diff options
Diffstat (limited to '')
-rw-r--r-- | drivers/clk/bcm/clk-kona-setup.c | 855 |
1 files changed, 855 insertions, 0 deletions
diff --git a/drivers/clk/bcm/clk-kona-setup.c b/drivers/clk/bcm/clk-kona-setup.c new file mode 100644 index 000000000..338558f6f --- /dev/null +++ b/drivers/clk/bcm/clk-kona-setup.c @@ -0,0 +1,855 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2013 Broadcom Corporation + * Copyright 2013 Linaro Limited + */ + +#include <linux/io.h> +#include <linux/of_address.h> + +#include "clk-kona.h" + +/* These are used when a selector or trigger is found to be unneeded */ +#define selector_clear_exists(sel) ((sel)->width = 0) +#define trigger_clear_exists(trig) FLAG_CLEAR(trig, TRIG, EXISTS) + +/* Validity checking */ + +static bool ccu_data_offsets_valid(struct ccu_data *ccu) +{ + struct ccu_policy *ccu_policy = &ccu->policy; + u32 limit; + + limit = ccu->range - sizeof(u32); + limit = round_down(limit, sizeof(u32)); + if (ccu_policy_exists(ccu_policy)) { + if (ccu_policy->enable.offset > limit) { + pr_err("%s: bad policy enable offset for %s " + "(%u > %u)\n", __func__, + ccu->name, ccu_policy->enable.offset, limit); + return false; + } + if (ccu_policy->control.offset > limit) { + pr_err("%s: bad policy control offset for %s " + "(%u > %u)\n", __func__, + ccu->name, ccu_policy->control.offset, limit); + return false; + } + } + + return true; +} + +static bool clk_requires_trigger(struct kona_clk *bcm_clk) +{ + struct peri_clk_data *peri = bcm_clk->u.peri; + struct bcm_clk_sel *sel; + struct bcm_clk_div *div; + + if (bcm_clk->type != bcm_clk_peri) + return false; + + sel = &peri->sel; + if (sel->parent_count && selector_exists(sel)) + return true; + + div = &peri->div; + if (!divider_exists(div)) + return false; + + /* Fixed dividers don't need triggers */ + if (!divider_is_fixed(div)) + return true; + + div = &peri->pre_div; + + return divider_exists(div) && !divider_is_fixed(div); +} + +static bool peri_clk_data_offsets_valid(struct kona_clk *bcm_clk) +{ + struct peri_clk_data *peri; + struct bcm_clk_policy *policy; + struct bcm_clk_gate *gate; + struct bcm_clk_hyst *hyst; + struct bcm_clk_div *div; + struct bcm_clk_sel *sel; + struct bcm_clk_trig *trig; + const char *name; + u32 range; + u32 limit; + + BUG_ON(bcm_clk->type != bcm_clk_peri); + peri = bcm_clk->u.peri; + name = bcm_clk->init_data.name; + range = bcm_clk->ccu->range; + + limit = range - sizeof(u32); + limit = round_down(limit, sizeof(u32)); + + policy = &peri->policy; + if (policy_exists(policy)) { + if (policy->offset > limit) { + pr_err("%s: bad policy offset for %s (%u > %u)\n", + __func__, name, policy->offset, limit); + return false; + } + } + + gate = &peri->gate; + hyst = &peri->hyst; + if (gate_exists(gate)) { + if (gate->offset > limit) { + pr_err("%s: bad gate offset for %s (%u > %u)\n", + __func__, name, gate->offset, limit); + return false; + } + + if (hyst_exists(hyst)) { + if (hyst->offset > limit) { + pr_err("%s: bad hysteresis offset for %s " + "(%u > %u)\n", __func__, + name, hyst->offset, limit); + return false; + } + } + } else if (hyst_exists(hyst)) { + pr_err("%s: hysteresis but no gate for %s\n", __func__, name); + return false; + } + + div = &peri->div; + if (divider_exists(div)) { + if (div->u.s.offset > limit) { + pr_err("%s: bad divider offset for %s (%u > %u)\n", + __func__, name, div->u.s.offset, limit); + return false; + } + } + + div = &peri->pre_div; + if (divider_exists(div)) { + if (div->u.s.offset > limit) { + pr_err("%s: bad pre-divider offset for %s " + "(%u > %u)\n", + __func__, name, div->u.s.offset, limit); + return false; + } + } + + sel = &peri->sel; + if (selector_exists(sel)) { + if (sel->offset > limit) { + pr_err("%s: bad selector offset for %s (%u > %u)\n", + __func__, name, sel->offset, limit); + return false; + } + } + + trig = &peri->trig; + if (trigger_exists(trig)) { + if (trig->offset > limit) { + pr_err("%s: bad trigger offset for %s (%u > %u)\n", + __func__, name, trig->offset, limit); + return false; + } + } + + trig = &peri->pre_trig; + if (trigger_exists(trig)) { + if (trig->offset > limit) { + pr_err("%s: bad pre-trigger offset for %s (%u > %u)\n", + __func__, name, trig->offset, limit); + return false; + } + } + + return true; +} + +/* A bit position must be less than the number of bits in a 32-bit register. */ +static bool bit_posn_valid(u32 bit_posn, const char *field_name, + const char *clock_name) +{ + u32 limit = BITS_PER_BYTE * sizeof(u32) - 1; + + if (bit_posn > limit) { + pr_err("%s: bad %s bit for %s (%u > %u)\n", __func__, + field_name, clock_name, bit_posn, limit); + return false; + } + return true; +} + +/* + * A bitfield must be at least 1 bit wide. Both the low-order and + * high-order bits must lie within a 32-bit register. We require + * fields to be less than 32 bits wide, mainly because we use + * shifting to produce field masks, and shifting a full word width + * is not well-defined by the C standard. + */ +static bool bitfield_valid(u32 shift, u32 width, const char *field_name, + const char *clock_name) +{ + u32 limit = BITS_PER_BYTE * sizeof(u32); + + if (!width) { + pr_err("%s: bad %s field width 0 for %s\n", __func__, + field_name, clock_name); + return false; + } + if (shift + width > limit) { + pr_err("%s: bad %s for %s (%u + %u > %u)\n", __func__, + field_name, clock_name, shift, width, limit); + return false; + } + return true; +} + +static bool +ccu_policy_valid(struct ccu_policy *ccu_policy, const char *ccu_name) +{ + struct bcm_lvm_en *enable = &ccu_policy->enable; + struct bcm_policy_ctl *control; + + if (!bit_posn_valid(enable->bit, "policy enable", ccu_name)) + return false; + + control = &ccu_policy->control; + if (!bit_posn_valid(control->go_bit, "policy control GO", ccu_name)) + return false; + + if (!bit_posn_valid(control->atl_bit, "policy control ATL", ccu_name)) + return false; + + if (!bit_posn_valid(control->ac_bit, "policy control AC", ccu_name)) + return false; + + return true; +} + +static bool policy_valid(struct bcm_clk_policy *policy, const char *clock_name) +{ + if (!bit_posn_valid(policy->bit, "policy", clock_name)) + return false; + + return true; +} + +/* + * All gates, if defined, have a status bit, and for hardware-only + * gates, that's it. Gates that can be software controlled also + * have an enable bit. And a gate that can be hardware or software + * controlled will have a hardware/software select bit. + */ +static bool gate_valid(struct bcm_clk_gate *gate, const char *field_name, + const char *clock_name) +{ + if (!bit_posn_valid(gate->status_bit, "gate status", clock_name)) + return false; + + if (gate_is_sw_controllable(gate)) { + if (!bit_posn_valid(gate->en_bit, "gate enable", clock_name)) + return false; + + if (gate_is_hw_controllable(gate)) { + if (!bit_posn_valid(gate->hw_sw_sel_bit, + "gate hw/sw select", + clock_name)) + return false; + } + } else { + BUG_ON(!gate_is_hw_controllable(gate)); + } + + return true; +} + +static bool hyst_valid(struct bcm_clk_hyst *hyst, const char *clock_name) +{ + if (!bit_posn_valid(hyst->en_bit, "hysteresis enable", clock_name)) + return false; + + if (!bit_posn_valid(hyst->val_bit, "hysteresis value", clock_name)) + return false; + + return true; +} + +/* + * A selector bitfield must be valid. Its parent_sel array must + * also be reasonable for the field. + */ +static bool sel_valid(struct bcm_clk_sel *sel, const char *field_name, + const char *clock_name) +{ + if (!bitfield_valid(sel->shift, sel->width, field_name, clock_name)) + return false; + + if (sel->parent_count) { + u32 max_sel; + u32 limit; + + /* + * Make sure the selector field can hold all the + * selector values we expect to be able to use. A + * clock only needs to have a selector defined if it + * has more than one parent. And in that case the + * highest selector value will be in the last entry + * in the array. + */ + max_sel = sel->parent_sel[sel->parent_count - 1]; + limit = (1 << sel->width) - 1; + if (max_sel > limit) { + pr_err("%s: bad selector for %s " + "(%u needs > %u bits)\n", + __func__, clock_name, max_sel, + sel->width); + return false; + } + } else { + pr_warn("%s: ignoring selector for %s (no parents)\n", + __func__, clock_name); + selector_clear_exists(sel); + kfree(sel->parent_sel); + sel->parent_sel = NULL; + } + + return true; +} + +/* + * A fixed divider just needs to be non-zero. A variable divider + * has to have a valid divider bitfield, and if it has a fraction, + * the width of the fraction must not be no more than the width of + * the divider as a whole. + */ +static bool div_valid(struct bcm_clk_div *div, const char *field_name, + const char *clock_name) +{ + if (divider_is_fixed(div)) { + /* Any fixed divider value but 0 is OK */ + if (div->u.fixed == 0) { + pr_err("%s: bad %s fixed value 0 for %s\n", __func__, + field_name, clock_name); + return false; + } + return true; + } + if (!bitfield_valid(div->u.s.shift, div->u.s.width, + field_name, clock_name)) + return false; + + if (divider_has_fraction(div)) + if (div->u.s.frac_width > div->u.s.width) { + pr_warn("%s: bad %s fraction width for %s (%u > %u)\n", + __func__, field_name, clock_name, + div->u.s.frac_width, div->u.s.width); + return false; + } + + return true; +} + +/* + * If a clock has two dividers, the combined number of fractional + * bits must be representable in a 32-bit unsigned value. This + * is because we scale up a dividend using both dividers before + * dividing to improve accuracy, and we need to avoid overflow. + */ +static bool kona_dividers_valid(struct kona_clk *bcm_clk) +{ + struct peri_clk_data *peri = bcm_clk->u.peri; + struct bcm_clk_div *div; + struct bcm_clk_div *pre_div; + u32 limit; + + BUG_ON(bcm_clk->type != bcm_clk_peri); + + if (!divider_exists(&peri->div) || !divider_exists(&peri->pre_div)) + return true; + + div = &peri->div; + pre_div = &peri->pre_div; + if (divider_is_fixed(div) || divider_is_fixed(pre_div)) + return true; + + limit = BITS_PER_BYTE * sizeof(u32); + + return div->u.s.frac_width + pre_div->u.s.frac_width <= limit; +} + + +/* A trigger just needs to represent a valid bit position */ +static bool trig_valid(struct bcm_clk_trig *trig, const char *field_name, + const char *clock_name) +{ + return bit_posn_valid(trig->bit, field_name, clock_name); +} + +/* Determine whether the set of peripheral clock registers are valid. */ +static bool +peri_clk_data_valid(struct kona_clk *bcm_clk) +{ + struct peri_clk_data *peri; + struct bcm_clk_policy *policy; + struct bcm_clk_gate *gate; + struct bcm_clk_hyst *hyst; + struct bcm_clk_sel *sel; + struct bcm_clk_div *div; + struct bcm_clk_div *pre_div; + struct bcm_clk_trig *trig; + const char *name; + + BUG_ON(bcm_clk->type != bcm_clk_peri); + + /* + * First validate register offsets. This is the only place + * where we need something from the ccu, so we do these + * together. + */ + if (!peri_clk_data_offsets_valid(bcm_clk)) + return false; + + peri = bcm_clk->u.peri; + name = bcm_clk->init_data.name; + + policy = &peri->policy; + if (policy_exists(policy) && !policy_valid(policy, name)) + return false; + + gate = &peri->gate; + if (gate_exists(gate) && !gate_valid(gate, "gate", name)) + return false; + + hyst = &peri->hyst; + if (hyst_exists(hyst) && !hyst_valid(hyst, name)) + return false; + + sel = &peri->sel; + if (selector_exists(sel)) { + if (!sel_valid(sel, "selector", name)) + return false; + + } else if (sel->parent_count > 1) { + pr_err("%s: multiple parents but no selector for %s\n", + __func__, name); + + return false; + } + + div = &peri->div; + pre_div = &peri->pre_div; + if (divider_exists(div)) { + if (!div_valid(div, "divider", name)) + return false; + + if (divider_exists(pre_div)) + if (!div_valid(pre_div, "pre-divider", name)) + return false; + } else if (divider_exists(pre_div)) { + pr_err("%s: pre-divider but no divider for %s\n", __func__, + name); + return false; + } + + trig = &peri->trig; + if (trigger_exists(trig)) { + if (!trig_valid(trig, "trigger", name)) + return false; + + if (trigger_exists(&peri->pre_trig)) { + if (!trig_valid(trig, "pre-trigger", name)) { + return false; + } + } + if (!clk_requires_trigger(bcm_clk)) { + pr_warn("%s: ignoring trigger for %s (not needed)\n", + __func__, name); + trigger_clear_exists(trig); + } + } else if (trigger_exists(&peri->pre_trig)) { + pr_err("%s: pre-trigger but no trigger for %s\n", __func__, + name); + return false; + } else if (clk_requires_trigger(bcm_clk)) { + pr_err("%s: required trigger missing for %s\n", __func__, + name); + return false; + } + + return kona_dividers_valid(bcm_clk); +} + +static bool kona_clk_valid(struct kona_clk *bcm_clk) +{ + switch (bcm_clk->type) { + case bcm_clk_peri: + if (!peri_clk_data_valid(bcm_clk)) + return false; + break; + default: + pr_err("%s: unrecognized clock type (%d)\n", __func__, + (int)bcm_clk->type); + return false; + } + return true; +} + +/* + * Scan an array of parent clock names to determine whether there + * are any entries containing BAD_CLK_NAME. Such entries are + * placeholders for non-supported clocks. Keep track of the + * position of each clock name in the original array. + * + * Allocates an array of pointers to hold the names of all + * non-null entries in the original array, and returns a pointer to + * that array in *names. This will be used for registering the + * clock with the common clock code. On successful return, + * *count indicates how many entries are in that names array. + * + * If there is more than one entry in the resulting names array, + * another array is allocated to record the parent selector value + * for each (defined) parent clock. This is the value that + * represents this parent clock in the clock's source selector + * register. The position of the clock in the original parent array + * defines that selector value. The number of entries in this array + * is the same as the number of entries in the parent names array. + * + * The array of selector values is returned. If the clock has no + * parents, no selector is required and a null pointer is returned. + * + * Returns a null pointer if the clock names array supplied was + * null. (This is not an error.) + * + * Returns a pointer-coded error if an error occurs. + */ +static u32 *parent_process(const char *clocks[], + u32 *count, const char ***names) +{ + static const char **parent_names; + static u32 *parent_sel; + const char **clock; + u32 parent_count; + u32 bad_count = 0; + u32 orig_count; + u32 i; + u32 j; + + *count = 0; /* In case of early return */ + *names = NULL; + if (!clocks) + return NULL; + + /* + * Count the number of names in the null-terminated array, + * and find out how many of those are actually clock names. + */ + for (clock = clocks; *clock; clock++) + if (*clock == BAD_CLK_NAME) + bad_count++; + orig_count = (u32)(clock - clocks); + parent_count = orig_count - bad_count; + + /* If all clocks are unsupported, we treat it as no clock */ + if (!parent_count) + return NULL; + + /* Avoid exceeding our parent clock limit */ + if (parent_count > PARENT_COUNT_MAX) { + pr_err("%s: too many parents (%u > %u)\n", __func__, + parent_count, PARENT_COUNT_MAX); + return ERR_PTR(-EINVAL); + } + + /* + * There is one parent name for each defined parent clock. + * We also maintain an array containing the selector value + * for each defined clock. If there's only one clock, the + * selector is not required, but we allocate space for the + * array anyway to keep things simple. + */ + parent_names = kmalloc_array(parent_count, sizeof(*parent_names), + GFP_KERNEL); + if (!parent_names) + return ERR_PTR(-ENOMEM); + + /* There is at least one parent, so allocate a selector array */ + parent_sel = kmalloc_array(parent_count, sizeof(*parent_sel), + GFP_KERNEL); + if (!parent_sel) { + kfree(parent_names); + + return ERR_PTR(-ENOMEM); + } + + /* Now fill in the parent names and selector arrays */ + for (i = 0, j = 0; i < orig_count; i++) { + if (clocks[i] != BAD_CLK_NAME) { + parent_names[j] = clocks[i]; + parent_sel[j] = i; + j++; + } + } + *names = parent_names; + *count = parent_count; + + return parent_sel; +} + +static int +clk_sel_setup(const char **clocks, struct bcm_clk_sel *sel, + struct clk_init_data *init_data) +{ + const char **parent_names = NULL; + u32 parent_count = 0; + u32 *parent_sel; + + /* + * If a peripheral clock has multiple parents, the value + * used by the hardware to select that parent is represented + * by the parent clock's position in the "clocks" list. Some + * values don't have defined or supported clocks; these will + * have BAD_CLK_NAME entries in the parents[] array. The + * list is terminated by a NULL entry. + * + * We need to supply (only) the names of defined parent + * clocks when registering a clock though, so we use an + * array of parent selector values to map between the + * indexes the common clock code uses and the selector + * values we need. + */ + parent_sel = parent_process(clocks, &parent_count, &parent_names); + if (IS_ERR(parent_sel)) { + int ret = PTR_ERR(parent_sel); + + pr_err("%s: error processing parent clocks for %s (%d)\n", + __func__, init_data->name, ret); + + return ret; + } + + init_data->parent_names = parent_names; + init_data->num_parents = parent_count; + + sel->parent_count = parent_count; + sel->parent_sel = parent_sel; + + return 0; +} + +static void clk_sel_teardown(struct bcm_clk_sel *sel, + struct clk_init_data *init_data) +{ + kfree(sel->parent_sel); + sel->parent_sel = NULL; + sel->parent_count = 0; + + init_data->num_parents = 0; + kfree(init_data->parent_names); + init_data->parent_names = NULL; +} + +static void peri_clk_teardown(struct peri_clk_data *data, + struct clk_init_data *init_data) +{ + clk_sel_teardown(&data->sel, init_data); +} + +/* + * Caller is responsible for freeing the parent_names[] and + * parent_sel[] arrays in the peripheral clock's "data" structure + * that can be assigned if the clock has one or more parent clocks + * associated with it. + */ +static int +peri_clk_setup(struct peri_clk_data *data, struct clk_init_data *init_data) +{ + init_data->flags = CLK_IGNORE_UNUSED; + + return clk_sel_setup(data->clocks, &data->sel, init_data); +} + +static void bcm_clk_teardown(struct kona_clk *bcm_clk) +{ + switch (bcm_clk->type) { + case bcm_clk_peri: + peri_clk_teardown(bcm_clk->u.data, &bcm_clk->init_data); + break; + default: + break; + } + bcm_clk->u.data = NULL; + bcm_clk->type = bcm_clk_none; +} + +static void kona_clk_teardown(struct clk_hw *hw) +{ + struct kona_clk *bcm_clk; + + if (!hw) + return; + + clk_hw_unregister(hw); + + bcm_clk = to_kona_clk(hw); + bcm_clk_teardown(bcm_clk); +} + +static int kona_clk_setup(struct kona_clk *bcm_clk) +{ + int ret; + struct clk_init_data *init_data = &bcm_clk->init_data; + + switch (bcm_clk->type) { + case bcm_clk_peri: + ret = peri_clk_setup(bcm_clk->u.data, init_data); + if (ret) + return ret; + break; + default: + pr_err("%s: clock type %d invalid for %s\n", __func__, + (int)bcm_clk->type, init_data->name); + return -EINVAL; + } + + /* Make sure everything makes sense before we set it up */ + if (!kona_clk_valid(bcm_clk)) { + pr_err("%s: clock data invalid for %s\n", __func__, + init_data->name); + ret = -EINVAL; + goto out_teardown; + } + + bcm_clk->hw.init = init_data; + ret = clk_hw_register(NULL, &bcm_clk->hw); + if (ret) { + pr_err("%s: error registering clock %s (%d)\n", __func__, + init_data->name, ret); + goto out_teardown; + } + + return 0; +out_teardown: + bcm_clk_teardown(bcm_clk); + + return ret; +} + +static void ccu_clks_teardown(struct ccu_data *ccu) +{ + u32 i; + + for (i = 0; i < ccu->clk_num; i++) + kona_clk_teardown(&ccu->kona_clks[i].hw); +} + +static void kona_ccu_teardown(struct ccu_data *ccu) +{ + if (!ccu->base) + return; + + of_clk_del_provider(ccu->node); /* safe if never added */ + ccu_clks_teardown(ccu); + of_node_put(ccu->node); + ccu->node = NULL; + iounmap(ccu->base); + ccu->base = NULL; +} + +static bool ccu_data_valid(struct ccu_data *ccu) +{ + struct ccu_policy *ccu_policy; + + if (!ccu_data_offsets_valid(ccu)) + return false; + + ccu_policy = &ccu->policy; + if (ccu_policy_exists(ccu_policy)) + if (!ccu_policy_valid(ccu_policy, ccu->name)) + return false; + + return true; +} + +static struct clk_hw * +of_clk_kona_onecell_get(struct of_phandle_args *clkspec, void *data) +{ + struct ccu_data *ccu = data; + unsigned int idx = clkspec->args[0]; + + if (idx >= ccu->clk_num) { + pr_err("%s: invalid index %u\n", __func__, idx); + return ERR_PTR(-EINVAL); + } + + return &ccu->kona_clks[idx].hw; +} + +/* + * Set up a CCU. Call the provided ccu_clks_setup callback to + * initialize the array of clocks provided by the CCU. + */ +void __init kona_dt_ccu_setup(struct ccu_data *ccu, + struct device_node *node) +{ + struct resource res = { 0 }; + resource_size_t range; + unsigned int i; + int ret; + + ret = of_address_to_resource(node, 0, &res); + if (ret) { + pr_err("%s: no valid CCU registers found for %pOFn\n", __func__, + node); + goto out_err; + } + + range = resource_size(&res); + if (range > (resource_size_t)U32_MAX) { + pr_err("%s: address range too large for %pOFn\n", __func__, + node); + goto out_err; + } + + ccu->range = (u32)range; + + if (!ccu_data_valid(ccu)) { + pr_err("%s: ccu data not valid for %pOFn\n", __func__, node); + goto out_err; + } + + ccu->base = ioremap(res.start, ccu->range); + if (!ccu->base) { + pr_err("%s: unable to map CCU registers for %pOFn\n", __func__, + node); + goto out_err; + } + ccu->node = of_node_get(node); + + /* + * Set up each defined kona clock and save the result in + * the clock framework clock array (in ccu->data). Then + * register as a provider for these clocks. + */ + for (i = 0; i < ccu->clk_num; i++) { + if (!ccu->kona_clks[i].ccu) + continue; + kona_clk_setup(&ccu->kona_clks[i]); + } + + ret = of_clk_add_hw_provider(node, of_clk_kona_onecell_get, ccu); + if (ret) { + pr_err("%s: error adding ccu %pOFn as provider (%d)\n", __func__, + node, ret); + goto out_err; + } + + if (!kona_ccu_init(ccu)) + pr_err("Broadcom %pOFn initialization had errors\n", node); + + return; +out_err: + kona_ccu_teardown(ccu); + pr_err("Broadcom %pOFn setup aborted\n", node); +} |