summaryrefslogtreecommitdiffstats
path: root/fs/btrfs/send.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/btrfs/send.c')
-rw-r--r--fs/btrfs/send.c8136
1 files changed, 8136 insertions, 0 deletions
diff --git a/fs/btrfs/send.c b/fs/btrfs/send.c
new file mode 100644
index 000000000..4a4d65b5e
--- /dev/null
+++ b/fs/btrfs/send.c
@@ -0,0 +1,8136 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2012 Alexander Block. All rights reserved.
+ */
+
+#include <linux/bsearch.h>
+#include <linux/fs.h>
+#include <linux/file.h>
+#include <linux/sort.h>
+#include <linux/mount.h>
+#include <linux/xattr.h>
+#include <linux/posix_acl_xattr.h>
+#include <linux/radix-tree.h>
+#include <linux/vmalloc.h>
+#include <linux/string.h>
+#include <linux/compat.h>
+#include <linux/crc32c.h>
+#include <linux/fsverity.h>
+
+#include "send.h"
+#include "ctree.h"
+#include "backref.h"
+#include "locking.h"
+#include "disk-io.h"
+#include "btrfs_inode.h"
+#include "transaction.h"
+#include "compression.h"
+#include "xattr.h"
+#include "print-tree.h"
+
+/*
+ * Maximum number of references an extent can have in order for us to attempt to
+ * issue clone operations instead of write operations. This currently exists to
+ * avoid hitting limitations of the backreference walking code (taking a lot of
+ * time and using too much memory for extents with large number of references).
+ */
+#define SEND_MAX_EXTENT_REFS 64
+
+/*
+ * A fs_path is a helper to dynamically build path names with unknown size.
+ * It reallocates the internal buffer on demand.
+ * It allows fast adding of path elements on the right side (normal path) and
+ * fast adding to the left side (reversed path). A reversed path can also be
+ * unreversed if needed.
+ */
+struct fs_path {
+ union {
+ struct {
+ char *start;
+ char *end;
+
+ char *buf;
+ unsigned short buf_len:15;
+ unsigned short reversed:1;
+ char inline_buf[];
+ };
+ /*
+ * Average path length does not exceed 200 bytes, we'll have
+ * better packing in the slab and higher chance to satisfy
+ * a allocation later during send.
+ */
+ char pad[256];
+ };
+};
+#define FS_PATH_INLINE_SIZE \
+ (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
+
+
+/* reused for each extent */
+struct clone_root {
+ struct btrfs_root *root;
+ u64 ino;
+ u64 offset;
+
+ u64 found_refs;
+};
+
+#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
+#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
+
+struct send_ctx {
+ struct file *send_filp;
+ loff_t send_off;
+ char *send_buf;
+ u32 send_size;
+ u32 send_max_size;
+ /*
+ * Whether BTRFS_SEND_A_DATA attribute was already added to current
+ * command (since protocol v2, data must be the last attribute).
+ */
+ bool put_data;
+ struct page **send_buf_pages;
+ u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
+ /* Protocol version compatibility requested */
+ u32 proto;
+
+ struct btrfs_root *send_root;
+ struct btrfs_root *parent_root;
+ struct clone_root *clone_roots;
+ int clone_roots_cnt;
+
+ /* current state of the compare_tree call */
+ struct btrfs_path *left_path;
+ struct btrfs_path *right_path;
+ struct btrfs_key *cmp_key;
+
+ /*
+ * Keep track of the generation of the last transaction that was used
+ * for relocating a block group. This is periodically checked in order
+ * to detect if a relocation happened since the last check, so that we
+ * don't operate on stale extent buffers for nodes (level >= 1) or on
+ * stale disk_bytenr values of file extent items.
+ */
+ u64 last_reloc_trans;
+
+ /*
+ * infos of the currently processed inode. In case of deleted inodes,
+ * these are the values from the deleted inode.
+ */
+ u64 cur_ino;
+ u64 cur_inode_gen;
+ u64 cur_inode_size;
+ u64 cur_inode_mode;
+ u64 cur_inode_rdev;
+ u64 cur_inode_last_extent;
+ u64 cur_inode_next_write_offset;
+ bool cur_inode_new;
+ bool cur_inode_new_gen;
+ bool cur_inode_deleted;
+ bool ignore_cur_inode;
+ bool cur_inode_needs_verity;
+ void *verity_descriptor;
+
+ u64 send_progress;
+
+ struct list_head new_refs;
+ struct list_head deleted_refs;
+
+ struct radix_tree_root name_cache;
+ struct list_head name_cache_list;
+ int name_cache_size;
+
+ /*
+ * The inode we are currently processing. It's not NULL only when we
+ * need to issue write commands for data extents from this inode.
+ */
+ struct inode *cur_inode;
+ struct file_ra_state ra;
+ u64 page_cache_clear_start;
+ bool clean_page_cache;
+
+ /*
+ * We process inodes by their increasing order, so if before an
+ * incremental send we reverse the parent/child relationship of
+ * directories such that a directory with a lower inode number was
+ * the parent of a directory with a higher inode number, and the one
+ * becoming the new parent got renamed too, we can't rename/move the
+ * directory with lower inode number when we finish processing it - we
+ * must process the directory with higher inode number first, then
+ * rename/move it and then rename/move the directory with lower inode
+ * number. Example follows.
+ *
+ * Tree state when the first send was performed:
+ *
+ * .
+ * |-- a (ino 257)
+ * |-- b (ino 258)
+ * |
+ * |
+ * |-- c (ino 259)
+ * | |-- d (ino 260)
+ * |
+ * |-- c2 (ino 261)
+ *
+ * Tree state when the second (incremental) send is performed:
+ *
+ * .
+ * |-- a (ino 257)
+ * |-- b (ino 258)
+ * |-- c2 (ino 261)
+ * |-- d2 (ino 260)
+ * |-- cc (ino 259)
+ *
+ * The sequence of steps that lead to the second state was:
+ *
+ * mv /a/b/c/d /a/b/c2/d2
+ * mv /a/b/c /a/b/c2/d2/cc
+ *
+ * "c" has lower inode number, but we can't move it (2nd mv operation)
+ * before we move "d", which has higher inode number.
+ *
+ * So we just memorize which move/rename operations must be performed
+ * later when their respective parent is processed and moved/renamed.
+ */
+
+ /* Indexed by parent directory inode number. */
+ struct rb_root pending_dir_moves;
+
+ /*
+ * Reverse index, indexed by the inode number of a directory that
+ * is waiting for the move/rename of its immediate parent before its
+ * own move/rename can be performed.
+ */
+ struct rb_root waiting_dir_moves;
+
+ /*
+ * A directory that is going to be rm'ed might have a child directory
+ * which is in the pending directory moves index above. In this case,
+ * the directory can only be removed after the move/rename of its child
+ * is performed. Example:
+ *
+ * Parent snapshot:
+ *
+ * . (ino 256)
+ * |-- a/ (ino 257)
+ * |-- b/ (ino 258)
+ * |-- c/ (ino 259)
+ * | |-- x/ (ino 260)
+ * |
+ * |-- y/ (ino 261)
+ *
+ * Send snapshot:
+ *
+ * . (ino 256)
+ * |-- a/ (ino 257)
+ * |-- b/ (ino 258)
+ * |-- YY/ (ino 261)
+ * |-- x/ (ino 260)
+ *
+ * Sequence of steps that lead to the send snapshot:
+ * rm -f /a/b/c/foo.txt
+ * mv /a/b/y /a/b/YY
+ * mv /a/b/c/x /a/b/YY
+ * rmdir /a/b/c
+ *
+ * When the child is processed, its move/rename is delayed until its
+ * parent is processed (as explained above), but all other operations
+ * like update utimes, chown, chgrp, etc, are performed and the paths
+ * that it uses for those operations must use the orphanized name of
+ * its parent (the directory we're going to rm later), so we need to
+ * memorize that name.
+ *
+ * Indexed by the inode number of the directory to be deleted.
+ */
+ struct rb_root orphan_dirs;
+
+ struct rb_root rbtree_new_refs;
+ struct rb_root rbtree_deleted_refs;
+};
+
+struct pending_dir_move {
+ struct rb_node node;
+ struct list_head list;
+ u64 parent_ino;
+ u64 ino;
+ u64 gen;
+ struct list_head update_refs;
+};
+
+struct waiting_dir_move {
+ struct rb_node node;
+ u64 ino;
+ /*
+ * There might be some directory that could not be removed because it
+ * was waiting for this directory inode to be moved first. Therefore
+ * after this directory is moved, we can try to rmdir the ino rmdir_ino.
+ */
+ u64 rmdir_ino;
+ u64 rmdir_gen;
+ bool orphanized;
+};
+
+struct orphan_dir_info {
+ struct rb_node node;
+ u64 ino;
+ u64 gen;
+ u64 last_dir_index_offset;
+};
+
+struct name_cache_entry {
+ struct list_head list;
+ /*
+ * radix_tree has only 32bit entries but we need to handle 64bit inums.
+ * We use the lower 32bit of the 64bit inum to store it in the tree. If
+ * more then one inum would fall into the same entry, we use radix_list
+ * to store the additional entries. radix_list is also used to store
+ * entries where two entries have the same inum but different
+ * generations.
+ */
+ struct list_head radix_list;
+ u64 ino;
+ u64 gen;
+ u64 parent_ino;
+ u64 parent_gen;
+ int ret;
+ int need_later_update;
+ int name_len;
+ char name[];
+};
+
+#define ADVANCE 1
+#define ADVANCE_ONLY_NEXT -1
+
+enum btrfs_compare_tree_result {
+ BTRFS_COMPARE_TREE_NEW,
+ BTRFS_COMPARE_TREE_DELETED,
+ BTRFS_COMPARE_TREE_CHANGED,
+ BTRFS_COMPARE_TREE_SAME,
+};
+
+__cold
+static void inconsistent_snapshot_error(struct send_ctx *sctx,
+ enum btrfs_compare_tree_result result,
+ const char *what)
+{
+ const char *result_string;
+
+ switch (result) {
+ case BTRFS_COMPARE_TREE_NEW:
+ result_string = "new";
+ break;
+ case BTRFS_COMPARE_TREE_DELETED:
+ result_string = "deleted";
+ break;
+ case BTRFS_COMPARE_TREE_CHANGED:
+ result_string = "updated";
+ break;
+ case BTRFS_COMPARE_TREE_SAME:
+ ASSERT(0);
+ result_string = "unchanged";
+ break;
+ default:
+ ASSERT(0);
+ result_string = "unexpected";
+ }
+
+ btrfs_err(sctx->send_root->fs_info,
+ "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
+ result_string, what, sctx->cmp_key->objectid,
+ sctx->send_root->root_key.objectid,
+ (sctx->parent_root ?
+ sctx->parent_root->root_key.objectid : 0));
+}
+
+__maybe_unused
+static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
+{
+ switch (sctx->proto) {
+ case 1: return cmd <= BTRFS_SEND_C_MAX_V1;
+ case 2: return cmd <= BTRFS_SEND_C_MAX_V2;
+ case 3: return cmd <= BTRFS_SEND_C_MAX_V3;
+ default: return false;
+ }
+}
+
+static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
+
+static struct waiting_dir_move *
+get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
+
+static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
+
+static int need_send_hole(struct send_ctx *sctx)
+{
+ return (sctx->parent_root && !sctx->cur_inode_new &&
+ !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
+ S_ISREG(sctx->cur_inode_mode));
+}
+
+static void fs_path_reset(struct fs_path *p)
+{
+ if (p->reversed) {
+ p->start = p->buf + p->buf_len - 1;
+ p->end = p->start;
+ *p->start = 0;
+ } else {
+ p->start = p->buf;
+ p->end = p->start;
+ *p->start = 0;
+ }
+}
+
+static struct fs_path *fs_path_alloc(void)
+{
+ struct fs_path *p;
+
+ p = kmalloc(sizeof(*p), GFP_KERNEL);
+ if (!p)
+ return NULL;
+ p->reversed = 0;
+ p->buf = p->inline_buf;
+ p->buf_len = FS_PATH_INLINE_SIZE;
+ fs_path_reset(p);
+ return p;
+}
+
+static struct fs_path *fs_path_alloc_reversed(void)
+{
+ struct fs_path *p;
+
+ p = fs_path_alloc();
+ if (!p)
+ return NULL;
+ p->reversed = 1;
+ fs_path_reset(p);
+ return p;
+}
+
+static void fs_path_free(struct fs_path *p)
+{
+ if (!p)
+ return;
+ if (p->buf != p->inline_buf)
+ kfree(p->buf);
+ kfree(p);
+}
+
+static int fs_path_len(struct fs_path *p)
+{
+ return p->end - p->start;
+}
+
+static int fs_path_ensure_buf(struct fs_path *p, int len)
+{
+ char *tmp_buf;
+ int path_len;
+ int old_buf_len;
+
+ len++;
+
+ if (p->buf_len >= len)
+ return 0;
+
+ if (len > PATH_MAX) {
+ WARN_ON(1);
+ return -ENOMEM;
+ }
+
+ path_len = p->end - p->start;
+ old_buf_len = p->buf_len;
+
+ /*
+ * First time the inline_buf does not suffice
+ */
+ if (p->buf == p->inline_buf) {
+ tmp_buf = kmalloc(len, GFP_KERNEL);
+ if (tmp_buf)
+ memcpy(tmp_buf, p->buf, old_buf_len);
+ } else {
+ tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
+ }
+ if (!tmp_buf)
+ return -ENOMEM;
+ p->buf = tmp_buf;
+ /*
+ * The real size of the buffer is bigger, this will let the fast path
+ * happen most of the time
+ */
+ p->buf_len = ksize(p->buf);
+
+ if (p->reversed) {
+ tmp_buf = p->buf + old_buf_len - path_len - 1;
+ p->end = p->buf + p->buf_len - 1;
+ p->start = p->end - path_len;
+ memmove(p->start, tmp_buf, path_len + 1);
+ } else {
+ p->start = p->buf;
+ p->end = p->start + path_len;
+ }
+ return 0;
+}
+
+static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
+ char **prepared)
+{
+ int ret;
+ int new_len;
+
+ new_len = p->end - p->start + name_len;
+ if (p->start != p->end)
+ new_len++;
+ ret = fs_path_ensure_buf(p, new_len);
+ if (ret < 0)
+ goto out;
+
+ if (p->reversed) {
+ if (p->start != p->end)
+ *--p->start = '/';
+ p->start -= name_len;
+ *prepared = p->start;
+ } else {
+ if (p->start != p->end)
+ *p->end++ = '/';
+ *prepared = p->end;
+ p->end += name_len;
+ *p->end = 0;
+ }
+
+out:
+ return ret;
+}
+
+static int fs_path_add(struct fs_path *p, const char *name, int name_len)
+{
+ int ret;
+ char *prepared;
+
+ ret = fs_path_prepare_for_add(p, name_len, &prepared);
+ if (ret < 0)
+ goto out;
+ memcpy(prepared, name, name_len);
+
+out:
+ return ret;
+}
+
+static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
+{
+ int ret;
+ char *prepared;
+
+ ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
+ if (ret < 0)
+ goto out;
+ memcpy(prepared, p2->start, p2->end - p2->start);
+
+out:
+ return ret;
+}
+
+static int fs_path_add_from_extent_buffer(struct fs_path *p,
+ struct extent_buffer *eb,
+ unsigned long off, int len)
+{
+ int ret;
+ char *prepared;
+
+ ret = fs_path_prepare_for_add(p, len, &prepared);
+ if (ret < 0)
+ goto out;
+
+ read_extent_buffer(eb, prepared, off, len);
+
+out:
+ return ret;
+}
+
+static int fs_path_copy(struct fs_path *p, struct fs_path *from)
+{
+ p->reversed = from->reversed;
+ fs_path_reset(p);
+
+ return fs_path_add_path(p, from);
+}
+
+static void fs_path_unreverse(struct fs_path *p)
+{
+ char *tmp;
+ int len;
+
+ if (!p->reversed)
+ return;
+
+ tmp = p->start;
+ len = p->end - p->start;
+ p->start = p->buf;
+ p->end = p->start + len;
+ memmove(p->start, tmp, len + 1);
+ p->reversed = 0;
+}
+
+static struct btrfs_path *alloc_path_for_send(void)
+{
+ struct btrfs_path *path;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return NULL;
+ path->search_commit_root = 1;
+ path->skip_locking = 1;
+ path->need_commit_sem = 1;
+ return path;
+}
+
+static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
+{
+ int ret;
+ u32 pos = 0;
+
+ while (pos < len) {
+ ret = kernel_write(filp, buf + pos, len - pos, off);
+ if (ret < 0)
+ return ret;
+ if (ret == 0)
+ return -EIO;
+ pos += ret;
+ }
+
+ return 0;
+}
+
+static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
+{
+ struct btrfs_tlv_header *hdr;
+ int total_len = sizeof(*hdr) + len;
+ int left = sctx->send_max_size - sctx->send_size;
+
+ if (WARN_ON_ONCE(sctx->put_data))
+ return -EINVAL;
+
+ if (unlikely(left < total_len))
+ return -EOVERFLOW;
+
+ hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
+ put_unaligned_le16(attr, &hdr->tlv_type);
+ put_unaligned_le16(len, &hdr->tlv_len);
+ memcpy(hdr + 1, data, len);
+ sctx->send_size += total_len;
+
+ return 0;
+}
+
+#define TLV_PUT_DEFINE_INT(bits) \
+ static int tlv_put_u##bits(struct send_ctx *sctx, \
+ u##bits attr, u##bits value) \
+ { \
+ __le##bits __tmp = cpu_to_le##bits(value); \
+ return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
+ }
+
+TLV_PUT_DEFINE_INT(8)
+TLV_PUT_DEFINE_INT(32)
+TLV_PUT_DEFINE_INT(64)
+
+static int tlv_put_string(struct send_ctx *sctx, u16 attr,
+ const char *str, int len)
+{
+ if (len == -1)
+ len = strlen(str);
+ return tlv_put(sctx, attr, str, len);
+}
+
+static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
+ const u8 *uuid)
+{
+ return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
+}
+
+static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
+ struct extent_buffer *eb,
+ struct btrfs_timespec *ts)
+{
+ struct btrfs_timespec bts;
+ read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
+ return tlv_put(sctx, attr, &bts, sizeof(bts));
+}
+
+
+#define TLV_PUT(sctx, attrtype, data, attrlen) \
+ do { \
+ ret = tlv_put(sctx, attrtype, data, attrlen); \
+ if (ret < 0) \
+ goto tlv_put_failure; \
+ } while (0)
+
+#define TLV_PUT_INT(sctx, attrtype, bits, value) \
+ do { \
+ ret = tlv_put_u##bits(sctx, attrtype, value); \
+ if (ret < 0) \
+ goto tlv_put_failure; \
+ } while (0)
+
+#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
+#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
+#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
+#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
+#define TLV_PUT_STRING(sctx, attrtype, str, len) \
+ do { \
+ ret = tlv_put_string(sctx, attrtype, str, len); \
+ if (ret < 0) \
+ goto tlv_put_failure; \
+ } while (0)
+#define TLV_PUT_PATH(sctx, attrtype, p) \
+ do { \
+ ret = tlv_put_string(sctx, attrtype, p->start, \
+ p->end - p->start); \
+ if (ret < 0) \
+ goto tlv_put_failure; \
+ } while(0)
+#define TLV_PUT_UUID(sctx, attrtype, uuid) \
+ do { \
+ ret = tlv_put_uuid(sctx, attrtype, uuid); \
+ if (ret < 0) \
+ goto tlv_put_failure; \
+ } while (0)
+#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
+ do { \
+ ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
+ if (ret < 0) \
+ goto tlv_put_failure; \
+ } while (0)
+
+static int send_header(struct send_ctx *sctx)
+{
+ struct btrfs_stream_header hdr;
+
+ strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
+ hdr.version = cpu_to_le32(sctx->proto);
+ return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
+ &sctx->send_off);
+}
+
+/*
+ * For each command/item we want to send to userspace, we call this function.
+ */
+static int begin_cmd(struct send_ctx *sctx, int cmd)
+{
+ struct btrfs_cmd_header *hdr;
+
+ if (WARN_ON(!sctx->send_buf))
+ return -EINVAL;
+
+ BUG_ON(sctx->send_size);
+
+ sctx->send_size += sizeof(*hdr);
+ hdr = (struct btrfs_cmd_header *)sctx->send_buf;
+ put_unaligned_le16(cmd, &hdr->cmd);
+
+ return 0;
+}
+
+static int send_cmd(struct send_ctx *sctx)
+{
+ int ret;
+ struct btrfs_cmd_header *hdr;
+ u32 crc;
+
+ hdr = (struct btrfs_cmd_header *)sctx->send_buf;
+ put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
+ put_unaligned_le32(0, &hdr->crc);
+
+ crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
+ put_unaligned_le32(crc, &hdr->crc);
+
+ ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
+ &sctx->send_off);
+
+ sctx->send_size = 0;
+ sctx->put_data = false;
+
+ return ret;
+}
+
+/*
+ * Sends a move instruction to user space
+ */
+static int send_rename(struct send_ctx *sctx,
+ struct fs_path *from, struct fs_path *to)
+{
+ struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
+ int ret;
+
+ btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
+
+ ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
+ if (ret < 0)
+ goto out;
+
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
+
+ ret = send_cmd(sctx);
+
+tlv_put_failure:
+out:
+ return ret;
+}
+
+/*
+ * Sends a link instruction to user space
+ */
+static int send_link(struct send_ctx *sctx,
+ struct fs_path *path, struct fs_path *lnk)
+{
+ struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
+ int ret;
+
+ btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
+
+ ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
+ if (ret < 0)
+ goto out;
+
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
+
+ ret = send_cmd(sctx);
+
+tlv_put_failure:
+out:
+ return ret;
+}
+
+/*
+ * Sends an unlink instruction to user space
+ */
+static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
+{
+ struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
+ int ret;
+
+ btrfs_debug(fs_info, "send_unlink %s", path->start);
+
+ ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
+ if (ret < 0)
+ goto out;
+
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
+
+ ret = send_cmd(sctx);
+
+tlv_put_failure:
+out:
+ return ret;
+}
+
+/*
+ * Sends a rmdir instruction to user space
+ */
+static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
+{
+ struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
+ int ret;
+
+ btrfs_debug(fs_info, "send_rmdir %s", path->start);
+
+ ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
+ if (ret < 0)
+ goto out;
+
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
+
+ ret = send_cmd(sctx);
+
+tlv_put_failure:
+out:
+ return ret;
+}
+
+struct btrfs_inode_info {
+ u64 size;
+ u64 gen;
+ u64 mode;
+ u64 uid;
+ u64 gid;
+ u64 rdev;
+ u64 fileattr;
+ u64 nlink;
+};
+
+/*
+ * Helper function to retrieve some fields from an inode item.
+ */
+static int get_inode_info(struct btrfs_root *root, u64 ino,
+ struct btrfs_inode_info *info)
+{
+ int ret;
+ struct btrfs_path *path;
+ struct btrfs_inode_item *ii;
+ struct btrfs_key key;
+
+ path = alloc_path_for_send();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = ino;
+ key.type = BTRFS_INODE_ITEM_KEY;
+ key.offset = 0;
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret) {
+ if (ret > 0)
+ ret = -ENOENT;
+ goto out;
+ }
+
+ if (!info)
+ goto out;
+
+ ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_inode_item);
+ info->size = btrfs_inode_size(path->nodes[0], ii);
+ info->gen = btrfs_inode_generation(path->nodes[0], ii);
+ info->mode = btrfs_inode_mode(path->nodes[0], ii);
+ info->uid = btrfs_inode_uid(path->nodes[0], ii);
+ info->gid = btrfs_inode_gid(path->nodes[0], ii);
+ info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
+ info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
+ /*
+ * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
+ * otherwise logically split to 32/32 parts.
+ */
+ info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
+
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
+{
+ int ret;
+ struct btrfs_inode_info info;
+
+ if (!gen)
+ return -EPERM;
+
+ ret = get_inode_info(root, ino, &info);
+ if (!ret)
+ *gen = info.gen;
+ return ret;
+}
+
+typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
+ struct fs_path *p,
+ void *ctx);
+
+/*
+ * Helper function to iterate the entries in ONE btrfs_inode_ref or
+ * btrfs_inode_extref.
+ * The iterate callback may return a non zero value to stop iteration. This can
+ * be a negative value for error codes or 1 to simply stop it.
+ *
+ * path must point to the INODE_REF or INODE_EXTREF when called.
+ */
+static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
+ struct btrfs_key *found_key, int resolve,
+ iterate_inode_ref_t iterate, void *ctx)
+{
+ struct extent_buffer *eb = path->nodes[0];
+ struct btrfs_inode_ref *iref;
+ struct btrfs_inode_extref *extref;
+ struct btrfs_path *tmp_path;
+ struct fs_path *p;
+ u32 cur = 0;
+ u32 total;
+ int slot = path->slots[0];
+ u32 name_len;
+ char *start;
+ int ret = 0;
+ int num = 0;
+ int index;
+ u64 dir;
+ unsigned long name_off;
+ unsigned long elem_size;
+ unsigned long ptr;
+
+ p = fs_path_alloc_reversed();
+ if (!p)
+ return -ENOMEM;
+
+ tmp_path = alloc_path_for_send();
+ if (!tmp_path) {
+ fs_path_free(p);
+ return -ENOMEM;
+ }
+
+
+ if (found_key->type == BTRFS_INODE_REF_KEY) {
+ ptr = (unsigned long)btrfs_item_ptr(eb, slot,
+ struct btrfs_inode_ref);
+ total = btrfs_item_size(eb, slot);
+ elem_size = sizeof(*iref);
+ } else {
+ ptr = btrfs_item_ptr_offset(eb, slot);
+ total = btrfs_item_size(eb, slot);
+ elem_size = sizeof(*extref);
+ }
+
+ while (cur < total) {
+ fs_path_reset(p);
+
+ if (found_key->type == BTRFS_INODE_REF_KEY) {
+ iref = (struct btrfs_inode_ref *)(ptr + cur);
+ name_len = btrfs_inode_ref_name_len(eb, iref);
+ name_off = (unsigned long)(iref + 1);
+ index = btrfs_inode_ref_index(eb, iref);
+ dir = found_key->offset;
+ } else {
+ extref = (struct btrfs_inode_extref *)(ptr + cur);
+ name_len = btrfs_inode_extref_name_len(eb, extref);
+ name_off = (unsigned long)&extref->name;
+ index = btrfs_inode_extref_index(eb, extref);
+ dir = btrfs_inode_extref_parent(eb, extref);
+ }
+
+ if (resolve) {
+ start = btrfs_ref_to_path(root, tmp_path, name_len,
+ name_off, eb, dir,
+ p->buf, p->buf_len);
+ if (IS_ERR(start)) {
+ ret = PTR_ERR(start);
+ goto out;
+ }
+ if (start < p->buf) {
+ /* overflow , try again with larger buffer */
+ ret = fs_path_ensure_buf(p,
+ p->buf_len + p->buf - start);
+ if (ret < 0)
+ goto out;
+ start = btrfs_ref_to_path(root, tmp_path,
+ name_len, name_off,
+ eb, dir,
+ p->buf, p->buf_len);
+ if (IS_ERR(start)) {
+ ret = PTR_ERR(start);
+ goto out;
+ }
+ BUG_ON(start < p->buf);
+ }
+ p->start = start;
+ } else {
+ ret = fs_path_add_from_extent_buffer(p, eb, name_off,
+ name_len);
+ if (ret < 0)
+ goto out;
+ }
+
+ cur += elem_size + name_len;
+ ret = iterate(num, dir, index, p, ctx);
+ if (ret)
+ goto out;
+ num++;
+ }
+
+out:
+ btrfs_free_path(tmp_path);
+ fs_path_free(p);
+ return ret;
+}
+
+typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
+ const char *name, int name_len,
+ const char *data, int data_len,
+ void *ctx);
+
+/*
+ * Helper function to iterate the entries in ONE btrfs_dir_item.
+ * The iterate callback may return a non zero value to stop iteration. This can
+ * be a negative value for error codes or 1 to simply stop it.
+ *
+ * path must point to the dir item when called.
+ */
+static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
+ iterate_dir_item_t iterate, void *ctx)
+{
+ int ret = 0;
+ struct extent_buffer *eb;
+ struct btrfs_dir_item *di;
+ struct btrfs_key di_key;
+ char *buf = NULL;
+ int buf_len;
+ u32 name_len;
+ u32 data_len;
+ u32 cur;
+ u32 len;
+ u32 total;
+ int slot;
+ int num;
+
+ /*
+ * Start with a small buffer (1 page). If later we end up needing more
+ * space, which can happen for xattrs on a fs with a leaf size greater
+ * then the page size, attempt to increase the buffer. Typically xattr
+ * values are small.
+ */
+ buf_len = PATH_MAX;
+ buf = kmalloc(buf_len, GFP_KERNEL);
+ if (!buf) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ eb = path->nodes[0];
+ slot = path->slots[0];
+ di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
+ cur = 0;
+ len = 0;
+ total = btrfs_item_size(eb, slot);
+
+ num = 0;
+ while (cur < total) {
+ name_len = btrfs_dir_name_len(eb, di);
+ data_len = btrfs_dir_data_len(eb, di);
+ btrfs_dir_item_key_to_cpu(eb, di, &di_key);
+
+ if (btrfs_dir_type(eb, di) == BTRFS_FT_XATTR) {
+ if (name_len > XATTR_NAME_MAX) {
+ ret = -ENAMETOOLONG;
+ goto out;
+ }
+ if (name_len + data_len >
+ BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
+ ret = -E2BIG;
+ goto out;
+ }
+ } else {
+ /*
+ * Path too long
+ */
+ if (name_len + data_len > PATH_MAX) {
+ ret = -ENAMETOOLONG;
+ goto out;
+ }
+ }
+
+ if (name_len + data_len > buf_len) {
+ buf_len = name_len + data_len;
+ if (is_vmalloc_addr(buf)) {
+ vfree(buf);
+ buf = NULL;
+ } else {
+ char *tmp = krealloc(buf, buf_len,
+ GFP_KERNEL | __GFP_NOWARN);
+
+ if (!tmp)
+ kfree(buf);
+ buf = tmp;
+ }
+ if (!buf) {
+ buf = kvmalloc(buf_len, GFP_KERNEL);
+ if (!buf) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ }
+ }
+
+ read_extent_buffer(eb, buf, (unsigned long)(di + 1),
+ name_len + data_len);
+
+ len = sizeof(*di) + name_len + data_len;
+ di = (struct btrfs_dir_item *)((char *)di + len);
+ cur += len;
+
+ ret = iterate(num, &di_key, buf, name_len, buf + name_len,
+ data_len, ctx);
+ if (ret < 0)
+ goto out;
+ if (ret) {
+ ret = 0;
+ goto out;
+ }
+
+ num++;
+ }
+
+out:
+ kvfree(buf);
+ return ret;
+}
+
+static int __copy_first_ref(int num, u64 dir, int index,
+ struct fs_path *p, void *ctx)
+{
+ int ret;
+ struct fs_path *pt = ctx;
+
+ ret = fs_path_copy(pt, p);
+ if (ret < 0)
+ return ret;
+
+ /* we want the first only */
+ return 1;
+}
+
+/*
+ * Retrieve the first path of an inode. If an inode has more then one
+ * ref/hardlink, this is ignored.
+ */
+static int get_inode_path(struct btrfs_root *root,
+ u64 ino, struct fs_path *path)
+{
+ int ret;
+ struct btrfs_key key, found_key;
+ struct btrfs_path *p;
+
+ p = alloc_path_for_send();
+ if (!p)
+ return -ENOMEM;
+
+ fs_path_reset(path);
+
+ key.objectid = ino;
+ key.type = BTRFS_INODE_REF_KEY;
+ key.offset = 0;
+
+ ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
+ if (ret < 0)
+ goto out;
+ if (ret) {
+ ret = 1;
+ goto out;
+ }
+ btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
+ if (found_key.objectid != ino ||
+ (found_key.type != BTRFS_INODE_REF_KEY &&
+ found_key.type != BTRFS_INODE_EXTREF_KEY)) {
+ ret = -ENOENT;
+ goto out;
+ }
+
+ ret = iterate_inode_ref(root, p, &found_key, 1,
+ __copy_first_ref, path);
+ if (ret < 0)
+ goto out;
+ ret = 0;
+
+out:
+ btrfs_free_path(p);
+ return ret;
+}
+
+struct backref_ctx {
+ struct send_ctx *sctx;
+
+ /* number of total found references */
+ u64 found;
+
+ /*
+ * used for clones found in send_root. clones found behind cur_objectid
+ * and cur_offset are not considered as allowed clones.
+ */
+ u64 cur_objectid;
+ u64 cur_offset;
+
+ /* may be truncated in case it's the last extent in a file */
+ u64 extent_len;
+
+ /* Just to check for bugs in backref resolving */
+ int found_itself;
+};
+
+static int __clone_root_cmp_bsearch(const void *key, const void *elt)
+{
+ u64 root = (u64)(uintptr_t)key;
+ const struct clone_root *cr = elt;
+
+ if (root < cr->root->root_key.objectid)
+ return -1;
+ if (root > cr->root->root_key.objectid)
+ return 1;
+ return 0;
+}
+
+static int __clone_root_cmp_sort(const void *e1, const void *e2)
+{
+ const struct clone_root *cr1 = e1;
+ const struct clone_root *cr2 = e2;
+
+ if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
+ return -1;
+ if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
+ return 1;
+ return 0;
+}
+
+/*
+ * Called for every backref that is found for the current extent.
+ * Results are collected in sctx->clone_roots->ino/offset/found_refs
+ */
+static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
+{
+ struct backref_ctx *bctx = ctx_;
+ struct clone_root *found;
+
+ /* First check if the root is in the list of accepted clone sources */
+ found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
+ bctx->sctx->clone_roots_cnt,
+ sizeof(struct clone_root),
+ __clone_root_cmp_bsearch);
+ if (!found)
+ return 0;
+
+ if (found->root == bctx->sctx->send_root &&
+ ino == bctx->cur_objectid &&
+ offset == bctx->cur_offset) {
+ bctx->found_itself = 1;
+ }
+
+ /*
+ * Make sure we don't consider clones from send_root that are
+ * behind the current inode/offset.
+ */
+ if (found->root == bctx->sctx->send_root) {
+ /*
+ * If the source inode was not yet processed we can't issue a
+ * clone operation, as the source extent does not exist yet at
+ * the destination of the stream.
+ */
+ if (ino > bctx->cur_objectid)
+ return 0;
+ /*
+ * We clone from the inode currently being sent as long as the
+ * source extent is already processed, otherwise we could try
+ * to clone from an extent that does not exist yet at the
+ * destination of the stream.
+ */
+ if (ino == bctx->cur_objectid &&
+ offset + bctx->extent_len >
+ bctx->sctx->cur_inode_next_write_offset)
+ return 0;
+ }
+
+ bctx->found++;
+ found->found_refs++;
+ if (ino < found->ino) {
+ found->ino = ino;
+ found->offset = offset;
+ } else if (found->ino == ino) {
+ /*
+ * same extent found more then once in the same file.
+ */
+ if (found->offset > offset + bctx->extent_len)
+ found->offset = offset;
+ }
+
+ return 0;
+}
+
+/*
+ * Given an inode, offset and extent item, it finds a good clone for a clone
+ * instruction. Returns -ENOENT when none could be found. The function makes
+ * sure that the returned clone is usable at the point where sending is at the
+ * moment. This means, that no clones are accepted which lie behind the current
+ * inode+offset.
+ *
+ * path must point to the extent item when called.
+ */
+static int find_extent_clone(struct send_ctx *sctx,
+ struct btrfs_path *path,
+ u64 ino, u64 data_offset,
+ u64 ino_size,
+ struct clone_root **found)
+{
+ struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
+ int ret;
+ int extent_type;
+ u64 logical;
+ u64 disk_byte;
+ u64 num_bytes;
+ u64 extent_item_pos;
+ u64 flags = 0;
+ struct btrfs_file_extent_item *fi;
+ struct extent_buffer *eb = path->nodes[0];
+ struct backref_ctx backref_ctx = {0};
+ struct clone_root *cur_clone_root;
+ struct btrfs_key found_key;
+ struct btrfs_path *tmp_path;
+ struct btrfs_extent_item *ei;
+ int compressed;
+ u32 i;
+
+ tmp_path = alloc_path_for_send();
+ if (!tmp_path)
+ return -ENOMEM;
+
+ /* We only use this path under the commit sem */
+ tmp_path->need_commit_sem = 0;
+
+ if (data_offset >= ino_size) {
+ /*
+ * There may be extents that lie behind the file's size.
+ * I at least had this in combination with snapshotting while
+ * writing large files.
+ */
+ ret = 0;
+ goto out;
+ }
+
+ fi = btrfs_item_ptr(eb, path->slots[0],
+ struct btrfs_file_extent_item);
+ extent_type = btrfs_file_extent_type(eb, fi);
+ if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
+ ret = -ENOENT;
+ goto out;
+ }
+ compressed = btrfs_file_extent_compression(eb, fi);
+
+ num_bytes = btrfs_file_extent_num_bytes(eb, fi);
+ disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
+ if (disk_byte == 0) {
+ ret = -ENOENT;
+ goto out;
+ }
+ logical = disk_byte + btrfs_file_extent_offset(eb, fi);
+
+ down_read(&fs_info->commit_root_sem);
+ ret = extent_from_logical(fs_info, disk_byte, tmp_path,
+ &found_key, &flags);
+ up_read(&fs_info->commit_root_sem);
+
+ if (ret < 0)
+ goto out;
+ if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
+ ret = -EIO;
+ goto out;
+ }
+
+ ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
+ struct btrfs_extent_item);
+ /*
+ * Backreference walking (iterate_extent_inodes() below) is currently
+ * too expensive when an extent has a large number of references, both
+ * in time spent and used memory. So for now just fallback to write
+ * operations instead of clone operations when an extent has more than
+ * a certain amount of references.
+ */
+ if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
+ ret = -ENOENT;
+ goto out;
+ }
+ btrfs_release_path(tmp_path);
+
+ /*
+ * Setup the clone roots.
+ */
+ for (i = 0; i < sctx->clone_roots_cnt; i++) {
+ cur_clone_root = sctx->clone_roots + i;
+ cur_clone_root->ino = (u64)-1;
+ cur_clone_root->offset = 0;
+ cur_clone_root->found_refs = 0;
+ }
+
+ backref_ctx.sctx = sctx;
+ backref_ctx.found = 0;
+ backref_ctx.cur_objectid = ino;
+ backref_ctx.cur_offset = data_offset;
+ backref_ctx.found_itself = 0;
+ backref_ctx.extent_len = num_bytes;
+
+ /*
+ * The last extent of a file may be too large due to page alignment.
+ * We need to adjust extent_len in this case so that the checks in
+ * __iterate_backrefs work.
+ */
+ if (data_offset + num_bytes >= ino_size)
+ backref_ctx.extent_len = ino_size - data_offset;
+
+ /*
+ * Now collect all backrefs.
+ */
+ if (compressed == BTRFS_COMPRESS_NONE)
+ extent_item_pos = logical - found_key.objectid;
+ else
+ extent_item_pos = 0;
+ ret = iterate_extent_inodes(fs_info, found_key.objectid,
+ extent_item_pos, 1, __iterate_backrefs,
+ &backref_ctx, false);
+
+ if (ret < 0)
+ goto out;
+
+ down_read(&fs_info->commit_root_sem);
+ if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
+ /*
+ * A transaction commit for a transaction in which block group
+ * relocation was done just happened.
+ * The disk_bytenr of the file extent item we processed is
+ * possibly stale, referring to the extent's location before
+ * relocation. So act as if we haven't found any clone sources
+ * and fallback to write commands, which will read the correct
+ * data from the new extent location. Otherwise we will fail
+ * below because we haven't found our own back reference or we
+ * could be getting incorrect sources in case the old extent
+ * was already reallocated after the relocation.
+ */
+ up_read(&fs_info->commit_root_sem);
+ ret = -ENOENT;
+ goto out;
+ }
+ up_read(&fs_info->commit_root_sem);
+
+ if (!backref_ctx.found_itself) {
+ /* found a bug in backref code? */
+ ret = -EIO;
+ btrfs_err(fs_info,
+ "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
+ ino, data_offset, disk_byte, found_key.objectid);
+ goto out;
+ }
+
+ btrfs_debug(fs_info,
+ "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
+ data_offset, ino, num_bytes, logical);
+
+ if (!backref_ctx.found)
+ btrfs_debug(fs_info, "no clones found");
+
+ cur_clone_root = NULL;
+ for (i = 0; i < sctx->clone_roots_cnt; i++) {
+ if (sctx->clone_roots[i].found_refs) {
+ if (!cur_clone_root)
+ cur_clone_root = sctx->clone_roots + i;
+ else if (sctx->clone_roots[i].root == sctx->send_root)
+ /* prefer clones from send_root over others */
+ cur_clone_root = sctx->clone_roots + i;
+ }
+
+ }
+
+ if (cur_clone_root) {
+ *found = cur_clone_root;
+ ret = 0;
+ } else {
+ ret = -ENOENT;
+ }
+
+out:
+ btrfs_free_path(tmp_path);
+ return ret;
+}
+
+static int read_symlink(struct btrfs_root *root,
+ u64 ino,
+ struct fs_path *dest)
+{
+ int ret;
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ struct btrfs_file_extent_item *ei;
+ u8 type;
+ u8 compression;
+ unsigned long off;
+ int len;
+
+ path = alloc_path_for_send();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = ino;
+ key.type = BTRFS_EXTENT_DATA_KEY;
+ key.offset = 0;
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto out;
+ if (ret) {
+ /*
+ * An empty symlink inode. Can happen in rare error paths when
+ * creating a symlink (transaction committed before the inode
+ * eviction handler removed the symlink inode items and a crash
+ * happened in between or the subvol was snapshoted in between).
+ * Print an informative message to dmesg/syslog so that the user
+ * can delete the symlink.
+ */
+ btrfs_err(root->fs_info,
+ "Found empty symlink inode %llu at root %llu",
+ ino, root->root_key.objectid);
+ ret = -EIO;
+ goto out;
+ }
+
+ ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_file_extent_item);
+ type = btrfs_file_extent_type(path->nodes[0], ei);
+ compression = btrfs_file_extent_compression(path->nodes[0], ei);
+ BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
+ BUG_ON(compression);
+
+ off = btrfs_file_extent_inline_start(ei);
+ len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
+
+ ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
+
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * Helper function to generate a file name that is unique in the root of
+ * send_root and parent_root. This is used to generate names for orphan inodes.
+ */
+static int gen_unique_name(struct send_ctx *sctx,
+ u64 ino, u64 gen,
+ struct fs_path *dest)
+{
+ int ret = 0;
+ struct btrfs_path *path;
+ struct btrfs_dir_item *di;
+ char tmp[64];
+ int len;
+ u64 idx = 0;
+
+ path = alloc_path_for_send();
+ if (!path)
+ return -ENOMEM;
+
+ while (1) {
+ struct fscrypt_str tmp_name;
+
+ len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
+ ino, gen, idx);
+ ASSERT(len < sizeof(tmp));
+ tmp_name.name = tmp;
+ tmp_name.len = strlen(tmp);
+
+ di = btrfs_lookup_dir_item(NULL, sctx->send_root,
+ path, BTRFS_FIRST_FREE_OBJECTID,
+ &tmp_name, 0);
+ btrfs_release_path(path);
+ if (IS_ERR(di)) {
+ ret = PTR_ERR(di);
+ goto out;
+ }
+ if (di) {
+ /* not unique, try again */
+ idx++;
+ continue;
+ }
+
+ if (!sctx->parent_root) {
+ /* unique */
+ ret = 0;
+ break;
+ }
+
+ di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
+ path, BTRFS_FIRST_FREE_OBJECTID,
+ &tmp_name, 0);
+ btrfs_release_path(path);
+ if (IS_ERR(di)) {
+ ret = PTR_ERR(di);
+ goto out;
+ }
+ if (di) {
+ /* not unique, try again */
+ idx++;
+ continue;
+ }
+ /* unique */
+ break;
+ }
+
+ ret = fs_path_add(dest, tmp, strlen(tmp));
+
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+enum inode_state {
+ inode_state_no_change,
+ inode_state_will_create,
+ inode_state_did_create,
+ inode_state_will_delete,
+ inode_state_did_delete,
+};
+
+static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
+{
+ int ret;
+ int left_ret;
+ int right_ret;
+ u64 left_gen;
+ u64 right_gen = 0;
+ struct btrfs_inode_info info;
+
+ ret = get_inode_info(sctx->send_root, ino, &info);
+ if (ret < 0 && ret != -ENOENT)
+ goto out;
+ left_ret = (info.nlink == 0) ? -ENOENT : ret;
+ left_gen = info.gen;
+
+ if (!sctx->parent_root) {
+ right_ret = -ENOENT;
+ } else {
+ ret = get_inode_info(sctx->parent_root, ino, &info);
+ if (ret < 0 && ret != -ENOENT)
+ goto out;
+ right_ret = (info.nlink == 0) ? -ENOENT : ret;
+ right_gen = info.gen;
+ }
+
+ if (!left_ret && !right_ret) {
+ if (left_gen == gen && right_gen == gen) {
+ ret = inode_state_no_change;
+ } else if (left_gen == gen) {
+ if (ino < sctx->send_progress)
+ ret = inode_state_did_create;
+ else
+ ret = inode_state_will_create;
+ } else if (right_gen == gen) {
+ if (ino < sctx->send_progress)
+ ret = inode_state_did_delete;
+ else
+ ret = inode_state_will_delete;
+ } else {
+ ret = -ENOENT;
+ }
+ } else if (!left_ret) {
+ if (left_gen == gen) {
+ if (ino < sctx->send_progress)
+ ret = inode_state_did_create;
+ else
+ ret = inode_state_will_create;
+ } else {
+ ret = -ENOENT;
+ }
+ } else if (!right_ret) {
+ if (right_gen == gen) {
+ if (ino < sctx->send_progress)
+ ret = inode_state_did_delete;
+ else
+ ret = inode_state_will_delete;
+ } else {
+ ret = -ENOENT;
+ }
+ } else {
+ ret = -ENOENT;
+ }
+
+out:
+ return ret;
+}
+
+static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
+{
+ int ret;
+
+ if (ino == BTRFS_FIRST_FREE_OBJECTID)
+ return 1;
+
+ ret = get_cur_inode_state(sctx, ino, gen);
+ if (ret < 0)
+ goto out;
+
+ if (ret == inode_state_no_change ||
+ ret == inode_state_did_create ||
+ ret == inode_state_will_delete)
+ ret = 1;
+ else
+ ret = 0;
+
+out:
+ return ret;
+}
+
+/*
+ * Helper function to lookup a dir item in a dir.
+ */
+static int lookup_dir_item_inode(struct btrfs_root *root,
+ u64 dir, const char *name, int name_len,
+ u64 *found_inode)
+{
+ int ret = 0;
+ struct btrfs_dir_item *di;
+ struct btrfs_key key;
+ struct btrfs_path *path;
+ struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
+
+ path = alloc_path_for_send();
+ if (!path)
+ return -ENOMEM;
+
+ di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
+ if (IS_ERR_OR_NULL(di)) {
+ ret = di ? PTR_ERR(di) : -ENOENT;
+ goto out;
+ }
+ btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
+ if (key.type == BTRFS_ROOT_ITEM_KEY) {
+ ret = -ENOENT;
+ goto out;
+ }
+ *found_inode = key.objectid;
+
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
+ * generation of the parent dir and the name of the dir entry.
+ */
+static int get_first_ref(struct btrfs_root *root, u64 ino,
+ u64 *dir, u64 *dir_gen, struct fs_path *name)
+{
+ int ret;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+ struct btrfs_path *path;
+ int len;
+ u64 parent_dir;
+
+ path = alloc_path_for_send();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = ino;
+ key.type = BTRFS_INODE_REF_KEY;
+ key.offset = 0;
+
+ ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
+ if (ret < 0)
+ goto out;
+ if (!ret)
+ btrfs_item_key_to_cpu(path->nodes[0], &found_key,
+ path->slots[0]);
+ if (ret || found_key.objectid != ino ||
+ (found_key.type != BTRFS_INODE_REF_KEY &&
+ found_key.type != BTRFS_INODE_EXTREF_KEY)) {
+ ret = -ENOENT;
+ goto out;
+ }
+
+ if (found_key.type == BTRFS_INODE_REF_KEY) {
+ struct btrfs_inode_ref *iref;
+ iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_inode_ref);
+ len = btrfs_inode_ref_name_len(path->nodes[0], iref);
+ ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
+ (unsigned long)(iref + 1),
+ len);
+ parent_dir = found_key.offset;
+ } else {
+ struct btrfs_inode_extref *extref;
+ extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_inode_extref);
+ len = btrfs_inode_extref_name_len(path->nodes[0], extref);
+ ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
+ (unsigned long)&extref->name, len);
+ parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
+ }
+ if (ret < 0)
+ goto out;
+ btrfs_release_path(path);
+
+ if (dir_gen) {
+ ret = get_inode_gen(root, parent_dir, dir_gen);
+ if (ret < 0)
+ goto out;
+ }
+
+ *dir = parent_dir;
+
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int is_first_ref(struct btrfs_root *root,
+ u64 ino, u64 dir,
+ const char *name, int name_len)
+{
+ int ret;
+ struct fs_path *tmp_name;
+ u64 tmp_dir;
+
+ tmp_name = fs_path_alloc();
+ if (!tmp_name)
+ return -ENOMEM;
+
+ ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
+ if (ret < 0)
+ goto out;
+
+ if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
+ ret = 0;
+ goto out;
+ }
+
+ ret = !memcmp(tmp_name->start, name, name_len);
+
+out:
+ fs_path_free(tmp_name);
+ return ret;
+}
+
+/*
+ * Used by process_recorded_refs to determine if a new ref would overwrite an
+ * already existing ref. In case it detects an overwrite, it returns the
+ * inode/gen in who_ino/who_gen.
+ * When an overwrite is detected, process_recorded_refs does proper orphanizing
+ * to make sure later references to the overwritten inode are possible.
+ * Orphanizing is however only required for the first ref of an inode.
+ * process_recorded_refs does an additional is_first_ref check to see if
+ * orphanizing is really required.
+ */
+static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
+ const char *name, int name_len,
+ u64 *who_ino, u64 *who_gen, u64 *who_mode)
+{
+ int ret = 0;
+ u64 gen;
+ u64 other_inode = 0;
+ struct btrfs_inode_info info;
+
+ if (!sctx->parent_root)
+ goto out;
+
+ ret = is_inode_existent(sctx, dir, dir_gen);
+ if (ret <= 0)
+ goto out;
+
+ /*
+ * If we have a parent root we need to verify that the parent dir was
+ * not deleted and then re-created, if it was then we have no overwrite
+ * and we can just unlink this entry.
+ */
+ if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
+ ret = get_inode_gen(sctx->parent_root, dir, &gen);
+ if (ret < 0 && ret != -ENOENT)
+ goto out;
+ if (ret) {
+ ret = 0;
+ goto out;
+ }
+ if (gen != dir_gen)
+ goto out;
+ }
+
+ ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
+ &other_inode);
+ if (ret < 0 && ret != -ENOENT)
+ goto out;
+ if (ret) {
+ ret = 0;
+ goto out;
+ }
+
+ /*
+ * Check if the overwritten ref was already processed. If yes, the ref
+ * was already unlinked/moved, so we can safely assume that we will not
+ * overwrite anything at this point in time.
+ */
+ if (other_inode > sctx->send_progress ||
+ is_waiting_for_move(sctx, other_inode)) {
+ ret = get_inode_info(sctx->parent_root, other_inode, &info);
+ if (ret < 0)
+ goto out;
+
+ ret = 1;
+ *who_ino = other_inode;
+ *who_gen = info.gen;
+ *who_mode = info.mode;
+ } else {
+ ret = 0;
+ }
+
+out:
+ return ret;
+}
+
+/*
+ * Checks if the ref was overwritten by an already processed inode. This is
+ * used by __get_cur_name_and_parent to find out if the ref was orphanized and
+ * thus the orphan name needs be used.
+ * process_recorded_refs also uses it to avoid unlinking of refs that were
+ * overwritten.
+ */
+static int did_overwrite_ref(struct send_ctx *sctx,
+ u64 dir, u64 dir_gen,
+ u64 ino, u64 ino_gen,
+ const char *name, int name_len)
+{
+ int ret = 0;
+ u64 gen;
+ u64 ow_inode;
+
+ if (!sctx->parent_root)
+ goto out;
+
+ ret = is_inode_existent(sctx, dir, dir_gen);
+ if (ret <= 0)
+ goto out;
+
+ if (dir != BTRFS_FIRST_FREE_OBJECTID) {
+ ret = get_inode_gen(sctx->send_root, dir, &gen);
+ if (ret < 0 && ret != -ENOENT)
+ goto out;
+ if (ret) {
+ ret = 0;
+ goto out;
+ }
+ if (gen != dir_gen)
+ goto out;
+ }
+
+ /* check if the ref was overwritten by another ref */
+ ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
+ &ow_inode);
+ if (ret < 0 && ret != -ENOENT)
+ goto out;
+ if (ret) {
+ /* was never and will never be overwritten */
+ ret = 0;
+ goto out;
+ }
+
+ ret = get_inode_gen(sctx->send_root, ow_inode, &gen);
+ if (ret < 0)
+ goto out;
+
+ if (ow_inode == ino && gen == ino_gen) {
+ ret = 0;
+ goto out;
+ }
+
+ /*
+ * We know that it is or will be overwritten. Check this now.
+ * The current inode being processed might have been the one that caused
+ * inode 'ino' to be orphanized, therefore check if ow_inode matches
+ * the current inode being processed.
+ */
+ if ((ow_inode < sctx->send_progress) ||
+ (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
+ gen == sctx->cur_inode_gen))
+ ret = 1;
+ else
+ ret = 0;
+
+out:
+ return ret;
+}
+
+/*
+ * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
+ * that got overwritten. This is used by process_recorded_refs to determine
+ * if it has to use the path as returned by get_cur_path or the orphan name.
+ */
+static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
+{
+ int ret = 0;
+ struct fs_path *name = NULL;
+ u64 dir;
+ u64 dir_gen;
+
+ if (!sctx->parent_root)
+ goto out;
+
+ name = fs_path_alloc();
+ if (!name)
+ return -ENOMEM;
+
+ ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
+ if (ret < 0)
+ goto out;
+
+ ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
+ name->start, fs_path_len(name));
+
+out:
+ fs_path_free(name);
+ return ret;
+}
+
+/*
+ * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
+ * so we need to do some special handling in case we have clashes. This function
+ * takes care of this with the help of name_cache_entry::radix_list.
+ * In case of error, nce is kfreed.
+ */
+static int name_cache_insert(struct send_ctx *sctx,
+ struct name_cache_entry *nce)
+{
+ int ret = 0;
+ struct list_head *nce_head;
+
+ nce_head = radix_tree_lookup(&sctx->name_cache,
+ (unsigned long)nce->ino);
+ if (!nce_head) {
+ nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
+ if (!nce_head) {
+ kfree(nce);
+ return -ENOMEM;
+ }
+ INIT_LIST_HEAD(nce_head);
+
+ ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
+ if (ret < 0) {
+ kfree(nce_head);
+ kfree(nce);
+ return ret;
+ }
+ }
+ list_add_tail(&nce->radix_list, nce_head);
+ list_add_tail(&nce->list, &sctx->name_cache_list);
+ sctx->name_cache_size++;
+
+ return ret;
+}
+
+static void name_cache_delete(struct send_ctx *sctx,
+ struct name_cache_entry *nce)
+{
+ struct list_head *nce_head;
+
+ nce_head = radix_tree_lookup(&sctx->name_cache,
+ (unsigned long)nce->ino);
+ if (!nce_head) {
+ btrfs_err(sctx->send_root->fs_info,
+ "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
+ nce->ino, sctx->name_cache_size);
+ }
+
+ list_del(&nce->radix_list);
+ list_del(&nce->list);
+ sctx->name_cache_size--;
+
+ /*
+ * We may not get to the final release of nce_head if the lookup fails
+ */
+ if (nce_head && list_empty(nce_head)) {
+ radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
+ kfree(nce_head);
+ }
+}
+
+static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
+ u64 ino, u64 gen)
+{
+ struct list_head *nce_head;
+ struct name_cache_entry *cur;
+
+ nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
+ if (!nce_head)
+ return NULL;
+
+ list_for_each_entry(cur, nce_head, radix_list) {
+ if (cur->ino == ino && cur->gen == gen)
+ return cur;
+ }
+ return NULL;
+}
+
+/*
+ * Remove some entries from the beginning of name_cache_list.
+ */
+static void name_cache_clean_unused(struct send_ctx *sctx)
+{
+ struct name_cache_entry *nce;
+
+ if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
+ return;
+
+ while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
+ nce = list_entry(sctx->name_cache_list.next,
+ struct name_cache_entry, list);
+ name_cache_delete(sctx, nce);
+ kfree(nce);
+ }
+}
+
+static void name_cache_free(struct send_ctx *sctx)
+{
+ struct name_cache_entry *nce;
+
+ while (!list_empty(&sctx->name_cache_list)) {
+ nce = list_entry(sctx->name_cache_list.next,
+ struct name_cache_entry, list);
+ name_cache_delete(sctx, nce);
+ kfree(nce);
+ }
+}
+
+/*
+ * Used by get_cur_path for each ref up to the root.
+ * Returns 0 if it succeeded.
+ * Returns 1 if the inode is not existent or got overwritten. In that case, the
+ * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
+ * is returned, parent_ino/parent_gen are not guaranteed to be valid.
+ * Returns <0 in case of error.
+ */
+static int __get_cur_name_and_parent(struct send_ctx *sctx,
+ u64 ino, u64 gen,
+ u64 *parent_ino,
+ u64 *parent_gen,
+ struct fs_path *dest)
+{
+ int ret;
+ int nce_ret;
+ struct name_cache_entry *nce = NULL;
+
+ /*
+ * First check if we already did a call to this function with the same
+ * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
+ * return the cached result.
+ */
+ nce = name_cache_search(sctx, ino, gen);
+ if (nce) {
+ if (ino < sctx->send_progress && nce->need_later_update) {
+ name_cache_delete(sctx, nce);
+ kfree(nce);
+ nce = NULL;
+ } else {
+ /*
+ * Removes the entry from the list and adds it back to
+ * the end. This marks the entry as recently used so
+ * that name_cache_clean_unused does not remove it.
+ */
+ list_move_tail(&nce->list, &sctx->name_cache_list);
+
+ *parent_ino = nce->parent_ino;
+ *parent_gen = nce->parent_gen;
+ ret = fs_path_add(dest, nce->name, nce->name_len);
+ if (ret < 0)
+ goto out;
+ ret = nce->ret;
+ goto out;
+ }
+ }
+
+ /*
+ * If the inode is not existent yet, add the orphan name and return 1.
+ * This should only happen for the parent dir that we determine in
+ * record_new_ref_if_needed().
+ */
+ ret = is_inode_existent(sctx, ino, gen);
+ if (ret < 0)
+ goto out;
+
+ if (!ret) {
+ ret = gen_unique_name(sctx, ino, gen, dest);
+ if (ret < 0)
+ goto out;
+ ret = 1;
+ goto out_cache;
+ }
+
+ /*
+ * Depending on whether the inode was already processed or not, use
+ * send_root or parent_root for ref lookup.
+ */
+ if (ino < sctx->send_progress)
+ ret = get_first_ref(sctx->send_root, ino,
+ parent_ino, parent_gen, dest);
+ else
+ ret = get_first_ref(sctx->parent_root, ino,
+ parent_ino, parent_gen, dest);
+ if (ret < 0)
+ goto out;
+
+ /*
+ * Check if the ref was overwritten by an inode's ref that was processed
+ * earlier. If yes, treat as orphan and return 1.
+ */
+ ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
+ dest->start, dest->end - dest->start);
+ if (ret < 0)
+ goto out;
+ if (ret) {
+ fs_path_reset(dest);
+ ret = gen_unique_name(sctx, ino, gen, dest);
+ if (ret < 0)
+ goto out;
+ ret = 1;
+ }
+
+out_cache:
+ /*
+ * Store the result of the lookup in the name cache.
+ */
+ nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
+ if (!nce) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ nce->ino = ino;
+ nce->gen = gen;
+ nce->parent_ino = *parent_ino;
+ nce->parent_gen = *parent_gen;
+ nce->name_len = fs_path_len(dest);
+ nce->ret = ret;
+ strcpy(nce->name, dest->start);
+
+ if (ino < sctx->send_progress)
+ nce->need_later_update = 0;
+ else
+ nce->need_later_update = 1;
+
+ nce_ret = name_cache_insert(sctx, nce);
+ if (nce_ret < 0)
+ ret = nce_ret;
+ name_cache_clean_unused(sctx);
+
+out:
+ return ret;
+}
+
+/*
+ * Magic happens here. This function returns the first ref to an inode as it
+ * would look like while receiving the stream at this point in time.
+ * We walk the path up to the root. For every inode in between, we check if it
+ * was already processed/sent. If yes, we continue with the parent as found
+ * in send_root. If not, we continue with the parent as found in parent_root.
+ * If we encounter an inode that was deleted at this point in time, we use the
+ * inodes "orphan" name instead of the real name and stop. Same with new inodes
+ * that were not created yet and overwritten inodes/refs.
+ *
+ * When do we have orphan inodes:
+ * 1. When an inode is freshly created and thus no valid refs are available yet
+ * 2. When a directory lost all it's refs (deleted) but still has dir items
+ * inside which were not processed yet (pending for move/delete). If anyone
+ * tried to get the path to the dir items, it would get a path inside that
+ * orphan directory.
+ * 3. When an inode is moved around or gets new links, it may overwrite the ref
+ * of an unprocessed inode. If in that case the first ref would be
+ * overwritten, the overwritten inode gets "orphanized". Later when we
+ * process this overwritten inode, it is restored at a new place by moving
+ * the orphan inode.
+ *
+ * sctx->send_progress tells this function at which point in time receiving
+ * would be.
+ */
+static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
+ struct fs_path *dest)
+{
+ int ret = 0;
+ struct fs_path *name = NULL;
+ u64 parent_inode = 0;
+ u64 parent_gen = 0;
+ int stop = 0;
+
+ name = fs_path_alloc();
+ if (!name) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ dest->reversed = 1;
+ fs_path_reset(dest);
+
+ while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
+ struct waiting_dir_move *wdm;
+
+ fs_path_reset(name);
+
+ if (is_waiting_for_rm(sctx, ino, gen)) {
+ ret = gen_unique_name(sctx, ino, gen, name);
+ if (ret < 0)
+ goto out;
+ ret = fs_path_add_path(dest, name);
+ break;
+ }
+
+ wdm = get_waiting_dir_move(sctx, ino);
+ if (wdm && wdm->orphanized) {
+ ret = gen_unique_name(sctx, ino, gen, name);
+ stop = 1;
+ } else if (wdm) {
+ ret = get_first_ref(sctx->parent_root, ino,
+ &parent_inode, &parent_gen, name);
+ } else {
+ ret = __get_cur_name_and_parent(sctx, ino, gen,
+ &parent_inode,
+ &parent_gen, name);
+ if (ret)
+ stop = 1;
+ }
+
+ if (ret < 0)
+ goto out;
+
+ ret = fs_path_add_path(dest, name);
+ if (ret < 0)
+ goto out;
+
+ ino = parent_inode;
+ gen = parent_gen;
+ }
+
+out:
+ fs_path_free(name);
+ if (!ret)
+ fs_path_unreverse(dest);
+ return ret;
+}
+
+/*
+ * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
+ */
+static int send_subvol_begin(struct send_ctx *sctx)
+{
+ int ret;
+ struct btrfs_root *send_root = sctx->send_root;
+ struct btrfs_root *parent_root = sctx->parent_root;
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ struct btrfs_root_ref *ref;
+ struct extent_buffer *leaf;
+ char *name = NULL;
+ int namelen;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
+ if (!name) {
+ btrfs_free_path(path);
+ return -ENOMEM;
+ }
+
+ key.objectid = send_root->root_key.objectid;
+ key.type = BTRFS_ROOT_BACKREF_KEY;
+ key.offset = 0;
+
+ ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
+ &key, path, 1, 0);
+ if (ret < 0)
+ goto out;
+ if (ret) {
+ ret = -ENOENT;
+ goto out;
+ }
+
+ leaf = path->nodes[0];
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+ if (key.type != BTRFS_ROOT_BACKREF_KEY ||
+ key.objectid != send_root->root_key.objectid) {
+ ret = -ENOENT;
+ goto out;
+ }
+ ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
+ namelen = btrfs_root_ref_name_len(leaf, ref);
+ read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
+ btrfs_release_path(path);
+
+ if (parent_root) {
+ ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
+ if (ret < 0)
+ goto out;
+ } else {
+ ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
+ if (ret < 0)
+ goto out;
+ }
+
+ TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
+
+ if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
+ TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
+ sctx->send_root->root_item.received_uuid);
+ else
+ TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
+ sctx->send_root->root_item.uuid);
+
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
+ btrfs_root_ctransid(&sctx->send_root->root_item));
+ if (parent_root) {
+ if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
+ TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
+ parent_root->root_item.received_uuid);
+ else
+ TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
+ parent_root->root_item.uuid);
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
+ btrfs_root_ctransid(&sctx->parent_root->root_item));
+ }
+
+ ret = send_cmd(sctx);
+
+tlv_put_failure:
+out:
+ btrfs_free_path(path);
+ kfree(name);
+ return ret;
+}
+
+static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
+{
+ struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
+ int ret = 0;
+ struct fs_path *p;
+
+ btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
+
+ p = fs_path_alloc();
+ if (!p)
+ return -ENOMEM;
+
+ ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
+ if (ret < 0)
+ goto out;
+
+ ret = get_cur_path(sctx, ino, gen, p);
+ if (ret < 0)
+ goto out;
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
+
+ ret = send_cmd(sctx);
+
+tlv_put_failure:
+out:
+ fs_path_free(p);
+ return ret;
+}
+
+static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
+{
+ struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
+ int ret = 0;
+ struct fs_path *p;
+
+ btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
+
+ p = fs_path_alloc();
+ if (!p)
+ return -ENOMEM;
+
+ ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
+ if (ret < 0)
+ goto out;
+
+ ret = get_cur_path(sctx, ino, gen, p);
+ if (ret < 0)
+ goto out;
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
+
+ ret = send_cmd(sctx);
+
+tlv_put_failure:
+out:
+ fs_path_free(p);
+ return ret;
+}
+
+static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
+{
+ struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
+ int ret = 0;
+ struct fs_path *p;
+
+ if (sctx->proto < 2)
+ return 0;
+
+ btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
+
+ p = fs_path_alloc();
+ if (!p)
+ return -ENOMEM;
+
+ ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
+ if (ret < 0)
+ goto out;
+
+ ret = get_cur_path(sctx, ino, gen, p);
+ if (ret < 0)
+ goto out;
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
+
+ ret = send_cmd(sctx);
+
+tlv_put_failure:
+out:
+ fs_path_free(p);
+ return ret;
+}
+
+static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
+{
+ struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
+ int ret = 0;
+ struct fs_path *p;
+
+ btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
+ ino, uid, gid);
+
+ p = fs_path_alloc();
+ if (!p)
+ return -ENOMEM;
+
+ ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
+ if (ret < 0)
+ goto out;
+
+ ret = get_cur_path(sctx, ino, gen, p);
+ if (ret < 0)
+ goto out;
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
+
+ ret = send_cmd(sctx);
+
+tlv_put_failure:
+out:
+ fs_path_free(p);
+ return ret;
+}
+
+static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
+{
+ struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
+ int ret = 0;
+ struct fs_path *p = NULL;
+ struct btrfs_inode_item *ii;
+ struct btrfs_path *path = NULL;
+ struct extent_buffer *eb;
+ struct btrfs_key key;
+ int slot;
+
+ btrfs_debug(fs_info, "send_utimes %llu", ino);
+
+ p = fs_path_alloc();
+ if (!p)
+ return -ENOMEM;
+
+ path = alloc_path_for_send();
+ if (!path) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ key.objectid = ino;
+ key.type = BTRFS_INODE_ITEM_KEY;
+ key.offset = 0;
+ ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
+ if (ret > 0)
+ ret = -ENOENT;
+ if (ret < 0)
+ goto out;
+
+ eb = path->nodes[0];
+ slot = path->slots[0];
+ ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
+
+ ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
+ if (ret < 0)
+ goto out;
+
+ ret = get_cur_path(sctx, ino, gen, p);
+ if (ret < 0)
+ goto out;
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
+ TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
+ TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
+ TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
+ if (sctx->proto >= 2)
+ TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
+
+ ret = send_cmd(sctx);
+
+tlv_put_failure:
+out:
+ fs_path_free(p);
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
+ * a valid path yet because we did not process the refs yet. So, the inode
+ * is created as orphan.
+ */
+static int send_create_inode(struct send_ctx *sctx, u64 ino)
+{
+ struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
+ int ret = 0;
+ struct fs_path *p;
+ int cmd;
+ struct btrfs_inode_info info;
+ u64 gen;
+ u64 mode;
+ u64 rdev;
+
+ btrfs_debug(fs_info, "send_create_inode %llu", ino);
+
+ p = fs_path_alloc();
+ if (!p)
+ return -ENOMEM;
+
+ if (ino != sctx->cur_ino) {
+ ret = get_inode_info(sctx->send_root, ino, &info);
+ if (ret < 0)
+ goto out;
+ gen = info.gen;
+ mode = info.mode;
+ rdev = info.rdev;
+ } else {
+ gen = sctx->cur_inode_gen;
+ mode = sctx->cur_inode_mode;
+ rdev = sctx->cur_inode_rdev;
+ }
+
+ if (S_ISREG(mode)) {
+ cmd = BTRFS_SEND_C_MKFILE;
+ } else if (S_ISDIR(mode)) {
+ cmd = BTRFS_SEND_C_MKDIR;
+ } else if (S_ISLNK(mode)) {
+ cmd = BTRFS_SEND_C_SYMLINK;
+ } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
+ cmd = BTRFS_SEND_C_MKNOD;
+ } else if (S_ISFIFO(mode)) {
+ cmd = BTRFS_SEND_C_MKFIFO;
+ } else if (S_ISSOCK(mode)) {
+ cmd = BTRFS_SEND_C_MKSOCK;
+ } else {
+ btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
+ (int)(mode & S_IFMT));
+ ret = -EOPNOTSUPP;
+ goto out;
+ }
+
+ ret = begin_cmd(sctx, cmd);
+ if (ret < 0)
+ goto out;
+
+ ret = gen_unique_name(sctx, ino, gen, p);
+ if (ret < 0)
+ goto out;
+
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
+
+ if (S_ISLNK(mode)) {
+ fs_path_reset(p);
+ ret = read_symlink(sctx->send_root, ino, p);
+ if (ret < 0)
+ goto out;
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
+ } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
+ S_ISFIFO(mode) || S_ISSOCK(mode)) {
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
+ }
+
+ ret = send_cmd(sctx);
+ if (ret < 0)
+ goto out;
+
+
+tlv_put_failure:
+out:
+ fs_path_free(p);
+ return ret;
+}
+
+/*
+ * We need some special handling for inodes that get processed before the parent
+ * directory got created. See process_recorded_refs for details.
+ * This function does the check if we already created the dir out of order.
+ */
+static int did_create_dir(struct send_ctx *sctx, u64 dir)
+{
+ int ret = 0;
+ int iter_ret = 0;
+ struct btrfs_path *path = NULL;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+ struct btrfs_key di_key;
+ struct btrfs_dir_item *di;
+
+ path = alloc_path_for_send();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = dir;
+ key.type = BTRFS_DIR_INDEX_KEY;
+ key.offset = 0;
+
+ btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
+ struct extent_buffer *eb = path->nodes[0];
+
+ if (found_key.objectid != key.objectid ||
+ found_key.type != key.type) {
+ ret = 0;
+ break;
+ }
+
+ di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
+ btrfs_dir_item_key_to_cpu(eb, di, &di_key);
+
+ if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
+ di_key.objectid < sctx->send_progress) {
+ ret = 1;
+ break;
+ }
+ }
+ /* Catch error found during iteration */
+ if (iter_ret < 0)
+ ret = iter_ret;
+
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * Only creates the inode if it is:
+ * 1. Not a directory
+ * 2. Or a directory which was not created already due to out of order
+ * directories. See did_create_dir and process_recorded_refs for details.
+ */
+static int send_create_inode_if_needed(struct send_ctx *sctx)
+{
+ int ret;
+
+ if (S_ISDIR(sctx->cur_inode_mode)) {
+ ret = did_create_dir(sctx, sctx->cur_ino);
+ if (ret < 0)
+ return ret;
+ else if (ret > 0)
+ return 0;
+ }
+
+ return send_create_inode(sctx, sctx->cur_ino);
+}
+
+struct recorded_ref {
+ struct list_head list;
+ char *name;
+ struct fs_path *full_path;
+ u64 dir;
+ u64 dir_gen;
+ int name_len;
+ struct rb_node node;
+ struct rb_root *root;
+};
+
+static struct recorded_ref *recorded_ref_alloc(void)
+{
+ struct recorded_ref *ref;
+
+ ref = kzalloc(sizeof(*ref), GFP_KERNEL);
+ if (!ref)
+ return NULL;
+ RB_CLEAR_NODE(&ref->node);
+ INIT_LIST_HEAD(&ref->list);
+ return ref;
+}
+
+static void recorded_ref_free(struct recorded_ref *ref)
+{
+ if (!ref)
+ return;
+ if (!RB_EMPTY_NODE(&ref->node))
+ rb_erase(&ref->node, ref->root);
+ list_del(&ref->list);
+ fs_path_free(ref->full_path);
+ kfree(ref);
+}
+
+static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
+{
+ ref->full_path = path;
+ ref->name = (char *)kbasename(ref->full_path->start);
+ ref->name_len = ref->full_path->end - ref->name;
+}
+
+static int dup_ref(struct recorded_ref *ref, struct list_head *list)
+{
+ struct recorded_ref *new;
+
+ new = recorded_ref_alloc();
+ if (!new)
+ return -ENOMEM;
+
+ new->dir = ref->dir;
+ new->dir_gen = ref->dir_gen;
+ list_add_tail(&new->list, list);
+ return 0;
+}
+
+static void __free_recorded_refs(struct list_head *head)
+{
+ struct recorded_ref *cur;
+
+ while (!list_empty(head)) {
+ cur = list_entry(head->next, struct recorded_ref, list);
+ recorded_ref_free(cur);
+ }
+}
+
+static void free_recorded_refs(struct send_ctx *sctx)
+{
+ __free_recorded_refs(&sctx->new_refs);
+ __free_recorded_refs(&sctx->deleted_refs);
+}
+
+/*
+ * Renames/moves a file/dir to its orphan name. Used when the first
+ * ref of an unprocessed inode gets overwritten and for all non empty
+ * directories.
+ */
+static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
+ struct fs_path *path)
+{
+ int ret;
+ struct fs_path *orphan;
+
+ orphan = fs_path_alloc();
+ if (!orphan)
+ return -ENOMEM;
+
+ ret = gen_unique_name(sctx, ino, gen, orphan);
+ if (ret < 0)
+ goto out;
+
+ ret = send_rename(sctx, path, orphan);
+
+out:
+ fs_path_free(orphan);
+ return ret;
+}
+
+static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
+ u64 dir_ino, u64 dir_gen)
+{
+ struct rb_node **p = &sctx->orphan_dirs.rb_node;
+ struct rb_node *parent = NULL;
+ struct orphan_dir_info *entry, *odi;
+
+ while (*p) {
+ parent = *p;
+ entry = rb_entry(parent, struct orphan_dir_info, node);
+ if (dir_ino < entry->ino)
+ p = &(*p)->rb_left;
+ else if (dir_ino > entry->ino)
+ p = &(*p)->rb_right;
+ else if (dir_gen < entry->gen)
+ p = &(*p)->rb_left;
+ else if (dir_gen > entry->gen)
+ p = &(*p)->rb_right;
+ else
+ return entry;
+ }
+
+ odi = kmalloc(sizeof(*odi), GFP_KERNEL);
+ if (!odi)
+ return ERR_PTR(-ENOMEM);
+ odi->ino = dir_ino;
+ odi->gen = dir_gen;
+ odi->last_dir_index_offset = 0;
+
+ rb_link_node(&odi->node, parent, p);
+ rb_insert_color(&odi->node, &sctx->orphan_dirs);
+ return odi;
+}
+
+static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
+ u64 dir_ino, u64 gen)
+{
+ struct rb_node *n = sctx->orphan_dirs.rb_node;
+ struct orphan_dir_info *entry;
+
+ while (n) {
+ entry = rb_entry(n, struct orphan_dir_info, node);
+ if (dir_ino < entry->ino)
+ n = n->rb_left;
+ else if (dir_ino > entry->ino)
+ n = n->rb_right;
+ else if (gen < entry->gen)
+ n = n->rb_left;
+ else if (gen > entry->gen)
+ n = n->rb_right;
+ else
+ return entry;
+ }
+ return NULL;
+}
+
+static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
+{
+ struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
+
+ return odi != NULL;
+}
+
+static void free_orphan_dir_info(struct send_ctx *sctx,
+ struct orphan_dir_info *odi)
+{
+ if (!odi)
+ return;
+ rb_erase(&odi->node, &sctx->orphan_dirs);
+ kfree(odi);
+}
+
+/*
+ * Returns 1 if a directory can be removed at this point in time.
+ * We check this by iterating all dir items and checking if the inode behind
+ * the dir item was already processed.
+ */
+static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
+ u64 send_progress)
+{
+ int ret = 0;
+ int iter_ret = 0;
+ struct btrfs_root *root = sctx->parent_root;
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+ struct btrfs_key loc;
+ struct btrfs_dir_item *di;
+ struct orphan_dir_info *odi = NULL;
+
+ /*
+ * Don't try to rmdir the top/root subvolume dir.
+ */
+ if (dir == BTRFS_FIRST_FREE_OBJECTID)
+ return 0;
+
+ path = alloc_path_for_send();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = dir;
+ key.type = BTRFS_DIR_INDEX_KEY;
+ key.offset = 0;
+
+ odi = get_orphan_dir_info(sctx, dir, dir_gen);
+ if (odi)
+ key.offset = odi->last_dir_index_offset;
+
+ btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
+ struct waiting_dir_move *dm;
+
+ if (found_key.objectid != key.objectid ||
+ found_key.type != key.type)
+ break;
+
+ di = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_dir_item);
+ btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
+
+ dm = get_waiting_dir_move(sctx, loc.objectid);
+ if (dm) {
+ odi = add_orphan_dir_info(sctx, dir, dir_gen);
+ if (IS_ERR(odi)) {
+ ret = PTR_ERR(odi);
+ goto out;
+ }
+ odi->gen = dir_gen;
+ odi->last_dir_index_offset = found_key.offset;
+ dm->rmdir_ino = dir;
+ dm->rmdir_gen = dir_gen;
+ ret = 0;
+ goto out;
+ }
+
+ if (loc.objectid > send_progress) {
+ odi = add_orphan_dir_info(sctx, dir, dir_gen);
+ if (IS_ERR(odi)) {
+ ret = PTR_ERR(odi);
+ goto out;
+ }
+ odi->gen = dir_gen;
+ odi->last_dir_index_offset = found_key.offset;
+ ret = 0;
+ goto out;
+ }
+ }
+ if (iter_ret < 0) {
+ ret = iter_ret;
+ goto out;
+ }
+ free_orphan_dir_info(sctx, odi);
+
+ ret = 1;
+
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
+{
+ struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
+
+ return entry != NULL;
+}
+
+static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
+{
+ struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
+ struct rb_node *parent = NULL;
+ struct waiting_dir_move *entry, *dm;
+
+ dm = kmalloc(sizeof(*dm), GFP_KERNEL);
+ if (!dm)
+ return -ENOMEM;
+ dm->ino = ino;
+ dm->rmdir_ino = 0;
+ dm->rmdir_gen = 0;
+ dm->orphanized = orphanized;
+
+ while (*p) {
+ parent = *p;
+ entry = rb_entry(parent, struct waiting_dir_move, node);
+ if (ino < entry->ino) {
+ p = &(*p)->rb_left;
+ } else if (ino > entry->ino) {
+ p = &(*p)->rb_right;
+ } else {
+ kfree(dm);
+ return -EEXIST;
+ }
+ }
+
+ rb_link_node(&dm->node, parent, p);
+ rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
+ return 0;
+}
+
+static struct waiting_dir_move *
+get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
+{
+ struct rb_node *n = sctx->waiting_dir_moves.rb_node;
+ struct waiting_dir_move *entry;
+
+ while (n) {
+ entry = rb_entry(n, struct waiting_dir_move, node);
+ if (ino < entry->ino)
+ n = n->rb_left;
+ else if (ino > entry->ino)
+ n = n->rb_right;
+ else
+ return entry;
+ }
+ return NULL;
+}
+
+static void free_waiting_dir_move(struct send_ctx *sctx,
+ struct waiting_dir_move *dm)
+{
+ if (!dm)
+ return;
+ rb_erase(&dm->node, &sctx->waiting_dir_moves);
+ kfree(dm);
+}
+
+static int add_pending_dir_move(struct send_ctx *sctx,
+ u64 ino,
+ u64 ino_gen,
+ u64 parent_ino,
+ struct list_head *new_refs,
+ struct list_head *deleted_refs,
+ const bool is_orphan)
+{
+ struct rb_node **p = &sctx->pending_dir_moves.rb_node;
+ struct rb_node *parent = NULL;
+ struct pending_dir_move *entry = NULL, *pm;
+ struct recorded_ref *cur;
+ int exists = 0;
+ int ret;
+
+ pm = kmalloc(sizeof(*pm), GFP_KERNEL);
+ if (!pm)
+ return -ENOMEM;
+ pm->parent_ino = parent_ino;
+ pm->ino = ino;
+ pm->gen = ino_gen;
+ INIT_LIST_HEAD(&pm->list);
+ INIT_LIST_HEAD(&pm->update_refs);
+ RB_CLEAR_NODE(&pm->node);
+
+ while (*p) {
+ parent = *p;
+ entry = rb_entry(parent, struct pending_dir_move, node);
+ if (parent_ino < entry->parent_ino) {
+ p = &(*p)->rb_left;
+ } else if (parent_ino > entry->parent_ino) {
+ p = &(*p)->rb_right;
+ } else {
+ exists = 1;
+ break;
+ }
+ }
+
+ list_for_each_entry(cur, deleted_refs, list) {
+ ret = dup_ref(cur, &pm->update_refs);
+ if (ret < 0)
+ goto out;
+ }
+ list_for_each_entry(cur, new_refs, list) {
+ ret = dup_ref(cur, &pm->update_refs);
+ if (ret < 0)
+ goto out;
+ }
+
+ ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
+ if (ret)
+ goto out;
+
+ if (exists) {
+ list_add_tail(&pm->list, &entry->list);
+ } else {
+ rb_link_node(&pm->node, parent, p);
+ rb_insert_color(&pm->node, &sctx->pending_dir_moves);
+ }
+ ret = 0;
+out:
+ if (ret) {
+ __free_recorded_refs(&pm->update_refs);
+ kfree(pm);
+ }
+ return ret;
+}
+
+static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
+ u64 parent_ino)
+{
+ struct rb_node *n = sctx->pending_dir_moves.rb_node;
+ struct pending_dir_move *entry;
+
+ while (n) {
+ entry = rb_entry(n, struct pending_dir_move, node);
+ if (parent_ino < entry->parent_ino)
+ n = n->rb_left;
+ else if (parent_ino > entry->parent_ino)
+ n = n->rb_right;
+ else
+ return entry;
+ }
+ return NULL;
+}
+
+static int path_loop(struct send_ctx *sctx, struct fs_path *name,
+ u64 ino, u64 gen, u64 *ancestor_ino)
+{
+ int ret = 0;
+ u64 parent_inode = 0;
+ u64 parent_gen = 0;
+ u64 start_ino = ino;
+
+ *ancestor_ino = 0;
+ while (ino != BTRFS_FIRST_FREE_OBJECTID) {
+ fs_path_reset(name);
+
+ if (is_waiting_for_rm(sctx, ino, gen))
+ break;
+ if (is_waiting_for_move(sctx, ino)) {
+ if (*ancestor_ino == 0)
+ *ancestor_ino = ino;
+ ret = get_first_ref(sctx->parent_root, ino,
+ &parent_inode, &parent_gen, name);
+ } else {
+ ret = __get_cur_name_and_parent(sctx, ino, gen,
+ &parent_inode,
+ &parent_gen, name);
+ if (ret > 0) {
+ ret = 0;
+ break;
+ }
+ }
+ if (ret < 0)
+ break;
+ if (parent_inode == start_ino) {
+ ret = 1;
+ if (*ancestor_ino == 0)
+ *ancestor_ino = ino;
+ break;
+ }
+ ino = parent_inode;
+ gen = parent_gen;
+ }
+ return ret;
+}
+
+static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
+{
+ struct fs_path *from_path = NULL;
+ struct fs_path *to_path = NULL;
+ struct fs_path *name = NULL;
+ u64 orig_progress = sctx->send_progress;
+ struct recorded_ref *cur;
+ u64 parent_ino, parent_gen;
+ struct waiting_dir_move *dm = NULL;
+ u64 rmdir_ino = 0;
+ u64 rmdir_gen;
+ u64 ancestor;
+ bool is_orphan;
+ int ret;
+
+ name = fs_path_alloc();
+ from_path = fs_path_alloc();
+ if (!name || !from_path) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ dm = get_waiting_dir_move(sctx, pm->ino);
+ ASSERT(dm);
+ rmdir_ino = dm->rmdir_ino;
+ rmdir_gen = dm->rmdir_gen;
+ is_orphan = dm->orphanized;
+ free_waiting_dir_move(sctx, dm);
+
+ if (is_orphan) {
+ ret = gen_unique_name(sctx, pm->ino,
+ pm->gen, from_path);
+ } else {
+ ret = get_first_ref(sctx->parent_root, pm->ino,
+ &parent_ino, &parent_gen, name);
+ if (ret < 0)
+ goto out;
+ ret = get_cur_path(sctx, parent_ino, parent_gen,
+ from_path);
+ if (ret < 0)
+ goto out;
+ ret = fs_path_add_path(from_path, name);
+ }
+ if (ret < 0)
+ goto out;
+
+ sctx->send_progress = sctx->cur_ino + 1;
+ ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
+ if (ret < 0)
+ goto out;
+ if (ret) {
+ LIST_HEAD(deleted_refs);
+ ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
+ ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
+ &pm->update_refs, &deleted_refs,
+ is_orphan);
+ if (ret < 0)
+ goto out;
+ if (rmdir_ino) {
+ dm = get_waiting_dir_move(sctx, pm->ino);
+ ASSERT(dm);
+ dm->rmdir_ino = rmdir_ino;
+ dm->rmdir_gen = rmdir_gen;
+ }
+ goto out;
+ }
+ fs_path_reset(name);
+ to_path = name;
+ name = NULL;
+ ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
+ if (ret < 0)
+ goto out;
+
+ ret = send_rename(sctx, from_path, to_path);
+ if (ret < 0)
+ goto out;
+
+ if (rmdir_ino) {
+ struct orphan_dir_info *odi;
+ u64 gen;
+
+ odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
+ if (!odi) {
+ /* already deleted */
+ goto finish;
+ }
+ gen = odi->gen;
+
+ ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
+ if (ret < 0)
+ goto out;
+ if (!ret)
+ goto finish;
+
+ name = fs_path_alloc();
+ if (!name) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ ret = get_cur_path(sctx, rmdir_ino, gen, name);
+ if (ret < 0)
+ goto out;
+ ret = send_rmdir(sctx, name);
+ if (ret < 0)
+ goto out;
+ }
+
+finish:
+ ret = send_utimes(sctx, pm->ino, pm->gen);
+ if (ret < 0)
+ goto out;
+
+ /*
+ * After rename/move, need to update the utimes of both new parent(s)
+ * and old parent(s).
+ */
+ list_for_each_entry(cur, &pm->update_refs, list) {
+ /*
+ * The parent inode might have been deleted in the send snapshot
+ */
+ ret = get_inode_info(sctx->send_root, cur->dir, NULL);
+ if (ret == -ENOENT) {
+ ret = 0;
+ continue;
+ }
+ if (ret < 0)
+ goto out;
+
+ ret = send_utimes(sctx, cur->dir, cur->dir_gen);
+ if (ret < 0)
+ goto out;
+ }
+
+out:
+ fs_path_free(name);
+ fs_path_free(from_path);
+ fs_path_free(to_path);
+ sctx->send_progress = orig_progress;
+
+ return ret;
+}
+
+static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
+{
+ if (!list_empty(&m->list))
+ list_del(&m->list);
+ if (!RB_EMPTY_NODE(&m->node))
+ rb_erase(&m->node, &sctx->pending_dir_moves);
+ __free_recorded_refs(&m->update_refs);
+ kfree(m);
+}
+
+static void tail_append_pending_moves(struct send_ctx *sctx,
+ struct pending_dir_move *moves,
+ struct list_head *stack)
+{
+ if (list_empty(&moves->list)) {
+ list_add_tail(&moves->list, stack);
+ } else {
+ LIST_HEAD(list);
+ list_splice_init(&moves->list, &list);
+ list_add_tail(&moves->list, stack);
+ list_splice_tail(&list, stack);
+ }
+ if (!RB_EMPTY_NODE(&moves->node)) {
+ rb_erase(&moves->node, &sctx->pending_dir_moves);
+ RB_CLEAR_NODE(&moves->node);
+ }
+}
+
+static int apply_children_dir_moves(struct send_ctx *sctx)
+{
+ struct pending_dir_move *pm;
+ struct list_head stack;
+ u64 parent_ino = sctx->cur_ino;
+ int ret = 0;
+
+ pm = get_pending_dir_moves(sctx, parent_ino);
+ if (!pm)
+ return 0;
+
+ INIT_LIST_HEAD(&stack);
+ tail_append_pending_moves(sctx, pm, &stack);
+
+ while (!list_empty(&stack)) {
+ pm = list_first_entry(&stack, struct pending_dir_move, list);
+ parent_ino = pm->ino;
+ ret = apply_dir_move(sctx, pm);
+ free_pending_move(sctx, pm);
+ if (ret)
+ goto out;
+ pm = get_pending_dir_moves(sctx, parent_ino);
+ if (pm)
+ tail_append_pending_moves(sctx, pm, &stack);
+ }
+ return 0;
+
+out:
+ while (!list_empty(&stack)) {
+ pm = list_first_entry(&stack, struct pending_dir_move, list);
+ free_pending_move(sctx, pm);
+ }
+ return ret;
+}
+
+/*
+ * We might need to delay a directory rename even when no ancestor directory
+ * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
+ * renamed. This happens when we rename a directory to the old name (the name
+ * in the parent root) of some other unrelated directory that got its rename
+ * delayed due to some ancestor with higher number that got renamed.
+ *
+ * Example:
+ *
+ * Parent snapshot:
+ * . (ino 256)
+ * |---- a/ (ino 257)
+ * | |---- file (ino 260)
+ * |
+ * |---- b/ (ino 258)
+ * |---- c/ (ino 259)
+ *
+ * Send snapshot:
+ * . (ino 256)
+ * |---- a/ (ino 258)
+ * |---- x/ (ino 259)
+ * |---- y/ (ino 257)
+ * |----- file (ino 260)
+ *
+ * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
+ * from 'a' to 'x/y' happening first, which in turn depends on the rename of
+ * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
+ * must issue is:
+ *
+ * 1 - rename 259 from 'c' to 'x'
+ * 2 - rename 257 from 'a' to 'x/y'
+ * 3 - rename 258 from 'b' to 'a'
+ *
+ * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
+ * be done right away and < 0 on error.
+ */
+static int wait_for_dest_dir_move(struct send_ctx *sctx,
+ struct recorded_ref *parent_ref,
+ const bool is_orphan)
+{
+ struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ struct btrfs_key di_key;
+ struct btrfs_dir_item *di;
+ u64 left_gen;
+ u64 right_gen;
+ int ret = 0;
+ struct waiting_dir_move *wdm;
+
+ if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
+ return 0;
+
+ path = alloc_path_for_send();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = parent_ref->dir;
+ key.type = BTRFS_DIR_ITEM_KEY;
+ key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
+
+ ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
+ if (ret < 0) {
+ goto out;
+ } else if (ret > 0) {
+ ret = 0;
+ goto out;
+ }
+
+ di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
+ parent_ref->name_len);
+ if (!di) {
+ ret = 0;
+ goto out;
+ }
+ /*
+ * di_key.objectid has the number of the inode that has a dentry in the
+ * parent directory with the same name that sctx->cur_ino is being
+ * renamed to. We need to check if that inode is in the send root as
+ * well and if it is currently marked as an inode with a pending rename,
+ * if it is, we need to delay the rename of sctx->cur_ino as well, so
+ * that it happens after that other inode is renamed.
+ */
+ btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
+ if (di_key.type != BTRFS_INODE_ITEM_KEY) {
+ ret = 0;
+ goto out;
+ }
+
+ ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
+ if (ret < 0)
+ goto out;
+ ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
+ if (ret < 0) {
+ if (ret == -ENOENT)
+ ret = 0;
+ goto out;
+ }
+
+ /* Different inode, no need to delay the rename of sctx->cur_ino */
+ if (right_gen != left_gen) {
+ ret = 0;
+ goto out;
+ }
+
+ wdm = get_waiting_dir_move(sctx, di_key.objectid);
+ if (wdm && !wdm->orphanized) {
+ ret = add_pending_dir_move(sctx,
+ sctx->cur_ino,
+ sctx->cur_inode_gen,
+ di_key.objectid,
+ &sctx->new_refs,
+ &sctx->deleted_refs,
+ is_orphan);
+ if (!ret)
+ ret = 1;
+ }
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+/*
+ * Check if inode ino2, or any of its ancestors, is inode ino1.
+ * Return 1 if true, 0 if false and < 0 on error.
+ */
+static int check_ino_in_path(struct btrfs_root *root,
+ const u64 ino1,
+ const u64 ino1_gen,
+ const u64 ino2,
+ const u64 ino2_gen,
+ struct fs_path *fs_path)
+{
+ u64 ino = ino2;
+
+ if (ino1 == ino2)
+ return ino1_gen == ino2_gen;
+
+ while (ino > BTRFS_FIRST_FREE_OBJECTID) {
+ u64 parent;
+ u64 parent_gen;
+ int ret;
+
+ fs_path_reset(fs_path);
+ ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
+ if (ret < 0)
+ return ret;
+ if (parent == ino1)
+ return parent_gen == ino1_gen;
+ ino = parent;
+ }
+ return 0;
+}
+
+/*
+ * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
+ * possible path (in case ino2 is not a directory and has multiple hard links).
+ * Return 1 if true, 0 if false and < 0 on error.
+ */
+static int is_ancestor(struct btrfs_root *root,
+ const u64 ino1,
+ const u64 ino1_gen,
+ const u64 ino2,
+ struct fs_path *fs_path)
+{
+ bool free_fs_path = false;
+ int ret = 0;
+ int iter_ret = 0;
+ struct btrfs_path *path = NULL;
+ struct btrfs_key key;
+
+ if (!fs_path) {
+ fs_path = fs_path_alloc();
+ if (!fs_path)
+ return -ENOMEM;
+ free_fs_path = true;
+ }
+
+ path = alloc_path_for_send();
+ if (!path) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ key.objectid = ino2;
+ key.type = BTRFS_INODE_REF_KEY;
+ key.offset = 0;
+
+ btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
+ struct extent_buffer *leaf = path->nodes[0];
+ int slot = path->slots[0];
+ u32 cur_offset = 0;
+ u32 item_size;
+
+ if (key.objectid != ino2)
+ break;
+ if (key.type != BTRFS_INODE_REF_KEY &&
+ key.type != BTRFS_INODE_EXTREF_KEY)
+ break;
+
+ item_size = btrfs_item_size(leaf, slot);
+ while (cur_offset < item_size) {
+ u64 parent;
+ u64 parent_gen;
+
+ if (key.type == BTRFS_INODE_EXTREF_KEY) {
+ unsigned long ptr;
+ struct btrfs_inode_extref *extref;
+
+ ptr = btrfs_item_ptr_offset(leaf, slot);
+ extref = (struct btrfs_inode_extref *)
+ (ptr + cur_offset);
+ parent = btrfs_inode_extref_parent(leaf,
+ extref);
+ cur_offset += sizeof(*extref);
+ cur_offset += btrfs_inode_extref_name_len(leaf,
+ extref);
+ } else {
+ parent = key.offset;
+ cur_offset = item_size;
+ }
+
+ ret = get_inode_gen(root, parent, &parent_gen);
+ if (ret < 0)
+ goto out;
+ ret = check_ino_in_path(root, ino1, ino1_gen,
+ parent, parent_gen, fs_path);
+ if (ret)
+ goto out;
+ }
+ }
+ ret = 0;
+ if (iter_ret < 0)
+ ret = iter_ret;
+
+out:
+ btrfs_free_path(path);
+ if (free_fs_path)
+ fs_path_free(fs_path);
+ return ret;
+}
+
+static int wait_for_parent_move(struct send_ctx *sctx,
+ struct recorded_ref *parent_ref,
+ const bool is_orphan)
+{
+ int ret = 0;
+ u64 ino = parent_ref->dir;
+ u64 ino_gen = parent_ref->dir_gen;
+ u64 parent_ino_before, parent_ino_after;
+ struct fs_path *path_before = NULL;
+ struct fs_path *path_after = NULL;
+ int len1, len2;
+
+ path_after = fs_path_alloc();
+ path_before = fs_path_alloc();
+ if (!path_after || !path_before) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ /*
+ * Our current directory inode may not yet be renamed/moved because some
+ * ancestor (immediate or not) has to be renamed/moved first. So find if
+ * such ancestor exists and make sure our own rename/move happens after
+ * that ancestor is processed to avoid path build infinite loops (done
+ * at get_cur_path()).
+ */
+ while (ino > BTRFS_FIRST_FREE_OBJECTID) {
+ u64 parent_ino_after_gen;
+
+ if (is_waiting_for_move(sctx, ino)) {
+ /*
+ * If the current inode is an ancestor of ino in the
+ * parent root, we need to delay the rename of the
+ * current inode, otherwise don't delayed the rename
+ * because we can end up with a circular dependency
+ * of renames, resulting in some directories never
+ * getting the respective rename operations issued in
+ * the send stream or getting into infinite path build
+ * loops.
+ */
+ ret = is_ancestor(sctx->parent_root,
+ sctx->cur_ino, sctx->cur_inode_gen,
+ ino, path_before);
+ if (ret)
+ break;
+ }
+
+ fs_path_reset(path_before);
+ fs_path_reset(path_after);
+
+ ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
+ &parent_ino_after_gen, path_after);
+ if (ret < 0)
+ goto out;
+ ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
+ NULL, path_before);
+ if (ret < 0 && ret != -ENOENT) {
+ goto out;
+ } else if (ret == -ENOENT) {
+ ret = 0;
+ break;
+ }
+
+ len1 = fs_path_len(path_before);
+ len2 = fs_path_len(path_after);
+ if (ino > sctx->cur_ino &&
+ (parent_ino_before != parent_ino_after || len1 != len2 ||
+ memcmp(path_before->start, path_after->start, len1))) {
+ u64 parent_ino_gen;
+
+ ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
+ if (ret < 0)
+ goto out;
+ if (ino_gen == parent_ino_gen) {
+ ret = 1;
+ break;
+ }
+ }
+ ino = parent_ino_after;
+ ino_gen = parent_ino_after_gen;
+ }
+
+out:
+ fs_path_free(path_before);
+ fs_path_free(path_after);
+
+ if (ret == 1) {
+ ret = add_pending_dir_move(sctx,
+ sctx->cur_ino,
+ sctx->cur_inode_gen,
+ ino,
+ &sctx->new_refs,
+ &sctx->deleted_refs,
+ is_orphan);
+ if (!ret)
+ ret = 1;
+ }
+
+ return ret;
+}
+
+static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
+{
+ int ret;
+ struct fs_path *new_path;
+
+ /*
+ * Our reference's name member points to its full_path member string, so
+ * we use here a new path.
+ */
+ new_path = fs_path_alloc();
+ if (!new_path)
+ return -ENOMEM;
+
+ ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
+ if (ret < 0) {
+ fs_path_free(new_path);
+ return ret;
+ }
+ ret = fs_path_add(new_path, ref->name, ref->name_len);
+ if (ret < 0) {
+ fs_path_free(new_path);
+ return ret;
+ }
+
+ fs_path_free(ref->full_path);
+ set_ref_path(ref, new_path);
+
+ return 0;
+}
+
+/*
+ * When processing the new references for an inode we may orphanize an existing
+ * directory inode because its old name conflicts with one of the new references
+ * of the current inode. Later, when processing another new reference of our
+ * inode, we might need to orphanize another inode, but the path we have in the
+ * reference reflects the pre-orphanization name of the directory we previously
+ * orphanized. For example:
+ *
+ * parent snapshot looks like:
+ *
+ * . (ino 256)
+ * |----- f1 (ino 257)
+ * |----- f2 (ino 258)
+ * |----- d1/ (ino 259)
+ * |----- d2/ (ino 260)
+ *
+ * send snapshot looks like:
+ *
+ * . (ino 256)
+ * |----- d1 (ino 258)
+ * |----- f2/ (ino 259)
+ * |----- f2_link/ (ino 260)
+ * | |----- f1 (ino 257)
+ * |
+ * |----- d2 (ino 258)
+ *
+ * When processing inode 257 we compute the name for inode 259 as "d1", and we
+ * cache it in the name cache. Later when we start processing inode 258, when
+ * collecting all its new references we set a full path of "d1/d2" for its new
+ * reference with name "d2". When we start processing the new references we
+ * start by processing the new reference with name "d1", and this results in
+ * orphanizing inode 259, since its old reference causes a conflict. Then we
+ * move on the next new reference, with name "d2", and we find out we must
+ * orphanize inode 260, as its old reference conflicts with ours - but for the
+ * orphanization we use a source path corresponding to the path we stored in the
+ * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
+ * receiver fail since the path component "d1/" no longer exists, it was renamed
+ * to "o259-6-0/" when processing the previous new reference. So in this case we
+ * must recompute the path in the new reference and use it for the new
+ * orphanization operation.
+ */
+static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
+{
+ char *name;
+ int ret;
+
+ name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
+ if (!name)
+ return -ENOMEM;
+
+ fs_path_reset(ref->full_path);
+ ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
+ if (ret < 0)
+ goto out;
+
+ ret = fs_path_add(ref->full_path, name, ref->name_len);
+ if (ret < 0)
+ goto out;
+
+ /* Update the reference's base name pointer. */
+ set_ref_path(ref, ref->full_path);
+out:
+ kfree(name);
+ return ret;
+}
+
+/*
+ * This does all the move/link/unlink/rmdir magic.
+ */
+static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
+{
+ struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
+ int ret = 0;
+ struct recorded_ref *cur;
+ struct recorded_ref *cur2;
+ struct list_head check_dirs;
+ struct fs_path *valid_path = NULL;
+ u64 ow_inode = 0;
+ u64 ow_gen;
+ u64 ow_mode;
+ int did_overwrite = 0;
+ int is_orphan = 0;
+ u64 last_dir_ino_rm = 0;
+ bool can_rename = true;
+ bool orphanized_dir = false;
+ bool orphanized_ancestor = false;
+
+ btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
+
+ /*
+ * This should never happen as the root dir always has the same ref
+ * which is always '..'
+ */
+ BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
+ INIT_LIST_HEAD(&check_dirs);
+
+ valid_path = fs_path_alloc();
+ if (!valid_path) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ /*
+ * First, check if the first ref of the current inode was overwritten
+ * before. If yes, we know that the current inode was already orphanized
+ * and thus use the orphan name. If not, we can use get_cur_path to
+ * get the path of the first ref as it would like while receiving at
+ * this point in time.
+ * New inodes are always orphan at the beginning, so force to use the
+ * orphan name in this case.
+ * The first ref is stored in valid_path and will be updated if it
+ * gets moved around.
+ */
+ if (!sctx->cur_inode_new) {
+ ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
+ sctx->cur_inode_gen);
+ if (ret < 0)
+ goto out;
+ if (ret)
+ did_overwrite = 1;
+ }
+ if (sctx->cur_inode_new || did_overwrite) {
+ ret = gen_unique_name(sctx, sctx->cur_ino,
+ sctx->cur_inode_gen, valid_path);
+ if (ret < 0)
+ goto out;
+ is_orphan = 1;
+ } else {
+ ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
+ valid_path);
+ if (ret < 0)
+ goto out;
+ }
+
+ /*
+ * Before doing any rename and link operations, do a first pass on the
+ * new references to orphanize any unprocessed inodes that may have a
+ * reference that conflicts with one of the new references of the current
+ * inode. This needs to happen first because a new reference may conflict
+ * with the old reference of a parent directory, so we must make sure
+ * that the path used for link and rename commands don't use an
+ * orphanized name when an ancestor was not yet orphanized.
+ *
+ * Example:
+ *
+ * Parent snapshot:
+ *
+ * . (ino 256)
+ * |----- testdir/ (ino 259)
+ * | |----- a (ino 257)
+ * |
+ * |----- b (ino 258)
+ *
+ * Send snapshot:
+ *
+ * . (ino 256)
+ * |----- testdir_2/ (ino 259)
+ * | |----- a (ino 260)
+ * |
+ * |----- testdir (ino 257)
+ * |----- b (ino 257)
+ * |----- b2 (ino 258)
+ *
+ * Processing the new reference for inode 257 with name "b" may happen
+ * before processing the new reference with name "testdir". If so, we
+ * must make sure that by the time we send a link command to create the
+ * hard link "b", inode 259 was already orphanized, since the generated
+ * path in "valid_path" already contains the orphanized name for 259.
+ * We are processing inode 257, so only later when processing 259 we do
+ * the rename operation to change its temporary (orphanized) name to
+ * "testdir_2".
+ */
+ list_for_each_entry(cur, &sctx->new_refs, list) {
+ ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
+ if (ret < 0)
+ goto out;
+ if (ret == inode_state_will_create)
+ continue;
+
+ /*
+ * Check if this new ref would overwrite the first ref of another
+ * unprocessed inode. If yes, orphanize the overwritten inode.
+ * If we find an overwritten ref that is not the first ref,
+ * simply unlink it.
+ */
+ ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
+ cur->name, cur->name_len,
+ &ow_inode, &ow_gen, &ow_mode);
+ if (ret < 0)
+ goto out;
+ if (ret) {
+ ret = is_first_ref(sctx->parent_root,
+ ow_inode, cur->dir, cur->name,
+ cur->name_len);
+ if (ret < 0)
+ goto out;
+ if (ret) {
+ struct name_cache_entry *nce;
+ struct waiting_dir_move *wdm;
+
+ if (orphanized_dir) {
+ ret = refresh_ref_path(sctx, cur);
+ if (ret < 0)
+ goto out;
+ }
+
+ ret = orphanize_inode(sctx, ow_inode, ow_gen,
+ cur->full_path);
+ if (ret < 0)
+ goto out;
+ if (S_ISDIR(ow_mode))
+ orphanized_dir = true;
+
+ /*
+ * If ow_inode has its rename operation delayed
+ * make sure that its orphanized name is used in
+ * the source path when performing its rename
+ * operation.
+ */
+ if (is_waiting_for_move(sctx, ow_inode)) {
+ wdm = get_waiting_dir_move(sctx,
+ ow_inode);
+ ASSERT(wdm);
+ wdm->orphanized = true;
+ }
+
+ /*
+ * Make sure we clear our orphanized inode's
+ * name from the name cache. This is because the
+ * inode ow_inode might be an ancestor of some
+ * other inode that will be orphanized as well
+ * later and has an inode number greater than
+ * sctx->send_progress. We need to prevent
+ * future name lookups from using the old name
+ * and get instead the orphan name.
+ */
+ nce = name_cache_search(sctx, ow_inode, ow_gen);
+ if (nce) {
+ name_cache_delete(sctx, nce);
+ kfree(nce);
+ }
+
+ /*
+ * ow_inode might currently be an ancestor of
+ * cur_ino, therefore compute valid_path (the
+ * current path of cur_ino) again because it
+ * might contain the pre-orphanization name of
+ * ow_inode, which is no longer valid.
+ */
+ ret = is_ancestor(sctx->parent_root,
+ ow_inode, ow_gen,
+ sctx->cur_ino, NULL);
+ if (ret > 0) {
+ orphanized_ancestor = true;
+ fs_path_reset(valid_path);
+ ret = get_cur_path(sctx, sctx->cur_ino,
+ sctx->cur_inode_gen,
+ valid_path);
+ }
+ if (ret < 0)
+ goto out;
+ } else {
+ /*
+ * If we previously orphanized a directory that
+ * collided with a new reference that we already
+ * processed, recompute the current path because
+ * that directory may be part of the path.
+ */
+ if (orphanized_dir) {
+ ret = refresh_ref_path(sctx, cur);
+ if (ret < 0)
+ goto out;
+ }
+ ret = send_unlink(sctx, cur->full_path);
+ if (ret < 0)
+ goto out;
+ }
+ }
+
+ }
+
+ list_for_each_entry(cur, &sctx->new_refs, list) {
+ /*
+ * We may have refs where the parent directory does not exist
+ * yet. This happens if the parent directories inum is higher
+ * than the current inum. To handle this case, we create the
+ * parent directory out of order. But we need to check if this
+ * did already happen before due to other refs in the same dir.
+ */
+ ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
+ if (ret < 0)
+ goto out;
+ if (ret == inode_state_will_create) {
+ ret = 0;
+ /*
+ * First check if any of the current inodes refs did
+ * already create the dir.
+ */
+ list_for_each_entry(cur2, &sctx->new_refs, list) {
+ if (cur == cur2)
+ break;
+ if (cur2->dir == cur->dir) {
+ ret = 1;
+ break;
+ }
+ }
+
+ /*
+ * If that did not happen, check if a previous inode
+ * did already create the dir.
+ */
+ if (!ret)
+ ret = did_create_dir(sctx, cur->dir);
+ if (ret < 0)
+ goto out;
+ if (!ret) {
+ ret = send_create_inode(sctx, cur->dir);
+ if (ret < 0)
+ goto out;
+ }
+ }
+
+ if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
+ ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
+ if (ret < 0)
+ goto out;
+ if (ret == 1) {
+ can_rename = false;
+ *pending_move = 1;
+ }
+ }
+
+ if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
+ can_rename) {
+ ret = wait_for_parent_move(sctx, cur, is_orphan);
+ if (ret < 0)
+ goto out;
+ if (ret == 1) {
+ can_rename = false;
+ *pending_move = 1;
+ }
+ }
+
+ /*
+ * link/move the ref to the new place. If we have an orphan
+ * inode, move it and update valid_path. If not, link or move
+ * it depending on the inode mode.
+ */
+ if (is_orphan && can_rename) {
+ ret = send_rename(sctx, valid_path, cur->full_path);
+ if (ret < 0)
+ goto out;
+ is_orphan = 0;
+ ret = fs_path_copy(valid_path, cur->full_path);
+ if (ret < 0)
+ goto out;
+ } else if (can_rename) {
+ if (S_ISDIR(sctx->cur_inode_mode)) {
+ /*
+ * Dirs can't be linked, so move it. For moved
+ * dirs, we always have one new and one deleted
+ * ref. The deleted ref is ignored later.
+ */
+ ret = send_rename(sctx, valid_path,
+ cur->full_path);
+ if (!ret)
+ ret = fs_path_copy(valid_path,
+ cur->full_path);
+ if (ret < 0)
+ goto out;
+ } else {
+ /*
+ * We might have previously orphanized an inode
+ * which is an ancestor of our current inode,
+ * so our reference's full path, which was
+ * computed before any such orphanizations, must
+ * be updated.
+ */
+ if (orphanized_dir) {
+ ret = update_ref_path(sctx, cur);
+ if (ret < 0)
+ goto out;
+ }
+ ret = send_link(sctx, cur->full_path,
+ valid_path);
+ if (ret < 0)
+ goto out;
+ }
+ }
+ ret = dup_ref(cur, &check_dirs);
+ if (ret < 0)
+ goto out;
+ }
+
+ if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
+ /*
+ * Check if we can already rmdir the directory. If not,
+ * orphanize it. For every dir item inside that gets deleted
+ * later, we do this check again and rmdir it then if possible.
+ * See the use of check_dirs for more details.
+ */
+ ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
+ sctx->cur_ino);
+ if (ret < 0)
+ goto out;
+ if (ret) {
+ ret = send_rmdir(sctx, valid_path);
+ if (ret < 0)
+ goto out;
+ } else if (!is_orphan) {
+ ret = orphanize_inode(sctx, sctx->cur_ino,
+ sctx->cur_inode_gen, valid_path);
+ if (ret < 0)
+ goto out;
+ is_orphan = 1;
+ }
+
+ list_for_each_entry(cur, &sctx->deleted_refs, list) {
+ ret = dup_ref(cur, &check_dirs);
+ if (ret < 0)
+ goto out;
+ }
+ } else if (S_ISDIR(sctx->cur_inode_mode) &&
+ !list_empty(&sctx->deleted_refs)) {
+ /*
+ * We have a moved dir. Add the old parent to check_dirs
+ */
+ cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
+ list);
+ ret = dup_ref(cur, &check_dirs);
+ if (ret < 0)
+ goto out;
+ } else if (!S_ISDIR(sctx->cur_inode_mode)) {
+ /*
+ * We have a non dir inode. Go through all deleted refs and
+ * unlink them if they were not already overwritten by other
+ * inodes.
+ */
+ list_for_each_entry(cur, &sctx->deleted_refs, list) {
+ ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
+ sctx->cur_ino, sctx->cur_inode_gen,
+ cur->name, cur->name_len);
+ if (ret < 0)
+ goto out;
+ if (!ret) {
+ /*
+ * If we orphanized any ancestor before, we need
+ * to recompute the full path for deleted names,
+ * since any such path was computed before we
+ * processed any references and orphanized any
+ * ancestor inode.
+ */
+ if (orphanized_ancestor) {
+ ret = update_ref_path(sctx, cur);
+ if (ret < 0)
+ goto out;
+ }
+ ret = send_unlink(sctx, cur->full_path);
+ if (ret < 0)
+ goto out;
+ }
+ ret = dup_ref(cur, &check_dirs);
+ if (ret < 0)
+ goto out;
+ }
+ /*
+ * If the inode is still orphan, unlink the orphan. This may
+ * happen when a previous inode did overwrite the first ref
+ * of this inode and no new refs were added for the current
+ * inode. Unlinking does not mean that the inode is deleted in
+ * all cases. There may still be links to this inode in other
+ * places.
+ */
+ if (is_orphan) {
+ ret = send_unlink(sctx, valid_path);
+ if (ret < 0)
+ goto out;
+ }
+ }
+
+ /*
+ * We did collect all parent dirs where cur_inode was once located. We
+ * now go through all these dirs and check if they are pending for
+ * deletion and if it's finally possible to perform the rmdir now.
+ * We also update the inode stats of the parent dirs here.
+ */
+ list_for_each_entry(cur, &check_dirs, list) {
+ /*
+ * In case we had refs into dirs that were not processed yet,
+ * we don't need to do the utime and rmdir logic for these dirs.
+ * The dir will be processed later.
+ */
+ if (cur->dir > sctx->cur_ino)
+ continue;
+
+ ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
+ if (ret < 0)
+ goto out;
+
+ if (ret == inode_state_did_create ||
+ ret == inode_state_no_change) {
+ /* TODO delayed utimes */
+ ret = send_utimes(sctx, cur->dir, cur->dir_gen);
+ if (ret < 0)
+ goto out;
+ } else if (ret == inode_state_did_delete &&
+ cur->dir != last_dir_ino_rm) {
+ ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
+ sctx->cur_ino);
+ if (ret < 0)
+ goto out;
+ if (ret) {
+ ret = get_cur_path(sctx, cur->dir,
+ cur->dir_gen, valid_path);
+ if (ret < 0)
+ goto out;
+ ret = send_rmdir(sctx, valid_path);
+ if (ret < 0)
+ goto out;
+ last_dir_ino_rm = cur->dir;
+ }
+ }
+ }
+
+ ret = 0;
+
+out:
+ __free_recorded_refs(&check_dirs);
+ free_recorded_refs(sctx);
+ fs_path_free(valid_path);
+ return ret;
+}
+
+static int rbtree_ref_comp(const void *k, const struct rb_node *node)
+{
+ const struct recorded_ref *data = k;
+ const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
+ int result;
+
+ if (data->dir > ref->dir)
+ return 1;
+ if (data->dir < ref->dir)
+ return -1;
+ if (data->dir_gen > ref->dir_gen)
+ return 1;
+ if (data->dir_gen < ref->dir_gen)
+ return -1;
+ if (data->name_len > ref->name_len)
+ return 1;
+ if (data->name_len < ref->name_len)
+ return -1;
+ result = strcmp(data->name, ref->name);
+ if (result > 0)
+ return 1;
+ if (result < 0)
+ return -1;
+ return 0;
+}
+
+static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
+{
+ const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
+
+ return rbtree_ref_comp(entry, parent) < 0;
+}
+
+static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
+ struct fs_path *name, u64 dir, u64 dir_gen,
+ struct send_ctx *sctx)
+{
+ int ret = 0;
+ struct fs_path *path = NULL;
+ struct recorded_ref *ref = NULL;
+
+ path = fs_path_alloc();
+ if (!path) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ ref = recorded_ref_alloc();
+ if (!ref) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ ret = get_cur_path(sctx, dir, dir_gen, path);
+ if (ret < 0)
+ goto out;
+ ret = fs_path_add_path(path, name);
+ if (ret < 0)
+ goto out;
+
+ ref->dir = dir;
+ ref->dir_gen = dir_gen;
+ set_ref_path(ref, path);
+ list_add_tail(&ref->list, refs);
+ rb_add(&ref->node, root, rbtree_ref_less);
+ ref->root = root;
+out:
+ if (ret) {
+ if (path && (!ref || !ref->full_path))
+ fs_path_free(path);
+ recorded_ref_free(ref);
+ }
+ return ret;
+}
+
+static int record_new_ref_if_needed(int num, u64 dir, int index,
+ struct fs_path *name, void *ctx)
+{
+ int ret = 0;
+ struct send_ctx *sctx = ctx;
+ struct rb_node *node = NULL;
+ struct recorded_ref data;
+ struct recorded_ref *ref;
+ u64 dir_gen;
+
+ ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
+ if (ret < 0)
+ goto out;
+
+ data.dir = dir;
+ data.dir_gen = dir_gen;
+ set_ref_path(&data, name);
+ node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
+ if (node) {
+ ref = rb_entry(node, struct recorded_ref, node);
+ recorded_ref_free(ref);
+ } else {
+ ret = record_ref_in_tree(&sctx->rbtree_new_refs,
+ &sctx->new_refs, name, dir, dir_gen,
+ sctx);
+ }
+out:
+ return ret;
+}
+
+static int record_deleted_ref_if_needed(int num, u64 dir, int index,
+ struct fs_path *name, void *ctx)
+{
+ int ret = 0;
+ struct send_ctx *sctx = ctx;
+ struct rb_node *node = NULL;
+ struct recorded_ref data;
+ struct recorded_ref *ref;
+ u64 dir_gen;
+
+ ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
+ if (ret < 0)
+ goto out;
+
+ data.dir = dir;
+ data.dir_gen = dir_gen;
+ set_ref_path(&data, name);
+ node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
+ if (node) {
+ ref = rb_entry(node, struct recorded_ref, node);
+ recorded_ref_free(ref);
+ } else {
+ ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
+ &sctx->deleted_refs, name, dir,
+ dir_gen, sctx);
+ }
+out:
+ return ret;
+}
+
+static int record_new_ref(struct send_ctx *sctx)
+{
+ int ret;
+
+ ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
+ sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
+ if (ret < 0)
+ goto out;
+ ret = 0;
+
+out:
+ return ret;
+}
+
+static int record_deleted_ref(struct send_ctx *sctx)
+{
+ int ret;
+
+ ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
+ sctx->cmp_key, 0, record_deleted_ref_if_needed,
+ sctx);
+ if (ret < 0)
+ goto out;
+ ret = 0;
+
+out:
+ return ret;
+}
+
+static int record_changed_ref(struct send_ctx *sctx)
+{
+ int ret = 0;
+
+ ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
+ sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
+ if (ret < 0)
+ goto out;
+ ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
+ sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
+ if (ret < 0)
+ goto out;
+ ret = 0;
+
+out:
+ return ret;
+}
+
+/*
+ * Record and process all refs at once. Needed when an inode changes the
+ * generation number, which means that it was deleted and recreated.
+ */
+static int process_all_refs(struct send_ctx *sctx,
+ enum btrfs_compare_tree_result cmd)
+{
+ int ret = 0;
+ int iter_ret = 0;
+ struct btrfs_root *root;
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+ iterate_inode_ref_t cb;
+ int pending_move = 0;
+
+ path = alloc_path_for_send();
+ if (!path)
+ return -ENOMEM;
+
+ if (cmd == BTRFS_COMPARE_TREE_NEW) {
+ root = sctx->send_root;
+ cb = record_new_ref_if_needed;
+ } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
+ root = sctx->parent_root;
+ cb = record_deleted_ref_if_needed;
+ } else {
+ btrfs_err(sctx->send_root->fs_info,
+ "Wrong command %d in process_all_refs", cmd);
+ ret = -EINVAL;
+ goto out;
+ }
+
+ key.objectid = sctx->cmp_key->objectid;
+ key.type = BTRFS_INODE_REF_KEY;
+ key.offset = 0;
+ btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
+ if (found_key.objectid != key.objectid ||
+ (found_key.type != BTRFS_INODE_REF_KEY &&
+ found_key.type != BTRFS_INODE_EXTREF_KEY))
+ break;
+
+ ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
+ if (ret < 0)
+ goto out;
+ }
+ /* Catch error found during iteration */
+ if (iter_ret < 0) {
+ ret = iter_ret;
+ goto out;
+ }
+ btrfs_release_path(path);
+
+ /*
+ * We don't actually care about pending_move as we are simply
+ * re-creating this inode and will be rename'ing it into place once we
+ * rename the parent directory.
+ */
+ ret = process_recorded_refs(sctx, &pending_move);
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int send_set_xattr(struct send_ctx *sctx,
+ struct fs_path *path,
+ const char *name, int name_len,
+ const char *data, int data_len)
+{
+ int ret = 0;
+
+ ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
+ if (ret < 0)
+ goto out;
+
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
+ TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
+ TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
+
+ ret = send_cmd(sctx);
+
+tlv_put_failure:
+out:
+ return ret;
+}
+
+static int send_remove_xattr(struct send_ctx *sctx,
+ struct fs_path *path,
+ const char *name, int name_len)
+{
+ int ret = 0;
+
+ ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
+ if (ret < 0)
+ goto out;
+
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
+ TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
+
+ ret = send_cmd(sctx);
+
+tlv_put_failure:
+out:
+ return ret;
+}
+
+static int __process_new_xattr(int num, struct btrfs_key *di_key,
+ const char *name, int name_len, const char *data,
+ int data_len, void *ctx)
+{
+ int ret;
+ struct send_ctx *sctx = ctx;
+ struct fs_path *p;
+ struct posix_acl_xattr_header dummy_acl;
+
+ /* Capabilities are emitted by finish_inode_if_needed */
+ if (!strncmp(name, XATTR_NAME_CAPS, name_len))
+ return 0;
+
+ p = fs_path_alloc();
+ if (!p)
+ return -ENOMEM;
+
+ /*
+ * This hack is needed because empty acls are stored as zero byte
+ * data in xattrs. Problem with that is, that receiving these zero byte
+ * acls will fail later. To fix this, we send a dummy acl list that
+ * only contains the version number and no entries.
+ */
+ if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
+ !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
+ if (data_len == 0) {
+ dummy_acl.a_version =
+ cpu_to_le32(POSIX_ACL_XATTR_VERSION);
+ data = (char *)&dummy_acl;
+ data_len = sizeof(dummy_acl);
+ }
+ }
+
+ ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
+ if (ret < 0)
+ goto out;
+
+ ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
+
+out:
+ fs_path_free(p);
+ return ret;
+}
+
+static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
+ const char *name, int name_len,
+ const char *data, int data_len, void *ctx)
+{
+ int ret;
+ struct send_ctx *sctx = ctx;
+ struct fs_path *p;
+
+ p = fs_path_alloc();
+ if (!p)
+ return -ENOMEM;
+
+ ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
+ if (ret < 0)
+ goto out;
+
+ ret = send_remove_xattr(sctx, p, name, name_len);
+
+out:
+ fs_path_free(p);
+ return ret;
+}
+
+static int process_new_xattr(struct send_ctx *sctx)
+{
+ int ret = 0;
+
+ ret = iterate_dir_item(sctx->send_root, sctx->left_path,
+ __process_new_xattr, sctx);
+
+ return ret;
+}
+
+static int process_deleted_xattr(struct send_ctx *sctx)
+{
+ return iterate_dir_item(sctx->parent_root, sctx->right_path,
+ __process_deleted_xattr, sctx);
+}
+
+struct find_xattr_ctx {
+ const char *name;
+ int name_len;
+ int found_idx;
+ char *found_data;
+ int found_data_len;
+};
+
+static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
+ int name_len, const char *data, int data_len, void *vctx)
+{
+ struct find_xattr_ctx *ctx = vctx;
+
+ if (name_len == ctx->name_len &&
+ strncmp(name, ctx->name, name_len) == 0) {
+ ctx->found_idx = num;
+ ctx->found_data_len = data_len;
+ ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
+ if (!ctx->found_data)
+ return -ENOMEM;
+ return 1;
+ }
+ return 0;
+}
+
+static int find_xattr(struct btrfs_root *root,
+ struct btrfs_path *path,
+ struct btrfs_key *key,
+ const char *name, int name_len,
+ char **data, int *data_len)
+{
+ int ret;
+ struct find_xattr_ctx ctx;
+
+ ctx.name = name;
+ ctx.name_len = name_len;
+ ctx.found_idx = -1;
+ ctx.found_data = NULL;
+ ctx.found_data_len = 0;
+
+ ret = iterate_dir_item(root, path, __find_xattr, &ctx);
+ if (ret < 0)
+ return ret;
+
+ if (ctx.found_idx == -1)
+ return -ENOENT;
+ if (data) {
+ *data = ctx.found_data;
+ *data_len = ctx.found_data_len;
+ } else {
+ kfree(ctx.found_data);
+ }
+ return ctx.found_idx;
+}
+
+
+static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
+ const char *name, int name_len,
+ const char *data, int data_len,
+ void *ctx)
+{
+ int ret;
+ struct send_ctx *sctx = ctx;
+ char *found_data = NULL;
+ int found_data_len = 0;
+
+ ret = find_xattr(sctx->parent_root, sctx->right_path,
+ sctx->cmp_key, name, name_len, &found_data,
+ &found_data_len);
+ if (ret == -ENOENT) {
+ ret = __process_new_xattr(num, di_key, name, name_len, data,
+ data_len, ctx);
+ } else if (ret >= 0) {
+ if (data_len != found_data_len ||
+ memcmp(data, found_data, data_len)) {
+ ret = __process_new_xattr(num, di_key, name, name_len,
+ data, data_len, ctx);
+ } else {
+ ret = 0;
+ }
+ }
+
+ kfree(found_data);
+ return ret;
+}
+
+static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
+ const char *name, int name_len,
+ const char *data, int data_len,
+ void *ctx)
+{
+ int ret;
+ struct send_ctx *sctx = ctx;
+
+ ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
+ name, name_len, NULL, NULL);
+ if (ret == -ENOENT)
+ ret = __process_deleted_xattr(num, di_key, name, name_len, data,
+ data_len, ctx);
+ else if (ret >= 0)
+ ret = 0;
+
+ return ret;
+}
+
+static int process_changed_xattr(struct send_ctx *sctx)
+{
+ int ret = 0;
+
+ ret = iterate_dir_item(sctx->send_root, sctx->left_path,
+ __process_changed_new_xattr, sctx);
+ if (ret < 0)
+ goto out;
+ ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
+ __process_changed_deleted_xattr, sctx);
+
+out:
+ return ret;
+}
+
+static int process_all_new_xattrs(struct send_ctx *sctx)
+{
+ int ret = 0;
+ int iter_ret = 0;
+ struct btrfs_root *root;
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+
+ path = alloc_path_for_send();
+ if (!path)
+ return -ENOMEM;
+
+ root = sctx->send_root;
+
+ key.objectid = sctx->cmp_key->objectid;
+ key.type = BTRFS_XATTR_ITEM_KEY;
+ key.offset = 0;
+ btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
+ if (found_key.objectid != key.objectid ||
+ found_key.type != key.type) {
+ ret = 0;
+ break;
+ }
+
+ ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
+ if (ret < 0)
+ break;
+ }
+ /* Catch error found during iteration */
+ if (iter_ret < 0)
+ ret = iter_ret;
+
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int send_verity(struct send_ctx *sctx, struct fs_path *path,
+ struct fsverity_descriptor *desc)
+{
+ int ret;
+
+ ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
+ if (ret < 0)
+ goto out;
+
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
+ TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
+ le8_to_cpu(desc->hash_algorithm));
+ TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
+ 1U << le8_to_cpu(desc->log_blocksize));
+ TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
+ le8_to_cpu(desc->salt_size));
+ TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
+ le32_to_cpu(desc->sig_size));
+
+ ret = send_cmd(sctx);
+
+tlv_put_failure:
+out:
+ return ret;
+}
+
+static int process_verity(struct send_ctx *sctx)
+{
+ int ret = 0;
+ struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
+ struct inode *inode;
+ struct fs_path *p;
+
+ inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root);
+ if (IS_ERR(inode))
+ return PTR_ERR(inode);
+
+ ret = btrfs_get_verity_descriptor(inode, NULL, 0);
+ if (ret < 0)
+ goto iput;
+
+ if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
+ ret = -EMSGSIZE;
+ goto iput;
+ }
+ if (!sctx->verity_descriptor) {
+ sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
+ GFP_KERNEL);
+ if (!sctx->verity_descriptor) {
+ ret = -ENOMEM;
+ goto iput;
+ }
+ }
+
+ ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
+ if (ret < 0)
+ goto iput;
+
+ p = fs_path_alloc();
+ if (!p) {
+ ret = -ENOMEM;
+ goto iput;
+ }
+ ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
+ if (ret < 0)
+ goto free_path;
+
+ ret = send_verity(sctx, p, sctx->verity_descriptor);
+ if (ret < 0)
+ goto free_path;
+
+free_path:
+ fs_path_free(p);
+iput:
+ iput(inode);
+ return ret;
+}
+
+static inline u64 max_send_read_size(const struct send_ctx *sctx)
+{
+ return sctx->send_max_size - SZ_16K;
+}
+
+static int put_data_header(struct send_ctx *sctx, u32 len)
+{
+ if (WARN_ON_ONCE(sctx->put_data))
+ return -EINVAL;
+ sctx->put_data = true;
+ if (sctx->proto >= 2) {
+ /*
+ * Since v2, the data attribute header doesn't include a length,
+ * it is implicitly to the end of the command.
+ */
+ if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
+ return -EOVERFLOW;
+ put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
+ sctx->send_size += sizeof(__le16);
+ } else {
+ struct btrfs_tlv_header *hdr;
+
+ if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
+ return -EOVERFLOW;
+ hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
+ put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
+ put_unaligned_le16(len, &hdr->tlv_len);
+ sctx->send_size += sizeof(*hdr);
+ }
+ return 0;
+}
+
+static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
+{
+ struct btrfs_root *root = sctx->send_root;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct page *page;
+ pgoff_t index = offset >> PAGE_SHIFT;
+ pgoff_t last_index;
+ unsigned pg_offset = offset_in_page(offset);
+ int ret;
+
+ ret = put_data_header(sctx, len);
+ if (ret)
+ return ret;
+
+ last_index = (offset + len - 1) >> PAGE_SHIFT;
+
+ while (index <= last_index) {
+ unsigned cur_len = min_t(unsigned, len,
+ PAGE_SIZE - pg_offset);
+
+ page = find_lock_page(sctx->cur_inode->i_mapping, index);
+ if (!page) {
+ page_cache_sync_readahead(sctx->cur_inode->i_mapping,
+ &sctx->ra, NULL, index,
+ last_index + 1 - index);
+
+ page = find_or_create_page(sctx->cur_inode->i_mapping,
+ index, GFP_KERNEL);
+ if (!page) {
+ ret = -ENOMEM;
+ break;
+ }
+ }
+
+ if (PageReadahead(page))
+ page_cache_async_readahead(sctx->cur_inode->i_mapping,
+ &sctx->ra, NULL, page_folio(page),
+ index, last_index + 1 - index);
+
+ if (!PageUptodate(page)) {
+ btrfs_read_folio(NULL, page_folio(page));
+ lock_page(page);
+ if (!PageUptodate(page)) {
+ unlock_page(page);
+ btrfs_err(fs_info,
+ "send: IO error at offset %llu for inode %llu root %llu",
+ page_offset(page), sctx->cur_ino,
+ sctx->send_root->root_key.objectid);
+ put_page(page);
+ ret = -EIO;
+ break;
+ }
+ }
+
+ memcpy_from_page(sctx->send_buf + sctx->send_size, page,
+ pg_offset, cur_len);
+ unlock_page(page);
+ put_page(page);
+ index++;
+ pg_offset = 0;
+ len -= cur_len;
+ sctx->send_size += cur_len;
+ }
+
+ return ret;
+}
+
+/*
+ * Read some bytes from the current inode/file and send a write command to
+ * user space.
+ */
+static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
+{
+ struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
+ int ret = 0;
+ struct fs_path *p;
+
+ p = fs_path_alloc();
+ if (!p)
+ return -ENOMEM;
+
+ btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
+
+ ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
+ if (ret < 0)
+ goto out;
+
+ ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
+ if (ret < 0)
+ goto out;
+
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
+ ret = put_file_data(sctx, offset, len);
+ if (ret < 0)
+ goto out;
+
+ ret = send_cmd(sctx);
+
+tlv_put_failure:
+out:
+ fs_path_free(p);
+ return ret;
+}
+
+/*
+ * Send a clone command to user space.
+ */
+static int send_clone(struct send_ctx *sctx,
+ u64 offset, u32 len,
+ struct clone_root *clone_root)
+{
+ int ret = 0;
+ struct fs_path *p;
+ u64 gen;
+
+ btrfs_debug(sctx->send_root->fs_info,
+ "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
+ offset, len, clone_root->root->root_key.objectid,
+ clone_root->ino, clone_root->offset);
+
+ p = fs_path_alloc();
+ if (!p)
+ return -ENOMEM;
+
+ ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
+ if (ret < 0)
+ goto out;
+
+ ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
+ if (ret < 0)
+ goto out;
+
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
+
+ if (clone_root->root == sctx->send_root) {
+ ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
+ if (ret < 0)
+ goto out;
+ ret = get_cur_path(sctx, clone_root->ino, gen, p);
+ } else {
+ ret = get_inode_path(clone_root->root, clone_root->ino, p);
+ }
+ if (ret < 0)
+ goto out;
+
+ /*
+ * If the parent we're using has a received_uuid set then use that as
+ * our clone source as that is what we will look for when doing a
+ * receive.
+ *
+ * This covers the case that we create a snapshot off of a received
+ * subvolume and then use that as the parent and try to receive on a
+ * different host.
+ */
+ if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
+ TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
+ clone_root->root->root_item.received_uuid);
+ else
+ TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
+ clone_root->root->root_item.uuid);
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
+ btrfs_root_ctransid(&clone_root->root->root_item));
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
+ clone_root->offset);
+
+ ret = send_cmd(sctx);
+
+tlv_put_failure:
+out:
+ fs_path_free(p);
+ return ret;
+}
+
+/*
+ * Send an update extent command to user space.
+ */
+static int send_update_extent(struct send_ctx *sctx,
+ u64 offset, u32 len)
+{
+ int ret = 0;
+ struct fs_path *p;
+
+ p = fs_path_alloc();
+ if (!p)
+ return -ENOMEM;
+
+ ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
+ if (ret < 0)
+ goto out;
+
+ ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
+ if (ret < 0)
+ goto out;
+
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
+
+ ret = send_cmd(sctx);
+
+tlv_put_failure:
+out:
+ fs_path_free(p);
+ return ret;
+}
+
+static int send_hole(struct send_ctx *sctx, u64 end)
+{
+ struct fs_path *p = NULL;
+ u64 read_size = max_send_read_size(sctx);
+ u64 offset = sctx->cur_inode_last_extent;
+ int ret = 0;
+
+ /*
+ * A hole that starts at EOF or beyond it. Since we do not yet support
+ * fallocate (for extent preallocation and hole punching), sending a
+ * write of zeroes starting at EOF or beyond would later require issuing
+ * a truncate operation which would undo the write and achieve nothing.
+ */
+ if (offset >= sctx->cur_inode_size)
+ return 0;
+
+ /*
+ * Don't go beyond the inode's i_size due to prealloc extents that start
+ * after the i_size.
+ */
+ end = min_t(u64, end, sctx->cur_inode_size);
+
+ if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
+ return send_update_extent(sctx, offset, end - offset);
+
+ p = fs_path_alloc();
+ if (!p)
+ return -ENOMEM;
+ ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
+ if (ret < 0)
+ goto tlv_put_failure;
+ while (offset < end) {
+ u64 len = min(end - offset, read_size);
+
+ ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
+ if (ret < 0)
+ break;
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
+ ret = put_data_header(sctx, len);
+ if (ret < 0)
+ break;
+ memset(sctx->send_buf + sctx->send_size, 0, len);
+ sctx->send_size += len;
+ ret = send_cmd(sctx);
+ if (ret < 0)
+ break;
+ offset += len;
+ }
+ sctx->cur_inode_next_write_offset = offset;
+tlv_put_failure:
+ fs_path_free(p);
+ return ret;
+}
+
+static int send_encoded_inline_extent(struct send_ctx *sctx,
+ struct btrfs_path *path, u64 offset,
+ u64 len)
+{
+ struct btrfs_root *root = sctx->send_root;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct inode *inode;
+ struct fs_path *fspath;
+ struct extent_buffer *leaf = path->nodes[0];
+ struct btrfs_key key;
+ struct btrfs_file_extent_item *ei;
+ u64 ram_bytes;
+ size_t inline_size;
+ int ret;
+
+ inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
+ if (IS_ERR(inode))
+ return PTR_ERR(inode);
+
+ fspath = fs_path_alloc();
+ if (!fspath) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
+ if (ret < 0)
+ goto out;
+
+ ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
+ if (ret < 0)
+ goto out;
+
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+ ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
+ ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
+ inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
+
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
+ min(key.offset + ram_bytes - offset, len));
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
+ ret = btrfs_encoded_io_compression_from_extent(fs_info,
+ btrfs_file_extent_compression(leaf, ei));
+ if (ret < 0)
+ goto out;
+ TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
+
+ ret = put_data_header(sctx, inline_size);
+ if (ret < 0)
+ goto out;
+ read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
+ btrfs_file_extent_inline_start(ei), inline_size);
+ sctx->send_size += inline_size;
+
+ ret = send_cmd(sctx);
+
+tlv_put_failure:
+out:
+ fs_path_free(fspath);
+ iput(inode);
+ return ret;
+}
+
+static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
+ u64 offset, u64 len)
+{
+ struct btrfs_root *root = sctx->send_root;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct inode *inode;
+ struct fs_path *fspath;
+ struct extent_buffer *leaf = path->nodes[0];
+ struct btrfs_key key;
+ struct btrfs_file_extent_item *ei;
+ u64 disk_bytenr, disk_num_bytes;
+ u32 data_offset;
+ struct btrfs_cmd_header *hdr;
+ u32 crc;
+ int ret;
+
+ inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
+ if (IS_ERR(inode))
+ return PTR_ERR(inode);
+
+ fspath = fs_path_alloc();
+ if (!fspath) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
+ if (ret < 0)
+ goto out;
+
+ ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
+ if (ret < 0)
+ goto out;
+
+ btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
+ ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
+ disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
+ disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
+
+ TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
+ min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
+ len));
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
+ btrfs_file_extent_ram_bytes(leaf, ei));
+ TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
+ offset - key.offset + btrfs_file_extent_offset(leaf, ei));
+ ret = btrfs_encoded_io_compression_from_extent(fs_info,
+ btrfs_file_extent_compression(leaf, ei));
+ if (ret < 0)
+ goto out;
+ TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
+ TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
+
+ ret = put_data_header(sctx, disk_num_bytes);
+ if (ret < 0)
+ goto out;
+
+ /*
+ * We want to do I/O directly into the send buffer, so get the next page
+ * boundary in the send buffer. This means that there may be a gap
+ * between the beginning of the command and the file data.
+ */
+ data_offset = ALIGN(sctx->send_size, PAGE_SIZE);
+ if (data_offset > sctx->send_max_size ||
+ sctx->send_max_size - data_offset < disk_num_bytes) {
+ ret = -EOVERFLOW;
+ goto out;
+ }
+
+ /*
+ * Note that send_buf is a mapping of send_buf_pages, so this is really
+ * reading into send_buf.
+ */
+ ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
+ disk_bytenr, disk_num_bytes,
+ sctx->send_buf_pages +
+ (data_offset >> PAGE_SHIFT));
+ if (ret)
+ goto out;
+
+ hdr = (struct btrfs_cmd_header *)sctx->send_buf;
+ hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
+ hdr->crc = 0;
+ crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size);
+ crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
+ hdr->crc = cpu_to_le32(crc);
+
+ ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
+ &sctx->send_off);
+ if (!ret) {
+ ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
+ disk_num_bytes, &sctx->send_off);
+ }
+ sctx->send_size = 0;
+ sctx->put_data = false;
+
+tlv_put_failure:
+out:
+ fs_path_free(fspath);
+ iput(inode);
+ return ret;
+}
+
+static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
+ const u64 offset, const u64 len)
+{
+ const u64 end = offset + len;
+ struct extent_buffer *leaf = path->nodes[0];
+ struct btrfs_file_extent_item *ei;
+ u64 read_size = max_send_read_size(sctx);
+ u64 sent = 0;
+
+ if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
+ return send_update_extent(sctx, offset, len);
+
+ ei = btrfs_item_ptr(leaf, path->slots[0],
+ struct btrfs_file_extent_item);
+ if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
+ btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
+ bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
+ BTRFS_FILE_EXTENT_INLINE);
+
+ /*
+ * Send the compressed extent unless the compressed data is
+ * larger than the decompressed data. This can happen if we're
+ * not sending the entire extent, either because it has been
+ * partially overwritten/truncated or because this is a part of
+ * the extent that we couldn't clone in clone_range().
+ */
+ if (is_inline &&
+ btrfs_file_extent_inline_item_len(leaf,
+ path->slots[0]) <= len) {
+ return send_encoded_inline_extent(sctx, path, offset,
+ len);
+ } else if (!is_inline &&
+ btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
+ return send_encoded_extent(sctx, path, offset, len);
+ }
+ }
+
+ if (sctx->cur_inode == NULL) {
+ struct btrfs_root *root = sctx->send_root;
+
+ sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root);
+ if (IS_ERR(sctx->cur_inode)) {
+ int err = PTR_ERR(sctx->cur_inode);
+
+ sctx->cur_inode = NULL;
+ return err;
+ }
+ memset(&sctx->ra, 0, sizeof(struct file_ra_state));
+ file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
+
+ /*
+ * It's very likely there are no pages from this inode in the page
+ * cache, so after reading extents and sending their data, we clean
+ * the page cache to avoid trashing the page cache (adding pressure
+ * to the page cache and forcing eviction of other data more useful
+ * for applications).
+ *
+ * We decide if we should clean the page cache simply by checking
+ * if the inode's mapping nrpages is 0 when we first open it, and
+ * not by using something like filemap_range_has_page() before
+ * reading an extent because when we ask the readahead code to
+ * read a given file range, it may (and almost always does) read
+ * pages from beyond that range (see the documentation for
+ * page_cache_sync_readahead()), so it would not be reliable,
+ * because after reading the first extent future calls to
+ * filemap_range_has_page() would return true because the readahead
+ * on the previous extent resulted in reading pages of the current
+ * extent as well.
+ */
+ sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
+ sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
+ }
+
+ while (sent < len) {
+ u64 size = min(len - sent, read_size);
+ int ret;
+
+ ret = send_write(sctx, offset + sent, size);
+ if (ret < 0)
+ return ret;
+ sent += size;
+ }
+
+ if (sctx->clean_page_cache && IS_ALIGNED(end, PAGE_SIZE)) {
+ /*
+ * Always operate only on ranges that are a multiple of the page
+ * size. This is not only to prevent zeroing parts of a page in
+ * the case of subpage sector size, but also to guarantee we evict
+ * pages, as passing a range that is smaller than page size does
+ * not evict the respective page (only zeroes part of its content).
+ *
+ * Always start from the end offset of the last range cleared.
+ * This is because the readahead code may (and very often does)
+ * reads pages beyond the range we request for readahead. So if
+ * we have an extent layout like this:
+ *
+ * [ extent A ] [ extent B ] [ extent C ]
+ *
+ * When we ask page_cache_sync_readahead() to read extent A, it
+ * may also trigger reads for pages of extent B. If we are doing
+ * an incremental send and extent B has not changed between the
+ * parent and send snapshots, some or all of its pages may end
+ * up being read and placed in the page cache. So when truncating
+ * the page cache we always start from the end offset of the
+ * previously processed extent up to the end of the current
+ * extent.
+ */
+ truncate_inode_pages_range(&sctx->cur_inode->i_data,
+ sctx->page_cache_clear_start,
+ end - 1);
+ sctx->page_cache_clear_start = end;
+ }
+
+ return 0;
+}
+
+/*
+ * Search for a capability xattr related to sctx->cur_ino. If the capability is
+ * found, call send_set_xattr function to emit it.
+ *
+ * Return 0 if there isn't a capability, or when the capability was emitted
+ * successfully, or < 0 if an error occurred.
+ */
+static int send_capabilities(struct send_ctx *sctx)
+{
+ struct fs_path *fspath = NULL;
+ struct btrfs_path *path;
+ struct btrfs_dir_item *di;
+ struct extent_buffer *leaf;
+ unsigned long data_ptr;
+ char *buf = NULL;
+ int buf_len;
+ int ret = 0;
+
+ path = alloc_path_for_send();
+ if (!path)
+ return -ENOMEM;
+
+ di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
+ XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
+ if (!di) {
+ /* There is no xattr for this inode */
+ goto out;
+ } else if (IS_ERR(di)) {
+ ret = PTR_ERR(di);
+ goto out;
+ }
+
+ leaf = path->nodes[0];
+ buf_len = btrfs_dir_data_len(leaf, di);
+
+ fspath = fs_path_alloc();
+ buf = kmalloc(buf_len, GFP_KERNEL);
+ if (!fspath || !buf) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
+ if (ret < 0)
+ goto out;
+
+ data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
+ read_extent_buffer(leaf, buf, data_ptr, buf_len);
+
+ ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
+ strlen(XATTR_NAME_CAPS), buf, buf_len);
+out:
+ kfree(buf);
+ fs_path_free(fspath);
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
+ struct clone_root *clone_root, const u64 disk_byte,
+ u64 data_offset, u64 offset, u64 len)
+{
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ int ret;
+ struct btrfs_inode_info info;
+ u64 clone_src_i_size = 0;
+
+ /*
+ * Prevent cloning from a zero offset with a length matching the sector
+ * size because in some scenarios this will make the receiver fail.
+ *
+ * For example, if in the source filesystem the extent at offset 0
+ * has a length of sectorsize and it was written using direct IO, then
+ * it can never be an inline extent (even if compression is enabled).
+ * Then this extent can be cloned in the original filesystem to a non
+ * zero file offset, but it may not be possible to clone in the
+ * destination filesystem because it can be inlined due to compression
+ * on the destination filesystem (as the receiver's write operations are
+ * always done using buffered IO). The same happens when the original
+ * filesystem does not have compression enabled but the destination
+ * filesystem has.
+ */
+ if (clone_root->offset == 0 &&
+ len == sctx->send_root->fs_info->sectorsize)
+ return send_extent_data(sctx, dst_path, offset, len);
+
+ path = alloc_path_for_send();
+ if (!path)
+ return -ENOMEM;
+
+ /*
+ * There are inodes that have extents that lie behind its i_size. Don't
+ * accept clones from these extents.
+ */
+ ret = get_inode_info(clone_root->root, clone_root->ino, &info);
+ btrfs_release_path(path);
+ if (ret < 0)
+ goto out;
+ clone_src_i_size = info.size;
+
+ /*
+ * We can't send a clone operation for the entire range if we find
+ * extent items in the respective range in the source file that
+ * refer to different extents or if we find holes.
+ * So check for that and do a mix of clone and regular write/copy
+ * operations if needed.
+ *
+ * Example:
+ *
+ * mkfs.btrfs -f /dev/sda
+ * mount /dev/sda /mnt
+ * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
+ * cp --reflink=always /mnt/foo /mnt/bar
+ * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
+ * btrfs subvolume snapshot -r /mnt /mnt/snap
+ *
+ * If when we send the snapshot and we are processing file bar (which
+ * has a higher inode number than foo) we blindly send a clone operation
+ * for the [0, 100K[ range from foo to bar, the receiver ends up getting
+ * a file bar that matches the content of file foo - iow, doesn't match
+ * the content from bar in the original filesystem.
+ */
+ key.objectid = clone_root->ino;
+ key.type = BTRFS_EXTENT_DATA_KEY;
+ key.offset = clone_root->offset;
+ ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
+ if (ret < 0)
+ goto out;
+ if (ret > 0 && path->slots[0] > 0) {
+ btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
+ if (key.objectid == clone_root->ino &&
+ key.type == BTRFS_EXTENT_DATA_KEY)
+ path->slots[0]--;
+ }
+
+ while (true) {
+ struct extent_buffer *leaf = path->nodes[0];
+ int slot = path->slots[0];
+ struct btrfs_file_extent_item *ei;
+ u8 type;
+ u64 ext_len;
+ u64 clone_len;
+ u64 clone_data_offset;
+ bool crossed_src_i_size = false;
+
+ if (slot >= btrfs_header_nritems(leaf)) {
+ ret = btrfs_next_leaf(clone_root->root, path);
+ if (ret < 0)
+ goto out;
+ else if (ret > 0)
+ break;
+ continue;
+ }
+
+ btrfs_item_key_to_cpu(leaf, &key, slot);
+
+ /*
+ * We might have an implicit trailing hole (NO_HOLES feature
+ * enabled). We deal with it after leaving this loop.
+ */
+ if (key.objectid != clone_root->ino ||
+ key.type != BTRFS_EXTENT_DATA_KEY)
+ break;
+
+ ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
+ type = btrfs_file_extent_type(leaf, ei);
+ if (type == BTRFS_FILE_EXTENT_INLINE) {
+ ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
+ ext_len = PAGE_ALIGN(ext_len);
+ } else {
+ ext_len = btrfs_file_extent_num_bytes(leaf, ei);
+ }
+
+ if (key.offset + ext_len <= clone_root->offset)
+ goto next;
+
+ if (key.offset > clone_root->offset) {
+ /* Implicit hole, NO_HOLES feature enabled. */
+ u64 hole_len = key.offset - clone_root->offset;
+
+ if (hole_len > len)
+ hole_len = len;
+ ret = send_extent_data(sctx, dst_path, offset,
+ hole_len);
+ if (ret < 0)
+ goto out;
+
+ len -= hole_len;
+ if (len == 0)
+ break;
+ offset += hole_len;
+ clone_root->offset += hole_len;
+ data_offset += hole_len;
+ }
+
+ if (key.offset >= clone_root->offset + len)
+ break;
+
+ if (key.offset >= clone_src_i_size)
+ break;
+
+ if (key.offset + ext_len > clone_src_i_size) {
+ ext_len = clone_src_i_size - key.offset;
+ crossed_src_i_size = true;
+ }
+
+ clone_data_offset = btrfs_file_extent_offset(leaf, ei);
+ if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
+ clone_root->offset = key.offset;
+ if (clone_data_offset < data_offset &&
+ clone_data_offset + ext_len > data_offset) {
+ u64 extent_offset;
+
+ extent_offset = data_offset - clone_data_offset;
+ ext_len -= extent_offset;
+ clone_data_offset += extent_offset;
+ clone_root->offset += extent_offset;
+ }
+ }
+
+ clone_len = min_t(u64, ext_len, len);
+
+ if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
+ clone_data_offset == data_offset) {
+ const u64 src_end = clone_root->offset + clone_len;
+ const u64 sectorsize = SZ_64K;
+
+ /*
+ * We can't clone the last block, when its size is not
+ * sector size aligned, into the middle of a file. If we
+ * do so, the receiver will get a failure (-EINVAL) when
+ * trying to clone or will silently corrupt the data in
+ * the destination file if it's on a kernel without the
+ * fix introduced by commit ac765f83f1397646
+ * ("Btrfs: fix data corruption due to cloning of eof
+ * block).
+ *
+ * So issue a clone of the aligned down range plus a
+ * regular write for the eof block, if we hit that case.
+ *
+ * Also, we use the maximum possible sector size, 64K,
+ * because we don't know what's the sector size of the
+ * filesystem that receives the stream, so we have to
+ * assume the largest possible sector size.
+ */
+ if (src_end == clone_src_i_size &&
+ !IS_ALIGNED(src_end, sectorsize) &&
+ offset + clone_len < sctx->cur_inode_size) {
+ u64 slen;
+
+ slen = ALIGN_DOWN(src_end - clone_root->offset,
+ sectorsize);
+ if (slen > 0) {
+ ret = send_clone(sctx, offset, slen,
+ clone_root);
+ if (ret < 0)
+ goto out;
+ }
+ ret = send_extent_data(sctx, dst_path,
+ offset + slen,
+ clone_len - slen);
+ } else {
+ ret = send_clone(sctx, offset, clone_len,
+ clone_root);
+ }
+ } else if (crossed_src_i_size && clone_len < len) {
+ /*
+ * If we are at i_size of the clone source inode and we
+ * can not clone from it, terminate the loop. This is
+ * to avoid sending two write operations, one with a
+ * length matching clone_len and the final one after
+ * this loop with a length of len - clone_len.
+ *
+ * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
+ * was passed to the send ioctl), this helps avoid
+ * sending an encoded write for an offset that is not
+ * sector size aligned, in case the i_size of the source
+ * inode is not sector size aligned. That will make the
+ * receiver fallback to decompression of the data and
+ * writing it using regular buffered IO, therefore while
+ * not incorrect, it's not optimal due decompression and
+ * possible re-compression at the receiver.
+ */
+ break;
+ } else {
+ ret = send_extent_data(sctx, dst_path, offset,
+ clone_len);
+ }
+
+ if (ret < 0)
+ goto out;
+
+ len -= clone_len;
+ if (len == 0)
+ break;
+ offset += clone_len;
+ clone_root->offset += clone_len;
+
+ /*
+ * If we are cloning from the file we are currently processing,
+ * and using the send root as the clone root, we must stop once
+ * the current clone offset reaches the current eof of the file
+ * at the receiver, otherwise we would issue an invalid clone
+ * operation (source range going beyond eof) and cause the
+ * receiver to fail. So if we reach the current eof, bail out
+ * and fallback to a regular write.
+ */
+ if (clone_root->root == sctx->send_root &&
+ clone_root->ino == sctx->cur_ino &&
+ clone_root->offset >= sctx->cur_inode_next_write_offset)
+ break;
+
+ data_offset += clone_len;
+next:
+ path->slots[0]++;
+ }
+
+ if (len > 0)
+ ret = send_extent_data(sctx, dst_path, offset, len);
+ else
+ ret = 0;
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int send_write_or_clone(struct send_ctx *sctx,
+ struct btrfs_path *path,
+ struct btrfs_key *key,
+ struct clone_root *clone_root)
+{
+ int ret = 0;
+ u64 offset = key->offset;
+ u64 end;
+ u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
+
+ end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
+ if (offset >= end)
+ return 0;
+
+ if (clone_root && IS_ALIGNED(end, bs)) {
+ struct btrfs_file_extent_item *ei;
+ u64 disk_byte;
+ u64 data_offset;
+
+ ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_file_extent_item);
+ disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
+ data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
+ ret = clone_range(sctx, path, clone_root, disk_byte,
+ data_offset, offset, end - offset);
+ } else {
+ ret = send_extent_data(sctx, path, offset, end - offset);
+ }
+ sctx->cur_inode_next_write_offset = end;
+ return ret;
+}
+
+static int is_extent_unchanged(struct send_ctx *sctx,
+ struct btrfs_path *left_path,
+ struct btrfs_key *ekey)
+{
+ int ret = 0;
+ struct btrfs_key key;
+ struct btrfs_path *path = NULL;
+ struct extent_buffer *eb;
+ int slot;
+ struct btrfs_key found_key;
+ struct btrfs_file_extent_item *ei;
+ u64 left_disknr;
+ u64 right_disknr;
+ u64 left_offset;
+ u64 right_offset;
+ u64 left_offset_fixed;
+ u64 left_len;
+ u64 right_len;
+ u64 left_gen;
+ u64 right_gen;
+ u8 left_type;
+ u8 right_type;
+
+ path = alloc_path_for_send();
+ if (!path)
+ return -ENOMEM;
+
+ eb = left_path->nodes[0];
+ slot = left_path->slots[0];
+ ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
+ left_type = btrfs_file_extent_type(eb, ei);
+
+ if (left_type != BTRFS_FILE_EXTENT_REG) {
+ ret = 0;
+ goto out;
+ }
+ left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
+ left_len = btrfs_file_extent_num_bytes(eb, ei);
+ left_offset = btrfs_file_extent_offset(eb, ei);
+ left_gen = btrfs_file_extent_generation(eb, ei);
+
+ /*
+ * Following comments will refer to these graphics. L is the left
+ * extents which we are checking at the moment. 1-8 are the right
+ * extents that we iterate.
+ *
+ * |-----L-----|
+ * |-1-|-2a-|-3-|-4-|-5-|-6-|
+ *
+ * |-----L-----|
+ * |--1--|-2b-|...(same as above)
+ *
+ * Alternative situation. Happens on files where extents got split.
+ * |-----L-----|
+ * |-----------7-----------|-6-|
+ *
+ * Alternative situation. Happens on files which got larger.
+ * |-----L-----|
+ * |-8-|
+ * Nothing follows after 8.
+ */
+
+ key.objectid = ekey->objectid;
+ key.type = BTRFS_EXTENT_DATA_KEY;
+ key.offset = ekey->offset;
+ ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
+ if (ret < 0)
+ goto out;
+ if (ret) {
+ ret = 0;
+ goto out;
+ }
+
+ /*
+ * Handle special case where the right side has no extents at all.
+ */
+ eb = path->nodes[0];
+ slot = path->slots[0];
+ btrfs_item_key_to_cpu(eb, &found_key, slot);
+ if (found_key.objectid != key.objectid ||
+ found_key.type != key.type) {
+ /* If we're a hole then just pretend nothing changed */
+ ret = (left_disknr) ? 0 : 1;
+ goto out;
+ }
+
+ /*
+ * We're now on 2a, 2b or 7.
+ */
+ key = found_key;
+ while (key.offset < ekey->offset + left_len) {
+ ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
+ right_type = btrfs_file_extent_type(eb, ei);
+ if (right_type != BTRFS_FILE_EXTENT_REG &&
+ right_type != BTRFS_FILE_EXTENT_INLINE) {
+ ret = 0;
+ goto out;
+ }
+
+ if (right_type == BTRFS_FILE_EXTENT_INLINE) {
+ right_len = btrfs_file_extent_ram_bytes(eb, ei);
+ right_len = PAGE_ALIGN(right_len);
+ } else {
+ right_len = btrfs_file_extent_num_bytes(eb, ei);
+ }
+
+ /*
+ * Are we at extent 8? If yes, we know the extent is changed.
+ * This may only happen on the first iteration.
+ */
+ if (found_key.offset + right_len <= ekey->offset) {
+ /* If we're a hole just pretend nothing changed */
+ ret = (left_disknr) ? 0 : 1;
+ goto out;
+ }
+
+ /*
+ * We just wanted to see if when we have an inline extent, what
+ * follows it is a regular extent (wanted to check the above
+ * condition for inline extents too). This should normally not
+ * happen but it's possible for example when we have an inline
+ * compressed extent representing data with a size matching
+ * the page size (currently the same as sector size).
+ */
+ if (right_type == BTRFS_FILE_EXTENT_INLINE) {
+ ret = 0;
+ goto out;
+ }
+
+ right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
+ right_offset = btrfs_file_extent_offset(eb, ei);
+ right_gen = btrfs_file_extent_generation(eb, ei);
+
+ left_offset_fixed = left_offset;
+ if (key.offset < ekey->offset) {
+ /* Fix the right offset for 2a and 7. */
+ right_offset += ekey->offset - key.offset;
+ } else {
+ /* Fix the left offset for all behind 2a and 2b */
+ left_offset_fixed += key.offset - ekey->offset;
+ }
+
+ /*
+ * Check if we have the same extent.
+ */
+ if (left_disknr != right_disknr ||
+ left_offset_fixed != right_offset ||
+ left_gen != right_gen) {
+ ret = 0;
+ goto out;
+ }
+
+ /*
+ * Go to the next extent.
+ */
+ ret = btrfs_next_item(sctx->parent_root, path);
+ if (ret < 0)
+ goto out;
+ if (!ret) {
+ eb = path->nodes[0];
+ slot = path->slots[0];
+ btrfs_item_key_to_cpu(eb, &found_key, slot);
+ }
+ if (ret || found_key.objectid != key.objectid ||
+ found_key.type != key.type) {
+ key.offset += right_len;
+ break;
+ }
+ if (found_key.offset != key.offset + right_len) {
+ ret = 0;
+ goto out;
+ }
+ key = found_key;
+ }
+
+ /*
+ * We're now behind the left extent (treat as unchanged) or at the end
+ * of the right side (treat as changed).
+ */
+ if (key.offset >= ekey->offset + left_len)
+ ret = 1;
+ else
+ ret = 0;
+
+
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int get_last_extent(struct send_ctx *sctx, u64 offset)
+{
+ struct btrfs_path *path;
+ struct btrfs_root *root = sctx->send_root;
+ struct btrfs_key key;
+ int ret;
+
+ path = alloc_path_for_send();
+ if (!path)
+ return -ENOMEM;
+
+ sctx->cur_inode_last_extent = 0;
+
+ key.objectid = sctx->cur_ino;
+ key.type = BTRFS_EXTENT_DATA_KEY;
+ key.offset = offset;
+ ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
+ if (ret < 0)
+ goto out;
+ ret = 0;
+ btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
+ if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
+ goto out;
+
+ sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int range_is_hole_in_parent(struct send_ctx *sctx,
+ const u64 start,
+ const u64 end)
+{
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ struct btrfs_root *root = sctx->parent_root;
+ u64 search_start = start;
+ int ret;
+
+ path = alloc_path_for_send();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = sctx->cur_ino;
+ key.type = BTRFS_EXTENT_DATA_KEY;
+ key.offset = search_start;
+ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
+ if (ret < 0)
+ goto out;
+ if (ret > 0 && path->slots[0] > 0)
+ path->slots[0]--;
+
+ while (search_start < end) {
+ struct extent_buffer *leaf = path->nodes[0];
+ int slot = path->slots[0];
+ struct btrfs_file_extent_item *fi;
+ u64 extent_end;
+
+ if (slot >= btrfs_header_nritems(leaf)) {
+ ret = btrfs_next_leaf(root, path);
+ if (ret < 0)
+ goto out;
+ else if (ret > 0)
+ break;
+ continue;
+ }
+
+ btrfs_item_key_to_cpu(leaf, &key, slot);
+ if (key.objectid < sctx->cur_ino ||
+ key.type < BTRFS_EXTENT_DATA_KEY)
+ goto next;
+ if (key.objectid > sctx->cur_ino ||
+ key.type > BTRFS_EXTENT_DATA_KEY ||
+ key.offset >= end)
+ break;
+
+ fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
+ extent_end = btrfs_file_extent_end(path);
+ if (extent_end <= start)
+ goto next;
+ if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
+ search_start = extent_end;
+ goto next;
+ }
+ ret = 0;
+ goto out;
+next:
+ path->slots[0]++;
+ }
+ ret = 1;
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
+ struct btrfs_key *key)
+{
+ int ret = 0;
+
+ if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
+ return 0;
+
+ if (sctx->cur_inode_last_extent == (u64)-1) {
+ ret = get_last_extent(sctx, key->offset - 1);
+ if (ret)
+ return ret;
+ }
+
+ if (path->slots[0] == 0 &&
+ sctx->cur_inode_last_extent < key->offset) {
+ /*
+ * We might have skipped entire leafs that contained only
+ * file extent items for our current inode. These leafs have
+ * a generation number smaller (older) than the one in the
+ * current leaf and the leaf our last extent came from, and
+ * are located between these 2 leafs.
+ */
+ ret = get_last_extent(sctx, key->offset - 1);
+ if (ret)
+ return ret;
+ }
+
+ if (sctx->cur_inode_last_extent < key->offset) {
+ ret = range_is_hole_in_parent(sctx,
+ sctx->cur_inode_last_extent,
+ key->offset);
+ if (ret < 0)
+ return ret;
+ else if (ret == 0)
+ ret = send_hole(sctx, key->offset);
+ else
+ ret = 0;
+ }
+ sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
+ return ret;
+}
+
+static int process_extent(struct send_ctx *sctx,
+ struct btrfs_path *path,
+ struct btrfs_key *key)
+{
+ struct clone_root *found_clone = NULL;
+ int ret = 0;
+
+ if (S_ISLNK(sctx->cur_inode_mode))
+ return 0;
+
+ if (sctx->parent_root && !sctx->cur_inode_new) {
+ ret = is_extent_unchanged(sctx, path, key);
+ if (ret < 0)
+ goto out;
+ if (ret) {
+ ret = 0;
+ goto out_hole;
+ }
+ } else {
+ struct btrfs_file_extent_item *ei;
+ u8 type;
+
+ ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
+ struct btrfs_file_extent_item);
+ type = btrfs_file_extent_type(path->nodes[0], ei);
+ if (type == BTRFS_FILE_EXTENT_PREALLOC ||
+ type == BTRFS_FILE_EXTENT_REG) {
+ /*
+ * The send spec does not have a prealloc command yet,
+ * so just leave a hole for prealloc'ed extents until
+ * we have enough commands queued up to justify rev'ing
+ * the send spec.
+ */
+ if (type == BTRFS_FILE_EXTENT_PREALLOC) {
+ ret = 0;
+ goto out;
+ }
+
+ /* Have a hole, just skip it. */
+ if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
+ ret = 0;
+ goto out;
+ }
+ }
+ }
+
+ ret = find_extent_clone(sctx, path, key->objectid, key->offset,
+ sctx->cur_inode_size, &found_clone);
+ if (ret != -ENOENT && ret < 0)
+ goto out;
+
+ ret = send_write_or_clone(sctx, path, key, found_clone);
+ if (ret)
+ goto out;
+out_hole:
+ ret = maybe_send_hole(sctx, path, key);
+out:
+ return ret;
+}
+
+static int process_all_extents(struct send_ctx *sctx)
+{
+ int ret = 0;
+ int iter_ret = 0;
+ struct btrfs_root *root;
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ struct btrfs_key found_key;
+
+ root = sctx->send_root;
+ path = alloc_path_for_send();
+ if (!path)
+ return -ENOMEM;
+
+ key.objectid = sctx->cmp_key->objectid;
+ key.type = BTRFS_EXTENT_DATA_KEY;
+ key.offset = 0;
+ btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
+ if (found_key.objectid != key.objectid ||
+ found_key.type != key.type) {
+ ret = 0;
+ break;
+ }
+
+ ret = process_extent(sctx, path, &found_key);
+ if (ret < 0)
+ break;
+ }
+ /* Catch error found during iteration */
+ if (iter_ret < 0)
+ ret = iter_ret;
+
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
+ int *pending_move,
+ int *refs_processed)
+{
+ int ret = 0;
+
+ if (sctx->cur_ino == 0)
+ goto out;
+ if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
+ sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
+ goto out;
+ if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
+ goto out;
+
+ ret = process_recorded_refs(sctx, pending_move);
+ if (ret < 0)
+ goto out;
+
+ *refs_processed = 1;
+out:
+ return ret;
+}
+
+static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
+{
+ int ret = 0;
+ struct btrfs_inode_info info;
+ u64 left_mode;
+ u64 left_uid;
+ u64 left_gid;
+ u64 left_fileattr;
+ u64 right_mode;
+ u64 right_uid;
+ u64 right_gid;
+ u64 right_fileattr;
+ int need_chmod = 0;
+ int need_chown = 0;
+ bool need_fileattr = false;
+ int need_truncate = 1;
+ int pending_move = 0;
+ int refs_processed = 0;
+
+ if (sctx->ignore_cur_inode)
+ return 0;
+
+ ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
+ &refs_processed);
+ if (ret < 0)
+ goto out;
+
+ /*
+ * We have processed the refs and thus need to advance send_progress.
+ * Now, calls to get_cur_xxx will take the updated refs of the current
+ * inode into account.
+ *
+ * On the other hand, if our current inode is a directory and couldn't
+ * be moved/renamed because its parent was renamed/moved too and it has
+ * a higher inode number, we can only move/rename our current inode
+ * after we moved/renamed its parent. Therefore in this case operate on
+ * the old path (pre move/rename) of our current inode, and the
+ * move/rename will be performed later.
+ */
+ if (refs_processed && !pending_move)
+ sctx->send_progress = sctx->cur_ino + 1;
+
+ if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
+ goto out;
+ if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
+ goto out;
+ ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
+ if (ret < 0)
+ goto out;
+ left_mode = info.mode;
+ left_uid = info.uid;
+ left_gid = info.gid;
+ left_fileattr = info.fileattr;
+
+ if (!sctx->parent_root || sctx->cur_inode_new) {
+ need_chown = 1;
+ if (!S_ISLNK(sctx->cur_inode_mode))
+ need_chmod = 1;
+ if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
+ need_truncate = 0;
+ } else {
+ u64 old_size;
+
+ ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
+ if (ret < 0)
+ goto out;
+ old_size = info.size;
+ right_mode = info.mode;
+ right_uid = info.uid;
+ right_gid = info.gid;
+ right_fileattr = info.fileattr;
+
+ if (left_uid != right_uid || left_gid != right_gid)
+ need_chown = 1;
+ if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
+ need_chmod = 1;
+ if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
+ need_fileattr = true;
+ if ((old_size == sctx->cur_inode_size) ||
+ (sctx->cur_inode_size > old_size &&
+ sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
+ need_truncate = 0;
+ }
+
+ if (S_ISREG(sctx->cur_inode_mode)) {
+ if (need_send_hole(sctx)) {
+ if (sctx->cur_inode_last_extent == (u64)-1 ||
+ sctx->cur_inode_last_extent <
+ sctx->cur_inode_size) {
+ ret = get_last_extent(sctx, (u64)-1);
+ if (ret)
+ goto out;
+ }
+ if (sctx->cur_inode_last_extent <
+ sctx->cur_inode_size) {
+ ret = send_hole(sctx, sctx->cur_inode_size);
+ if (ret)
+ goto out;
+ }
+ }
+ if (need_truncate) {
+ ret = send_truncate(sctx, sctx->cur_ino,
+ sctx->cur_inode_gen,
+ sctx->cur_inode_size);
+ if (ret < 0)
+ goto out;
+ }
+ }
+
+ if (need_chown) {
+ ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
+ left_uid, left_gid);
+ if (ret < 0)
+ goto out;
+ }
+ if (need_chmod) {
+ ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
+ left_mode);
+ if (ret < 0)
+ goto out;
+ }
+ if (need_fileattr) {
+ ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
+ left_fileattr);
+ if (ret < 0)
+ goto out;
+ }
+
+ if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
+ && sctx->cur_inode_needs_verity) {
+ ret = process_verity(sctx);
+ if (ret < 0)
+ goto out;
+ }
+
+ ret = send_capabilities(sctx);
+ if (ret < 0)
+ goto out;
+
+ /*
+ * If other directory inodes depended on our current directory
+ * inode's move/rename, now do their move/rename operations.
+ */
+ if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
+ ret = apply_children_dir_moves(sctx);
+ if (ret)
+ goto out;
+ /*
+ * Need to send that every time, no matter if it actually
+ * changed between the two trees as we have done changes to
+ * the inode before. If our inode is a directory and it's
+ * waiting to be moved/renamed, we will send its utimes when
+ * it's moved/renamed, therefore we don't need to do it here.
+ */
+ sctx->send_progress = sctx->cur_ino + 1;
+ ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
+ if (ret < 0)
+ goto out;
+ }
+
+out:
+ return ret;
+}
+
+static void close_current_inode(struct send_ctx *sctx)
+{
+ u64 i_size;
+
+ if (sctx->cur_inode == NULL)
+ return;
+
+ i_size = i_size_read(sctx->cur_inode);
+
+ /*
+ * If we are doing an incremental send, we may have extents between the
+ * last processed extent and the i_size that have not been processed
+ * because they haven't changed but we may have read some of their pages
+ * through readahead, see the comments at send_extent_data().
+ */
+ if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
+ truncate_inode_pages_range(&sctx->cur_inode->i_data,
+ sctx->page_cache_clear_start,
+ round_up(i_size, PAGE_SIZE) - 1);
+
+ iput(sctx->cur_inode);
+ sctx->cur_inode = NULL;
+}
+
+static int changed_inode(struct send_ctx *sctx,
+ enum btrfs_compare_tree_result result)
+{
+ int ret = 0;
+ struct btrfs_key *key = sctx->cmp_key;
+ struct btrfs_inode_item *left_ii = NULL;
+ struct btrfs_inode_item *right_ii = NULL;
+ u64 left_gen = 0;
+ u64 right_gen = 0;
+
+ close_current_inode(sctx);
+
+ sctx->cur_ino = key->objectid;
+ sctx->cur_inode_new_gen = false;
+ sctx->cur_inode_last_extent = (u64)-1;
+ sctx->cur_inode_next_write_offset = 0;
+ sctx->ignore_cur_inode = false;
+
+ /*
+ * Set send_progress to current inode. This will tell all get_cur_xxx
+ * functions that the current inode's refs are not updated yet. Later,
+ * when process_recorded_refs is finished, it is set to cur_ino + 1.
+ */
+ sctx->send_progress = sctx->cur_ino;
+
+ if (result == BTRFS_COMPARE_TREE_NEW ||
+ result == BTRFS_COMPARE_TREE_CHANGED) {
+ left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
+ sctx->left_path->slots[0],
+ struct btrfs_inode_item);
+ left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
+ left_ii);
+ } else {
+ right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
+ sctx->right_path->slots[0],
+ struct btrfs_inode_item);
+ right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
+ right_ii);
+ }
+ if (result == BTRFS_COMPARE_TREE_CHANGED) {
+ right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
+ sctx->right_path->slots[0],
+ struct btrfs_inode_item);
+
+ right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
+ right_ii);
+
+ /*
+ * The cur_ino = root dir case is special here. We can't treat
+ * the inode as deleted+reused because it would generate a
+ * stream that tries to delete/mkdir the root dir.
+ */
+ if (left_gen != right_gen &&
+ sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
+ sctx->cur_inode_new_gen = true;
+ }
+
+ /*
+ * Normally we do not find inodes with a link count of zero (orphans)
+ * because the most common case is to create a snapshot and use it
+ * for a send operation. However other less common use cases involve
+ * using a subvolume and send it after turning it to RO mode just
+ * after deleting all hard links of a file while holding an open
+ * file descriptor against it or turning a RO snapshot into RW mode,
+ * keep an open file descriptor against a file, delete it and then
+ * turn the snapshot back to RO mode before using it for a send
+ * operation. The former is what the receiver operation does.
+ * Therefore, if we want to send these snapshots soon after they're
+ * received, we need to handle orphan inodes as well. Moreover, orphans
+ * can appear not only in the send snapshot but also in the parent
+ * snapshot. Here are several cases:
+ *
+ * Case 1: BTRFS_COMPARE_TREE_NEW
+ * | send snapshot | action
+ * --------------------------------
+ * nlink | 0 | ignore
+ *
+ * Case 2: BTRFS_COMPARE_TREE_DELETED
+ * | parent snapshot | action
+ * ----------------------------------
+ * nlink | 0 | as usual
+ * Note: No unlinks will be sent because there're no paths for it.
+ *
+ * Case 3: BTRFS_COMPARE_TREE_CHANGED
+ * | | parent snapshot | send snapshot | action
+ * -----------------------------------------------------------------------
+ * subcase 1 | nlink | 0 | 0 | ignore
+ * subcase 2 | nlink | >0 | 0 | new_gen(deletion)
+ * subcase 3 | nlink | 0 | >0 | new_gen(creation)
+ *
+ */
+ if (result == BTRFS_COMPARE_TREE_NEW) {
+ if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
+ sctx->ignore_cur_inode = true;
+ goto out;
+ }
+ sctx->cur_inode_gen = left_gen;
+ sctx->cur_inode_new = true;
+ sctx->cur_inode_deleted = false;
+ sctx->cur_inode_size = btrfs_inode_size(
+ sctx->left_path->nodes[0], left_ii);
+ sctx->cur_inode_mode = btrfs_inode_mode(
+ sctx->left_path->nodes[0], left_ii);
+ sctx->cur_inode_rdev = btrfs_inode_rdev(
+ sctx->left_path->nodes[0], left_ii);
+ if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
+ ret = send_create_inode_if_needed(sctx);
+ } else if (result == BTRFS_COMPARE_TREE_DELETED) {
+ sctx->cur_inode_gen = right_gen;
+ sctx->cur_inode_new = false;
+ sctx->cur_inode_deleted = true;
+ sctx->cur_inode_size = btrfs_inode_size(
+ sctx->right_path->nodes[0], right_ii);
+ sctx->cur_inode_mode = btrfs_inode_mode(
+ sctx->right_path->nodes[0], right_ii);
+ } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
+ u32 new_nlinks, old_nlinks;
+
+ new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
+ old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
+ if (new_nlinks == 0 && old_nlinks == 0) {
+ sctx->ignore_cur_inode = true;
+ goto out;
+ } else if (new_nlinks == 0 || old_nlinks == 0) {
+ sctx->cur_inode_new_gen = 1;
+ }
+ /*
+ * We need to do some special handling in case the inode was
+ * reported as changed with a changed generation number. This
+ * means that the original inode was deleted and new inode
+ * reused the same inum. So we have to treat the old inode as
+ * deleted and the new one as new.
+ */
+ if (sctx->cur_inode_new_gen) {
+ /*
+ * First, process the inode as if it was deleted.
+ */
+ if (old_nlinks > 0) {
+ sctx->cur_inode_gen = right_gen;
+ sctx->cur_inode_new = false;
+ sctx->cur_inode_deleted = true;
+ sctx->cur_inode_size = btrfs_inode_size(
+ sctx->right_path->nodes[0], right_ii);
+ sctx->cur_inode_mode = btrfs_inode_mode(
+ sctx->right_path->nodes[0], right_ii);
+ ret = process_all_refs(sctx,
+ BTRFS_COMPARE_TREE_DELETED);
+ if (ret < 0)
+ goto out;
+ }
+
+ /*
+ * Now process the inode as if it was new.
+ */
+ if (new_nlinks > 0) {
+ sctx->cur_inode_gen = left_gen;
+ sctx->cur_inode_new = true;
+ sctx->cur_inode_deleted = false;
+ sctx->cur_inode_size = btrfs_inode_size(
+ sctx->left_path->nodes[0],
+ left_ii);
+ sctx->cur_inode_mode = btrfs_inode_mode(
+ sctx->left_path->nodes[0],
+ left_ii);
+ sctx->cur_inode_rdev = btrfs_inode_rdev(
+ sctx->left_path->nodes[0],
+ left_ii);
+ ret = send_create_inode_if_needed(sctx);
+ if (ret < 0)
+ goto out;
+
+ ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
+ if (ret < 0)
+ goto out;
+ /*
+ * Advance send_progress now as we did not get
+ * into process_recorded_refs_if_needed in the
+ * new_gen case.
+ */
+ sctx->send_progress = sctx->cur_ino + 1;
+
+ /*
+ * Now process all extents and xattrs of the
+ * inode as if they were all new.
+ */
+ ret = process_all_extents(sctx);
+ if (ret < 0)
+ goto out;
+ ret = process_all_new_xattrs(sctx);
+ if (ret < 0)
+ goto out;
+ }
+ } else {
+ sctx->cur_inode_gen = left_gen;
+ sctx->cur_inode_new = false;
+ sctx->cur_inode_new_gen = false;
+ sctx->cur_inode_deleted = false;
+ sctx->cur_inode_size = btrfs_inode_size(
+ sctx->left_path->nodes[0], left_ii);
+ sctx->cur_inode_mode = btrfs_inode_mode(
+ sctx->left_path->nodes[0], left_ii);
+ }
+ }
+
+out:
+ return ret;
+}
+
+/*
+ * We have to process new refs before deleted refs, but compare_trees gives us
+ * the new and deleted refs mixed. To fix this, we record the new/deleted refs
+ * first and later process them in process_recorded_refs.
+ * For the cur_inode_new_gen case, we skip recording completely because
+ * changed_inode did already initiate processing of refs. The reason for this is
+ * that in this case, compare_tree actually compares the refs of 2 different
+ * inodes. To fix this, process_all_refs is used in changed_inode to handle all
+ * refs of the right tree as deleted and all refs of the left tree as new.
+ */
+static int changed_ref(struct send_ctx *sctx,
+ enum btrfs_compare_tree_result result)
+{
+ int ret = 0;
+
+ if (sctx->cur_ino != sctx->cmp_key->objectid) {
+ inconsistent_snapshot_error(sctx, result, "reference");
+ return -EIO;
+ }
+
+ if (!sctx->cur_inode_new_gen &&
+ sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
+ if (result == BTRFS_COMPARE_TREE_NEW)
+ ret = record_new_ref(sctx);
+ else if (result == BTRFS_COMPARE_TREE_DELETED)
+ ret = record_deleted_ref(sctx);
+ else if (result == BTRFS_COMPARE_TREE_CHANGED)
+ ret = record_changed_ref(sctx);
+ }
+
+ return ret;
+}
+
+/*
+ * Process new/deleted/changed xattrs. We skip processing in the
+ * cur_inode_new_gen case because changed_inode did already initiate processing
+ * of xattrs. The reason is the same as in changed_ref
+ */
+static int changed_xattr(struct send_ctx *sctx,
+ enum btrfs_compare_tree_result result)
+{
+ int ret = 0;
+
+ if (sctx->cur_ino != sctx->cmp_key->objectid) {
+ inconsistent_snapshot_error(sctx, result, "xattr");
+ return -EIO;
+ }
+
+ if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
+ if (result == BTRFS_COMPARE_TREE_NEW)
+ ret = process_new_xattr(sctx);
+ else if (result == BTRFS_COMPARE_TREE_DELETED)
+ ret = process_deleted_xattr(sctx);
+ else if (result == BTRFS_COMPARE_TREE_CHANGED)
+ ret = process_changed_xattr(sctx);
+ }
+
+ return ret;
+}
+
+/*
+ * Process new/deleted/changed extents. We skip processing in the
+ * cur_inode_new_gen case because changed_inode did already initiate processing
+ * of extents. The reason is the same as in changed_ref
+ */
+static int changed_extent(struct send_ctx *sctx,
+ enum btrfs_compare_tree_result result)
+{
+ int ret = 0;
+
+ /*
+ * We have found an extent item that changed without the inode item
+ * having changed. This can happen either after relocation (where the
+ * disk_bytenr of an extent item is replaced at
+ * relocation.c:replace_file_extents()) or after deduplication into a
+ * file in both the parent and send snapshots (where an extent item can
+ * get modified or replaced with a new one). Note that deduplication
+ * updates the inode item, but it only changes the iversion (sequence
+ * field in the inode item) of the inode, so if a file is deduplicated
+ * the same amount of times in both the parent and send snapshots, its
+ * iversion becomes the same in both snapshots, whence the inode item is
+ * the same on both snapshots.
+ */
+ if (sctx->cur_ino != sctx->cmp_key->objectid)
+ return 0;
+
+ if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
+ if (result != BTRFS_COMPARE_TREE_DELETED)
+ ret = process_extent(sctx, sctx->left_path,
+ sctx->cmp_key);
+ }
+
+ return ret;
+}
+
+static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
+{
+ int ret = 0;
+
+ if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
+ if (result == BTRFS_COMPARE_TREE_NEW)
+ sctx->cur_inode_needs_verity = true;
+ }
+ return ret;
+}
+
+static int dir_changed(struct send_ctx *sctx, u64 dir)
+{
+ u64 orig_gen, new_gen;
+ int ret;
+
+ ret = get_inode_gen(sctx->send_root, dir, &new_gen);
+ if (ret)
+ return ret;
+
+ ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
+ if (ret)
+ return ret;
+
+ return (orig_gen != new_gen) ? 1 : 0;
+}
+
+static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
+ struct btrfs_key *key)
+{
+ struct btrfs_inode_extref *extref;
+ struct extent_buffer *leaf;
+ u64 dirid = 0, last_dirid = 0;
+ unsigned long ptr;
+ u32 item_size;
+ u32 cur_offset = 0;
+ int ref_name_len;
+ int ret = 0;
+
+ /* Easy case, just check this one dirid */
+ if (key->type == BTRFS_INODE_REF_KEY) {
+ dirid = key->offset;
+
+ ret = dir_changed(sctx, dirid);
+ goto out;
+ }
+
+ leaf = path->nodes[0];
+ item_size = btrfs_item_size(leaf, path->slots[0]);
+ ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
+ while (cur_offset < item_size) {
+ extref = (struct btrfs_inode_extref *)(ptr +
+ cur_offset);
+ dirid = btrfs_inode_extref_parent(leaf, extref);
+ ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
+ cur_offset += ref_name_len + sizeof(*extref);
+ if (dirid == last_dirid)
+ continue;
+ ret = dir_changed(sctx, dirid);
+ if (ret)
+ break;
+ last_dirid = dirid;
+ }
+out:
+ return ret;
+}
+
+/*
+ * Updates compare related fields in sctx and simply forwards to the actual
+ * changed_xxx functions.
+ */
+static int changed_cb(struct btrfs_path *left_path,
+ struct btrfs_path *right_path,
+ struct btrfs_key *key,
+ enum btrfs_compare_tree_result result,
+ struct send_ctx *sctx)
+{
+ int ret = 0;
+
+ /*
+ * We can not hold the commit root semaphore here. This is because in
+ * the case of sending and receiving to the same filesystem, using a
+ * pipe, could result in a deadlock:
+ *
+ * 1) The task running send blocks on the pipe because it's full;
+ *
+ * 2) The task running receive, which is the only consumer of the pipe,
+ * is waiting for a transaction commit (for example due to a space
+ * reservation when doing a write or triggering a transaction commit
+ * when creating a subvolume);
+ *
+ * 3) The transaction is waiting to write lock the commit root semaphore,
+ * but can not acquire it since it's being held at 1).
+ *
+ * Down this call chain we write to the pipe through kernel_write().
+ * The same type of problem can also happen when sending to a file that
+ * is stored in the same filesystem - when reserving space for a write
+ * into the file, we can trigger a transaction commit.
+ *
+ * Our caller has supplied us with clones of leaves from the send and
+ * parent roots, so we're safe here from a concurrent relocation and
+ * further reallocation of metadata extents while we are here. Below we
+ * also assert that the leaves are clones.
+ */
+ lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
+
+ /*
+ * We always have a send root, so left_path is never NULL. We will not
+ * have a leaf when we have reached the end of the send root but have
+ * not yet reached the end of the parent root.
+ */
+ if (left_path->nodes[0])
+ ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
+ &left_path->nodes[0]->bflags));
+ /*
+ * When doing a full send we don't have a parent root, so right_path is
+ * NULL. When doing an incremental send, we may have reached the end of
+ * the parent root already, so we don't have a leaf at right_path.
+ */
+ if (right_path && right_path->nodes[0])
+ ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
+ &right_path->nodes[0]->bflags));
+
+ if (result == BTRFS_COMPARE_TREE_SAME) {
+ if (key->type == BTRFS_INODE_REF_KEY ||
+ key->type == BTRFS_INODE_EXTREF_KEY) {
+ ret = compare_refs(sctx, left_path, key);
+ if (!ret)
+ return 0;
+ if (ret < 0)
+ return ret;
+ } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
+ return maybe_send_hole(sctx, left_path, key);
+ } else {
+ return 0;
+ }
+ result = BTRFS_COMPARE_TREE_CHANGED;
+ ret = 0;
+ }
+
+ sctx->left_path = left_path;
+ sctx->right_path = right_path;
+ sctx->cmp_key = key;
+
+ ret = finish_inode_if_needed(sctx, 0);
+ if (ret < 0)
+ goto out;
+
+ /* Ignore non-FS objects */
+ if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
+ key->objectid == BTRFS_FREE_SPACE_OBJECTID)
+ goto out;
+
+ if (key->type == BTRFS_INODE_ITEM_KEY) {
+ ret = changed_inode(sctx, result);
+ } else if (!sctx->ignore_cur_inode) {
+ if (key->type == BTRFS_INODE_REF_KEY ||
+ key->type == BTRFS_INODE_EXTREF_KEY)
+ ret = changed_ref(sctx, result);
+ else if (key->type == BTRFS_XATTR_ITEM_KEY)
+ ret = changed_xattr(sctx, result);
+ else if (key->type == BTRFS_EXTENT_DATA_KEY)
+ ret = changed_extent(sctx, result);
+ else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
+ key->offset == 0)
+ ret = changed_verity(sctx, result);
+ }
+
+out:
+ return ret;
+}
+
+static int search_key_again(const struct send_ctx *sctx,
+ struct btrfs_root *root,
+ struct btrfs_path *path,
+ const struct btrfs_key *key)
+{
+ int ret;
+
+ if (!path->need_commit_sem)
+ lockdep_assert_held_read(&root->fs_info->commit_root_sem);
+
+ /*
+ * Roots used for send operations are readonly and no one can add,
+ * update or remove keys from them, so we should be able to find our
+ * key again. The only exception is deduplication, which can operate on
+ * readonly roots and add, update or remove keys to/from them - but at
+ * the moment we don't allow it to run in parallel with send.
+ */
+ ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
+ ASSERT(ret <= 0);
+ if (ret > 0) {
+ btrfs_print_tree(path->nodes[path->lowest_level], false);
+ btrfs_err(root->fs_info,
+"send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
+ key->objectid, key->type, key->offset,
+ (root == sctx->parent_root ? "parent" : "send"),
+ root->root_key.objectid, path->lowest_level,
+ path->slots[path->lowest_level]);
+ return -EUCLEAN;
+ }
+
+ return ret;
+}
+
+static int full_send_tree(struct send_ctx *sctx)
+{
+ int ret;
+ struct btrfs_root *send_root = sctx->send_root;
+ struct btrfs_key key;
+ struct btrfs_fs_info *fs_info = send_root->fs_info;
+ struct btrfs_path *path;
+
+ path = alloc_path_for_send();
+ if (!path)
+ return -ENOMEM;
+ path->reada = READA_FORWARD_ALWAYS;
+
+ key.objectid = BTRFS_FIRST_FREE_OBJECTID;
+ key.type = BTRFS_INODE_ITEM_KEY;
+ key.offset = 0;
+
+ down_read(&fs_info->commit_root_sem);
+ sctx->last_reloc_trans = fs_info->last_reloc_trans;
+ up_read(&fs_info->commit_root_sem);
+
+ ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
+ if (ret < 0)
+ goto out;
+ if (ret)
+ goto out_finish;
+
+ while (1) {
+ btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
+
+ ret = changed_cb(path, NULL, &key,
+ BTRFS_COMPARE_TREE_NEW, sctx);
+ if (ret < 0)
+ goto out;
+
+ down_read(&fs_info->commit_root_sem);
+ if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
+ sctx->last_reloc_trans = fs_info->last_reloc_trans;
+ up_read(&fs_info->commit_root_sem);
+ /*
+ * A transaction used for relocating a block group was
+ * committed or is about to finish its commit. Release
+ * our path (leaf) and restart the search, so that we
+ * avoid operating on any file extent items that are
+ * stale, with a disk_bytenr that reflects a pre
+ * relocation value. This way we avoid as much as
+ * possible to fallback to regular writes when checking
+ * if we can clone file ranges.
+ */
+ btrfs_release_path(path);
+ ret = search_key_again(sctx, send_root, path, &key);
+ if (ret < 0)
+ goto out;
+ } else {
+ up_read(&fs_info->commit_root_sem);
+ }
+
+ ret = btrfs_next_item(send_root, path);
+ if (ret < 0)
+ goto out;
+ if (ret) {
+ ret = 0;
+ break;
+ }
+ }
+
+out_finish:
+ ret = finish_inode_if_needed(sctx, 1);
+
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int replace_node_with_clone(struct btrfs_path *path, int level)
+{
+ struct extent_buffer *clone;
+
+ clone = btrfs_clone_extent_buffer(path->nodes[level]);
+ if (!clone)
+ return -ENOMEM;
+
+ free_extent_buffer(path->nodes[level]);
+ path->nodes[level] = clone;
+
+ return 0;
+}
+
+static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
+{
+ struct extent_buffer *eb;
+ struct extent_buffer *parent = path->nodes[*level];
+ int slot = path->slots[*level];
+ const int nritems = btrfs_header_nritems(parent);
+ u64 reada_max;
+ u64 reada_done = 0;
+
+ lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
+
+ BUG_ON(*level == 0);
+ eb = btrfs_read_node_slot(parent, slot);
+ if (IS_ERR(eb))
+ return PTR_ERR(eb);
+
+ /*
+ * Trigger readahead for the next leaves we will process, so that it is
+ * very likely that when we need them they are already in memory and we
+ * will not block on disk IO. For nodes we only do readahead for one,
+ * since the time window between processing nodes is typically larger.
+ */
+ reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
+
+ for (slot++; slot < nritems && reada_done < reada_max; slot++) {
+ if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
+ btrfs_readahead_node_child(parent, slot);
+ reada_done += eb->fs_info->nodesize;
+ }
+ }
+
+ path->nodes[*level - 1] = eb;
+ path->slots[*level - 1] = 0;
+ (*level)--;
+
+ if (*level == 0)
+ return replace_node_with_clone(path, 0);
+
+ return 0;
+}
+
+static int tree_move_next_or_upnext(struct btrfs_path *path,
+ int *level, int root_level)
+{
+ int ret = 0;
+ int nritems;
+ nritems = btrfs_header_nritems(path->nodes[*level]);
+
+ path->slots[*level]++;
+
+ while (path->slots[*level] >= nritems) {
+ if (*level == root_level) {
+ path->slots[*level] = nritems - 1;
+ return -1;
+ }
+
+ /* move upnext */
+ path->slots[*level] = 0;
+ free_extent_buffer(path->nodes[*level]);
+ path->nodes[*level] = NULL;
+ (*level)++;
+ path->slots[*level]++;
+
+ nritems = btrfs_header_nritems(path->nodes[*level]);
+ ret = 1;
+ }
+ return ret;
+}
+
+/*
+ * Returns 1 if it had to move up and next. 0 is returned if it moved only next
+ * or down.
+ */
+static int tree_advance(struct btrfs_path *path,
+ int *level, int root_level,
+ int allow_down,
+ struct btrfs_key *key,
+ u64 reada_min_gen)
+{
+ int ret;
+
+ if (*level == 0 || !allow_down) {
+ ret = tree_move_next_or_upnext(path, level, root_level);
+ } else {
+ ret = tree_move_down(path, level, reada_min_gen);
+ }
+
+ /*
+ * Even if we have reached the end of a tree, ret is -1, update the key
+ * anyway, so that in case we need to restart due to a block group
+ * relocation, we can assert that the last key of the root node still
+ * exists in the tree.
+ */
+ if (*level == 0)
+ btrfs_item_key_to_cpu(path->nodes[*level], key,
+ path->slots[*level]);
+ else
+ btrfs_node_key_to_cpu(path->nodes[*level], key,
+ path->slots[*level]);
+
+ return ret;
+}
+
+static int tree_compare_item(struct btrfs_path *left_path,
+ struct btrfs_path *right_path,
+ char *tmp_buf)
+{
+ int cmp;
+ int len1, len2;
+ unsigned long off1, off2;
+
+ len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
+ len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
+ if (len1 != len2)
+ return 1;
+
+ off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
+ off2 = btrfs_item_ptr_offset(right_path->nodes[0],
+ right_path->slots[0]);
+
+ read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
+
+ cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
+ if (cmp)
+ return 1;
+ return 0;
+}
+
+/*
+ * A transaction used for relocating a block group was committed or is about to
+ * finish its commit. Release our paths and restart the search, so that we are
+ * not using stale extent buffers:
+ *
+ * 1) For levels > 0, we are only holding references of extent buffers, without
+ * any locks on them, which does not prevent them from having been relocated
+ * and reallocated after the last time we released the commit root semaphore.
+ * The exception are the root nodes, for which we always have a clone, see
+ * the comment at btrfs_compare_trees();
+ *
+ * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
+ * we are safe from the concurrent relocation and reallocation. However they
+ * can have file extent items with a pre relocation disk_bytenr value, so we
+ * restart the start from the current commit roots and clone the new leaves so
+ * that we get the post relocation disk_bytenr values. Not doing so, could
+ * make us clone the wrong data in case there are new extents using the old
+ * disk_bytenr that happen to be shared.
+ */
+static int restart_after_relocation(struct btrfs_path *left_path,
+ struct btrfs_path *right_path,
+ const struct btrfs_key *left_key,
+ const struct btrfs_key *right_key,
+ int left_level,
+ int right_level,
+ const struct send_ctx *sctx)
+{
+ int root_level;
+ int ret;
+
+ lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
+
+ btrfs_release_path(left_path);
+ btrfs_release_path(right_path);
+
+ /*
+ * Since keys can not be added or removed to/from our roots because they
+ * are readonly and we do not allow deduplication to run in parallel
+ * (which can add, remove or change keys), the layout of the trees should
+ * not change.
+ */
+ left_path->lowest_level = left_level;
+ ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
+ if (ret < 0)
+ return ret;
+
+ right_path->lowest_level = right_level;
+ ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
+ if (ret < 0)
+ return ret;
+
+ /*
+ * If the lowest level nodes are leaves, clone them so that they can be
+ * safely used by changed_cb() while not under the protection of the
+ * commit root semaphore, even if relocation and reallocation happens in
+ * parallel.
+ */
+ if (left_level == 0) {
+ ret = replace_node_with_clone(left_path, 0);
+ if (ret < 0)
+ return ret;
+ }
+
+ if (right_level == 0) {
+ ret = replace_node_with_clone(right_path, 0);
+ if (ret < 0)
+ return ret;
+ }
+
+ /*
+ * Now clone the root nodes (unless they happen to be the leaves we have
+ * already cloned). This is to protect against concurrent snapshotting of
+ * the send and parent roots (see the comment at btrfs_compare_trees()).
+ */
+ root_level = btrfs_header_level(sctx->send_root->commit_root);
+ if (root_level > 0) {
+ ret = replace_node_with_clone(left_path, root_level);
+ if (ret < 0)
+ return ret;
+ }
+
+ root_level = btrfs_header_level(sctx->parent_root->commit_root);
+ if (root_level > 0) {
+ ret = replace_node_with_clone(right_path, root_level);
+ if (ret < 0)
+ return ret;
+ }
+
+ return 0;
+}
+
+/*
+ * This function compares two trees and calls the provided callback for
+ * every changed/new/deleted item it finds.
+ * If shared tree blocks are encountered, whole subtrees are skipped, making
+ * the compare pretty fast on snapshotted subvolumes.
+ *
+ * This currently works on commit roots only. As commit roots are read only,
+ * we don't do any locking. The commit roots are protected with transactions.
+ * Transactions are ended and rejoined when a commit is tried in between.
+ *
+ * This function checks for modifications done to the trees while comparing.
+ * If it detects a change, it aborts immediately.
+ */
+static int btrfs_compare_trees(struct btrfs_root *left_root,
+ struct btrfs_root *right_root, struct send_ctx *sctx)
+{
+ struct btrfs_fs_info *fs_info = left_root->fs_info;
+ int ret;
+ int cmp;
+ struct btrfs_path *left_path = NULL;
+ struct btrfs_path *right_path = NULL;
+ struct btrfs_key left_key;
+ struct btrfs_key right_key;
+ char *tmp_buf = NULL;
+ int left_root_level;
+ int right_root_level;
+ int left_level;
+ int right_level;
+ int left_end_reached = 0;
+ int right_end_reached = 0;
+ int advance_left = 0;
+ int advance_right = 0;
+ u64 left_blockptr;
+ u64 right_blockptr;
+ u64 left_gen;
+ u64 right_gen;
+ u64 reada_min_gen;
+
+ left_path = btrfs_alloc_path();
+ if (!left_path) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ right_path = btrfs_alloc_path();
+ if (!right_path) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
+ if (!tmp_buf) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ left_path->search_commit_root = 1;
+ left_path->skip_locking = 1;
+ right_path->search_commit_root = 1;
+ right_path->skip_locking = 1;
+
+ /*
+ * Strategy: Go to the first items of both trees. Then do
+ *
+ * If both trees are at level 0
+ * Compare keys of current items
+ * If left < right treat left item as new, advance left tree
+ * and repeat
+ * If left > right treat right item as deleted, advance right tree
+ * and repeat
+ * If left == right do deep compare of items, treat as changed if
+ * needed, advance both trees and repeat
+ * If both trees are at the same level but not at level 0
+ * Compare keys of current nodes/leafs
+ * If left < right advance left tree and repeat
+ * If left > right advance right tree and repeat
+ * If left == right compare blockptrs of the next nodes/leafs
+ * If they match advance both trees but stay at the same level
+ * and repeat
+ * If they don't match advance both trees while allowing to go
+ * deeper and repeat
+ * If tree levels are different
+ * Advance the tree that needs it and repeat
+ *
+ * Advancing a tree means:
+ * If we are at level 0, try to go to the next slot. If that's not
+ * possible, go one level up and repeat. Stop when we found a level
+ * where we could go to the next slot. We may at this point be on a
+ * node or a leaf.
+ *
+ * If we are not at level 0 and not on shared tree blocks, go one
+ * level deeper.
+ *
+ * If we are not at level 0 and on shared tree blocks, go one slot to
+ * the right if possible or go up and right.
+ */
+
+ down_read(&fs_info->commit_root_sem);
+ left_level = btrfs_header_level(left_root->commit_root);
+ left_root_level = left_level;
+ /*
+ * We clone the root node of the send and parent roots to prevent races
+ * with snapshot creation of these roots. Snapshot creation COWs the
+ * root node of a tree, so after the transaction is committed the old
+ * extent can be reallocated while this send operation is still ongoing.
+ * So we clone them, under the commit root semaphore, to be race free.
+ */
+ left_path->nodes[left_level] =
+ btrfs_clone_extent_buffer(left_root->commit_root);
+ if (!left_path->nodes[left_level]) {
+ ret = -ENOMEM;
+ goto out_unlock;
+ }
+
+ right_level = btrfs_header_level(right_root->commit_root);
+ right_root_level = right_level;
+ right_path->nodes[right_level] =
+ btrfs_clone_extent_buffer(right_root->commit_root);
+ if (!right_path->nodes[right_level]) {
+ ret = -ENOMEM;
+ goto out_unlock;
+ }
+ /*
+ * Our right root is the parent root, while the left root is the "send"
+ * root. We know that all new nodes/leaves in the left root must have
+ * a generation greater than the right root's generation, so we trigger
+ * readahead for those nodes and leaves of the left root, as we know we
+ * will need to read them at some point.
+ */
+ reada_min_gen = btrfs_header_generation(right_root->commit_root);
+
+ if (left_level == 0)
+ btrfs_item_key_to_cpu(left_path->nodes[left_level],
+ &left_key, left_path->slots[left_level]);
+ else
+ btrfs_node_key_to_cpu(left_path->nodes[left_level],
+ &left_key, left_path->slots[left_level]);
+ if (right_level == 0)
+ btrfs_item_key_to_cpu(right_path->nodes[right_level],
+ &right_key, right_path->slots[right_level]);
+ else
+ btrfs_node_key_to_cpu(right_path->nodes[right_level],
+ &right_key, right_path->slots[right_level]);
+
+ sctx->last_reloc_trans = fs_info->last_reloc_trans;
+
+ while (1) {
+ if (need_resched() ||
+ rwsem_is_contended(&fs_info->commit_root_sem)) {
+ up_read(&fs_info->commit_root_sem);
+ cond_resched();
+ down_read(&fs_info->commit_root_sem);
+ }
+
+ if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
+ ret = restart_after_relocation(left_path, right_path,
+ &left_key, &right_key,
+ left_level, right_level,
+ sctx);
+ if (ret < 0)
+ goto out_unlock;
+ sctx->last_reloc_trans = fs_info->last_reloc_trans;
+ }
+
+ if (advance_left && !left_end_reached) {
+ ret = tree_advance(left_path, &left_level,
+ left_root_level,
+ advance_left != ADVANCE_ONLY_NEXT,
+ &left_key, reada_min_gen);
+ if (ret == -1)
+ left_end_reached = ADVANCE;
+ else if (ret < 0)
+ goto out_unlock;
+ advance_left = 0;
+ }
+ if (advance_right && !right_end_reached) {
+ ret = tree_advance(right_path, &right_level,
+ right_root_level,
+ advance_right != ADVANCE_ONLY_NEXT,
+ &right_key, reada_min_gen);
+ if (ret == -1)
+ right_end_reached = ADVANCE;
+ else if (ret < 0)
+ goto out_unlock;
+ advance_right = 0;
+ }
+
+ if (left_end_reached && right_end_reached) {
+ ret = 0;
+ goto out_unlock;
+ } else if (left_end_reached) {
+ if (right_level == 0) {
+ up_read(&fs_info->commit_root_sem);
+ ret = changed_cb(left_path, right_path,
+ &right_key,
+ BTRFS_COMPARE_TREE_DELETED,
+ sctx);
+ if (ret < 0)
+ goto out;
+ down_read(&fs_info->commit_root_sem);
+ }
+ advance_right = ADVANCE;
+ continue;
+ } else if (right_end_reached) {
+ if (left_level == 0) {
+ up_read(&fs_info->commit_root_sem);
+ ret = changed_cb(left_path, right_path,
+ &left_key,
+ BTRFS_COMPARE_TREE_NEW,
+ sctx);
+ if (ret < 0)
+ goto out;
+ down_read(&fs_info->commit_root_sem);
+ }
+ advance_left = ADVANCE;
+ continue;
+ }
+
+ if (left_level == 0 && right_level == 0) {
+ up_read(&fs_info->commit_root_sem);
+ cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
+ if (cmp < 0) {
+ ret = changed_cb(left_path, right_path,
+ &left_key,
+ BTRFS_COMPARE_TREE_NEW,
+ sctx);
+ advance_left = ADVANCE;
+ } else if (cmp > 0) {
+ ret = changed_cb(left_path, right_path,
+ &right_key,
+ BTRFS_COMPARE_TREE_DELETED,
+ sctx);
+ advance_right = ADVANCE;
+ } else {
+ enum btrfs_compare_tree_result result;
+
+ WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
+ ret = tree_compare_item(left_path, right_path,
+ tmp_buf);
+ if (ret)
+ result = BTRFS_COMPARE_TREE_CHANGED;
+ else
+ result = BTRFS_COMPARE_TREE_SAME;
+ ret = changed_cb(left_path, right_path,
+ &left_key, result, sctx);
+ advance_left = ADVANCE;
+ advance_right = ADVANCE;
+ }
+
+ if (ret < 0)
+ goto out;
+ down_read(&fs_info->commit_root_sem);
+ } else if (left_level == right_level) {
+ cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
+ if (cmp < 0) {
+ advance_left = ADVANCE;
+ } else if (cmp > 0) {
+ advance_right = ADVANCE;
+ } else {
+ left_blockptr = btrfs_node_blockptr(
+ left_path->nodes[left_level],
+ left_path->slots[left_level]);
+ right_blockptr = btrfs_node_blockptr(
+ right_path->nodes[right_level],
+ right_path->slots[right_level]);
+ left_gen = btrfs_node_ptr_generation(
+ left_path->nodes[left_level],
+ left_path->slots[left_level]);
+ right_gen = btrfs_node_ptr_generation(
+ right_path->nodes[right_level],
+ right_path->slots[right_level]);
+ if (left_blockptr == right_blockptr &&
+ left_gen == right_gen) {
+ /*
+ * As we're on a shared block, don't
+ * allow to go deeper.
+ */
+ advance_left = ADVANCE_ONLY_NEXT;
+ advance_right = ADVANCE_ONLY_NEXT;
+ } else {
+ advance_left = ADVANCE;
+ advance_right = ADVANCE;
+ }
+ }
+ } else if (left_level < right_level) {
+ advance_right = ADVANCE;
+ } else {
+ advance_left = ADVANCE;
+ }
+ }
+
+out_unlock:
+ up_read(&fs_info->commit_root_sem);
+out:
+ btrfs_free_path(left_path);
+ btrfs_free_path(right_path);
+ kvfree(tmp_buf);
+ return ret;
+}
+
+static int send_subvol(struct send_ctx *sctx)
+{
+ int ret;
+
+ if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
+ ret = send_header(sctx);
+ if (ret < 0)
+ goto out;
+ }
+
+ ret = send_subvol_begin(sctx);
+ if (ret < 0)
+ goto out;
+
+ if (sctx->parent_root) {
+ ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
+ if (ret < 0)
+ goto out;
+ ret = finish_inode_if_needed(sctx, 1);
+ if (ret < 0)
+ goto out;
+ } else {
+ ret = full_send_tree(sctx);
+ if (ret < 0)
+ goto out;
+ }
+
+out:
+ free_recorded_refs(sctx);
+ return ret;
+}
+
+/*
+ * If orphan cleanup did remove any orphans from a root, it means the tree
+ * was modified and therefore the commit root is not the same as the current
+ * root anymore. This is a problem, because send uses the commit root and
+ * therefore can see inode items that don't exist in the current root anymore,
+ * and for example make calls to btrfs_iget, which will do tree lookups based
+ * on the current root and not on the commit root. Those lookups will fail,
+ * returning a -ESTALE error, and making send fail with that error. So make
+ * sure a send does not see any orphans we have just removed, and that it will
+ * see the same inodes regardless of whether a transaction commit happened
+ * before it started (meaning that the commit root will be the same as the
+ * current root) or not.
+ */
+static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
+{
+ int i;
+ struct btrfs_trans_handle *trans = NULL;
+
+again:
+ if (sctx->parent_root &&
+ sctx->parent_root->node != sctx->parent_root->commit_root)
+ goto commit_trans;
+
+ for (i = 0; i < sctx->clone_roots_cnt; i++)
+ if (sctx->clone_roots[i].root->node !=
+ sctx->clone_roots[i].root->commit_root)
+ goto commit_trans;
+
+ if (trans)
+ return btrfs_end_transaction(trans);
+
+ return 0;
+
+commit_trans:
+ /* Use any root, all fs roots will get their commit roots updated. */
+ if (!trans) {
+ trans = btrfs_join_transaction(sctx->send_root);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+ goto again;
+ }
+
+ return btrfs_commit_transaction(trans);
+}
+
+/*
+ * Make sure any existing dellaloc is flushed for any root used by a send
+ * operation so that we do not miss any data and we do not race with writeback
+ * finishing and changing a tree while send is using the tree. This could
+ * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
+ * a send operation then uses the subvolume.
+ * After flushing delalloc ensure_commit_roots_uptodate() must be called.
+ */
+static int flush_delalloc_roots(struct send_ctx *sctx)
+{
+ struct btrfs_root *root = sctx->parent_root;
+ int ret;
+ int i;
+
+ if (root) {
+ ret = btrfs_start_delalloc_snapshot(root, false);
+ if (ret)
+ return ret;
+ btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
+ }
+
+ for (i = 0; i < sctx->clone_roots_cnt; i++) {
+ root = sctx->clone_roots[i].root;
+ ret = btrfs_start_delalloc_snapshot(root, false);
+ if (ret)
+ return ret;
+ btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
+ }
+
+ return 0;
+}
+
+static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
+{
+ spin_lock(&root->root_item_lock);
+ root->send_in_progress--;
+ /*
+ * Not much left to do, we don't know why it's unbalanced and
+ * can't blindly reset it to 0.
+ */
+ if (root->send_in_progress < 0)
+ btrfs_err(root->fs_info,
+ "send_in_progress unbalanced %d root %llu",
+ root->send_in_progress, root->root_key.objectid);
+ spin_unlock(&root->root_item_lock);
+}
+
+static void dedupe_in_progress_warn(const struct btrfs_root *root)
+{
+ btrfs_warn_rl(root->fs_info,
+"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
+ root->root_key.objectid, root->dedupe_in_progress);
+}
+
+long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
+{
+ int ret = 0;
+ struct btrfs_root *send_root = BTRFS_I(inode)->root;
+ struct btrfs_fs_info *fs_info = send_root->fs_info;
+ struct btrfs_root *clone_root;
+ struct send_ctx *sctx = NULL;
+ u32 i;
+ u64 *clone_sources_tmp = NULL;
+ int clone_sources_to_rollback = 0;
+ size_t alloc_size;
+ int sort_clone_roots = 0;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+
+ /*
+ * The subvolume must remain read-only during send, protect against
+ * making it RW. This also protects against deletion.
+ */
+ spin_lock(&send_root->root_item_lock);
+ if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
+ dedupe_in_progress_warn(send_root);
+ spin_unlock(&send_root->root_item_lock);
+ return -EAGAIN;
+ }
+ send_root->send_in_progress++;
+ spin_unlock(&send_root->root_item_lock);
+
+ /*
+ * Userspace tools do the checks and warn the user if it's
+ * not RO.
+ */
+ if (!btrfs_root_readonly(send_root)) {
+ ret = -EPERM;
+ goto out;
+ }
+
+ /*
+ * Check that we don't overflow at later allocations, we request
+ * clone_sources_count + 1 items, and compare to unsigned long inside
+ * access_ok. Also set an upper limit for allocation size so this can't
+ * easily exhaust memory. Max number of clone sources is about 200K.
+ */
+ if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
+ if (!sctx) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ INIT_LIST_HEAD(&sctx->new_refs);
+ INIT_LIST_HEAD(&sctx->deleted_refs);
+ INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
+ INIT_LIST_HEAD(&sctx->name_cache_list);
+
+ sctx->flags = arg->flags;
+
+ if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
+ if (arg->version > BTRFS_SEND_STREAM_VERSION) {
+ ret = -EPROTO;
+ goto out;
+ }
+ /* Zero means "use the highest version" */
+ sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
+ } else {
+ sctx->proto = 1;
+ }
+ if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ sctx->send_filp = fget(arg->send_fd);
+ if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
+ ret = -EBADF;
+ goto out;
+ }
+
+ sctx->send_root = send_root;
+ /*
+ * Unlikely but possible, if the subvolume is marked for deletion but
+ * is slow to remove the directory entry, send can still be started
+ */
+ if (btrfs_root_dead(sctx->send_root)) {
+ ret = -EPERM;
+ goto out;
+ }
+
+ sctx->clone_roots_cnt = arg->clone_sources_count;
+
+ if (sctx->proto >= 2) {
+ u32 send_buf_num_pages;
+
+ sctx->send_max_size = ALIGN(SZ_16K + BTRFS_MAX_COMPRESSED, PAGE_SIZE);
+ sctx->send_buf = vmalloc(sctx->send_max_size);
+ if (!sctx->send_buf) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
+ sctx->send_buf_pages = kcalloc(send_buf_num_pages,
+ sizeof(*sctx->send_buf_pages),
+ GFP_KERNEL);
+ if (!sctx->send_buf_pages) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ for (i = 0; i < send_buf_num_pages; i++) {
+ sctx->send_buf_pages[i] =
+ vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
+ }
+ } else {
+ sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
+ sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
+ }
+ if (!sctx->send_buf) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ sctx->pending_dir_moves = RB_ROOT;
+ sctx->waiting_dir_moves = RB_ROOT;
+ sctx->orphan_dirs = RB_ROOT;
+ sctx->rbtree_new_refs = RB_ROOT;
+ sctx->rbtree_deleted_refs = RB_ROOT;
+
+ sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
+ arg->clone_sources_count + 1,
+ GFP_KERNEL);
+ if (!sctx->clone_roots) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ alloc_size = array_size(sizeof(*arg->clone_sources),
+ arg->clone_sources_count);
+
+ if (arg->clone_sources_count) {
+ clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
+ if (!clone_sources_tmp) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
+ alloc_size);
+ if (ret) {
+ ret = -EFAULT;
+ goto out;
+ }
+
+ for (i = 0; i < arg->clone_sources_count; i++) {
+ clone_root = btrfs_get_fs_root(fs_info,
+ clone_sources_tmp[i], true);
+ if (IS_ERR(clone_root)) {
+ ret = PTR_ERR(clone_root);
+ goto out;
+ }
+ spin_lock(&clone_root->root_item_lock);
+ if (!btrfs_root_readonly(clone_root) ||
+ btrfs_root_dead(clone_root)) {
+ spin_unlock(&clone_root->root_item_lock);
+ btrfs_put_root(clone_root);
+ ret = -EPERM;
+ goto out;
+ }
+ if (clone_root->dedupe_in_progress) {
+ dedupe_in_progress_warn(clone_root);
+ spin_unlock(&clone_root->root_item_lock);
+ btrfs_put_root(clone_root);
+ ret = -EAGAIN;
+ goto out;
+ }
+ clone_root->send_in_progress++;
+ spin_unlock(&clone_root->root_item_lock);
+
+ sctx->clone_roots[i].root = clone_root;
+ clone_sources_to_rollback = i + 1;
+ }
+ kvfree(clone_sources_tmp);
+ clone_sources_tmp = NULL;
+ }
+
+ if (arg->parent_root) {
+ sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
+ true);
+ if (IS_ERR(sctx->parent_root)) {
+ ret = PTR_ERR(sctx->parent_root);
+ goto out;
+ }
+
+ spin_lock(&sctx->parent_root->root_item_lock);
+ sctx->parent_root->send_in_progress++;
+ if (!btrfs_root_readonly(sctx->parent_root) ||
+ btrfs_root_dead(sctx->parent_root)) {
+ spin_unlock(&sctx->parent_root->root_item_lock);
+ ret = -EPERM;
+ goto out;
+ }
+ if (sctx->parent_root->dedupe_in_progress) {
+ dedupe_in_progress_warn(sctx->parent_root);
+ spin_unlock(&sctx->parent_root->root_item_lock);
+ ret = -EAGAIN;
+ goto out;
+ }
+ spin_unlock(&sctx->parent_root->root_item_lock);
+ }
+
+ /*
+ * Clones from send_root are allowed, but only if the clone source
+ * is behind the current send position. This is checked while searching
+ * for possible clone sources.
+ */
+ sctx->clone_roots[sctx->clone_roots_cnt++].root =
+ btrfs_grab_root(sctx->send_root);
+
+ /* We do a bsearch later */
+ sort(sctx->clone_roots, sctx->clone_roots_cnt,
+ sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
+ NULL);
+ sort_clone_roots = 1;
+
+ ret = flush_delalloc_roots(sctx);
+ if (ret)
+ goto out;
+
+ ret = ensure_commit_roots_uptodate(sctx);
+ if (ret)
+ goto out;
+
+ ret = send_subvol(sctx);
+ if (ret < 0)
+ goto out;
+
+ if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
+ ret = begin_cmd(sctx, BTRFS_SEND_C_END);
+ if (ret < 0)
+ goto out;
+ ret = send_cmd(sctx);
+ if (ret < 0)
+ goto out;
+ }
+
+out:
+ WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
+ while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
+ struct rb_node *n;
+ struct pending_dir_move *pm;
+
+ n = rb_first(&sctx->pending_dir_moves);
+ pm = rb_entry(n, struct pending_dir_move, node);
+ while (!list_empty(&pm->list)) {
+ struct pending_dir_move *pm2;
+
+ pm2 = list_first_entry(&pm->list,
+ struct pending_dir_move, list);
+ free_pending_move(sctx, pm2);
+ }
+ free_pending_move(sctx, pm);
+ }
+
+ WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
+ while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
+ struct rb_node *n;
+ struct waiting_dir_move *dm;
+
+ n = rb_first(&sctx->waiting_dir_moves);
+ dm = rb_entry(n, struct waiting_dir_move, node);
+ rb_erase(&dm->node, &sctx->waiting_dir_moves);
+ kfree(dm);
+ }
+
+ WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
+ while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
+ struct rb_node *n;
+ struct orphan_dir_info *odi;
+
+ n = rb_first(&sctx->orphan_dirs);
+ odi = rb_entry(n, struct orphan_dir_info, node);
+ free_orphan_dir_info(sctx, odi);
+ }
+
+ if (sort_clone_roots) {
+ for (i = 0; i < sctx->clone_roots_cnt; i++) {
+ btrfs_root_dec_send_in_progress(
+ sctx->clone_roots[i].root);
+ btrfs_put_root(sctx->clone_roots[i].root);
+ }
+ } else {
+ for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
+ btrfs_root_dec_send_in_progress(
+ sctx->clone_roots[i].root);
+ btrfs_put_root(sctx->clone_roots[i].root);
+ }
+
+ btrfs_root_dec_send_in_progress(send_root);
+ }
+ if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
+ btrfs_root_dec_send_in_progress(sctx->parent_root);
+ btrfs_put_root(sctx->parent_root);
+ }
+
+ kvfree(clone_sources_tmp);
+
+ if (sctx) {
+ if (sctx->send_filp)
+ fput(sctx->send_filp);
+
+ kvfree(sctx->clone_roots);
+ kfree(sctx->send_buf_pages);
+ kvfree(sctx->send_buf);
+ kvfree(sctx->verity_descriptor);
+
+ name_cache_free(sctx);
+
+ close_current_inode(sctx);
+
+ kfree(sctx);
+ }
+
+ return ret;
+}