diff options
Diffstat (limited to 'Documentation/translations/zh_CN/accounting')
4 files changed, 434 insertions, 0 deletions
diff --git a/Documentation/translations/zh_CN/accounting/delay-accounting.rst b/Documentation/translations/zh_CN/accounting/delay-accounting.rst new file mode 100644 index 000000000..f18494110 --- /dev/null +++ b/Documentation/translations/zh_CN/accounting/delay-accounting.rst @@ -0,0 +1,109 @@ +.. include:: ../disclaimer-zh_CN.rst + +:Original: Documentation/accounting/delay-accounting.rst + +:Translator: Yang Yang <yang.yang29@zte.com.cn> + +======== +延时计数 +======== + +任务在等待某些内核资源可用时,会造成延时。例如一个可运行的任务可能会等待 +一个空闲CPU来运行。 + +基于每任务的延时计数功能度量由以下情况造成的任务延时: + +a) 等待一个CPU(任务为可运行) +b) 完成由该任务发起的块I/O同步请求 +c) 页面交换 +d) 内存回收 +e) 页缓存抖动 +f) 直接规整 + +并将这些统计信息通过taskstats接口提供给用户空间。 + +这些延时信息为适当的调整任务CPU优先级、io优先级、rss限制提供反馈。重要任务 +长期延时,表示可能需要提高其相关优先级。 + +通过使用taskstats接口,本功能还可提供一个线程组(对应传统Unix进程)所有任务 +(或线程)的总延时统计信息。此类汇总往往是需要的,由内核来完成更加高效。 + +用户空间的实体,特别是资源管理程序,可将延时统计信息汇总到任意组中。为实现 +这一点,任务的延时统计信息在其生命周期内和退出时皆可获取,从而确保可进行 +连续、完整的监控。 + +接口 +---- + +延时计数使用taskstats接口,该接口由本目录另一个单独的文档详细描述。Taskstats +向用户态返回一个通用数据结构,对应每pid或每tgid的统计信息。延时计数功能填写 +该数据结构的特定字段。见 + + include/uapi/linux/taskstats.h + +其描述了延时计数相关字段。系统通常以计数器形式返回 CPU、同步块 I/O、交换、内存 +回收、页缓存抖动、直接规整等的累积延时。 + +取任务某计数器两个连续读数的差值,将得到任务在该时间间隔内等待对应资源的总延时。 + +当任务退出时,内核会将包含每任务的统计信息发送给用户空间,而无需额外的命令。 +若其为线程组最后一个退出的任务,内核还会发送每tgid的统计信息。更多详细信息见 +taskstats接口的描述。 + +tools/accounting目录中的用户空间程序getdelays.c提供了一些简单的命令,用以显示 +延时统计信息。其也是使用taskstats接口的示例。 + +用法 +---- + +使用以下配置编译内核:: + + CONFIG_TASK_DELAY_ACCT=y + CONFIG_TASKSTATS=y + +延时计数在启动时默认关闭。 +若需开启,在启动参数中增加:: + + delayacct + +本文后续的说明基于延时计数已开启。也可在系统运行时,使用sysctl的 +kernel.task_delayacct进行开关。注意,只有在启用延时计数后启动的 +任务才会有相关信息。 + +系统启动后,使用类似getdelays.c的工具获取任务或线程组(tgid)的延时信息。 + +getdelays命令的一般格式:: + + getdelays [-dilv] [-t tgid] [-p pid] + +获取pid为10的任务从系统启动后的延时信息:: + + # ./getdelays -d -p 10 + (输出信息和下例相似) + +获取所有tgid为5的任务从系统启动后的总延时信息:: + + # ./getdelays -d -t 5 + print delayacct stats ON + TGID 5 + + + CPU count real total virtual total delay total delay average + 8 7000000 6872122 3382277 0.423ms + IO count delay total delay average + 0 0 0ms + SWAP count delay total delay average + 0 0 0ms + RECLAIM count delay total delay average + 0 0 0ms + THRASHING count delay total delay average + 0 0 0ms + COMPACT count delay total delay average + 0 0 0ms + +获取pid为1的IO计数,它只和-p一起使用:: + # ./getdelays -i -p 1 + printing IO accounting + linuxrc: read=65536, write=0, cancelled_write=0 + +上面的命令与-v一起使用,可以获取更多调试信息。 diff --git a/Documentation/translations/zh_CN/accounting/index.rst b/Documentation/translations/zh_CN/accounting/index.rst new file mode 100644 index 000000000..a34952e12 --- /dev/null +++ b/Documentation/translations/zh_CN/accounting/index.rst @@ -0,0 +1,25 @@ +.. SPDX-License-Identifier: GPL-2.0 + +.. include:: ../disclaimer-zh_CN.rst + +:Original: Documentation/accounting/index.rst +:Translator: Yang Yang <yang.yang29@zte.com.cn> + +.. _cn_accounting_index.rst: + + +==== +计数 +==== + +.. toctree:: + :maxdepth: 1 + + delay-accounting + psi + taskstats + +Todolist: + + cgroupstats + taskstats-struct diff --git a/Documentation/translations/zh_CN/accounting/psi.rst b/Documentation/translations/zh_CN/accounting/psi.rst new file mode 100644 index 000000000..a0ddb7bd2 --- /dev/null +++ b/Documentation/translations/zh_CN/accounting/psi.rst @@ -0,0 +1,155 @@ +.. include:: ../disclaimer-zh_CN.rst + +:Original: Documentation/accounting/psi.rst +:Translator: Yang Yang <yang.yang29@zte.com.cn> + +.. _cn_psi.rst: + + +================= +PSI——压力阻塞信息 +================= + +:日期: April, 2018 +:作者: Johannes Weiner <hannes@cmpxchg.org> + +当CPU、memory或IO设备处于竞争状态,业务负载会遭受时延毛刺、吞吐量降低, +及面临OOM的风险。 + +如果没有一种准确的方法度量系统竞争程度,则有两种后果:一种是用户过于节制, +未充分利用系统资源;另一种是过度使用,经常性面临业务中断的风险。 + +psi特性能够识别和量化资源竞争导致的业务中断,及其对复杂负载乃至整个系统在 +时间上的影响。 + +准确度量因资源不足造成的生产力损失,有助于用户基于硬件调整业务负载,或基 +于业务负载配置硬件。 + +psi能够实时的提供相关信息,因此系统可基于psi实现动态的负载管理。如实施 +卸载、迁移、策略性的停止或杀死低优先级或可重启的批处理任务。 + +psi帮助用户实现硬件资源利用率的最大化。同时无需牺牲业务负载健康度,也无需 +面临OOM等造成业务中断的风险。 + +压力接口 +======== + +压力信息可通过/proc/pressure/ --cpu、memory、io文件分别获取。 + +CPU相关信息格式如下: + + some avg10=0.00 avg60=0.00 avg300=0.00 total=0 + +内存和IO相关信息如下: + + some avg10=0.00 avg60=0.00 avg300=0.00 total=0 + full avg10=0.00 avg60=0.00 avg300=0.00 total=0 + +some行代表至少有一个任务阻塞于特定资源的时间占比。 + +full行代表所有非idle任务同时阻塞于特定资源的时间占比。在这种状态下CPU资源 +完全被浪费,相对于正常运行,业务负载由于耗费更多时间等待而受到严重影响。 + +由于此情况严重影响系统性能,因此清楚的识别本情况并与some行所代表的情况区分开, +将有助于分析及提升系统性能。这就是full独立于some行的原因。 + +avg代表阻塞时间占比(百分比),为最近10秒、60秒、300秒内的均值。这样我们 +既可观察到短期事件的影响,也可看到中等及长时间内的趋势。total代表总阻塞 +时间(单位微秒),可用于观察时延毛刺,这种毛刺可能在均值中无法体现。 + +监控压力门限 +============ + +用户可注册触发器,通过poll()监控资源压力是否超过门限。 + +触发器定义:指定时间窗口期内累积阻塞时间的最大值。比如可定义500ms内积累 +100ms阻塞,即触发一次唤醒事件。 + +触发器注册方法:用户打开代表特定资源的psi接口文件,写入门限、时间窗口的值。 +所打开的文件描述符用于等待事件,可使用select()、poll()、epoll()。 +写入信息的格式如下: + + <some|full> <stall amount in us> <time window in us> + +示例:向/proc/pressure/memory写入"some 150000 1000000"将新增触发器,将在 +1秒内至少一个任务阻塞于内存的总时间超过150ms时触发。向/proc/pressure/io写入 +"full 50000 1000000"将新增触发器,将在1秒内所有任务都阻塞于io的总时间超过50ms时触发。 + +触发器可针对多个psi度量值设置,同一个psi度量值可设置多个触发器。每个触发器需要 +单独的文件描述符用于轮询,以区分于其他触发器。所以即使对于同一个psi接口文件, +每个触发器也需要单独的调用open()。 + +监控器在被监控资源进入阻塞状态时启动,在系统退出阻塞状态后停用。系统进入阻塞 +状态后,监控psi增长的频率为每监控窗口刷新10次。 + +内核接受的窗口为500ms~10s,所以监控间隔为50ms~1s。设置窗口下限目的是为了 +防止过于频繁的轮询。设置窗口上限的目的是因为窗口过长则无意义,此时查看 +psi接口提供的均值即可。 + +监控器在激活后,至少在跟踪窗口期间将保持活动状态。以避免随着系统进入和退出 +阻塞状态,监控器过于频繁的进入和退出活动状态。 + +用户态通知在监控窗口内会受到速率限制。当对应的文件描述符关闭,触发器会自动注销。 + +用户态监控器使用示例 +==================== + +:: + + #include <errno.h> + #include <fcntl.h> + #include <stdio.h> + #include <poll.h> + #include <string.h> + #include <unistd.h> + + /* 监控内存部分阻塞,监控时间窗口为1秒、阻塞门限为150毫秒。*/ + int main() { + const char trig[] = "some 150000 1000000"; + struct pollfd fds; + int n; + + fds.fd = open("/proc/pressure/memory", O_RDWR | O_NONBLOCK); + if (fds.fd < 0) { + printf("/proc/pressure/memory open error: %s\n", + strerror(errno)); + return 1; + } + fds.events = POLLPRI; + + if (write(fds.fd, trig, strlen(trig) + 1) < 0) { + printf("/proc/pressure/memory write error: %s\n", + strerror(errno)); + return 1; + } + + printf("waiting for events...\n"); + while (1) { + n = poll(&fds, 1, -1); + if (n < 0) { + printf("poll error: %s\n", strerror(errno)); + return 1; + } + if (fds.revents & POLLERR) { + printf("got POLLERR, event source is gone\n"); + return 0; + } + if (fds.revents & POLLPRI) { + printf("event triggered!\n"); + } else { + printf("unknown event received: 0x%x\n", fds.revents); + return 1; + } + } + + return 0; + } + +Cgroup2接口 +=========== + +对于CONFIG_CGROUP=y及挂载了cgroup2文件系统的系统,能够获取cgroups内任务的psi。 +此场景下cgroupfs挂载点的子目录包含cpu.pressure、memory.pressure、io.pressure文件, +内容格式与/proc/pressure/下的文件相同。 + +可设置基于cgroup的psi监控器,方法与系统级psi监控器相同。 diff --git a/Documentation/translations/zh_CN/accounting/taskstats.rst b/Documentation/translations/zh_CN/accounting/taskstats.rst new file mode 100644 index 000000000..307ac5ce0 --- /dev/null +++ b/Documentation/translations/zh_CN/accounting/taskstats.rst @@ -0,0 +1,145 @@ +.. include:: ../disclaimer-zh_CN.rst + +:Original: Documentation/accounting/taskstats.rst + +:Translator: Yang Yang <yang.yang29@zte.com.cn> + +================ +每任务的统计接口 +================ + +Taskstats是一个基于netlink的接口,用于从内核向用户空间发送每任务及每进程的 +统计信息。 + +Taskstats设计目的: + +- 在任务生命周期内和退出时高效的提供统计信息 +- 统一不同计数子系统的接口 +- 支持未来计数系统的扩展 + +术语 +---- + +“pid”、“tid”、“任务”互换使用,用于描述由struct task_struct定义的标准 +Linux任务。“每pid的统计数据”等价于“每任务的统计数据”。 + +“tgid”、“进程”、“线程组”互换使用,用于描述共享mm_struct的任务集, +也就是传统的Unix进程。尽管使用了tgid这个词,即使一个任务是线程组组长, +对它的处理也没有什么不同。只要一个进程还有任何归属它的任务,它就被认为 +活着。 + +用法 +---- + +为了在任务生命周期内获得统计信息,用户空间需打开一个单播的netlink套接字 +(NETLINK_GENERIC族)然后发送指定pid或tgid的命令。响应消息中包含单个 +任务的统计信息(若指定了pid)或进程所有任务汇总的统计信息(若指定了tgid)。 + +为了在任务退出时获取统计信息,用户空间的监听者发送一个指定cpu掩码的注册命令。 +cpu掩码内的cpu上有任务退出时,每pid的统计信息将发送给注册成功的监听者。使用 +cpu掩码可以限制一个监听者收到的数据,并有助于对netlink接口进行流量控制,后文 +将进行更详细的解释。 + +如果正在退出的任务是线程组中最后一个退出的线程,额外一条包含每tgid统计信息的 +记录也将发送给用户空间。后者包含线程组中所有线程(包括过去和现在)的每pid统计 +信息总和。 + +getdelays.c是一个简单的示例,用以演示如何使用taskstats接口获取延迟统计信息。 +用户可注册cpu掩码、发送命令和处理响应、监听每tid/tgid退出数据、将收到的数据 +写入文件、通过增大接收缓冲区进行基本的流量控制。 + +接口 +---- + +内核用户接口封装在include/linux/taskstats.h。 + +为避免本文档随着接口的演进而过期,本文仅给出当前版本的概要。当本文与taskstats.h +不一致时,以taskstats.h为准。 + +struct taskstats是每pid和每tgid数据共用的计数结构体。它是版本化的,可在内核新增 +计数子系统时进行扩展。taskstats.h中定义了各字段及语义。 + +用户、内核空间的数据交换是属于NETLINK_GENERIC族的netlink消息,使用netlink属性 +接口。消息格式如下:: + + +----------+- - -+-------------+-------------------+ + | nlmsghdr | Pad | genlmsghdr | taskstats payload | + +----------+- - -+-------------+-------------------+ + +Taskstats载荷有三种类型: + +1. 命令:由用户发送给内核。获取指定pid/tgid数据的命令包含一个类型为 +TASKSTATS_CMD_ATTR_PID/TGID的属性,该属性包含u32的pid或tgid载荷。 +pid/tgid指示用户空间要统计的任务/进程。 + +注册/注销获取指定cpu集上退出数据的命令包含一个类型为 +TASKSTATS_CMD_ATTR_REGISTER/DEREGISTER_CPUMASK的属性,该属性包含cpu掩码载荷。 +cpu掩码是以ascii码表示,用逗号分隔的cpu范围。例如若需监听1,2,3,5,7,8号cpu的 +退出数据,cpu掩码表示为"1-3,5,7-8"。若用户空间在关闭监听套接字前忘了注销监听 +的cpu集,随着时间的推移,内核会清理此监听集。但是,出于提效的目的,建议明确 +执行注销。 + +2. 命令的应答:内核发出应答用户空间的命令。载荷有三类属性: + +a) TASKSTATS_TYPE_AGGR_PID/TGID: 本属性不包含载荷,用以指示其后为被统计对象 +的pig/tgid。 + +b) TASKSTATS_TYPE_PID/TGID:本属性的载荷为pig/tgid,其统计信息将被返回。 + +c) TASKSTATS_TYPE_STATS:本属性的载荷为一个struct taskstats实例。每pid和 +每tgid统计信息共用该结构体。 + +3. 内核会在任务退出时发送新消息。其载荷包含一系列以下类型的属性: + +a) TASKSTATS_TYPE_AGGR_PID:指示其后两个属性为pid+stats。 +b) TASKSTATS_TYPE_PID:包含退出任务的pid。 +c) TASKSTATS_TYPE_STATS:包含退出任务的每pid统计信息 +d) TASKSTATS_TYPE_AGGR_TGID:指示其后两个属性为tgid+stats。 +e) TASKSTATS_TYPE_TGID:包含任务所属进程的tgid +f) TASKSTATS_TYPE_STATS:包含退出任务所属进程的每tgid统计信息 + +每tgid的统计 +------------ + +除了每任务的统计信息,taskstats还提供每进程的统计信息,因为资源管理通常以进程 +粒度完成,并且仅在用户空间聚合任务统计信息效率低下且可能不准确(缺乏原子性)。 + +然而,除了每任务统计信息,在内核中维护每进程统计信息存在额外的时间和空间开销。 +为解决此问题,taskstats代码将退出任务的统计信息累积到进程范围的数据结构中。 +当进程最后一个任务退出时,累积的进程级数据也会发送到用户空间(与每任务数据一起)。 + +当用户查询每tgid数据时,内核将指定线程组中所有活动线程的统计信息相加,并添加到 +该线程组的累积总数(含之前退出的线程)。 + +扩展taskstats +------------- + +有两种方法可在未来修改内核扩展taskstats接口,以导出更多的每任务/进程统计信息: + +1. 在现有struct taskstats末尾增加字段。该结构体中的版本号确保了向后兼容性。 +用户空间将仅使用与其版本对应的结构体字段。 + +2. 定义单独的统计结构体并使用netlink属性接口返回对应的数据。由于用户空间独立 +处理每个netlink属性,所以总是可以忽略其不理解类型的属性(因为使用了旧版本接口)。 + +在1.和2.之间进行选择,属于权衡灵活性和开销的问题。若仅需增加少数字段,那么1.是 +首选方法,因为内核和用户空间无需承担处理新netlink属性的开销。但若新字段过多的 +扩展现有结构体,导致不同的用户空间计数程序不必要的接收大型结构体,而对结构体 +字段并不感兴趣,那么2.是值得的。 + +Taskstats的流量控制 +------------------- + +当退出任务数速率变大,监听者可能跟不上内核发送每tid/tgid退出数据的速率,而导致 +数据丢失。taskstats结构体变大、cpu数量上升,都会导致这种可能性增加。 + +为避免统计信息丢失,用户空间应执行以下操作中至少一项: + +- 增大监听者用于接收退出数据的netlink套接字接收缓存区。 + +- 创建更多的监听者,减少每个监听者监听的cpu数量。极端情况下可为每个cpu创建 + 一个监听者。用户还可考虑将监听者的cpu亲和性设置为监听cpu的子集,特别是当他们 + 仅监听一个cpu。 + +尽管采取了这些措施,若用户空间仍收到指示接收缓存区溢出的ENOBUFS错误消息, +则应采取其他措施处理数据丢失。 |