diff options
Diffstat (limited to 'drivers/scsi/sym53c8xx_2/sym_hipd.c')
-rw-r--r-- | drivers/scsi/sym53c8xx_2/sym_hipd.c | 5839 |
1 files changed, 5839 insertions, 0 deletions
diff --git a/drivers/scsi/sym53c8xx_2/sym_hipd.c b/drivers/scsi/sym53c8xx_2/sym_hipd.c new file mode 100644 index 000000000..f0db17e34 --- /dev/null +++ b/drivers/scsi/sym53c8xx_2/sym_hipd.c @@ -0,0 +1,5839 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family + * of PCI-SCSI IO processors. + * + * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> + * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx> + * + * This driver is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-2000 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier <wolf@cologne.de> + * Stefan Esser <se@mi.Uni-Koeln.de> + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> + * + *----------------------------------------------------------------------------- + */ + +#include <linux/slab.h> +#include <asm/param.h> /* for timeouts in units of HZ */ + +#include "sym_glue.h" +#include "sym_nvram.h" + +#if 0 +#define SYM_DEBUG_GENERIC_SUPPORT +#endif + +/* + * Needed function prototypes. + */ +static void sym_int_ma (struct sym_hcb *np); +static void sym_int_sir(struct sym_hcb *); +static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np); +static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa); +static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln); +static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp); +static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp); +static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp); + +/* + * Print a buffer in hexadecimal format with a ".\n" at end. + */ +static void sym_printl_hex(u_char *p, int n) +{ + while (n-- > 0) + printf (" %x", *p++); + printf (".\n"); +} + +static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg) +{ + sym_print_addr(cp->cmd, "%s: ", label); + + spi_print_msg(msg); + printf("\n"); +} + +static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg) +{ + struct sym_tcb *tp = &np->target[target]; + dev_info(&tp->starget->dev, "%s: ", label); + + spi_print_msg(msg); + printf("\n"); +} + +/* + * Print something that tells about extended errors. + */ +void sym_print_xerr(struct scsi_cmnd *cmd, int x_status) +{ + if (x_status & XE_PARITY_ERR) { + sym_print_addr(cmd, "unrecovered SCSI parity error.\n"); + } + if (x_status & XE_EXTRA_DATA) { + sym_print_addr(cmd, "extraneous data discarded.\n"); + } + if (x_status & XE_BAD_PHASE) { + sym_print_addr(cmd, "illegal scsi phase (4/5).\n"); + } + if (x_status & XE_SODL_UNRUN) { + sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n"); + } + if (x_status & XE_SWIDE_OVRUN) { + sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n"); + } +} + +/* + * Return a string for SCSI BUS mode. + */ +static char *sym_scsi_bus_mode(int mode) +{ + switch(mode) { + case SMODE_HVD: return "HVD"; + case SMODE_SE: return "SE"; + case SMODE_LVD: return "LVD"; + } + return "??"; +} + +/* + * Soft reset the chip. + * + * Raising SRST when the chip is running may cause + * problems on dual function chips (see below). + * On the other hand, LVD devices need some delay + * to settle and report actual BUS mode in STEST4. + */ +static void sym_chip_reset (struct sym_hcb *np) +{ + OUTB(np, nc_istat, SRST); + INB(np, nc_mbox1); + udelay(10); + OUTB(np, nc_istat, 0); + INB(np, nc_mbox1); + udelay(2000); /* For BUS MODE to settle */ +} + +/* + * Really soft reset the chip.:) + * + * Some 896 and 876 chip revisions may hang-up if we set + * the SRST (soft reset) bit at the wrong time when SCRIPTS + * are running. + * So, we need to abort the current operation prior to + * soft resetting the chip. + */ +static void sym_soft_reset (struct sym_hcb *np) +{ + u_char istat = 0; + int i; + + if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN)) + goto do_chip_reset; + + OUTB(np, nc_istat, CABRT); + for (i = 100000 ; i ; --i) { + istat = INB(np, nc_istat); + if (istat & SIP) { + INW(np, nc_sist); + } + else if (istat & DIP) { + if (INB(np, nc_dstat) & ABRT) + break; + } + udelay(5); + } + OUTB(np, nc_istat, 0); + if (!i) + printf("%s: unable to abort current chip operation, " + "ISTAT=0x%02x.\n", sym_name(np), istat); +do_chip_reset: + sym_chip_reset(np); +} + +/* + * Start reset process. + * + * The interrupt handler will reinitialize the chip. + */ +static void sym_start_reset(struct sym_hcb *np) +{ + sym_reset_scsi_bus(np, 1); +} + +int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int) +{ + u32 term; + int retv = 0; + + sym_soft_reset(np); /* Soft reset the chip */ + if (enab_int) + OUTW(np, nc_sien, RST); + /* + * Enable Tolerant, reset IRQD if present and + * properly set IRQ mode, prior to resetting the bus. + */ + OUTB(np, nc_stest3, TE); + OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM)); + OUTB(np, nc_scntl1, CRST); + INB(np, nc_mbox1); + udelay(200); + + if (!SYM_SETUP_SCSI_BUS_CHECK) + goto out; + /* + * Check for no terminators or SCSI bus shorts to ground. + * Read SCSI data bus, data parity bits and control signals. + * We are expecting RESET to be TRUE and other signals to be + * FALSE. + */ + term = INB(np, nc_sstat0); + term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ + term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */ + ((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */ + ((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */ + INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */ + + if (!np->maxwide) + term &= 0x3ffff; + + if (term != (2<<7)) { + printf("%s: suspicious SCSI data while resetting the BUS.\n", + sym_name(np)); + printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " + "0x%lx, expecting 0x%lx\n", + sym_name(np), + (np->features & FE_WIDE) ? "dp1,d15-8," : "", + (u_long)term, (u_long)(2<<7)); + if (SYM_SETUP_SCSI_BUS_CHECK == 1) + retv = 1; + } +out: + OUTB(np, nc_scntl1, 0); + return retv; +} + +/* + * Select SCSI clock frequency + */ +static void sym_selectclock(struct sym_hcb *np, u_char scntl3) +{ + /* + * If multiplier not present or not selected, leave here. + */ + if (np->multiplier <= 1) { + OUTB(np, nc_scntl3, scntl3); + return; + } + + if (sym_verbose >= 2) + printf ("%s: enabling clock multiplier\n", sym_name(np)); + + OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */ + /* + * Wait for the LCKFRQ bit to be set if supported by the chip. + * Otherwise wait 50 micro-seconds (at least). + */ + if (np->features & FE_LCKFRQ) { + int i = 20; + while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0) + udelay(20); + if (!i) + printf("%s: the chip cannot lock the frequency\n", + sym_name(np)); + } else { + INB(np, nc_mbox1); + udelay(50+10); + } + OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */ + OUTB(np, nc_scntl3, scntl3); + OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ + OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */ +} + + +/* + * Determine the chip's clock frequency. + * + * This is essential for the negotiation of the synchronous + * transfer rate. + * + * Note: we have to return the correct value. + * THERE IS NO SAFE DEFAULT VALUE. + * + * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. + * 53C860 and 53C875 rev. 1 support fast20 transfers but + * do not have a clock doubler and so are provided with a + * 80 MHz clock. All other fast20 boards incorporate a doubler + * and so should be delivered with a 40 MHz clock. + * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base + * clock and provide a clock quadrupler (160 Mhz). + */ + +/* + * calculate SCSI clock frequency (in KHz) + */ +static unsigned getfreq (struct sym_hcb *np, int gen) +{ + unsigned int ms = 0; + unsigned int f; + + /* + * Measure GEN timer delay in order + * to calculate SCSI clock frequency + * + * This code will never execute too + * many loop iterations (if DELAY is + * reasonably correct). It could get + * too low a delay (too high a freq.) + * if the CPU is slow executing the + * loop for some reason (an NMI, for + * example). For this reason we will + * if multiple measurements are to be + * performed trust the higher delay + * (lower frequency returned). + */ + OUTW(np, nc_sien, 0); /* mask all scsi interrupts */ + INW(np, nc_sist); /* clear pending scsi interrupt */ + OUTB(np, nc_dien, 0); /* mask all dma interrupts */ + INW(np, nc_sist); /* another one, just to be sure :) */ + /* + * The C1010-33 core does not report GEN in SIST, + * if this interrupt is masked in SIEN. + * I don't know yet if the C1010-66 behaves the same way. + */ + if (np->features & FE_C10) { + OUTW(np, nc_sien, GEN); + OUTB(np, nc_istat1, SIRQD); + } + OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */ + OUTB(np, nc_stime1, 0); /* disable general purpose timer */ + OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ + while (!(INW(np, nc_sist) & GEN) && ms++ < 100000) + udelay(1000/4); /* count in 1/4 of ms */ + OUTB(np, nc_stime1, 0); /* disable general purpose timer */ + /* + * Undo C1010-33 specific settings. + */ + if (np->features & FE_C10) { + OUTW(np, nc_sien, 0); + OUTB(np, nc_istat1, 0); + } + /* + * set prescaler to divide by whatever 0 means + * 0 ought to choose divide by 2, but appears + * to set divide by 3.5 mode in my 53c810 ... + */ + OUTB(np, nc_scntl3, 0); + + /* + * adjust for prescaler, and convert into KHz + */ + f = ms ? ((1 << gen) * (4340*4)) / ms : 0; + + /* + * The C1010-33 result is biased by a factor + * of 2/3 compared to earlier chips. + */ + if (np->features & FE_C10) + f = (f * 2) / 3; + + if (sym_verbose >= 2) + printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", + sym_name(np), gen, ms/4, f); + + return f; +} + +static unsigned sym_getfreq (struct sym_hcb *np) +{ + u_int f1, f2; + int gen = 8; + + getfreq (np, gen); /* throw away first result */ + f1 = getfreq (np, gen); + f2 = getfreq (np, gen); + if (f1 > f2) f1 = f2; /* trust lower result */ + return f1; +} + +/* + * Get/probe chip SCSI clock frequency + */ +static void sym_getclock (struct sym_hcb *np, int mult) +{ + unsigned char scntl3 = np->sv_scntl3; + unsigned char stest1 = np->sv_stest1; + unsigned f1; + + np->multiplier = 1; + f1 = 40000; + /* + * True with 875/895/896/895A with clock multiplier selected + */ + if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { + if (sym_verbose >= 2) + printf ("%s: clock multiplier found\n", sym_name(np)); + np->multiplier = mult; + } + + /* + * If multiplier not found or scntl3 not 7,5,3, + * reset chip and get frequency from general purpose timer. + * Otherwise trust scntl3 BIOS setting. + */ + if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { + OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */ + f1 = sym_getfreq (np); + + if (sym_verbose) + printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); + + if (f1 < 45000) f1 = 40000; + else if (f1 < 55000) f1 = 50000; + else f1 = 80000; + + if (f1 < 80000 && mult > 1) { + if (sym_verbose >= 2) + printf ("%s: clock multiplier assumed\n", + sym_name(np)); + np->multiplier = mult; + } + } else { + if ((scntl3 & 7) == 3) f1 = 40000; + else if ((scntl3 & 7) == 5) f1 = 80000; + else f1 = 160000; + + f1 /= np->multiplier; + } + + /* + * Compute controller synchronous parameters. + */ + f1 *= np->multiplier; + np->clock_khz = f1; +} + +/* + * Get/probe PCI clock frequency + */ +static int sym_getpciclock (struct sym_hcb *np) +{ + int f = 0; + + /* + * For now, we only need to know about the actual + * PCI BUS clock frequency for C1010-66 chips. + */ +#if 1 + if (np->features & FE_66MHZ) { +#else + if (1) { +#endif + OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ + f = sym_getfreq(np); + OUTB(np, nc_stest1, 0); + } + np->pciclk_khz = f; + + return f; +} + +/* + * SYMBIOS chip clock divisor table. + * + * Divisors are multiplied by 10,000,000 in order to make + * calculations more simple. + */ +#define _5M 5000000 +static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; + +/* + * Get clock factor and sync divisor for a given + * synchronous factor period. + */ +static int +sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) +{ + u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ + int div = np->clock_divn; /* Number of divisors supported */ + u32 fak; /* Sync factor in sxfer */ + u32 per; /* Period in tenths of ns */ + u32 kpc; /* (per * clk) */ + int ret; + + /* + * Compute the synchronous period in tenths of nano-seconds + */ + if (dt && sfac <= 9) per = 125; + else if (sfac <= 10) per = 250; + else if (sfac == 11) per = 303; + else if (sfac == 12) per = 500; + else per = 40 * sfac; + ret = per; + + kpc = per * clk; + if (dt) + kpc <<= 1; + + /* + * For earliest C10 revision 0, we cannot use extra + * clocks for the setting of the SCSI clocking. + * Note that this limits the lowest sync data transfer + * to 5 Mega-transfers per second and may result in + * using higher clock divisors. + */ +#if 1 + if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { + /* + * Look for the lowest clock divisor that allows an + * output speed not faster than the period. + */ + while (div > 0) { + --div; + if (kpc > (div_10M[div] << 2)) { + ++div; + break; + } + } + fak = 0; /* No extra clocks */ + if (div == np->clock_divn) { /* Are we too fast ? */ + ret = -1; + } + *divp = div; + *fakp = fak; + return ret; + } +#endif + + /* + * Look for the greatest clock divisor that allows an + * input speed faster than the period. + */ + while (--div > 0) + if (kpc >= (div_10M[div] << 2)) break; + + /* + * Calculate the lowest clock factor that allows an output + * speed not faster than the period, and the max output speed. + * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. + * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. + */ + if (dt) { + fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; + /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ + } else { + fak = (kpc - 1) / div_10M[div] + 1 - 4; + /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ + } + + /* + * Check against our hardware limits, or bugs :). + */ + if (fak > 2) { + fak = 2; + ret = -1; + } + + /* + * Compute and return sync parameters. + */ + *divp = div; + *fakp = fak; + + return ret; +} + +/* + * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, + * 128 transfers. All chips support at least 16 transfers + * bursts. The 825A, 875 and 895 chips support bursts of up + * to 128 transfers and the 895A and 896 support bursts of up + * to 64 transfers. All other chips support up to 16 + * transfers bursts. + * + * For PCI 32 bit data transfers each transfer is a DWORD. + * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. + * + * We use log base 2 (burst length) as internal code, with + * value 0 meaning "burst disabled". + */ + +/* + * Burst length from burst code. + */ +#define burst_length(bc) (!(bc))? 0 : 1 << (bc) + +/* + * Burst code from io register bits. + */ +#define burst_code(dmode, ctest4, ctest5) \ + (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 + +/* + * Set initial io register bits from burst code. + */ +static inline void sym_init_burst(struct sym_hcb *np, u_char bc) +{ + np->rv_ctest4 &= ~0x80; + np->rv_dmode &= ~(0x3 << 6); + np->rv_ctest5 &= ~0x4; + + if (!bc) { + np->rv_ctest4 |= 0x80; + } + else { + --bc; + np->rv_dmode |= ((bc & 0x3) << 6); + np->rv_ctest5 |= (bc & 0x4); + } +} + +/* + * Save initial settings of some IO registers. + * Assumed to have been set by BIOS. + * We cannot reset the chip prior to reading the + * IO registers, since informations will be lost. + * Since the SCRIPTS processor may be running, this + * is not safe on paper, but it seems to work quite + * well. :) + */ +static void sym_save_initial_setting (struct sym_hcb *np) +{ + np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a; + np->sv_scntl3 = INB(np, nc_scntl3) & 0x07; + np->sv_dmode = INB(np, nc_dmode) & 0xce; + np->sv_dcntl = INB(np, nc_dcntl) & 0xa8; + np->sv_ctest3 = INB(np, nc_ctest3) & 0x01; + np->sv_ctest4 = INB(np, nc_ctest4) & 0x80; + np->sv_gpcntl = INB(np, nc_gpcntl); + np->sv_stest1 = INB(np, nc_stest1); + np->sv_stest2 = INB(np, nc_stest2) & 0x20; + np->sv_stest4 = INB(np, nc_stest4); + if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ + np->sv_scntl4 = INB(np, nc_scntl4); + np->sv_ctest5 = INB(np, nc_ctest5) & 0x04; + } + else + np->sv_ctest5 = INB(np, nc_ctest5) & 0x24; +} + +/* + * Set SCSI BUS mode. + * - LVD capable chips (895/895A/896/1010) report the current BUS mode + * through the STEST4 IO register. + * - For previous generation chips (825/825A/875), the user has to tell us + * how to check against HVD, since a 100% safe algorithm is not possible. + */ +static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram) +{ + if (np->scsi_mode) + return; + + np->scsi_mode = SMODE_SE; + if (np->features & (FE_ULTRA2|FE_ULTRA3)) + np->scsi_mode = (np->sv_stest4 & SMODE); + else if (np->features & FE_DIFF) { + if (SYM_SETUP_SCSI_DIFF == 1) { + if (np->sv_scntl3) { + if (np->sv_stest2 & 0x20) + np->scsi_mode = SMODE_HVD; + } else if (nvram->type == SYM_SYMBIOS_NVRAM) { + if (!(INB(np, nc_gpreg) & 0x08)) + np->scsi_mode = SMODE_HVD; + } + } else if (SYM_SETUP_SCSI_DIFF == 2) + np->scsi_mode = SMODE_HVD; + } + if (np->scsi_mode == SMODE_HVD) + np->rv_stest2 |= 0x20; +} + +/* + * Prepare io register values used by sym_start_up() + * according to selected and supported features. + */ +static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram) +{ + struct sym_data *sym_data = shost_priv(shost); + struct pci_dev *pdev = sym_data->pdev; + u_char burst_max; + u32 period; + int i; + + np->maxwide = (np->features & FE_WIDE) ? 1 : 0; + + /* + * Guess the frequency of the chip's clock. + */ + if (np->features & (FE_ULTRA3 | FE_ULTRA2)) + np->clock_khz = 160000; + else if (np->features & FE_ULTRA) + np->clock_khz = 80000; + else + np->clock_khz = 40000; + + /* + * Get the clock multiplier factor. + */ + if (np->features & FE_QUAD) + np->multiplier = 4; + else if (np->features & FE_DBLR) + np->multiplier = 2; + else + np->multiplier = 1; + + /* + * Measure SCSI clock frequency for chips + * it may vary from assumed one. + */ + if (np->features & FE_VARCLK) + sym_getclock(np, np->multiplier); + + /* + * Divisor to be used for async (timer pre-scaler). + */ + i = np->clock_divn - 1; + while (--i >= 0) { + if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { + ++i; + break; + } + } + np->rv_scntl3 = i+1; + + /* + * The C1010 uses hardwired divisors for async. + * So, we just throw away, the async. divisor.:-) + */ + if (np->features & FE_C10) + np->rv_scntl3 = 0; + + /* + * Minimum synchronous period factor supported by the chip. + * Btw, 'period' is in tenths of nanoseconds. + */ + period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; + + if (period <= 250) np->minsync = 10; + else if (period <= 303) np->minsync = 11; + else if (period <= 500) np->minsync = 12; + else np->minsync = (period + 40 - 1) / 40; + + /* + * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). + */ + if (np->minsync < 25 && + !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) + np->minsync = 25; + else if (np->minsync < 12 && + !(np->features & (FE_ULTRA2|FE_ULTRA3))) + np->minsync = 12; + + /* + * Maximum synchronous period factor supported by the chip. + */ + period = div64_ul(11 * div_10M[np->clock_divn - 1], 4 * np->clock_khz); + np->maxsync = period > 2540 ? 254 : period / 10; + + /* + * If chip is a C1010, guess the sync limits in DT mode. + */ + if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { + if (np->clock_khz == 160000) { + np->minsync_dt = 9; + np->maxsync_dt = 50; + np->maxoffs_dt = nvram->type ? 62 : 31; + } + } + + /* + * 64 bit addressing (895A/896/1010) ? + */ + if (np->features & FE_DAC) { + if (!use_dac(np)) + np->rv_ccntl1 |= (DDAC); + else if (SYM_CONF_DMA_ADDRESSING_MODE == 1) + np->rv_ccntl1 |= (XTIMOD | EXTIBMV); + else if (SYM_CONF_DMA_ADDRESSING_MODE == 2) + np->rv_ccntl1 |= (0 | EXTIBMV); + } + + /* + * Phase mismatch handled by SCRIPTS (895A/896/1010) ? + */ + if (np->features & FE_NOPM) + np->rv_ccntl0 |= (ENPMJ); + + /* + * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed. + * In dual channel mode, contention occurs if internal cycles + * are used. Disable internal cycles. + */ + if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 && + pdev->revision < 0x1) + np->rv_ccntl0 |= DILS; + + /* + * Select burst length (dwords) + */ + burst_max = SYM_SETUP_BURST_ORDER; + if (burst_max == 255) + burst_max = burst_code(np->sv_dmode, np->sv_ctest4, + np->sv_ctest5); + if (burst_max > 7) + burst_max = 7; + if (burst_max > np->maxburst) + burst_max = np->maxburst; + + /* + * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. + * This chip and the 860 Rev 1 may wrongly use PCI cache line + * based transactions on LOAD/STORE instructions. So we have + * to prevent these chips from using such PCI transactions in + * this driver. The generic ncr driver that does not use + * LOAD/STORE instructions does not need this work-around. + */ + if ((pdev->device == PCI_DEVICE_ID_NCR_53C810 && + pdev->revision >= 0x10 && pdev->revision <= 0x11) || + (pdev->device == PCI_DEVICE_ID_NCR_53C860 && + pdev->revision <= 0x1)) + np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); + + /* + * Select all supported special features. + * If we are using on-board RAM for scripts, prefetch (PFEN) + * does not help, but burst op fetch (BOF) does. + * Disabling PFEN makes sure BOF will be used. + */ + if (np->features & FE_ERL) + np->rv_dmode |= ERL; /* Enable Read Line */ + if (np->features & FE_BOF) + np->rv_dmode |= BOF; /* Burst Opcode Fetch */ + if (np->features & FE_ERMP) + np->rv_dmode |= ERMP; /* Enable Read Multiple */ +#if 1 + if ((np->features & FE_PFEN) && !np->ram_ba) +#else + if (np->features & FE_PFEN) +#endif + np->rv_dcntl |= PFEN; /* Prefetch Enable */ + if (np->features & FE_CLSE) + np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ + if (np->features & FE_WRIE) + np->rv_ctest3 |= WRIE; /* Write and Invalidate */ + if (np->features & FE_DFS) + np->rv_ctest5 |= DFS; /* Dma Fifo Size */ + + /* + * Select some other + */ + np->rv_ctest4 |= MPEE; /* Master parity checking */ + np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ + + /* + * Get parity checking, host ID and verbose mode from NVRAM + */ + np->myaddr = 255; + np->scsi_mode = 0; + sym_nvram_setup_host(shost, np, nvram); + + /* + * Get SCSI addr of host adapter (set by bios?). + */ + if (np->myaddr == 255) { + np->myaddr = INB(np, nc_scid) & 0x07; + if (!np->myaddr) + np->myaddr = SYM_SETUP_HOST_ID; + } + + /* + * Prepare initial io register bits for burst length + */ + sym_init_burst(np, burst_max); + + sym_set_bus_mode(np, nvram); + + /* + * Set LED support from SCRIPTS. + * Ignore this feature for boards known to use a + * specific GPIO wiring and for the 895A, 896 + * and 1010 that drive the LED directly. + */ + if ((SYM_SETUP_SCSI_LED || + (nvram->type == SYM_SYMBIOS_NVRAM || + (nvram->type == SYM_TEKRAM_NVRAM && + pdev->device == PCI_DEVICE_ID_NCR_53C895))) && + !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) + np->features |= FE_LED0; + + /* + * Set irq mode. + */ + switch(SYM_SETUP_IRQ_MODE & 3) { + case 2: + np->rv_dcntl |= IRQM; + break; + case 1: + np->rv_dcntl |= (np->sv_dcntl & IRQM); + break; + default: + break; + } + + /* + * Configure targets according to driver setup. + * If NVRAM present get targets setup from NVRAM. + */ + for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { + struct sym_tcb *tp = &np->target[i]; + + tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); + tp->usrtags = SYM_SETUP_MAX_TAG; + tp->usr_width = np->maxwide; + tp->usr_period = 9; + + sym_nvram_setup_target(tp, i, nvram); + + if (!tp->usrtags) + tp->usrflags &= ~SYM_TAGS_ENABLED; + } + + /* + * Let user know about the settings. + */ + printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np), + sym_nvram_type(nvram), np->myaddr, + (np->features & FE_ULTRA3) ? 80 : + (np->features & FE_ULTRA2) ? 40 : + (np->features & FE_ULTRA) ? 20 : 10, + sym_scsi_bus_mode(np->scsi_mode), + (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); + /* + * Tell him more on demand. + */ + if (sym_verbose) { + printf("%s: %s IRQ line driver%s\n", + sym_name(np), + np->rv_dcntl & IRQM ? "totem pole" : "open drain", + np->ram_ba ? ", using on-chip SRAM" : ""); + printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); + if (np->features & FE_NOPM) + printf("%s: handling phase mismatch from SCRIPTS.\n", + sym_name(np)); + } + /* + * And still more. + */ + if (sym_verbose >= 2) { + printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " + "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", + sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, + np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); + + printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " + "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", + sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, + np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); + } + + return 0; +} + +/* + * Test the pci bus snoop logic :-( + * + * Has to be called with interrupts disabled. + */ +#ifdef CONFIG_SCSI_SYM53C8XX_MMIO +static int sym_regtest(struct sym_hcb *np) +{ + register volatile u32 data; + /* + * chip registers may NOT be cached. + * write 0xffffffff to a read only register area, + * and try to read it back. + */ + data = 0xffffffff; + OUTL(np, nc_dstat, data); + data = INL(np, nc_dstat); +#if 1 + if (data == 0xffffffff) { +#else + if ((data & 0xe2f0fffd) != 0x02000080) { +#endif + printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", + (unsigned) data); + return 0x10; + } + return 0; +} +#else +static inline int sym_regtest(struct sym_hcb *np) +{ + return 0; +} +#endif + +static int sym_snooptest(struct sym_hcb *np) +{ + u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; + int i, err; + + err = sym_regtest(np); + if (err) + return err; +restart_test: + /* + * Enable Master Parity Checking as we intend + * to enable it for normal operations. + */ + OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE)); + /* + * init + */ + pc = SCRIPTZ_BA(np, snooptest); + host_wr = 1; + sym_wr = 2; + /* + * Set memory and register. + */ + np->scratch = cpu_to_scr(host_wr); + OUTL(np, nc_temp, sym_wr); + /* + * Start script (exchange values) + */ + OUTL(np, nc_dsa, np->hcb_ba); + OUTL_DSP(np, pc); + /* + * Wait 'til done (with timeout) + */ + for (i=0; i<SYM_SNOOP_TIMEOUT; i++) + if (INB(np, nc_istat) & (INTF|SIP|DIP)) + break; + if (i>=SYM_SNOOP_TIMEOUT) { + printf ("CACHE TEST FAILED: timeout.\n"); + return (0x20); + } + /* + * Check for fatal DMA errors. + */ + dstat = INB(np, nc_dstat); +#if 1 /* Band aiding for broken hardwares that fail PCI parity */ + if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { + printf ("%s: PCI DATA PARITY ERROR DETECTED - " + "DISABLING MASTER DATA PARITY CHECKING.\n", + sym_name(np)); + np->rv_ctest4 &= ~MPEE; + goto restart_test; + } +#endif + if (dstat & (MDPE|BF|IID)) { + printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); + return (0x80); + } + /* + * Save termination position. + */ + pc = INL(np, nc_dsp); + /* + * Read memory and register. + */ + host_rd = scr_to_cpu(np->scratch); + sym_rd = INL(np, nc_scratcha); + sym_bk = INL(np, nc_temp); + /* + * Check termination position. + */ + if (pc != SCRIPTZ_BA(np, snoopend)+8) { + printf ("CACHE TEST FAILED: script execution failed.\n"); + printf ("start=%08lx, pc=%08lx, end=%08lx\n", + (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc, + (u_long) SCRIPTZ_BA(np, snoopend) +8); + return (0x40); + } + /* + * Show results. + */ + if (host_wr != sym_rd) { + printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", + (int) host_wr, (int) sym_rd); + err |= 1; + } + if (host_rd != sym_wr) { + printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", + (int) sym_wr, (int) host_rd); + err |= 2; + } + if (sym_bk != sym_wr) { + printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", + (int) sym_wr, (int) sym_bk); + err |= 4; + } + + return err; +} + +/* + * log message for real hard errors + * + * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc). + * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. + * + * exception register: + * ds: dstat + * si: sist + * + * SCSI bus lines: + * so: control lines as driven by chip. + * si: control lines as seen by chip. + * sd: scsi data lines as seen by chip. + * + * wide/fastmode: + * sx: sxfer (see the manual) + * s3: scntl3 (see the manual) + * s4: scntl4 (see the manual) + * + * current script command: + * dsp: script address (relative to start of script). + * dbc: first word of script command. + * + * First 24 register of the chip: + * r0..rf + */ +static void sym_log_hard_error(struct Scsi_Host *shost, u_short sist, u_char dstat) +{ + struct sym_hcb *np = sym_get_hcb(shost); + u32 dsp; + int script_ofs; + int script_size; + char *script_name; + u_char *script_base; + int i; + + dsp = INL(np, nc_dsp); + + if (dsp > np->scripta_ba && + dsp <= np->scripta_ba + np->scripta_sz) { + script_ofs = dsp - np->scripta_ba; + script_size = np->scripta_sz; + script_base = (u_char *) np->scripta0; + script_name = "scripta"; + } + else if (np->scriptb_ba < dsp && + dsp <= np->scriptb_ba + np->scriptb_sz) { + script_ofs = dsp - np->scriptb_ba; + script_size = np->scriptb_sz; + script_base = (u_char *) np->scriptb0; + script_name = "scriptb"; + } else { + script_ofs = dsp; + script_size = 0; + script_base = NULL; + script_name = "mem"; + } + + printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n", + sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist, + (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl), + (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer), + (unsigned)INB(np, nc_scntl3), + (np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0, + script_name, script_ofs, (unsigned)INL(np, nc_dbc)); + + if (((script_ofs & 3) == 0) && + (unsigned)script_ofs < script_size) { + printf ("%s: script cmd = %08x\n", sym_name(np), + scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); + } + + printf("%s: regdump:", sym_name(np)); + for (i = 0; i < 24; i++) + printf(" %02x", (unsigned)INB_OFF(np, i)); + printf(".\n"); + + /* + * PCI BUS error. + */ + if (dstat & (MDPE|BF)) + sym_log_bus_error(shost); +} + +void sym_dump_registers(struct Scsi_Host *shost) +{ + struct sym_hcb *np = sym_get_hcb(shost); + u_short sist; + u_char dstat; + + sist = INW(np, nc_sist); + dstat = INB(np, nc_dstat); + sym_log_hard_error(shost, sist, dstat); +} + +static struct sym_chip sym_dev_table[] = { + {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64, + FE_ERL} + , +#ifdef SYM_DEBUG_GENERIC_SUPPORT + {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1, + FE_BOF} + , +#else + {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1, + FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} + , +#endif + {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64, + FE_BOF|FE_ERL} + , + {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64, + FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} + , + {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2, + FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} + , + {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1, + FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} + , + {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2, + FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_DIFF|FE_VARCLK} + , + {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2, + FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_DIFF|FE_VARCLK} + , + {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2, + FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_DIFF|FE_VARCLK} + , + {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2, + FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_DIFF|FE_VARCLK} + , +#ifdef SYM_DEBUG_GENERIC_SUPPORT + {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2, + FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| + FE_RAM|FE_LCKFRQ} + , +#else + {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2, + FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_LCKFRQ} + , +#endif + {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4, + FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} + , + {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4, + FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} + , + {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4, + FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} + , + {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8, + FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| + FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| + FE_C10} + , + {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8, + FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| + FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| + FE_C10|FE_U3EN} + , + {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8, + FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| + FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| + FE_C10|FE_U3EN} + , + {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4, + FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_IO256|FE_LEDC} +}; + +#define sym_num_devs (ARRAY_SIZE(sym_dev_table)) + +/* + * Look up the chip table. + * + * Return a pointer to the chip entry if found, + * zero otherwise. + */ +struct sym_chip * +sym_lookup_chip_table (u_short device_id, u_char revision) +{ + struct sym_chip *chip; + int i; + + for (i = 0; i < sym_num_devs; i++) { + chip = &sym_dev_table[i]; + if (device_id != chip->device_id) + continue; + if (revision > chip->revision_id) + continue; + return chip; + } + + return NULL; +} + +#if SYM_CONF_DMA_ADDRESSING_MODE == 2 +/* + * Lookup the 64 bit DMA segments map. + * This is only used if the direct mapping + * has been unsuccessful. + */ +int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s) +{ + int i; + + if (!use_dac(np)) + goto weird; + + /* Look up existing mappings */ + for (i = SYM_DMAP_SIZE-1; i > 0; i--) { + if (h == np->dmap_bah[i]) + return i; + } + /* If direct mapping is free, get it */ + if (!np->dmap_bah[s]) + goto new; + /* Collision -> lookup free mappings */ + for (s = SYM_DMAP_SIZE-1; s > 0; s--) { + if (!np->dmap_bah[s]) + goto new; + } +weird: + panic("sym: ran out of 64 bit DMA segment registers"); + return -1; +new: + np->dmap_bah[s] = h; + np->dmap_dirty = 1; + return s; +} + +/* + * Update IO registers scratch C..R so they will be + * in sync. with queued CCB expectations. + */ +static void sym_update_dmap_regs(struct sym_hcb *np) +{ + int o, i; + + if (!np->dmap_dirty) + return; + o = offsetof(struct sym_reg, nc_scrx[0]); + for (i = 0; i < SYM_DMAP_SIZE; i++) { + OUTL_OFF(np, o, np->dmap_bah[i]); + o += 4; + } + np->dmap_dirty = 0; +} +#endif + +/* Enforce all the fiddly SPI rules and the chip limitations */ +static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget, + struct sym_trans *goal) +{ + if (!spi_support_wide(starget)) + goal->width = 0; + + if (!spi_support_sync(starget)) { + goal->iu = 0; + goal->dt = 0; + goal->qas = 0; + goal->offset = 0; + return; + } + + if (spi_support_dt(starget)) { + if (spi_support_dt_only(starget)) + goal->dt = 1; + + if (goal->offset == 0) + goal->dt = 0; + } else { + goal->dt = 0; + } + + /* Some targets fail to properly negotiate DT in SE mode */ + if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN)) + goal->dt = 0; + + if (goal->dt) { + /* all DT transfers must be wide */ + goal->width = 1; + if (goal->offset > np->maxoffs_dt) + goal->offset = np->maxoffs_dt; + if (goal->period < np->minsync_dt) + goal->period = np->minsync_dt; + if (goal->period > np->maxsync_dt) + goal->period = np->maxsync_dt; + } else { + goal->iu = goal->qas = 0; + if (goal->offset > np->maxoffs) + goal->offset = np->maxoffs; + if (goal->period < np->minsync) + goal->period = np->minsync; + if (goal->period > np->maxsync) + goal->period = np->maxsync; + } +} + +/* + * Prepare the next negotiation message if needed. + * + * Fill in the part of message buffer that contains the + * negotiation and the nego_status field of the CCB. + * Returns the size of the message in bytes. + */ +static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr) +{ + struct sym_tcb *tp = &np->target[cp->target]; + struct scsi_target *starget = tp->starget; + struct sym_trans *goal = &tp->tgoal; + int msglen = 0; + int nego; + + sym_check_goals(np, starget, goal); + + /* + * Many devices implement PPR in a buggy way, so only use it if we + * really want to. + */ + if (goal->renego == NS_PPR || (goal->offset && + (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)))) { + nego = NS_PPR; + } else if (goal->renego == NS_WIDE || goal->width) { + nego = NS_WIDE; + } else if (goal->renego == NS_SYNC || goal->offset) { + nego = NS_SYNC; + } else { + goal->check_nego = 0; + nego = 0; + } + + switch (nego) { + case NS_SYNC: + msglen += spi_populate_sync_msg(msgptr + msglen, goal->period, + goal->offset); + break; + case NS_WIDE: + msglen += spi_populate_width_msg(msgptr + msglen, goal->width); + break; + case NS_PPR: + msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period, + goal->offset, goal->width, + (goal->iu ? PPR_OPT_IU : 0) | + (goal->dt ? PPR_OPT_DT : 0) | + (goal->qas ? PPR_OPT_QAS : 0)); + break; + } + + cp->nego_status = nego; + + if (nego) { + tp->nego_cp = cp; /* Keep track a nego will be performed */ + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_nego_msg(np, cp->target, + nego == NS_SYNC ? "sync msgout" : + nego == NS_WIDE ? "wide msgout" : + "ppr msgout", msgptr); + } + } + + return msglen; +} + +/* + * Insert a job into the start queue. + */ +void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp) +{ + u_short qidx; + +#ifdef SYM_CONF_IARB_SUPPORT + /* + * If the previously queued CCB is not yet done, + * set the IARB hint. The SCRIPTS will go with IARB + * for this job when starting the previous one. + * We leave devices a chance to win arbitration by + * not using more than 'iarb_max' consecutive + * immediate arbitrations. + */ + if (np->last_cp && np->iarb_count < np->iarb_max) { + np->last_cp->host_flags |= HF_HINT_IARB; + ++np->iarb_count; + } + else + np->iarb_count = 0; + np->last_cp = cp; +#endif + +#if SYM_CONF_DMA_ADDRESSING_MODE == 2 + /* + * Make SCRIPTS aware of the 64 bit DMA + * segment registers not being up-to-date. + */ + if (np->dmap_dirty) + cp->host_xflags |= HX_DMAP_DIRTY; +#endif + + /* + * Insert first the idle task and then our job. + * The MBs should ensure proper ordering. + */ + qidx = np->squeueput + 2; + if (qidx >= MAX_QUEUE*2) qidx = 0; + + np->squeue [qidx] = cpu_to_scr(np->idletask_ba); + MEMORY_WRITE_BARRIER(); + np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); + + np->squeueput = qidx; + + if (DEBUG_FLAGS & DEBUG_QUEUE) + scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n", + np->squeueput); + + /* + * Script processor may be waiting for reselect. + * Wake it up. + */ + MEMORY_WRITE_BARRIER(); + OUTB(np, nc_istat, SIGP|np->istat_sem); +} + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING +/* + * Start next ready-to-start CCBs. + */ +void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn) +{ + SYM_QUEHEAD *qp; + struct sym_ccb *cp; + + /* + * Paranoia, as usual. :-) + */ + assert(!lp->started_tags || !lp->started_no_tag); + + /* + * Try to start as many commands as asked by caller. + * Prevent from having both tagged and untagged + * commands queued to the device at the same time. + */ + while (maxn--) { + qp = sym_remque_head(&lp->waiting_ccbq); + if (!qp) + break; + cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq); + if (cp->tag != NO_TAG) { + if (lp->started_no_tag || + lp->started_tags >= lp->started_max) { + sym_insque_head(qp, &lp->waiting_ccbq); + break; + } + lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba); + lp->head.resel_sa = + cpu_to_scr(SCRIPTA_BA(np, resel_tag)); + ++lp->started_tags; + } else { + if (lp->started_no_tag || lp->started_tags) { + sym_insque_head(qp, &lp->waiting_ccbq); + break; + } + lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); + lp->head.resel_sa = + cpu_to_scr(SCRIPTA_BA(np, resel_no_tag)); + ++lp->started_no_tag; + } + cp->started = 1; + sym_insque_tail(qp, &lp->started_ccbq); + sym_put_start_queue(np, cp); + } +} +#endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */ + +/* + * The chip may have completed jobs. Look at the DONE QUEUE. + * + * On paper, memory read barriers may be needed here to + * prevent out of order LOADs by the CPU from having + * prefetched stale data prior to DMA having occurred. + */ +static int sym_wakeup_done (struct sym_hcb *np) +{ + struct sym_ccb *cp; + int i, n; + u32 dsa; + + n = 0; + i = np->dqueueget; + + /* MEMORY_READ_BARRIER(); */ + while (1) { + dsa = scr_to_cpu(np->dqueue[i]); + if (!dsa) + break; + np->dqueue[i] = 0; + if ((i = i+2) >= MAX_QUEUE*2) + i = 0; + + cp = sym_ccb_from_dsa(np, dsa); + if (cp) { + MEMORY_READ_BARRIER(); + sym_complete_ok (np, cp); + ++n; + } + else + printf ("%s: bad DSA (%x) in done queue.\n", + sym_name(np), (u_int) dsa); + } + np->dqueueget = i; + + return n; +} + +/* + * Complete all CCBs queued to the COMP queue. + * + * These CCBs are assumed: + * - Not to be referenced either by devices or + * SCRIPTS-related queues and datas. + * - To have to be completed with an error condition + * or requeued. + * + * The device queue freeze count is incremented + * for each CCB that does not prevent this. + * This function is called when all CCBs involved + * in error handling/recovery have been reaped. + */ +static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status) +{ + SYM_QUEHEAD *qp; + struct sym_ccb *cp; + + while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) { + struct scsi_cmnd *cmd; + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); + /* Leave quiet CCBs waiting for resources */ + if (cp->host_status == HS_WAIT) + continue; + cmd = cp->cmd; + if (cam_status) + sym_set_cam_status(cmd, cam_status); +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) { + struct sym_tcb *tp = &np->target[cp->target]; + struct sym_lcb *lp = sym_lp(tp, cp->lun); + if (lp) { + sym_remque(&cp->link2_ccbq); + sym_insque_tail(&cp->link2_ccbq, + &lp->waiting_ccbq); + if (cp->started) { + if (cp->tag != NO_TAG) + --lp->started_tags; + else + --lp->started_no_tag; + } + } + cp->started = 0; + continue; + } +#endif + sym_free_ccb(np, cp); + sym_xpt_done(np, cmd); + } +} + +/* + * Complete all active CCBs with error. + * Used on CHIP/SCSI RESET. + */ +static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status) +{ + /* + * Move all active CCBs to the COMP queue + * and flush this queue. + */ + sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); + sym_que_init(&np->busy_ccbq); + sym_flush_comp_queue(np, cam_status); +} + +/* + * Start chip. + * + * 'reason' means: + * 0: initialisation. + * 1: SCSI BUS RESET delivered or received. + * 2: SCSI BUS MODE changed. + */ +void sym_start_up(struct Scsi_Host *shost, int reason) +{ + struct sym_data *sym_data = shost_priv(shost); + struct pci_dev *pdev = sym_data->pdev; + struct sym_hcb *np = sym_data->ncb; + int i; + u32 phys; + + /* + * Reset chip if asked, otherwise just clear fifos. + */ + if (reason == 1) + sym_soft_reset(np); + else { + OUTB(np, nc_stest3, TE|CSF); + OUTONB(np, nc_ctest3, CLF); + } + + /* + * Clear Start Queue + */ + phys = np->squeue_ba; + for (i = 0; i < MAX_QUEUE*2; i += 2) { + np->squeue[i] = cpu_to_scr(np->idletask_ba); + np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); + } + np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); + + /* + * Start at first entry. + */ + np->squeueput = 0; + + /* + * Clear Done Queue + */ + phys = np->dqueue_ba; + for (i = 0; i < MAX_QUEUE*2; i += 2) { + np->dqueue[i] = 0; + np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); + } + np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); + + /* + * Start at first entry. + */ + np->dqueueget = 0; + + /* + * Install patches in scripts. + * This also let point to first position the start + * and done queue pointers used from SCRIPTS. + */ + np->fw_patch(shost); + + /* + * Wakeup all pending jobs. + */ + sym_flush_busy_queue(np, DID_RESET); + + /* + * Init chip. + */ + OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */ + INB(np, nc_mbox1); + udelay(2000); /* The 895 needs time for the bus mode to settle */ + + OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0); + /* full arb., ena parity, par->ATN */ + OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ + + sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ + + OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ + OUTW(np, nc_respid, 1ul<<np->myaddr); /* Id to respond to */ + OUTB(np, nc_istat , SIGP ); /* Signal Process */ + OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */ + OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ + + OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ + OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */ + OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */ + + /* Extended Sreq/Sack filtering not supported on the C10 */ + if (np->features & FE_C10) + OUTB(np, nc_stest2, np->rv_stest2); + else + OUTB(np, nc_stest2, EXT|np->rv_stest2); + + OUTB(np, nc_stest3, TE); /* TolerANT enable */ + OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ + + /* + * For now, disable AIP generation on C1010-66. + */ + if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_66) + OUTB(np, nc_aipcntl1, DISAIP); + + /* + * C10101 rev. 0 errata. + * Errant SGE's when in narrow. Write bits 4 & 5 of + * STEST1 register to disable SGE. We probably should do + * that from SCRIPTS for each selection/reselection, but + * I just don't want. :) + */ + if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 && + pdev->revision < 1) + OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30); + + /* + * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. + * Disable overlapped arbitration for some dual function devices, + * regardless revision id (kind of post-chip-design feature. ;-)) + */ + if (pdev->device == PCI_DEVICE_ID_NCR_53C875) + OUTB(np, nc_ctest0, (1<<5)); + else if (pdev->device == PCI_DEVICE_ID_NCR_53C896) + np->rv_ccntl0 |= DPR; + + /* + * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing + * and/or hardware phase mismatch, since only such chips + * seem to support those IO registers. + */ + if (np->features & (FE_DAC|FE_NOPM)) { + OUTB(np, nc_ccntl0, np->rv_ccntl0); + OUTB(np, nc_ccntl1, np->rv_ccntl1); + } + +#if SYM_CONF_DMA_ADDRESSING_MODE == 2 + /* + * Set up scratch C and DRS IO registers to map the 32 bit + * DMA address range our data structures are located in. + */ + if (use_dac(np)) { + np->dmap_bah[0] = 0; /* ??? */ + OUTL(np, nc_scrx[0], np->dmap_bah[0]); + OUTL(np, nc_drs, np->dmap_bah[0]); + } +#endif + + /* + * If phase mismatch handled by scripts (895A/896/1010), + * set PM jump addresses. + */ + if (np->features & FE_NOPM) { + OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle)); + OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle)); + } + + /* + * Enable GPIO0 pin for writing if LED support from SCRIPTS. + * Also set GPIO5 and clear GPIO6 if hardware LED control. + */ + if (np->features & FE_LED0) + OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01); + else if (np->features & FE_LEDC) + OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20); + + /* + * enable ints + */ + OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); + OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID); + + /* + * For 895/6 enable SBMC interrupt and save current SCSI bus mode. + * Try to eat the spurious SBMC interrupt that may occur when + * we reset the chip but not the SCSI BUS (at initialization). + */ + if (np->features & (FE_ULTRA2|FE_ULTRA3)) { + OUTONW(np, nc_sien, SBMC); + if (reason == 0) { + INB(np, nc_mbox1); + mdelay(100); + INW(np, nc_sist); + } + np->scsi_mode = INB(np, nc_stest4) & SMODE; + } + + /* + * Fill in target structure. + * Reinitialize usrsync. + * Reinitialize usrwide. + * Prepare sync negotiation according to actual SCSI bus mode. + */ + for (i=0;i<SYM_CONF_MAX_TARGET;i++) { + struct sym_tcb *tp = &np->target[i]; + + tp->to_reset = 0; + tp->head.sval = 0; + tp->head.wval = np->rv_scntl3; + tp->head.uval = 0; + if (tp->lun0p) + tp->lun0p->to_clear = 0; + if (tp->lunmp) { + int ln; + + for (ln = 1; ln < SYM_CONF_MAX_LUN; ln++) + if (tp->lunmp[ln]) + tp->lunmp[ln]->to_clear = 0; + } + } + + /* + * Download SCSI SCRIPTS to on-chip RAM if present, + * and start script processor. + * We do the download preferently from the CPU. + * For platforms that may not support PCI memory mapping, + * we use simple SCRIPTS that performs MEMORY MOVEs. + */ + phys = SCRIPTA_BA(np, init); + if (np->ram_ba) { + if (sym_verbose >= 2) + printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np)); + memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz); + if (np->features & FE_RAM8K) { + memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz); + phys = scr_to_cpu(np->scr_ram_seg); + OUTL(np, nc_mmws, phys); + OUTL(np, nc_mmrs, phys); + OUTL(np, nc_sfs, phys); + phys = SCRIPTB_BA(np, start64); + } + } + + np->istat_sem = 0; + + OUTL(np, nc_dsa, np->hcb_ba); + OUTL_DSP(np, phys); + + /* + * Notify the XPT about the RESET condition. + */ + if (reason != 0) + sym_xpt_async_bus_reset(np); +} + +/* + * Switch trans mode for current job and its target. + */ +static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs, + u_char per, u_char wide, u_char div, u_char fak) +{ + SYM_QUEHEAD *qp; + u_char sval, wval, uval; + struct sym_tcb *tp = &np->target[target]; + + assert(target == (INB(np, nc_sdid) & 0x0f)); + + sval = tp->head.sval; + wval = tp->head.wval; + uval = tp->head.uval; + +#if 0 + printf("XXXX sval=%x wval=%x uval=%x (%x)\n", + sval, wval, uval, np->rv_scntl3); +#endif + /* + * Set the offset. + */ + if (!(np->features & FE_C10)) + sval = (sval & ~0x1f) | ofs; + else + sval = (sval & ~0x3f) | ofs; + + /* + * Set the sync divisor and extra clock factor. + */ + if (ofs != 0) { + wval = (wval & ~0x70) | ((div+1) << 4); + if (!(np->features & FE_C10)) + sval = (sval & ~0xe0) | (fak << 5); + else { + uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); + if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); + if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); + } + } + + /* + * Set the bus width. + */ + wval = wval & ~EWS; + if (wide != 0) + wval |= EWS; + + /* + * Set misc. ultra enable bits. + */ + if (np->features & FE_C10) { + uval = uval & ~(U3EN|AIPCKEN); + if (opts) { + assert(np->features & FE_U3EN); + uval |= U3EN; + } + } else { + wval = wval & ~ULTRA; + if (per <= 12) wval |= ULTRA; + } + + /* + * Stop there if sync parameters are unchanged. + */ + if (tp->head.sval == sval && + tp->head.wval == wval && + tp->head.uval == uval) + return; + tp->head.sval = sval; + tp->head.wval = wval; + tp->head.uval = uval; + + /* + * Disable extended Sreq/Sack filtering if per < 50. + * Not supported on the C1010. + */ + if (per < 50 && !(np->features & FE_C10)) + OUTOFFB(np, nc_stest2, EXT); + + /* + * set actual value and sync_status + */ + OUTB(np, nc_sxfer, tp->head.sval); + OUTB(np, nc_scntl3, tp->head.wval); + + if (np->features & FE_C10) { + OUTB(np, nc_scntl4, tp->head.uval); + } + + /* + * patch ALL busy ccbs of this target. + */ + FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { + struct sym_ccb *cp; + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + if (cp->target != target) + continue; + cp->phys.select.sel_scntl3 = tp->head.wval; + cp->phys.select.sel_sxfer = tp->head.sval; + if (np->features & FE_C10) { + cp->phys.select.sel_scntl4 = tp->head.uval; + } + } +} + +static void sym_announce_transfer_rate(struct sym_tcb *tp) +{ + struct scsi_target *starget = tp->starget; + + if (tp->tprint.period != spi_period(starget) || + tp->tprint.offset != spi_offset(starget) || + tp->tprint.width != spi_width(starget) || + tp->tprint.iu != spi_iu(starget) || + tp->tprint.dt != spi_dt(starget) || + tp->tprint.qas != spi_qas(starget) || + !tp->tprint.check_nego) { + tp->tprint.period = spi_period(starget); + tp->tprint.offset = spi_offset(starget); + tp->tprint.width = spi_width(starget); + tp->tprint.iu = spi_iu(starget); + tp->tprint.dt = spi_dt(starget); + tp->tprint.qas = spi_qas(starget); + tp->tprint.check_nego = 1; + + spi_display_xfer_agreement(starget); + } +} + +/* + * We received a WDTR. + * Let everything be aware of the changes. + */ +static void sym_setwide(struct sym_hcb *np, int target, u_char wide) +{ + struct sym_tcb *tp = &np->target[target]; + struct scsi_target *starget = tp->starget; + + sym_settrans(np, target, 0, 0, 0, wide, 0, 0); + + if (wide) + tp->tgoal.renego = NS_WIDE; + else + tp->tgoal.renego = 0; + tp->tgoal.check_nego = 0; + tp->tgoal.width = wide; + spi_offset(starget) = 0; + spi_period(starget) = 0; + spi_width(starget) = wide; + spi_iu(starget) = 0; + spi_dt(starget) = 0; + spi_qas(starget) = 0; + + if (sym_verbose >= 3) + sym_announce_transfer_rate(tp); +} + +/* + * We received a SDTR. + * Let everything be aware of the changes. + */ +static void +sym_setsync(struct sym_hcb *np, int target, + u_char ofs, u_char per, u_char div, u_char fak) +{ + struct sym_tcb *tp = &np->target[target]; + struct scsi_target *starget = tp->starget; + u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT; + + sym_settrans(np, target, 0, ofs, per, wide, div, fak); + + if (wide) + tp->tgoal.renego = NS_WIDE; + else if (ofs) + tp->tgoal.renego = NS_SYNC; + else + tp->tgoal.renego = 0; + spi_period(starget) = per; + spi_offset(starget) = ofs; + spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0; + + if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) { + tp->tgoal.period = per; + tp->tgoal.offset = ofs; + tp->tgoal.check_nego = 0; + } + + sym_announce_transfer_rate(tp); +} + +/* + * We received a PPR. + * Let everything be aware of the changes. + */ +static void +sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs, + u_char per, u_char wide, u_char div, u_char fak) +{ + struct sym_tcb *tp = &np->target[target]; + struct scsi_target *starget = tp->starget; + + sym_settrans(np, target, opts, ofs, per, wide, div, fak); + + if (wide || ofs) + tp->tgoal.renego = NS_PPR; + else + tp->tgoal.renego = 0; + spi_width(starget) = tp->tgoal.width = wide; + spi_period(starget) = tp->tgoal.period = per; + spi_offset(starget) = tp->tgoal.offset = ofs; + spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU); + spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT); + spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS); + tp->tgoal.check_nego = 0; + + sym_announce_transfer_rate(tp); +} + +/* + * generic recovery from scsi interrupt + * + * The doc says that when the chip gets an SCSI interrupt, + * it tries to stop in an orderly fashion, by completing + * an instruction fetch that had started or by flushing + * the DMA fifo for a write to memory that was executing. + * Such a fashion is not enough to know if the instruction + * that was just before the current DSP value has been + * executed or not. + * + * There are some small SCRIPTS sections that deal with + * the start queue and the done queue that may break any + * assomption from the C code if we are interrupted + * inside, so we reset if this happens. Btw, since these + * SCRIPTS sections are executed while the SCRIPTS hasn't + * started SCSI operations, it is very unlikely to happen. + * + * All the driver data structures are supposed to be + * allocated from the same 4 GB memory window, so there + * is a 1 to 1 relationship between DSA and driver data + * structures. Since we are careful :) to invalidate the + * DSA when we complete a command or when the SCRIPTS + * pushes a DSA into a queue, we can trust it when it + * points to a CCB. + */ +static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts) +{ + u32 dsp = INL(np, nc_dsp); + u32 dsa = INL(np, nc_dsa); + struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); + + /* + * If we haven't been interrupted inside the SCRIPTS + * critical pathes, we can safely restart the SCRIPTS + * and trust the DSA value if it matches a CCB. + */ + if ((!(dsp > SCRIPTA_BA(np, getjob_begin) && + dsp < SCRIPTA_BA(np, getjob_end) + 1)) && + (!(dsp > SCRIPTA_BA(np, ungetjob) && + dsp < SCRIPTA_BA(np, reselect) + 1)) && + (!(dsp > SCRIPTB_BA(np, sel_for_abort) && + dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) && + (!(dsp > SCRIPTA_BA(np, done) && + dsp < SCRIPTA_BA(np, done_end) + 1))) { + OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ + OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */ + /* + * If we have a CCB, let the SCRIPTS call us back for + * the handling of the error with SCRATCHA filled with + * STARTPOS. This way, we will be able to freeze the + * device queue and requeue awaiting IOs. + */ + if (cp) { + cp->host_status = hsts; + OUTL_DSP(np, SCRIPTA_BA(np, complete_error)); + } + /* + * Otherwise just restart the SCRIPTS. + */ + else { + OUTL(np, nc_dsa, 0xffffff); + OUTL_DSP(np, SCRIPTA_BA(np, start)); + } + } + else + goto reset_all; + + return; + +reset_all: + sym_start_reset(np); +} + +/* + * chip exception handler for selection timeout + */ +static void sym_int_sto (struct sym_hcb *np) +{ + u32 dsp = INL(np, nc_dsp); + + if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); + + if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8) + sym_recover_scsi_int(np, HS_SEL_TIMEOUT); + else + sym_start_reset(np); +} + +/* + * chip exception handler for unexpected disconnect + */ +static void sym_int_udc (struct sym_hcb *np) +{ + printf ("%s: unexpected disconnect\n", sym_name(np)); + sym_recover_scsi_int(np, HS_UNEXPECTED); +} + +/* + * chip exception handler for SCSI bus mode change + * + * spi2-r12 11.2.3 says a transceiver mode change must + * generate a reset event and a device that detects a reset + * event shall initiate a hard reset. It says also that a + * device that detects a mode change shall set data transfer + * mode to eight bit asynchronous, etc... + * So, just reinitializing all except chip should be enough. + */ +static void sym_int_sbmc(struct Scsi_Host *shost) +{ + struct sym_hcb *np = sym_get_hcb(shost); + u_char scsi_mode = INB(np, nc_stest4) & SMODE; + + /* + * Notify user. + */ + printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np), + sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); + + /* + * Should suspend command processing for a few seconds and + * reinitialize all except the chip. + */ + sym_start_up(shost, 2); +} + +/* + * chip exception handler for SCSI parity error. + * + * When the chip detects a SCSI parity error and is + * currently executing a (CH)MOV instruction, it does + * not interrupt immediately, but tries to finish the + * transfer of the current scatter entry before + * interrupting. The following situations may occur: + * + * - The complete scatter entry has been transferred + * without the device having changed phase. + * The chip will then interrupt with the DSP pointing + * to the instruction that follows the MOV. + * + * - A phase mismatch occurs before the MOV finished + * and phase errors are to be handled by the C code. + * The chip will then interrupt with both PAR and MA + * conditions set. + * + * - A phase mismatch occurs before the MOV finished and + * phase errors are to be handled by SCRIPTS. + * The chip will load the DSP with the phase mismatch + * JUMP address and interrupt the host processor. + */ +static void sym_int_par (struct sym_hcb *np, u_short sist) +{ + u_char hsts = INB(np, HS_PRT); + u32 dsp = INL(np, nc_dsp); + u32 dbc = INL(np, nc_dbc); + u32 dsa = INL(np, nc_dsa); + u_char sbcl = INB(np, nc_sbcl); + u_char cmd = dbc >> 24; + int phase = cmd & 7; + struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); + + if (printk_ratelimit()) + printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", + sym_name(np), hsts, dbc, sbcl); + + /* + * Check that the chip is connected to the SCSI BUS. + */ + if (!(INB(np, nc_scntl1) & ISCON)) { + sym_recover_scsi_int(np, HS_UNEXPECTED); + return; + } + + /* + * If the nexus is not clearly identified, reset the bus. + * We will try to do better later. + */ + if (!cp) + goto reset_all; + + /* + * Check instruction was a MOV, direction was INPUT and + * ATN is asserted. + */ + if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) + goto reset_all; + + /* + * Keep track of the parity error. + */ + OUTONB(np, HF_PRT, HF_EXT_ERR); + cp->xerr_status |= XE_PARITY_ERR; + + /* + * Prepare the message to send to the device. + */ + np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; + + /* + * If the old phase was DATA IN phase, we have to deal with + * the 3 situations described above. + * For other input phases (MSG IN and STATUS), the device + * must resend the whole thing that failed parity checking + * or signal error. So, jumping to dispatcher should be OK. + */ + if (phase == 1 || phase == 5) { + /* Phase mismatch handled by SCRIPTS */ + if (dsp == SCRIPTB_BA(np, pm_handle)) + OUTL_DSP(np, dsp); + /* Phase mismatch handled by the C code */ + else if (sist & MA) + sym_int_ma (np); + /* No phase mismatch occurred */ + else { + sym_set_script_dp (np, cp, dsp); + OUTL_DSP(np, SCRIPTA_BA(np, dispatch)); + } + } + else if (phase == 7) /* We definitely cannot handle parity errors */ +#if 1 /* in message-in phase due to the relection */ + goto reset_all; /* path and various message anticipations. */ +#else + OUTL_DSP(np, SCRIPTA_BA(np, clrack)); +#endif + else + OUTL_DSP(np, SCRIPTA_BA(np, dispatch)); + return; + +reset_all: + sym_start_reset(np); + return; +} + +/* + * chip exception handler for phase errors. + * + * We have to construct a new transfer descriptor, + * to transfer the rest of the current block. + */ +static void sym_int_ma (struct sym_hcb *np) +{ + u32 dbc; + u32 rest; + u32 dsp; + u32 dsa; + u32 nxtdsp; + u32 *vdsp; + u32 oadr, olen; + u32 *tblp; + u32 newcmd; + u_int delta; + u_char cmd; + u_char hflags, hflags0; + struct sym_pmc *pm; + struct sym_ccb *cp; + + dsp = INL(np, nc_dsp); + dbc = INL(np, nc_dbc); + dsa = INL(np, nc_dsa); + + cmd = dbc >> 24; + rest = dbc & 0xffffff; + delta = 0; + + /* + * locate matching cp if any. + */ + cp = sym_ccb_from_dsa(np, dsa); + + /* + * Donnot take into account dma fifo and various buffers in + * INPUT phase since the chip flushes everything before + * raising the MA interrupt for interrupted INPUT phases. + * For DATA IN phase, we will check for the SWIDE later. + */ + if ((cmd & 7) != 1 && (cmd & 7) != 5) { + u_char ss0, ss2; + + if (np->features & FE_DFBC) + delta = INW(np, nc_dfbc); + else { + u32 dfifo; + + /* + * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. + */ + dfifo = INL(np, nc_dfifo); + + /* + * Calculate remaining bytes in DMA fifo. + * (CTEST5 = dfifo >> 16) + */ + if (dfifo & (DFS << 16)) + delta = ((((dfifo >> 8) & 0x300) | + (dfifo & 0xff)) - rest) & 0x3ff; + else + delta = ((dfifo & 0xff) - rest) & 0x7f; + } + + /* + * The data in the dma fifo has not been transferred to + * the target -> add the amount to the rest + * and clear the data. + * Check the sstat2 register in case of wide transfer. + */ + rest += delta; + ss0 = INB(np, nc_sstat0); + if (ss0 & OLF) rest++; + if (!(np->features & FE_C10)) + if (ss0 & ORF) rest++; + if (cp && (cp->phys.select.sel_scntl3 & EWS)) { + ss2 = INB(np, nc_sstat2); + if (ss2 & OLF1) rest++; + if (!(np->features & FE_C10)) + if (ss2 & ORF1) rest++; + } + + /* + * Clear fifos. + */ + OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ + OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */ + } + + /* + * log the information + */ + if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) + printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7, + (unsigned) rest, (unsigned) delta); + + /* + * try to find the interrupted script command, + * and the address at which to continue. + */ + vdsp = NULL; + nxtdsp = 0; + if (dsp > np->scripta_ba && + dsp <= np->scripta_ba + np->scripta_sz) { + vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); + nxtdsp = dsp; + } + else if (dsp > np->scriptb_ba && + dsp <= np->scriptb_ba + np->scriptb_sz) { + vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); + nxtdsp = dsp; + } + + /* + * log the information + */ + if (DEBUG_FLAGS & DEBUG_PHASE) { + printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", + cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); + } + + if (!vdsp) { + printf ("%s: interrupted SCRIPT address not found.\n", + sym_name (np)); + goto reset_all; + } + + if (!cp) { + printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", + sym_name (np)); + goto reset_all; + } + + /* + * get old startaddress and old length. + */ + oadr = scr_to_cpu(vdsp[1]); + + if (cmd & 0x10) { /* Table indirect */ + tblp = (u32 *) ((char*) &cp->phys + oadr); + olen = scr_to_cpu(tblp[0]); + oadr = scr_to_cpu(tblp[1]); + } else { + tblp = (u32 *) 0; + olen = scr_to_cpu(vdsp[0]) & 0xffffff; + } + + if (DEBUG_FLAGS & DEBUG_PHASE) { + printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", + (unsigned) (scr_to_cpu(vdsp[0]) >> 24), + tblp, + (unsigned) olen, + (unsigned) oadr); + } + + /* + * check cmd against assumed interrupted script command. + * If dt data phase, the MOVE instruction hasn't bit 4 of + * the phase. + */ + if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { + sym_print_addr(cp->cmd, + "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", + cmd, scr_to_cpu(vdsp[0]) >> 24); + + goto reset_all; + } + + /* + * if old phase not dataphase, leave here. + */ + if (cmd & 2) { + sym_print_addr(cp->cmd, + "phase change %x-%x %d@%08x resid=%d.\n", + cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen, + (unsigned)oadr, (unsigned)rest); + goto unexpected_phase; + } + + /* + * Choose the correct PM save area. + * + * Look at the PM_SAVE SCRIPT if you want to understand + * this stuff. The equivalent code is implemented in + * SCRIPTS for the 895A, 896 and 1010 that are able to + * handle PM from the SCRIPTS processor. + */ + hflags0 = INB(np, HF_PRT); + hflags = hflags0; + + if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { + if (hflags & HF_IN_PM0) + nxtdsp = scr_to_cpu(cp->phys.pm0.ret); + else if (hflags & HF_IN_PM1) + nxtdsp = scr_to_cpu(cp->phys.pm1.ret); + + if (hflags & HF_DP_SAVED) + hflags ^= HF_ACT_PM; + } + + if (!(hflags & HF_ACT_PM)) { + pm = &cp->phys.pm0; + newcmd = SCRIPTA_BA(np, pm0_data); + } + else { + pm = &cp->phys.pm1; + newcmd = SCRIPTA_BA(np, pm1_data); + } + + hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); + if (hflags != hflags0) + OUTB(np, HF_PRT, hflags); + + /* + * fillin the phase mismatch context + */ + pm->sg.addr = cpu_to_scr(oadr + olen - rest); + pm->sg.size = cpu_to_scr(rest); + pm->ret = cpu_to_scr(nxtdsp); + + /* + * If we have a SWIDE, + * - prepare the address to write the SWIDE from SCRIPTS, + * - compute the SCRIPTS address to restart from, + * - move current data pointer context by one byte. + */ + nxtdsp = SCRIPTA_BA(np, dispatch); + if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && + (INB(np, nc_scntl2) & WSR)) { + u32 tmp; + + /* + * Set up the table indirect for the MOVE + * of the residual byte and adjust the data + * pointer context. + */ + tmp = scr_to_cpu(pm->sg.addr); + cp->phys.wresid.addr = cpu_to_scr(tmp); + pm->sg.addr = cpu_to_scr(tmp + 1); + tmp = scr_to_cpu(pm->sg.size); + cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); + pm->sg.size = cpu_to_scr(tmp - 1); + + /* + * If only the residual byte is to be moved, + * no PM context is needed. + */ + if ((tmp&0xffffff) == 1) + newcmd = pm->ret; + + /* + * Prepare the address of SCRIPTS that will + * move the residual byte to memory. + */ + nxtdsp = SCRIPTB_BA(np, wsr_ma_helper); + } + + if (DEBUG_FLAGS & DEBUG_PHASE) { + sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n", + hflags0, hflags, newcmd, + (unsigned)scr_to_cpu(pm->sg.addr), + (unsigned)scr_to_cpu(pm->sg.size), + (unsigned)scr_to_cpu(pm->ret)); + } + + /* + * Restart the SCRIPTS processor. + */ + sym_set_script_dp (np, cp, newcmd); + OUTL_DSP(np, nxtdsp); + return; + + /* + * Unexpected phase changes that occurs when the current phase + * is not a DATA IN or DATA OUT phase are due to error conditions. + * Such event may only happen when the SCRIPTS is using a + * multibyte SCSI MOVE. + * + * Phase change Some possible cause + * + * COMMAND --> MSG IN SCSI parity error detected by target. + * COMMAND --> STATUS Bad command or refused by target. + * MSG OUT --> MSG IN Message rejected by target. + * MSG OUT --> COMMAND Bogus target that discards extended + * negotiation messages. + * + * The code below does not care of the new phase and so + * trusts the target. Why to annoy it ? + * If the interrupted phase is COMMAND phase, we restart at + * dispatcher. + * If a target does not get all the messages after selection, + * the code assumes blindly that the target discards extended + * messages and clears the negotiation status. + * If the target does not want all our response to negotiation, + * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids + * bloat for such a should_not_happen situation). + * In all other situation, we reset the BUS. + * Are these assumptions reasonable ? (Wait and see ...) + */ +unexpected_phase: + dsp -= 8; + nxtdsp = 0; + + switch (cmd & 7) { + case 2: /* COMMAND phase */ + nxtdsp = SCRIPTA_BA(np, dispatch); + break; +#if 0 + case 3: /* STATUS phase */ + nxtdsp = SCRIPTA_BA(np, dispatch); + break; +#endif + case 6: /* MSG OUT phase */ + /* + * If the device may want to use untagged when we want + * tagged, we prepare an IDENTIFY without disc. granted, + * since we will not be able to handle reselect. + * Otherwise, we just don't care. + */ + if (dsp == SCRIPTA_BA(np, send_ident)) { + if (cp->tag != NO_TAG && olen - rest <= 3) { + cp->host_status = HS_BUSY; + np->msgout[0] = IDENTIFY(0, cp->lun); + nxtdsp = SCRIPTB_BA(np, ident_break_atn); + } + else + nxtdsp = SCRIPTB_BA(np, ident_break); + } + else if (dsp == SCRIPTB_BA(np, send_wdtr) || + dsp == SCRIPTB_BA(np, send_sdtr) || + dsp == SCRIPTB_BA(np, send_ppr)) { + nxtdsp = SCRIPTB_BA(np, nego_bad_phase); + if (dsp == SCRIPTB_BA(np, send_ppr)) { + struct scsi_device *dev = cp->cmd->device; + dev->ppr = 0; + } + } + break; +#if 0 + case 7: /* MSG IN phase */ + nxtdsp = SCRIPTA_BA(np, clrack); + break; +#endif + } + + if (nxtdsp) { + OUTL_DSP(np, nxtdsp); + return; + } + +reset_all: + sym_start_reset(np); +} + +/* + * chip interrupt handler + * + * In normal situations, interrupt conditions occur one at + * a time. But when something bad happens on the SCSI BUS, + * the chip may raise several interrupt flags before + * stopping and interrupting the CPU. The additionnal + * interrupt flags are stacked in some extra registers + * after the SIP and/or DIP flag has been raised in the + * ISTAT. After the CPU has read the interrupt condition + * flag from SIST or DSTAT, the chip unstacks the other + * interrupt flags and sets the corresponding bits in + * SIST or DSTAT. Since the chip starts stacking once the + * SIP or DIP flag is set, there is a small window of time + * where the stacking does not occur. + * + * Typically, multiple interrupt conditions may happen in + * the following situations: + * + * - SCSI parity error + Phase mismatch (PAR|MA) + * When an parity error is detected in input phase + * and the device switches to msg-in phase inside a + * block MOV. + * - SCSI parity error + Unexpected disconnect (PAR|UDC) + * When a stupid device does not want to handle the + * recovery of an SCSI parity error. + * - Some combinations of STO, PAR, UDC, ... + * When using non compliant SCSI stuff, when user is + * doing non compliant hot tampering on the BUS, when + * something really bad happens to a device, etc ... + * + * The heuristic suggested by SYMBIOS to handle + * multiple interrupts is to try unstacking all + * interrupts conditions and to handle them on some + * priority based on error severity. + * This will work when the unstacking has been + * successful, but we cannot be 100 % sure of that, + * since the CPU may have been faster to unstack than + * the chip is able to stack. Hmmm ... But it seems that + * such a situation is very unlikely to happen. + * + * If this happen, for example STO caught by the CPU + * then UDC happenning before the CPU have restarted + * the SCRIPTS, the driver may wrongly complete the + * same command on UDC, since the SCRIPTS didn't restart + * and the DSA still points to the same command. + * We avoid this situation by setting the DSA to an + * invalid value when the CCB is completed and before + * restarting the SCRIPTS. + * + * Another issue is that we need some section of our + * recovery procedures to be somehow uninterruptible but + * the SCRIPTS processor does not provides such a + * feature. For this reason, we handle recovery preferently + * from the C code and check against some SCRIPTS critical + * sections from the C code. + * + * Hopefully, the interrupt handling of the driver is now + * able to resist to weird BUS error conditions, but donnot + * ask me for any guarantee that it will never fail. :-) + * Use at your own decision and risk. + */ + +irqreturn_t sym_interrupt(struct Scsi_Host *shost) +{ + struct sym_data *sym_data = shost_priv(shost); + struct sym_hcb *np = sym_data->ncb; + struct pci_dev *pdev = sym_data->pdev; + u_char istat, istatc; + u_char dstat; + u_short sist; + + /* + * interrupt on the fly ? + * (SCRIPTS may still be running) + * + * A `dummy read' is needed to ensure that the + * clear of the INTF flag reaches the device + * and that posted writes are flushed to memory + * before the scanning of the DONE queue. + * Note that SCRIPTS also (dummy) read to memory + * prior to deliver the INTF interrupt condition. + */ + istat = INB(np, nc_istat); + if (istat & INTF) { + OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem); + istat |= INB(np, nc_istat); /* DUMMY READ */ + if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); + sym_wakeup_done(np); + } + + if (!(istat & (SIP|DIP))) + return (istat & INTF) ? IRQ_HANDLED : IRQ_NONE; + +#if 0 /* We should never get this one */ + if (istat & CABRT) + OUTB(np, nc_istat, CABRT); +#endif + + /* + * PAR and MA interrupts may occur at the same time, + * and we need to know of both in order to handle + * this situation properly. We try to unstack SCSI + * interrupts for that reason. BTW, I dislike a LOT + * such a loop inside the interrupt routine. + * Even if DMA interrupt stacking is very unlikely to + * happen, we also try unstacking these ones, since + * this has no performance impact. + */ + sist = 0; + dstat = 0; + istatc = istat; + do { + if (istatc & SIP) + sist |= INW(np, nc_sist); + if (istatc & DIP) + dstat |= INB(np, nc_dstat); + istatc = INB(np, nc_istat); + istat |= istatc; + + /* Prevent deadlock waiting on a condition that may + * never clear. */ + if (unlikely(sist == 0xffff && dstat == 0xff)) { + if (pci_channel_offline(pdev)) + return IRQ_NONE; + } + } while (istatc & (SIP|DIP)); + + if (DEBUG_FLAGS & DEBUG_TINY) + printf ("<%d|%x:%x|%x:%x>", + (int)INB(np, nc_scr0), + dstat,sist, + (unsigned)INL(np, nc_dsp), + (unsigned)INL(np, nc_dbc)); + /* + * On paper, a memory read barrier may be needed here to + * prevent out of order LOADs by the CPU from having + * prefetched stale data prior to DMA having occurred. + * And since we are paranoid ... :) + */ + MEMORY_READ_BARRIER(); + + /* + * First, interrupts we want to service cleanly. + * + * Phase mismatch (MA) is the most frequent interrupt + * for chip earlier than the 896 and so we have to service + * it as quickly as possible. + * A SCSI parity error (PAR) may be combined with a phase + * mismatch condition (MA). + * Programmed interrupts (SIR) are used to call the C code + * from SCRIPTS. + * The single step interrupt (SSI) is not used in this + * driver. + */ + if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && + !(dstat & (MDPE|BF|ABRT|IID))) { + if (sist & PAR) sym_int_par (np, sist); + else if (sist & MA) sym_int_ma (np); + else if (dstat & SIR) sym_int_sir(np); + else if (dstat & SSI) OUTONB_STD(); + else goto unknown_int; + return IRQ_HANDLED; + } + + /* + * Now, interrupts that donnot happen in normal + * situations and that we may need to recover from. + * + * On SCSI RESET (RST), we reset everything. + * On SCSI BUS MODE CHANGE (SBMC), we complete all + * active CCBs with RESET status, prepare all devices + * for negotiating again and restart the SCRIPTS. + * On STO and UDC, we complete the CCB with the corres- + * ponding status and restart the SCRIPTS. + */ + if (sist & RST) { + printf("%s: SCSI BUS reset detected.\n", sym_name(np)); + sym_start_up(shost, 1); + return IRQ_HANDLED; + } + + OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ + OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */ + + if (!(sist & (GEN|HTH|SGE)) && + !(dstat & (MDPE|BF|ABRT|IID))) { + if (sist & SBMC) sym_int_sbmc(shost); + else if (sist & STO) sym_int_sto (np); + else if (sist & UDC) sym_int_udc (np); + else goto unknown_int; + return IRQ_HANDLED; + } + + /* + * Now, interrupts we are not able to recover cleanly. + * + * Log message for hard errors. + * Reset everything. + */ + + sym_log_hard_error(shost, sist, dstat); + + if ((sist & (GEN|HTH|SGE)) || + (dstat & (MDPE|BF|ABRT|IID))) { + sym_start_reset(np); + return IRQ_HANDLED; + } + +unknown_int: + /* + * We just miss the cause of the interrupt. :( + * Print a message. The timeout will do the real work. + */ + printf( "%s: unknown interrupt(s) ignored, " + "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", + sym_name(np), istat, dstat, sist); + return IRQ_NONE; +} + +/* + * Dequeue from the START queue all CCBs that match + * a given target/lun/task condition (-1 means all), + * and move them from the BUSY queue to the COMP queue + * with DID_SOFT_ERROR status condition. + * This function is used during error handling/recovery. + * It is called with SCRIPTS not running. + */ +static int +sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task) +{ + int j; + struct sym_ccb *cp; + + /* + * Make sure the starting index is within range. + */ + assert((i >= 0) && (i < 2*MAX_QUEUE)); + + /* + * Walk until end of START queue and dequeue every job + * that matches the target/lun/task condition. + */ + j = i; + while (i != np->squeueput) { + cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); + assert(cp); +#ifdef SYM_CONF_IARB_SUPPORT + /* Forget hints for IARB, they may be no longer relevant */ + cp->host_flags &= ~HF_HINT_IARB; +#endif + if ((target == -1 || cp->target == target) && + (lun == -1 || cp->lun == lun) && + (task == -1 || cp->tag == task)) { +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + sym_set_cam_status(cp->cmd, DID_SOFT_ERROR); +#else + sym_set_cam_status(cp->cmd, DID_REQUEUE); +#endif + sym_remque(&cp->link_ccbq); + sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); + } + else { + if (i != j) + np->squeue[j] = np->squeue[i]; + if ((j += 2) >= MAX_QUEUE*2) j = 0; + } + if ((i += 2) >= MAX_QUEUE*2) i = 0; + } + if (i != j) /* Copy back the idle task if needed */ + np->squeue[j] = np->squeue[i]; + np->squeueput = j; /* Update our current start queue pointer */ + + return (i - j) / 2; +} + +/* + * chip handler for bad SCSI status condition + * + * In case of bad SCSI status, we unqueue all the tasks + * currently queued to the controller but not yet started + * and then restart the SCRIPTS processor immediately. + * + * QUEUE FULL and BUSY conditions are handled the same way. + * Basically all the not yet started tasks are requeued in + * device queue and the queue is frozen until a completion. + * + * For CHECK CONDITION and COMMAND TERMINATED status, we use + * the CCB of the failed command to prepare a REQUEST SENSE + * SCSI command and queue it to the controller queue. + * + * SCRATCHA is assumed to have been loaded with STARTPOS + * before the SCRIPTS called the C code. + */ +static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp) +{ + u32 startp; + u_char s_status = cp->ssss_status; + u_char h_flags = cp->host_flags; + int msglen; + int i; + + /* + * Compute the index of the next job to start from SCRIPTS. + */ + i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; + + /* + * The last CCB queued used for IARB hint may be + * no longer relevant. Forget it. + */ +#ifdef SYM_CONF_IARB_SUPPORT + if (np->last_cp) + np->last_cp = 0; +#endif + + /* + * Now deal with the SCSI status. + */ + switch(s_status) { + case S_BUSY: + case S_QUEUE_FULL: + if (sym_verbose >= 2) { + sym_print_addr(cp->cmd, "%s\n", + s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); + } + fallthrough; + default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ + sym_complete_error (np, cp); + break; + case S_TERMINATED: + case S_CHECK_COND: + /* + * If we get an SCSI error when requesting sense, give up. + */ + if (h_flags & HF_SENSE) { + sym_complete_error (np, cp); + break; + } + + /* + * Dequeue all queued CCBs for that device not yet started, + * and restart the SCRIPTS processor immediately. + */ + sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); + OUTL_DSP(np, SCRIPTA_BA(np, start)); + + /* + * Save some info of the actual IO. + * Compute the data residual. + */ + cp->sv_scsi_status = cp->ssss_status; + cp->sv_xerr_status = cp->xerr_status; + cp->sv_resid = sym_compute_residual(np, cp); + + /* + * Prepare all needed data structures for + * requesting sense data. + */ + + cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun); + msglen = 1; + + /* + * If we are currently using anything different from + * async. 8 bit data transfers with that target, + * start a negotiation, since the device may want + * to report us a UNIT ATTENTION condition due to + * a cause we currently ignore, and we donnot want + * to be stuck with WIDE and/or SYNC data transfer. + * + * cp->nego_status is filled by sym_prepare_nego(). + */ + cp->nego_status = 0; + msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]); + /* + * Message table indirect structure. + */ + cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg2); + cp->phys.smsg.size = cpu_to_scr(msglen); + + /* + * sense command + */ + cp->phys.cmd.addr = CCB_BA(cp, sensecmd); + cp->phys.cmd.size = cpu_to_scr(6); + + /* + * patch requested size into sense command + */ + cp->sensecmd[0] = REQUEST_SENSE; + cp->sensecmd[1] = 0; + if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7) + cp->sensecmd[1] = cp->lun << 5; + cp->sensecmd[4] = SYM_SNS_BBUF_LEN; + cp->data_len = SYM_SNS_BBUF_LEN; + + /* + * sense data + */ + memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN); + cp->phys.sense.addr = CCB_BA(cp, sns_bbuf); + cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); + + /* + * requeue the command. + */ + startp = SCRIPTB_BA(np, sdata_in); + + cp->phys.head.savep = cpu_to_scr(startp); + cp->phys.head.lastp = cpu_to_scr(startp); + cp->startp = cpu_to_scr(startp); + cp->goalp = cpu_to_scr(startp + 16); + + cp->host_xflags = 0; + cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; + cp->ssss_status = S_ILLEGAL; + cp->host_flags = (HF_SENSE|HF_DATA_IN); + cp->xerr_status = 0; + cp->extra_bytes = 0; + + cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select)); + + /* + * Requeue the command. + */ + sym_put_start_queue(np, cp); + + /* + * Give back to upper layer everything we have dequeued. + */ + sym_flush_comp_queue(np, 0); + break; + } +} + +/* + * After a device has accepted some management message + * as BUS DEVICE RESET, ABORT TASK, etc ..., or when + * a device signals a UNIT ATTENTION condition, some + * tasks are thrown away by the device. We are required + * to reflect that on our tasks list since the device + * will never complete these tasks. + * + * This function move from the BUSY queue to the COMP + * queue all disconnected CCBs for a given target that + * match the following criteria: + * - lun=-1 means any logical UNIT otherwise a given one. + * - task=-1 means any task, otherwise a given one. + */ +int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task) +{ + SYM_QUEHEAD qtmp, *qp; + int i = 0; + struct sym_ccb *cp; + + /* + * Move the entire BUSY queue to our temporary queue. + */ + sym_que_init(&qtmp); + sym_que_splice(&np->busy_ccbq, &qtmp); + sym_que_init(&np->busy_ccbq); + + /* + * Put all CCBs that matches our criteria into + * the COMP queue and put back other ones into + * the BUSY queue. + */ + while ((qp = sym_remque_head(&qtmp)) != NULL) { + struct scsi_cmnd *cmd; + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + cmd = cp->cmd; + if (cp->host_status != HS_DISCONNECT || + cp->target != target || + (lun != -1 && cp->lun != lun) || + (task != -1 && + (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { + sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); + continue; + } + sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); + + /* Preserve the software timeout condition */ + if (sym_get_cam_status(cmd) != DID_TIME_OUT) + sym_set_cam_status(cmd, cam_status); + ++i; +#if 0 +printf("XXXX TASK @%p CLEARED\n", cp); +#endif + } + return i; +} + +/* + * chip handler for TASKS recovery + * + * We cannot safely abort a command, while the SCRIPTS + * processor is running, since we just would be in race + * with it. + * + * As long as we have tasks to abort, we keep the SEM + * bit set in the ISTAT. When this bit is set, the + * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) + * each time it enters the scheduler. + * + * If we have to reset a target, clear tasks of a unit, + * or to perform the abort of a disconnected job, we + * restart the SCRIPTS for selecting the target. Once + * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). + * If it loses arbitration, the SCRIPTS will interrupt again + * the next time it will enter its scheduler, and so on ... + * + * On SIR_TARGET_SELECTED, we scan for the more + * appropriate thing to do: + * + * - If nothing, we just sent a M_ABORT message to the + * target to get rid of the useless SCSI bus ownership. + * According to the specs, no tasks shall be affected. + * - If the target is to be reset, we send it a M_RESET + * message. + * - If a logical UNIT is to be cleared , we send the + * IDENTIFY(lun) + M_ABORT. + * - If an untagged task is to be aborted, we send the + * IDENTIFY(lun) + M_ABORT. + * - If a tagged task is to be aborted, we send the + * IDENTIFY(lun) + task attributes + M_ABORT_TAG. + * + * Once our 'kiss of death' :) message has been accepted + * by the target, the SCRIPTS interrupts again + * (SIR_ABORT_SENT). On this interrupt, we complete + * all the CCBs that should have been aborted by the + * target according to our message. + */ +static void sym_sir_task_recovery(struct sym_hcb *np, int num) +{ + SYM_QUEHEAD *qp; + struct sym_ccb *cp; + struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */ + struct scsi_target *starget; + int target=-1, lun=-1, task; + int i, k; + + switch(num) { + /* + * The SCRIPTS processor stopped before starting + * the next command in order to allow us to perform + * some task recovery. + */ + case SIR_SCRIPT_STOPPED: + /* + * Do we have any target to reset or unit to clear ? + */ + for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { + tp = &np->target[i]; + if (tp->to_reset || + (tp->lun0p && tp->lun0p->to_clear)) { + target = i; + break; + } + if (!tp->lunmp) + continue; + for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { + if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { + target = i; + break; + } + } + if (target != -1) + break; + } + + /* + * If not, walk the busy queue for any + * disconnected CCB to be aborted. + */ + if (target == -1) { + FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { + cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); + if (cp->host_status != HS_DISCONNECT) + continue; + if (cp->to_abort) { + target = cp->target; + break; + } + } + } + + /* + * If some target is to be selected, + * prepare and start the selection. + */ + if (target != -1) { + tp = &np->target[target]; + np->abrt_sel.sel_id = target; + np->abrt_sel.sel_scntl3 = tp->head.wval; + np->abrt_sel.sel_sxfer = tp->head.sval; + OUTL(np, nc_dsa, np->hcb_ba); + OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort)); + return; + } + + /* + * Now look for a CCB to abort that haven't started yet. + * Btw, the SCRIPTS processor is still stopped, so + * we are not in race. + */ + i = 0; + cp = NULL; + FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + if (cp->host_status != HS_BUSY && + cp->host_status != HS_NEGOTIATE) + continue; + if (!cp->to_abort) + continue; +#ifdef SYM_CONF_IARB_SUPPORT + /* + * If we are using IMMEDIATE ARBITRATION, we donnot + * want to cancel the last queued CCB, since the + * SCRIPTS may have anticipated the selection. + */ + if (cp == np->last_cp) { + cp->to_abort = 0; + continue; + } +#endif + i = 1; /* Means we have found some */ + break; + } + if (!i) { + /* + * We are done, so we donnot need + * to synchronize with the SCRIPTS anylonger. + * Remove the SEM flag from the ISTAT. + */ + np->istat_sem = 0; + OUTB(np, nc_istat, SIGP); + break; + } + /* + * Compute index of next position in the start + * queue the SCRIPTS intends to start and dequeue + * all CCBs for that device that haven't been started. + */ + i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; + i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); + + /* + * Make sure at least our IO to abort has been dequeued. + */ +#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING + assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR); +#else + sym_remque(&cp->link_ccbq); + sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); +#endif + /* + * Keep track in cam status of the reason of the abort. + */ + if (cp->to_abort == 2) + sym_set_cam_status(cp->cmd, DID_TIME_OUT); + else + sym_set_cam_status(cp->cmd, DID_ABORT); + + /* + * Complete with error everything that we have dequeued. + */ + sym_flush_comp_queue(np, 0); + break; + /* + * The SCRIPTS processor has selected a target + * we may have some manual recovery to perform for. + */ + case SIR_TARGET_SELECTED: + target = INB(np, nc_sdid) & 0xf; + tp = &np->target[target]; + + np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); + + /* + * If the target is to be reset, prepare a + * M_RESET message and clear the to_reset flag + * since we donnot expect this operation to fail. + */ + if (tp->to_reset) { + np->abrt_msg[0] = M_RESET; + np->abrt_tbl.size = 1; + tp->to_reset = 0; + break; + } + + /* + * Otherwise, look for some logical unit to be cleared. + */ + if (tp->lun0p && tp->lun0p->to_clear) + lun = 0; + else if (tp->lunmp) { + for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { + if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { + lun = k; + break; + } + } + } + + /* + * If a logical unit is to be cleared, prepare + * an IDENTIFY(lun) + ABORT MESSAGE. + */ + if (lun != -1) { + struct sym_lcb *lp = sym_lp(tp, lun); + lp->to_clear = 0; /* We don't expect to fail here */ + np->abrt_msg[0] = IDENTIFY(0, lun); + np->abrt_msg[1] = M_ABORT; + np->abrt_tbl.size = 2; + break; + } + + /* + * Otherwise, look for some disconnected job to + * abort for this target. + */ + i = 0; + cp = NULL; + FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + if (cp->host_status != HS_DISCONNECT) + continue; + if (cp->target != target) + continue; + if (!cp->to_abort) + continue; + i = 1; /* Means we have some */ + break; + } + + /* + * If we have none, probably since the device has + * completed the command before we won abitration, + * send a M_ABORT message without IDENTIFY. + * According to the specs, the device must just + * disconnect the BUS and not abort any task. + */ + if (!i) { + np->abrt_msg[0] = M_ABORT; + np->abrt_tbl.size = 1; + break; + } + + /* + * We have some task to abort. + * Set the IDENTIFY(lun) + */ + np->abrt_msg[0] = IDENTIFY(0, cp->lun); + + /* + * If we want to abort an untagged command, we + * will send a IDENTIFY + M_ABORT. + * Otherwise (tagged command), we will send + * a IDENTITFY + task attributes + ABORT TAG. + */ + if (cp->tag == NO_TAG) { + np->abrt_msg[1] = M_ABORT; + np->abrt_tbl.size = 2; + } else { + np->abrt_msg[1] = cp->scsi_smsg[1]; + np->abrt_msg[2] = cp->scsi_smsg[2]; + np->abrt_msg[3] = M_ABORT_TAG; + np->abrt_tbl.size = 4; + } + /* + * Keep track of software timeout condition, since the + * peripheral driver may not count retries on abort + * conditions not due to timeout. + */ + if (cp->to_abort == 2) + sym_set_cam_status(cp->cmd, DID_TIME_OUT); + cp->to_abort = 0; /* We donnot expect to fail here */ + break; + + /* + * The target has accepted our message and switched + * to BUS FREE phase as we expected. + */ + case SIR_ABORT_SENT: + target = INB(np, nc_sdid) & 0xf; + tp = &np->target[target]; + starget = tp->starget; + + /* + ** If we didn't abort anything, leave here. + */ + if (np->abrt_msg[0] == M_ABORT) + break; + + /* + * If we sent a M_RESET, then a hardware reset has + * been performed by the target. + * - Reset everything to async 8 bit + * - Tell ourself to negotiate next time :-) + * - Prepare to clear all disconnected CCBs for + * this target from our task list (lun=task=-1) + */ + lun = -1; + task = -1; + if (np->abrt_msg[0] == M_RESET) { + tp->head.sval = 0; + tp->head.wval = np->rv_scntl3; + tp->head.uval = 0; + spi_period(starget) = 0; + spi_offset(starget) = 0; + spi_width(starget) = 0; + spi_iu(starget) = 0; + spi_dt(starget) = 0; + spi_qas(starget) = 0; + tp->tgoal.check_nego = 1; + tp->tgoal.renego = 0; + } + + /* + * Otherwise, check for the LUN and TASK(s) + * concerned by the cancelation. + * If it is not ABORT_TAG then it is CLEAR_QUEUE + * or an ABORT message :-) + */ + else { + lun = np->abrt_msg[0] & 0x3f; + if (np->abrt_msg[1] == M_ABORT_TAG) + task = np->abrt_msg[2]; + } + + /* + * Complete all the CCBs the device should have + * aborted due to our 'kiss of death' message. + */ + i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; + sym_dequeue_from_squeue(np, i, target, lun, -1); + sym_clear_tasks(np, DID_ABORT, target, lun, task); + sym_flush_comp_queue(np, 0); + + /* + * If we sent a BDR, make upper layer aware of that. + */ + if (np->abrt_msg[0] == M_RESET) + starget_printk(KERN_NOTICE, starget, + "has been reset\n"); + break; + } + + /* + * Print to the log the message we intend to send. + */ + if (num == SIR_TARGET_SELECTED) { + dev_info(&tp->starget->dev, "control msgout:"); + sym_printl_hex(np->abrt_msg, np->abrt_tbl.size); + np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); + } + + /* + * Let the SCRIPTS processor continue. + */ + OUTONB_STD(); +} + +/* + * Gerard's alchemy:) that deals with the data + * pointer for both MDP and the residual calculation. + * + * I didn't want to bloat the code by more than 200 + * lines for the handling of both MDP and the residual. + * This has been achieved by using a data pointer + * representation consisting in an index in the data + * array (dp_sg) and a negative offset (dp_ofs) that + * have the following meaning: + * + * - dp_sg = SYM_CONF_MAX_SG + * we are at the end of the data script. + * - dp_sg < SYM_CONF_MAX_SG + * dp_sg points to the next entry of the scatter array + * we want to transfer. + * - dp_ofs < 0 + * dp_ofs represents the residual of bytes of the + * previous entry scatter entry we will send first. + * - dp_ofs = 0 + * no residual to send first. + * + * The function sym_evaluate_dp() accepts an arbitray + * offset (basically from the MDP message) and returns + * the corresponding values of dp_sg and dp_ofs. + */ + +static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs) +{ + u32 dp_scr; + int dp_ofs, dp_sg, dp_sgmin; + int tmp; + struct sym_pmc *pm; + + /* + * Compute the resulted data pointer in term of a script + * address within some DATA script and a signed byte offset. + */ + dp_scr = scr; + dp_ofs = *ofs; + if (dp_scr == SCRIPTA_BA(np, pm0_data)) + pm = &cp->phys.pm0; + else if (dp_scr == SCRIPTA_BA(np, pm1_data)) + pm = &cp->phys.pm1; + else + pm = NULL; + + if (pm) { + dp_scr = scr_to_cpu(pm->ret); + dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff; + } + + /* + * If we are auto-sensing, then we are done. + */ + if (cp->host_flags & HF_SENSE) { + *ofs = dp_ofs; + return 0; + } + + /* + * Deduce the index of the sg entry. + * Keep track of the index of the first valid entry. + * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the + * end of the data. + */ + tmp = scr_to_cpu(cp->goalp); + dp_sg = SYM_CONF_MAX_SG; + if (dp_scr != tmp) + dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); + dp_sgmin = SYM_CONF_MAX_SG - cp->segments; + + /* + * Move to the sg entry the data pointer belongs to. + * + * If we are inside the data area, we expect result to be: + * + * Either, + * dp_ofs = 0 and dp_sg is the index of the sg entry + * the data pointer belongs to (or the end of the data) + * Or, + * dp_ofs < 0 and dp_sg is the index of the sg entry + * the data pointer belongs to + 1. + */ + if (dp_ofs < 0) { + int n; + while (dp_sg > dp_sgmin) { + --dp_sg; + tmp = scr_to_cpu(cp->phys.data[dp_sg].size); + n = dp_ofs + (tmp & 0xffffff); + if (n > 0) { + ++dp_sg; + break; + } + dp_ofs = n; + } + } + else if (dp_ofs > 0) { + while (dp_sg < SYM_CONF_MAX_SG) { + tmp = scr_to_cpu(cp->phys.data[dp_sg].size); + dp_ofs -= (tmp & 0xffffff); + ++dp_sg; + if (dp_ofs <= 0) + break; + } + } + + /* + * Make sure the data pointer is inside the data area. + * If not, return some error. + */ + if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) + goto out_err; + else if (dp_sg > SYM_CONF_MAX_SG || + (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) + goto out_err; + + /* + * Save the extreme pointer if needed. + */ + if (dp_sg > cp->ext_sg || + (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { + cp->ext_sg = dp_sg; + cp->ext_ofs = dp_ofs; + } + + /* + * Return data. + */ + *ofs = dp_ofs; + return dp_sg; + +out_err: + return -1; +} + +/* + * chip handler for MODIFY DATA POINTER MESSAGE + * + * We also call this function on IGNORE WIDE RESIDUE + * messages that do not match a SWIDE full condition. + * Btw, we assume in that situation that such a message + * is equivalent to a MODIFY DATA POINTER (offset=-1). + */ + +static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs) +{ + int dp_ofs = ofs; + u32 dp_scr = sym_get_script_dp (np, cp); + u32 dp_ret; + u32 tmp; + u_char hflags; + int dp_sg; + struct sym_pmc *pm; + + /* + * Not supported for auto-sense. + */ + if (cp->host_flags & HF_SENSE) + goto out_reject; + + /* + * Apply our alchemy:) (see comments in sym_evaluate_dp()), + * to the resulted data pointer. + */ + dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); + if (dp_sg < 0) + goto out_reject; + + /* + * And our alchemy:) allows to easily calculate the data + * script address we want to return for the next data phase. + */ + dp_ret = cpu_to_scr(cp->goalp); + dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); + + /* + * If offset / scatter entry is zero we donnot need + * a context for the new current data pointer. + */ + if (dp_ofs == 0) { + dp_scr = dp_ret; + goto out_ok; + } + + /* + * Get a context for the new current data pointer. + */ + hflags = INB(np, HF_PRT); + + if (hflags & HF_DP_SAVED) + hflags ^= HF_ACT_PM; + + if (!(hflags & HF_ACT_PM)) { + pm = &cp->phys.pm0; + dp_scr = SCRIPTA_BA(np, pm0_data); + } + else { + pm = &cp->phys.pm1; + dp_scr = SCRIPTA_BA(np, pm1_data); + } + + hflags &= ~(HF_DP_SAVED); + + OUTB(np, HF_PRT, hflags); + + /* + * Set up the new current data pointer. + * ofs < 0 there, and for the next data phase, we + * want to transfer part of the data of the sg entry + * corresponding to index dp_sg-1 prior to returning + * to the main data script. + */ + pm->ret = cpu_to_scr(dp_ret); + tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); + tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; + pm->sg.addr = cpu_to_scr(tmp); + pm->sg.size = cpu_to_scr(-dp_ofs); + +out_ok: + sym_set_script_dp (np, cp, dp_scr); + OUTL_DSP(np, SCRIPTA_BA(np, clrack)); + return; + +out_reject: + OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); +} + + +/* + * chip calculation of the data residual. + * + * As I used to say, the requirement of data residual + * in SCSI is broken, useless and cannot be achieved + * without huge complexity. + * But most OSes and even the official CAM require it. + * When stupidity happens to be so widely spread inside + * a community, it gets hard to convince. + * + * Anyway, I don't care, since I am not going to use + * any software that considers this data residual as + * a relevant information. :) + */ + +int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp) +{ + int dp_sg, resid = 0; + int dp_ofs = 0; + + /* + * Check for some data lost or just thrown away. + * We are not required to be quite accurate in this + * situation. Btw, if we are odd for output and the + * device claims some more data, it may well happen + * than our residual be zero. :-) + */ + if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { + if (cp->xerr_status & XE_EXTRA_DATA) + resid -= cp->extra_bytes; + if (cp->xerr_status & XE_SODL_UNRUN) + ++resid; + if (cp->xerr_status & XE_SWIDE_OVRUN) + --resid; + } + + /* + * If all data has been transferred, + * there is no residual. + */ + if (cp->phys.head.lastp == cp->goalp) + return resid; + + /* + * If no data transfer occurs, or if the data + * pointer is weird, return full residual. + */ + if (cp->startp == cp->phys.head.lastp || + sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), + &dp_ofs) < 0) { + return cp->data_len - cp->odd_byte_adjustment; + } + + /* + * If we were auto-sensing, then we are done. + */ + if (cp->host_flags & HF_SENSE) { + return -dp_ofs; + } + + /* + * We are now full comfortable in the computation + * of the data residual (2's complement). + */ + resid = -cp->ext_ofs; + for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { + u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); + resid += (tmp & 0xffffff); + } + + resid -= cp->odd_byte_adjustment; + + /* + * Hopefully, the result is not too wrong. + */ + return resid; +} + +/* + * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. + * + * When we try to negotiate, we append the negotiation message + * to the identify and (maybe) simple tag message. + * The host status field is set to HS_NEGOTIATE to mark this + * situation. + * + * If the target doesn't answer this message immediately + * (as required by the standard), the SIR_NEGO_FAILED interrupt + * will be raised eventually. + * The handler removes the HS_NEGOTIATE status, and sets the + * negotiated value to the default (async / nowide). + * + * If we receive a matching answer immediately, we check it + * for validity, and set the values. + * + * If we receive a Reject message immediately, we assume the + * negotiation has failed, and fall back to standard values. + * + * If we receive a negotiation message while not in HS_NEGOTIATE + * state, it's a target initiated negotiation. We prepare a + * (hopefully) valid answer, set our parameters, and send back + * this answer to the target. + * + * If the target doesn't fetch the answer (no message out phase), + * we assume the negotiation has failed, and fall back to default + * settings (SIR_NEGO_PROTO interrupt). + * + * When we set the values, we adjust them in all ccbs belonging + * to this target, in the controller's register, and in the "phys" + * field of the controller's struct sym_hcb. + */ + +/* + * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. + */ +static int +sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp) +{ + int target = cp->target; + u_char chg, ofs, per, fak, div; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_nego_msg(np, target, "sync msgin", np->msgin); + } + + /* + * Get requested values. + */ + chg = 0; + per = np->msgin[3]; + ofs = np->msgin[4]; + + /* + * Check values against our limits. + */ + if (ofs) { + if (ofs > np->maxoffs) + {chg = 1; ofs = np->maxoffs;} + } + + if (ofs) { + if (per < np->minsync) + {chg = 1; per = np->minsync;} + } + + /* + * Get new chip synchronous parameters value. + */ + div = fak = 0; + if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) + goto reject_it; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_addr(cp->cmd, + "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", + ofs, per, div, fak, chg); + } + + /* + * If it was an answer we want to change, + * then it isn't acceptable. Reject it. + */ + if (!req && chg) + goto reject_it; + + /* + * Apply new values. + */ + sym_setsync (np, target, ofs, per, div, fak); + + /* + * It was an answer. We are done. + */ + if (!req) + return 0; + + /* + * It was a request. Prepare an answer message. + */ + spi_populate_sync_msg(np->msgout, per, ofs); + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_nego_msg(np, target, "sync msgout", np->msgout); + } + + np->msgin [0] = M_NOOP; + + return 0; + +reject_it: + sym_setsync (np, target, 0, 0, 0, 0); + return -1; +} + +static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) +{ + int req = 1; + int result; + + /* + * Request or answer ? + */ + if (INB(np, HS_PRT) == HS_NEGOTIATE) { + OUTB(np, HS_PRT, HS_BUSY); + if (cp->nego_status && cp->nego_status != NS_SYNC) + goto reject_it; + req = 0; + } + + /* + * Check and apply new values. + */ + result = sym_sync_nego_check(np, req, cp); + if (result) /* Not acceptable, reject it */ + goto reject_it; + if (req) { /* Was a request, send response. */ + cp->nego_status = NS_SYNC; + OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp)); + } + else /* Was a response, we are done. */ + OUTL_DSP(np, SCRIPTA_BA(np, clrack)); + return; + +reject_it: + OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); +} + +/* + * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. + */ +static int +sym_ppr_nego_check(struct sym_hcb *np, int req, int target) +{ + struct sym_tcb *tp = &np->target[target]; + unsigned char fak, div; + int dt, chg = 0; + + unsigned char per = np->msgin[3]; + unsigned char ofs = np->msgin[5]; + unsigned char wide = np->msgin[6]; + unsigned char opts = np->msgin[7] & PPR_OPT_MASK; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_nego_msg(np, target, "ppr msgin", np->msgin); + } + + /* + * Check values against our limits. + */ + if (wide > np->maxwide) { + chg = 1; + wide = np->maxwide; + } + if (!wide || !(np->features & FE_U3EN)) + opts = 0; + + if (opts != (np->msgin[7] & PPR_OPT_MASK)) + chg = 1; + + dt = opts & PPR_OPT_DT; + + if (ofs) { + unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs; + if (ofs > maxoffs) { + chg = 1; + ofs = maxoffs; + } + } + + if (ofs) { + unsigned char minsync = dt ? np->minsync_dt : np->minsync; + if (per < minsync) { + chg = 1; + per = minsync; + } + } + + /* + * Get new chip synchronous parameters value. + */ + div = fak = 0; + if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) + goto reject_it; + + /* + * If it was an answer we want to change, + * then it isn't acceptable. Reject it. + */ + if (!req && chg) + goto reject_it; + + /* + * Apply new values. + */ + sym_setpprot(np, target, opts, ofs, per, wide, div, fak); + + /* + * It was an answer. We are done. + */ + if (!req) + return 0; + + /* + * It was a request. Prepare an answer message. + */ + spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts); + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_nego_msg(np, target, "ppr msgout", np->msgout); + } + + np->msgin [0] = M_NOOP; + + return 0; + +reject_it: + sym_setpprot (np, target, 0, 0, 0, 0, 0, 0); + /* + * If it is a device response that should result in + * ST, we may want to try a legacy negotiation later. + */ + if (!req && !opts) { + tp->tgoal.period = per; + tp->tgoal.offset = ofs; + tp->tgoal.width = wide; + tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; + tp->tgoal.check_nego = 1; + } + return -1; +} + +static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) +{ + int req = 1; + int result; + + /* + * Request or answer ? + */ + if (INB(np, HS_PRT) == HS_NEGOTIATE) { + OUTB(np, HS_PRT, HS_BUSY); + if (cp->nego_status && cp->nego_status != NS_PPR) + goto reject_it; + req = 0; + } + + /* + * Check and apply new values. + */ + result = sym_ppr_nego_check(np, req, cp->target); + if (result) /* Not acceptable, reject it */ + goto reject_it; + if (req) { /* Was a request, send response. */ + cp->nego_status = NS_PPR; + OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp)); + } + else /* Was a response, we are done. */ + OUTL_DSP(np, SCRIPTA_BA(np, clrack)); + return; + +reject_it: + OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); +} + +/* + * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. + */ +static int +sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp) +{ + int target = cp->target; + u_char chg, wide; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_nego_msg(np, target, "wide msgin", np->msgin); + } + + /* + * Get requested values. + */ + chg = 0; + wide = np->msgin[3]; + + /* + * Check values against our limits. + */ + if (wide > np->maxwide) { + chg = 1; + wide = np->maxwide; + } + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n", + wide, chg); + } + + /* + * If it was an answer we want to change, + * then it isn't acceptable. Reject it. + */ + if (!req && chg) + goto reject_it; + + /* + * Apply new values. + */ + sym_setwide (np, target, wide); + + /* + * It was an answer. We are done. + */ + if (!req) + return 0; + + /* + * It was a request. Prepare an answer message. + */ + spi_populate_width_msg(np->msgout, wide); + + np->msgin [0] = M_NOOP; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_nego_msg(np, target, "wide msgout", np->msgout); + } + + return 0; + +reject_it: + return -1; +} + +static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) +{ + int req = 1; + int result; + + /* + * Request or answer ? + */ + if (INB(np, HS_PRT) == HS_NEGOTIATE) { + OUTB(np, HS_PRT, HS_BUSY); + if (cp->nego_status && cp->nego_status != NS_WIDE) + goto reject_it; + req = 0; + } + + /* + * Check and apply new values. + */ + result = sym_wide_nego_check(np, req, cp); + if (result) /* Not acceptable, reject it */ + goto reject_it; + if (req) { /* Was a request, send response. */ + cp->nego_status = NS_WIDE; + OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp)); + } else { /* Was a response. */ + /* + * Negotiate for SYNC immediately after WIDE response. + * This allows to negotiate for both WIDE and SYNC on + * a single SCSI command (Suggested by Justin Gibbs). + */ + if (tp->tgoal.offset) { + spi_populate_sync_msg(np->msgout, tp->tgoal.period, + tp->tgoal.offset); + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_nego_msg(np, cp->target, + "sync msgout", np->msgout); + } + + cp->nego_status = NS_SYNC; + OUTB(np, HS_PRT, HS_NEGOTIATE); + OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp)); + return; + } else + OUTL_DSP(np, SCRIPTA_BA(np, clrack)); + } + + return; + +reject_it: + OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); +} + +/* + * Reset DT, SYNC or WIDE to default settings. + * + * Called when a negotiation does not succeed either + * on rejection or on protocol error. + * + * A target that understands a PPR message should never + * reject it, and messing with it is very unlikely. + * So, if a PPR makes problems, we may just want to + * try a legacy negotiation later. + */ +static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) +{ + switch (cp->nego_status) { + case NS_PPR: +#if 0 + sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0); +#else + if (tp->tgoal.period < np->minsync) + tp->tgoal.period = np->minsync; + if (tp->tgoal.offset > np->maxoffs) + tp->tgoal.offset = np->maxoffs; + tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; + tp->tgoal.check_nego = 1; +#endif + break; + case NS_SYNC: + sym_setsync (np, cp->target, 0, 0, 0, 0); + break; + case NS_WIDE: + sym_setwide (np, cp->target, 0); + break; + } + np->msgin [0] = M_NOOP; + np->msgout[0] = M_NOOP; + cp->nego_status = 0; +} + +/* + * chip handler for MESSAGE REJECT received in response to + * PPR, WIDE or SYNCHRONOUS negotiation. + */ +static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) +{ + sym_nego_default(np, tp, cp); + OUTB(np, HS_PRT, HS_BUSY); +} + +#define sym_printk(lvl, tp, cp, fmt, v...) do { \ + if (cp) \ + scmd_printk(lvl, cp->cmd, fmt, ##v); \ + else \ + starget_printk(lvl, tp->starget, fmt, ##v); \ +} while (0) + +/* + * chip exception handler for programmed interrupts. + */ +static void sym_int_sir(struct sym_hcb *np) +{ + u_char num = INB(np, nc_dsps); + u32 dsa = INL(np, nc_dsa); + struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); + u_char target = INB(np, nc_sdid) & 0x0f; + struct sym_tcb *tp = &np->target[target]; + int tmp; + + if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); + + switch (num) { +#if SYM_CONF_DMA_ADDRESSING_MODE == 2 + /* + * SCRIPTS tell us that we may have to update + * 64 bit DMA segment registers. + */ + case SIR_DMAP_DIRTY: + sym_update_dmap_regs(np); + goto out; +#endif + /* + * Command has been completed with error condition + * or has been auto-sensed. + */ + case SIR_COMPLETE_ERROR: + sym_complete_error(np, cp); + return; + /* + * The C code is currently trying to recover from something. + * Typically, user want to abort some command. + */ + case SIR_SCRIPT_STOPPED: + case SIR_TARGET_SELECTED: + case SIR_ABORT_SENT: + sym_sir_task_recovery(np, num); + return; + /* + * The device didn't go to MSG OUT phase after having + * been selected with ATN. We do not want to handle that. + */ + case SIR_SEL_ATN_NO_MSG_OUT: + sym_printk(KERN_WARNING, tp, cp, + "No MSG OUT phase after selection with ATN\n"); + goto out_stuck; + /* + * The device didn't switch to MSG IN phase after + * having reselected the initiator. + */ + case SIR_RESEL_NO_MSG_IN: + sym_printk(KERN_WARNING, tp, cp, + "No MSG IN phase after reselection\n"); + goto out_stuck; + /* + * After reselection, the device sent a message that wasn't + * an IDENTIFY. + */ + case SIR_RESEL_NO_IDENTIFY: + sym_printk(KERN_WARNING, tp, cp, + "No IDENTIFY after reselection\n"); + goto out_stuck; + /* + * The device reselected a LUN we do not know about. + */ + case SIR_RESEL_BAD_LUN: + np->msgout[0] = M_RESET; + goto out; + /* + * The device reselected for an untagged nexus and we + * haven't any. + */ + case SIR_RESEL_BAD_I_T_L: + np->msgout[0] = M_ABORT; + goto out; + /* + * The device reselected for a tagged nexus that we do not have. + */ + case SIR_RESEL_BAD_I_T_L_Q: + np->msgout[0] = M_ABORT_TAG; + goto out; + /* + * The SCRIPTS let us know that the device has grabbed + * our message and will abort the job. + */ + case SIR_RESEL_ABORTED: + np->lastmsg = np->msgout[0]; + np->msgout[0] = M_NOOP; + sym_printk(KERN_WARNING, tp, cp, + "message %x sent on bad reselection\n", np->lastmsg); + goto out; + /* + * The SCRIPTS let us know that a message has been + * successfully sent to the device. + */ + case SIR_MSG_OUT_DONE: + np->lastmsg = np->msgout[0]; + np->msgout[0] = M_NOOP; + /* Should we really care of that */ + if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { + if (cp) { + cp->xerr_status &= ~XE_PARITY_ERR; + if (!cp->xerr_status) + OUTOFFB(np, HF_PRT, HF_EXT_ERR); + } + } + goto out; + /* + * The device didn't send a GOOD SCSI status. + * We may have some work to do prior to allow + * the SCRIPTS processor to continue. + */ + case SIR_BAD_SCSI_STATUS: + if (!cp) + goto out; + sym_sir_bad_scsi_status(np, num, cp); + return; + /* + * We are asked by the SCRIPTS to prepare a + * REJECT message. + */ + case SIR_REJECT_TO_SEND: + sym_print_msg(cp, "M_REJECT to send for ", np->msgin); + np->msgout[0] = M_REJECT; + goto out; + /* + * We have been ODD at the end of a DATA IN + * transfer and the device didn't send a + * IGNORE WIDE RESIDUE message. + * It is a data overrun condition. + */ + case SIR_SWIDE_OVERRUN: + if (cp) { + OUTONB(np, HF_PRT, HF_EXT_ERR); + cp->xerr_status |= XE_SWIDE_OVRUN; + } + goto out; + /* + * We have been ODD at the end of a DATA OUT + * transfer. + * It is a data underrun condition. + */ + case SIR_SODL_UNDERRUN: + if (cp) { + OUTONB(np, HF_PRT, HF_EXT_ERR); + cp->xerr_status |= XE_SODL_UNRUN; + } + goto out; + /* + * The device wants us to tranfer more data than + * expected or in the wrong direction. + * The number of extra bytes is in scratcha. + * It is a data overrun condition. + */ + case SIR_DATA_OVERRUN: + if (cp) { + OUTONB(np, HF_PRT, HF_EXT_ERR); + cp->xerr_status |= XE_EXTRA_DATA; + cp->extra_bytes += INL(np, nc_scratcha); + } + goto out; + /* + * The device switched to an illegal phase (4/5). + */ + case SIR_BAD_PHASE: + if (cp) { + OUTONB(np, HF_PRT, HF_EXT_ERR); + cp->xerr_status |= XE_BAD_PHASE; + } + goto out; + /* + * We received a message. + */ + case SIR_MSG_RECEIVED: + if (!cp) + goto out_stuck; + switch (np->msgin [0]) { + /* + * We received an extended message. + * We handle MODIFY DATA POINTER, SDTR, WDTR + * and reject all other extended messages. + */ + case M_EXTENDED: + switch (np->msgin [2]) { + case M_X_MODIFY_DP: + if (DEBUG_FLAGS & DEBUG_POINTER) + sym_print_msg(cp, "extended msg ", + np->msgin); + tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + + (np->msgin[5]<<8) + (np->msgin[6]); + sym_modify_dp(np, tp, cp, tmp); + return; + case M_X_SYNC_REQ: + sym_sync_nego(np, tp, cp); + return; + case M_X_PPR_REQ: + sym_ppr_nego(np, tp, cp); + return; + case M_X_WIDE_REQ: + sym_wide_nego(np, tp, cp); + return; + default: + goto out_reject; + } + break; + /* + * We received a 1/2 byte message not handled from SCRIPTS. + * We are only expecting MESSAGE REJECT and IGNORE WIDE + * RESIDUE messages that haven't been anticipated by + * SCRIPTS on SWIDE full condition. Unanticipated IGNORE + * WIDE RESIDUE messages are aliased as MODIFY DP (-1). + */ + case M_IGN_RESIDUE: + if (DEBUG_FLAGS & DEBUG_POINTER) + sym_print_msg(cp, "1 or 2 byte ", np->msgin); + if (cp->host_flags & HF_SENSE) + OUTL_DSP(np, SCRIPTA_BA(np, clrack)); + else + sym_modify_dp(np, tp, cp, -1); + return; + case M_REJECT: + if (INB(np, HS_PRT) == HS_NEGOTIATE) + sym_nego_rejected(np, tp, cp); + else { + sym_print_addr(cp->cmd, + "M_REJECT received (%x:%x).\n", + scr_to_cpu(np->lastmsg), np->msgout[0]); + } + goto out_clrack; + default: + goto out_reject; + } + break; + /* + * We received an unknown message. + * Ignore all MSG IN phases and reject it. + */ + case SIR_MSG_WEIRD: + sym_print_msg(cp, "WEIRD message received", np->msgin); + OUTL_DSP(np, SCRIPTB_BA(np, msg_weird)); + return; + /* + * Negotiation failed. + * Target does not send us the reply. + * Remove the HS_NEGOTIATE status. + */ + case SIR_NEGO_FAILED: + OUTB(np, HS_PRT, HS_BUSY); + /* + * Negotiation failed. + * Target does not want answer message. + */ + fallthrough; + case SIR_NEGO_PROTO: + sym_nego_default(np, tp, cp); + goto out; + } + +out: + OUTONB_STD(); + return; +out_reject: + OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); + return; +out_clrack: + OUTL_DSP(np, SCRIPTA_BA(np, clrack)); + return; +out_stuck: + return; +} + +/* + * Acquire a control block + */ +struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order) +{ + u_char tn = cmd->device->id; + u_char ln = cmd->device->lun; + struct sym_tcb *tp = &np->target[tn]; + struct sym_lcb *lp = sym_lp(tp, ln); + u_short tag = NO_TAG; + SYM_QUEHEAD *qp; + struct sym_ccb *cp = NULL; + + /* + * Look for a free CCB + */ + if (sym_que_empty(&np->free_ccbq)) + sym_alloc_ccb(np); + qp = sym_remque_head(&np->free_ccbq); + if (!qp) + goto out; + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + + { + /* + * If we have been asked for a tagged command. + */ + if (tag_order) { + /* + * Debugging purpose. + */ +#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING + if (lp->busy_itl != 0) + goto out_free; +#endif + /* + * Allocate resources for tags if not yet. + */ + if (!lp->cb_tags) { + sym_alloc_lcb_tags(np, tn, ln); + if (!lp->cb_tags) + goto out_free; + } + /* + * Get a tag for this SCSI IO and set up + * the CCB bus address for reselection, + * and count it for this LUN. + * Toggle reselect path to tagged. + */ + if (lp->busy_itlq < SYM_CONF_MAX_TASK) { + tag = lp->cb_tags[lp->ia_tag]; + if (++lp->ia_tag == SYM_CONF_MAX_TASK) + lp->ia_tag = 0; + ++lp->busy_itlq; +#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING + lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); + lp->head.resel_sa = + cpu_to_scr(SCRIPTA_BA(np, resel_tag)); +#endif +#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING + cp->tags_si = lp->tags_si; + ++lp->tags_sum[cp->tags_si]; + ++lp->tags_since; +#endif + } + else + goto out_free; + } + /* + * This command will not be tagged. + * If we already have either a tagged or untagged + * one, refuse to overlap this untagged one. + */ + else { + /* + * Debugging purpose. + */ +#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING + if (lp->busy_itl != 0 || lp->busy_itlq != 0) + goto out_free; +#endif + /* + * Count this nexus for this LUN. + * Set up the CCB bus address for reselection. + * Toggle reselect path to untagged. + */ + ++lp->busy_itl; +#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING + if (lp->busy_itl == 1) { + lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); + lp->head.resel_sa = + cpu_to_scr(SCRIPTA_BA(np, resel_no_tag)); + } + else + goto out_free; +#endif + } + } + /* + * Put the CCB into the busy queue. + */ + sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + if (lp) { + sym_remque(&cp->link2_ccbq); + sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq); + } + +#endif + cp->to_abort = 0; + cp->odd_byte_adjustment = 0; + cp->tag = tag; + cp->order = tag_order; + cp->target = tn; + cp->lun = ln; + + if (DEBUG_FLAGS & DEBUG_TAGS) { + sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag); + } + +out: + return cp; +out_free: + sym_insque_head(&cp->link_ccbq, &np->free_ccbq); + return NULL; +} + +/* + * Release one control block + */ +void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp) +{ + struct sym_tcb *tp = &np->target[cp->target]; + struct sym_lcb *lp = sym_lp(tp, cp->lun); + + if (DEBUG_FLAGS & DEBUG_TAGS) { + sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n", + cp, cp->tag); + } + + /* + * If LCB available, + */ + if (lp) { + /* + * If tagged, release the tag, set the relect path + */ + if (cp->tag != NO_TAG) { +#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING + --lp->tags_sum[cp->tags_si]; +#endif + /* + * Free the tag value. + */ + lp->cb_tags[lp->if_tag] = cp->tag; + if (++lp->if_tag == SYM_CONF_MAX_TASK) + lp->if_tag = 0; + /* + * Make the reselect path invalid, + * and uncount this CCB. + */ + lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); + --lp->busy_itlq; + } else { /* Untagged */ + /* + * Make the reselect path invalid, + * and uncount this CCB. + */ + lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); + --lp->busy_itl; + } + /* + * If no JOB active, make the LUN reselect path invalid. + */ + if (lp->busy_itlq == 0 && lp->busy_itl == 0) + lp->head.resel_sa = + cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); + } + + /* + * We donnot queue more than 1 ccb per target + * with negotiation at any time. If this ccb was + * used for negotiation, clear this info in the tcb. + */ + if (cp == tp->nego_cp) + tp->nego_cp = NULL; + +#ifdef SYM_CONF_IARB_SUPPORT + /* + * If we just complete the last queued CCB, + * clear this info that is no longer relevant. + */ + if (cp == np->last_cp) + np->last_cp = 0; +#endif + + /* + * Make this CCB available. + */ + cp->cmd = NULL; + cp->host_status = HS_IDLE; + sym_remque(&cp->link_ccbq); + sym_insque_head(&cp->link_ccbq, &np->free_ccbq); + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + if (lp) { + sym_remque(&cp->link2_ccbq); + sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq); + if (cp->started) { + if (cp->tag != NO_TAG) + --lp->started_tags; + else + --lp->started_no_tag; + } + } + cp->started = 0; +#endif +} + +/* + * Allocate a CCB from memory and initialize its fixed part. + */ +static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np) +{ + struct sym_ccb *cp = NULL; + int hcode; + + /* + * Prevent from allocating more CCBs than we can + * queue to the controller. + */ + if (np->actccbs >= SYM_CONF_MAX_START) + return NULL; + + /* + * Allocate memory for this CCB. + */ + cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); + if (!cp) + goto out_free; + + /* + * Count it. + */ + np->actccbs++; + + /* + * Compute the bus address of this ccb. + */ + cp->ccb_ba = vtobus(cp); + + /* + * Insert this ccb into the hashed list. + */ + hcode = CCB_HASH_CODE(cp->ccb_ba); + cp->link_ccbh = np->ccbh[hcode]; + np->ccbh[hcode] = cp; + + /* + * Initialyze the start and restart actions. + */ + cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle)); + cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); + + /* + * Initilialyze some other fields. + */ + cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); + + /* + * Chain into free ccb queue. + */ + sym_insque_head(&cp->link_ccbq, &np->free_ccbq); + + /* + * Chain into optionnal lists. + */ +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq); +#endif + return cp; +out_free: + if (cp) + sym_mfree_dma(cp, sizeof(*cp), "CCB"); + return NULL; +} + +/* + * Look up a CCB from a DSA value. + */ +static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa) +{ + int hcode; + struct sym_ccb *cp; + + hcode = CCB_HASH_CODE(dsa); + cp = np->ccbh[hcode]; + while (cp) { + if (cp->ccb_ba == dsa) + break; + cp = cp->link_ccbh; + } + + return cp; +} + +/* + * Target control block initialisation. + * Nothing important to do at the moment. + */ +static void sym_init_tcb (struct sym_hcb *np, u_char tn) +{ +#if 0 /* Hmmm... this checking looks paranoid. */ + /* + * Check some alignments required by the chip. + */ + assert (((offsetof(struct sym_reg, nc_sxfer) ^ + offsetof(struct sym_tcb, head.sval)) &3) == 0); + assert (((offsetof(struct sym_reg, nc_scntl3) ^ + offsetof(struct sym_tcb, head.wval)) &3) == 0); +#endif +} + +/* + * Lun control block allocation and initialization. + */ +struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln) +{ + struct sym_tcb *tp = &np->target[tn]; + struct sym_lcb *lp = NULL; + + /* + * Initialize the target control block if not yet. + */ + sym_init_tcb (np, tn); + + /* + * Allocate the LCB bus address array. + * Compute the bus address of this table. + */ + if (ln && !tp->luntbl) { + tp->luntbl = sym_calloc_dma(256, "LUNTBL"); + if (!tp->luntbl) + goto fail; + memset32(tp->luntbl, cpu_to_scr(vtobus(&np->badlun_sa)), 64); + tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); + } + + /* + * Allocate the table of pointers for LUN(s) > 0, if needed. + */ + if (ln && !tp->lunmp) { + tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *), + GFP_ATOMIC); + if (!tp->lunmp) + goto fail; + } + + /* + * Allocate the lcb. + * Make it available to the chip. + */ + lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); + if (!lp) + goto fail; + if (ln) { + tp->lunmp[ln] = lp; + tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); + } + else { + tp->lun0p = lp; + tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); + } + tp->nlcb++; + + /* + * Let the itl task point to error handling. + */ + lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); + + /* + * Set the reselect pattern to our default. :) + */ + lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); + + /* + * Set user capabilities. + */ + lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + /* + * Initialize device queueing. + */ + sym_que_init(&lp->waiting_ccbq); + sym_que_init(&lp->started_ccbq); + lp->started_max = SYM_CONF_MAX_TASK; + lp->started_limit = SYM_CONF_MAX_TASK; +#endif + +fail: + return lp; +} + +/* + * Allocate LCB resources for tagged command queuing. + */ +static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln) +{ + struct sym_tcb *tp = &np->target[tn]; + struct sym_lcb *lp = sym_lp(tp, ln); + int i; + + /* + * Allocate the task table and and the tag allocation + * circular buffer. We want both or none. + */ + lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); + if (!lp->itlq_tbl) + goto fail; + lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC); + if (!lp->cb_tags) { + sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); + lp->itlq_tbl = NULL; + goto fail; + } + + /* + * Initialize the task table with invalid entries. + */ + memset32(lp->itlq_tbl, cpu_to_scr(np->notask_ba), SYM_CONF_MAX_TASK); + + /* + * Fill up the tag buffer with tag numbers. + */ + for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) + lp->cb_tags[i] = i; + + /* + * Make the task table available to SCRIPTS, + * And accept tagged commands now. + */ + lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); + + return; +fail: + return; +} + +/* + * Lun control block deallocation. Returns the number of valid remaining LCBs + * for the target. + */ +int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln) +{ + struct sym_tcb *tp = &np->target[tn]; + struct sym_lcb *lp = sym_lp(tp, ln); + + tp->nlcb--; + + if (ln) { + if (!tp->nlcb) { + kfree(tp->lunmp); + sym_mfree_dma(tp->luntbl, 256, "LUNTBL"); + tp->lunmp = NULL; + tp->luntbl = NULL; + tp->head.luntbl_sa = cpu_to_scr(vtobus(np->badluntbl)); + } else { + tp->luntbl[ln] = cpu_to_scr(vtobus(&np->badlun_sa)); + tp->lunmp[ln] = NULL; + } + } else { + tp->lun0p = NULL; + tp->head.lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa)); + } + + if (lp->itlq_tbl) { + sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); + kfree(lp->cb_tags); + } + + sym_mfree_dma(lp, sizeof(*lp), "LCB"); + + return tp->nlcb; +} + +/* + * Queue a SCSI IO to the controller. + */ +int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp) +{ + struct scsi_device *sdev = cmd->device; + struct sym_tcb *tp; + struct sym_lcb *lp; + u_char *msgptr; + u_int msglen; + int can_disconnect; + + /* + * Keep track of the IO in our CCB. + */ + cp->cmd = cmd; + + /* + * Retrieve the target descriptor. + */ + tp = &np->target[cp->target]; + + /* + * Retrieve the lun descriptor. + */ + lp = sym_lp(tp, sdev->lun); + + can_disconnect = (cp->tag != NO_TAG) || + (lp && (lp->curr_flags & SYM_DISC_ENABLED)); + + msgptr = cp->scsi_smsg; + msglen = 0; + msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun); + + /* + * Build the tag message if present. + */ + if (cp->tag != NO_TAG) { + u_char order = cp->order; + + switch(order) { + case M_ORDERED_TAG: + break; + case M_HEAD_TAG: + break; + default: + order = M_SIMPLE_TAG; + } +#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING + /* + * Avoid too much reordering of SCSI commands. + * The algorithm tries to prevent completion of any + * tagged command from being delayed against more + * than 3 times the max number of queued commands. + */ + if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) { + lp->tags_si = !(lp->tags_si); + if (lp->tags_sum[lp->tags_si]) { + order = M_ORDERED_TAG; + if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) { + sym_print_addr(cmd, + "ordered tag forced.\n"); + } + } + lp->tags_since = 0; + } +#endif + msgptr[msglen++] = order; + + /* + * For less than 128 tags, actual tags are numbered + * 1,3,5,..2*MAXTAGS+1,since we may have to deal + * with devices that have problems with #TAG 0 or too + * great #TAG numbers. For more tags (up to 256), + * we use directly our tag number. + */ +#if SYM_CONF_MAX_TASK > (512/4) + msgptr[msglen++] = cp->tag; +#else + msgptr[msglen++] = (cp->tag << 1) + 1; +#endif + } + + /* + * Build a negotiation message if needed. + * (nego_status is filled by sym_prepare_nego()) + * + * Always negotiate on INQUIRY and REQUEST SENSE. + * + */ + cp->nego_status = 0; + if ((tp->tgoal.check_nego || + cmd->cmnd[0] == INQUIRY || cmd->cmnd[0] == REQUEST_SENSE) && + !tp->nego_cp && lp) { + msglen += sym_prepare_nego(np, cp, msgptr + msglen); + } + + /* + * Startqueue + */ + cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select)); + cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa)); + + /* + * select + */ + cp->phys.select.sel_id = cp->target; + cp->phys.select.sel_scntl3 = tp->head.wval; + cp->phys.select.sel_sxfer = tp->head.sval; + cp->phys.select.sel_scntl4 = tp->head.uval; + + /* + * message + */ + cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg); + cp->phys.smsg.size = cpu_to_scr(msglen); + + /* + * status + */ + cp->host_xflags = 0; + cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; + cp->ssss_status = S_ILLEGAL; + cp->xerr_status = 0; + cp->host_flags = 0; + cp->extra_bytes = 0; + + /* + * extreme data pointer. + * shall be positive, so -1 is lower than lowest.:) + */ + cp->ext_sg = -1; + cp->ext_ofs = 0; + + /* + * Build the CDB and DATA descriptor block + * and start the IO. + */ + return sym_setup_data_and_start(np, cmd, cp); +} + +/* + * Reset a SCSI target (all LUNs of this target). + */ +int sym_reset_scsi_target(struct sym_hcb *np, int target) +{ + struct sym_tcb *tp; + + if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET) + return -1; + + tp = &np->target[target]; + tp->to_reset = 1; + + np->istat_sem = SEM; + OUTB(np, nc_istat, SIGP|SEM); + + return 0; +} + +/* + * Abort a SCSI IO. + */ +static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out) +{ + /* + * Check that the IO is active. + */ + if (!cp || !cp->host_status || cp->host_status == HS_WAIT) + return -1; + + /* + * If a previous abort didn't succeed in time, + * perform a BUS reset. + */ + if (cp->to_abort) { + sym_reset_scsi_bus(np, 1); + return 0; + } + + /* + * Mark the CCB for abort and allow time for. + */ + cp->to_abort = timed_out ? 2 : 1; + + /* + * Tell the SCRIPTS processor to stop and synchronize with us. + */ + np->istat_sem = SEM; + OUTB(np, nc_istat, SIGP|SEM); + return 0; +} + +int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out) +{ + struct sym_ccb *cp; + SYM_QUEHEAD *qp; + + /* + * Look up our CCB control block. + */ + cp = NULL; + FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { + struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); + if (cp2->cmd == cmd) { + cp = cp2; + break; + } + } + + return sym_abort_ccb(np, cp, timed_out); +} + +/* + * Complete execution of a SCSI command with extended + * error, SCSI status error, or having been auto-sensed. + * + * The SCRIPTS processor is not running there, so we + * can safely access IO registers and remove JOBs from + * the START queue. + * SCRATCHA is assumed to have been loaded with STARTPOS + * before the SCRIPTS called the C code. + */ +void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp) +{ + struct scsi_device *sdev; + struct scsi_cmnd *cmd; +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + struct sym_tcb *tp; + struct sym_lcb *lp; +#endif + int resid; + int i; + + /* + * Paranoid check. :) + */ + if (!cp || !cp->cmd) + return; + + cmd = cp->cmd; + sdev = cmd->device; + if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { + dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp, + cp->host_status, cp->ssss_status, cp->host_flags); + } + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + /* + * Get target and lun pointers. + */ + tp = &np->target[cp->target]; + lp = sym_lp(tp, sdev->lun); +#endif + + /* + * Check for extended errors. + */ + if (cp->xerr_status) { + if (sym_verbose) + sym_print_xerr(cmd, cp->xerr_status); + if (cp->host_status == HS_COMPLETE) + cp->host_status = HS_COMP_ERR; + } + + /* + * Calculate the residual. + */ + resid = sym_compute_residual(np, cp); + + if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */ + resid = 0; /* throw them away. :) */ + cp->sv_resid = 0; + } +#ifdef DEBUG_2_0_X +if (resid) + printf("XXXX RESID= %d - 0x%x\n", resid, resid); +#endif + + /* + * Dequeue all queued CCBs for that device + * not yet started by SCRIPTS. + */ + i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; + i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1); + + /* + * Restart the SCRIPTS processor. + */ + OUTL_DSP(np, SCRIPTA_BA(np, start)); + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + if (cp->host_status == HS_COMPLETE && + cp->ssss_status == S_QUEUE_FULL) { + if (!lp || lp->started_tags - i < 2) + goto weirdness; + /* + * Decrease queue depth as needed. + */ + lp->started_max = lp->started_tags - i - 1; + lp->num_sgood = 0; + + if (sym_verbose >= 2) { + sym_print_addr(cmd, " queue depth is now %d\n", + lp->started_max); + } + + /* + * Repair the CCB. + */ + cp->host_status = HS_BUSY; + cp->ssss_status = S_ILLEGAL; + + /* + * Let's requeue it to device. + */ + sym_set_cam_status(cmd, DID_SOFT_ERROR); + goto finish; + } +weirdness: +#endif + /* + * Build result in CAM ccb. + */ + sym_set_cam_result_error(np, cp, resid); + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING +finish: +#endif + /* + * Add this one to the COMP queue. + */ + sym_remque(&cp->link_ccbq); + sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); + + /* + * Complete all those commands with either error + * or requeue condition. + */ + sym_flush_comp_queue(np, 0); + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + /* + * Donnot start more than 1 command after an error. + */ + sym_start_next_ccbs(np, lp, 1); +#endif +} + +/* + * Complete execution of a successful SCSI command. + * + * Only successful commands go to the DONE queue, + * since we need to have the SCRIPTS processor + * stopped on any error condition. + * The SCRIPTS processor is running while we are + * completing successful commands. + */ +void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp) +{ +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + struct sym_tcb *tp; + struct sym_lcb *lp; +#endif + struct scsi_cmnd *cmd; + int resid; + + /* + * Paranoid check. :) + */ + if (!cp || !cp->cmd) + return; + assert (cp->host_status == HS_COMPLETE); + + /* + * Get user command. + */ + cmd = cp->cmd; + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + /* + * Get target and lun pointers. + */ + tp = &np->target[cp->target]; + lp = sym_lp(tp, cp->lun); +#endif + + /* + * If all data have been transferred, given than no + * extended error did occur, there is no residual. + */ + resid = 0; + if (cp->phys.head.lastp != cp->goalp) + resid = sym_compute_residual(np, cp); + + /* + * Wrong transfer residuals may be worse than just always + * returning zero. User can disable this feature in + * sym53c8xx.h. Residual support is enabled by default. + */ + if (!SYM_SETUP_RESIDUAL_SUPPORT) + resid = 0; +#ifdef DEBUG_2_0_X +if (resid) + printf("XXXX RESID= %d - 0x%x\n", resid, resid); +#endif + + /* + * Build result in CAM ccb. + */ + sym_set_cam_result_ok(cp, cmd, resid); + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + /* + * If max number of started ccbs had been reduced, + * increase it if 200 good status received. + */ + if (lp && lp->started_max < lp->started_limit) { + ++lp->num_sgood; + if (lp->num_sgood >= 200) { + lp->num_sgood = 0; + ++lp->started_max; + if (sym_verbose >= 2) { + sym_print_addr(cmd, " queue depth is now %d\n", + lp->started_max); + } + } + } +#endif + + /* + * Free our CCB. + */ + sym_free_ccb (np, cp); + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + /* + * Requeue a couple of awaiting scsi commands. + */ + if (!sym_que_empty(&lp->waiting_ccbq)) + sym_start_next_ccbs(np, lp, 2); +#endif + /* + * Complete the command. + */ + sym_xpt_done(np, cmd); +} + +/* + * Soft-attach the controller. + */ +int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram) +{ + struct sym_hcb *np = sym_get_hcb(shost); + int i; + + /* + * Get some info about the firmware. + */ + np->scripta_sz = fw->a_size; + np->scriptb_sz = fw->b_size; + np->scriptz_sz = fw->z_size; + np->fw_setup = fw->setup; + np->fw_patch = fw->patch; + np->fw_name = fw->name; + + /* + * Save setting of some IO registers, so we will + * be able to probe specific implementations. + */ + sym_save_initial_setting (np); + + /* + * Reset the chip now, since it has been reported + * that SCSI clock calibration may not work properly + * if the chip is currently active. + */ + sym_chip_reset(np); + + /* + * Prepare controller and devices settings, according + * to chip features, user set-up and driver set-up. + */ + sym_prepare_setting(shost, np, nvram); + + /* + * Check the PCI clock frequency. + * Must be performed after prepare_setting since it destroys + * STEST1 that is used to probe for the clock doubler. + */ + i = sym_getpciclock(np); + if (i > 37000 && !(np->features & FE_66MHZ)) + printf("%s: PCI BUS clock seems too high: %u KHz.\n", + sym_name(np), i); + + /* + * Allocate the start queue. + */ + np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); + if (!np->squeue) + goto attach_failed; + np->squeue_ba = vtobus(np->squeue); + + /* + * Allocate the done queue. + */ + np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); + if (!np->dqueue) + goto attach_failed; + np->dqueue_ba = vtobus(np->dqueue); + + /* + * Allocate the target bus address array. + */ + np->targtbl = sym_calloc_dma(256, "TARGTBL"); + if (!np->targtbl) + goto attach_failed; + np->targtbl_ba = vtobus(np->targtbl); + + /* + * Allocate SCRIPTS areas. + */ + np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); + np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); + np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0"); + if (!np->scripta0 || !np->scriptb0 || !np->scriptz0) + goto attach_failed; + + /* + * Allocate the array of lists of CCBs hashed by DSA. + */ + np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(*np->ccbh), GFP_KERNEL); + if (!np->ccbh) + goto attach_failed; + + /* + * Initialyze the CCB free and busy queues. + */ + sym_que_init(&np->free_ccbq); + sym_que_init(&np->busy_ccbq); + sym_que_init(&np->comp_ccbq); + + /* + * Initialization for optional handling + * of device queueing. + */ +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + sym_que_init(&np->dummy_ccbq); +#endif + /* + * Allocate some CCB. We need at least ONE. + */ + if (!sym_alloc_ccb(np)) + goto attach_failed; + + /* + * Calculate BUS addresses where we are going + * to load the SCRIPTS. + */ + np->scripta_ba = vtobus(np->scripta0); + np->scriptb_ba = vtobus(np->scriptb0); + np->scriptz_ba = vtobus(np->scriptz0); + + if (np->ram_ba) { + np->scripta_ba = np->ram_ba; + if (np->features & FE_RAM8K) { + np->scriptb_ba = np->scripta_ba + 4096; +#if 0 /* May get useful for 64 BIT PCI addressing */ + np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); +#endif + } + } + + /* + * Copy scripts to controller instance. + */ + memcpy(np->scripta0, fw->a_base, np->scripta_sz); + memcpy(np->scriptb0, fw->b_base, np->scriptb_sz); + memcpy(np->scriptz0, fw->z_base, np->scriptz_sz); + + /* + * Setup variable parts in scripts and compute + * scripts bus addresses used from the C code. + */ + np->fw_setup(np, fw); + + /* + * Bind SCRIPTS with physical addresses usable by the + * SCRIPTS processor (as seen from the BUS = BUS addresses). + */ + sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); + sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); + sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz); + +#ifdef SYM_CONF_IARB_SUPPORT + /* + * If user wants IARB to be set when we win arbitration + * and have other jobs, compute the max number of consecutive + * settings of IARB hints before we leave devices a chance to + * arbitrate for reselection. + */ +#ifdef SYM_SETUP_IARB_MAX + np->iarb_max = SYM_SETUP_IARB_MAX; +#else + np->iarb_max = 4; +#endif +#endif + + /* + * Prepare the idle and invalid task actions. + */ + np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle)); + np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); + np->idletask_ba = vtobus(&np->idletask); + + np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle)); + np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); + np->notask_ba = vtobus(&np->notask); + + np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle)); + np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); + np->bad_itl_ba = vtobus(&np->bad_itl); + + np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle)); + np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q)); + np->bad_itlq_ba = vtobus(&np->bad_itlq); + + /* + * Allocate and prepare the lun JUMP table that is used + * for a target prior the probing of devices (bad lun table). + * A private table will be allocated for the target on the + * first INQUIRY response received. + */ + np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); + if (!np->badluntbl) + goto attach_failed; + + np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); + memset32(np->badluntbl, cpu_to_scr(vtobus(&np->badlun_sa)), 64); + + /* + * Prepare the bus address array that contains the bus + * address of each target control block. + * For now, assume all logical units are wrong. :) + */ + for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { + np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); + np->target[i].head.luntbl_sa = + cpu_to_scr(vtobus(np->badluntbl)); + np->target[i].head.lun0_sa = + cpu_to_scr(vtobus(&np->badlun_sa)); + } + + /* + * Now check the cache handling of the pci chipset. + */ + if (sym_snooptest (np)) { + printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np)); + goto attach_failed; + } + + /* + * Sigh! we are done. + */ + return 0; + +attach_failed: + return -ENXIO; +} + +/* + * Free everything that has been allocated for this device. + */ +void sym_hcb_free(struct sym_hcb *np) +{ + SYM_QUEHEAD *qp; + struct sym_ccb *cp; + struct sym_tcb *tp; + int target; + + if (np->scriptz0) + sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0"); + if (np->scriptb0) + sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); + if (np->scripta0) + sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); + if (np->squeue) + sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); + if (np->dqueue) + sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); + + if (np->actccbs) { + while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) { + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + sym_mfree_dma(cp, sizeof(*cp), "CCB"); + } + } + kfree(np->ccbh); + + if (np->badluntbl) + sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); + + for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { + tp = &np->target[target]; + if (tp->luntbl) + sym_mfree_dma(tp->luntbl, 256, "LUNTBL"); +#if SYM_CONF_MAX_LUN > 1 + kfree(tp->lunmp); +#endif + } + if (np->targtbl) + sym_mfree_dma(np->targtbl, 256, "TARGTBL"); +} |