diff options
Diffstat (limited to 'lib/xz/xz_dec_lzma2.c')
-rw-r--r-- | lib/xz/xz_dec_lzma2.c | 1344 |
1 files changed, 1344 insertions, 0 deletions
diff --git a/lib/xz/xz_dec_lzma2.c b/lib/xz/xz_dec_lzma2.c new file mode 100644 index 000000000..27ce34520 --- /dev/null +++ b/lib/xz/xz_dec_lzma2.c @@ -0,0 +1,1344 @@ +/* + * LZMA2 decoder + * + * Authors: Lasse Collin <lasse.collin@tukaani.org> + * Igor Pavlov <https://7-zip.org/> + * + * This file has been put into the public domain. + * You can do whatever you want with this file. + */ + +#include "xz_private.h" +#include "xz_lzma2.h" + +/* + * Range decoder initialization eats the first five bytes of each LZMA chunk. + */ +#define RC_INIT_BYTES 5 + +/* + * Minimum number of usable input buffer to safely decode one LZMA symbol. + * The worst case is that we decode 22 bits using probabilities and 26 + * direct bits. This may decode at maximum of 20 bytes of input. However, + * lzma_main() does an extra normalization before returning, thus we + * need to put 21 here. + */ +#define LZMA_IN_REQUIRED 21 + +/* + * Dictionary (history buffer) + * + * These are always true: + * start <= pos <= full <= end + * pos <= limit <= end + * + * In multi-call mode, also these are true: + * end == size + * size <= size_max + * allocated <= size + * + * Most of these variables are size_t to support single-call mode, + * in which the dictionary variables address the actual output + * buffer directly. + */ +struct dictionary { + /* Beginning of the history buffer */ + uint8_t *buf; + + /* Old position in buf (before decoding more data) */ + size_t start; + + /* Position in buf */ + size_t pos; + + /* + * How full dictionary is. This is used to detect corrupt input that + * would read beyond the beginning of the uncompressed stream. + */ + size_t full; + + /* Write limit; we don't write to buf[limit] or later bytes. */ + size_t limit; + + /* + * End of the dictionary buffer. In multi-call mode, this is + * the same as the dictionary size. In single-call mode, this + * indicates the size of the output buffer. + */ + size_t end; + + /* + * Size of the dictionary as specified in Block Header. This is used + * together with "full" to detect corrupt input that would make us + * read beyond the beginning of the uncompressed stream. + */ + uint32_t size; + + /* + * Maximum allowed dictionary size in multi-call mode. + * This is ignored in single-call mode. + */ + uint32_t size_max; + + /* + * Amount of memory currently allocated for the dictionary. + * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC, + * size_max is always the same as the allocated size.) + */ + uint32_t allocated; + + /* Operation mode */ + enum xz_mode mode; +}; + +/* Range decoder */ +struct rc_dec { + uint32_t range; + uint32_t code; + + /* + * Number of initializing bytes remaining to be read + * by rc_read_init(). + */ + uint32_t init_bytes_left; + + /* + * Buffer from which we read our input. It can be either + * temp.buf or the caller-provided input buffer. + */ + const uint8_t *in; + size_t in_pos; + size_t in_limit; +}; + +/* Probabilities for a length decoder. */ +struct lzma_len_dec { + /* Probability of match length being at least 10 */ + uint16_t choice; + + /* Probability of match length being at least 18 */ + uint16_t choice2; + + /* Probabilities for match lengths 2-9 */ + uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS]; + + /* Probabilities for match lengths 10-17 */ + uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS]; + + /* Probabilities for match lengths 18-273 */ + uint16_t high[LEN_HIGH_SYMBOLS]; +}; + +struct lzma_dec { + /* Distances of latest four matches */ + uint32_t rep0; + uint32_t rep1; + uint32_t rep2; + uint32_t rep3; + + /* Types of the most recently seen LZMA symbols */ + enum lzma_state state; + + /* + * Length of a match. This is updated so that dict_repeat can + * be called again to finish repeating the whole match. + */ + uint32_t len; + + /* + * LZMA properties or related bit masks (number of literal + * context bits, a mask derived from the number of literal + * position bits, and a mask derived from the number + * position bits) + */ + uint32_t lc; + uint32_t literal_pos_mask; /* (1 << lp) - 1 */ + uint32_t pos_mask; /* (1 << pb) - 1 */ + + /* If 1, it's a match. Otherwise it's a single 8-bit literal. */ + uint16_t is_match[STATES][POS_STATES_MAX]; + + /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */ + uint16_t is_rep[STATES]; + + /* + * If 0, distance of a repeated match is rep0. + * Otherwise check is_rep1. + */ + uint16_t is_rep0[STATES]; + + /* + * If 0, distance of a repeated match is rep1. + * Otherwise check is_rep2. + */ + uint16_t is_rep1[STATES]; + + /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */ + uint16_t is_rep2[STATES]; + + /* + * If 1, the repeated match has length of one byte. Otherwise + * the length is decoded from rep_len_decoder. + */ + uint16_t is_rep0_long[STATES][POS_STATES_MAX]; + + /* + * Probability tree for the highest two bits of the match + * distance. There is a separate probability tree for match + * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273]. + */ + uint16_t dist_slot[DIST_STATES][DIST_SLOTS]; + + /* + * Probility trees for additional bits for match distance + * when the distance is in the range [4, 127]. + */ + uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END]; + + /* + * Probability tree for the lowest four bits of a match + * distance that is equal to or greater than 128. + */ + uint16_t dist_align[ALIGN_SIZE]; + + /* Length of a normal match */ + struct lzma_len_dec match_len_dec; + + /* Length of a repeated match */ + struct lzma_len_dec rep_len_dec; + + /* Probabilities of literals */ + uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE]; +}; + +struct lzma2_dec { + /* Position in xz_dec_lzma2_run(). */ + enum lzma2_seq { + SEQ_CONTROL, + SEQ_UNCOMPRESSED_1, + SEQ_UNCOMPRESSED_2, + SEQ_COMPRESSED_0, + SEQ_COMPRESSED_1, + SEQ_PROPERTIES, + SEQ_LZMA_PREPARE, + SEQ_LZMA_RUN, + SEQ_COPY + } sequence; + + /* Next position after decoding the compressed size of the chunk. */ + enum lzma2_seq next_sequence; + + /* Uncompressed size of LZMA chunk (2 MiB at maximum) */ + uint32_t uncompressed; + + /* + * Compressed size of LZMA chunk or compressed/uncompressed + * size of uncompressed chunk (64 KiB at maximum) + */ + uint32_t compressed; + + /* + * True if dictionary reset is needed. This is false before + * the first chunk (LZMA or uncompressed). + */ + bool need_dict_reset; + + /* + * True if new LZMA properties are needed. This is false + * before the first LZMA chunk. + */ + bool need_props; + +#ifdef XZ_DEC_MICROLZMA + bool pedantic_microlzma; +#endif +}; + +struct xz_dec_lzma2 { + /* + * The order below is important on x86 to reduce code size and + * it shouldn't hurt on other platforms. Everything up to and + * including lzma.pos_mask are in the first 128 bytes on x86-32, + * which allows using smaller instructions to access those + * variables. On x86-64, fewer variables fit into the first 128 + * bytes, but this is still the best order without sacrificing + * the readability by splitting the structures. + */ + struct rc_dec rc; + struct dictionary dict; + struct lzma2_dec lzma2; + struct lzma_dec lzma; + + /* + * Temporary buffer which holds small number of input bytes between + * decoder calls. See lzma2_lzma() for details. + */ + struct { + uint32_t size; + uint8_t buf[3 * LZMA_IN_REQUIRED]; + } temp; +}; + +/************** + * Dictionary * + **************/ + +/* + * Reset the dictionary state. When in single-call mode, set up the beginning + * of the dictionary to point to the actual output buffer. + */ +static void dict_reset(struct dictionary *dict, struct xz_buf *b) +{ + if (DEC_IS_SINGLE(dict->mode)) { + dict->buf = b->out + b->out_pos; + dict->end = b->out_size - b->out_pos; + } + + dict->start = 0; + dict->pos = 0; + dict->limit = 0; + dict->full = 0; +} + +/* Set dictionary write limit */ +static void dict_limit(struct dictionary *dict, size_t out_max) +{ + if (dict->end - dict->pos <= out_max) + dict->limit = dict->end; + else + dict->limit = dict->pos + out_max; +} + +/* Return true if at least one byte can be written into the dictionary. */ +static inline bool dict_has_space(const struct dictionary *dict) +{ + return dict->pos < dict->limit; +} + +/* + * Get a byte from the dictionary at the given distance. The distance is + * assumed to valid, or as a special case, zero when the dictionary is + * still empty. This special case is needed for single-call decoding to + * avoid writing a '\0' to the end of the destination buffer. + */ +static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist) +{ + size_t offset = dict->pos - dist - 1; + + if (dist >= dict->pos) + offset += dict->end; + + return dict->full > 0 ? dict->buf[offset] : 0; +} + +/* + * Put one byte into the dictionary. It is assumed that there is space for it. + */ +static inline void dict_put(struct dictionary *dict, uint8_t byte) +{ + dict->buf[dict->pos++] = byte; + + if (dict->full < dict->pos) + dict->full = dict->pos; +} + +/* + * Repeat given number of bytes from the given distance. If the distance is + * invalid, false is returned. On success, true is returned and *len is + * updated to indicate how many bytes were left to be repeated. + */ +static bool dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist) +{ + size_t back; + uint32_t left; + + if (dist >= dict->full || dist >= dict->size) + return false; + + left = min_t(size_t, dict->limit - dict->pos, *len); + *len -= left; + + back = dict->pos - dist - 1; + if (dist >= dict->pos) + back += dict->end; + + do { + dict->buf[dict->pos++] = dict->buf[back++]; + if (back == dict->end) + back = 0; + } while (--left > 0); + + if (dict->full < dict->pos) + dict->full = dict->pos; + + return true; +} + +/* Copy uncompressed data as is from input to dictionary and output buffers. */ +static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b, + uint32_t *left) +{ + size_t copy_size; + + while (*left > 0 && b->in_pos < b->in_size + && b->out_pos < b->out_size) { + copy_size = min(b->in_size - b->in_pos, + b->out_size - b->out_pos); + if (copy_size > dict->end - dict->pos) + copy_size = dict->end - dict->pos; + if (copy_size > *left) + copy_size = *left; + + *left -= copy_size; + + /* + * If doing in-place decompression in single-call mode and the + * uncompressed size of the file is larger than the caller + * thought (i.e. it is invalid input!), the buffers below may + * overlap and cause undefined behavior with memcpy(). + * With valid inputs memcpy() would be fine here. + */ + memmove(dict->buf + dict->pos, b->in + b->in_pos, copy_size); + dict->pos += copy_size; + + if (dict->full < dict->pos) + dict->full = dict->pos; + + if (DEC_IS_MULTI(dict->mode)) { + if (dict->pos == dict->end) + dict->pos = 0; + + /* + * Like above but for multi-call mode: use memmove() + * to avoid undefined behavior with invalid input. + */ + memmove(b->out + b->out_pos, b->in + b->in_pos, + copy_size); + } + + dict->start = dict->pos; + + b->out_pos += copy_size; + b->in_pos += copy_size; + } +} + +#ifdef XZ_DEC_MICROLZMA +# define DICT_FLUSH_SUPPORTS_SKIPPING true +#else +# define DICT_FLUSH_SUPPORTS_SKIPPING false +#endif + +/* + * Flush pending data from dictionary to b->out. It is assumed that there is + * enough space in b->out. This is guaranteed because caller uses dict_limit() + * before decoding data into the dictionary. + */ +static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b) +{ + size_t copy_size = dict->pos - dict->start; + + if (DEC_IS_MULTI(dict->mode)) { + if (dict->pos == dict->end) + dict->pos = 0; + + /* + * These buffers cannot overlap even if doing in-place + * decompression because in multi-call mode dict->buf + * has been allocated by us in this file; it's not + * provided by the caller like in single-call mode. + * + * With MicroLZMA, b->out can be NULL to skip bytes that + * the caller doesn't need. This cannot be done with XZ + * because it would break BCJ filters. + */ + if (!DICT_FLUSH_SUPPORTS_SKIPPING || b->out != NULL) + memcpy(b->out + b->out_pos, dict->buf + dict->start, + copy_size); + } + + dict->start = dict->pos; + b->out_pos += copy_size; + return copy_size; +} + +/***************** + * Range decoder * + *****************/ + +/* Reset the range decoder. */ +static void rc_reset(struct rc_dec *rc) +{ + rc->range = (uint32_t)-1; + rc->code = 0; + rc->init_bytes_left = RC_INIT_BYTES; +} + +/* + * Read the first five initial bytes into rc->code if they haven't been + * read already. (Yes, the first byte gets completely ignored.) + */ +static bool rc_read_init(struct rc_dec *rc, struct xz_buf *b) +{ + while (rc->init_bytes_left > 0) { + if (b->in_pos == b->in_size) + return false; + + rc->code = (rc->code << 8) + b->in[b->in_pos++]; + --rc->init_bytes_left; + } + + return true; +} + +/* Return true if there may not be enough input for the next decoding loop. */ +static inline bool rc_limit_exceeded(const struct rc_dec *rc) +{ + return rc->in_pos > rc->in_limit; +} + +/* + * Return true if it is possible (from point of view of range decoder) that + * we have reached the end of the LZMA chunk. + */ +static inline bool rc_is_finished(const struct rc_dec *rc) +{ + return rc->code == 0; +} + +/* Read the next input byte if needed. */ +static __always_inline void rc_normalize(struct rc_dec *rc) +{ + if (rc->range < RC_TOP_VALUE) { + rc->range <<= RC_SHIFT_BITS; + rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++]; + } +} + +/* + * Decode one bit. In some versions, this function has been split in three + * functions so that the compiler is supposed to be able to more easily avoid + * an extra branch. In this particular version of the LZMA decoder, this + * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3 + * on x86). Using a non-split version results in nicer looking code too. + * + * NOTE: This must return an int. Do not make it return a bool or the speed + * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care, + * and it generates 10-20 % faster code than GCC 3.x from this file anyway.) + */ +static __always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob) +{ + uint32_t bound; + int bit; + + rc_normalize(rc); + bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob; + if (rc->code < bound) { + rc->range = bound; + *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS; + bit = 0; + } else { + rc->range -= bound; + rc->code -= bound; + *prob -= *prob >> RC_MOVE_BITS; + bit = 1; + } + + return bit; +} + +/* Decode a bittree starting from the most significant bit. */ +static __always_inline uint32_t rc_bittree(struct rc_dec *rc, + uint16_t *probs, uint32_t limit) +{ + uint32_t symbol = 1; + + do { + if (rc_bit(rc, &probs[symbol])) + symbol = (symbol << 1) + 1; + else + symbol <<= 1; + } while (symbol < limit); + + return symbol; +} + +/* Decode a bittree starting from the least significant bit. */ +static __always_inline void rc_bittree_reverse(struct rc_dec *rc, + uint16_t *probs, + uint32_t *dest, uint32_t limit) +{ + uint32_t symbol = 1; + uint32_t i = 0; + + do { + if (rc_bit(rc, &probs[symbol])) { + symbol = (symbol << 1) + 1; + *dest += 1 << i; + } else { + symbol <<= 1; + } + } while (++i < limit); +} + +/* Decode direct bits (fixed fifty-fifty probability) */ +static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit) +{ + uint32_t mask; + + do { + rc_normalize(rc); + rc->range >>= 1; + rc->code -= rc->range; + mask = (uint32_t)0 - (rc->code >> 31); + rc->code += rc->range & mask; + *dest = (*dest << 1) + (mask + 1); + } while (--limit > 0); +} + +/******** + * LZMA * + ********/ + +/* Get pointer to literal coder probability array. */ +static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s) +{ + uint32_t prev_byte = dict_get(&s->dict, 0); + uint32_t low = prev_byte >> (8 - s->lzma.lc); + uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc; + return s->lzma.literal[low + high]; +} + +/* Decode a literal (one 8-bit byte) */ +static void lzma_literal(struct xz_dec_lzma2 *s) +{ + uint16_t *probs; + uint32_t symbol; + uint32_t match_byte; + uint32_t match_bit; + uint32_t offset; + uint32_t i; + + probs = lzma_literal_probs(s); + + if (lzma_state_is_literal(s->lzma.state)) { + symbol = rc_bittree(&s->rc, probs, 0x100); + } else { + symbol = 1; + match_byte = dict_get(&s->dict, s->lzma.rep0) << 1; + offset = 0x100; + + do { + match_bit = match_byte & offset; + match_byte <<= 1; + i = offset + match_bit + symbol; + + if (rc_bit(&s->rc, &probs[i])) { + symbol = (symbol << 1) + 1; + offset &= match_bit; + } else { + symbol <<= 1; + offset &= ~match_bit; + } + } while (symbol < 0x100); + } + + dict_put(&s->dict, (uint8_t)symbol); + lzma_state_literal(&s->lzma.state); +} + +/* Decode the length of the match into s->lzma.len. */ +static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l, + uint32_t pos_state) +{ + uint16_t *probs; + uint32_t limit; + + if (!rc_bit(&s->rc, &l->choice)) { + probs = l->low[pos_state]; + limit = LEN_LOW_SYMBOLS; + s->lzma.len = MATCH_LEN_MIN; + } else { + if (!rc_bit(&s->rc, &l->choice2)) { + probs = l->mid[pos_state]; + limit = LEN_MID_SYMBOLS; + s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS; + } else { + probs = l->high; + limit = LEN_HIGH_SYMBOLS; + s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS + + LEN_MID_SYMBOLS; + } + } + + s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit; +} + +/* Decode a match. The distance will be stored in s->lzma.rep0. */ +static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state) +{ + uint16_t *probs; + uint32_t dist_slot; + uint32_t limit; + + lzma_state_match(&s->lzma.state); + + s->lzma.rep3 = s->lzma.rep2; + s->lzma.rep2 = s->lzma.rep1; + s->lzma.rep1 = s->lzma.rep0; + + lzma_len(s, &s->lzma.match_len_dec, pos_state); + + probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)]; + dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS; + + if (dist_slot < DIST_MODEL_START) { + s->lzma.rep0 = dist_slot; + } else { + limit = (dist_slot >> 1) - 1; + s->lzma.rep0 = 2 + (dist_slot & 1); + + if (dist_slot < DIST_MODEL_END) { + s->lzma.rep0 <<= limit; + probs = s->lzma.dist_special + s->lzma.rep0 + - dist_slot - 1; + rc_bittree_reverse(&s->rc, probs, + &s->lzma.rep0, limit); + } else { + rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS); + s->lzma.rep0 <<= ALIGN_BITS; + rc_bittree_reverse(&s->rc, s->lzma.dist_align, + &s->lzma.rep0, ALIGN_BITS); + } + } +} + +/* + * Decode a repeated match. The distance is one of the four most recently + * seen matches. The distance will be stored in s->lzma.rep0. + */ +static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state) +{ + uint32_t tmp; + + if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) { + if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[ + s->lzma.state][pos_state])) { + lzma_state_short_rep(&s->lzma.state); + s->lzma.len = 1; + return; + } + } else { + if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) { + tmp = s->lzma.rep1; + } else { + if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) { + tmp = s->lzma.rep2; + } else { + tmp = s->lzma.rep3; + s->lzma.rep3 = s->lzma.rep2; + } + + s->lzma.rep2 = s->lzma.rep1; + } + + s->lzma.rep1 = s->lzma.rep0; + s->lzma.rep0 = tmp; + } + + lzma_state_long_rep(&s->lzma.state); + lzma_len(s, &s->lzma.rep_len_dec, pos_state); +} + +/* LZMA decoder core */ +static bool lzma_main(struct xz_dec_lzma2 *s) +{ + uint32_t pos_state; + + /* + * If the dictionary was reached during the previous call, try to + * finish the possibly pending repeat in the dictionary. + */ + if (dict_has_space(&s->dict) && s->lzma.len > 0) + dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0); + + /* + * Decode more LZMA symbols. One iteration may consume up to + * LZMA_IN_REQUIRED - 1 bytes. + */ + while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) { + pos_state = s->dict.pos & s->lzma.pos_mask; + + if (!rc_bit(&s->rc, &s->lzma.is_match[ + s->lzma.state][pos_state])) { + lzma_literal(s); + } else { + if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state])) + lzma_rep_match(s, pos_state); + else + lzma_match(s, pos_state); + + if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0)) + return false; + } + } + + /* + * Having the range decoder always normalized when we are outside + * this function makes it easier to correctly handle end of the chunk. + */ + rc_normalize(&s->rc); + + return true; +} + +/* + * Reset the LZMA decoder and range decoder state. Dictionary is not reset + * here, because LZMA state may be reset without resetting the dictionary. + */ +static void lzma_reset(struct xz_dec_lzma2 *s) +{ + uint16_t *probs; + size_t i; + + s->lzma.state = STATE_LIT_LIT; + s->lzma.rep0 = 0; + s->lzma.rep1 = 0; + s->lzma.rep2 = 0; + s->lzma.rep3 = 0; + s->lzma.len = 0; + + /* + * All probabilities are initialized to the same value. This hack + * makes the code smaller by avoiding a separate loop for each + * probability array. + * + * This could be optimized so that only that part of literal + * probabilities that are actually required. In the common case + * we would write 12 KiB less. + */ + probs = s->lzma.is_match[0]; + for (i = 0; i < PROBS_TOTAL; ++i) + probs[i] = RC_BIT_MODEL_TOTAL / 2; + + rc_reset(&s->rc); +} + +/* + * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks + * from the decoded lp and pb values. On success, the LZMA decoder state is + * reset and true is returned. + */ +static bool lzma_props(struct xz_dec_lzma2 *s, uint8_t props) +{ + if (props > (4 * 5 + 4) * 9 + 8) + return false; + + s->lzma.pos_mask = 0; + while (props >= 9 * 5) { + props -= 9 * 5; + ++s->lzma.pos_mask; + } + + s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1; + + s->lzma.literal_pos_mask = 0; + while (props >= 9) { + props -= 9; + ++s->lzma.literal_pos_mask; + } + + s->lzma.lc = props; + + if (s->lzma.lc + s->lzma.literal_pos_mask > 4) + return false; + + s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1; + + lzma_reset(s); + + return true; +} + +/********* + * LZMA2 * + *********/ + +/* + * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't + * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This + * wrapper function takes care of making the LZMA decoder's assumption safe. + * + * As long as there is plenty of input left to be decoded in the current LZMA + * chunk, we decode directly from the caller-supplied input buffer until + * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into + * s->temp.buf, which (hopefully) gets filled on the next call to this + * function. We decode a few bytes from the temporary buffer so that we can + * continue decoding from the caller-supplied input buffer again. + */ +static bool lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b) +{ + size_t in_avail; + uint32_t tmp; + + in_avail = b->in_size - b->in_pos; + if (s->temp.size > 0 || s->lzma2.compressed == 0) { + tmp = 2 * LZMA_IN_REQUIRED - s->temp.size; + if (tmp > s->lzma2.compressed - s->temp.size) + tmp = s->lzma2.compressed - s->temp.size; + if (tmp > in_avail) + tmp = in_avail; + + memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp); + + if (s->temp.size + tmp == s->lzma2.compressed) { + memzero(s->temp.buf + s->temp.size + tmp, + sizeof(s->temp.buf) + - s->temp.size - tmp); + s->rc.in_limit = s->temp.size + tmp; + } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) { + s->temp.size += tmp; + b->in_pos += tmp; + return true; + } else { + s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED; + } + + s->rc.in = s->temp.buf; + s->rc.in_pos = 0; + + if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp) + return false; + + s->lzma2.compressed -= s->rc.in_pos; + + if (s->rc.in_pos < s->temp.size) { + s->temp.size -= s->rc.in_pos; + memmove(s->temp.buf, s->temp.buf + s->rc.in_pos, + s->temp.size); + return true; + } + + b->in_pos += s->rc.in_pos - s->temp.size; + s->temp.size = 0; + } + + in_avail = b->in_size - b->in_pos; + if (in_avail >= LZMA_IN_REQUIRED) { + s->rc.in = b->in; + s->rc.in_pos = b->in_pos; + + if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED) + s->rc.in_limit = b->in_pos + s->lzma2.compressed; + else + s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED; + + if (!lzma_main(s)) + return false; + + in_avail = s->rc.in_pos - b->in_pos; + if (in_avail > s->lzma2.compressed) + return false; + + s->lzma2.compressed -= in_avail; + b->in_pos = s->rc.in_pos; + } + + in_avail = b->in_size - b->in_pos; + if (in_avail < LZMA_IN_REQUIRED) { + if (in_avail > s->lzma2.compressed) + in_avail = s->lzma2.compressed; + + memcpy(s->temp.buf, b->in + b->in_pos, in_avail); + s->temp.size = in_avail; + b->in_pos += in_avail; + } + + return true; +} + +/* + * Take care of the LZMA2 control layer, and forward the job of actual LZMA + * decoding or copying of uncompressed chunks to other functions. + */ +XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s, + struct xz_buf *b) +{ + uint32_t tmp; + + while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) { + switch (s->lzma2.sequence) { + case SEQ_CONTROL: + /* + * LZMA2 control byte + * + * Exact values: + * 0x00 End marker + * 0x01 Dictionary reset followed by + * an uncompressed chunk + * 0x02 Uncompressed chunk (no dictionary reset) + * + * Highest three bits (s->control & 0xE0): + * 0xE0 Dictionary reset, new properties and state + * reset, followed by LZMA compressed chunk + * 0xC0 New properties and state reset, followed + * by LZMA compressed chunk (no dictionary + * reset) + * 0xA0 State reset using old properties, + * followed by LZMA compressed chunk (no + * dictionary reset) + * 0x80 LZMA chunk (no dictionary or state reset) + * + * For LZMA compressed chunks, the lowest five bits + * (s->control & 1F) are the highest bits of the + * uncompressed size (bits 16-20). + * + * A new LZMA2 stream must begin with a dictionary + * reset. The first LZMA chunk must set new + * properties and reset the LZMA state. + * + * Values that don't match anything described above + * are invalid and we return XZ_DATA_ERROR. + */ + tmp = b->in[b->in_pos++]; + + if (tmp == 0x00) + return XZ_STREAM_END; + + if (tmp >= 0xE0 || tmp == 0x01) { + s->lzma2.need_props = true; + s->lzma2.need_dict_reset = false; + dict_reset(&s->dict, b); + } else if (s->lzma2.need_dict_reset) { + return XZ_DATA_ERROR; + } + + if (tmp >= 0x80) { + s->lzma2.uncompressed = (tmp & 0x1F) << 16; + s->lzma2.sequence = SEQ_UNCOMPRESSED_1; + + if (tmp >= 0xC0) { + /* + * When there are new properties, + * state reset is done at + * SEQ_PROPERTIES. + */ + s->lzma2.need_props = false; + s->lzma2.next_sequence + = SEQ_PROPERTIES; + + } else if (s->lzma2.need_props) { + return XZ_DATA_ERROR; + + } else { + s->lzma2.next_sequence + = SEQ_LZMA_PREPARE; + if (tmp >= 0xA0) + lzma_reset(s); + } + } else { + if (tmp > 0x02) + return XZ_DATA_ERROR; + + s->lzma2.sequence = SEQ_COMPRESSED_0; + s->lzma2.next_sequence = SEQ_COPY; + } + + break; + + case SEQ_UNCOMPRESSED_1: + s->lzma2.uncompressed + += (uint32_t)b->in[b->in_pos++] << 8; + s->lzma2.sequence = SEQ_UNCOMPRESSED_2; + break; + + case SEQ_UNCOMPRESSED_2: + s->lzma2.uncompressed + += (uint32_t)b->in[b->in_pos++] + 1; + s->lzma2.sequence = SEQ_COMPRESSED_0; + break; + + case SEQ_COMPRESSED_0: + s->lzma2.compressed + = (uint32_t)b->in[b->in_pos++] << 8; + s->lzma2.sequence = SEQ_COMPRESSED_1; + break; + + case SEQ_COMPRESSED_1: + s->lzma2.compressed + += (uint32_t)b->in[b->in_pos++] + 1; + s->lzma2.sequence = s->lzma2.next_sequence; + break; + + case SEQ_PROPERTIES: + if (!lzma_props(s, b->in[b->in_pos++])) + return XZ_DATA_ERROR; + + s->lzma2.sequence = SEQ_LZMA_PREPARE; + + fallthrough; + + case SEQ_LZMA_PREPARE: + if (s->lzma2.compressed < RC_INIT_BYTES) + return XZ_DATA_ERROR; + + if (!rc_read_init(&s->rc, b)) + return XZ_OK; + + s->lzma2.compressed -= RC_INIT_BYTES; + s->lzma2.sequence = SEQ_LZMA_RUN; + + fallthrough; + + case SEQ_LZMA_RUN: + /* + * Set dictionary limit to indicate how much we want + * to be encoded at maximum. Decode new data into the + * dictionary. Flush the new data from dictionary to + * b->out. Check if we finished decoding this chunk. + * In case the dictionary got full but we didn't fill + * the output buffer yet, we may run this loop + * multiple times without changing s->lzma2.sequence. + */ + dict_limit(&s->dict, min_t(size_t, + b->out_size - b->out_pos, + s->lzma2.uncompressed)); + if (!lzma2_lzma(s, b)) + return XZ_DATA_ERROR; + + s->lzma2.uncompressed -= dict_flush(&s->dict, b); + + if (s->lzma2.uncompressed == 0) { + if (s->lzma2.compressed > 0 || s->lzma.len > 0 + || !rc_is_finished(&s->rc)) + return XZ_DATA_ERROR; + + rc_reset(&s->rc); + s->lzma2.sequence = SEQ_CONTROL; + + } else if (b->out_pos == b->out_size + || (b->in_pos == b->in_size + && s->temp.size + < s->lzma2.compressed)) { + return XZ_OK; + } + + break; + + case SEQ_COPY: + dict_uncompressed(&s->dict, b, &s->lzma2.compressed); + if (s->lzma2.compressed > 0) + return XZ_OK; + + s->lzma2.sequence = SEQ_CONTROL; + break; + } + } + + return XZ_OK; +} + +XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode, + uint32_t dict_max) +{ + struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL); + if (s == NULL) + return NULL; + + s->dict.mode = mode; + s->dict.size_max = dict_max; + + if (DEC_IS_PREALLOC(mode)) { + s->dict.buf = vmalloc(dict_max); + if (s->dict.buf == NULL) { + kfree(s); + return NULL; + } + } else if (DEC_IS_DYNALLOC(mode)) { + s->dict.buf = NULL; + s->dict.allocated = 0; + } + + return s; +} + +XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props) +{ + /* This limits dictionary size to 3 GiB to keep parsing simpler. */ + if (props > 39) + return XZ_OPTIONS_ERROR; + + s->dict.size = 2 + (props & 1); + s->dict.size <<= (props >> 1) + 11; + + if (DEC_IS_MULTI(s->dict.mode)) { + if (s->dict.size > s->dict.size_max) + return XZ_MEMLIMIT_ERROR; + + s->dict.end = s->dict.size; + + if (DEC_IS_DYNALLOC(s->dict.mode)) { + if (s->dict.allocated < s->dict.size) { + s->dict.allocated = s->dict.size; + vfree(s->dict.buf); + s->dict.buf = vmalloc(s->dict.size); + if (s->dict.buf == NULL) { + s->dict.allocated = 0; + return XZ_MEM_ERROR; + } + } + } + } + + s->lzma2.sequence = SEQ_CONTROL; + s->lzma2.need_dict_reset = true; + + s->temp.size = 0; + + return XZ_OK; +} + +XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s) +{ + if (DEC_IS_MULTI(s->dict.mode)) + vfree(s->dict.buf); + + kfree(s); +} + +#ifdef XZ_DEC_MICROLZMA +/* This is a wrapper struct to have a nice struct name in the public API. */ +struct xz_dec_microlzma { + struct xz_dec_lzma2 s; +}; + +enum xz_ret xz_dec_microlzma_run(struct xz_dec_microlzma *s_ptr, + struct xz_buf *b) +{ + struct xz_dec_lzma2 *s = &s_ptr->s; + + /* + * sequence is SEQ_PROPERTIES before the first input byte, + * SEQ_LZMA_PREPARE until a total of five bytes have been read, + * and SEQ_LZMA_RUN for the rest of the input stream. + */ + if (s->lzma2.sequence != SEQ_LZMA_RUN) { + if (s->lzma2.sequence == SEQ_PROPERTIES) { + /* One byte is needed for the props. */ + if (b->in_pos >= b->in_size) + return XZ_OK; + + /* + * Don't increment b->in_pos here. The same byte is + * also passed to rc_read_init() which will ignore it. + */ + if (!lzma_props(s, ~b->in[b->in_pos])) + return XZ_DATA_ERROR; + + s->lzma2.sequence = SEQ_LZMA_PREPARE; + } + + /* + * xz_dec_microlzma_reset() doesn't validate the compressed + * size so we do it here. We have to limit the maximum size + * to avoid integer overflows in lzma2_lzma(). 3 GiB is a nice + * round number and much more than users of this code should + * ever need. + */ + if (s->lzma2.compressed < RC_INIT_BYTES + || s->lzma2.compressed > (3U << 30)) + return XZ_DATA_ERROR; + + if (!rc_read_init(&s->rc, b)) + return XZ_OK; + + s->lzma2.compressed -= RC_INIT_BYTES; + s->lzma2.sequence = SEQ_LZMA_RUN; + + dict_reset(&s->dict, b); + } + + /* This is to allow increasing b->out_size between calls. */ + if (DEC_IS_SINGLE(s->dict.mode)) + s->dict.end = b->out_size - b->out_pos; + + while (true) { + dict_limit(&s->dict, min_t(size_t, b->out_size - b->out_pos, + s->lzma2.uncompressed)); + + if (!lzma2_lzma(s, b)) + return XZ_DATA_ERROR; + + s->lzma2.uncompressed -= dict_flush(&s->dict, b); + + if (s->lzma2.uncompressed == 0) { + if (s->lzma2.pedantic_microlzma) { + if (s->lzma2.compressed > 0 || s->lzma.len > 0 + || !rc_is_finished(&s->rc)) + return XZ_DATA_ERROR; + } + + return XZ_STREAM_END; + } + + if (b->out_pos == b->out_size) + return XZ_OK; + + if (b->in_pos == b->in_size + && s->temp.size < s->lzma2.compressed) + return XZ_OK; + } +} + +struct xz_dec_microlzma *xz_dec_microlzma_alloc(enum xz_mode mode, + uint32_t dict_size) +{ + struct xz_dec_microlzma *s; + + /* Restrict dict_size to the same range as in the LZMA2 code. */ + if (dict_size < 4096 || dict_size > (3U << 30)) + return NULL; + + s = kmalloc(sizeof(*s), GFP_KERNEL); + if (s == NULL) + return NULL; + + s->s.dict.mode = mode; + s->s.dict.size = dict_size; + + if (DEC_IS_MULTI(mode)) { + s->s.dict.end = dict_size; + + s->s.dict.buf = vmalloc(dict_size); + if (s->s.dict.buf == NULL) { + kfree(s); + return NULL; + } + } + + return s; +} + +void xz_dec_microlzma_reset(struct xz_dec_microlzma *s, uint32_t comp_size, + uint32_t uncomp_size, int uncomp_size_is_exact) +{ + /* + * comp_size is validated in xz_dec_microlzma_run(). + * uncomp_size can safely be anything. + */ + s->s.lzma2.compressed = comp_size; + s->s.lzma2.uncompressed = uncomp_size; + s->s.lzma2.pedantic_microlzma = uncomp_size_is_exact; + + s->s.lzma2.sequence = SEQ_PROPERTIES; + s->s.temp.size = 0; +} + +void xz_dec_microlzma_end(struct xz_dec_microlzma *s) +{ + if (DEC_IS_MULTI(s->s.dict.mode)) + vfree(s->s.dict.buf); + + kfree(s); +} +#endif |