diff options
Diffstat (limited to 'security/commoncap.c')
-rw-r--r-- | security/commoncap.c | 1485 |
1 files changed, 1485 insertions, 0 deletions
diff --git a/security/commoncap.c b/security/commoncap.c new file mode 100644 index 000000000..bc751fa5a --- /dev/null +++ b/security/commoncap.c @@ -0,0 +1,1485 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* Common capabilities, needed by capability.o. + */ + +#include <linux/capability.h> +#include <linux/audit.h> +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/lsm_hooks.h> +#include <linux/file.h> +#include <linux/mm.h> +#include <linux/mman.h> +#include <linux/pagemap.h> +#include <linux/swap.h> +#include <linux/skbuff.h> +#include <linux/netlink.h> +#include <linux/ptrace.h> +#include <linux/xattr.h> +#include <linux/hugetlb.h> +#include <linux/mount.h> +#include <linux/sched.h> +#include <linux/prctl.h> +#include <linux/securebits.h> +#include <linux/user_namespace.h> +#include <linux/binfmts.h> +#include <linux/personality.h> +#include <linux/mnt_idmapping.h> + +/* + * If a non-root user executes a setuid-root binary in + * !secure(SECURE_NOROOT) mode, then we raise capabilities. + * However if fE is also set, then the intent is for only + * the file capabilities to be applied, and the setuid-root + * bit is left on either to change the uid (plausible) or + * to get full privilege on a kernel without file capabilities + * support. So in that case we do not raise capabilities. + * + * Warn if that happens, once per boot. + */ +static void warn_setuid_and_fcaps_mixed(const char *fname) +{ + static int warned; + if (!warned) { + printk(KERN_INFO "warning: `%s' has both setuid-root and" + " effective capabilities. Therefore not raising all" + " capabilities.\n", fname); + warned = 1; + } +} + +/** + * cap_capable - Determine whether a task has a particular effective capability + * @cred: The credentials to use + * @targ_ns: The user namespace in which we need the capability + * @cap: The capability to check for + * @opts: Bitmask of options defined in include/linux/security.h + * + * Determine whether the nominated task has the specified capability amongst + * its effective set, returning 0 if it does, -ve if it does not. + * + * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable() + * and has_capability() functions. That is, it has the reverse semantics: + * cap_has_capability() returns 0 when a task has a capability, but the + * kernel's capable() and has_capability() returns 1 for this case. + */ +int cap_capable(const struct cred *cred, struct user_namespace *targ_ns, + int cap, unsigned int opts) +{ + struct user_namespace *ns = targ_ns; + + /* See if cred has the capability in the target user namespace + * by examining the target user namespace and all of the target + * user namespace's parents. + */ + for (;;) { + /* Do we have the necessary capabilities? */ + if (ns == cred->user_ns) + return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM; + + /* + * If we're already at a lower level than we're looking for, + * we're done searching. + */ + if (ns->level <= cred->user_ns->level) + return -EPERM; + + /* + * The owner of the user namespace in the parent of the + * user namespace has all caps. + */ + if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid)) + return 0; + + /* + * If you have a capability in a parent user ns, then you have + * it over all children user namespaces as well. + */ + ns = ns->parent; + } + + /* We never get here */ +} + +/** + * cap_settime - Determine whether the current process may set the system clock + * @ts: The time to set + * @tz: The timezone to set + * + * Determine whether the current process may set the system clock and timezone + * information, returning 0 if permission granted, -ve if denied. + */ +int cap_settime(const struct timespec64 *ts, const struct timezone *tz) +{ + if (!capable(CAP_SYS_TIME)) + return -EPERM; + return 0; +} + +/** + * cap_ptrace_access_check - Determine whether the current process may access + * another + * @child: The process to be accessed + * @mode: The mode of attachment. + * + * If we are in the same or an ancestor user_ns and have all the target + * task's capabilities, then ptrace access is allowed. + * If we have the ptrace capability to the target user_ns, then ptrace + * access is allowed. + * Else denied. + * + * Determine whether a process may access another, returning 0 if permission + * granted, -ve if denied. + */ +int cap_ptrace_access_check(struct task_struct *child, unsigned int mode) +{ + int ret = 0; + const struct cred *cred, *child_cred; + const kernel_cap_t *caller_caps; + + rcu_read_lock(); + cred = current_cred(); + child_cred = __task_cred(child); + if (mode & PTRACE_MODE_FSCREDS) + caller_caps = &cred->cap_effective; + else + caller_caps = &cred->cap_permitted; + if (cred->user_ns == child_cred->user_ns && + cap_issubset(child_cred->cap_permitted, *caller_caps)) + goto out; + if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE)) + goto out; + ret = -EPERM; +out: + rcu_read_unlock(); + return ret; +} + +/** + * cap_ptrace_traceme - Determine whether another process may trace the current + * @parent: The task proposed to be the tracer + * + * If parent is in the same or an ancestor user_ns and has all current's + * capabilities, then ptrace access is allowed. + * If parent has the ptrace capability to current's user_ns, then ptrace + * access is allowed. + * Else denied. + * + * Determine whether the nominated task is permitted to trace the current + * process, returning 0 if permission is granted, -ve if denied. + */ +int cap_ptrace_traceme(struct task_struct *parent) +{ + int ret = 0; + const struct cred *cred, *child_cred; + + rcu_read_lock(); + cred = __task_cred(parent); + child_cred = current_cred(); + if (cred->user_ns == child_cred->user_ns && + cap_issubset(child_cred->cap_permitted, cred->cap_permitted)) + goto out; + if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE)) + goto out; + ret = -EPERM; +out: + rcu_read_unlock(); + return ret; +} + +/** + * cap_capget - Retrieve a task's capability sets + * @target: The task from which to retrieve the capability sets + * @effective: The place to record the effective set + * @inheritable: The place to record the inheritable set + * @permitted: The place to record the permitted set + * + * This function retrieves the capabilities of the nominated task and returns + * them to the caller. + */ +int cap_capget(struct task_struct *target, kernel_cap_t *effective, + kernel_cap_t *inheritable, kernel_cap_t *permitted) +{ + const struct cred *cred; + + /* Derived from kernel/capability.c:sys_capget. */ + rcu_read_lock(); + cred = __task_cred(target); + *effective = cred->cap_effective; + *inheritable = cred->cap_inheritable; + *permitted = cred->cap_permitted; + rcu_read_unlock(); + return 0; +} + +/* + * Determine whether the inheritable capabilities are limited to the old + * permitted set. Returns 1 if they are limited, 0 if they are not. + */ +static inline int cap_inh_is_capped(void) +{ + /* they are so limited unless the current task has the CAP_SETPCAP + * capability + */ + if (cap_capable(current_cred(), current_cred()->user_ns, + CAP_SETPCAP, CAP_OPT_NONE) == 0) + return 0; + return 1; +} + +/** + * cap_capset - Validate and apply proposed changes to current's capabilities + * @new: The proposed new credentials; alterations should be made here + * @old: The current task's current credentials + * @effective: A pointer to the proposed new effective capabilities set + * @inheritable: A pointer to the proposed new inheritable capabilities set + * @permitted: A pointer to the proposed new permitted capabilities set + * + * This function validates and applies a proposed mass change to the current + * process's capability sets. The changes are made to the proposed new + * credentials, and assuming no error, will be committed by the caller of LSM. + */ +int cap_capset(struct cred *new, + const struct cred *old, + const kernel_cap_t *effective, + const kernel_cap_t *inheritable, + const kernel_cap_t *permitted) +{ + if (cap_inh_is_capped() && + !cap_issubset(*inheritable, + cap_combine(old->cap_inheritable, + old->cap_permitted))) + /* incapable of using this inheritable set */ + return -EPERM; + + if (!cap_issubset(*inheritable, + cap_combine(old->cap_inheritable, + old->cap_bset))) + /* no new pI capabilities outside bounding set */ + return -EPERM; + + /* verify restrictions on target's new Permitted set */ + if (!cap_issubset(*permitted, old->cap_permitted)) + return -EPERM; + + /* verify the _new_Effective_ is a subset of the _new_Permitted_ */ + if (!cap_issubset(*effective, *permitted)) + return -EPERM; + + new->cap_effective = *effective; + new->cap_inheritable = *inheritable; + new->cap_permitted = *permitted; + + /* + * Mask off ambient bits that are no longer both permitted and + * inheritable. + */ + new->cap_ambient = cap_intersect(new->cap_ambient, + cap_intersect(*permitted, + *inheritable)); + if (WARN_ON(!cap_ambient_invariant_ok(new))) + return -EINVAL; + return 0; +} + +/** + * cap_inode_need_killpriv - Determine if inode change affects privileges + * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV + * + * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV + * affects the security markings on that inode, and if it is, should + * inode_killpriv() be invoked or the change rejected. + * + * Return: 1 if security.capability has a value, meaning inode_killpriv() + * is required, 0 otherwise, meaning inode_killpriv() is not required. + */ +int cap_inode_need_killpriv(struct dentry *dentry) +{ + struct inode *inode = d_backing_inode(dentry); + int error; + + error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0); + return error > 0; +} + +/** + * cap_inode_killpriv - Erase the security markings on an inode + * + * @mnt_userns: user namespace of the mount the inode was found from + * @dentry: The inode/dentry to alter + * + * Erase the privilege-enhancing security markings on an inode. + * + * If the inode has been found through an idmapped mount the user namespace of + * the vfsmount must be passed through @mnt_userns. This function will then + * take care to map the inode according to @mnt_userns before checking + * permissions. On non-idmapped mounts or if permission checking is to be + * performed on the raw inode simply passs init_user_ns. + * + * Return: 0 if successful, -ve on error. + */ +int cap_inode_killpriv(struct user_namespace *mnt_userns, struct dentry *dentry) +{ + int error; + + error = __vfs_removexattr(mnt_userns, dentry, XATTR_NAME_CAPS); + if (error == -EOPNOTSUPP) + error = 0; + return error; +} + +static bool rootid_owns_currentns(kuid_t kroot) +{ + struct user_namespace *ns; + + if (!uid_valid(kroot)) + return false; + + for (ns = current_user_ns(); ; ns = ns->parent) { + if (from_kuid(ns, kroot) == 0) + return true; + if (ns == &init_user_ns) + break; + } + + return false; +} + +static __u32 sansflags(__u32 m) +{ + return m & ~VFS_CAP_FLAGS_EFFECTIVE; +} + +static bool is_v2header(size_t size, const struct vfs_cap_data *cap) +{ + if (size != XATTR_CAPS_SZ_2) + return false; + return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2; +} + +static bool is_v3header(size_t size, const struct vfs_cap_data *cap) +{ + if (size != XATTR_CAPS_SZ_3) + return false; + return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3; +} + +/* + * getsecurity: We are called for security.* before any attempt to read the + * xattr from the inode itself. + * + * This gives us a chance to read the on-disk value and convert it. If we + * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler. + * + * Note we are not called by vfs_getxattr_alloc(), but that is only called + * by the integrity subsystem, which really wants the unconverted values - + * so that's good. + */ +int cap_inode_getsecurity(struct user_namespace *mnt_userns, + struct inode *inode, const char *name, void **buffer, + bool alloc) +{ + int size, ret; + kuid_t kroot; + u32 nsmagic, magic; + uid_t root, mappedroot; + char *tmpbuf = NULL; + struct vfs_cap_data *cap; + struct vfs_ns_cap_data *nscap = NULL; + struct dentry *dentry; + struct user_namespace *fs_ns; + + if (strcmp(name, "capability") != 0) + return -EOPNOTSUPP; + + dentry = d_find_any_alias(inode); + if (!dentry) + return -EINVAL; + + size = sizeof(struct vfs_ns_cap_data); + ret = (int)vfs_getxattr_alloc(mnt_userns, dentry, XATTR_NAME_CAPS, + &tmpbuf, size, GFP_NOFS); + dput(dentry); + + if (ret < 0 || !tmpbuf) { + size = ret; + goto out_free; + } + + fs_ns = inode->i_sb->s_user_ns; + cap = (struct vfs_cap_data *) tmpbuf; + if (is_v2header((size_t) ret, cap)) { + root = 0; + } else if (is_v3header((size_t) ret, cap)) { + nscap = (struct vfs_ns_cap_data *) tmpbuf; + root = le32_to_cpu(nscap->rootid); + } else { + size = -EINVAL; + goto out_free; + } + + kroot = make_kuid(fs_ns, root); + + /* If this is an idmapped mount shift the kuid. */ + kroot = mapped_kuid_fs(mnt_userns, fs_ns, kroot); + + /* If the root kuid maps to a valid uid in current ns, then return + * this as a nscap. */ + mappedroot = from_kuid(current_user_ns(), kroot); + if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) { + size = sizeof(struct vfs_ns_cap_data); + if (alloc) { + if (!nscap) { + /* v2 -> v3 conversion */ + nscap = kzalloc(size, GFP_ATOMIC); + if (!nscap) { + size = -ENOMEM; + goto out_free; + } + nsmagic = VFS_CAP_REVISION_3; + magic = le32_to_cpu(cap->magic_etc); + if (magic & VFS_CAP_FLAGS_EFFECTIVE) + nsmagic |= VFS_CAP_FLAGS_EFFECTIVE; + memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32); + nscap->magic_etc = cpu_to_le32(nsmagic); + } else { + /* use allocated v3 buffer */ + tmpbuf = NULL; + } + nscap->rootid = cpu_to_le32(mappedroot); + *buffer = nscap; + } + goto out_free; + } + + if (!rootid_owns_currentns(kroot)) { + size = -EOVERFLOW; + goto out_free; + } + + /* This comes from a parent namespace. Return as a v2 capability */ + size = sizeof(struct vfs_cap_data); + if (alloc) { + if (nscap) { + /* v3 -> v2 conversion */ + cap = kzalloc(size, GFP_ATOMIC); + if (!cap) { + size = -ENOMEM; + goto out_free; + } + magic = VFS_CAP_REVISION_2; + nsmagic = le32_to_cpu(nscap->magic_etc); + if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE) + magic |= VFS_CAP_FLAGS_EFFECTIVE; + memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32); + cap->magic_etc = cpu_to_le32(magic); + } else { + /* use unconverted v2 */ + tmpbuf = NULL; + } + *buffer = cap; + } +out_free: + kfree(tmpbuf); + return size; +} + +/** + * rootid_from_xattr - translate root uid of vfs caps + * + * @value: vfs caps value which may be modified by this function + * @size: size of @ivalue + * @task_ns: user namespace of the caller + * @mnt_userns: user namespace of the mount the inode was found from + * @fs_userns: user namespace of the filesystem + * + * If the inode has been found through an idmapped mount the user namespace of + * the vfsmount must be passed through @mnt_userns. This function will then + * take care to map the inode according to @mnt_userns before checking + * permissions. On non-idmapped mounts or if permission checking is to be + * performed on the raw inode simply passs init_user_ns. + */ +static kuid_t rootid_from_xattr(const void *value, size_t size, + struct user_namespace *task_ns, + struct user_namespace *mnt_userns, + struct user_namespace *fs_userns) +{ + const struct vfs_ns_cap_data *nscap = value; + kuid_t rootkid; + uid_t rootid = 0; + + if (size == XATTR_CAPS_SZ_3) + rootid = le32_to_cpu(nscap->rootid); + + rootkid = make_kuid(task_ns, rootid); + return mapped_kuid_user(mnt_userns, fs_userns, rootkid); +} + +static bool validheader(size_t size, const struct vfs_cap_data *cap) +{ + return is_v2header(size, cap) || is_v3header(size, cap); +} + +/** + * cap_convert_nscap - check vfs caps + * + * @mnt_userns: user namespace of the mount the inode was found from + * @dentry: used to retrieve inode to check permissions on + * @ivalue: vfs caps value which may be modified by this function + * @size: size of @ivalue + * + * User requested a write of security.capability. If needed, update the + * xattr to change from v2 to v3, or to fixup the v3 rootid. + * + * If the inode has been found through an idmapped mount the user namespace of + * the vfsmount must be passed through @mnt_userns. This function will then + * take care to map the inode according to @mnt_userns before checking + * permissions. On non-idmapped mounts or if permission checking is to be + * performed on the raw inode simply passs init_user_ns. + * + * Return: On success, return the new size; on error, return < 0. + */ +int cap_convert_nscap(struct user_namespace *mnt_userns, struct dentry *dentry, + const void **ivalue, size_t size) +{ + struct vfs_ns_cap_data *nscap; + uid_t nsrootid; + const struct vfs_cap_data *cap = *ivalue; + __u32 magic, nsmagic; + struct inode *inode = d_backing_inode(dentry); + struct user_namespace *task_ns = current_user_ns(), + *fs_ns = inode->i_sb->s_user_ns; + kuid_t rootid; + size_t newsize; + + if (!*ivalue) + return -EINVAL; + if (!validheader(size, cap)) + return -EINVAL; + if (!capable_wrt_inode_uidgid(mnt_userns, inode, CAP_SETFCAP)) + return -EPERM; + if (size == XATTR_CAPS_SZ_2 && (mnt_userns == fs_ns)) + if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP)) + /* user is privileged, just write the v2 */ + return size; + + rootid = rootid_from_xattr(*ivalue, size, task_ns, mnt_userns, fs_ns); + if (!uid_valid(rootid)) + return -EINVAL; + + nsrootid = from_kuid(fs_ns, rootid); + if (nsrootid == -1) + return -EINVAL; + + newsize = sizeof(struct vfs_ns_cap_data); + nscap = kmalloc(newsize, GFP_ATOMIC); + if (!nscap) + return -ENOMEM; + nscap->rootid = cpu_to_le32(nsrootid); + nsmagic = VFS_CAP_REVISION_3; + magic = le32_to_cpu(cap->magic_etc); + if (magic & VFS_CAP_FLAGS_EFFECTIVE) + nsmagic |= VFS_CAP_FLAGS_EFFECTIVE; + nscap->magic_etc = cpu_to_le32(nsmagic); + memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32); + + *ivalue = nscap; + return newsize; +} + +/* + * Calculate the new process capability sets from the capability sets attached + * to a file. + */ +static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps, + struct linux_binprm *bprm, + bool *effective, + bool *has_fcap) +{ + struct cred *new = bprm->cred; + unsigned i; + int ret = 0; + + if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE) + *effective = true; + + if (caps->magic_etc & VFS_CAP_REVISION_MASK) + *has_fcap = true; + + CAP_FOR_EACH_U32(i) { + __u32 permitted = caps->permitted.cap[i]; + __u32 inheritable = caps->inheritable.cap[i]; + + /* + * pP' = (X & fP) | (pI & fI) + * The addition of pA' is handled later. + */ + new->cap_permitted.cap[i] = + (new->cap_bset.cap[i] & permitted) | + (new->cap_inheritable.cap[i] & inheritable); + + if (permitted & ~new->cap_permitted.cap[i]) + /* insufficient to execute correctly */ + ret = -EPERM; + } + + /* + * For legacy apps, with no internal support for recognizing they + * do not have enough capabilities, we return an error if they are + * missing some "forced" (aka file-permitted) capabilities. + */ + return *effective ? ret : 0; +} + +/** + * get_vfs_caps_from_disk - retrieve vfs caps from disk + * + * @mnt_userns: user namespace of the mount the inode was found from + * @dentry: dentry from which @inode is retrieved + * @cpu_caps: vfs capabilities + * + * Extract the on-exec-apply capability sets for an executable file. + * + * If the inode has been found through an idmapped mount the user namespace of + * the vfsmount must be passed through @mnt_userns. This function will then + * take care to map the inode according to @mnt_userns before checking + * permissions. On non-idmapped mounts or if permission checking is to be + * performed on the raw inode simply passs init_user_ns. + */ +int get_vfs_caps_from_disk(struct user_namespace *mnt_userns, + const struct dentry *dentry, + struct cpu_vfs_cap_data *cpu_caps) +{ + struct inode *inode = d_backing_inode(dentry); + __u32 magic_etc; + unsigned tocopy, i; + int size; + struct vfs_ns_cap_data data, *nscaps = &data; + struct vfs_cap_data *caps = (struct vfs_cap_data *) &data; + kuid_t rootkuid; + struct user_namespace *fs_ns; + + memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data)); + + if (!inode) + return -ENODATA; + + fs_ns = inode->i_sb->s_user_ns; + size = __vfs_getxattr((struct dentry *)dentry, inode, + XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ); + if (size == -ENODATA || size == -EOPNOTSUPP) + /* no data, that's ok */ + return -ENODATA; + + if (size < 0) + return size; + + if (size < sizeof(magic_etc)) + return -EINVAL; + + cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc); + + rootkuid = make_kuid(fs_ns, 0); + switch (magic_etc & VFS_CAP_REVISION_MASK) { + case VFS_CAP_REVISION_1: + if (size != XATTR_CAPS_SZ_1) + return -EINVAL; + tocopy = VFS_CAP_U32_1; + break; + case VFS_CAP_REVISION_2: + if (size != XATTR_CAPS_SZ_2) + return -EINVAL; + tocopy = VFS_CAP_U32_2; + break; + case VFS_CAP_REVISION_3: + if (size != XATTR_CAPS_SZ_3) + return -EINVAL; + tocopy = VFS_CAP_U32_3; + rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid)); + break; + + default: + return -EINVAL; + } + /* Limit the caps to the mounter of the filesystem + * or the more limited uid specified in the xattr. + */ + rootkuid = mapped_kuid_fs(mnt_userns, fs_ns, rootkuid); + if (!rootid_owns_currentns(rootkuid)) + return -ENODATA; + + CAP_FOR_EACH_U32(i) { + if (i >= tocopy) + break; + cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted); + cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable); + } + + cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; + cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; + + cpu_caps->rootid = rootkuid; + + return 0; +} + +/* + * Attempt to get the on-exec apply capability sets for an executable file from + * its xattrs and, if present, apply them to the proposed credentials being + * constructed by execve(). + */ +static int get_file_caps(struct linux_binprm *bprm, struct file *file, + bool *effective, bool *has_fcap) +{ + int rc = 0; + struct cpu_vfs_cap_data vcaps; + + cap_clear(bprm->cred->cap_permitted); + + if (!file_caps_enabled) + return 0; + + if (!mnt_may_suid(file->f_path.mnt)) + return 0; + + /* + * This check is redundant with mnt_may_suid() but is kept to make + * explicit that capability bits are limited to s_user_ns and its + * descendants. + */ + if (!current_in_userns(file->f_path.mnt->mnt_sb->s_user_ns)) + return 0; + + rc = get_vfs_caps_from_disk(file_mnt_user_ns(file), + file->f_path.dentry, &vcaps); + if (rc < 0) { + if (rc == -EINVAL) + printk(KERN_NOTICE "Invalid argument reading file caps for %s\n", + bprm->filename); + else if (rc == -ENODATA) + rc = 0; + goto out; + } + + rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap); + +out: + if (rc) + cap_clear(bprm->cred->cap_permitted); + + return rc; +} + +static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); } + +static inline bool __is_real(kuid_t uid, struct cred *cred) +{ return uid_eq(cred->uid, uid); } + +static inline bool __is_eff(kuid_t uid, struct cred *cred) +{ return uid_eq(cred->euid, uid); } + +static inline bool __is_suid(kuid_t uid, struct cred *cred) +{ return !__is_real(uid, cred) && __is_eff(uid, cred); } + +/* + * handle_privileged_root - Handle case of privileged root + * @bprm: The execution parameters, including the proposed creds + * @has_fcap: Are any file capabilities set? + * @effective: Do we have effective root privilege? + * @root_uid: This namespace' root UID WRT initial USER namespace + * + * Handle the case where root is privileged and hasn't been neutered by + * SECURE_NOROOT. If file capabilities are set, they won't be combined with + * set UID root and nothing is changed. If we are root, cap_permitted is + * updated. If we have become set UID root, the effective bit is set. + */ +static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap, + bool *effective, kuid_t root_uid) +{ + const struct cred *old = current_cred(); + struct cred *new = bprm->cred; + + if (!root_privileged()) + return; + /* + * If the legacy file capability is set, then don't set privs + * for a setuid root binary run by a non-root user. Do set it + * for a root user just to cause least surprise to an admin. + */ + if (has_fcap && __is_suid(root_uid, new)) { + warn_setuid_and_fcaps_mixed(bprm->filename); + return; + } + /* + * To support inheritance of root-permissions and suid-root + * executables under compatibility mode, we override the + * capability sets for the file. + */ + if (__is_eff(root_uid, new) || __is_real(root_uid, new)) { + /* pP' = (cap_bset & ~0) | (pI & ~0) */ + new->cap_permitted = cap_combine(old->cap_bset, + old->cap_inheritable); + } + /* + * If only the real uid is 0, we do not set the effective bit. + */ + if (__is_eff(root_uid, new)) + *effective = true; +} + +#define __cap_gained(field, target, source) \ + !cap_issubset(target->cap_##field, source->cap_##field) +#define __cap_grew(target, source, cred) \ + !cap_issubset(cred->cap_##target, cred->cap_##source) +#define __cap_full(field, cred) \ + cap_issubset(CAP_FULL_SET, cred->cap_##field) + +static inline bool __is_setuid(struct cred *new, const struct cred *old) +{ return !uid_eq(new->euid, old->uid); } + +static inline bool __is_setgid(struct cred *new, const struct cred *old) +{ return !gid_eq(new->egid, old->gid); } + +/* + * 1) Audit candidate if current->cap_effective is set + * + * We do not bother to audit if 3 things are true: + * 1) cap_effective has all caps + * 2) we became root *OR* are were already root + * 3) root is supposed to have all caps (SECURE_NOROOT) + * Since this is just a normal root execing a process. + * + * Number 1 above might fail if you don't have a full bset, but I think + * that is interesting information to audit. + * + * A number of other conditions require logging: + * 2) something prevented setuid root getting all caps + * 3) non-setuid root gets fcaps + * 4) non-setuid root gets ambient + */ +static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old, + kuid_t root, bool has_fcap) +{ + bool ret = false; + + if ((__cap_grew(effective, ambient, new) && + !(__cap_full(effective, new) && + (__is_eff(root, new) || __is_real(root, new)) && + root_privileged())) || + (root_privileged() && + __is_suid(root, new) && + !__cap_full(effective, new)) || + (!__is_setuid(new, old) && + ((has_fcap && + __cap_gained(permitted, new, old)) || + __cap_gained(ambient, new, old)))) + + ret = true; + + return ret; +} + +/** + * cap_bprm_creds_from_file - Set up the proposed credentials for execve(). + * @bprm: The execution parameters, including the proposed creds + * @file: The file to pull the credentials from + * + * Set up the proposed credentials for a new execution context being + * constructed by execve(). The proposed creds in @bprm->cred is altered, + * which won't take effect immediately. + * + * Return: 0 if successful, -ve on error. + */ +int cap_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) +{ + /* Process setpcap binaries and capabilities for uid 0 */ + const struct cred *old = current_cred(); + struct cred *new = bprm->cred; + bool effective = false, has_fcap = false, is_setid; + int ret; + kuid_t root_uid; + + if (WARN_ON(!cap_ambient_invariant_ok(old))) + return -EPERM; + + ret = get_file_caps(bprm, file, &effective, &has_fcap); + if (ret < 0) + return ret; + + root_uid = make_kuid(new->user_ns, 0); + + handle_privileged_root(bprm, has_fcap, &effective, root_uid); + + /* if we have fs caps, clear dangerous personality flags */ + if (__cap_gained(permitted, new, old)) + bprm->per_clear |= PER_CLEAR_ON_SETID; + + /* Don't let someone trace a set[ug]id/setpcap binary with the revised + * credentials unless they have the appropriate permit. + * + * In addition, if NO_NEW_PRIVS, then ensure we get no new privs. + */ + is_setid = __is_setuid(new, old) || __is_setgid(new, old); + + if ((is_setid || __cap_gained(permitted, new, old)) && + ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) || + !ptracer_capable(current, new->user_ns))) { + /* downgrade; they get no more than they had, and maybe less */ + if (!ns_capable(new->user_ns, CAP_SETUID) || + (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) { + new->euid = new->uid; + new->egid = new->gid; + } + new->cap_permitted = cap_intersect(new->cap_permitted, + old->cap_permitted); + } + + new->suid = new->fsuid = new->euid; + new->sgid = new->fsgid = new->egid; + + /* File caps or setid cancels ambient. */ + if (has_fcap || is_setid) + cap_clear(new->cap_ambient); + + /* + * Now that we've computed pA', update pP' to give: + * pP' = (X & fP) | (pI & fI) | pA' + */ + new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient); + + /* + * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set, + * this is the same as pE' = (fE ? pP' : 0) | pA'. + */ + if (effective) + new->cap_effective = new->cap_permitted; + else + new->cap_effective = new->cap_ambient; + + if (WARN_ON(!cap_ambient_invariant_ok(new))) + return -EPERM; + + if (nonroot_raised_pE(new, old, root_uid, has_fcap)) { + ret = audit_log_bprm_fcaps(bprm, new, old); + if (ret < 0) + return ret; + } + + new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); + + if (WARN_ON(!cap_ambient_invariant_ok(new))) + return -EPERM; + + /* Check for privilege-elevated exec. */ + if (is_setid || + (!__is_real(root_uid, new) && + (effective || + __cap_grew(permitted, ambient, new)))) + bprm->secureexec = 1; + + return 0; +} + +/** + * cap_inode_setxattr - Determine whether an xattr may be altered + * @dentry: The inode/dentry being altered + * @name: The name of the xattr to be changed + * @value: The value that the xattr will be changed to + * @size: The size of value + * @flags: The replacement flag + * + * Determine whether an xattr may be altered or set on an inode, returning 0 if + * permission is granted, -ve if denied. + * + * This is used to make sure security xattrs don't get updated or set by those + * who aren't privileged to do so. + */ +int cap_inode_setxattr(struct dentry *dentry, const char *name, + const void *value, size_t size, int flags) +{ + struct user_namespace *user_ns = dentry->d_sb->s_user_ns; + + /* Ignore non-security xattrs */ + if (strncmp(name, XATTR_SECURITY_PREFIX, + XATTR_SECURITY_PREFIX_LEN) != 0) + return 0; + + /* + * For XATTR_NAME_CAPS the check will be done in + * cap_convert_nscap(), called by setxattr() + */ + if (strcmp(name, XATTR_NAME_CAPS) == 0) + return 0; + + if (!ns_capable(user_ns, CAP_SYS_ADMIN)) + return -EPERM; + return 0; +} + +/** + * cap_inode_removexattr - Determine whether an xattr may be removed + * + * @mnt_userns: User namespace of the mount the inode was found from + * @dentry: The inode/dentry being altered + * @name: The name of the xattr to be changed + * + * Determine whether an xattr may be removed from an inode, returning 0 if + * permission is granted, -ve if denied. + * + * If the inode has been found through an idmapped mount the user namespace of + * the vfsmount must be passed through @mnt_userns. This function will then + * take care to map the inode according to @mnt_userns before checking + * permissions. On non-idmapped mounts or if permission checking is to be + * performed on the raw inode simply passs init_user_ns. + * + * This is used to make sure security xattrs don't get removed by those who + * aren't privileged to remove them. + */ +int cap_inode_removexattr(struct user_namespace *mnt_userns, + struct dentry *dentry, const char *name) +{ + struct user_namespace *user_ns = dentry->d_sb->s_user_ns; + + /* Ignore non-security xattrs */ + if (strncmp(name, XATTR_SECURITY_PREFIX, + XATTR_SECURITY_PREFIX_LEN) != 0) + return 0; + + if (strcmp(name, XATTR_NAME_CAPS) == 0) { + /* security.capability gets namespaced */ + struct inode *inode = d_backing_inode(dentry); + if (!inode) + return -EINVAL; + if (!capable_wrt_inode_uidgid(mnt_userns, inode, CAP_SETFCAP)) + return -EPERM; + return 0; + } + + if (!ns_capable(user_ns, CAP_SYS_ADMIN)) + return -EPERM; + return 0; +} + +/* + * cap_emulate_setxuid() fixes the effective / permitted capabilities of + * a process after a call to setuid, setreuid, or setresuid. + * + * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of + * {r,e,s}uid != 0, the permitted and effective capabilities are + * cleared. + * + * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective + * capabilities of the process are cleared. + * + * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective + * capabilities are set to the permitted capabilities. + * + * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should + * never happen. + * + * -astor + * + * cevans - New behaviour, Oct '99 + * A process may, via prctl(), elect to keep its capabilities when it + * calls setuid() and switches away from uid==0. Both permitted and + * effective sets will be retained. + * Without this change, it was impossible for a daemon to drop only some + * of its privilege. The call to setuid(!=0) would drop all privileges! + * Keeping uid 0 is not an option because uid 0 owns too many vital + * files.. + * Thanks to Olaf Kirch and Peter Benie for spotting this. + */ +static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old) +{ + kuid_t root_uid = make_kuid(old->user_ns, 0); + + if ((uid_eq(old->uid, root_uid) || + uid_eq(old->euid, root_uid) || + uid_eq(old->suid, root_uid)) && + (!uid_eq(new->uid, root_uid) && + !uid_eq(new->euid, root_uid) && + !uid_eq(new->suid, root_uid))) { + if (!issecure(SECURE_KEEP_CAPS)) { + cap_clear(new->cap_permitted); + cap_clear(new->cap_effective); + } + + /* + * Pre-ambient programs expect setresuid to nonroot followed + * by exec to drop capabilities. We should make sure that + * this remains the case. + */ + cap_clear(new->cap_ambient); + } + if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid)) + cap_clear(new->cap_effective); + if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid)) + new->cap_effective = new->cap_permitted; +} + +/** + * cap_task_fix_setuid - Fix up the results of setuid() call + * @new: The proposed credentials + * @old: The current task's current credentials + * @flags: Indications of what has changed + * + * Fix up the results of setuid() call before the credential changes are + * actually applied. + * + * Return: 0 to grant the changes, -ve to deny them. + */ +int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags) +{ + switch (flags) { + case LSM_SETID_RE: + case LSM_SETID_ID: + case LSM_SETID_RES: + /* juggle the capabilities to follow [RES]UID changes unless + * otherwise suppressed */ + if (!issecure(SECURE_NO_SETUID_FIXUP)) + cap_emulate_setxuid(new, old); + break; + + case LSM_SETID_FS: + /* juggle the capabilties to follow FSUID changes, unless + * otherwise suppressed + * + * FIXME - is fsuser used for all CAP_FS_MASK capabilities? + * if not, we might be a bit too harsh here. + */ + if (!issecure(SECURE_NO_SETUID_FIXUP)) { + kuid_t root_uid = make_kuid(old->user_ns, 0); + if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid)) + new->cap_effective = + cap_drop_fs_set(new->cap_effective); + + if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid)) + new->cap_effective = + cap_raise_fs_set(new->cap_effective, + new->cap_permitted); + } + break; + + default: + return -EINVAL; + } + + return 0; +} + +/* + * Rationale: code calling task_setscheduler, task_setioprio, and + * task_setnice, assumes that + * . if capable(cap_sys_nice), then those actions should be allowed + * . if not capable(cap_sys_nice), but acting on your own processes, + * then those actions should be allowed + * This is insufficient now since you can call code without suid, but + * yet with increased caps. + * So we check for increased caps on the target process. + */ +static int cap_safe_nice(struct task_struct *p) +{ + int is_subset, ret = 0; + + rcu_read_lock(); + is_subset = cap_issubset(__task_cred(p)->cap_permitted, + current_cred()->cap_permitted); + if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) + ret = -EPERM; + rcu_read_unlock(); + + return ret; +} + +/** + * cap_task_setscheduler - Detemine if scheduler policy change is permitted + * @p: The task to affect + * + * Detemine if the requested scheduler policy change is permitted for the + * specified task. + * + * Return: 0 if permission is granted, -ve if denied. + */ +int cap_task_setscheduler(struct task_struct *p) +{ + return cap_safe_nice(p); +} + +/** + * cap_task_setioprio - Detemine if I/O priority change is permitted + * @p: The task to affect + * @ioprio: The I/O priority to set + * + * Detemine if the requested I/O priority change is permitted for the specified + * task. + * + * Return: 0 if permission is granted, -ve if denied. + */ +int cap_task_setioprio(struct task_struct *p, int ioprio) +{ + return cap_safe_nice(p); +} + +/** + * cap_task_setnice - Detemine if task priority change is permitted + * @p: The task to affect + * @nice: The nice value to set + * + * Detemine if the requested task priority change is permitted for the + * specified task. + * + * Return: 0 if permission is granted, -ve if denied. + */ +int cap_task_setnice(struct task_struct *p, int nice) +{ + return cap_safe_nice(p); +} + +/* + * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from + * the current task's bounding set. Returns 0 on success, -ve on error. + */ +static int cap_prctl_drop(unsigned long cap) +{ + struct cred *new; + + if (!ns_capable(current_user_ns(), CAP_SETPCAP)) + return -EPERM; + if (!cap_valid(cap)) + return -EINVAL; + + new = prepare_creds(); + if (!new) + return -ENOMEM; + cap_lower(new->cap_bset, cap); + return commit_creds(new); +} + +/** + * cap_task_prctl - Implement process control functions for this security module + * @option: The process control function requested + * @arg2: The argument data for this function + * @arg3: The argument data for this function + * @arg4: The argument data for this function + * @arg5: The argument data for this function + * + * Allow process control functions (sys_prctl()) to alter capabilities; may + * also deny access to other functions not otherwise implemented here. + * + * Return: 0 or +ve on success, -ENOSYS if this function is not implemented + * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM + * modules will consider performing the function. + */ +int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, + unsigned long arg4, unsigned long arg5) +{ + const struct cred *old = current_cred(); + struct cred *new; + + switch (option) { + case PR_CAPBSET_READ: + if (!cap_valid(arg2)) + return -EINVAL; + return !!cap_raised(old->cap_bset, arg2); + + case PR_CAPBSET_DROP: + return cap_prctl_drop(arg2); + + /* + * The next four prctl's remain to assist with transitioning a + * system from legacy UID=0 based privilege (when filesystem + * capabilities are not in use) to a system using filesystem + * capabilities only - as the POSIX.1e draft intended. + * + * Note: + * + * PR_SET_SECUREBITS = + * issecure_mask(SECURE_KEEP_CAPS_LOCKED) + * | issecure_mask(SECURE_NOROOT) + * | issecure_mask(SECURE_NOROOT_LOCKED) + * | issecure_mask(SECURE_NO_SETUID_FIXUP) + * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED) + * + * will ensure that the current process and all of its + * children will be locked into a pure + * capability-based-privilege environment. + */ + case PR_SET_SECUREBITS: + if ((((old->securebits & SECURE_ALL_LOCKS) >> 1) + & (old->securebits ^ arg2)) /*[1]*/ + || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/ + || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/ + || (cap_capable(current_cred(), + current_cred()->user_ns, + CAP_SETPCAP, + CAP_OPT_NONE) != 0) /*[4]*/ + /* + * [1] no changing of bits that are locked + * [2] no unlocking of locks + * [3] no setting of unsupported bits + * [4] doing anything requires privilege (go read about + * the "sendmail capabilities bug") + */ + ) + /* cannot change a locked bit */ + return -EPERM; + + new = prepare_creds(); + if (!new) + return -ENOMEM; + new->securebits = arg2; + return commit_creds(new); + + case PR_GET_SECUREBITS: + return old->securebits; + + case PR_GET_KEEPCAPS: + return !!issecure(SECURE_KEEP_CAPS); + + case PR_SET_KEEPCAPS: + if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */ + return -EINVAL; + if (issecure(SECURE_KEEP_CAPS_LOCKED)) + return -EPERM; + + new = prepare_creds(); + if (!new) + return -ENOMEM; + if (arg2) + new->securebits |= issecure_mask(SECURE_KEEP_CAPS); + else + new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); + return commit_creds(new); + + case PR_CAP_AMBIENT: + if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) { + if (arg3 | arg4 | arg5) + return -EINVAL; + + new = prepare_creds(); + if (!new) + return -ENOMEM; + cap_clear(new->cap_ambient); + return commit_creds(new); + } + + if (((!cap_valid(arg3)) | arg4 | arg5)) + return -EINVAL; + + if (arg2 == PR_CAP_AMBIENT_IS_SET) { + return !!cap_raised(current_cred()->cap_ambient, arg3); + } else if (arg2 != PR_CAP_AMBIENT_RAISE && + arg2 != PR_CAP_AMBIENT_LOWER) { + return -EINVAL; + } else { + if (arg2 == PR_CAP_AMBIENT_RAISE && + (!cap_raised(current_cred()->cap_permitted, arg3) || + !cap_raised(current_cred()->cap_inheritable, + arg3) || + issecure(SECURE_NO_CAP_AMBIENT_RAISE))) + return -EPERM; + + new = prepare_creds(); + if (!new) + return -ENOMEM; + if (arg2 == PR_CAP_AMBIENT_RAISE) + cap_raise(new->cap_ambient, arg3); + else + cap_lower(new->cap_ambient, arg3); + return commit_creds(new); + } + + default: + /* No functionality available - continue with default */ + return -ENOSYS; + } +} + +/** + * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted + * @mm: The VM space in which the new mapping is to be made + * @pages: The size of the mapping + * + * Determine whether the allocation of a new virtual mapping by the current + * task is permitted. + * + * Return: 1 if permission is granted, 0 if not. + */ +int cap_vm_enough_memory(struct mm_struct *mm, long pages) +{ + int cap_sys_admin = 0; + + if (cap_capable(current_cred(), &init_user_ns, + CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0) + cap_sys_admin = 1; + + return cap_sys_admin; +} + +/** + * cap_mmap_addr - check if able to map given addr + * @addr: address attempting to be mapped + * + * If the process is attempting to map memory below dac_mmap_min_addr they need + * CAP_SYS_RAWIO. The other parameters to this function are unused by the + * capability security module. + * + * Return: 0 if this mapping should be allowed or -EPERM if not. + */ +int cap_mmap_addr(unsigned long addr) +{ + int ret = 0; + + if (addr < dac_mmap_min_addr) { + ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO, + CAP_OPT_NONE); + /* set PF_SUPERPRIV if it turns out we allow the low mmap */ + if (ret == 0) + current->flags |= PF_SUPERPRIV; + } + return ret; +} + +int cap_mmap_file(struct file *file, unsigned long reqprot, + unsigned long prot, unsigned long flags) +{ + return 0; +} + +#ifdef CONFIG_SECURITY + +static struct security_hook_list capability_hooks[] __lsm_ro_after_init = { + LSM_HOOK_INIT(capable, cap_capable), + LSM_HOOK_INIT(settime, cap_settime), + LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check), + LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme), + LSM_HOOK_INIT(capget, cap_capget), + LSM_HOOK_INIT(capset, cap_capset), + LSM_HOOK_INIT(bprm_creds_from_file, cap_bprm_creds_from_file), + LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv), + LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv), + LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity), + LSM_HOOK_INIT(mmap_addr, cap_mmap_addr), + LSM_HOOK_INIT(mmap_file, cap_mmap_file), + LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid), + LSM_HOOK_INIT(task_prctl, cap_task_prctl), + LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler), + LSM_HOOK_INIT(task_setioprio, cap_task_setioprio), + LSM_HOOK_INIT(task_setnice, cap_task_setnice), + LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory), +}; + +static int __init capability_init(void) +{ + security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks), + "capability"); + return 0; +} + +DEFINE_LSM(capability) = { + .name = "capability", + .order = LSM_ORDER_FIRST, + .init = capability_init, +}; + +#endif /* CONFIG_SECURITY */ |