summaryrefslogtreecommitdiffstats
path: root/drivers/crypto/ccp/ccp-ops.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--drivers/crypto/ccp/ccp-ops.c2515
1 files changed, 2515 insertions, 0 deletions
diff --git a/drivers/crypto/ccp/ccp-ops.c b/drivers/crypto/ccp/ccp-ops.c
new file mode 100644
index 000000000..cb8e99936
--- /dev/null
+++ b/drivers/crypto/ccp/ccp-ops.c
@@ -0,0 +1,2515 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * AMD Cryptographic Coprocessor (CCP) driver
+ *
+ * Copyright (C) 2013-2019 Advanced Micro Devices, Inc.
+ *
+ * Author: Tom Lendacky <thomas.lendacky@amd.com>
+ * Author: Gary R Hook <gary.hook@amd.com>
+ */
+
+#include <linux/dma-mapping.h>
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/interrupt.h>
+#include <crypto/scatterwalk.h>
+#include <crypto/des.h>
+#include <linux/ccp.h>
+
+#include "ccp-dev.h"
+
+/* SHA initial context values */
+static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
+ cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
+ cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
+ cpu_to_be32(SHA1_H4),
+};
+
+static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
+ cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
+ cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
+ cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
+ cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
+};
+
+static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
+ cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
+ cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
+ cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
+ cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
+};
+
+static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
+ cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
+ cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
+ cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
+ cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
+};
+
+static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
+ cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
+ cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
+ cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
+ cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
+};
+
+#define CCP_NEW_JOBID(ccp) ((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
+ ccp_gen_jobid(ccp) : 0)
+
+static u32 ccp_gen_jobid(struct ccp_device *ccp)
+{
+ return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
+}
+
+static void ccp_sg_free(struct ccp_sg_workarea *wa)
+{
+ if (wa->dma_count)
+ dma_unmap_sg(wa->dma_dev, wa->dma_sg_head, wa->nents, wa->dma_dir);
+
+ wa->dma_count = 0;
+}
+
+static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
+ struct scatterlist *sg, u64 len,
+ enum dma_data_direction dma_dir)
+{
+ memset(wa, 0, sizeof(*wa));
+
+ wa->sg = sg;
+ if (!sg)
+ return 0;
+
+ wa->nents = sg_nents_for_len(sg, len);
+ if (wa->nents < 0)
+ return wa->nents;
+
+ wa->bytes_left = len;
+ wa->sg_used = 0;
+
+ if (len == 0)
+ return 0;
+
+ if (dma_dir == DMA_NONE)
+ return 0;
+
+ wa->dma_sg = sg;
+ wa->dma_sg_head = sg;
+ wa->dma_dev = dev;
+ wa->dma_dir = dma_dir;
+ wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
+ if (!wa->dma_count)
+ return -ENOMEM;
+
+ return 0;
+}
+
+static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
+{
+ unsigned int nbytes = min_t(u64, len, wa->bytes_left);
+ unsigned int sg_combined_len = 0;
+
+ if (!wa->sg)
+ return;
+
+ wa->sg_used += nbytes;
+ wa->bytes_left -= nbytes;
+ if (wa->sg_used == sg_dma_len(wa->dma_sg)) {
+ /* Advance to the next DMA scatterlist entry */
+ wa->dma_sg = sg_next(wa->dma_sg);
+
+ /* In the case that the DMA mapped scatterlist has entries
+ * that have been merged, the non-DMA mapped scatterlist
+ * must be advanced multiple times for each merged entry.
+ * This ensures that the current non-DMA mapped entry
+ * corresponds to the current DMA mapped entry.
+ */
+ do {
+ sg_combined_len += wa->sg->length;
+ wa->sg = sg_next(wa->sg);
+ } while (wa->sg_used > sg_combined_len);
+
+ wa->sg_used = 0;
+ }
+}
+
+static void ccp_dm_free(struct ccp_dm_workarea *wa)
+{
+ if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
+ if (wa->address)
+ dma_pool_free(wa->dma_pool, wa->address,
+ wa->dma.address);
+ } else {
+ if (wa->dma.address)
+ dma_unmap_single(wa->dev, wa->dma.address, wa->length,
+ wa->dma.dir);
+ kfree(wa->address);
+ }
+
+ wa->address = NULL;
+ wa->dma.address = 0;
+}
+
+static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
+ struct ccp_cmd_queue *cmd_q,
+ unsigned int len,
+ enum dma_data_direction dir)
+{
+ memset(wa, 0, sizeof(*wa));
+
+ if (!len)
+ return 0;
+
+ wa->dev = cmd_q->ccp->dev;
+ wa->length = len;
+
+ if (len <= CCP_DMAPOOL_MAX_SIZE) {
+ wa->dma_pool = cmd_q->dma_pool;
+
+ wa->address = dma_pool_zalloc(wa->dma_pool, GFP_KERNEL,
+ &wa->dma.address);
+ if (!wa->address)
+ return -ENOMEM;
+
+ wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
+
+ } else {
+ wa->address = kzalloc(len, GFP_KERNEL);
+ if (!wa->address)
+ return -ENOMEM;
+
+ wa->dma.address = dma_map_single(wa->dev, wa->address, len,
+ dir);
+ if (dma_mapping_error(wa->dev, wa->dma.address)) {
+ kfree(wa->address);
+ wa->address = NULL;
+ return -ENOMEM;
+ }
+
+ wa->dma.length = len;
+ }
+ wa->dma.dir = dir;
+
+ return 0;
+}
+
+static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
+ struct scatterlist *sg, unsigned int sg_offset,
+ unsigned int len)
+{
+ WARN_ON(!wa->address);
+
+ if (len > (wa->length - wa_offset))
+ return -EINVAL;
+
+ scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
+ 0);
+ return 0;
+}
+
+static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
+ struct scatterlist *sg, unsigned int sg_offset,
+ unsigned int len)
+{
+ WARN_ON(!wa->address);
+
+ scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
+ 1);
+}
+
+static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
+ unsigned int wa_offset,
+ struct scatterlist *sg,
+ unsigned int sg_offset,
+ unsigned int len)
+{
+ u8 *p, *q;
+ int rc;
+
+ rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
+ if (rc)
+ return rc;
+
+ p = wa->address + wa_offset;
+ q = p + len - 1;
+ while (p < q) {
+ *p = *p ^ *q;
+ *q = *p ^ *q;
+ *p = *p ^ *q;
+ p++;
+ q--;
+ }
+ return 0;
+}
+
+static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
+ unsigned int wa_offset,
+ struct scatterlist *sg,
+ unsigned int sg_offset,
+ unsigned int len)
+{
+ u8 *p, *q;
+
+ p = wa->address + wa_offset;
+ q = p + len - 1;
+ while (p < q) {
+ *p = *p ^ *q;
+ *q = *p ^ *q;
+ *p = *p ^ *q;
+ p++;
+ q--;
+ }
+
+ ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
+}
+
+static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
+{
+ ccp_dm_free(&data->dm_wa);
+ ccp_sg_free(&data->sg_wa);
+}
+
+static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
+ struct scatterlist *sg, u64 sg_len,
+ unsigned int dm_len,
+ enum dma_data_direction dir)
+{
+ int ret;
+
+ memset(data, 0, sizeof(*data));
+
+ ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
+ dir);
+ if (ret)
+ goto e_err;
+
+ ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
+ if (ret)
+ goto e_err;
+
+ return 0;
+
+e_err:
+ ccp_free_data(data, cmd_q);
+
+ return ret;
+}
+
+static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
+{
+ struct ccp_sg_workarea *sg_wa = &data->sg_wa;
+ struct ccp_dm_workarea *dm_wa = &data->dm_wa;
+ unsigned int buf_count, nbytes;
+
+ /* Clear the buffer if setting it */
+ if (!from)
+ memset(dm_wa->address, 0, dm_wa->length);
+
+ if (!sg_wa->sg)
+ return 0;
+
+ /* Perform the copy operation
+ * nbytes will always be <= UINT_MAX because dm_wa->length is
+ * an unsigned int
+ */
+ nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
+ scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
+ nbytes, from);
+
+ /* Update the structures and generate the count */
+ buf_count = 0;
+ while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
+ nbytes = min(sg_dma_len(sg_wa->dma_sg) - sg_wa->sg_used,
+ dm_wa->length - buf_count);
+ nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
+
+ buf_count += nbytes;
+ ccp_update_sg_workarea(sg_wa, nbytes);
+ }
+
+ return buf_count;
+}
+
+static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
+{
+ return ccp_queue_buf(data, 0);
+}
+
+static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
+{
+ return ccp_queue_buf(data, 1);
+}
+
+static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
+ struct ccp_op *op, unsigned int block_size,
+ bool blocksize_op)
+{
+ unsigned int sg_src_len, sg_dst_len, op_len;
+
+ /* The CCP can only DMA from/to one address each per operation. This
+ * requires that we find the smallest DMA area between the source
+ * and destination. The resulting len values will always be <= UINT_MAX
+ * because the dma length is an unsigned int.
+ */
+ sg_src_len = sg_dma_len(src->sg_wa.dma_sg) - src->sg_wa.sg_used;
+ sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
+
+ if (dst) {
+ sg_dst_len = sg_dma_len(dst->sg_wa.dma_sg) - dst->sg_wa.sg_used;
+ sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
+ op_len = min(sg_src_len, sg_dst_len);
+ } else {
+ op_len = sg_src_len;
+ }
+
+ /* The data operation length will be at least block_size in length
+ * or the smaller of available sg room remaining for the source or
+ * the destination
+ */
+ op_len = max(op_len, block_size);
+
+ /* Unless we have to buffer data, there's no reason to wait */
+ op->soc = 0;
+
+ if (sg_src_len < block_size) {
+ /* Not enough data in the sg element, so it
+ * needs to be buffered into a blocksize chunk
+ */
+ int cp_len = ccp_fill_queue_buf(src);
+
+ op->soc = 1;
+ op->src.u.dma.address = src->dm_wa.dma.address;
+ op->src.u.dma.offset = 0;
+ op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
+ } else {
+ /* Enough data in the sg element, but we need to
+ * adjust for any previously copied data
+ */
+ op->src.u.dma.address = sg_dma_address(src->sg_wa.dma_sg);
+ op->src.u.dma.offset = src->sg_wa.sg_used;
+ op->src.u.dma.length = op_len & ~(block_size - 1);
+
+ ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
+ }
+
+ if (dst) {
+ if (sg_dst_len < block_size) {
+ /* Not enough room in the sg element or we're on the
+ * last piece of data (when using padding), so the
+ * output needs to be buffered into a blocksize chunk
+ */
+ op->soc = 1;
+ op->dst.u.dma.address = dst->dm_wa.dma.address;
+ op->dst.u.dma.offset = 0;
+ op->dst.u.dma.length = op->src.u.dma.length;
+ } else {
+ /* Enough room in the sg element, but we need to
+ * adjust for any previously used area
+ */
+ op->dst.u.dma.address = sg_dma_address(dst->sg_wa.dma_sg);
+ op->dst.u.dma.offset = dst->sg_wa.sg_used;
+ op->dst.u.dma.length = op->src.u.dma.length;
+ }
+ }
+}
+
+static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
+ struct ccp_op *op)
+{
+ op->init = 0;
+
+ if (dst) {
+ if (op->dst.u.dma.address == dst->dm_wa.dma.address)
+ ccp_empty_queue_buf(dst);
+ else
+ ccp_update_sg_workarea(&dst->sg_wa,
+ op->dst.u.dma.length);
+ }
+}
+
+static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
+ struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
+ u32 byte_swap, bool from)
+{
+ struct ccp_op op;
+
+ memset(&op, 0, sizeof(op));
+
+ op.cmd_q = cmd_q;
+ op.jobid = jobid;
+ op.eom = 1;
+
+ if (from) {
+ op.soc = 1;
+ op.src.type = CCP_MEMTYPE_SB;
+ op.src.u.sb = sb;
+ op.dst.type = CCP_MEMTYPE_SYSTEM;
+ op.dst.u.dma.address = wa->dma.address;
+ op.dst.u.dma.length = wa->length;
+ } else {
+ op.src.type = CCP_MEMTYPE_SYSTEM;
+ op.src.u.dma.address = wa->dma.address;
+ op.src.u.dma.length = wa->length;
+ op.dst.type = CCP_MEMTYPE_SB;
+ op.dst.u.sb = sb;
+ }
+
+ op.u.passthru.byte_swap = byte_swap;
+
+ return cmd_q->ccp->vdata->perform->passthru(&op);
+}
+
+static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
+ struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
+ u32 byte_swap)
+{
+ return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
+}
+
+static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
+ struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
+ u32 byte_swap)
+{
+ return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
+}
+
+static noinline_for_stack int
+ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+ struct ccp_aes_engine *aes = &cmd->u.aes;
+ struct ccp_dm_workarea key, ctx;
+ struct ccp_data src;
+ struct ccp_op op;
+ unsigned int dm_offset;
+ int ret;
+
+ if (!((aes->key_len == AES_KEYSIZE_128) ||
+ (aes->key_len == AES_KEYSIZE_192) ||
+ (aes->key_len == AES_KEYSIZE_256)))
+ return -EINVAL;
+
+ if (aes->src_len & (AES_BLOCK_SIZE - 1))
+ return -EINVAL;
+
+ if (aes->iv_len != AES_BLOCK_SIZE)
+ return -EINVAL;
+
+ if (!aes->key || !aes->iv || !aes->src)
+ return -EINVAL;
+
+ if (aes->cmac_final) {
+ if (aes->cmac_key_len != AES_BLOCK_SIZE)
+ return -EINVAL;
+
+ if (!aes->cmac_key)
+ return -EINVAL;
+ }
+
+ BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
+ BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
+
+ ret = -EIO;
+ memset(&op, 0, sizeof(op));
+ op.cmd_q = cmd_q;
+ op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+ op.sb_key = cmd_q->sb_key;
+ op.sb_ctx = cmd_q->sb_ctx;
+ op.init = 1;
+ op.u.aes.type = aes->type;
+ op.u.aes.mode = aes->mode;
+ op.u.aes.action = aes->action;
+
+ /* All supported key sizes fit in a single (32-byte) SB entry
+ * and must be in little endian format. Use the 256-bit byte
+ * swap passthru option to convert from big endian to little
+ * endian.
+ */
+ ret = ccp_init_dm_workarea(&key, cmd_q,
+ CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
+ DMA_TO_DEVICE);
+ if (ret)
+ return ret;
+
+ dm_offset = CCP_SB_BYTES - aes->key_len;
+ ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
+ if (ret)
+ goto e_key;
+ ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_key;
+ }
+
+ /* The AES context fits in a single (32-byte) SB entry and
+ * must be in little endian format. Use the 256-bit byte swap
+ * passthru option to convert from big endian to little endian.
+ */
+ ret = ccp_init_dm_workarea(&ctx, cmd_q,
+ CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
+ DMA_BIDIRECTIONAL);
+ if (ret)
+ goto e_key;
+
+ dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
+ ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+ if (ret)
+ goto e_ctx;
+ ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_ctx;
+ }
+
+ /* Send data to the CCP AES engine */
+ ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
+ AES_BLOCK_SIZE, DMA_TO_DEVICE);
+ if (ret)
+ goto e_ctx;
+
+ while (src.sg_wa.bytes_left) {
+ ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
+ if (aes->cmac_final && !src.sg_wa.bytes_left) {
+ op.eom = 1;
+
+ /* Push the K1/K2 key to the CCP now */
+ ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
+ op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_src;
+ }
+
+ ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
+ aes->cmac_key_len);
+ if (ret)
+ goto e_src;
+ ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_src;
+ }
+ }
+
+ ret = cmd_q->ccp->vdata->perform->aes(&op);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_src;
+ }
+
+ ccp_process_data(&src, NULL, &op);
+ }
+
+ /* Retrieve the AES context - convert from LE to BE using
+ * 32-byte (256-bit) byteswapping
+ */
+ ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_src;
+ }
+
+ /* ...but we only need AES_BLOCK_SIZE bytes */
+ dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
+ ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+
+e_src:
+ ccp_free_data(&src, cmd_q);
+
+e_ctx:
+ ccp_dm_free(&ctx);
+
+e_key:
+ ccp_dm_free(&key);
+
+ return ret;
+}
+
+static noinline_for_stack int
+ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+ struct ccp_aes_engine *aes = &cmd->u.aes;
+ struct ccp_dm_workarea key, ctx, final_wa, tag;
+ struct ccp_data src, dst;
+ struct ccp_data aad;
+ struct ccp_op op;
+ unsigned int dm_offset;
+ unsigned int authsize;
+ unsigned int jobid;
+ unsigned int ilen;
+ bool in_place = true; /* Default value */
+ __be64 *final;
+ int ret;
+
+ struct scatterlist *p_inp, sg_inp[2];
+ struct scatterlist *p_tag, sg_tag[2];
+ struct scatterlist *p_outp, sg_outp[2];
+ struct scatterlist *p_aad;
+
+ if (!aes->iv)
+ return -EINVAL;
+
+ if (!((aes->key_len == AES_KEYSIZE_128) ||
+ (aes->key_len == AES_KEYSIZE_192) ||
+ (aes->key_len == AES_KEYSIZE_256)))
+ return -EINVAL;
+
+ if (!aes->key) /* Gotta have a key SGL */
+ return -EINVAL;
+
+ /* Zero defaults to 16 bytes, the maximum size */
+ authsize = aes->authsize ? aes->authsize : AES_BLOCK_SIZE;
+ switch (authsize) {
+ case 16:
+ case 15:
+ case 14:
+ case 13:
+ case 12:
+ case 8:
+ case 4:
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ /* First, decompose the source buffer into AAD & PT,
+ * and the destination buffer into AAD, CT & tag, or
+ * the input into CT & tag.
+ * It is expected that the input and output SGs will
+ * be valid, even if the AAD and input lengths are 0.
+ */
+ p_aad = aes->src;
+ p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
+ p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
+ if (aes->action == CCP_AES_ACTION_ENCRYPT) {
+ ilen = aes->src_len;
+ p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
+ } else {
+ /* Input length for decryption includes tag */
+ ilen = aes->src_len - authsize;
+ p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
+ }
+
+ jobid = CCP_NEW_JOBID(cmd_q->ccp);
+
+ memset(&op, 0, sizeof(op));
+ op.cmd_q = cmd_q;
+ op.jobid = jobid;
+ op.sb_key = cmd_q->sb_key; /* Pre-allocated */
+ op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
+ op.init = 1;
+ op.u.aes.type = aes->type;
+
+ /* Copy the key to the LSB */
+ ret = ccp_init_dm_workarea(&key, cmd_q,
+ CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
+ DMA_TO_DEVICE);
+ if (ret)
+ return ret;
+
+ dm_offset = CCP_SB_BYTES - aes->key_len;
+ ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
+ if (ret)
+ goto e_key;
+ ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_key;
+ }
+
+ /* Copy the context (IV) to the LSB.
+ * There is an assumption here that the IV is 96 bits in length, plus
+ * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
+ */
+ ret = ccp_init_dm_workarea(&ctx, cmd_q,
+ CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
+ DMA_BIDIRECTIONAL);
+ if (ret)
+ goto e_key;
+
+ dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
+ ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+ if (ret)
+ goto e_ctx;
+
+ ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_ctx;
+ }
+
+ op.init = 1;
+ if (aes->aad_len > 0) {
+ /* Step 1: Run a GHASH over the Additional Authenticated Data */
+ ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
+ AES_BLOCK_SIZE,
+ DMA_TO_DEVICE);
+ if (ret)
+ goto e_ctx;
+
+ op.u.aes.mode = CCP_AES_MODE_GHASH;
+ op.u.aes.action = CCP_AES_GHASHAAD;
+
+ while (aad.sg_wa.bytes_left) {
+ ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
+
+ ret = cmd_q->ccp->vdata->perform->aes(&op);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_aad;
+ }
+
+ ccp_process_data(&aad, NULL, &op);
+ op.init = 0;
+ }
+ }
+
+ op.u.aes.mode = CCP_AES_MODE_GCTR;
+ op.u.aes.action = aes->action;
+
+ if (ilen > 0) {
+ /* Step 2: Run a GCTR over the plaintext */
+ in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
+
+ ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
+ AES_BLOCK_SIZE,
+ in_place ? DMA_BIDIRECTIONAL
+ : DMA_TO_DEVICE);
+ if (ret)
+ goto e_aad;
+
+ if (in_place) {
+ dst = src;
+ } else {
+ ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
+ AES_BLOCK_SIZE, DMA_FROM_DEVICE);
+ if (ret)
+ goto e_src;
+ }
+
+ op.soc = 0;
+ op.eom = 0;
+ op.init = 1;
+ while (src.sg_wa.bytes_left) {
+ ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
+ if (!src.sg_wa.bytes_left) {
+ unsigned int nbytes = ilen % AES_BLOCK_SIZE;
+
+ if (nbytes) {
+ op.eom = 1;
+ op.u.aes.size = (nbytes * 8) - 1;
+ }
+ }
+
+ ret = cmd_q->ccp->vdata->perform->aes(&op);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_dst;
+ }
+
+ ccp_process_data(&src, &dst, &op);
+ op.init = 0;
+ }
+ }
+
+ /* Step 3: Update the IV portion of the context with the original IV */
+ ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_dst;
+ }
+
+ ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+ if (ret)
+ goto e_dst;
+
+ ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_dst;
+ }
+
+ /* Step 4: Concatenate the lengths of the AAD and source, and
+ * hash that 16 byte buffer.
+ */
+ ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
+ DMA_BIDIRECTIONAL);
+ if (ret)
+ goto e_dst;
+ final = (__be64 *)final_wa.address;
+ final[0] = cpu_to_be64(aes->aad_len * 8);
+ final[1] = cpu_to_be64(ilen * 8);
+
+ memset(&op, 0, sizeof(op));
+ op.cmd_q = cmd_q;
+ op.jobid = jobid;
+ op.sb_key = cmd_q->sb_key; /* Pre-allocated */
+ op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
+ op.init = 1;
+ op.u.aes.type = aes->type;
+ op.u.aes.mode = CCP_AES_MODE_GHASH;
+ op.u.aes.action = CCP_AES_GHASHFINAL;
+ op.src.type = CCP_MEMTYPE_SYSTEM;
+ op.src.u.dma.address = final_wa.dma.address;
+ op.src.u.dma.length = AES_BLOCK_SIZE;
+ op.dst.type = CCP_MEMTYPE_SYSTEM;
+ op.dst.u.dma.address = final_wa.dma.address;
+ op.dst.u.dma.length = AES_BLOCK_SIZE;
+ op.eom = 1;
+ op.u.aes.size = 0;
+ ret = cmd_q->ccp->vdata->perform->aes(&op);
+ if (ret)
+ goto e_final_wa;
+
+ if (aes->action == CCP_AES_ACTION_ENCRYPT) {
+ /* Put the ciphered tag after the ciphertext. */
+ ccp_get_dm_area(&final_wa, 0, p_tag, 0, authsize);
+ } else {
+ /* Does this ciphered tag match the input? */
+ ret = ccp_init_dm_workarea(&tag, cmd_q, authsize,
+ DMA_BIDIRECTIONAL);
+ if (ret)
+ goto e_final_wa;
+ ret = ccp_set_dm_area(&tag, 0, p_tag, 0, authsize);
+ if (ret) {
+ ccp_dm_free(&tag);
+ goto e_final_wa;
+ }
+
+ ret = crypto_memneq(tag.address, final_wa.address,
+ authsize) ? -EBADMSG : 0;
+ ccp_dm_free(&tag);
+ }
+
+e_final_wa:
+ ccp_dm_free(&final_wa);
+
+e_dst:
+ if (ilen > 0 && !in_place)
+ ccp_free_data(&dst, cmd_q);
+
+e_src:
+ if (ilen > 0)
+ ccp_free_data(&src, cmd_q);
+
+e_aad:
+ if (aes->aad_len)
+ ccp_free_data(&aad, cmd_q);
+
+e_ctx:
+ ccp_dm_free(&ctx);
+
+e_key:
+ ccp_dm_free(&key);
+
+ return ret;
+}
+
+static noinline_for_stack int
+ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+ struct ccp_aes_engine *aes = &cmd->u.aes;
+ struct ccp_dm_workarea key, ctx;
+ struct ccp_data src, dst;
+ struct ccp_op op;
+ unsigned int dm_offset;
+ bool in_place = false;
+ int ret;
+
+ if (!((aes->key_len == AES_KEYSIZE_128) ||
+ (aes->key_len == AES_KEYSIZE_192) ||
+ (aes->key_len == AES_KEYSIZE_256)))
+ return -EINVAL;
+
+ if (((aes->mode == CCP_AES_MODE_ECB) ||
+ (aes->mode == CCP_AES_MODE_CBC)) &&
+ (aes->src_len & (AES_BLOCK_SIZE - 1)))
+ return -EINVAL;
+
+ if (!aes->key || !aes->src || !aes->dst)
+ return -EINVAL;
+
+ if (aes->mode != CCP_AES_MODE_ECB) {
+ if (aes->iv_len != AES_BLOCK_SIZE)
+ return -EINVAL;
+
+ if (!aes->iv)
+ return -EINVAL;
+ }
+
+ BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
+ BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
+
+ ret = -EIO;
+ memset(&op, 0, sizeof(op));
+ op.cmd_q = cmd_q;
+ op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+ op.sb_key = cmd_q->sb_key;
+ op.sb_ctx = cmd_q->sb_ctx;
+ op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
+ op.u.aes.type = aes->type;
+ op.u.aes.mode = aes->mode;
+ op.u.aes.action = aes->action;
+
+ /* All supported key sizes fit in a single (32-byte) SB entry
+ * and must be in little endian format. Use the 256-bit byte
+ * swap passthru option to convert from big endian to little
+ * endian.
+ */
+ ret = ccp_init_dm_workarea(&key, cmd_q,
+ CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
+ DMA_TO_DEVICE);
+ if (ret)
+ return ret;
+
+ dm_offset = CCP_SB_BYTES - aes->key_len;
+ ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
+ if (ret)
+ goto e_key;
+ ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_key;
+ }
+
+ /* The AES context fits in a single (32-byte) SB entry and
+ * must be in little endian format. Use the 256-bit byte swap
+ * passthru option to convert from big endian to little endian.
+ */
+ ret = ccp_init_dm_workarea(&ctx, cmd_q,
+ CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
+ DMA_BIDIRECTIONAL);
+ if (ret)
+ goto e_key;
+
+ if (aes->mode != CCP_AES_MODE_ECB) {
+ /* Load the AES context - convert to LE */
+ dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
+ ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+ if (ret)
+ goto e_ctx;
+ ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_ctx;
+ }
+ }
+ switch (aes->mode) {
+ case CCP_AES_MODE_CFB: /* CFB128 only */
+ case CCP_AES_MODE_CTR:
+ op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
+ break;
+ default:
+ op.u.aes.size = 0;
+ }
+
+ /* Prepare the input and output data workareas. For in-place
+ * operations we need to set the dma direction to BIDIRECTIONAL
+ * and copy the src workarea to the dst workarea.
+ */
+ if (sg_virt(aes->src) == sg_virt(aes->dst))
+ in_place = true;
+
+ ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
+ AES_BLOCK_SIZE,
+ in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
+ if (ret)
+ goto e_ctx;
+
+ if (in_place) {
+ dst = src;
+ } else {
+ ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
+ AES_BLOCK_SIZE, DMA_FROM_DEVICE);
+ if (ret)
+ goto e_src;
+ }
+
+ /* Send data to the CCP AES engine */
+ while (src.sg_wa.bytes_left) {
+ ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
+ if (!src.sg_wa.bytes_left) {
+ op.eom = 1;
+
+ /* Since we don't retrieve the AES context in ECB
+ * mode we have to wait for the operation to complete
+ * on the last piece of data
+ */
+ if (aes->mode == CCP_AES_MODE_ECB)
+ op.soc = 1;
+ }
+
+ ret = cmd_q->ccp->vdata->perform->aes(&op);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_dst;
+ }
+
+ ccp_process_data(&src, &dst, &op);
+ }
+
+ if (aes->mode != CCP_AES_MODE_ECB) {
+ /* Retrieve the AES context - convert from LE to BE using
+ * 32-byte (256-bit) byteswapping
+ */
+ ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_dst;
+ }
+
+ /* ...but we only need AES_BLOCK_SIZE bytes */
+ dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
+ ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
+ }
+
+e_dst:
+ if (!in_place)
+ ccp_free_data(&dst, cmd_q);
+
+e_src:
+ ccp_free_data(&src, cmd_q);
+
+e_ctx:
+ ccp_dm_free(&ctx);
+
+e_key:
+ ccp_dm_free(&key);
+
+ return ret;
+}
+
+static noinline_for_stack int
+ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+ struct ccp_xts_aes_engine *xts = &cmd->u.xts;
+ struct ccp_dm_workarea key, ctx;
+ struct ccp_data src, dst;
+ struct ccp_op op;
+ unsigned int unit_size, dm_offset;
+ bool in_place = false;
+ unsigned int sb_count;
+ enum ccp_aes_type aestype;
+ int ret;
+
+ switch (xts->unit_size) {
+ case CCP_XTS_AES_UNIT_SIZE_16:
+ unit_size = 16;
+ break;
+ case CCP_XTS_AES_UNIT_SIZE_512:
+ unit_size = 512;
+ break;
+ case CCP_XTS_AES_UNIT_SIZE_1024:
+ unit_size = 1024;
+ break;
+ case CCP_XTS_AES_UNIT_SIZE_2048:
+ unit_size = 2048;
+ break;
+ case CCP_XTS_AES_UNIT_SIZE_4096:
+ unit_size = 4096;
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ if (xts->key_len == AES_KEYSIZE_128)
+ aestype = CCP_AES_TYPE_128;
+ else if (xts->key_len == AES_KEYSIZE_256)
+ aestype = CCP_AES_TYPE_256;
+ else
+ return -EINVAL;
+
+ if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
+ return -EINVAL;
+
+ if (xts->iv_len != AES_BLOCK_SIZE)
+ return -EINVAL;
+
+ if (!xts->key || !xts->iv || !xts->src || !xts->dst)
+ return -EINVAL;
+
+ BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
+ BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
+
+ ret = -EIO;
+ memset(&op, 0, sizeof(op));
+ op.cmd_q = cmd_q;
+ op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+ op.sb_key = cmd_q->sb_key;
+ op.sb_ctx = cmd_q->sb_ctx;
+ op.init = 1;
+ op.u.xts.type = aestype;
+ op.u.xts.action = xts->action;
+ op.u.xts.unit_size = xts->unit_size;
+
+ /* A version 3 device only supports 128-bit keys, which fits into a
+ * single SB entry. A version 5 device uses a 512-bit vector, so two
+ * SB entries.
+ */
+ if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
+ sb_count = CCP_XTS_AES_KEY_SB_COUNT;
+ else
+ sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
+ ret = ccp_init_dm_workarea(&key, cmd_q,
+ sb_count * CCP_SB_BYTES,
+ DMA_TO_DEVICE);
+ if (ret)
+ return ret;
+
+ if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
+ /* All supported key sizes must be in little endian format.
+ * Use the 256-bit byte swap passthru option to convert from
+ * big endian to little endian.
+ */
+ dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
+ ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
+ if (ret)
+ goto e_key;
+ ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
+ if (ret)
+ goto e_key;
+ } else {
+ /* Version 5 CCPs use a 512-bit space for the key: each portion
+ * occupies 256 bits, or one entire slot, and is zero-padded.
+ */
+ unsigned int pad;
+
+ dm_offset = CCP_SB_BYTES;
+ pad = dm_offset - xts->key_len;
+ ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
+ if (ret)
+ goto e_key;
+ ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
+ xts->key_len, xts->key_len);
+ if (ret)
+ goto e_key;
+ }
+ ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_key;
+ }
+
+ /* The AES context fits in a single (32-byte) SB entry and
+ * for XTS is already in little endian format so no byte swapping
+ * is needed.
+ */
+ ret = ccp_init_dm_workarea(&ctx, cmd_q,
+ CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
+ DMA_BIDIRECTIONAL);
+ if (ret)
+ goto e_key;
+
+ ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
+ if (ret)
+ goto e_ctx;
+ ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_NOOP);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_ctx;
+ }
+
+ /* Prepare the input and output data workareas. For in-place
+ * operations we need to set the dma direction to BIDIRECTIONAL
+ * and copy the src workarea to the dst workarea.
+ */
+ if (sg_virt(xts->src) == sg_virt(xts->dst))
+ in_place = true;
+
+ ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
+ unit_size,
+ in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
+ if (ret)
+ goto e_ctx;
+
+ if (in_place) {
+ dst = src;
+ } else {
+ ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
+ unit_size, DMA_FROM_DEVICE);
+ if (ret)
+ goto e_src;
+ }
+
+ /* Send data to the CCP AES engine */
+ while (src.sg_wa.bytes_left) {
+ ccp_prepare_data(&src, &dst, &op, unit_size, true);
+ if (!src.sg_wa.bytes_left)
+ op.eom = 1;
+
+ ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_dst;
+ }
+
+ ccp_process_data(&src, &dst, &op);
+ }
+
+ /* Retrieve the AES context - convert from LE to BE using
+ * 32-byte (256-bit) byteswapping
+ */
+ ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_dst;
+ }
+
+ /* ...but we only need AES_BLOCK_SIZE bytes */
+ dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
+ ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
+
+e_dst:
+ if (!in_place)
+ ccp_free_data(&dst, cmd_q);
+
+e_src:
+ ccp_free_data(&src, cmd_q);
+
+e_ctx:
+ ccp_dm_free(&ctx);
+
+e_key:
+ ccp_dm_free(&key);
+
+ return ret;
+}
+
+static noinline_for_stack int
+ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+ struct ccp_des3_engine *des3 = &cmd->u.des3;
+
+ struct ccp_dm_workarea key, ctx;
+ struct ccp_data src, dst;
+ struct ccp_op op;
+ unsigned int dm_offset;
+ unsigned int len_singlekey;
+ bool in_place = false;
+ int ret;
+
+ /* Error checks */
+ if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0))
+ return -EINVAL;
+
+ if (!cmd_q->ccp->vdata->perform->des3)
+ return -EINVAL;
+
+ if (des3->key_len != DES3_EDE_KEY_SIZE)
+ return -EINVAL;
+
+ if (((des3->mode == CCP_DES3_MODE_ECB) ||
+ (des3->mode == CCP_DES3_MODE_CBC)) &&
+ (des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
+ return -EINVAL;
+
+ if (!des3->key || !des3->src || !des3->dst)
+ return -EINVAL;
+
+ if (des3->mode != CCP_DES3_MODE_ECB) {
+ if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
+ return -EINVAL;
+
+ if (!des3->iv)
+ return -EINVAL;
+ }
+
+ /* Zero out all the fields of the command desc */
+ memset(&op, 0, sizeof(op));
+
+ /* Set up the Function field */
+ op.cmd_q = cmd_q;
+ op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+ op.sb_key = cmd_q->sb_key;
+
+ op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
+ op.u.des3.type = des3->type;
+ op.u.des3.mode = des3->mode;
+ op.u.des3.action = des3->action;
+
+ /*
+ * All supported key sizes fit in a single (32-byte) KSB entry and
+ * (like AES) must be in little endian format. Use the 256-bit byte
+ * swap passthru option to convert from big endian to little endian.
+ */
+ ret = ccp_init_dm_workarea(&key, cmd_q,
+ CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
+ DMA_TO_DEVICE);
+ if (ret)
+ return ret;
+
+ /*
+ * The contents of the key triplet are in the reverse order of what
+ * is required by the engine. Copy the 3 pieces individually to put
+ * them where they belong.
+ */
+ dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
+
+ len_singlekey = des3->key_len / 3;
+ ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
+ des3->key, 0, len_singlekey);
+ if (ret)
+ goto e_key;
+ ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
+ des3->key, len_singlekey, len_singlekey);
+ if (ret)
+ goto e_key;
+ ret = ccp_set_dm_area(&key, dm_offset,
+ des3->key, 2 * len_singlekey, len_singlekey);
+ if (ret)
+ goto e_key;
+
+ /* Copy the key to the SB */
+ ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_key;
+ }
+
+ /*
+ * The DES3 context fits in a single (32-byte) KSB entry and
+ * must be in little endian format. Use the 256-bit byte swap
+ * passthru option to convert from big endian to little endian.
+ */
+ if (des3->mode != CCP_DES3_MODE_ECB) {
+ op.sb_ctx = cmd_q->sb_ctx;
+
+ ret = ccp_init_dm_workarea(&ctx, cmd_q,
+ CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
+ DMA_BIDIRECTIONAL);
+ if (ret)
+ goto e_key;
+
+ /* Load the context into the LSB */
+ dm_offset = CCP_SB_BYTES - des3->iv_len;
+ ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
+ des3->iv_len);
+ if (ret)
+ goto e_ctx;
+
+ ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_ctx;
+ }
+ }
+
+ /*
+ * Prepare the input and output data workareas. For in-place
+ * operations we need to set the dma direction to BIDIRECTIONAL
+ * and copy the src workarea to the dst workarea.
+ */
+ if (sg_virt(des3->src) == sg_virt(des3->dst))
+ in_place = true;
+
+ ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
+ DES3_EDE_BLOCK_SIZE,
+ in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
+ if (ret)
+ goto e_ctx;
+
+ if (in_place)
+ dst = src;
+ else {
+ ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
+ DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
+ if (ret)
+ goto e_src;
+ }
+
+ /* Send data to the CCP DES3 engine */
+ while (src.sg_wa.bytes_left) {
+ ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
+ if (!src.sg_wa.bytes_left) {
+ op.eom = 1;
+
+ /* Since we don't retrieve the context in ECB mode
+ * we have to wait for the operation to complete
+ * on the last piece of data
+ */
+ op.soc = 0;
+ }
+
+ ret = cmd_q->ccp->vdata->perform->des3(&op);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_dst;
+ }
+
+ ccp_process_data(&src, &dst, &op);
+ }
+
+ if (des3->mode != CCP_DES3_MODE_ECB) {
+ /* Retrieve the context and make BE */
+ ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_dst;
+ }
+
+ /* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
+ ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
+ DES3_EDE_BLOCK_SIZE);
+ }
+e_dst:
+ if (!in_place)
+ ccp_free_data(&dst, cmd_q);
+
+e_src:
+ ccp_free_data(&src, cmd_q);
+
+e_ctx:
+ if (des3->mode != CCP_DES3_MODE_ECB)
+ ccp_dm_free(&ctx);
+
+e_key:
+ ccp_dm_free(&key);
+
+ return ret;
+}
+
+static noinline_for_stack int
+ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+ struct ccp_sha_engine *sha = &cmd->u.sha;
+ struct ccp_dm_workarea ctx;
+ struct ccp_data src;
+ struct ccp_op op;
+ unsigned int ioffset, ooffset;
+ unsigned int digest_size;
+ int sb_count;
+ const void *init;
+ u64 block_size;
+ int ctx_size;
+ int ret;
+
+ switch (sha->type) {
+ case CCP_SHA_TYPE_1:
+ if (sha->ctx_len < SHA1_DIGEST_SIZE)
+ return -EINVAL;
+ block_size = SHA1_BLOCK_SIZE;
+ break;
+ case CCP_SHA_TYPE_224:
+ if (sha->ctx_len < SHA224_DIGEST_SIZE)
+ return -EINVAL;
+ block_size = SHA224_BLOCK_SIZE;
+ break;
+ case CCP_SHA_TYPE_256:
+ if (sha->ctx_len < SHA256_DIGEST_SIZE)
+ return -EINVAL;
+ block_size = SHA256_BLOCK_SIZE;
+ break;
+ case CCP_SHA_TYPE_384:
+ if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
+ || sha->ctx_len < SHA384_DIGEST_SIZE)
+ return -EINVAL;
+ block_size = SHA384_BLOCK_SIZE;
+ break;
+ case CCP_SHA_TYPE_512:
+ if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
+ || sha->ctx_len < SHA512_DIGEST_SIZE)
+ return -EINVAL;
+ block_size = SHA512_BLOCK_SIZE;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ if (!sha->ctx)
+ return -EINVAL;
+
+ if (!sha->final && (sha->src_len & (block_size - 1)))
+ return -EINVAL;
+
+ /* The version 3 device can't handle zero-length input */
+ if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
+
+ if (!sha->src_len) {
+ unsigned int digest_len;
+ const u8 *sha_zero;
+
+ /* Not final, just return */
+ if (!sha->final)
+ return 0;
+
+ /* CCP can't do a zero length sha operation so the
+ * caller must buffer the data.
+ */
+ if (sha->msg_bits)
+ return -EINVAL;
+
+ /* The CCP cannot perform zero-length sha operations
+ * so the caller is required to buffer data for the
+ * final operation. However, a sha operation for a
+ * message with a total length of zero is valid so
+ * known values are required to supply the result.
+ */
+ switch (sha->type) {
+ case CCP_SHA_TYPE_1:
+ sha_zero = sha1_zero_message_hash;
+ digest_len = SHA1_DIGEST_SIZE;
+ break;
+ case CCP_SHA_TYPE_224:
+ sha_zero = sha224_zero_message_hash;
+ digest_len = SHA224_DIGEST_SIZE;
+ break;
+ case CCP_SHA_TYPE_256:
+ sha_zero = sha256_zero_message_hash;
+ digest_len = SHA256_DIGEST_SIZE;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
+ digest_len, 1);
+
+ return 0;
+ }
+ }
+
+ /* Set variables used throughout */
+ switch (sha->type) {
+ case CCP_SHA_TYPE_1:
+ digest_size = SHA1_DIGEST_SIZE;
+ init = (void *) ccp_sha1_init;
+ ctx_size = SHA1_DIGEST_SIZE;
+ sb_count = 1;
+ if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
+ ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
+ else
+ ooffset = ioffset = 0;
+ break;
+ case CCP_SHA_TYPE_224:
+ digest_size = SHA224_DIGEST_SIZE;
+ init = (void *) ccp_sha224_init;
+ ctx_size = SHA256_DIGEST_SIZE;
+ sb_count = 1;
+ ioffset = 0;
+ if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
+ ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
+ else
+ ooffset = 0;
+ break;
+ case CCP_SHA_TYPE_256:
+ digest_size = SHA256_DIGEST_SIZE;
+ init = (void *) ccp_sha256_init;
+ ctx_size = SHA256_DIGEST_SIZE;
+ sb_count = 1;
+ ooffset = ioffset = 0;
+ break;
+ case CCP_SHA_TYPE_384:
+ digest_size = SHA384_DIGEST_SIZE;
+ init = (void *) ccp_sha384_init;
+ ctx_size = SHA512_DIGEST_SIZE;
+ sb_count = 2;
+ ioffset = 0;
+ ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
+ break;
+ case CCP_SHA_TYPE_512:
+ digest_size = SHA512_DIGEST_SIZE;
+ init = (void *) ccp_sha512_init;
+ ctx_size = SHA512_DIGEST_SIZE;
+ sb_count = 2;
+ ooffset = ioffset = 0;
+ break;
+ default:
+ ret = -EINVAL;
+ goto e_data;
+ }
+
+ /* For zero-length plaintext the src pointer is ignored;
+ * otherwise both parts must be valid
+ */
+ if (sha->src_len && !sha->src)
+ return -EINVAL;
+
+ memset(&op, 0, sizeof(op));
+ op.cmd_q = cmd_q;
+ op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+ op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
+ op.u.sha.type = sha->type;
+ op.u.sha.msg_bits = sha->msg_bits;
+
+ /* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
+ * SHA384/512 require 2 adjacent SB slots, with the right half in the
+ * first slot, and the left half in the second. Each portion must then
+ * be in little endian format: use the 256-bit byte swap option.
+ */
+ ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
+ DMA_BIDIRECTIONAL);
+ if (ret)
+ return ret;
+ if (sha->first) {
+ switch (sha->type) {
+ case CCP_SHA_TYPE_1:
+ case CCP_SHA_TYPE_224:
+ case CCP_SHA_TYPE_256:
+ memcpy(ctx.address + ioffset, init, ctx_size);
+ break;
+ case CCP_SHA_TYPE_384:
+ case CCP_SHA_TYPE_512:
+ memcpy(ctx.address + ctx_size / 2, init,
+ ctx_size / 2);
+ memcpy(ctx.address, init + ctx_size / 2,
+ ctx_size / 2);
+ break;
+ default:
+ ret = -EINVAL;
+ goto e_ctx;
+ }
+ } else {
+ /* Restore the context */
+ ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
+ sb_count * CCP_SB_BYTES);
+ if (ret)
+ goto e_ctx;
+ }
+
+ ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_ctx;
+ }
+
+ if (sha->src) {
+ /* Send data to the CCP SHA engine; block_size is set above */
+ ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
+ block_size, DMA_TO_DEVICE);
+ if (ret)
+ goto e_ctx;
+
+ while (src.sg_wa.bytes_left) {
+ ccp_prepare_data(&src, NULL, &op, block_size, false);
+ if (sha->final && !src.sg_wa.bytes_left)
+ op.eom = 1;
+
+ ret = cmd_q->ccp->vdata->perform->sha(&op);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_data;
+ }
+
+ ccp_process_data(&src, NULL, &op);
+ }
+ } else {
+ op.eom = 1;
+ ret = cmd_q->ccp->vdata->perform->sha(&op);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_data;
+ }
+ }
+
+ /* Retrieve the SHA context - convert from LE to BE using
+ * 32-byte (256-bit) byteswapping to BE
+ */
+ ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_data;
+ }
+
+ if (sha->final) {
+ /* Finishing up, so get the digest */
+ switch (sha->type) {
+ case CCP_SHA_TYPE_1:
+ case CCP_SHA_TYPE_224:
+ case CCP_SHA_TYPE_256:
+ ccp_get_dm_area(&ctx, ooffset,
+ sha->ctx, 0,
+ digest_size);
+ break;
+ case CCP_SHA_TYPE_384:
+ case CCP_SHA_TYPE_512:
+ ccp_get_dm_area(&ctx, 0,
+ sha->ctx, LSB_ITEM_SIZE - ooffset,
+ LSB_ITEM_SIZE);
+ ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
+ sha->ctx, 0,
+ LSB_ITEM_SIZE - ooffset);
+ break;
+ default:
+ ret = -EINVAL;
+ goto e_data;
+ }
+ } else {
+ /* Stash the context */
+ ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
+ sb_count * CCP_SB_BYTES);
+ }
+
+ if (sha->final && sha->opad) {
+ /* HMAC operation, recursively perform final SHA */
+ struct ccp_cmd hmac_cmd;
+ struct scatterlist sg;
+ u8 *hmac_buf;
+
+ if (sha->opad_len != block_size) {
+ ret = -EINVAL;
+ goto e_data;
+ }
+
+ hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
+ if (!hmac_buf) {
+ ret = -ENOMEM;
+ goto e_data;
+ }
+ sg_init_one(&sg, hmac_buf, block_size + digest_size);
+
+ scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
+ switch (sha->type) {
+ case CCP_SHA_TYPE_1:
+ case CCP_SHA_TYPE_224:
+ case CCP_SHA_TYPE_256:
+ memcpy(hmac_buf + block_size,
+ ctx.address + ooffset,
+ digest_size);
+ break;
+ case CCP_SHA_TYPE_384:
+ case CCP_SHA_TYPE_512:
+ memcpy(hmac_buf + block_size,
+ ctx.address + LSB_ITEM_SIZE + ooffset,
+ LSB_ITEM_SIZE);
+ memcpy(hmac_buf + block_size +
+ (LSB_ITEM_SIZE - ooffset),
+ ctx.address,
+ LSB_ITEM_SIZE);
+ break;
+ default:
+ kfree(hmac_buf);
+ ret = -EINVAL;
+ goto e_data;
+ }
+
+ memset(&hmac_cmd, 0, sizeof(hmac_cmd));
+ hmac_cmd.engine = CCP_ENGINE_SHA;
+ hmac_cmd.u.sha.type = sha->type;
+ hmac_cmd.u.sha.ctx = sha->ctx;
+ hmac_cmd.u.sha.ctx_len = sha->ctx_len;
+ hmac_cmd.u.sha.src = &sg;
+ hmac_cmd.u.sha.src_len = block_size + digest_size;
+ hmac_cmd.u.sha.opad = NULL;
+ hmac_cmd.u.sha.opad_len = 0;
+ hmac_cmd.u.sha.first = 1;
+ hmac_cmd.u.sha.final = 1;
+ hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
+
+ ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
+ if (ret)
+ cmd->engine_error = hmac_cmd.engine_error;
+
+ kfree(hmac_buf);
+ }
+
+e_data:
+ if (sha->src)
+ ccp_free_data(&src, cmd_q);
+
+e_ctx:
+ ccp_dm_free(&ctx);
+
+ return ret;
+}
+
+static noinline_for_stack int
+ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+ struct ccp_rsa_engine *rsa = &cmd->u.rsa;
+ struct ccp_dm_workarea exp, src, dst;
+ struct ccp_op op;
+ unsigned int sb_count, i_len, o_len;
+ int ret;
+
+ /* Check against the maximum allowable size, in bits */
+ if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
+ return -EINVAL;
+
+ if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
+ return -EINVAL;
+
+ memset(&op, 0, sizeof(op));
+ op.cmd_q = cmd_q;
+ op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+
+ /* The RSA modulus must precede the message being acted upon, so
+ * it must be copied to a DMA area where the message and the
+ * modulus can be concatenated. Therefore the input buffer
+ * length required is twice the output buffer length (which
+ * must be a multiple of 256-bits). Compute o_len, i_len in bytes.
+ * Buffer sizes must be a multiple of 32 bytes; rounding up may be
+ * required.
+ */
+ o_len = 32 * ((rsa->key_size + 255) / 256);
+ i_len = o_len * 2;
+
+ sb_count = 0;
+ if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
+ /* sb_count is the number of storage block slots required
+ * for the modulus.
+ */
+ sb_count = o_len / CCP_SB_BYTES;
+ op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
+ sb_count);
+ if (!op.sb_key)
+ return -EIO;
+ } else {
+ /* A version 5 device allows a modulus size that will not fit
+ * in the LSB, so the command will transfer it from memory.
+ * Set the sb key to the default, even though it's not used.
+ */
+ op.sb_key = cmd_q->sb_key;
+ }
+
+ /* The RSA exponent must be in little endian format. Reverse its
+ * byte order.
+ */
+ ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
+ if (ret)
+ goto e_sb;
+
+ ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
+ if (ret)
+ goto e_exp;
+
+ if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
+ /* Copy the exponent to the local storage block, using
+ * as many 32-byte blocks as were allocated above. It's
+ * already little endian, so no further change is required.
+ */
+ ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
+ CCP_PASSTHRU_BYTESWAP_NOOP);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_exp;
+ }
+ } else {
+ /* The exponent can be retrieved from memory via DMA. */
+ op.exp.u.dma.address = exp.dma.address;
+ op.exp.u.dma.offset = 0;
+ }
+
+ /* Concatenate the modulus and the message. Both the modulus and
+ * the operands must be in little endian format. Since the input
+ * is in big endian format it must be converted.
+ */
+ ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
+ if (ret)
+ goto e_exp;
+
+ ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
+ if (ret)
+ goto e_src;
+ ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
+ if (ret)
+ goto e_src;
+
+ /* Prepare the output area for the operation */
+ ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
+ if (ret)
+ goto e_src;
+
+ op.soc = 1;
+ op.src.u.dma.address = src.dma.address;
+ op.src.u.dma.offset = 0;
+ op.src.u.dma.length = i_len;
+ op.dst.u.dma.address = dst.dma.address;
+ op.dst.u.dma.offset = 0;
+ op.dst.u.dma.length = o_len;
+
+ op.u.rsa.mod_size = rsa->key_size;
+ op.u.rsa.input_len = i_len;
+
+ ret = cmd_q->ccp->vdata->perform->rsa(&op);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_dst;
+ }
+
+ ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
+
+e_dst:
+ ccp_dm_free(&dst);
+
+e_src:
+ ccp_dm_free(&src);
+
+e_exp:
+ ccp_dm_free(&exp);
+
+e_sb:
+ if (sb_count)
+ cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
+
+ return ret;
+}
+
+static noinline_for_stack int
+ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+ struct ccp_passthru_engine *pt = &cmd->u.passthru;
+ struct ccp_dm_workarea mask;
+ struct ccp_data src, dst;
+ struct ccp_op op;
+ bool in_place = false;
+ unsigned int i;
+ int ret = 0;
+
+ if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
+ return -EINVAL;
+
+ if (!pt->src || !pt->dst)
+ return -EINVAL;
+
+ if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
+ if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
+ return -EINVAL;
+ if (!pt->mask)
+ return -EINVAL;
+ }
+
+ BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
+
+ memset(&op, 0, sizeof(op));
+ op.cmd_q = cmd_q;
+ op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+
+ if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
+ /* Load the mask */
+ op.sb_key = cmd_q->sb_key;
+
+ ret = ccp_init_dm_workarea(&mask, cmd_q,
+ CCP_PASSTHRU_SB_COUNT *
+ CCP_SB_BYTES,
+ DMA_TO_DEVICE);
+ if (ret)
+ return ret;
+
+ ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
+ if (ret)
+ goto e_mask;
+ ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
+ CCP_PASSTHRU_BYTESWAP_NOOP);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_mask;
+ }
+ }
+
+ /* Prepare the input and output data workareas. For in-place
+ * operations we need to set the dma direction to BIDIRECTIONAL
+ * and copy the src workarea to the dst workarea.
+ */
+ if (sg_virt(pt->src) == sg_virt(pt->dst))
+ in_place = true;
+
+ ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
+ CCP_PASSTHRU_MASKSIZE,
+ in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
+ if (ret)
+ goto e_mask;
+
+ if (in_place) {
+ dst = src;
+ } else {
+ ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
+ CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
+ if (ret)
+ goto e_src;
+ }
+
+ /* Send data to the CCP Passthru engine
+ * Because the CCP engine works on a single source and destination
+ * dma address at a time, each entry in the source scatterlist
+ * (after the dma_map_sg call) must be less than or equal to the
+ * (remaining) length in the destination scatterlist entry and the
+ * length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
+ */
+ dst.sg_wa.sg_used = 0;
+ for (i = 1; i <= src.sg_wa.dma_count; i++) {
+ if (!dst.sg_wa.sg ||
+ (sg_dma_len(dst.sg_wa.sg) < sg_dma_len(src.sg_wa.sg))) {
+ ret = -EINVAL;
+ goto e_dst;
+ }
+
+ if (i == src.sg_wa.dma_count) {
+ op.eom = 1;
+ op.soc = 1;
+ }
+
+ op.src.type = CCP_MEMTYPE_SYSTEM;
+ op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
+ op.src.u.dma.offset = 0;
+ op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
+
+ op.dst.type = CCP_MEMTYPE_SYSTEM;
+ op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
+ op.dst.u.dma.offset = dst.sg_wa.sg_used;
+ op.dst.u.dma.length = op.src.u.dma.length;
+
+ ret = cmd_q->ccp->vdata->perform->passthru(&op);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_dst;
+ }
+
+ dst.sg_wa.sg_used += sg_dma_len(src.sg_wa.sg);
+ if (dst.sg_wa.sg_used == sg_dma_len(dst.sg_wa.sg)) {
+ dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
+ dst.sg_wa.sg_used = 0;
+ }
+ src.sg_wa.sg = sg_next(src.sg_wa.sg);
+ }
+
+e_dst:
+ if (!in_place)
+ ccp_free_data(&dst, cmd_q);
+
+e_src:
+ ccp_free_data(&src, cmd_q);
+
+e_mask:
+ if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
+ ccp_dm_free(&mask);
+
+ return ret;
+}
+
+static noinline_for_stack int
+ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
+ struct ccp_cmd *cmd)
+{
+ struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
+ struct ccp_dm_workarea mask;
+ struct ccp_op op;
+ int ret;
+
+ if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
+ return -EINVAL;
+
+ if (!pt->src_dma || !pt->dst_dma)
+ return -EINVAL;
+
+ if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
+ if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
+ return -EINVAL;
+ if (!pt->mask)
+ return -EINVAL;
+ }
+
+ BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
+
+ memset(&op, 0, sizeof(op));
+ op.cmd_q = cmd_q;
+ op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+
+ if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
+ /* Load the mask */
+ op.sb_key = cmd_q->sb_key;
+
+ mask.length = pt->mask_len;
+ mask.dma.address = pt->mask;
+ mask.dma.length = pt->mask_len;
+
+ ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
+ CCP_PASSTHRU_BYTESWAP_NOOP);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ return ret;
+ }
+ }
+
+ /* Send data to the CCP Passthru engine */
+ op.eom = 1;
+ op.soc = 1;
+
+ op.src.type = CCP_MEMTYPE_SYSTEM;
+ op.src.u.dma.address = pt->src_dma;
+ op.src.u.dma.offset = 0;
+ op.src.u.dma.length = pt->src_len;
+
+ op.dst.type = CCP_MEMTYPE_SYSTEM;
+ op.dst.u.dma.address = pt->dst_dma;
+ op.dst.u.dma.offset = 0;
+ op.dst.u.dma.length = pt->src_len;
+
+ ret = cmd_q->ccp->vdata->perform->passthru(&op);
+ if (ret)
+ cmd->engine_error = cmd_q->cmd_error;
+
+ return ret;
+}
+
+static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+ struct ccp_ecc_engine *ecc = &cmd->u.ecc;
+ struct ccp_dm_workarea src, dst;
+ struct ccp_op op;
+ int ret;
+ u8 *save;
+
+ if (!ecc->u.mm.operand_1 ||
+ (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
+ return -EINVAL;
+
+ if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
+ if (!ecc->u.mm.operand_2 ||
+ (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
+ return -EINVAL;
+
+ if (!ecc->u.mm.result ||
+ (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
+ return -EINVAL;
+
+ memset(&op, 0, sizeof(op));
+ op.cmd_q = cmd_q;
+ op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+
+ /* Concatenate the modulus and the operands. Both the modulus and
+ * the operands must be in little endian format. Since the input
+ * is in big endian format it must be converted and placed in a
+ * fixed length buffer.
+ */
+ ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
+ DMA_TO_DEVICE);
+ if (ret)
+ return ret;
+
+ /* Save the workarea address since it is updated in order to perform
+ * the concatenation
+ */
+ save = src.address;
+
+ /* Copy the ECC modulus */
+ ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
+ if (ret)
+ goto e_src;
+ src.address += CCP_ECC_OPERAND_SIZE;
+
+ /* Copy the first operand */
+ ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
+ ecc->u.mm.operand_1_len);
+ if (ret)
+ goto e_src;
+ src.address += CCP_ECC_OPERAND_SIZE;
+
+ if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
+ /* Copy the second operand */
+ ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
+ ecc->u.mm.operand_2_len);
+ if (ret)
+ goto e_src;
+ src.address += CCP_ECC_OPERAND_SIZE;
+ }
+
+ /* Restore the workarea address */
+ src.address = save;
+
+ /* Prepare the output area for the operation */
+ ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
+ DMA_FROM_DEVICE);
+ if (ret)
+ goto e_src;
+
+ op.soc = 1;
+ op.src.u.dma.address = src.dma.address;
+ op.src.u.dma.offset = 0;
+ op.src.u.dma.length = src.length;
+ op.dst.u.dma.address = dst.dma.address;
+ op.dst.u.dma.offset = 0;
+ op.dst.u.dma.length = dst.length;
+
+ op.u.ecc.function = cmd->u.ecc.function;
+
+ ret = cmd_q->ccp->vdata->perform->ecc(&op);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_dst;
+ }
+
+ ecc->ecc_result = le16_to_cpup(
+ (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
+ if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
+ ret = -EIO;
+ goto e_dst;
+ }
+
+ /* Save the ECC result */
+ ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
+ CCP_ECC_MODULUS_BYTES);
+
+e_dst:
+ ccp_dm_free(&dst);
+
+e_src:
+ ccp_dm_free(&src);
+
+ return ret;
+}
+
+static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+ struct ccp_ecc_engine *ecc = &cmd->u.ecc;
+ struct ccp_dm_workarea src, dst;
+ struct ccp_op op;
+ int ret;
+ u8 *save;
+
+ if (!ecc->u.pm.point_1.x ||
+ (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
+ !ecc->u.pm.point_1.y ||
+ (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
+ return -EINVAL;
+
+ if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
+ if (!ecc->u.pm.point_2.x ||
+ (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
+ !ecc->u.pm.point_2.y ||
+ (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
+ return -EINVAL;
+ } else {
+ if (!ecc->u.pm.domain_a ||
+ (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
+ return -EINVAL;
+
+ if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
+ if (!ecc->u.pm.scalar ||
+ (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
+ return -EINVAL;
+ }
+
+ if (!ecc->u.pm.result.x ||
+ (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
+ !ecc->u.pm.result.y ||
+ (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
+ return -EINVAL;
+
+ memset(&op, 0, sizeof(op));
+ op.cmd_q = cmd_q;
+ op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+
+ /* Concatenate the modulus and the operands. Both the modulus and
+ * the operands must be in little endian format. Since the input
+ * is in big endian format it must be converted and placed in a
+ * fixed length buffer.
+ */
+ ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
+ DMA_TO_DEVICE);
+ if (ret)
+ return ret;
+
+ /* Save the workarea address since it is updated in order to perform
+ * the concatenation
+ */
+ save = src.address;
+
+ /* Copy the ECC modulus */
+ ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
+ if (ret)
+ goto e_src;
+ src.address += CCP_ECC_OPERAND_SIZE;
+
+ /* Copy the first point X and Y coordinate */
+ ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
+ ecc->u.pm.point_1.x_len);
+ if (ret)
+ goto e_src;
+ src.address += CCP_ECC_OPERAND_SIZE;
+ ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
+ ecc->u.pm.point_1.y_len);
+ if (ret)
+ goto e_src;
+ src.address += CCP_ECC_OPERAND_SIZE;
+
+ /* Set the first point Z coordinate to 1 */
+ *src.address = 0x01;
+ src.address += CCP_ECC_OPERAND_SIZE;
+
+ if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
+ /* Copy the second point X and Y coordinate */
+ ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
+ ecc->u.pm.point_2.x_len);
+ if (ret)
+ goto e_src;
+ src.address += CCP_ECC_OPERAND_SIZE;
+ ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
+ ecc->u.pm.point_2.y_len);
+ if (ret)
+ goto e_src;
+ src.address += CCP_ECC_OPERAND_SIZE;
+
+ /* Set the second point Z coordinate to 1 */
+ *src.address = 0x01;
+ src.address += CCP_ECC_OPERAND_SIZE;
+ } else {
+ /* Copy the Domain "a" parameter */
+ ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
+ ecc->u.pm.domain_a_len);
+ if (ret)
+ goto e_src;
+ src.address += CCP_ECC_OPERAND_SIZE;
+
+ if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
+ /* Copy the scalar value */
+ ret = ccp_reverse_set_dm_area(&src, 0,
+ ecc->u.pm.scalar, 0,
+ ecc->u.pm.scalar_len);
+ if (ret)
+ goto e_src;
+ src.address += CCP_ECC_OPERAND_SIZE;
+ }
+ }
+
+ /* Restore the workarea address */
+ src.address = save;
+
+ /* Prepare the output area for the operation */
+ ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
+ DMA_FROM_DEVICE);
+ if (ret)
+ goto e_src;
+
+ op.soc = 1;
+ op.src.u.dma.address = src.dma.address;
+ op.src.u.dma.offset = 0;
+ op.src.u.dma.length = src.length;
+ op.dst.u.dma.address = dst.dma.address;
+ op.dst.u.dma.offset = 0;
+ op.dst.u.dma.length = dst.length;
+
+ op.u.ecc.function = cmd->u.ecc.function;
+
+ ret = cmd_q->ccp->vdata->perform->ecc(&op);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_dst;
+ }
+
+ ecc->ecc_result = le16_to_cpup(
+ (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
+ if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
+ ret = -EIO;
+ goto e_dst;
+ }
+
+ /* Save the workarea address since it is updated as we walk through
+ * to copy the point math result
+ */
+ save = dst.address;
+
+ /* Save the ECC result X and Y coordinates */
+ ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
+ CCP_ECC_MODULUS_BYTES);
+ dst.address += CCP_ECC_OUTPUT_SIZE;
+ ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
+ CCP_ECC_MODULUS_BYTES);
+
+ /* Restore the workarea address */
+ dst.address = save;
+
+e_dst:
+ ccp_dm_free(&dst);
+
+e_src:
+ ccp_dm_free(&src);
+
+ return ret;
+}
+
+static noinline_for_stack int
+ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+ struct ccp_ecc_engine *ecc = &cmd->u.ecc;
+
+ ecc->ecc_result = 0;
+
+ if (!ecc->mod ||
+ (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
+ return -EINVAL;
+
+ switch (ecc->function) {
+ case CCP_ECC_FUNCTION_MMUL_384BIT:
+ case CCP_ECC_FUNCTION_MADD_384BIT:
+ case CCP_ECC_FUNCTION_MINV_384BIT:
+ return ccp_run_ecc_mm_cmd(cmd_q, cmd);
+
+ case CCP_ECC_FUNCTION_PADD_384BIT:
+ case CCP_ECC_FUNCTION_PMUL_384BIT:
+ case CCP_ECC_FUNCTION_PDBL_384BIT:
+ return ccp_run_ecc_pm_cmd(cmd_q, cmd);
+
+ default:
+ return -EINVAL;
+ }
+}
+
+int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
+{
+ int ret;
+
+ cmd->engine_error = 0;
+ cmd_q->cmd_error = 0;
+ cmd_q->int_rcvd = 0;
+ cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
+
+ switch (cmd->engine) {
+ case CCP_ENGINE_AES:
+ switch (cmd->u.aes.mode) {
+ case CCP_AES_MODE_CMAC:
+ ret = ccp_run_aes_cmac_cmd(cmd_q, cmd);
+ break;
+ case CCP_AES_MODE_GCM:
+ ret = ccp_run_aes_gcm_cmd(cmd_q, cmd);
+ break;
+ default:
+ ret = ccp_run_aes_cmd(cmd_q, cmd);
+ break;
+ }
+ break;
+ case CCP_ENGINE_XTS_AES_128:
+ ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
+ break;
+ case CCP_ENGINE_DES3:
+ ret = ccp_run_des3_cmd(cmd_q, cmd);
+ break;
+ case CCP_ENGINE_SHA:
+ ret = ccp_run_sha_cmd(cmd_q, cmd);
+ break;
+ case CCP_ENGINE_RSA:
+ ret = ccp_run_rsa_cmd(cmd_q, cmd);
+ break;
+ case CCP_ENGINE_PASSTHRU:
+ if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
+ ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
+ else
+ ret = ccp_run_passthru_cmd(cmd_q, cmd);
+ break;
+ case CCP_ENGINE_ECC:
+ ret = ccp_run_ecc_cmd(cmd_q, cmd);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+ return ret;
+}