summaryrefslogtreecommitdiffstats
path: root/mm/kasan/shadow.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /mm/kasan/shadow.c
parentInitial commit. (diff)
downloadlinux-upstream/6.1.76.tar.xz
linux-upstream/6.1.76.zip
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'mm/kasan/shadow.c')
-rw-r--r--mm/kasan/shadow.c598
1 files changed, 598 insertions, 0 deletions
diff --git a/mm/kasan/shadow.c b/mm/kasan/shadow.c
new file mode 100644
index 000000000..ecb7acb38
--- /dev/null
+++ b/mm/kasan/shadow.c
@@ -0,0 +1,598 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * This file contains KASAN runtime code that manages shadow memory for
+ * generic and software tag-based KASAN modes.
+ *
+ * Copyright (c) 2014 Samsung Electronics Co., Ltd.
+ * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
+ *
+ * Some code borrowed from https://github.com/xairy/kasan-prototype by
+ * Andrey Konovalov <andreyknvl@gmail.com>
+ */
+
+#include <linux/init.h>
+#include <linux/kasan.h>
+#include <linux/kernel.h>
+#include <linux/kfence.h>
+#include <linux/kmemleak.h>
+#include <linux/memory.h>
+#include <linux/mm.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/vmalloc.h>
+
+#include <asm/cacheflush.h>
+#include <asm/tlbflush.h>
+
+#include "kasan.h"
+
+bool __kasan_check_read(const volatile void *p, unsigned int size)
+{
+ return kasan_check_range((unsigned long)p, size, false, _RET_IP_);
+}
+EXPORT_SYMBOL(__kasan_check_read);
+
+bool __kasan_check_write(const volatile void *p, unsigned int size)
+{
+ return kasan_check_range((unsigned long)p, size, true, _RET_IP_);
+}
+EXPORT_SYMBOL(__kasan_check_write);
+
+#undef memset
+void *memset(void *addr, int c, size_t len)
+{
+ if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
+ return NULL;
+
+ return __memset(addr, c, len);
+}
+
+#ifdef __HAVE_ARCH_MEMMOVE
+#undef memmove
+void *memmove(void *dest, const void *src, size_t len)
+{
+ if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
+ !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
+ return NULL;
+
+ return __memmove(dest, src, len);
+}
+#endif
+
+#undef memcpy
+void *memcpy(void *dest, const void *src, size_t len)
+{
+ if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
+ !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
+ return NULL;
+
+ return __memcpy(dest, src, len);
+}
+
+void kasan_poison(const void *addr, size_t size, u8 value, bool init)
+{
+ void *shadow_start, *shadow_end;
+
+ if (!kasan_arch_is_ready())
+ return;
+
+ /*
+ * Perform shadow offset calculation based on untagged address, as
+ * some of the callers (e.g. kasan_poison_object_data) pass tagged
+ * addresses to this function.
+ */
+ addr = kasan_reset_tag(addr);
+
+ /* Skip KFENCE memory if called explicitly outside of sl*b. */
+ if (is_kfence_address(addr))
+ return;
+
+ if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
+ return;
+ if (WARN_ON(size & KASAN_GRANULE_MASK))
+ return;
+
+ shadow_start = kasan_mem_to_shadow(addr);
+ shadow_end = kasan_mem_to_shadow(addr + size);
+
+ __memset(shadow_start, value, shadow_end - shadow_start);
+}
+EXPORT_SYMBOL(kasan_poison);
+
+#ifdef CONFIG_KASAN_GENERIC
+void kasan_poison_last_granule(const void *addr, size_t size)
+{
+ if (!kasan_arch_is_ready())
+ return;
+
+ if (size & KASAN_GRANULE_MASK) {
+ u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
+ *shadow = size & KASAN_GRANULE_MASK;
+ }
+}
+#endif
+
+void kasan_unpoison(const void *addr, size_t size, bool init)
+{
+ u8 tag = get_tag(addr);
+
+ /*
+ * Perform shadow offset calculation based on untagged address, as
+ * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
+ * addresses to this function.
+ */
+ addr = kasan_reset_tag(addr);
+
+ /*
+ * Skip KFENCE memory if called explicitly outside of sl*b. Also note
+ * that calls to ksize(), where size is not a multiple of machine-word
+ * size, would otherwise poison the invalid portion of the word.
+ */
+ if (is_kfence_address(addr))
+ return;
+
+ if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
+ return;
+
+ /* Unpoison all granules that cover the object. */
+ kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
+
+ /* Partially poison the last granule for the generic mode. */
+ if (IS_ENABLED(CONFIG_KASAN_GENERIC))
+ kasan_poison_last_granule(addr, size);
+}
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+static bool shadow_mapped(unsigned long addr)
+{
+ pgd_t *pgd = pgd_offset_k(addr);
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ if (pgd_none(*pgd))
+ return false;
+ p4d = p4d_offset(pgd, addr);
+ if (p4d_none(*p4d))
+ return false;
+ pud = pud_offset(p4d, addr);
+ if (pud_none(*pud))
+ return false;
+
+ /*
+ * We can't use pud_large() or pud_huge(), the first one is
+ * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
+ * pud_bad(), if pud is bad then it's bad because it's huge.
+ */
+ if (pud_bad(*pud))
+ return true;
+ pmd = pmd_offset(pud, addr);
+ if (pmd_none(*pmd))
+ return false;
+
+ if (pmd_bad(*pmd))
+ return true;
+ pte = pte_offset_kernel(pmd, addr);
+ return !pte_none(*pte);
+}
+
+static int __meminit kasan_mem_notifier(struct notifier_block *nb,
+ unsigned long action, void *data)
+{
+ struct memory_notify *mem_data = data;
+ unsigned long nr_shadow_pages, start_kaddr, shadow_start;
+ unsigned long shadow_end, shadow_size;
+
+ nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
+ start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
+ shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
+ shadow_size = nr_shadow_pages << PAGE_SHIFT;
+ shadow_end = shadow_start + shadow_size;
+
+ if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
+ WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
+ return NOTIFY_BAD;
+
+ switch (action) {
+ case MEM_GOING_ONLINE: {
+ void *ret;
+
+ /*
+ * If shadow is mapped already than it must have been mapped
+ * during the boot. This could happen if we onlining previously
+ * offlined memory.
+ */
+ if (shadow_mapped(shadow_start))
+ return NOTIFY_OK;
+
+ ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
+ shadow_end, GFP_KERNEL,
+ PAGE_KERNEL, VM_NO_GUARD,
+ pfn_to_nid(mem_data->start_pfn),
+ __builtin_return_address(0));
+ if (!ret)
+ return NOTIFY_BAD;
+
+ kmemleak_ignore(ret);
+ return NOTIFY_OK;
+ }
+ case MEM_CANCEL_ONLINE:
+ case MEM_OFFLINE: {
+ struct vm_struct *vm;
+
+ /*
+ * shadow_start was either mapped during boot by kasan_init()
+ * or during memory online by __vmalloc_node_range().
+ * In the latter case we can use vfree() to free shadow.
+ * Non-NULL result of the find_vm_area() will tell us if
+ * that was the second case.
+ *
+ * Currently it's not possible to free shadow mapped
+ * during boot by kasan_init(). It's because the code
+ * to do that hasn't been written yet. So we'll just
+ * leak the memory.
+ */
+ vm = find_vm_area((void *)shadow_start);
+ if (vm)
+ vfree((void *)shadow_start);
+ }
+ }
+
+ return NOTIFY_OK;
+}
+
+static int __init kasan_memhotplug_init(void)
+{
+ hotplug_memory_notifier(kasan_mem_notifier, 0);
+
+ return 0;
+}
+
+core_initcall(kasan_memhotplug_init);
+#endif
+
+#ifdef CONFIG_KASAN_VMALLOC
+
+void __init __weak kasan_populate_early_vm_area_shadow(void *start,
+ unsigned long size)
+{
+}
+
+static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
+ void *unused)
+{
+ unsigned long page;
+ pte_t pte;
+
+ if (likely(!pte_none(*ptep)))
+ return 0;
+
+ page = __get_free_page(GFP_KERNEL);
+ if (!page)
+ return -ENOMEM;
+
+ memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
+ pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
+
+ spin_lock(&init_mm.page_table_lock);
+ if (likely(pte_none(*ptep))) {
+ set_pte_at(&init_mm, addr, ptep, pte);
+ page = 0;
+ }
+ spin_unlock(&init_mm.page_table_lock);
+ if (page)
+ free_page(page);
+ return 0;
+}
+
+int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
+{
+ unsigned long shadow_start, shadow_end;
+ int ret;
+
+ if (!kasan_arch_is_ready())
+ return 0;
+
+ if (!is_vmalloc_or_module_addr((void *)addr))
+ return 0;
+
+ shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
+ shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
+
+ /*
+ * User Mode Linux maps enough shadow memory for all of virtual memory
+ * at boot, so doesn't need to allocate more on vmalloc, just clear it.
+ *
+ * The remaining CONFIG_UML checks in this file exist for the same
+ * reason.
+ */
+ if (IS_ENABLED(CONFIG_UML)) {
+ __memset((void *)shadow_start, KASAN_VMALLOC_INVALID, shadow_end - shadow_start);
+ return 0;
+ }
+
+ shadow_start = PAGE_ALIGN_DOWN(shadow_start);
+ shadow_end = PAGE_ALIGN(shadow_end);
+
+ ret = apply_to_page_range(&init_mm, shadow_start,
+ shadow_end - shadow_start,
+ kasan_populate_vmalloc_pte, NULL);
+ if (ret)
+ return ret;
+
+ flush_cache_vmap(shadow_start, shadow_end);
+
+ /*
+ * We need to be careful about inter-cpu effects here. Consider:
+ *
+ * CPU#0 CPU#1
+ * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
+ * p[99] = 1;
+ *
+ * With compiler instrumentation, that ends up looking like this:
+ *
+ * CPU#0 CPU#1
+ * // vmalloc() allocates memory
+ * // let a = area->addr
+ * // we reach kasan_populate_vmalloc
+ * // and call kasan_unpoison:
+ * STORE shadow(a), unpoison_val
+ * ...
+ * STORE shadow(a+99), unpoison_val x = LOAD p
+ * // rest of vmalloc process <data dependency>
+ * STORE p, a LOAD shadow(x+99)
+ *
+ * If there is no barrier between the end of unpoisoning the shadow
+ * and the store of the result to p, the stores could be committed
+ * in a different order by CPU#0, and CPU#1 could erroneously observe
+ * poison in the shadow.
+ *
+ * We need some sort of barrier between the stores.
+ *
+ * In the vmalloc() case, this is provided by a smp_wmb() in
+ * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
+ * get_vm_area() and friends, the caller gets shadow allocated but
+ * doesn't have any pages mapped into the virtual address space that
+ * has been reserved. Mapping those pages in will involve taking and
+ * releasing a page-table lock, which will provide the barrier.
+ */
+
+ return 0;
+}
+
+static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
+ void *unused)
+{
+ unsigned long page;
+
+ page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
+
+ spin_lock(&init_mm.page_table_lock);
+
+ if (likely(!pte_none(*ptep))) {
+ pte_clear(&init_mm, addr, ptep);
+ free_page(page);
+ }
+ spin_unlock(&init_mm.page_table_lock);
+
+ return 0;
+}
+
+/*
+ * Release the backing for the vmalloc region [start, end), which
+ * lies within the free region [free_region_start, free_region_end).
+ *
+ * This can be run lazily, long after the region was freed. It runs
+ * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
+ * infrastructure.
+ *
+ * How does this work?
+ * -------------------
+ *
+ * We have a region that is page aligned, labeled as A.
+ * That might not map onto the shadow in a way that is page-aligned:
+ *
+ * start end
+ * v v
+ * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
+ * -------- -------- -------- -------- --------
+ * | | | | |
+ * | | | /-------/ |
+ * \-------\|/------/ |/---------------/
+ * ||| ||
+ * |??AAAAAA|AAAAAAAA|AA??????| < shadow
+ * (1) (2) (3)
+ *
+ * First we align the start upwards and the end downwards, so that the
+ * shadow of the region aligns with shadow page boundaries. In the
+ * example, this gives us the shadow page (2). This is the shadow entirely
+ * covered by this allocation.
+ *
+ * Then we have the tricky bits. We want to know if we can free the
+ * partially covered shadow pages - (1) and (3) in the example. For this,
+ * we are given the start and end of the free region that contains this
+ * allocation. Extending our previous example, we could have:
+ *
+ * free_region_start free_region_end
+ * | start end |
+ * v v v v
+ * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
+ * -------- -------- -------- -------- --------
+ * | | | | |
+ * | | | /-------/ |
+ * \-------\|/------/ |/---------------/
+ * ||| ||
+ * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
+ * (1) (2) (3)
+ *
+ * Once again, we align the start of the free region up, and the end of
+ * the free region down so that the shadow is page aligned. So we can free
+ * page (1) - we know no allocation currently uses anything in that page,
+ * because all of it is in the vmalloc free region. But we cannot free
+ * page (3), because we can't be sure that the rest of it is unused.
+ *
+ * We only consider pages that contain part of the original region for
+ * freeing: we don't try to free other pages from the free region or we'd
+ * end up trying to free huge chunks of virtual address space.
+ *
+ * Concurrency
+ * -----------
+ *
+ * How do we know that we're not freeing a page that is simultaneously
+ * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
+ *
+ * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
+ * at the same time. While we run under free_vmap_area_lock, the population
+ * code does not.
+ *
+ * free_vmap_area_lock instead operates to ensure that the larger range
+ * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
+ * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
+ * no space identified as free will become used while we are running. This
+ * means that so long as we are careful with alignment and only free shadow
+ * pages entirely covered by the free region, we will not run in to any
+ * trouble - any simultaneous allocations will be for disjoint regions.
+ */
+void kasan_release_vmalloc(unsigned long start, unsigned long end,
+ unsigned long free_region_start,
+ unsigned long free_region_end)
+{
+ void *shadow_start, *shadow_end;
+ unsigned long region_start, region_end;
+ unsigned long size;
+
+ if (!kasan_arch_is_ready())
+ return;
+
+ region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
+ region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
+
+ free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
+
+ if (start != region_start &&
+ free_region_start < region_start)
+ region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
+
+ free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
+
+ if (end != region_end &&
+ free_region_end > region_end)
+ region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
+
+ shadow_start = kasan_mem_to_shadow((void *)region_start);
+ shadow_end = kasan_mem_to_shadow((void *)region_end);
+
+ if (shadow_end > shadow_start) {
+ size = shadow_end - shadow_start;
+ if (IS_ENABLED(CONFIG_UML)) {
+ __memset(shadow_start, KASAN_SHADOW_INIT, shadow_end - shadow_start);
+ return;
+ }
+ apply_to_existing_page_range(&init_mm,
+ (unsigned long)shadow_start,
+ size, kasan_depopulate_vmalloc_pte,
+ NULL);
+ flush_tlb_kernel_range((unsigned long)shadow_start,
+ (unsigned long)shadow_end);
+ }
+}
+
+void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
+ kasan_vmalloc_flags_t flags)
+{
+ /*
+ * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
+ * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
+ * Software KASAN modes can't optimize zeroing memory by combining it
+ * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
+ */
+
+ if (!kasan_arch_is_ready())
+ return (void *)start;
+
+ if (!is_vmalloc_or_module_addr(start))
+ return (void *)start;
+
+ /*
+ * Don't tag executable memory with the tag-based mode.
+ * The kernel doesn't tolerate having the PC register tagged.
+ */
+ if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
+ !(flags & KASAN_VMALLOC_PROT_NORMAL))
+ return (void *)start;
+
+ start = set_tag(start, kasan_random_tag());
+ kasan_unpoison(start, size, false);
+ return (void *)start;
+}
+
+/*
+ * Poison the shadow for a vmalloc region. Called as part of the
+ * freeing process at the time the region is freed.
+ */
+void __kasan_poison_vmalloc(const void *start, unsigned long size)
+{
+ if (!kasan_arch_is_ready())
+ return;
+
+ if (!is_vmalloc_or_module_addr(start))
+ return;
+
+ size = round_up(size, KASAN_GRANULE_SIZE);
+ kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
+}
+
+#else /* CONFIG_KASAN_VMALLOC */
+
+int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
+{
+ void *ret;
+ size_t scaled_size;
+ size_t shadow_size;
+ unsigned long shadow_start;
+
+ shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
+ scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
+ KASAN_SHADOW_SCALE_SHIFT;
+ shadow_size = round_up(scaled_size, PAGE_SIZE);
+
+ if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
+ return -EINVAL;
+
+ if (IS_ENABLED(CONFIG_UML)) {
+ __memset((void *)shadow_start, KASAN_SHADOW_INIT, shadow_size);
+ return 0;
+ }
+
+ ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
+ shadow_start + shadow_size,
+ GFP_KERNEL,
+ PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
+ __builtin_return_address(0));
+
+ if (ret) {
+ struct vm_struct *vm = find_vm_area(addr);
+ __memset(ret, KASAN_SHADOW_INIT, shadow_size);
+ vm->flags |= VM_KASAN;
+ kmemleak_ignore(ret);
+
+ if (vm->flags & VM_DEFER_KMEMLEAK)
+ kmemleak_vmalloc(vm, size, gfp_mask);
+
+ return 0;
+ }
+
+ return -ENOMEM;
+}
+
+void kasan_free_module_shadow(const struct vm_struct *vm)
+{
+ if (IS_ENABLED(CONFIG_UML))
+ return;
+
+ if (vm->flags & VM_KASAN)
+ vfree(kasan_mem_to_shadow(vm->addr));
+}
+
+#endif