diff options
Diffstat (limited to 'drivers/clk/clk-fractional-divider.c')
-rw-r--r-- | drivers/clk/clk-fractional-divider.c | 259 |
1 files changed, 259 insertions, 0 deletions
diff --git a/drivers/clk/clk-fractional-divider.c b/drivers/clk/clk-fractional-divider.c new file mode 100644 index 000000000..8efa5142f --- /dev/null +++ b/drivers/clk/clk-fractional-divider.c @@ -0,0 +1,259 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2014 Intel Corporation + * + * Adjustable fractional divider clock implementation. + * Uses rational best approximation algorithm. + * + * Output is calculated as + * + * rate = (m / n) * parent_rate (1) + * + * This is useful when we have a prescaler block which asks for + * m (numerator) and n (denominator) values to be provided to satisfy + * the (1) as much as possible. + * + * Since m and n have the limitation by a range, e.g. + * + * n >= 1, n < N_width, where N_width = 2^nwidth (2) + * + * for some cases the output may be saturated. Hence, from (1) and (2), + * assuming the worst case when m = 1, the inequality + * + * floor(log2(parent_rate / rate)) <= nwidth (3) + * + * may be derived. Thus, in cases when + * + * (parent_rate / rate) >> N_width (4) + * + * we might scale up the rate by 2^scale (see the description of + * CLK_FRAC_DIVIDER_POWER_OF_TWO_PS for additional information), where + * + * scale = floor(log2(parent_rate / rate)) - nwidth (5) + * + * and assume that the IP, that needs m and n, has also its own + * prescaler, which is capable to divide by 2^scale. In this way + * we get the denominator to satisfy the desired range (2) and + * at the same time a much better result of m and n than simple + * saturated values. + */ + +#include <linux/clk-provider.h> +#include <linux/io.h> +#include <linux/module.h> +#include <linux/device.h> +#include <linux/slab.h> +#include <linux/rational.h> + +#include "clk-fractional-divider.h" + +static inline u32 clk_fd_readl(struct clk_fractional_divider *fd) +{ + if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN) + return ioread32be(fd->reg); + + return readl(fd->reg); +} + +static inline void clk_fd_writel(struct clk_fractional_divider *fd, u32 val) +{ + if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN) + iowrite32be(val, fd->reg); + else + writel(val, fd->reg); +} + +static unsigned long clk_fd_recalc_rate(struct clk_hw *hw, + unsigned long parent_rate) +{ + struct clk_fractional_divider *fd = to_clk_fd(hw); + unsigned long flags = 0; + unsigned long m, n; + u32 val; + u64 ret; + + if (fd->lock) + spin_lock_irqsave(fd->lock, flags); + else + __acquire(fd->lock); + + val = clk_fd_readl(fd); + + if (fd->lock) + spin_unlock_irqrestore(fd->lock, flags); + else + __release(fd->lock); + + m = (val & fd->mmask) >> fd->mshift; + n = (val & fd->nmask) >> fd->nshift; + + if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) { + m++; + n++; + } + + if (!n || !m) + return parent_rate; + + ret = (u64)parent_rate * m; + do_div(ret, n); + + return ret; +} + +void clk_fractional_divider_general_approximation(struct clk_hw *hw, + unsigned long rate, + unsigned long *parent_rate, + unsigned long *m, unsigned long *n) +{ + struct clk_fractional_divider *fd = to_clk_fd(hw); + + /* + * Get rate closer to *parent_rate to guarantee there is no overflow + * for m and n. In the result it will be the nearest rate left shifted + * by (scale - fd->nwidth) bits. + * + * For the detailed explanation see the top comment in this file. + */ + if (fd->flags & CLK_FRAC_DIVIDER_POWER_OF_TWO_PS) { + unsigned long scale = fls_long(*parent_rate / rate - 1); + + if (scale > fd->nwidth) + rate <<= scale - fd->nwidth; + } + + rational_best_approximation(rate, *parent_rate, + GENMASK(fd->mwidth - 1, 0), GENMASK(fd->nwidth - 1, 0), + m, n); +} + +static long clk_fd_round_rate(struct clk_hw *hw, unsigned long rate, + unsigned long *parent_rate) +{ + struct clk_fractional_divider *fd = to_clk_fd(hw); + unsigned long m, n; + u64 ret; + + if (!rate || (!clk_hw_can_set_rate_parent(hw) && rate >= *parent_rate)) + return *parent_rate; + + if (fd->approximation) + fd->approximation(hw, rate, parent_rate, &m, &n); + else + clk_fractional_divider_general_approximation(hw, rate, parent_rate, &m, &n); + + ret = (u64)*parent_rate * m; + do_div(ret, n); + + return ret; +} + +static int clk_fd_set_rate(struct clk_hw *hw, unsigned long rate, + unsigned long parent_rate) +{ + struct clk_fractional_divider *fd = to_clk_fd(hw); + unsigned long flags = 0; + unsigned long m, n; + u32 val; + + rational_best_approximation(rate, parent_rate, + GENMASK(fd->mwidth - 1, 0), GENMASK(fd->nwidth - 1, 0), + &m, &n); + + if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) { + m--; + n--; + } + + if (fd->lock) + spin_lock_irqsave(fd->lock, flags); + else + __acquire(fd->lock); + + val = clk_fd_readl(fd); + val &= ~(fd->mmask | fd->nmask); + val |= (m << fd->mshift) | (n << fd->nshift); + clk_fd_writel(fd, val); + + if (fd->lock) + spin_unlock_irqrestore(fd->lock, flags); + else + __release(fd->lock); + + return 0; +} + +const struct clk_ops clk_fractional_divider_ops = { + .recalc_rate = clk_fd_recalc_rate, + .round_rate = clk_fd_round_rate, + .set_rate = clk_fd_set_rate, +}; +EXPORT_SYMBOL_GPL(clk_fractional_divider_ops); + +struct clk_hw *clk_hw_register_fractional_divider(struct device *dev, + const char *name, const char *parent_name, unsigned long flags, + void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth, + u8 clk_divider_flags, spinlock_t *lock) +{ + struct clk_fractional_divider *fd; + struct clk_init_data init; + struct clk_hw *hw; + int ret; + + fd = kzalloc(sizeof(*fd), GFP_KERNEL); + if (!fd) + return ERR_PTR(-ENOMEM); + + init.name = name; + init.ops = &clk_fractional_divider_ops; + init.flags = flags; + init.parent_names = parent_name ? &parent_name : NULL; + init.num_parents = parent_name ? 1 : 0; + + fd->reg = reg; + fd->mshift = mshift; + fd->mwidth = mwidth; + fd->mmask = GENMASK(mwidth - 1, 0) << mshift; + fd->nshift = nshift; + fd->nwidth = nwidth; + fd->nmask = GENMASK(nwidth - 1, 0) << nshift; + fd->flags = clk_divider_flags; + fd->lock = lock; + fd->hw.init = &init; + + hw = &fd->hw; + ret = clk_hw_register(dev, hw); + if (ret) { + kfree(fd); + hw = ERR_PTR(ret); + } + + return hw; +} +EXPORT_SYMBOL_GPL(clk_hw_register_fractional_divider); + +struct clk *clk_register_fractional_divider(struct device *dev, + const char *name, const char *parent_name, unsigned long flags, + void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth, + u8 clk_divider_flags, spinlock_t *lock) +{ + struct clk_hw *hw; + + hw = clk_hw_register_fractional_divider(dev, name, parent_name, flags, + reg, mshift, mwidth, nshift, nwidth, clk_divider_flags, + lock); + if (IS_ERR(hw)) + return ERR_CAST(hw); + return hw->clk; +} +EXPORT_SYMBOL_GPL(clk_register_fractional_divider); + +void clk_hw_unregister_fractional_divider(struct clk_hw *hw) +{ + struct clk_fractional_divider *fd; + + fd = to_clk_fd(hw); + + clk_hw_unregister(hw); + kfree(fd); +} |