summaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/mmu/mmu_internal.h
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kvm/mmu/mmu_internal.h')
-rw-r--r--arch/x86/kvm/mmu/mmu_internal.h320
1 files changed, 320 insertions, 0 deletions
diff --git a/arch/x86/kvm/mmu/mmu_internal.h b/arch/x86/kvm/mmu/mmu_internal.h
new file mode 100644
index 000000000..0a9d5f292
--- /dev/null
+++ b/arch/x86/kvm/mmu/mmu_internal.h
@@ -0,0 +1,320 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __KVM_X86_MMU_INTERNAL_H
+#define __KVM_X86_MMU_INTERNAL_H
+
+#include <linux/types.h>
+#include <linux/kvm_host.h>
+#include <asm/kvm_host.h>
+
+#undef MMU_DEBUG
+
+#ifdef MMU_DEBUG
+extern bool dbg;
+
+#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
+#define rmap_printk(fmt, args...) do { if (dbg) printk("%s: " fmt, __func__, ## args); } while (0)
+#define MMU_WARN_ON(x) WARN_ON(x)
+#else
+#define pgprintk(x...) do { } while (0)
+#define rmap_printk(x...) do { } while (0)
+#define MMU_WARN_ON(x) do { } while (0)
+#endif
+
+/* Page table builder macros common to shadow (host) PTEs and guest PTEs. */
+#define __PT_LEVEL_SHIFT(level, bits_per_level) \
+ (PAGE_SHIFT + ((level) - 1) * (bits_per_level))
+#define __PT_INDEX(address, level, bits_per_level) \
+ (((address) >> __PT_LEVEL_SHIFT(level, bits_per_level)) & ((1 << (bits_per_level)) - 1))
+
+#define __PT_LVL_ADDR_MASK(base_addr_mask, level, bits_per_level) \
+ ((base_addr_mask) & ~((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
+
+#define __PT_LVL_OFFSET_MASK(base_addr_mask, level, bits_per_level) \
+ ((base_addr_mask) & ((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
+
+#define __PT_ENT_PER_PAGE(bits_per_level) (1 << (bits_per_level))
+
+/*
+ * Unlike regular MMU roots, PAE "roots", a.k.a. PDPTEs/PDPTRs, have a PRESENT
+ * bit, and thus are guaranteed to be non-zero when valid. And, when a guest
+ * PDPTR is !PRESENT, its corresponding PAE root cannot be set to INVALID_PAGE,
+ * as the CPU would treat that as PRESENT PDPTR with reserved bits set. Use
+ * '0' instead of INVALID_PAGE to indicate an invalid PAE root.
+ */
+#define INVALID_PAE_ROOT 0
+#define IS_VALID_PAE_ROOT(x) (!!(x))
+
+typedef u64 __rcu *tdp_ptep_t;
+
+struct kvm_mmu_page {
+ /*
+ * Note, "link" through "spt" fit in a single 64 byte cache line on
+ * 64-bit kernels, keep it that way unless there's a reason not to.
+ */
+ struct list_head link;
+ struct hlist_node hash_link;
+
+ bool tdp_mmu_page;
+ bool unsync;
+ union {
+ u8 mmu_valid_gen;
+
+ /* Only accessed under slots_lock. */
+ bool tdp_mmu_scheduled_root_to_zap;
+ };
+ bool lpage_disallowed; /* Can't be replaced by an equiv large page */
+
+ /*
+ * The following two entries are used to key the shadow page in the
+ * hash table.
+ */
+ union kvm_mmu_page_role role;
+ gfn_t gfn;
+
+ u64 *spt;
+
+ /*
+ * Stores the result of the guest translation being shadowed by each
+ * SPTE. KVM shadows two types of guest translations: nGPA -> GPA
+ * (shadow EPT/NPT) and GVA -> GPA (traditional shadow paging). In both
+ * cases the result of the translation is a GPA and a set of access
+ * constraints.
+ *
+ * The GFN is stored in the upper bits (PAGE_SHIFT) and the shadowed
+ * access permissions are stored in the lower bits. Note, for
+ * convenience and uniformity across guests, the access permissions are
+ * stored in KVM format (e.g. ACC_EXEC_MASK) not the raw guest format.
+ */
+ u64 *shadowed_translation;
+
+ /* Currently serving as active root */
+ union {
+ int root_count;
+ refcount_t tdp_mmu_root_count;
+ };
+ unsigned int unsync_children;
+ union {
+ struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
+ tdp_ptep_t ptep;
+ };
+ DECLARE_BITMAP(unsync_child_bitmap, 512);
+
+ struct list_head lpage_disallowed_link;
+#ifdef CONFIG_X86_32
+ /*
+ * Used out of the mmu-lock to avoid reading spte values while an
+ * update is in progress; see the comments in __get_spte_lockless().
+ */
+ int clear_spte_count;
+#endif
+
+ /* Number of writes since the last time traversal visited this page. */
+ atomic_t write_flooding_count;
+
+#ifdef CONFIG_X86_64
+ /* Used for freeing the page asynchronously if it is a TDP MMU page. */
+ struct rcu_head rcu_head;
+#endif
+};
+
+extern struct kmem_cache *mmu_page_header_cache;
+
+static inline struct kvm_mmu_page *to_shadow_page(hpa_t shadow_page)
+{
+ struct page *page = pfn_to_page(shadow_page >> PAGE_SHIFT);
+
+ return (struct kvm_mmu_page *)page_private(page);
+}
+
+static inline struct kvm_mmu_page *sptep_to_sp(u64 *sptep)
+{
+ return to_shadow_page(__pa(sptep));
+}
+
+static inline int kvm_mmu_role_as_id(union kvm_mmu_page_role role)
+{
+ return role.smm ? 1 : 0;
+}
+
+static inline int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
+{
+ return kvm_mmu_role_as_id(sp->role);
+}
+
+static inline bool kvm_mmu_page_ad_need_write_protect(struct kvm_mmu_page *sp)
+{
+ /*
+ * When using the EPT page-modification log, the GPAs in the CPU dirty
+ * log would come from L2 rather than L1. Therefore, we need to rely
+ * on write protection to record dirty pages, which bypasses PML, since
+ * writes now result in a vmexit. Note, the check on CPU dirty logging
+ * being enabled is mandatory as the bits used to denote WP-only SPTEs
+ * are reserved for PAE paging (32-bit KVM).
+ */
+ return kvm_x86_ops.cpu_dirty_log_size && sp->role.guest_mode;
+}
+
+int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
+ gfn_t gfn, bool can_unsync, bool prefetch);
+
+void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
+void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
+bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
+ struct kvm_memory_slot *slot, u64 gfn,
+ int min_level);
+void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
+ u64 start_gfn, u64 pages);
+unsigned int pte_list_count(struct kvm_rmap_head *rmap_head);
+
+extern int nx_huge_pages;
+static inline bool is_nx_huge_page_enabled(struct kvm *kvm)
+{
+ return READ_ONCE(nx_huge_pages) && !kvm->arch.disable_nx_huge_pages;
+}
+
+struct kvm_page_fault {
+ /* arguments to kvm_mmu_do_page_fault. */
+ const gpa_t addr;
+ const u32 error_code;
+ const bool prefetch;
+
+ /* Derived from error_code. */
+ const bool exec;
+ const bool write;
+ const bool present;
+ const bool rsvd;
+ const bool user;
+
+ /* Derived from mmu and global state. */
+ const bool is_tdp;
+ const bool nx_huge_page_workaround_enabled;
+
+ /*
+ * Whether a >4KB mapping can be created or is forbidden due to NX
+ * hugepages.
+ */
+ bool huge_page_disallowed;
+
+ /*
+ * Maximum page size that can be created for this fault; input to
+ * FNAME(fetch), __direct_map and kvm_tdp_mmu_map.
+ */
+ u8 max_level;
+
+ /*
+ * Page size that can be created based on the max_level and the
+ * page size used by the host mapping.
+ */
+ u8 req_level;
+
+ /*
+ * Page size that will be created based on the req_level and
+ * huge_page_disallowed.
+ */
+ u8 goal_level;
+
+ /* Shifted addr, or result of guest page table walk if addr is a gva. */
+ gfn_t gfn;
+
+ /* The memslot containing gfn. May be NULL. */
+ struct kvm_memory_slot *slot;
+
+ /* Outputs of kvm_faultin_pfn. */
+ kvm_pfn_t pfn;
+ hva_t hva;
+ bool map_writable;
+};
+
+int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
+
+/*
+ * Return values of handle_mmio_page_fault(), mmu.page_fault(), fast_page_fault(),
+ * and of course kvm_mmu_do_page_fault().
+ *
+ * RET_PF_CONTINUE: So far, so good, keep handling the page fault.
+ * RET_PF_RETRY: let CPU fault again on the address.
+ * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
+ * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
+ * RET_PF_FIXED: The faulting entry has been fixed.
+ * RET_PF_SPURIOUS: The faulting entry was already fixed, e.g. by another vCPU.
+ *
+ * Any names added to this enum should be exported to userspace for use in
+ * tracepoints via TRACE_DEFINE_ENUM() in mmutrace.h
+ *
+ * Note, all values must be greater than or equal to zero so as not to encroach
+ * on -errno return values. Somewhat arbitrarily use '0' for CONTINUE, which
+ * will allow for efficient machine code when checking for CONTINUE, e.g.
+ * "TEST %rax, %rax, JNZ", as all "stop!" values are non-zero.
+ */
+enum {
+ RET_PF_CONTINUE = 0,
+ RET_PF_RETRY,
+ RET_PF_EMULATE,
+ RET_PF_INVALID,
+ RET_PF_FIXED,
+ RET_PF_SPURIOUS,
+};
+
+static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
+ u32 err, bool prefetch)
+{
+ struct kvm_page_fault fault = {
+ .addr = cr2_or_gpa,
+ .error_code = err,
+ .exec = err & PFERR_FETCH_MASK,
+ .write = err & PFERR_WRITE_MASK,
+ .present = err & PFERR_PRESENT_MASK,
+ .rsvd = err & PFERR_RSVD_MASK,
+ .user = err & PFERR_USER_MASK,
+ .prefetch = prefetch,
+ .is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault),
+ .nx_huge_page_workaround_enabled =
+ is_nx_huge_page_enabled(vcpu->kvm),
+
+ .max_level = KVM_MAX_HUGEPAGE_LEVEL,
+ .req_level = PG_LEVEL_4K,
+ .goal_level = PG_LEVEL_4K,
+ };
+ int r;
+
+ /*
+ * Async #PF "faults", a.k.a. prefetch faults, are not faults from the
+ * guest perspective and have already been counted at the time of the
+ * original fault.
+ */
+ if (!prefetch)
+ vcpu->stat.pf_taken++;
+
+ if (IS_ENABLED(CONFIG_RETPOLINE) && fault.is_tdp)
+ r = kvm_tdp_page_fault(vcpu, &fault);
+ else
+ r = vcpu->arch.mmu->page_fault(vcpu, &fault);
+
+ /*
+ * Similar to above, prefetch faults aren't truly spurious, and the
+ * async #PF path doesn't do emulation. Do count faults that are fixed
+ * by the async #PF handler though, otherwise they'll never be counted.
+ */
+ if (r == RET_PF_FIXED)
+ vcpu->stat.pf_fixed++;
+ else if (prefetch)
+ ;
+ else if (r == RET_PF_EMULATE)
+ vcpu->stat.pf_emulate++;
+ else if (r == RET_PF_SPURIOUS)
+ vcpu->stat.pf_spurious++;
+ return r;
+}
+
+int kvm_mmu_max_mapping_level(struct kvm *kvm,
+ const struct kvm_memory_slot *slot, gfn_t gfn,
+ int max_level);
+void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
+void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level);
+
+void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
+
+void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp);
+void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp);
+
+#endif /* __KVM_X86_MMU_INTERNAL_H */