summaryrefslogtreecommitdiffstats
path: root/drivers/infiniband/hw/mlx4/mr.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/infiniband/hw/mlx4/mr.c')
-rw-r--r--drivers/infiniband/hw/mlx4/mr.c717
1 files changed, 717 insertions, 0 deletions
diff --git a/drivers/infiniband/hw/mlx4/mr.c b/drivers/infiniband/hw/mlx4/mr.c
new file mode 100644
index 000000000..a40bf58bc
--- /dev/null
+++ b/drivers/infiniband/hw/mlx4/mr.c
@@ -0,0 +1,717 @@
+/*
+ * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
+ * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
+ *
+ * This software is available to you under a choice of one of two
+ * licenses. You may choose to be licensed under the terms of the GNU
+ * General Public License (GPL) Version 2, available from the file
+ * COPYING in the main directory of this source tree, or the
+ * OpenIB.org BSD license below:
+ *
+ * Redistribution and use in source and binary forms, with or
+ * without modification, are permitted provided that the following
+ * conditions are met:
+ *
+ * - Redistributions of source code must retain the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer.
+ *
+ * - Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer in the documentation and/or other materials
+ * provided with the distribution.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include <linux/slab.h>
+#include <rdma/ib_user_verbs.h>
+
+#include "mlx4_ib.h"
+
+static u32 convert_access(int acc)
+{
+ return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC : 0) |
+ (acc & IB_ACCESS_REMOTE_WRITE ? MLX4_PERM_REMOTE_WRITE : 0) |
+ (acc & IB_ACCESS_REMOTE_READ ? MLX4_PERM_REMOTE_READ : 0) |
+ (acc & IB_ACCESS_LOCAL_WRITE ? MLX4_PERM_LOCAL_WRITE : 0) |
+ (acc & IB_ACCESS_MW_BIND ? MLX4_PERM_BIND_MW : 0) |
+ MLX4_PERM_LOCAL_READ;
+}
+
+static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type)
+{
+ switch (type) {
+ case IB_MW_TYPE_1: return MLX4_MW_TYPE_1;
+ case IB_MW_TYPE_2: return MLX4_MW_TYPE_2;
+ default: return -1;
+ }
+}
+
+struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc)
+{
+ struct mlx4_ib_mr *mr;
+ int err;
+
+ mr = kzalloc(sizeof(*mr), GFP_KERNEL);
+ if (!mr)
+ return ERR_PTR(-ENOMEM);
+
+ err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0,
+ ~0ull, convert_access(acc), 0, 0, &mr->mmr);
+ if (err)
+ goto err_free;
+
+ err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr);
+ if (err)
+ goto err_mr;
+
+ mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
+ mr->umem = NULL;
+
+ return &mr->ibmr;
+
+err_mr:
+ (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
+
+err_free:
+ kfree(mr);
+
+ return ERR_PTR(err);
+}
+
+enum {
+ MLX4_MAX_MTT_SHIFT = 31
+};
+
+static int mlx4_ib_umem_write_mtt_block(struct mlx4_ib_dev *dev,
+ struct mlx4_mtt *mtt,
+ u64 mtt_size, u64 mtt_shift, u64 len,
+ u64 cur_start_addr, u64 *pages,
+ int *start_index, int *npages)
+{
+ u64 cur_end_addr = cur_start_addr + len;
+ u64 cur_end_addr_aligned = 0;
+ u64 mtt_entries;
+ int err = 0;
+ int k;
+
+ len += (cur_start_addr & (mtt_size - 1ULL));
+ cur_end_addr_aligned = round_up(cur_end_addr, mtt_size);
+ len += (cur_end_addr_aligned - cur_end_addr);
+ if (len & (mtt_size - 1ULL)) {
+ pr_warn("write_block: len %llx is not aligned to mtt_size %llx\n",
+ len, mtt_size);
+ return -EINVAL;
+ }
+
+ mtt_entries = (len >> mtt_shift);
+
+ /*
+ * Align the MTT start address to the mtt_size.
+ * Required to handle cases when the MR starts in the middle of an MTT
+ * record. Was not required in old code since the physical addresses
+ * provided by the dma subsystem were page aligned, which was also the
+ * MTT size.
+ */
+ cur_start_addr = round_down(cur_start_addr, mtt_size);
+ /* A new block is started ... */
+ for (k = 0; k < mtt_entries; ++k) {
+ pages[*npages] = cur_start_addr + (mtt_size * k);
+ (*npages)++;
+ /*
+ * Be friendly to mlx4_write_mtt() and pass it chunks of
+ * appropriate size.
+ */
+ if (*npages == PAGE_SIZE / sizeof(u64)) {
+ err = mlx4_write_mtt(dev->dev, mtt, *start_index,
+ *npages, pages);
+ if (err)
+ return err;
+
+ (*start_index) += *npages;
+ *npages = 0;
+ }
+ }
+
+ return 0;
+}
+
+static inline u64 alignment_of(u64 ptr)
+{
+ return ilog2(ptr & (~(ptr - 1)));
+}
+
+static int mlx4_ib_umem_calc_block_mtt(u64 next_block_start,
+ u64 current_block_end,
+ u64 block_shift)
+{
+ /* Check whether the alignment of the new block is aligned as well as
+ * the previous block.
+ * Block address must start with zeros till size of entity_size.
+ */
+ if ((next_block_start & ((1ULL << block_shift) - 1ULL)) != 0)
+ /*
+ * It is not as well aligned as the previous block-reduce the
+ * mtt size accordingly. Here we take the last right bit which
+ * is 1.
+ */
+ block_shift = alignment_of(next_block_start);
+
+ /*
+ * Check whether the alignment of the end of previous block - is it
+ * aligned as well as the start of the block
+ */
+ if (((current_block_end) & ((1ULL << block_shift) - 1ULL)) != 0)
+ /*
+ * It is not as well aligned as the start of the block -
+ * reduce the mtt size accordingly.
+ */
+ block_shift = alignment_of(current_block_end);
+
+ return block_shift;
+}
+
+int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt,
+ struct ib_umem *umem)
+{
+ u64 *pages;
+ u64 len = 0;
+ int err = 0;
+ u64 mtt_size;
+ u64 cur_start_addr = 0;
+ u64 mtt_shift;
+ int start_index = 0;
+ int npages = 0;
+ struct scatterlist *sg;
+ int i;
+
+ pages = (u64 *) __get_free_page(GFP_KERNEL);
+ if (!pages)
+ return -ENOMEM;
+
+ mtt_shift = mtt->page_shift;
+ mtt_size = 1ULL << mtt_shift;
+
+ for_each_sgtable_dma_sg(&umem->sgt_append.sgt, sg, i) {
+ if (cur_start_addr + len == sg_dma_address(sg)) {
+ /* still the same block */
+ len += sg_dma_len(sg);
+ continue;
+ }
+ /*
+ * A new block is started ...
+ * If len is malaligned, write an extra mtt entry to cover the
+ * misaligned area (round up the division)
+ */
+ err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
+ mtt_shift, len,
+ cur_start_addr,
+ pages, &start_index,
+ &npages);
+ if (err)
+ goto out;
+
+ cur_start_addr = sg_dma_address(sg);
+ len = sg_dma_len(sg);
+ }
+
+ /* Handle the last block */
+ if (len > 0) {
+ /*
+ * If len is malaligned, write an extra mtt entry to cover
+ * the misaligned area (round up the division)
+ */
+ err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
+ mtt_shift, len,
+ cur_start_addr, pages,
+ &start_index, &npages);
+ if (err)
+ goto out;
+ }
+
+ if (npages)
+ err = mlx4_write_mtt(dev->dev, mtt, start_index, npages, pages);
+
+out:
+ free_page((unsigned long) pages);
+ return err;
+}
+
+/*
+ * Calculate optimal mtt size based on contiguous pages.
+ * Function will return also the number of pages that are not aligned to the
+ * calculated mtt_size to be added to total number of pages. For that we should
+ * check the first chunk length & last chunk length and if not aligned to
+ * mtt_size we should increment the non_aligned_pages number. All chunks in the
+ * middle already handled as part of mtt shift calculation for both their start
+ * & end addresses.
+ */
+int mlx4_ib_umem_calc_optimal_mtt_size(struct ib_umem *umem, u64 start_va,
+ int *num_of_mtts)
+{
+ u64 block_shift = MLX4_MAX_MTT_SHIFT;
+ u64 min_shift = PAGE_SHIFT;
+ u64 last_block_aligned_end = 0;
+ u64 current_block_start = 0;
+ u64 first_block_start = 0;
+ u64 current_block_len = 0;
+ u64 last_block_end = 0;
+ struct scatterlist *sg;
+ u64 current_block_end;
+ u64 misalignment_bits;
+ u64 next_block_start;
+ u64 total_len = 0;
+ int i;
+
+ *num_of_mtts = ib_umem_num_dma_blocks(umem, PAGE_SIZE);
+
+ for_each_sgtable_dma_sg(&umem->sgt_append.sgt, sg, i) {
+ /*
+ * Initialization - save the first chunk start as the
+ * current_block_start - block means contiguous pages.
+ */
+ if (current_block_len == 0 && current_block_start == 0) {
+ current_block_start = sg_dma_address(sg);
+ first_block_start = current_block_start;
+ /*
+ * Find the bits that are different between the physical
+ * address and the virtual address for the start of the
+ * MR.
+ * umem_get aligned the start_va to a page boundary.
+ * Therefore, we need to align the start va to the same
+ * boundary.
+ * misalignment_bits is needed to handle the case of a
+ * single memory region. In this case, the rest of the
+ * logic will not reduce the block size. If we use a
+ * block size which is bigger than the alignment of the
+ * misalignment bits, we might use the virtual page
+ * number instead of the physical page number, resulting
+ * in access to the wrong data.
+ */
+ misalignment_bits =
+ (start_va & (~(((u64)(PAGE_SIZE)) - 1ULL))) ^
+ current_block_start;
+ block_shift = min(alignment_of(misalignment_bits),
+ block_shift);
+ }
+
+ /*
+ * Go over the scatter entries and check if they continue the
+ * previous scatter entry.
+ */
+ next_block_start = sg_dma_address(sg);
+ current_block_end = current_block_start + current_block_len;
+ /* If we have a split (non-contig.) between two blocks */
+ if (current_block_end != next_block_start) {
+ block_shift = mlx4_ib_umem_calc_block_mtt
+ (next_block_start,
+ current_block_end,
+ block_shift);
+
+ /*
+ * If we reached the minimum shift for 4k page we stop
+ * the loop.
+ */
+ if (block_shift <= min_shift)
+ goto end;
+
+ /*
+ * If not saved yet we are in first block - we save the
+ * length of first block to calculate the
+ * non_aligned_pages number at the end.
+ */
+ total_len += current_block_len;
+
+ /* Start a new block */
+ current_block_start = next_block_start;
+ current_block_len = sg_dma_len(sg);
+ continue;
+ }
+ /* The scatter entry is another part of the current block,
+ * increase the block size.
+ * An entry in the scatter can be larger than 4k (page) as of
+ * dma mapping which merge some blocks together.
+ */
+ current_block_len += sg_dma_len(sg);
+ }
+
+ /* Account for the last block in the total len */
+ total_len += current_block_len;
+ /* Add to the first block the misalignment that it suffers from. */
+ total_len += (first_block_start & ((1ULL << block_shift) - 1ULL));
+ last_block_end = current_block_start + current_block_len;
+ last_block_aligned_end = round_up(last_block_end, 1ULL << block_shift);
+ total_len += (last_block_aligned_end - last_block_end);
+
+ if (total_len & ((1ULL << block_shift) - 1ULL))
+ pr_warn("misaligned total length detected (%llu, %llu)!",
+ total_len, block_shift);
+
+ *num_of_mtts = total_len >> block_shift;
+end:
+ if (block_shift < min_shift) {
+ /*
+ * If shift is less than the min we set a warning and return the
+ * min shift.
+ */
+ pr_warn("umem_calc_optimal_mtt_size - unexpected shift %lld\n", block_shift);
+
+ block_shift = min_shift;
+ }
+ return block_shift;
+}
+
+static struct ib_umem *mlx4_get_umem_mr(struct ib_device *device, u64 start,
+ u64 length, int access_flags)
+{
+ /*
+ * Force registering the memory as writable if the underlying pages
+ * are writable. This is so rereg can change the access permissions
+ * from readable to writable without having to run through ib_umem_get
+ * again
+ */
+ if (!ib_access_writable(access_flags)) {
+ unsigned long untagged_start = untagged_addr(start);
+ struct vm_area_struct *vma;
+
+ mmap_read_lock(current->mm);
+ /*
+ * FIXME: Ideally this would iterate over all the vmas that
+ * cover the memory, but for now it requires a single vma to
+ * entirely cover the MR to support RO mappings.
+ */
+ vma = find_vma(current->mm, untagged_start);
+ if (vma && vma->vm_end >= untagged_start + length &&
+ vma->vm_start <= untagged_start) {
+ if (vma->vm_flags & VM_WRITE)
+ access_flags |= IB_ACCESS_LOCAL_WRITE;
+ } else {
+ access_flags |= IB_ACCESS_LOCAL_WRITE;
+ }
+
+ mmap_read_unlock(current->mm);
+ }
+
+ return ib_umem_get(device, start, length, access_flags);
+}
+
+struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
+ u64 virt_addr, int access_flags,
+ struct ib_udata *udata)
+{
+ struct mlx4_ib_dev *dev = to_mdev(pd->device);
+ struct mlx4_ib_mr *mr;
+ int shift;
+ int err;
+ int n;
+
+ mr = kzalloc(sizeof(*mr), GFP_KERNEL);
+ if (!mr)
+ return ERR_PTR(-ENOMEM);
+
+ mr->umem = mlx4_get_umem_mr(pd->device, start, length, access_flags);
+ if (IS_ERR(mr->umem)) {
+ err = PTR_ERR(mr->umem);
+ goto err_free;
+ }
+
+ shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n);
+
+ err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length,
+ convert_access(access_flags), n, shift, &mr->mmr);
+ if (err)
+ goto err_umem;
+
+ err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem);
+ if (err)
+ goto err_mr;
+
+ err = mlx4_mr_enable(dev->dev, &mr->mmr);
+ if (err)
+ goto err_mr;
+
+ mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
+ mr->ibmr.page_size = 1U << shift;
+
+ return &mr->ibmr;
+
+err_mr:
+ (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
+
+err_umem:
+ ib_umem_release(mr->umem);
+
+err_free:
+ kfree(mr);
+
+ return ERR_PTR(err);
+}
+
+struct ib_mr *mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags, u64 start,
+ u64 length, u64 virt_addr,
+ int mr_access_flags, struct ib_pd *pd,
+ struct ib_udata *udata)
+{
+ struct mlx4_ib_dev *dev = to_mdev(mr->device);
+ struct mlx4_ib_mr *mmr = to_mmr(mr);
+ struct mlx4_mpt_entry *mpt_entry;
+ struct mlx4_mpt_entry **pmpt_entry = &mpt_entry;
+ int err;
+
+ /* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs,
+ * we assume that the calls can't run concurrently. Otherwise, a
+ * race exists.
+ */
+ err = mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry);
+ if (err)
+ return ERR_PTR(err);
+
+ if (flags & IB_MR_REREG_PD) {
+ err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry,
+ to_mpd(pd)->pdn);
+
+ if (err)
+ goto release_mpt_entry;
+ }
+
+ if (flags & IB_MR_REREG_ACCESS) {
+ if (ib_access_writable(mr_access_flags) &&
+ !mmr->umem->writable) {
+ err = -EPERM;
+ goto release_mpt_entry;
+ }
+
+ err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry,
+ convert_access(mr_access_flags));
+
+ if (err)
+ goto release_mpt_entry;
+ }
+
+ if (flags & IB_MR_REREG_TRANS) {
+ int shift;
+ int n;
+
+ mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
+ ib_umem_release(mmr->umem);
+ mmr->umem = mlx4_get_umem_mr(mr->device, start, length,
+ mr_access_flags);
+ if (IS_ERR(mmr->umem)) {
+ err = PTR_ERR(mmr->umem);
+ /* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */
+ mmr->umem = NULL;
+ goto release_mpt_entry;
+ }
+ n = ib_umem_num_dma_blocks(mmr->umem, PAGE_SIZE);
+ shift = PAGE_SHIFT;
+
+ err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr,
+ virt_addr, length, n, shift,
+ *pmpt_entry);
+ if (err) {
+ ib_umem_release(mmr->umem);
+ goto release_mpt_entry;
+ }
+ mmr->mmr.iova = virt_addr;
+ mmr->mmr.size = length;
+
+ err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem);
+ if (err) {
+ mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
+ ib_umem_release(mmr->umem);
+ goto release_mpt_entry;
+ }
+ }
+
+ /* If we couldn't transfer the MR to the HCA, just remember to
+ * return a failure. But dereg_mr will free the resources.
+ */
+ err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry);
+ if (!err && flags & IB_MR_REREG_ACCESS)
+ mmr->mmr.access = mr_access_flags;
+
+release_mpt_entry:
+ mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry);
+ if (err)
+ return ERR_PTR(err);
+ return NULL;
+}
+
+static int
+mlx4_alloc_priv_pages(struct ib_device *device,
+ struct mlx4_ib_mr *mr,
+ int max_pages)
+{
+ int ret;
+
+ /* Ensure that size is aligned to DMA cacheline
+ * requirements.
+ * max_pages is limited to MLX4_MAX_FAST_REG_PAGES
+ * so page_map_size will never cross PAGE_SIZE.
+ */
+ mr->page_map_size = roundup(max_pages * sizeof(u64),
+ MLX4_MR_PAGES_ALIGN);
+
+ /* Prevent cross page boundary allocation. */
+ mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL);
+ if (!mr->pages)
+ return -ENOMEM;
+
+ mr->page_map = dma_map_single(device->dev.parent, mr->pages,
+ mr->page_map_size, DMA_TO_DEVICE);
+
+ if (dma_mapping_error(device->dev.parent, mr->page_map)) {
+ ret = -ENOMEM;
+ goto err;
+ }
+
+ return 0;
+
+err:
+ free_page((unsigned long)mr->pages);
+ return ret;
+}
+
+static void
+mlx4_free_priv_pages(struct mlx4_ib_mr *mr)
+{
+ if (mr->pages) {
+ struct ib_device *device = mr->ibmr.device;
+
+ dma_unmap_single(device->dev.parent, mr->page_map,
+ mr->page_map_size, DMA_TO_DEVICE);
+ free_page((unsigned long)mr->pages);
+ mr->pages = NULL;
+ }
+}
+
+int mlx4_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
+{
+ struct mlx4_ib_mr *mr = to_mmr(ibmr);
+ int ret;
+
+ mlx4_free_priv_pages(mr);
+
+ ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr);
+ if (ret)
+ return ret;
+ if (mr->umem)
+ ib_umem_release(mr->umem);
+ kfree(mr);
+
+ return 0;
+}
+
+int mlx4_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
+{
+ struct mlx4_ib_dev *dev = to_mdev(ibmw->device);
+ struct mlx4_ib_mw *mw = to_mmw(ibmw);
+ int err;
+
+ err = mlx4_mw_alloc(dev->dev, to_mpd(ibmw->pd)->pdn,
+ to_mlx4_type(ibmw->type), &mw->mmw);
+ if (err)
+ return err;
+
+ err = mlx4_mw_enable(dev->dev, &mw->mmw);
+ if (err)
+ goto err_mw;
+
+ ibmw->rkey = mw->mmw.key;
+ return 0;
+
+err_mw:
+ mlx4_mw_free(dev->dev, &mw->mmw);
+ return err;
+}
+
+int mlx4_ib_dealloc_mw(struct ib_mw *ibmw)
+{
+ struct mlx4_ib_mw *mw = to_mmw(ibmw);
+
+ mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw);
+ return 0;
+}
+
+struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
+ u32 max_num_sg)
+{
+ struct mlx4_ib_dev *dev = to_mdev(pd->device);
+ struct mlx4_ib_mr *mr;
+ int err;
+
+ if (mr_type != IB_MR_TYPE_MEM_REG ||
+ max_num_sg > MLX4_MAX_FAST_REG_PAGES)
+ return ERR_PTR(-EINVAL);
+
+ mr = kzalloc(sizeof(*mr), GFP_KERNEL);
+ if (!mr)
+ return ERR_PTR(-ENOMEM);
+
+ err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0,
+ max_num_sg, 0, &mr->mmr);
+ if (err)
+ goto err_free;
+
+ err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg);
+ if (err)
+ goto err_free_mr;
+
+ mr->max_pages = max_num_sg;
+ err = mlx4_mr_enable(dev->dev, &mr->mmr);
+ if (err)
+ goto err_free_pl;
+
+ mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
+ mr->umem = NULL;
+
+ return &mr->ibmr;
+
+err_free_pl:
+ mr->ibmr.device = pd->device;
+ mlx4_free_priv_pages(mr);
+err_free_mr:
+ (void) mlx4_mr_free(dev->dev, &mr->mmr);
+err_free:
+ kfree(mr);
+ return ERR_PTR(err);
+}
+
+static int mlx4_set_page(struct ib_mr *ibmr, u64 addr)
+{
+ struct mlx4_ib_mr *mr = to_mmr(ibmr);
+
+ if (unlikely(mr->npages == mr->max_pages))
+ return -ENOMEM;
+
+ mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT);
+
+ return 0;
+}
+
+int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
+ unsigned int *sg_offset)
+{
+ struct mlx4_ib_mr *mr = to_mmr(ibmr);
+ int rc;
+
+ mr->npages = 0;
+
+ ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map,
+ mr->page_map_size, DMA_TO_DEVICE);
+
+ rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page);
+
+ ib_dma_sync_single_for_device(ibmr->device, mr->page_map,
+ mr->page_map_size, DMA_TO_DEVICE);
+
+ return rc;
+}