diff options
Diffstat (limited to '')
-rw-r--r-- | lib/bitmap.c | 1551 |
1 files changed, 1551 insertions, 0 deletions
diff --git a/lib/bitmap.c b/lib/bitmap.c new file mode 100644 index 000000000..ddb31015e --- /dev/null +++ b/lib/bitmap.c @@ -0,0 +1,1551 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * lib/bitmap.c + * Helper functions for bitmap.h. + */ + +#include <linux/bitmap.h> +#include <linux/bitops.h> +#include <linux/bug.h> +#include <linux/ctype.h> +#include <linux/device.h> +#include <linux/errno.h> +#include <linux/export.h> +#include <linux/kernel.h> +#include <linux/mm.h> +#include <linux/slab.h> +#include <linux/string.h> +#include <linux/thread_info.h> +#include <linux/uaccess.h> + +#include <asm/page.h> + +#include "kstrtox.h" + +/** + * DOC: bitmap introduction + * + * bitmaps provide an array of bits, implemented using an + * array of unsigned longs. The number of valid bits in a + * given bitmap does _not_ need to be an exact multiple of + * BITS_PER_LONG. + * + * The possible unused bits in the last, partially used word + * of a bitmap are 'don't care'. The implementation makes + * no particular effort to keep them zero. It ensures that + * their value will not affect the results of any operation. + * The bitmap operations that return Boolean (bitmap_empty, + * for example) or scalar (bitmap_weight, for example) results + * carefully filter out these unused bits from impacting their + * results. + * + * The byte ordering of bitmaps is more natural on little + * endian architectures. See the big-endian headers + * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h + * for the best explanations of this ordering. + */ + +bool __bitmap_equal(const unsigned long *bitmap1, + const unsigned long *bitmap2, unsigned int bits) +{ + unsigned int k, lim = bits/BITS_PER_LONG; + for (k = 0; k < lim; ++k) + if (bitmap1[k] != bitmap2[k]) + return false; + + if (bits % BITS_PER_LONG) + if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) + return false; + + return true; +} +EXPORT_SYMBOL(__bitmap_equal); + +bool __bitmap_or_equal(const unsigned long *bitmap1, + const unsigned long *bitmap2, + const unsigned long *bitmap3, + unsigned int bits) +{ + unsigned int k, lim = bits / BITS_PER_LONG; + unsigned long tmp; + + for (k = 0; k < lim; ++k) { + if ((bitmap1[k] | bitmap2[k]) != bitmap3[k]) + return false; + } + + if (!(bits % BITS_PER_LONG)) + return true; + + tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k]; + return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0; +} + +void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) +{ + unsigned int k, lim = BITS_TO_LONGS(bits); + for (k = 0; k < lim; ++k) + dst[k] = ~src[k]; +} +EXPORT_SYMBOL(__bitmap_complement); + +/** + * __bitmap_shift_right - logical right shift of the bits in a bitmap + * @dst : destination bitmap + * @src : source bitmap + * @shift : shift by this many bits + * @nbits : bitmap size, in bits + * + * Shifting right (dividing) means moving bits in the MS -> LS bit + * direction. Zeros are fed into the vacated MS positions and the + * LS bits shifted off the bottom are lost. + */ +void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, + unsigned shift, unsigned nbits) +{ + unsigned k, lim = BITS_TO_LONGS(nbits); + unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; + unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); + for (k = 0; off + k < lim; ++k) { + unsigned long upper, lower; + + /* + * If shift is not word aligned, take lower rem bits of + * word above and make them the top rem bits of result. + */ + if (!rem || off + k + 1 >= lim) + upper = 0; + else { + upper = src[off + k + 1]; + if (off + k + 1 == lim - 1) + upper &= mask; + upper <<= (BITS_PER_LONG - rem); + } + lower = src[off + k]; + if (off + k == lim - 1) + lower &= mask; + lower >>= rem; + dst[k] = lower | upper; + } + if (off) + memset(&dst[lim - off], 0, off*sizeof(unsigned long)); +} +EXPORT_SYMBOL(__bitmap_shift_right); + + +/** + * __bitmap_shift_left - logical left shift of the bits in a bitmap + * @dst : destination bitmap + * @src : source bitmap + * @shift : shift by this many bits + * @nbits : bitmap size, in bits + * + * Shifting left (multiplying) means moving bits in the LS -> MS + * direction. Zeros are fed into the vacated LS bit positions + * and those MS bits shifted off the top are lost. + */ + +void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, + unsigned int shift, unsigned int nbits) +{ + int k; + unsigned int lim = BITS_TO_LONGS(nbits); + unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; + for (k = lim - off - 1; k >= 0; --k) { + unsigned long upper, lower; + + /* + * If shift is not word aligned, take upper rem bits of + * word below and make them the bottom rem bits of result. + */ + if (rem && k > 0) + lower = src[k - 1] >> (BITS_PER_LONG - rem); + else + lower = 0; + upper = src[k] << rem; + dst[k + off] = lower | upper; + } + if (off) + memset(dst, 0, off*sizeof(unsigned long)); +} +EXPORT_SYMBOL(__bitmap_shift_left); + +/** + * bitmap_cut() - remove bit region from bitmap and right shift remaining bits + * @dst: destination bitmap, might overlap with src + * @src: source bitmap + * @first: start bit of region to be removed + * @cut: number of bits to remove + * @nbits: bitmap size, in bits + * + * Set the n-th bit of @dst iff the n-th bit of @src is set and + * n is less than @first, or the m-th bit of @src is set for any + * m such that @first <= n < nbits, and m = n + @cut. + * + * In pictures, example for a big-endian 32-bit architecture: + * + * The @src bitmap is:: + * + * 31 63 + * | | + * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101 + * | | | | + * 16 14 0 32 + * + * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is:: + * + * 31 63 + * | | + * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010 + * | | | + * 14 (bit 17 0 32 + * from @src) + * + * Note that @dst and @src might overlap partially or entirely. + * + * This is implemented in the obvious way, with a shift and carry + * step for each moved bit. Optimisation is left as an exercise + * for the compiler. + */ +void bitmap_cut(unsigned long *dst, const unsigned long *src, + unsigned int first, unsigned int cut, unsigned int nbits) +{ + unsigned int len = BITS_TO_LONGS(nbits); + unsigned long keep = 0, carry; + int i; + + if (first % BITS_PER_LONG) { + keep = src[first / BITS_PER_LONG] & + (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG)); + } + + memmove(dst, src, len * sizeof(*dst)); + + while (cut--) { + for (i = first / BITS_PER_LONG; i < len; i++) { + if (i < len - 1) + carry = dst[i + 1] & 1UL; + else + carry = 0; + + dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1)); + } + } + + dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG); + dst[first / BITS_PER_LONG] |= keep; +} +EXPORT_SYMBOL(bitmap_cut); + +bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, + const unsigned long *bitmap2, unsigned int bits) +{ + unsigned int k; + unsigned int lim = bits/BITS_PER_LONG; + unsigned long result = 0; + + for (k = 0; k < lim; k++) + result |= (dst[k] = bitmap1[k] & bitmap2[k]); + if (bits % BITS_PER_LONG) + result |= (dst[k] = bitmap1[k] & bitmap2[k] & + BITMAP_LAST_WORD_MASK(bits)); + return result != 0; +} +EXPORT_SYMBOL(__bitmap_and); + +void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, + const unsigned long *bitmap2, unsigned int bits) +{ + unsigned int k; + unsigned int nr = BITS_TO_LONGS(bits); + + for (k = 0; k < nr; k++) + dst[k] = bitmap1[k] | bitmap2[k]; +} +EXPORT_SYMBOL(__bitmap_or); + +void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, + const unsigned long *bitmap2, unsigned int bits) +{ + unsigned int k; + unsigned int nr = BITS_TO_LONGS(bits); + + for (k = 0; k < nr; k++) + dst[k] = bitmap1[k] ^ bitmap2[k]; +} +EXPORT_SYMBOL(__bitmap_xor); + +bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, + const unsigned long *bitmap2, unsigned int bits) +{ + unsigned int k; + unsigned int lim = bits/BITS_PER_LONG; + unsigned long result = 0; + + for (k = 0; k < lim; k++) + result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); + if (bits % BITS_PER_LONG) + result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & + BITMAP_LAST_WORD_MASK(bits)); + return result != 0; +} +EXPORT_SYMBOL(__bitmap_andnot); + +void __bitmap_replace(unsigned long *dst, + const unsigned long *old, const unsigned long *new, + const unsigned long *mask, unsigned int nbits) +{ + unsigned int k; + unsigned int nr = BITS_TO_LONGS(nbits); + + for (k = 0; k < nr; k++) + dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]); +} +EXPORT_SYMBOL(__bitmap_replace); + +bool __bitmap_intersects(const unsigned long *bitmap1, + const unsigned long *bitmap2, unsigned int bits) +{ + unsigned int k, lim = bits/BITS_PER_LONG; + for (k = 0; k < lim; ++k) + if (bitmap1[k] & bitmap2[k]) + return true; + + if (bits % BITS_PER_LONG) + if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) + return true; + return false; +} +EXPORT_SYMBOL(__bitmap_intersects); + +bool __bitmap_subset(const unsigned long *bitmap1, + const unsigned long *bitmap2, unsigned int bits) +{ + unsigned int k, lim = bits/BITS_PER_LONG; + for (k = 0; k < lim; ++k) + if (bitmap1[k] & ~bitmap2[k]) + return false; + + if (bits % BITS_PER_LONG) + if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) + return false; + return true; +} +EXPORT_SYMBOL(__bitmap_subset); + +#define BITMAP_WEIGHT(FETCH, bits) \ +({ \ + unsigned int __bits = (bits), idx, w = 0; \ + \ + for (idx = 0; idx < __bits / BITS_PER_LONG; idx++) \ + w += hweight_long(FETCH); \ + \ + if (__bits % BITS_PER_LONG) \ + w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits)); \ + \ + w; \ +}) + +unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) +{ + return BITMAP_WEIGHT(bitmap[idx], bits); +} +EXPORT_SYMBOL(__bitmap_weight); + +unsigned int __bitmap_weight_and(const unsigned long *bitmap1, + const unsigned long *bitmap2, unsigned int bits) +{ + return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits); +} +EXPORT_SYMBOL(__bitmap_weight_and); + +void __bitmap_set(unsigned long *map, unsigned int start, int len) +{ + unsigned long *p = map + BIT_WORD(start); + const unsigned int size = start + len; + int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); + unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); + + while (len - bits_to_set >= 0) { + *p |= mask_to_set; + len -= bits_to_set; + bits_to_set = BITS_PER_LONG; + mask_to_set = ~0UL; + p++; + } + if (len) { + mask_to_set &= BITMAP_LAST_WORD_MASK(size); + *p |= mask_to_set; + } +} +EXPORT_SYMBOL(__bitmap_set); + +void __bitmap_clear(unsigned long *map, unsigned int start, int len) +{ + unsigned long *p = map + BIT_WORD(start); + const unsigned int size = start + len; + int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); + unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); + + while (len - bits_to_clear >= 0) { + *p &= ~mask_to_clear; + len -= bits_to_clear; + bits_to_clear = BITS_PER_LONG; + mask_to_clear = ~0UL; + p++; + } + if (len) { + mask_to_clear &= BITMAP_LAST_WORD_MASK(size); + *p &= ~mask_to_clear; + } +} +EXPORT_SYMBOL(__bitmap_clear); + +/** + * bitmap_find_next_zero_area_off - find a contiguous aligned zero area + * @map: The address to base the search on + * @size: The bitmap size in bits + * @start: The bitnumber to start searching at + * @nr: The number of zeroed bits we're looking for + * @align_mask: Alignment mask for zero area + * @align_offset: Alignment offset for zero area. + * + * The @align_mask should be one less than a power of 2; the effect is that + * the bit offset of all zero areas this function finds plus @align_offset + * is multiple of that power of 2. + */ +unsigned long bitmap_find_next_zero_area_off(unsigned long *map, + unsigned long size, + unsigned long start, + unsigned int nr, + unsigned long align_mask, + unsigned long align_offset) +{ + unsigned long index, end, i; +again: + index = find_next_zero_bit(map, size, start); + + /* Align allocation */ + index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; + + end = index + nr; + if (end > size) + return end; + i = find_next_bit(map, end, index); + if (i < end) { + start = i + 1; + goto again; + } + return index; +} +EXPORT_SYMBOL(bitmap_find_next_zero_area_off); + +/* + * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers, + * second version by Paul Jackson, third by Joe Korty. + */ + +/** + * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap + * + * @ubuf: pointer to user buffer containing string. + * @ulen: buffer size in bytes. If string is smaller than this + * then it must be terminated with a \0. + * @maskp: pointer to bitmap array that will contain result. + * @nmaskbits: size of bitmap, in bits. + */ +int bitmap_parse_user(const char __user *ubuf, + unsigned int ulen, unsigned long *maskp, + int nmaskbits) +{ + char *buf; + int ret; + + buf = memdup_user_nul(ubuf, ulen); + if (IS_ERR(buf)) + return PTR_ERR(buf); + + ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits); + + kfree(buf); + return ret; +} +EXPORT_SYMBOL(bitmap_parse_user); + +/** + * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string + * @list: indicates whether the bitmap must be list + * @buf: page aligned buffer into which string is placed + * @maskp: pointer to bitmap to convert + * @nmaskbits: size of bitmap, in bits + * + * Output format is a comma-separated list of decimal numbers and + * ranges if list is specified or hex digits grouped into comma-separated + * sets of 8 digits/set. Returns the number of characters written to buf. + * + * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned + * area and that sufficient storage remains at @buf to accommodate the + * bitmap_print_to_pagebuf() output. Returns the number of characters + * actually printed to @buf, excluding terminating '\0'. + */ +int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, + int nmaskbits) +{ + ptrdiff_t len = PAGE_SIZE - offset_in_page(buf); + + return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) : + scnprintf(buf, len, "%*pb\n", nmaskbits, maskp); +} +EXPORT_SYMBOL(bitmap_print_to_pagebuf); + +/** + * bitmap_print_to_buf - convert bitmap to list or hex format ASCII string + * @list: indicates whether the bitmap must be list + * true: print in decimal list format + * false: print in hexadecimal bitmask format + * @buf: buffer into which string is placed + * @maskp: pointer to bitmap to convert + * @nmaskbits: size of bitmap, in bits + * @off: in the string from which we are copying, We copy to @buf + * @count: the maximum number of bytes to print + */ +static int bitmap_print_to_buf(bool list, char *buf, const unsigned long *maskp, + int nmaskbits, loff_t off, size_t count) +{ + const char *fmt = list ? "%*pbl\n" : "%*pb\n"; + ssize_t size; + void *data; + + data = kasprintf(GFP_KERNEL, fmt, nmaskbits, maskp); + if (!data) + return -ENOMEM; + + size = memory_read_from_buffer(buf, count, &off, data, strlen(data) + 1); + kfree(data); + + return size; +} + +/** + * bitmap_print_bitmask_to_buf - convert bitmap to hex bitmask format ASCII string + * @buf: buffer into which string is placed + * @maskp: pointer to bitmap to convert + * @nmaskbits: size of bitmap, in bits + * @off: in the string from which we are copying, We copy to @buf + * @count: the maximum number of bytes to print + * + * The bitmap_print_to_pagebuf() is used indirectly via its cpumap wrapper + * cpumap_print_to_pagebuf() or directly by drivers to export hexadecimal + * bitmask and decimal list to userspace by sysfs ABI. + * Drivers might be using a normal attribute for this kind of ABIs. A + * normal attribute typically has show entry as below:: + * + * static ssize_t example_attribute_show(struct device *dev, + * struct device_attribute *attr, char *buf) + * { + * ... + * return bitmap_print_to_pagebuf(true, buf, &mask, nr_trig_max); + * } + * + * show entry of attribute has no offset and count parameters and this + * means the file is limited to one page only. + * bitmap_print_to_pagebuf() API works terribly well for this kind of + * normal attribute with buf parameter and without offset, count:: + * + * bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, + * int nmaskbits) + * { + * } + * + * The problem is once we have a large bitmap, we have a chance to get a + * bitmask or list more than one page. Especially for list, it could be + * as complex as 0,3,5,7,9,... We have no simple way to know it exact size. + * It turns out bin_attribute is a way to break this limit. bin_attribute + * has show entry as below:: + * + * static ssize_t + * example_bin_attribute_show(struct file *filp, struct kobject *kobj, + * struct bin_attribute *attr, char *buf, + * loff_t offset, size_t count) + * { + * ... + * } + * + * With the new offset and count parameters, this makes sysfs ABI be able + * to support file size more than one page. For example, offset could be + * >= 4096. + * bitmap_print_bitmask_to_buf(), bitmap_print_list_to_buf() wit their + * cpumap wrapper cpumap_print_bitmask_to_buf(), cpumap_print_list_to_buf() + * make those drivers be able to support large bitmask and list after they + * move to use bin_attribute. In result, we have to pass the corresponding + * parameters such as off, count from bin_attribute show entry to this API. + * + * The role of cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf() + * is similar with cpumap_print_to_pagebuf(), the difference is that + * bitmap_print_to_pagebuf() mainly serves sysfs attribute with the assumption + * the destination buffer is exactly one page and won't be more than one page. + * cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf(), on the other + * hand, mainly serves bin_attribute which doesn't work with exact one page, + * and it can break the size limit of converted decimal list and hexadecimal + * bitmask. + * + * WARNING! + * + * This function is not a replacement for sprintf() or bitmap_print_to_pagebuf(). + * It is intended to workaround sysfs limitations discussed above and should be + * used carefully in general case for the following reasons: + * + * - Time complexity is O(nbits^2/count), comparing to O(nbits) for snprintf(). + * - Memory complexity is O(nbits), comparing to O(1) for snprintf(). + * - @off and @count are NOT offset and number of bits to print. + * - If printing part of bitmap as list, the resulting string is not a correct + * list representation of bitmap. Particularly, some bits within or out of + * related interval may be erroneously set or unset. The format of the string + * may be broken, so bitmap_parselist-like parser may fail parsing it. + * - If printing the whole bitmap as list by parts, user must ensure the order + * of calls of the function such that the offset is incremented linearly. + * - If printing the whole bitmap as list by parts, user must keep bitmap + * unchanged between the very first and very last call. Otherwise concatenated + * result may be incorrect, and format may be broken. + * + * Returns the number of characters actually printed to @buf + */ +int bitmap_print_bitmask_to_buf(char *buf, const unsigned long *maskp, + int nmaskbits, loff_t off, size_t count) +{ + return bitmap_print_to_buf(false, buf, maskp, nmaskbits, off, count); +} +EXPORT_SYMBOL(bitmap_print_bitmask_to_buf); + +/** + * bitmap_print_list_to_buf - convert bitmap to decimal list format ASCII string + * @buf: buffer into which string is placed + * @maskp: pointer to bitmap to convert + * @nmaskbits: size of bitmap, in bits + * @off: in the string from which we are copying, We copy to @buf + * @count: the maximum number of bytes to print + * + * Everything is same with the above bitmap_print_bitmask_to_buf() except + * the print format. + */ +int bitmap_print_list_to_buf(char *buf, const unsigned long *maskp, + int nmaskbits, loff_t off, size_t count) +{ + return bitmap_print_to_buf(true, buf, maskp, nmaskbits, off, count); +} +EXPORT_SYMBOL(bitmap_print_list_to_buf); + +/* + * Region 9-38:4/10 describes the following bitmap structure: + * 0 9 12 18 38 N + * .........****......****......****.................. + * ^ ^ ^ ^ ^ + * start off group_len end nbits + */ +struct region { + unsigned int start; + unsigned int off; + unsigned int group_len; + unsigned int end; + unsigned int nbits; +}; + +static void bitmap_set_region(const struct region *r, unsigned long *bitmap) +{ + unsigned int start; + + for (start = r->start; start <= r->end; start += r->group_len) + bitmap_set(bitmap, start, min(r->end - start + 1, r->off)); +} + +static int bitmap_check_region(const struct region *r) +{ + if (r->start > r->end || r->group_len == 0 || r->off > r->group_len) + return -EINVAL; + + if (r->end >= r->nbits) + return -ERANGE; + + return 0; +} + +static const char *bitmap_getnum(const char *str, unsigned int *num, + unsigned int lastbit) +{ + unsigned long long n; + unsigned int len; + + if (str[0] == 'N') { + *num = lastbit; + return str + 1; + } + + len = _parse_integer(str, 10, &n); + if (!len) + return ERR_PTR(-EINVAL); + if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n) + return ERR_PTR(-EOVERFLOW); + + *num = n; + return str + len; +} + +static inline bool end_of_str(char c) +{ + return c == '\0' || c == '\n'; +} + +static inline bool __end_of_region(char c) +{ + return isspace(c) || c == ','; +} + +static inline bool end_of_region(char c) +{ + return __end_of_region(c) || end_of_str(c); +} + +/* + * The format allows commas and whitespaces at the beginning + * of the region. + */ +static const char *bitmap_find_region(const char *str) +{ + while (__end_of_region(*str)) + str++; + + return end_of_str(*str) ? NULL : str; +} + +static const char *bitmap_find_region_reverse(const char *start, const char *end) +{ + while (start <= end && __end_of_region(*end)) + end--; + + return end; +} + +static const char *bitmap_parse_region(const char *str, struct region *r) +{ + unsigned int lastbit = r->nbits - 1; + + if (!strncasecmp(str, "all", 3)) { + r->start = 0; + r->end = lastbit; + str += 3; + + goto check_pattern; + } + + str = bitmap_getnum(str, &r->start, lastbit); + if (IS_ERR(str)) + return str; + + if (end_of_region(*str)) + goto no_end; + + if (*str != '-') + return ERR_PTR(-EINVAL); + + str = bitmap_getnum(str + 1, &r->end, lastbit); + if (IS_ERR(str)) + return str; + +check_pattern: + if (end_of_region(*str)) + goto no_pattern; + + if (*str != ':') + return ERR_PTR(-EINVAL); + + str = bitmap_getnum(str + 1, &r->off, lastbit); + if (IS_ERR(str)) + return str; + + if (*str != '/') + return ERR_PTR(-EINVAL); + + return bitmap_getnum(str + 1, &r->group_len, lastbit); + +no_end: + r->end = r->start; +no_pattern: + r->off = r->end + 1; + r->group_len = r->end + 1; + + return end_of_str(*str) ? NULL : str; +} + +/** + * bitmap_parselist - convert list format ASCII string to bitmap + * @buf: read user string from this buffer; must be terminated + * with a \0 or \n. + * @maskp: write resulting mask here + * @nmaskbits: number of bits in mask to be written + * + * Input format is a comma-separated list of decimal numbers and + * ranges. Consecutively set bits are shown as two hyphen-separated + * decimal numbers, the smallest and largest bit numbers set in + * the range. + * Optionally each range can be postfixed to denote that only parts of it + * should be set. The range will divided to groups of specific size. + * From each group will be used only defined amount of bits. + * Syntax: range:used_size/group_size + * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769 + * The value 'N' can be used as a dynamically substituted token for the + * maximum allowed value; i.e (nmaskbits - 1). Keep in mind that it is + * dynamic, so if system changes cause the bitmap width to change, such + * as more cores in a CPU list, then any ranges using N will also change. + * + * Returns: 0 on success, -errno on invalid input strings. Error values: + * + * - ``-EINVAL``: wrong region format + * - ``-EINVAL``: invalid character in string + * - ``-ERANGE``: bit number specified too large for mask + * - ``-EOVERFLOW``: integer overflow in the input parameters + */ +int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits) +{ + struct region r; + long ret; + + r.nbits = nmaskbits; + bitmap_zero(maskp, r.nbits); + + while (buf) { + buf = bitmap_find_region(buf); + if (buf == NULL) + return 0; + + buf = bitmap_parse_region(buf, &r); + if (IS_ERR(buf)) + return PTR_ERR(buf); + + ret = bitmap_check_region(&r); + if (ret) + return ret; + + bitmap_set_region(&r, maskp); + } + + return 0; +} +EXPORT_SYMBOL(bitmap_parselist); + + +/** + * bitmap_parselist_user() - convert user buffer's list format ASCII + * string to bitmap + * + * @ubuf: pointer to user buffer containing string. + * @ulen: buffer size in bytes. If string is smaller than this + * then it must be terminated with a \0. + * @maskp: pointer to bitmap array that will contain result. + * @nmaskbits: size of bitmap, in bits. + * + * Wrapper for bitmap_parselist(), providing it with user buffer. + */ +int bitmap_parselist_user(const char __user *ubuf, + unsigned int ulen, unsigned long *maskp, + int nmaskbits) +{ + char *buf; + int ret; + + buf = memdup_user_nul(ubuf, ulen); + if (IS_ERR(buf)) + return PTR_ERR(buf); + + ret = bitmap_parselist(buf, maskp, nmaskbits); + + kfree(buf); + return ret; +} +EXPORT_SYMBOL(bitmap_parselist_user); + +static const char *bitmap_get_x32_reverse(const char *start, + const char *end, u32 *num) +{ + u32 ret = 0; + int c, i; + + for (i = 0; i < 32; i += 4) { + c = hex_to_bin(*end--); + if (c < 0) + return ERR_PTR(-EINVAL); + + ret |= c << i; + + if (start > end || __end_of_region(*end)) + goto out; + } + + if (hex_to_bin(*end--) >= 0) + return ERR_PTR(-EOVERFLOW); +out: + *num = ret; + return end; +} + +/** + * bitmap_parse - convert an ASCII hex string into a bitmap. + * @start: pointer to buffer containing string. + * @buflen: buffer size in bytes. If string is smaller than this + * then it must be terminated with a \0 or \n. In that case, + * UINT_MAX may be provided instead of string length. + * @maskp: pointer to bitmap array that will contain result. + * @nmaskbits: size of bitmap, in bits. + * + * Commas group hex digits into chunks. Each chunk defines exactly 32 + * bits of the resultant bitmask. No chunk may specify a value larger + * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value + * then leading 0-bits are prepended. %-EINVAL is returned for illegal + * characters. Grouping such as "1,,5", ",44", "," or "" is allowed. + * Leading, embedded and trailing whitespace accepted. + */ +int bitmap_parse(const char *start, unsigned int buflen, + unsigned long *maskp, int nmaskbits) +{ + const char *end = strnchrnul(start, buflen, '\n') - 1; + int chunks = BITS_TO_U32(nmaskbits); + u32 *bitmap = (u32 *)maskp; + int unset_bit; + int chunk; + + for (chunk = 0; ; chunk++) { + end = bitmap_find_region_reverse(start, end); + if (start > end) + break; + + if (!chunks--) + return -EOVERFLOW; + +#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) + end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]); +#else + end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]); +#endif + if (IS_ERR(end)) + return PTR_ERR(end); + } + + unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32; + if (unset_bit < nmaskbits) { + bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit); + return 0; + } + + if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit) + return -EOVERFLOW; + + return 0; +} +EXPORT_SYMBOL(bitmap_parse); + +/** + * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap + * @buf: pointer to a bitmap + * @pos: a bit position in @buf (0 <= @pos < @nbits) + * @nbits: number of valid bit positions in @buf + * + * Map the bit at position @pos in @buf (of length @nbits) to the + * ordinal of which set bit it is. If it is not set or if @pos + * is not a valid bit position, map to -1. + * + * If for example, just bits 4 through 7 are set in @buf, then @pos + * values 4 through 7 will get mapped to 0 through 3, respectively, + * and other @pos values will get mapped to -1. When @pos value 7 + * gets mapped to (returns) @ord value 3 in this example, that means + * that bit 7 is the 3rd (starting with 0th) set bit in @buf. + * + * The bit positions 0 through @bits are valid positions in @buf. + */ +static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) +{ + if (pos >= nbits || !test_bit(pos, buf)) + return -1; + + return bitmap_weight(buf, pos); +} + +/** + * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap + * @dst: remapped result + * @src: subset to be remapped + * @old: defines domain of map + * @new: defines range of map + * @nbits: number of bits in each of these bitmaps + * + * Let @old and @new define a mapping of bit positions, such that + * whatever position is held by the n-th set bit in @old is mapped + * to the n-th set bit in @new. In the more general case, allowing + * for the possibility that the weight 'w' of @new is less than the + * weight of @old, map the position of the n-th set bit in @old to + * the position of the m-th set bit in @new, where m == n % w. + * + * If either of the @old and @new bitmaps are empty, or if @src and + * @dst point to the same location, then this routine copies @src + * to @dst. + * + * The positions of unset bits in @old are mapped to themselves + * (the identify map). + * + * Apply the above specified mapping to @src, placing the result in + * @dst, clearing any bits previously set in @dst. + * + * For example, lets say that @old has bits 4 through 7 set, and + * @new has bits 12 through 15 set. This defines the mapping of bit + * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other + * bit positions unchanged. So if say @src comes into this routine + * with bits 1, 5 and 7 set, then @dst should leave with bits 1, + * 13 and 15 set. + */ +void bitmap_remap(unsigned long *dst, const unsigned long *src, + const unsigned long *old, const unsigned long *new, + unsigned int nbits) +{ + unsigned int oldbit, w; + + if (dst == src) /* following doesn't handle inplace remaps */ + return; + bitmap_zero(dst, nbits); + + w = bitmap_weight(new, nbits); + for_each_set_bit(oldbit, src, nbits) { + int n = bitmap_pos_to_ord(old, oldbit, nbits); + + if (n < 0 || w == 0) + set_bit(oldbit, dst); /* identity map */ + else + set_bit(find_nth_bit(new, nbits, n % w), dst); + } +} +EXPORT_SYMBOL(bitmap_remap); + +/** + * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit + * @oldbit: bit position to be mapped + * @old: defines domain of map + * @new: defines range of map + * @bits: number of bits in each of these bitmaps + * + * Let @old and @new define a mapping of bit positions, such that + * whatever position is held by the n-th set bit in @old is mapped + * to the n-th set bit in @new. In the more general case, allowing + * for the possibility that the weight 'w' of @new is less than the + * weight of @old, map the position of the n-th set bit in @old to + * the position of the m-th set bit in @new, where m == n % w. + * + * The positions of unset bits in @old are mapped to themselves + * (the identify map). + * + * Apply the above specified mapping to bit position @oldbit, returning + * the new bit position. + * + * For example, lets say that @old has bits 4 through 7 set, and + * @new has bits 12 through 15 set. This defines the mapping of bit + * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other + * bit positions unchanged. So if say @oldbit is 5, then this routine + * returns 13. + */ +int bitmap_bitremap(int oldbit, const unsigned long *old, + const unsigned long *new, int bits) +{ + int w = bitmap_weight(new, bits); + int n = bitmap_pos_to_ord(old, oldbit, bits); + if (n < 0 || w == 0) + return oldbit; + else + return find_nth_bit(new, bits, n % w); +} +EXPORT_SYMBOL(bitmap_bitremap); + +#ifdef CONFIG_NUMA +/** + * bitmap_onto - translate one bitmap relative to another + * @dst: resulting translated bitmap + * @orig: original untranslated bitmap + * @relmap: bitmap relative to which translated + * @bits: number of bits in each of these bitmaps + * + * Set the n-th bit of @dst iff there exists some m such that the + * n-th bit of @relmap is set, the m-th bit of @orig is set, and + * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. + * (If you understood the previous sentence the first time your + * read it, you're overqualified for your current job.) + * + * In other words, @orig is mapped onto (surjectively) @dst, + * using the map { <n, m> | the n-th bit of @relmap is the + * m-th set bit of @relmap }. + * + * Any set bits in @orig above bit number W, where W is the + * weight of (number of set bits in) @relmap are mapped nowhere. + * In particular, if for all bits m set in @orig, m >= W, then + * @dst will end up empty. In situations where the possibility + * of such an empty result is not desired, one way to avoid it is + * to use the bitmap_fold() operator, below, to first fold the + * @orig bitmap over itself so that all its set bits x are in the + * range 0 <= x < W. The bitmap_fold() operator does this by + * setting the bit (m % W) in @dst, for each bit (m) set in @orig. + * + * Example [1] for bitmap_onto(): + * Let's say @relmap has bits 30-39 set, and @orig has bits + * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, + * @dst will have bits 31, 33, 35, 37 and 39 set. + * + * When bit 0 is set in @orig, it means turn on the bit in + * @dst corresponding to whatever is the first bit (if any) + * that is turned on in @relmap. Since bit 0 was off in the + * above example, we leave off that bit (bit 30) in @dst. + * + * When bit 1 is set in @orig (as in the above example), it + * means turn on the bit in @dst corresponding to whatever + * is the second bit that is turned on in @relmap. The second + * bit in @relmap that was turned on in the above example was + * bit 31, so we turned on bit 31 in @dst. + * + * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, + * because they were the 4th, 6th, 8th and 10th set bits + * set in @relmap, and the 4th, 6th, 8th and 10th bits of + * @orig (i.e. bits 3, 5, 7 and 9) were also set. + * + * When bit 11 is set in @orig, it means turn on the bit in + * @dst corresponding to whatever is the twelfth bit that is + * turned on in @relmap. In the above example, there were + * only ten bits turned on in @relmap (30..39), so that bit + * 11 was set in @orig had no affect on @dst. + * + * Example [2] for bitmap_fold() + bitmap_onto(): + * Let's say @relmap has these ten bits set:: + * + * 40 41 42 43 45 48 53 61 74 95 + * + * (for the curious, that's 40 plus the first ten terms of the + * Fibonacci sequence.) + * + * Further lets say we use the following code, invoking + * bitmap_fold() then bitmap_onto, as suggested above to + * avoid the possibility of an empty @dst result:: + * + * unsigned long *tmp; // a temporary bitmap's bits + * + * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); + * bitmap_onto(dst, tmp, relmap, bits); + * + * Then this table shows what various values of @dst would be, for + * various @orig's. I list the zero-based positions of each set bit. + * The tmp column shows the intermediate result, as computed by + * using bitmap_fold() to fold the @orig bitmap modulo ten + * (the weight of @relmap): + * + * =============== ============== ================= + * @orig tmp @dst + * 0 0 40 + * 1 1 41 + * 9 9 95 + * 10 0 40 [#f1]_ + * 1 3 5 7 1 3 5 7 41 43 48 61 + * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 + * 0 9 18 27 0 9 8 7 40 61 74 95 + * 0 10 20 30 0 40 + * 0 11 22 33 0 1 2 3 40 41 42 43 + * 0 12 24 36 0 2 4 6 40 42 45 53 + * 78 102 211 1 2 8 41 42 74 [#f1]_ + * =============== ============== ================= + * + * .. [#f1] + * + * For these marked lines, if we hadn't first done bitmap_fold() + * into tmp, then the @dst result would have been empty. + * + * If either of @orig or @relmap is empty (no set bits), then @dst + * will be returned empty. + * + * If (as explained above) the only set bits in @orig are in positions + * m where m >= W, (where W is the weight of @relmap) then @dst will + * once again be returned empty. + * + * All bits in @dst not set by the above rule are cleared. + */ +void bitmap_onto(unsigned long *dst, const unsigned long *orig, + const unsigned long *relmap, unsigned int bits) +{ + unsigned int n, m; /* same meaning as in above comment */ + + if (dst == orig) /* following doesn't handle inplace mappings */ + return; + bitmap_zero(dst, bits); + + /* + * The following code is a more efficient, but less + * obvious, equivalent to the loop: + * for (m = 0; m < bitmap_weight(relmap, bits); m++) { + * n = find_nth_bit(orig, bits, m); + * if (test_bit(m, orig)) + * set_bit(n, dst); + * } + */ + + m = 0; + for_each_set_bit(n, relmap, bits) { + /* m == bitmap_pos_to_ord(relmap, n, bits) */ + if (test_bit(m, orig)) + set_bit(n, dst); + m++; + } +} + +/** + * bitmap_fold - fold larger bitmap into smaller, modulo specified size + * @dst: resulting smaller bitmap + * @orig: original larger bitmap + * @sz: specified size + * @nbits: number of bits in each of these bitmaps + * + * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. + * Clear all other bits in @dst. See further the comment and + * Example [2] for bitmap_onto() for why and how to use this. + */ +void bitmap_fold(unsigned long *dst, const unsigned long *orig, + unsigned int sz, unsigned int nbits) +{ + unsigned int oldbit; + + if (dst == orig) /* following doesn't handle inplace mappings */ + return; + bitmap_zero(dst, nbits); + + for_each_set_bit(oldbit, orig, nbits) + set_bit(oldbit % sz, dst); +} +#endif /* CONFIG_NUMA */ + +/* + * Common code for bitmap_*_region() routines. + * bitmap: array of unsigned longs corresponding to the bitmap + * pos: the beginning of the region + * order: region size (log base 2 of number of bits) + * reg_op: operation(s) to perform on that region of bitmap + * + * Can set, verify and/or release a region of bits in a bitmap, + * depending on which combination of REG_OP_* flag bits is set. + * + * A region of a bitmap is a sequence of bits in the bitmap, of + * some size '1 << order' (a power of two), aligned to that same + * '1 << order' power of two. + * + * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). + * Returns 0 in all other cases and reg_ops. + */ + +enum { + REG_OP_ISFREE, /* true if region is all zero bits */ + REG_OP_ALLOC, /* set all bits in region */ + REG_OP_RELEASE, /* clear all bits in region */ +}; + +static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) +{ + int nbits_reg; /* number of bits in region */ + int index; /* index first long of region in bitmap */ + int offset; /* bit offset region in bitmap[index] */ + int nlongs_reg; /* num longs spanned by region in bitmap */ + int nbitsinlong; /* num bits of region in each spanned long */ + unsigned long mask; /* bitmask for one long of region */ + int i; /* scans bitmap by longs */ + int ret = 0; /* return value */ + + /* + * Either nlongs_reg == 1 (for small orders that fit in one long) + * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) + */ + nbits_reg = 1 << order; + index = pos / BITS_PER_LONG; + offset = pos - (index * BITS_PER_LONG); + nlongs_reg = BITS_TO_LONGS(nbits_reg); + nbitsinlong = min(nbits_reg, BITS_PER_LONG); + + /* + * Can't do "mask = (1UL << nbitsinlong) - 1", as that + * overflows if nbitsinlong == BITS_PER_LONG. + */ + mask = (1UL << (nbitsinlong - 1)); + mask += mask - 1; + mask <<= offset; + + switch (reg_op) { + case REG_OP_ISFREE: + for (i = 0; i < nlongs_reg; i++) { + if (bitmap[index + i] & mask) + goto done; + } + ret = 1; /* all bits in region free (zero) */ + break; + + case REG_OP_ALLOC: + for (i = 0; i < nlongs_reg; i++) + bitmap[index + i] |= mask; + break; + + case REG_OP_RELEASE: + for (i = 0; i < nlongs_reg; i++) + bitmap[index + i] &= ~mask; + break; + } +done: + return ret; +} + +/** + * bitmap_find_free_region - find a contiguous aligned mem region + * @bitmap: array of unsigned longs corresponding to the bitmap + * @bits: number of bits in the bitmap + * @order: region size (log base 2 of number of bits) to find + * + * Find a region of free (zero) bits in a @bitmap of @bits bits and + * allocate them (set them to one). Only consider regions of length + * a power (@order) of two, aligned to that power of two, which + * makes the search algorithm much faster. + * + * Return the bit offset in bitmap of the allocated region, + * or -errno on failure. + */ +int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) +{ + unsigned int pos, end; /* scans bitmap by regions of size order */ + + for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) { + if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) + continue; + __reg_op(bitmap, pos, order, REG_OP_ALLOC); + return pos; + } + return -ENOMEM; +} +EXPORT_SYMBOL(bitmap_find_free_region); + +/** + * bitmap_release_region - release allocated bitmap region + * @bitmap: array of unsigned longs corresponding to the bitmap + * @pos: beginning of bit region to release + * @order: region size (log base 2 of number of bits) to release + * + * This is the complement to __bitmap_find_free_region() and releases + * the found region (by clearing it in the bitmap). + * + * No return value. + */ +void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) +{ + __reg_op(bitmap, pos, order, REG_OP_RELEASE); +} +EXPORT_SYMBOL(bitmap_release_region); + +/** + * bitmap_allocate_region - allocate bitmap region + * @bitmap: array of unsigned longs corresponding to the bitmap + * @pos: beginning of bit region to allocate + * @order: region size (log base 2 of number of bits) to allocate + * + * Allocate (set bits in) a specified region of a bitmap. + * + * Return 0 on success, or %-EBUSY if specified region wasn't + * free (not all bits were zero). + */ +int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) +{ + if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) + return -EBUSY; + return __reg_op(bitmap, pos, order, REG_OP_ALLOC); +} +EXPORT_SYMBOL(bitmap_allocate_region); + +/** + * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. + * @dst: destination buffer + * @src: bitmap to copy + * @nbits: number of bits in the bitmap + * + * Require nbits % BITS_PER_LONG == 0. + */ +#ifdef __BIG_ENDIAN +void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits) +{ + unsigned int i; + + for (i = 0; i < nbits/BITS_PER_LONG; i++) { + if (BITS_PER_LONG == 64) + dst[i] = cpu_to_le64(src[i]); + else + dst[i] = cpu_to_le32(src[i]); + } +} +EXPORT_SYMBOL(bitmap_copy_le); +#endif + +unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags) +{ + return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long), + flags); +} +EXPORT_SYMBOL(bitmap_alloc); + +unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags) +{ + return bitmap_alloc(nbits, flags | __GFP_ZERO); +} +EXPORT_SYMBOL(bitmap_zalloc); + +unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node) +{ + return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long), + flags, node); +} +EXPORT_SYMBOL(bitmap_alloc_node); + +unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node) +{ + return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node); +} +EXPORT_SYMBOL(bitmap_zalloc_node); + +void bitmap_free(const unsigned long *bitmap) +{ + kfree(bitmap); +} +EXPORT_SYMBOL(bitmap_free); + +static void devm_bitmap_free(void *data) +{ + unsigned long *bitmap = data; + + bitmap_free(bitmap); +} + +unsigned long *devm_bitmap_alloc(struct device *dev, + unsigned int nbits, gfp_t flags) +{ + unsigned long *bitmap; + int ret; + + bitmap = bitmap_alloc(nbits, flags); + if (!bitmap) + return NULL; + + ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap); + if (ret) + return NULL; + + return bitmap; +} +EXPORT_SYMBOL_GPL(devm_bitmap_alloc); + +unsigned long *devm_bitmap_zalloc(struct device *dev, + unsigned int nbits, gfp_t flags) +{ + return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO); +} +EXPORT_SYMBOL_GPL(devm_bitmap_zalloc); + +#if BITS_PER_LONG == 64 +/** + * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap + * @bitmap: array of unsigned longs, the destination bitmap + * @buf: array of u32 (in host byte order), the source bitmap + * @nbits: number of bits in @bitmap + */ +void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits) +{ + unsigned int i, halfwords; + + halfwords = DIV_ROUND_UP(nbits, 32); + for (i = 0; i < halfwords; i++) { + bitmap[i/2] = (unsigned long) buf[i]; + if (++i < halfwords) + bitmap[i/2] |= ((unsigned long) buf[i]) << 32; + } + + /* Clear tail bits in last word beyond nbits. */ + if (nbits % BITS_PER_LONG) + bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits); +} +EXPORT_SYMBOL(bitmap_from_arr32); + +/** + * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits + * @buf: array of u32 (in host byte order), the dest bitmap + * @bitmap: array of unsigned longs, the source bitmap + * @nbits: number of bits in @bitmap + */ +void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits) +{ + unsigned int i, halfwords; + + halfwords = DIV_ROUND_UP(nbits, 32); + for (i = 0; i < halfwords; i++) { + buf[i] = (u32) (bitmap[i/2] & UINT_MAX); + if (++i < halfwords) + buf[i] = (u32) (bitmap[i/2] >> 32); + } + + /* Clear tail bits in last element of array beyond nbits. */ + if (nbits % BITS_PER_LONG) + buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31)); +} +EXPORT_SYMBOL(bitmap_to_arr32); +#endif + +#if BITS_PER_LONG == 32 +/** + * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap + * @bitmap: array of unsigned longs, the destination bitmap + * @buf: array of u64 (in host byte order), the source bitmap + * @nbits: number of bits in @bitmap + */ +void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits) +{ + int n; + + for (n = nbits; n > 0; n -= 64) { + u64 val = *buf++; + + *bitmap++ = val; + if (n > 32) + *bitmap++ = val >> 32; + } + + /* + * Clear tail bits in the last word beyond nbits. + * + * Negative index is OK because here we point to the word next + * to the last word of the bitmap, except for nbits == 0, which + * is tested implicitly. + */ + if (nbits % BITS_PER_LONG) + bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits); +} +EXPORT_SYMBOL(bitmap_from_arr64); + +/** + * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits + * @buf: array of u64 (in host byte order), the dest bitmap + * @bitmap: array of unsigned longs, the source bitmap + * @nbits: number of bits in @bitmap + */ +void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits) +{ + const unsigned long *end = bitmap + BITS_TO_LONGS(nbits); + + while (bitmap < end) { + *buf = *bitmap++; + if (bitmap < end) + *buf |= (u64)(*bitmap++) << 32; + buf++; + } + + /* Clear tail bits in the last element of array beyond nbits. */ + if (nbits % 64) + buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0); +} +EXPORT_SYMBOL(bitmap_to_arr64); +#endif |