match_length, s->prev_match = s->match_start; + s->match_length = MIN_MATCH-1; + + if (hash_head != NIL && s->prev_length < s->max_lazy_match && + s->strstart - hash_head <= MAX_DIST(s)) { + /* To simplify the code, we prevent matches with the string + * of window index 0 (in particular we have to avoid a match + * of the string with itself at the start of the input file). + */ + if (s->strategy != Z_HUFFMAN_ONLY) { + s->match_length = longest_match (s, hash_head); + } + /* longest_match() sets match_start */ + + if (s->match_length <= 5 && (s->strategy == Z_FILTERED || + (s->match_length == MIN_MATCH && + s->strstart - s->match_start > TOO_FAR))) { + + /* If prev_match is also MIN_MATCH, match_start is garbage + * but we will ignore the current match anyway. + */ + s->match_length = MIN_MATCH-1; + } + } + /* If there was a match at the previous step and the current + * match is not better, output the previous match: + */ + if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { + uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; + /* Do not insert strings in hash table beyond this. */ + + check_match(s, s->strstart-1, s->prev_match, s->prev_length); + + bflush = zlib_tr_tally(s, s->strstart -1 - s->prev_match, + s->prev_length - MIN_MATCH); + + /* Insert in hash table all strings up to the end of the match. + * strstart-1 and strstart are already inserted. If there is not + * enough lookahead, the last two strings are not inserted in + * the hash table. + */ + s->lookahead -= s->prev_length-1; + s->prev_length -= 2; + do { + if (++s->strstart <= max_insert) { + INSERT_STRING(s, s->strstart, hash_head); + } + } while (--s->prev_length != 0); + s->match_available = 0; + s->match_length = MIN_MATCH-1; + s->strstart++; + + if (bflush) FLUSH_BLOCK(s, 0); + + } else if (s->match_available) { + /* If there was no match at the previous position, output a + * single literal. If there was a match but the current match + * is longer, truncate the previous match to a single literal. + */ + Tracevv((stderr,"%c", s->window[s->strstart-1])); + if (zlib_tr_tally (s, 0, s->window[s->strstart-1])) { + FLUSH_BLOCK_ONLY(s, 0); + } + s->strstart++; + s->lookahead--; + if (s->strm->avail_out == 0) return need_more; + } else { + /* There is no previous match to compare with, wait for + * the next step to decide. + */ + s->match_available = 1; + s->strstart++; + s->lookahead--; + } + } + Assert (flush != Z_NO_FLUSH, "no flush?"); + if (s->match_available) { + Tracevv((stderr,"%c", s->window[s->strstart-1])); + zlib_tr_tally (s, 0, s->window[s->strstart-1]); + s->match_available = 0; + } + FLUSH_BLOCK(s, flush == Z_FINISH); + return flush == Z_FINISH ? finish_done : block_done; +} + +int zlib_deflate_workspacesize(int windowBits, int memLevel) +{ + if (windowBits < 0) /* undocumented feature: suppress zlib header */ + windowBits = -windowBits; + + /* Since the return value is typically passed to vmalloc() unchecked... */ + BUG_ON(memLevel < 1 || memLevel > MAX_MEM_LEVEL || windowBits < 9 || + windowBits > 15); + + return sizeof(deflate_workspace) + + zlib_deflate_window_memsize(windowBits) + + zlib_deflate_prev_memsize(windowBits) + + zlib_deflate_head_memsize(memLevel) + + zlib_deflate_overlay_memsize(memLevel); +} + +int zlib_deflate_dfltcc_enabled(void) +{ + return DEFLATE_DFLTCC_ENABLED(); +} diff --git a/lib/zlib_deflate/deflate_syms.c b/lib/zlib_deflate/deflate_syms.c new file mode 100644 index 000000000..24b740b99 --- /dev/null +++ b/lib/zlib_deflate/deflate_syms.c @@ -0,0 +1,20 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * linux/lib/zlib_deflate/deflate_syms.c + * + * Exported symbols for the deflate functionality. + * + */ + +#include <linux/module.h> +#include <linux/init.h> + +#include <linux/zlib.h> + +EXPORT_SYMBOL(zlib_deflate_workspacesize); +EXPORT_SYMBOL(zlib_deflate_dfltcc_enabled); +EXPORT_SYMBOL(zlib_deflate); +EXPORT_SYMBOL(zlib_deflateInit2); +EXPORT_SYMBOL(zlib_deflateEnd); +EXPORT_SYMBOL(zlib_deflateReset); +MODULE_LICENSE("GPL"); diff --git a/lib/zlib_deflate/deftree.c b/lib/zlib_deflate/deftree.c new file mode 100644 index 000000000..a4a34da51 --- /dev/null +++ b/lib/zlib_deflate/deftree.c @@ -0,0 +1,1059 @@ +/* +++ trees.c */ +/* trees.c -- output deflated data using Huffman coding + * Copyright (C) 1995-1996 Jean-loup Gailly + * For conditions of distribution and use, see copyright notice in zlib.h + */ + +/* + * ALGORITHM + * + * The "deflation" process uses several Huffman trees. The more + * common source values are represented by shorter bit sequences. + * + * Each code tree is stored in a compressed form which is itself + * a Huffman encoding of the lengths of all the code strings (in + * ascending order by source values). The actual code strings are + * reconstructed from the lengths in the inflate process, as described + * in the deflate specification. + * + * REFERENCES + * + * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". + * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc + * + * Storer, James A. + * Data Compression: Methods and Theory, pp. 49-50. + * Computer Science Press, 1988. ISBN 0-7167-8156-5. + * + * Sedgewick, R. + * Algorithms, p290. + * Addison-Wesley, 1983. ISBN 0-201-06672-6. + */ + +/* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */ + +/* #include "deflate.h" */ + +#include <linux/zutil.h> +#include <linux/bitrev.h> +#include "defutil.h" + +#ifdef DEBUG_ZLIB +# include <ctype.h> +#endif + +/* =========================================================================== + * Constants + */ + +#define MAX_BL_BITS 7 +/* Bit length codes must not exceed MAX_BL_BITS bits */ + +#define END_BLOCK 256 +/* end of block literal code */ + +#define REP_3_6 16 +/* repeat previous bit length 3-6 times (2 bits of repeat count) */ + +#define REPZ_3_10 17 +/* repeat a zero length 3-10 times (3 bits of repeat count) */ + +#define REPZ_11_138 18 +/* repeat a zero length 11-138 times (7 bits of repeat count) */ + +static const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ + = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; + +static const int extra_dbits[D_CODES] /* extra bits for each distance code */ + = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; + +static const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ + = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; + +static const uch bl_order[BL_CODES] + = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; +/* The lengths of the bit length codes are sent in order of decreasing + * probability, to avoid transmitting the lengths for unused bit length codes. + */ + +/* =========================================================================== + * Local data. These are initialized only once. + */ + +static ct_data static_ltree[L_CODES+2]; +/* The static literal tree. Since the bit lengths are imposed, there is no + * need for the L_CODES extra codes used during heap construction. However + * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init + * below). + */ + +static ct_data static_dtree[D_CODES]; +/* The static distance tree. (Actually a trivial tree since all codes use + * 5 bits.) + */ + +static uch dist_code[512]; +/* distance codes. The first 256 values correspond to the distances + * 3 .. 258, the last 256 values correspond to the top 8 bits of + * the 15 bit distances. + */ + +static uch length_code[MAX_MATCH-MIN_MATCH+1]; +/* length code for each normalized match length (0 == MIN_MATCH) */ + +static int base_length[LENGTH_CODES]; +/* First normalized length for each code (0 = MIN_MATCH) */ + +static int base_dist[D_CODES]; +/* First normalized distance for each code (0 = distance of 1) */ + +struct static_tree_desc_s { + const ct_data *static_tree; /* static tree or NULL */ + const int *extra_bits; /* extra bits for each code or NULL */ + int extra_base; /* base index for extra_bits */ + int elems; /* max number of elements in the tree */ + int max_length; /* max bit length for the codes */ +}; + +static static_tree_desc static_l_desc = +{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; + +static static_tree_desc static_d_desc = +{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; + +static static_tree_desc static_bl_desc = +{(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; + +/* =========================================================================== + * Local (static) routines in this file. + */ + +static void tr_static_init (void); +static void init_block (deflate_state *s); +static void pqdownheap (deflate_state *s, ct_data *tree, int k); +static void gen_bitlen (deflate_state *s, tree_desc *desc); +static void gen_codes (ct_data *tree, int max_code, ush *bl_count); +static void build_tree (deflate_state *s, tree_desc *desc); +static void scan_tree (deflate_state *s, ct_data *tree, int max_code); +static void send_tree (deflate_state *s, ct_data *tree, int max_code); +static int build_bl_tree (deflate_state *s); +static void send_all_trees (deflate_state *s, int lcodes, int dcodes, + int blcodes); +static void compress_block (deflate_state *s, ct_data *ltree, + ct_data *dtree); +static void set_data_type (deflate_state *s); +static void bi_flush (deflate_state *s); +static void copy_block (deflate_state *s, char *buf, unsigned len, + int header); + +#ifndef DEBUG_ZLIB +# define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) + /* Send a code of the given tree. c and tree must not have side effects */ + +#else /* DEBUG_ZLIB */ +# define send_code(s, c, tree) \ + { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ + send_bits(s, tree[c].Code, tree[c].Len); } +#endif + +#define d_code(dist) \ + ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)]) +/* Mapping from a distance to a distance code. dist is the distance - 1 and + * must not have side effects. dist_code[256] and dist_code[257] are never + * used. + */ + +/* =========================================================================== + * Initialize the various 'constant' tables. In a multi-threaded environment, + * this function may be called by two threads concurrently, but this is + * harmless since both invocations do exactly the same thing. + */ +static void tr_static_init(void) +{ + static int static_init_done; + int n; /* iterates over tree elements */ + int bits; /* bit counter */ + int length; /* length value */ + int code; /* code value */ + int dist; /* distance index */ + ush bl_count[MAX_BITS+1]; + /* number of codes at each bit length for an optimal tree */ + + if (static_init_done) return; + + /* Initialize the mapping length (0..255) -> length code (0..28) */ + length = 0; + for (code = 0; code < LENGTH_CODES-1; code++) { + base_length[code] = length; + for (n = 0; n < (1<<extra_lbits[code]); n++) { + length_code[length++] = (uch)code; + } + } + Assert (length == 256, "tr_static_init: length != 256"); + /* Note that the length 255 (match length 258) can be represented + * in two different ways: code 284 + 5 bits or code 285, so we + * overwrite length_code[255] to use the best encoding: + */ + length_code[length-1] = (uch)code; + + /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ + dist = 0; + for (code = 0 ; code < 16; code++) { + base_dist[code] = dist; + for (n = 0; n < (1<<extra_dbits[code]); n++) { + dist_code[dist++] = (uch)code; + } + } + Assert (dist == 256, "tr_static_init: dist != 256"); + dist >>= 7; /* from now on, all distances are divided by 128 */ + for ( ; code < D_CODES; code++) { + base_dist[code] = dist << 7; + for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { + dist_code[256 + dist++] = (uch)code; + } + } + Assert (dist == 256, "tr_static_init: 256+dist != 512"); + + /* Construct the codes of the static literal tree */ + for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; + n = 0; + while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; + while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; + while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; + while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; + /* Codes 286 and 287 do not exist, but we must include them in the + * tree construction to get a canonical Huffman tree (longest code + * all ones) + */ + gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); + + /* The static distance tree is trivial: */ + for (n = 0; n < D_CODES; n++) { + static_dtree[n].Len = 5; + static_dtree[n].Code = bitrev32((u32)n) >> (32 - 5); + } + static_init_done = 1; +} + +/* =========================================================================== + * Initialize the tree data structures for a new zlib stream. + */ +void zlib_tr_init( + deflate_state *s +) +{ + tr_static_init(); + + s->compressed_len = 0L; + + s->l_desc.dyn_tree = s->dyn_ltree; + s->l_desc.stat_desc = &static_l_desc; + + s->d_desc.dyn_tree = s->dyn_dtree; + s->d_desc.stat_desc = &static_d_desc; + + s->bl_desc.dyn_tree = s->bl_tree; + s->bl_desc.stat_desc = &static_bl_desc; + + s->bi_buf = 0; + s->bi_valid = 0; + s->last_eob_len = 8; /* enough lookahead for inflate */ +#ifdef DEBUG_ZLIB + s->bits_sent = 0L; +#endif + + /* Initialize the first block of the first file: */ + init_block(s); +} + +/* =========================================================================== + * Initialize a new block. + */ +static void init_block( + deflate_state *s +) +{ + int n; /* iterates over tree elements */ + + /* Initialize the trees. */ + for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; + for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; + for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; + + s->dyn_ltree[END_BLOCK].Freq = 1; + s->opt_len = s->static_len = 0L; + s->last_lit = s->matches = 0; +} + +#define SMALLEST 1 +/* Index within the heap array of least frequent node in the Huffman tree */ + + +/* =========================================================================== + * Remove the smallest element from the heap and recreate the heap with + * one less element. Updates heap and heap_len. + */ +#define pqremove(s, tree, top) \ +{\ + top = s->heap[SMALLEST]; \ + s->heap[SMALLEST] = s->heap[s->heap_len--]; \ + pqdownheap(s, tree, SMALLEST); \ +} + +/* =========================================================================== + * Compares to subtrees, using the tree depth as tie breaker when + * the subtrees have equal frequency. This minimizes the worst case length. + */ +#define smaller(tree, n, m, depth) \ + (tree[n].Freq < tree[m].Freq || \ + (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) + +/* =========================================================================== + * Restore the heap property by moving down the tree starting at node k, + * exchanging a node with the smallest of its two sons if necessary, stopping + * when the heap property is re-established (each father smaller than its + * two sons). + */ +static void pqdownheap( + deflate_state *s, + ct_data *tree, /* the tree to restore */ + int k /* node to move down */ +) +{ + int v = s->heap[k]; + int j = k << 1; /* left son of k */ + while (j <= s->heap_len) { + /* Set j to the smallest of the two sons: */ + if (j < s->heap_len && + smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { + j++; + } + /* Exit if v is smaller than both sons */ + if (smaller(tree, v, s->heap[j], s->depth)) break; + + /* Exchange v with the smallest son */ + s->heap[k] = s->heap[j]; k = j; + + /* And continue down the tree, setting j to the left son of k */ + j <<= 1; + } + s->heap[k] = v; +} + +/* =========================================================================== + * Compute the optimal bit lengths for a tree and update the total bit length + * for the current block. + * IN assertion: the fields freq and dad are set, heap[heap_max] and + * above are the tree nodes sorted by increasing frequency. + * OUT assertions: the field len is set to the optimal bit length, the + * array bl_count contains the frequencies for each bit length. + * The length opt_len is updated; static_len is also updated if stree is + * not null. + */ +static void gen_bitlen( + deflate_state *s, + tree_desc *desc /* the tree descriptor */ +) +{ + ct_data *tree = desc->dyn_tree; + int max_code = desc->max_code; + const ct_data *stree = desc->stat_desc->static_tree; + const int *extra = desc->stat_desc->extra_bits; + int base = desc->stat_desc->extra_base; + int max_length = desc->stat_desc->max_length; + int h; /* heap index */ + int n, m; /* iterate over the tree elements */ + int bits; /* bit length */ + int xbits; /* extra bits */ + ush f; /* frequency */ + int overflow = 0; /* number of elements with bit length too large */ + + for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; + + /* In a first pass, compute the optimal bit lengths (which may + * overflow in the case of the bit length tree). + */ + tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ + + for (h = s->heap_max+1; h < HEAP_SIZE; h++) { + n = s->heap[h]; + bits = tree[tree[n].Dad].Len + 1; + if (bits > max_length) bits = max_length, overflow++; + tree[n].Len = (ush)bits; + /* We overwrite tree[n].Dad which is no longer needed */ + + if (n > max_code) continue; /* not a leaf node */ + + s->bl_count[bits]++; + xbits = 0; + if (n >= base) xbits = extra[n-base]; + f = tree[n].Freq; + s->opt_len += (ulg)f * (bits + xbits); + if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); + } + if (overflow == 0) return; + + Trace((stderr,"\nbit length overflow\n")); + /* This happens for example on obj2 and pic of the Calgary corpus */ + + /* Find the first bit length which could increase: */ + do { + bits = max_length-1; + while (s->bl_count[bits] == 0) bits--; + s->bl_count[bits]--; /* move one leaf down the tree */ + s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ + s->bl_count[max_length]--; + /* The brother of the overflow item also moves one step up, + * but this does not affect bl_count[max_length] + */ + overflow -= 2; + } while (overflow > 0); + + /* Now recompute all bit lengths, scanning in increasing frequency. + * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all + * lengths instead of fixing only the wrong ones. This idea is taken + * from 'ar' written by Haruhiko Okumura.) + */ + for (bits = max_length; bits != 0; bits--) { + n = s->bl_count[bits]; + while (n != 0) { + m = s->heap[--h]; + if (m > max_code) continue; + if (tree[m].Len != (unsigned) bits) { + Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); + s->opt_len += ((long)bits - (long)tree[m].Len) + *(long)tree[m].Freq; + tree[m].Len = (ush)bits; + } + n--; + } + } +} + +/* =========================================================================== + * Generate the codes for a given tree and bit counts (which need not be + * optimal). + * IN assertion: the array bl_count contains the bit length statistics for + * the given tree and the field len is set for all tree elements. + * OUT assertion: the field code is set for all tree elements of non + * zero code length. + */ +static void gen_codes( + ct_data *tree, /* the tree to decorate */ + int max_code, /* largest code with non zero frequency */ + ush *bl_count /* number of codes at each bit length */ +) +{ + ush next_code[MAX_BITS+1]; /* next code value for each bit length */ + ush code = 0; /* running code value */ + int bits; /* bit index */ + int n; /* code index */ + + /* The distribution counts are first used to generate the code values + * without bit reversal. + */ + for (bits = 1; bits <= MAX_BITS; bits++) { + next_code[bits] = code = (code + bl_count[bits-1]) << 1; + } + /* Check that the bit counts in bl_count are consistent. The last code + * must be all ones. + */ + Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, + "inconsistent bit counts"); + Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); + + for (n = 0; n <= max_code; n++) { + int len = tree[n].Len; + if (len == 0) continue; + /* Now reverse the bits */ + tree[n].Code = bitrev32((u32)(next_code[len]++)) >> (32 - len); + + Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", + n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); + } +} + +/* =========================================================================== + * Construct one Huffman tree and assigns the code bit strings and lengths. + * Update the total bit length for the current block. + * IN assertion: the field freq is set for all tree elements. + * OUT assertions: the fields len and code are set to the optimal bit length + * and corresponding code. The length opt_len is updated; static_len is + * also updated if stree is not null. The field max_code is set. + */ +static void build_tree( + deflate_state *s, + tree_desc *desc /* the tree descriptor */ +) +{ + ct_data *tree = desc->dyn_tree; + const ct_data *stree = desc->stat_desc->static_tree; + int elems = desc->stat_desc->elems; + int n, m; /* iterate over heap elements */ + int max_code = -1; /* largest code with non zero frequency */ + int node; /* new node being created */ + + /* Construct the initial heap, with least frequent element in + * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. + * heap[0] is not used. + */ + s->heap_len = 0, s->heap_max = HEAP_SIZE; + + for (n = 0; n < elems; n++) { + if (tree[n].Freq != 0) { + s->heap[++(s->heap_len)] = max_code = n; + s->depth[n] = 0; + } else { + tree[n].Len = 0; + } + } + + /* The pkzip format requires that at least one distance code exists, + * and that at least one bit should be sent even if there is only one + * possible code. So to avoid special checks later on we force at least + * two codes of non zero frequency. + */ + while (s->heap_len < 2) { + node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); + tree[node].Freq = 1; + s->depth[node] = 0; + s->opt_len--; if (stree) s->static_len -= stree[node].Len; + /* node is 0 or 1 so it does not have extra bits */ + } + desc->max_code = max_code; + + /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, + * establish sub-heaps of increasing lengths: + */ + for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); + + /* Construct the Huffman tree by repeatedly combining the least two + * frequent nodes. + */ + node = elems; /* next internal node of the tree */ + do { + pqremove(s, tree, n); /* n = node of least frequency */ + m = s->heap[SMALLEST]; /* m = node of next least frequency */ + + s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ + s->heap[--(s->heap_max)] = m; + + /* Create a new node father of n and m */ + tree[node].Freq = tree[n].Freq + tree[m].Freq; + s->depth[node] = (uch) (max(s->depth[n], s->depth[m]) + 1); + tree[n].Dad = tree[m].Dad = (ush)node; +#ifdef DUMP_BL_TREE + if (tree == s->bl_tree) { + fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", + node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); + } +#endif + /* and insert the new node in the heap */ + s->heap[SMALLEST] = node++; + pqdownheap(s, tree, SMALLEST); + + } while (s->heap_len >= 2); + + s->heap[--(s->heap_max)] = s->heap[SMALLEST]; + + /* At this point, the fields freq and dad are set. We can now + * generate the bit lengths. + */ + gen_bitlen(s, (tree_desc *)desc); + + /* The field len is now set, we can generate the bit codes */ + gen_codes ((ct_data *)tree, max_code, s->bl_count); +} + +/* =========================================================================== + * Scan a literal or distance tree to determine the frequencies of the codes + * in the bit length tree. + */ +static void scan_tree( + deflate_state *s, + ct_data *tree, /* the tree to be scanned */ + int max_code /* and its largest code of non zero frequency */ +) +{ + int n; /* iterates over all tree elements */ + int prevlen = -1; /* last emitted length */ + int curlen; /* length of current code */ + int nextlen = tree[0].Len; /* length of next code */ + int count = 0; /* repeat count of the current code */ + int max_count = 7; /* max repeat count */ + int min_count = 4; /* min repeat count */ + + if (nextlen == 0) max_count = 138, min_count = 3; + tree[max_code+1].Len = (ush)0xffff; /* guard */ + + for (n = 0; n <= max_code; n++) { + curlen = nextlen; nextlen = tree[n+1].Len; + if (++count < max_count && curlen == nextlen) { + continue; + } else if (count < min_count) { + s->bl_tree[curlen].Freq += count; + } else if (curlen != 0) { + if (curlen != prevlen) s->bl_tree[curlen].Freq++; + s->bl_tree[REP_3_6].Freq++; + } else if (count <= 10) { + s->bl_tree[REPZ_3_10].Freq++; + } else { + s->bl_tree[REPZ_11_138].Freq++; + } + count = 0; prevlen = curlen; + if (nextlen == 0) { + max_count = 138, min_count = 3; + } else if (curlen == nextlen) { + max_count = 6, min_count = 3; + } else { + max_count = 7, min_count = 4; + } + } +} + +/* =========================================================================== + * Send a literal or distance tree in compressed form, using the codes in + * bl_tree. + */ +static void send_tree( + deflate_state *s, + ct_data *tree, /* the tree to be scanned */ + int max_code /* and its largest code of non zero frequency */ +) +{ + int n; /* iterates over all tree elements */ + int prevlen = -1; /* last emitted length */ + int curlen; /* length of current code */ + int nextlen = tree[0].Len; /* length of next code */ + int count = 0; /* repeat count of the current code */ + int max_count = 7; /* max repeat count */ + int min_count = 4; /* min repeat count */ + + /* tree[max_code+1].Len = -1; */ /* guard already set */ + if (nextlen == 0) max_count = 138, min_count = 3; + + for (n = 0; n <= max_code; n++) { + curlen = nextlen; nextlen = tree[n+1].Len; + if (++count < max_count && curlen == nextlen) { + continue; + } else if (count < min_count) { + do { send_code(s, curlen, s->bl_tree); } while (--count != 0); + + } else if (curlen != 0) { + if (curlen != prevlen) { + send_code(s, curlen, s->bl_tree); count--; + } + Assert(count >= 3 && count <= 6, " 3_6?"); + send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); + + } else if (count <= 10) { + send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); + + } else { + send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); + } + count = 0; prevlen = curlen; + if (nextlen == 0) { + max_count = 138, min_count = 3; + } else if (curlen == nextlen) { + max_count = 6, min_count = 3; + } else { + max_count = 7, min_count = 4; + } + } +} + +/* =========================================================================== + * Construct the Huffman tree for the bit lengths and return the index in + * bl_order of the last bit length code to send. + */ +static int build_bl_tree( + deflate_state *s +) +{ + int max_blindex; /* index of last bit length code of non zero freq */ + + /* Determine the bit length frequencies for literal and distance trees */ + scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); + scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); + + /* Build the bit length tree: */ + build_tree(s, (tree_desc *)(&(s->bl_desc))); + /* opt_len now includes the length of the tree representations, except + * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. + */ + + /* Determine the number of bit length codes to send. The pkzip format + * requires that at least 4 bit length codes be sent. (appnote.txt says + * 3 but the actual value used is 4.) + */ + for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { + if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; + } + /* Update opt_len to include the bit length tree and counts */ + s->opt_len += 3*(max_blindex+1) + 5+5+4; + Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", + s->opt_len, s->static_len)); + + return max_blindex; +} + +/* =========================================================================== + * Send the header for a block using dynamic Huffman trees: the counts, the + * lengths of the bit length codes, the literal tree and the distance tree. + * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. + */ +static void send_all_trees( + deflate_state *s, + int lcodes, /* number of codes for each tree */ + int dcodes, /* number of codes for each tree */ + int blcodes /* number of codes for each tree */ +) +{ + int rank; /* index in bl_order */ + + Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); + Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, + "too many codes"); + Tracev((stderr, "\nbl counts: ")); + send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ + send_bits(s, dcodes-1, 5); + send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ + for (rank = 0; rank < blcodes; rank++) { + Tracev((stderr, "\nbl code %2d ", bl_order[rank])); + send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); + } + Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); + + send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ + Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); + + send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ + Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); +} + +/* =========================================================================== + * Send a stored block + */ +void zlib_tr_stored_block( + deflate_state *s, + char *buf, /* input block */ + ulg stored_len, /* length of input block */ + int eof /* true if this is the last block for a file */ +) +{ + send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */ + s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; + s->compressed_len += (stored_len + 4) << 3; + + copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ +} + +/* Send just the `stored block' type code without any length bytes or data. + */ +void zlib_tr_stored_type_only( + deflate_state *s +) +{ + send_bits(s, (STORED_BLOCK << 1), 3); + bi_windup(s); + s->compressed_len = (s->compressed_len + 3) & ~7L; +} + + +/* =========================================================================== + * Send one empty static block to give enough lookahead for inflate. + * This takes 10 bits, of which 7 may remain in the bit buffer. + * The current inflate code requires 9 bits of lookahead. If the + * last two codes for the previous block (real code plus EOB) were coded + * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode + * the last real code. In this case we send two empty static blocks instead + * of one. (There are no problems if the previous block is stored or fixed.) + * To simplify the code, we assume the worst case of last real code encoded + * on one bit only. + */ +void zlib_tr_align( + deflate_state *s +) +{ + send_bits(s, STATIC_TREES<<1, 3); + send_code(s, END_BLOCK, static_ltree); + s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ + bi_flush(s); + /* Of the 10 bits for the empty block, we have already sent + * (10 - bi_valid) bits. The lookahead for the last real code (before + * the EOB of the previous block) was thus at least one plus the length + * of the EOB plus what we have just sent of the empty static block. + */ + if (1 + s->last_eob_len + 10 - s->bi_valid < 9) { + send_bits(s, STATIC_TREES<<1, 3); + send_code(s, END_BLOCK, static_ltree); + s->compressed_len += 10L; + bi_flush(s); + } + s->last_eob_len = 7; +} + +/* =========================================================================== + * Determine the best encoding for the current block: dynamic trees, static + * trees or store, and output the encoded block to the zip file. This function + * returns the total compressed length for the file so far. + */ +ulg zlib_tr_flush_block( + deflate_state *s, + char *buf, /* input block, or NULL if too old */ + ulg stored_len, /* length of input block */ + int eof /* true if this is the last block for a file */ +) +{ + ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ + int max_blindex = 0; /* index of last bit length code of non zero freq */ + + /* Build the Huffman trees unless a stored block is forced */ + if (s->level > 0) { + + /* Check if the file is ascii or binary */ + if (s->data_type == Z_UNKNOWN) set_data_type(s); + + /* Construct the literal and distance trees */ + build_tree(s, (tree_desc *)(&(s->l_desc))); + Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, + s->static_len)); + + build_tree(s, (tree_desc *)(&(s->d_desc))); + Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, + s->static_len)); + /* At this point, opt_len and static_len are the total bit lengths of + * the compressed block data, excluding the tree representations. + */ + + /* Build the bit length tree for the above two trees, and get the index + * in bl_order of the last bit length code to send. + */ + max_blindex = build_bl_tree(s); + + /* Determine the best encoding. Compute first the block length in bytes*/ + opt_lenb = (s->opt_len+3+7)>>3; + static_lenb = (s->static_len+3+7)>>3; + + Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", + opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, + s->last_lit)); + + if (static_lenb <= opt_lenb) opt_lenb = static_lenb; + + } else { + Assert(buf != (char*)0, "lost buf"); + opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ + } + + /* If compression failed and this is the first and last block, + * and if the .zip file can be seeked (to rewrite the local header), + * the whole file is transformed into a stored file: + */ +#ifdef STORED_FILE_OK +# ifdef FORCE_STORED_FILE + if (eof && s->compressed_len == 0L) { /* force stored file */ +# else + if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) { +# endif + /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */ + if (buf == (char*)0) error ("block vanished"); + + copy_block(s, buf, (unsigned)stored_len, 0); /* without header */ + s->compressed_len = stored_len << 3; + s->method = STORED; + } else +#endif /* STORED_FILE_OK */ + +#ifdef FORCE_STORED + if (buf != (char*)0) { /* force stored block */ +#else + if (stored_len+4 <= opt_lenb && buf != (char*)0) { + /* 4: two words for the lengths */ +#endif + /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. + * Otherwise we can't have processed more than WSIZE input bytes since + * the last block flush, because compression would have been + * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to + * transform a block into a stored block. + */ + zlib_tr_stored_block(s, buf, stored_len, eof); + +#ifdef FORCE_STATIC + } else if (static_lenb >= 0) { /* force static trees */ +#else + } else if (static_lenb == opt_lenb) { +#endif + send_bits(s, (STATIC_TREES<<1)+eof, 3); + compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); + s->compressed_len += 3 + s->static_len; + } else { + send_bits(s, (DYN_TREES<<1)+eof, 3); + send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, + max_blindex+1); + compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); + s->compressed_len += 3 + s->opt_len; + } + Assert (s->compressed_len == s->bits_sent, "bad compressed size"); + init_block(s); + + if (eof) { + bi_windup(s); + s->compressed_len += 7; /* align on byte boundary */ + } + Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, + s->compressed_len-7*eof)); + + return s->compressed_len >> 3; +} + +/* =========================================================================== + * Save the match info and tally the frequency counts. Return true if + * the current block must be flushed. + */ +int zlib_tr_tally( + deflate_state *s, + unsigned dist, /* distance of matched string */ + unsigned lc /* match length-MIN_MATCH or unmatched char (if dist==0) */ +) +{ + s->d_buf[s->last_lit] = (ush)dist; + s->l_buf[s->last_lit++] = (uch)lc; + if (dist == 0) { + /* lc is the unmatched char */ + s->dyn_ltree[lc].Freq++; + } else { + s->matches++; + /* Here, lc is the match length - MIN_MATCH */ + dist--; /* dist = match distance - 1 */ + Assert((ush)dist < (ush)MAX_DIST(s) && + (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && + (ush)d_code(dist) < (ush)D_CODES, "zlib_tr_tally: bad match"); + + s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++; + s->dyn_dtree[d_code(dist)].Freq++; + } + + /* Try to guess if it is profitable to stop the current block here */ + if ((s->last_lit & 0xfff) == 0 && s->level > 2) { + /* Compute an upper bound for the compressed length */ + ulg out_length = (ulg)s->last_lit*8L; + ulg in_length = (ulg)((long)s->strstart - s->block_start); + int dcode; + for (dcode = 0; dcode < D_CODES; dcode++) { + out_length += (ulg)s->dyn_dtree[dcode].Freq * + (5L+extra_dbits[dcode]); + } + out_length >>= 3; + Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", + s->last_lit, in_length, out_length, + 100L - out_length*100L/in_length)); + if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; + } + return (s->last_lit == s->lit_bufsize-1); + /* We avoid equality with lit_bufsize because of wraparound at 64K + * on 16 bit machines and because stored blocks are restricted to + * 64K-1 bytes. + */ +} + +/* =========================================================================== + * Send the block data compressed using the given Huffman trees + */ +static void compress_block( + deflate_state *s, + ct_data *ltree, /* literal tree */ + ct_data *dtree /* distance tree */ +) +{ + unsigned dist; /* distance of matched string */ + int lc; /* match length or unmatched char (if dist == 0) */ + unsigned lx = 0; /* running index in l_buf */ + unsigned code; /* the code to send */ + int extra; /* number of extra bits to send */ + + if (s->last_lit != 0) do { + dist = s->d_buf[lx]; + lc = s->l_buf[lx++]; + if (dist == 0) { + send_code(s, lc, ltree); /* send a literal byte */ + Tracecv(isgraph(lc), (stderr," '%c' ", lc)); + } else { + /* Here, lc is the match length - MIN_MATCH */ + code = length_code[lc]; + send_code(s, code+LITERALS+1, ltree); /* send the length code */ + extra = extra_lbits[code]; + if (extra != 0) { + lc -= base_length[code]; + send_bits(s, lc, extra); /* send the extra length bits */ + } + dist--; /* dist is now the match distance - 1 */ + code = d_code(dist); + Assert (code < D_CODES, "bad d_code"); + + send_code(s, code, dtree); /* send the distance code */ + extra = extra_dbits[code]; + if (extra != 0) { + dist -= base_dist[code]; + send_bits(s, dist, extra); /* send the extra distance bits */ + } + } /* literal or match pair ? */ + + /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ + Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow"); + + } while (lx < s->last_lit); + + send_code(s, END_BLOCK, ltree); + s->last_eob_len = ltree[END_BLOCK].Len; +} + +/* =========================================================================== + * Set the data type to ASCII or BINARY, using a crude approximation: + * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. + * IN assertion: the fields freq of dyn_ltree are set and the total of all + * frequencies does not exceed 64K (to fit in an int on 16 bit machines). + */ +static void set_data_type( + deflate_state *s +) +{ + int n = 0; + unsigned ascii_freq = 0; + unsigned bin_freq = 0; + while (n < 7) bin_freq += s->dyn_ltree[n++].Freq; + while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq; + while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq; + s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII); +} + +/* =========================================================================== + * Copy a stored block, storing first the length and its + * one's complement if requested. + */ +static void copy_block( + deflate_state *s, + char *buf, /* the input data */ + unsigned len, /* its length */ + int header /* true if block header must be written */ +) +{ + bi_windup(s); /* align on byte boundary */ + s->last_eob_len = 8; /* enough lookahead for inflate */ + + if (header) { + put_short(s, (ush)len); + put_short(s, (ush)~len); +#ifdef DEBUG_ZLIB + s->bits_sent += 2*16; +#endif + } +#ifdef DEBUG_ZLIB + s->bits_sent += (ulg)len<<3; +#endif + /* bundle up the put_byte(s, *buf++) calls */ + memcpy(&s->pending_buf[s->pending], buf, len); + s->pending += len; +} + diff --git a/lib/zlib_deflate/defutil.h b/lib/zlib_deflate/defutil.h new file mode 100644 index 000000000..385333b22 --- /dev/null +++ b/lib/zlib_deflate/defutil.h @@ -0,0 +1,441 @@ +#ifndef DEFUTIL_H +#define DEFUTIL_H + +#include <linux/zutil.h> + +#define Assert(err, str) +#define Trace(dummy) +#define Tracev(dummy) +#define Tracecv(err, dummy) +#define Tracevv(dummy) + + + +#define LENGTH_CODES 29 +/* number of length codes, not counting the special END_BLOCK code */ + +#define LITERALS 256 +/* number of literal bytes 0..255 */ + +#define L_CODES (LITERALS+1+LENGTH_CODES) +/* number of Literal or Length codes, including the END_BLOCK code */ + +#define D_CODES 30 +/* number of distance codes */ + +#define BL_CODES 19 +/* number of codes used to transfer the bit lengths */ + +#define HEAP_SIZE (2*L_CODES+1) +/* maximum heap size */ + +#define MAX_BITS 15 +/* All codes must not exceed MAX_BITS bits */ + +#define INIT_STATE 42 +#define BUSY_STATE 113 +#define FINISH_STATE 666 +/* Stream status */ + + +/* Data structure describing a single value and its code string. */ +typedef struct ct_data_s { + union { + ush freq; /* frequency count */ + ush code; /* bit string */ + } fc; + union { + ush dad; /* father node in Huffman tree */ + ush len; /* length of bit string */ + } dl; +} ct_data; + +#define Freq fc.freq +#define Code fc.code +#define Dad dl.dad +#define Len dl.len + +typedef struct static_tree_desc_s static_tree_desc; + +typedef struct tree_desc_s { + ct_data *dyn_tree; /* the dynamic tree */ + int max_code; /* largest code with non zero frequency */ + static_tree_desc *stat_desc; /* the corresponding static tree */ +} tree_desc; + +typedef ush Pos; +typedef unsigned IPos; + +/* A Pos is an index in the character window. We use short instead of int to + * save space in the various tables. IPos is used only for parameter passing. + */ + +typedef struct deflate_state { + z_streamp strm; /* pointer back to this zlib stream */ + int status; /* as the name implies */ + Byte *pending_buf; /* output still pending */ + ulg pending_buf_size; /* size of pending_buf */ + Byte *pending_out; /* next pending byte to output to the stream */ + int pending; /* nb of bytes in the pending buffer */ + int noheader; /* suppress zlib header and adler32 */ + Byte data_type; /* UNKNOWN, BINARY or ASCII */ + Byte method; /* STORED (for zip only) or DEFLATED */ + int last_flush; /* value of flush param for previous deflate call */ + + /* used by deflate.c: */ + + uInt w_size; /* LZ77 window size (32K by default) */ + uInt w_bits; /* log2(w_size) (8..16) */ + uInt w_mask; /* w_size - 1 */ + + Byte *window; + /* Sliding window. Input bytes are read into the second half of the window, + * and move to the first half later to keep a dictionary of at least wSize + * bytes. With this organization, matches are limited to a distance of + * wSize-MAX_MATCH bytes, but this ensures that IO is always + * performed with a length multiple of the block size. Also, it limits + * the window size to 64K, which is quite useful on MSDOS. + * To do: use the user input buffer as sliding window. + */ + + ulg window_size; + /* Actual size of window: 2*wSize, except when the user input buffer + * is directly used as sliding window. + */ + + Pos *prev; + /* Link to older string with same hash index. To limit the size of this + * array to 64K, this link is maintained only for the last 32K strings. + * An index in this array is thus a window index modulo 32K. + */ + + Pos *head; /* Heads of the hash chains or NIL. */ + + uInt ins_h; /* hash index of string to be inserted */ + uInt hash_size; /* number of elements in hash table */ + uInt hash_bits; /* log2(hash_size) */ + uInt hash_mask; /* hash_size-1 */ + + uInt hash_shift; + /* Number of bits by which ins_h must be shifted at each input + * step. It must be such that after MIN_MATCH steps, the oldest + * byte no longer takes part in the hash key, that is: + * hash_shift * MIN_MATCH >= hash_bits + */ + + long block_start; + /* Window position at the beginning of the current output block. Gets + * negative when the window is moved backwards. + */ + + uInt match_length; /* length of best match */ + IPos prev_match; /* previous match */ + int match_available; /* set if previous match exists */ + uInt strstart; /* start of string to insert */ + uInt match_start; /* start of matching string */ + uInt lookahead; /* number of valid bytes ahead in window */ + + uInt prev_length; + /* Length of the best match at previous step. Matches not greater than this + * are discarded. This is used in the lazy match evaluation. + */ + + uInt max_chain_length; + /* To speed up deflation, hash chains are never searched beyond this + * length. A higher limit improves compression ratio but degrades the + * speed. + */ + + uInt max_lazy_match; + /* Attempt to find a better match only when the current match is strictly + * smaller than this value. This mechanism is used only for compression + * levels >= 4. + */ +# define max_insert_length max_lazy_match + /* Insert new strings in the hash table only if the match length is not + * greater than this length. This saves time but degrades compression. + * max_insert_length is used only for compression levels <= 3. + */ + + int level; /* compression level (1..9) */ + int strategy; /* favor or force Huffman coding*/ + + uInt good_match; + /* Use a faster search when the previous match is longer than this */ + + int nice_match; /* Stop searching when current match exceeds this */ + + /* used by trees.c: */ + /* Didn't use ct_data typedef below to suppress compiler warning */ + struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ + struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ + struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ + + struct tree_desc_s l_desc; /* desc. for literal tree */ + struct tree_desc_s d_desc; /* desc. for distance tree */ + struct tree_desc_s bl_desc; /* desc. for bit length tree */ + + ush bl_count[MAX_BITS+1]; + /* number of codes at each bit length for an optimal tree */ + + int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ + int heap_len; /* number of elements in the heap */ + int heap_max; /* element of largest frequency */ + /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. + * The same heap array is used to build all trees. + */ + + uch depth[2*L_CODES+1]; + /* Depth of each subtree used as tie breaker for trees of equal frequency + */ + + uch *l_buf; /* buffer for literals or lengths */ + + uInt lit_bufsize; + /* Size of match buffer for literals/lengths. There are 4 reasons for + * limiting lit_bufsize to 64K: + * - frequencies can be kept in 16 bit counters + * - if compression is not successful for the first block, all input + * data is still in the window so we can still emit a stored block even + * when input comes from standard input. (This can also be done for + * all blocks if lit_bufsize is not greater than 32K.) + * - if compression is not successful for a file smaller than 64K, we can + * even emit a stored file instead of a stored block (saving 5 bytes). + * This is applicable only for zip (not gzip or zlib). + * - creating new Huffman trees less frequently may not provide fast + * adaptation to changes in the input data statistics. (Take for + * example a binary file with poorly compressible code followed by + * a highly compressible string table.) Smaller buffer sizes give + * fast adaptation but have of course the overhead of transmitting + * trees more frequently. + * - I can't count above 4 + */ + + uInt last_lit; /* running index in l_buf */ + + ush *d_buf; + /* Buffer for distances. To simplify the code, d_buf and l_buf have + * the same number of elements. To use different lengths, an extra flag + * array would be necessary. + */ + + ulg opt_len; /* bit length of current block with optimal trees */ + ulg static_len; /* bit length of current block with static trees */ + ulg compressed_len; /* total bit length of compressed file */ + uInt matches; /* number of string matches in current block */ + int last_eob_len; /* bit length of EOB code for last block */ + +#ifdef DEBUG_ZLIB + ulg bits_sent; /* bit length of the compressed data */ +#endif + + ush bi_buf; + /* Output buffer. bits are inserted starting at the bottom (least + * significant bits). + */ + int bi_valid; + /* Number of valid bits in bi_buf. All bits above the last valid bit + * are always zero. + */ + +} deflate_state; + +#ifdef CONFIG_ZLIB_DFLTCC +#define zlib_deflate_window_memsize(windowBits) \ + (2 * (1 << (windowBits)) * sizeof(Byte) + PAGE_SIZE) +#else +#define zlib_deflate_window_memsize(windowBits) \ + (2 * (1 << (windowBits)) * sizeof(Byte)) +#endif +#define zlib_deflate_prev_memsize(windowBits) \ + ((1 << (windowBits)) * sizeof(Pos)) +#define zlib_deflate_head_memsize(memLevel) \ + ((1 << ((memLevel)+7)) * sizeof(Pos)) +#define zlib_deflate_overlay_memsize(memLevel) \ + ((1 << ((memLevel)+6)) * (sizeof(ush)+2)) + +/* Output a byte on the stream. + * IN assertion: there is enough room in pending_buf. + */ +#define put_byte(s, c) {s->pending_buf[s->pending++] = (c);} + + +#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) +/* Minimum amount of lookahead, except at the end of the input file. + * See deflate.c for comments about the MIN_MATCH+1. + */ + +#define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD) +/* In order to simplify the code, particularly on 16 bit machines, match + * distances are limited to MAX_DIST instead of WSIZE. + */ + + /* in trees.c */ +void zlib_tr_init (deflate_state *s); +int zlib_tr_tally (deflate_state *s, unsigned dist, unsigned lc); +ulg zlib_tr_flush_block (deflate_state *s, char *buf, ulg stored_len, + int eof); +void zlib_tr_align (deflate_state *s); +void zlib_tr_stored_block (deflate_state *s, char *buf, ulg stored_len, + int eof); +void zlib_tr_stored_type_only (deflate_state *); + + +/* =========================================================================== + * Output a short LSB first on the stream. + * IN assertion: there is enough room in pendingBuf. + */ +#define put_short(s, w) { \ + put_byte(s, (uch)((w) & 0xff)); \ + put_byte(s, (uch)((ush)(w) >> 8)); \ +} + +/* =========================================================================== + * Reverse the first len bits of a code, using straightforward code (a faster + * method would use a table) + * IN assertion: 1 <= len <= 15 + */ +static inline unsigned bi_reverse( + unsigned code, /* the value to invert */ + int len /* its bit length */ +) +{ + register unsigned res = 0; + do { + res |= code & 1; + code >>= 1, res <<= 1; + } while (--len > 0); + return res >> 1; +} + +/* =========================================================================== + * Flush the bit buffer, keeping at most 7 bits in it. + */ +static inline void bi_flush(deflate_state *s) +{ + if (s->bi_valid == 16) { + put_short(s, s->bi_buf); + s->bi_buf = 0; + s->bi_valid = 0; + } else if (s->bi_valid >= 8) { + put_byte(s, (Byte)s->bi_buf); + s->bi_buf >>= 8; + s->bi_valid -= 8; + } +} + +/* =========================================================================== + * Flush the bit buffer and align the output on a byte boundary + */ +static inline void bi_windup(deflate_state *s) +{ + if (s->bi_valid > 8) { + put_short(s, s->bi_buf); + } else if (s->bi_valid > 0) { + put_byte(s, (Byte)s->bi_buf); + } + s->bi_buf = 0; + s->bi_valid = 0; +#ifdef DEBUG_ZLIB + s->bits_sent = (s->bits_sent+7) & ~7; +#endif +} + +typedef enum { + need_more, /* block not completed, need more input or more output */ + block_done, /* block flush performed */ + finish_started, /* finish started, need only more output at next deflate */ + finish_done /* finish done, accept no more input or output */ +} block_state; + +#define Buf_size (8 * 2*sizeof(char)) +/* Number of bits used within bi_buf. (bi_buf might be implemented on + * more than 16 bits on some systems.) + */ + +/* =========================================================================== + * Send a value on a given number of bits. + * IN assertion: length <= 16 and value fits in length bits. + */ +#ifdef DEBUG_ZLIB +static void send_bits (deflate_state *s, int value, int length); + +static void send_bits( + deflate_state *s, + int value, /* value to send */ + int length /* number of bits */ +) +{ + Tracevv((stderr," l %2d v %4x ", length, value)); + Assert(length > 0 && length <= 15, "invalid length"); + s->bits_sent += (ulg)length; + + /* If not enough room in bi_buf, use (valid) bits from bi_buf and + * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) + * unused bits in value. + */ + if (s->bi_valid > (int)Buf_size - length) { + s->bi_buf |= (value << s->bi_valid); + put_short(s, s->bi_buf); + s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); + s->bi_valid += length - Buf_size; + } else { + s->bi_buf |= value << s->bi_valid; + s->bi_valid += length; + } +} +#else /* !DEBUG_ZLIB */ + +#define send_bits(s, value, length) \ +{ int len = length;\ + if (s->bi_valid > (int)Buf_size - len) {\ + int val = value;\ + s->bi_buf |= (val << s->bi_valid);\ + put_short(s, s->bi_buf);\ + s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ + s->bi_valid += len - Buf_size;\ + } else {\ + s->bi_buf |= (value) << s->bi_valid;\ + s->bi_valid += len;\ + }\ +} +#endif /* DEBUG_ZLIB */ + +static inline void zlib_tr_send_bits( + deflate_state *s, + int value, + int length +) +{ + send_bits(s, value, length); +} + +/* ========================================================================= + * Flush as much pending output as possible. All deflate() output goes + * through this function so some applications may wish to modify it + * to avoid allocating a large strm->next_out buffer and copying into it. + * (See also read_buf()). + */ +static inline void flush_pending( + z_streamp strm +) +{ + deflate_state *s = (deflate_state *) strm->state; + unsigned len = s->pending; + + if (len > strm->avail_out) len = strm->avail_out; + if (len == 0) return; + + if (strm->next_out != NULL) { + memcpy(strm->next_out, s->pending_out, len); + strm->next_out += len; + } + s->pending_out += len; + strm->total_out += len; + strm->avail_out -= len; + s->pending -= len; + if (s->pending == 0) { + s->pending_out = s->pending_buf; + } +} +#endif /* DEFUTIL_H */ |