summaryrefslogtreecommitdiffstats
path: root/tools/perf/design.txt
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /tools/perf/design.txt
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'tools/perf/design.txt')
-rw-r--r--tools/perf/design.txt470
1 files changed, 470 insertions, 0 deletions
diff --git a/tools/perf/design.txt b/tools/perf/design.txt
new file mode 100644
index 000000000..aa8cfeabb
--- /dev/null
+++ b/tools/perf/design.txt
@@ -0,0 +1,470 @@
+
+Performance Counters for Linux
+------------------------------
+
+Performance counters are special hardware registers available on most modern
+CPUs. These registers count the number of certain types of hw events: such
+as instructions executed, cachemisses suffered, or branches mis-predicted -
+without slowing down the kernel or applications. These registers can also
+trigger interrupts when a threshold number of events have passed - and can
+thus be used to profile the code that runs on that CPU.
+
+The Linux Performance Counter subsystem provides an abstraction of these
+hardware capabilities. It provides per task and per CPU counters, counter
+groups, and it provides event capabilities on top of those. It
+provides "virtual" 64-bit counters, regardless of the width of the
+underlying hardware counters.
+
+Performance counters are accessed via special file descriptors.
+There's one file descriptor per virtual counter used.
+
+The special file descriptor is opened via the sys_perf_event_open()
+system call:
+
+ int sys_perf_event_open(struct perf_event_attr *hw_event_uptr,
+ pid_t pid, int cpu, int group_fd,
+ unsigned long flags);
+
+The syscall returns the new fd. The fd can be used via the normal
+VFS system calls: read() can be used to read the counter, fcntl()
+can be used to set the blocking mode, etc.
+
+Multiple counters can be kept open at a time, and the counters
+can be poll()ed.
+
+When creating a new counter fd, 'perf_event_attr' is:
+
+struct perf_event_attr {
+ /*
+ * The MSB of the config word signifies if the rest contains cpu
+ * specific (raw) counter configuration data, if unset, the next
+ * 7 bits are an event type and the rest of the bits are the event
+ * identifier.
+ */
+ __u64 config;
+
+ __u64 irq_period;
+ __u32 record_type;
+ __u32 read_format;
+
+ __u64 disabled : 1, /* off by default */
+ inherit : 1, /* children inherit it */
+ pinned : 1, /* must always be on PMU */
+ exclusive : 1, /* only group on PMU */
+ exclude_user : 1, /* don't count user */
+ exclude_kernel : 1, /* ditto kernel */
+ exclude_hv : 1, /* ditto hypervisor */
+ exclude_idle : 1, /* don't count when idle */
+ mmap : 1, /* include mmap data */
+ munmap : 1, /* include munmap data */
+ comm : 1, /* include comm data */
+
+ __reserved_1 : 52;
+
+ __u32 extra_config_len;
+ __u32 wakeup_events; /* wakeup every n events */
+
+ __u64 __reserved_2;
+ __u64 __reserved_3;
+};
+
+The 'config' field specifies what the counter should count. It
+is divided into 3 bit-fields:
+
+raw_type: 1 bit (most significant bit) 0x8000_0000_0000_0000
+type: 7 bits (next most significant) 0x7f00_0000_0000_0000
+event_id: 56 bits (least significant) 0x00ff_ffff_ffff_ffff
+
+If 'raw_type' is 1, then the counter will count a hardware event
+specified by the remaining 63 bits of event_config. The encoding is
+machine-specific.
+
+If 'raw_type' is 0, then the 'type' field says what kind of counter
+this is, with the following encoding:
+
+enum perf_type_id {
+ PERF_TYPE_HARDWARE = 0,
+ PERF_TYPE_SOFTWARE = 1,
+ PERF_TYPE_TRACEPOINT = 2,
+};
+
+A counter of PERF_TYPE_HARDWARE will count the hardware event
+specified by 'event_id':
+
+/*
+ * Generalized performance counter event types, used by the hw_event.event_id
+ * parameter of the sys_perf_event_open() syscall:
+ */
+enum perf_hw_id {
+ /*
+ * Common hardware events, generalized by the kernel:
+ */
+ PERF_COUNT_HW_CPU_CYCLES = 0,
+ PERF_COUNT_HW_INSTRUCTIONS = 1,
+ PERF_COUNT_HW_CACHE_REFERENCES = 2,
+ PERF_COUNT_HW_CACHE_MISSES = 3,
+ PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
+ PERF_COUNT_HW_BRANCH_MISSES = 5,
+ PERF_COUNT_HW_BUS_CYCLES = 6,
+ PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
+ PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
+ PERF_COUNT_HW_REF_CPU_CYCLES = 9,
+};
+
+These are standardized types of events that work relatively uniformly
+on all CPUs that implement Performance Counters support under Linux,
+although there may be variations (e.g., different CPUs might count
+cache references and misses at different levels of the cache hierarchy).
+If a CPU is not able to count the selected event, then the system call
+will return -EINVAL.
+
+More hw_event_types are supported as well, but they are CPU-specific
+and accessed as raw events. For example, to count "External bus
+cycles while bus lock signal asserted" events on Intel Core CPUs, pass
+in a 0x4064 event_id value and set hw_event.raw_type to 1.
+
+A counter of type PERF_TYPE_SOFTWARE will count one of the available
+software events, selected by 'event_id':
+
+/*
+ * Special "software" counters provided by the kernel, even if the hardware
+ * does not support performance counters. These counters measure various
+ * physical and sw events of the kernel (and allow the profiling of them as
+ * well):
+ */
+enum perf_sw_ids {
+ PERF_COUNT_SW_CPU_CLOCK = 0,
+ PERF_COUNT_SW_TASK_CLOCK = 1,
+ PERF_COUNT_SW_PAGE_FAULTS = 2,
+ PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
+ PERF_COUNT_SW_CPU_MIGRATIONS = 4,
+ PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
+ PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
+ PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
+ PERF_COUNT_SW_EMULATION_FAULTS = 8,
+};
+
+Counters of the type PERF_TYPE_TRACEPOINT are available when the ftrace event
+tracer is available, and event_id values can be obtained from
+/debug/tracing/events/*/*/id
+
+
+Counters come in two flavours: counting counters and sampling
+counters. A "counting" counter is one that is used for counting the
+number of events that occur, and is characterised by having
+irq_period = 0.
+
+
+A read() on a counter returns the current value of the counter and possible
+additional values as specified by 'read_format', each value is a u64 (8 bytes)
+in size.
+
+/*
+ * Bits that can be set in hw_event.read_format to request that
+ * reads on the counter should return the indicated quantities,
+ * in increasing order of bit value, after the counter value.
+ */
+enum perf_event_read_format {
+ PERF_FORMAT_TOTAL_TIME_ENABLED = 1,
+ PERF_FORMAT_TOTAL_TIME_RUNNING = 2,
+};
+
+Using these additional values one can establish the overcommit ratio for a
+particular counter allowing one to take the round-robin scheduling effect
+into account.
+
+
+A "sampling" counter is one that is set up to generate an interrupt
+every N events, where N is given by 'irq_period'. A sampling counter
+has irq_period > 0. The record_type controls what data is recorded on each
+interrupt:
+
+/*
+ * Bits that can be set in hw_event.record_type to request information
+ * in the overflow packets.
+ */
+enum perf_event_record_format {
+ PERF_RECORD_IP = 1U << 0,
+ PERF_RECORD_TID = 1U << 1,
+ PERF_RECORD_TIME = 1U << 2,
+ PERF_RECORD_ADDR = 1U << 3,
+ PERF_RECORD_GROUP = 1U << 4,
+ PERF_RECORD_CALLCHAIN = 1U << 5,
+};
+
+Such (and other) events will be recorded in a ring-buffer, which is
+available to user-space using mmap() (see below).
+
+The 'disabled' bit specifies whether the counter starts out disabled
+or enabled. If it is initially disabled, it can be enabled by ioctl
+or prctl (see below).
+
+The 'inherit' bit, if set, specifies that this counter should count
+events on descendant tasks as well as the task specified. This only
+applies to new descendents, not to any existing descendents at the
+time the counter is created (nor to any new descendents of existing
+descendents).
+
+The 'pinned' bit, if set, specifies that the counter should always be
+on the CPU if at all possible. It only applies to hardware counters
+and only to group leaders. If a pinned counter cannot be put onto the
+CPU (e.g. because there are not enough hardware counters or because of
+a conflict with some other event), then the counter goes into an
+'error' state, where reads return end-of-file (i.e. read() returns 0)
+until the counter is subsequently enabled or disabled.
+
+The 'exclusive' bit, if set, specifies that when this counter's group
+is on the CPU, it should be the only group using the CPU's counters.
+In future, this will allow sophisticated monitoring programs to supply
+extra configuration information via 'extra_config_len' to exploit
+advanced features of the CPU's Performance Monitor Unit (PMU) that are
+not otherwise accessible and that might disrupt other hardware
+counters.
+
+The 'exclude_user', 'exclude_kernel' and 'exclude_hv' bits provide a
+way to request that counting of events be restricted to times when the
+CPU is in user, kernel and/or hypervisor mode.
+
+Furthermore the 'exclude_host' and 'exclude_guest' bits provide a way
+to request counting of events restricted to guest and host contexts when
+using Linux as the hypervisor.
+
+The 'mmap' and 'munmap' bits allow recording of PROT_EXEC mmap/munmap
+operations, these can be used to relate userspace IP addresses to actual
+code, even after the mapping (or even the whole process) is gone,
+these events are recorded in the ring-buffer (see below).
+
+The 'comm' bit allows tracking of process comm data on process creation.
+This too is recorded in the ring-buffer (see below).
+
+The 'pid' parameter to the sys_perf_event_open() system call allows the
+counter to be specific to a task:
+
+ pid == 0: if the pid parameter is zero, the counter is attached to the
+ current task.
+
+ pid > 0: the counter is attached to a specific task (if the current task
+ has sufficient privilege to do so)
+
+ pid < 0: all tasks are counted (per cpu counters)
+
+The 'cpu' parameter allows a counter to be made specific to a CPU:
+
+ cpu >= 0: the counter is restricted to a specific CPU
+ cpu == -1: the counter counts on all CPUs
+
+(Note: the combination of 'pid == -1' and 'cpu == -1' is not valid.)
+
+A 'pid > 0' and 'cpu == -1' counter is a per task counter that counts
+events of that task and 'follows' that task to whatever CPU the task
+gets schedule to. Per task counters can be created by any user, for
+their own tasks.
+
+A 'pid == -1' and 'cpu == x' counter is a per CPU counter that counts
+all events on CPU-x. Per CPU counters need CAP_PERFMON or CAP_SYS_ADMIN
+privilege.
+
+The 'flags' parameter is currently unused and must be zero.
+
+The 'group_fd' parameter allows counter "groups" to be set up. A
+counter group has one counter which is the group "leader". The leader
+is created first, with group_fd = -1 in the sys_perf_event_open call
+that creates it. The rest of the group members are created
+subsequently, with group_fd giving the fd of the group leader.
+(A single counter on its own is created with group_fd = -1 and is
+considered to be a group with only 1 member.)
+
+A counter group is scheduled onto the CPU as a unit, that is, it will
+only be put onto the CPU if all of the counters in the group can be
+put onto the CPU. This means that the values of the member counters
+can be meaningfully compared, added, divided (to get ratios), etc.,
+with each other, since they have counted events for the same set of
+executed instructions.
+
+
+Like stated, asynchronous events, like counter overflow or PROT_EXEC mmap
+tracking are logged into a ring-buffer. This ring-buffer is created and
+accessed through mmap().
+
+The mmap size should be 1+2^n pages, where the first page is a meta-data page
+(struct perf_event_mmap_page) that contains various bits of information such
+as where the ring-buffer head is.
+
+/*
+ * Structure of the page that can be mapped via mmap
+ */
+struct perf_event_mmap_page {
+ __u32 version; /* version number of this structure */
+ __u32 compat_version; /* lowest version this is compat with */
+
+ /*
+ * Bits needed to read the hw counters in user-space.
+ *
+ * u32 seq;
+ * s64 count;
+ *
+ * do {
+ * seq = pc->lock;
+ *
+ * barrier()
+ * if (pc->index) {
+ * count = pmc_read(pc->index - 1);
+ * count += pc->offset;
+ * } else
+ * goto regular_read;
+ *
+ * barrier();
+ * } while (pc->lock != seq);
+ *
+ * NOTE: for obvious reason this only works on self-monitoring
+ * processes.
+ */
+ __u32 lock; /* seqlock for synchronization */
+ __u32 index; /* hardware counter identifier */
+ __s64 offset; /* add to hardware counter value */
+
+ /*
+ * Control data for the mmap() data buffer.
+ *
+ * User-space reading this value should issue an rmb(), on SMP capable
+ * platforms, after reading this value -- see perf_event_wakeup().
+ */
+ __u32 data_head; /* head in the data section */
+};
+
+NOTE: the hw-counter userspace bits are arch specific and are currently only
+ implemented on powerpc.
+
+The following 2^n pages are the ring-buffer which contains events of the form:
+
+#define PERF_RECORD_MISC_KERNEL (1 << 0)
+#define PERF_RECORD_MISC_USER (1 << 1)
+#define PERF_RECORD_MISC_OVERFLOW (1 << 2)
+
+struct perf_event_header {
+ __u32 type;
+ __u16 misc;
+ __u16 size;
+};
+
+enum perf_event_type {
+
+ /*
+ * The MMAP events record the PROT_EXEC mappings so that we can
+ * correlate userspace IPs to code. They have the following structure:
+ *
+ * struct {
+ * struct perf_event_header header;
+ *
+ * u32 pid, tid;
+ * u64 addr;
+ * u64 len;
+ * u64 pgoff;
+ * char filename[];
+ * };
+ */
+ PERF_RECORD_MMAP = 1,
+ PERF_RECORD_MUNMAP = 2,
+
+ /*
+ * struct {
+ * struct perf_event_header header;
+ *
+ * u32 pid, tid;
+ * char comm[];
+ * };
+ */
+ PERF_RECORD_COMM = 3,
+
+ /*
+ * When header.misc & PERF_RECORD_MISC_OVERFLOW the event_type field
+ * will be PERF_RECORD_*
+ *
+ * struct {
+ * struct perf_event_header header;
+ *
+ * { u64 ip; } && PERF_RECORD_IP
+ * { u32 pid, tid; } && PERF_RECORD_TID
+ * { u64 time; } && PERF_RECORD_TIME
+ * { u64 addr; } && PERF_RECORD_ADDR
+ *
+ * { u64 nr;
+ * { u64 event, val; } cnt[nr]; } && PERF_RECORD_GROUP
+ *
+ * { u16 nr,
+ * hv,
+ * kernel,
+ * user;
+ * u64 ips[nr]; } && PERF_RECORD_CALLCHAIN
+ * };
+ */
+};
+
+NOTE: PERF_RECORD_CALLCHAIN is arch specific and currently only implemented
+ on x86.
+
+Notification of new events is possible through poll()/select()/epoll() and
+fcntl() managing signals.
+
+Normally a notification is generated for every page filled, however one can
+additionally set perf_event_attr.wakeup_events to generate one every
+so many counter overflow events.
+
+Future work will include a splice() interface to the ring-buffer.
+
+
+Counters can be enabled and disabled in two ways: via ioctl and via
+prctl. When a counter is disabled, it doesn't count or generate
+events but does continue to exist and maintain its count value.
+
+An individual counter can be enabled with
+
+ ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);
+
+or disabled with
+
+ ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
+
+For a counter group, pass PERF_IOC_FLAG_GROUP as the third argument.
+Enabling or disabling the leader of a group enables or disables the
+whole group; that is, while the group leader is disabled, none of the
+counters in the group will count. Enabling or disabling a member of a
+group other than the leader only affects that counter - disabling an
+non-leader stops that counter from counting but doesn't affect any
+other counter.
+
+Additionally, non-inherited overflow counters can use
+
+ ioctl(fd, PERF_EVENT_IOC_REFRESH, nr);
+
+to enable a counter for 'nr' events, after which it gets disabled again.
+
+A process can enable or disable all the counter groups that are
+attached to it, using prctl:
+
+ prctl(PR_TASK_PERF_EVENTS_ENABLE);
+
+ prctl(PR_TASK_PERF_EVENTS_DISABLE);
+
+This applies to all counters on the current process, whether created
+by this process or by another, and doesn't affect any counters that
+this process has created on other processes. It only enables or
+disables the group leaders, not any other members in the groups.
+
+
+Arch requirements
+-----------------
+
+If your architecture does not have hardware performance metrics, you can
+still use the generic software counters based on hrtimers for sampling.
+
+So to start with, in order to add HAVE_PERF_EVENTS to your Kconfig, you
+will need at least this:
+ - asm/perf_event.h - a basic stub will suffice at first
+ - support for atomic64 types (and associated helper functions)
+
+If your architecture does have hardware capabilities, you can override the
+weak stub hw_perf_event_init() to register hardware counters.
+
+Architectures that have d-cache aliassing issues, such as Sparc and ARM,
+should select PERF_USE_VMALLOC in order to avoid these for perf mmap().