summaryrefslogtreecommitdiffstats
path: root/fs/xfs/libxfs/xfs_ialloc.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/xfs/libxfs/xfs_ialloc.c')
-rw-r--r--fs/xfs/libxfs/xfs_ialloc.c2969
1 files changed, 2969 insertions, 0 deletions
diff --git a/fs/xfs/libxfs/xfs_ialloc.c b/fs/xfs/libxfs/xfs_ialloc.c
new file mode 100644
index 000000000..94db50eb7
--- /dev/null
+++ b/fs/xfs/libxfs/xfs_ialloc.c
@@ -0,0 +1,2969 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
+ * All Rights Reserved.
+ */
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_shared.h"
+#include "xfs_format.h"
+#include "xfs_log_format.h"
+#include "xfs_trans_resv.h"
+#include "xfs_bit.h"
+#include "xfs_mount.h"
+#include "xfs_inode.h"
+#include "xfs_btree.h"
+#include "xfs_ialloc.h"
+#include "xfs_ialloc_btree.h"
+#include "xfs_alloc.h"
+#include "xfs_errortag.h"
+#include "xfs_error.h"
+#include "xfs_bmap.h"
+#include "xfs_trans.h"
+#include "xfs_buf_item.h"
+#include "xfs_icreate_item.h"
+#include "xfs_icache.h"
+#include "xfs_trace.h"
+#include "xfs_log.h"
+#include "xfs_rmap.h"
+#include "xfs_ag.h"
+
+/*
+ * Lookup a record by ino in the btree given by cur.
+ */
+int /* error */
+xfs_inobt_lookup(
+ struct xfs_btree_cur *cur, /* btree cursor */
+ xfs_agino_t ino, /* starting inode of chunk */
+ xfs_lookup_t dir, /* <=, >=, == */
+ int *stat) /* success/failure */
+{
+ cur->bc_rec.i.ir_startino = ino;
+ cur->bc_rec.i.ir_holemask = 0;
+ cur->bc_rec.i.ir_count = 0;
+ cur->bc_rec.i.ir_freecount = 0;
+ cur->bc_rec.i.ir_free = 0;
+ return xfs_btree_lookup(cur, dir, stat);
+}
+
+/*
+ * Update the record referred to by cur to the value given.
+ * This either works (return 0) or gets an EFSCORRUPTED error.
+ */
+STATIC int /* error */
+xfs_inobt_update(
+ struct xfs_btree_cur *cur, /* btree cursor */
+ xfs_inobt_rec_incore_t *irec) /* btree record */
+{
+ union xfs_btree_rec rec;
+
+ rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
+ if (xfs_has_sparseinodes(cur->bc_mp)) {
+ rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
+ rec.inobt.ir_u.sp.ir_count = irec->ir_count;
+ rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
+ } else {
+ /* ir_holemask/ir_count not supported on-disk */
+ rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
+ }
+ rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
+ return xfs_btree_update(cur, &rec);
+}
+
+/* Convert on-disk btree record to incore inobt record. */
+void
+xfs_inobt_btrec_to_irec(
+ struct xfs_mount *mp,
+ const union xfs_btree_rec *rec,
+ struct xfs_inobt_rec_incore *irec)
+{
+ irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
+ if (xfs_has_sparseinodes(mp)) {
+ irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
+ irec->ir_count = rec->inobt.ir_u.sp.ir_count;
+ irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
+ } else {
+ /*
+ * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
+ * values for full inode chunks.
+ */
+ irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
+ irec->ir_count = XFS_INODES_PER_CHUNK;
+ irec->ir_freecount =
+ be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
+ }
+ irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
+}
+
+/*
+ * Get the data from the pointed-to record.
+ */
+int
+xfs_inobt_get_rec(
+ struct xfs_btree_cur *cur,
+ struct xfs_inobt_rec_incore *irec,
+ int *stat)
+{
+ struct xfs_mount *mp = cur->bc_mp;
+ union xfs_btree_rec *rec;
+ int error;
+ uint64_t realfree;
+
+ error = xfs_btree_get_rec(cur, &rec, stat);
+ if (error || *stat == 0)
+ return error;
+
+ xfs_inobt_btrec_to_irec(mp, rec, irec);
+
+ if (!xfs_verify_agino(cur->bc_ag.pag, irec->ir_startino))
+ goto out_bad_rec;
+ if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
+ irec->ir_count > XFS_INODES_PER_CHUNK)
+ goto out_bad_rec;
+ if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
+ goto out_bad_rec;
+
+ /* if there are no holes, return the first available offset */
+ if (!xfs_inobt_issparse(irec->ir_holemask))
+ realfree = irec->ir_free;
+ else
+ realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
+ if (hweight64(realfree) != irec->ir_freecount)
+ goto out_bad_rec;
+
+ return 0;
+
+out_bad_rec:
+ xfs_warn(mp,
+ "%s Inode BTree record corruption in AG %d detected!",
+ cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free",
+ cur->bc_ag.pag->pag_agno);
+ xfs_warn(mp,
+"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
+ irec->ir_startino, irec->ir_count, irec->ir_freecount,
+ irec->ir_free, irec->ir_holemask);
+ return -EFSCORRUPTED;
+}
+
+/*
+ * Insert a single inobt record. Cursor must already point to desired location.
+ */
+int
+xfs_inobt_insert_rec(
+ struct xfs_btree_cur *cur,
+ uint16_t holemask,
+ uint8_t count,
+ int32_t freecount,
+ xfs_inofree_t free,
+ int *stat)
+{
+ cur->bc_rec.i.ir_holemask = holemask;
+ cur->bc_rec.i.ir_count = count;
+ cur->bc_rec.i.ir_freecount = freecount;
+ cur->bc_rec.i.ir_free = free;
+ return xfs_btree_insert(cur, stat);
+}
+
+/*
+ * Insert records describing a newly allocated inode chunk into the inobt.
+ */
+STATIC int
+xfs_inobt_insert(
+ struct xfs_mount *mp,
+ struct xfs_trans *tp,
+ struct xfs_buf *agbp,
+ struct xfs_perag *pag,
+ xfs_agino_t newino,
+ xfs_agino_t newlen,
+ xfs_btnum_t btnum)
+{
+ struct xfs_btree_cur *cur;
+ xfs_agino_t thisino;
+ int i;
+ int error;
+
+ cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
+
+ for (thisino = newino;
+ thisino < newino + newlen;
+ thisino += XFS_INODES_PER_CHUNK) {
+ error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
+ if (error) {
+ xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
+ return error;
+ }
+ ASSERT(i == 0);
+
+ error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
+ XFS_INODES_PER_CHUNK,
+ XFS_INODES_PER_CHUNK,
+ XFS_INOBT_ALL_FREE, &i);
+ if (error) {
+ xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
+ return error;
+ }
+ ASSERT(i == 1);
+ }
+
+ xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
+
+ return 0;
+}
+
+/*
+ * Verify that the number of free inodes in the AGI is correct.
+ */
+#ifdef DEBUG
+static int
+xfs_check_agi_freecount(
+ struct xfs_btree_cur *cur)
+{
+ if (cur->bc_nlevels == 1) {
+ xfs_inobt_rec_incore_t rec;
+ int freecount = 0;
+ int error;
+ int i;
+
+ error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
+ if (error)
+ return error;
+
+ do {
+ error = xfs_inobt_get_rec(cur, &rec, &i);
+ if (error)
+ return error;
+
+ if (i) {
+ freecount += rec.ir_freecount;
+ error = xfs_btree_increment(cur, 0, &i);
+ if (error)
+ return error;
+ }
+ } while (i == 1);
+
+ if (!xfs_is_shutdown(cur->bc_mp))
+ ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
+ }
+ return 0;
+}
+#else
+#define xfs_check_agi_freecount(cur) 0
+#endif
+
+/*
+ * Initialise a new set of inodes. When called without a transaction context
+ * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
+ * than logging them (which in a transaction context puts them into the AIL
+ * for writeback rather than the xfsbufd queue).
+ */
+int
+xfs_ialloc_inode_init(
+ struct xfs_mount *mp,
+ struct xfs_trans *tp,
+ struct list_head *buffer_list,
+ int icount,
+ xfs_agnumber_t agno,
+ xfs_agblock_t agbno,
+ xfs_agblock_t length,
+ unsigned int gen)
+{
+ struct xfs_buf *fbuf;
+ struct xfs_dinode *free;
+ int nbufs;
+ int version;
+ int i, j;
+ xfs_daddr_t d;
+ xfs_ino_t ino = 0;
+ int error;
+
+ /*
+ * Loop over the new block(s), filling in the inodes. For small block
+ * sizes, manipulate the inodes in buffers which are multiples of the
+ * blocks size.
+ */
+ nbufs = length / M_IGEO(mp)->blocks_per_cluster;
+
+ /*
+ * Figure out what version number to use in the inodes we create. If
+ * the superblock version has caught up to the one that supports the new
+ * inode format, then use the new inode version. Otherwise use the old
+ * version so that old kernels will continue to be able to use the file
+ * system.
+ *
+ * For v3 inodes, we also need to write the inode number into the inode,
+ * so calculate the first inode number of the chunk here as
+ * XFS_AGB_TO_AGINO() only works within a filesystem block, not
+ * across multiple filesystem blocks (such as a cluster) and so cannot
+ * be used in the cluster buffer loop below.
+ *
+ * Further, because we are writing the inode directly into the buffer
+ * and calculating a CRC on the entire inode, we have ot log the entire
+ * inode so that the entire range the CRC covers is present in the log.
+ * That means for v3 inode we log the entire buffer rather than just the
+ * inode cores.
+ */
+ if (xfs_has_v3inodes(mp)) {
+ version = 3;
+ ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
+
+ /*
+ * log the initialisation that is about to take place as an
+ * logical operation. This means the transaction does not
+ * need to log the physical changes to the inode buffers as log
+ * recovery will know what initialisation is actually needed.
+ * Hence we only need to log the buffers as "ordered" buffers so
+ * they track in the AIL as if they were physically logged.
+ */
+ if (tp)
+ xfs_icreate_log(tp, agno, agbno, icount,
+ mp->m_sb.sb_inodesize, length, gen);
+ } else
+ version = 2;
+
+ for (j = 0; j < nbufs; j++) {
+ /*
+ * Get the block.
+ */
+ d = XFS_AGB_TO_DADDR(mp, agno, agbno +
+ (j * M_IGEO(mp)->blocks_per_cluster));
+ error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
+ mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
+ XBF_UNMAPPED, &fbuf);
+ if (error)
+ return error;
+
+ /* Initialize the inode buffers and log them appropriately. */
+ fbuf->b_ops = &xfs_inode_buf_ops;
+ xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
+ for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
+ int ioffset = i << mp->m_sb.sb_inodelog;
+
+ free = xfs_make_iptr(mp, fbuf, i);
+ free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
+ free->di_version = version;
+ free->di_gen = cpu_to_be32(gen);
+ free->di_next_unlinked = cpu_to_be32(NULLAGINO);
+
+ if (version == 3) {
+ free->di_ino = cpu_to_be64(ino);
+ ino++;
+ uuid_copy(&free->di_uuid,
+ &mp->m_sb.sb_meta_uuid);
+ xfs_dinode_calc_crc(mp, free);
+ } else if (tp) {
+ /* just log the inode core */
+ xfs_trans_log_buf(tp, fbuf, ioffset,
+ ioffset + XFS_DINODE_SIZE(mp) - 1);
+ }
+ }
+
+ if (tp) {
+ /*
+ * Mark the buffer as an inode allocation buffer so it
+ * sticks in AIL at the point of this allocation
+ * transaction. This ensures the they are on disk before
+ * the tail of the log can be moved past this
+ * transaction (i.e. by preventing relogging from moving
+ * it forward in the log).
+ */
+ xfs_trans_inode_alloc_buf(tp, fbuf);
+ if (version == 3) {
+ /*
+ * Mark the buffer as ordered so that they are
+ * not physically logged in the transaction but
+ * still tracked in the AIL as part of the
+ * transaction and pin the log appropriately.
+ */
+ xfs_trans_ordered_buf(tp, fbuf);
+ }
+ } else {
+ fbuf->b_flags |= XBF_DONE;
+ xfs_buf_delwri_queue(fbuf, buffer_list);
+ xfs_buf_relse(fbuf);
+ }
+ }
+ return 0;
+}
+
+/*
+ * Align startino and allocmask for a recently allocated sparse chunk such that
+ * they are fit for insertion (or merge) into the on-disk inode btrees.
+ *
+ * Background:
+ *
+ * When enabled, sparse inode support increases the inode alignment from cluster
+ * size to inode chunk size. This means that the minimum range between two
+ * non-adjacent inode records in the inobt is large enough for a full inode
+ * record. This allows for cluster sized, cluster aligned block allocation
+ * without need to worry about whether the resulting inode record overlaps with
+ * another record in the tree. Without this basic rule, we would have to deal
+ * with the consequences of overlap by potentially undoing recent allocations in
+ * the inode allocation codepath.
+ *
+ * Because of this alignment rule (which is enforced on mount), there are two
+ * inobt possibilities for newly allocated sparse chunks. One is that the
+ * aligned inode record for the chunk covers a range of inodes not already
+ * covered in the inobt (i.e., it is safe to insert a new sparse record). The
+ * other is that a record already exists at the aligned startino that considers
+ * the newly allocated range as sparse. In the latter case, record content is
+ * merged in hope that sparse inode chunks fill to full chunks over time.
+ */
+STATIC void
+xfs_align_sparse_ino(
+ struct xfs_mount *mp,
+ xfs_agino_t *startino,
+ uint16_t *allocmask)
+{
+ xfs_agblock_t agbno;
+ xfs_agblock_t mod;
+ int offset;
+
+ agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
+ mod = agbno % mp->m_sb.sb_inoalignmt;
+ if (!mod)
+ return;
+
+ /* calculate the inode offset and align startino */
+ offset = XFS_AGB_TO_AGINO(mp, mod);
+ *startino -= offset;
+
+ /*
+ * Since startino has been aligned down, left shift allocmask such that
+ * it continues to represent the same physical inodes relative to the
+ * new startino.
+ */
+ *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
+}
+
+/*
+ * Determine whether the source inode record can merge into the target. Both
+ * records must be sparse, the inode ranges must match and there must be no
+ * allocation overlap between the records.
+ */
+STATIC bool
+__xfs_inobt_can_merge(
+ struct xfs_inobt_rec_incore *trec, /* tgt record */
+ struct xfs_inobt_rec_incore *srec) /* src record */
+{
+ uint64_t talloc;
+ uint64_t salloc;
+
+ /* records must cover the same inode range */
+ if (trec->ir_startino != srec->ir_startino)
+ return false;
+
+ /* both records must be sparse */
+ if (!xfs_inobt_issparse(trec->ir_holemask) ||
+ !xfs_inobt_issparse(srec->ir_holemask))
+ return false;
+
+ /* both records must track some inodes */
+ if (!trec->ir_count || !srec->ir_count)
+ return false;
+
+ /* can't exceed capacity of a full record */
+ if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
+ return false;
+
+ /* verify there is no allocation overlap */
+ talloc = xfs_inobt_irec_to_allocmask(trec);
+ salloc = xfs_inobt_irec_to_allocmask(srec);
+ if (talloc & salloc)
+ return false;
+
+ return true;
+}
+
+/*
+ * Merge the source inode record into the target. The caller must call
+ * __xfs_inobt_can_merge() to ensure the merge is valid.
+ */
+STATIC void
+__xfs_inobt_rec_merge(
+ struct xfs_inobt_rec_incore *trec, /* target */
+ struct xfs_inobt_rec_incore *srec) /* src */
+{
+ ASSERT(trec->ir_startino == srec->ir_startino);
+
+ /* combine the counts */
+ trec->ir_count += srec->ir_count;
+ trec->ir_freecount += srec->ir_freecount;
+
+ /*
+ * Merge the holemask and free mask. For both fields, 0 bits refer to
+ * allocated inodes. We combine the allocated ranges with bitwise AND.
+ */
+ trec->ir_holemask &= srec->ir_holemask;
+ trec->ir_free &= srec->ir_free;
+}
+
+/*
+ * Insert a new sparse inode chunk into the associated inode btree. The inode
+ * record for the sparse chunk is pre-aligned to a startino that should match
+ * any pre-existing sparse inode record in the tree. This allows sparse chunks
+ * to fill over time.
+ *
+ * This function supports two modes of handling preexisting records depending on
+ * the merge flag. If merge is true, the provided record is merged with the
+ * existing record and updated in place. The merged record is returned in nrec.
+ * If merge is false, an existing record is replaced with the provided record.
+ * If no preexisting record exists, the provided record is always inserted.
+ *
+ * It is considered corruption if a merge is requested and not possible. Given
+ * the sparse inode alignment constraints, this should never happen.
+ */
+STATIC int
+xfs_inobt_insert_sprec(
+ struct xfs_mount *mp,
+ struct xfs_trans *tp,
+ struct xfs_buf *agbp,
+ struct xfs_perag *pag,
+ int btnum,
+ struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
+ bool merge) /* merge or replace */
+{
+ struct xfs_btree_cur *cur;
+ int error;
+ int i;
+ struct xfs_inobt_rec_incore rec;
+
+ cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
+
+ /* the new record is pre-aligned so we know where to look */
+ error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
+ if (error)
+ goto error;
+ /* if nothing there, insert a new record and return */
+ if (i == 0) {
+ error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
+ nrec->ir_count, nrec->ir_freecount,
+ nrec->ir_free, &i);
+ if (error)
+ goto error;
+ if (XFS_IS_CORRUPT(mp, i != 1)) {
+ error = -EFSCORRUPTED;
+ goto error;
+ }
+
+ goto out;
+ }
+
+ /*
+ * A record exists at this startino. Merge or replace the record
+ * depending on what we've been asked to do.
+ */
+ if (merge) {
+ error = xfs_inobt_get_rec(cur, &rec, &i);
+ if (error)
+ goto error;
+ if (XFS_IS_CORRUPT(mp, i != 1)) {
+ error = -EFSCORRUPTED;
+ goto error;
+ }
+ if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
+ error = -EFSCORRUPTED;
+ goto error;
+ }
+
+ /*
+ * This should never fail. If we have coexisting records that
+ * cannot merge, something is seriously wrong.
+ */
+ if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
+ error = -EFSCORRUPTED;
+ goto error;
+ }
+
+ trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
+ rec.ir_holemask, nrec->ir_startino,
+ nrec->ir_holemask);
+
+ /* merge to nrec to output the updated record */
+ __xfs_inobt_rec_merge(nrec, &rec);
+
+ trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
+ nrec->ir_holemask);
+
+ error = xfs_inobt_rec_check_count(mp, nrec);
+ if (error)
+ goto error;
+ }
+
+ error = xfs_inobt_update(cur, nrec);
+ if (error)
+ goto error;
+
+out:
+ xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
+ return 0;
+error:
+ xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
+ return error;
+}
+
+/*
+ * Allocate new inodes in the allocation group specified by agbp. Returns 0 if
+ * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
+ * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
+ * inode count threshold, or the usual negative error code for other errors.
+ */
+STATIC int
+xfs_ialloc_ag_alloc(
+ struct xfs_trans *tp,
+ struct xfs_buf *agbp,
+ struct xfs_perag *pag)
+{
+ struct xfs_agi *agi;
+ struct xfs_alloc_arg args;
+ int error;
+ xfs_agino_t newino; /* new first inode's number */
+ xfs_agino_t newlen; /* new number of inodes */
+ int isaligned = 0; /* inode allocation at stripe */
+ /* unit boundary */
+ /* init. to full chunk */
+ struct xfs_inobt_rec_incore rec;
+ struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
+ uint16_t allocmask = (uint16_t) -1;
+ int do_sparse = 0;
+
+ memset(&args, 0, sizeof(args));
+ args.tp = tp;
+ args.mp = tp->t_mountp;
+ args.fsbno = NULLFSBLOCK;
+ args.oinfo = XFS_RMAP_OINFO_INODES;
+
+#ifdef DEBUG
+ /* randomly do sparse inode allocations */
+ if (xfs_has_sparseinodes(tp->t_mountp) &&
+ igeo->ialloc_min_blks < igeo->ialloc_blks)
+ do_sparse = prandom_u32_max(2);
+#endif
+
+ /*
+ * Locking will ensure that we don't have two callers in here
+ * at one time.
+ */
+ newlen = igeo->ialloc_inos;
+ if (igeo->maxicount &&
+ percpu_counter_read_positive(&args.mp->m_icount) + newlen >
+ igeo->maxicount)
+ return -ENOSPC;
+ args.minlen = args.maxlen = igeo->ialloc_blks;
+ /*
+ * First try to allocate inodes contiguous with the last-allocated
+ * chunk of inodes. If the filesystem is striped, this will fill
+ * an entire stripe unit with inodes.
+ */
+ agi = agbp->b_addr;
+ newino = be32_to_cpu(agi->agi_newino);
+ args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
+ igeo->ialloc_blks;
+ if (do_sparse)
+ goto sparse_alloc;
+ if (likely(newino != NULLAGINO &&
+ (args.agbno < be32_to_cpu(agi->agi_length)))) {
+ args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
+ args.type = XFS_ALLOCTYPE_THIS_BNO;
+ args.prod = 1;
+
+ /*
+ * We need to take into account alignment here to ensure that
+ * we don't modify the free list if we fail to have an exact
+ * block. If we don't have an exact match, and every oher
+ * attempt allocation attempt fails, we'll end up cancelling
+ * a dirty transaction and shutting down.
+ *
+ * For an exact allocation, alignment must be 1,
+ * however we need to take cluster alignment into account when
+ * fixing up the freelist. Use the minalignslop field to
+ * indicate that extra blocks might be required for alignment,
+ * but not to use them in the actual exact allocation.
+ */
+ args.alignment = 1;
+ args.minalignslop = igeo->cluster_align - 1;
+
+ /* Allow space for the inode btree to split. */
+ args.minleft = igeo->inobt_maxlevels;
+ if ((error = xfs_alloc_vextent(&args)))
+ return error;
+
+ /*
+ * This request might have dirtied the transaction if the AG can
+ * satisfy the request, but the exact block was not available.
+ * If the allocation did fail, subsequent requests will relax
+ * the exact agbno requirement and increase the alignment
+ * instead. It is critical that the total size of the request
+ * (len + alignment + slop) does not increase from this point
+ * on, so reset minalignslop to ensure it is not included in
+ * subsequent requests.
+ */
+ args.minalignslop = 0;
+ }
+
+ if (unlikely(args.fsbno == NULLFSBLOCK)) {
+ /*
+ * Set the alignment for the allocation.
+ * If stripe alignment is turned on then align at stripe unit
+ * boundary.
+ * If the cluster size is smaller than a filesystem block
+ * then we're doing I/O for inodes in filesystem block size
+ * pieces, so don't need alignment anyway.
+ */
+ isaligned = 0;
+ if (igeo->ialloc_align) {
+ ASSERT(!xfs_has_noalign(args.mp));
+ args.alignment = args.mp->m_dalign;
+ isaligned = 1;
+ } else
+ args.alignment = igeo->cluster_align;
+ /*
+ * Need to figure out where to allocate the inode blocks.
+ * Ideally they should be spaced out through the a.g.
+ * For now, just allocate blocks up front.
+ */
+ args.agbno = be32_to_cpu(agi->agi_root);
+ args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
+ /*
+ * Allocate a fixed-size extent of inodes.
+ */
+ args.type = XFS_ALLOCTYPE_NEAR_BNO;
+ args.prod = 1;
+ /*
+ * Allow space for the inode btree to split.
+ */
+ args.minleft = igeo->inobt_maxlevels;
+ if ((error = xfs_alloc_vextent(&args)))
+ return error;
+ }
+
+ /*
+ * If stripe alignment is turned on, then try again with cluster
+ * alignment.
+ */
+ if (isaligned && args.fsbno == NULLFSBLOCK) {
+ args.type = XFS_ALLOCTYPE_NEAR_BNO;
+ args.agbno = be32_to_cpu(agi->agi_root);
+ args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
+ args.alignment = igeo->cluster_align;
+ if ((error = xfs_alloc_vextent(&args)))
+ return error;
+ }
+
+ /*
+ * Finally, try a sparse allocation if the filesystem supports it and
+ * the sparse allocation length is smaller than a full chunk.
+ */
+ if (xfs_has_sparseinodes(args.mp) &&
+ igeo->ialloc_min_blks < igeo->ialloc_blks &&
+ args.fsbno == NULLFSBLOCK) {
+sparse_alloc:
+ args.type = XFS_ALLOCTYPE_NEAR_BNO;
+ args.agbno = be32_to_cpu(agi->agi_root);
+ args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
+ args.alignment = args.mp->m_sb.sb_spino_align;
+ args.prod = 1;
+
+ args.minlen = igeo->ialloc_min_blks;
+ args.maxlen = args.minlen;
+
+ /*
+ * The inode record will be aligned to full chunk size. We must
+ * prevent sparse allocation from AG boundaries that result in
+ * invalid inode records, such as records that start at agbno 0
+ * or extend beyond the AG.
+ *
+ * Set min agbno to the first aligned, non-zero agbno and max to
+ * the last aligned agbno that is at least one full chunk from
+ * the end of the AG.
+ */
+ args.min_agbno = args.mp->m_sb.sb_inoalignmt;
+ args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
+ args.mp->m_sb.sb_inoalignmt) -
+ igeo->ialloc_blks;
+
+ error = xfs_alloc_vextent(&args);
+ if (error)
+ return error;
+
+ newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
+ ASSERT(newlen <= XFS_INODES_PER_CHUNK);
+ allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
+ }
+
+ if (args.fsbno == NULLFSBLOCK)
+ return -EAGAIN;
+
+ ASSERT(args.len == args.minlen);
+
+ /*
+ * Stamp and write the inode buffers.
+ *
+ * Seed the new inode cluster with a random generation number. This
+ * prevents short-term reuse of generation numbers if a chunk is
+ * freed and then immediately reallocated. We use random numbers
+ * rather than a linear progression to prevent the next generation
+ * number from being easily guessable.
+ */
+ error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
+ args.agbno, args.len, get_random_u32());
+
+ if (error)
+ return error;
+ /*
+ * Convert the results.
+ */
+ newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
+
+ if (xfs_inobt_issparse(~allocmask)) {
+ /*
+ * We've allocated a sparse chunk. Align the startino and mask.
+ */
+ xfs_align_sparse_ino(args.mp, &newino, &allocmask);
+
+ rec.ir_startino = newino;
+ rec.ir_holemask = ~allocmask;
+ rec.ir_count = newlen;
+ rec.ir_freecount = newlen;
+ rec.ir_free = XFS_INOBT_ALL_FREE;
+
+ /*
+ * Insert the sparse record into the inobt and allow for a merge
+ * if necessary. If a merge does occur, rec is updated to the
+ * merged record.
+ */
+ error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
+ XFS_BTNUM_INO, &rec, true);
+ if (error == -EFSCORRUPTED) {
+ xfs_alert(args.mp,
+ "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
+ XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
+ rec.ir_startino),
+ rec.ir_holemask, rec.ir_count);
+ xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
+ }
+ if (error)
+ return error;
+
+ /*
+ * We can't merge the part we've just allocated as for the inobt
+ * due to finobt semantics. The original record may or may not
+ * exist independent of whether physical inodes exist in this
+ * sparse chunk.
+ *
+ * We must update the finobt record based on the inobt record.
+ * rec contains the fully merged and up to date inobt record
+ * from the previous call. Set merge false to replace any
+ * existing record with this one.
+ */
+ if (xfs_has_finobt(args.mp)) {
+ error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
+ XFS_BTNUM_FINO, &rec, false);
+ if (error)
+ return error;
+ }
+ } else {
+ /* full chunk - insert new records to both btrees */
+ error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino, newlen,
+ XFS_BTNUM_INO);
+ if (error)
+ return error;
+
+ if (xfs_has_finobt(args.mp)) {
+ error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino,
+ newlen, XFS_BTNUM_FINO);
+ if (error)
+ return error;
+ }
+ }
+
+ /*
+ * Update AGI counts and newino.
+ */
+ be32_add_cpu(&agi->agi_count, newlen);
+ be32_add_cpu(&agi->agi_freecount, newlen);
+ pag->pagi_freecount += newlen;
+ pag->pagi_count += newlen;
+ agi->agi_newino = cpu_to_be32(newino);
+
+ /*
+ * Log allocation group header fields
+ */
+ xfs_ialloc_log_agi(tp, agbp,
+ XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
+ /*
+ * Modify/log superblock values for inode count and inode free count.
+ */
+ xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
+ xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
+ return 0;
+}
+
+/*
+ * Try to retrieve the next record to the left/right from the current one.
+ */
+STATIC int
+xfs_ialloc_next_rec(
+ struct xfs_btree_cur *cur,
+ xfs_inobt_rec_incore_t *rec,
+ int *done,
+ int left)
+{
+ int error;
+ int i;
+
+ if (left)
+ error = xfs_btree_decrement(cur, 0, &i);
+ else
+ error = xfs_btree_increment(cur, 0, &i);
+
+ if (error)
+ return error;
+ *done = !i;
+ if (i) {
+ error = xfs_inobt_get_rec(cur, rec, &i);
+ if (error)
+ return error;
+ if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
+ return -EFSCORRUPTED;
+ }
+
+ return 0;
+}
+
+STATIC int
+xfs_ialloc_get_rec(
+ struct xfs_btree_cur *cur,
+ xfs_agino_t agino,
+ xfs_inobt_rec_incore_t *rec,
+ int *done)
+{
+ int error;
+ int i;
+
+ error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
+ if (error)
+ return error;
+ *done = !i;
+ if (i) {
+ error = xfs_inobt_get_rec(cur, rec, &i);
+ if (error)
+ return error;
+ if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
+ return -EFSCORRUPTED;
+ }
+
+ return 0;
+}
+
+/*
+ * Return the offset of the first free inode in the record. If the inode chunk
+ * is sparsely allocated, we convert the record holemask to inode granularity
+ * and mask off the unallocated regions from the inode free mask.
+ */
+STATIC int
+xfs_inobt_first_free_inode(
+ struct xfs_inobt_rec_incore *rec)
+{
+ xfs_inofree_t realfree;
+
+ /* if there are no holes, return the first available offset */
+ if (!xfs_inobt_issparse(rec->ir_holemask))
+ return xfs_lowbit64(rec->ir_free);
+
+ realfree = xfs_inobt_irec_to_allocmask(rec);
+ realfree &= rec->ir_free;
+
+ return xfs_lowbit64(realfree);
+}
+
+/*
+ * Allocate an inode using the inobt-only algorithm.
+ */
+STATIC int
+xfs_dialloc_ag_inobt(
+ struct xfs_trans *tp,
+ struct xfs_buf *agbp,
+ struct xfs_perag *pag,
+ xfs_ino_t parent,
+ xfs_ino_t *inop)
+{
+ struct xfs_mount *mp = tp->t_mountp;
+ struct xfs_agi *agi = agbp->b_addr;
+ xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
+ xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
+ struct xfs_btree_cur *cur, *tcur;
+ struct xfs_inobt_rec_incore rec, trec;
+ xfs_ino_t ino;
+ int error;
+ int offset;
+ int i, j;
+ int searchdistance = 10;
+
+ ASSERT(pag->pagi_init);
+ ASSERT(pag->pagi_inodeok);
+ ASSERT(pag->pagi_freecount > 0);
+
+ restart_pagno:
+ cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
+ /*
+ * If pagino is 0 (this is the root inode allocation) use newino.
+ * This must work because we've just allocated some.
+ */
+ if (!pagino)
+ pagino = be32_to_cpu(agi->agi_newino);
+
+ error = xfs_check_agi_freecount(cur);
+ if (error)
+ goto error0;
+
+ /*
+ * If in the same AG as the parent, try to get near the parent.
+ */
+ if (pagno == pag->pag_agno) {
+ int doneleft; /* done, to the left */
+ int doneright; /* done, to the right */
+
+ error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
+ if (error)
+ goto error0;
+ if (XFS_IS_CORRUPT(mp, i != 1)) {
+ error = -EFSCORRUPTED;
+ goto error0;
+ }
+
+ error = xfs_inobt_get_rec(cur, &rec, &j);
+ if (error)
+ goto error0;
+ if (XFS_IS_CORRUPT(mp, j != 1)) {
+ error = -EFSCORRUPTED;
+ goto error0;
+ }
+
+ if (rec.ir_freecount > 0) {
+ /*
+ * Found a free inode in the same chunk
+ * as the parent, done.
+ */
+ goto alloc_inode;
+ }
+
+
+ /*
+ * In the same AG as parent, but parent's chunk is full.
+ */
+
+ /* duplicate the cursor, search left & right simultaneously */
+ error = xfs_btree_dup_cursor(cur, &tcur);
+ if (error)
+ goto error0;
+
+ /*
+ * Skip to last blocks looked up if same parent inode.
+ */
+ if (pagino != NULLAGINO &&
+ pag->pagl_pagino == pagino &&
+ pag->pagl_leftrec != NULLAGINO &&
+ pag->pagl_rightrec != NULLAGINO) {
+ error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
+ &trec, &doneleft);
+ if (error)
+ goto error1;
+
+ error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
+ &rec, &doneright);
+ if (error)
+ goto error1;
+ } else {
+ /* search left with tcur, back up 1 record */
+ error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
+ if (error)
+ goto error1;
+
+ /* search right with cur, go forward 1 record. */
+ error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
+ if (error)
+ goto error1;
+ }
+
+ /*
+ * Loop until we find an inode chunk with a free inode.
+ */
+ while (--searchdistance > 0 && (!doneleft || !doneright)) {
+ int useleft; /* using left inode chunk this time */
+
+ /* figure out the closer block if both are valid. */
+ if (!doneleft && !doneright) {
+ useleft = pagino -
+ (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
+ rec.ir_startino - pagino;
+ } else {
+ useleft = !doneleft;
+ }
+
+ /* free inodes to the left? */
+ if (useleft && trec.ir_freecount) {
+ xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
+ cur = tcur;
+
+ pag->pagl_leftrec = trec.ir_startino;
+ pag->pagl_rightrec = rec.ir_startino;
+ pag->pagl_pagino = pagino;
+ rec = trec;
+ goto alloc_inode;
+ }
+
+ /* free inodes to the right? */
+ if (!useleft && rec.ir_freecount) {
+ xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
+
+ pag->pagl_leftrec = trec.ir_startino;
+ pag->pagl_rightrec = rec.ir_startino;
+ pag->pagl_pagino = pagino;
+ goto alloc_inode;
+ }
+
+ /* get next record to check */
+ if (useleft) {
+ error = xfs_ialloc_next_rec(tcur, &trec,
+ &doneleft, 1);
+ } else {
+ error = xfs_ialloc_next_rec(cur, &rec,
+ &doneright, 0);
+ }
+ if (error)
+ goto error1;
+ }
+
+ if (searchdistance <= 0) {
+ /*
+ * Not in range - save last search
+ * location and allocate a new inode
+ */
+ xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
+ pag->pagl_leftrec = trec.ir_startino;
+ pag->pagl_rightrec = rec.ir_startino;
+ pag->pagl_pagino = pagino;
+
+ } else {
+ /*
+ * We've reached the end of the btree. because
+ * we are only searching a small chunk of the
+ * btree each search, there is obviously free
+ * inodes closer to the parent inode than we
+ * are now. restart the search again.
+ */
+ pag->pagl_pagino = NULLAGINO;
+ pag->pagl_leftrec = NULLAGINO;
+ pag->pagl_rightrec = NULLAGINO;
+ xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
+ xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
+ goto restart_pagno;
+ }
+ }
+
+ /*
+ * In a different AG from the parent.
+ * See if the most recently allocated block has any free.
+ */
+ if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
+ error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
+ XFS_LOOKUP_EQ, &i);
+ if (error)
+ goto error0;
+
+ if (i == 1) {
+ error = xfs_inobt_get_rec(cur, &rec, &j);
+ if (error)
+ goto error0;
+
+ if (j == 1 && rec.ir_freecount > 0) {
+ /*
+ * The last chunk allocated in the group
+ * still has a free inode.
+ */
+ goto alloc_inode;
+ }
+ }
+ }
+
+ /*
+ * None left in the last group, search the whole AG
+ */
+ error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
+ if (error)
+ goto error0;
+ if (XFS_IS_CORRUPT(mp, i != 1)) {
+ error = -EFSCORRUPTED;
+ goto error0;
+ }
+
+ for (;;) {
+ error = xfs_inobt_get_rec(cur, &rec, &i);
+ if (error)
+ goto error0;
+ if (XFS_IS_CORRUPT(mp, i != 1)) {
+ error = -EFSCORRUPTED;
+ goto error0;
+ }
+ if (rec.ir_freecount > 0)
+ break;
+ error = xfs_btree_increment(cur, 0, &i);
+ if (error)
+ goto error0;
+ if (XFS_IS_CORRUPT(mp, i != 1)) {
+ error = -EFSCORRUPTED;
+ goto error0;
+ }
+ }
+
+alloc_inode:
+ offset = xfs_inobt_first_free_inode(&rec);
+ ASSERT(offset >= 0);
+ ASSERT(offset < XFS_INODES_PER_CHUNK);
+ ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
+ XFS_INODES_PER_CHUNK) == 0);
+ ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
+ rec.ir_free &= ~XFS_INOBT_MASK(offset);
+ rec.ir_freecount--;
+ error = xfs_inobt_update(cur, &rec);
+ if (error)
+ goto error0;
+ be32_add_cpu(&agi->agi_freecount, -1);
+ xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
+ pag->pagi_freecount--;
+
+ error = xfs_check_agi_freecount(cur);
+ if (error)
+ goto error0;
+
+ xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
+ xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
+ *inop = ino;
+ return 0;
+error1:
+ xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
+error0:
+ xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
+ return error;
+}
+
+/*
+ * Use the free inode btree to allocate an inode based on distance from the
+ * parent. Note that the provided cursor may be deleted and replaced.
+ */
+STATIC int
+xfs_dialloc_ag_finobt_near(
+ xfs_agino_t pagino,
+ struct xfs_btree_cur **ocur,
+ struct xfs_inobt_rec_incore *rec)
+{
+ struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
+ struct xfs_btree_cur *rcur; /* right search cursor */
+ struct xfs_inobt_rec_incore rrec;
+ int error;
+ int i, j;
+
+ error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
+ if (error)
+ return error;
+
+ if (i == 1) {
+ error = xfs_inobt_get_rec(lcur, rec, &i);
+ if (error)
+ return error;
+ if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
+ return -EFSCORRUPTED;
+
+ /*
+ * See if we've landed in the parent inode record. The finobt
+ * only tracks chunks with at least one free inode, so record
+ * existence is enough.
+ */
+ if (pagino >= rec->ir_startino &&
+ pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
+ return 0;
+ }
+
+ error = xfs_btree_dup_cursor(lcur, &rcur);
+ if (error)
+ return error;
+
+ error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
+ if (error)
+ goto error_rcur;
+ if (j == 1) {
+ error = xfs_inobt_get_rec(rcur, &rrec, &j);
+ if (error)
+ goto error_rcur;
+ if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
+ error = -EFSCORRUPTED;
+ goto error_rcur;
+ }
+ }
+
+ if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
+ error = -EFSCORRUPTED;
+ goto error_rcur;
+ }
+ if (i == 1 && j == 1) {
+ /*
+ * Both the left and right records are valid. Choose the closer
+ * inode chunk to the target.
+ */
+ if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
+ (rrec.ir_startino - pagino)) {
+ *rec = rrec;
+ xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
+ *ocur = rcur;
+ } else {
+ xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
+ }
+ } else if (j == 1) {
+ /* only the right record is valid */
+ *rec = rrec;
+ xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
+ *ocur = rcur;
+ } else if (i == 1) {
+ /* only the left record is valid */
+ xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
+ }
+
+ return 0;
+
+error_rcur:
+ xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
+ return error;
+}
+
+/*
+ * Use the free inode btree to find a free inode based on a newino hint. If
+ * the hint is NULL, find the first free inode in the AG.
+ */
+STATIC int
+xfs_dialloc_ag_finobt_newino(
+ struct xfs_agi *agi,
+ struct xfs_btree_cur *cur,
+ struct xfs_inobt_rec_incore *rec)
+{
+ int error;
+ int i;
+
+ if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
+ error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
+ XFS_LOOKUP_EQ, &i);
+ if (error)
+ return error;
+ if (i == 1) {
+ error = xfs_inobt_get_rec(cur, rec, &i);
+ if (error)
+ return error;
+ if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
+ return -EFSCORRUPTED;
+ return 0;
+ }
+ }
+
+ /*
+ * Find the first inode available in the AG.
+ */
+ error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
+ if (error)
+ return error;
+ if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
+ return -EFSCORRUPTED;
+
+ error = xfs_inobt_get_rec(cur, rec, &i);
+ if (error)
+ return error;
+ if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
+ return -EFSCORRUPTED;
+
+ return 0;
+}
+
+/*
+ * Update the inobt based on a modification made to the finobt. Also ensure that
+ * the records from both trees are equivalent post-modification.
+ */
+STATIC int
+xfs_dialloc_ag_update_inobt(
+ struct xfs_btree_cur *cur, /* inobt cursor */
+ struct xfs_inobt_rec_incore *frec, /* finobt record */
+ int offset) /* inode offset */
+{
+ struct xfs_inobt_rec_incore rec;
+ int error;
+ int i;
+
+ error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
+ if (error)
+ return error;
+ if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
+ return -EFSCORRUPTED;
+
+ error = xfs_inobt_get_rec(cur, &rec, &i);
+ if (error)
+ return error;
+ if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
+ return -EFSCORRUPTED;
+ ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
+ XFS_INODES_PER_CHUNK) == 0);
+
+ rec.ir_free &= ~XFS_INOBT_MASK(offset);
+ rec.ir_freecount--;
+
+ if (XFS_IS_CORRUPT(cur->bc_mp,
+ rec.ir_free != frec->ir_free ||
+ rec.ir_freecount != frec->ir_freecount))
+ return -EFSCORRUPTED;
+
+ return xfs_inobt_update(cur, &rec);
+}
+
+/*
+ * Allocate an inode using the free inode btree, if available. Otherwise, fall
+ * back to the inobt search algorithm.
+ *
+ * The caller selected an AG for us, and made sure that free inodes are
+ * available.
+ */
+static int
+xfs_dialloc_ag(
+ struct xfs_trans *tp,
+ struct xfs_buf *agbp,
+ struct xfs_perag *pag,
+ xfs_ino_t parent,
+ xfs_ino_t *inop)
+{
+ struct xfs_mount *mp = tp->t_mountp;
+ struct xfs_agi *agi = agbp->b_addr;
+ xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
+ xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
+ struct xfs_btree_cur *cur; /* finobt cursor */
+ struct xfs_btree_cur *icur; /* inobt cursor */
+ struct xfs_inobt_rec_incore rec;
+ xfs_ino_t ino;
+ int error;
+ int offset;
+ int i;
+
+ if (!xfs_has_finobt(mp))
+ return xfs_dialloc_ag_inobt(tp, agbp, pag, parent, inop);
+
+ /*
+ * If pagino is 0 (this is the root inode allocation) use newino.
+ * This must work because we've just allocated some.
+ */
+ if (!pagino)
+ pagino = be32_to_cpu(agi->agi_newino);
+
+ cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
+
+ error = xfs_check_agi_freecount(cur);
+ if (error)
+ goto error_cur;
+
+ /*
+ * The search algorithm depends on whether we're in the same AG as the
+ * parent. If so, find the closest available inode to the parent. If
+ * not, consider the agi hint or find the first free inode in the AG.
+ */
+ if (pag->pag_agno == pagno)
+ error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
+ else
+ error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
+ if (error)
+ goto error_cur;
+
+ offset = xfs_inobt_first_free_inode(&rec);
+ ASSERT(offset >= 0);
+ ASSERT(offset < XFS_INODES_PER_CHUNK);
+ ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
+ XFS_INODES_PER_CHUNK) == 0);
+ ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
+
+ /*
+ * Modify or remove the finobt record.
+ */
+ rec.ir_free &= ~XFS_INOBT_MASK(offset);
+ rec.ir_freecount--;
+ if (rec.ir_freecount)
+ error = xfs_inobt_update(cur, &rec);
+ else
+ error = xfs_btree_delete(cur, &i);
+ if (error)
+ goto error_cur;
+
+ /*
+ * The finobt has now been updated appropriately. We haven't updated the
+ * agi and superblock yet, so we can create an inobt cursor and validate
+ * the original freecount. If all is well, make the equivalent update to
+ * the inobt using the finobt record and offset information.
+ */
+ icur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
+
+ error = xfs_check_agi_freecount(icur);
+ if (error)
+ goto error_icur;
+
+ error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
+ if (error)
+ goto error_icur;
+
+ /*
+ * Both trees have now been updated. We must update the perag and
+ * superblock before we can check the freecount for each btree.
+ */
+ be32_add_cpu(&agi->agi_freecount, -1);
+ xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
+ pag->pagi_freecount--;
+
+ xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
+
+ error = xfs_check_agi_freecount(icur);
+ if (error)
+ goto error_icur;
+ error = xfs_check_agi_freecount(cur);
+ if (error)
+ goto error_icur;
+
+ xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
+ xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
+ *inop = ino;
+ return 0;
+
+error_icur:
+ xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
+error_cur:
+ xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
+ return error;
+}
+
+static int
+xfs_dialloc_roll(
+ struct xfs_trans **tpp,
+ struct xfs_buf *agibp)
+{
+ struct xfs_trans *tp = *tpp;
+ struct xfs_dquot_acct *dqinfo;
+ int error;
+
+ /*
+ * Hold to on to the agibp across the commit so no other allocation can
+ * come in and take the free inodes we just allocated for our caller.
+ */
+ xfs_trans_bhold(tp, agibp);
+
+ /*
+ * We want the quota changes to be associated with the next transaction,
+ * NOT this one. So, detach the dqinfo from this and attach it to the
+ * next transaction.
+ */
+ dqinfo = tp->t_dqinfo;
+ tp->t_dqinfo = NULL;
+
+ error = xfs_trans_roll(&tp);
+
+ /* Re-attach the quota info that we detached from prev trx. */
+ tp->t_dqinfo = dqinfo;
+
+ /*
+ * Join the buffer even on commit error so that the buffer is released
+ * when the caller cancels the transaction and doesn't have to handle
+ * this error case specially.
+ */
+ xfs_trans_bjoin(tp, agibp);
+ *tpp = tp;
+ return error;
+}
+
+static xfs_agnumber_t
+xfs_ialloc_next_ag(
+ xfs_mount_t *mp)
+{
+ xfs_agnumber_t agno;
+
+ spin_lock(&mp->m_agirotor_lock);
+ agno = mp->m_agirotor;
+ if (++mp->m_agirotor >= mp->m_maxagi)
+ mp->m_agirotor = 0;
+ spin_unlock(&mp->m_agirotor_lock);
+
+ return agno;
+}
+
+static bool
+xfs_dialloc_good_ag(
+ struct xfs_trans *tp,
+ struct xfs_perag *pag,
+ umode_t mode,
+ int flags,
+ bool ok_alloc)
+{
+ struct xfs_mount *mp = tp->t_mountp;
+ xfs_extlen_t ineed;
+ xfs_extlen_t longest = 0;
+ int needspace;
+ int error;
+
+ if (!pag->pagi_inodeok)
+ return false;
+
+ if (!pag->pagi_init) {
+ error = xfs_ialloc_read_agi(pag, tp, NULL);
+ if (error)
+ return false;
+ }
+
+ if (pag->pagi_freecount)
+ return true;
+ if (!ok_alloc)
+ return false;
+
+ if (!pag->pagf_init) {
+ error = xfs_alloc_read_agf(pag, tp, flags, NULL);
+ if (error)
+ return false;
+ }
+
+ /*
+ * Check that there is enough free space for the file plus a chunk of
+ * inodes if we need to allocate some. If this is the first pass across
+ * the AGs, take into account the potential space needed for alignment
+ * of inode chunks when checking the longest contiguous free space in
+ * the AG - this prevents us from getting ENOSPC because we have free
+ * space larger than ialloc_blks but alignment constraints prevent us
+ * from using it.
+ *
+ * If we can't find an AG with space for full alignment slack to be
+ * taken into account, we must be near ENOSPC in all AGs. Hence we
+ * don't include alignment for the second pass and so if we fail
+ * allocation due to alignment issues then it is most likely a real
+ * ENOSPC condition.
+ *
+ * XXX(dgc): this calculation is now bogus thanks to the per-ag
+ * reservations that xfs_alloc_fix_freelist() now does via
+ * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
+ * be more than large enough for the check below to succeed, but
+ * xfs_alloc_space_available() will fail because of the non-zero
+ * metadata reservation and hence we won't actually be able to allocate
+ * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
+ * because of this.
+ */
+ ineed = M_IGEO(mp)->ialloc_min_blks;
+ if (flags && ineed > 1)
+ ineed += M_IGEO(mp)->cluster_align;
+ longest = pag->pagf_longest;
+ if (!longest)
+ longest = pag->pagf_flcount > 0;
+ needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
+
+ if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
+ return false;
+ return true;
+}
+
+static int
+xfs_dialloc_try_ag(
+ struct xfs_trans **tpp,
+ struct xfs_perag *pag,
+ xfs_ino_t parent,
+ xfs_ino_t *new_ino,
+ bool ok_alloc)
+{
+ struct xfs_buf *agbp;
+ xfs_ino_t ino;
+ int error;
+
+ /*
+ * Then read in the AGI buffer and recheck with the AGI buffer
+ * lock held.
+ */
+ error = xfs_ialloc_read_agi(pag, *tpp, &agbp);
+ if (error)
+ return error;
+
+ if (!pag->pagi_freecount) {
+ if (!ok_alloc) {
+ error = -EAGAIN;
+ goto out_release;
+ }
+
+ error = xfs_ialloc_ag_alloc(*tpp, agbp, pag);
+ if (error < 0)
+ goto out_release;
+
+ /*
+ * We successfully allocated space for an inode cluster in this
+ * AG. Roll the transaction so that we can allocate one of the
+ * new inodes.
+ */
+ ASSERT(pag->pagi_freecount > 0);
+ error = xfs_dialloc_roll(tpp, agbp);
+ if (error)
+ goto out_release;
+ }
+
+ /* Allocate an inode in the found AG */
+ error = xfs_dialloc_ag(*tpp, agbp, pag, parent, &ino);
+ if (!error)
+ *new_ino = ino;
+ return error;
+
+out_release:
+ xfs_trans_brelse(*tpp, agbp);
+ return error;
+}
+
+/*
+ * Allocate an on-disk inode.
+ *
+ * Mode is used to tell whether the new inode is a directory and hence where to
+ * locate it. The on-disk inode that is allocated will be returned in @new_ino
+ * on success, otherwise an error will be set to indicate the failure (e.g.
+ * -ENOSPC).
+ */
+int
+xfs_dialloc(
+ struct xfs_trans **tpp,
+ xfs_ino_t parent,
+ umode_t mode,
+ xfs_ino_t *new_ino)
+{
+ struct xfs_mount *mp = (*tpp)->t_mountp;
+ xfs_agnumber_t agno;
+ int error = 0;
+ xfs_agnumber_t start_agno;
+ struct xfs_perag *pag;
+ struct xfs_ino_geometry *igeo = M_IGEO(mp);
+ bool ok_alloc = true;
+ int flags;
+ xfs_ino_t ino;
+
+ /*
+ * Directories, symlinks, and regular files frequently allocate at least
+ * one block, so factor that potential expansion when we examine whether
+ * an AG has enough space for file creation.
+ */
+ if (S_ISDIR(mode))
+ start_agno = xfs_ialloc_next_ag(mp);
+ else {
+ start_agno = XFS_INO_TO_AGNO(mp, parent);
+ if (start_agno >= mp->m_maxagi)
+ start_agno = 0;
+ }
+
+ /*
+ * If we have already hit the ceiling of inode blocks then clear
+ * ok_alloc so we scan all available agi structures for a free
+ * inode.
+ *
+ * Read rough value of mp->m_icount by percpu_counter_read_positive,
+ * which will sacrifice the preciseness but improve the performance.
+ */
+ if (igeo->maxicount &&
+ percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
+ > igeo->maxicount) {
+ ok_alloc = false;
+ }
+
+ /*
+ * Loop until we find an allocation group that either has free inodes
+ * or in which we can allocate some inodes. Iterate through the
+ * allocation groups upward, wrapping at the end.
+ */
+ agno = start_agno;
+ flags = XFS_ALLOC_FLAG_TRYLOCK;
+ for (;;) {
+ pag = xfs_perag_get(mp, agno);
+ if (xfs_dialloc_good_ag(*tpp, pag, mode, flags, ok_alloc)) {
+ error = xfs_dialloc_try_ag(tpp, pag, parent,
+ &ino, ok_alloc);
+ if (error != -EAGAIN)
+ break;
+ }
+
+ if (xfs_is_shutdown(mp)) {
+ error = -EFSCORRUPTED;
+ break;
+ }
+ if (++agno == mp->m_maxagi)
+ agno = 0;
+ if (agno == start_agno) {
+ if (!flags) {
+ error = -ENOSPC;
+ break;
+ }
+ flags = 0;
+ }
+ xfs_perag_put(pag);
+ }
+
+ if (!error)
+ *new_ino = ino;
+ xfs_perag_put(pag);
+ return error;
+}
+
+/*
+ * Free the blocks of an inode chunk. We must consider that the inode chunk
+ * might be sparse and only free the regions that are allocated as part of the
+ * chunk.
+ */
+STATIC void
+xfs_difree_inode_chunk(
+ struct xfs_trans *tp,
+ xfs_agnumber_t agno,
+ struct xfs_inobt_rec_incore *rec)
+{
+ struct xfs_mount *mp = tp->t_mountp;
+ xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
+ rec->ir_startino);
+ int startidx, endidx;
+ int nextbit;
+ xfs_agblock_t agbno;
+ int contigblk;
+ DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
+
+ if (!xfs_inobt_issparse(rec->ir_holemask)) {
+ /* not sparse, calculate extent info directly */
+ xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
+ M_IGEO(mp)->ialloc_blks,
+ &XFS_RMAP_OINFO_INODES);
+ return;
+ }
+
+ /* holemask is only 16-bits (fits in an unsigned long) */
+ ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
+ holemask[0] = rec->ir_holemask;
+
+ /*
+ * Find contiguous ranges of zeroes (i.e., allocated regions) in the
+ * holemask and convert the start/end index of each range to an extent.
+ * We start with the start and end index both pointing at the first 0 in
+ * the mask.
+ */
+ startidx = endidx = find_first_zero_bit(holemask,
+ XFS_INOBT_HOLEMASK_BITS);
+ nextbit = startidx + 1;
+ while (startidx < XFS_INOBT_HOLEMASK_BITS) {
+ nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
+ nextbit);
+ /*
+ * If the next zero bit is contiguous, update the end index of
+ * the current range and continue.
+ */
+ if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
+ nextbit == endidx + 1) {
+ endidx = nextbit;
+ goto next;
+ }
+
+ /*
+ * nextbit is not contiguous with the current end index. Convert
+ * the current start/end to an extent and add it to the free
+ * list.
+ */
+ agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
+ mp->m_sb.sb_inopblock;
+ contigblk = ((endidx - startidx + 1) *
+ XFS_INODES_PER_HOLEMASK_BIT) /
+ mp->m_sb.sb_inopblock;
+
+ ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
+ ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
+ xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
+ contigblk, &XFS_RMAP_OINFO_INODES);
+
+ /* reset range to current bit and carry on... */
+ startidx = endidx = nextbit;
+
+next:
+ nextbit++;
+ }
+}
+
+STATIC int
+xfs_difree_inobt(
+ struct xfs_mount *mp,
+ struct xfs_trans *tp,
+ struct xfs_buf *agbp,
+ struct xfs_perag *pag,
+ xfs_agino_t agino,
+ struct xfs_icluster *xic,
+ struct xfs_inobt_rec_incore *orec)
+{
+ struct xfs_agi *agi = agbp->b_addr;
+ struct xfs_btree_cur *cur;
+ struct xfs_inobt_rec_incore rec;
+ int ilen;
+ int error;
+ int i;
+ int off;
+
+ ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
+ ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
+
+ /*
+ * Initialize the cursor.
+ */
+ cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
+
+ error = xfs_check_agi_freecount(cur);
+ if (error)
+ goto error0;
+
+ /*
+ * Look for the entry describing this inode.
+ */
+ if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
+ xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
+ __func__, error);
+ goto error0;
+ }
+ if (XFS_IS_CORRUPT(mp, i != 1)) {
+ error = -EFSCORRUPTED;
+ goto error0;
+ }
+ error = xfs_inobt_get_rec(cur, &rec, &i);
+ if (error) {
+ xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
+ __func__, error);
+ goto error0;
+ }
+ if (XFS_IS_CORRUPT(mp, i != 1)) {
+ error = -EFSCORRUPTED;
+ goto error0;
+ }
+ /*
+ * Get the offset in the inode chunk.
+ */
+ off = agino - rec.ir_startino;
+ ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
+ ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
+ /*
+ * Mark the inode free & increment the count.
+ */
+ rec.ir_free |= XFS_INOBT_MASK(off);
+ rec.ir_freecount++;
+
+ /*
+ * When an inode chunk is free, it becomes eligible for removal. Don't
+ * remove the chunk if the block size is large enough for multiple inode
+ * chunks (that might not be free).
+ */
+ if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
+ mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
+ struct xfs_perag *pag = agbp->b_pag;
+
+ xic->deleted = true;
+ xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
+ rec.ir_startino);
+ xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
+
+ /*
+ * Remove the inode cluster from the AGI B+Tree, adjust the
+ * AGI and Superblock inode counts, and mark the disk space
+ * to be freed when the transaction is committed.
+ */
+ ilen = rec.ir_freecount;
+ be32_add_cpu(&agi->agi_count, -ilen);
+ be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
+ xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
+ pag->pagi_freecount -= ilen - 1;
+ pag->pagi_count -= ilen;
+ xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
+ xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
+
+ if ((error = xfs_btree_delete(cur, &i))) {
+ xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
+ __func__, error);
+ goto error0;
+ }
+
+ xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
+ } else {
+ xic->deleted = false;
+
+ error = xfs_inobt_update(cur, &rec);
+ if (error) {
+ xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
+ __func__, error);
+ goto error0;
+ }
+
+ /*
+ * Change the inode free counts and log the ag/sb changes.
+ */
+ be32_add_cpu(&agi->agi_freecount, 1);
+ xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
+ pag->pagi_freecount++;
+ xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
+ }
+
+ error = xfs_check_agi_freecount(cur);
+ if (error)
+ goto error0;
+
+ *orec = rec;
+ xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
+ return 0;
+
+error0:
+ xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
+ return error;
+}
+
+/*
+ * Free an inode in the free inode btree.
+ */
+STATIC int
+xfs_difree_finobt(
+ struct xfs_mount *mp,
+ struct xfs_trans *tp,
+ struct xfs_buf *agbp,
+ struct xfs_perag *pag,
+ xfs_agino_t agino,
+ struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
+{
+ struct xfs_btree_cur *cur;
+ struct xfs_inobt_rec_incore rec;
+ int offset = agino - ibtrec->ir_startino;
+ int error;
+ int i;
+
+ cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
+
+ error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
+ if (error)
+ goto error;
+ if (i == 0) {
+ /*
+ * If the record does not exist in the finobt, we must have just
+ * freed an inode in a previously fully allocated chunk. If not,
+ * something is out of sync.
+ */
+ if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
+ error = -EFSCORRUPTED;
+ goto error;
+ }
+
+ error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
+ ibtrec->ir_count,
+ ibtrec->ir_freecount,
+ ibtrec->ir_free, &i);
+ if (error)
+ goto error;
+ ASSERT(i == 1);
+
+ goto out;
+ }
+
+ /*
+ * Read and update the existing record. We could just copy the ibtrec
+ * across here, but that would defeat the purpose of having redundant
+ * metadata. By making the modifications independently, we can catch
+ * corruptions that we wouldn't see if we just copied from one record
+ * to another.
+ */
+ error = xfs_inobt_get_rec(cur, &rec, &i);
+ if (error)
+ goto error;
+ if (XFS_IS_CORRUPT(mp, i != 1)) {
+ error = -EFSCORRUPTED;
+ goto error;
+ }
+
+ rec.ir_free |= XFS_INOBT_MASK(offset);
+ rec.ir_freecount++;
+
+ if (XFS_IS_CORRUPT(mp,
+ rec.ir_free != ibtrec->ir_free ||
+ rec.ir_freecount != ibtrec->ir_freecount)) {
+ error = -EFSCORRUPTED;
+ goto error;
+ }
+
+ /*
+ * The content of inobt records should always match between the inobt
+ * and finobt. The lifecycle of records in the finobt is different from
+ * the inobt in that the finobt only tracks records with at least one
+ * free inode. Hence, if all of the inodes are free and we aren't
+ * keeping inode chunks permanently on disk, remove the record.
+ * Otherwise, update the record with the new information.
+ *
+ * Note that we currently can't free chunks when the block size is large
+ * enough for multiple chunks. Leave the finobt record to remain in sync
+ * with the inobt.
+ */
+ if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
+ mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
+ error = xfs_btree_delete(cur, &i);
+ if (error)
+ goto error;
+ ASSERT(i == 1);
+ } else {
+ error = xfs_inobt_update(cur, &rec);
+ if (error)
+ goto error;
+ }
+
+out:
+ error = xfs_check_agi_freecount(cur);
+ if (error)
+ goto error;
+
+ xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
+ return 0;
+
+error:
+ xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
+ return error;
+}
+
+/*
+ * Free disk inode. Carefully avoids touching the incore inode, all
+ * manipulations incore are the caller's responsibility.
+ * The on-disk inode is not changed by this operation, only the
+ * btree (free inode mask) is changed.
+ */
+int
+xfs_difree(
+ struct xfs_trans *tp,
+ struct xfs_perag *pag,
+ xfs_ino_t inode,
+ struct xfs_icluster *xic)
+{
+ /* REFERENCED */
+ xfs_agblock_t agbno; /* block number containing inode */
+ struct xfs_buf *agbp; /* buffer for allocation group header */
+ xfs_agino_t agino; /* allocation group inode number */
+ int error; /* error return value */
+ struct xfs_mount *mp = tp->t_mountp;
+ struct xfs_inobt_rec_incore rec;/* btree record */
+
+ /*
+ * Break up inode number into its components.
+ */
+ if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
+ xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
+ __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
+ ASSERT(0);
+ return -EINVAL;
+ }
+ agino = XFS_INO_TO_AGINO(mp, inode);
+ if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
+ xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
+ __func__, (unsigned long long)inode,
+ (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
+ ASSERT(0);
+ return -EINVAL;
+ }
+ agbno = XFS_AGINO_TO_AGBNO(mp, agino);
+ if (agbno >= mp->m_sb.sb_agblocks) {
+ xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
+ __func__, agbno, mp->m_sb.sb_agblocks);
+ ASSERT(0);
+ return -EINVAL;
+ }
+ /*
+ * Get the allocation group header.
+ */
+ error = xfs_ialloc_read_agi(pag, tp, &agbp);
+ if (error) {
+ xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
+ __func__, error);
+ return error;
+ }
+
+ /*
+ * Fix up the inode allocation btree.
+ */
+ error = xfs_difree_inobt(mp, tp, agbp, pag, agino, xic, &rec);
+ if (error)
+ goto error0;
+
+ /*
+ * Fix up the free inode btree.
+ */
+ if (xfs_has_finobt(mp)) {
+ error = xfs_difree_finobt(mp, tp, agbp, pag, agino, &rec);
+ if (error)
+ goto error0;
+ }
+
+ return 0;
+
+error0:
+ return error;
+}
+
+STATIC int
+xfs_imap_lookup(
+ struct xfs_mount *mp,
+ struct xfs_trans *tp,
+ struct xfs_perag *pag,
+ xfs_agino_t agino,
+ xfs_agblock_t agbno,
+ xfs_agblock_t *chunk_agbno,
+ xfs_agblock_t *offset_agbno,
+ int flags)
+{
+ struct xfs_inobt_rec_incore rec;
+ struct xfs_btree_cur *cur;
+ struct xfs_buf *agbp;
+ int error;
+ int i;
+
+ error = xfs_ialloc_read_agi(pag, tp, &agbp);
+ if (error) {
+ xfs_alert(mp,
+ "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
+ __func__, error, pag->pag_agno);
+ return error;
+ }
+
+ /*
+ * Lookup the inode record for the given agino. If the record cannot be
+ * found, then it's an invalid inode number and we should abort. Once
+ * we have a record, we need to ensure it contains the inode number
+ * we are looking up.
+ */
+ cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
+ error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
+ if (!error) {
+ if (i)
+ error = xfs_inobt_get_rec(cur, &rec, &i);
+ if (!error && i == 0)
+ error = -EINVAL;
+ }
+
+ xfs_trans_brelse(tp, agbp);
+ xfs_btree_del_cursor(cur, error);
+ if (error)
+ return error;
+
+ /* check that the returned record contains the required inode */
+ if (rec.ir_startino > agino ||
+ rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
+ return -EINVAL;
+
+ /* for untrusted inodes check it is allocated first */
+ if ((flags & XFS_IGET_UNTRUSTED) &&
+ (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
+ return -EINVAL;
+
+ *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
+ *offset_agbno = agbno - *chunk_agbno;
+ return 0;
+}
+
+/*
+ * Return the location of the inode in imap, for mapping it into a buffer.
+ */
+int
+xfs_imap(
+ struct xfs_mount *mp, /* file system mount structure */
+ struct xfs_trans *tp, /* transaction pointer */
+ xfs_ino_t ino, /* inode to locate */
+ struct xfs_imap *imap, /* location map structure */
+ uint flags) /* flags for inode btree lookup */
+{
+ xfs_agblock_t agbno; /* block number of inode in the alloc group */
+ xfs_agino_t agino; /* inode number within alloc group */
+ xfs_agblock_t chunk_agbno; /* first block in inode chunk */
+ xfs_agblock_t cluster_agbno; /* first block in inode cluster */
+ int error; /* error code */
+ int offset; /* index of inode in its buffer */
+ xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
+ struct xfs_perag *pag;
+
+ ASSERT(ino != NULLFSINO);
+
+ /*
+ * Split up the inode number into its parts.
+ */
+ pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
+ agino = XFS_INO_TO_AGINO(mp, ino);
+ agbno = XFS_AGINO_TO_AGBNO(mp, agino);
+ if (!pag || agbno >= mp->m_sb.sb_agblocks ||
+ ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
+ error = -EINVAL;
+#ifdef DEBUG
+ /*
+ * Don't output diagnostic information for untrusted inodes
+ * as they can be invalid without implying corruption.
+ */
+ if (flags & XFS_IGET_UNTRUSTED)
+ goto out_drop;
+ if (!pag) {
+ xfs_alert(mp,
+ "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
+ __func__, XFS_INO_TO_AGNO(mp, ino),
+ mp->m_sb.sb_agcount);
+ }
+ if (agbno >= mp->m_sb.sb_agblocks) {
+ xfs_alert(mp,
+ "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
+ __func__, (unsigned long long)agbno,
+ (unsigned long)mp->m_sb.sb_agblocks);
+ }
+ if (pag && ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
+ xfs_alert(mp,
+ "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
+ __func__, ino,
+ XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
+ }
+ xfs_stack_trace();
+#endif /* DEBUG */
+ goto out_drop;
+ }
+
+ /*
+ * For bulkstat and handle lookups, we have an untrusted inode number
+ * that we have to verify is valid. We cannot do this just by reading
+ * the inode buffer as it may have been unlinked and removed leaving
+ * inodes in stale state on disk. Hence we have to do a btree lookup
+ * in all cases where an untrusted inode number is passed.
+ */
+ if (flags & XFS_IGET_UNTRUSTED) {
+ error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
+ &chunk_agbno, &offset_agbno, flags);
+ if (error)
+ goto out_drop;
+ goto out_map;
+ }
+
+ /*
+ * If the inode cluster size is the same as the blocksize or
+ * smaller we get to the buffer by simple arithmetics.
+ */
+ if (M_IGEO(mp)->blocks_per_cluster == 1) {
+ offset = XFS_INO_TO_OFFSET(mp, ino);
+ ASSERT(offset < mp->m_sb.sb_inopblock);
+
+ imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
+ imap->im_len = XFS_FSB_TO_BB(mp, 1);
+ imap->im_boffset = (unsigned short)(offset <<
+ mp->m_sb.sb_inodelog);
+ error = 0;
+ goto out_drop;
+ }
+
+ /*
+ * If the inode chunks are aligned then use simple maths to
+ * find the location. Otherwise we have to do a btree
+ * lookup to find the location.
+ */
+ if (M_IGEO(mp)->inoalign_mask) {
+ offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
+ chunk_agbno = agbno - offset_agbno;
+ } else {
+ error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
+ &chunk_agbno, &offset_agbno, flags);
+ if (error)
+ goto out_drop;
+ }
+
+out_map:
+ ASSERT(agbno >= chunk_agbno);
+ cluster_agbno = chunk_agbno +
+ ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
+ M_IGEO(mp)->blocks_per_cluster);
+ offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
+ XFS_INO_TO_OFFSET(mp, ino);
+
+ imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
+ imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
+ imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
+
+ /*
+ * If the inode number maps to a block outside the bounds
+ * of the file system then return NULL rather than calling
+ * read_buf and panicing when we get an error from the
+ * driver.
+ */
+ if ((imap->im_blkno + imap->im_len) >
+ XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
+ xfs_alert(mp,
+ "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
+ __func__, (unsigned long long) imap->im_blkno,
+ (unsigned long long) imap->im_len,
+ XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
+ error = -EINVAL;
+ goto out_drop;
+ }
+ error = 0;
+out_drop:
+ if (pag)
+ xfs_perag_put(pag);
+ return error;
+}
+
+/*
+ * Log specified fields for the ag hdr (inode section). The growth of the agi
+ * structure over time requires that we interpret the buffer as two logical
+ * regions delineated by the end of the unlinked list. This is due to the size
+ * of the hash table and its location in the middle of the agi.
+ *
+ * For example, a request to log a field before agi_unlinked and a field after
+ * agi_unlinked could cause us to log the entire hash table and use an excessive
+ * amount of log space. To avoid this behavior, log the region up through
+ * agi_unlinked in one call and the region after agi_unlinked through the end of
+ * the structure in another.
+ */
+void
+xfs_ialloc_log_agi(
+ struct xfs_trans *tp,
+ struct xfs_buf *bp,
+ uint32_t fields)
+{
+ int first; /* first byte number */
+ int last; /* last byte number */
+ static const short offsets[] = { /* field starting offsets */
+ /* keep in sync with bit definitions */
+ offsetof(xfs_agi_t, agi_magicnum),
+ offsetof(xfs_agi_t, agi_versionnum),
+ offsetof(xfs_agi_t, agi_seqno),
+ offsetof(xfs_agi_t, agi_length),
+ offsetof(xfs_agi_t, agi_count),
+ offsetof(xfs_agi_t, agi_root),
+ offsetof(xfs_agi_t, agi_level),
+ offsetof(xfs_agi_t, agi_freecount),
+ offsetof(xfs_agi_t, agi_newino),
+ offsetof(xfs_agi_t, agi_dirino),
+ offsetof(xfs_agi_t, agi_unlinked),
+ offsetof(xfs_agi_t, agi_free_root),
+ offsetof(xfs_agi_t, agi_free_level),
+ offsetof(xfs_agi_t, agi_iblocks),
+ sizeof(xfs_agi_t)
+ };
+#ifdef DEBUG
+ struct xfs_agi *agi = bp->b_addr;
+
+ ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
+#endif
+
+ /*
+ * Compute byte offsets for the first and last fields in the first
+ * region and log the agi buffer. This only logs up through
+ * agi_unlinked.
+ */
+ if (fields & XFS_AGI_ALL_BITS_R1) {
+ xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
+ &first, &last);
+ xfs_trans_log_buf(tp, bp, first, last);
+ }
+
+ /*
+ * Mask off the bits in the first region and calculate the first and
+ * last field offsets for any bits in the second region.
+ */
+ fields &= ~XFS_AGI_ALL_BITS_R1;
+ if (fields) {
+ xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
+ &first, &last);
+ xfs_trans_log_buf(tp, bp, first, last);
+ }
+}
+
+static xfs_failaddr_t
+xfs_agi_verify(
+ struct xfs_buf *bp)
+{
+ struct xfs_mount *mp = bp->b_mount;
+ struct xfs_agi *agi = bp->b_addr;
+ int i;
+
+ if (xfs_has_crc(mp)) {
+ if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
+ return __this_address;
+ if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
+ return __this_address;
+ }
+
+ /*
+ * Validate the magic number of the agi block.
+ */
+ if (!xfs_verify_magic(bp, agi->agi_magicnum))
+ return __this_address;
+ if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
+ return __this_address;
+
+ if (be32_to_cpu(agi->agi_level) < 1 ||
+ be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
+ return __this_address;
+
+ if (xfs_has_finobt(mp) &&
+ (be32_to_cpu(agi->agi_free_level) < 1 ||
+ be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
+ return __this_address;
+
+ /*
+ * during growfs operations, the perag is not fully initialised,
+ * so we can't use it for any useful checking. growfs ensures we can't
+ * use it by using uncached buffers that don't have the perag attached
+ * so we can detect and avoid this problem.
+ */
+ if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
+ return __this_address;
+
+ for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
+ if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
+ continue;
+ if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
+ return __this_address;
+ }
+
+ return NULL;
+}
+
+static void
+xfs_agi_read_verify(
+ struct xfs_buf *bp)
+{
+ struct xfs_mount *mp = bp->b_mount;
+ xfs_failaddr_t fa;
+
+ if (xfs_has_crc(mp) &&
+ !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
+ xfs_verifier_error(bp, -EFSBADCRC, __this_address);
+ else {
+ fa = xfs_agi_verify(bp);
+ if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
+ xfs_verifier_error(bp, -EFSCORRUPTED, fa);
+ }
+}
+
+static void
+xfs_agi_write_verify(
+ struct xfs_buf *bp)
+{
+ struct xfs_mount *mp = bp->b_mount;
+ struct xfs_buf_log_item *bip = bp->b_log_item;
+ struct xfs_agi *agi = bp->b_addr;
+ xfs_failaddr_t fa;
+
+ fa = xfs_agi_verify(bp);
+ if (fa) {
+ xfs_verifier_error(bp, -EFSCORRUPTED, fa);
+ return;
+ }
+
+ if (!xfs_has_crc(mp))
+ return;
+
+ if (bip)
+ agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
+ xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
+}
+
+const struct xfs_buf_ops xfs_agi_buf_ops = {
+ .name = "xfs_agi",
+ .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
+ .verify_read = xfs_agi_read_verify,
+ .verify_write = xfs_agi_write_verify,
+ .verify_struct = xfs_agi_verify,
+};
+
+/*
+ * Read in the allocation group header (inode allocation section)
+ */
+int
+xfs_read_agi(
+ struct xfs_perag *pag,
+ struct xfs_trans *tp,
+ struct xfs_buf **agibpp)
+{
+ struct xfs_mount *mp = pag->pag_mount;
+ int error;
+
+ trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
+
+ error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
+ XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
+ XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops);
+ if (error)
+ return error;
+ if (tp)
+ xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
+
+ xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
+ return 0;
+}
+
+/*
+ * Read in the agi and initialise the per-ag data. If the caller supplies a
+ * @agibpp, return the locked AGI buffer to them, otherwise release it.
+ */
+int
+xfs_ialloc_read_agi(
+ struct xfs_perag *pag,
+ struct xfs_trans *tp,
+ struct xfs_buf **agibpp)
+{
+ struct xfs_buf *agibp;
+ struct xfs_agi *agi;
+ int error;
+
+ trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
+
+ error = xfs_read_agi(pag, tp, &agibp);
+ if (error)
+ return error;
+
+ agi = agibp->b_addr;
+ if (!pag->pagi_init) {
+ pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
+ pag->pagi_count = be32_to_cpu(agi->agi_count);
+ pag->pagi_init = 1;
+ }
+
+ /*
+ * It's possible for these to be out of sync if
+ * we are in the middle of a forced shutdown.
+ */
+ ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
+ xfs_is_shutdown(pag->pag_mount));
+ if (agibpp)
+ *agibpp = agibp;
+ else
+ xfs_trans_brelse(tp, agibp);
+ return 0;
+}
+
+/* Is there an inode record covering a given range of inode numbers? */
+int
+xfs_ialloc_has_inode_record(
+ struct xfs_btree_cur *cur,
+ xfs_agino_t low,
+ xfs_agino_t high,
+ bool *exists)
+{
+ struct xfs_inobt_rec_incore irec;
+ xfs_agino_t agino;
+ uint16_t holemask;
+ int has_record;
+ int i;
+ int error;
+
+ *exists = false;
+ error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
+ while (error == 0 && has_record) {
+ error = xfs_inobt_get_rec(cur, &irec, &has_record);
+ if (error || irec.ir_startino > high)
+ break;
+
+ agino = irec.ir_startino;
+ holemask = irec.ir_holemask;
+ for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
+ i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
+ if (holemask & 1)
+ continue;
+ if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
+ agino <= high) {
+ *exists = true;
+ return 0;
+ }
+ }
+
+ error = xfs_btree_increment(cur, 0, &has_record);
+ }
+ return error;
+}
+
+/* Is there an inode record covering a given extent? */
+int
+xfs_ialloc_has_inodes_at_extent(
+ struct xfs_btree_cur *cur,
+ xfs_agblock_t bno,
+ xfs_extlen_t len,
+ bool *exists)
+{
+ xfs_agino_t low;
+ xfs_agino_t high;
+
+ low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
+ high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
+
+ return xfs_ialloc_has_inode_record(cur, low, high, exists);
+}
+
+struct xfs_ialloc_count_inodes {
+ xfs_agino_t count;
+ xfs_agino_t freecount;
+};
+
+/* Record inode counts across all inobt records. */
+STATIC int
+xfs_ialloc_count_inodes_rec(
+ struct xfs_btree_cur *cur,
+ const union xfs_btree_rec *rec,
+ void *priv)
+{
+ struct xfs_inobt_rec_incore irec;
+ struct xfs_ialloc_count_inodes *ci = priv;
+
+ xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
+ ci->count += irec.ir_count;
+ ci->freecount += irec.ir_freecount;
+
+ return 0;
+}
+
+/* Count allocated and free inodes under an inobt. */
+int
+xfs_ialloc_count_inodes(
+ struct xfs_btree_cur *cur,
+ xfs_agino_t *count,
+ xfs_agino_t *freecount)
+{
+ struct xfs_ialloc_count_inodes ci = {0};
+ int error;
+
+ ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
+ error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
+ if (error)
+ return error;
+
+ *count = ci.count;
+ *freecount = ci.freecount;
+ return 0;
+}
+
+/*
+ * Initialize inode-related geometry information.
+ *
+ * Compute the inode btree min and max levels and set maxicount.
+ *
+ * Set the inode cluster size. This may still be overridden by the file
+ * system block size if it is larger than the chosen cluster size.
+ *
+ * For v5 filesystems, scale the cluster size with the inode size to keep a
+ * constant ratio of inode per cluster buffer, but only if mkfs has set the
+ * inode alignment value appropriately for larger cluster sizes.
+ *
+ * Then compute the inode cluster alignment information.
+ */
+void
+xfs_ialloc_setup_geometry(
+ struct xfs_mount *mp)
+{
+ struct xfs_sb *sbp = &mp->m_sb;
+ struct xfs_ino_geometry *igeo = M_IGEO(mp);
+ uint64_t icount;
+ uint inodes;
+
+ igeo->new_diflags2 = 0;
+ if (xfs_has_bigtime(mp))
+ igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
+ if (xfs_has_large_extent_counts(mp))
+ igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
+
+ /* Compute inode btree geometry. */
+ igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
+ igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
+ igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
+ igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
+ igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
+
+ igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
+ sbp->sb_inopblock);
+ igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
+
+ if (sbp->sb_spino_align)
+ igeo->ialloc_min_blks = sbp->sb_spino_align;
+ else
+ igeo->ialloc_min_blks = igeo->ialloc_blks;
+
+ /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
+ inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
+ igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
+ inodes);
+ ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
+
+ /*
+ * Set the maximum inode count for this filesystem, being careful not
+ * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
+ * users should never get here due to failing sb verification, but
+ * certain users (xfs_db) need to be usable even with corrupt metadata.
+ */
+ if (sbp->sb_imax_pct && igeo->ialloc_blks) {
+ /*
+ * Make sure the maximum inode count is a multiple
+ * of the units we allocate inodes in.
+ */
+ icount = sbp->sb_dblocks * sbp->sb_imax_pct;
+ do_div(icount, 100);
+ do_div(icount, igeo->ialloc_blks);
+ igeo->maxicount = XFS_FSB_TO_INO(mp,
+ icount * igeo->ialloc_blks);
+ } else {
+ igeo->maxicount = 0;
+ }
+
+ /*
+ * Compute the desired size of an inode cluster buffer size, which
+ * starts at 8K and (on v5 filesystems) scales up with larger inode
+ * sizes.
+ *
+ * Preserve the desired inode cluster size because the sparse inodes
+ * feature uses that desired size (not the actual size) to compute the
+ * sparse inode alignment. The mount code validates this value, so we
+ * cannot change the behavior.
+ */
+ igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
+ if (xfs_has_v3inodes(mp)) {
+ int new_size = igeo->inode_cluster_size_raw;
+
+ new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
+ if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
+ igeo->inode_cluster_size_raw = new_size;
+ }
+
+ /* Calculate inode cluster ratios. */
+ if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
+ igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
+ igeo->inode_cluster_size_raw);
+ else
+ igeo->blocks_per_cluster = 1;
+ igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
+ igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
+
+ /* Calculate inode cluster alignment. */
+ if (xfs_has_align(mp) &&
+ mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
+ igeo->cluster_align = mp->m_sb.sb_inoalignmt;
+ else
+ igeo->cluster_align = 1;
+ igeo->inoalign_mask = igeo->cluster_align - 1;
+ igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
+
+ /*
+ * If we are using stripe alignment, check whether
+ * the stripe unit is a multiple of the inode alignment
+ */
+ if (mp->m_dalign && igeo->inoalign_mask &&
+ !(mp->m_dalign & igeo->inoalign_mask))
+ igeo->ialloc_align = mp->m_dalign;
+ else
+ igeo->ialloc_align = 0;
+}
+
+/* Compute the location of the root directory inode that is laid out by mkfs. */
+xfs_ino_t
+xfs_ialloc_calc_rootino(
+ struct xfs_mount *mp,
+ int sunit)
+{
+ struct xfs_ino_geometry *igeo = M_IGEO(mp);
+ xfs_agblock_t first_bno;
+
+ /*
+ * Pre-calculate the geometry of AG 0. We know what it looks like
+ * because libxfs knows how to create allocation groups now.
+ *
+ * first_bno is the first block in which mkfs could possibly have
+ * allocated the root directory inode, once we factor in the metadata
+ * that mkfs formats before it. Namely, the four AG headers...
+ */
+ first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
+
+ /* ...the two free space btree roots... */
+ first_bno += 2;
+
+ /* ...the inode btree root... */
+ first_bno += 1;
+
+ /* ...the initial AGFL... */
+ first_bno += xfs_alloc_min_freelist(mp, NULL);
+
+ /* ...the free inode btree root... */
+ if (xfs_has_finobt(mp))
+ first_bno++;
+
+ /* ...the reverse mapping btree root... */
+ if (xfs_has_rmapbt(mp))
+ first_bno++;
+
+ /* ...the reference count btree... */
+ if (xfs_has_reflink(mp))
+ first_bno++;
+
+ /*
+ * ...and the log, if it is allocated in the first allocation group.
+ *
+ * This can happen with filesystems that only have a single
+ * allocation group, or very odd geometries created by old mkfs
+ * versions on very small filesystems.
+ */
+ if (xfs_ag_contains_log(mp, 0))
+ first_bno += mp->m_sb.sb_logblocks;
+
+ /*
+ * Now round first_bno up to whatever allocation alignment is given
+ * by the filesystem or was passed in.
+ */
+ if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
+ first_bno = roundup(first_bno, sunit);
+ else if (xfs_has_align(mp) &&
+ mp->m_sb.sb_inoalignmt > 1)
+ first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
+
+ return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
+}
+
+/*
+ * Ensure there are not sparse inode clusters that cross the new EOAG.
+ *
+ * This is a no-op for non-spinode filesystems since clusters are always fully
+ * allocated and checking the bnobt suffices. However, a spinode filesystem
+ * could have a record where the upper inodes are free blocks. If those blocks
+ * were removed from the filesystem, the inode record would extend beyond EOAG,
+ * which will be flagged as corruption.
+ */
+int
+xfs_ialloc_check_shrink(
+ struct xfs_trans *tp,
+ xfs_agnumber_t agno,
+ struct xfs_buf *agibp,
+ xfs_agblock_t new_length)
+{
+ struct xfs_inobt_rec_incore rec;
+ struct xfs_btree_cur *cur;
+ struct xfs_mount *mp = tp->t_mountp;
+ struct xfs_perag *pag;
+ xfs_agino_t agino = XFS_AGB_TO_AGINO(mp, new_length);
+ int has;
+ int error;
+
+ if (!xfs_has_sparseinodes(mp))
+ return 0;
+
+ pag = xfs_perag_get(mp, agno);
+ cur = xfs_inobt_init_cursor(mp, tp, agibp, pag, XFS_BTNUM_INO);
+
+ /* Look up the inobt record that would correspond to the new EOFS. */
+ error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
+ if (error || !has)
+ goto out;
+
+ error = xfs_inobt_get_rec(cur, &rec, &has);
+ if (error)
+ goto out;
+
+ if (!has) {
+ error = -EFSCORRUPTED;
+ goto out;
+ }
+
+ /* If the record covers inodes that would be beyond EOFS, bail out. */
+ if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
+ error = -ENOSPC;
+ goto out;
+ }
+out:
+ xfs_btree_del_cursor(cur, error);
+ xfs_perag_put(pag);
+ return error;
+}