diff options
Diffstat (limited to '')
-rw-r--r-- | arch/x86/include/asm/pgtable-3level.h | 292 |
1 files changed, 292 insertions, 0 deletions
diff --git a/arch/x86/include/asm/pgtable-3level.h b/arch/x86/include/asm/pgtable-3level.h new file mode 100644 index 000000000..28421a887 --- /dev/null +++ b/arch/x86/include/asm/pgtable-3level.h @@ -0,0 +1,292 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef _ASM_X86_PGTABLE_3LEVEL_H +#define _ASM_X86_PGTABLE_3LEVEL_H + +#include <asm/atomic64_32.h> + +/* + * Intel Physical Address Extension (PAE) Mode - three-level page + * tables on PPro+ CPUs. + * + * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com> + */ + +#define pte_ERROR(e) \ + pr_err("%s:%d: bad pte %p(%08lx%08lx)\n", \ + __FILE__, __LINE__, &(e), (e).pte_high, (e).pte_low) +#define pmd_ERROR(e) \ + pr_err("%s:%d: bad pmd %p(%016Lx)\n", \ + __FILE__, __LINE__, &(e), pmd_val(e)) +#define pgd_ERROR(e) \ + pr_err("%s:%d: bad pgd %p(%016Lx)\n", \ + __FILE__, __LINE__, &(e), pgd_val(e)) + +/* Rules for using set_pte: the pte being assigned *must* be + * either not present or in a state where the hardware will + * not attempt to update the pte. In places where this is + * not possible, use pte_get_and_clear to obtain the old pte + * value and then use set_pte to update it. -ben + */ +static inline void native_set_pte(pte_t *ptep, pte_t pte) +{ + ptep->pte_high = pte.pte_high; + smp_wmb(); + ptep->pte_low = pte.pte_low; +} + +#define pmd_read_atomic pmd_read_atomic +/* + * pte_offset_map_lock() on 32-bit PAE kernels was reading the pmd_t with + * a "*pmdp" dereference done by GCC. Problem is, in certain places + * where pte_offset_map_lock() is called, concurrent page faults are + * allowed, if the mmap_lock is hold for reading. An example is mincore + * vs page faults vs MADV_DONTNEED. On the page fault side + * pmd_populate() rightfully does a set_64bit(), but if we're reading the + * pmd_t with a "*pmdp" on the mincore side, a SMP race can happen + * because GCC will not read the 64-bit value of the pmd atomically. + * + * To fix this all places running pte_offset_map_lock() while holding the + * mmap_lock in read mode, shall read the pmdp pointer using this + * function to know if the pmd is null or not, and in turn to know if + * they can run pte_offset_map_lock() or pmd_trans_huge() or other pmd + * operations. + * + * Without THP if the mmap_lock is held for reading, the pmd can only + * transition from null to not null while pmd_read_atomic() runs. So + * we can always return atomic pmd values with this function. + * + * With THP if the mmap_lock is held for reading, the pmd can become + * trans_huge or none or point to a pte (and in turn become "stable") + * at any time under pmd_read_atomic(). We could read it truly + * atomically here with an atomic64_read() for the THP enabled case (and + * it would be a whole lot simpler), but to avoid using cmpxchg8b we + * only return an atomic pmdval if the low part of the pmdval is later + * found to be stable (i.e. pointing to a pte). We are also returning a + * 'none' (zero) pmdval if the low part of the pmd is zero. + * + * In some cases the high and low part of the pmdval returned may not be + * consistent if THP is enabled (the low part may point to previously + * mapped hugepage, while the high part may point to a more recently + * mapped hugepage), but pmd_none_or_trans_huge_or_clear_bad() only + * needs the low part of the pmd to be read atomically to decide if the + * pmd is unstable or not, with the only exception when the low part + * of the pmd is zero, in which case we return a 'none' pmd. + */ +static inline pmd_t pmd_read_atomic(pmd_t *pmdp) +{ + pmdval_t ret; + u32 *tmp = (u32 *)pmdp; + + ret = (pmdval_t) (*tmp); + if (ret) { + /* + * If the low part is null, we must not read the high part + * or we can end up with a partial pmd. + */ + smp_rmb(); + ret |= ((pmdval_t)*(tmp + 1)) << 32; + } + + return (pmd_t) { ret }; +} + +static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte) +{ + set_64bit((unsigned long long *)(ptep), native_pte_val(pte)); +} + +static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd) +{ + set_64bit((unsigned long long *)(pmdp), native_pmd_val(pmd)); +} + +static inline void native_set_pud(pud_t *pudp, pud_t pud) +{ +#ifdef CONFIG_PAGE_TABLE_ISOLATION + pud.p4d.pgd = pti_set_user_pgtbl(&pudp->p4d.pgd, pud.p4d.pgd); +#endif + set_64bit((unsigned long long *)(pudp), native_pud_val(pud)); +} + +/* + * For PTEs and PDEs, we must clear the P-bit first when clearing a page table + * entry, so clear the bottom half first and enforce ordering with a compiler + * barrier. + */ +static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr, + pte_t *ptep) +{ + ptep->pte_low = 0; + smp_wmb(); + ptep->pte_high = 0; +} + +static inline void native_pmd_clear(pmd_t *pmd) +{ + u32 *tmp = (u32 *)pmd; + *tmp = 0; + smp_wmb(); + *(tmp + 1) = 0; +} + +static inline void native_pud_clear(pud_t *pudp) +{ +} + +static inline void pud_clear(pud_t *pudp) +{ + set_pud(pudp, __pud(0)); + + /* + * According to Intel App note "TLBs, Paging-Structure Caches, + * and Their Invalidation", April 2007, document 317080-001, + * section 8.1: in PAE mode we explicitly have to flush the + * TLB via cr3 if the top-level pgd is changed... + * + * Currently all places where pud_clear() is called either have + * flush_tlb_mm() followed or don't need TLB flush (x86_64 code or + * pud_clear_bad()), so we don't need TLB flush here. + */ +} + +#ifdef CONFIG_SMP +static inline pte_t native_ptep_get_and_clear(pte_t *ptep) +{ + pte_t res; + + res.pte = (pteval_t)arch_atomic64_xchg((atomic64_t *)ptep, 0); + + return res; +} +#else +#define native_ptep_get_and_clear(xp) native_local_ptep_get_and_clear(xp) +#endif + +union split_pmd { + struct { + u32 pmd_low; + u32 pmd_high; + }; + pmd_t pmd; +}; + +#ifdef CONFIG_SMP +static inline pmd_t native_pmdp_get_and_clear(pmd_t *pmdp) +{ + union split_pmd res, *orig = (union split_pmd *)pmdp; + + /* xchg acts as a barrier before setting of the high bits */ + res.pmd_low = xchg(&orig->pmd_low, 0); + res.pmd_high = orig->pmd_high; + orig->pmd_high = 0; + + return res.pmd; +} +#else +#define native_pmdp_get_and_clear(xp) native_local_pmdp_get_and_clear(xp) +#endif + +#ifndef pmdp_establish +#define pmdp_establish pmdp_establish +static inline pmd_t pmdp_establish(struct vm_area_struct *vma, + unsigned long address, pmd_t *pmdp, pmd_t pmd) +{ + pmd_t old; + + /* + * If pmd has present bit cleared we can get away without expensive + * cmpxchg64: we can update pmdp half-by-half without racing with + * anybody. + */ + if (!(pmd_val(pmd) & _PAGE_PRESENT)) { + union split_pmd old, new, *ptr; + + ptr = (union split_pmd *)pmdp; + + new.pmd = pmd; + + /* xchg acts as a barrier before setting of the high bits */ + old.pmd_low = xchg(&ptr->pmd_low, new.pmd_low); + old.pmd_high = ptr->pmd_high; + ptr->pmd_high = new.pmd_high; + return old.pmd; + } + + do { + old = *pmdp; + } while (cmpxchg64(&pmdp->pmd, old.pmd, pmd.pmd) != old.pmd); + + return old; +} +#endif + +#ifdef CONFIG_SMP +union split_pud { + struct { + u32 pud_low; + u32 pud_high; + }; + pud_t pud; +}; + +static inline pud_t native_pudp_get_and_clear(pud_t *pudp) +{ + union split_pud res, *orig = (union split_pud *)pudp; + +#ifdef CONFIG_PAGE_TABLE_ISOLATION + pti_set_user_pgtbl(&pudp->p4d.pgd, __pgd(0)); +#endif + + /* xchg acts as a barrier before setting of the high bits */ + res.pud_low = xchg(&orig->pud_low, 0); + res.pud_high = orig->pud_high; + orig->pud_high = 0; + + return res.pud; +} +#else +#define native_pudp_get_and_clear(xp) native_local_pudp_get_and_clear(xp) +#endif + +/* Encode and de-code a swap entry */ +#define SWP_TYPE_BITS 5 + +#define SWP_OFFSET_FIRST_BIT (_PAGE_BIT_PROTNONE + 1) + +/* We always extract/encode the offset by shifting it all the way up, and then down again */ +#define SWP_OFFSET_SHIFT (SWP_OFFSET_FIRST_BIT + SWP_TYPE_BITS) + +#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS) +#define __swp_type(x) (((x).val) & ((1UL << SWP_TYPE_BITS) - 1)) +#define __swp_offset(x) ((x).val >> SWP_TYPE_BITS) +#define __swp_entry(type, offset) ((swp_entry_t){(type) | (offset) << SWP_TYPE_BITS}) + +/* + * Normally, __swp_entry() converts from arch-independent swp_entry_t to + * arch-dependent swp_entry_t, and __swp_entry_to_pte() just stores the result + * to pte. But here we have 32bit swp_entry_t and 64bit pte, and need to use the + * whole 64 bits. Thus, we shift the "real" arch-dependent conversion to + * __swp_entry_to_pte() through the following helper macro based on 64bit + * __swp_entry(). + */ +#define __swp_pteval_entry(type, offset) ((pteval_t) { \ + (~(pteval_t)(offset) << SWP_OFFSET_SHIFT >> SWP_TYPE_BITS) \ + | ((pteval_t)(type) << (64 - SWP_TYPE_BITS)) }) + +#define __swp_entry_to_pte(x) ((pte_t){ .pte = \ + __swp_pteval_entry(__swp_type(x), __swp_offset(x)) }) +/* + * Analogically, __pte_to_swp_entry() doesn't just extract the arch-dependent + * swp_entry_t, but also has to convert it from 64bit to the 32bit + * intermediate representation, using the following macros based on 64bit + * __swp_type() and __swp_offset(). + */ +#define __pteval_swp_type(x) ((unsigned long)((x).pte >> (64 - SWP_TYPE_BITS))) +#define __pteval_swp_offset(x) ((unsigned long)(~((x).pte) << SWP_TYPE_BITS >> SWP_OFFSET_SHIFT)) + +#define __pte_to_swp_entry(pte) (__swp_entry(__pteval_swp_type(pte), \ + __pteval_swp_offset(pte))) + +#include <asm/pgtable-invert.h> + +#endif /* _ASM_X86_PGTABLE_3LEVEL_H */ |