summaryrefslogtreecommitdiffstats
path: root/drivers/misc/lkdtm/stackleak.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/misc/lkdtm/stackleak.c')
-rw-r--r--drivers/misc/lkdtm/stackleak.c150
1 files changed, 150 insertions, 0 deletions
diff --git a/drivers/misc/lkdtm/stackleak.c b/drivers/misc/lkdtm/stackleak.c
new file mode 100644
index 000000000..f1d022160
--- /dev/null
+++ b/drivers/misc/lkdtm/stackleak.c
@@ -0,0 +1,150 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * This code tests that the current task stack is properly erased (filled
+ * with STACKLEAK_POISON).
+ *
+ * Authors:
+ * Alexander Popov <alex.popov@linux.com>
+ * Tycho Andersen <tycho@tycho.ws>
+ */
+
+#include "lkdtm.h"
+#include <linux/stackleak.h>
+
+#if defined(CONFIG_GCC_PLUGIN_STACKLEAK)
+/*
+ * Check that stackleak tracks the lowest stack pointer and erases the stack
+ * below this as expected.
+ *
+ * To prevent the lowest stack pointer changing during the test, IRQs are
+ * masked and instrumentation of this function is disabled. We assume that the
+ * compiler will create a fixed-size stack frame for this function.
+ *
+ * Any non-inlined function may make further use of the stack, altering the
+ * lowest stack pointer and/or clobbering poison values. To avoid spurious
+ * failures we must avoid printing until the end of the test or have already
+ * encountered a failure condition.
+ */
+static void noinstr check_stackleak_irqoff(void)
+{
+ const unsigned long task_stack_base = (unsigned long)task_stack_page(current);
+ const unsigned long task_stack_low = stackleak_task_low_bound(current);
+ const unsigned long task_stack_high = stackleak_task_high_bound(current);
+ const unsigned long current_sp = current_stack_pointer;
+ const unsigned long lowest_sp = current->lowest_stack;
+ unsigned long untracked_high;
+ unsigned long poison_high, poison_low;
+ bool test_failed = false;
+
+ /*
+ * Check that the current and lowest recorded stack pointer values fall
+ * within the expected task stack boundaries. These tests should never
+ * fail unless the boundaries are incorrect or we're clobbering the
+ * STACK_END_MAGIC, and in either casee something is seriously wrong.
+ */
+ if (current_sp < task_stack_low || current_sp >= task_stack_high) {
+ instrumentation_begin();
+ pr_err("FAIL: current_stack_pointer (0x%lx) outside of task stack bounds [0x%lx..0x%lx]\n",
+ current_sp, task_stack_low, task_stack_high - 1);
+ test_failed = true;
+ goto out;
+ }
+ if (lowest_sp < task_stack_low || lowest_sp >= task_stack_high) {
+ instrumentation_begin();
+ pr_err("FAIL: current->lowest_stack (0x%lx) outside of task stack bounds [0x%lx..0x%lx]\n",
+ lowest_sp, task_stack_low, task_stack_high - 1);
+ test_failed = true;
+ goto out;
+ }
+
+ /*
+ * Depending on what has run prior to this test, the lowest recorded
+ * stack pointer could be above or below the current stack pointer.
+ * Start from the lowest of the two.
+ *
+ * Poison values are naturally-aligned unsigned longs. As the current
+ * stack pointer might not be sufficiently aligned, we must align
+ * downwards to find the lowest known stack pointer value. This is the
+ * high boundary for a portion of the stack which may have been used
+ * without being tracked, and has to be scanned for poison.
+ */
+ untracked_high = min(current_sp, lowest_sp);
+ untracked_high = ALIGN_DOWN(untracked_high, sizeof(unsigned long));
+
+ /*
+ * Find the top of the poison in the same way as the erasing code.
+ */
+ poison_high = stackleak_find_top_of_poison(task_stack_low, untracked_high);
+
+ /*
+ * Check whether the poisoned portion of the stack (if any) consists
+ * entirely of poison. This verifies the entries that
+ * stackleak_find_top_of_poison() should have checked.
+ */
+ poison_low = poison_high;
+ while (poison_low > task_stack_low) {
+ poison_low -= sizeof(unsigned long);
+
+ if (*(unsigned long *)poison_low == STACKLEAK_POISON)
+ continue;
+
+ instrumentation_begin();
+ pr_err("FAIL: non-poison value %lu bytes below poison boundary: 0x%lx\n",
+ poison_high - poison_low, *(unsigned long *)poison_low);
+ test_failed = true;
+ goto out;
+ }
+
+ instrumentation_begin();
+ pr_info("stackleak stack usage:\n"
+ " high offset: %lu bytes\n"
+ " current: %lu bytes\n"
+ " lowest: %lu bytes\n"
+ " tracked: %lu bytes\n"
+ " untracked: %lu bytes\n"
+ " poisoned: %lu bytes\n"
+ " low offset: %lu bytes\n",
+ task_stack_base + THREAD_SIZE - task_stack_high,
+ task_stack_high - current_sp,
+ task_stack_high - lowest_sp,
+ task_stack_high - untracked_high,
+ untracked_high - poison_high,
+ poison_high - task_stack_low,
+ task_stack_low - task_stack_base);
+
+out:
+ if (test_failed) {
+ pr_err("FAIL: the thread stack is NOT properly erased!\n");
+ } else {
+ pr_info("OK: the rest of the thread stack is properly erased\n");
+ }
+ instrumentation_end();
+}
+
+static void lkdtm_STACKLEAK_ERASING(void)
+{
+ unsigned long flags;
+
+ local_irq_save(flags);
+ check_stackleak_irqoff();
+ local_irq_restore(flags);
+}
+#else /* defined(CONFIG_GCC_PLUGIN_STACKLEAK) */
+static void lkdtm_STACKLEAK_ERASING(void)
+{
+ if (IS_ENABLED(CONFIG_HAVE_ARCH_STACKLEAK)) {
+ pr_err("XFAIL: stackleak is not enabled (CONFIG_GCC_PLUGIN_STACKLEAK=n)\n");
+ } else {
+ pr_err("XFAIL: stackleak is not supported on this arch (HAVE_ARCH_STACKLEAK=n)\n");
+ }
+}
+#endif /* defined(CONFIG_GCC_PLUGIN_STACKLEAK) */
+
+static struct crashtype crashtypes[] = {
+ CRASHTYPE(STACKLEAK_ERASING),
+};
+
+struct crashtype_category stackleak_crashtypes = {
+ .crashtypes = crashtypes,
+ .len = ARRAY_SIZE(crashtypes),
+};