diff options
Diffstat (limited to 'drivers/comedi/drivers/s626.c')
-rw-r--r-- | drivers/comedi/drivers/s626.c | 2604 |
1 files changed, 2604 insertions, 0 deletions
diff --git a/drivers/comedi/drivers/s626.c b/drivers/comedi/drivers/s626.c new file mode 100644 index 000000000..0e5f9a9a7 --- /dev/null +++ b/drivers/comedi/drivers/s626.c @@ -0,0 +1,2604 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * comedi/drivers/s626.c + * Sensoray s626 Comedi driver + * + * COMEDI - Linux Control and Measurement Device Interface + * Copyright (C) 2000 David A. Schleef <ds@schleef.org> + * + * Based on Sensoray Model 626 Linux driver Version 0.2 + * Copyright (C) 2002-2004 Sensoray Co., Inc. + */ + +/* + * Driver: s626 + * Description: Sensoray 626 driver + * Devices: [Sensoray] 626 (s626) + * Authors: Gianluca Palli <gpalli@deis.unibo.it>, + * Updated: Fri, 15 Feb 2008 10:28:42 +0000 + * Status: experimental + + * Configuration options: not applicable, uses PCI auto config + + * INSN_CONFIG instructions: + * analog input: + * none + * + * analog output: + * none + * + * digital channel: + * s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels + * supported configuration options: + * INSN_CONFIG_DIO_QUERY + * COMEDI_INPUT + * COMEDI_OUTPUT + * + * encoder: + * Every channel must be configured before reading. + * + * Example code + * + * insn.insn=INSN_CONFIG; //configuration instruction + * insn.n=1; //number of operation (must be 1) + * insn.data=&initialvalue; //initial value loaded into encoder + * //during configuration + * insn.subdev=5; //encoder subdevice + * insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel + * //to configure + * + * comedi_do_insn(cf,&insn); //executing configuration + */ + +#include <linux/module.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/kernel.h> +#include <linux/types.h> +#include <linux/comedi/comedi_pci.h> + +#include "s626.h" + +struct s626_buffer_dma { + dma_addr_t physical_base; + void *logical_base; +}; + +/** + * struct s626_private - Working data for s626 driver. + * @ai_cmd_running: non-zero if ai_cmd is running. + * @ai_sample_timer: time between samples in units of the timer. + * @ai_convert_count: conversion counter. + * @ai_convert_timer: time between conversion in units of the timer. + * @counter_int_enabs: counter interrupt enable mask for MISC2 register. + * @adc_items: number of items in ADC poll list. + * @rps_buf: DMA buffer used to hold ADC (RPS1) program. + * @ana_buf: DMA buffer used to receive ADC data and hold DAC data. + * @dac_wbuf: pointer to logical adrs of DMA buffer used to hold DAC data. + * @dacpol: image of DAC polarity register. + * @trim_setpoint: images of TrimDAC setpoints. + * @i2c_adrs: I2C device address for onboard EEPROM (board rev dependent) + */ +struct s626_private { + u8 ai_cmd_running; + unsigned int ai_sample_timer; + int ai_convert_count; + unsigned int ai_convert_timer; + u16 counter_int_enabs; + u8 adc_items; + struct s626_buffer_dma rps_buf; + struct s626_buffer_dma ana_buf; + u32 *dac_wbuf; + u16 dacpol; + u8 trim_setpoint[12]; + u32 i2c_adrs; +}; + +/* Counter overflow/index event flag masks for RDMISC2. */ +#define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4))) +#define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10))) + +/* + * Enable/disable a function or test status bit(s) that are accessed + * through Main Control Registers 1 or 2. + */ +static void s626_mc_enable(struct comedi_device *dev, + unsigned int cmd, unsigned int reg) +{ + unsigned int val = (cmd << 16) | cmd; + + writel(val, dev->mmio + reg); +} + +static void s626_mc_disable(struct comedi_device *dev, + unsigned int cmd, unsigned int reg) +{ + writel(cmd << 16, dev->mmio + reg); +} + +static bool s626_mc_test(struct comedi_device *dev, + unsigned int cmd, unsigned int reg) +{ + unsigned int val; + + val = readl(dev->mmio + reg); + + return (val & cmd) ? true : false; +} + +#define S626_BUGFIX_STREG(REGADRS) ((REGADRS) - 4) + +/* Write a time slot control record to TSL2. */ +#define S626_VECTPORT(VECTNUM) (S626_P_TSL2 + ((VECTNUM) << 2)) + +static const struct comedi_lrange s626_range_table = { + 2, { + BIP_RANGE(5), + BIP_RANGE(10) + } +}; + +/* + * Execute a DEBI transfer. This must be called from within a critical section. + */ +static void s626_debi_transfer(struct comedi_device *dev) +{ + static const int timeout = 10000; + int i; + + /* Initiate upload of shadow RAM to DEBI control register */ + s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2); + + /* + * Wait for completion of upload from shadow RAM to + * DEBI control register. + */ + for (i = 0; i < timeout; i++) { + if (s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2)) + break; + udelay(1); + } + if (i == timeout) + dev_err(dev->class_dev, + "Timeout while uploading to DEBI control register\n"); + + /* Wait until DEBI transfer is done */ + for (i = 0; i < timeout; i++) { + if (!(readl(dev->mmio + S626_P_PSR) & S626_PSR_DEBI_S)) + break; + udelay(1); + } + if (i == timeout) + dev_err(dev->class_dev, "DEBI transfer timeout\n"); +} + +/* + * Read a value from a gate array register. + */ +static u16 s626_debi_read(struct comedi_device *dev, u16 addr) +{ + /* Set up DEBI control register value in shadow RAM */ + writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD); + + /* Execute the DEBI transfer. */ + s626_debi_transfer(dev); + + return readl(dev->mmio + S626_P_DEBIAD); +} + +/* + * Write a value to a gate array register. + */ +static void s626_debi_write(struct comedi_device *dev, u16 addr, + u16 wdata) +{ + /* Set up DEBI control register value in shadow RAM */ + writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD); + writel(wdata, dev->mmio + S626_P_DEBIAD); + + /* Execute the DEBI transfer. */ + s626_debi_transfer(dev); +} + +/* + * Replace the specified bits in a gate array register. Imports: mask + * specifies bits that are to be preserved, wdata is new value to be + * or'd with the masked original. + */ +static void s626_debi_replace(struct comedi_device *dev, unsigned int addr, + unsigned int mask, unsigned int wdata) +{ + unsigned int val; + + addr &= 0xffff; + writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD); + s626_debi_transfer(dev); + + writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD); + val = readl(dev->mmio + S626_P_DEBIAD); + val &= mask; + val |= wdata; + writel(val & 0xffff, dev->mmio + S626_P_DEBIAD); + s626_debi_transfer(dev); +} + +/* ************** EEPROM ACCESS FUNCTIONS ************** */ + +static int s626_i2c_handshake_eoc(struct comedi_device *dev, + struct comedi_subdevice *s, + struct comedi_insn *insn, + unsigned long context) +{ + bool status; + + status = s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2); + if (status) + return 0; + return -EBUSY; +} + +static int s626_i2c_handshake(struct comedi_device *dev, u32 val) +{ + unsigned int ctrl; + int ret; + + /* Write I2C command to I2C Transfer Control shadow register */ + writel(val, dev->mmio + S626_P_I2CCTRL); + + /* + * Upload I2C shadow registers into working registers and + * wait for upload confirmation. + */ + s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2); + ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0); + if (ret) + return ret; + + /* Wait until I2C bus transfer is finished or an error occurs */ + do { + ctrl = readl(dev->mmio + S626_P_I2CCTRL); + } while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY); + + /* Return non-zero if I2C error occurred */ + return ctrl & S626_I2C_ERR; +} + +/* Read u8 from EEPROM. */ +static u8 s626_i2c_read(struct comedi_device *dev, u8 addr) +{ + struct s626_private *devpriv = dev->private; + + /* + * Send EEPROM target address: + * Byte2 = I2C command: write to I2C EEPROM device. + * Byte1 = EEPROM internal target address. + * Byte0 = Not sent. + */ + if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART, + devpriv->i2c_adrs) | + S626_I2C_B1(S626_I2C_ATTRSTOP, addr) | + S626_I2C_B0(S626_I2C_ATTRNOP, 0))) + /* Abort function and declare error if handshake failed. */ + return 0; + + /* + * Execute EEPROM read: + * Byte2 = I2C command: read from I2C EEPROM device. + * Byte1 receives uint8_t from EEPROM. + * Byte0 = Not sent. + */ + if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART, + (devpriv->i2c_adrs | 1)) | + S626_I2C_B1(S626_I2C_ATTRSTOP, 0) | + S626_I2C_B0(S626_I2C_ATTRNOP, 0))) + /* Abort function and declare error if handshake failed. */ + return 0; + + return (readl(dev->mmio + S626_P_I2CCTRL) >> 16) & 0xff; +} + +/* *********** DAC FUNCTIONS *********** */ + +/* TrimDac LogicalChan-to-PhysicalChan mapping table. */ +static const u8 s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 }; + +/* TrimDac LogicalChan-to-EepromAdrs mapping table. */ +static const u8 s626_trimadrs[] = { + 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 +}; + +enum { + s626_send_dac_wait_not_mc1_a2out, + s626_send_dac_wait_ssr_af2_out, + s626_send_dac_wait_fb_buffer2_msb_00, + s626_send_dac_wait_fb_buffer2_msb_ff +}; + +static int s626_send_dac_eoc(struct comedi_device *dev, + struct comedi_subdevice *s, + struct comedi_insn *insn, + unsigned long context) +{ + unsigned int status; + + switch (context) { + case s626_send_dac_wait_not_mc1_a2out: + status = readl(dev->mmio + S626_P_MC1); + if (!(status & S626_MC1_A2OUT)) + return 0; + break; + case s626_send_dac_wait_ssr_af2_out: + status = readl(dev->mmio + S626_P_SSR); + if (status & S626_SSR_AF2_OUT) + return 0; + break; + case s626_send_dac_wait_fb_buffer2_msb_00: + status = readl(dev->mmio + S626_P_FB_BUFFER2); + if (!(status & 0xff000000)) + return 0; + break; + case s626_send_dac_wait_fb_buffer2_msb_ff: + status = readl(dev->mmio + S626_P_FB_BUFFER2); + if (status & 0xff000000) + return 0; + break; + default: + return -EINVAL; + } + return -EBUSY; +} + +/* + * Private helper function: Transmit serial data to DAC via Audio + * channel 2. Assumes: (1) TSL2 slot records initialized, and (2) + * dacpol contains valid target image. + */ +static int s626_send_dac(struct comedi_device *dev, u32 val) +{ + struct s626_private *devpriv = dev->private; + int ret; + + /* START THE SERIAL CLOCK RUNNING ------------- */ + + /* + * Assert DAC polarity control and enable gating of DAC serial clock + * and audio bit stream signals. At this point in time we must be + * assured of being in time slot 0. If we are not in slot 0, the + * serial clock and audio stream signals will be disabled; this is + * because the following s626_debi_write statement (which enables + * signals to be passed through the gate array) would execute before + * the trailing edge of WS1/WS3 (which turns off the signals), thus + * causing the signals to be inactive during the DAC write. + */ + s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol); + + /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */ + + /* Copy DAC setpoint value to DAC's output DMA buffer. */ + /* writel(val, dev->mmio + (uint32_t)devpriv->dac_wbuf); */ + *devpriv->dac_wbuf = val; + + /* + * Enable the output DMA transfer. This will cause the DMAC to copy + * the DAC's data value to A2's output FIFO. The DMA transfer will + * then immediately terminate because the protection address is + * reached upon transfer of the first DWORD value. + */ + s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1); + + /* While the DMA transfer is executing ... */ + + /* + * Reset Audio2 output FIFO's underflow flag (along with any + * other FIFO underflow/overflow flags). When set, this flag + * will indicate that we have emerged from slot 0. + */ + writel(S626_ISR_AFOU, dev->mmio + S626_P_ISR); + + /* + * Wait for the DMA transfer to finish so that there will be data + * available in the FIFO when time slot 1 tries to transfer a DWORD + * from the FIFO to the output buffer register. We test for DMA + * Done by polling the DMAC enable flag; this flag is automatically + * cleared when the transfer has finished. + */ + ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc, + s626_send_dac_wait_not_mc1_a2out); + if (ret) { + dev_err(dev->class_dev, "DMA transfer timeout\n"); + return ret; + } + + /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */ + + /* + * FIFO data is now available, so we enable execution of time slots + * 1 and higher by clearing the EOS flag in slot 0. Note that SD3 + * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list + * detection. + */ + writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2, + dev->mmio + S626_VECTPORT(0)); + + /* + * Wait for slot 1 to execute to ensure that the Packet will be + * transmitted. This is detected by polling the Audio2 output FIFO + * underflow flag, which will be set when slot 1 execution has + * finished transferring the DAC's data DWORD from the output FIFO + * to the output buffer register. + */ + ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc, + s626_send_dac_wait_ssr_af2_out); + if (ret) { + dev_err(dev->class_dev, + "TSL timeout waiting for slot 1 to execute\n"); + return ret; + } + + /* + * Set up to trap execution at slot 0 when the TSL sequencer cycles + * back to slot 0 after executing the EOS in slot 5. Also, + * simultaneously shift out and in the 0x00 that is ALWAYS the value + * stored in the last byte to be shifted out of the FIFO's DWORD + * buffer register. + */ + writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS, + dev->mmio + S626_VECTPORT(0)); + + /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */ + + /* + * Wait for the TSL to finish executing all time slots before + * exiting this function. We must do this so that the next DAC + * write doesn't start, thereby enabling clock/chip select signals: + * + * 1. Before the TSL sequence cycles back to slot 0, which disables + * the clock/cs signal gating and traps slot // list execution. + * we have not yet finished slot 5 then the clock/cs signals are + * still gated and we have not finished transmitting the stream. + * + * 2. While slots 2-5 are executing due to a late slot 0 trap. In + * this case, the slot sequence is currently repeating, but with + * clock/cs signals disabled. We must wait for slot 0 to trap + * execution before setting up the next DAC setpoint DMA transfer + * and enabling the clock/cs signals. To detect the end of slot 5, + * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If + * the TSL has not yet finished executing slot 5 ... + */ + if (readl(dev->mmio + S626_P_FB_BUFFER2) & 0xff000000) { + /* + * The trap was set on time and we are still executing somewhere + * in slots 2-5, so we now wait for slot 0 to execute and trap + * TSL execution. This is detected when FB_BUFFER2 MSB changes + * from 0xFF to 0x00, which slot 0 causes to happen by shifting + * out/in on SD2 the 0x00 that is always referenced by slot 5. + */ + ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc, + s626_send_dac_wait_fb_buffer2_msb_00); + if (ret) { + dev_err(dev->class_dev, + "TSL timeout waiting for slot 0 to execute\n"); + return ret; + } + } + /* + * Either (1) we were too late setting the slot 0 trap; the TSL + * sequencer restarted slot 0 before we could set the EOS trap flag, + * or (2) we were not late and execution is now trapped at slot 0. + * In either case, we must now change slot 0 so that it will store + * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes. + * In order to do this, we reprogram slot 0 so that it will shift in + * SD3, which is driven only by a pull-up resistor. + */ + writel(S626_RSD3 | S626_SIB_A2 | S626_EOS, + dev->mmio + S626_VECTPORT(0)); + + /* + * Wait for slot 0 to execute, at which time the TSL is setup for + * the next DAC write. This is detected when FB_BUFFER2 MSB changes + * from 0x00 to 0xFF. + */ + ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc, + s626_send_dac_wait_fb_buffer2_msb_ff); + if (ret) { + dev_err(dev->class_dev, + "TSL timeout waiting for slot 0 to execute\n"); + return ret; + } + return 0; +} + +/* + * Private helper function: Write setpoint to an application DAC channel. + */ +static int s626_set_dac(struct comedi_device *dev, + u16 chan, int16_t dacdata) +{ + struct s626_private *devpriv = dev->private; + u16 signmask; + u32 ws_image; + u32 val; + + /* + * Adjust DAC data polarity and set up Polarity Control Register image. + */ + signmask = 1 << chan; + if (dacdata < 0) { + dacdata = -dacdata; + devpriv->dacpol |= signmask; + } else { + devpriv->dacpol &= ~signmask; + } + + /* Limit DAC setpoint value to valid range. */ + if ((u16)dacdata > 0x1FFF) + dacdata = 0x1FFF; + + /* + * Set up TSL2 records (aka "vectors") for DAC update. Vectors V2 + * and V3 transmit the setpoint to the target DAC. V4 and V5 send + * data to a non-existent TrimDac channel just to keep the clock + * running after sending data to the target DAC. This is necessary + * to eliminate the clock glitch that would otherwise occur at the + * end of the target DAC's serial data stream. When the sequence + * restarts at V0 (after executing V5), the gate array automatically + * disables gating for the DAC clock and all DAC chip selects. + */ + + /* Choose DAC chip select to be asserted */ + ws_image = (chan & 2) ? S626_WS1 : S626_WS2; + /* Slot 2: Transmit high data byte to target DAC */ + writel(S626_XSD2 | S626_XFIFO_1 | ws_image, + dev->mmio + S626_VECTPORT(2)); + /* Slot 3: Transmit low data byte to target DAC */ + writel(S626_XSD2 | S626_XFIFO_0 | ws_image, + dev->mmio + S626_VECTPORT(3)); + /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */ + writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3, + dev->mmio + S626_VECTPORT(4)); + /* Slot 5: running after writing target DAC's low data byte */ + writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS, + dev->mmio + S626_VECTPORT(5)); + + /* + * Construct and transmit target DAC's serial packet: + * (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>, + * and D<12:0> is the DAC setpoint. Append a WORD value (that writes + * to a non-existent TrimDac channel) that serves to keep the clock + * running after the packet has been sent to the target DAC. + */ + val = 0x0F000000; /* Continue clock after target DAC data + * (write to non-existent trimdac). + */ + val |= 0x00004000; /* Address the two main dual-DAC devices + * (TSL's chip select enables target device). + */ + val |= ((u32)(chan & 1) << 15); /* Address the DAC channel + * within the device. + */ + val |= (u32)dacdata; /* Include DAC setpoint data. */ + return s626_send_dac(dev, val); +} + +static int s626_write_trim_dac(struct comedi_device *dev, + u8 logical_chan, u8 dac_data) +{ + struct s626_private *devpriv = dev->private; + u32 chan; + + /* + * Save the new setpoint in case the application needs to read it back + * later. + */ + devpriv->trim_setpoint[logical_chan] = dac_data; + + /* Map logical channel number to physical channel number. */ + chan = s626_trimchan[logical_chan]; + + /* + * Set up TSL2 records for TrimDac write operation. All slots shift + * 0xFF in from pulled-up SD3 so that the end of the slot sequence + * can be detected. + */ + + /* Slot 2: Send high uint8_t to target TrimDac */ + writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3, + dev->mmio + S626_VECTPORT(2)); + /* Slot 3: Send low uint8_t to target TrimDac */ + writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3, + dev->mmio + S626_VECTPORT(3)); + /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */ + writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1, + dev->mmio + S626_VECTPORT(4)); + /* Slot 5: Send NOP low uint8_t to DAC0 */ + writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS, + dev->mmio + S626_VECTPORT(5)); + + /* + * Construct and transmit target DAC's serial packet: + * (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the + * DAC channel's address, and D<7:0> is the DAC setpoint. Append a + * WORD value (that writes a channel 0 NOP command to a non-existent + * main DAC channel) that serves to keep the clock running after the + * packet has been sent to the target DAC. + */ + + /* + * Address the DAC channel within the trimdac device. + * Include DAC setpoint data. + */ + return s626_send_dac(dev, (chan << 8) | dac_data); +} + +static int s626_load_trim_dacs(struct comedi_device *dev) +{ + u8 i; + int ret; + + /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */ + for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++) { + ret = s626_write_trim_dac(dev, i, + s626_i2c_read(dev, s626_trimadrs[i])); + if (ret) + return ret; + } + return 0; +} + +/* ****** COUNTER FUNCTIONS ******* */ + +/* + * All counter functions address a specific counter by means of the + * "Counter" argument, which is a logical counter number. The Counter + * argument may have any of the following legal values: 0=0A, 1=1A, + * 2=2A, 3=0B, 4=1B, 5=2B. + */ + +/* + * Return/set a counter pair's latch trigger source. 0: On read + * access, 1: A index latches A, 2: B index latches B, 3: A overflow + * latches B. + */ +static void s626_set_latch_source(struct comedi_device *dev, + unsigned int chan, u16 value) +{ + s626_debi_replace(dev, S626_LP_CRB(chan), + ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC), + S626_SET_CRB_LATCHSRC(value)); +} + +/* + * Write value into counter preload register. + */ +static void s626_preload(struct comedi_device *dev, + unsigned int chan, u32 value) +{ + s626_debi_write(dev, S626_LP_CNTR(chan), value); + s626_debi_write(dev, S626_LP_CNTR(chan) + 2, value >> 16); +} + +/* ****** PRIVATE COUNTER FUNCTIONS ****** */ + +/* + * Reset a counter's index and overflow event capture flags. + */ +static void s626_reset_cap_flags(struct comedi_device *dev, + unsigned int chan) +{ + u16 set; + + set = S626_SET_CRB_INTRESETCMD(1); + if (chan < 3) + set |= S626_SET_CRB_INTRESET_A(1); + else + set |= S626_SET_CRB_INTRESET_B(1); + + s626_debi_replace(dev, S626_LP_CRB(chan), ~S626_CRBMSK_INTCTRL, set); +} + +/* + * Set the operating mode for the specified counter. The setup + * parameter is treated as a COUNTER_SETUP data type. The following + * parameters are programmable (all other parms are ignored): ClkMult, + * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc. + */ +static void s626_set_mode_a(struct comedi_device *dev, + unsigned int chan, u16 setup, + u16 disable_int_src) +{ + struct s626_private *devpriv = dev->private; + u16 cra; + u16 crb; + unsigned int cntsrc, clkmult, clkpol; + + /* Initialize CRA and CRB images. */ + /* Preload trigger is passed through. */ + cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup)); + /* IndexSrc is passed through. */ + cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup)); + + /* Reset any pending CounterA event captures. */ + crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1); + /* Clock enable is passed through. */ + crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup)); + + /* Force IntSrc to Disabled if disable_int_src is asserted. */ + if (!disable_int_src) + cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup)); + + /* Populate all mode-dependent attributes of CRA & CRB images. */ + clkpol = S626_GET_STD_CLKPOL(setup); + switch (S626_GET_STD_ENCMODE(setup)) { + case S626_ENCMODE_EXTENDER: /* Extender Mode: */ + /* Force to Timer mode (Extender valid only for B counters). */ + /* Fall through to case S626_ENCMODE_TIMER: */ + case S626_ENCMODE_TIMER: /* Timer Mode: */ + /* CntSrcA<1> selects system clock */ + cntsrc = S626_CNTSRC_SYSCLK; + /* Count direction (CntSrcA<0>) obtained from ClkPol. */ + cntsrc |= clkpol; + /* ClkPolA behaves as always-on clock enable. */ + clkpol = 1; + /* ClkMult must be 1x. */ + clkmult = S626_CLKMULT_1X; + break; + default: /* Counter Mode: */ + /* Select ENC_C and ENC_D as clock/direction inputs. */ + cntsrc = S626_CNTSRC_ENCODER; + /* Clock polarity is passed through. */ + /* Force multiplier to x1 if not legal, else pass through. */ + clkmult = S626_GET_STD_CLKMULT(setup); + if (clkmult == S626_CLKMULT_SPECIAL) + clkmult = S626_CLKMULT_1X; + break; + } + cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) | + S626_SET_CRA_CLKMULT_A(clkmult); + + /* + * Force positive index polarity if IndxSrc is software-driven only, + * otherwise pass it through. + */ + if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT) + cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup)); + + /* + * If IntSrc has been forced to Disabled, update the MISC2 interrupt + * enable mask to indicate the counter interrupt is disabled. + */ + if (disable_int_src) + devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) | + S626_INDXMASK(chan)); + + /* + * While retaining CounterB and LatchSrc configurations, program the + * new counter operating mode. + */ + s626_debi_replace(dev, S626_LP_CRA(chan), + S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, cra); + s626_debi_replace(dev, S626_LP_CRB(chan), + ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb); +} + +static void s626_set_mode_b(struct comedi_device *dev, + unsigned int chan, u16 setup, + u16 disable_int_src) +{ + struct s626_private *devpriv = dev->private; + u16 cra; + u16 crb; + unsigned int cntsrc, clkmult, clkpol; + + /* Initialize CRA and CRB images. */ + /* IndexSrc is passed through. */ + cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup)); + + /* Reset event captures and disable interrupts. */ + crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1); + /* Clock enable is passed through. */ + crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup)); + /* Preload trigger source is passed through. */ + crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup)); + + /* Force IntSrc to Disabled if disable_int_src is asserted. */ + if (!disable_int_src) + crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup)); + + /* Populate all mode-dependent attributes of CRA & CRB images. */ + clkpol = S626_GET_STD_CLKPOL(setup); + switch (S626_GET_STD_ENCMODE(setup)) { + case S626_ENCMODE_TIMER: /* Timer Mode: */ + /* CntSrcB<1> selects system clock */ + cntsrc = S626_CNTSRC_SYSCLK; + /* with direction (CntSrcB<0>) obtained from ClkPol. */ + cntsrc |= clkpol; + /* ClkPolB behaves as always-on clock enable. */ + clkpol = 1; + /* ClkMultB must be 1x. */ + clkmult = S626_CLKMULT_1X; + break; + case S626_ENCMODE_EXTENDER: /* Extender Mode: */ + /* CntSrcB source is OverflowA (same as "timer") */ + cntsrc = S626_CNTSRC_SYSCLK; + /* with direction obtained from ClkPol. */ + cntsrc |= clkpol; + /* ClkPolB controls IndexB -- always set to active. */ + clkpol = 1; + /* ClkMultB selects OverflowA as the clock source. */ + clkmult = S626_CLKMULT_SPECIAL; + break; + default: /* Counter Mode: */ + /* Select ENC_C and ENC_D as clock/direction inputs. */ + cntsrc = S626_CNTSRC_ENCODER; + /* ClkPol is passed through. */ + /* Force ClkMult to x1 if not legal, otherwise pass through. */ + clkmult = S626_GET_STD_CLKMULT(setup); + if (clkmult == S626_CLKMULT_SPECIAL) + clkmult = S626_CLKMULT_1X; + break; + } + cra |= S626_SET_CRA_CNTSRC_B(cntsrc); + crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult); + + /* + * Force positive index polarity if IndxSrc is software-driven only, + * otherwise pass it through. + */ + if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT) + crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup)); + + /* + * If IntSrc has been forced to Disabled, update the MISC2 interrupt + * enable mask to indicate the counter interrupt is disabled. + */ + if (disable_int_src) + devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) | + S626_INDXMASK(chan)); + + /* + * While retaining CounterA and LatchSrc configurations, program the + * new counter operating mode. + */ + s626_debi_replace(dev, S626_LP_CRA(chan), + ~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), cra); + s626_debi_replace(dev, S626_LP_CRB(chan), + S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb); +} + +static void s626_set_mode(struct comedi_device *dev, + unsigned int chan, + u16 setup, u16 disable_int_src) +{ + if (chan < 3) + s626_set_mode_a(dev, chan, setup, disable_int_src); + else + s626_set_mode_b(dev, chan, setup, disable_int_src); +} + +/* + * Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index. + */ +static void s626_set_enable(struct comedi_device *dev, + unsigned int chan, u16 enab) +{ + unsigned int mask = S626_CRBMSK_INTCTRL; + unsigned int set; + + if (chan < 3) { + mask |= S626_CRBMSK_CLKENAB_A; + set = S626_SET_CRB_CLKENAB_A(enab); + } else { + mask |= S626_CRBMSK_CLKENAB_B; + set = S626_SET_CRB_CLKENAB_B(enab); + } + s626_debi_replace(dev, S626_LP_CRB(chan), ~mask, set); +} + +/* + * Return/set the event that will trigger transfer of the preload + * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow, + * 2=OverflowA (B counters only), 3=disabled. + */ +static void s626_set_load_trig(struct comedi_device *dev, + unsigned int chan, u16 trig) +{ + u16 reg; + u16 mask; + u16 set; + + if (chan < 3) { + reg = S626_LP_CRA(chan); + mask = S626_CRAMSK_LOADSRC_A; + set = S626_SET_CRA_LOADSRC_A(trig); + } else { + reg = S626_LP_CRB(chan); + mask = S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL; + set = S626_SET_CRB_LOADSRC_B(trig); + } + s626_debi_replace(dev, reg, ~mask, set); +} + +/* + * Return/set counter interrupt source and clear any captured + * index/overflow events. int_source: 0=Disabled, 1=OverflowOnly, + * 2=IndexOnly, 3=IndexAndOverflow. + */ +static void s626_set_int_src(struct comedi_device *dev, + unsigned int chan, u16 int_source) +{ + struct s626_private *devpriv = dev->private; + u16 cra_reg = S626_LP_CRA(chan); + u16 crb_reg = S626_LP_CRB(chan); + + if (chan < 3) { + /* Reset any pending counter overflow or index captures */ + s626_debi_replace(dev, crb_reg, ~S626_CRBMSK_INTCTRL, + S626_SET_CRB_INTRESETCMD(1) | + S626_SET_CRB_INTRESET_A(1)); + + /* Program counter interrupt source */ + s626_debi_replace(dev, cra_reg, ~S626_CRAMSK_INTSRC_A, + S626_SET_CRA_INTSRC_A(int_source)); + } else { + u16 crb; + + /* Cache writeable CRB register image */ + crb = s626_debi_read(dev, crb_reg); + crb &= ~S626_CRBMSK_INTCTRL; + + /* Reset any pending counter overflow or index captures */ + s626_debi_write(dev, crb_reg, + crb | S626_SET_CRB_INTRESETCMD(1) | + S626_SET_CRB_INTRESET_B(1)); + + /* Program counter interrupt source */ + s626_debi_write(dev, crb_reg, + (crb & ~S626_CRBMSK_INTSRC_B) | + S626_SET_CRB_INTSRC_B(int_source)); + } + + /* Update MISC2 interrupt enable mask. */ + devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) | + S626_INDXMASK(chan)); + switch (int_source) { + case 0: + default: + break; + case 1: + devpriv->counter_int_enabs |= S626_OVERMASK(chan); + break; + case 2: + devpriv->counter_int_enabs |= S626_INDXMASK(chan); + break; + case 3: + devpriv->counter_int_enabs |= (S626_OVERMASK(chan) | + S626_INDXMASK(chan)); + break; + } +} + +/* + * Generate an index pulse. + */ +static void s626_pulse_index(struct comedi_device *dev, + unsigned int chan) +{ + if (chan < 3) { + u16 cra; + + cra = s626_debi_read(dev, S626_LP_CRA(chan)); + + /* Pulse index */ + s626_debi_write(dev, S626_LP_CRA(chan), + (cra ^ S626_CRAMSK_INDXPOL_A)); + s626_debi_write(dev, S626_LP_CRA(chan), cra); + } else { + u16 crb; + + crb = s626_debi_read(dev, S626_LP_CRB(chan)); + crb &= ~S626_CRBMSK_INTCTRL; + + /* Pulse index */ + s626_debi_write(dev, S626_LP_CRB(chan), + (crb ^ S626_CRBMSK_INDXPOL_B)); + s626_debi_write(dev, S626_LP_CRB(chan), crb); + } +} + +static unsigned int s626_ai_reg_to_uint(unsigned int data) +{ + return ((data >> 18) & 0x3fff) ^ 0x2000; +} + +static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan) +{ + unsigned int group = chan / 16; + unsigned int mask = 1 << (chan - (16 * group)); + unsigned int status; + + /* set channel to capture positive edge */ + status = s626_debi_read(dev, S626_LP_RDEDGSEL(group)); + s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status); + + /* enable interrupt on selected channel */ + status = s626_debi_read(dev, S626_LP_RDINTSEL(group)); + s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status); + + /* enable edge capture write command */ + s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP); + + /* enable edge capture on selected channel */ + status = s626_debi_read(dev, S626_LP_RDCAPSEL(group)); + s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status); + + return 0; +} + +static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group, + unsigned int mask) +{ + /* disable edge capture write command */ + s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP); + + /* enable edge capture on selected channel */ + s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask); + + return 0; +} + +static int s626_dio_clear_irq(struct comedi_device *dev) +{ + unsigned int group; + + /* disable edge capture write command */ + s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP); + + /* clear all dio pending events and interrupt */ + for (group = 0; group < S626_DIO_BANKS; group++) + s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff); + + return 0; +} + +static void s626_handle_dio_interrupt(struct comedi_device *dev, + u16 irqbit, u8 group) +{ + struct s626_private *devpriv = dev->private; + struct comedi_subdevice *s = dev->read_subdev; + struct comedi_cmd *cmd = &s->async->cmd; + + s626_dio_reset_irq(dev, group, irqbit); + + if (devpriv->ai_cmd_running) { + /* check if interrupt is an ai acquisition start trigger */ + if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 && + cmd->start_src == TRIG_EXT) { + /* Start executing the RPS program */ + s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1); + + if (cmd->scan_begin_src == TRIG_EXT) + s626_dio_set_irq(dev, cmd->scan_begin_arg); + } + if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 && + cmd->scan_begin_src == TRIG_EXT) { + /* Trigger ADC scan loop start */ + s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); + + if (cmd->convert_src == TRIG_EXT) { + devpriv->ai_convert_count = cmd->chanlist_len; + + s626_dio_set_irq(dev, cmd->convert_arg); + } + + if (cmd->convert_src == TRIG_TIMER) { + devpriv->ai_convert_count = cmd->chanlist_len; + s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS); + } + } + if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 && + cmd->convert_src == TRIG_EXT) { + /* Trigger ADC scan loop start */ + s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); + + devpriv->ai_convert_count--; + if (devpriv->ai_convert_count > 0) + s626_dio_set_irq(dev, cmd->convert_arg); + } + } +} + +static void s626_check_dio_interrupts(struct comedi_device *dev) +{ + u16 irqbit; + u8 group; + + for (group = 0; group < S626_DIO_BANKS; group++) { + /* read interrupt type */ + irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group)); + + /* check if interrupt is generated from dio channels */ + if (irqbit) { + s626_handle_dio_interrupt(dev, irqbit, group); + return; + } + } +} + +static void s626_check_counter_interrupts(struct comedi_device *dev) +{ + struct s626_private *devpriv = dev->private; + struct comedi_subdevice *s = dev->read_subdev; + struct comedi_async *async = s->async; + struct comedi_cmd *cmd = &async->cmd; + u16 irqbit; + + /* read interrupt type */ + irqbit = s626_debi_read(dev, S626_LP_RDMISC2); + + /* check interrupt on counters */ + if (irqbit & S626_IRQ_COINT1A) { + /* clear interrupt capture flag */ + s626_reset_cap_flags(dev, 0); + } + if (irqbit & S626_IRQ_COINT2A) { + /* clear interrupt capture flag */ + s626_reset_cap_flags(dev, 1); + } + if (irqbit & S626_IRQ_COINT3A) { + /* clear interrupt capture flag */ + s626_reset_cap_flags(dev, 2); + } + if (irqbit & S626_IRQ_COINT1B) { + /* clear interrupt capture flag */ + s626_reset_cap_flags(dev, 3); + } + if (irqbit & S626_IRQ_COINT2B) { + /* clear interrupt capture flag */ + s626_reset_cap_flags(dev, 4); + + if (devpriv->ai_convert_count > 0) { + devpriv->ai_convert_count--; + if (devpriv->ai_convert_count == 0) + s626_set_enable(dev, 4, S626_CLKENAB_INDEX); + + if (cmd->convert_src == TRIG_TIMER) { + /* Trigger ADC scan loop start */ + s626_mc_enable(dev, S626_MC2_ADC_RPS, + S626_P_MC2); + } + } + } + if (irqbit & S626_IRQ_COINT3B) { + /* clear interrupt capture flag */ + s626_reset_cap_flags(dev, 5); + + if (cmd->scan_begin_src == TRIG_TIMER) { + /* Trigger ADC scan loop start */ + s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); + } + + if (cmd->convert_src == TRIG_TIMER) { + devpriv->ai_convert_count = cmd->chanlist_len; + s626_set_enable(dev, 4, S626_CLKENAB_ALWAYS); + } + } +} + +static bool s626_handle_eos_interrupt(struct comedi_device *dev) +{ + struct s626_private *devpriv = dev->private; + struct comedi_subdevice *s = dev->read_subdev; + struct comedi_async *async = s->async; + struct comedi_cmd *cmd = &async->cmd; + /* + * Init ptr to DMA buffer that holds new ADC data. We skip the + * first uint16_t in the buffer because it contains junk data + * from the final ADC of the previous poll list scan. + */ + u32 *readaddr = (u32 *)devpriv->ana_buf.logical_base + 1; + int i; + + /* get the data and hand it over to comedi */ + for (i = 0; i < cmd->chanlist_len; i++) { + unsigned short tempdata; + + /* + * Convert ADC data to 16-bit integer values and copy + * to application buffer. + */ + tempdata = s626_ai_reg_to_uint(*readaddr); + readaddr++; + + comedi_buf_write_samples(s, &tempdata, 1); + } + + if (cmd->stop_src == TRIG_COUNT && async->scans_done >= cmd->stop_arg) + async->events |= COMEDI_CB_EOA; + + if (async->events & COMEDI_CB_CANCEL_MASK) + devpriv->ai_cmd_running = 0; + + if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) + s626_dio_set_irq(dev, cmd->scan_begin_arg); + + comedi_handle_events(dev, s); + + return !devpriv->ai_cmd_running; +} + +static irqreturn_t s626_irq_handler(int irq, void *d) +{ + struct comedi_device *dev = d; + unsigned long flags; + u32 irqtype, irqstatus; + + if (!dev->attached) + return IRQ_NONE; + /* lock to avoid race with comedi_poll */ + spin_lock_irqsave(&dev->spinlock, flags); + + /* save interrupt enable register state */ + irqstatus = readl(dev->mmio + S626_P_IER); + + /* read interrupt type */ + irqtype = readl(dev->mmio + S626_P_ISR); + + /* disable master interrupt */ + writel(0, dev->mmio + S626_P_IER); + + /* clear interrupt */ + writel(irqtype, dev->mmio + S626_P_ISR); + + switch (irqtype) { + case S626_IRQ_RPS1: /* end_of_scan occurs */ + if (s626_handle_eos_interrupt(dev)) + irqstatus = 0; + break; + case S626_IRQ_GPIO3: /* check dio and counter interrupt */ + /* s626_dio_clear_irq(dev); */ + s626_check_dio_interrupts(dev); + s626_check_counter_interrupts(dev); + break; + } + + /* enable interrupt */ + writel(irqstatus, dev->mmio + S626_P_IER); + + spin_unlock_irqrestore(&dev->spinlock, flags); + return IRQ_HANDLED; +} + +/* + * This function builds the RPS program for hardware driven acquisition. + */ +static void s626_reset_adc(struct comedi_device *dev, u8 *ppl) +{ + struct s626_private *devpriv = dev->private; + struct comedi_subdevice *s = dev->read_subdev; + struct comedi_cmd *cmd = &s->async->cmd; + u32 *rps; + u32 jmp_adrs; + u16 i; + u16 n; + u32 local_ppl; + + /* Stop RPS program in case it is currently running */ + s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1); + + /* Set starting logical address to write RPS commands. */ + rps = (u32 *)devpriv->rps_buf.logical_base; + + /* Initialize RPS instruction pointer */ + writel((u32)devpriv->rps_buf.physical_base, + dev->mmio + S626_P_RPSADDR1); + + /* Construct RPS program in rps_buf DMA buffer */ + if (cmd->scan_begin_src != TRIG_FOLLOW) { + /* Wait for Start trigger. */ + *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC; + *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; + } + + /* + * SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary + * because the first RPS DEBI Write following a non-RPS DEBI write + * seems to always fail. If we don't do this dummy write, the ADC + * gain might not be set to the value required for the first slot in + * the poll list; the ADC gain would instead remain unchanged from + * the previously programmed value. + */ + /* Write DEBI Write command and address to shadow RAM. */ + *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2); + *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL; + *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2); + /* Write DEBI immediate data to shadow RAM: */ + *rps++ = S626_GSEL_BIPOLAR5V; /* arbitrary immediate data value. */ + *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI; + /* Reset "shadow RAM uploaded" flag. */ + /* Invoke shadow RAM upload. */ + *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI; + /* Wait for shadow upload to finish. */ + *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI; + + /* + * Digitize all slots in the poll list. This is implemented as a + * for loop to limit the slot count to 16 in case the application + * forgot to set the S626_EOPL flag in the final slot. + */ + for (devpriv->adc_items = 0; devpriv->adc_items < 16; + devpriv->adc_items++) { + /* + * Convert application's poll list item to private board class + * format. Each app poll list item is an uint8_t with form + * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 = + * +-10V, 1 = +-5V, and EOPL = End of Poll List marker. + */ + local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V : + S626_GSEL_BIPOLAR10V); + + /* Switch ADC analog gain. */ + /* Write DEBI command and address to shadow RAM. */ + *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2); + *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL; + /* Write DEBI immediate data to shadow RAM. */ + *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2); + *rps++ = local_ppl; + /* Reset "shadow RAM uploaded" flag. */ + *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI; + /* Invoke shadow RAM upload. */ + *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI; + /* Wait for shadow upload to finish. */ + *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI; + /* Select ADC analog input channel. */ + *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2); + /* Write DEBI command and address to shadow RAM. */ + *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL; + *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2); + /* Write DEBI immediate data to shadow RAM. */ + *rps++ = local_ppl; + /* Reset "shadow RAM uploaded" flag. */ + *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI; + /* Invoke shadow RAM upload. */ + *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI; + /* Wait for shadow upload to finish. */ + *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI; + + /* + * Delay at least 10 microseconds for analog input settling. + * Instead of padding with NOPs, we use S626_RPS_JUMP + * instructions here; this allows us to produce a longer delay + * than is possible with NOPs because each S626_RPS_JUMP + * flushes the RPS' instruction prefetch pipeline. + */ + jmp_adrs = + (u32)devpriv->rps_buf.physical_base + + (u32)((unsigned long)rps - + (unsigned long)devpriv->rps_buf.logical_base); + for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) { + jmp_adrs += 8; /* Repeat to implement time delay: */ + /* Jump to next RPS instruction. */ + *rps++ = S626_RPS_JUMP; + *rps++ = jmp_adrs; + } + + if (cmd->convert_src != TRIG_NOW) { + /* Wait for Start trigger. */ + *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC; + *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; + } + /* Start ADC by pulsing GPIO1. */ + /* Begin ADC Start pulse. */ + *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); + *rps++ = S626_GPIO_BASE | S626_GPIO1_LO; + *rps++ = S626_RPS_NOP; + /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */ + /* End ADC Start pulse. */ + *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); + *rps++ = S626_GPIO_BASE | S626_GPIO1_HI; + /* + * Wait for ADC to complete (GPIO2 is asserted high when ADC not + * busy) and for data from previous conversion to shift into FB + * BUFFER 1 register. + */ + /* Wait for ADC done. */ + *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2; + + /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */ + *rps++ = S626_RPS_STREG | + (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2); + *rps++ = (u32)devpriv->ana_buf.physical_base + + (devpriv->adc_items << 2); + + /* + * If this slot's EndOfPollList flag is set, all channels have + * now been processed. + */ + if (*ppl++ & S626_EOPL) { + devpriv->adc_items++; /* Adjust poll list item count. */ + break; /* Exit poll list processing loop. */ + } + } + + /* + * VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the + * ADC to stabilize for 2 microseconds before starting the final + * (dummy) conversion. This delay is necessary to allow sufficient + * time between last conversion finished and the start of the dummy + * conversion. Without this delay, the last conversion's data value + * is sometimes set to the previous conversion's data value. + */ + for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++) + *rps++ = S626_RPS_NOP; + + /* + * Start a dummy conversion to cause the data from the last + * conversion of interest to be shifted in. + */ + /* Begin ADC Start pulse. */ + *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); + *rps++ = S626_GPIO_BASE | S626_GPIO1_LO; + *rps++ = S626_RPS_NOP; + /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */ + *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */ + *rps++ = S626_GPIO_BASE | S626_GPIO1_HI; + + /* + * Wait for the data from the last conversion of interest to arrive + * in FB BUFFER 1 register. + */ + *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2; /* Wait for ADC done. */ + + /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */ + *rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2); + *rps++ = (u32)devpriv->ana_buf.physical_base + + (devpriv->adc_items << 2); + + /* Indicate ADC scan loop is finished. */ + /* Signal ReadADC() that scan is done. */ + /* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */ + + /* invoke interrupt */ + if (devpriv->ai_cmd_running == 1) + *rps++ = S626_RPS_IRQ; + + /* Restart RPS program at its beginning. */ + *rps++ = S626_RPS_JUMP; /* Branch to start of RPS program. */ + *rps++ = (u32)devpriv->rps_buf.physical_base; + + /* End of RPS program build */ +} + +static int s626_ai_eoc(struct comedi_device *dev, + struct comedi_subdevice *s, + struct comedi_insn *insn, + unsigned long context) +{ + unsigned int status; + + status = readl(dev->mmio + S626_P_PSR); + if (status & S626_PSR_GPIO2) + return 0; + return -EBUSY; +} + +static int s626_ai_insn_read(struct comedi_device *dev, + struct comedi_subdevice *s, + struct comedi_insn *insn, + unsigned int *data) +{ + u16 chan = CR_CHAN(insn->chanspec); + u16 range = CR_RANGE(insn->chanspec); + u16 adc_spec = 0; + u32 gpio_image; + u32 tmp; + int ret; + int n; + + /* + * Convert application's ADC specification into form + * appropriate for register programming. + */ + if (range == 0) + adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V); + else + adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V); + + /* Switch ADC analog gain. */ + s626_debi_write(dev, S626_LP_GSEL, adc_spec); /* Set gain. */ + + /* Select ADC analog input channel. */ + s626_debi_write(dev, S626_LP_ISEL, adc_spec); /* Select channel. */ + + for (n = 0; n < insn->n; n++) { + /* Delay 10 microseconds for analog input settling. */ + usleep_range(10, 20); + + /* Start ADC by pulsing GPIO1 low */ + gpio_image = readl(dev->mmio + S626_P_GPIO); + /* Assert ADC Start command */ + writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO); + /* and stretch it out */ + writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO); + writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO); + /* Negate ADC Start command */ + writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO); + + /* + * Wait for ADC to complete (GPIO2 is asserted high when + * ADC not busy) and for data from previous conversion to + * shift into FB BUFFER 1 register. + */ + + /* Wait for ADC done */ + ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0); + if (ret) + return ret; + + /* Fetch ADC data */ + if (n != 0) { + tmp = readl(dev->mmio + S626_P_FB_BUFFER1); + data[n - 1] = s626_ai_reg_to_uint(tmp); + } + + /* + * Allow the ADC to stabilize for 4 microseconds before + * starting the next (final) conversion. This delay is + * necessary to allow sufficient time between last + * conversion finished and the start of the next + * conversion. Without this delay, the last conversion's + * data value is sometimes set to the previous + * conversion's data value. + */ + udelay(4); + } + + /* + * Start a dummy conversion to cause the data from the + * previous conversion to be shifted in. + */ + gpio_image = readl(dev->mmio + S626_P_GPIO); + /* Assert ADC Start command */ + writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO); + /* and stretch it out */ + writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO); + writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO); + /* Negate ADC Start command */ + writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO); + + /* Wait for the data to arrive in FB BUFFER 1 register. */ + + /* Wait for ADC done */ + ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0); + if (ret) + return ret; + + /* Fetch ADC data from audio interface's input shift register. */ + + /* Fetch ADC data */ + if (n != 0) { + tmp = readl(dev->mmio + S626_P_FB_BUFFER1); + data[n - 1] = s626_ai_reg_to_uint(tmp); + } + + return n; +} + +static int s626_ai_load_polllist(u8 *ppl, struct comedi_cmd *cmd) +{ + int n; + + for (n = 0; n < cmd->chanlist_len; n++) { + if (CR_RANGE(cmd->chanlist[n]) == 0) + ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V; + else + ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V; + } + if (n != 0) + ppl[n - 1] |= S626_EOPL; + + return n; +} + +static int s626_ai_inttrig(struct comedi_device *dev, + struct comedi_subdevice *s, + unsigned int trig_num) +{ + struct comedi_cmd *cmd = &s->async->cmd; + + if (trig_num != cmd->start_arg) + return -EINVAL; + + /* Start executing the RPS program */ + s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1); + + s->async->inttrig = NULL; + + return 1; +} + +/* + * This function doesn't require a particular form, this is just what + * happens to be used in some of the drivers. It should convert ns + * nanoseconds to a counter value suitable for programming the device. + * Also, it should adjust ns so that it cooresponds to the actual time + * that the device will use. + */ +static int s626_ns_to_timer(unsigned int *nanosec, unsigned int flags) +{ + int divider, base; + + base = 500; /* 2MHz internal clock */ + + switch (flags & CMDF_ROUND_MASK) { + case CMDF_ROUND_NEAREST: + default: + divider = DIV_ROUND_CLOSEST(*nanosec, base); + break; + case CMDF_ROUND_DOWN: + divider = (*nanosec) / base; + break; + case CMDF_ROUND_UP: + divider = DIV_ROUND_UP(*nanosec, base); + break; + } + + *nanosec = base * divider; + return divider - 1; +} + +static void s626_timer_load(struct comedi_device *dev, + unsigned int chan, int tick) +{ + u16 setup = + /* Preload upon index. */ + S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) | + /* Disable hardware index. */ + S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) | + /* Operating mode is Timer. */ + S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) | + /* Count direction is Down. */ + S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) | + /* Clock multiplier is 1x. */ + S626_SET_STD_CLKMULT(S626_CLKMULT_1X) | + /* Enabled by index */ + S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX); + u16 value_latchsrc = S626_LATCHSRC_A_INDXA; + /* uint16_t enab = S626_CLKENAB_ALWAYS; */ + + s626_set_mode(dev, chan, setup, false); + + /* Set the preload register */ + s626_preload(dev, chan, tick); + + /* + * Software index pulse forces the preload register to load + * into the counter + */ + s626_set_load_trig(dev, chan, 0); + s626_pulse_index(dev, chan); + + /* set reload on counter overflow */ + s626_set_load_trig(dev, chan, 1); + + /* set interrupt on overflow */ + s626_set_int_src(dev, chan, S626_INTSRC_OVER); + + s626_set_latch_source(dev, chan, value_latchsrc); + /* s626_set_enable(dev, chan, (uint16_t)(enab != 0)); */ +} + +/* TO COMPLETE */ +static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s) +{ + struct s626_private *devpriv = dev->private; + u8 ppl[16]; + struct comedi_cmd *cmd = &s->async->cmd; + int tick; + + if (devpriv->ai_cmd_running) { + dev_err(dev->class_dev, + "%s: Another ai_cmd is running\n", __func__); + return -EBUSY; + } + /* disable interrupt */ + writel(0, dev->mmio + S626_P_IER); + + /* clear interrupt request */ + writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, dev->mmio + S626_P_ISR); + + /* clear any pending interrupt */ + s626_dio_clear_irq(dev); + /* s626_enc_clear_irq(dev); */ + + /* reset ai_cmd_running flag */ + devpriv->ai_cmd_running = 0; + + s626_ai_load_polllist(ppl, cmd); + devpriv->ai_cmd_running = 1; + devpriv->ai_convert_count = 0; + + switch (cmd->scan_begin_src) { + case TRIG_FOLLOW: + break; + case TRIG_TIMER: + /* + * set a counter to generate adc trigger at scan_begin_arg + * interval + */ + tick = s626_ns_to_timer(&cmd->scan_begin_arg, cmd->flags); + + /* load timer value and enable interrupt */ + s626_timer_load(dev, 5, tick); + s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS); + break; + case TRIG_EXT: + /* set the digital line and interrupt for scan trigger */ + if (cmd->start_src != TRIG_EXT) + s626_dio_set_irq(dev, cmd->scan_begin_arg); + break; + } + + switch (cmd->convert_src) { + case TRIG_NOW: + break; + case TRIG_TIMER: + /* + * set a counter to generate adc trigger at convert_arg + * interval + */ + tick = s626_ns_to_timer(&cmd->convert_arg, cmd->flags); + + /* load timer value and enable interrupt */ + s626_timer_load(dev, 4, tick); + s626_set_enable(dev, 4, S626_CLKENAB_INDEX); + break; + case TRIG_EXT: + /* set the digital line and interrupt for convert trigger */ + if (cmd->scan_begin_src != TRIG_EXT && + cmd->start_src == TRIG_EXT) + s626_dio_set_irq(dev, cmd->convert_arg); + break; + } + + s626_reset_adc(dev, ppl); + + switch (cmd->start_src) { + case TRIG_NOW: + /* Trigger ADC scan loop start */ + /* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */ + + /* Start executing the RPS program */ + s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1); + s->async->inttrig = NULL; + break; + case TRIG_EXT: + /* configure DIO channel for acquisition trigger */ + s626_dio_set_irq(dev, cmd->start_arg); + s->async->inttrig = NULL; + break; + case TRIG_INT: + s->async->inttrig = s626_ai_inttrig; + break; + } + + /* enable interrupt */ + writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, dev->mmio + S626_P_IER); + + return 0; +} + +static int s626_ai_cmdtest(struct comedi_device *dev, + struct comedi_subdevice *s, struct comedi_cmd *cmd) +{ + int err = 0; + unsigned int arg; + + /* Step 1 : check if triggers are trivially valid */ + + err |= comedi_check_trigger_src(&cmd->start_src, + TRIG_NOW | TRIG_INT | TRIG_EXT); + err |= comedi_check_trigger_src(&cmd->scan_begin_src, + TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW); + err |= comedi_check_trigger_src(&cmd->convert_src, + TRIG_TIMER | TRIG_EXT | TRIG_NOW); + err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT); + err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE); + + if (err) + return 1; + + /* Step 2a : make sure trigger sources are unique */ + + err |= comedi_check_trigger_is_unique(cmd->start_src); + err |= comedi_check_trigger_is_unique(cmd->scan_begin_src); + err |= comedi_check_trigger_is_unique(cmd->convert_src); + err |= comedi_check_trigger_is_unique(cmd->stop_src); + + /* Step 2b : and mutually compatible */ + + if (err) + return 2; + + /* Step 3: check if arguments are trivially valid */ + + switch (cmd->start_src) { + case TRIG_NOW: + case TRIG_INT: + err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0); + break; + case TRIG_EXT: + err |= comedi_check_trigger_arg_max(&cmd->start_arg, 39); + break; + } + + if (cmd->scan_begin_src == TRIG_EXT) + err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 39); + if (cmd->convert_src == TRIG_EXT) + err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 39); + +#define S626_MAX_SPEED 200000 /* in nanoseconds */ +#define S626_MIN_SPEED 2000000000 /* in nanoseconds */ + + if (cmd->scan_begin_src == TRIG_TIMER) { + err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg, + S626_MAX_SPEED); + err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, + S626_MIN_SPEED); + } else { + /* + * external trigger + * should be level/edge, hi/lo specification here + * should specify multiple external triggers + * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9); + */ + } + if (cmd->convert_src == TRIG_TIMER) { + err |= comedi_check_trigger_arg_min(&cmd->convert_arg, + S626_MAX_SPEED); + err |= comedi_check_trigger_arg_max(&cmd->convert_arg, + S626_MIN_SPEED); + } else { + /* + * external trigger - see above + * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9); + */ + } + + err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg, + cmd->chanlist_len); + + if (cmd->stop_src == TRIG_COUNT) + err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1); + else /* TRIG_NONE */ + err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0); + + if (err) + return 3; + + /* step 4: fix up any arguments */ + + if (cmd->scan_begin_src == TRIG_TIMER) { + arg = cmd->scan_begin_arg; + s626_ns_to_timer(&arg, cmd->flags); + err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg); + } + + if (cmd->convert_src == TRIG_TIMER) { + arg = cmd->convert_arg; + s626_ns_to_timer(&arg, cmd->flags); + err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg); + + if (cmd->scan_begin_src == TRIG_TIMER) { + arg = cmd->convert_arg * cmd->scan_end_arg; + err |= comedi_check_trigger_arg_min( + &cmd->scan_begin_arg, arg); + } + } + + if (err) + return 4; + + return 0; +} + +static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s) +{ + struct s626_private *devpriv = dev->private; + + /* Stop RPS program in case it is currently running */ + s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1); + + /* disable master interrupt */ + writel(0, dev->mmio + S626_P_IER); + + devpriv->ai_cmd_running = 0; + + return 0; +} + +static int s626_ao_insn_write(struct comedi_device *dev, + struct comedi_subdevice *s, + struct comedi_insn *insn, + unsigned int *data) +{ + unsigned int chan = CR_CHAN(insn->chanspec); + int i; + + for (i = 0; i < insn->n; i++) { + s16 dacdata = (s16)data[i]; + int ret; + + dacdata -= (0x1fff); + + ret = s626_set_dac(dev, chan, dacdata); + if (ret) + return ret; + + s->readback[chan] = data[i]; + } + + return insn->n; +} + +/* *************** DIGITAL I/O FUNCTIONS *************** */ + +/* + * All DIO functions address a group of DIO channels by means of + * "group" argument. group may be 0, 1 or 2, which correspond to DIO + * ports A, B and C, respectively. + */ + +static void s626_dio_init(struct comedi_device *dev) +{ + u16 group; + + /* Prepare to treat writes to WRCapSel as capture disables. */ + s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP); + + /* For each group of sixteen channels ... */ + for (group = 0; group < S626_DIO_BANKS; group++) { + /* Disable all interrupts */ + s626_debi_write(dev, S626_LP_WRINTSEL(group), 0); + /* Disable all event captures */ + s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff); + /* Init all DIOs to default edge polarity */ + s626_debi_write(dev, S626_LP_WREDGSEL(group), 0); + /* Program all outputs to inactive state */ + s626_debi_write(dev, S626_LP_WRDOUT(group), 0); + } +} + +static int s626_dio_insn_bits(struct comedi_device *dev, + struct comedi_subdevice *s, + struct comedi_insn *insn, + unsigned int *data) +{ + unsigned long group = (unsigned long)s->private; + + if (comedi_dio_update_state(s, data)) + s626_debi_write(dev, S626_LP_WRDOUT(group), s->state); + + data[1] = s626_debi_read(dev, S626_LP_RDDIN(group)); + + return insn->n; +} + +static int s626_dio_insn_config(struct comedi_device *dev, + struct comedi_subdevice *s, + struct comedi_insn *insn, + unsigned int *data) +{ + unsigned long group = (unsigned long)s->private; + int ret; + + ret = comedi_dio_insn_config(dev, s, insn, data, 0); + if (ret) + return ret; + + s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits); + + return insn->n; +} + +/* + * Now this function initializes the value of the counter (data[0]) + * and set the subdevice. To complete with trigger and interrupt + * configuration. + * + * FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating + * what is being configured, but this function appears to be using data[0] + * as a variable. + */ +static int s626_enc_insn_config(struct comedi_device *dev, + struct comedi_subdevice *s, + struct comedi_insn *insn, unsigned int *data) +{ + unsigned int chan = CR_CHAN(insn->chanspec); + u16 setup = + /* Preload upon index. */ + S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) | + /* Disable hardware index. */ + S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) | + /* Operating mode is Counter. */ + S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) | + /* Active high clock. */ + S626_SET_STD_CLKPOL(S626_CLKPOL_POS) | + /* Clock multiplier is 1x. */ + S626_SET_STD_CLKMULT(S626_CLKMULT_1X) | + /* Enabled by index */ + S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX); + /* uint16_t disable_int_src = true; */ + /* uint32_t Preloadvalue; //Counter initial value */ + u16 value_latchsrc = S626_LATCHSRC_AB_READ; + u16 enab = S626_CLKENAB_ALWAYS; + + /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */ + + s626_set_mode(dev, chan, setup, true); + s626_preload(dev, chan, data[0]); + s626_pulse_index(dev, chan); + s626_set_latch_source(dev, chan, value_latchsrc); + s626_set_enable(dev, chan, (enab != 0)); + + return insn->n; +} + +static int s626_enc_insn_read(struct comedi_device *dev, + struct comedi_subdevice *s, + struct comedi_insn *insn, + unsigned int *data) +{ + unsigned int chan = CR_CHAN(insn->chanspec); + u16 cntr_latch_reg = S626_LP_CNTR(chan); + int i; + + for (i = 0; i < insn->n; i++) { + unsigned int val; + + /* + * Read the counter's output latch LSW/MSW. + * Latches on LSW read. + */ + val = s626_debi_read(dev, cntr_latch_reg); + val |= (s626_debi_read(dev, cntr_latch_reg + 2) << 16); + data[i] = val; + } + + return insn->n; +} + +static int s626_enc_insn_write(struct comedi_device *dev, + struct comedi_subdevice *s, + struct comedi_insn *insn, unsigned int *data) +{ + unsigned int chan = CR_CHAN(insn->chanspec); + + /* Set the preload register */ + s626_preload(dev, chan, data[0]); + + /* + * Software index pulse forces the preload register to load + * into the counter + */ + s626_set_load_trig(dev, chan, 0); + s626_pulse_index(dev, chan); + s626_set_load_trig(dev, chan, 2); + + return 1; +} + +static void s626_write_misc2(struct comedi_device *dev, u16 new_image) +{ + s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE); + s626_debi_write(dev, S626_LP_WRMISC2, new_image); + s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE); +} + +static void s626_counters_init(struct comedi_device *dev) +{ + int chan; + u16 setup = + /* Preload upon index. */ + S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) | + /* Disable hardware index. */ + S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) | + /* Operating mode is counter. */ + S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) | + /* Active high clock. */ + S626_SET_STD_CLKPOL(S626_CLKPOL_POS) | + /* Clock multiplier is 1x. */ + S626_SET_STD_CLKMULT(S626_CLKMULT_1X) | + /* Enabled by index */ + S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX); + + /* + * Disable all counter interrupts and clear any captured counter events. + */ + for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) { + s626_set_mode(dev, chan, setup, true); + s626_set_int_src(dev, chan, 0); + s626_reset_cap_flags(dev, chan); + s626_set_enable(dev, chan, S626_CLKENAB_ALWAYS); + } +} + +static int s626_allocate_dma_buffers(struct comedi_device *dev) +{ + struct pci_dev *pcidev = comedi_to_pci_dev(dev); + struct s626_private *devpriv = dev->private; + void *addr; + dma_addr_t appdma; + + addr = dma_alloc_coherent(&pcidev->dev, S626_DMABUF_SIZE, &appdma, + GFP_KERNEL); + if (!addr) + return -ENOMEM; + devpriv->ana_buf.logical_base = addr; + devpriv->ana_buf.physical_base = appdma; + + addr = dma_alloc_coherent(&pcidev->dev, S626_DMABUF_SIZE, &appdma, + GFP_KERNEL); + if (!addr) + return -ENOMEM; + devpriv->rps_buf.logical_base = addr; + devpriv->rps_buf.physical_base = appdma; + + return 0; +} + +static void s626_free_dma_buffers(struct comedi_device *dev) +{ + struct pci_dev *pcidev = comedi_to_pci_dev(dev); + struct s626_private *devpriv = dev->private; + + if (!devpriv) + return; + + if (devpriv->rps_buf.logical_base) + dma_free_coherent(&pcidev->dev, S626_DMABUF_SIZE, + devpriv->rps_buf.logical_base, + devpriv->rps_buf.physical_base); + if (devpriv->ana_buf.logical_base) + dma_free_coherent(&pcidev->dev, S626_DMABUF_SIZE, + devpriv->ana_buf.logical_base, + devpriv->ana_buf.physical_base); +} + +static int s626_initialize(struct comedi_device *dev) +{ + struct s626_private *devpriv = dev->private; + dma_addr_t phys_buf; + u16 chan; + int i; + int ret; + + /* Enable DEBI and audio pins, enable I2C interface */ + s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C, + S626_P_MC1); + + /* + * Configure DEBI operating mode + * + * Local bus is 16 bits wide + * Declare DEBI transfer timeout interval + * Set up byte lane steering + * Intel-compatible local bus (DEBI never times out) + */ + writel(S626_DEBI_CFG_SLAVE16 | + (S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP | + S626_DEBI_CFG_INTEL, dev->mmio + S626_P_DEBICFG); + + /* Disable MMU paging */ + writel(S626_DEBI_PAGE_DISABLE, dev->mmio + S626_P_DEBIPAGE); + + /* Init GPIO so that ADC Start* is negated */ + writel(S626_GPIO_BASE | S626_GPIO1_HI, dev->mmio + S626_P_GPIO); + + /* I2C device address for onboard eeprom (revb) */ + devpriv->i2c_adrs = 0xA0; + + /* + * Issue an I2C ABORT command to halt any I2C + * operation in progress and reset BUSY flag. + */ + writel(S626_I2C_CLKSEL | S626_I2C_ABORT, + dev->mmio + S626_P_I2CSTAT); + s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2); + ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0); + if (ret) + return ret; + + /* + * Per SAA7146 data sheet, write to STATUS + * reg twice to reset all I2C error flags. + */ + for (i = 0; i < 2; i++) { + writel(S626_I2C_CLKSEL, dev->mmio + S626_P_I2CSTAT); + s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2); + ret = comedi_timeout(dev, NULL, + NULL, s626_i2c_handshake_eoc, 0); + if (ret) + return ret; + } + + /* + * Init audio interface functional attributes: set DAC/ADC + * serial clock rates, invert DAC serial clock so that + * DAC data setup times are satisfied, enable DAC serial + * clock out. + */ + writel(S626_ACON2_INIT, dev->mmio + S626_P_ACON2); + + /* + * Set up TSL1 slot list, which is used to control the + * accumulation of ADC data: S626_RSD1 = shift data in on SD1. + * S626_SIB_A1 = store data uint8_t at next available location + * in FB BUFFER1 register. + */ + writel(S626_RSD1 | S626_SIB_A1, dev->mmio + S626_P_TSL1); + writel(S626_RSD1 | S626_SIB_A1 | S626_EOS, + dev->mmio + S626_P_TSL1 + 4); + + /* Enable TSL1 slot list so that it executes all the time */ + writel(S626_ACON1_ADCSTART, dev->mmio + S626_P_ACON1); + + /* + * Initialize RPS registers used for ADC + */ + + /* Physical start of RPS program */ + writel((u32)devpriv->rps_buf.physical_base, + dev->mmio + S626_P_RPSADDR1); + /* RPS program performs no explicit mem writes */ + writel(0, dev->mmio + S626_P_RPSPAGE1); + /* Disable RPS timeouts */ + writel(0, dev->mmio + S626_P_RPS1_TOUT); + +#if 0 + /* + * SAA7146 BUG WORKAROUND + * + * Initialize SAA7146 ADC interface to a known state by + * invoking ADCs until FB BUFFER 1 register shows that it + * is correctly receiving ADC data. This is necessary + * because the SAA7146 ADC interface does not start up in + * a defined state after a PCI reset. + */ + { + struct comedi_subdevice *s = dev->read_subdev; + u8 poll_list; + u16 adc_data; + u16 start_val; + u16 index; + unsigned int data[16]; + + /* Create a simple polling list for analog input channel 0 */ + poll_list = S626_EOPL; + s626_reset_adc(dev, &poll_list); + + /* Get initial ADC value */ + s626_ai_rinsn(dev, s, NULL, data); + start_val = data[0]; + + /* + * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED + * EXECUTION. + * + * Invoke ADCs until the new ADC value differs from the initial + * value or a timeout occurs. The timeout protects against the + * possibility that the driver is restarting and the ADC data is + * a fixed value resulting from the applied ADC analog input + * being unusually quiet or at the rail. + */ + for (index = 0; index < 500; index++) { + s626_ai_rinsn(dev, s, NULL, data); + adc_data = data[0]; + if (adc_data != start_val) + break; + } + } +#endif /* SAA7146 BUG WORKAROUND */ + + /* + * Initialize the DAC interface + */ + + /* + * Init Audio2's output DMAC attributes: + * burst length = 1 DWORD + * threshold = 1 DWORD. + */ + writel(0, dev->mmio + S626_P_PCI_BT_A); + + /* + * Init Audio2's output DMA physical addresses. The protection + * address is set to 1 DWORD past the base address so that a + * single DWORD will be transferred each time a DMA transfer is + * enabled. + */ + phys_buf = devpriv->ana_buf.physical_base + + (S626_DAC_WDMABUF_OS * sizeof(u32)); + writel((u32)phys_buf, dev->mmio + S626_P_BASEA2_OUT); + writel((u32)(phys_buf + sizeof(u32)), + dev->mmio + S626_P_PROTA2_OUT); + + /* + * Cache Audio2's output DMA buffer logical address. This is + * where DAC data is buffered for A2 output DMA transfers. + */ + devpriv->dac_wbuf = (u32 *)devpriv->ana_buf.logical_base + + S626_DAC_WDMABUF_OS; + + /* + * Audio2's output channels does not use paging. The + * protection violation handling bit is set so that the + * DMAC will automatically halt and its PCI address pointer + * will be reset when the protection address is reached. + */ + writel(8, dev->mmio + S626_P_PAGEA2_OUT); + + /* + * Initialize time slot list 2 (TSL2), which is used to control + * the clock generation for and serialization of data to be sent + * to the DAC devices. Slot 0 is a NOP that is used to trap TSL + * execution; this permits other slots to be safely modified + * without first turning off the TSL sequencer (which is + * apparently impossible to do). Also, SD3 (which is driven by a + * pull-up resistor) is shifted in and stored to the MSB of + * FB_BUFFER2 to be used as evidence that the slot sequence has + * not yet finished executing. + */ + + /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */ + writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS, + dev->mmio + S626_VECTPORT(0)); + + /* + * Initialize slot 1, which is constant. Slot 1 causes a + * DWORD to be transferred from audio channel 2's output FIFO + * to the FIFO's output buffer so that it can be serialized + * and sent to the DAC during subsequent slots. All remaining + * slots are dynamically populated as required by the target + * DAC device. + */ + + /* Slot 1: Fetch DWORD from Audio2's output FIFO */ + writel(S626_LF_A2, dev->mmio + S626_VECTPORT(1)); + + /* Start DAC's audio interface (TSL2) running */ + writel(S626_ACON1_DACSTART, dev->mmio + S626_P_ACON1); + + /* + * Init Trim DACs to calibrated values. Do it twice because the + * SAA7146 audio channel does not always reset properly and + * sometimes causes the first few TrimDAC writes to malfunction. + */ + s626_load_trim_dacs(dev); + ret = s626_load_trim_dacs(dev); + if (ret) + return ret; + + /* + * Manually init all gate array hardware in case this is a soft + * reset (we have no way of determining whether this is a warm + * or cold start). This is necessary because the gate array will + * reset only in response to a PCI hard reset; there is no soft + * reset function. + */ + + /* + * Init all DAC outputs to 0V and init all DAC setpoint and + * polarity images. + */ + for (chan = 0; chan < S626_DAC_CHANNELS; chan++) { + ret = s626_set_dac(dev, chan, 0); + if (ret) + return ret; + } + + /* Init counters */ + s626_counters_init(dev); + + /* + * Without modifying the state of the Battery Backup enab, disable + * the watchdog timer, set DIO channels 0-5 to operate in the + * standard DIO (vs. counter overflow) mode, disable the battery + * charger, and reset the watchdog interval selector to zero. + */ + s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) & + S626_MISC2_BATT_ENABLE)); + + /* Initialize the digital I/O subsystem */ + s626_dio_init(dev); + + return 0; +} + +static int s626_auto_attach(struct comedi_device *dev, + unsigned long context_unused) +{ + struct pci_dev *pcidev = comedi_to_pci_dev(dev); + struct s626_private *devpriv; + struct comedi_subdevice *s; + int ret; + + devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv)); + if (!devpriv) + return -ENOMEM; + + ret = comedi_pci_enable(dev); + if (ret) + return ret; + + dev->mmio = pci_ioremap_bar(pcidev, 0); + if (!dev->mmio) + return -ENOMEM; + + /* disable master interrupt */ + writel(0, dev->mmio + S626_P_IER); + + /* soft reset */ + writel(S626_MC1_SOFT_RESET, dev->mmio + S626_P_MC1); + + /* DMA FIXME DMA// */ + + ret = s626_allocate_dma_buffers(dev); + if (ret) + return ret; + + if (pcidev->irq) { + ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED, + dev->board_name, dev); + + if (ret == 0) + dev->irq = pcidev->irq; + } + + ret = comedi_alloc_subdevices(dev, 6); + if (ret) + return ret; + + s = &dev->subdevices[0]; + /* analog input subdevice */ + s->type = COMEDI_SUBD_AI; + s->subdev_flags = SDF_READABLE | SDF_DIFF; + s->n_chan = S626_ADC_CHANNELS; + s->maxdata = 0x3fff; + s->range_table = &s626_range_table; + s->len_chanlist = S626_ADC_CHANNELS; + s->insn_read = s626_ai_insn_read; + if (dev->irq) { + dev->read_subdev = s; + s->subdev_flags |= SDF_CMD_READ; + s->do_cmd = s626_ai_cmd; + s->do_cmdtest = s626_ai_cmdtest; + s->cancel = s626_ai_cancel; + } + + s = &dev->subdevices[1]; + /* analog output subdevice */ + s->type = COMEDI_SUBD_AO; + s->subdev_flags = SDF_WRITABLE | SDF_READABLE; + s->n_chan = S626_DAC_CHANNELS; + s->maxdata = 0x3fff; + s->range_table = &range_bipolar10; + s->insn_write = s626_ao_insn_write; + + ret = comedi_alloc_subdev_readback(s); + if (ret) + return ret; + + s = &dev->subdevices[2]; + /* digital I/O subdevice */ + s->type = COMEDI_SUBD_DIO; + s->subdev_flags = SDF_WRITABLE | SDF_READABLE; + s->n_chan = 16; + s->maxdata = 1; + s->io_bits = 0xffff; + s->private = (void *)0; /* DIO group 0 */ + s->range_table = &range_digital; + s->insn_config = s626_dio_insn_config; + s->insn_bits = s626_dio_insn_bits; + + s = &dev->subdevices[3]; + /* digital I/O subdevice */ + s->type = COMEDI_SUBD_DIO; + s->subdev_flags = SDF_WRITABLE | SDF_READABLE; + s->n_chan = 16; + s->maxdata = 1; + s->io_bits = 0xffff; + s->private = (void *)1; /* DIO group 1 */ + s->range_table = &range_digital; + s->insn_config = s626_dio_insn_config; + s->insn_bits = s626_dio_insn_bits; + + s = &dev->subdevices[4]; + /* digital I/O subdevice */ + s->type = COMEDI_SUBD_DIO; + s->subdev_flags = SDF_WRITABLE | SDF_READABLE; + s->n_chan = 16; + s->maxdata = 1; + s->io_bits = 0xffff; + s->private = (void *)2; /* DIO group 2 */ + s->range_table = &range_digital; + s->insn_config = s626_dio_insn_config; + s->insn_bits = s626_dio_insn_bits; + + s = &dev->subdevices[5]; + /* encoder (counter) subdevice */ + s->type = COMEDI_SUBD_COUNTER; + s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL; + s->n_chan = S626_ENCODER_CHANNELS; + s->maxdata = 0xffffff; + s->range_table = &range_unknown; + s->insn_config = s626_enc_insn_config; + s->insn_read = s626_enc_insn_read; + s->insn_write = s626_enc_insn_write; + + return s626_initialize(dev); +} + +static void s626_detach(struct comedi_device *dev) +{ + struct s626_private *devpriv = dev->private; + + if (devpriv) { + /* stop ai_command */ + devpriv->ai_cmd_running = 0; + + if (dev->mmio) { + /* interrupt mask */ + /* Disable master interrupt */ + writel(0, dev->mmio + S626_P_IER); + /* Clear board's IRQ status flag */ + writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, + dev->mmio + S626_P_ISR); + + /* Disable the watchdog timer and battery charger. */ + s626_write_misc2(dev, 0); + + /* Close all interfaces on 7146 device */ + writel(S626_MC1_SHUTDOWN, dev->mmio + S626_P_MC1); + writel(S626_ACON1_BASE, dev->mmio + S626_P_ACON1); + } + } + comedi_pci_detach(dev); + s626_free_dma_buffers(dev); +} + +static struct comedi_driver s626_driver = { + .driver_name = "s626", + .module = THIS_MODULE, + .auto_attach = s626_auto_attach, + .detach = s626_detach, +}; + +static int s626_pci_probe(struct pci_dev *dev, + const struct pci_device_id *id) +{ + return comedi_pci_auto_config(dev, &s626_driver, id->driver_data); +} + +/* + * For devices with vendor:device id == 0x1131:0x7146 you must specify + * also subvendor:subdevice ids, because otherwise it will conflict with + * Philips SAA7146 media/dvb based cards. + */ +static const struct pci_device_id s626_pci_table[] = { + { PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146, + 0x6000, 0x0272) }, + { 0 } +}; +MODULE_DEVICE_TABLE(pci, s626_pci_table); + +static struct pci_driver s626_pci_driver = { + .name = "s626", + .id_table = s626_pci_table, + .probe = s626_pci_probe, + .remove = comedi_pci_auto_unconfig, +}; +module_comedi_pci_driver(s626_driver, s626_pci_driver); + +MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>"); +MODULE_DESCRIPTION("Sensoray 626 Comedi driver module"); +MODULE_LICENSE("GPL"); |