summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/raw/vf610_nfc.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--drivers/mtd/nand/raw/vf610_nfc.c965
1 files changed, 965 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/vf610_nfc.c b/drivers/mtd/nand/raw/vf610_nfc.c
new file mode 100644
index 000000000..a2b89b750
--- /dev/null
+++ b/drivers/mtd/nand/raw/vf610_nfc.c
@@ -0,0 +1,965 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
+ *
+ * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
+ * Jason ported to M54418TWR and MVFA5 (VF610).
+ * Authors: Stefan Agner <stefan.agner@toradex.com>
+ * Bill Pringlemeir <bpringlemeir@nbsps.com>
+ * Shaohui Xie <b21989@freescale.com>
+ * Jason Jin <Jason.jin@freescale.com>
+ *
+ * Based on original driver mpc5121_nfc.c.
+ *
+ * Limitations:
+ * - Untested on MPC5125 and M54418.
+ * - DMA and pipelining not used.
+ * - 2K pages or less.
+ * - HW ECC: Only 2K page with 64+ OOB.
+ * - HW ECC: Only 24 and 32-bit error correction implemented.
+ */
+
+#include <linux/module.h>
+#include <linux/bitops.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/swab.h>
+
+#define DRV_NAME "vf610_nfc"
+
+/* Register Offsets */
+#define NFC_FLASH_CMD1 0x3F00
+#define NFC_FLASH_CMD2 0x3F04
+#define NFC_COL_ADDR 0x3F08
+#define NFC_ROW_ADDR 0x3F0c
+#define NFC_ROW_ADDR_INC 0x3F14
+#define NFC_FLASH_STATUS1 0x3F18
+#define NFC_FLASH_STATUS2 0x3F1c
+#define NFC_CACHE_SWAP 0x3F28
+#define NFC_SECTOR_SIZE 0x3F2c
+#define NFC_FLASH_CONFIG 0x3F30
+#define NFC_IRQ_STATUS 0x3F38
+
+/* Addresses for NFC MAIN RAM BUFFER areas */
+#define NFC_MAIN_AREA(n) ((n) * 0x1000)
+
+#define PAGE_2K 0x0800
+#define OOB_64 0x0040
+#define OOB_MAX 0x0100
+
+/* NFC_CMD2[CODE] controller cycle bit masks */
+#define COMMAND_CMD_BYTE1 BIT(14)
+#define COMMAND_CAR_BYTE1 BIT(13)
+#define COMMAND_CAR_BYTE2 BIT(12)
+#define COMMAND_RAR_BYTE1 BIT(11)
+#define COMMAND_RAR_BYTE2 BIT(10)
+#define COMMAND_RAR_BYTE3 BIT(9)
+#define COMMAND_NADDR_BYTES(x) GENMASK(13, 13 - (x) + 1)
+#define COMMAND_WRITE_DATA BIT(8)
+#define COMMAND_CMD_BYTE2 BIT(7)
+#define COMMAND_RB_HANDSHAKE BIT(6)
+#define COMMAND_READ_DATA BIT(5)
+#define COMMAND_CMD_BYTE3 BIT(4)
+#define COMMAND_READ_STATUS BIT(3)
+#define COMMAND_READ_ID BIT(2)
+
+/* NFC ECC mode define */
+#define ECC_BYPASS 0
+#define ECC_45_BYTE 6
+#define ECC_60_BYTE 7
+
+/*** Register Mask and bit definitions */
+
+/* NFC_FLASH_CMD1 Field */
+#define CMD_BYTE2_MASK 0xFF000000
+#define CMD_BYTE2_SHIFT 24
+
+/* NFC_FLASH_CM2 Field */
+#define CMD_BYTE1_MASK 0xFF000000
+#define CMD_BYTE1_SHIFT 24
+#define CMD_CODE_MASK 0x00FFFF00
+#define CMD_CODE_SHIFT 8
+#define BUFNO_MASK 0x00000006
+#define BUFNO_SHIFT 1
+#define START_BIT BIT(0)
+
+/* NFC_COL_ADDR Field */
+#define COL_ADDR_MASK 0x0000FFFF
+#define COL_ADDR_SHIFT 0
+#define COL_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos)))
+
+/* NFC_ROW_ADDR Field */
+#define ROW_ADDR_MASK 0x00FFFFFF
+#define ROW_ADDR_SHIFT 0
+#define ROW_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos)))
+
+#define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000
+#define ROW_ADDR_CHIP_SEL_RB_SHIFT 28
+#define ROW_ADDR_CHIP_SEL_MASK 0x0F000000
+#define ROW_ADDR_CHIP_SEL_SHIFT 24
+
+/* NFC_FLASH_STATUS2 Field */
+#define STATUS_BYTE1_MASK 0x000000FF
+
+/* NFC_FLASH_CONFIG Field */
+#define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000
+#define CONFIG_ECC_SRAM_ADDR_SHIFT 22
+#define CONFIG_ECC_SRAM_REQ_BIT BIT(21)
+#define CONFIG_DMA_REQ_BIT BIT(20)
+#define CONFIG_ECC_MODE_MASK 0x000E0000
+#define CONFIG_ECC_MODE_SHIFT 17
+#define CONFIG_FAST_FLASH_BIT BIT(16)
+#define CONFIG_16BIT BIT(7)
+#define CONFIG_BOOT_MODE_BIT BIT(6)
+#define CONFIG_ADDR_AUTO_INCR_BIT BIT(5)
+#define CONFIG_BUFNO_AUTO_INCR_BIT BIT(4)
+#define CONFIG_PAGE_CNT_MASK 0xF
+#define CONFIG_PAGE_CNT_SHIFT 0
+
+/* NFC_IRQ_STATUS Field */
+#define IDLE_IRQ_BIT BIT(29)
+#define IDLE_EN_BIT BIT(20)
+#define CMD_DONE_CLEAR_BIT BIT(18)
+#define IDLE_CLEAR_BIT BIT(17)
+
+/*
+ * ECC status - seems to consume 8 bytes (double word). The documented
+ * status byte is located in the lowest byte of the second word (which is
+ * the 4th or 7th byte depending on endianness).
+ * Calculate an offset to store the ECC status at the end of the buffer.
+ */
+#define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8)
+
+#define ECC_STATUS 0x4
+#define ECC_STATUS_MASK 0x80
+#define ECC_STATUS_ERR_COUNT 0x3F
+
+enum vf610_nfc_variant {
+ NFC_VFC610 = 1,
+};
+
+struct vf610_nfc {
+ struct nand_controller base;
+ struct nand_chip chip;
+ struct device *dev;
+ void __iomem *regs;
+ struct completion cmd_done;
+ /* Status and ID are in alternate locations. */
+ enum vf610_nfc_variant variant;
+ struct clk *clk;
+ /*
+ * Indicate that user data is accessed (full page/oob). This is
+ * useful to indicate the driver whether to swap byte endianness.
+ * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
+ */
+ bool data_access;
+ u32 ecc_mode;
+};
+
+static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
+{
+ return container_of(chip, struct vf610_nfc, chip);
+}
+
+static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
+{
+ return readl(nfc->regs + reg);
+}
+
+static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
+{
+ writel(val, nfc->regs + reg);
+}
+
+static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
+{
+ vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
+}
+
+static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
+{
+ vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
+}
+
+static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
+ u32 mask, u32 shift, u32 val)
+{
+ vf610_nfc_write(nfc, reg,
+ (vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
+}
+
+static inline bool vf610_nfc_kernel_is_little_endian(void)
+{
+#ifdef __LITTLE_ENDIAN
+ return true;
+#else
+ return false;
+#endif
+}
+
+/**
+ * Read accessor for internal SRAM buffer
+ * @dst: destination address in regular memory
+ * @src: source address in SRAM buffer
+ * @len: bytes to copy
+ * @fix_endian: Fix endianness if required
+ *
+ * Use this accessor for the internal SRAM buffers. On the ARM
+ * Freescale Vybrid SoC it's known that the driver can treat
+ * the SRAM buffer as if it's memory. Other platform might need
+ * to treat the buffers differently.
+ *
+ * The controller stores bytes from the NAND chip internally in big
+ * endianness. On little endian platforms such as Vybrid this leads
+ * to reversed byte order.
+ * For performance reason (and earlier probably due to unawareness)
+ * the driver avoids correcting endianness where it has control over
+ * write and read side (e.g. page wise data access).
+ */
+static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
+ size_t len, bool fix_endian)
+{
+ if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
+ unsigned int i;
+
+ for (i = 0; i < len; i += 4) {
+ u32 val = swab32(__raw_readl(src + i));
+
+ memcpy(dst + i, &val, min(sizeof(val), len - i));
+ }
+ } else {
+ memcpy_fromio(dst, src, len);
+ }
+}
+
+/**
+ * Write accessor for internal SRAM buffer
+ * @dst: destination address in SRAM buffer
+ * @src: source address in regular memory
+ * @len: bytes to copy
+ * @fix_endian: Fix endianness if required
+ *
+ * Use this accessor for the internal SRAM buffers. On the ARM
+ * Freescale Vybrid SoC it's known that the driver can treat
+ * the SRAM buffer as if it's memory. Other platform might need
+ * to treat the buffers differently.
+ *
+ * The controller stores bytes from the NAND chip internally in big
+ * endianness. On little endian platforms such as Vybrid this leads
+ * to reversed byte order.
+ * For performance reason (and earlier probably due to unawareness)
+ * the driver avoids correcting endianness where it has control over
+ * write and read side (e.g. page wise data access).
+ */
+static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
+ size_t len, bool fix_endian)
+{
+ if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
+ unsigned int i;
+
+ for (i = 0; i < len; i += 4) {
+ u32 val;
+
+ memcpy(&val, src + i, min(sizeof(val), len - i));
+ __raw_writel(swab32(val), dst + i);
+ }
+ } else {
+ memcpy_toio(dst, src, len);
+ }
+}
+
+/* Clear flags for upcoming command */
+static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
+{
+ u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
+
+ tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
+ vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
+}
+
+static void vf610_nfc_done(struct vf610_nfc *nfc)
+{
+ unsigned long timeout = msecs_to_jiffies(100);
+
+ /*
+ * Barrier is needed after this write. This write need
+ * to be done before reading the next register the first
+ * time.
+ * vf610_nfc_set implicates such a barrier by using writel
+ * to write to the register.
+ */
+ vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
+ vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
+
+ if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
+ dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
+
+ vf610_nfc_clear_status(nfc);
+}
+
+static irqreturn_t vf610_nfc_irq(int irq, void *data)
+{
+ struct vf610_nfc *nfc = data;
+
+ vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
+ complete(&nfc->cmd_done);
+
+ return IRQ_HANDLED;
+}
+
+static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
+{
+ vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
+ CONFIG_ECC_MODE_MASK,
+ CONFIG_ECC_MODE_SHIFT, ecc_mode);
+}
+
+static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
+ u32 cmd1, u32 cmd2, u32 trfr_sz)
+{
+ vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
+ COL_ADDR_SHIFT, col);
+
+ vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
+ ROW_ADDR_SHIFT, row);
+
+ vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
+ vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
+ vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);
+
+ dev_dbg(nfc->dev,
+ "col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
+ col, row, cmd1, cmd2, trfr_sz);
+
+ vf610_nfc_done(nfc);
+}
+
+static inline const struct nand_op_instr *
+vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
+{
+ if (*op_id + 1 >= subop->ninstrs)
+ return NULL;
+
+ (*op_id)++;
+
+ return &subop->instrs[*op_id];
+}
+
+static int vf610_nfc_cmd(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ const struct nand_op_instr *instr;
+ struct vf610_nfc *nfc = chip_to_nfc(chip);
+ int op_id = -1, trfr_sz = 0, offset = 0;
+ u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
+ bool force8bit = false;
+
+ /*
+ * Some ops are optional, but the hardware requires the operations
+ * to be in this exact order.
+ * The op parser enforces the order and makes sure that there isn't
+ * a read and write element in a single operation.
+ */
+ instr = vf610_get_next_instr(subop, &op_id);
+ if (!instr)
+ return -EINVAL;
+
+ if (instr && instr->type == NAND_OP_CMD_INSTR) {
+ cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
+ code |= COMMAND_CMD_BYTE1;
+
+ instr = vf610_get_next_instr(subop, &op_id);
+ }
+
+ if (instr && instr->type == NAND_OP_ADDR_INSTR) {
+ int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
+ int i = nand_subop_get_addr_start_off(subop, op_id);
+
+ for (; i < naddrs; i++) {
+ u8 val = instr->ctx.addr.addrs[i];
+
+ if (i < 2)
+ col |= COL_ADDR(i, val);
+ else
+ row |= ROW_ADDR(i - 2, val);
+ }
+ code |= COMMAND_NADDR_BYTES(naddrs);
+
+ instr = vf610_get_next_instr(subop, &op_id);
+ }
+
+ if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
+ trfr_sz = nand_subop_get_data_len(subop, op_id);
+ offset = nand_subop_get_data_start_off(subop, op_id);
+ force8bit = instr->ctx.data.force_8bit;
+
+ /*
+ * Don't fix endianness on page access for historical reasons.
+ * See comment in vf610_nfc_wr_to_sram
+ */
+ vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
+ instr->ctx.data.buf.out + offset,
+ trfr_sz, !nfc->data_access);
+ code |= COMMAND_WRITE_DATA;
+
+ instr = vf610_get_next_instr(subop, &op_id);
+ }
+
+ if (instr && instr->type == NAND_OP_CMD_INSTR) {
+ cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
+ code |= COMMAND_CMD_BYTE2;
+
+ instr = vf610_get_next_instr(subop, &op_id);
+ }
+
+ if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
+ code |= COMMAND_RB_HANDSHAKE;
+
+ instr = vf610_get_next_instr(subop, &op_id);
+ }
+
+ if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
+ trfr_sz = nand_subop_get_data_len(subop, op_id);
+ offset = nand_subop_get_data_start_off(subop, op_id);
+ force8bit = instr->ctx.data.force_8bit;
+
+ code |= COMMAND_READ_DATA;
+ }
+
+ if (force8bit && (chip->options & NAND_BUSWIDTH_16))
+ vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
+
+ cmd2 |= code << CMD_CODE_SHIFT;
+
+ vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
+
+ if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
+ /*
+ * Don't fix endianness on page access for historical reasons.
+ * See comment in vf610_nfc_rd_from_sram
+ */
+ vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
+ nfc->regs + NFC_MAIN_AREA(0) + offset,
+ trfr_sz, !nfc->data_access);
+ }
+
+ if (force8bit && (chip->options & NAND_BUSWIDTH_16))
+ vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
+
+ return 0;
+}
+
+static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
+ NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
+ NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+ NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
+ );
+
+/*
+ * This function supports Vybrid only (MPC5125 would have full RB and four CS)
+ */
+static void vf610_nfc_select_target(struct nand_chip *chip, unsigned int cs)
+{
+ struct vf610_nfc *nfc = chip_to_nfc(chip);
+ u32 tmp;
+
+ /* Vybrid only (MPC5125 would have full RB and four CS) */
+ if (nfc->variant != NFC_VFC610)
+ return;
+
+ tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
+ tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
+ tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
+ tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT;
+
+ vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
+}
+
+static int vf610_nfc_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op,
+ bool check_only)
+{
+ if (!check_only)
+ vf610_nfc_select_target(chip, op->cs);
+
+ return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
+ check_only);
+}
+
+static inline int vf610_nfc_correct_data(struct nand_chip *chip, uint8_t *dat,
+ uint8_t *oob, int page)
+{
+ struct vf610_nfc *nfc = chip_to_nfc(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
+ u8 ecc_status;
+ u8 ecc_count;
+ int flips_threshold = nfc->chip.ecc.strength / 2;
+
+ ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
+ ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
+
+ if (!(ecc_status & ECC_STATUS_MASK))
+ return ecc_count;
+
+ nfc->data_access = true;
+ nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
+ nfc->data_access = false;
+
+ /*
+ * On an erased page, bit count (including OOB) should be zero or
+ * at least less then half of the ECC strength.
+ */
+ return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
+ mtd->oobsize, NULL, 0,
+ flips_threshold);
+}
+
+static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
+ u32 *row)
+{
+ *row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
+ *code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;
+
+ if (chip->options & NAND_ROW_ADDR_3) {
+ *row |= ROW_ADDR(2, page >> 16);
+ *code |= COMMAND_RAR_BYTE3;
+ }
+}
+
+static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf,
+ int oob_required, int page)
+{
+ struct vf610_nfc *nfc = chip_to_nfc(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int trfr_sz = mtd->writesize + mtd->oobsize;
+ u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
+ int stat;
+
+ vf610_nfc_select_target(chip, chip->cur_cs);
+
+ cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
+ code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
+
+ vf610_nfc_fill_row(chip, page, &code, &row);
+
+ cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
+ code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;
+
+ cmd2 |= code << CMD_CODE_SHIFT;
+
+ vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
+ vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
+ vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
+
+ /*
+ * Don't fix endianness on page access for historical reasons.
+ * See comment in vf610_nfc_rd_from_sram
+ */
+ vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
+ mtd->writesize, false);
+ if (oob_required)
+ vf610_nfc_rd_from_sram(chip->oob_poi,
+ nfc->regs + NFC_MAIN_AREA(0) +
+ mtd->writesize,
+ mtd->oobsize, false);
+
+ stat = vf610_nfc_correct_data(chip, buf, chip->oob_poi, page);
+
+ if (stat < 0) {
+ mtd->ecc_stats.failed++;
+ return 0;
+ } else {
+ mtd->ecc_stats.corrected += stat;
+ return stat;
+ }
+}
+
+static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf,
+ int oob_required, int page)
+{
+ struct vf610_nfc *nfc = chip_to_nfc(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int trfr_sz = mtd->writesize + mtd->oobsize;
+ u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
+ u8 status;
+ int ret;
+
+ vf610_nfc_select_target(chip, chip->cur_cs);
+
+ cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
+ code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
+
+ vf610_nfc_fill_row(chip, page, &code, &row);
+
+ cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
+ code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;
+
+ /*
+ * Don't fix endianness on page access for historical reasons.
+ * See comment in vf610_nfc_wr_to_sram
+ */
+ vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
+ mtd->writesize, false);
+
+ code |= COMMAND_RB_HANDSHAKE;
+ cmd2 |= code << CMD_CODE_SHIFT;
+
+ vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
+ vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
+ vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
+
+ ret = nand_status_op(chip, &status);
+ if (ret)
+ return ret;
+
+ if (status & NAND_STATUS_FAIL)
+ return -EIO;
+
+ return 0;
+}
+
+static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf,
+ int oob_required, int page)
+{
+ struct vf610_nfc *nfc = chip_to_nfc(chip);
+ int ret;
+
+ nfc->data_access = true;
+ ret = nand_read_page_raw(chip, buf, oob_required, page);
+ nfc->data_access = false;
+
+ return ret;
+}
+
+static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
+ int oob_required, int page)
+{
+ struct vf610_nfc *nfc = chip_to_nfc(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int ret;
+
+ nfc->data_access = true;
+ ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
+ if (!ret && oob_required)
+ ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
+ false);
+ nfc->data_access = false;
+
+ if (ret)
+ return ret;
+
+ return nand_prog_page_end_op(chip);
+}
+
+static int vf610_nfc_read_oob(struct nand_chip *chip, int page)
+{
+ struct vf610_nfc *nfc = chip_to_nfc(chip);
+ int ret;
+
+ nfc->data_access = true;
+ ret = nand_read_oob_std(chip, page);
+ nfc->data_access = false;
+
+ return ret;
+}
+
+static int vf610_nfc_write_oob(struct nand_chip *chip, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct vf610_nfc *nfc = chip_to_nfc(chip);
+ int ret;
+
+ nfc->data_access = true;
+ ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
+ chip->oob_poi, mtd->oobsize);
+ nfc->data_access = false;
+
+ if (ret)
+ return ret;
+
+ return nand_prog_page_end_op(chip);
+}
+
+static const struct of_device_id vf610_nfc_dt_ids[] = {
+ { .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
+
+static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
+{
+ vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
+ vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
+ vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
+ vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
+ vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
+ vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
+ vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
+
+ /* Disable virtual pages, only one elementary transfer unit */
+ vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
+ CONFIG_PAGE_CNT_SHIFT, 1);
+}
+
+static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
+{
+ if (nfc->chip.options & NAND_BUSWIDTH_16)
+ vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
+ else
+ vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
+
+ if (nfc->chip.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
+ /* Set ECC status offset in SRAM */
+ vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
+ CONFIG_ECC_SRAM_ADDR_MASK,
+ CONFIG_ECC_SRAM_ADDR_SHIFT,
+ ECC_SRAM_ADDR >> 3);
+
+ /* Enable ECC status in SRAM */
+ vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
+ }
+}
+
+static int vf610_nfc_attach_chip(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct vf610_nfc *nfc = chip_to_nfc(chip);
+
+ vf610_nfc_init_controller(nfc);
+
+ /* Bad block options. */
+ if (chip->bbt_options & NAND_BBT_USE_FLASH)
+ chip->bbt_options |= NAND_BBT_NO_OOB;
+
+ /* Single buffer only, max 256 OOB minus ECC status */
+ if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
+ dev_err(nfc->dev, "Unsupported flash page size\n");
+ return -ENXIO;
+ }
+
+ if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
+ return 0;
+
+ if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
+ dev_err(nfc->dev, "Unsupported flash with hwecc\n");
+ return -ENXIO;
+ }
+
+ if (chip->ecc.size != mtd->writesize) {
+ dev_err(nfc->dev, "Step size needs to be page size\n");
+ return -ENXIO;
+ }
+
+ /* Only 64 byte ECC layouts known */
+ if (mtd->oobsize > 64)
+ mtd->oobsize = 64;
+
+ /* Use default large page ECC layout defined in NAND core */
+ mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
+ if (chip->ecc.strength == 32) {
+ nfc->ecc_mode = ECC_60_BYTE;
+ chip->ecc.bytes = 60;
+ } else if (chip->ecc.strength == 24) {
+ nfc->ecc_mode = ECC_45_BYTE;
+ chip->ecc.bytes = 45;
+ } else {
+ dev_err(nfc->dev, "Unsupported ECC strength\n");
+ return -ENXIO;
+ }
+
+ chip->ecc.read_page = vf610_nfc_read_page;
+ chip->ecc.write_page = vf610_nfc_write_page;
+ chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
+ chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
+ chip->ecc.read_oob = vf610_nfc_read_oob;
+ chip->ecc.write_oob = vf610_nfc_write_oob;
+
+ chip->ecc.size = PAGE_2K;
+
+ return 0;
+}
+
+static const struct nand_controller_ops vf610_nfc_controller_ops = {
+ .attach_chip = vf610_nfc_attach_chip,
+ .exec_op = vf610_nfc_exec_op,
+
+};
+
+static int vf610_nfc_probe(struct platform_device *pdev)
+{
+ struct vf610_nfc *nfc;
+ struct mtd_info *mtd;
+ struct nand_chip *chip;
+ struct device_node *child;
+ const struct of_device_id *of_id;
+ int err;
+ int irq;
+
+ nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
+ if (!nfc)
+ return -ENOMEM;
+
+ nfc->dev = &pdev->dev;
+ chip = &nfc->chip;
+ mtd = nand_to_mtd(chip);
+
+ mtd->owner = THIS_MODULE;
+ mtd->dev.parent = nfc->dev;
+ mtd->name = DRV_NAME;
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq <= 0)
+ return -EINVAL;
+
+ nfc->regs = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(nfc->regs))
+ return PTR_ERR(nfc->regs);
+
+ nfc->clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(nfc->clk))
+ return PTR_ERR(nfc->clk);
+
+ err = clk_prepare_enable(nfc->clk);
+ if (err) {
+ dev_err(nfc->dev, "Unable to enable clock!\n");
+ return err;
+ }
+
+ of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
+ if (!of_id) {
+ err = -ENODEV;
+ goto err_disable_clk;
+ }
+
+ nfc->variant = (enum vf610_nfc_variant)of_id->data;
+
+ for_each_available_child_of_node(nfc->dev->of_node, child) {
+ if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
+
+ if (nand_get_flash_node(chip)) {
+ dev_err(nfc->dev,
+ "Only one NAND chip supported!\n");
+ err = -EINVAL;
+ of_node_put(child);
+ goto err_disable_clk;
+ }
+
+ nand_set_flash_node(chip, child);
+ }
+ }
+
+ if (!nand_get_flash_node(chip)) {
+ dev_err(nfc->dev, "NAND chip sub-node missing!\n");
+ err = -ENODEV;
+ goto err_disable_clk;
+ }
+
+ chip->options |= NAND_NO_SUBPAGE_WRITE;
+
+ init_completion(&nfc->cmd_done);
+
+ err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, nfc);
+ if (err) {
+ dev_err(nfc->dev, "Error requesting IRQ!\n");
+ goto err_disable_clk;
+ }
+
+ vf610_nfc_preinit_controller(nfc);
+
+ nand_controller_init(&nfc->base);
+ nfc->base.ops = &vf610_nfc_controller_ops;
+ chip->controller = &nfc->base;
+
+ /* Scan the NAND chip */
+ err = nand_scan(chip, 1);
+ if (err)
+ goto err_disable_clk;
+
+ platform_set_drvdata(pdev, nfc);
+
+ /* Register device in MTD */
+ err = mtd_device_register(mtd, NULL, 0);
+ if (err)
+ goto err_cleanup_nand;
+ return 0;
+
+err_cleanup_nand:
+ nand_cleanup(chip);
+err_disable_clk:
+ clk_disable_unprepare(nfc->clk);
+ return err;
+}
+
+static int vf610_nfc_remove(struct platform_device *pdev)
+{
+ struct vf610_nfc *nfc = platform_get_drvdata(pdev);
+ struct nand_chip *chip = &nfc->chip;
+ int ret;
+
+ ret = mtd_device_unregister(nand_to_mtd(chip));
+ WARN_ON(ret);
+ nand_cleanup(chip);
+ clk_disable_unprepare(nfc->clk);
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int vf610_nfc_suspend(struct device *dev)
+{
+ struct vf610_nfc *nfc = dev_get_drvdata(dev);
+
+ clk_disable_unprepare(nfc->clk);
+ return 0;
+}
+
+static int vf610_nfc_resume(struct device *dev)
+{
+ struct vf610_nfc *nfc = dev_get_drvdata(dev);
+ int err;
+
+ err = clk_prepare_enable(nfc->clk);
+ if (err)
+ return err;
+
+ vf610_nfc_preinit_controller(nfc);
+ vf610_nfc_init_controller(nfc);
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
+
+static struct platform_driver vf610_nfc_driver = {
+ .driver = {
+ .name = DRV_NAME,
+ .of_match_table = vf610_nfc_dt_ids,
+ .pm = &vf610_nfc_pm_ops,
+ },
+ .probe = vf610_nfc_probe,
+ .remove = vf610_nfc_remove,
+};
+
+module_platform_driver(vf610_nfc_driver);
+
+MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
+MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
+MODULE_LICENSE("GPL");