diff options
Diffstat (limited to '')
-rw-r--r-- | block/blk-throttle.c | 2486 |
1 files changed, 2486 insertions, 0 deletions
diff --git a/block/blk-throttle.c b/block/blk-throttle.c new file mode 100644 index 000000000..62a3f6231 --- /dev/null +++ b/block/blk-throttle.c @@ -0,0 +1,2486 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Interface for controlling IO bandwidth on a request queue + * + * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> + */ + +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/blkdev.h> +#include <linux/bio.h> +#include <linux/blktrace_api.h> +#include "blk.h" +#include "blk-cgroup-rwstat.h" +#include "blk-stat.h" +#include "blk-throttle.h" + +/* Max dispatch from a group in 1 round */ +#define THROTL_GRP_QUANTUM 8 + +/* Total max dispatch from all groups in one round */ +#define THROTL_QUANTUM 32 + +/* Throttling is performed over a slice and after that slice is renewed */ +#define DFL_THROTL_SLICE_HD (HZ / 10) +#define DFL_THROTL_SLICE_SSD (HZ / 50) +#define MAX_THROTL_SLICE (HZ) +#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */ +#define MIN_THROTL_BPS (320 * 1024) +#define MIN_THROTL_IOPS (10) +#define DFL_LATENCY_TARGET (-1L) +#define DFL_IDLE_THRESHOLD (0) +#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */ +#define LATENCY_FILTERED_SSD (0) +/* + * For HD, very small latency comes from sequential IO. Such IO is helpless to + * help determine if its IO is impacted by others, hence we ignore the IO + */ +#define LATENCY_FILTERED_HD (1000L) /* 1ms */ + +/* A workqueue to queue throttle related work */ +static struct workqueue_struct *kthrotld_workqueue; + +#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node) + +/* We measure latency for request size from <= 4k to >= 1M */ +#define LATENCY_BUCKET_SIZE 9 + +struct latency_bucket { + unsigned long total_latency; /* ns / 1024 */ + int samples; +}; + +struct avg_latency_bucket { + unsigned long latency; /* ns / 1024 */ + bool valid; +}; + +struct throtl_data +{ + /* service tree for active throtl groups */ + struct throtl_service_queue service_queue; + + struct request_queue *queue; + + /* Total Number of queued bios on READ and WRITE lists */ + unsigned int nr_queued[2]; + + unsigned int throtl_slice; + + /* Work for dispatching throttled bios */ + struct work_struct dispatch_work; + unsigned int limit_index; + bool limit_valid[LIMIT_CNT]; + + unsigned long low_upgrade_time; + unsigned long low_downgrade_time; + + unsigned int scale; + + struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE]; + struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE]; + struct latency_bucket __percpu *latency_buckets[2]; + unsigned long last_calculate_time; + unsigned long filtered_latency; + + bool track_bio_latency; +}; + +static void throtl_pending_timer_fn(struct timer_list *t); + +static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) +{ + return pd_to_blkg(&tg->pd); +} + +/** + * sq_to_tg - return the throl_grp the specified service queue belongs to + * @sq: the throtl_service_queue of interest + * + * Return the throtl_grp @sq belongs to. If @sq is the top-level one + * embedded in throtl_data, %NULL is returned. + */ +static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) +{ + if (sq && sq->parent_sq) + return container_of(sq, struct throtl_grp, service_queue); + else + return NULL; +} + +/** + * sq_to_td - return throtl_data the specified service queue belongs to + * @sq: the throtl_service_queue of interest + * + * A service_queue can be embedded in either a throtl_grp or throtl_data. + * Determine the associated throtl_data accordingly and return it. + */ +static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) +{ + struct throtl_grp *tg = sq_to_tg(sq); + + if (tg) + return tg->td; + else + return container_of(sq, struct throtl_data, service_queue); +} + +/* + * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to + * make the IO dispatch more smooth. + * Scale up: linearly scale up according to lapsed time since upgrade. For + * every throtl_slice, the limit scales up 1/2 .low limit till the + * limit hits .max limit + * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit + */ +static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td) +{ + /* arbitrary value to avoid too big scale */ + if (td->scale < 4096 && time_after_eq(jiffies, + td->low_upgrade_time + td->scale * td->throtl_slice)) + td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice; + + return low + (low >> 1) * td->scale; +} + +static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) +{ + struct blkcg_gq *blkg = tg_to_blkg(tg); + struct throtl_data *td; + uint64_t ret; + + if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) + return U64_MAX; + + td = tg->td; + ret = tg->bps[rw][td->limit_index]; + if (ret == 0 && td->limit_index == LIMIT_LOW) { + /* intermediate node or iops isn't 0 */ + if (!list_empty(&blkg->blkcg->css.children) || + tg->iops[rw][td->limit_index]) + return U64_MAX; + else + return MIN_THROTL_BPS; + } + + if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] && + tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) { + uint64_t adjusted; + + adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td); + ret = min(tg->bps[rw][LIMIT_MAX], adjusted); + } + return ret; +} + +static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) +{ + struct blkcg_gq *blkg = tg_to_blkg(tg); + struct throtl_data *td; + unsigned int ret; + + if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) + return UINT_MAX; + + td = tg->td; + ret = tg->iops[rw][td->limit_index]; + if (ret == 0 && tg->td->limit_index == LIMIT_LOW) { + /* intermediate node or bps isn't 0 */ + if (!list_empty(&blkg->blkcg->css.children) || + tg->bps[rw][td->limit_index]) + return UINT_MAX; + else + return MIN_THROTL_IOPS; + } + + if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] && + tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) { + uint64_t adjusted; + + adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td); + if (adjusted > UINT_MAX) + adjusted = UINT_MAX; + ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted); + } + return ret; +} + +#define request_bucket_index(sectors) \ + clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1) + +/** + * throtl_log - log debug message via blktrace + * @sq: the service_queue being reported + * @fmt: printf format string + * @args: printf args + * + * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a + * throtl_grp; otherwise, just "throtl". + */ +#define throtl_log(sq, fmt, args...) do { \ + struct throtl_grp *__tg = sq_to_tg((sq)); \ + struct throtl_data *__td = sq_to_td((sq)); \ + \ + (void)__td; \ + if (likely(!blk_trace_note_message_enabled(__td->queue))) \ + break; \ + if ((__tg)) { \ + blk_add_cgroup_trace_msg(__td->queue, \ + &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\ + } else { \ + blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \ + } \ +} while (0) + +static inline unsigned int throtl_bio_data_size(struct bio *bio) +{ + /* assume it's one sector */ + if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) + return 512; + return bio->bi_iter.bi_size; +} + +static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) +{ + INIT_LIST_HEAD(&qn->node); + bio_list_init(&qn->bios); + qn->tg = tg; +} + +/** + * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it + * @bio: bio being added + * @qn: qnode to add bio to + * @queued: the service_queue->queued[] list @qn belongs to + * + * Add @bio to @qn and put @qn on @queued if it's not already on. + * @qn->tg's reference count is bumped when @qn is activated. See the + * comment on top of throtl_qnode definition for details. + */ +static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, + struct list_head *queued) +{ + bio_list_add(&qn->bios, bio); + if (list_empty(&qn->node)) { + list_add_tail(&qn->node, queued); + blkg_get(tg_to_blkg(qn->tg)); + } +} + +/** + * throtl_peek_queued - peek the first bio on a qnode list + * @queued: the qnode list to peek + */ +static struct bio *throtl_peek_queued(struct list_head *queued) +{ + struct throtl_qnode *qn; + struct bio *bio; + + if (list_empty(queued)) + return NULL; + + qn = list_first_entry(queued, struct throtl_qnode, node); + bio = bio_list_peek(&qn->bios); + WARN_ON_ONCE(!bio); + return bio; +} + +/** + * throtl_pop_queued - pop the first bio form a qnode list + * @queued: the qnode list to pop a bio from + * @tg_to_put: optional out argument for throtl_grp to put + * + * Pop the first bio from the qnode list @queued. After popping, the first + * qnode is removed from @queued if empty or moved to the end of @queued so + * that the popping order is round-robin. + * + * When the first qnode is removed, its associated throtl_grp should be put + * too. If @tg_to_put is NULL, this function automatically puts it; + * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is + * responsible for putting it. + */ +static struct bio *throtl_pop_queued(struct list_head *queued, + struct throtl_grp **tg_to_put) +{ + struct throtl_qnode *qn; + struct bio *bio; + + if (list_empty(queued)) + return NULL; + + qn = list_first_entry(queued, struct throtl_qnode, node); + bio = bio_list_pop(&qn->bios); + WARN_ON_ONCE(!bio); + + if (bio_list_empty(&qn->bios)) { + list_del_init(&qn->node); + if (tg_to_put) + *tg_to_put = qn->tg; + else + blkg_put(tg_to_blkg(qn->tg)); + } else { + list_move_tail(&qn->node, queued); + } + + return bio; +} + +/* init a service_queue, assumes the caller zeroed it */ +static void throtl_service_queue_init(struct throtl_service_queue *sq) +{ + INIT_LIST_HEAD(&sq->queued[READ]); + INIT_LIST_HEAD(&sq->queued[WRITE]); + sq->pending_tree = RB_ROOT_CACHED; + timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0); +} + +static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, + struct request_queue *q, + struct blkcg *blkcg) +{ + struct throtl_grp *tg; + int rw; + + tg = kzalloc_node(sizeof(*tg), gfp, q->node); + if (!tg) + return NULL; + + if (blkg_rwstat_init(&tg->stat_bytes, gfp)) + goto err_free_tg; + + if (blkg_rwstat_init(&tg->stat_ios, gfp)) + goto err_exit_stat_bytes; + + throtl_service_queue_init(&tg->service_queue); + + for (rw = READ; rw <= WRITE; rw++) { + throtl_qnode_init(&tg->qnode_on_self[rw], tg); + throtl_qnode_init(&tg->qnode_on_parent[rw], tg); + } + + RB_CLEAR_NODE(&tg->rb_node); + tg->bps[READ][LIMIT_MAX] = U64_MAX; + tg->bps[WRITE][LIMIT_MAX] = U64_MAX; + tg->iops[READ][LIMIT_MAX] = UINT_MAX; + tg->iops[WRITE][LIMIT_MAX] = UINT_MAX; + tg->bps_conf[READ][LIMIT_MAX] = U64_MAX; + tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX; + tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX; + tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX; + /* LIMIT_LOW will have default value 0 */ + + tg->latency_target = DFL_LATENCY_TARGET; + tg->latency_target_conf = DFL_LATENCY_TARGET; + tg->idletime_threshold = DFL_IDLE_THRESHOLD; + tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD; + + return &tg->pd; + +err_exit_stat_bytes: + blkg_rwstat_exit(&tg->stat_bytes); +err_free_tg: + kfree(tg); + return NULL; +} + +static void throtl_pd_init(struct blkg_policy_data *pd) +{ + struct throtl_grp *tg = pd_to_tg(pd); + struct blkcg_gq *blkg = tg_to_blkg(tg); + struct throtl_data *td = blkg->q->td; + struct throtl_service_queue *sq = &tg->service_queue; + + /* + * If on the default hierarchy, we switch to properly hierarchical + * behavior where limits on a given throtl_grp are applied to the + * whole subtree rather than just the group itself. e.g. If 16M + * read_bps limit is set on the root group, the whole system can't + * exceed 16M for the device. + * + * If not on the default hierarchy, the broken flat hierarchy + * behavior is retained where all throtl_grps are treated as if + * they're all separate root groups right below throtl_data. + * Limits of a group don't interact with limits of other groups + * regardless of the position of the group in the hierarchy. + */ + sq->parent_sq = &td->service_queue; + if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) + sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; + tg->td = td; +} + +/* + * Set has_rules[] if @tg or any of its parents have limits configured. + * This doesn't require walking up to the top of the hierarchy as the + * parent's has_rules[] is guaranteed to be correct. + */ +static void tg_update_has_rules(struct throtl_grp *tg) +{ + struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); + struct throtl_data *td = tg->td; + int rw; + + for (rw = READ; rw <= WRITE; rw++) { + tg->has_rules_iops[rw] = + (parent_tg && parent_tg->has_rules_iops[rw]) || + (td->limit_valid[td->limit_index] && + tg_iops_limit(tg, rw) != UINT_MAX); + tg->has_rules_bps[rw] = + (parent_tg && parent_tg->has_rules_bps[rw]) || + (td->limit_valid[td->limit_index] && + (tg_bps_limit(tg, rw) != U64_MAX)); + } +} + +static void throtl_pd_online(struct blkg_policy_data *pd) +{ + struct throtl_grp *tg = pd_to_tg(pd); + /* + * We don't want new groups to escape the limits of its ancestors. + * Update has_rules[] after a new group is brought online. + */ + tg_update_has_rules(tg); +} + +#ifdef CONFIG_BLK_DEV_THROTTLING_LOW +static void blk_throtl_update_limit_valid(struct throtl_data *td) +{ + struct cgroup_subsys_state *pos_css; + struct blkcg_gq *blkg; + bool low_valid = false; + + rcu_read_lock(); + blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { + struct throtl_grp *tg = blkg_to_tg(blkg); + + if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] || + tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) { + low_valid = true; + break; + } + } + rcu_read_unlock(); + + td->limit_valid[LIMIT_LOW] = low_valid; +} +#else +static inline void blk_throtl_update_limit_valid(struct throtl_data *td) +{ +} +#endif + +static void throtl_upgrade_state(struct throtl_data *td); +static void throtl_pd_offline(struct blkg_policy_data *pd) +{ + struct throtl_grp *tg = pd_to_tg(pd); + + tg->bps[READ][LIMIT_LOW] = 0; + tg->bps[WRITE][LIMIT_LOW] = 0; + tg->iops[READ][LIMIT_LOW] = 0; + tg->iops[WRITE][LIMIT_LOW] = 0; + + blk_throtl_update_limit_valid(tg->td); + + if (!tg->td->limit_valid[tg->td->limit_index]) + throtl_upgrade_state(tg->td); +} + +static void throtl_pd_free(struct blkg_policy_data *pd) +{ + struct throtl_grp *tg = pd_to_tg(pd); + + del_timer_sync(&tg->service_queue.pending_timer); + blkg_rwstat_exit(&tg->stat_bytes); + blkg_rwstat_exit(&tg->stat_ios); + kfree(tg); +} + +static struct throtl_grp * +throtl_rb_first(struct throtl_service_queue *parent_sq) +{ + struct rb_node *n; + + n = rb_first_cached(&parent_sq->pending_tree); + WARN_ON_ONCE(!n); + if (!n) + return NULL; + return rb_entry_tg(n); +} + +static void throtl_rb_erase(struct rb_node *n, + struct throtl_service_queue *parent_sq) +{ + rb_erase_cached(n, &parent_sq->pending_tree); + RB_CLEAR_NODE(n); +} + +static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) +{ + struct throtl_grp *tg; + + tg = throtl_rb_first(parent_sq); + if (!tg) + return; + + parent_sq->first_pending_disptime = tg->disptime; +} + +static void tg_service_queue_add(struct throtl_grp *tg) +{ + struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; + struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node; + struct rb_node *parent = NULL; + struct throtl_grp *__tg; + unsigned long key = tg->disptime; + bool leftmost = true; + + while (*node != NULL) { + parent = *node; + __tg = rb_entry_tg(parent); + + if (time_before(key, __tg->disptime)) + node = &parent->rb_left; + else { + node = &parent->rb_right; + leftmost = false; + } + } + + rb_link_node(&tg->rb_node, parent, node); + rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree, + leftmost); +} + +static void throtl_enqueue_tg(struct throtl_grp *tg) +{ + if (!(tg->flags & THROTL_TG_PENDING)) { + tg_service_queue_add(tg); + tg->flags |= THROTL_TG_PENDING; + tg->service_queue.parent_sq->nr_pending++; + } +} + +static void throtl_dequeue_tg(struct throtl_grp *tg) +{ + if (tg->flags & THROTL_TG_PENDING) { + struct throtl_service_queue *parent_sq = + tg->service_queue.parent_sq; + + throtl_rb_erase(&tg->rb_node, parent_sq); + --parent_sq->nr_pending; + tg->flags &= ~THROTL_TG_PENDING; + } +} + +/* Call with queue lock held */ +static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, + unsigned long expires) +{ + unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; + + /* + * Since we are adjusting the throttle limit dynamically, the sleep + * time calculated according to previous limit might be invalid. It's + * possible the cgroup sleep time is very long and no other cgroups + * have IO running so notify the limit changes. Make sure the cgroup + * doesn't sleep too long to avoid the missed notification. + */ + if (time_after(expires, max_expire)) + expires = max_expire; + mod_timer(&sq->pending_timer, expires); + throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", + expires - jiffies, jiffies); +} + +/** + * throtl_schedule_next_dispatch - schedule the next dispatch cycle + * @sq: the service_queue to schedule dispatch for + * @force: force scheduling + * + * Arm @sq->pending_timer so that the next dispatch cycle starts on the + * dispatch time of the first pending child. Returns %true if either timer + * is armed or there's no pending child left. %false if the current + * dispatch window is still open and the caller should continue + * dispatching. + * + * If @force is %true, the dispatch timer is always scheduled and this + * function is guaranteed to return %true. This is to be used when the + * caller can't dispatch itself and needs to invoke pending_timer + * unconditionally. Note that forced scheduling is likely to induce short + * delay before dispatch starts even if @sq->first_pending_disptime is not + * in the future and thus shouldn't be used in hot paths. + */ +static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, + bool force) +{ + /* any pending children left? */ + if (!sq->nr_pending) + return true; + + update_min_dispatch_time(sq); + + /* is the next dispatch time in the future? */ + if (force || time_after(sq->first_pending_disptime, jiffies)) { + throtl_schedule_pending_timer(sq, sq->first_pending_disptime); + return true; + } + + /* tell the caller to continue dispatching */ + return false; +} + +static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, + bool rw, unsigned long start) +{ + tg->bytes_disp[rw] = 0; + tg->io_disp[rw] = 0; + tg->carryover_bytes[rw] = 0; + tg->carryover_ios[rw] = 0; + + /* + * Previous slice has expired. We must have trimmed it after last + * bio dispatch. That means since start of last slice, we never used + * that bandwidth. Do try to make use of that bandwidth while giving + * credit. + */ + if (time_after_eq(start, tg->slice_start[rw])) + tg->slice_start[rw] = start; + + tg->slice_end[rw] = jiffies + tg->td->throtl_slice; + throtl_log(&tg->service_queue, + "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", + rw == READ ? 'R' : 'W', tg->slice_start[rw], + tg->slice_end[rw], jiffies); +} + +static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw, + bool clear_carryover) +{ + tg->bytes_disp[rw] = 0; + tg->io_disp[rw] = 0; + tg->slice_start[rw] = jiffies; + tg->slice_end[rw] = jiffies + tg->td->throtl_slice; + if (clear_carryover) { + tg->carryover_bytes[rw] = 0; + tg->carryover_ios[rw] = 0; + } + + throtl_log(&tg->service_queue, + "[%c] new slice start=%lu end=%lu jiffies=%lu", + rw == READ ? 'R' : 'W', tg->slice_start[rw], + tg->slice_end[rw], jiffies); +} + +static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, + unsigned long jiffy_end) +{ + tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); +} + +static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, + unsigned long jiffy_end) +{ + throtl_set_slice_end(tg, rw, jiffy_end); + throtl_log(&tg->service_queue, + "[%c] extend slice start=%lu end=%lu jiffies=%lu", + rw == READ ? 'R' : 'W', tg->slice_start[rw], + tg->slice_end[rw], jiffies); +} + +/* Determine if previously allocated or extended slice is complete or not */ +static bool throtl_slice_used(struct throtl_grp *tg, bool rw) +{ + if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) + return false; + + return true; +} + +static unsigned int calculate_io_allowed(u32 iops_limit, + unsigned long jiffy_elapsed) +{ + unsigned int io_allowed; + u64 tmp; + + /* + * jiffy_elapsed should not be a big value as minimum iops can be + * 1 then at max jiffy elapsed should be equivalent of 1 second as we + * will allow dispatch after 1 second and after that slice should + * have been trimmed. + */ + + tmp = (u64)iops_limit * jiffy_elapsed; + do_div(tmp, HZ); + + if (tmp > UINT_MAX) + io_allowed = UINT_MAX; + else + io_allowed = tmp; + + return io_allowed; +} + +static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed) +{ + /* + * Can result be wider than 64 bits? + * We check against 62, not 64, due to ilog2 truncation. + */ + if (ilog2(bps_limit) + ilog2(jiffy_elapsed) - ilog2(HZ) > 62) + return U64_MAX; + return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ); +} + +/* Trim the used slices and adjust slice start accordingly */ +static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) +{ + unsigned long time_elapsed; + long long bytes_trim; + int io_trim; + + BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); + + /* + * If bps are unlimited (-1), then time slice don't get + * renewed. Don't try to trim the slice if slice is used. A new + * slice will start when appropriate. + */ + if (throtl_slice_used(tg, rw)) + return; + + /* + * A bio has been dispatched. Also adjust slice_end. It might happen + * that initially cgroup limit was very low resulting in high + * slice_end, but later limit was bumped up and bio was dispatched + * sooner, then we need to reduce slice_end. A high bogus slice_end + * is bad because it does not allow new slice to start. + */ + + throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); + + time_elapsed = rounddown(jiffies - tg->slice_start[rw], + tg->td->throtl_slice); + if (!time_elapsed) + return; + + bytes_trim = calculate_bytes_allowed(tg_bps_limit(tg, rw), + time_elapsed) + + tg->carryover_bytes[rw]; + io_trim = calculate_io_allowed(tg_iops_limit(tg, rw), time_elapsed) + + tg->carryover_ios[rw]; + if (bytes_trim <= 0 && io_trim <= 0) + return; + + tg->carryover_bytes[rw] = 0; + if ((long long)tg->bytes_disp[rw] >= bytes_trim) + tg->bytes_disp[rw] -= bytes_trim; + else + tg->bytes_disp[rw] = 0; + + tg->carryover_ios[rw] = 0; + if ((int)tg->io_disp[rw] >= io_trim) + tg->io_disp[rw] -= io_trim; + else + tg->io_disp[rw] = 0; + + tg->slice_start[rw] += time_elapsed; + + throtl_log(&tg->service_queue, + "[%c] trim slice nr=%lu bytes=%lld io=%d start=%lu end=%lu jiffies=%lu", + rw == READ ? 'R' : 'W', time_elapsed / tg->td->throtl_slice, + bytes_trim, io_trim, tg->slice_start[rw], tg->slice_end[rw], + jiffies); +} + +static void __tg_update_carryover(struct throtl_grp *tg, bool rw) +{ + unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw]; + u64 bps_limit = tg_bps_limit(tg, rw); + u32 iops_limit = tg_iops_limit(tg, rw); + + /* + * If config is updated while bios are still throttled, calculate and + * accumulate how many bytes/ios are waited across changes. And + * carryover_bytes/ios will be used to calculate new wait time under new + * configuration. + */ + if (bps_limit != U64_MAX) + tg->carryover_bytes[rw] += + calculate_bytes_allowed(bps_limit, jiffy_elapsed) - + tg->bytes_disp[rw]; + if (iops_limit != UINT_MAX) + tg->carryover_ios[rw] += + calculate_io_allowed(iops_limit, jiffy_elapsed) - + tg->io_disp[rw]; +} + +static void tg_update_carryover(struct throtl_grp *tg) +{ + if (tg->service_queue.nr_queued[READ]) + __tg_update_carryover(tg, READ); + if (tg->service_queue.nr_queued[WRITE]) + __tg_update_carryover(tg, WRITE); + + /* see comments in struct throtl_grp for meaning of these fields. */ + throtl_log(&tg->service_queue, "%s: %llu %llu %u %u\n", __func__, + tg->carryover_bytes[READ], tg->carryover_bytes[WRITE], + tg->carryover_ios[READ], tg->carryover_ios[WRITE]); +} + +static bool tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio, + u32 iops_limit, unsigned long *wait) +{ + bool rw = bio_data_dir(bio); + unsigned int io_allowed; + unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; + + if (iops_limit == UINT_MAX) { + if (wait) + *wait = 0; + return true; + } + + jiffy_elapsed = jiffies - tg->slice_start[rw]; + + /* Round up to the next throttle slice, wait time must be nonzero */ + jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice); + io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) + + tg->carryover_ios[rw]; + if (tg->io_disp[rw] + 1 <= io_allowed) { + if (wait) + *wait = 0; + return true; + } + + /* Calc approx time to dispatch */ + jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed; + + if (wait) + *wait = jiffy_wait; + return false; +} + +static bool tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio, + u64 bps_limit, unsigned long *wait) +{ + bool rw = bio_data_dir(bio); + u64 bytes_allowed, extra_bytes; + unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; + unsigned int bio_size = throtl_bio_data_size(bio); + + /* no need to throttle if this bio's bytes have been accounted */ + if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) { + if (wait) + *wait = 0; + return true; + } + + jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; + + /* Slice has just started. Consider one slice interval */ + if (!jiffy_elapsed) + jiffy_elapsed_rnd = tg->td->throtl_slice; + + jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); + bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) + + tg->carryover_bytes[rw]; + if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) { + if (wait) + *wait = 0; + return true; + } + + /* Calc approx time to dispatch */ + extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; + jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit); + + if (!jiffy_wait) + jiffy_wait = 1; + + /* + * This wait time is without taking into consideration the rounding + * up we did. Add that time also. + */ + jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); + if (wait) + *wait = jiffy_wait; + return false; +} + +/* + * Returns whether one can dispatch a bio or not. Also returns approx number + * of jiffies to wait before this bio is with-in IO rate and can be dispatched + */ +static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio, + unsigned long *wait) +{ + bool rw = bio_data_dir(bio); + unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0; + u64 bps_limit = tg_bps_limit(tg, rw); + u32 iops_limit = tg_iops_limit(tg, rw); + + /* + * Currently whole state machine of group depends on first bio + * queued in the group bio list. So one should not be calling + * this function with a different bio if there are other bios + * queued. + */ + BUG_ON(tg->service_queue.nr_queued[rw] && + bio != throtl_peek_queued(&tg->service_queue.queued[rw])); + + /* If tg->bps = -1, then BW is unlimited */ + if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) || + tg->flags & THROTL_TG_CANCELING) { + if (wait) + *wait = 0; + return true; + } + + /* + * If previous slice expired, start a new one otherwise renew/extend + * existing slice to make sure it is at least throtl_slice interval + * long since now. New slice is started only for empty throttle group. + * If there is queued bio, that means there should be an active + * slice and it should be extended instead. + */ + if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw])) + throtl_start_new_slice(tg, rw, true); + else { + if (time_before(tg->slice_end[rw], + jiffies + tg->td->throtl_slice)) + throtl_extend_slice(tg, rw, + jiffies + tg->td->throtl_slice); + } + + if (tg_within_bps_limit(tg, bio, bps_limit, &bps_wait) && + tg_within_iops_limit(tg, bio, iops_limit, &iops_wait)) { + if (wait) + *wait = 0; + return true; + } + + max_wait = max(bps_wait, iops_wait); + + if (wait) + *wait = max_wait; + + if (time_before(tg->slice_end[rw], jiffies + max_wait)) + throtl_extend_slice(tg, rw, jiffies + max_wait); + + return false; +} + +static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio) +{ + bool rw = bio_data_dir(bio); + unsigned int bio_size = throtl_bio_data_size(bio); + + /* Charge the bio to the group */ + if (!bio_flagged(bio, BIO_BPS_THROTTLED)) { + tg->bytes_disp[rw] += bio_size; + tg->last_bytes_disp[rw] += bio_size; + } + + tg->io_disp[rw]++; + tg->last_io_disp[rw]++; +} + +/** + * throtl_add_bio_tg - add a bio to the specified throtl_grp + * @bio: bio to add + * @qn: qnode to use + * @tg: the target throtl_grp + * + * Add @bio to @tg's service_queue using @qn. If @qn is not specified, + * tg->qnode_on_self[] is used. + */ +static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, + struct throtl_grp *tg) +{ + struct throtl_service_queue *sq = &tg->service_queue; + bool rw = bio_data_dir(bio); + + if (!qn) + qn = &tg->qnode_on_self[rw]; + + /* + * If @tg doesn't currently have any bios queued in the same + * direction, queueing @bio can change when @tg should be + * dispatched. Mark that @tg was empty. This is automatically + * cleared on the next tg_update_disptime(). + */ + if (!sq->nr_queued[rw]) + tg->flags |= THROTL_TG_WAS_EMPTY; + + throtl_qnode_add_bio(bio, qn, &sq->queued[rw]); + + sq->nr_queued[rw]++; + throtl_enqueue_tg(tg); +} + +static void tg_update_disptime(struct throtl_grp *tg) +{ + struct throtl_service_queue *sq = &tg->service_queue; + unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime; + struct bio *bio; + + bio = throtl_peek_queued(&sq->queued[READ]); + if (bio) + tg_may_dispatch(tg, bio, &read_wait); + + bio = throtl_peek_queued(&sq->queued[WRITE]); + if (bio) + tg_may_dispatch(tg, bio, &write_wait); + + min_wait = min(read_wait, write_wait); + disptime = jiffies + min_wait; + + /* Update dispatch time */ + throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); + tg->disptime = disptime; + tg_service_queue_add(tg); + + /* see throtl_add_bio_tg() */ + tg->flags &= ~THROTL_TG_WAS_EMPTY; +} + +static void start_parent_slice_with_credit(struct throtl_grp *child_tg, + struct throtl_grp *parent_tg, bool rw) +{ + if (throtl_slice_used(parent_tg, rw)) { + throtl_start_new_slice_with_credit(parent_tg, rw, + child_tg->slice_start[rw]); + } + +} + +static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) +{ + struct throtl_service_queue *sq = &tg->service_queue; + struct throtl_service_queue *parent_sq = sq->parent_sq; + struct throtl_grp *parent_tg = sq_to_tg(parent_sq); + struct throtl_grp *tg_to_put = NULL; + struct bio *bio; + + /* + * @bio is being transferred from @tg to @parent_sq. Popping a bio + * from @tg may put its reference and @parent_sq might end up + * getting released prematurely. Remember the tg to put and put it + * after @bio is transferred to @parent_sq. + */ + bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put); + sq->nr_queued[rw]--; + + throtl_charge_bio(tg, bio); + + /* + * If our parent is another tg, we just need to transfer @bio to + * the parent using throtl_add_bio_tg(). If our parent is + * @td->service_queue, @bio is ready to be issued. Put it on its + * bio_lists[] and decrease total number queued. The caller is + * responsible for issuing these bios. + */ + if (parent_tg) { + throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); + start_parent_slice_with_credit(tg, parent_tg, rw); + } else { + bio_set_flag(bio, BIO_BPS_THROTTLED); + throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], + &parent_sq->queued[rw]); + BUG_ON(tg->td->nr_queued[rw] <= 0); + tg->td->nr_queued[rw]--; + } + + throtl_trim_slice(tg, rw); + + if (tg_to_put) + blkg_put(tg_to_blkg(tg_to_put)); +} + +static int throtl_dispatch_tg(struct throtl_grp *tg) +{ + struct throtl_service_queue *sq = &tg->service_queue; + unsigned int nr_reads = 0, nr_writes = 0; + unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4; + unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads; + struct bio *bio; + + /* Try to dispatch 75% READS and 25% WRITES */ + + while ((bio = throtl_peek_queued(&sq->queued[READ])) && + tg_may_dispatch(tg, bio, NULL)) { + + tg_dispatch_one_bio(tg, bio_data_dir(bio)); + nr_reads++; + + if (nr_reads >= max_nr_reads) + break; + } + + while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && + tg_may_dispatch(tg, bio, NULL)) { + + tg_dispatch_one_bio(tg, bio_data_dir(bio)); + nr_writes++; + + if (nr_writes >= max_nr_writes) + break; + } + + return nr_reads + nr_writes; +} + +static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) +{ + unsigned int nr_disp = 0; + + while (1) { + struct throtl_grp *tg; + struct throtl_service_queue *sq; + + if (!parent_sq->nr_pending) + break; + + tg = throtl_rb_first(parent_sq); + if (!tg) + break; + + if (time_before(jiffies, tg->disptime)) + break; + + nr_disp += throtl_dispatch_tg(tg); + + sq = &tg->service_queue; + if (sq->nr_queued[READ] || sq->nr_queued[WRITE]) + tg_update_disptime(tg); + else + throtl_dequeue_tg(tg); + + if (nr_disp >= THROTL_QUANTUM) + break; + } + + return nr_disp; +} + +static bool throtl_can_upgrade(struct throtl_data *td, + struct throtl_grp *this_tg); +/** + * throtl_pending_timer_fn - timer function for service_queue->pending_timer + * @t: the pending_timer member of the throtl_service_queue being serviced + * + * This timer is armed when a child throtl_grp with active bio's become + * pending and queued on the service_queue's pending_tree and expires when + * the first child throtl_grp should be dispatched. This function + * dispatches bio's from the children throtl_grps to the parent + * service_queue. + * + * If the parent's parent is another throtl_grp, dispatching is propagated + * by either arming its pending_timer or repeating dispatch directly. If + * the top-level service_tree is reached, throtl_data->dispatch_work is + * kicked so that the ready bio's are issued. + */ +static void throtl_pending_timer_fn(struct timer_list *t) +{ + struct throtl_service_queue *sq = from_timer(sq, t, pending_timer); + struct throtl_grp *tg = sq_to_tg(sq); + struct throtl_data *td = sq_to_td(sq); + struct throtl_service_queue *parent_sq; + struct request_queue *q; + bool dispatched; + int ret; + + /* throtl_data may be gone, so figure out request queue by blkg */ + if (tg) + q = tg->pd.blkg->q; + else + q = td->queue; + + spin_lock_irq(&q->queue_lock); + + if (!q->root_blkg) + goto out_unlock; + + if (throtl_can_upgrade(td, NULL)) + throtl_upgrade_state(td); + +again: + parent_sq = sq->parent_sq; + dispatched = false; + + while (true) { + throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", + sq->nr_queued[READ] + sq->nr_queued[WRITE], + sq->nr_queued[READ], sq->nr_queued[WRITE]); + + ret = throtl_select_dispatch(sq); + if (ret) { + throtl_log(sq, "bios disp=%u", ret); + dispatched = true; + } + + if (throtl_schedule_next_dispatch(sq, false)) + break; + + /* this dispatch windows is still open, relax and repeat */ + spin_unlock_irq(&q->queue_lock); + cpu_relax(); + spin_lock_irq(&q->queue_lock); + } + + if (!dispatched) + goto out_unlock; + + if (parent_sq) { + /* @parent_sq is another throl_grp, propagate dispatch */ + if (tg->flags & THROTL_TG_WAS_EMPTY) { + tg_update_disptime(tg); + if (!throtl_schedule_next_dispatch(parent_sq, false)) { + /* window is already open, repeat dispatching */ + sq = parent_sq; + tg = sq_to_tg(sq); + goto again; + } + } + } else { + /* reached the top-level, queue issuing */ + queue_work(kthrotld_workqueue, &td->dispatch_work); + } +out_unlock: + spin_unlock_irq(&q->queue_lock); +} + +/** + * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work + * @work: work item being executed + * + * This function is queued for execution when bios reach the bio_lists[] + * of throtl_data->service_queue. Those bios are ready and issued by this + * function. + */ +static void blk_throtl_dispatch_work_fn(struct work_struct *work) +{ + struct throtl_data *td = container_of(work, struct throtl_data, + dispatch_work); + struct throtl_service_queue *td_sq = &td->service_queue; + struct request_queue *q = td->queue; + struct bio_list bio_list_on_stack; + struct bio *bio; + struct blk_plug plug; + int rw; + + bio_list_init(&bio_list_on_stack); + + spin_lock_irq(&q->queue_lock); + for (rw = READ; rw <= WRITE; rw++) + while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL))) + bio_list_add(&bio_list_on_stack, bio); + spin_unlock_irq(&q->queue_lock); + + if (!bio_list_empty(&bio_list_on_stack)) { + blk_start_plug(&plug); + while ((bio = bio_list_pop(&bio_list_on_stack))) + submit_bio_noacct_nocheck(bio); + blk_finish_plug(&plug); + } +} + +static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, + int off) +{ + struct throtl_grp *tg = pd_to_tg(pd); + u64 v = *(u64 *)((void *)tg + off); + + if (v == U64_MAX) + return 0; + return __blkg_prfill_u64(sf, pd, v); +} + +static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, + int off) +{ + struct throtl_grp *tg = pd_to_tg(pd); + unsigned int v = *(unsigned int *)((void *)tg + off); + + if (v == UINT_MAX) + return 0; + return __blkg_prfill_u64(sf, pd, v); +} + +static int tg_print_conf_u64(struct seq_file *sf, void *v) +{ + blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, + &blkcg_policy_throtl, seq_cft(sf)->private, false); + return 0; +} + +static int tg_print_conf_uint(struct seq_file *sf, void *v) +{ + blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, + &blkcg_policy_throtl, seq_cft(sf)->private, false); + return 0; +} + +static void tg_conf_updated(struct throtl_grp *tg, bool global) +{ + struct throtl_service_queue *sq = &tg->service_queue; + struct cgroup_subsys_state *pos_css; + struct blkcg_gq *blkg; + + throtl_log(&tg->service_queue, + "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", + tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), + tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); + + rcu_read_lock(); + /* + * Update has_rules[] flags for the updated tg's subtree. A tg is + * considered to have rules if either the tg itself or any of its + * ancestors has rules. This identifies groups without any + * restrictions in the whole hierarchy and allows them to bypass + * blk-throttle. + */ + blkg_for_each_descendant_pre(blkg, pos_css, + global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { + struct throtl_grp *this_tg = blkg_to_tg(blkg); + struct throtl_grp *parent_tg; + + tg_update_has_rules(this_tg); + /* ignore root/second level */ + if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || + !blkg->parent->parent) + continue; + parent_tg = blkg_to_tg(blkg->parent); + /* + * make sure all children has lower idle time threshold and + * higher latency target + */ + this_tg->idletime_threshold = min(this_tg->idletime_threshold, + parent_tg->idletime_threshold); + this_tg->latency_target = max(this_tg->latency_target, + parent_tg->latency_target); + } + rcu_read_unlock(); + + /* + * We're already holding queue_lock and know @tg is valid. Let's + * apply the new config directly. + * + * Restart the slices for both READ and WRITES. It might happen + * that a group's limit are dropped suddenly and we don't want to + * account recently dispatched IO with new low rate. + */ + throtl_start_new_slice(tg, READ, false); + throtl_start_new_slice(tg, WRITE, false); + + if (tg->flags & THROTL_TG_PENDING) { + tg_update_disptime(tg); + throtl_schedule_next_dispatch(sq->parent_sq, true); + } +} + +static ssize_t tg_set_conf(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off, bool is_u64) +{ + struct blkcg *blkcg = css_to_blkcg(of_css(of)); + struct blkg_conf_ctx ctx; + struct throtl_grp *tg; + int ret; + u64 v; + + ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); + if (ret) + return ret; + + ret = -EINVAL; + if (sscanf(ctx.body, "%llu", &v) != 1) + goto out_finish; + if (!v) + v = U64_MAX; + + tg = blkg_to_tg(ctx.blkg); + tg_update_carryover(tg); + + if (is_u64) + *(u64 *)((void *)tg + of_cft(of)->private) = v; + else + *(unsigned int *)((void *)tg + of_cft(of)->private) = v; + + tg_conf_updated(tg, false); + ret = 0; +out_finish: + blkg_conf_finish(&ctx); + return ret ?: nbytes; +} + +static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + return tg_set_conf(of, buf, nbytes, off, true); +} + +static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + return tg_set_conf(of, buf, nbytes, off, false); +} + +static int tg_print_rwstat(struct seq_file *sf, void *v) +{ + blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), + blkg_prfill_rwstat, &blkcg_policy_throtl, + seq_cft(sf)->private, true); + return 0; +} + +static u64 tg_prfill_rwstat_recursive(struct seq_file *sf, + struct blkg_policy_data *pd, int off) +{ + struct blkg_rwstat_sample sum; + + blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off, + &sum); + return __blkg_prfill_rwstat(sf, pd, &sum); +} + +static int tg_print_rwstat_recursive(struct seq_file *sf, void *v) +{ + blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), + tg_prfill_rwstat_recursive, &blkcg_policy_throtl, + seq_cft(sf)->private, true); + return 0; +} + +static struct cftype throtl_legacy_files[] = { + { + .name = "throttle.read_bps_device", + .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]), + .seq_show = tg_print_conf_u64, + .write = tg_set_conf_u64, + }, + { + .name = "throttle.write_bps_device", + .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]), + .seq_show = tg_print_conf_u64, + .write = tg_set_conf_u64, + }, + { + .name = "throttle.read_iops_device", + .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]), + .seq_show = tg_print_conf_uint, + .write = tg_set_conf_uint, + }, + { + .name = "throttle.write_iops_device", + .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]), + .seq_show = tg_print_conf_uint, + .write = tg_set_conf_uint, + }, + { + .name = "throttle.io_service_bytes", + .private = offsetof(struct throtl_grp, stat_bytes), + .seq_show = tg_print_rwstat, + }, + { + .name = "throttle.io_service_bytes_recursive", + .private = offsetof(struct throtl_grp, stat_bytes), + .seq_show = tg_print_rwstat_recursive, + }, + { + .name = "throttle.io_serviced", + .private = offsetof(struct throtl_grp, stat_ios), + .seq_show = tg_print_rwstat, + }, + { + .name = "throttle.io_serviced_recursive", + .private = offsetof(struct throtl_grp, stat_ios), + .seq_show = tg_print_rwstat_recursive, + }, + { } /* terminate */ +}; + +static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, + int off) +{ + struct throtl_grp *tg = pd_to_tg(pd); + const char *dname = blkg_dev_name(pd->blkg); + char bufs[4][21] = { "max", "max", "max", "max" }; + u64 bps_dft; + unsigned int iops_dft; + char idle_time[26] = ""; + char latency_time[26] = ""; + + if (!dname) + return 0; + + if (off == LIMIT_LOW) { + bps_dft = 0; + iops_dft = 0; + } else { + bps_dft = U64_MAX; + iops_dft = UINT_MAX; + } + + if (tg->bps_conf[READ][off] == bps_dft && + tg->bps_conf[WRITE][off] == bps_dft && + tg->iops_conf[READ][off] == iops_dft && + tg->iops_conf[WRITE][off] == iops_dft && + (off != LIMIT_LOW || + (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD && + tg->latency_target_conf == DFL_LATENCY_TARGET))) + return 0; + + if (tg->bps_conf[READ][off] != U64_MAX) + snprintf(bufs[0], sizeof(bufs[0]), "%llu", + tg->bps_conf[READ][off]); + if (tg->bps_conf[WRITE][off] != U64_MAX) + snprintf(bufs[1], sizeof(bufs[1]), "%llu", + tg->bps_conf[WRITE][off]); + if (tg->iops_conf[READ][off] != UINT_MAX) + snprintf(bufs[2], sizeof(bufs[2]), "%u", + tg->iops_conf[READ][off]); + if (tg->iops_conf[WRITE][off] != UINT_MAX) + snprintf(bufs[3], sizeof(bufs[3]), "%u", + tg->iops_conf[WRITE][off]); + if (off == LIMIT_LOW) { + if (tg->idletime_threshold_conf == ULONG_MAX) + strcpy(idle_time, " idle=max"); + else + snprintf(idle_time, sizeof(idle_time), " idle=%lu", + tg->idletime_threshold_conf); + + if (tg->latency_target_conf == ULONG_MAX) + strcpy(latency_time, " latency=max"); + else + snprintf(latency_time, sizeof(latency_time), + " latency=%lu", tg->latency_target_conf); + } + + seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n", + dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time, + latency_time); + return 0; +} + +static int tg_print_limit(struct seq_file *sf, void *v) +{ + blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, + &blkcg_policy_throtl, seq_cft(sf)->private, false); + return 0; +} + +static ssize_t tg_set_limit(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + struct blkcg *blkcg = css_to_blkcg(of_css(of)); + struct blkg_conf_ctx ctx; + struct throtl_grp *tg; + u64 v[4]; + unsigned long idle_time; + unsigned long latency_time; + int ret; + int index = of_cft(of)->private; + + ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx); + if (ret) + return ret; + + tg = blkg_to_tg(ctx.blkg); + tg_update_carryover(tg); + + v[0] = tg->bps_conf[READ][index]; + v[1] = tg->bps_conf[WRITE][index]; + v[2] = tg->iops_conf[READ][index]; + v[3] = tg->iops_conf[WRITE][index]; + + idle_time = tg->idletime_threshold_conf; + latency_time = tg->latency_target_conf; + while (true) { + char tok[27]; /* wiops=18446744073709551616 */ + char *p; + u64 val = U64_MAX; + int len; + + if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) + break; + if (tok[0] == '\0') + break; + ctx.body += len; + + ret = -EINVAL; + p = tok; + strsep(&p, "="); + if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) + goto out_finish; + + ret = -ERANGE; + if (!val) + goto out_finish; + + ret = -EINVAL; + if (!strcmp(tok, "rbps") && val > 1) + v[0] = val; + else if (!strcmp(tok, "wbps") && val > 1) + v[1] = val; + else if (!strcmp(tok, "riops") && val > 1) + v[2] = min_t(u64, val, UINT_MAX); + else if (!strcmp(tok, "wiops") && val > 1) + v[3] = min_t(u64, val, UINT_MAX); + else if (off == LIMIT_LOW && !strcmp(tok, "idle")) + idle_time = val; + else if (off == LIMIT_LOW && !strcmp(tok, "latency")) + latency_time = val; + else + goto out_finish; + } + + tg->bps_conf[READ][index] = v[0]; + tg->bps_conf[WRITE][index] = v[1]; + tg->iops_conf[READ][index] = v[2]; + tg->iops_conf[WRITE][index] = v[3]; + + if (index == LIMIT_MAX) { + tg->bps[READ][index] = v[0]; + tg->bps[WRITE][index] = v[1]; + tg->iops[READ][index] = v[2]; + tg->iops[WRITE][index] = v[3]; + } + tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW], + tg->bps_conf[READ][LIMIT_MAX]); + tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW], + tg->bps_conf[WRITE][LIMIT_MAX]); + tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW], + tg->iops_conf[READ][LIMIT_MAX]); + tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW], + tg->iops_conf[WRITE][LIMIT_MAX]); + tg->idletime_threshold_conf = idle_time; + tg->latency_target_conf = latency_time; + + /* force user to configure all settings for low limit */ + if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] || + tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) || + tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD || + tg->latency_target_conf == DFL_LATENCY_TARGET) { + tg->bps[READ][LIMIT_LOW] = 0; + tg->bps[WRITE][LIMIT_LOW] = 0; + tg->iops[READ][LIMIT_LOW] = 0; + tg->iops[WRITE][LIMIT_LOW] = 0; + tg->idletime_threshold = DFL_IDLE_THRESHOLD; + tg->latency_target = DFL_LATENCY_TARGET; + } else if (index == LIMIT_LOW) { + tg->idletime_threshold = tg->idletime_threshold_conf; + tg->latency_target = tg->latency_target_conf; + } + + blk_throtl_update_limit_valid(tg->td); + if (tg->td->limit_valid[LIMIT_LOW]) { + if (index == LIMIT_LOW) + tg->td->limit_index = LIMIT_LOW; + } else + tg->td->limit_index = LIMIT_MAX; + tg_conf_updated(tg, index == LIMIT_LOW && + tg->td->limit_valid[LIMIT_LOW]); + ret = 0; +out_finish: + blkg_conf_finish(&ctx); + return ret ?: nbytes; +} + +static struct cftype throtl_files[] = { +#ifdef CONFIG_BLK_DEV_THROTTLING_LOW + { + .name = "low", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = tg_print_limit, + .write = tg_set_limit, + .private = LIMIT_LOW, + }, +#endif + { + .name = "max", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = tg_print_limit, + .write = tg_set_limit, + .private = LIMIT_MAX, + }, + { } /* terminate */ +}; + +static void throtl_shutdown_wq(struct request_queue *q) +{ + struct throtl_data *td = q->td; + + cancel_work_sync(&td->dispatch_work); +} + +struct blkcg_policy blkcg_policy_throtl = { + .dfl_cftypes = throtl_files, + .legacy_cftypes = throtl_legacy_files, + + .pd_alloc_fn = throtl_pd_alloc, + .pd_init_fn = throtl_pd_init, + .pd_online_fn = throtl_pd_online, + .pd_offline_fn = throtl_pd_offline, + .pd_free_fn = throtl_pd_free, +}; + +void blk_throtl_cancel_bios(struct gendisk *disk) +{ + struct request_queue *q = disk->queue; + struct cgroup_subsys_state *pos_css; + struct blkcg_gq *blkg; + + spin_lock_irq(&q->queue_lock); + /* + * queue_lock is held, rcu lock is not needed here technically. + * However, rcu lock is still held to emphasize that following + * path need RCU protection and to prevent warning from lockdep. + */ + rcu_read_lock(); + blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) { + struct throtl_grp *tg = blkg_to_tg(blkg); + struct throtl_service_queue *sq = &tg->service_queue; + + /* + * Set the flag to make sure throtl_pending_timer_fn() won't + * stop until all throttled bios are dispatched. + */ + blkg_to_tg(blkg)->flags |= THROTL_TG_CANCELING; + /* + * Update disptime after setting the above flag to make sure + * throtl_select_dispatch() won't exit without dispatching. + */ + tg_update_disptime(tg); + + throtl_schedule_pending_timer(sq, jiffies + 1); + } + rcu_read_unlock(); + spin_unlock_irq(&q->queue_lock); +} + +#ifdef CONFIG_BLK_DEV_THROTTLING_LOW +static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg) +{ + unsigned long rtime = jiffies, wtime = jiffies; + + if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]) + rtime = tg->last_low_overflow_time[READ]; + if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) + wtime = tg->last_low_overflow_time[WRITE]; + return min(rtime, wtime); +} + +/* tg should not be an intermediate node */ +static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg) +{ + struct throtl_service_queue *parent_sq; + struct throtl_grp *parent = tg; + unsigned long ret = __tg_last_low_overflow_time(tg); + + while (true) { + parent_sq = parent->service_queue.parent_sq; + parent = sq_to_tg(parent_sq); + if (!parent) + break; + + /* + * The parent doesn't have low limit, it always reaches low + * limit. Its overflow time is useless for children + */ + if (!parent->bps[READ][LIMIT_LOW] && + !parent->iops[READ][LIMIT_LOW] && + !parent->bps[WRITE][LIMIT_LOW] && + !parent->iops[WRITE][LIMIT_LOW]) + continue; + if (time_after(__tg_last_low_overflow_time(parent), ret)) + ret = __tg_last_low_overflow_time(parent); + } + return ret; +} + +static bool throtl_tg_is_idle(struct throtl_grp *tg) +{ + /* + * cgroup is idle if: + * - single idle is too long, longer than a fixed value (in case user + * configure a too big threshold) or 4 times of idletime threshold + * - average think time is more than threshold + * - IO latency is largely below threshold + */ + unsigned long time; + bool ret; + + time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold); + ret = tg->latency_target == DFL_LATENCY_TARGET || + tg->idletime_threshold == DFL_IDLE_THRESHOLD || + (ktime_get_ns() >> 10) - tg->last_finish_time > time || + tg->avg_idletime > tg->idletime_threshold || + (tg->latency_target && tg->bio_cnt && + tg->bad_bio_cnt * 5 < tg->bio_cnt); + throtl_log(&tg->service_queue, + "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d", + tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt, + tg->bio_cnt, ret, tg->td->scale); + return ret; +} + +static bool throtl_tg_can_upgrade(struct throtl_grp *tg) +{ + struct throtl_service_queue *sq = &tg->service_queue; + bool read_limit, write_limit; + + /* + * if cgroup reaches low limit (if low limit is 0, the cgroup always + * reaches), it's ok to upgrade to next limit + */ + read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW]; + write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]; + if (!read_limit && !write_limit) + return true; + if (read_limit && sq->nr_queued[READ] && + (!write_limit || sq->nr_queued[WRITE])) + return true; + if (write_limit && sq->nr_queued[WRITE] && + (!read_limit || sq->nr_queued[READ])) + return true; + + if (time_after_eq(jiffies, + tg_last_low_overflow_time(tg) + tg->td->throtl_slice) && + throtl_tg_is_idle(tg)) + return true; + return false; +} + +static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg) +{ + while (true) { + if (throtl_tg_can_upgrade(tg)) + return true; + tg = sq_to_tg(tg->service_queue.parent_sq); + if (!tg || !tg_to_blkg(tg)->parent) + return false; + } + return false; +} + +static bool throtl_can_upgrade(struct throtl_data *td, + struct throtl_grp *this_tg) +{ + struct cgroup_subsys_state *pos_css; + struct blkcg_gq *blkg; + + if (td->limit_index != LIMIT_LOW) + return false; + + if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice)) + return false; + + rcu_read_lock(); + blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { + struct throtl_grp *tg = blkg_to_tg(blkg); + + if (tg == this_tg) + continue; + if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) + continue; + if (!throtl_hierarchy_can_upgrade(tg)) { + rcu_read_unlock(); + return false; + } + } + rcu_read_unlock(); + return true; +} + +static void throtl_upgrade_check(struct throtl_grp *tg) +{ + unsigned long now = jiffies; + + if (tg->td->limit_index != LIMIT_LOW) + return; + + if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) + return; + + tg->last_check_time = now; + + if (!time_after_eq(now, + __tg_last_low_overflow_time(tg) + tg->td->throtl_slice)) + return; + + if (throtl_can_upgrade(tg->td, NULL)) + throtl_upgrade_state(tg->td); +} + +static void throtl_upgrade_state(struct throtl_data *td) +{ + struct cgroup_subsys_state *pos_css; + struct blkcg_gq *blkg; + + throtl_log(&td->service_queue, "upgrade to max"); + td->limit_index = LIMIT_MAX; + td->low_upgrade_time = jiffies; + td->scale = 0; + rcu_read_lock(); + blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) { + struct throtl_grp *tg = blkg_to_tg(blkg); + struct throtl_service_queue *sq = &tg->service_queue; + + tg->disptime = jiffies - 1; + throtl_select_dispatch(sq); + throtl_schedule_next_dispatch(sq, true); + } + rcu_read_unlock(); + throtl_select_dispatch(&td->service_queue); + throtl_schedule_next_dispatch(&td->service_queue, true); + queue_work(kthrotld_workqueue, &td->dispatch_work); +} + +static void throtl_downgrade_state(struct throtl_data *td) +{ + td->scale /= 2; + + throtl_log(&td->service_queue, "downgrade, scale %d", td->scale); + if (td->scale) { + td->low_upgrade_time = jiffies - td->scale * td->throtl_slice; + return; + } + + td->limit_index = LIMIT_LOW; + td->low_downgrade_time = jiffies; +} + +static bool throtl_tg_can_downgrade(struct throtl_grp *tg) +{ + struct throtl_data *td = tg->td; + unsigned long now = jiffies; + + /* + * If cgroup is below low limit, consider downgrade and throttle other + * cgroups + */ + if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) && + time_after_eq(now, tg_last_low_overflow_time(tg) + + td->throtl_slice) && + (!throtl_tg_is_idle(tg) || + !list_empty(&tg_to_blkg(tg)->blkcg->css.children))) + return true; + return false; +} + +static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg) +{ + while (true) { + if (!throtl_tg_can_downgrade(tg)) + return false; + tg = sq_to_tg(tg->service_queue.parent_sq); + if (!tg || !tg_to_blkg(tg)->parent) + break; + } + return true; +} + +static void throtl_downgrade_check(struct throtl_grp *tg) +{ + uint64_t bps; + unsigned int iops; + unsigned long elapsed_time; + unsigned long now = jiffies; + + if (tg->td->limit_index != LIMIT_MAX || + !tg->td->limit_valid[LIMIT_LOW]) + return; + if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children)) + return; + if (time_after(tg->last_check_time + tg->td->throtl_slice, now)) + return; + + elapsed_time = now - tg->last_check_time; + tg->last_check_time = now; + + if (time_before(now, tg_last_low_overflow_time(tg) + + tg->td->throtl_slice)) + return; + + if (tg->bps[READ][LIMIT_LOW]) { + bps = tg->last_bytes_disp[READ] * HZ; + do_div(bps, elapsed_time); + if (bps >= tg->bps[READ][LIMIT_LOW]) + tg->last_low_overflow_time[READ] = now; + } + + if (tg->bps[WRITE][LIMIT_LOW]) { + bps = tg->last_bytes_disp[WRITE] * HZ; + do_div(bps, elapsed_time); + if (bps >= tg->bps[WRITE][LIMIT_LOW]) + tg->last_low_overflow_time[WRITE] = now; + } + + if (tg->iops[READ][LIMIT_LOW]) { + iops = tg->last_io_disp[READ] * HZ / elapsed_time; + if (iops >= tg->iops[READ][LIMIT_LOW]) + tg->last_low_overflow_time[READ] = now; + } + + if (tg->iops[WRITE][LIMIT_LOW]) { + iops = tg->last_io_disp[WRITE] * HZ / elapsed_time; + if (iops >= tg->iops[WRITE][LIMIT_LOW]) + tg->last_low_overflow_time[WRITE] = now; + } + + /* + * If cgroup is below low limit, consider downgrade and throttle other + * cgroups + */ + if (throtl_hierarchy_can_downgrade(tg)) + throtl_downgrade_state(tg->td); + + tg->last_bytes_disp[READ] = 0; + tg->last_bytes_disp[WRITE] = 0; + tg->last_io_disp[READ] = 0; + tg->last_io_disp[WRITE] = 0; +} + +static void blk_throtl_update_idletime(struct throtl_grp *tg) +{ + unsigned long now; + unsigned long last_finish_time = tg->last_finish_time; + + if (last_finish_time == 0) + return; + + now = ktime_get_ns() >> 10; + if (now <= last_finish_time || + last_finish_time == tg->checked_last_finish_time) + return; + + tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3; + tg->checked_last_finish_time = last_finish_time; +} + +static void throtl_update_latency_buckets(struct throtl_data *td) +{ + struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE]; + int i, cpu, rw; + unsigned long last_latency[2] = { 0 }; + unsigned long latency[2]; + + if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW]) + return; + if (time_before(jiffies, td->last_calculate_time + HZ)) + return; + td->last_calculate_time = jiffies; + + memset(avg_latency, 0, sizeof(avg_latency)); + for (rw = READ; rw <= WRITE; rw++) { + for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { + struct latency_bucket *tmp = &td->tmp_buckets[rw][i]; + + for_each_possible_cpu(cpu) { + struct latency_bucket *bucket; + + /* this isn't race free, but ok in practice */ + bucket = per_cpu_ptr(td->latency_buckets[rw], + cpu); + tmp->total_latency += bucket[i].total_latency; + tmp->samples += bucket[i].samples; + bucket[i].total_latency = 0; + bucket[i].samples = 0; + } + + if (tmp->samples >= 32) { + int samples = tmp->samples; + + latency[rw] = tmp->total_latency; + + tmp->total_latency = 0; + tmp->samples = 0; + latency[rw] /= samples; + if (latency[rw] == 0) + continue; + avg_latency[rw][i].latency = latency[rw]; + } + } + } + + for (rw = READ; rw <= WRITE; rw++) { + for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { + if (!avg_latency[rw][i].latency) { + if (td->avg_buckets[rw][i].latency < last_latency[rw]) + td->avg_buckets[rw][i].latency = + last_latency[rw]; + continue; + } + + if (!td->avg_buckets[rw][i].valid) + latency[rw] = avg_latency[rw][i].latency; + else + latency[rw] = (td->avg_buckets[rw][i].latency * 7 + + avg_latency[rw][i].latency) >> 3; + + td->avg_buckets[rw][i].latency = max(latency[rw], + last_latency[rw]); + td->avg_buckets[rw][i].valid = true; + last_latency[rw] = td->avg_buckets[rw][i].latency; + } + } + + for (i = 0; i < LATENCY_BUCKET_SIZE; i++) + throtl_log(&td->service_queue, + "Latency bucket %d: read latency=%ld, read valid=%d, " + "write latency=%ld, write valid=%d", i, + td->avg_buckets[READ][i].latency, + td->avg_buckets[READ][i].valid, + td->avg_buckets[WRITE][i].latency, + td->avg_buckets[WRITE][i].valid); +} +#else +static inline void throtl_update_latency_buckets(struct throtl_data *td) +{ +} + +static void blk_throtl_update_idletime(struct throtl_grp *tg) +{ +} + +static void throtl_downgrade_check(struct throtl_grp *tg) +{ +} + +static void throtl_upgrade_check(struct throtl_grp *tg) +{ +} + +static bool throtl_can_upgrade(struct throtl_data *td, + struct throtl_grp *this_tg) +{ + return false; +} + +static void throtl_upgrade_state(struct throtl_data *td) +{ +} +#endif + +bool __blk_throtl_bio(struct bio *bio) +{ + struct request_queue *q = bdev_get_queue(bio->bi_bdev); + struct blkcg_gq *blkg = bio->bi_blkg; + struct throtl_qnode *qn = NULL; + struct throtl_grp *tg = blkg_to_tg(blkg); + struct throtl_service_queue *sq; + bool rw = bio_data_dir(bio); + bool throttled = false; + struct throtl_data *td = tg->td; + + rcu_read_lock(); + + if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) { + blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf, + bio->bi_iter.bi_size); + blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1); + } + + spin_lock_irq(&q->queue_lock); + + throtl_update_latency_buckets(td); + + blk_throtl_update_idletime(tg); + + sq = &tg->service_queue; + +again: + while (true) { + if (tg->last_low_overflow_time[rw] == 0) + tg->last_low_overflow_time[rw] = jiffies; + throtl_downgrade_check(tg); + throtl_upgrade_check(tg); + /* throtl is FIFO - if bios are already queued, should queue */ + if (sq->nr_queued[rw]) + break; + + /* if above limits, break to queue */ + if (!tg_may_dispatch(tg, bio, NULL)) { + tg->last_low_overflow_time[rw] = jiffies; + if (throtl_can_upgrade(td, tg)) { + throtl_upgrade_state(td); + goto again; + } + break; + } + + /* within limits, let's charge and dispatch directly */ + throtl_charge_bio(tg, bio); + + /* + * We need to trim slice even when bios are not being queued + * otherwise it might happen that a bio is not queued for + * a long time and slice keeps on extending and trim is not + * called for a long time. Now if limits are reduced suddenly + * we take into account all the IO dispatched so far at new + * low rate and * newly queued IO gets a really long dispatch + * time. + * + * So keep on trimming slice even if bio is not queued. + */ + throtl_trim_slice(tg, rw); + + /* + * @bio passed through this layer without being throttled. + * Climb up the ladder. If we're already at the top, it + * can be executed directly. + */ + qn = &tg->qnode_on_parent[rw]; + sq = sq->parent_sq; + tg = sq_to_tg(sq); + if (!tg) { + bio_set_flag(bio, BIO_BPS_THROTTLED); + goto out_unlock; + } + } + + /* out-of-limit, queue to @tg */ + throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", + rw == READ ? 'R' : 'W', + tg->bytes_disp[rw], bio->bi_iter.bi_size, + tg_bps_limit(tg, rw), + tg->io_disp[rw], tg_iops_limit(tg, rw), + sq->nr_queued[READ], sq->nr_queued[WRITE]); + + tg->last_low_overflow_time[rw] = jiffies; + + td->nr_queued[rw]++; + throtl_add_bio_tg(bio, qn, tg); + throttled = true; + + /* + * Update @tg's dispatch time and force schedule dispatch if @tg + * was empty before @bio. The forced scheduling isn't likely to + * cause undue delay as @bio is likely to be dispatched directly if + * its @tg's disptime is not in the future. + */ + if (tg->flags & THROTL_TG_WAS_EMPTY) { + tg_update_disptime(tg); + throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); + } + +out_unlock: +#ifdef CONFIG_BLK_DEV_THROTTLING_LOW + if (throttled || !td->track_bio_latency) + bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY; +#endif + spin_unlock_irq(&q->queue_lock); + + rcu_read_unlock(); + return throttled; +} + +#ifdef CONFIG_BLK_DEV_THROTTLING_LOW +static void throtl_track_latency(struct throtl_data *td, sector_t size, + enum req_op op, unsigned long time) +{ + const bool rw = op_is_write(op); + struct latency_bucket *latency; + int index; + + if (!td || td->limit_index != LIMIT_LOW || + !(op == REQ_OP_READ || op == REQ_OP_WRITE) || + !blk_queue_nonrot(td->queue)) + return; + + index = request_bucket_index(size); + + latency = get_cpu_ptr(td->latency_buckets[rw]); + latency[index].total_latency += time; + latency[index].samples++; + put_cpu_ptr(td->latency_buckets[rw]); +} + +void blk_throtl_stat_add(struct request *rq, u64 time_ns) +{ + struct request_queue *q = rq->q; + struct throtl_data *td = q->td; + + throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq), + time_ns >> 10); +} + +void blk_throtl_bio_endio(struct bio *bio) +{ + struct blkcg_gq *blkg; + struct throtl_grp *tg; + u64 finish_time_ns; + unsigned long finish_time; + unsigned long start_time; + unsigned long lat; + int rw = bio_data_dir(bio); + + blkg = bio->bi_blkg; + if (!blkg) + return; + tg = blkg_to_tg(blkg); + if (!tg->td->limit_valid[LIMIT_LOW]) + return; + + finish_time_ns = ktime_get_ns(); + tg->last_finish_time = finish_time_ns >> 10; + + start_time = bio_issue_time(&bio->bi_issue) >> 10; + finish_time = __bio_issue_time(finish_time_ns) >> 10; + if (!start_time || finish_time <= start_time) + return; + + lat = finish_time - start_time; + /* this is only for bio based driver */ + if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY)) + throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue), + bio_op(bio), lat); + + if (tg->latency_target && lat >= tg->td->filtered_latency) { + int bucket; + unsigned int threshold; + + bucket = request_bucket_index(bio_issue_size(&bio->bi_issue)); + threshold = tg->td->avg_buckets[rw][bucket].latency + + tg->latency_target; + if (lat > threshold) + tg->bad_bio_cnt++; + /* + * Not race free, could get wrong count, which means cgroups + * will be throttled + */ + tg->bio_cnt++; + } + + if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) { + tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies; + tg->bio_cnt /= 2; + tg->bad_bio_cnt /= 2; + } +} +#endif + +int blk_throtl_init(struct gendisk *disk) +{ + struct request_queue *q = disk->queue; + struct throtl_data *td; + int ret; + + td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); + if (!td) + return -ENOMEM; + td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) * + LATENCY_BUCKET_SIZE, __alignof__(u64)); + if (!td->latency_buckets[READ]) { + kfree(td); + return -ENOMEM; + } + td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) * + LATENCY_BUCKET_SIZE, __alignof__(u64)); + if (!td->latency_buckets[WRITE]) { + free_percpu(td->latency_buckets[READ]); + kfree(td); + return -ENOMEM; + } + + INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); + throtl_service_queue_init(&td->service_queue); + + q->td = td; + td->queue = q; + + td->limit_valid[LIMIT_MAX] = true; + td->limit_index = LIMIT_MAX; + td->low_upgrade_time = jiffies; + td->low_downgrade_time = jiffies; + + /* activate policy */ + ret = blkcg_activate_policy(q, &blkcg_policy_throtl); + if (ret) { + free_percpu(td->latency_buckets[READ]); + free_percpu(td->latency_buckets[WRITE]); + kfree(td); + } + return ret; +} + +void blk_throtl_exit(struct gendisk *disk) +{ + struct request_queue *q = disk->queue; + + BUG_ON(!q->td); + del_timer_sync(&q->td->service_queue.pending_timer); + throtl_shutdown_wq(q); + blkcg_deactivate_policy(q, &blkcg_policy_throtl); + free_percpu(q->td->latency_buckets[READ]); + free_percpu(q->td->latency_buckets[WRITE]); + kfree(q->td); +} + +void blk_throtl_register(struct gendisk *disk) +{ + struct request_queue *q = disk->queue; + struct throtl_data *td; + int i; + + td = q->td; + BUG_ON(!td); + + if (blk_queue_nonrot(q)) { + td->throtl_slice = DFL_THROTL_SLICE_SSD; + td->filtered_latency = LATENCY_FILTERED_SSD; + } else { + td->throtl_slice = DFL_THROTL_SLICE_HD; + td->filtered_latency = LATENCY_FILTERED_HD; + for (i = 0; i < LATENCY_BUCKET_SIZE; i++) { + td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY; + td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY; + } + } +#ifndef CONFIG_BLK_DEV_THROTTLING_LOW + /* if no low limit, use previous default */ + td->throtl_slice = DFL_THROTL_SLICE_HD; +#endif + + td->track_bio_latency = !queue_is_mq(q); + if (!td->track_bio_latency) + blk_stat_enable_accounting(q); +} + +#ifdef CONFIG_BLK_DEV_THROTTLING_LOW +ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page) +{ + if (!q->td) + return -EINVAL; + return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice)); +} + +ssize_t blk_throtl_sample_time_store(struct request_queue *q, + const char *page, size_t count) +{ + unsigned long v; + unsigned long t; + + if (!q->td) + return -EINVAL; + if (kstrtoul(page, 10, &v)) + return -EINVAL; + t = msecs_to_jiffies(v); + if (t == 0 || t > MAX_THROTL_SLICE) + return -EINVAL; + q->td->throtl_slice = t; + return count; +} +#endif + +static int __init throtl_init(void) +{ + kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); + if (!kthrotld_workqueue) + panic("Failed to create kthrotld\n"); + + return blkcg_policy_register(&blkcg_policy_throtl); +} + +module_init(throtl_init); |