diff options
Diffstat (limited to 'kernel/sched/core.c')
-rw-r--r-- | kernel/sched/core.c | 11264 |
1 files changed, 11264 insertions, 0 deletions
diff --git a/kernel/sched/core.c b/kernel/sched/core.c new file mode 100644 index 000000000..18a4f8f28 --- /dev/null +++ b/kernel/sched/core.c @@ -0,0 +1,11264 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * kernel/sched/core.c + * + * Core kernel scheduler code and related syscalls + * + * Copyright (C) 1991-2002 Linus Torvalds + */ +#include <linux/highmem.h> +#include <linux/hrtimer_api.h> +#include <linux/ktime_api.h> +#include <linux/sched/signal.h> +#include <linux/syscalls_api.h> +#include <linux/debug_locks.h> +#include <linux/prefetch.h> +#include <linux/capability.h> +#include <linux/pgtable_api.h> +#include <linux/wait_bit.h> +#include <linux/jiffies.h> +#include <linux/spinlock_api.h> +#include <linux/cpumask_api.h> +#include <linux/lockdep_api.h> +#include <linux/hardirq.h> +#include <linux/softirq.h> +#include <linux/refcount_api.h> +#include <linux/topology.h> +#include <linux/sched/clock.h> +#include <linux/sched/cond_resched.h> +#include <linux/sched/cputime.h> +#include <linux/sched/debug.h> +#include <linux/sched/hotplug.h> +#include <linux/sched/init.h> +#include <linux/sched/isolation.h> +#include <linux/sched/loadavg.h> +#include <linux/sched/mm.h> +#include <linux/sched/nohz.h> +#include <linux/sched/rseq_api.h> +#include <linux/sched/rt.h> + +#include <linux/blkdev.h> +#include <linux/context_tracking.h> +#include <linux/cpuset.h> +#include <linux/delayacct.h> +#include <linux/init_task.h> +#include <linux/interrupt.h> +#include <linux/ioprio.h> +#include <linux/kallsyms.h> +#include <linux/kcov.h> +#include <linux/kprobes.h> +#include <linux/llist_api.h> +#include <linux/mmu_context.h> +#include <linux/mmzone.h> +#include <linux/mutex_api.h> +#include <linux/nmi.h> +#include <linux/nospec.h> +#include <linux/perf_event_api.h> +#include <linux/profile.h> +#include <linux/psi.h> +#include <linux/rcuwait_api.h> +#include <linux/sched/wake_q.h> +#include <linux/scs.h> +#include <linux/slab.h> +#include <linux/syscalls.h> +#include <linux/vtime.h> +#include <linux/wait_api.h> +#include <linux/workqueue_api.h> + +#ifdef CONFIG_PREEMPT_DYNAMIC +# ifdef CONFIG_GENERIC_ENTRY +# include <linux/entry-common.h> +# endif +#endif + +#include <uapi/linux/sched/types.h> + +#include <asm/irq_regs.h> +#include <asm/switch_to.h> +#include <asm/tlb.h> + +#define CREATE_TRACE_POINTS +#include <linux/sched/rseq_api.h> +#include <trace/events/sched.h> +#undef CREATE_TRACE_POINTS + +#include "sched.h" +#include "stats.h" +#include "autogroup.h" + +#include "autogroup.h" +#include "pelt.h" +#include "smp.h" +#include "stats.h" + +#include "../workqueue_internal.h" +#include "../../io_uring/io-wq.h" +#include "../smpboot.h" + +/* + * Export tracepoints that act as a bare tracehook (ie: have no trace event + * associated with them) to allow external modules to probe them. + */ +EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); +EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); +EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); +EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); +EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); +EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp); +EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); +EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); +EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); +EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); +EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); + +DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); + +#ifdef CONFIG_SCHED_DEBUG +/* + * Debugging: various feature bits + * + * If SCHED_DEBUG is disabled, each compilation unit has its own copy of + * sysctl_sched_features, defined in sched.h, to allow constants propagation + * at compile time and compiler optimization based on features default. + */ +#define SCHED_FEAT(name, enabled) \ + (1UL << __SCHED_FEAT_##name) * enabled | +const_debug unsigned int sysctl_sched_features = +#include "features.h" + 0; +#undef SCHED_FEAT + +/* + * Print a warning if need_resched is set for the given duration (if + * LATENCY_WARN is enabled). + * + * If sysctl_resched_latency_warn_once is set, only one warning will be shown + * per boot. + */ +__read_mostly int sysctl_resched_latency_warn_ms = 100; +__read_mostly int sysctl_resched_latency_warn_once = 1; +#endif /* CONFIG_SCHED_DEBUG */ + +/* + * Number of tasks to iterate in a single balance run. + * Limited because this is done with IRQs disabled. + */ +const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; + +__read_mostly int scheduler_running; + +#ifdef CONFIG_SCHED_CORE + +DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); + +/* kernel prio, less is more */ +static inline int __task_prio(struct task_struct *p) +{ + if (p->sched_class == &stop_sched_class) /* trumps deadline */ + return -2; + + if (rt_prio(p->prio)) /* includes deadline */ + return p->prio; /* [-1, 99] */ + + if (p->sched_class == &idle_sched_class) + return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ + + return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ +} + +/* + * l(a,b) + * le(a,b) := !l(b,a) + * g(a,b) := l(b,a) + * ge(a,b) := !l(a,b) + */ + +/* real prio, less is less */ +static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) +{ + + int pa = __task_prio(a), pb = __task_prio(b); + + if (-pa < -pb) + return true; + + if (-pb < -pa) + return false; + + if (pa == -1) /* dl_prio() doesn't work because of stop_class above */ + return !dl_time_before(a->dl.deadline, b->dl.deadline); + + if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ + return cfs_prio_less(a, b, in_fi); + + return false; +} + +static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b) +{ + if (a->core_cookie < b->core_cookie) + return true; + + if (a->core_cookie > b->core_cookie) + return false; + + /* flip prio, so high prio is leftmost */ + if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) + return true; + + return false; +} + +#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) + +static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) +{ + return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); +} + +static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) +{ + const struct task_struct *p = __node_2_sc(node); + unsigned long cookie = (unsigned long)key; + + if (cookie < p->core_cookie) + return -1; + + if (cookie > p->core_cookie) + return 1; + + return 0; +} + +void sched_core_enqueue(struct rq *rq, struct task_struct *p) +{ + rq->core->core_task_seq++; + + if (!p->core_cookie) + return; + + rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); +} + +void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) +{ + rq->core->core_task_seq++; + + if (sched_core_enqueued(p)) { + rb_erase(&p->core_node, &rq->core_tree); + RB_CLEAR_NODE(&p->core_node); + } + + /* + * Migrating the last task off the cpu, with the cpu in forced idle + * state. Reschedule to create an accounting edge for forced idle, + * and re-examine whether the core is still in forced idle state. + */ + if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && + rq->core->core_forceidle_count && rq->curr == rq->idle) + resched_curr(rq); +} + +/* + * Find left-most (aka, highest priority) task matching @cookie. + */ +static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) +{ + struct rb_node *node; + + node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); + /* + * The idle task always matches any cookie! + */ + if (!node) + return idle_sched_class.pick_task(rq); + + return __node_2_sc(node); +} + +static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) +{ + struct rb_node *node = &p->core_node; + + node = rb_next(node); + if (!node) + return NULL; + + p = container_of(node, struct task_struct, core_node); + if (p->core_cookie != cookie) + return NULL; + + return p; +} + +/* + * Magic required such that: + * + * raw_spin_rq_lock(rq); + * ... + * raw_spin_rq_unlock(rq); + * + * ends up locking and unlocking the _same_ lock, and all CPUs + * always agree on what rq has what lock. + * + * XXX entirely possible to selectively enable cores, don't bother for now. + */ + +static DEFINE_MUTEX(sched_core_mutex); +static atomic_t sched_core_count; +static struct cpumask sched_core_mask; + +static void sched_core_lock(int cpu, unsigned long *flags) +{ + const struct cpumask *smt_mask = cpu_smt_mask(cpu); + int t, i = 0; + + local_irq_save(*flags); + for_each_cpu(t, smt_mask) + raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); +} + +static void sched_core_unlock(int cpu, unsigned long *flags) +{ + const struct cpumask *smt_mask = cpu_smt_mask(cpu); + int t; + + for_each_cpu(t, smt_mask) + raw_spin_unlock(&cpu_rq(t)->__lock); + local_irq_restore(*flags); +} + +static void __sched_core_flip(bool enabled) +{ + unsigned long flags; + int cpu, t; + + cpus_read_lock(); + + /* + * Toggle the online cores, one by one. + */ + cpumask_copy(&sched_core_mask, cpu_online_mask); + for_each_cpu(cpu, &sched_core_mask) { + const struct cpumask *smt_mask = cpu_smt_mask(cpu); + + sched_core_lock(cpu, &flags); + + for_each_cpu(t, smt_mask) + cpu_rq(t)->core_enabled = enabled; + + cpu_rq(cpu)->core->core_forceidle_start = 0; + + sched_core_unlock(cpu, &flags); + + cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); + } + + /* + * Toggle the offline CPUs. + */ + for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) + cpu_rq(cpu)->core_enabled = enabled; + + cpus_read_unlock(); +} + +static void sched_core_assert_empty(void) +{ + int cpu; + + for_each_possible_cpu(cpu) + WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); +} + +static void __sched_core_enable(void) +{ + static_branch_enable(&__sched_core_enabled); + /* + * Ensure all previous instances of raw_spin_rq_*lock() have finished + * and future ones will observe !sched_core_disabled(). + */ + synchronize_rcu(); + __sched_core_flip(true); + sched_core_assert_empty(); +} + +static void __sched_core_disable(void) +{ + sched_core_assert_empty(); + __sched_core_flip(false); + static_branch_disable(&__sched_core_enabled); +} + +void sched_core_get(void) +{ + if (atomic_inc_not_zero(&sched_core_count)) + return; + + mutex_lock(&sched_core_mutex); + if (!atomic_read(&sched_core_count)) + __sched_core_enable(); + + smp_mb__before_atomic(); + atomic_inc(&sched_core_count); + mutex_unlock(&sched_core_mutex); +} + +static void __sched_core_put(struct work_struct *work) +{ + if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { + __sched_core_disable(); + mutex_unlock(&sched_core_mutex); + } +} + +void sched_core_put(void) +{ + static DECLARE_WORK(_work, __sched_core_put); + + /* + * "There can be only one" + * + * Either this is the last one, or we don't actually need to do any + * 'work'. If it is the last *again*, we rely on + * WORK_STRUCT_PENDING_BIT. + */ + if (!atomic_add_unless(&sched_core_count, -1, 1)) + schedule_work(&_work); +} + +#else /* !CONFIG_SCHED_CORE */ + +static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } +static inline void +sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } + +#endif /* CONFIG_SCHED_CORE */ + +/* + * Serialization rules: + * + * Lock order: + * + * p->pi_lock + * rq->lock + * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) + * + * rq1->lock + * rq2->lock where: rq1 < rq2 + * + * Regular state: + * + * Normal scheduling state is serialized by rq->lock. __schedule() takes the + * local CPU's rq->lock, it optionally removes the task from the runqueue and + * always looks at the local rq data structures to find the most eligible task + * to run next. + * + * Task enqueue is also under rq->lock, possibly taken from another CPU. + * Wakeups from another LLC domain might use an IPI to transfer the enqueue to + * the local CPU to avoid bouncing the runqueue state around [ see + * ttwu_queue_wakelist() ] + * + * Task wakeup, specifically wakeups that involve migration, are horribly + * complicated to avoid having to take two rq->locks. + * + * Special state: + * + * System-calls and anything external will use task_rq_lock() which acquires + * both p->pi_lock and rq->lock. As a consequence the state they change is + * stable while holding either lock: + * + * - sched_setaffinity()/ + * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed + * - set_user_nice(): p->se.load, p->*prio + * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, + * p->se.load, p->rt_priority, + * p->dl.dl_{runtime, deadline, period, flags, bw, density} + * - sched_setnuma(): p->numa_preferred_nid + * - sched_move_task(): p->sched_task_group + * - uclamp_update_active() p->uclamp* + * + * p->state <- TASK_*: + * + * is changed locklessly using set_current_state(), __set_current_state() or + * set_special_state(), see their respective comments, or by + * try_to_wake_up(). This latter uses p->pi_lock to serialize against + * concurrent self. + * + * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: + * + * is set by activate_task() and cleared by deactivate_task(), under + * rq->lock. Non-zero indicates the task is runnable, the special + * ON_RQ_MIGRATING state is used for migration without holding both + * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). + * + * p->on_cpu <- { 0, 1 }: + * + * is set by prepare_task() and cleared by finish_task() such that it will be + * set before p is scheduled-in and cleared after p is scheduled-out, both + * under rq->lock. Non-zero indicates the task is running on its CPU. + * + * [ The astute reader will observe that it is possible for two tasks on one + * CPU to have ->on_cpu = 1 at the same time. ] + * + * task_cpu(p): is changed by set_task_cpu(), the rules are: + * + * - Don't call set_task_cpu() on a blocked task: + * + * We don't care what CPU we're not running on, this simplifies hotplug, + * the CPU assignment of blocked tasks isn't required to be valid. + * + * - for try_to_wake_up(), called under p->pi_lock: + * + * This allows try_to_wake_up() to only take one rq->lock, see its comment. + * + * - for migration called under rq->lock: + * [ see task_on_rq_migrating() in task_rq_lock() ] + * + * o move_queued_task() + * o detach_task() + * + * - for migration called under double_rq_lock(): + * + * o __migrate_swap_task() + * o push_rt_task() / pull_rt_task() + * o push_dl_task() / pull_dl_task() + * o dl_task_offline_migration() + * + */ + +void raw_spin_rq_lock_nested(struct rq *rq, int subclass) +{ + raw_spinlock_t *lock; + + /* Matches synchronize_rcu() in __sched_core_enable() */ + preempt_disable(); + if (sched_core_disabled()) { + raw_spin_lock_nested(&rq->__lock, subclass); + /* preempt_count *MUST* be > 1 */ + preempt_enable_no_resched(); + return; + } + + for (;;) { + lock = __rq_lockp(rq); + raw_spin_lock_nested(lock, subclass); + if (likely(lock == __rq_lockp(rq))) { + /* preempt_count *MUST* be > 1 */ + preempt_enable_no_resched(); + return; + } + raw_spin_unlock(lock); + } +} + +bool raw_spin_rq_trylock(struct rq *rq) +{ + raw_spinlock_t *lock; + bool ret; + + /* Matches synchronize_rcu() in __sched_core_enable() */ + preempt_disable(); + if (sched_core_disabled()) { + ret = raw_spin_trylock(&rq->__lock); + preempt_enable(); + return ret; + } + + for (;;) { + lock = __rq_lockp(rq); + ret = raw_spin_trylock(lock); + if (!ret || (likely(lock == __rq_lockp(rq)))) { + preempt_enable(); + return ret; + } + raw_spin_unlock(lock); + } +} + +void raw_spin_rq_unlock(struct rq *rq) +{ + raw_spin_unlock(rq_lockp(rq)); +} + +#ifdef CONFIG_SMP +/* + * double_rq_lock - safely lock two runqueues + */ +void double_rq_lock(struct rq *rq1, struct rq *rq2) +{ + lockdep_assert_irqs_disabled(); + + if (rq_order_less(rq2, rq1)) + swap(rq1, rq2); + + raw_spin_rq_lock(rq1); + if (__rq_lockp(rq1) != __rq_lockp(rq2)) + raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); + + double_rq_clock_clear_update(rq1, rq2); +} +#endif + +/* + * __task_rq_lock - lock the rq @p resides on. + */ +struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) + __acquires(rq->lock) +{ + struct rq *rq; + + lockdep_assert_held(&p->pi_lock); + + for (;;) { + rq = task_rq(p); + raw_spin_rq_lock(rq); + if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { + rq_pin_lock(rq, rf); + return rq; + } + raw_spin_rq_unlock(rq); + + while (unlikely(task_on_rq_migrating(p))) + cpu_relax(); + } +} + +/* + * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. + */ +struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) + __acquires(p->pi_lock) + __acquires(rq->lock) +{ + struct rq *rq; + + for (;;) { + raw_spin_lock_irqsave(&p->pi_lock, rf->flags); + rq = task_rq(p); + raw_spin_rq_lock(rq); + /* + * move_queued_task() task_rq_lock() + * + * ACQUIRE (rq->lock) + * [S] ->on_rq = MIGRATING [L] rq = task_rq() + * WMB (__set_task_cpu()) ACQUIRE (rq->lock); + * [S] ->cpu = new_cpu [L] task_rq() + * [L] ->on_rq + * RELEASE (rq->lock) + * + * If we observe the old CPU in task_rq_lock(), the acquire of + * the old rq->lock will fully serialize against the stores. + * + * If we observe the new CPU in task_rq_lock(), the address + * dependency headed by '[L] rq = task_rq()' and the acquire + * will pair with the WMB to ensure we then also see migrating. + */ + if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { + rq_pin_lock(rq, rf); + return rq; + } + raw_spin_rq_unlock(rq); + raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); + + while (unlikely(task_on_rq_migrating(p))) + cpu_relax(); + } +} + +/* + * RQ-clock updating methods: + */ + +static void update_rq_clock_task(struct rq *rq, s64 delta) +{ +/* + * In theory, the compile should just see 0 here, and optimize out the call + * to sched_rt_avg_update. But I don't trust it... + */ + s64 __maybe_unused steal = 0, irq_delta = 0; + +#ifdef CONFIG_IRQ_TIME_ACCOUNTING + irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; + + /* + * Since irq_time is only updated on {soft,}irq_exit, we might run into + * this case when a previous update_rq_clock() happened inside a + * {soft,}irq region. + * + * When this happens, we stop ->clock_task and only update the + * prev_irq_time stamp to account for the part that fit, so that a next + * update will consume the rest. This ensures ->clock_task is + * monotonic. + * + * It does however cause some slight miss-attribution of {soft,}irq + * time, a more accurate solution would be to update the irq_time using + * the current rq->clock timestamp, except that would require using + * atomic ops. + */ + if (irq_delta > delta) + irq_delta = delta; + + rq->prev_irq_time += irq_delta; + delta -= irq_delta; + psi_account_irqtime(rq->curr, irq_delta); +#endif +#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING + if (static_key_false((¶virt_steal_rq_enabled))) { + steal = paravirt_steal_clock(cpu_of(rq)); + steal -= rq->prev_steal_time_rq; + + if (unlikely(steal > delta)) + steal = delta; + + rq->prev_steal_time_rq += steal; + delta -= steal; + } +#endif + + rq->clock_task += delta; + +#ifdef CONFIG_HAVE_SCHED_AVG_IRQ + if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) + update_irq_load_avg(rq, irq_delta + steal); +#endif + update_rq_clock_pelt(rq, delta); +} + +void update_rq_clock(struct rq *rq) +{ + s64 delta; + + lockdep_assert_rq_held(rq); + + if (rq->clock_update_flags & RQCF_ACT_SKIP) + return; + +#ifdef CONFIG_SCHED_DEBUG + if (sched_feat(WARN_DOUBLE_CLOCK)) + SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); + rq->clock_update_flags |= RQCF_UPDATED; +#endif + + delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; + if (delta < 0) + return; + rq->clock += delta; + update_rq_clock_task(rq, delta); +} + +#ifdef CONFIG_SCHED_HRTICK +/* + * Use HR-timers to deliver accurate preemption points. + */ + +static void hrtick_clear(struct rq *rq) +{ + if (hrtimer_active(&rq->hrtick_timer)) + hrtimer_cancel(&rq->hrtick_timer); +} + +/* + * High-resolution timer tick. + * Runs from hardirq context with interrupts disabled. + */ +static enum hrtimer_restart hrtick(struct hrtimer *timer) +{ + struct rq *rq = container_of(timer, struct rq, hrtick_timer); + struct rq_flags rf; + + WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); + + rq_lock(rq, &rf); + update_rq_clock(rq); + rq->curr->sched_class->task_tick(rq, rq->curr, 1); + rq_unlock(rq, &rf); + + return HRTIMER_NORESTART; +} + +#ifdef CONFIG_SMP + +static void __hrtick_restart(struct rq *rq) +{ + struct hrtimer *timer = &rq->hrtick_timer; + ktime_t time = rq->hrtick_time; + + hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); +} + +/* + * called from hardirq (IPI) context + */ +static void __hrtick_start(void *arg) +{ + struct rq *rq = arg; + struct rq_flags rf; + + rq_lock(rq, &rf); + __hrtick_restart(rq); + rq_unlock(rq, &rf); +} + +/* + * Called to set the hrtick timer state. + * + * called with rq->lock held and irqs disabled + */ +void hrtick_start(struct rq *rq, u64 delay) +{ + struct hrtimer *timer = &rq->hrtick_timer; + s64 delta; + + /* + * Don't schedule slices shorter than 10000ns, that just + * doesn't make sense and can cause timer DoS. + */ + delta = max_t(s64, delay, 10000LL); + rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); + + if (rq == this_rq()) + __hrtick_restart(rq); + else + smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); +} + +#else +/* + * Called to set the hrtick timer state. + * + * called with rq->lock held and irqs disabled + */ +void hrtick_start(struct rq *rq, u64 delay) +{ + /* + * Don't schedule slices shorter than 10000ns, that just + * doesn't make sense. Rely on vruntime for fairness. + */ + delay = max_t(u64, delay, 10000LL); + hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), + HRTIMER_MODE_REL_PINNED_HARD); +} + +#endif /* CONFIG_SMP */ + +static void hrtick_rq_init(struct rq *rq) +{ +#ifdef CONFIG_SMP + INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); +#endif + hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); + rq->hrtick_timer.function = hrtick; +} +#else /* CONFIG_SCHED_HRTICK */ +static inline void hrtick_clear(struct rq *rq) +{ +} + +static inline void hrtick_rq_init(struct rq *rq) +{ +} +#endif /* CONFIG_SCHED_HRTICK */ + +/* + * cmpxchg based fetch_or, macro so it works for different integer types + */ +#define fetch_or(ptr, mask) \ + ({ \ + typeof(ptr) _ptr = (ptr); \ + typeof(mask) _mask = (mask); \ + typeof(*_ptr) _val = *_ptr; \ + \ + do { \ + } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ + _val; \ +}) + +#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) +/* + * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, + * this avoids any races wrt polling state changes and thereby avoids + * spurious IPIs. + */ +static inline bool set_nr_and_not_polling(struct task_struct *p) +{ + struct thread_info *ti = task_thread_info(p); + return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG); +} + +/* + * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. + * + * If this returns true, then the idle task promises to call + * sched_ttwu_pending() and reschedule soon. + */ +static bool set_nr_if_polling(struct task_struct *p) +{ + struct thread_info *ti = task_thread_info(p); + typeof(ti->flags) val = READ_ONCE(ti->flags); + + for (;;) { + if (!(val & _TIF_POLLING_NRFLAG)) + return false; + if (val & _TIF_NEED_RESCHED) + return true; + if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)) + break; + } + return true; +} + +#else +static inline bool set_nr_and_not_polling(struct task_struct *p) +{ + set_tsk_need_resched(p); + return true; +} + +#ifdef CONFIG_SMP +static inline bool set_nr_if_polling(struct task_struct *p) +{ + return false; +} +#endif +#endif + +static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) +{ + struct wake_q_node *node = &task->wake_q; + + /* + * Atomically grab the task, if ->wake_q is !nil already it means + * it's already queued (either by us or someone else) and will get the + * wakeup due to that. + * + * In order to ensure that a pending wakeup will observe our pending + * state, even in the failed case, an explicit smp_mb() must be used. + */ + smp_mb__before_atomic(); + if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) + return false; + + /* + * The head is context local, there can be no concurrency. + */ + *head->lastp = node; + head->lastp = &node->next; + return true; +} + +/** + * wake_q_add() - queue a wakeup for 'later' waking. + * @head: the wake_q_head to add @task to + * @task: the task to queue for 'later' wakeup + * + * Queue a task for later wakeup, most likely by the wake_up_q() call in the + * same context, _HOWEVER_ this is not guaranteed, the wakeup can come + * instantly. + * + * This function must be used as-if it were wake_up_process(); IOW the task + * must be ready to be woken at this location. + */ +void wake_q_add(struct wake_q_head *head, struct task_struct *task) +{ + if (__wake_q_add(head, task)) + get_task_struct(task); +} + +/** + * wake_q_add_safe() - safely queue a wakeup for 'later' waking. + * @head: the wake_q_head to add @task to + * @task: the task to queue for 'later' wakeup + * + * Queue a task for later wakeup, most likely by the wake_up_q() call in the + * same context, _HOWEVER_ this is not guaranteed, the wakeup can come + * instantly. + * + * This function must be used as-if it were wake_up_process(); IOW the task + * must be ready to be woken at this location. + * + * This function is essentially a task-safe equivalent to wake_q_add(). Callers + * that already hold reference to @task can call the 'safe' version and trust + * wake_q to do the right thing depending whether or not the @task is already + * queued for wakeup. + */ +void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) +{ + if (!__wake_q_add(head, task)) + put_task_struct(task); +} + +void wake_up_q(struct wake_q_head *head) +{ + struct wake_q_node *node = head->first; + + while (node != WAKE_Q_TAIL) { + struct task_struct *task; + + task = container_of(node, struct task_struct, wake_q); + /* Task can safely be re-inserted now: */ + node = node->next; + task->wake_q.next = NULL; + + /* + * wake_up_process() executes a full barrier, which pairs with + * the queueing in wake_q_add() so as not to miss wakeups. + */ + wake_up_process(task); + put_task_struct(task); + } +} + +/* + * resched_curr - mark rq's current task 'to be rescheduled now'. + * + * On UP this means the setting of the need_resched flag, on SMP it + * might also involve a cross-CPU call to trigger the scheduler on + * the target CPU. + */ +void resched_curr(struct rq *rq) +{ + struct task_struct *curr = rq->curr; + int cpu; + + lockdep_assert_rq_held(rq); + + if (test_tsk_need_resched(curr)) + return; + + cpu = cpu_of(rq); + + if (cpu == smp_processor_id()) { + set_tsk_need_resched(curr); + set_preempt_need_resched(); + return; + } + + if (set_nr_and_not_polling(curr)) + smp_send_reschedule(cpu); + else + trace_sched_wake_idle_without_ipi(cpu); +} + +void resched_cpu(int cpu) +{ + struct rq *rq = cpu_rq(cpu); + unsigned long flags; + + raw_spin_rq_lock_irqsave(rq, flags); + if (cpu_online(cpu) || cpu == smp_processor_id()) + resched_curr(rq); + raw_spin_rq_unlock_irqrestore(rq, flags); +} + +#ifdef CONFIG_SMP +#ifdef CONFIG_NO_HZ_COMMON +/* + * In the semi idle case, use the nearest busy CPU for migrating timers + * from an idle CPU. This is good for power-savings. + * + * We don't do similar optimization for completely idle system, as + * selecting an idle CPU will add more delays to the timers than intended + * (as that CPU's timer base may not be uptodate wrt jiffies etc). + */ +int get_nohz_timer_target(void) +{ + int i, cpu = smp_processor_id(), default_cpu = -1; + struct sched_domain *sd; + const struct cpumask *hk_mask; + + if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) { + if (!idle_cpu(cpu)) + return cpu; + default_cpu = cpu; + } + + hk_mask = housekeeping_cpumask(HK_TYPE_TIMER); + + rcu_read_lock(); + for_each_domain(cpu, sd) { + for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { + if (cpu == i) + continue; + + if (!idle_cpu(i)) { + cpu = i; + goto unlock; + } + } + } + + if (default_cpu == -1) + default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER); + cpu = default_cpu; +unlock: + rcu_read_unlock(); + return cpu; +} + +/* + * When add_timer_on() enqueues a timer into the timer wheel of an + * idle CPU then this timer might expire before the next timer event + * which is scheduled to wake up that CPU. In case of a completely + * idle system the next event might even be infinite time into the + * future. wake_up_idle_cpu() ensures that the CPU is woken up and + * leaves the inner idle loop so the newly added timer is taken into + * account when the CPU goes back to idle and evaluates the timer + * wheel for the next timer event. + */ +static void wake_up_idle_cpu(int cpu) +{ + struct rq *rq = cpu_rq(cpu); + + if (cpu == smp_processor_id()) + return; + + if (set_nr_and_not_polling(rq->idle)) + smp_send_reschedule(cpu); + else + trace_sched_wake_idle_without_ipi(cpu); +} + +static bool wake_up_full_nohz_cpu(int cpu) +{ + /* + * We just need the target to call irq_exit() and re-evaluate + * the next tick. The nohz full kick at least implies that. + * If needed we can still optimize that later with an + * empty IRQ. + */ + if (cpu_is_offline(cpu)) + return true; /* Don't try to wake offline CPUs. */ + if (tick_nohz_full_cpu(cpu)) { + if (cpu != smp_processor_id() || + tick_nohz_tick_stopped()) + tick_nohz_full_kick_cpu(cpu); + return true; + } + + return false; +} + +/* + * Wake up the specified CPU. If the CPU is going offline, it is the + * caller's responsibility to deal with the lost wakeup, for example, + * by hooking into the CPU_DEAD notifier like timers and hrtimers do. + */ +void wake_up_nohz_cpu(int cpu) +{ + if (!wake_up_full_nohz_cpu(cpu)) + wake_up_idle_cpu(cpu); +} + +static void nohz_csd_func(void *info) +{ + struct rq *rq = info; + int cpu = cpu_of(rq); + unsigned int flags; + + /* + * Release the rq::nohz_csd. + */ + flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); + WARN_ON(!(flags & NOHZ_KICK_MASK)); + + rq->idle_balance = idle_cpu(cpu); + if (rq->idle_balance && !need_resched()) { + rq->nohz_idle_balance = flags; + raise_softirq_irqoff(SCHED_SOFTIRQ); + } +} + +#endif /* CONFIG_NO_HZ_COMMON */ + +#ifdef CONFIG_NO_HZ_FULL +bool sched_can_stop_tick(struct rq *rq) +{ + int fifo_nr_running; + + /* Deadline tasks, even if single, need the tick */ + if (rq->dl.dl_nr_running) + return false; + + /* + * If there are more than one RR tasks, we need the tick to affect the + * actual RR behaviour. + */ + if (rq->rt.rr_nr_running) { + if (rq->rt.rr_nr_running == 1) + return true; + else + return false; + } + + /* + * If there's no RR tasks, but FIFO tasks, we can skip the tick, no + * forced preemption between FIFO tasks. + */ + fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; + if (fifo_nr_running) + return true; + + /* + * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; + * if there's more than one we need the tick for involuntary + * preemption. + */ + if (rq->nr_running > 1) + return false; + + return true; +} +#endif /* CONFIG_NO_HZ_FULL */ +#endif /* CONFIG_SMP */ + +#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ + (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) +/* + * Iterate task_group tree rooted at *from, calling @down when first entering a + * node and @up when leaving it for the final time. + * + * Caller must hold rcu_lock or sufficient equivalent. + */ +int walk_tg_tree_from(struct task_group *from, + tg_visitor down, tg_visitor up, void *data) +{ + struct task_group *parent, *child; + int ret; + + parent = from; + +down: + ret = (*down)(parent, data); + if (ret) + goto out; + list_for_each_entry_rcu(child, &parent->children, siblings) { + parent = child; + goto down; + +up: + continue; + } + ret = (*up)(parent, data); + if (ret || parent == from) + goto out; + + child = parent; + parent = parent->parent; + if (parent) + goto up; +out: + return ret; +} + +int tg_nop(struct task_group *tg, void *data) +{ + return 0; +} +#endif + +static void set_load_weight(struct task_struct *p, bool update_load) +{ + int prio = p->static_prio - MAX_RT_PRIO; + struct load_weight *load = &p->se.load; + + /* + * SCHED_IDLE tasks get minimal weight: + */ + if (task_has_idle_policy(p)) { + load->weight = scale_load(WEIGHT_IDLEPRIO); + load->inv_weight = WMULT_IDLEPRIO; + return; + } + + /* + * SCHED_OTHER tasks have to update their load when changing their + * weight + */ + if (update_load && p->sched_class == &fair_sched_class) { + reweight_task(p, prio); + } else { + load->weight = scale_load(sched_prio_to_weight[prio]); + load->inv_weight = sched_prio_to_wmult[prio]; + } +} + +#ifdef CONFIG_UCLAMP_TASK +/* + * Serializes updates of utilization clamp values + * + * The (slow-path) user-space triggers utilization clamp value updates which + * can require updates on (fast-path) scheduler's data structures used to + * support enqueue/dequeue operations. + * While the per-CPU rq lock protects fast-path update operations, user-space + * requests are serialized using a mutex to reduce the risk of conflicting + * updates or API abuses. + */ +static DEFINE_MUTEX(uclamp_mutex); + +/* Max allowed minimum utilization */ +static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; + +/* Max allowed maximum utilization */ +static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; + +/* + * By default RT tasks run at the maximum performance point/capacity of the + * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to + * SCHED_CAPACITY_SCALE. + * + * This knob allows admins to change the default behavior when uclamp is being + * used. In battery powered devices, particularly, running at the maximum + * capacity and frequency will increase energy consumption and shorten the + * battery life. + * + * This knob only affects RT tasks that their uclamp_se->user_defined == false. + * + * This knob will not override the system default sched_util_clamp_min defined + * above. + */ +static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; + +/* All clamps are required to be less or equal than these values */ +static struct uclamp_se uclamp_default[UCLAMP_CNT]; + +/* + * This static key is used to reduce the uclamp overhead in the fast path. It + * primarily disables the call to uclamp_rq_{inc, dec}() in + * enqueue/dequeue_task(). + * + * This allows users to continue to enable uclamp in their kernel config with + * minimum uclamp overhead in the fast path. + * + * As soon as userspace modifies any of the uclamp knobs, the static key is + * enabled, since we have an actual users that make use of uclamp + * functionality. + * + * The knobs that would enable this static key are: + * + * * A task modifying its uclamp value with sched_setattr(). + * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. + * * An admin modifying the cgroup cpu.uclamp.{min, max} + */ +DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); + +/* Integer rounded range for each bucket */ +#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) + +#define for_each_clamp_id(clamp_id) \ + for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) + +static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) +{ + return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); +} + +static inline unsigned int uclamp_none(enum uclamp_id clamp_id) +{ + if (clamp_id == UCLAMP_MIN) + return 0; + return SCHED_CAPACITY_SCALE; +} + +static inline void uclamp_se_set(struct uclamp_se *uc_se, + unsigned int value, bool user_defined) +{ + uc_se->value = value; + uc_se->bucket_id = uclamp_bucket_id(value); + uc_se->user_defined = user_defined; +} + +static inline unsigned int +uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, + unsigned int clamp_value) +{ + /* + * Avoid blocked utilization pushing up the frequency when we go + * idle (which drops the max-clamp) by retaining the last known + * max-clamp. + */ + if (clamp_id == UCLAMP_MAX) { + rq->uclamp_flags |= UCLAMP_FLAG_IDLE; + return clamp_value; + } + + return uclamp_none(UCLAMP_MIN); +} + +static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, + unsigned int clamp_value) +{ + /* Reset max-clamp retention only on idle exit */ + if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) + return; + + uclamp_rq_set(rq, clamp_id, clamp_value); +} + +static inline +unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, + unsigned int clamp_value) +{ + struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; + int bucket_id = UCLAMP_BUCKETS - 1; + + /* + * Since both min and max clamps are max aggregated, find the + * top most bucket with tasks in. + */ + for ( ; bucket_id >= 0; bucket_id--) { + if (!bucket[bucket_id].tasks) + continue; + return bucket[bucket_id].value; + } + + /* No tasks -- default clamp values */ + return uclamp_idle_value(rq, clamp_id, clamp_value); +} + +static void __uclamp_update_util_min_rt_default(struct task_struct *p) +{ + unsigned int default_util_min; + struct uclamp_se *uc_se; + + lockdep_assert_held(&p->pi_lock); + + uc_se = &p->uclamp_req[UCLAMP_MIN]; + + /* Only sync if user didn't override the default */ + if (uc_se->user_defined) + return; + + default_util_min = sysctl_sched_uclamp_util_min_rt_default; + uclamp_se_set(uc_se, default_util_min, false); +} + +static void uclamp_update_util_min_rt_default(struct task_struct *p) +{ + struct rq_flags rf; + struct rq *rq; + + if (!rt_task(p)) + return; + + /* Protect updates to p->uclamp_* */ + rq = task_rq_lock(p, &rf); + __uclamp_update_util_min_rt_default(p); + task_rq_unlock(rq, p, &rf); +} + +static inline struct uclamp_se +uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) +{ + /* Copy by value as we could modify it */ + struct uclamp_se uc_req = p->uclamp_req[clamp_id]; +#ifdef CONFIG_UCLAMP_TASK_GROUP + unsigned int tg_min, tg_max, value; + + /* + * Tasks in autogroups or root task group will be + * restricted by system defaults. + */ + if (task_group_is_autogroup(task_group(p))) + return uc_req; + if (task_group(p) == &root_task_group) + return uc_req; + + tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; + tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; + value = uc_req.value; + value = clamp(value, tg_min, tg_max); + uclamp_se_set(&uc_req, value, false); +#endif + + return uc_req; +} + +/* + * The effective clamp bucket index of a task depends on, by increasing + * priority: + * - the task specific clamp value, when explicitly requested from userspace + * - the task group effective clamp value, for tasks not either in the root + * group or in an autogroup + * - the system default clamp value, defined by the sysadmin + */ +static inline struct uclamp_se +uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) +{ + struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); + struct uclamp_se uc_max = uclamp_default[clamp_id]; + + /* System default restrictions always apply */ + if (unlikely(uc_req.value > uc_max.value)) + return uc_max; + + return uc_req; +} + +unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) +{ + struct uclamp_se uc_eff; + + /* Task currently refcounted: use back-annotated (effective) value */ + if (p->uclamp[clamp_id].active) + return (unsigned long)p->uclamp[clamp_id].value; + + uc_eff = uclamp_eff_get(p, clamp_id); + + return (unsigned long)uc_eff.value; +} + +/* + * When a task is enqueued on a rq, the clamp bucket currently defined by the + * task's uclamp::bucket_id is refcounted on that rq. This also immediately + * updates the rq's clamp value if required. + * + * Tasks can have a task-specific value requested from user-space, track + * within each bucket the maximum value for tasks refcounted in it. + * This "local max aggregation" allows to track the exact "requested" value + * for each bucket when all its RUNNABLE tasks require the same clamp. + */ +static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, + enum uclamp_id clamp_id) +{ + struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; + struct uclamp_se *uc_se = &p->uclamp[clamp_id]; + struct uclamp_bucket *bucket; + + lockdep_assert_rq_held(rq); + + /* Update task effective clamp */ + p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); + + bucket = &uc_rq->bucket[uc_se->bucket_id]; + bucket->tasks++; + uc_se->active = true; + + uclamp_idle_reset(rq, clamp_id, uc_se->value); + + /* + * Local max aggregation: rq buckets always track the max + * "requested" clamp value of its RUNNABLE tasks. + */ + if (bucket->tasks == 1 || uc_se->value > bucket->value) + bucket->value = uc_se->value; + + if (uc_se->value > uclamp_rq_get(rq, clamp_id)) + uclamp_rq_set(rq, clamp_id, uc_se->value); +} + +/* + * When a task is dequeued from a rq, the clamp bucket refcounted by the task + * is released. If this is the last task reference counting the rq's max + * active clamp value, then the rq's clamp value is updated. + * + * Both refcounted tasks and rq's cached clamp values are expected to be + * always valid. If it's detected they are not, as defensive programming, + * enforce the expected state and warn. + */ +static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, + enum uclamp_id clamp_id) +{ + struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; + struct uclamp_se *uc_se = &p->uclamp[clamp_id]; + struct uclamp_bucket *bucket; + unsigned int bkt_clamp; + unsigned int rq_clamp; + + lockdep_assert_rq_held(rq); + + /* + * If sched_uclamp_used was enabled after task @p was enqueued, + * we could end up with unbalanced call to uclamp_rq_dec_id(). + * + * In this case the uc_se->active flag should be false since no uclamp + * accounting was performed at enqueue time and we can just return + * here. + * + * Need to be careful of the following enqueue/dequeue ordering + * problem too + * + * enqueue(taskA) + * // sched_uclamp_used gets enabled + * enqueue(taskB) + * dequeue(taskA) + * // Must not decrement bucket->tasks here + * dequeue(taskB) + * + * where we could end up with stale data in uc_se and + * bucket[uc_se->bucket_id]. + * + * The following check here eliminates the possibility of such race. + */ + if (unlikely(!uc_se->active)) + return; + + bucket = &uc_rq->bucket[uc_se->bucket_id]; + + SCHED_WARN_ON(!bucket->tasks); + if (likely(bucket->tasks)) + bucket->tasks--; + + uc_se->active = false; + + /* + * Keep "local max aggregation" simple and accept to (possibly) + * overboost some RUNNABLE tasks in the same bucket. + * The rq clamp bucket value is reset to its base value whenever + * there are no more RUNNABLE tasks refcounting it. + */ + if (likely(bucket->tasks)) + return; + + rq_clamp = uclamp_rq_get(rq, clamp_id); + /* + * Defensive programming: this should never happen. If it happens, + * e.g. due to future modification, warn and fixup the expected value. + */ + SCHED_WARN_ON(bucket->value > rq_clamp); + if (bucket->value >= rq_clamp) { + bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); + uclamp_rq_set(rq, clamp_id, bkt_clamp); + } +} + +static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) +{ + enum uclamp_id clamp_id; + + /* + * Avoid any overhead until uclamp is actually used by the userspace. + * + * The condition is constructed such that a NOP is generated when + * sched_uclamp_used is disabled. + */ + if (!static_branch_unlikely(&sched_uclamp_used)) + return; + + if (unlikely(!p->sched_class->uclamp_enabled)) + return; + + for_each_clamp_id(clamp_id) + uclamp_rq_inc_id(rq, p, clamp_id); + + /* Reset clamp idle holding when there is one RUNNABLE task */ + if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) + rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; +} + +static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) +{ + enum uclamp_id clamp_id; + + /* + * Avoid any overhead until uclamp is actually used by the userspace. + * + * The condition is constructed such that a NOP is generated when + * sched_uclamp_used is disabled. + */ + if (!static_branch_unlikely(&sched_uclamp_used)) + return; + + if (unlikely(!p->sched_class->uclamp_enabled)) + return; + + for_each_clamp_id(clamp_id) + uclamp_rq_dec_id(rq, p, clamp_id); +} + +static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, + enum uclamp_id clamp_id) +{ + if (!p->uclamp[clamp_id].active) + return; + + uclamp_rq_dec_id(rq, p, clamp_id); + uclamp_rq_inc_id(rq, p, clamp_id); + + /* + * Make sure to clear the idle flag if we've transiently reached 0 + * active tasks on rq. + */ + if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) + rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; +} + +static inline void +uclamp_update_active(struct task_struct *p) +{ + enum uclamp_id clamp_id; + struct rq_flags rf; + struct rq *rq; + + /* + * Lock the task and the rq where the task is (or was) queued. + * + * We might lock the (previous) rq of a !RUNNABLE task, but that's the + * price to pay to safely serialize util_{min,max} updates with + * enqueues, dequeues and migration operations. + * This is the same locking schema used by __set_cpus_allowed_ptr(). + */ + rq = task_rq_lock(p, &rf); + + /* + * Setting the clamp bucket is serialized by task_rq_lock(). + * If the task is not yet RUNNABLE and its task_struct is not + * affecting a valid clamp bucket, the next time it's enqueued, + * it will already see the updated clamp bucket value. + */ + for_each_clamp_id(clamp_id) + uclamp_rq_reinc_id(rq, p, clamp_id); + + task_rq_unlock(rq, p, &rf); +} + +#ifdef CONFIG_UCLAMP_TASK_GROUP +static inline void +uclamp_update_active_tasks(struct cgroup_subsys_state *css) +{ + struct css_task_iter it; + struct task_struct *p; + + css_task_iter_start(css, 0, &it); + while ((p = css_task_iter_next(&it))) + uclamp_update_active(p); + css_task_iter_end(&it); +} + +static void cpu_util_update_eff(struct cgroup_subsys_state *css); +#endif + +#ifdef CONFIG_SYSCTL +#ifdef CONFIG_UCLAMP_TASK +#ifdef CONFIG_UCLAMP_TASK_GROUP +static void uclamp_update_root_tg(void) +{ + struct task_group *tg = &root_task_group; + + uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], + sysctl_sched_uclamp_util_min, false); + uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], + sysctl_sched_uclamp_util_max, false); + + rcu_read_lock(); + cpu_util_update_eff(&root_task_group.css); + rcu_read_unlock(); +} +#else +static void uclamp_update_root_tg(void) { } +#endif + +static void uclamp_sync_util_min_rt_default(void) +{ + struct task_struct *g, *p; + + /* + * copy_process() sysctl_uclamp + * uclamp_min_rt = X; + * write_lock(&tasklist_lock) read_lock(&tasklist_lock) + * // link thread smp_mb__after_spinlock() + * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); + * sched_post_fork() for_each_process_thread() + * __uclamp_sync_rt() __uclamp_sync_rt() + * + * Ensures that either sched_post_fork() will observe the new + * uclamp_min_rt or for_each_process_thread() will observe the new + * task. + */ + read_lock(&tasklist_lock); + smp_mb__after_spinlock(); + read_unlock(&tasklist_lock); + + rcu_read_lock(); + for_each_process_thread(g, p) + uclamp_update_util_min_rt_default(p); + rcu_read_unlock(); +} + +static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, + void *buffer, size_t *lenp, loff_t *ppos) +{ + bool update_root_tg = false; + int old_min, old_max, old_min_rt; + int result; + + mutex_lock(&uclamp_mutex); + old_min = sysctl_sched_uclamp_util_min; + old_max = sysctl_sched_uclamp_util_max; + old_min_rt = sysctl_sched_uclamp_util_min_rt_default; + + result = proc_dointvec(table, write, buffer, lenp, ppos); + if (result) + goto undo; + if (!write) + goto done; + + if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || + sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || + sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { + + result = -EINVAL; + goto undo; + } + + if (old_min != sysctl_sched_uclamp_util_min) { + uclamp_se_set(&uclamp_default[UCLAMP_MIN], + sysctl_sched_uclamp_util_min, false); + update_root_tg = true; + } + if (old_max != sysctl_sched_uclamp_util_max) { + uclamp_se_set(&uclamp_default[UCLAMP_MAX], + sysctl_sched_uclamp_util_max, false); + update_root_tg = true; + } + + if (update_root_tg) { + static_branch_enable(&sched_uclamp_used); + uclamp_update_root_tg(); + } + + if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { + static_branch_enable(&sched_uclamp_used); + uclamp_sync_util_min_rt_default(); + } + + /* + * We update all RUNNABLE tasks only when task groups are in use. + * Otherwise, keep it simple and do just a lazy update at each next + * task enqueue time. + */ + + goto done; + +undo: + sysctl_sched_uclamp_util_min = old_min; + sysctl_sched_uclamp_util_max = old_max; + sysctl_sched_uclamp_util_min_rt_default = old_min_rt; +done: + mutex_unlock(&uclamp_mutex); + + return result; +} +#endif +#endif + +static int uclamp_validate(struct task_struct *p, + const struct sched_attr *attr) +{ + int util_min = p->uclamp_req[UCLAMP_MIN].value; + int util_max = p->uclamp_req[UCLAMP_MAX].value; + + if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { + util_min = attr->sched_util_min; + + if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) + return -EINVAL; + } + + if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { + util_max = attr->sched_util_max; + + if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) + return -EINVAL; + } + + if (util_min != -1 && util_max != -1 && util_min > util_max) + return -EINVAL; + + /* + * We have valid uclamp attributes; make sure uclamp is enabled. + * + * We need to do that here, because enabling static branches is a + * blocking operation which obviously cannot be done while holding + * scheduler locks. + */ + static_branch_enable(&sched_uclamp_used); + + return 0; +} + +static bool uclamp_reset(const struct sched_attr *attr, + enum uclamp_id clamp_id, + struct uclamp_se *uc_se) +{ + /* Reset on sched class change for a non user-defined clamp value. */ + if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && + !uc_se->user_defined) + return true; + + /* Reset on sched_util_{min,max} == -1. */ + if (clamp_id == UCLAMP_MIN && + attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && + attr->sched_util_min == -1) { + return true; + } + + if (clamp_id == UCLAMP_MAX && + attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && + attr->sched_util_max == -1) { + return true; + } + + return false; +} + +static void __setscheduler_uclamp(struct task_struct *p, + const struct sched_attr *attr) +{ + enum uclamp_id clamp_id; + + for_each_clamp_id(clamp_id) { + struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; + unsigned int value; + + if (!uclamp_reset(attr, clamp_id, uc_se)) + continue; + + /* + * RT by default have a 100% boost value that could be modified + * at runtime. + */ + if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) + value = sysctl_sched_uclamp_util_min_rt_default; + else + value = uclamp_none(clamp_id); + + uclamp_se_set(uc_se, value, false); + + } + + if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) + return; + + if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && + attr->sched_util_min != -1) { + uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], + attr->sched_util_min, true); + } + + if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && + attr->sched_util_max != -1) { + uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], + attr->sched_util_max, true); + } +} + +static void uclamp_fork(struct task_struct *p) +{ + enum uclamp_id clamp_id; + + /* + * We don't need to hold task_rq_lock() when updating p->uclamp_* here + * as the task is still at its early fork stages. + */ + for_each_clamp_id(clamp_id) + p->uclamp[clamp_id].active = false; + + if (likely(!p->sched_reset_on_fork)) + return; + + for_each_clamp_id(clamp_id) { + uclamp_se_set(&p->uclamp_req[clamp_id], + uclamp_none(clamp_id), false); + } +} + +static void uclamp_post_fork(struct task_struct *p) +{ + uclamp_update_util_min_rt_default(p); +} + +static void __init init_uclamp_rq(struct rq *rq) +{ + enum uclamp_id clamp_id; + struct uclamp_rq *uc_rq = rq->uclamp; + + for_each_clamp_id(clamp_id) { + uc_rq[clamp_id] = (struct uclamp_rq) { + .value = uclamp_none(clamp_id) + }; + } + + rq->uclamp_flags = UCLAMP_FLAG_IDLE; +} + +static void __init init_uclamp(void) +{ + struct uclamp_se uc_max = {}; + enum uclamp_id clamp_id; + int cpu; + + for_each_possible_cpu(cpu) + init_uclamp_rq(cpu_rq(cpu)); + + for_each_clamp_id(clamp_id) { + uclamp_se_set(&init_task.uclamp_req[clamp_id], + uclamp_none(clamp_id), false); + } + + /* System defaults allow max clamp values for both indexes */ + uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); + for_each_clamp_id(clamp_id) { + uclamp_default[clamp_id] = uc_max; +#ifdef CONFIG_UCLAMP_TASK_GROUP + root_task_group.uclamp_req[clamp_id] = uc_max; + root_task_group.uclamp[clamp_id] = uc_max; +#endif + } +} + +#else /* CONFIG_UCLAMP_TASK */ +static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } +static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } +static inline int uclamp_validate(struct task_struct *p, + const struct sched_attr *attr) +{ + return -EOPNOTSUPP; +} +static void __setscheduler_uclamp(struct task_struct *p, + const struct sched_attr *attr) { } +static inline void uclamp_fork(struct task_struct *p) { } +static inline void uclamp_post_fork(struct task_struct *p) { } +static inline void init_uclamp(void) { } +#endif /* CONFIG_UCLAMP_TASK */ + +bool sched_task_on_rq(struct task_struct *p) +{ + return task_on_rq_queued(p); +} + +unsigned long get_wchan(struct task_struct *p) +{ + unsigned long ip = 0; + unsigned int state; + + if (!p || p == current) + return 0; + + /* Only get wchan if task is blocked and we can keep it that way. */ + raw_spin_lock_irq(&p->pi_lock); + state = READ_ONCE(p->__state); + smp_rmb(); /* see try_to_wake_up() */ + if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) + ip = __get_wchan(p); + raw_spin_unlock_irq(&p->pi_lock); + + return ip; +} + +static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) +{ + if (!(flags & ENQUEUE_NOCLOCK)) + update_rq_clock(rq); + + if (!(flags & ENQUEUE_RESTORE)) { + sched_info_enqueue(rq, p); + psi_enqueue(p, flags & ENQUEUE_WAKEUP); + } + + uclamp_rq_inc(rq, p); + p->sched_class->enqueue_task(rq, p, flags); + + if (sched_core_enabled(rq)) + sched_core_enqueue(rq, p); +} + +static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) +{ + if (sched_core_enabled(rq)) + sched_core_dequeue(rq, p, flags); + + if (!(flags & DEQUEUE_NOCLOCK)) + update_rq_clock(rq); + + if (!(flags & DEQUEUE_SAVE)) { + sched_info_dequeue(rq, p); + psi_dequeue(p, flags & DEQUEUE_SLEEP); + } + + uclamp_rq_dec(rq, p); + p->sched_class->dequeue_task(rq, p, flags); +} + +void activate_task(struct rq *rq, struct task_struct *p, int flags) +{ + if (task_on_rq_migrating(p)) + flags |= ENQUEUE_MIGRATED; + + enqueue_task(rq, p, flags); + + p->on_rq = TASK_ON_RQ_QUEUED; +} + +void deactivate_task(struct rq *rq, struct task_struct *p, int flags) +{ + p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING; + + dequeue_task(rq, p, flags); +} + +static inline int __normal_prio(int policy, int rt_prio, int nice) +{ + int prio; + + if (dl_policy(policy)) + prio = MAX_DL_PRIO - 1; + else if (rt_policy(policy)) + prio = MAX_RT_PRIO - 1 - rt_prio; + else + prio = NICE_TO_PRIO(nice); + + return prio; +} + +/* + * Calculate the expected normal priority: i.e. priority + * without taking RT-inheritance into account. Might be + * boosted by interactivity modifiers. Changes upon fork, + * setprio syscalls, and whenever the interactivity + * estimator recalculates. + */ +static inline int normal_prio(struct task_struct *p) +{ + return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); +} + +/* + * Calculate the current priority, i.e. the priority + * taken into account by the scheduler. This value might + * be boosted by RT tasks, or might be boosted by + * interactivity modifiers. Will be RT if the task got + * RT-boosted. If not then it returns p->normal_prio. + */ +static int effective_prio(struct task_struct *p) +{ + p->normal_prio = normal_prio(p); + /* + * If we are RT tasks or we were boosted to RT priority, + * keep the priority unchanged. Otherwise, update priority + * to the normal priority: + */ + if (!rt_prio(p->prio)) + return p->normal_prio; + return p->prio; +} + +/** + * task_curr - is this task currently executing on a CPU? + * @p: the task in question. + * + * Return: 1 if the task is currently executing. 0 otherwise. + */ +inline int task_curr(const struct task_struct *p) +{ + return cpu_curr(task_cpu(p)) == p; +} + +/* + * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, + * use the balance_callback list if you want balancing. + * + * this means any call to check_class_changed() must be followed by a call to + * balance_callback(). + */ +static inline void check_class_changed(struct rq *rq, struct task_struct *p, + const struct sched_class *prev_class, + int oldprio) +{ + if (prev_class != p->sched_class) { + if (prev_class->switched_from) + prev_class->switched_from(rq, p); + + p->sched_class->switched_to(rq, p); + } else if (oldprio != p->prio || dl_task(p)) + p->sched_class->prio_changed(rq, p, oldprio); +} + +void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) +{ + if (p->sched_class == rq->curr->sched_class) + rq->curr->sched_class->check_preempt_curr(rq, p, flags); + else if (sched_class_above(p->sched_class, rq->curr->sched_class)) + resched_curr(rq); + + /* + * A queue event has occurred, and we're going to schedule. In + * this case, we can save a useless back to back clock update. + */ + if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) + rq_clock_skip_update(rq); +} + +#ifdef CONFIG_SMP + +static void +__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags); + +static int __set_cpus_allowed_ptr(struct task_struct *p, + const struct cpumask *new_mask, + u32 flags); + +static void migrate_disable_switch(struct rq *rq, struct task_struct *p) +{ + if (likely(!p->migration_disabled)) + return; + + if (p->cpus_ptr != &p->cpus_mask) + return; + + /* + * Violates locking rules! see comment in __do_set_cpus_allowed(). + */ + __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE); +} + +void migrate_disable(void) +{ + struct task_struct *p = current; + + if (p->migration_disabled) { + p->migration_disabled++; + return; + } + + preempt_disable(); + this_rq()->nr_pinned++; + p->migration_disabled = 1; + preempt_enable(); +} +EXPORT_SYMBOL_GPL(migrate_disable); + +void migrate_enable(void) +{ + struct task_struct *p = current; + + if (p->migration_disabled > 1) { + p->migration_disabled--; + return; + } + + if (WARN_ON_ONCE(!p->migration_disabled)) + return; + + /* + * Ensure stop_task runs either before or after this, and that + * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). + */ + preempt_disable(); + if (p->cpus_ptr != &p->cpus_mask) + __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE); + /* + * Mustn't clear migration_disabled() until cpus_ptr points back at the + * regular cpus_mask, otherwise things that race (eg. + * select_fallback_rq) get confused. + */ + barrier(); + p->migration_disabled = 0; + this_rq()->nr_pinned--; + preempt_enable(); +} +EXPORT_SYMBOL_GPL(migrate_enable); + +static inline bool rq_has_pinned_tasks(struct rq *rq) +{ + return rq->nr_pinned; +} + +/* + * Per-CPU kthreads are allowed to run on !active && online CPUs, see + * __set_cpus_allowed_ptr() and select_fallback_rq(). + */ +static inline bool is_cpu_allowed(struct task_struct *p, int cpu) +{ + /* When not in the task's cpumask, no point in looking further. */ + if (!cpumask_test_cpu(cpu, p->cpus_ptr)) + return false; + + /* migrate_disabled() must be allowed to finish. */ + if (is_migration_disabled(p)) + return cpu_online(cpu); + + /* Non kernel threads are not allowed during either online or offline. */ + if (!(p->flags & PF_KTHREAD)) + return cpu_active(cpu) && task_cpu_possible(cpu, p); + + /* KTHREAD_IS_PER_CPU is always allowed. */ + if (kthread_is_per_cpu(p)) + return cpu_online(cpu); + + /* Regular kernel threads don't get to stay during offline. */ + if (cpu_dying(cpu)) + return false; + + /* But are allowed during online. */ + return cpu_online(cpu); +} + +/* + * This is how migration works: + * + * 1) we invoke migration_cpu_stop() on the target CPU using + * stop_one_cpu(). + * 2) stopper starts to run (implicitly forcing the migrated thread + * off the CPU) + * 3) it checks whether the migrated task is still in the wrong runqueue. + * 4) if it's in the wrong runqueue then the migration thread removes + * it and puts it into the right queue. + * 5) stopper completes and stop_one_cpu() returns and the migration + * is done. + */ + +/* + * move_queued_task - move a queued task to new rq. + * + * Returns (locked) new rq. Old rq's lock is released. + */ +static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, + struct task_struct *p, int new_cpu) +{ + lockdep_assert_rq_held(rq); + + deactivate_task(rq, p, DEQUEUE_NOCLOCK); + set_task_cpu(p, new_cpu); + rq_unlock(rq, rf); + + rq = cpu_rq(new_cpu); + + rq_lock(rq, rf); + WARN_ON_ONCE(task_cpu(p) != new_cpu); + activate_task(rq, p, 0); + check_preempt_curr(rq, p, 0); + + return rq; +} + +struct migration_arg { + struct task_struct *task; + int dest_cpu; + struct set_affinity_pending *pending; +}; + +/* + * @refs: number of wait_for_completion() + * @stop_pending: is @stop_work in use + */ +struct set_affinity_pending { + refcount_t refs; + unsigned int stop_pending; + struct completion done; + struct cpu_stop_work stop_work; + struct migration_arg arg; +}; + +/* + * Move (not current) task off this CPU, onto the destination CPU. We're doing + * this because either it can't run here any more (set_cpus_allowed() + * away from this CPU, or CPU going down), or because we're + * attempting to rebalance this task on exec (sched_exec). + * + * So we race with normal scheduler movements, but that's OK, as long + * as the task is no longer on this CPU. + */ +static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, + struct task_struct *p, int dest_cpu) +{ + /* Affinity changed (again). */ + if (!is_cpu_allowed(p, dest_cpu)) + return rq; + + update_rq_clock(rq); + rq = move_queued_task(rq, rf, p, dest_cpu); + + return rq; +} + +/* + * migration_cpu_stop - this will be executed by a highprio stopper thread + * and performs thread migration by bumping thread off CPU then + * 'pushing' onto another runqueue. + */ +static int migration_cpu_stop(void *data) +{ + struct migration_arg *arg = data; + struct set_affinity_pending *pending = arg->pending; + struct task_struct *p = arg->task; + struct rq *rq = this_rq(); + bool complete = false; + struct rq_flags rf; + + /* + * The original target CPU might have gone down and we might + * be on another CPU but it doesn't matter. + */ + local_irq_save(rf.flags); + /* + * We need to explicitly wake pending tasks before running + * __migrate_task() such that we will not miss enforcing cpus_ptr + * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. + */ + flush_smp_call_function_queue(); + + raw_spin_lock(&p->pi_lock); + rq_lock(rq, &rf); + + /* + * If we were passed a pending, then ->stop_pending was set, thus + * p->migration_pending must have remained stable. + */ + WARN_ON_ONCE(pending && pending != p->migration_pending); + + /* + * If task_rq(p) != rq, it cannot be migrated here, because we're + * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because + * we're holding p->pi_lock. + */ + if (task_rq(p) == rq) { + if (is_migration_disabled(p)) + goto out; + + if (pending) { + p->migration_pending = NULL; + complete = true; + + if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) + goto out; + } + + if (task_on_rq_queued(p)) + rq = __migrate_task(rq, &rf, p, arg->dest_cpu); + else + p->wake_cpu = arg->dest_cpu; + + /* + * XXX __migrate_task() can fail, at which point we might end + * up running on a dodgy CPU, AFAICT this can only happen + * during CPU hotplug, at which point we'll get pushed out + * anyway, so it's probably not a big deal. + */ + + } else if (pending) { + /* + * This happens when we get migrated between migrate_enable()'s + * preempt_enable() and scheduling the stopper task. At that + * point we're a regular task again and not current anymore. + * + * A !PREEMPT kernel has a giant hole here, which makes it far + * more likely. + */ + + /* + * The task moved before the stopper got to run. We're holding + * ->pi_lock, so the allowed mask is stable - if it got + * somewhere allowed, we're done. + */ + if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { + p->migration_pending = NULL; + complete = true; + goto out; + } + + /* + * When migrate_enable() hits a rq mis-match we can't reliably + * determine is_migration_disabled() and so have to chase after + * it. + */ + WARN_ON_ONCE(!pending->stop_pending); + preempt_disable(); + task_rq_unlock(rq, p, &rf); + stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, + &pending->arg, &pending->stop_work); + preempt_enable(); + return 0; + } +out: + if (pending) + pending->stop_pending = false; + task_rq_unlock(rq, p, &rf); + + if (complete) + complete_all(&pending->done); + + return 0; +} + +int push_cpu_stop(void *arg) +{ + struct rq *lowest_rq = NULL, *rq = this_rq(); + struct task_struct *p = arg; + + raw_spin_lock_irq(&p->pi_lock); + raw_spin_rq_lock(rq); + + if (task_rq(p) != rq) + goto out_unlock; + + if (is_migration_disabled(p)) { + p->migration_flags |= MDF_PUSH; + goto out_unlock; + } + + p->migration_flags &= ~MDF_PUSH; + + if (p->sched_class->find_lock_rq) + lowest_rq = p->sched_class->find_lock_rq(p, rq); + + if (!lowest_rq) + goto out_unlock; + + // XXX validate p is still the highest prio task + if (task_rq(p) == rq) { + deactivate_task(rq, p, 0); + set_task_cpu(p, lowest_rq->cpu); + activate_task(lowest_rq, p, 0); + resched_curr(lowest_rq); + } + + double_unlock_balance(rq, lowest_rq); + +out_unlock: + rq->push_busy = false; + raw_spin_rq_unlock(rq); + raw_spin_unlock_irq(&p->pi_lock); + + put_task_struct(p); + return 0; +} + +/* + * sched_class::set_cpus_allowed must do the below, but is not required to + * actually call this function. + */ +void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags) +{ + if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { + p->cpus_ptr = new_mask; + return; + } + + cpumask_copy(&p->cpus_mask, new_mask); + p->nr_cpus_allowed = cpumask_weight(new_mask); +} + +static void +__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags) +{ + struct rq *rq = task_rq(p); + bool queued, running; + + /* + * This here violates the locking rules for affinity, since we're only + * supposed to change these variables while holding both rq->lock and + * p->pi_lock. + * + * HOWEVER, it magically works, because ttwu() is the only code that + * accesses these variables under p->pi_lock and only does so after + * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() + * before finish_task(). + * + * XXX do further audits, this smells like something putrid. + */ + if (flags & SCA_MIGRATE_DISABLE) + SCHED_WARN_ON(!p->on_cpu); + else + lockdep_assert_held(&p->pi_lock); + + queued = task_on_rq_queued(p); + running = task_current(rq, p); + + if (queued) { + /* + * Because __kthread_bind() calls this on blocked tasks without + * holding rq->lock. + */ + lockdep_assert_rq_held(rq); + dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); + } + if (running) + put_prev_task(rq, p); + + p->sched_class->set_cpus_allowed(p, new_mask, flags); + + if (queued) + enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); + if (running) + set_next_task(rq, p); +} + +void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) +{ + __do_set_cpus_allowed(p, new_mask, 0); +} + +int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, + int node) +{ + cpumask_t *user_mask; + unsigned long flags; + + /* + * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's + * may differ by now due to racing. + */ + dst->user_cpus_ptr = NULL; + + /* + * This check is racy and losing the race is a valid situation. + * It is not worth the extra overhead of taking the pi_lock on + * every fork/clone. + */ + if (data_race(!src->user_cpus_ptr)) + return 0; + + user_mask = kmalloc_node(cpumask_size(), GFP_KERNEL, node); + if (!user_mask) + return -ENOMEM; + + /* + * Use pi_lock to protect content of user_cpus_ptr + * + * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent + * do_set_cpus_allowed(). + */ + raw_spin_lock_irqsave(&src->pi_lock, flags); + if (src->user_cpus_ptr) { + swap(dst->user_cpus_ptr, user_mask); + cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); + } + raw_spin_unlock_irqrestore(&src->pi_lock, flags); + + if (unlikely(user_mask)) + kfree(user_mask); + + return 0; +} + +static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) +{ + struct cpumask *user_mask = NULL; + + swap(p->user_cpus_ptr, user_mask); + + return user_mask; +} + +void release_user_cpus_ptr(struct task_struct *p) +{ + kfree(clear_user_cpus_ptr(p)); +} + +/* + * This function is wildly self concurrent; here be dragons. + * + * + * When given a valid mask, __set_cpus_allowed_ptr() must block until the + * designated task is enqueued on an allowed CPU. If that task is currently + * running, we have to kick it out using the CPU stopper. + * + * Migrate-Disable comes along and tramples all over our nice sandcastle. + * Consider: + * + * Initial conditions: P0->cpus_mask = [0, 1] + * + * P0@CPU0 P1 + * + * migrate_disable(); + * <preempted> + * set_cpus_allowed_ptr(P0, [1]); + * + * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes + * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). + * This means we need the following scheme: + * + * P0@CPU0 P1 + * + * migrate_disable(); + * <preempted> + * set_cpus_allowed_ptr(P0, [1]); + * <blocks> + * <resumes> + * migrate_enable(); + * __set_cpus_allowed_ptr(); + * <wakes local stopper> + * `--> <woken on migration completion> + * + * Now the fun stuff: there may be several P1-like tasks, i.e. multiple + * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any + * task p are serialized by p->pi_lock, which we can leverage: the one that + * should come into effect at the end of the Migrate-Disable region is the last + * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), + * but we still need to properly signal those waiting tasks at the appropriate + * moment. + * + * This is implemented using struct set_affinity_pending. The first + * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will + * setup an instance of that struct and install it on the targeted task_struct. + * Any and all further callers will reuse that instance. Those then wait for + * a completion signaled at the tail of the CPU stopper callback (1), triggered + * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). + * + * + * (1) In the cases covered above. There is one more where the completion is + * signaled within affine_move_task() itself: when a subsequent affinity request + * occurs after the stopper bailed out due to the targeted task still being + * Migrate-Disable. Consider: + * + * Initial conditions: P0->cpus_mask = [0, 1] + * + * CPU0 P1 P2 + * <P0> + * migrate_disable(); + * <preempted> + * set_cpus_allowed_ptr(P0, [1]); + * <blocks> + * <migration/0> + * migration_cpu_stop() + * is_migration_disabled() + * <bails> + * set_cpus_allowed_ptr(P0, [0, 1]); + * <signal completion> + * <awakes> + * + * Note that the above is safe vs a concurrent migrate_enable(), as any + * pending affinity completion is preceded by an uninstallation of + * p->migration_pending done with p->pi_lock held. + */ +static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, + int dest_cpu, unsigned int flags) +{ + struct set_affinity_pending my_pending = { }, *pending = NULL; + bool stop_pending, complete = false; + + /* Can the task run on the task's current CPU? If so, we're done */ + if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { + struct task_struct *push_task = NULL; + + if ((flags & SCA_MIGRATE_ENABLE) && + (p->migration_flags & MDF_PUSH) && !rq->push_busy) { + rq->push_busy = true; + push_task = get_task_struct(p); + } + + /* + * If there are pending waiters, but no pending stop_work, + * then complete now. + */ + pending = p->migration_pending; + if (pending && !pending->stop_pending) { + p->migration_pending = NULL; + complete = true; + } + + preempt_disable(); + task_rq_unlock(rq, p, rf); + if (push_task) { + stop_one_cpu_nowait(rq->cpu, push_cpu_stop, + p, &rq->push_work); + } + preempt_enable(); + + if (complete) + complete_all(&pending->done); + + return 0; + } + + if (!(flags & SCA_MIGRATE_ENABLE)) { + /* serialized by p->pi_lock */ + if (!p->migration_pending) { + /* Install the request */ + refcount_set(&my_pending.refs, 1); + init_completion(&my_pending.done); + my_pending.arg = (struct migration_arg) { + .task = p, + .dest_cpu = dest_cpu, + .pending = &my_pending, + }; + + p->migration_pending = &my_pending; + } else { + pending = p->migration_pending; + refcount_inc(&pending->refs); + /* + * Affinity has changed, but we've already installed a + * pending. migration_cpu_stop() *must* see this, else + * we risk a completion of the pending despite having a + * task on a disallowed CPU. + * + * Serialized by p->pi_lock, so this is safe. + */ + pending->arg.dest_cpu = dest_cpu; + } + } + pending = p->migration_pending; + /* + * - !MIGRATE_ENABLE: + * we'll have installed a pending if there wasn't one already. + * + * - MIGRATE_ENABLE: + * we're here because the current CPU isn't matching anymore, + * the only way that can happen is because of a concurrent + * set_cpus_allowed_ptr() call, which should then still be + * pending completion. + * + * Either way, we really should have a @pending here. + */ + if (WARN_ON_ONCE(!pending)) { + task_rq_unlock(rq, p, rf); + return -EINVAL; + } + + if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { + /* + * MIGRATE_ENABLE gets here because 'p == current', but for + * anything else we cannot do is_migration_disabled(), punt + * and have the stopper function handle it all race-free. + */ + stop_pending = pending->stop_pending; + if (!stop_pending) + pending->stop_pending = true; + + if (flags & SCA_MIGRATE_ENABLE) + p->migration_flags &= ~MDF_PUSH; + + preempt_disable(); + task_rq_unlock(rq, p, rf); + if (!stop_pending) { + stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, + &pending->arg, &pending->stop_work); + } + preempt_enable(); + + if (flags & SCA_MIGRATE_ENABLE) + return 0; + } else { + + if (!is_migration_disabled(p)) { + if (task_on_rq_queued(p)) + rq = move_queued_task(rq, rf, p, dest_cpu); + + if (!pending->stop_pending) { + p->migration_pending = NULL; + complete = true; + } + } + task_rq_unlock(rq, p, rf); + + if (complete) + complete_all(&pending->done); + } + + wait_for_completion(&pending->done); + + if (refcount_dec_and_test(&pending->refs)) + wake_up_var(&pending->refs); /* No UaF, just an address */ + + /* + * Block the original owner of &pending until all subsequent callers + * have seen the completion and decremented the refcount + */ + wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); + + /* ARGH */ + WARN_ON_ONCE(my_pending.stop_pending); + + return 0; +} + +/* + * Called with both p->pi_lock and rq->lock held; drops both before returning. + */ +static int __set_cpus_allowed_ptr_locked(struct task_struct *p, + const struct cpumask *new_mask, + u32 flags, + struct rq *rq, + struct rq_flags *rf) + __releases(rq->lock) + __releases(p->pi_lock) +{ + const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); + const struct cpumask *cpu_valid_mask = cpu_active_mask; + bool kthread = p->flags & PF_KTHREAD; + struct cpumask *user_mask = NULL; + unsigned int dest_cpu; + int ret = 0; + + update_rq_clock(rq); + + if (kthread || is_migration_disabled(p)) { + /* + * Kernel threads are allowed on online && !active CPUs, + * however, during cpu-hot-unplug, even these might get pushed + * away if not KTHREAD_IS_PER_CPU. + * + * Specifically, migration_disabled() tasks must not fail the + * cpumask_any_and_distribute() pick below, esp. so on + * SCA_MIGRATE_ENABLE, otherwise we'll not call + * set_cpus_allowed_common() and actually reset p->cpus_ptr. + */ + cpu_valid_mask = cpu_online_mask; + } + + if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) { + ret = -EINVAL; + goto out; + } + + /* + * Must re-check here, to close a race against __kthread_bind(), + * sched_setaffinity() is not guaranteed to observe the flag. + */ + if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { + ret = -EINVAL; + goto out; + } + + if (!(flags & SCA_MIGRATE_ENABLE)) { + if (cpumask_equal(&p->cpus_mask, new_mask)) + goto out; + + if (WARN_ON_ONCE(p == current && + is_migration_disabled(p) && + !cpumask_test_cpu(task_cpu(p), new_mask))) { + ret = -EBUSY; + goto out; + } + } + + /* + * Picking a ~random cpu helps in cases where we are changing affinity + * for groups of tasks (ie. cpuset), so that load balancing is not + * immediately required to distribute the tasks within their new mask. + */ + dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask); + if (dest_cpu >= nr_cpu_ids) { + ret = -EINVAL; + goto out; + } + + __do_set_cpus_allowed(p, new_mask, flags); + + if (flags & SCA_USER) + user_mask = clear_user_cpus_ptr(p); + + ret = affine_move_task(rq, p, rf, dest_cpu, flags); + + kfree(user_mask); + + return ret; + +out: + task_rq_unlock(rq, p, rf); + + return ret; +} + +/* + * Change a given task's CPU affinity. Migrate the thread to a + * proper CPU and schedule it away if the CPU it's executing on + * is removed from the allowed bitmask. + * + * NOTE: the caller must have a valid reference to the task, the + * task must not exit() & deallocate itself prematurely. The + * call is not atomic; no spinlocks may be held. + */ +static int __set_cpus_allowed_ptr(struct task_struct *p, + const struct cpumask *new_mask, u32 flags) +{ + struct rq_flags rf; + struct rq *rq; + + rq = task_rq_lock(p, &rf); + return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf); +} + +int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) +{ + return __set_cpus_allowed_ptr(p, new_mask, 0); +} +EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); + +/* + * Change a given task's CPU affinity to the intersection of its current + * affinity mask and @subset_mask, writing the resulting mask to @new_mask + * and pointing @p->user_cpus_ptr to a copy of the old mask. + * If the resulting mask is empty, leave the affinity unchanged and return + * -EINVAL. + */ +static int restrict_cpus_allowed_ptr(struct task_struct *p, + struct cpumask *new_mask, + const struct cpumask *subset_mask) +{ + struct cpumask *user_mask = NULL; + struct rq_flags rf; + struct rq *rq; + int err; + + if (!p->user_cpus_ptr) { + user_mask = kmalloc(cpumask_size(), GFP_KERNEL); + if (!user_mask) + return -ENOMEM; + } + + rq = task_rq_lock(p, &rf); + + /* + * Forcefully restricting the affinity of a deadline task is + * likely to cause problems, so fail and noisily override the + * mask entirely. + */ + if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { + err = -EPERM; + goto err_unlock; + } + + if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) { + err = -EINVAL; + goto err_unlock; + } + + /* + * We're about to butcher the task affinity, so keep track of what + * the user asked for in case we're able to restore it later on. + */ + if (user_mask) { + cpumask_copy(user_mask, p->cpus_ptr); + p->user_cpus_ptr = user_mask; + } + + return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf); + +err_unlock: + task_rq_unlock(rq, p, &rf); + kfree(user_mask); + return err; +} + +/* + * Restrict the CPU affinity of task @p so that it is a subset of + * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the + * old affinity mask. If the resulting mask is empty, we warn and walk + * up the cpuset hierarchy until we find a suitable mask. + */ +void force_compatible_cpus_allowed_ptr(struct task_struct *p) +{ + cpumask_var_t new_mask; + const struct cpumask *override_mask = task_cpu_possible_mask(p); + + alloc_cpumask_var(&new_mask, GFP_KERNEL); + + /* + * __migrate_task() can fail silently in the face of concurrent + * offlining of the chosen destination CPU, so take the hotplug + * lock to ensure that the migration succeeds. + */ + cpus_read_lock(); + if (!cpumask_available(new_mask)) + goto out_set_mask; + + if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) + goto out_free_mask; + + /* + * We failed to find a valid subset of the affinity mask for the + * task, so override it based on its cpuset hierarchy. + */ + cpuset_cpus_allowed(p, new_mask); + override_mask = new_mask; + +out_set_mask: + if (printk_ratelimit()) { + printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", + task_pid_nr(p), p->comm, + cpumask_pr_args(override_mask)); + } + + WARN_ON(set_cpus_allowed_ptr(p, override_mask)); +out_free_mask: + cpus_read_unlock(); + free_cpumask_var(new_mask); +} + +static int +__sched_setaffinity(struct task_struct *p, const struct cpumask *mask); + +/* + * Restore the affinity of a task @p which was previously restricted by a + * call to force_compatible_cpus_allowed_ptr(). This will clear (and free) + * @p->user_cpus_ptr. + * + * It is the caller's responsibility to serialise this with any calls to + * force_compatible_cpus_allowed_ptr(@p). + */ +void relax_compatible_cpus_allowed_ptr(struct task_struct *p) +{ + struct cpumask *user_mask = p->user_cpus_ptr; + unsigned long flags; + + /* + * Try to restore the old affinity mask. If this fails, then + * we free the mask explicitly to avoid it being inherited across + * a subsequent fork(). + */ + if (!user_mask || !__sched_setaffinity(p, user_mask)) + return; + + raw_spin_lock_irqsave(&p->pi_lock, flags); + user_mask = clear_user_cpus_ptr(p); + raw_spin_unlock_irqrestore(&p->pi_lock, flags); + + kfree(user_mask); +} + +void set_task_cpu(struct task_struct *p, unsigned int new_cpu) +{ +#ifdef CONFIG_SCHED_DEBUG + unsigned int state = READ_ONCE(p->__state); + + /* + * We should never call set_task_cpu() on a blocked task, + * ttwu() will sort out the placement. + */ + WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); + + /* + * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, + * because schedstat_wait_{start,end} rebase migrating task's wait_start + * time relying on p->on_rq. + */ + WARN_ON_ONCE(state == TASK_RUNNING && + p->sched_class == &fair_sched_class && + (p->on_rq && !task_on_rq_migrating(p))); + +#ifdef CONFIG_LOCKDEP + /* + * The caller should hold either p->pi_lock or rq->lock, when changing + * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. + * + * sched_move_task() holds both and thus holding either pins the cgroup, + * see task_group(). + * + * Furthermore, all task_rq users should acquire both locks, see + * task_rq_lock(). + */ + WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || + lockdep_is_held(__rq_lockp(task_rq(p))))); +#endif + /* + * Clearly, migrating tasks to offline CPUs is a fairly daft thing. + */ + WARN_ON_ONCE(!cpu_online(new_cpu)); + + WARN_ON_ONCE(is_migration_disabled(p)); +#endif + + trace_sched_migrate_task(p, new_cpu); + + if (task_cpu(p) != new_cpu) { + if (p->sched_class->migrate_task_rq) + p->sched_class->migrate_task_rq(p, new_cpu); + p->se.nr_migrations++; + rseq_migrate(p); + perf_event_task_migrate(p); + } + + __set_task_cpu(p, new_cpu); +} + +#ifdef CONFIG_NUMA_BALANCING +static void __migrate_swap_task(struct task_struct *p, int cpu) +{ + if (task_on_rq_queued(p)) { + struct rq *src_rq, *dst_rq; + struct rq_flags srf, drf; + + src_rq = task_rq(p); + dst_rq = cpu_rq(cpu); + + rq_pin_lock(src_rq, &srf); + rq_pin_lock(dst_rq, &drf); + + deactivate_task(src_rq, p, 0); + set_task_cpu(p, cpu); + activate_task(dst_rq, p, 0); + check_preempt_curr(dst_rq, p, 0); + + rq_unpin_lock(dst_rq, &drf); + rq_unpin_lock(src_rq, &srf); + + } else { + /* + * Task isn't running anymore; make it appear like we migrated + * it before it went to sleep. This means on wakeup we make the + * previous CPU our target instead of where it really is. + */ + p->wake_cpu = cpu; + } +} + +struct migration_swap_arg { + struct task_struct *src_task, *dst_task; + int src_cpu, dst_cpu; +}; + +static int migrate_swap_stop(void *data) +{ + struct migration_swap_arg *arg = data; + struct rq *src_rq, *dst_rq; + int ret = -EAGAIN; + + if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) + return -EAGAIN; + + src_rq = cpu_rq(arg->src_cpu); + dst_rq = cpu_rq(arg->dst_cpu); + + double_raw_lock(&arg->src_task->pi_lock, + &arg->dst_task->pi_lock); + double_rq_lock(src_rq, dst_rq); + + if (task_cpu(arg->dst_task) != arg->dst_cpu) + goto unlock; + + if (task_cpu(arg->src_task) != arg->src_cpu) + goto unlock; + + if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) + goto unlock; + + if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) + goto unlock; + + __migrate_swap_task(arg->src_task, arg->dst_cpu); + __migrate_swap_task(arg->dst_task, arg->src_cpu); + + ret = 0; + +unlock: + double_rq_unlock(src_rq, dst_rq); + raw_spin_unlock(&arg->dst_task->pi_lock); + raw_spin_unlock(&arg->src_task->pi_lock); + + return ret; +} + +/* + * Cross migrate two tasks + */ +int migrate_swap(struct task_struct *cur, struct task_struct *p, + int target_cpu, int curr_cpu) +{ + struct migration_swap_arg arg; + int ret = -EINVAL; + + arg = (struct migration_swap_arg){ + .src_task = cur, + .src_cpu = curr_cpu, + .dst_task = p, + .dst_cpu = target_cpu, + }; + + if (arg.src_cpu == arg.dst_cpu) + goto out; + + /* + * These three tests are all lockless; this is OK since all of them + * will be re-checked with proper locks held further down the line. + */ + if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) + goto out; + + if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) + goto out; + + if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) + goto out; + + trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); + ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); + +out: + return ret; +} +#endif /* CONFIG_NUMA_BALANCING */ + +/* + * wait_task_inactive - wait for a thread to unschedule. + * + * Wait for the thread to block in any of the states set in @match_state. + * If it changes, i.e. @p might have woken up, then return zero. When we + * succeed in waiting for @p to be off its CPU, we return a positive number + * (its total switch count). If a second call a short while later returns the + * same number, the caller can be sure that @p has remained unscheduled the + * whole time. + * + * The caller must ensure that the task *will* unschedule sometime soon, + * else this function might spin for a *long* time. This function can't + * be called with interrupts off, or it may introduce deadlock with + * smp_call_function() if an IPI is sent by the same process we are + * waiting to become inactive. + */ +unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) +{ + int running, queued; + struct rq_flags rf; + unsigned long ncsw; + struct rq *rq; + + for (;;) { + /* + * We do the initial early heuristics without holding + * any task-queue locks at all. We'll only try to get + * the runqueue lock when things look like they will + * work out! + */ + rq = task_rq(p); + + /* + * If the task is actively running on another CPU + * still, just relax and busy-wait without holding + * any locks. + * + * NOTE! Since we don't hold any locks, it's not + * even sure that "rq" stays as the right runqueue! + * But we don't care, since "task_on_cpu()" will + * return false if the runqueue has changed and p + * is actually now running somewhere else! + */ + while (task_on_cpu(rq, p)) { + if (!(READ_ONCE(p->__state) & match_state)) + return 0; + cpu_relax(); + } + + /* + * Ok, time to look more closely! We need the rq + * lock now, to be *sure*. If we're wrong, we'll + * just go back and repeat. + */ + rq = task_rq_lock(p, &rf); + trace_sched_wait_task(p); + running = task_on_cpu(rq, p); + queued = task_on_rq_queued(p); + ncsw = 0; + if (READ_ONCE(p->__state) & match_state) + ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ + task_rq_unlock(rq, p, &rf); + + /* + * If it changed from the expected state, bail out now. + */ + if (unlikely(!ncsw)) + break; + + /* + * Was it really running after all now that we + * checked with the proper locks actually held? + * + * Oops. Go back and try again.. + */ + if (unlikely(running)) { + cpu_relax(); + continue; + } + + /* + * It's not enough that it's not actively running, + * it must be off the runqueue _entirely_, and not + * preempted! + * + * So if it was still runnable (but just not actively + * running right now), it's preempted, and we should + * yield - it could be a while. + */ + if (unlikely(queued)) { + ktime_t to = NSEC_PER_SEC / HZ; + + set_current_state(TASK_UNINTERRUPTIBLE); + schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); + continue; + } + + /* + * Ahh, all good. It wasn't running, and it wasn't + * runnable, which means that it will never become + * running in the future either. We're all done! + */ + break; + } + + return ncsw; +} + +/*** + * kick_process - kick a running thread to enter/exit the kernel + * @p: the to-be-kicked thread + * + * Cause a process which is running on another CPU to enter + * kernel-mode, without any delay. (to get signals handled.) + * + * NOTE: this function doesn't have to take the runqueue lock, + * because all it wants to ensure is that the remote task enters + * the kernel. If the IPI races and the task has been migrated + * to another CPU then no harm is done and the purpose has been + * achieved as well. + */ +void kick_process(struct task_struct *p) +{ + int cpu; + + preempt_disable(); + cpu = task_cpu(p); + if ((cpu != smp_processor_id()) && task_curr(p)) + smp_send_reschedule(cpu); + preempt_enable(); +} +EXPORT_SYMBOL_GPL(kick_process); + +/* + * ->cpus_ptr is protected by both rq->lock and p->pi_lock + * + * A few notes on cpu_active vs cpu_online: + * + * - cpu_active must be a subset of cpu_online + * + * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, + * see __set_cpus_allowed_ptr(). At this point the newly online + * CPU isn't yet part of the sched domains, and balancing will not + * see it. + * + * - on CPU-down we clear cpu_active() to mask the sched domains and + * avoid the load balancer to place new tasks on the to be removed + * CPU. Existing tasks will remain running there and will be taken + * off. + * + * This means that fallback selection must not select !active CPUs. + * And can assume that any active CPU must be online. Conversely + * select_task_rq() below may allow selection of !active CPUs in order + * to satisfy the above rules. + */ +static int select_fallback_rq(int cpu, struct task_struct *p) +{ + int nid = cpu_to_node(cpu); + const struct cpumask *nodemask = NULL; + enum { cpuset, possible, fail } state = cpuset; + int dest_cpu; + + /* + * If the node that the CPU is on has been offlined, cpu_to_node() + * will return -1. There is no CPU on the node, and we should + * select the CPU on the other node. + */ + if (nid != -1) { + nodemask = cpumask_of_node(nid); + + /* Look for allowed, online CPU in same node. */ + for_each_cpu(dest_cpu, nodemask) { + if (is_cpu_allowed(p, dest_cpu)) + return dest_cpu; + } + } + + for (;;) { + /* Any allowed, online CPU? */ + for_each_cpu(dest_cpu, p->cpus_ptr) { + if (!is_cpu_allowed(p, dest_cpu)) + continue; + + goto out; + } + + /* No more Mr. Nice Guy. */ + switch (state) { + case cpuset: + if (cpuset_cpus_allowed_fallback(p)) { + state = possible; + break; + } + fallthrough; + case possible: + /* + * XXX When called from select_task_rq() we only + * hold p->pi_lock and again violate locking order. + * + * More yuck to audit. + */ + do_set_cpus_allowed(p, task_cpu_possible_mask(p)); + state = fail; + break; + case fail: + BUG(); + break; + } + } + +out: + if (state != cpuset) { + /* + * Don't tell them about moving exiting tasks or + * kernel threads (both mm NULL), since they never + * leave kernel. + */ + if (p->mm && printk_ratelimit()) { + printk_deferred("process %d (%s) no longer affine to cpu%d\n", + task_pid_nr(p), p->comm, cpu); + } + } + + return dest_cpu; +} + +/* + * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. + */ +static inline +int select_task_rq(struct task_struct *p, int cpu, int wake_flags) +{ + lockdep_assert_held(&p->pi_lock); + + if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) + cpu = p->sched_class->select_task_rq(p, cpu, wake_flags); + else + cpu = cpumask_any(p->cpus_ptr); + + /* + * In order not to call set_task_cpu() on a blocking task we need + * to rely on ttwu() to place the task on a valid ->cpus_ptr + * CPU. + * + * Since this is common to all placement strategies, this lives here. + * + * [ this allows ->select_task() to simply return task_cpu(p) and + * not worry about this generic constraint ] + */ + if (unlikely(!is_cpu_allowed(p, cpu))) + cpu = select_fallback_rq(task_cpu(p), p); + + return cpu; +} + +void sched_set_stop_task(int cpu, struct task_struct *stop) +{ + static struct lock_class_key stop_pi_lock; + struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; + struct task_struct *old_stop = cpu_rq(cpu)->stop; + + if (stop) { + /* + * Make it appear like a SCHED_FIFO task, its something + * userspace knows about and won't get confused about. + * + * Also, it will make PI more or less work without too + * much confusion -- but then, stop work should not + * rely on PI working anyway. + */ + sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); + + stop->sched_class = &stop_sched_class; + + /* + * The PI code calls rt_mutex_setprio() with ->pi_lock held to + * adjust the effective priority of a task. As a result, + * rt_mutex_setprio() can trigger (RT) balancing operations, + * which can then trigger wakeups of the stop thread to push + * around the current task. + * + * The stop task itself will never be part of the PI-chain, it + * never blocks, therefore that ->pi_lock recursion is safe. + * Tell lockdep about this by placing the stop->pi_lock in its + * own class. + */ + lockdep_set_class(&stop->pi_lock, &stop_pi_lock); + } + + cpu_rq(cpu)->stop = stop; + + if (old_stop) { + /* + * Reset it back to a normal scheduling class so that + * it can die in pieces. + */ + old_stop->sched_class = &rt_sched_class; + } +} + +#else /* CONFIG_SMP */ + +static inline int __set_cpus_allowed_ptr(struct task_struct *p, + const struct cpumask *new_mask, + u32 flags) +{ + return set_cpus_allowed_ptr(p, new_mask); +} + +static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } + +static inline bool rq_has_pinned_tasks(struct rq *rq) +{ + return false; +} + +#endif /* !CONFIG_SMP */ + +static void +ttwu_stat(struct task_struct *p, int cpu, int wake_flags) +{ + struct rq *rq; + + if (!schedstat_enabled()) + return; + + rq = this_rq(); + +#ifdef CONFIG_SMP + if (cpu == rq->cpu) { + __schedstat_inc(rq->ttwu_local); + __schedstat_inc(p->stats.nr_wakeups_local); + } else { + struct sched_domain *sd; + + __schedstat_inc(p->stats.nr_wakeups_remote); + rcu_read_lock(); + for_each_domain(rq->cpu, sd) { + if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { + __schedstat_inc(sd->ttwu_wake_remote); + break; + } + } + rcu_read_unlock(); + } + + if (wake_flags & WF_MIGRATED) + __schedstat_inc(p->stats.nr_wakeups_migrate); +#endif /* CONFIG_SMP */ + + __schedstat_inc(rq->ttwu_count); + __schedstat_inc(p->stats.nr_wakeups); + + if (wake_flags & WF_SYNC) + __schedstat_inc(p->stats.nr_wakeups_sync); +} + +/* + * Mark the task runnable and perform wakeup-preemption. + */ +static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags, + struct rq_flags *rf) +{ + check_preempt_curr(rq, p, wake_flags); + WRITE_ONCE(p->__state, TASK_RUNNING); + trace_sched_wakeup(p); + +#ifdef CONFIG_SMP + if (p->sched_class->task_woken) { + /* + * Our task @p is fully woken up and running; so it's safe to + * drop the rq->lock, hereafter rq is only used for statistics. + */ + rq_unpin_lock(rq, rf); + p->sched_class->task_woken(rq, p); + rq_repin_lock(rq, rf); + } + + if (rq->idle_stamp) { + u64 delta = rq_clock(rq) - rq->idle_stamp; + u64 max = 2*rq->max_idle_balance_cost; + + update_avg(&rq->avg_idle, delta); + + if (rq->avg_idle > max) + rq->avg_idle = max; + + rq->wake_stamp = jiffies; + rq->wake_avg_idle = rq->avg_idle / 2; + + rq->idle_stamp = 0; + } +#endif +} + +static void +ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, + struct rq_flags *rf) +{ + int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; + + lockdep_assert_rq_held(rq); + + if (p->sched_contributes_to_load) + rq->nr_uninterruptible--; + +#ifdef CONFIG_SMP + if (wake_flags & WF_MIGRATED) + en_flags |= ENQUEUE_MIGRATED; + else +#endif + if (p->in_iowait) { + delayacct_blkio_end(p); + atomic_dec(&task_rq(p)->nr_iowait); + } + + activate_task(rq, p, en_flags); + ttwu_do_wakeup(rq, p, wake_flags, rf); +} + +/* + * Consider @p being inside a wait loop: + * + * for (;;) { + * set_current_state(TASK_UNINTERRUPTIBLE); + * + * if (CONDITION) + * break; + * + * schedule(); + * } + * __set_current_state(TASK_RUNNING); + * + * between set_current_state() and schedule(). In this case @p is still + * runnable, so all that needs doing is change p->state back to TASK_RUNNING in + * an atomic manner. + * + * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq + * then schedule() must still happen and p->state can be changed to + * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we + * need to do a full wakeup with enqueue. + * + * Returns: %true when the wakeup is done, + * %false otherwise. + */ +static int ttwu_runnable(struct task_struct *p, int wake_flags) +{ + struct rq_flags rf; + struct rq *rq; + int ret = 0; + + rq = __task_rq_lock(p, &rf); + if (task_on_rq_queued(p)) { + /* check_preempt_curr() may use rq clock */ + update_rq_clock(rq); + ttwu_do_wakeup(rq, p, wake_flags, &rf); + ret = 1; + } + __task_rq_unlock(rq, &rf); + + return ret; +} + +#ifdef CONFIG_SMP +void sched_ttwu_pending(void *arg) +{ + struct llist_node *llist = arg; + struct rq *rq = this_rq(); + struct task_struct *p, *t; + struct rq_flags rf; + + if (!llist) + return; + + /* + * rq::ttwu_pending racy indication of out-standing wakeups. + * Races such that false-negatives are possible, since they + * are shorter lived that false-positives would be. + */ + WRITE_ONCE(rq->ttwu_pending, 0); + + rq_lock_irqsave(rq, &rf); + update_rq_clock(rq); + + llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { + if (WARN_ON_ONCE(p->on_cpu)) + smp_cond_load_acquire(&p->on_cpu, !VAL); + + if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) + set_task_cpu(p, cpu_of(rq)); + + ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); + } + + rq_unlock_irqrestore(rq, &rf); +} + +void send_call_function_single_ipi(int cpu) +{ + struct rq *rq = cpu_rq(cpu); + + if (!set_nr_if_polling(rq->idle)) + arch_send_call_function_single_ipi(cpu); + else + trace_sched_wake_idle_without_ipi(cpu); +} + +/* + * Queue a task on the target CPUs wake_list and wake the CPU via IPI if + * necessary. The wakee CPU on receipt of the IPI will queue the task + * via sched_ttwu_wakeup() for activation so the wakee incurs the cost + * of the wakeup instead of the waker. + */ +static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) +{ + struct rq *rq = cpu_rq(cpu); + + p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); + + WRITE_ONCE(rq->ttwu_pending, 1); + __smp_call_single_queue(cpu, &p->wake_entry.llist); +} + +void wake_up_if_idle(int cpu) +{ + struct rq *rq = cpu_rq(cpu); + struct rq_flags rf; + + rcu_read_lock(); + + if (!is_idle_task(rcu_dereference(rq->curr))) + goto out; + + rq_lock_irqsave(rq, &rf); + if (is_idle_task(rq->curr)) + resched_curr(rq); + /* Else CPU is not idle, do nothing here: */ + rq_unlock_irqrestore(rq, &rf); + +out: + rcu_read_unlock(); +} + +bool cpus_share_cache(int this_cpu, int that_cpu) +{ + if (this_cpu == that_cpu) + return true; + + return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); +} + +static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) +{ + /* + * Do not complicate things with the async wake_list while the CPU is + * in hotplug state. + */ + if (!cpu_active(cpu)) + return false; + + /* Ensure the task will still be allowed to run on the CPU. */ + if (!cpumask_test_cpu(cpu, p->cpus_ptr)) + return false; + + /* + * If the CPU does not share cache, then queue the task on the + * remote rqs wakelist to avoid accessing remote data. + */ + if (!cpus_share_cache(smp_processor_id(), cpu)) + return true; + + if (cpu == smp_processor_id()) + return false; + + /* + * If the wakee cpu is idle, or the task is descheduling and the + * only running task on the CPU, then use the wakelist to offload + * the task activation to the idle (or soon-to-be-idle) CPU as + * the current CPU is likely busy. nr_running is checked to + * avoid unnecessary task stacking. + * + * Note that we can only get here with (wakee) p->on_rq=0, + * p->on_cpu can be whatever, we've done the dequeue, so + * the wakee has been accounted out of ->nr_running. + */ + if (!cpu_rq(cpu)->nr_running) + return true; + + return false; +} + +static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) +{ + if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { + sched_clock_cpu(cpu); /* Sync clocks across CPUs */ + __ttwu_queue_wakelist(p, cpu, wake_flags); + return true; + } + + return false; +} + +#else /* !CONFIG_SMP */ + +static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) +{ + return false; +} + +#endif /* CONFIG_SMP */ + +static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) +{ + struct rq *rq = cpu_rq(cpu); + struct rq_flags rf; + + if (ttwu_queue_wakelist(p, cpu, wake_flags)) + return; + + rq_lock(rq, &rf); + update_rq_clock(rq); + ttwu_do_activate(rq, p, wake_flags, &rf); + rq_unlock(rq, &rf); +} + +/* + * Invoked from try_to_wake_up() to check whether the task can be woken up. + * + * The caller holds p::pi_lock if p != current or has preemption + * disabled when p == current. + * + * The rules of PREEMPT_RT saved_state: + * + * The related locking code always holds p::pi_lock when updating + * p::saved_state, which means the code is fully serialized in both cases. + * + * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other + * bits set. This allows to distinguish all wakeup scenarios. + */ +static __always_inline +bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) +{ + if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { + WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && + state != TASK_RTLOCK_WAIT); + } + + if (READ_ONCE(p->__state) & state) { + *success = 1; + return true; + } + +#ifdef CONFIG_PREEMPT_RT + /* + * Saved state preserves the task state across blocking on + * an RT lock. If the state matches, set p::saved_state to + * TASK_RUNNING, but do not wake the task because it waits + * for a lock wakeup. Also indicate success because from + * the regular waker's point of view this has succeeded. + * + * After acquiring the lock the task will restore p::__state + * from p::saved_state which ensures that the regular + * wakeup is not lost. The restore will also set + * p::saved_state to TASK_RUNNING so any further tests will + * not result in false positives vs. @success + */ + if (p->saved_state & state) { + p->saved_state = TASK_RUNNING; + *success = 1; + } +#endif + return false; +} + +/* + * Notes on Program-Order guarantees on SMP systems. + * + * MIGRATION + * + * The basic program-order guarantee on SMP systems is that when a task [t] + * migrates, all its activity on its old CPU [c0] happens-before any subsequent + * execution on its new CPU [c1]. + * + * For migration (of runnable tasks) this is provided by the following means: + * + * A) UNLOCK of the rq(c0)->lock scheduling out task t + * B) migration for t is required to synchronize *both* rq(c0)->lock and + * rq(c1)->lock (if not at the same time, then in that order). + * C) LOCK of the rq(c1)->lock scheduling in task + * + * Release/acquire chaining guarantees that B happens after A and C after B. + * Note: the CPU doing B need not be c0 or c1 + * + * Example: + * + * CPU0 CPU1 CPU2 + * + * LOCK rq(0)->lock + * sched-out X + * sched-in Y + * UNLOCK rq(0)->lock + * + * LOCK rq(0)->lock // orders against CPU0 + * dequeue X + * UNLOCK rq(0)->lock + * + * LOCK rq(1)->lock + * enqueue X + * UNLOCK rq(1)->lock + * + * LOCK rq(1)->lock // orders against CPU2 + * sched-out Z + * sched-in X + * UNLOCK rq(1)->lock + * + * + * BLOCKING -- aka. SLEEP + WAKEUP + * + * For blocking we (obviously) need to provide the same guarantee as for + * migration. However the means are completely different as there is no lock + * chain to provide order. Instead we do: + * + * 1) smp_store_release(X->on_cpu, 0) -- finish_task() + * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() + * + * Example: + * + * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) + * + * LOCK rq(0)->lock LOCK X->pi_lock + * dequeue X + * sched-out X + * smp_store_release(X->on_cpu, 0); + * + * smp_cond_load_acquire(&X->on_cpu, !VAL); + * X->state = WAKING + * set_task_cpu(X,2) + * + * LOCK rq(2)->lock + * enqueue X + * X->state = RUNNING + * UNLOCK rq(2)->lock + * + * LOCK rq(2)->lock // orders against CPU1 + * sched-out Z + * sched-in X + * UNLOCK rq(2)->lock + * + * UNLOCK X->pi_lock + * UNLOCK rq(0)->lock + * + * + * However, for wakeups there is a second guarantee we must provide, namely we + * must ensure that CONDITION=1 done by the caller can not be reordered with + * accesses to the task state; see try_to_wake_up() and set_current_state(). + */ + +/** + * try_to_wake_up - wake up a thread + * @p: the thread to be awakened + * @state: the mask of task states that can be woken + * @wake_flags: wake modifier flags (WF_*) + * + * Conceptually does: + * + * If (@state & @p->state) @p->state = TASK_RUNNING. + * + * If the task was not queued/runnable, also place it back on a runqueue. + * + * This function is atomic against schedule() which would dequeue the task. + * + * It issues a full memory barrier before accessing @p->state, see the comment + * with set_current_state(). + * + * Uses p->pi_lock to serialize against concurrent wake-ups. + * + * Relies on p->pi_lock stabilizing: + * - p->sched_class + * - p->cpus_ptr + * - p->sched_task_group + * in order to do migration, see its use of select_task_rq()/set_task_cpu(). + * + * Tries really hard to only take one task_rq(p)->lock for performance. + * Takes rq->lock in: + * - ttwu_runnable() -- old rq, unavoidable, see comment there; + * - ttwu_queue() -- new rq, for enqueue of the task; + * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. + * + * As a consequence we race really badly with just about everything. See the + * many memory barriers and their comments for details. + * + * Return: %true if @p->state changes (an actual wakeup was done), + * %false otherwise. + */ +static int +try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) +{ + unsigned long flags; + int cpu, success = 0; + + preempt_disable(); + if (p == current) { + /* + * We're waking current, this means 'p->on_rq' and 'task_cpu(p) + * == smp_processor_id()'. Together this means we can special + * case the whole 'p->on_rq && ttwu_runnable()' case below + * without taking any locks. + * + * In particular: + * - we rely on Program-Order guarantees for all the ordering, + * - we're serialized against set_special_state() by virtue of + * it disabling IRQs (this allows not taking ->pi_lock). + */ + if (!ttwu_state_match(p, state, &success)) + goto out; + + trace_sched_waking(p); + WRITE_ONCE(p->__state, TASK_RUNNING); + trace_sched_wakeup(p); + goto out; + } + + /* + * If we are going to wake up a thread waiting for CONDITION we + * need to ensure that CONDITION=1 done by the caller can not be + * reordered with p->state check below. This pairs with smp_store_mb() + * in set_current_state() that the waiting thread does. + */ + raw_spin_lock_irqsave(&p->pi_lock, flags); + smp_mb__after_spinlock(); + if (!ttwu_state_match(p, state, &success)) + goto unlock; + + trace_sched_waking(p); + + /* + * Ensure we load p->on_rq _after_ p->state, otherwise it would + * be possible to, falsely, observe p->on_rq == 0 and get stuck + * in smp_cond_load_acquire() below. + * + * sched_ttwu_pending() try_to_wake_up() + * STORE p->on_rq = 1 LOAD p->state + * UNLOCK rq->lock + * + * __schedule() (switch to task 'p') + * LOCK rq->lock smp_rmb(); + * smp_mb__after_spinlock(); + * UNLOCK rq->lock + * + * [task p] + * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq + * + * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in + * __schedule(). See the comment for smp_mb__after_spinlock(). + * + * A similar smb_rmb() lives in try_invoke_on_locked_down_task(). + */ + smp_rmb(); + if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) + goto unlock; + +#ifdef CONFIG_SMP + /* + * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be + * possible to, falsely, observe p->on_cpu == 0. + * + * One must be running (->on_cpu == 1) in order to remove oneself + * from the runqueue. + * + * __schedule() (switch to task 'p') try_to_wake_up() + * STORE p->on_cpu = 1 LOAD p->on_rq + * UNLOCK rq->lock + * + * __schedule() (put 'p' to sleep) + * LOCK rq->lock smp_rmb(); + * smp_mb__after_spinlock(); + * STORE p->on_rq = 0 LOAD p->on_cpu + * + * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in + * __schedule(). See the comment for smp_mb__after_spinlock(). + * + * Form a control-dep-acquire with p->on_rq == 0 above, to ensure + * schedule()'s deactivate_task() has 'happened' and p will no longer + * care about it's own p->state. See the comment in __schedule(). + */ + smp_acquire__after_ctrl_dep(); + + /* + * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq + * == 0), which means we need to do an enqueue, change p->state to + * TASK_WAKING such that we can unlock p->pi_lock before doing the + * enqueue, such as ttwu_queue_wakelist(). + */ + WRITE_ONCE(p->__state, TASK_WAKING); + + /* + * If the owning (remote) CPU is still in the middle of schedule() with + * this task as prev, considering queueing p on the remote CPUs wake_list + * which potentially sends an IPI instead of spinning on p->on_cpu to + * let the waker make forward progress. This is safe because IRQs are + * disabled and the IPI will deliver after on_cpu is cleared. + * + * Ensure we load task_cpu(p) after p->on_cpu: + * + * set_task_cpu(p, cpu); + * STORE p->cpu = @cpu + * __schedule() (switch to task 'p') + * LOCK rq->lock + * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) + * STORE p->on_cpu = 1 LOAD p->cpu + * + * to ensure we observe the correct CPU on which the task is currently + * scheduling. + */ + if (smp_load_acquire(&p->on_cpu) && + ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) + goto unlock; + + /* + * If the owning (remote) CPU is still in the middle of schedule() with + * this task as prev, wait until it's done referencing the task. + * + * Pairs with the smp_store_release() in finish_task(). + * + * This ensures that tasks getting woken will be fully ordered against + * their previous state and preserve Program Order. + */ + smp_cond_load_acquire(&p->on_cpu, !VAL); + + cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU); + if (task_cpu(p) != cpu) { + if (p->in_iowait) { + delayacct_blkio_end(p); + atomic_dec(&task_rq(p)->nr_iowait); + } + + wake_flags |= WF_MIGRATED; + psi_ttwu_dequeue(p); + set_task_cpu(p, cpu); + } +#else + cpu = task_cpu(p); +#endif /* CONFIG_SMP */ + + ttwu_queue(p, cpu, wake_flags); +unlock: + raw_spin_unlock_irqrestore(&p->pi_lock, flags); +out: + if (success) + ttwu_stat(p, task_cpu(p), wake_flags); + preempt_enable(); + + return success; +} + +static bool __task_needs_rq_lock(struct task_struct *p) +{ + unsigned int state = READ_ONCE(p->__state); + + /* + * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when + * the task is blocked. Make sure to check @state since ttwu() can drop + * locks at the end, see ttwu_queue_wakelist(). + */ + if (state == TASK_RUNNING || state == TASK_WAKING) + return true; + + /* + * Ensure we load p->on_rq after p->__state, otherwise it would be + * possible to, falsely, observe p->on_rq == 0. + * + * See try_to_wake_up() for a longer comment. + */ + smp_rmb(); + if (p->on_rq) + return true; + +#ifdef CONFIG_SMP + /* + * Ensure the task has finished __schedule() and will not be referenced + * anymore. Again, see try_to_wake_up() for a longer comment. + */ + smp_rmb(); + smp_cond_load_acquire(&p->on_cpu, !VAL); +#endif + + return false; +} + +/** + * task_call_func - Invoke a function on task in fixed state + * @p: Process for which the function is to be invoked, can be @current. + * @func: Function to invoke. + * @arg: Argument to function. + * + * Fix the task in it's current state by avoiding wakeups and or rq operations + * and call @func(@arg) on it. This function can use ->on_rq and task_curr() + * to work out what the state is, if required. Given that @func can be invoked + * with a runqueue lock held, it had better be quite lightweight. + * + * Returns: + * Whatever @func returns + */ +int task_call_func(struct task_struct *p, task_call_f func, void *arg) +{ + struct rq *rq = NULL; + struct rq_flags rf; + int ret; + + raw_spin_lock_irqsave(&p->pi_lock, rf.flags); + + if (__task_needs_rq_lock(p)) + rq = __task_rq_lock(p, &rf); + + /* + * At this point the task is pinned; either: + * - blocked and we're holding off wakeups (pi->lock) + * - woken, and we're holding off enqueue (rq->lock) + * - queued, and we're holding off schedule (rq->lock) + * - running, and we're holding off de-schedule (rq->lock) + * + * The called function (@func) can use: task_curr(), p->on_rq and + * p->__state to differentiate between these states. + */ + ret = func(p, arg); + + if (rq) + rq_unlock(rq, &rf); + + raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); + return ret; +} + +/** + * cpu_curr_snapshot - Return a snapshot of the currently running task + * @cpu: The CPU on which to snapshot the task. + * + * Returns the task_struct pointer of the task "currently" running on + * the specified CPU. If the same task is running on that CPU throughout, + * the return value will be a pointer to that task's task_struct structure. + * If the CPU did any context switches even vaguely concurrently with the + * execution of this function, the return value will be a pointer to the + * task_struct structure of a randomly chosen task that was running on + * that CPU somewhere around the time that this function was executing. + * + * If the specified CPU was offline, the return value is whatever it + * is, perhaps a pointer to the task_struct structure of that CPU's idle + * task, but there is no guarantee. Callers wishing a useful return + * value must take some action to ensure that the specified CPU remains + * online throughout. + * + * This function executes full memory barriers before and after fetching + * the pointer, which permits the caller to confine this function's fetch + * with respect to the caller's accesses to other shared variables. + */ +struct task_struct *cpu_curr_snapshot(int cpu) +{ + struct task_struct *t; + + smp_mb(); /* Pairing determined by caller's synchronization design. */ + t = rcu_dereference(cpu_curr(cpu)); + smp_mb(); /* Pairing determined by caller's synchronization design. */ + return t; +} + +/** + * wake_up_process - Wake up a specific process + * @p: The process to be woken up. + * + * Attempt to wake up the nominated process and move it to the set of runnable + * processes. + * + * Return: 1 if the process was woken up, 0 if it was already running. + * + * This function executes a full memory barrier before accessing the task state. + */ +int wake_up_process(struct task_struct *p) +{ + return try_to_wake_up(p, TASK_NORMAL, 0); +} +EXPORT_SYMBOL(wake_up_process); + +int wake_up_state(struct task_struct *p, unsigned int state) +{ + return try_to_wake_up(p, state, 0); +} + +/* + * Perform scheduler related setup for a newly forked process p. + * p is forked by current. + * + * __sched_fork() is basic setup used by init_idle() too: + */ +static void __sched_fork(unsigned long clone_flags, struct task_struct *p) +{ + p->on_rq = 0; + + p->se.on_rq = 0; + p->se.exec_start = 0; + p->se.sum_exec_runtime = 0; + p->se.prev_sum_exec_runtime = 0; + p->se.nr_migrations = 0; + p->se.vruntime = 0; + INIT_LIST_HEAD(&p->se.group_node); + +#ifdef CONFIG_FAIR_GROUP_SCHED + p->se.cfs_rq = NULL; +#endif + +#ifdef CONFIG_SCHEDSTATS + /* Even if schedstat is disabled, there should not be garbage */ + memset(&p->stats, 0, sizeof(p->stats)); +#endif + + RB_CLEAR_NODE(&p->dl.rb_node); + init_dl_task_timer(&p->dl); + init_dl_inactive_task_timer(&p->dl); + __dl_clear_params(p); + + INIT_LIST_HEAD(&p->rt.run_list); + p->rt.timeout = 0; + p->rt.time_slice = sched_rr_timeslice; + p->rt.on_rq = 0; + p->rt.on_list = 0; + +#ifdef CONFIG_PREEMPT_NOTIFIERS + INIT_HLIST_HEAD(&p->preempt_notifiers); +#endif + +#ifdef CONFIG_COMPACTION + p->capture_control = NULL; +#endif + init_numa_balancing(clone_flags, p); +#ifdef CONFIG_SMP + p->wake_entry.u_flags = CSD_TYPE_TTWU; + p->migration_pending = NULL; +#endif +} + +DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); + +#ifdef CONFIG_NUMA_BALANCING + +int sysctl_numa_balancing_mode; + +static void __set_numabalancing_state(bool enabled) +{ + if (enabled) + static_branch_enable(&sched_numa_balancing); + else + static_branch_disable(&sched_numa_balancing); +} + +void set_numabalancing_state(bool enabled) +{ + if (enabled) + sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; + else + sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; + __set_numabalancing_state(enabled); +} + +#ifdef CONFIG_PROC_SYSCTL +static void reset_memory_tiering(void) +{ + struct pglist_data *pgdat; + + for_each_online_pgdat(pgdat) { + pgdat->nbp_threshold = 0; + pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); + pgdat->nbp_th_start = jiffies_to_msecs(jiffies); + } +} + +int sysctl_numa_balancing(struct ctl_table *table, int write, + void *buffer, size_t *lenp, loff_t *ppos) +{ + struct ctl_table t; + int err; + int state = sysctl_numa_balancing_mode; + + if (write && !capable(CAP_SYS_ADMIN)) + return -EPERM; + + t = *table; + t.data = &state; + err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); + if (err < 0) + return err; + if (write) { + if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && + (state & NUMA_BALANCING_MEMORY_TIERING)) + reset_memory_tiering(); + sysctl_numa_balancing_mode = state; + __set_numabalancing_state(state); + } + return err; +} +#endif +#endif + +#ifdef CONFIG_SCHEDSTATS + +DEFINE_STATIC_KEY_FALSE(sched_schedstats); + +static void set_schedstats(bool enabled) +{ + if (enabled) + static_branch_enable(&sched_schedstats); + else + static_branch_disable(&sched_schedstats); +} + +void force_schedstat_enabled(void) +{ + if (!schedstat_enabled()) { + pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); + static_branch_enable(&sched_schedstats); + } +} + +static int __init setup_schedstats(char *str) +{ + int ret = 0; + if (!str) + goto out; + + if (!strcmp(str, "enable")) { + set_schedstats(true); + ret = 1; + } else if (!strcmp(str, "disable")) { + set_schedstats(false); + ret = 1; + } +out: + if (!ret) + pr_warn("Unable to parse schedstats=\n"); + + return ret; +} +__setup("schedstats=", setup_schedstats); + +#ifdef CONFIG_PROC_SYSCTL +static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, + size_t *lenp, loff_t *ppos) +{ + struct ctl_table t; + int err; + int state = static_branch_likely(&sched_schedstats); + + if (write && !capable(CAP_SYS_ADMIN)) + return -EPERM; + + t = *table; + t.data = &state; + err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); + if (err < 0) + return err; + if (write) + set_schedstats(state); + return err; +} +#endif /* CONFIG_PROC_SYSCTL */ +#endif /* CONFIG_SCHEDSTATS */ + +#ifdef CONFIG_SYSCTL +static struct ctl_table sched_core_sysctls[] = { +#ifdef CONFIG_SCHEDSTATS + { + .procname = "sched_schedstats", + .data = NULL, + .maxlen = sizeof(unsigned int), + .mode = 0644, + .proc_handler = sysctl_schedstats, + .extra1 = SYSCTL_ZERO, + .extra2 = SYSCTL_ONE, + }, +#endif /* CONFIG_SCHEDSTATS */ +#ifdef CONFIG_UCLAMP_TASK + { + .procname = "sched_util_clamp_min", + .data = &sysctl_sched_uclamp_util_min, + .maxlen = sizeof(unsigned int), + .mode = 0644, + .proc_handler = sysctl_sched_uclamp_handler, + }, + { + .procname = "sched_util_clamp_max", + .data = &sysctl_sched_uclamp_util_max, + .maxlen = sizeof(unsigned int), + .mode = 0644, + .proc_handler = sysctl_sched_uclamp_handler, + }, + { + .procname = "sched_util_clamp_min_rt_default", + .data = &sysctl_sched_uclamp_util_min_rt_default, + .maxlen = sizeof(unsigned int), + .mode = 0644, + .proc_handler = sysctl_sched_uclamp_handler, + }, +#endif /* CONFIG_UCLAMP_TASK */ + {} +}; +static int __init sched_core_sysctl_init(void) +{ + register_sysctl_init("kernel", sched_core_sysctls); + return 0; +} +late_initcall(sched_core_sysctl_init); +#endif /* CONFIG_SYSCTL */ + +/* + * fork()/clone()-time setup: + */ +int sched_fork(unsigned long clone_flags, struct task_struct *p) +{ + __sched_fork(clone_flags, p); + /* + * We mark the process as NEW here. This guarantees that + * nobody will actually run it, and a signal or other external + * event cannot wake it up and insert it on the runqueue either. + */ + p->__state = TASK_NEW; + + /* + * Make sure we do not leak PI boosting priority to the child. + */ + p->prio = current->normal_prio; + + uclamp_fork(p); + + /* + * Revert to default priority/policy on fork if requested. + */ + if (unlikely(p->sched_reset_on_fork)) { + if (task_has_dl_policy(p) || task_has_rt_policy(p)) { + p->policy = SCHED_NORMAL; + p->static_prio = NICE_TO_PRIO(0); + p->rt_priority = 0; + } else if (PRIO_TO_NICE(p->static_prio) < 0) + p->static_prio = NICE_TO_PRIO(0); + + p->prio = p->normal_prio = p->static_prio; + set_load_weight(p, false); + + /* + * We don't need the reset flag anymore after the fork. It has + * fulfilled its duty: + */ + p->sched_reset_on_fork = 0; + } + + if (dl_prio(p->prio)) + return -EAGAIN; + else if (rt_prio(p->prio)) + p->sched_class = &rt_sched_class; + else + p->sched_class = &fair_sched_class; + + init_entity_runnable_average(&p->se); + + +#ifdef CONFIG_SCHED_INFO + if (likely(sched_info_on())) + memset(&p->sched_info, 0, sizeof(p->sched_info)); +#endif +#if defined(CONFIG_SMP) + p->on_cpu = 0; +#endif + init_task_preempt_count(p); +#ifdef CONFIG_SMP + plist_node_init(&p->pushable_tasks, MAX_PRIO); + RB_CLEAR_NODE(&p->pushable_dl_tasks); +#endif + return 0; +} + +void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) +{ + unsigned long flags; + + /* + * Because we're not yet on the pid-hash, p->pi_lock isn't strictly + * required yet, but lockdep gets upset if rules are violated. + */ + raw_spin_lock_irqsave(&p->pi_lock, flags); +#ifdef CONFIG_CGROUP_SCHED + if (1) { + struct task_group *tg; + tg = container_of(kargs->cset->subsys[cpu_cgrp_id], + struct task_group, css); + tg = autogroup_task_group(p, tg); + p->sched_task_group = tg; + } +#endif + rseq_migrate(p); + /* + * We're setting the CPU for the first time, we don't migrate, + * so use __set_task_cpu(). + */ + __set_task_cpu(p, smp_processor_id()); + if (p->sched_class->task_fork) + p->sched_class->task_fork(p); + raw_spin_unlock_irqrestore(&p->pi_lock, flags); +} + +void sched_post_fork(struct task_struct *p) +{ + uclamp_post_fork(p); +} + +unsigned long to_ratio(u64 period, u64 runtime) +{ + if (runtime == RUNTIME_INF) + return BW_UNIT; + + /* + * Doing this here saves a lot of checks in all + * the calling paths, and returning zero seems + * safe for them anyway. + */ + if (period == 0) + return 0; + + return div64_u64(runtime << BW_SHIFT, period); +} + +/* + * wake_up_new_task - wake up a newly created task for the first time. + * + * This function will do some initial scheduler statistics housekeeping + * that must be done for every newly created context, then puts the task + * on the runqueue and wakes it. + */ +void wake_up_new_task(struct task_struct *p) +{ + struct rq_flags rf; + struct rq *rq; + + raw_spin_lock_irqsave(&p->pi_lock, rf.flags); + WRITE_ONCE(p->__state, TASK_RUNNING); +#ifdef CONFIG_SMP + /* + * Fork balancing, do it here and not earlier because: + * - cpus_ptr can change in the fork path + * - any previously selected CPU might disappear through hotplug + * + * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, + * as we're not fully set-up yet. + */ + p->recent_used_cpu = task_cpu(p); + rseq_migrate(p); + __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK)); +#endif + rq = __task_rq_lock(p, &rf); + update_rq_clock(rq); + post_init_entity_util_avg(p); + + activate_task(rq, p, ENQUEUE_NOCLOCK); + trace_sched_wakeup_new(p); + check_preempt_curr(rq, p, WF_FORK); +#ifdef CONFIG_SMP + if (p->sched_class->task_woken) { + /* + * Nothing relies on rq->lock after this, so it's fine to + * drop it. + */ + rq_unpin_lock(rq, &rf); + p->sched_class->task_woken(rq, p); + rq_repin_lock(rq, &rf); + } +#endif + task_rq_unlock(rq, p, &rf); +} + +#ifdef CONFIG_PREEMPT_NOTIFIERS + +static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); + +void preempt_notifier_inc(void) +{ + static_branch_inc(&preempt_notifier_key); +} +EXPORT_SYMBOL_GPL(preempt_notifier_inc); + +void preempt_notifier_dec(void) +{ + static_branch_dec(&preempt_notifier_key); +} +EXPORT_SYMBOL_GPL(preempt_notifier_dec); + +/** + * preempt_notifier_register - tell me when current is being preempted & rescheduled + * @notifier: notifier struct to register + */ +void preempt_notifier_register(struct preempt_notifier *notifier) +{ + if (!static_branch_unlikely(&preempt_notifier_key)) + WARN(1, "registering preempt_notifier while notifiers disabled\n"); + + hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); +} +EXPORT_SYMBOL_GPL(preempt_notifier_register); + +/** + * preempt_notifier_unregister - no longer interested in preemption notifications + * @notifier: notifier struct to unregister + * + * This is *not* safe to call from within a preemption notifier. + */ +void preempt_notifier_unregister(struct preempt_notifier *notifier) +{ + hlist_del(¬ifier->link); +} +EXPORT_SYMBOL_GPL(preempt_notifier_unregister); + +static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) +{ + struct preempt_notifier *notifier; + + hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) + notifier->ops->sched_in(notifier, raw_smp_processor_id()); +} + +static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) +{ + if (static_branch_unlikely(&preempt_notifier_key)) + __fire_sched_in_preempt_notifiers(curr); +} + +static void +__fire_sched_out_preempt_notifiers(struct task_struct *curr, + struct task_struct *next) +{ + struct preempt_notifier *notifier; + + hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) + notifier->ops->sched_out(notifier, next); +} + +static __always_inline void +fire_sched_out_preempt_notifiers(struct task_struct *curr, + struct task_struct *next) +{ + if (static_branch_unlikely(&preempt_notifier_key)) + __fire_sched_out_preempt_notifiers(curr, next); +} + +#else /* !CONFIG_PREEMPT_NOTIFIERS */ + +static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) +{ +} + +static inline void +fire_sched_out_preempt_notifiers(struct task_struct *curr, + struct task_struct *next) +{ +} + +#endif /* CONFIG_PREEMPT_NOTIFIERS */ + +static inline void prepare_task(struct task_struct *next) +{ +#ifdef CONFIG_SMP + /* + * Claim the task as running, we do this before switching to it + * such that any running task will have this set. + * + * See the smp_load_acquire(&p->on_cpu) case in ttwu() and + * its ordering comment. + */ + WRITE_ONCE(next->on_cpu, 1); +#endif +} + +static inline void finish_task(struct task_struct *prev) +{ +#ifdef CONFIG_SMP + /* + * This must be the very last reference to @prev from this CPU. After + * p->on_cpu is cleared, the task can be moved to a different CPU. We + * must ensure this doesn't happen until the switch is completely + * finished. + * + * In particular, the load of prev->state in finish_task_switch() must + * happen before this. + * + * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). + */ + smp_store_release(&prev->on_cpu, 0); +#endif +} + +#ifdef CONFIG_SMP + +static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) +{ + void (*func)(struct rq *rq); + struct balance_callback *next; + + lockdep_assert_rq_held(rq); + + while (head) { + func = (void (*)(struct rq *))head->func; + next = head->next; + head->next = NULL; + head = next; + + func(rq); + } +} + +static void balance_push(struct rq *rq); + +/* + * balance_push_callback is a right abuse of the callback interface and plays + * by significantly different rules. + * + * Where the normal balance_callback's purpose is to be ran in the same context + * that queued it (only later, when it's safe to drop rq->lock again), + * balance_push_callback is specifically targeted at __schedule(). + * + * This abuse is tolerated because it places all the unlikely/odd cases behind + * a single test, namely: rq->balance_callback == NULL. + */ +struct balance_callback balance_push_callback = { + .next = NULL, + .func = balance_push, +}; + +static inline struct balance_callback * +__splice_balance_callbacks(struct rq *rq, bool split) +{ + struct balance_callback *head = rq->balance_callback; + + if (likely(!head)) + return NULL; + + lockdep_assert_rq_held(rq); + /* + * Must not take balance_push_callback off the list when + * splice_balance_callbacks() and balance_callbacks() are not + * in the same rq->lock section. + * + * In that case it would be possible for __schedule() to interleave + * and observe the list empty. + */ + if (split && head == &balance_push_callback) + head = NULL; + else + rq->balance_callback = NULL; + + return head; +} + +static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) +{ + return __splice_balance_callbacks(rq, true); +} + +static void __balance_callbacks(struct rq *rq) +{ + do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); +} + +static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) +{ + unsigned long flags; + + if (unlikely(head)) { + raw_spin_rq_lock_irqsave(rq, flags); + do_balance_callbacks(rq, head); + raw_spin_rq_unlock_irqrestore(rq, flags); + } +} + +#else + +static inline void __balance_callbacks(struct rq *rq) +{ +} + +static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) +{ + return NULL; +} + +static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) +{ +} + +#endif + +static inline void +prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) +{ + /* + * Since the runqueue lock will be released by the next + * task (which is an invalid locking op but in the case + * of the scheduler it's an obvious special-case), so we + * do an early lockdep release here: + */ + rq_unpin_lock(rq, rf); + spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); +#ifdef CONFIG_DEBUG_SPINLOCK + /* this is a valid case when another task releases the spinlock */ + rq_lockp(rq)->owner = next; +#endif +} + +static inline void finish_lock_switch(struct rq *rq) +{ + /* + * If we are tracking spinlock dependencies then we have to + * fix up the runqueue lock - which gets 'carried over' from + * prev into current: + */ + spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); + __balance_callbacks(rq); + raw_spin_rq_unlock_irq(rq); +} + +/* + * NOP if the arch has not defined these: + */ + +#ifndef prepare_arch_switch +# define prepare_arch_switch(next) do { } while (0) +#endif + +#ifndef finish_arch_post_lock_switch +# define finish_arch_post_lock_switch() do { } while (0) +#endif + +static inline void kmap_local_sched_out(void) +{ +#ifdef CONFIG_KMAP_LOCAL + if (unlikely(current->kmap_ctrl.idx)) + __kmap_local_sched_out(); +#endif +} + +static inline void kmap_local_sched_in(void) +{ +#ifdef CONFIG_KMAP_LOCAL + if (unlikely(current->kmap_ctrl.idx)) + __kmap_local_sched_in(); +#endif +} + +/** + * prepare_task_switch - prepare to switch tasks + * @rq: the runqueue preparing to switch + * @prev: the current task that is being switched out + * @next: the task we are going to switch to. + * + * This is called with the rq lock held and interrupts off. It must + * be paired with a subsequent finish_task_switch after the context + * switch. + * + * prepare_task_switch sets up locking and calls architecture specific + * hooks. + */ +static inline void +prepare_task_switch(struct rq *rq, struct task_struct *prev, + struct task_struct *next) +{ + kcov_prepare_switch(prev); + sched_info_switch(rq, prev, next); + perf_event_task_sched_out(prev, next); + rseq_preempt(prev); + fire_sched_out_preempt_notifiers(prev, next); + kmap_local_sched_out(); + prepare_task(next); + prepare_arch_switch(next); +} + +/** + * finish_task_switch - clean up after a task-switch + * @prev: the thread we just switched away from. + * + * finish_task_switch must be called after the context switch, paired + * with a prepare_task_switch call before the context switch. + * finish_task_switch will reconcile locking set up by prepare_task_switch, + * and do any other architecture-specific cleanup actions. + * + * Note that we may have delayed dropping an mm in context_switch(). If + * so, we finish that here outside of the runqueue lock. (Doing it + * with the lock held can cause deadlocks; see schedule() for + * details.) + * + * The context switch have flipped the stack from under us and restored the + * local variables which were saved when this task called schedule() in the + * past. prev == current is still correct but we need to recalculate this_rq + * because prev may have moved to another CPU. + */ +static struct rq *finish_task_switch(struct task_struct *prev) + __releases(rq->lock) +{ + struct rq *rq = this_rq(); + struct mm_struct *mm = rq->prev_mm; + unsigned int prev_state; + + /* + * The previous task will have left us with a preempt_count of 2 + * because it left us after: + * + * schedule() + * preempt_disable(); // 1 + * __schedule() + * raw_spin_lock_irq(&rq->lock) // 2 + * + * Also, see FORK_PREEMPT_COUNT. + */ + if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, + "corrupted preempt_count: %s/%d/0x%x\n", + current->comm, current->pid, preempt_count())) + preempt_count_set(FORK_PREEMPT_COUNT); + + rq->prev_mm = NULL; + + /* + * A task struct has one reference for the use as "current". + * If a task dies, then it sets TASK_DEAD in tsk->state and calls + * schedule one last time. The schedule call will never return, and + * the scheduled task must drop that reference. + * + * We must observe prev->state before clearing prev->on_cpu (in + * finish_task), otherwise a concurrent wakeup can get prev + * running on another CPU and we could rave with its RUNNING -> DEAD + * transition, resulting in a double drop. + */ + prev_state = READ_ONCE(prev->__state); + vtime_task_switch(prev); + perf_event_task_sched_in(prev, current); + finish_task(prev); + tick_nohz_task_switch(); + finish_lock_switch(rq); + finish_arch_post_lock_switch(); + kcov_finish_switch(current); + /* + * kmap_local_sched_out() is invoked with rq::lock held and + * interrupts disabled. There is no requirement for that, but the + * sched out code does not have an interrupt enabled section. + * Restoring the maps on sched in does not require interrupts being + * disabled either. + */ + kmap_local_sched_in(); + + fire_sched_in_preempt_notifiers(current); + /* + * When switching through a kernel thread, the loop in + * membarrier_{private,global}_expedited() may have observed that + * kernel thread and not issued an IPI. It is therefore possible to + * schedule between user->kernel->user threads without passing though + * switch_mm(). Membarrier requires a barrier after storing to + * rq->curr, before returning to userspace, so provide them here: + * + * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly + * provided by mmdrop(), + * - a sync_core for SYNC_CORE. + */ + if (mm) { + membarrier_mm_sync_core_before_usermode(mm); + mmdrop_sched(mm); + } + if (unlikely(prev_state == TASK_DEAD)) { + if (prev->sched_class->task_dead) + prev->sched_class->task_dead(prev); + + /* Task is done with its stack. */ + put_task_stack(prev); + + put_task_struct_rcu_user(prev); + } + + return rq; +} + +/** + * schedule_tail - first thing a freshly forked thread must call. + * @prev: the thread we just switched away from. + */ +asmlinkage __visible void schedule_tail(struct task_struct *prev) + __releases(rq->lock) +{ + /* + * New tasks start with FORK_PREEMPT_COUNT, see there and + * finish_task_switch() for details. + * + * finish_task_switch() will drop rq->lock() and lower preempt_count + * and the preempt_enable() will end up enabling preemption (on + * PREEMPT_COUNT kernels). + */ + + finish_task_switch(prev); + preempt_enable(); + + if (current->set_child_tid) + put_user(task_pid_vnr(current), current->set_child_tid); + + calculate_sigpending(); +} + +/* + * context_switch - switch to the new MM and the new thread's register state. + */ +static __always_inline struct rq * +context_switch(struct rq *rq, struct task_struct *prev, + struct task_struct *next, struct rq_flags *rf) +{ + prepare_task_switch(rq, prev, next); + + /* + * For paravirt, this is coupled with an exit in switch_to to + * combine the page table reload and the switch backend into + * one hypercall. + */ + arch_start_context_switch(prev); + + /* + * kernel -> kernel lazy + transfer active + * user -> kernel lazy + mmgrab() active + * + * kernel -> user switch + mmdrop() active + * user -> user switch + */ + if (!next->mm) { // to kernel + enter_lazy_tlb(prev->active_mm, next); + + next->active_mm = prev->active_mm; + if (prev->mm) // from user + mmgrab(prev->active_mm); + else + prev->active_mm = NULL; + } else { // to user + membarrier_switch_mm(rq, prev->active_mm, next->mm); + /* + * sys_membarrier() requires an smp_mb() between setting + * rq->curr / membarrier_switch_mm() and returning to userspace. + * + * The below provides this either through switch_mm(), or in + * case 'prev->active_mm == next->mm' through + * finish_task_switch()'s mmdrop(). + */ + switch_mm_irqs_off(prev->active_mm, next->mm, next); + lru_gen_use_mm(next->mm); + + if (!prev->mm) { // from kernel + /* will mmdrop() in finish_task_switch(). */ + rq->prev_mm = prev->active_mm; + prev->active_mm = NULL; + } + } + + rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); + + prepare_lock_switch(rq, next, rf); + + /* Here we just switch the register state and the stack. */ + switch_to(prev, next, prev); + barrier(); + + return finish_task_switch(prev); +} + +/* + * nr_running and nr_context_switches: + * + * externally visible scheduler statistics: current number of runnable + * threads, total number of context switches performed since bootup. + */ +unsigned int nr_running(void) +{ + unsigned int i, sum = 0; + + for_each_online_cpu(i) + sum += cpu_rq(i)->nr_running; + + return sum; +} + +/* + * Check if only the current task is running on the CPU. + * + * Caution: this function does not check that the caller has disabled + * preemption, thus the result might have a time-of-check-to-time-of-use + * race. The caller is responsible to use it correctly, for example: + * + * - from a non-preemptible section (of course) + * + * - from a thread that is bound to a single CPU + * + * - in a loop with very short iterations (e.g. a polling loop) + */ +bool single_task_running(void) +{ + return raw_rq()->nr_running == 1; +} +EXPORT_SYMBOL(single_task_running); + +unsigned long long nr_context_switches(void) +{ + int i; + unsigned long long sum = 0; + + for_each_possible_cpu(i) + sum += cpu_rq(i)->nr_switches; + + return sum; +} + +/* + * Consumers of these two interfaces, like for example the cpuidle menu + * governor, are using nonsensical data. Preferring shallow idle state selection + * for a CPU that has IO-wait which might not even end up running the task when + * it does become runnable. + */ + +unsigned int nr_iowait_cpu(int cpu) +{ + return atomic_read(&cpu_rq(cpu)->nr_iowait); +} + +/* + * IO-wait accounting, and how it's mostly bollocks (on SMP). + * + * The idea behind IO-wait account is to account the idle time that we could + * have spend running if it were not for IO. That is, if we were to improve the + * storage performance, we'd have a proportional reduction in IO-wait time. + * + * This all works nicely on UP, where, when a task blocks on IO, we account + * idle time as IO-wait, because if the storage were faster, it could've been + * running and we'd not be idle. + * + * This has been extended to SMP, by doing the same for each CPU. This however + * is broken. + * + * Imagine for instance the case where two tasks block on one CPU, only the one + * CPU will have IO-wait accounted, while the other has regular idle. Even + * though, if the storage were faster, both could've ran at the same time, + * utilising both CPUs. + * + * This means, that when looking globally, the current IO-wait accounting on + * SMP is a lower bound, by reason of under accounting. + * + * Worse, since the numbers are provided per CPU, they are sometimes + * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly + * associated with any one particular CPU, it can wake to another CPU than it + * blocked on. This means the per CPU IO-wait number is meaningless. + * + * Task CPU affinities can make all that even more 'interesting'. + */ + +unsigned int nr_iowait(void) +{ + unsigned int i, sum = 0; + + for_each_possible_cpu(i) + sum += nr_iowait_cpu(i); + + return sum; +} + +#ifdef CONFIG_SMP + +/* + * sched_exec - execve() is a valuable balancing opportunity, because at + * this point the task has the smallest effective memory and cache footprint. + */ +void sched_exec(void) +{ + struct task_struct *p = current; + unsigned long flags; + int dest_cpu; + + raw_spin_lock_irqsave(&p->pi_lock, flags); + dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); + if (dest_cpu == smp_processor_id()) + goto unlock; + + if (likely(cpu_active(dest_cpu))) { + struct migration_arg arg = { p, dest_cpu }; + + raw_spin_unlock_irqrestore(&p->pi_lock, flags); + stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); + return; + } +unlock: + raw_spin_unlock_irqrestore(&p->pi_lock, flags); +} + +#endif + +DEFINE_PER_CPU(struct kernel_stat, kstat); +DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); + +EXPORT_PER_CPU_SYMBOL(kstat); +EXPORT_PER_CPU_SYMBOL(kernel_cpustat); + +/* + * The function fair_sched_class.update_curr accesses the struct curr + * and its field curr->exec_start; when called from task_sched_runtime(), + * we observe a high rate of cache misses in practice. + * Prefetching this data results in improved performance. + */ +static inline void prefetch_curr_exec_start(struct task_struct *p) +{ +#ifdef CONFIG_FAIR_GROUP_SCHED + struct sched_entity *curr = (&p->se)->cfs_rq->curr; +#else + struct sched_entity *curr = (&task_rq(p)->cfs)->curr; +#endif + prefetch(curr); + prefetch(&curr->exec_start); +} + +/* + * Return accounted runtime for the task. + * In case the task is currently running, return the runtime plus current's + * pending runtime that have not been accounted yet. + */ +unsigned long long task_sched_runtime(struct task_struct *p) +{ + struct rq_flags rf; + struct rq *rq; + u64 ns; + +#if defined(CONFIG_64BIT) && defined(CONFIG_SMP) + /* + * 64-bit doesn't need locks to atomically read a 64-bit value. + * So we have a optimization chance when the task's delta_exec is 0. + * Reading ->on_cpu is racy, but this is ok. + * + * If we race with it leaving CPU, we'll take a lock. So we're correct. + * If we race with it entering CPU, unaccounted time is 0. This is + * indistinguishable from the read occurring a few cycles earlier. + * If we see ->on_cpu without ->on_rq, the task is leaving, and has + * been accounted, so we're correct here as well. + */ + if (!p->on_cpu || !task_on_rq_queued(p)) + return p->se.sum_exec_runtime; +#endif + + rq = task_rq_lock(p, &rf); + /* + * Must be ->curr _and_ ->on_rq. If dequeued, we would + * project cycles that may never be accounted to this + * thread, breaking clock_gettime(). + */ + if (task_current(rq, p) && task_on_rq_queued(p)) { + prefetch_curr_exec_start(p); + update_rq_clock(rq); + p->sched_class->update_curr(rq); + } + ns = p->se.sum_exec_runtime; + task_rq_unlock(rq, p, &rf); + + return ns; +} + +#ifdef CONFIG_SCHED_DEBUG +static u64 cpu_resched_latency(struct rq *rq) +{ + int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); + u64 resched_latency, now = rq_clock(rq); + static bool warned_once; + + if (sysctl_resched_latency_warn_once && warned_once) + return 0; + + if (!need_resched() || !latency_warn_ms) + return 0; + + if (system_state == SYSTEM_BOOTING) + return 0; + + if (!rq->last_seen_need_resched_ns) { + rq->last_seen_need_resched_ns = now; + rq->ticks_without_resched = 0; + return 0; + } + + rq->ticks_without_resched++; + resched_latency = now - rq->last_seen_need_resched_ns; + if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) + return 0; + + warned_once = true; + + return resched_latency; +} + +static int __init setup_resched_latency_warn_ms(char *str) +{ + long val; + + if ((kstrtol(str, 0, &val))) { + pr_warn("Unable to set resched_latency_warn_ms\n"); + return 1; + } + + sysctl_resched_latency_warn_ms = val; + return 1; +} +__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); +#else +static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } +#endif /* CONFIG_SCHED_DEBUG */ + +/* + * This function gets called by the timer code, with HZ frequency. + * We call it with interrupts disabled. + */ +void scheduler_tick(void) +{ + int cpu = smp_processor_id(); + struct rq *rq = cpu_rq(cpu); + struct task_struct *curr = rq->curr; + struct rq_flags rf; + unsigned long thermal_pressure; + u64 resched_latency; + + if (housekeeping_cpu(cpu, HK_TYPE_TICK)) + arch_scale_freq_tick(); + + sched_clock_tick(); + + rq_lock(rq, &rf); + + update_rq_clock(rq); + thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); + update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure); + curr->sched_class->task_tick(rq, curr, 0); + if (sched_feat(LATENCY_WARN)) + resched_latency = cpu_resched_latency(rq); + calc_global_load_tick(rq); + sched_core_tick(rq); + + rq_unlock(rq, &rf); + + if (sched_feat(LATENCY_WARN) && resched_latency) + resched_latency_warn(cpu, resched_latency); + + perf_event_task_tick(); + +#ifdef CONFIG_SMP + rq->idle_balance = idle_cpu(cpu); + trigger_load_balance(rq); +#endif +} + +#ifdef CONFIG_NO_HZ_FULL + +struct tick_work { + int cpu; + atomic_t state; + struct delayed_work work; +}; +/* Values for ->state, see diagram below. */ +#define TICK_SCHED_REMOTE_OFFLINE 0 +#define TICK_SCHED_REMOTE_OFFLINING 1 +#define TICK_SCHED_REMOTE_RUNNING 2 + +/* + * State diagram for ->state: + * + * + * TICK_SCHED_REMOTE_OFFLINE + * | ^ + * | | + * | | sched_tick_remote() + * | | + * | | + * +--TICK_SCHED_REMOTE_OFFLINING + * | ^ + * | | + * sched_tick_start() | | sched_tick_stop() + * | | + * V | + * TICK_SCHED_REMOTE_RUNNING + * + * + * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() + * and sched_tick_start() are happy to leave the state in RUNNING. + */ + +static struct tick_work __percpu *tick_work_cpu; + +static void sched_tick_remote(struct work_struct *work) +{ + struct delayed_work *dwork = to_delayed_work(work); + struct tick_work *twork = container_of(dwork, struct tick_work, work); + int cpu = twork->cpu; + struct rq *rq = cpu_rq(cpu); + struct task_struct *curr; + struct rq_flags rf; + u64 delta; + int os; + + /* + * Handle the tick only if it appears the remote CPU is running in full + * dynticks mode. The check is racy by nature, but missing a tick or + * having one too much is no big deal because the scheduler tick updates + * statistics and checks timeslices in a time-independent way, regardless + * of when exactly it is running. + */ + if (!tick_nohz_tick_stopped_cpu(cpu)) + goto out_requeue; + + rq_lock_irq(rq, &rf); + curr = rq->curr; + if (cpu_is_offline(cpu)) + goto out_unlock; + + update_rq_clock(rq); + + if (!is_idle_task(curr)) { + /* + * Make sure the next tick runs within a reasonable + * amount of time. + */ + delta = rq_clock_task(rq) - curr->se.exec_start; + WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); + } + curr->sched_class->task_tick(rq, curr, 0); + + calc_load_nohz_remote(rq); +out_unlock: + rq_unlock_irq(rq, &rf); +out_requeue: + + /* + * Run the remote tick once per second (1Hz). This arbitrary + * frequency is large enough to avoid overload but short enough + * to keep scheduler internal stats reasonably up to date. But + * first update state to reflect hotplug activity if required. + */ + os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); + WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); + if (os == TICK_SCHED_REMOTE_RUNNING) + queue_delayed_work(system_unbound_wq, dwork, HZ); +} + +static void sched_tick_start(int cpu) +{ + int os; + struct tick_work *twork; + + if (housekeeping_cpu(cpu, HK_TYPE_TICK)) + return; + + WARN_ON_ONCE(!tick_work_cpu); + + twork = per_cpu_ptr(tick_work_cpu, cpu); + os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); + WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); + if (os == TICK_SCHED_REMOTE_OFFLINE) { + twork->cpu = cpu; + INIT_DELAYED_WORK(&twork->work, sched_tick_remote); + queue_delayed_work(system_unbound_wq, &twork->work, HZ); + } +} + +#ifdef CONFIG_HOTPLUG_CPU +static void sched_tick_stop(int cpu) +{ + struct tick_work *twork; + int os; + + if (housekeeping_cpu(cpu, HK_TYPE_TICK)) + return; + + WARN_ON_ONCE(!tick_work_cpu); + + twork = per_cpu_ptr(tick_work_cpu, cpu); + /* There cannot be competing actions, but don't rely on stop-machine. */ + os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); + WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); + /* Don't cancel, as this would mess up the state machine. */ +} +#endif /* CONFIG_HOTPLUG_CPU */ + +int __init sched_tick_offload_init(void) +{ + tick_work_cpu = alloc_percpu(struct tick_work); + BUG_ON(!tick_work_cpu); + return 0; +} + +#else /* !CONFIG_NO_HZ_FULL */ +static inline void sched_tick_start(int cpu) { } +static inline void sched_tick_stop(int cpu) { } +#endif + +#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ + defined(CONFIG_TRACE_PREEMPT_TOGGLE)) +/* + * If the value passed in is equal to the current preempt count + * then we just disabled preemption. Start timing the latency. + */ +static inline void preempt_latency_start(int val) +{ + if (preempt_count() == val) { + unsigned long ip = get_lock_parent_ip(); +#ifdef CONFIG_DEBUG_PREEMPT + current->preempt_disable_ip = ip; +#endif + trace_preempt_off(CALLER_ADDR0, ip); + } +} + +void preempt_count_add(int val) +{ +#ifdef CONFIG_DEBUG_PREEMPT + /* + * Underflow? + */ + if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) + return; +#endif + __preempt_count_add(val); +#ifdef CONFIG_DEBUG_PREEMPT + /* + * Spinlock count overflowing soon? + */ + DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= + PREEMPT_MASK - 10); +#endif + preempt_latency_start(val); +} +EXPORT_SYMBOL(preempt_count_add); +NOKPROBE_SYMBOL(preempt_count_add); + +/* + * If the value passed in equals to the current preempt count + * then we just enabled preemption. Stop timing the latency. + */ +static inline void preempt_latency_stop(int val) +{ + if (preempt_count() == val) + trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); +} + +void preempt_count_sub(int val) +{ +#ifdef CONFIG_DEBUG_PREEMPT + /* + * Underflow? + */ + if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) + return; + /* + * Is the spinlock portion underflowing? + */ + if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && + !(preempt_count() & PREEMPT_MASK))) + return; +#endif + + preempt_latency_stop(val); + __preempt_count_sub(val); +} +EXPORT_SYMBOL(preempt_count_sub); +NOKPROBE_SYMBOL(preempt_count_sub); + +#else +static inline void preempt_latency_start(int val) { } +static inline void preempt_latency_stop(int val) { } +#endif + +static inline unsigned long get_preempt_disable_ip(struct task_struct *p) +{ +#ifdef CONFIG_DEBUG_PREEMPT + return p->preempt_disable_ip; +#else + return 0; +#endif +} + +/* + * Print scheduling while atomic bug: + */ +static noinline void __schedule_bug(struct task_struct *prev) +{ + /* Save this before calling printk(), since that will clobber it */ + unsigned long preempt_disable_ip = get_preempt_disable_ip(current); + + if (oops_in_progress) + return; + + printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", + prev->comm, prev->pid, preempt_count()); + + debug_show_held_locks(prev); + print_modules(); + if (irqs_disabled()) + print_irqtrace_events(prev); + if (IS_ENABLED(CONFIG_DEBUG_PREEMPT) + && in_atomic_preempt_off()) { + pr_err("Preemption disabled at:"); + print_ip_sym(KERN_ERR, preempt_disable_ip); + } + check_panic_on_warn("scheduling while atomic"); + + dump_stack(); + add_taint(TAINT_WARN, LOCKDEP_STILL_OK); +} + +/* + * Various schedule()-time debugging checks and statistics: + */ +static inline void schedule_debug(struct task_struct *prev, bool preempt) +{ +#ifdef CONFIG_SCHED_STACK_END_CHECK + if (task_stack_end_corrupted(prev)) + panic("corrupted stack end detected inside scheduler\n"); + + if (task_scs_end_corrupted(prev)) + panic("corrupted shadow stack detected inside scheduler\n"); +#endif + +#ifdef CONFIG_DEBUG_ATOMIC_SLEEP + if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { + printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", + prev->comm, prev->pid, prev->non_block_count); + dump_stack(); + add_taint(TAINT_WARN, LOCKDEP_STILL_OK); + } +#endif + + if (unlikely(in_atomic_preempt_off())) { + __schedule_bug(prev); + preempt_count_set(PREEMPT_DISABLED); + } + rcu_sleep_check(); + SCHED_WARN_ON(ct_state() == CONTEXT_USER); + + profile_hit(SCHED_PROFILING, __builtin_return_address(0)); + + schedstat_inc(this_rq()->sched_count); +} + +static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, + struct rq_flags *rf) +{ +#ifdef CONFIG_SMP + const struct sched_class *class; + /* + * We must do the balancing pass before put_prev_task(), such + * that when we release the rq->lock the task is in the same + * state as before we took rq->lock. + * + * We can terminate the balance pass as soon as we know there is + * a runnable task of @class priority or higher. + */ + for_class_range(class, prev->sched_class, &idle_sched_class) { + if (class->balance(rq, prev, rf)) + break; + } +#endif + + put_prev_task(rq, prev); +} + +/* + * Pick up the highest-prio task: + */ +static inline struct task_struct * +__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) +{ + const struct sched_class *class; + struct task_struct *p; + + /* + * Optimization: we know that if all tasks are in the fair class we can + * call that function directly, but only if the @prev task wasn't of a + * higher scheduling class, because otherwise those lose the + * opportunity to pull in more work from other CPUs. + */ + if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && + rq->nr_running == rq->cfs.h_nr_running)) { + + p = pick_next_task_fair(rq, prev, rf); + if (unlikely(p == RETRY_TASK)) + goto restart; + + /* Assume the next prioritized class is idle_sched_class */ + if (!p) { + put_prev_task(rq, prev); + p = pick_next_task_idle(rq); + } + + return p; + } + +restart: + put_prev_task_balance(rq, prev, rf); + + for_each_class(class) { + p = class->pick_next_task(rq); + if (p) + return p; + } + + BUG(); /* The idle class should always have a runnable task. */ +} + +#ifdef CONFIG_SCHED_CORE +static inline bool is_task_rq_idle(struct task_struct *t) +{ + return (task_rq(t)->idle == t); +} + +static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) +{ + return is_task_rq_idle(a) || (a->core_cookie == cookie); +} + +static inline bool cookie_match(struct task_struct *a, struct task_struct *b) +{ + if (is_task_rq_idle(a) || is_task_rq_idle(b)) + return true; + + return a->core_cookie == b->core_cookie; +} + +static inline struct task_struct *pick_task(struct rq *rq) +{ + const struct sched_class *class; + struct task_struct *p; + + for_each_class(class) { + p = class->pick_task(rq); + if (p) + return p; + } + + BUG(); /* The idle class should always have a runnable task. */ +} + +extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); + +static void queue_core_balance(struct rq *rq); + +static struct task_struct * +pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) +{ + struct task_struct *next, *p, *max = NULL; + const struct cpumask *smt_mask; + bool fi_before = false; + bool core_clock_updated = (rq == rq->core); + unsigned long cookie; + int i, cpu, occ = 0; + struct rq *rq_i; + bool need_sync; + + if (!sched_core_enabled(rq)) + return __pick_next_task(rq, prev, rf); + + cpu = cpu_of(rq); + + /* Stopper task is switching into idle, no need core-wide selection. */ + if (cpu_is_offline(cpu)) { + /* + * Reset core_pick so that we don't enter the fastpath when + * coming online. core_pick would already be migrated to + * another cpu during offline. + */ + rq->core_pick = NULL; + return __pick_next_task(rq, prev, rf); + } + + /* + * If there were no {en,de}queues since we picked (IOW, the task + * pointers are all still valid), and we haven't scheduled the last + * pick yet, do so now. + * + * rq->core_pick can be NULL if no selection was made for a CPU because + * it was either offline or went offline during a sibling's core-wide + * selection. In this case, do a core-wide selection. + */ + if (rq->core->core_pick_seq == rq->core->core_task_seq && + rq->core->core_pick_seq != rq->core_sched_seq && + rq->core_pick) { + WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); + + next = rq->core_pick; + if (next != prev) { + put_prev_task(rq, prev); + set_next_task(rq, next); + } + + rq->core_pick = NULL; + goto out; + } + + put_prev_task_balance(rq, prev, rf); + + smt_mask = cpu_smt_mask(cpu); + need_sync = !!rq->core->core_cookie; + + /* reset state */ + rq->core->core_cookie = 0UL; + if (rq->core->core_forceidle_count) { + if (!core_clock_updated) { + update_rq_clock(rq->core); + core_clock_updated = true; + } + sched_core_account_forceidle(rq); + /* reset after accounting force idle */ + rq->core->core_forceidle_start = 0; + rq->core->core_forceidle_count = 0; + rq->core->core_forceidle_occupation = 0; + need_sync = true; + fi_before = true; + } + + /* + * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq + * + * @task_seq guards the task state ({en,de}queues) + * @pick_seq is the @task_seq we did a selection on + * @sched_seq is the @pick_seq we scheduled + * + * However, preemptions can cause multiple picks on the same task set. + * 'Fix' this by also increasing @task_seq for every pick. + */ + rq->core->core_task_seq++; + + /* + * Optimize for common case where this CPU has no cookies + * and there are no cookied tasks running on siblings. + */ + if (!need_sync) { + next = pick_task(rq); + if (!next->core_cookie) { + rq->core_pick = NULL; + /* + * For robustness, update the min_vruntime_fi for + * unconstrained picks as well. + */ + WARN_ON_ONCE(fi_before); + task_vruntime_update(rq, next, false); + goto out_set_next; + } + } + + /* + * For each thread: do the regular task pick and find the max prio task + * amongst them. + * + * Tie-break prio towards the current CPU + */ + for_each_cpu_wrap(i, smt_mask, cpu) { + rq_i = cpu_rq(i); + + /* + * Current cpu always has its clock updated on entrance to + * pick_next_task(). If the current cpu is not the core, + * the core may also have been updated above. + */ + if (i != cpu && (rq_i != rq->core || !core_clock_updated)) + update_rq_clock(rq_i); + + p = rq_i->core_pick = pick_task(rq_i); + if (!max || prio_less(max, p, fi_before)) + max = p; + } + + cookie = rq->core->core_cookie = max->core_cookie; + + /* + * For each thread: try and find a runnable task that matches @max or + * force idle. + */ + for_each_cpu(i, smt_mask) { + rq_i = cpu_rq(i); + p = rq_i->core_pick; + + if (!cookie_equals(p, cookie)) { + p = NULL; + if (cookie) + p = sched_core_find(rq_i, cookie); + if (!p) + p = idle_sched_class.pick_task(rq_i); + } + + rq_i->core_pick = p; + + if (p == rq_i->idle) { + if (rq_i->nr_running) { + rq->core->core_forceidle_count++; + if (!fi_before) + rq->core->core_forceidle_seq++; + } + } else { + occ++; + } + } + + if (schedstat_enabled() && rq->core->core_forceidle_count) { + rq->core->core_forceidle_start = rq_clock(rq->core); + rq->core->core_forceidle_occupation = occ; + } + + rq->core->core_pick_seq = rq->core->core_task_seq; + next = rq->core_pick; + rq->core_sched_seq = rq->core->core_pick_seq; + + /* Something should have been selected for current CPU */ + WARN_ON_ONCE(!next); + + /* + * Reschedule siblings + * + * NOTE: L1TF -- at this point we're no longer running the old task and + * sending an IPI (below) ensures the sibling will no longer be running + * their task. This ensures there is no inter-sibling overlap between + * non-matching user state. + */ + for_each_cpu(i, smt_mask) { + rq_i = cpu_rq(i); + + /* + * An online sibling might have gone offline before a task + * could be picked for it, or it might be offline but later + * happen to come online, but its too late and nothing was + * picked for it. That's Ok - it will pick tasks for itself, + * so ignore it. + */ + if (!rq_i->core_pick) + continue; + + /* + * Update for new !FI->FI transitions, or if continuing to be in !FI: + * fi_before fi update? + * 0 0 1 + * 0 1 1 + * 1 0 1 + * 1 1 0 + */ + if (!(fi_before && rq->core->core_forceidle_count)) + task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); + + rq_i->core_pick->core_occupation = occ; + + if (i == cpu) { + rq_i->core_pick = NULL; + continue; + } + + /* Did we break L1TF mitigation requirements? */ + WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); + + if (rq_i->curr == rq_i->core_pick) { + rq_i->core_pick = NULL; + continue; + } + + resched_curr(rq_i); + } + +out_set_next: + set_next_task(rq, next); +out: + if (rq->core->core_forceidle_count && next == rq->idle) + queue_core_balance(rq); + + return next; +} + +static bool try_steal_cookie(int this, int that) +{ + struct rq *dst = cpu_rq(this), *src = cpu_rq(that); + struct task_struct *p; + unsigned long cookie; + bool success = false; + + local_irq_disable(); + double_rq_lock(dst, src); + + cookie = dst->core->core_cookie; + if (!cookie) + goto unlock; + + if (dst->curr != dst->idle) + goto unlock; + + p = sched_core_find(src, cookie); + if (p == src->idle) + goto unlock; + + do { + if (p == src->core_pick || p == src->curr) + goto next; + + if (!is_cpu_allowed(p, this)) + goto next; + + if (p->core_occupation > dst->idle->core_occupation) + goto next; + + deactivate_task(src, p, 0); + set_task_cpu(p, this); + activate_task(dst, p, 0); + + resched_curr(dst); + + success = true; + break; + +next: + p = sched_core_next(p, cookie); + } while (p); + +unlock: + double_rq_unlock(dst, src); + local_irq_enable(); + + return success; +} + +static bool steal_cookie_task(int cpu, struct sched_domain *sd) +{ + int i; + + for_each_cpu_wrap(i, sched_domain_span(sd), cpu) { + if (i == cpu) + continue; + + if (need_resched()) + break; + + if (try_steal_cookie(cpu, i)) + return true; + } + + return false; +} + +static void sched_core_balance(struct rq *rq) +{ + struct sched_domain *sd; + int cpu = cpu_of(rq); + + preempt_disable(); + rcu_read_lock(); + raw_spin_rq_unlock_irq(rq); + for_each_domain(cpu, sd) { + if (need_resched()) + break; + + if (steal_cookie_task(cpu, sd)) + break; + } + raw_spin_rq_lock_irq(rq); + rcu_read_unlock(); + preempt_enable(); +} + +static DEFINE_PER_CPU(struct balance_callback, core_balance_head); + +static void queue_core_balance(struct rq *rq) +{ + if (!sched_core_enabled(rq)) + return; + + if (!rq->core->core_cookie) + return; + + if (!rq->nr_running) /* not forced idle */ + return; + + queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); +} + +static void sched_core_cpu_starting(unsigned int cpu) +{ + const struct cpumask *smt_mask = cpu_smt_mask(cpu); + struct rq *rq = cpu_rq(cpu), *core_rq = NULL; + unsigned long flags; + int t; + + sched_core_lock(cpu, &flags); + + WARN_ON_ONCE(rq->core != rq); + + /* if we're the first, we'll be our own leader */ + if (cpumask_weight(smt_mask) == 1) + goto unlock; + + /* find the leader */ + for_each_cpu(t, smt_mask) { + if (t == cpu) + continue; + rq = cpu_rq(t); + if (rq->core == rq) { + core_rq = rq; + break; + } + } + + if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ + goto unlock; + + /* install and validate core_rq */ + for_each_cpu(t, smt_mask) { + rq = cpu_rq(t); + + if (t == cpu) + rq->core = core_rq; + + WARN_ON_ONCE(rq->core != core_rq); + } + +unlock: + sched_core_unlock(cpu, &flags); +} + +static void sched_core_cpu_deactivate(unsigned int cpu) +{ + const struct cpumask *smt_mask = cpu_smt_mask(cpu); + struct rq *rq = cpu_rq(cpu), *core_rq = NULL; + unsigned long flags; + int t; + + sched_core_lock(cpu, &flags); + + /* if we're the last man standing, nothing to do */ + if (cpumask_weight(smt_mask) == 1) { + WARN_ON_ONCE(rq->core != rq); + goto unlock; + } + + /* if we're not the leader, nothing to do */ + if (rq->core != rq) + goto unlock; + + /* find a new leader */ + for_each_cpu(t, smt_mask) { + if (t == cpu) + continue; + core_rq = cpu_rq(t); + break; + } + + if (WARN_ON_ONCE(!core_rq)) /* impossible */ + goto unlock; + + /* copy the shared state to the new leader */ + core_rq->core_task_seq = rq->core_task_seq; + core_rq->core_pick_seq = rq->core_pick_seq; + core_rq->core_cookie = rq->core_cookie; + core_rq->core_forceidle_count = rq->core_forceidle_count; + core_rq->core_forceidle_seq = rq->core_forceidle_seq; + core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; + + /* + * Accounting edge for forced idle is handled in pick_next_task(). + * Don't need another one here, since the hotplug thread shouldn't + * have a cookie. + */ + core_rq->core_forceidle_start = 0; + + /* install new leader */ + for_each_cpu(t, smt_mask) { + rq = cpu_rq(t); + rq->core = core_rq; + } + +unlock: + sched_core_unlock(cpu, &flags); +} + +static inline void sched_core_cpu_dying(unsigned int cpu) +{ + struct rq *rq = cpu_rq(cpu); + + if (rq->core != rq) + rq->core = rq; +} + +#else /* !CONFIG_SCHED_CORE */ + +static inline void sched_core_cpu_starting(unsigned int cpu) {} +static inline void sched_core_cpu_deactivate(unsigned int cpu) {} +static inline void sched_core_cpu_dying(unsigned int cpu) {} + +static struct task_struct * +pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) +{ + return __pick_next_task(rq, prev, rf); +} + +#endif /* CONFIG_SCHED_CORE */ + +/* + * Constants for the sched_mode argument of __schedule(). + * + * The mode argument allows RT enabled kernels to differentiate a + * preemption from blocking on an 'sleeping' spin/rwlock. Note that + * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to + * optimize the AND operation out and just check for zero. + */ +#define SM_NONE 0x0 +#define SM_PREEMPT 0x1 +#define SM_RTLOCK_WAIT 0x2 + +#ifndef CONFIG_PREEMPT_RT +# define SM_MASK_PREEMPT (~0U) +#else +# define SM_MASK_PREEMPT SM_PREEMPT +#endif + +/* + * __schedule() is the main scheduler function. + * + * The main means of driving the scheduler and thus entering this function are: + * + * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. + * + * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return + * paths. For example, see arch/x86/entry_64.S. + * + * To drive preemption between tasks, the scheduler sets the flag in timer + * interrupt handler scheduler_tick(). + * + * 3. Wakeups don't really cause entry into schedule(). They add a + * task to the run-queue and that's it. + * + * Now, if the new task added to the run-queue preempts the current + * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets + * called on the nearest possible occasion: + * + * - If the kernel is preemptible (CONFIG_PREEMPTION=y): + * + * - in syscall or exception context, at the next outmost + * preempt_enable(). (this might be as soon as the wake_up()'s + * spin_unlock()!) + * + * - in IRQ context, return from interrupt-handler to + * preemptible context + * + * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) + * then at the next: + * + * - cond_resched() call + * - explicit schedule() call + * - return from syscall or exception to user-space + * - return from interrupt-handler to user-space + * + * WARNING: must be called with preemption disabled! + */ +static void __sched notrace __schedule(unsigned int sched_mode) +{ + struct task_struct *prev, *next; + unsigned long *switch_count; + unsigned long prev_state; + struct rq_flags rf; + struct rq *rq; + int cpu; + + cpu = smp_processor_id(); + rq = cpu_rq(cpu); + prev = rq->curr; + + schedule_debug(prev, !!sched_mode); + + if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) + hrtick_clear(rq); + + local_irq_disable(); + rcu_note_context_switch(!!sched_mode); + + /* + * Make sure that signal_pending_state()->signal_pending() below + * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) + * done by the caller to avoid the race with signal_wake_up(): + * + * __set_current_state(@state) signal_wake_up() + * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) + * wake_up_state(p, state) + * LOCK rq->lock LOCK p->pi_state + * smp_mb__after_spinlock() smp_mb__after_spinlock() + * if (signal_pending_state()) if (p->state & @state) + * + * Also, the membarrier system call requires a full memory barrier + * after coming from user-space, before storing to rq->curr. + */ + rq_lock(rq, &rf); + smp_mb__after_spinlock(); + + /* Promote REQ to ACT */ + rq->clock_update_flags <<= 1; + update_rq_clock(rq); + + switch_count = &prev->nivcsw; + + /* + * We must load prev->state once (task_struct::state is volatile), such + * that we form a control dependency vs deactivate_task() below. + */ + prev_state = READ_ONCE(prev->__state); + if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) { + if (signal_pending_state(prev_state, prev)) { + WRITE_ONCE(prev->__state, TASK_RUNNING); + } else { + prev->sched_contributes_to_load = + (prev_state & TASK_UNINTERRUPTIBLE) && + !(prev_state & TASK_NOLOAD) && + !(prev_state & TASK_FROZEN); + + if (prev->sched_contributes_to_load) + rq->nr_uninterruptible++; + + /* + * __schedule() ttwu() + * prev_state = prev->state; if (p->on_rq && ...) + * if (prev_state) goto out; + * p->on_rq = 0; smp_acquire__after_ctrl_dep(); + * p->state = TASK_WAKING + * + * Where __schedule() and ttwu() have matching control dependencies. + * + * After this, schedule() must not care about p->state any more. + */ + deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK); + + if (prev->in_iowait) { + atomic_inc(&rq->nr_iowait); + delayacct_blkio_start(); + } + } + switch_count = &prev->nvcsw; + } + + next = pick_next_task(rq, prev, &rf); + clear_tsk_need_resched(prev); + clear_preempt_need_resched(); +#ifdef CONFIG_SCHED_DEBUG + rq->last_seen_need_resched_ns = 0; +#endif + + if (likely(prev != next)) { + rq->nr_switches++; + /* + * RCU users of rcu_dereference(rq->curr) may not see + * changes to task_struct made by pick_next_task(). + */ + RCU_INIT_POINTER(rq->curr, next); + /* + * The membarrier system call requires each architecture + * to have a full memory barrier after updating + * rq->curr, before returning to user-space. + * + * Here are the schemes providing that barrier on the + * various architectures: + * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC. + * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC. + * - finish_lock_switch() for weakly-ordered + * architectures where spin_unlock is a full barrier, + * - switch_to() for arm64 (weakly-ordered, spin_unlock + * is a RELEASE barrier), + */ + ++*switch_count; + + migrate_disable_switch(rq, prev); + psi_sched_switch(prev, next, !task_on_rq_queued(prev)); + + trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state); + + /* Also unlocks the rq: */ + rq = context_switch(rq, prev, next, &rf); + } else { + rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP); + + rq_unpin_lock(rq, &rf); + __balance_callbacks(rq); + raw_spin_rq_unlock_irq(rq); + } +} + +void __noreturn do_task_dead(void) +{ + /* Causes final put_task_struct in finish_task_switch(): */ + set_special_state(TASK_DEAD); + + /* Tell freezer to ignore us: */ + current->flags |= PF_NOFREEZE; + + __schedule(SM_NONE); + BUG(); + + /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ + for (;;) + cpu_relax(); +} + +static inline void sched_submit_work(struct task_struct *tsk) +{ + unsigned int task_flags; + + if (task_is_running(tsk)) + return; + + task_flags = tsk->flags; + /* + * If a worker goes to sleep, notify and ask workqueue whether it + * wants to wake up a task to maintain concurrency. + */ + if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) { + if (task_flags & PF_WQ_WORKER) + wq_worker_sleeping(tsk); + else + io_wq_worker_sleeping(tsk); + } + + /* + * spinlock and rwlock must not flush block requests. This will + * deadlock if the callback attempts to acquire a lock which is + * already acquired. + */ + SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); + + /* + * If we are going to sleep and we have plugged IO queued, + * make sure to submit it to avoid deadlocks. + */ + blk_flush_plug(tsk->plug, true); +} + +static void sched_update_worker(struct task_struct *tsk) +{ + if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) { + if (tsk->flags & PF_WQ_WORKER) + wq_worker_running(tsk); + else + io_wq_worker_running(tsk); + } +} + +asmlinkage __visible void __sched schedule(void) +{ + struct task_struct *tsk = current; + + sched_submit_work(tsk); + do { + preempt_disable(); + __schedule(SM_NONE); + sched_preempt_enable_no_resched(); + } while (need_resched()); + sched_update_worker(tsk); +} +EXPORT_SYMBOL(schedule); + +/* + * synchronize_rcu_tasks() makes sure that no task is stuck in preempted + * state (have scheduled out non-voluntarily) by making sure that all + * tasks have either left the run queue or have gone into user space. + * As idle tasks do not do either, they must not ever be preempted + * (schedule out non-voluntarily). + * + * schedule_idle() is similar to schedule_preempt_disable() except that it + * never enables preemption because it does not call sched_submit_work(). + */ +void __sched schedule_idle(void) +{ + /* + * As this skips calling sched_submit_work(), which the idle task does + * regardless because that function is a nop when the task is in a + * TASK_RUNNING state, make sure this isn't used someplace that the + * current task can be in any other state. Note, idle is always in the + * TASK_RUNNING state. + */ + WARN_ON_ONCE(current->__state); + do { + __schedule(SM_NONE); + } while (need_resched()); +} + +#if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) +asmlinkage __visible void __sched schedule_user(void) +{ + /* + * If we come here after a random call to set_need_resched(), + * or we have been woken up remotely but the IPI has not yet arrived, + * we haven't yet exited the RCU idle mode. Do it here manually until + * we find a better solution. + * + * NB: There are buggy callers of this function. Ideally we + * should warn if prev_state != CONTEXT_USER, but that will trigger + * too frequently to make sense yet. + */ + enum ctx_state prev_state = exception_enter(); + schedule(); + exception_exit(prev_state); +} +#endif + +/** + * schedule_preempt_disabled - called with preemption disabled + * + * Returns with preemption disabled. Note: preempt_count must be 1 + */ +void __sched schedule_preempt_disabled(void) +{ + sched_preempt_enable_no_resched(); + schedule(); + preempt_disable(); +} + +#ifdef CONFIG_PREEMPT_RT +void __sched notrace schedule_rtlock(void) +{ + do { + preempt_disable(); + __schedule(SM_RTLOCK_WAIT); + sched_preempt_enable_no_resched(); + } while (need_resched()); +} +NOKPROBE_SYMBOL(schedule_rtlock); +#endif + +static void __sched notrace preempt_schedule_common(void) +{ + do { + /* + * Because the function tracer can trace preempt_count_sub() + * and it also uses preempt_enable/disable_notrace(), if + * NEED_RESCHED is set, the preempt_enable_notrace() called + * by the function tracer will call this function again and + * cause infinite recursion. + * + * Preemption must be disabled here before the function + * tracer can trace. Break up preempt_disable() into two + * calls. One to disable preemption without fear of being + * traced. The other to still record the preemption latency, + * which can also be traced by the function tracer. + */ + preempt_disable_notrace(); + preempt_latency_start(1); + __schedule(SM_PREEMPT); + preempt_latency_stop(1); + preempt_enable_no_resched_notrace(); + + /* + * Check again in case we missed a preemption opportunity + * between schedule and now. + */ + } while (need_resched()); +} + +#ifdef CONFIG_PREEMPTION +/* + * This is the entry point to schedule() from in-kernel preemption + * off of preempt_enable. + */ +asmlinkage __visible void __sched notrace preempt_schedule(void) +{ + /* + * If there is a non-zero preempt_count or interrupts are disabled, + * we do not want to preempt the current task. Just return.. + */ + if (likely(!preemptible())) + return; + preempt_schedule_common(); +} +NOKPROBE_SYMBOL(preempt_schedule); +EXPORT_SYMBOL(preempt_schedule); + +#ifdef CONFIG_PREEMPT_DYNAMIC +#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) +#ifndef preempt_schedule_dynamic_enabled +#define preempt_schedule_dynamic_enabled preempt_schedule +#define preempt_schedule_dynamic_disabled NULL +#endif +DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); +EXPORT_STATIC_CALL_TRAMP(preempt_schedule); +#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) +static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); +void __sched notrace dynamic_preempt_schedule(void) +{ + if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) + return; + preempt_schedule(); +} +NOKPROBE_SYMBOL(dynamic_preempt_schedule); +EXPORT_SYMBOL(dynamic_preempt_schedule); +#endif +#endif + +/** + * preempt_schedule_notrace - preempt_schedule called by tracing + * + * The tracing infrastructure uses preempt_enable_notrace to prevent + * recursion and tracing preempt enabling caused by the tracing + * infrastructure itself. But as tracing can happen in areas coming + * from userspace or just about to enter userspace, a preempt enable + * can occur before user_exit() is called. This will cause the scheduler + * to be called when the system is still in usermode. + * + * To prevent this, the preempt_enable_notrace will use this function + * instead of preempt_schedule() to exit user context if needed before + * calling the scheduler. + */ +asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) +{ + enum ctx_state prev_ctx; + + if (likely(!preemptible())) + return; + + do { + /* + * Because the function tracer can trace preempt_count_sub() + * and it also uses preempt_enable/disable_notrace(), if + * NEED_RESCHED is set, the preempt_enable_notrace() called + * by the function tracer will call this function again and + * cause infinite recursion. + * + * Preemption must be disabled here before the function + * tracer can trace. Break up preempt_disable() into two + * calls. One to disable preemption without fear of being + * traced. The other to still record the preemption latency, + * which can also be traced by the function tracer. + */ + preempt_disable_notrace(); + preempt_latency_start(1); + /* + * Needs preempt disabled in case user_exit() is traced + * and the tracer calls preempt_enable_notrace() causing + * an infinite recursion. + */ + prev_ctx = exception_enter(); + __schedule(SM_PREEMPT); + exception_exit(prev_ctx); + + preempt_latency_stop(1); + preempt_enable_no_resched_notrace(); + } while (need_resched()); +} +EXPORT_SYMBOL_GPL(preempt_schedule_notrace); + +#ifdef CONFIG_PREEMPT_DYNAMIC +#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) +#ifndef preempt_schedule_notrace_dynamic_enabled +#define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace +#define preempt_schedule_notrace_dynamic_disabled NULL +#endif +DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); +EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); +#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) +static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); +void __sched notrace dynamic_preempt_schedule_notrace(void) +{ + if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) + return; + preempt_schedule_notrace(); +} +NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); +EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); +#endif +#endif + +#endif /* CONFIG_PREEMPTION */ + +/* + * This is the entry point to schedule() from kernel preemption + * off of irq context. + * Note, that this is called and return with irqs disabled. This will + * protect us against recursive calling from irq. + */ +asmlinkage __visible void __sched preempt_schedule_irq(void) +{ + enum ctx_state prev_state; + + /* Catch callers which need to be fixed */ + BUG_ON(preempt_count() || !irqs_disabled()); + + prev_state = exception_enter(); + + do { + preempt_disable(); + local_irq_enable(); + __schedule(SM_PREEMPT); + local_irq_disable(); + sched_preempt_enable_no_resched(); + } while (need_resched()); + + exception_exit(prev_state); +} + +int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, + void *key) +{ + WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC); + return try_to_wake_up(curr->private, mode, wake_flags); +} +EXPORT_SYMBOL(default_wake_function); + +static void __setscheduler_prio(struct task_struct *p, int prio) +{ + if (dl_prio(prio)) + p->sched_class = &dl_sched_class; + else if (rt_prio(prio)) + p->sched_class = &rt_sched_class; + else + p->sched_class = &fair_sched_class; + + p->prio = prio; +} + +#ifdef CONFIG_RT_MUTEXES + +static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) +{ + if (pi_task) + prio = min(prio, pi_task->prio); + + return prio; +} + +static inline int rt_effective_prio(struct task_struct *p, int prio) +{ + struct task_struct *pi_task = rt_mutex_get_top_task(p); + + return __rt_effective_prio(pi_task, prio); +} + +/* + * rt_mutex_setprio - set the current priority of a task + * @p: task to boost + * @pi_task: donor task + * + * This function changes the 'effective' priority of a task. It does + * not touch ->normal_prio like __setscheduler(). + * + * Used by the rt_mutex code to implement priority inheritance + * logic. Call site only calls if the priority of the task changed. + */ +void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) +{ + int prio, oldprio, queued, running, queue_flag = + DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; + const struct sched_class *prev_class; + struct rq_flags rf; + struct rq *rq; + + /* XXX used to be waiter->prio, not waiter->task->prio */ + prio = __rt_effective_prio(pi_task, p->normal_prio); + + /* + * If nothing changed; bail early. + */ + if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) + return; + + rq = __task_rq_lock(p, &rf); + update_rq_clock(rq); + /* + * Set under pi_lock && rq->lock, such that the value can be used under + * either lock. + * + * Note that there is loads of tricky to make this pointer cache work + * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to + * ensure a task is de-boosted (pi_task is set to NULL) before the + * task is allowed to run again (and can exit). This ensures the pointer + * points to a blocked task -- which guarantees the task is present. + */ + p->pi_top_task = pi_task; + + /* + * For FIFO/RR we only need to set prio, if that matches we're done. + */ + if (prio == p->prio && !dl_prio(prio)) + goto out_unlock; + + /* + * Idle task boosting is a nono in general. There is one + * exception, when PREEMPT_RT and NOHZ is active: + * + * The idle task calls get_next_timer_interrupt() and holds + * the timer wheel base->lock on the CPU and another CPU wants + * to access the timer (probably to cancel it). We can safely + * ignore the boosting request, as the idle CPU runs this code + * with interrupts disabled and will complete the lock + * protected section without being interrupted. So there is no + * real need to boost. + */ + if (unlikely(p == rq->idle)) { + WARN_ON(p != rq->curr); + WARN_ON(p->pi_blocked_on); + goto out_unlock; + } + + trace_sched_pi_setprio(p, pi_task); + oldprio = p->prio; + + if (oldprio == prio) + queue_flag &= ~DEQUEUE_MOVE; + + prev_class = p->sched_class; + queued = task_on_rq_queued(p); + running = task_current(rq, p); + if (queued) + dequeue_task(rq, p, queue_flag); + if (running) + put_prev_task(rq, p); + + /* + * Boosting condition are: + * 1. -rt task is running and holds mutex A + * --> -dl task blocks on mutex A + * + * 2. -dl task is running and holds mutex A + * --> -dl task blocks on mutex A and could preempt the + * running task + */ + if (dl_prio(prio)) { + if (!dl_prio(p->normal_prio) || + (pi_task && dl_prio(pi_task->prio) && + dl_entity_preempt(&pi_task->dl, &p->dl))) { + p->dl.pi_se = pi_task->dl.pi_se; + queue_flag |= ENQUEUE_REPLENISH; + } else { + p->dl.pi_se = &p->dl; + } + } else if (rt_prio(prio)) { + if (dl_prio(oldprio)) + p->dl.pi_se = &p->dl; + if (oldprio < prio) + queue_flag |= ENQUEUE_HEAD; + } else { + if (dl_prio(oldprio)) + p->dl.pi_se = &p->dl; + if (rt_prio(oldprio)) + p->rt.timeout = 0; + } + + __setscheduler_prio(p, prio); + + if (queued) + enqueue_task(rq, p, queue_flag); + if (running) + set_next_task(rq, p); + + check_class_changed(rq, p, prev_class, oldprio); +out_unlock: + /* Avoid rq from going away on us: */ + preempt_disable(); + + rq_unpin_lock(rq, &rf); + __balance_callbacks(rq); + raw_spin_rq_unlock(rq); + + preempt_enable(); +} +#else +static inline int rt_effective_prio(struct task_struct *p, int prio) +{ + return prio; +} +#endif + +void set_user_nice(struct task_struct *p, long nice) +{ + bool queued, running; + int old_prio; + struct rq_flags rf; + struct rq *rq; + + if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) + return; + /* + * We have to be careful, if called from sys_setpriority(), + * the task might be in the middle of scheduling on another CPU. + */ + rq = task_rq_lock(p, &rf); + update_rq_clock(rq); + + /* + * The RT priorities are set via sched_setscheduler(), but we still + * allow the 'normal' nice value to be set - but as expected + * it won't have any effect on scheduling until the task is + * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: + */ + if (task_has_dl_policy(p) || task_has_rt_policy(p)) { + p->static_prio = NICE_TO_PRIO(nice); + goto out_unlock; + } + queued = task_on_rq_queued(p); + running = task_current(rq, p); + if (queued) + dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); + if (running) + put_prev_task(rq, p); + + p->static_prio = NICE_TO_PRIO(nice); + set_load_weight(p, true); + old_prio = p->prio; + p->prio = effective_prio(p); + + if (queued) + enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); + if (running) + set_next_task(rq, p); + + /* + * If the task increased its priority or is running and + * lowered its priority, then reschedule its CPU: + */ + p->sched_class->prio_changed(rq, p, old_prio); + +out_unlock: + task_rq_unlock(rq, p, &rf); +} +EXPORT_SYMBOL(set_user_nice); + +/* + * is_nice_reduction - check if nice value is an actual reduction + * + * Similar to can_nice() but does not perform a capability check. + * + * @p: task + * @nice: nice value + */ +static bool is_nice_reduction(const struct task_struct *p, const int nice) +{ + /* Convert nice value [19,-20] to rlimit style value [1,40]: */ + int nice_rlim = nice_to_rlimit(nice); + + return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); +} + +/* + * can_nice - check if a task can reduce its nice value + * @p: task + * @nice: nice value + */ +int can_nice(const struct task_struct *p, const int nice) +{ + return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); +} + +#ifdef __ARCH_WANT_SYS_NICE + +/* + * sys_nice - change the priority of the current process. + * @increment: priority increment + * + * sys_setpriority is a more generic, but much slower function that + * does similar things. + */ +SYSCALL_DEFINE1(nice, int, increment) +{ + long nice, retval; + + /* + * Setpriority might change our priority at the same moment. + * We don't have to worry. Conceptually one call occurs first + * and we have a single winner. + */ + increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); + nice = task_nice(current) + increment; + + nice = clamp_val(nice, MIN_NICE, MAX_NICE); + if (increment < 0 && !can_nice(current, nice)) + return -EPERM; + + retval = security_task_setnice(current, nice); + if (retval) + return retval; + + set_user_nice(current, nice); + return 0; +} + +#endif + +/** + * task_prio - return the priority value of a given task. + * @p: the task in question. + * + * Return: The priority value as seen by users in /proc. + * + * sched policy return value kernel prio user prio/nice + * + * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] + * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] + * deadline -101 -1 0 + */ +int task_prio(const struct task_struct *p) +{ + return p->prio - MAX_RT_PRIO; +} + +/** + * idle_cpu - is a given CPU idle currently? + * @cpu: the processor in question. + * + * Return: 1 if the CPU is currently idle. 0 otherwise. + */ +int idle_cpu(int cpu) +{ + struct rq *rq = cpu_rq(cpu); + + if (rq->curr != rq->idle) + return 0; + + if (rq->nr_running) + return 0; + +#ifdef CONFIG_SMP + if (rq->ttwu_pending) + return 0; +#endif + + return 1; +} + +/** + * available_idle_cpu - is a given CPU idle for enqueuing work. + * @cpu: the CPU in question. + * + * Return: 1 if the CPU is currently idle. 0 otherwise. + */ +int available_idle_cpu(int cpu) +{ + if (!idle_cpu(cpu)) + return 0; + + if (vcpu_is_preempted(cpu)) + return 0; + + return 1; +} + +/** + * idle_task - return the idle task for a given CPU. + * @cpu: the processor in question. + * + * Return: The idle task for the CPU @cpu. + */ +struct task_struct *idle_task(int cpu) +{ + return cpu_rq(cpu)->idle; +} + +#ifdef CONFIG_SMP +/* + * This function computes an effective utilization for the given CPU, to be + * used for frequency selection given the linear relation: f = u * f_max. + * + * The scheduler tracks the following metrics: + * + * cpu_util_{cfs,rt,dl,irq}() + * cpu_bw_dl() + * + * Where the cfs,rt and dl util numbers are tracked with the same metric and + * synchronized windows and are thus directly comparable. + * + * The cfs,rt,dl utilization are the running times measured with rq->clock_task + * which excludes things like IRQ and steal-time. These latter are then accrued + * in the irq utilization. + * + * The DL bandwidth number otoh is not a measured metric but a value computed + * based on the task model parameters and gives the minimal utilization + * required to meet deadlines. + */ +unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, + enum cpu_util_type type, + struct task_struct *p) +{ + unsigned long dl_util, util, irq, max; + struct rq *rq = cpu_rq(cpu); + + max = arch_scale_cpu_capacity(cpu); + + if (!uclamp_is_used() && + type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) { + return max; + } + + /* + * Early check to see if IRQ/steal time saturates the CPU, can be + * because of inaccuracies in how we track these -- see + * update_irq_load_avg(). + */ + irq = cpu_util_irq(rq); + if (unlikely(irq >= max)) + return max; + + /* + * Because the time spend on RT/DL tasks is visible as 'lost' time to + * CFS tasks and we use the same metric to track the effective + * utilization (PELT windows are synchronized) we can directly add them + * to obtain the CPU's actual utilization. + * + * CFS and RT utilization can be boosted or capped, depending on + * utilization clamp constraints requested by currently RUNNABLE + * tasks. + * When there are no CFS RUNNABLE tasks, clamps are released and + * frequency will be gracefully reduced with the utilization decay. + */ + util = util_cfs + cpu_util_rt(rq); + if (type == FREQUENCY_UTIL) + util = uclamp_rq_util_with(rq, util, p); + + dl_util = cpu_util_dl(rq); + + /* + * For frequency selection we do not make cpu_util_dl() a permanent part + * of this sum because we want to use cpu_bw_dl() later on, but we need + * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such + * that we select f_max when there is no idle time. + * + * NOTE: numerical errors or stop class might cause us to not quite hit + * saturation when we should -- something for later. + */ + if (util + dl_util >= max) + return max; + + /* + * OTOH, for energy computation we need the estimated running time, so + * include util_dl and ignore dl_bw. + */ + if (type == ENERGY_UTIL) + util += dl_util; + + /* + * There is still idle time; further improve the number by using the + * irq metric. Because IRQ/steal time is hidden from the task clock we + * need to scale the task numbers: + * + * max - irq + * U' = irq + --------- * U + * max + */ + util = scale_irq_capacity(util, irq, max); + util += irq; + + /* + * Bandwidth required by DEADLINE must always be granted while, for + * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism + * to gracefully reduce the frequency when no tasks show up for longer + * periods of time. + * + * Ideally we would like to set bw_dl as min/guaranteed freq and util + + * bw_dl as requested freq. However, cpufreq is not yet ready for such + * an interface. So, we only do the latter for now. + */ + if (type == FREQUENCY_UTIL) + util += cpu_bw_dl(rq); + + return min(max, util); +} + +unsigned long sched_cpu_util(int cpu) +{ + return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL); +} +#endif /* CONFIG_SMP */ + +/** + * find_process_by_pid - find a process with a matching PID value. + * @pid: the pid in question. + * + * The task of @pid, if found. %NULL otherwise. + */ +static struct task_struct *find_process_by_pid(pid_t pid) +{ + return pid ? find_task_by_vpid(pid) : current; +} + +/* + * sched_setparam() passes in -1 for its policy, to let the functions + * it calls know not to change it. + */ +#define SETPARAM_POLICY -1 + +static void __setscheduler_params(struct task_struct *p, + const struct sched_attr *attr) +{ + int policy = attr->sched_policy; + + if (policy == SETPARAM_POLICY) + policy = p->policy; + + p->policy = policy; + + if (dl_policy(policy)) + __setparam_dl(p, attr); + else if (fair_policy(policy)) + p->static_prio = NICE_TO_PRIO(attr->sched_nice); + + /* + * __sched_setscheduler() ensures attr->sched_priority == 0 when + * !rt_policy. Always setting this ensures that things like + * getparam()/getattr() don't report silly values for !rt tasks. + */ + p->rt_priority = attr->sched_priority; + p->normal_prio = normal_prio(p); + set_load_weight(p, true); +} + +/* + * Check the target process has a UID that matches the current process's: + */ +static bool check_same_owner(struct task_struct *p) +{ + const struct cred *cred = current_cred(), *pcred; + bool match; + + rcu_read_lock(); + pcred = __task_cred(p); + match = (uid_eq(cred->euid, pcred->euid) || + uid_eq(cred->euid, pcred->uid)); + rcu_read_unlock(); + return match; +} + +/* + * Allow unprivileged RT tasks to decrease priority. + * Only issue a capable test if needed and only once to avoid an audit + * event on permitted non-privileged operations: + */ +static int user_check_sched_setscheduler(struct task_struct *p, + const struct sched_attr *attr, + int policy, int reset_on_fork) +{ + if (fair_policy(policy)) { + if (attr->sched_nice < task_nice(p) && + !is_nice_reduction(p, attr->sched_nice)) + goto req_priv; + } + + if (rt_policy(policy)) { + unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); + + /* Can't set/change the rt policy: */ + if (policy != p->policy && !rlim_rtprio) + goto req_priv; + + /* Can't increase priority: */ + if (attr->sched_priority > p->rt_priority && + attr->sched_priority > rlim_rtprio) + goto req_priv; + } + + /* + * Can't set/change SCHED_DEADLINE policy at all for now + * (safest behavior); in the future we would like to allow + * unprivileged DL tasks to increase their relative deadline + * or reduce their runtime (both ways reducing utilization) + */ + if (dl_policy(policy)) + goto req_priv; + + /* + * Treat SCHED_IDLE as nice 20. Only allow a switch to + * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. + */ + if (task_has_idle_policy(p) && !idle_policy(policy)) { + if (!is_nice_reduction(p, task_nice(p))) + goto req_priv; + } + + /* Can't change other user's priorities: */ + if (!check_same_owner(p)) + goto req_priv; + + /* Normal users shall not reset the sched_reset_on_fork flag: */ + if (p->sched_reset_on_fork && !reset_on_fork) + goto req_priv; + + return 0; + +req_priv: + if (!capable(CAP_SYS_NICE)) + return -EPERM; + + return 0; +} + +static int __sched_setscheduler(struct task_struct *p, + const struct sched_attr *attr, + bool user, bool pi) +{ + int oldpolicy = -1, policy = attr->sched_policy; + int retval, oldprio, newprio, queued, running; + const struct sched_class *prev_class; + struct balance_callback *head; + struct rq_flags rf; + int reset_on_fork; + int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; + struct rq *rq; + bool cpuset_locked = false; + + /* The pi code expects interrupts enabled */ + BUG_ON(pi && in_interrupt()); +recheck: + /* Double check policy once rq lock held: */ + if (policy < 0) { + reset_on_fork = p->sched_reset_on_fork; + policy = oldpolicy = p->policy; + } else { + reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); + + if (!valid_policy(policy)) + return -EINVAL; + } + + if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) + return -EINVAL; + + /* + * Valid priorities for SCHED_FIFO and SCHED_RR are + * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, + * SCHED_BATCH and SCHED_IDLE is 0. + */ + if (attr->sched_priority > MAX_RT_PRIO-1) + return -EINVAL; + if ((dl_policy(policy) && !__checkparam_dl(attr)) || + (rt_policy(policy) != (attr->sched_priority != 0))) + return -EINVAL; + + if (user) { + retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); + if (retval) + return retval; + + if (attr->sched_flags & SCHED_FLAG_SUGOV) + return -EINVAL; + + retval = security_task_setscheduler(p); + if (retval) + return retval; + } + + /* Update task specific "requested" clamps */ + if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { + retval = uclamp_validate(p, attr); + if (retval) + return retval; + } + + /* + * SCHED_DEADLINE bandwidth accounting relies on stable cpusets + * information. + */ + if (dl_policy(policy) || dl_policy(p->policy)) { + cpuset_locked = true; + cpuset_lock(); + } + + /* + * Make sure no PI-waiters arrive (or leave) while we are + * changing the priority of the task: + * + * To be able to change p->policy safely, the appropriate + * runqueue lock must be held. + */ + rq = task_rq_lock(p, &rf); + update_rq_clock(rq); + + /* + * Changing the policy of the stop threads its a very bad idea: + */ + if (p == rq->stop) { + retval = -EINVAL; + goto unlock; + } + + /* + * If not changing anything there's no need to proceed further, + * but store a possible modification of reset_on_fork. + */ + if (unlikely(policy == p->policy)) { + if (fair_policy(policy) && attr->sched_nice != task_nice(p)) + goto change; + if (rt_policy(policy) && attr->sched_priority != p->rt_priority) + goto change; + if (dl_policy(policy) && dl_param_changed(p, attr)) + goto change; + if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) + goto change; + + p->sched_reset_on_fork = reset_on_fork; + retval = 0; + goto unlock; + } +change: + + if (user) { +#ifdef CONFIG_RT_GROUP_SCHED + /* + * Do not allow realtime tasks into groups that have no runtime + * assigned. + */ + if (rt_bandwidth_enabled() && rt_policy(policy) && + task_group(p)->rt_bandwidth.rt_runtime == 0 && + !task_group_is_autogroup(task_group(p))) { + retval = -EPERM; + goto unlock; + } +#endif +#ifdef CONFIG_SMP + if (dl_bandwidth_enabled() && dl_policy(policy) && + !(attr->sched_flags & SCHED_FLAG_SUGOV)) { + cpumask_t *span = rq->rd->span; + + /* + * Don't allow tasks with an affinity mask smaller than + * the entire root_domain to become SCHED_DEADLINE. We + * will also fail if there's no bandwidth available. + */ + if (!cpumask_subset(span, p->cpus_ptr) || + rq->rd->dl_bw.bw == 0) { + retval = -EPERM; + goto unlock; + } + } +#endif + } + + /* Re-check policy now with rq lock held: */ + if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { + policy = oldpolicy = -1; + task_rq_unlock(rq, p, &rf); + if (cpuset_locked) + cpuset_unlock(); + goto recheck; + } + + /* + * If setscheduling to SCHED_DEADLINE (or changing the parameters + * of a SCHED_DEADLINE task) we need to check if enough bandwidth + * is available. + */ + if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { + retval = -EBUSY; + goto unlock; + } + + p->sched_reset_on_fork = reset_on_fork; + oldprio = p->prio; + + newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); + if (pi) { + /* + * Take priority boosted tasks into account. If the new + * effective priority is unchanged, we just store the new + * normal parameters and do not touch the scheduler class and + * the runqueue. This will be done when the task deboost + * itself. + */ + newprio = rt_effective_prio(p, newprio); + if (newprio == oldprio) + queue_flags &= ~DEQUEUE_MOVE; + } + + queued = task_on_rq_queued(p); + running = task_current(rq, p); + if (queued) + dequeue_task(rq, p, queue_flags); + if (running) + put_prev_task(rq, p); + + prev_class = p->sched_class; + + if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { + __setscheduler_params(p, attr); + __setscheduler_prio(p, newprio); + } + __setscheduler_uclamp(p, attr); + + if (queued) { + /* + * We enqueue to tail when the priority of a task is + * increased (user space view). + */ + if (oldprio < p->prio) + queue_flags |= ENQUEUE_HEAD; + + enqueue_task(rq, p, queue_flags); + } + if (running) + set_next_task(rq, p); + + check_class_changed(rq, p, prev_class, oldprio); + + /* Avoid rq from going away on us: */ + preempt_disable(); + head = splice_balance_callbacks(rq); + task_rq_unlock(rq, p, &rf); + + if (pi) { + if (cpuset_locked) + cpuset_unlock(); + rt_mutex_adjust_pi(p); + } + + /* Run balance callbacks after we've adjusted the PI chain: */ + balance_callbacks(rq, head); + preempt_enable(); + + return 0; + +unlock: + task_rq_unlock(rq, p, &rf); + if (cpuset_locked) + cpuset_unlock(); + return retval; +} + +static int _sched_setscheduler(struct task_struct *p, int policy, + const struct sched_param *param, bool check) +{ + struct sched_attr attr = { + .sched_policy = policy, + .sched_priority = param->sched_priority, + .sched_nice = PRIO_TO_NICE(p->static_prio), + }; + + /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ + if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { + attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; + policy &= ~SCHED_RESET_ON_FORK; + attr.sched_policy = policy; + } + + return __sched_setscheduler(p, &attr, check, true); +} +/** + * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. + * @p: the task in question. + * @policy: new policy. + * @param: structure containing the new RT priority. + * + * Use sched_set_fifo(), read its comment. + * + * Return: 0 on success. An error code otherwise. + * + * NOTE that the task may be already dead. + */ +int sched_setscheduler(struct task_struct *p, int policy, + const struct sched_param *param) +{ + return _sched_setscheduler(p, policy, param, true); +} + +int sched_setattr(struct task_struct *p, const struct sched_attr *attr) +{ + return __sched_setscheduler(p, attr, true, true); +} + +int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) +{ + return __sched_setscheduler(p, attr, false, true); +} +EXPORT_SYMBOL_GPL(sched_setattr_nocheck); + +/** + * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. + * @p: the task in question. + * @policy: new policy. + * @param: structure containing the new RT priority. + * + * Just like sched_setscheduler, only don't bother checking if the + * current context has permission. For example, this is needed in + * stop_machine(): we create temporary high priority worker threads, + * but our caller might not have that capability. + * + * Return: 0 on success. An error code otherwise. + */ +int sched_setscheduler_nocheck(struct task_struct *p, int policy, + const struct sched_param *param) +{ + return _sched_setscheduler(p, policy, param, false); +} + +/* + * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally + * incapable of resource management, which is the one thing an OS really should + * be doing. + * + * This is of course the reason it is limited to privileged users only. + * + * Worse still; it is fundamentally impossible to compose static priority + * workloads. You cannot take two correctly working static prio workloads + * and smash them together and still expect them to work. + * + * For this reason 'all' FIFO tasks the kernel creates are basically at: + * + * MAX_RT_PRIO / 2 + * + * The administrator _MUST_ configure the system, the kernel simply doesn't + * know enough information to make a sensible choice. + */ +void sched_set_fifo(struct task_struct *p) +{ + struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; + WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); +} +EXPORT_SYMBOL_GPL(sched_set_fifo); + +/* + * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. + */ +void sched_set_fifo_low(struct task_struct *p) +{ + struct sched_param sp = { .sched_priority = 1 }; + WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); +} +EXPORT_SYMBOL_GPL(sched_set_fifo_low); + +void sched_set_normal(struct task_struct *p, int nice) +{ + struct sched_attr attr = { + .sched_policy = SCHED_NORMAL, + .sched_nice = nice, + }; + WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); +} +EXPORT_SYMBOL_GPL(sched_set_normal); + +static int +do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) +{ + struct sched_param lparam; + struct task_struct *p; + int retval; + + if (!param || pid < 0) + return -EINVAL; + if (copy_from_user(&lparam, param, sizeof(struct sched_param))) + return -EFAULT; + + rcu_read_lock(); + retval = -ESRCH; + p = find_process_by_pid(pid); + if (likely(p)) + get_task_struct(p); + rcu_read_unlock(); + + if (likely(p)) { + retval = sched_setscheduler(p, policy, &lparam); + put_task_struct(p); + } + + return retval; +} + +/* + * Mimics kernel/events/core.c perf_copy_attr(). + */ +static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) +{ + u32 size; + int ret; + + /* Zero the full structure, so that a short copy will be nice: */ + memset(attr, 0, sizeof(*attr)); + + ret = get_user(size, &uattr->size); + if (ret) + return ret; + + /* ABI compatibility quirk: */ + if (!size) + size = SCHED_ATTR_SIZE_VER0; + if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) + goto err_size; + + ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); + if (ret) { + if (ret == -E2BIG) + goto err_size; + return ret; + } + + if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && + size < SCHED_ATTR_SIZE_VER1) + return -EINVAL; + + /* + * XXX: Do we want to be lenient like existing syscalls; or do we want + * to be strict and return an error on out-of-bounds values? + */ + attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); + + return 0; + +err_size: + put_user(sizeof(*attr), &uattr->size); + return -E2BIG; +} + +static void get_params(struct task_struct *p, struct sched_attr *attr) +{ + if (task_has_dl_policy(p)) + __getparam_dl(p, attr); + else if (task_has_rt_policy(p)) + attr->sched_priority = p->rt_priority; + else + attr->sched_nice = task_nice(p); +} + +/** + * sys_sched_setscheduler - set/change the scheduler policy and RT priority + * @pid: the pid in question. + * @policy: new policy. + * @param: structure containing the new RT priority. + * + * Return: 0 on success. An error code otherwise. + */ +SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) +{ + if (policy < 0) + return -EINVAL; + + return do_sched_setscheduler(pid, policy, param); +} + +/** + * sys_sched_setparam - set/change the RT priority of a thread + * @pid: the pid in question. + * @param: structure containing the new RT priority. + * + * Return: 0 on success. An error code otherwise. + */ +SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) +{ + return do_sched_setscheduler(pid, SETPARAM_POLICY, param); +} + +/** + * sys_sched_setattr - same as above, but with extended sched_attr + * @pid: the pid in question. + * @uattr: structure containing the extended parameters. + * @flags: for future extension. + */ +SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, + unsigned int, flags) +{ + struct sched_attr attr; + struct task_struct *p; + int retval; + + if (!uattr || pid < 0 || flags) + return -EINVAL; + + retval = sched_copy_attr(uattr, &attr); + if (retval) + return retval; + + if ((int)attr.sched_policy < 0) + return -EINVAL; + if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) + attr.sched_policy = SETPARAM_POLICY; + + rcu_read_lock(); + retval = -ESRCH; + p = find_process_by_pid(pid); + if (likely(p)) + get_task_struct(p); + rcu_read_unlock(); + + if (likely(p)) { + if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) + get_params(p, &attr); + retval = sched_setattr(p, &attr); + put_task_struct(p); + } + + return retval; +} + +/** + * sys_sched_getscheduler - get the policy (scheduling class) of a thread + * @pid: the pid in question. + * + * Return: On success, the policy of the thread. Otherwise, a negative error + * code. + */ +SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) +{ + struct task_struct *p; + int retval; + + if (pid < 0) + return -EINVAL; + + retval = -ESRCH; + rcu_read_lock(); + p = find_process_by_pid(pid); + if (p) { + retval = security_task_getscheduler(p); + if (!retval) + retval = p->policy + | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); + } + rcu_read_unlock(); + return retval; +} + +/** + * sys_sched_getparam - get the RT priority of a thread + * @pid: the pid in question. + * @param: structure containing the RT priority. + * + * Return: On success, 0 and the RT priority is in @param. Otherwise, an error + * code. + */ +SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) +{ + struct sched_param lp = { .sched_priority = 0 }; + struct task_struct *p; + int retval; + + if (!param || pid < 0) + return -EINVAL; + + rcu_read_lock(); + p = find_process_by_pid(pid); + retval = -ESRCH; + if (!p) + goto out_unlock; + + retval = security_task_getscheduler(p); + if (retval) + goto out_unlock; + + if (task_has_rt_policy(p)) + lp.sched_priority = p->rt_priority; + rcu_read_unlock(); + + /* + * This one might sleep, we cannot do it with a spinlock held ... + */ + retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; + + return retval; + +out_unlock: + rcu_read_unlock(); + return retval; +} + +/* + * Copy the kernel size attribute structure (which might be larger + * than what user-space knows about) to user-space. + * + * Note that all cases are valid: user-space buffer can be larger or + * smaller than the kernel-space buffer. The usual case is that both + * have the same size. + */ +static int +sched_attr_copy_to_user(struct sched_attr __user *uattr, + struct sched_attr *kattr, + unsigned int usize) +{ + unsigned int ksize = sizeof(*kattr); + + if (!access_ok(uattr, usize)) + return -EFAULT; + + /* + * sched_getattr() ABI forwards and backwards compatibility: + * + * If usize == ksize then we just copy everything to user-space and all is good. + * + * If usize < ksize then we only copy as much as user-space has space for, + * this keeps ABI compatibility as well. We skip the rest. + * + * If usize > ksize then user-space is using a newer version of the ABI, + * which part the kernel doesn't know about. Just ignore it - tooling can + * detect the kernel's knowledge of attributes from the attr->size value + * which is set to ksize in this case. + */ + kattr->size = min(usize, ksize); + + if (copy_to_user(uattr, kattr, kattr->size)) + return -EFAULT; + + return 0; +} + +/** + * sys_sched_getattr - similar to sched_getparam, but with sched_attr + * @pid: the pid in question. + * @uattr: structure containing the extended parameters. + * @usize: sizeof(attr) for fwd/bwd comp. + * @flags: for future extension. + */ +SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, + unsigned int, usize, unsigned int, flags) +{ + struct sched_attr kattr = { }; + struct task_struct *p; + int retval; + + if (!uattr || pid < 0 || usize > PAGE_SIZE || + usize < SCHED_ATTR_SIZE_VER0 || flags) + return -EINVAL; + + rcu_read_lock(); + p = find_process_by_pid(pid); + retval = -ESRCH; + if (!p) + goto out_unlock; + + retval = security_task_getscheduler(p); + if (retval) + goto out_unlock; + + kattr.sched_policy = p->policy; + if (p->sched_reset_on_fork) + kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; + get_params(p, &kattr); + kattr.sched_flags &= SCHED_FLAG_ALL; + +#ifdef CONFIG_UCLAMP_TASK + /* + * This could race with another potential updater, but this is fine + * because it'll correctly read the old or the new value. We don't need + * to guarantee who wins the race as long as it doesn't return garbage. + */ + kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; + kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; +#endif + + rcu_read_unlock(); + + return sched_attr_copy_to_user(uattr, &kattr, usize); + +out_unlock: + rcu_read_unlock(); + return retval; +} + +#ifdef CONFIG_SMP +int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) +{ + int ret = 0; + + /* + * If the task isn't a deadline task or admission control is + * disabled then we don't care about affinity changes. + */ + if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) + return 0; + + /* + * Since bandwidth control happens on root_domain basis, + * if admission test is enabled, we only admit -deadline + * tasks allowed to run on all the CPUs in the task's + * root_domain. + */ + rcu_read_lock(); + if (!cpumask_subset(task_rq(p)->rd->span, mask)) + ret = -EBUSY; + rcu_read_unlock(); + return ret; +} +#endif + +static int +__sched_setaffinity(struct task_struct *p, const struct cpumask *mask) +{ + int retval; + cpumask_var_t cpus_allowed, new_mask; + + if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) + return -ENOMEM; + + if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { + retval = -ENOMEM; + goto out_free_cpus_allowed; + } + + cpuset_cpus_allowed(p, cpus_allowed); + cpumask_and(new_mask, mask, cpus_allowed); + + retval = dl_task_check_affinity(p, new_mask); + if (retval) + goto out_free_new_mask; +again: + retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER); + if (retval) + goto out_free_new_mask; + + cpuset_cpus_allowed(p, cpus_allowed); + if (!cpumask_subset(new_mask, cpus_allowed)) { + /* + * We must have raced with a concurrent cpuset update. + * Just reset the cpumask to the cpuset's cpus_allowed. + */ + cpumask_copy(new_mask, cpus_allowed); + goto again; + } + +out_free_new_mask: + free_cpumask_var(new_mask); +out_free_cpus_allowed: + free_cpumask_var(cpus_allowed); + return retval; +} + +long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) +{ + struct task_struct *p; + int retval; + + rcu_read_lock(); + + p = find_process_by_pid(pid); + if (!p) { + rcu_read_unlock(); + return -ESRCH; + } + + /* Prevent p going away */ + get_task_struct(p); + rcu_read_unlock(); + + if (p->flags & PF_NO_SETAFFINITY) { + retval = -EINVAL; + goto out_put_task; + } + + if (!check_same_owner(p)) { + rcu_read_lock(); + if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { + rcu_read_unlock(); + retval = -EPERM; + goto out_put_task; + } + rcu_read_unlock(); + } + + retval = security_task_setscheduler(p); + if (retval) + goto out_put_task; + + retval = __sched_setaffinity(p, in_mask); +out_put_task: + put_task_struct(p); + return retval; +} + +static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, + struct cpumask *new_mask) +{ + if (len < cpumask_size()) + cpumask_clear(new_mask); + else if (len > cpumask_size()) + len = cpumask_size(); + + return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; +} + +/** + * sys_sched_setaffinity - set the CPU affinity of a process + * @pid: pid of the process + * @len: length in bytes of the bitmask pointed to by user_mask_ptr + * @user_mask_ptr: user-space pointer to the new CPU mask + * + * Return: 0 on success. An error code otherwise. + */ +SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, + unsigned long __user *, user_mask_ptr) +{ + cpumask_var_t new_mask; + int retval; + + if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) + return -ENOMEM; + + retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); + if (retval == 0) + retval = sched_setaffinity(pid, new_mask); + free_cpumask_var(new_mask); + return retval; +} + +long sched_getaffinity(pid_t pid, struct cpumask *mask) +{ + struct task_struct *p; + unsigned long flags; + int retval; + + rcu_read_lock(); + + retval = -ESRCH; + p = find_process_by_pid(pid); + if (!p) + goto out_unlock; + + retval = security_task_getscheduler(p); + if (retval) + goto out_unlock; + + raw_spin_lock_irqsave(&p->pi_lock, flags); + cpumask_and(mask, &p->cpus_mask, cpu_active_mask); + raw_spin_unlock_irqrestore(&p->pi_lock, flags); + +out_unlock: + rcu_read_unlock(); + + return retval; +} + +/** + * sys_sched_getaffinity - get the CPU affinity of a process + * @pid: pid of the process + * @len: length in bytes of the bitmask pointed to by user_mask_ptr + * @user_mask_ptr: user-space pointer to hold the current CPU mask + * + * Return: size of CPU mask copied to user_mask_ptr on success. An + * error code otherwise. + */ +SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, + unsigned long __user *, user_mask_ptr) +{ + int ret; + cpumask_var_t mask; + + if ((len * BITS_PER_BYTE) < nr_cpu_ids) + return -EINVAL; + if (len & (sizeof(unsigned long)-1)) + return -EINVAL; + + if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) + return -ENOMEM; + + ret = sched_getaffinity(pid, mask); + if (ret == 0) { + unsigned int retlen = min(len, cpumask_size()); + + if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen)) + ret = -EFAULT; + else + ret = retlen; + } + free_cpumask_var(mask); + + return ret; +} + +static void do_sched_yield(void) +{ + struct rq_flags rf; + struct rq *rq; + + rq = this_rq_lock_irq(&rf); + + schedstat_inc(rq->yld_count); + current->sched_class->yield_task(rq); + + preempt_disable(); + rq_unlock_irq(rq, &rf); + sched_preempt_enable_no_resched(); + + schedule(); +} + +/** + * sys_sched_yield - yield the current processor to other threads. + * + * This function yields the current CPU to other tasks. If there are no + * other threads running on this CPU then this function will return. + * + * Return: 0. + */ +SYSCALL_DEFINE0(sched_yield) +{ + do_sched_yield(); + return 0; +} + +#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) +int __sched __cond_resched(void) +{ + if (should_resched(0)) { + preempt_schedule_common(); + return 1; + } + /* + * In preemptible kernels, ->rcu_read_lock_nesting tells the tick + * whether the current CPU is in an RCU read-side critical section, + * so the tick can report quiescent states even for CPUs looping + * in kernel context. In contrast, in non-preemptible kernels, + * RCU readers leave no in-memory hints, which means that CPU-bound + * processes executing in kernel context might never report an + * RCU quiescent state. Therefore, the following code causes + * cond_resched() to report a quiescent state, but only when RCU + * is in urgent need of one. + */ +#ifndef CONFIG_PREEMPT_RCU + rcu_all_qs(); +#endif + return 0; +} +EXPORT_SYMBOL(__cond_resched); +#endif + +#ifdef CONFIG_PREEMPT_DYNAMIC +#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) +#define cond_resched_dynamic_enabled __cond_resched +#define cond_resched_dynamic_disabled ((void *)&__static_call_return0) +DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); +EXPORT_STATIC_CALL_TRAMP(cond_resched); + +#define might_resched_dynamic_enabled __cond_resched +#define might_resched_dynamic_disabled ((void *)&__static_call_return0) +DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); +EXPORT_STATIC_CALL_TRAMP(might_resched); +#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) +static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); +int __sched dynamic_cond_resched(void) +{ + if (!static_branch_unlikely(&sk_dynamic_cond_resched)) + return 0; + return __cond_resched(); +} +EXPORT_SYMBOL(dynamic_cond_resched); + +static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); +int __sched dynamic_might_resched(void) +{ + if (!static_branch_unlikely(&sk_dynamic_might_resched)) + return 0; + return __cond_resched(); +} +EXPORT_SYMBOL(dynamic_might_resched); +#endif +#endif + +/* + * __cond_resched_lock() - if a reschedule is pending, drop the given lock, + * call schedule, and on return reacquire the lock. + * + * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level + * operations here to prevent schedule() from being called twice (once via + * spin_unlock(), once by hand). + */ +int __cond_resched_lock(spinlock_t *lock) +{ + int resched = should_resched(PREEMPT_LOCK_OFFSET); + int ret = 0; + + lockdep_assert_held(lock); + + if (spin_needbreak(lock) || resched) { + spin_unlock(lock); + if (!_cond_resched()) + cpu_relax(); + ret = 1; + spin_lock(lock); + } + return ret; +} +EXPORT_SYMBOL(__cond_resched_lock); + +int __cond_resched_rwlock_read(rwlock_t *lock) +{ + int resched = should_resched(PREEMPT_LOCK_OFFSET); + int ret = 0; + + lockdep_assert_held_read(lock); + + if (rwlock_needbreak(lock) || resched) { + read_unlock(lock); + if (!_cond_resched()) + cpu_relax(); + ret = 1; + read_lock(lock); + } + return ret; +} +EXPORT_SYMBOL(__cond_resched_rwlock_read); + +int __cond_resched_rwlock_write(rwlock_t *lock) +{ + int resched = should_resched(PREEMPT_LOCK_OFFSET); + int ret = 0; + + lockdep_assert_held_write(lock); + + if (rwlock_needbreak(lock) || resched) { + write_unlock(lock); + if (!_cond_resched()) + cpu_relax(); + ret = 1; + write_lock(lock); + } + return ret; +} +EXPORT_SYMBOL(__cond_resched_rwlock_write); + +#ifdef CONFIG_PREEMPT_DYNAMIC + +#ifdef CONFIG_GENERIC_ENTRY +#include <linux/entry-common.h> +#endif + +/* + * SC:cond_resched + * SC:might_resched + * SC:preempt_schedule + * SC:preempt_schedule_notrace + * SC:irqentry_exit_cond_resched + * + * + * NONE: + * cond_resched <- __cond_resched + * might_resched <- RET0 + * preempt_schedule <- NOP + * preempt_schedule_notrace <- NOP + * irqentry_exit_cond_resched <- NOP + * + * VOLUNTARY: + * cond_resched <- __cond_resched + * might_resched <- __cond_resched + * preempt_schedule <- NOP + * preempt_schedule_notrace <- NOP + * irqentry_exit_cond_resched <- NOP + * + * FULL: + * cond_resched <- RET0 + * might_resched <- RET0 + * preempt_schedule <- preempt_schedule + * preempt_schedule_notrace <- preempt_schedule_notrace + * irqentry_exit_cond_resched <- irqentry_exit_cond_resched + */ + +enum { + preempt_dynamic_undefined = -1, + preempt_dynamic_none, + preempt_dynamic_voluntary, + preempt_dynamic_full, +}; + +int preempt_dynamic_mode = preempt_dynamic_undefined; + +int sched_dynamic_mode(const char *str) +{ + if (!strcmp(str, "none")) + return preempt_dynamic_none; + + if (!strcmp(str, "voluntary")) + return preempt_dynamic_voluntary; + + if (!strcmp(str, "full")) + return preempt_dynamic_full; + + return -EINVAL; +} + +#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) +#define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) +#define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) +#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) +#define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key) +#define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key) +#else +#error "Unsupported PREEMPT_DYNAMIC mechanism" +#endif + +void sched_dynamic_update(int mode) +{ + /* + * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in + * the ZERO state, which is invalid. + */ + preempt_dynamic_enable(cond_resched); + preempt_dynamic_enable(might_resched); + preempt_dynamic_enable(preempt_schedule); + preempt_dynamic_enable(preempt_schedule_notrace); + preempt_dynamic_enable(irqentry_exit_cond_resched); + + switch (mode) { + case preempt_dynamic_none: + preempt_dynamic_enable(cond_resched); + preempt_dynamic_disable(might_resched); + preempt_dynamic_disable(preempt_schedule); + preempt_dynamic_disable(preempt_schedule_notrace); + preempt_dynamic_disable(irqentry_exit_cond_resched); + pr_info("Dynamic Preempt: none\n"); + break; + + case preempt_dynamic_voluntary: + preempt_dynamic_enable(cond_resched); + preempt_dynamic_enable(might_resched); + preempt_dynamic_disable(preempt_schedule); + preempt_dynamic_disable(preempt_schedule_notrace); + preempt_dynamic_disable(irqentry_exit_cond_resched); + pr_info("Dynamic Preempt: voluntary\n"); + break; + + case preempt_dynamic_full: + preempt_dynamic_disable(cond_resched); + preempt_dynamic_disable(might_resched); + preempt_dynamic_enable(preempt_schedule); + preempt_dynamic_enable(preempt_schedule_notrace); + preempt_dynamic_enable(irqentry_exit_cond_resched); + pr_info("Dynamic Preempt: full\n"); + break; + } + + preempt_dynamic_mode = mode; +} + +static int __init setup_preempt_mode(char *str) +{ + int mode = sched_dynamic_mode(str); + if (mode < 0) { + pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); + return 0; + } + + sched_dynamic_update(mode); + return 1; +} +__setup("preempt=", setup_preempt_mode); + +static void __init preempt_dynamic_init(void) +{ + if (preempt_dynamic_mode == preempt_dynamic_undefined) { + if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { + sched_dynamic_update(preempt_dynamic_none); + } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { + sched_dynamic_update(preempt_dynamic_voluntary); + } else { + /* Default static call setting, nothing to do */ + WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); + preempt_dynamic_mode = preempt_dynamic_full; + pr_info("Dynamic Preempt: full\n"); + } + } +} + +#define PREEMPT_MODEL_ACCESSOR(mode) \ + bool preempt_model_##mode(void) \ + { \ + WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ + return preempt_dynamic_mode == preempt_dynamic_##mode; \ + } \ + EXPORT_SYMBOL_GPL(preempt_model_##mode) + +PREEMPT_MODEL_ACCESSOR(none); +PREEMPT_MODEL_ACCESSOR(voluntary); +PREEMPT_MODEL_ACCESSOR(full); + +#else /* !CONFIG_PREEMPT_DYNAMIC */ + +static inline void preempt_dynamic_init(void) { } + +#endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ + +/** + * yield - yield the current processor to other threads. + * + * Do not ever use this function, there's a 99% chance you're doing it wrong. + * + * The scheduler is at all times free to pick the calling task as the most + * eligible task to run, if removing the yield() call from your code breaks + * it, it's already broken. + * + * Typical broken usage is: + * + * while (!event) + * yield(); + * + * where one assumes that yield() will let 'the other' process run that will + * make event true. If the current task is a SCHED_FIFO task that will never + * happen. Never use yield() as a progress guarantee!! + * + * If you want to use yield() to wait for something, use wait_event(). + * If you want to use yield() to be 'nice' for others, use cond_resched(). + * If you still want to use yield(), do not! + */ +void __sched yield(void) +{ + set_current_state(TASK_RUNNING); + do_sched_yield(); +} +EXPORT_SYMBOL(yield); + +/** + * yield_to - yield the current processor to another thread in + * your thread group, or accelerate that thread toward the + * processor it's on. + * @p: target task + * @preempt: whether task preemption is allowed or not + * + * It's the caller's job to ensure that the target task struct + * can't go away on us before we can do any checks. + * + * Return: + * true (>0) if we indeed boosted the target task. + * false (0) if we failed to boost the target. + * -ESRCH if there's no task to yield to. + */ +int __sched yield_to(struct task_struct *p, bool preempt) +{ + struct task_struct *curr = current; + struct rq *rq, *p_rq; + unsigned long flags; + int yielded = 0; + + local_irq_save(flags); + rq = this_rq(); + +again: + p_rq = task_rq(p); + /* + * If we're the only runnable task on the rq and target rq also + * has only one task, there's absolutely no point in yielding. + */ + if (rq->nr_running == 1 && p_rq->nr_running == 1) { + yielded = -ESRCH; + goto out_irq; + } + + double_rq_lock(rq, p_rq); + if (task_rq(p) != p_rq) { + double_rq_unlock(rq, p_rq); + goto again; + } + + if (!curr->sched_class->yield_to_task) + goto out_unlock; + + if (curr->sched_class != p->sched_class) + goto out_unlock; + + if (task_on_cpu(p_rq, p) || !task_is_running(p)) + goto out_unlock; + + yielded = curr->sched_class->yield_to_task(rq, p); + if (yielded) { + schedstat_inc(rq->yld_count); + /* + * Make p's CPU reschedule; pick_next_entity takes care of + * fairness. + */ + if (preempt && rq != p_rq) + resched_curr(p_rq); + } + +out_unlock: + double_rq_unlock(rq, p_rq); +out_irq: + local_irq_restore(flags); + + if (yielded > 0) + schedule(); + + return yielded; +} +EXPORT_SYMBOL_GPL(yield_to); + +int io_schedule_prepare(void) +{ + int old_iowait = current->in_iowait; + + current->in_iowait = 1; + blk_flush_plug(current->plug, true); + return old_iowait; +} + +void io_schedule_finish(int token) +{ + current->in_iowait = token; +} + +/* + * This task is about to go to sleep on IO. Increment rq->nr_iowait so + * that process accounting knows that this is a task in IO wait state. + */ +long __sched io_schedule_timeout(long timeout) +{ + int token; + long ret; + + token = io_schedule_prepare(); + ret = schedule_timeout(timeout); + io_schedule_finish(token); + + return ret; +} +EXPORT_SYMBOL(io_schedule_timeout); + +void __sched io_schedule(void) +{ + int token; + + token = io_schedule_prepare(); + schedule(); + io_schedule_finish(token); +} +EXPORT_SYMBOL(io_schedule); + +/** + * sys_sched_get_priority_max - return maximum RT priority. + * @policy: scheduling class. + * + * Return: On success, this syscall returns the maximum + * rt_priority that can be used by a given scheduling class. + * On failure, a negative error code is returned. + */ +SYSCALL_DEFINE1(sched_get_priority_max, int, policy) +{ + int ret = -EINVAL; + + switch (policy) { + case SCHED_FIFO: + case SCHED_RR: + ret = MAX_RT_PRIO-1; + break; + case SCHED_DEADLINE: + case SCHED_NORMAL: + case SCHED_BATCH: + case SCHED_IDLE: + ret = 0; + break; + } + return ret; +} + +/** + * sys_sched_get_priority_min - return minimum RT priority. + * @policy: scheduling class. + * + * Return: On success, this syscall returns the minimum + * rt_priority that can be used by a given scheduling class. + * On failure, a negative error code is returned. + */ +SYSCALL_DEFINE1(sched_get_priority_min, int, policy) +{ + int ret = -EINVAL; + + switch (policy) { + case SCHED_FIFO: + case SCHED_RR: + ret = 1; + break; + case SCHED_DEADLINE: + case SCHED_NORMAL: + case SCHED_BATCH: + case SCHED_IDLE: + ret = 0; + } + return ret; +} + +static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) +{ + struct task_struct *p; + unsigned int time_slice; + struct rq_flags rf; + struct rq *rq; + int retval; + + if (pid < 0) + return -EINVAL; + + retval = -ESRCH; + rcu_read_lock(); + p = find_process_by_pid(pid); + if (!p) + goto out_unlock; + + retval = security_task_getscheduler(p); + if (retval) + goto out_unlock; + + rq = task_rq_lock(p, &rf); + time_slice = 0; + if (p->sched_class->get_rr_interval) + time_slice = p->sched_class->get_rr_interval(rq, p); + task_rq_unlock(rq, p, &rf); + + rcu_read_unlock(); + jiffies_to_timespec64(time_slice, t); + return 0; + +out_unlock: + rcu_read_unlock(); + return retval; +} + +/** + * sys_sched_rr_get_interval - return the default timeslice of a process. + * @pid: pid of the process. + * @interval: userspace pointer to the timeslice value. + * + * this syscall writes the default timeslice value of a given process + * into the user-space timespec buffer. A value of '0' means infinity. + * + * Return: On success, 0 and the timeslice is in @interval. Otherwise, + * an error code. + */ +SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, + struct __kernel_timespec __user *, interval) +{ + struct timespec64 t; + int retval = sched_rr_get_interval(pid, &t); + + if (retval == 0) + retval = put_timespec64(&t, interval); + + return retval; +} + +#ifdef CONFIG_COMPAT_32BIT_TIME +SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, + struct old_timespec32 __user *, interval) +{ + struct timespec64 t; + int retval = sched_rr_get_interval(pid, &t); + + if (retval == 0) + retval = put_old_timespec32(&t, interval); + return retval; +} +#endif + +void sched_show_task(struct task_struct *p) +{ + unsigned long free = 0; + int ppid; + + if (!try_get_task_stack(p)) + return; + + pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); + + if (task_is_running(p)) + pr_cont(" running task "); +#ifdef CONFIG_DEBUG_STACK_USAGE + free = stack_not_used(p); +#endif + ppid = 0; + rcu_read_lock(); + if (pid_alive(p)) + ppid = task_pid_nr(rcu_dereference(p->real_parent)); + rcu_read_unlock(); + pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n", + free, task_pid_nr(p), ppid, + read_task_thread_flags(p)); + + print_worker_info(KERN_INFO, p); + print_stop_info(KERN_INFO, p); + show_stack(p, NULL, KERN_INFO); + put_task_stack(p); +} +EXPORT_SYMBOL_GPL(sched_show_task); + +static inline bool +state_filter_match(unsigned long state_filter, struct task_struct *p) +{ + unsigned int state = READ_ONCE(p->__state); + + /* no filter, everything matches */ + if (!state_filter) + return true; + + /* filter, but doesn't match */ + if (!(state & state_filter)) + return false; + + /* + * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows + * TASK_KILLABLE). + */ + if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) + return false; + + return true; +} + + +void show_state_filter(unsigned int state_filter) +{ + struct task_struct *g, *p; + + rcu_read_lock(); + for_each_process_thread(g, p) { + /* + * reset the NMI-timeout, listing all files on a slow + * console might take a lot of time: + * Also, reset softlockup watchdogs on all CPUs, because + * another CPU might be blocked waiting for us to process + * an IPI. + */ + touch_nmi_watchdog(); + touch_all_softlockup_watchdogs(); + if (state_filter_match(state_filter, p)) + sched_show_task(p); + } + +#ifdef CONFIG_SCHED_DEBUG + if (!state_filter) + sysrq_sched_debug_show(); +#endif + rcu_read_unlock(); + /* + * Only show locks if all tasks are dumped: + */ + if (!state_filter) + debug_show_all_locks(); +} + +/** + * init_idle - set up an idle thread for a given CPU + * @idle: task in question + * @cpu: CPU the idle task belongs to + * + * NOTE: this function does not set the idle thread's NEED_RESCHED + * flag, to make booting more robust. + */ +void __init init_idle(struct task_struct *idle, int cpu) +{ + struct rq *rq = cpu_rq(cpu); + unsigned long flags; + + __sched_fork(0, idle); + + raw_spin_lock_irqsave(&idle->pi_lock, flags); + raw_spin_rq_lock(rq); + + idle->__state = TASK_RUNNING; + idle->se.exec_start = sched_clock(); + /* + * PF_KTHREAD should already be set at this point; regardless, make it + * look like a proper per-CPU kthread. + */ + idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; + kthread_set_per_cpu(idle, cpu); + +#ifdef CONFIG_SMP + /* + * It's possible that init_idle() gets called multiple times on a task, + * in that case do_set_cpus_allowed() will not do the right thing. + * + * And since this is boot we can forgo the serialization. + */ + set_cpus_allowed_common(idle, cpumask_of(cpu), 0); +#endif + /* + * We're having a chicken and egg problem, even though we are + * holding rq->lock, the CPU isn't yet set to this CPU so the + * lockdep check in task_group() will fail. + * + * Similar case to sched_fork(). / Alternatively we could + * use task_rq_lock() here and obtain the other rq->lock. + * + * Silence PROVE_RCU + */ + rcu_read_lock(); + __set_task_cpu(idle, cpu); + rcu_read_unlock(); + + rq->idle = idle; + rcu_assign_pointer(rq->curr, idle); + idle->on_rq = TASK_ON_RQ_QUEUED; +#ifdef CONFIG_SMP + idle->on_cpu = 1; +#endif + raw_spin_rq_unlock(rq); + raw_spin_unlock_irqrestore(&idle->pi_lock, flags); + + /* Set the preempt count _outside_ the spinlocks! */ + init_idle_preempt_count(idle, cpu); + + /* + * The idle tasks have their own, simple scheduling class: + */ + idle->sched_class = &idle_sched_class; + ftrace_graph_init_idle_task(idle, cpu); + vtime_init_idle(idle, cpu); +#ifdef CONFIG_SMP + sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); +#endif +} + +#ifdef CONFIG_SMP + +int cpuset_cpumask_can_shrink(const struct cpumask *cur, + const struct cpumask *trial) +{ + int ret = 1; + + if (cpumask_empty(cur)) + return ret; + + ret = dl_cpuset_cpumask_can_shrink(cur, trial); + + return ret; +} + +int task_can_attach(struct task_struct *p) +{ + int ret = 0; + + /* + * Kthreads which disallow setaffinity shouldn't be moved + * to a new cpuset; we don't want to change their CPU + * affinity and isolating such threads by their set of + * allowed nodes is unnecessary. Thus, cpusets are not + * applicable for such threads. This prevents checking for + * success of set_cpus_allowed_ptr() on all attached tasks + * before cpus_mask may be changed. + */ + if (p->flags & PF_NO_SETAFFINITY) + ret = -EINVAL; + + return ret; +} + +bool sched_smp_initialized __read_mostly; + +#ifdef CONFIG_NUMA_BALANCING +/* Migrate current task p to target_cpu */ +int migrate_task_to(struct task_struct *p, int target_cpu) +{ + struct migration_arg arg = { p, target_cpu }; + int curr_cpu = task_cpu(p); + + if (curr_cpu == target_cpu) + return 0; + + if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) + return -EINVAL; + + /* TODO: This is not properly updating schedstats */ + + trace_sched_move_numa(p, curr_cpu, target_cpu); + return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); +} + +/* + * Requeue a task on a given node and accurately track the number of NUMA + * tasks on the runqueues + */ +void sched_setnuma(struct task_struct *p, int nid) +{ + bool queued, running; + struct rq_flags rf; + struct rq *rq; + + rq = task_rq_lock(p, &rf); + queued = task_on_rq_queued(p); + running = task_current(rq, p); + + if (queued) + dequeue_task(rq, p, DEQUEUE_SAVE); + if (running) + put_prev_task(rq, p); + + p->numa_preferred_nid = nid; + + if (queued) + enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); + if (running) + set_next_task(rq, p); + task_rq_unlock(rq, p, &rf); +} +#endif /* CONFIG_NUMA_BALANCING */ + +#ifdef CONFIG_HOTPLUG_CPU +/* + * Ensure that the idle task is using init_mm right before its CPU goes + * offline. + */ +void idle_task_exit(void) +{ + struct mm_struct *mm = current->active_mm; + + BUG_ON(cpu_online(smp_processor_id())); + BUG_ON(current != this_rq()->idle); + + if (mm != &init_mm) { + switch_mm(mm, &init_mm, current); + finish_arch_post_lock_switch(); + } + + /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ +} + +static int __balance_push_cpu_stop(void *arg) +{ + struct task_struct *p = arg; + struct rq *rq = this_rq(); + struct rq_flags rf; + int cpu; + + raw_spin_lock_irq(&p->pi_lock); + rq_lock(rq, &rf); + + update_rq_clock(rq); + + if (task_rq(p) == rq && task_on_rq_queued(p)) { + cpu = select_fallback_rq(rq->cpu, p); + rq = __migrate_task(rq, &rf, p, cpu); + } + + rq_unlock(rq, &rf); + raw_spin_unlock_irq(&p->pi_lock); + + put_task_struct(p); + + return 0; +} + +static DEFINE_PER_CPU(struct cpu_stop_work, push_work); + +/* + * Ensure we only run per-cpu kthreads once the CPU goes !active. + * + * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only + * effective when the hotplug motion is down. + */ +static void balance_push(struct rq *rq) +{ + struct task_struct *push_task = rq->curr; + + lockdep_assert_rq_held(rq); + + /* + * Ensure the thing is persistent until balance_push_set(.on = false); + */ + rq->balance_callback = &balance_push_callback; + + /* + * Only active while going offline and when invoked on the outgoing + * CPU. + */ + if (!cpu_dying(rq->cpu) || rq != this_rq()) + return; + + /* + * Both the cpu-hotplug and stop task are in this case and are + * required to complete the hotplug process. + */ + if (kthread_is_per_cpu(push_task) || + is_migration_disabled(push_task)) { + + /* + * If this is the idle task on the outgoing CPU try to wake + * up the hotplug control thread which might wait for the + * last task to vanish. The rcuwait_active() check is + * accurate here because the waiter is pinned on this CPU + * and can't obviously be running in parallel. + * + * On RT kernels this also has to check whether there are + * pinned and scheduled out tasks on the runqueue. They + * need to leave the migrate disabled section first. + */ + if (!rq->nr_running && !rq_has_pinned_tasks(rq) && + rcuwait_active(&rq->hotplug_wait)) { + raw_spin_rq_unlock(rq); + rcuwait_wake_up(&rq->hotplug_wait); + raw_spin_rq_lock(rq); + } + return; + } + + get_task_struct(push_task); + /* + * Temporarily drop rq->lock such that we can wake-up the stop task. + * Both preemption and IRQs are still disabled. + */ + preempt_disable(); + raw_spin_rq_unlock(rq); + stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, + this_cpu_ptr(&push_work)); + preempt_enable(); + /* + * At this point need_resched() is true and we'll take the loop in + * schedule(). The next pick is obviously going to be the stop task + * which kthread_is_per_cpu() and will push this task away. + */ + raw_spin_rq_lock(rq); +} + +static void balance_push_set(int cpu, bool on) +{ + struct rq *rq = cpu_rq(cpu); + struct rq_flags rf; + + rq_lock_irqsave(rq, &rf); + if (on) { + WARN_ON_ONCE(rq->balance_callback); + rq->balance_callback = &balance_push_callback; + } else if (rq->balance_callback == &balance_push_callback) { + rq->balance_callback = NULL; + } + rq_unlock_irqrestore(rq, &rf); +} + +/* + * Invoked from a CPUs hotplug control thread after the CPU has been marked + * inactive. All tasks which are not per CPU kernel threads are either + * pushed off this CPU now via balance_push() or placed on a different CPU + * during wakeup. Wait until the CPU is quiescent. + */ +static void balance_hotplug_wait(void) +{ + struct rq *rq = this_rq(); + + rcuwait_wait_event(&rq->hotplug_wait, + rq->nr_running == 1 && !rq_has_pinned_tasks(rq), + TASK_UNINTERRUPTIBLE); +} + +#else + +static inline void balance_push(struct rq *rq) +{ +} + +static inline void balance_push_set(int cpu, bool on) +{ +} + +static inline void balance_hotplug_wait(void) +{ +} + +#endif /* CONFIG_HOTPLUG_CPU */ + +void set_rq_online(struct rq *rq) +{ + if (!rq->online) { + const struct sched_class *class; + + cpumask_set_cpu(rq->cpu, rq->rd->online); + rq->online = 1; + + for_each_class(class) { + if (class->rq_online) + class->rq_online(rq); + } + } +} + +void set_rq_offline(struct rq *rq) +{ + if (rq->online) { + const struct sched_class *class; + + for_each_class(class) { + if (class->rq_offline) + class->rq_offline(rq); + } + + cpumask_clear_cpu(rq->cpu, rq->rd->online); + rq->online = 0; + } +} + +/* + * used to mark begin/end of suspend/resume: + */ +static int num_cpus_frozen; + +/* + * Update cpusets according to cpu_active mask. If cpusets are + * disabled, cpuset_update_active_cpus() becomes a simple wrapper + * around partition_sched_domains(). + * + * If we come here as part of a suspend/resume, don't touch cpusets because we + * want to restore it back to its original state upon resume anyway. + */ +static void cpuset_cpu_active(void) +{ + if (cpuhp_tasks_frozen) { + /* + * num_cpus_frozen tracks how many CPUs are involved in suspend + * resume sequence. As long as this is not the last online + * operation in the resume sequence, just build a single sched + * domain, ignoring cpusets. + */ + partition_sched_domains(1, NULL, NULL); + if (--num_cpus_frozen) + return; + /* + * This is the last CPU online operation. So fall through and + * restore the original sched domains by considering the + * cpuset configurations. + */ + cpuset_force_rebuild(); + } + cpuset_update_active_cpus(); +} + +static int cpuset_cpu_inactive(unsigned int cpu) +{ + if (!cpuhp_tasks_frozen) { + int ret = dl_bw_check_overflow(cpu); + + if (ret) + return ret; + cpuset_update_active_cpus(); + } else { + num_cpus_frozen++; + partition_sched_domains(1, NULL, NULL); + } + return 0; +} + +int sched_cpu_activate(unsigned int cpu) +{ + struct rq *rq = cpu_rq(cpu); + struct rq_flags rf; + + /* + * Clear the balance_push callback and prepare to schedule + * regular tasks. + */ + balance_push_set(cpu, false); + +#ifdef CONFIG_SCHED_SMT + /* + * When going up, increment the number of cores with SMT present. + */ + if (cpumask_weight(cpu_smt_mask(cpu)) == 2) + static_branch_inc_cpuslocked(&sched_smt_present); +#endif + set_cpu_active(cpu, true); + + if (sched_smp_initialized) { + sched_update_numa(cpu, true); + sched_domains_numa_masks_set(cpu); + cpuset_cpu_active(); + } + + /* + * Put the rq online, if not already. This happens: + * + * 1) In the early boot process, because we build the real domains + * after all CPUs have been brought up. + * + * 2) At runtime, if cpuset_cpu_active() fails to rebuild the + * domains. + */ + rq_lock_irqsave(rq, &rf); + if (rq->rd) { + BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); + set_rq_online(rq); + } + rq_unlock_irqrestore(rq, &rf); + + return 0; +} + +int sched_cpu_deactivate(unsigned int cpu) +{ + struct rq *rq = cpu_rq(cpu); + struct rq_flags rf; + int ret; + + /* + * Remove CPU from nohz.idle_cpus_mask to prevent participating in + * load balancing when not active + */ + nohz_balance_exit_idle(rq); + + set_cpu_active(cpu, false); + + /* + * From this point forward, this CPU will refuse to run any task that + * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively + * push those tasks away until this gets cleared, see + * sched_cpu_dying(). + */ + balance_push_set(cpu, true); + + /* + * We've cleared cpu_active_mask / set balance_push, wait for all + * preempt-disabled and RCU users of this state to go away such that + * all new such users will observe it. + * + * Specifically, we rely on ttwu to no longer target this CPU, see + * ttwu_queue_cond() and is_cpu_allowed(). + * + * Do sync before park smpboot threads to take care the rcu boost case. + */ + synchronize_rcu(); + + rq_lock_irqsave(rq, &rf); + if (rq->rd) { + update_rq_clock(rq); + BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); + set_rq_offline(rq); + } + rq_unlock_irqrestore(rq, &rf); + +#ifdef CONFIG_SCHED_SMT + /* + * When going down, decrement the number of cores with SMT present. + */ + if (cpumask_weight(cpu_smt_mask(cpu)) == 2) + static_branch_dec_cpuslocked(&sched_smt_present); + + sched_core_cpu_deactivate(cpu); +#endif + + if (!sched_smp_initialized) + return 0; + + sched_update_numa(cpu, false); + ret = cpuset_cpu_inactive(cpu); + if (ret) { + balance_push_set(cpu, false); + set_cpu_active(cpu, true); + sched_update_numa(cpu, true); + return ret; + } + sched_domains_numa_masks_clear(cpu); + return 0; +} + +static void sched_rq_cpu_starting(unsigned int cpu) +{ + struct rq *rq = cpu_rq(cpu); + + rq->calc_load_update = calc_load_update; + update_max_interval(); +} + +int sched_cpu_starting(unsigned int cpu) +{ + sched_core_cpu_starting(cpu); + sched_rq_cpu_starting(cpu); + sched_tick_start(cpu); + return 0; +} + +#ifdef CONFIG_HOTPLUG_CPU + +/* + * Invoked immediately before the stopper thread is invoked to bring the + * CPU down completely. At this point all per CPU kthreads except the + * hotplug thread (current) and the stopper thread (inactive) have been + * either parked or have been unbound from the outgoing CPU. Ensure that + * any of those which might be on the way out are gone. + * + * If after this point a bound task is being woken on this CPU then the + * responsible hotplug callback has failed to do it's job. + * sched_cpu_dying() will catch it with the appropriate fireworks. + */ +int sched_cpu_wait_empty(unsigned int cpu) +{ + balance_hotplug_wait(); + return 0; +} + +/* + * Since this CPU is going 'away' for a while, fold any nr_active delta we + * might have. Called from the CPU stopper task after ensuring that the + * stopper is the last running task on the CPU, so nr_active count is + * stable. We need to take the teardown thread which is calling this into + * account, so we hand in adjust = 1 to the load calculation. + * + * Also see the comment "Global load-average calculations". + */ +static void calc_load_migrate(struct rq *rq) +{ + long delta = calc_load_fold_active(rq, 1); + + if (delta) + atomic_long_add(delta, &calc_load_tasks); +} + +static void dump_rq_tasks(struct rq *rq, const char *loglvl) +{ + struct task_struct *g, *p; + int cpu = cpu_of(rq); + + lockdep_assert_rq_held(rq); + + printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); + for_each_process_thread(g, p) { + if (task_cpu(p) != cpu) + continue; + + if (!task_on_rq_queued(p)) + continue; + + printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); + } +} + +int sched_cpu_dying(unsigned int cpu) +{ + struct rq *rq = cpu_rq(cpu); + struct rq_flags rf; + + /* Handle pending wakeups and then migrate everything off */ + sched_tick_stop(cpu); + + rq_lock_irqsave(rq, &rf); + if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { + WARN(true, "Dying CPU not properly vacated!"); + dump_rq_tasks(rq, KERN_WARNING); + } + rq_unlock_irqrestore(rq, &rf); + + calc_load_migrate(rq); + update_max_interval(); + hrtick_clear(rq); + sched_core_cpu_dying(cpu); + return 0; +} +#endif + +void __init sched_init_smp(void) +{ + sched_init_numa(NUMA_NO_NODE); + + /* + * There's no userspace yet to cause hotplug operations; hence all the + * CPU masks are stable and all blatant races in the below code cannot + * happen. + */ + mutex_lock(&sched_domains_mutex); + sched_init_domains(cpu_active_mask); + mutex_unlock(&sched_domains_mutex); + + /* Move init over to a non-isolated CPU */ + if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) + BUG(); + current->flags &= ~PF_NO_SETAFFINITY; + sched_init_granularity(); + + init_sched_rt_class(); + init_sched_dl_class(); + + sched_smp_initialized = true; +} + +static int __init migration_init(void) +{ + sched_cpu_starting(smp_processor_id()); + return 0; +} +early_initcall(migration_init); + +#else +void __init sched_init_smp(void) +{ + sched_init_granularity(); +} +#endif /* CONFIG_SMP */ + +int in_sched_functions(unsigned long addr) +{ + return in_lock_functions(addr) || + (addr >= (unsigned long)__sched_text_start + && addr < (unsigned long)__sched_text_end); +} + +#ifdef CONFIG_CGROUP_SCHED +/* + * Default task group. + * Every task in system belongs to this group at bootup. + */ +struct task_group root_task_group; +LIST_HEAD(task_groups); + +/* Cacheline aligned slab cache for task_group */ +static struct kmem_cache *task_group_cache __read_mostly; +#endif + +void __init sched_init(void) +{ + unsigned long ptr = 0; + int i; + + /* Make sure the linker didn't screw up */ + BUG_ON(&idle_sched_class != &fair_sched_class + 1 || + &fair_sched_class != &rt_sched_class + 1 || + &rt_sched_class != &dl_sched_class + 1); +#ifdef CONFIG_SMP + BUG_ON(&dl_sched_class != &stop_sched_class + 1); +#endif + + wait_bit_init(); + +#ifdef CONFIG_FAIR_GROUP_SCHED + ptr += 2 * nr_cpu_ids * sizeof(void **); +#endif +#ifdef CONFIG_RT_GROUP_SCHED + ptr += 2 * nr_cpu_ids * sizeof(void **); +#endif + if (ptr) { + ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); + +#ifdef CONFIG_FAIR_GROUP_SCHED + root_task_group.se = (struct sched_entity **)ptr; + ptr += nr_cpu_ids * sizeof(void **); + + root_task_group.cfs_rq = (struct cfs_rq **)ptr; + ptr += nr_cpu_ids * sizeof(void **); + + root_task_group.shares = ROOT_TASK_GROUP_LOAD; + init_cfs_bandwidth(&root_task_group.cfs_bandwidth); +#endif /* CONFIG_FAIR_GROUP_SCHED */ +#ifdef CONFIG_RT_GROUP_SCHED + root_task_group.rt_se = (struct sched_rt_entity **)ptr; + ptr += nr_cpu_ids * sizeof(void **); + + root_task_group.rt_rq = (struct rt_rq **)ptr; + ptr += nr_cpu_ids * sizeof(void **); + +#endif /* CONFIG_RT_GROUP_SCHED */ + } + + init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); + +#ifdef CONFIG_SMP + init_defrootdomain(); +#endif + +#ifdef CONFIG_RT_GROUP_SCHED + init_rt_bandwidth(&root_task_group.rt_bandwidth, + global_rt_period(), global_rt_runtime()); +#endif /* CONFIG_RT_GROUP_SCHED */ + +#ifdef CONFIG_CGROUP_SCHED + task_group_cache = KMEM_CACHE(task_group, 0); + + list_add(&root_task_group.list, &task_groups); + INIT_LIST_HEAD(&root_task_group.children); + INIT_LIST_HEAD(&root_task_group.siblings); + autogroup_init(&init_task); +#endif /* CONFIG_CGROUP_SCHED */ + + for_each_possible_cpu(i) { + struct rq *rq; + + rq = cpu_rq(i); + raw_spin_lock_init(&rq->__lock); + rq->nr_running = 0; + rq->calc_load_active = 0; + rq->calc_load_update = jiffies + LOAD_FREQ; + init_cfs_rq(&rq->cfs); + init_rt_rq(&rq->rt); + init_dl_rq(&rq->dl); +#ifdef CONFIG_FAIR_GROUP_SCHED + INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); + rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; + /* + * How much CPU bandwidth does root_task_group get? + * + * In case of task-groups formed thr' the cgroup filesystem, it + * gets 100% of the CPU resources in the system. This overall + * system CPU resource is divided among the tasks of + * root_task_group and its child task-groups in a fair manner, + * based on each entity's (task or task-group's) weight + * (se->load.weight). + * + * In other words, if root_task_group has 10 tasks of weight + * 1024) and two child groups A0 and A1 (of weight 1024 each), + * then A0's share of the CPU resource is: + * + * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% + * + * We achieve this by letting root_task_group's tasks sit + * directly in rq->cfs (i.e root_task_group->se[] = NULL). + */ + init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); +#endif /* CONFIG_FAIR_GROUP_SCHED */ + + rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; +#ifdef CONFIG_RT_GROUP_SCHED + init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); +#endif +#ifdef CONFIG_SMP + rq->sd = NULL; + rq->rd = NULL; + rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE; + rq->balance_callback = &balance_push_callback; + rq->active_balance = 0; + rq->next_balance = jiffies; + rq->push_cpu = 0; + rq->cpu = i; + rq->online = 0; + rq->idle_stamp = 0; + rq->avg_idle = 2*sysctl_sched_migration_cost; + rq->wake_stamp = jiffies; + rq->wake_avg_idle = rq->avg_idle; + rq->max_idle_balance_cost = sysctl_sched_migration_cost; + + INIT_LIST_HEAD(&rq->cfs_tasks); + + rq_attach_root(rq, &def_root_domain); +#ifdef CONFIG_NO_HZ_COMMON + rq->last_blocked_load_update_tick = jiffies; + atomic_set(&rq->nohz_flags, 0); + + INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); +#endif +#ifdef CONFIG_HOTPLUG_CPU + rcuwait_init(&rq->hotplug_wait); +#endif +#endif /* CONFIG_SMP */ + hrtick_rq_init(rq); + atomic_set(&rq->nr_iowait, 0); + +#ifdef CONFIG_SCHED_CORE + rq->core = rq; + rq->core_pick = NULL; + rq->core_enabled = 0; + rq->core_tree = RB_ROOT; + rq->core_forceidle_count = 0; + rq->core_forceidle_occupation = 0; + rq->core_forceidle_start = 0; + + rq->core_cookie = 0UL; +#endif + } + + set_load_weight(&init_task, false); + + /* + * The boot idle thread does lazy MMU switching as well: + */ + mmgrab(&init_mm); + enter_lazy_tlb(&init_mm, current); + + /* + * The idle task doesn't need the kthread struct to function, but it + * is dressed up as a per-CPU kthread and thus needs to play the part + * if we want to avoid special-casing it in code that deals with per-CPU + * kthreads. + */ + WARN_ON(!set_kthread_struct(current)); + + /* + * Make us the idle thread. Technically, schedule() should not be + * called from this thread, however somewhere below it might be, + * but because we are the idle thread, we just pick up running again + * when this runqueue becomes "idle". + */ + init_idle(current, smp_processor_id()); + + calc_load_update = jiffies + LOAD_FREQ; + +#ifdef CONFIG_SMP + idle_thread_set_boot_cpu(); + balance_push_set(smp_processor_id(), false); +#endif + init_sched_fair_class(); + + psi_init(); + + init_uclamp(); + + preempt_dynamic_init(); + + scheduler_running = 1; +} + +#ifdef CONFIG_DEBUG_ATOMIC_SLEEP + +void __might_sleep(const char *file, int line) +{ + unsigned int state = get_current_state(); + /* + * Blocking primitives will set (and therefore destroy) current->state, + * since we will exit with TASK_RUNNING make sure we enter with it, + * otherwise we will destroy state. + */ + WARN_ONCE(state != TASK_RUNNING && current->task_state_change, + "do not call blocking ops when !TASK_RUNNING; " + "state=%x set at [<%p>] %pS\n", state, + (void *)current->task_state_change, + (void *)current->task_state_change); + + __might_resched(file, line, 0); +} +EXPORT_SYMBOL(__might_sleep); + +static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) +{ + if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) + return; + + if (preempt_count() == preempt_offset) + return; + + pr_err("Preemption disabled at:"); + print_ip_sym(KERN_ERR, ip); +} + +static inline bool resched_offsets_ok(unsigned int offsets) +{ + unsigned int nested = preempt_count(); + + nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; + + return nested == offsets; +} + +void __might_resched(const char *file, int line, unsigned int offsets) +{ + /* Ratelimiting timestamp: */ + static unsigned long prev_jiffy; + + unsigned long preempt_disable_ip; + + /* WARN_ON_ONCE() by default, no rate limit required: */ + rcu_sleep_check(); + + if ((resched_offsets_ok(offsets) && !irqs_disabled() && + !is_idle_task(current) && !current->non_block_count) || + system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || + oops_in_progress) + return; + + if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) + return; + prev_jiffy = jiffies; + + /* Save this before calling printk(), since that will clobber it: */ + preempt_disable_ip = get_preempt_disable_ip(current); + + pr_err("BUG: sleeping function called from invalid context at %s:%d\n", + file, line); + pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", + in_atomic(), irqs_disabled(), current->non_block_count, + current->pid, current->comm); + pr_err("preempt_count: %x, expected: %x\n", preempt_count(), + offsets & MIGHT_RESCHED_PREEMPT_MASK); + + if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { + pr_err("RCU nest depth: %d, expected: %u\n", + rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); + } + + if (task_stack_end_corrupted(current)) + pr_emerg("Thread overran stack, or stack corrupted\n"); + + debug_show_held_locks(current); + if (irqs_disabled()) + print_irqtrace_events(current); + + print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, + preempt_disable_ip); + + dump_stack(); + add_taint(TAINT_WARN, LOCKDEP_STILL_OK); +} +EXPORT_SYMBOL(__might_resched); + +void __cant_sleep(const char *file, int line, int preempt_offset) +{ + static unsigned long prev_jiffy; + + if (irqs_disabled()) + return; + + if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) + return; + + if (preempt_count() > preempt_offset) + return; + + if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) + return; + prev_jiffy = jiffies; + + printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); + printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", + in_atomic(), irqs_disabled(), + current->pid, current->comm); + + debug_show_held_locks(current); + dump_stack(); + add_taint(TAINT_WARN, LOCKDEP_STILL_OK); +} +EXPORT_SYMBOL_GPL(__cant_sleep); + +#ifdef CONFIG_SMP +void __cant_migrate(const char *file, int line) +{ + static unsigned long prev_jiffy; + + if (irqs_disabled()) + return; + + if (is_migration_disabled(current)) + return; + + if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) + return; + + if (preempt_count() > 0) + return; + + if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) + return; + prev_jiffy = jiffies; + + pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); + pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", + in_atomic(), irqs_disabled(), is_migration_disabled(current), + current->pid, current->comm); + + debug_show_held_locks(current); + dump_stack(); + add_taint(TAINT_WARN, LOCKDEP_STILL_OK); +} +EXPORT_SYMBOL_GPL(__cant_migrate); +#endif +#endif + +#ifdef CONFIG_MAGIC_SYSRQ +void normalize_rt_tasks(void) +{ + struct task_struct *g, *p; + struct sched_attr attr = { + .sched_policy = SCHED_NORMAL, + }; + + read_lock(&tasklist_lock); + for_each_process_thread(g, p) { + /* + * Only normalize user tasks: + */ + if (p->flags & PF_KTHREAD) + continue; + + p->se.exec_start = 0; + schedstat_set(p->stats.wait_start, 0); + schedstat_set(p->stats.sleep_start, 0); + schedstat_set(p->stats.block_start, 0); + + if (!dl_task(p) && !rt_task(p)) { + /* + * Renice negative nice level userspace + * tasks back to 0: + */ + if (task_nice(p) < 0) + set_user_nice(p, 0); + continue; + } + + __sched_setscheduler(p, &attr, false, false); + } + read_unlock(&tasklist_lock); +} + +#endif /* CONFIG_MAGIC_SYSRQ */ + +#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) +/* + * These functions are only useful for the IA64 MCA handling, or kdb. + * + * They can only be called when the whole system has been + * stopped - every CPU needs to be quiescent, and no scheduling + * activity can take place. Using them for anything else would + * be a serious bug, and as a result, they aren't even visible + * under any other configuration. + */ + +/** + * curr_task - return the current task for a given CPU. + * @cpu: the processor in question. + * + * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! + * + * Return: The current task for @cpu. + */ +struct task_struct *curr_task(int cpu) +{ + return cpu_curr(cpu); +} + +#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */ + +#ifdef CONFIG_IA64 +/** + * ia64_set_curr_task - set the current task for a given CPU. + * @cpu: the processor in question. + * @p: the task pointer to set. + * + * Description: This function must only be used when non-maskable interrupts + * are serviced on a separate stack. It allows the architecture to switch the + * notion of the current task on a CPU in a non-blocking manner. This function + * must be called with all CPU's synchronized, and interrupts disabled, the + * and caller must save the original value of the current task (see + * curr_task() above) and restore that value before reenabling interrupts and + * re-starting the system. + * + * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! + */ +void ia64_set_curr_task(int cpu, struct task_struct *p) +{ + cpu_curr(cpu) = p; +} + +#endif + +#ifdef CONFIG_CGROUP_SCHED +/* task_group_lock serializes the addition/removal of task groups */ +static DEFINE_SPINLOCK(task_group_lock); + +static inline void alloc_uclamp_sched_group(struct task_group *tg, + struct task_group *parent) +{ +#ifdef CONFIG_UCLAMP_TASK_GROUP + enum uclamp_id clamp_id; + + for_each_clamp_id(clamp_id) { + uclamp_se_set(&tg->uclamp_req[clamp_id], + uclamp_none(clamp_id), false); + tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; + } +#endif +} + +static void sched_free_group(struct task_group *tg) +{ + free_fair_sched_group(tg); + free_rt_sched_group(tg); + autogroup_free(tg); + kmem_cache_free(task_group_cache, tg); +} + +static void sched_free_group_rcu(struct rcu_head *rcu) +{ + sched_free_group(container_of(rcu, struct task_group, rcu)); +} + +static void sched_unregister_group(struct task_group *tg) +{ + unregister_fair_sched_group(tg); + unregister_rt_sched_group(tg); + /* + * We have to wait for yet another RCU grace period to expire, as + * print_cfs_stats() might run concurrently. + */ + call_rcu(&tg->rcu, sched_free_group_rcu); +} + +/* allocate runqueue etc for a new task group */ +struct task_group *sched_create_group(struct task_group *parent) +{ + struct task_group *tg; + + tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); + if (!tg) + return ERR_PTR(-ENOMEM); + + if (!alloc_fair_sched_group(tg, parent)) + goto err; + + if (!alloc_rt_sched_group(tg, parent)) + goto err; + + alloc_uclamp_sched_group(tg, parent); + + return tg; + +err: + sched_free_group(tg); + return ERR_PTR(-ENOMEM); +} + +void sched_online_group(struct task_group *tg, struct task_group *parent) +{ + unsigned long flags; + + spin_lock_irqsave(&task_group_lock, flags); + list_add_rcu(&tg->list, &task_groups); + + /* Root should already exist: */ + WARN_ON(!parent); + + tg->parent = parent; + INIT_LIST_HEAD(&tg->children); + list_add_rcu(&tg->siblings, &parent->children); + spin_unlock_irqrestore(&task_group_lock, flags); + + online_fair_sched_group(tg); +} + +/* rcu callback to free various structures associated with a task group */ +static void sched_unregister_group_rcu(struct rcu_head *rhp) +{ + /* Now it should be safe to free those cfs_rqs: */ + sched_unregister_group(container_of(rhp, struct task_group, rcu)); +} + +void sched_destroy_group(struct task_group *tg) +{ + /* Wait for possible concurrent references to cfs_rqs complete: */ + call_rcu(&tg->rcu, sched_unregister_group_rcu); +} + +void sched_release_group(struct task_group *tg) +{ + unsigned long flags; + + /* + * Unlink first, to avoid walk_tg_tree_from() from finding us (via + * sched_cfs_period_timer()). + * + * For this to be effective, we have to wait for all pending users of + * this task group to leave their RCU critical section to ensure no new + * user will see our dying task group any more. Specifically ensure + * that tg_unthrottle_up() won't add decayed cfs_rq's to it. + * + * We therefore defer calling unregister_fair_sched_group() to + * sched_unregister_group() which is guarantied to get called only after the + * current RCU grace period has expired. + */ + spin_lock_irqsave(&task_group_lock, flags); + list_del_rcu(&tg->list); + list_del_rcu(&tg->siblings); + spin_unlock_irqrestore(&task_group_lock, flags); +} + +static void sched_change_group(struct task_struct *tsk) +{ + struct task_group *tg; + + /* + * All callers are synchronized by task_rq_lock(); we do not use RCU + * which is pointless here. Thus, we pass "true" to task_css_check() + * to prevent lockdep warnings. + */ + tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), + struct task_group, css); + tg = autogroup_task_group(tsk, tg); + tsk->sched_task_group = tg; + +#ifdef CONFIG_FAIR_GROUP_SCHED + if (tsk->sched_class->task_change_group) + tsk->sched_class->task_change_group(tsk); + else +#endif + set_task_rq(tsk, task_cpu(tsk)); +} + +/* + * Change task's runqueue when it moves between groups. + * + * The caller of this function should have put the task in its new group by + * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect + * its new group. + */ +void sched_move_task(struct task_struct *tsk) +{ + int queued, running, queue_flags = + DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; + struct rq_flags rf; + struct rq *rq; + + rq = task_rq_lock(tsk, &rf); + update_rq_clock(rq); + + running = task_current(rq, tsk); + queued = task_on_rq_queued(tsk); + + if (queued) + dequeue_task(rq, tsk, queue_flags); + if (running) + put_prev_task(rq, tsk); + + sched_change_group(tsk); + + if (queued) + enqueue_task(rq, tsk, queue_flags); + if (running) { + set_next_task(rq, tsk); + /* + * After changing group, the running task may have joined a + * throttled one but it's still the running task. Trigger a + * resched to make sure that task can still run. + */ + resched_curr(rq); + } + + task_rq_unlock(rq, tsk, &rf); +} + +static inline struct task_group *css_tg(struct cgroup_subsys_state *css) +{ + return css ? container_of(css, struct task_group, css) : NULL; +} + +static struct cgroup_subsys_state * +cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) +{ + struct task_group *parent = css_tg(parent_css); + struct task_group *tg; + + if (!parent) { + /* This is early initialization for the top cgroup */ + return &root_task_group.css; + } + + tg = sched_create_group(parent); + if (IS_ERR(tg)) + return ERR_PTR(-ENOMEM); + + return &tg->css; +} + +/* Expose task group only after completing cgroup initialization */ +static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) +{ + struct task_group *tg = css_tg(css); + struct task_group *parent = css_tg(css->parent); + + if (parent) + sched_online_group(tg, parent); + +#ifdef CONFIG_UCLAMP_TASK_GROUP + /* Propagate the effective uclamp value for the new group */ + mutex_lock(&uclamp_mutex); + rcu_read_lock(); + cpu_util_update_eff(css); + rcu_read_unlock(); + mutex_unlock(&uclamp_mutex); +#endif + + return 0; +} + +static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) +{ + struct task_group *tg = css_tg(css); + + sched_release_group(tg); +} + +static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) +{ + struct task_group *tg = css_tg(css); + + /* + * Relies on the RCU grace period between css_released() and this. + */ + sched_unregister_group(tg); +} + +#ifdef CONFIG_RT_GROUP_SCHED +static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) +{ + struct task_struct *task; + struct cgroup_subsys_state *css; + + cgroup_taskset_for_each(task, css, tset) { + if (!sched_rt_can_attach(css_tg(css), task)) + return -EINVAL; + } + return 0; +} +#endif + +static void cpu_cgroup_attach(struct cgroup_taskset *tset) +{ + struct task_struct *task; + struct cgroup_subsys_state *css; + + cgroup_taskset_for_each(task, css, tset) + sched_move_task(task); +} + +#ifdef CONFIG_UCLAMP_TASK_GROUP +static void cpu_util_update_eff(struct cgroup_subsys_state *css) +{ + struct cgroup_subsys_state *top_css = css; + struct uclamp_se *uc_parent = NULL; + struct uclamp_se *uc_se = NULL; + unsigned int eff[UCLAMP_CNT]; + enum uclamp_id clamp_id; + unsigned int clamps; + + lockdep_assert_held(&uclamp_mutex); + SCHED_WARN_ON(!rcu_read_lock_held()); + + css_for_each_descendant_pre(css, top_css) { + uc_parent = css_tg(css)->parent + ? css_tg(css)->parent->uclamp : NULL; + + for_each_clamp_id(clamp_id) { + /* Assume effective clamps matches requested clamps */ + eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; + /* Cap effective clamps with parent's effective clamps */ + if (uc_parent && + eff[clamp_id] > uc_parent[clamp_id].value) { + eff[clamp_id] = uc_parent[clamp_id].value; + } + } + /* Ensure protection is always capped by limit */ + eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); + + /* Propagate most restrictive effective clamps */ + clamps = 0x0; + uc_se = css_tg(css)->uclamp; + for_each_clamp_id(clamp_id) { + if (eff[clamp_id] == uc_se[clamp_id].value) + continue; + uc_se[clamp_id].value = eff[clamp_id]; + uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); + clamps |= (0x1 << clamp_id); + } + if (!clamps) { + css = css_rightmost_descendant(css); + continue; + } + + /* Immediately update descendants RUNNABLE tasks */ + uclamp_update_active_tasks(css); + } +} + +/* + * Integer 10^N with a given N exponent by casting to integer the literal "1eN" + * C expression. Since there is no way to convert a macro argument (N) into a + * character constant, use two levels of macros. + */ +#define _POW10(exp) ((unsigned int)1e##exp) +#define POW10(exp) _POW10(exp) + +struct uclamp_request { +#define UCLAMP_PERCENT_SHIFT 2 +#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) + s64 percent; + u64 util; + int ret; +}; + +static inline struct uclamp_request +capacity_from_percent(char *buf) +{ + struct uclamp_request req = { + .percent = UCLAMP_PERCENT_SCALE, + .util = SCHED_CAPACITY_SCALE, + .ret = 0, + }; + + buf = strim(buf); + if (strcmp(buf, "max")) { + req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, + &req.percent); + if (req.ret) + return req; + if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { + req.ret = -ERANGE; + return req; + } + + req.util = req.percent << SCHED_CAPACITY_SHIFT; + req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); + } + + return req; +} + +static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off, + enum uclamp_id clamp_id) +{ + struct uclamp_request req; + struct task_group *tg; + + req = capacity_from_percent(buf); + if (req.ret) + return req.ret; + + static_branch_enable(&sched_uclamp_used); + + mutex_lock(&uclamp_mutex); + rcu_read_lock(); + + tg = css_tg(of_css(of)); + if (tg->uclamp_req[clamp_id].value != req.util) + uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); + + /* + * Because of not recoverable conversion rounding we keep track of the + * exact requested value + */ + tg->uclamp_pct[clamp_id] = req.percent; + + /* Update effective clamps to track the most restrictive value */ + cpu_util_update_eff(of_css(of)); + + rcu_read_unlock(); + mutex_unlock(&uclamp_mutex); + + return nbytes; +} + +static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, + loff_t off) +{ + return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); +} + +static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, + loff_t off) +{ + return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); +} + +static inline void cpu_uclamp_print(struct seq_file *sf, + enum uclamp_id clamp_id) +{ + struct task_group *tg; + u64 util_clamp; + u64 percent; + u32 rem; + + rcu_read_lock(); + tg = css_tg(seq_css(sf)); + util_clamp = tg->uclamp_req[clamp_id].value; + rcu_read_unlock(); + + if (util_clamp == SCHED_CAPACITY_SCALE) { + seq_puts(sf, "max\n"); + return; + } + + percent = tg->uclamp_pct[clamp_id]; + percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); + seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); +} + +static int cpu_uclamp_min_show(struct seq_file *sf, void *v) +{ + cpu_uclamp_print(sf, UCLAMP_MIN); + return 0; +} + +static int cpu_uclamp_max_show(struct seq_file *sf, void *v) +{ + cpu_uclamp_print(sf, UCLAMP_MAX); + return 0; +} +#endif /* CONFIG_UCLAMP_TASK_GROUP */ + +#ifdef CONFIG_FAIR_GROUP_SCHED +static int cpu_shares_write_u64(struct cgroup_subsys_state *css, + struct cftype *cftype, u64 shareval) +{ + if (shareval > scale_load_down(ULONG_MAX)) + shareval = MAX_SHARES; + return sched_group_set_shares(css_tg(css), scale_load(shareval)); +} + +static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + struct task_group *tg = css_tg(css); + + return (u64) scale_load_down(tg->shares); +} + +#ifdef CONFIG_CFS_BANDWIDTH +static DEFINE_MUTEX(cfs_constraints_mutex); + +const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ +static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ +/* More than 203 days if BW_SHIFT equals 20. */ +static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; + +static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); + +static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, + u64 burst) +{ + int i, ret = 0, runtime_enabled, runtime_was_enabled; + struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; + + if (tg == &root_task_group) + return -EINVAL; + + /* + * Ensure we have at some amount of bandwidth every period. This is + * to prevent reaching a state of large arrears when throttled via + * entity_tick() resulting in prolonged exit starvation. + */ + if (quota < min_cfs_quota_period || period < min_cfs_quota_period) + return -EINVAL; + + /* + * Likewise, bound things on the other side by preventing insane quota + * periods. This also allows us to normalize in computing quota + * feasibility. + */ + if (period > max_cfs_quota_period) + return -EINVAL; + + /* + * Bound quota to defend quota against overflow during bandwidth shift. + */ + if (quota != RUNTIME_INF && quota > max_cfs_runtime) + return -EINVAL; + + if (quota != RUNTIME_INF && (burst > quota || + burst + quota > max_cfs_runtime)) + return -EINVAL; + + /* + * Prevent race between setting of cfs_rq->runtime_enabled and + * unthrottle_offline_cfs_rqs(). + */ + cpus_read_lock(); + mutex_lock(&cfs_constraints_mutex); + ret = __cfs_schedulable(tg, period, quota); + if (ret) + goto out_unlock; + + runtime_enabled = quota != RUNTIME_INF; + runtime_was_enabled = cfs_b->quota != RUNTIME_INF; + /* + * If we need to toggle cfs_bandwidth_used, off->on must occur + * before making related changes, and on->off must occur afterwards + */ + if (runtime_enabled && !runtime_was_enabled) + cfs_bandwidth_usage_inc(); + raw_spin_lock_irq(&cfs_b->lock); + cfs_b->period = ns_to_ktime(period); + cfs_b->quota = quota; + cfs_b->burst = burst; + + __refill_cfs_bandwidth_runtime(cfs_b); + + /* Restart the period timer (if active) to handle new period expiry: */ + if (runtime_enabled) + start_cfs_bandwidth(cfs_b); + + raw_spin_unlock_irq(&cfs_b->lock); + + for_each_online_cpu(i) { + struct cfs_rq *cfs_rq = tg->cfs_rq[i]; + struct rq *rq = cfs_rq->rq; + struct rq_flags rf; + + rq_lock_irq(rq, &rf); + cfs_rq->runtime_enabled = runtime_enabled; + cfs_rq->runtime_remaining = 0; + + if (cfs_rq->throttled) + unthrottle_cfs_rq(cfs_rq); + rq_unlock_irq(rq, &rf); + } + if (runtime_was_enabled && !runtime_enabled) + cfs_bandwidth_usage_dec(); +out_unlock: + mutex_unlock(&cfs_constraints_mutex); + cpus_read_unlock(); + + return ret; +} + +static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) +{ + u64 quota, period, burst; + + period = ktime_to_ns(tg->cfs_bandwidth.period); + burst = tg->cfs_bandwidth.burst; + if (cfs_quota_us < 0) + quota = RUNTIME_INF; + else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) + quota = (u64)cfs_quota_us * NSEC_PER_USEC; + else + return -EINVAL; + + return tg_set_cfs_bandwidth(tg, period, quota, burst); +} + +static long tg_get_cfs_quota(struct task_group *tg) +{ + u64 quota_us; + + if (tg->cfs_bandwidth.quota == RUNTIME_INF) + return -1; + + quota_us = tg->cfs_bandwidth.quota; + do_div(quota_us, NSEC_PER_USEC); + + return quota_us; +} + +static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) +{ + u64 quota, period, burst; + + if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) + return -EINVAL; + + period = (u64)cfs_period_us * NSEC_PER_USEC; + quota = tg->cfs_bandwidth.quota; + burst = tg->cfs_bandwidth.burst; + + return tg_set_cfs_bandwidth(tg, period, quota, burst); +} + +static long tg_get_cfs_period(struct task_group *tg) +{ + u64 cfs_period_us; + + cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); + do_div(cfs_period_us, NSEC_PER_USEC); + + return cfs_period_us; +} + +static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) +{ + u64 quota, period, burst; + + if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) + return -EINVAL; + + burst = (u64)cfs_burst_us * NSEC_PER_USEC; + period = ktime_to_ns(tg->cfs_bandwidth.period); + quota = tg->cfs_bandwidth.quota; + + return tg_set_cfs_bandwidth(tg, period, quota, burst); +} + +static long tg_get_cfs_burst(struct task_group *tg) +{ + u64 burst_us; + + burst_us = tg->cfs_bandwidth.burst; + do_div(burst_us, NSEC_PER_USEC); + + return burst_us; +} + +static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + return tg_get_cfs_quota(css_tg(css)); +} + +static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, + struct cftype *cftype, s64 cfs_quota_us) +{ + return tg_set_cfs_quota(css_tg(css), cfs_quota_us); +} + +static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + return tg_get_cfs_period(css_tg(css)); +} + +static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, + struct cftype *cftype, u64 cfs_period_us) +{ + return tg_set_cfs_period(css_tg(css), cfs_period_us); +} + +static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + return tg_get_cfs_burst(css_tg(css)); +} + +static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, + struct cftype *cftype, u64 cfs_burst_us) +{ + return tg_set_cfs_burst(css_tg(css), cfs_burst_us); +} + +struct cfs_schedulable_data { + struct task_group *tg; + u64 period, quota; +}; + +/* + * normalize group quota/period to be quota/max_period + * note: units are usecs + */ +static u64 normalize_cfs_quota(struct task_group *tg, + struct cfs_schedulable_data *d) +{ + u64 quota, period; + + if (tg == d->tg) { + period = d->period; + quota = d->quota; + } else { + period = tg_get_cfs_period(tg); + quota = tg_get_cfs_quota(tg); + } + + /* note: these should typically be equivalent */ + if (quota == RUNTIME_INF || quota == -1) + return RUNTIME_INF; + + return to_ratio(period, quota); +} + +static int tg_cfs_schedulable_down(struct task_group *tg, void *data) +{ + struct cfs_schedulable_data *d = data; + struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; + s64 quota = 0, parent_quota = -1; + + if (!tg->parent) { + quota = RUNTIME_INF; + } else { + struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; + + quota = normalize_cfs_quota(tg, d); + parent_quota = parent_b->hierarchical_quota; + + /* + * Ensure max(child_quota) <= parent_quota. On cgroup2, + * always take the min. On cgroup1, only inherit when no + * limit is set: + */ + if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { + quota = min(quota, parent_quota); + } else { + if (quota == RUNTIME_INF) + quota = parent_quota; + else if (parent_quota != RUNTIME_INF && quota > parent_quota) + return -EINVAL; + } + } + cfs_b->hierarchical_quota = quota; + + return 0; +} + +static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) +{ + int ret; + struct cfs_schedulable_data data = { + .tg = tg, + .period = period, + .quota = quota, + }; + + if (quota != RUNTIME_INF) { + do_div(data.period, NSEC_PER_USEC); + do_div(data.quota, NSEC_PER_USEC); + } + + rcu_read_lock(); + ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); + rcu_read_unlock(); + + return ret; +} + +static int cpu_cfs_stat_show(struct seq_file *sf, void *v) +{ + struct task_group *tg = css_tg(seq_css(sf)); + struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; + + seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); + seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); + seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); + + if (schedstat_enabled() && tg != &root_task_group) { + struct sched_statistics *stats; + u64 ws = 0; + int i; + + for_each_possible_cpu(i) { + stats = __schedstats_from_se(tg->se[i]); + ws += schedstat_val(stats->wait_sum); + } + + seq_printf(sf, "wait_sum %llu\n", ws); + } + + seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); + seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); + + return 0; +} +#endif /* CONFIG_CFS_BANDWIDTH */ +#endif /* CONFIG_FAIR_GROUP_SCHED */ + +#ifdef CONFIG_RT_GROUP_SCHED +static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, + struct cftype *cft, s64 val) +{ + return sched_group_set_rt_runtime(css_tg(css), val); +} + +static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + return sched_group_rt_runtime(css_tg(css)); +} + +static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, + struct cftype *cftype, u64 rt_period_us) +{ + return sched_group_set_rt_period(css_tg(css), rt_period_us); +} + +static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + return sched_group_rt_period(css_tg(css)); +} +#endif /* CONFIG_RT_GROUP_SCHED */ + +#ifdef CONFIG_FAIR_GROUP_SCHED +static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + return css_tg(css)->idle; +} + +static int cpu_idle_write_s64(struct cgroup_subsys_state *css, + struct cftype *cft, s64 idle) +{ + return sched_group_set_idle(css_tg(css), idle); +} +#endif + +static struct cftype cpu_legacy_files[] = { +#ifdef CONFIG_FAIR_GROUP_SCHED + { + .name = "shares", + .read_u64 = cpu_shares_read_u64, + .write_u64 = cpu_shares_write_u64, + }, + { + .name = "idle", + .read_s64 = cpu_idle_read_s64, + .write_s64 = cpu_idle_write_s64, + }, +#endif +#ifdef CONFIG_CFS_BANDWIDTH + { + .name = "cfs_quota_us", + .read_s64 = cpu_cfs_quota_read_s64, + .write_s64 = cpu_cfs_quota_write_s64, + }, + { + .name = "cfs_period_us", + .read_u64 = cpu_cfs_period_read_u64, + .write_u64 = cpu_cfs_period_write_u64, + }, + { + .name = "cfs_burst_us", + .read_u64 = cpu_cfs_burst_read_u64, + .write_u64 = cpu_cfs_burst_write_u64, + }, + { + .name = "stat", + .seq_show = cpu_cfs_stat_show, + }, +#endif +#ifdef CONFIG_RT_GROUP_SCHED + { + .name = "rt_runtime_us", + .read_s64 = cpu_rt_runtime_read, + .write_s64 = cpu_rt_runtime_write, + }, + { + .name = "rt_period_us", + .read_u64 = cpu_rt_period_read_uint, + .write_u64 = cpu_rt_period_write_uint, + }, +#endif +#ifdef CONFIG_UCLAMP_TASK_GROUP + { + .name = "uclamp.min", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = cpu_uclamp_min_show, + .write = cpu_uclamp_min_write, + }, + { + .name = "uclamp.max", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = cpu_uclamp_max_show, + .write = cpu_uclamp_max_write, + }, +#endif + { } /* Terminate */ +}; + +static int cpu_extra_stat_show(struct seq_file *sf, + struct cgroup_subsys_state *css) +{ +#ifdef CONFIG_CFS_BANDWIDTH + { + struct task_group *tg = css_tg(css); + struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; + u64 throttled_usec, burst_usec; + + throttled_usec = cfs_b->throttled_time; + do_div(throttled_usec, NSEC_PER_USEC); + burst_usec = cfs_b->burst_time; + do_div(burst_usec, NSEC_PER_USEC); + + seq_printf(sf, "nr_periods %d\n" + "nr_throttled %d\n" + "throttled_usec %llu\n" + "nr_bursts %d\n" + "burst_usec %llu\n", + cfs_b->nr_periods, cfs_b->nr_throttled, + throttled_usec, cfs_b->nr_burst, burst_usec); + } +#endif + return 0; +} + +#ifdef CONFIG_FAIR_GROUP_SCHED +static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + struct task_group *tg = css_tg(css); + u64 weight = scale_load_down(tg->shares); + + return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); +} + +static int cpu_weight_write_u64(struct cgroup_subsys_state *css, + struct cftype *cft, u64 weight) +{ + /* + * cgroup weight knobs should use the common MIN, DFL and MAX + * values which are 1, 100 and 10000 respectively. While it loses + * a bit of range on both ends, it maps pretty well onto the shares + * value used by scheduler and the round-trip conversions preserve + * the original value over the entire range. + */ + if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) + return -ERANGE; + + weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); + + return sched_group_set_shares(css_tg(css), scale_load(weight)); +} + +static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + unsigned long weight = scale_load_down(css_tg(css)->shares); + int last_delta = INT_MAX; + int prio, delta; + + /* find the closest nice value to the current weight */ + for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { + delta = abs(sched_prio_to_weight[prio] - weight); + if (delta >= last_delta) + break; + last_delta = delta; + } + + return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); +} + +static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, + struct cftype *cft, s64 nice) +{ + unsigned long weight; + int idx; + + if (nice < MIN_NICE || nice > MAX_NICE) + return -ERANGE; + + idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; + idx = array_index_nospec(idx, 40); + weight = sched_prio_to_weight[idx]; + + return sched_group_set_shares(css_tg(css), scale_load(weight)); +} +#endif + +static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, + long period, long quota) +{ + if (quota < 0) + seq_puts(sf, "max"); + else + seq_printf(sf, "%ld", quota); + + seq_printf(sf, " %ld\n", period); +} + +/* caller should put the current value in *@periodp before calling */ +static int __maybe_unused cpu_period_quota_parse(char *buf, + u64 *periodp, u64 *quotap) +{ + char tok[21]; /* U64_MAX */ + + if (sscanf(buf, "%20s %llu", tok, periodp) < 1) + return -EINVAL; + + *periodp *= NSEC_PER_USEC; + + if (sscanf(tok, "%llu", quotap)) + *quotap *= NSEC_PER_USEC; + else if (!strcmp(tok, "max")) + *quotap = RUNTIME_INF; + else + return -EINVAL; + + return 0; +} + +#ifdef CONFIG_CFS_BANDWIDTH +static int cpu_max_show(struct seq_file *sf, void *v) +{ + struct task_group *tg = css_tg(seq_css(sf)); + + cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); + return 0; +} + +static ssize_t cpu_max_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + struct task_group *tg = css_tg(of_css(of)); + u64 period = tg_get_cfs_period(tg); + u64 burst = tg_get_cfs_burst(tg); + u64 quota; + int ret; + + ret = cpu_period_quota_parse(buf, &period, "a); + if (!ret) + ret = tg_set_cfs_bandwidth(tg, period, quota, burst); + return ret ?: nbytes; +} +#endif + +static struct cftype cpu_files[] = { +#ifdef CONFIG_FAIR_GROUP_SCHED + { + .name = "weight", + .flags = CFTYPE_NOT_ON_ROOT, + .read_u64 = cpu_weight_read_u64, + .write_u64 = cpu_weight_write_u64, + }, + { + .name = "weight.nice", + .flags = CFTYPE_NOT_ON_ROOT, + .read_s64 = cpu_weight_nice_read_s64, + .write_s64 = cpu_weight_nice_write_s64, + }, + { + .name = "idle", + .flags = CFTYPE_NOT_ON_ROOT, + .read_s64 = cpu_idle_read_s64, + .write_s64 = cpu_idle_write_s64, + }, +#endif +#ifdef CONFIG_CFS_BANDWIDTH + { + .name = "max", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = cpu_max_show, + .write = cpu_max_write, + }, + { + .name = "max.burst", + .flags = CFTYPE_NOT_ON_ROOT, + .read_u64 = cpu_cfs_burst_read_u64, + .write_u64 = cpu_cfs_burst_write_u64, + }, +#endif +#ifdef CONFIG_UCLAMP_TASK_GROUP + { + .name = "uclamp.min", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = cpu_uclamp_min_show, + .write = cpu_uclamp_min_write, + }, + { + .name = "uclamp.max", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = cpu_uclamp_max_show, + .write = cpu_uclamp_max_write, + }, +#endif + { } /* terminate */ +}; + +struct cgroup_subsys cpu_cgrp_subsys = { + .css_alloc = cpu_cgroup_css_alloc, + .css_online = cpu_cgroup_css_online, + .css_released = cpu_cgroup_css_released, + .css_free = cpu_cgroup_css_free, + .css_extra_stat_show = cpu_extra_stat_show, +#ifdef CONFIG_RT_GROUP_SCHED + .can_attach = cpu_cgroup_can_attach, +#endif + .attach = cpu_cgroup_attach, + .legacy_cftypes = cpu_legacy_files, + .dfl_cftypes = cpu_files, + .early_init = true, + .threaded = true, +}; + +#endif /* CONFIG_CGROUP_SCHED */ + +void dump_cpu_task(int cpu) +{ + if (cpu == smp_processor_id() && in_hardirq()) { + struct pt_regs *regs; + + regs = get_irq_regs(); + if (regs) { + show_regs(regs); + return; + } + } + + if (trigger_single_cpu_backtrace(cpu)) + return; + + pr_info("Task dump for CPU %d:\n", cpu); + sched_show_task(cpu_curr(cpu)); +} + +/* + * Nice levels are multiplicative, with a gentle 10% change for every + * nice level changed. I.e. when a CPU-bound task goes from nice 0 to + * nice 1, it will get ~10% less CPU time than another CPU-bound task + * that remained on nice 0. + * + * The "10% effect" is relative and cumulative: from _any_ nice level, + * if you go up 1 level, it's -10% CPU usage, if you go down 1 level + * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. + * If a task goes up by ~10% and another task goes down by ~10% then + * the relative distance between them is ~25%.) + */ +const int sched_prio_to_weight[40] = { + /* -20 */ 88761, 71755, 56483, 46273, 36291, + /* -15 */ 29154, 23254, 18705, 14949, 11916, + /* -10 */ 9548, 7620, 6100, 4904, 3906, + /* -5 */ 3121, 2501, 1991, 1586, 1277, + /* 0 */ 1024, 820, 655, 526, 423, + /* 5 */ 335, 272, 215, 172, 137, + /* 10 */ 110, 87, 70, 56, 45, + /* 15 */ 36, 29, 23, 18, 15, +}; + +/* + * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. + * + * In cases where the weight does not change often, we can use the + * precalculated inverse to speed up arithmetics by turning divisions + * into multiplications: + */ +const u32 sched_prio_to_wmult[40] = { + /* -20 */ 48388, 59856, 76040, 92818, 118348, + /* -15 */ 147320, 184698, 229616, 287308, 360437, + /* -10 */ 449829, 563644, 704093, 875809, 1099582, + /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, + /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, + /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, + /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, + /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, +}; + +void call_trace_sched_update_nr_running(struct rq *rq, int count) +{ + trace_sched_update_nr_running_tp(rq, count); +} |