summaryrefslogtreecommitdiffstats
path: root/drivers/media/pci/cx18/cx18-av-audio.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--drivers/media/pci/cx18/cx18-av-audio.c457
1 files changed, 457 insertions, 0 deletions
diff --git a/drivers/media/pci/cx18/cx18-av-audio.c b/drivers/media/pci/cx18/cx18-av-audio.c
new file mode 100644
index 000000000..78e05df9a
--- /dev/null
+++ b/drivers/media/pci/cx18/cx18-av-audio.c
@@ -0,0 +1,457 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * cx18 ADEC audio functions
+ *
+ * Derived from cx25840-audio.c
+ *
+ * Copyright (C) 2007 Hans Verkuil <hverkuil@xs4all.nl>
+ * Copyright (C) 2008 Andy Walls <awalls@md.metrocast.net>
+ */
+
+#include "cx18-driver.h"
+
+static int set_audclk_freq(struct cx18 *cx, u32 freq)
+{
+ struct cx18_av_state *state = &cx->av_state;
+
+ if (freq != 32000 && freq != 44100 && freq != 48000)
+ return -EINVAL;
+
+ /*
+ * The PLL parameters are based on the external crystal frequency that
+ * would ideally be:
+ *
+ * NTSC Color subcarrier freq * 8 =
+ * 4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz
+ *
+ * The accidents of history and rationale that explain from where this
+ * combination of magic numbers originate can be found in:
+ *
+ * [1] Abrahams, I. C., "Choice of Chrominance Subcarrier Frequency in
+ * the NTSC Standards", Proceedings of the I-R-E, January 1954, pp 79-80
+ *
+ * [2] Abrahams, I. C., "The 'Frequency Interleaving' Principle in the
+ * NTSC Standards", Proceedings of the I-R-E, January 1954, pp 81-83
+ *
+ * As Mike Bradley has rightly pointed out, it's not the exact crystal
+ * frequency that matters, only that all parts of the driver and
+ * firmware are using the same value (close to the ideal value).
+ *
+ * Since I have a strong suspicion that, if the firmware ever assumes a
+ * crystal value at all, it will assume 28.636360 MHz, the crystal
+ * freq used in calculations in this driver will be:
+ *
+ * xtal_freq = 28.636360 MHz
+ *
+ * an error of less than 0.13 ppm which is way, way better than any off
+ * the shelf crystal will have for accuracy anyway.
+ *
+ * Below I aim to run the PLLs' VCOs near 400 MHz to minimize error.
+ *
+ * Many thanks to Jeff Campbell and Mike Bradley for their extensive
+ * investigation, experimentation, testing, and suggested solutions of
+ * audio/video sync problems with SVideo and CVBS captures.
+ */
+
+ if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
+ switch (freq) {
+ case 32000:
+ /*
+ * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
+ * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
+ */
+ cx18_av_write4(cx, 0x108, 0x200d040f);
+
+ /* VID_PLL Fraction = 0x2be2fe */
+ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
+ cx18_av_write4(cx, 0x10c, 0x002be2fe);
+
+ /* AUX_PLL Fraction = 0x176740c */
+ /* xtal * 0xd.bb3a060/0x20 = 32000 * 384: 393 MHz p-pd*/
+ cx18_av_write4(cx, 0x110, 0x0176740c);
+
+ /* src3/4/6_ctl */
+ /* 0x1.f77f = (4 * xtal/8*2/455) / 32000 */
+ cx18_av_write4(cx, 0x900, 0x0801f77f);
+ cx18_av_write4(cx, 0x904, 0x0801f77f);
+ cx18_av_write4(cx, 0x90c, 0x0801f77f);
+
+ /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
+ cx18_av_write(cx, 0x127, 0x60);
+
+ /* AUD_COUNT = 0x2fff = 8 samples * 4 * 384 - 1 */
+ cx18_av_write4(cx, 0x12c, 0x11202fff);
+
+ /*
+ * EN_AV_LOCK = 0
+ * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
+ * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
+ */
+ cx18_av_write4(cx, 0x128, 0xa00d2ef8);
+ break;
+
+ case 44100:
+ /*
+ * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
+ * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x18
+ */
+ cx18_av_write4(cx, 0x108, 0x180e040f);
+
+ /* VID_PLL Fraction = 0x2be2fe */
+ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
+ cx18_av_write4(cx, 0x10c, 0x002be2fe);
+
+ /* AUX_PLL Fraction = 0x062a1f2 */
+ /* xtal * 0xe.3150f90/0x18 = 44100 * 384: 406 MHz p-pd*/
+ cx18_av_write4(cx, 0x110, 0x0062a1f2);
+
+ /* src3/4/6_ctl */
+ /* 0x1.6d59 = (4 * xtal/8*2/455) / 44100 */
+ cx18_av_write4(cx, 0x900, 0x08016d59);
+ cx18_av_write4(cx, 0x904, 0x08016d59);
+ cx18_av_write4(cx, 0x90c, 0x08016d59);
+
+ /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x18 */
+ cx18_av_write(cx, 0x127, 0x58);
+
+ /* AUD_COUNT = 0x92ff = 49 samples * 2 * 384 - 1 */
+ cx18_av_write4(cx, 0x12c, 0x112092ff);
+
+ /*
+ * EN_AV_LOCK = 0
+ * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
+ * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
+ */
+ cx18_av_write4(cx, 0x128, 0xa01d4bf8);
+ break;
+
+ case 48000:
+ /*
+ * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
+ * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x16
+ */
+ cx18_av_write4(cx, 0x108, 0x160e040f);
+
+ /* VID_PLL Fraction = 0x2be2fe */
+ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
+ cx18_av_write4(cx, 0x10c, 0x002be2fe);
+
+ /* AUX_PLL Fraction = 0x05227ad */
+ /* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz p-pd*/
+ cx18_av_write4(cx, 0x110, 0x005227ad);
+
+ /* src3/4/6_ctl */
+ /* 0x1.4faa = (4 * xtal/8*2/455) / 48000 */
+ cx18_av_write4(cx, 0x900, 0x08014faa);
+ cx18_av_write4(cx, 0x904, 0x08014faa);
+ cx18_av_write4(cx, 0x90c, 0x08014faa);
+
+ /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */
+ cx18_av_write(cx, 0x127, 0x56);
+
+ /* AUD_COUNT = 0x5fff = 4 samples * 16 * 384 - 1 */
+ cx18_av_write4(cx, 0x12c, 0x11205fff);
+
+ /*
+ * EN_AV_LOCK = 0
+ * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
+ * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
+ */
+ cx18_av_write4(cx, 0x128, 0xa01193f8);
+ break;
+ }
+ } else {
+ switch (freq) {
+ case 32000:
+ /*
+ * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
+ * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x30
+ */
+ cx18_av_write4(cx, 0x108, 0x300d040f);
+
+ /* VID_PLL Fraction = 0x2be2fe */
+ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
+ cx18_av_write4(cx, 0x10c, 0x002be2fe);
+
+ /* AUX_PLL Fraction = 0x176740c */
+ /* xtal * 0xd.bb3a060/0x30 = 32000 * 256: 393 MHz p-pd*/
+ cx18_av_write4(cx, 0x110, 0x0176740c);
+
+ /* src1_ctl */
+ /* 0x1.0000 = 32000/32000 */
+ cx18_av_write4(cx, 0x8f8, 0x08010000);
+
+ /* src3/4/6_ctl */
+ /* 0x2.0000 = 2 * (32000/32000) */
+ cx18_av_write4(cx, 0x900, 0x08020000);
+ cx18_av_write4(cx, 0x904, 0x08020000);
+ cx18_av_write4(cx, 0x90c, 0x08020000);
+
+ /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x30 */
+ cx18_av_write(cx, 0x127, 0x70);
+
+ /* AUD_COUNT = 0x1fff = 8 samples * 4 * 256 - 1 */
+ cx18_av_write4(cx, 0x12c, 0x11201fff);
+
+ /*
+ * EN_AV_LOCK = 0
+ * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
+ * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
+ */
+ cx18_av_write4(cx, 0x128, 0xa00d2ef8);
+ break;
+
+ case 44100:
+ /*
+ * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
+ * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x24
+ */
+ cx18_av_write4(cx, 0x108, 0x240e040f);
+
+ /* VID_PLL Fraction = 0x2be2fe */
+ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
+ cx18_av_write4(cx, 0x10c, 0x002be2fe);
+
+ /* AUX_PLL Fraction = 0x062a1f2 */
+ /* xtal * 0xe.3150f90/0x24 = 44100 * 256: 406 MHz p-pd*/
+ cx18_av_write4(cx, 0x110, 0x0062a1f2);
+
+ /* src1_ctl */
+ /* 0x1.60cd = 44100/32000 */
+ cx18_av_write4(cx, 0x8f8, 0x080160cd);
+
+ /* src3/4/6_ctl */
+ /* 0x1.7385 = 2 * (32000/44100) */
+ cx18_av_write4(cx, 0x900, 0x08017385);
+ cx18_av_write4(cx, 0x904, 0x08017385);
+ cx18_av_write4(cx, 0x90c, 0x08017385);
+
+ /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x24 */
+ cx18_av_write(cx, 0x127, 0x64);
+
+ /* AUD_COUNT = 0x61ff = 49 samples * 2 * 256 - 1 */
+ cx18_av_write4(cx, 0x12c, 0x112061ff);
+
+ /*
+ * EN_AV_LOCK = 0
+ * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
+ * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
+ */
+ cx18_av_write4(cx, 0x128, 0xa01d4bf8);
+ break;
+
+ case 48000:
+ /*
+ * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
+ * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
+ */
+ cx18_av_write4(cx, 0x108, 0x200d040f);
+
+ /* VID_PLL Fraction = 0x2be2fe */
+ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
+ cx18_av_write4(cx, 0x10c, 0x002be2fe);
+
+ /* AUX_PLL Fraction = 0x176740c */
+ /* xtal * 0xd.bb3a060/0x20 = 48000 * 256: 393 MHz p-pd*/
+ cx18_av_write4(cx, 0x110, 0x0176740c);
+
+ /* src1_ctl */
+ /* 0x1.8000 = 48000/32000 */
+ cx18_av_write4(cx, 0x8f8, 0x08018000);
+
+ /* src3/4/6_ctl */
+ /* 0x1.5555 = 2 * (32000/48000) */
+ cx18_av_write4(cx, 0x900, 0x08015555);
+ cx18_av_write4(cx, 0x904, 0x08015555);
+ cx18_av_write4(cx, 0x90c, 0x08015555);
+
+ /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
+ cx18_av_write(cx, 0x127, 0x60);
+
+ /* AUD_COUNT = 0x3fff = 4 samples * 16 * 256 - 1 */
+ cx18_av_write4(cx, 0x12c, 0x11203fff);
+
+ /*
+ * EN_AV_LOCK = 0
+ * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
+ * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
+ */
+ cx18_av_write4(cx, 0x128, 0xa01193f8);
+ break;
+ }
+ }
+
+ state->audclk_freq = freq;
+
+ return 0;
+}
+
+void cx18_av_audio_set_path(struct cx18 *cx)
+{
+ struct cx18_av_state *state = &cx->av_state;
+ u8 v;
+
+ /* stop microcontroller */
+ v = cx18_av_read(cx, 0x803) & ~0x10;
+ cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
+
+ /* assert soft reset */
+ v = cx18_av_read(cx, 0x810) | 0x01;
+ cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
+
+ /* Mute everything to prevent the PFFT! */
+ cx18_av_write(cx, 0x8d3, 0x1f);
+
+ if (state->aud_input <= CX18_AV_AUDIO_SERIAL2) {
+ /* Set Path1 to Serial Audio Input */
+ cx18_av_write4(cx, 0x8d0, 0x01011012);
+
+ /* The microcontroller should not be started for the
+ * non-tuner inputs: autodetection is specific for
+ * TV audio. */
+ } else {
+ /* Set Path1 to Analog Demod Main Channel */
+ cx18_av_write4(cx, 0x8d0, 0x1f063870);
+ }
+
+ set_audclk_freq(cx, state->audclk_freq);
+
+ /* deassert soft reset */
+ v = cx18_av_read(cx, 0x810) & ~0x01;
+ cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
+
+ if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
+ /* When the microcontroller detects the
+ * audio format, it will unmute the lines */
+ v = cx18_av_read(cx, 0x803) | 0x10;
+ cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
+ }
+}
+
+static void set_volume(struct cx18 *cx, int volume)
+{
+ /* First convert the volume to msp3400 values (0-127) */
+ int vol = volume >> 9;
+ /* now scale it up to cx18_av values
+ * -114dB to -96dB maps to 0
+ * this should be 19, but in my testing that was 4dB too loud */
+ if (vol <= 23)
+ vol = 0;
+ else
+ vol -= 23;
+
+ /* PATH1_VOLUME */
+ cx18_av_write(cx, 0x8d4, 228 - (vol * 2));
+}
+
+static void set_bass(struct cx18 *cx, int bass)
+{
+ /* PATH1_EQ_BASS_VOL */
+ cx18_av_and_or(cx, 0x8d9, ~0x3f, 48 - (bass * 48 / 0xffff));
+}
+
+static void set_treble(struct cx18 *cx, int treble)
+{
+ /* PATH1_EQ_TREBLE_VOL */
+ cx18_av_and_or(cx, 0x8db, ~0x3f, 48 - (treble * 48 / 0xffff));
+}
+
+static void set_balance(struct cx18 *cx, int balance)
+{
+ int bal = balance >> 8;
+ if (bal > 0x80) {
+ /* PATH1_BAL_LEFT */
+ cx18_av_and_or(cx, 0x8d5, 0x7f, 0x80);
+ /* PATH1_BAL_LEVEL */
+ cx18_av_and_or(cx, 0x8d5, ~0x7f, bal & 0x7f);
+ } else {
+ /* PATH1_BAL_LEFT */
+ cx18_av_and_or(cx, 0x8d5, 0x7f, 0x00);
+ /* PATH1_BAL_LEVEL */
+ cx18_av_and_or(cx, 0x8d5, ~0x7f, 0x80 - bal);
+ }
+}
+
+static void set_mute(struct cx18 *cx, int mute)
+{
+ struct cx18_av_state *state = &cx->av_state;
+ u8 v;
+
+ if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
+ /* Must turn off microcontroller in order to mute sound.
+ * Not sure if this is the best method, but it does work.
+ * If the microcontroller is running, then it will undo any
+ * changes to the mute register. */
+ v = cx18_av_read(cx, 0x803);
+ if (mute) {
+ /* disable microcontroller */
+ v &= ~0x10;
+ cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
+ cx18_av_write(cx, 0x8d3, 0x1f);
+ } else {
+ /* enable microcontroller */
+ v |= 0x10;
+ cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
+ }
+ } else {
+ /* SRC1_MUTE_EN */
+ cx18_av_and_or(cx, 0x8d3, ~0x2, mute ? 0x02 : 0x00);
+ }
+}
+
+int cx18_av_s_clock_freq(struct v4l2_subdev *sd, u32 freq)
+{
+ struct cx18 *cx = v4l2_get_subdevdata(sd);
+ struct cx18_av_state *state = &cx->av_state;
+ int retval;
+ u8 v;
+
+ if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
+ v = cx18_av_read(cx, 0x803) & ~0x10;
+ cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
+ cx18_av_write(cx, 0x8d3, 0x1f);
+ }
+ v = cx18_av_read(cx, 0x810) | 0x1;
+ cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
+
+ retval = set_audclk_freq(cx, freq);
+
+ v = cx18_av_read(cx, 0x810) & ~0x1;
+ cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
+ if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
+ v = cx18_av_read(cx, 0x803) | 0x10;
+ cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
+ }
+ return retval;
+}
+
+static int cx18_av_audio_s_ctrl(struct v4l2_ctrl *ctrl)
+{
+ struct v4l2_subdev *sd = to_sd(ctrl);
+ struct cx18 *cx = v4l2_get_subdevdata(sd);
+
+ switch (ctrl->id) {
+ case V4L2_CID_AUDIO_VOLUME:
+ set_volume(cx, ctrl->val);
+ break;
+ case V4L2_CID_AUDIO_BASS:
+ set_bass(cx, ctrl->val);
+ break;
+ case V4L2_CID_AUDIO_TREBLE:
+ set_treble(cx, ctrl->val);
+ break;
+ case V4L2_CID_AUDIO_BALANCE:
+ set_balance(cx, ctrl->val);
+ break;
+ case V4L2_CID_AUDIO_MUTE:
+ set_mute(cx, ctrl->val);
+ break;
+ default:
+ return -EINVAL;
+ }
+ return 0;
+}
+
+const struct v4l2_ctrl_ops cx18_av_audio_ctrl_ops = {
+ .s_ctrl = cx18_av_audio_s_ctrl,
+};