diff options
Diffstat (limited to '')
-rw-r--r-- | arch/x86/kernel/tsc.c | 1577 |
1 files changed, 1577 insertions, 0 deletions
diff --git a/arch/x86/kernel/tsc.c b/arch/x86/kernel/tsc.c new file mode 100644 index 000000000..cafacb2e5 --- /dev/null +++ b/arch/x86/kernel/tsc.c @@ -0,0 +1,1577 @@ +// SPDX-License-Identifier: GPL-2.0-only +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/kernel.h> +#include <linux/sched.h> +#include <linux/sched/clock.h> +#include <linux/init.h> +#include <linux/export.h> +#include <linux/timer.h> +#include <linux/acpi_pmtmr.h> +#include <linux/cpufreq.h> +#include <linux/delay.h> +#include <linux/clocksource.h> +#include <linux/percpu.h> +#include <linux/timex.h> +#include <linux/static_key.h> +#include <linux/static_call.h> + +#include <asm/hpet.h> +#include <asm/timer.h> +#include <asm/vgtod.h> +#include <asm/time.h> +#include <asm/delay.h> +#include <asm/hypervisor.h> +#include <asm/nmi.h> +#include <asm/x86_init.h> +#include <asm/geode.h> +#include <asm/apic.h> +#include <asm/intel-family.h> +#include <asm/i8259.h> +#include <asm/uv/uv.h> + +unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ +EXPORT_SYMBOL(cpu_khz); + +unsigned int __read_mostly tsc_khz; +EXPORT_SYMBOL(tsc_khz); + +#define KHZ 1000 + +/* + * TSC can be unstable due to cpufreq or due to unsynced TSCs + */ +static int __read_mostly tsc_unstable; +static unsigned int __initdata tsc_early_khz; + +static DEFINE_STATIC_KEY_FALSE(__use_tsc); + +int tsc_clocksource_reliable; + +static u32 art_to_tsc_numerator; +static u32 art_to_tsc_denominator; +static u64 art_to_tsc_offset; +struct clocksource *art_related_clocksource; + +struct cyc2ns { + struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */ + seqcount_latch_t seq; /* 32 + 4 = 36 */ + +}; /* fits one cacheline */ + +static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); + +static int __init tsc_early_khz_setup(char *buf) +{ + return kstrtouint(buf, 0, &tsc_early_khz); +} +early_param("tsc_early_khz", tsc_early_khz_setup); + +__always_inline void cyc2ns_read_begin(struct cyc2ns_data *data) +{ + int seq, idx; + + preempt_disable_notrace(); + + do { + seq = this_cpu_read(cyc2ns.seq.seqcount.sequence); + idx = seq & 1; + + data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset); + data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul); + data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift); + + } while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence))); +} + +__always_inline void cyc2ns_read_end(void) +{ + preempt_enable_notrace(); +} + +/* + * Accelerators for sched_clock() + * convert from cycles(64bits) => nanoseconds (64bits) + * basic equation: + * ns = cycles / (freq / ns_per_sec) + * ns = cycles * (ns_per_sec / freq) + * ns = cycles * (10^9 / (cpu_khz * 10^3)) + * ns = cycles * (10^6 / cpu_khz) + * + * Then we use scaling math (suggested by george@mvista.com) to get: + * ns = cycles * (10^6 * SC / cpu_khz) / SC + * ns = cycles * cyc2ns_scale / SC + * + * And since SC is a constant power of two, we can convert the div + * into a shift. The larger SC is, the more accurate the conversion, but + * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication + * (64-bit result) can be used. + * + * We can use khz divisor instead of mhz to keep a better precision. + * (mathieu.desnoyers@polymtl.ca) + * + * -johnstul@us.ibm.com "math is hard, lets go shopping!" + */ + +static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc) +{ + struct cyc2ns_data data; + unsigned long long ns; + + cyc2ns_read_begin(&data); + + ns = data.cyc2ns_offset; + ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift); + + cyc2ns_read_end(); + + return ns; +} + +static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) +{ + unsigned long long ns_now; + struct cyc2ns_data data; + struct cyc2ns *c2n; + + ns_now = cycles_2_ns(tsc_now); + + /* + * Compute a new multiplier as per the above comment and ensure our + * time function is continuous; see the comment near struct + * cyc2ns_data. + */ + clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz, + NSEC_PER_MSEC, 0); + + /* + * cyc2ns_shift is exported via arch_perf_update_userpage() where it is + * not expected to be greater than 31 due to the original published + * conversion algorithm shifting a 32-bit value (now specifies a 64-bit + * value) - refer perf_event_mmap_page documentation in perf_event.h. + */ + if (data.cyc2ns_shift == 32) { + data.cyc2ns_shift = 31; + data.cyc2ns_mul >>= 1; + } + + data.cyc2ns_offset = ns_now - + mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift); + + c2n = per_cpu_ptr(&cyc2ns, cpu); + + raw_write_seqcount_latch(&c2n->seq); + c2n->data[0] = data; + raw_write_seqcount_latch(&c2n->seq); + c2n->data[1] = data; +} + +static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) +{ + unsigned long flags; + + local_irq_save(flags); + sched_clock_idle_sleep_event(); + + if (khz) + __set_cyc2ns_scale(khz, cpu, tsc_now); + + sched_clock_idle_wakeup_event(); + local_irq_restore(flags); +} + +/* + * Initialize cyc2ns for boot cpu + */ +static void __init cyc2ns_init_boot_cpu(void) +{ + struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); + + seqcount_latch_init(&c2n->seq); + __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc()); +} + +/* + * Secondary CPUs do not run through tsc_init(), so set up + * all the scale factors for all CPUs, assuming the same + * speed as the bootup CPU. + */ +static void __init cyc2ns_init_secondary_cpus(void) +{ + unsigned int cpu, this_cpu = smp_processor_id(); + struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); + struct cyc2ns_data *data = c2n->data; + + for_each_possible_cpu(cpu) { + if (cpu != this_cpu) { + seqcount_latch_init(&c2n->seq); + c2n = per_cpu_ptr(&cyc2ns, cpu); + c2n->data[0] = data[0]; + c2n->data[1] = data[1]; + } + } +} + +/* + * Scheduler clock - returns current time in nanosec units. + */ +u64 native_sched_clock(void) +{ + if (static_branch_likely(&__use_tsc)) { + u64 tsc_now = rdtsc(); + + /* return the value in ns */ + return cycles_2_ns(tsc_now); + } + + /* + * Fall back to jiffies if there's no TSC available: + * ( But note that we still use it if the TSC is marked + * unstable. We do this because unlike Time Of Day, + * the scheduler clock tolerates small errors and it's + * very important for it to be as fast as the platform + * can achieve it. ) + */ + + /* No locking but a rare wrong value is not a big deal: */ + return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); +} + +/* + * Generate a sched_clock if you already have a TSC value. + */ +u64 native_sched_clock_from_tsc(u64 tsc) +{ + return cycles_2_ns(tsc); +} + +/* We need to define a real function for sched_clock, to override the + weak default version */ +#ifdef CONFIG_PARAVIRT +unsigned long long sched_clock(void) +{ + return paravirt_sched_clock(); +} + +bool using_native_sched_clock(void) +{ + return static_call_query(pv_sched_clock) == native_sched_clock; +} +#else +unsigned long long +sched_clock(void) __attribute__((alias("native_sched_clock"))); + +bool using_native_sched_clock(void) { return true; } +#endif + +int check_tsc_unstable(void) +{ + return tsc_unstable; +} +EXPORT_SYMBOL_GPL(check_tsc_unstable); + +#ifdef CONFIG_X86_TSC +int __init notsc_setup(char *str) +{ + mark_tsc_unstable("boot parameter notsc"); + return 1; +} +#else +/* + * disable flag for tsc. Takes effect by clearing the TSC cpu flag + * in cpu/common.c + */ +int __init notsc_setup(char *str) +{ + setup_clear_cpu_cap(X86_FEATURE_TSC); + return 1; +} +#endif + +__setup("notsc", notsc_setup); + +static int no_sched_irq_time; +static int no_tsc_watchdog; + +static int __init tsc_setup(char *str) +{ + if (!strcmp(str, "reliable")) + tsc_clocksource_reliable = 1; + if (!strncmp(str, "noirqtime", 9)) + no_sched_irq_time = 1; + if (!strcmp(str, "unstable")) + mark_tsc_unstable("boot parameter"); + if (!strcmp(str, "nowatchdog")) + no_tsc_watchdog = 1; + return 1; +} + +__setup("tsc=", tsc_setup); + +#define MAX_RETRIES 5 +#define TSC_DEFAULT_THRESHOLD 0x20000 + +/* + * Read TSC and the reference counters. Take care of any disturbances + */ +static u64 tsc_read_refs(u64 *p, int hpet) +{ + u64 t1, t2; + u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD; + int i; + + for (i = 0; i < MAX_RETRIES; i++) { + t1 = get_cycles(); + if (hpet) + *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; + else + *p = acpi_pm_read_early(); + t2 = get_cycles(); + if ((t2 - t1) < thresh) + return t2; + } + return ULLONG_MAX; +} + +/* + * Calculate the TSC frequency from HPET reference + */ +static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) +{ + u64 tmp; + + if (hpet2 < hpet1) + hpet2 += 0x100000000ULL; + hpet2 -= hpet1; + tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); + do_div(tmp, 1000000); + deltatsc = div64_u64(deltatsc, tmp); + + return (unsigned long) deltatsc; +} + +/* + * Calculate the TSC frequency from PMTimer reference + */ +static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) +{ + u64 tmp; + + if (!pm1 && !pm2) + return ULONG_MAX; + + if (pm2 < pm1) + pm2 += (u64)ACPI_PM_OVRRUN; + pm2 -= pm1; + tmp = pm2 * 1000000000LL; + do_div(tmp, PMTMR_TICKS_PER_SEC); + do_div(deltatsc, tmp); + + return (unsigned long) deltatsc; +} + +#define CAL_MS 10 +#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) +#define CAL_PIT_LOOPS 1000 + +#define CAL2_MS 50 +#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) +#define CAL2_PIT_LOOPS 5000 + + +/* + * Try to calibrate the TSC against the Programmable + * Interrupt Timer and return the frequency of the TSC + * in kHz. + * + * Return ULONG_MAX on failure to calibrate. + */ +static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) +{ + u64 tsc, t1, t2, delta; + unsigned long tscmin, tscmax; + int pitcnt; + + if (!has_legacy_pic()) { + /* + * Relies on tsc_early_delay_calibrate() to have given us semi + * usable udelay(), wait for the same 50ms we would have with + * the PIT loop below. + */ + udelay(10 * USEC_PER_MSEC); + udelay(10 * USEC_PER_MSEC); + udelay(10 * USEC_PER_MSEC); + udelay(10 * USEC_PER_MSEC); + udelay(10 * USEC_PER_MSEC); + return ULONG_MAX; + } + + /* Set the Gate high, disable speaker */ + outb((inb(0x61) & ~0x02) | 0x01, 0x61); + + /* + * Setup CTC channel 2* for mode 0, (interrupt on terminal + * count mode), binary count. Set the latch register to 50ms + * (LSB then MSB) to begin countdown. + */ + outb(0xb0, 0x43); + outb(latch & 0xff, 0x42); + outb(latch >> 8, 0x42); + + tsc = t1 = t2 = get_cycles(); + + pitcnt = 0; + tscmax = 0; + tscmin = ULONG_MAX; + while ((inb(0x61) & 0x20) == 0) { + t2 = get_cycles(); + delta = t2 - tsc; + tsc = t2; + if ((unsigned long) delta < tscmin) + tscmin = (unsigned int) delta; + if ((unsigned long) delta > tscmax) + tscmax = (unsigned int) delta; + pitcnt++; + } + + /* + * Sanity checks: + * + * If we were not able to read the PIT more than loopmin + * times, then we have been hit by a massive SMI + * + * If the maximum is 10 times larger than the minimum, + * then we got hit by an SMI as well. + */ + if (pitcnt < loopmin || tscmax > 10 * tscmin) + return ULONG_MAX; + + /* Calculate the PIT value */ + delta = t2 - t1; + do_div(delta, ms); + return delta; +} + +/* + * This reads the current MSB of the PIT counter, and + * checks if we are running on sufficiently fast and + * non-virtualized hardware. + * + * Our expectations are: + * + * - the PIT is running at roughly 1.19MHz + * + * - each IO is going to take about 1us on real hardware, + * but we allow it to be much faster (by a factor of 10) or + * _slightly_ slower (ie we allow up to a 2us read+counter + * update - anything else implies a unacceptably slow CPU + * or PIT for the fast calibration to work. + * + * - with 256 PIT ticks to read the value, we have 214us to + * see the same MSB (and overhead like doing a single TSC + * read per MSB value etc). + * + * - We're doing 2 reads per loop (LSB, MSB), and we expect + * them each to take about a microsecond on real hardware. + * So we expect a count value of around 100. But we'll be + * generous, and accept anything over 50. + * + * - if the PIT is stuck, and we see *many* more reads, we + * return early (and the next caller of pit_expect_msb() + * then consider it a failure when they don't see the + * next expected value). + * + * These expectations mean that we know that we have seen the + * transition from one expected value to another with a fairly + * high accuracy, and we didn't miss any events. We can thus + * use the TSC value at the transitions to calculate a pretty + * good value for the TSC frequency. + */ +static inline int pit_verify_msb(unsigned char val) +{ + /* Ignore LSB */ + inb(0x42); + return inb(0x42) == val; +} + +static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) +{ + int count; + u64 tsc = 0, prev_tsc = 0; + + for (count = 0; count < 50000; count++) { + if (!pit_verify_msb(val)) + break; + prev_tsc = tsc; + tsc = get_cycles(); + } + *deltap = get_cycles() - prev_tsc; + *tscp = tsc; + + /* + * We require _some_ success, but the quality control + * will be based on the error terms on the TSC values. + */ + return count > 5; +} + +/* + * How many MSB values do we want to see? We aim for + * a maximum error rate of 500ppm (in practice the + * real error is much smaller), but refuse to spend + * more than 50ms on it. + */ +#define MAX_QUICK_PIT_MS 50 +#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) + +static unsigned long quick_pit_calibrate(void) +{ + int i; + u64 tsc, delta; + unsigned long d1, d2; + + if (!has_legacy_pic()) + return 0; + + /* Set the Gate high, disable speaker */ + outb((inb(0x61) & ~0x02) | 0x01, 0x61); + + /* + * Counter 2, mode 0 (one-shot), binary count + * + * NOTE! Mode 2 decrements by two (and then the + * output is flipped each time, giving the same + * final output frequency as a decrement-by-one), + * so mode 0 is much better when looking at the + * individual counts. + */ + outb(0xb0, 0x43); + + /* Start at 0xffff */ + outb(0xff, 0x42); + outb(0xff, 0x42); + + /* + * The PIT starts counting at the next edge, so we + * need to delay for a microsecond. The easiest way + * to do that is to just read back the 16-bit counter + * once from the PIT. + */ + pit_verify_msb(0); + + if (pit_expect_msb(0xff, &tsc, &d1)) { + for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { + if (!pit_expect_msb(0xff-i, &delta, &d2)) + break; + + delta -= tsc; + + /* + * Extrapolate the error and fail fast if the error will + * never be below 500 ppm. + */ + if (i == 1 && + d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) + return 0; + + /* + * Iterate until the error is less than 500 ppm + */ + if (d1+d2 >= delta >> 11) + continue; + + /* + * Check the PIT one more time to verify that + * all TSC reads were stable wrt the PIT. + * + * This also guarantees serialization of the + * last cycle read ('d2') in pit_expect_msb. + */ + if (!pit_verify_msb(0xfe - i)) + break; + goto success; + } + } + pr_info("Fast TSC calibration failed\n"); + return 0; + +success: + /* + * Ok, if we get here, then we've seen the + * MSB of the PIT decrement 'i' times, and the + * error has shrunk to less than 500 ppm. + * + * As a result, we can depend on there not being + * any odd delays anywhere, and the TSC reads are + * reliable (within the error). + * + * kHz = ticks / time-in-seconds / 1000; + * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 + * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) + */ + delta *= PIT_TICK_RATE; + do_div(delta, i*256*1000); + pr_info("Fast TSC calibration using PIT\n"); + return delta; +} + +/** + * native_calibrate_tsc + * Determine TSC frequency via CPUID, else return 0. + */ +unsigned long native_calibrate_tsc(void) +{ + unsigned int eax_denominator, ebx_numerator, ecx_hz, edx; + unsigned int crystal_khz; + + if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) + return 0; + + if (boot_cpu_data.cpuid_level < 0x15) + return 0; + + eax_denominator = ebx_numerator = ecx_hz = edx = 0; + + /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */ + cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx); + + if (ebx_numerator == 0 || eax_denominator == 0) + return 0; + + crystal_khz = ecx_hz / 1000; + + /* + * Denverton SoCs don't report crystal clock, and also don't support + * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal + * clock. + */ + if (crystal_khz == 0 && + boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D) + crystal_khz = 25000; + + /* + * TSC frequency reported directly by CPUID is a "hardware reported" + * frequency and is the most accurate one so far we have. This + * is considered a known frequency. + */ + if (crystal_khz != 0) + setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ); + + /* + * Some Intel SoCs like Skylake and Kabylake don't report the crystal + * clock, but we can easily calculate it to a high degree of accuracy + * by considering the crystal ratio and the CPU speed. + */ + if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) { + unsigned int eax_base_mhz, ebx, ecx, edx; + + cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx); + crystal_khz = eax_base_mhz * 1000 * + eax_denominator / ebx_numerator; + } + + if (crystal_khz == 0) + return 0; + + /* + * For Atom SoCs TSC is the only reliable clocksource. + * Mark TSC reliable so no watchdog on it. + */ + if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT) + setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); + +#ifdef CONFIG_X86_LOCAL_APIC + /* + * The local APIC appears to be fed by the core crystal clock + * (which sounds entirely sensible). We can set the global + * lapic_timer_period here to avoid having to calibrate the APIC + * timer later. + */ + lapic_timer_period = crystal_khz * 1000 / HZ; +#endif + + return crystal_khz * ebx_numerator / eax_denominator; +} + +static unsigned long cpu_khz_from_cpuid(void) +{ + unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx; + + if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) + return 0; + + if (boot_cpu_data.cpuid_level < 0x16) + return 0; + + eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0; + + cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx); + + return eax_base_mhz * 1000; +} + +/* + * calibrate cpu using pit, hpet, and ptimer methods. They are available + * later in boot after acpi is initialized. + */ +static unsigned long pit_hpet_ptimer_calibrate_cpu(void) +{ + u64 tsc1, tsc2, delta, ref1, ref2; + unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; + unsigned long flags, latch, ms; + int hpet = is_hpet_enabled(), i, loopmin; + + /* + * Run 5 calibration loops to get the lowest frequency value + * (the best estimate). We use two different calibration modes + * here: + * + * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and + * load a timeout of 50ms. We read the time right after we + * started the timer and wait until the PIT count down reaches + * zero. In each wait loop iteration we read the TSC and check + * the delta to the previous read. We keep track of the min + * and max values of that delta. The delta is mostly defined + * by the IO time of the PIT access, so we can detect when + * any disturbance happened between the two reads. If the + * maximum time is significantly larger than the minimum time, + * then we discard the result and have another try. + * + * 2) Reference counter. If available we use the HPET or the + * PMTIMER as a reference to check the sanity of that value. + * We use separate TSC readouts and check inside of the + * reference read for any possible disturbance. We discard + * disturbed values here as well. We do that around the PIT + * calibration delay loop as we have to wait for a certain + * amount of time anyway. + */ + + /* Preset PIT loop values */ + latch = CAL_LATCH; + ms = CAL_MS; + loopmin = CAL_PIT_LOOPS; + + for (i = 0; i < 3; i++) { + unsigned long tsc_pit_khz; + + /* + * Read the start value and the reference count of + * hpet/pmtimer when available. Then do the PIT + * calibration, which will take at least 50ms, and + * read the end value. + */ + local_irq_save(flags); + tsc1 = tsc_read_refs(&ref1, hpet); + tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); + tsc2 = tsc_read_refs(&ref2, hpet); + local_irq_restore(flags); + + /* Pick the lowest PIT TSC calibration so far */ + tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); + + /* hpet or pmtimer available ? */ + if (ref1 == ref2) + continue; + + /* Check, whether the sampling was disturbed */ + if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) + continue; + + tsc2 = (tsc2 - tsc1) * 1000000LL; + if (hpet) + tsc2 = calc_hpet_ref(tsc2, ref1, ref2); + else + tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); + + tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); + + /* Check the reference deviation */ + delta = ((u64) tsc_pit_min) * 100; + do_div(delta, tsc_ref_min); + + /* + * If both calibration results are inside a 10% window + * then we can be sure, that the calibration + * succeeded. We break out of the loop right away. We + * use the reference value, as it is more precise. + */ + if (delta >= 90 && delta <= 110) { + pr_info("PIT calibration matches %s. %d loops\n", + hpet ? "HPET" : "PMTIMER", i + 1); + return tsc_ref_min; + } + + /* + * Check whether PIT failed more than once. This + * happens in virtualized environments. We need to + * give the virtual PC a slightly longer timeframe for + * the HPET/PMTIMER to make the result precise. + */ + if (i == 1 && tsc_pit_min == ULONG_MAX) { + latch = CAL2_LATCH; + ms = CAL2_MS; + loopmin = CAL2_PIT_LOOPS; + } + } + + /* + * Now check the results. + */ + if (tsc_pit_min == ULONG_MAX) { + /* PIT gave no useful value */ + pr_warn("Unable to calibrate against PIT\n"); + + /* We don't have an alternative source, disable TSC */ + if (!hpet && !ref1 && !ref2) { + pr_notice("No reference (HPET/PMTIMER) available\n"); + return 0; + } + + /* The alternative source failed as well, disable TSC */ + if (tsc_ref_min == ULONG_MAX) { + pr_warn("HPET/PMTIMER calibration failed\n"); + return 0; + } + + /* Use the alternative source */ + pr_info("using %s reference calibration\n", + hpet ? "HPET" : "PMTIMER"); + + return tsc_ref_min; + } + + /* We don't have an alternative source, use the PIT calibration value */ + if (!hpet && !ref1 && !ref2) { + pr_info("Using PIT calibration value\n"); + return tsc_pit_min; + } + + /* The alternative source failed, use the PIT calibration value */ + if (tsc_ref_min == ULONG_MAX) { + pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); + return tsc_pit_min; + } + + /* + * The calibration values differ too much. In doubt, we use + * the PIT value as we know that there are PMTIMERs around + * running at double speed. At least we let the user know: + */ + pr_warn("PIT calibration deviates from %s: %lu %lu\n", + hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); + pr_info("Using PIT calibration value\n"); + return tsc_pit_min; +} + +/** + * native_calibrate_cpu_early - can calibrate the cpu early in boot + */ +unsigned long native_calibrate_cpu_early(void) +{ + unsigned long flags, fast_calibrate = cpu_khz_from_cpuid(); + + if (!fast_calibrate) + fast_calibrate = cpu_khz_from_msr(); + if (!fast_calibrate) { + local_irq_save(flags); + fast_calibrate = quick_pit_calibrate(); + local_irq_restore(flags); + } + return fast_calibrate; +} + + +/** + * native_calibrate_cpu - calibrate the cpu + */ +static unsigned long native_calibrate_cpu(void) +{ + unsigned long tsc_freq = native_calibrate_cpu_early(); + + if (!tsc_freq) + tsc_freq = pit_hpet_ptimer_calibrate_cpu(); + + return tsc_freq; +} + +void recalibrate_cpu_khz(void) +{ +#ifndef CONFIG_SMP + unsigned long cpu_khz_old = cpu_khz; + + if (!boot_cpu_has(X86_FEATURE_TSC)) + return; + + cpu_khz = x86_platform.calibrate_cpu(); + tsc_khz = x86_platform.calibrate_tsc(); + if (tsc_khz == 0) + tsc_khz = cpu_khz; + else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) + cpu_khz = tsc_khz; + cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy, + cpu_khz_old, cpu_khz); +#endif +} + +EXPORT_SYMBOL(recalibrate_cpu_khz); + + +static unsigned long long cyc2ns_suspend; + +void tsc_save_sched_clock_state(void) +{ + if (!sched_clock_stable()) + return; + + cyc2ns_suspend = sched_clock(); +} + +/* + * Even on processors with invariant TSC, TSC gets reset in some the + * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to + * arbitrary value (still sync'd across cpu's) during resume from such sleep + * states. To cope up with this, recompute the cyc2ns_offset for each cpu so + * that sched_clock() continues from the point where it was left off during + * suspend. + */ +void tsc_restore_sched_clock_state(void) +{ + unsigned long long offset; + unsigned long flags; + int cpu; + + if (!sched_clock_stable()) + return; + + local_irq_save(flags); + + /* + * We're coming out of suspend, there's no concurrency yet; don't + * bother being nice about the RCU stuff, just write to both + * data fields. + */ + + this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); + this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); + + offset = cyc2ns_suspend - sched_clock(); + + for_each_possible_cpu(cpu) { + per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; + per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; + } + + local_irq_restore(flags); +} + +#ifdef CONFIG_CPU_FREQ +/* + * Frequency scaling support. Adjust the TSC based timer when the CPU frequency + * changes. + * + * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC + * as unstable and give up in those cases. + * + * Should fix up last_tsc too. Currently gettimeofday in the + * first tick after the change will be slightly wrong. + */ + +static unsigned int ref_freq; +static unsigned long loops_per_jiffy_ref; +static unsigned long tsc_khz_ref; + +static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, + void *data) +{ + struct cpufreq_freqs *freq = data; + + if (num_online_cpus() > 1) { + mark_tsc_unstable("cpufreq changes on SMP"); + return 0; + } + + if (!ref_freq) { + ref_freq = freq->old; + loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy; + tsc_khz_ref = tsc_khz; + } + + if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || + (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { + boot_cpu_data.loops_per_jiffy = + cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); + + tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); + if (!(freq->flags & CPUFREQ_CONST_LOOPS)) + mark_tsc_unstable("cpufreq changes"); + + set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc()); + } + + return 0; +} + +static struct notifier_block time_cpufreq_notifier_block = { + .notifier_call = time_cpufreq_notifier +}; + +static int __init cpufreq_register_tsc_scaling(void) +{ + if (!boot_cpu_has(X86_FEATURE_TSC)) + return 0; + if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) + return 0; + cpufreq_register_notifier(&time_cpufreq_notifier_block, + CPUFREQ_TRANSITION_NOTIFIER); + return 0; +} + +core_initcall(cpufreq_register_tsc_scaling); + +#endif /* CONFIG_CPU_FREQ */ + +#define ART_CPUID_LEAF (0x15) +#define ART_MIN_DENOMINATOR (1) + + +/* + * If ART is present detect the numerator:denominator to convert to TSC + */ +static void __init detect_art(void) +{ + unsigned int unused[2]; + + if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF) + return; + + /* + * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required, + * and the TSC counter resets must not occur asynchronously. + */ + if (boot_cpu_has(X86_FEATURE_HYPERVISOR) || + !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || + !boot_cpu_has(X86_FEATURE_TSC_ADJUST) || + tsc_async_resets) + return; + + cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator, + &art_to_tsc_numerator, unused, unused+1); + + if (art_to_tsc_denominator < ART_MIN_DENOMINATOR) + return; + + rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset); + + /* Make this sticky over multiple CPU init calls */ + setup_force_cpu_cap(X86_FEATURE_ART); +} + + +/* clocksource code */ + +static void tsc_resume(struct clocksource *cs) +{ + tsc_verify_tsc_adjust(true); +} + +/* + * We used to compare the TSC to the cycle_last value in the clocksource + * structure to avoid a nasty time-warp. This can be observed in a + * very small window right after one CPU updated cycle_last under + * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which + * is smaller than the cycle_last reference value due to a TSC which + * is slightly behind. This delta is nowhere else observable, but in + * that case it results in a forward time jump in the range of hours + * due to the unsigned delta calculation of the time keeping core + * code, which is necessary to support wrapping clocksources like pm + * timer. + * + * This sanity check is now done in the core timekeeping code. + * checking the result of read_tsc() - cycle_last for being negative. + * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. + */ +static u64 read_tsc(struct clocksource *cs) +{ + return (u64)rdtsc_ordered(); +} + +static void tsc_cs_mark_unstable(struct clocksource *cs) +{ + if (tsc_unstable) + return; + + tsc_unstable = 1; + if (using_native_sched_clock()) + clear_sched_clock_stable(); + disable_sched_clock_irqtime(); + pr_info("Marking TSC unstable due to clocksource watchdog\n"); +} + +static void tsc_cs_tick_stable(struct clocksource *cs) +{ + if (tsc_unstable) + return; + + if (using_native_sched_clock()) + sched_clock_tick_stable(); +} + +static int tsc_cs_enable(struct clocksource *cs) +{ + vclocks_set_used(VDSO_CLOCKMODE_TSC); + return 0; +} + +/* + * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() + */ +static struct clocksource clocksource_tsc_early = { + .name = "tsc-early", + .rating = 299, + .uncertainty_margin = 32 * NSEC_PER_MSEC, + .read = read_tsc, + .mask = CLOCKSOURCE_MASK(64), + .flags = CLOCK_SOURCE_IS_CONTINUOUS | + CLOCK_SOURCE_MUST_VERIFY, + .vdso_clock_mode = VDSO_CLOCKMODE_TSC, + .enable = tsc_cs_enable, + .resume = tsc_resume, + .mark_unstable = tsc_cs_mark_unstable, + .tick_stable = tsc_cs_tick_stable, + .list = LIST_HEAD_INIT(clocksource_tsc_early.list), +}; + +/* + * Must mark VALID_FOR_HRES early such that when we unregister tsc_early + * this one will immediately take over. We will only register if TSC has + * been found good. + */ +static struct clocksource clocksource_tsc = { + .name = "tsc", + .rating = 300, + .read = read_tsc, + .mask = CLOCKSOURCE_MASK(64), + .flags = CLOCK_SOURCE_IS_CONTINUOUS | + CLOCK_SOURCE_VALID_FOR_HRES | + CLOCK_SOURCE_MUST_VERIFY | + CLOCK_SOURCE_VERIFY_PERCPU, + .vdso_clock_mode = VDSO_CLOCKMODE_TSC, + .enable = tsc_cs_enable, + .resume = tsc_resume, + .mark_unstable = tsc_cs_mark_unstable, + .tick_stable = tsc_cs_tick_stable, + .list = LIST_HEAD_INIT(clocksource_tsc.list), +}; + +void mark_tsc_unstable(char *reason) +{ + if (tsc_unstable) + return; + + tsc_unstable = 1; + if (using_native_sched_clock()) + clear_sched_clock_stable(); + disable_sched_clock_irqtime(); + pr_info("Marking TSC unstable due to %s\n", reason); + + clocksource_mark_unstable(&clocksource_tsc_early); + clocksource_mark_unstable(&clocksource_tsc); +} + +EXPORT_SYMBOL_GPL(mark_tsc_unstable); + +static void __init tsc_disable_clocksource_watchdog(void) +{ + clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY; + clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; +} + +static void __init check_system_tsc_reliable(void) +{ +#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) + if (is_geode_lx()) { + /* RTSC counts during suspend */ +#define RTSC_SUSP 0x100 + unsigned long res_low, res_high; + + rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); + /* Geode_LX - the OLPC CPU has a very reliable TSC */ + if (res_low & RTSC_SUSP) + tsc_clocksource_reliable = 1; + } +#endif + if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) + tsc_clocksource_reliable = 1; + + /* + * Disable the clocksource watchdog when the system has: + * - TSC running at constant frequency + * - TSC which does not stop in C-States + * - the TSC_ADJUST register which allows to detect even minimal + * modifications + * - not more than two sockets. As the number of sockets cannot be + * evaluated at the early boot stage where this has to be + * invoked, check the number of online memory nodes as a + * fallback solution which is an reasonable estimate. + */ + if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && + boot_cpu_has(X86_FEATURE_NONSTOP_TSC) && + boot_cpu_has(X86_FEATURE_TSC_ADJUST) && + nr_online_nodes <= 2) + tsc_disable_clocksource_watchdog(); +} + +/* + * Make an educated guess if the TSC is trustworthy and synchronized + * over all CPUs. + */ +int unsynchronized_tsc(void) +{ + if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable) + return 1; + +#ifdef CONFIG_SMP + if (apic_is_clustered_box()) + return 1; +#endif + + if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) + return 0; + + if (tsc_clocksource_reliable) + return 0; + /* + * Intel systems are normally all synchronized. + * Exceptions must mark TSC as unstable: + */ + if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { + /* assume multi socket systems are not synchronized: */ + if (num_possible_cpus() > 1) + return 1; + } + + return 0; +} + +/* + * Convert ART to TSC given numerator/denominator found in detect_art() + */ +struct system_counterval_t convert_art_to_tsc(u64 art) +{ + u64 tmp, res, rem; + + rem = do_div(art, art_to_tsc_denominator); + + res = art * art_to_tsc_numerator; + tmp = rem * art_to_tsc_numerator; + + do_div(tmp, art_to_tsc_denominator); + res += tmp + art_to_tsc_offset; + + return (struct system_counterval_t) {.cs = art_related_clocksource, + .cycles = res}; +} +EXPORT_SYMBOL(convert_art_to_tsc); + +/** + * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC. + * @art_ns: ART (Always Running Timer) in unit of nanoseconds + * + * PTM requires all timestamps to be in units of nanoseconds. When user + * software requests a cross-timestamp, this function converts system timestamp + * to TSC. + * + * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set + * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check + * that this flag is set before conversion to TSC is attempted. + * + * Return: + * struct system_counterval_t - system counter value with the pointer to the + * corresponding clocksource + * @cycles: System counter value + * @cs: Clocksource corresponding to system counter value. Used + * by timekeeping code to verify comparability of two cycle + * values. + */ + +struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns) +{ + u64 tmp, res, rem; + + rem = do_div(art_ns, USEC_PER_SEC); + + res = art_ns * tsc_khz; + tmp = rem * tsc_khz; + + do_div(tmp, USEC_PER_SEC); + res += tmp; + + return (struct system_counterval_t) { .cs = art_related_clocksource, + .cycles = res}; +} +EXPORT_SYMBOL(convert_art_ns_to_tsc); + + +static void tsc_refine_calibration_work(struct work_struct *work); +static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); +/** + * tsc_refine_calibration_work - Further refine tsc freq calibration + * @work - ignored. + * + * This functions uses delayed work over a period of a + * second to further refine the TSC freq value. Since this is + * timer based, instead of loop based, we don't block the boot + * process while this longer calibration is done. + * + * If there are any calibration anomalies (too many SMIs, etc), + * or the refined calibration is off by 1% of the fast early + * calibration, we throw out the new calibration and use the + * early calibration. + */ +static void tsc_refine_calibration_work(struct work_struct *work) +{ + static u64 tsc_start = ULLONG_MAX, ref_start; + static int hpet; + u64 tsc_stop, ref_stop, delta; + unsigned long freq; + int cpu; + + /* Don't bother refining TSC on unstable systems */ + if (tsc_unstable) + goto unreg; + + /* + * Since the work is started early in boot, we may be + * delayed the first time we expire. So set the workqueue + * again once we know timers are working. + */ + if (tsc_start == ULLONG_MAX) { +restart: + /* + * Only set hpet once, to avoid mixing hardware + * if the hpet becomes enabled later. + */ + hpet = is_hpet_enabled(); + tsc_start = tsc_read_refs(&ref_start, hpet); + schedule_delayed_work(&tsc_irqwork, HZ); + return; + } + + tsc_stop = tsc_read_refs(&ref_stop, hpet); + + /* hpet or pmtimer available ? */ + if (ref_start == ref_stop) + goto out; + + /* Check, whether the sampling was disturbed */ + if (tsc_stop == ULLONG_MAX) + goto restart; + + delta = tsc_stop - tsc_start; + delta *= 1000000LL; + if (hpet) + freq = calc_hpet_ref(delta, ref_start, ref_stop); + else + freq = calc_pmtimer_ref(delta, ref_start, ref_stop); + + /* Make sure we're within 1% */ + if (abs(tsc_khz - freq) > tsc_khz/100) + goto out; + + tsc_khz = freq; + pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", + (unsigned long)tsc_khz / 1000, + (unsigned long)tsc_khz % 1000); + + /* Inform the TSC deadline clockevent devices about the recalibration */ + lapic_update_tsc_freq(); + + /* Update the sched_clock() rate to match the clocksource one */ + for_each_possible_cpu(cpu) + set_cyc2ns_scale(tsc_khz, cpu, tsc_stop); + +out: + if (tsc_unstable) + goto unreg; + + if (boot_cpu_has(X86_FEATURE_ART)) + art_related_clocksource = &clocksource_tsc; + clocksource_register_khz(&clocksource_tsc, tsc_khz); +unreg: + clocksource_unregister(&clocksource_tsc_early); +} + + +static int __init init_tsc_clocksource(void) +{ + if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz) + return 0; + + if (tsc_unstable) + goto unreg; + + if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) + clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; + + /* + * When TSC frequency is known (retrieved via MSR or CPUID), we skip + * the refined calibration and directly register it as a clocksource. + */ + if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) { + if (boot_cpu_has(X86_FEATURE_ART)) + art_related_clocksource = &clocksource_tsc; + clocksource_register_khz(&clocksource_tsc, tsc_khz); +unreg: + clocksource_unregister(&clocksource_tsc_early); + return 0; + } + + schedule_delayed_work(&tsc_irqwork, 0); + return 0; +} +/* + * We use device_initcall here, to ensure we run after the hpet + * is fully initialized, which may occur at fs_initcall time. + */ +device_initcall(init_tsc_clocksource); + +static bool __init determine_cpu_tsc_frequencies(bool early) +{ + /* Make sure that cpu and tsc are not already calibrated */ + WARN_ON(cpu_khz || tsc_khz); + + if (early) { + cpu_khz = x86_platform.calibrate_cpu(); + if (tsc_early_khz) + tsc_khz = tsc_early_khz; + else + tsc_khz = x86_platform.calibrate_tsc(); + } else { + /* We should not be here with non-native cpu calibration */ + WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu); + cpu_khz = pit_hpet_ptimer_calibrate_cpu(); + } + + /* + * Trust non-zero tsc_khz as authoritative, + * and use it to sanity check cpu_khz, + * which will be off if system timer is off. + */ + if (tsc_khz == 0) + tsc_khz = cpu_khz; + else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) + cpu_khz = tsc_khz; + + if (tsc_khz == 0) + return false; + + pr_info("Detected %lu.%03lu MHz processor\n", + (unsigned long)cpu_khz / KHZ, + (unsigned long)cpu_khz % KHZ); + + if (cpu_khz != tsc_khz) { + pr_info("Detected %lu.%03lu MHz TSC", + (unsigned long)tsc_khz / KHZ, + (unsigned long)tsc_khz % KHZ); + } + return true; +} + +static unsigned long __init get_loops_per_jiffy(void) +{ + u64 lpj = (u64)tsc_khz * KHZ; + + do_div(lpj, HZ); + return lpj; +} + +static void __init tsc_enable_sched_clock(void) +{ + loops_per_jiffy = get_loops_per_jiffy(); + use_tsc_delay(); + + /* Sanitize TSC ADJUST before cyc2ns gets initialized */ + tsc_store_and_check_tsc_adjust(true); + cyc2ns_init_boot_cpu(); + static_branch_enable(&__use_tsc); +} + +void __init tsc_early_init(void) +{ + if (!boot_cpu_has(X86_FEATURE_TSC)) + return; + /* Don't change UV TSC multi-chassis synchronization */ + if (is_early_uv_system()) + return; + if (!determine_cpu_tsc_frequencies(true)) + return; + tsc_enable_sched_clock(); +} + +void __init tsc_init(void) +{ + /* + * native_calibrate_cpu_early can only calibrate using methods that are + * available early in boot. + */ + if (x86_platform.calibrate_cpu == native_calibrate_cpu_early) + x86_platform.calibrate_cpu = native_calibrate_cpu; + + if (!boot_cpu_has(X86_FEATURE_TSC)) { + setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); + return; + } + + if (!tsc_khz) { + /* We failed to determine frequencies earlier, try again */ + if (!determine_cpu_tsc_frequencies(false)) { + mark_tsc_unstable("could not calculate TSC khz"); + setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); + return; + } + tsc_enable_sched_clock(); + } + + cyc2ns_init_secondary_cpus(); + + if (!no_sched_irq_time) + enable_sched_clock_irqtime(); + + lpj_fine = get_loops_per_jiffy(); + + check_system_tsc_reliable(); + + if (unsynchronized_tsc()) { + mark_tsc_unstable("TSCs unsynchronized"); + return; + } + + if (tsc_clocksource_reliable || no_tsc_watchdog) + tsc_disable_clocksource_watchdog(); + + clocksource_register_khz(&clocksource_tsc_early, tsc_khz); + detect_art(); +} + +#ifdef CONFIG_SMP +/* + * If we have a constant TSC and are using the TSC for the delay loop, + * we can skip clock calibration if another cpu in the same socket has already + * been calibrated. This assumes that CONSTANT_TSC applies to all + * cpus in the socket - this should be a safe assumption. + */ +unsigned long calibrate_delay_is_known(void) +{ + int sibling, cpu = smp_processor_id(); + int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC); + const struct cpumask *mask = topology_core_cpumask(cpu); + + if (!constant_tsc || !mask) + return 0; + + sibling = cpumask_any_but(mask, cpu); + if (sibling < nr_cpu_ids) + return cpu_data(sibling).loops_per_jiffy; + return 0; +} +#endif |