summaryrefslogtreecommitdiffstats
path: root/Documentation/core-api/protection-keys.rst
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--Documentation/core-api/protection-keys.rst98
1 files changed, 98 insertions, 0 deletions
diff --git a/Documentation/core-api/protection-keys.rst b/Documentation/core-api/protection-keys.rst
new file mode 100644
index 000000000..bf28ac040
--- /dev/null
+++ b/Documentation/core-api/protection-keys.rst
@@ -0,0 +1,98 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+======================
+Memory Protection Keys
+======================
+
+Memory Protection Keys provide a mechanism for enforcing page-based
+protections, but without requiring modification of the page tables when an
+application changes protection domains.
+
+Pkeys Userspace (PKU) is a feature which can be found on:
+ * Intel server CPUs, Skylake and later
+ * Intel client CPUs, Tiger Lake (11th Gen Core) and later
+ * Future AMD CPUs
+
+Pkeys work by dedicating 4 previously Reserved bits in each page table entry to
+a "protection key", giving 16 possible keys.
+
+Protections for each key are defined with a per-CPU user-accessible register
+(PKRU). Each of these is a 32-bit register storing two bits (Access Disable
+and Write Disable) for each of 16 keys.
+
+Being a CPU register, PKRU is inherently thread-local, potentially giving each
+thread a different set of protections from every other thread.
+
+There are two instructions (RDPKRU/WRPKRU) for reading and writing to the
+register. The feature is only available in 64-bit mode, even though there is
+theoretically space in the PAE PTEs. These permissions are enforced on data
+access only and have no effect on instruction fetches.
+
+Syscalls
+========
+
+There are 3 system calls which directly interact with pkeys::
+
+ int pkey_alloc(unsigned long flags, unsigned long init_access_rights)
+ int pkey_free(int pkey);
+ int pkey_mprotect(unsigned long start, size_t len,
+ unsigned long prot, int pkey);
+
+Before a pkey can be used, it must first be allocated with
+pkey_alloc(). An application calls the WRPKRU instruction
+directly in order to change access permissions to memory covered
+with a key. In this example WRPKRU is wrapped by a C function
+called pkey_set().
+::
+
+ int real_prot = PROT_READ|PROT_WRITE;
+ pkey = pkey_alloc(0, PKEY_DISABLE_WRITE);
+ ptr = mmap(NULL, PAGE_SIZE, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
+ ret = pkey_mprotect(ptr, PAGE_SIZE, real_prot, pkey);
+ ... application runs here
+
+Now, if the application needs to update the data at 'ptr', it can
+gain access, do the update, then remove its write access::
+
+ pkey_set(pkey, 0); // clear PKEY_DISABLE_WRITE
+ *ptr = foo; // assign something
+ pkey_set(pkey, PKEY_DISABLE_WRITE); // set PKEY_DISABLE_WRITE again
+
+Now when it frees the memory, it will also free the pkey since it
+is no longer in use::
+
+ munmap(ptr, PAGE_SIZE);
+ pkey_free(pkey);
+
+.. note:: pkey_set() is a wrapper for the RDPKRU and WRPKRU instructions.
+ An example implementation can be found in
+ tools/testing/selftests/x86/protection_keys.c.
+
+Behavior
+========
+
+The kernel attempts to make protection keys consistent with the
+behavior of a plain mprotect(). For instance if you do this::
+
+ mprotect(ptr, size, PROT_NONE);
+ something(ptr);
+
+you can expect the same effects with protection keys when doing this::
+
+ pkey = pkey_alloc(0, PKEY_DISABLE_WRITE | PKEY_DISABLE_READ);
+ pkey_mprotect(ptr, size, PROT_READ|PROT_WRITE, pkey);
+ something(ptr);
+
+That should be true whether something() is a direct access to 'ptr'
+like::
+
+ *ptr = foo;
+
+or when the kernel does the access on the application's behalf like
+with a read()::
+
+ read(fd, ptr, 1);
+
+The kernel will send a SIGSEGV in both cases, but si_code will be set
+to SEGV_PKERR when violating protection keys versus SEGV_ACCERR when
+the plain mprotect() permissions are violated.