diff options
Diffstat (limited to 'tools/testing/memblock/tests/alloc_api.c')
-rw-r--r-- | tools/testing/memblock/tests/alloc_api.c | 884 |
1 files changed, 884 insertions, 0 deletions
diff --git a/tools/testing/memblock/tests/alloc_api.c b/tools/testing/memblock/tests/alloc_api.c new file mode 100644 index 000000000..68f1a75cd --- /dev/null +++ b/tools/testing/memblock/tests/alloc_api.c @@ -0,0 +1,884 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +#include "alloc_api.h" + +static int alloc_test_flags = TEST_F_NONE; + +static inline const char * const get_memblock_alloc_name(int flags) +{ + if (flags & TEST_F_RAW) + return "memblock_alloc_raw"; + return "memblock_alloc"; +} + +static inline void *run_memblock_alloc(phys_addr_t size, phys_addr_t align) +{ + if (alloc_test_flags & TEST_F_RAW) + return memblock_alloc_raw(size, align); + return memblock_alloc(size, align); +} + +/* + * A simple test that tries to allocate a small memory region. + * Expect to allocate an aligned region near the end of the available memory. + */ +static int alloc_top_down_simple_check(void) +{ + struct memblock_region *rgn = &memblock.reserved.regions[0]; + void *allocated_ptr = NULL; + phys_addr_t size = SZ_2; + phys_addr_t expected_start; + + PREFIX_PUSH(); + setup_memblock(); + + expected_start = memblock_end_of_DRAM() - SMP_CACHE_BYTES; + + allocated_ptr = run_memblock_alloc(size, SMP_CACHE_BYTES); + + ASSERT_NE(allocated_ptr, NULL); + assert_mem_content(allocated_ptr, size, alloc_test_flags); + + ASSERT_EQ(rgn->size, size); + ASSERT_EQ(rgn->base, expected_start); + + ASSERT_EQ(memblock.reserved.cnt, 1); + ASSERT_EQ(memblock.reserved.total_size, size); + + test_pass_pop(); + + return 0; +} + +/* + * A test that tries to allocate memory next to a reserved region that starts at + * the misaligned address. Expect to create two separate entries, with the new + * entry aligned to the provided alignment: + * + * + + * | +--------+ +--------| + * | | rgn2 | | rgn1 | + * +------------+--------+---------+--------+ + * ^ + * | + * Aligned address boundary + * + * The allocation direction is top-down and region arrays are sorted from lower + * to higher addresses, so the new region will be the first entry in + * memory.reserved array. The previously reserved region does not get modified. + * Region counter and total size get updated. + */ +static int alloc_top_down_disjoint_check(void) +{ + /* After allocation, this will point to the "old" region */ + struct memblock_region *rgn1 = &memblock.reserved.regions[1]; + struct memblock_region *rgn2 = &memblock.reserved.regions[0]; + struct region r1; + void *allocated_ptr = NULL; + phys_addr_t r2_size = SZ_16; + /* Use custom alignment */ + phys_addr_t alignment = SMP_CACHE_BYTES * 2; + phys_addr_t total_size; + phys_addr_t expected_start; + + PREFIX_PUSH(); + setup_memblock(); + + r1.base = memblock_end_of_DRAM() - SZ_2; + r1.size = SZ_2; + + total_size = r1.size + r2_size; + expected_start = memblock_end_of_DRAM() - alignment; + + memblock_reserve(r1.base, r1.size); + + allocated_ptr = run_memblock_alloc(r2_size, alignment); + + ASSERT_NE(allocated_ptr, NULL); + assert_mem_content(allocated_ptr, r2_size, alloc_test_flags); + + ASSERT_EQ(rgn1->size, r1.size); + ASSERT_EQ(rgn1->base, r1.base); + + ASSERT_EQ(rgn2->size, r2_size); + ASSERT_EQ(rgn2->base, expected_start); + + ASSERT_EQ(memblock.reserved.cnt, 2); + ASSERT_EQ(memblock.reserved.total_size, total_size); + + test_pass_pop(); + + return 0; +} + +/* + * A test that tries to allocate memory when there is enough space at the end + * of the previously reserved block (i.e. first fit): + * + * | +--------+--------------| + * | | r1 | r2 | + * +--------------+--------+--------------+ + * + * Expect a merge of both regions. Only the region size gets updated. + */ +static int alloc_top_down_before_check(void) +{ + struct memblock_region *rgn = &memblock.reserved.regions[0]; + void *allocated_ptr = NULL; + /* + * The first region ends at the aligned address to test region merging + */ + phys_addr_t r1_size = SMP_CACHE_BYTES; + phys_addr_t r2_size = SZ_512; + phys_addr_t total_size = r1_size + r2_size; + + PREFIX_PUSH(); + setup_memblock(); + + memblock_reserve(memblock_end_of_DRAM() - total_size, r1_size); + + allocated_ptr = run_memblock_alloc(r2_size, SMP_CACHE_BYTES); + + ASSERT_NE(allocated_ptr, NULL); + assert_mem_content(allocated_ptr, r2_size, alloc_test_flags); + + ASSERT_EQ(rgn->size, total_size); + ASSERT_EQ(rgn->base, memblock_end_of_DRAM() - total_size); + + ASSERT_EQ(memblock.reserved.cnt, 1); + ASSERT_EQ(memblock.reserved.total_size, total_size); + + test_pass_pop(); + + return 0; +} + +/* + * A test that tries to allocate memory when there is not enough space at the + * end of the previously reserved block (i.e. second fit): + * + * | +-----------+------+ | + * | | r2 | r1 | | + * +------------+-----------+------+-----+ + * + * Expect a merge of both regions. Both the base address and size of the region + * get updated. + */ +static int alloc_top_down_after_check(void) +{ + struct memblock_region *rgn = &memblock.reserved.regions[0]; + struct region r1; + void *allocated_ptr = NULL; + phys_addr_t r2_size = SZ_512; + phys_addr_t total_size; + + PREFIX_PUSH(); + setup_memblock(); + + /* + * The first region starts at the aligned address to test region merging + */ + r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES; + r1.size = SZ_8; + + total_size = r1.size + r2_size; + + memblock_reserve(r1.base, r1.size); + + allocated_ptr = run_memblock_alloc(r2_size, SMP_CACHE_BYTES); + + ASSERT_NE(allocated_ptr, NULL); + assert_mem_content(allocated_ptr, r2_size, alloc_test_flags); + + ASSERT_EQ(rgn->size, total_size); + ASSERT_EQ(rgn->base, r1.base - r2_size); + + ASSERT_EQ(memblock.reserved.cnt, 1); + ASSERT_EQ(memblock.reserved.total_size, total_size); + + test_pass_pop(); + + return 0; +} + +/* + * A test that tries to allocate memory when there are two reserved regions with + * a gap too small to fit the new region: + * + * | +--------+----------+ +------| + * | | r3 | r2 | | r1 | + * +-------+--------+----------+---+------+ + * + * Expect to allocate a region before the one that starts at the lower address, + * and merge them into one. The region counter and total size fields get + * updated. + */ +static int alloc_top_down_second_fit_check(void) +{ + struct memblock_region *rgn = &memblock.reserved.regions[0]; + struct region r1, r2; + void *allocated_ptr = NULL; + phys_addr_t r3_size = SZ_1K; + phys_addr_t total_size; + + PREFIX_PUSH(); + setup_memblock(); + + r1.base = memblock_end_of_DRAM() - SZ_512; + r1.size = SZ_512; + + r2.base = r1.base - SZ_512; + r2.size = SZ_256; + + total_size = r1.size + r2.size + r3_size; + + memblock_reserve(r1.base, r1.size); + memblock_reserve(r2.base, r2.size); + + allocated_ptr = run_memblock_alloc(r3_size, SMP_CACHE_BYTES); + + ASSERT_NE(allocated_ptr, NULL); + assert_mem_content(allocated_ptr, r3_size, alloc_test_flags); + + ASSERT_EQ(rgn->size, r2.size + r3_size); + ASSERT_EQ(rgn->base, r2.base - r3_size); + + ASSERT_EQ(memblock.reserved.cnt, 2); + ASSERT_EQ(memblock.reserved.total_size, total_size); + + test_pass_pop(); + + return 0; +} + +/* + * A test that tries to allocate memory when there are two reserved regions with + * a gap big enough to accommodate the new region: + * + * | +--------+--------+--------+ | + * | | r2 | r3 | r1 | | + * +-----+--------+--------+--------+-----+ + * + * Expect to merge all of them, creating one big entry in memblock.reserved + * array. The region counter and total size fields get updated. + */ +static int alloc_in_between_generic_check(void) +{ + struct memblock_region *rgn = &memblock.reserved.regions[0]; + struct region r1, r2; + void *allocated_ptr = NULL; + phys_addr_t gap_size = SMP_CACHE_BYTES; + phys_addr_t r3_size = SZ_64; + /* + * Calculate regions size so there's just enough space for the new entry + */ + phys_addr_t rgn_size = (MEM_SIZE - (2 * gap_size + r3_size)) / 2; + phys_addr_t total_size; + + PREFIX_PUSH(); + setup_memblock(); + + r1.size = rgn_size; + r1.base = memblock_end_of_DRAM() - (gap_size + rgn_size); + + r2.size = rgn_size; + r2.base = memblock_start_of_DRAM() + gap_size; + + total_size = r1.size + r2.size + r3_size; + + memblock_reserve(r1.base, r1.size); + memblock_reserve(r2.base, r2.size); + + allocated_ptr = run_memblock_alloc(r3_size, SMP_CACHE_BYTES); + + ASSERT_NE(allocated_ptr, NULL); + assert_mem_content(allocated_ptr, r3_size, alloc_test_flags); + + ASSERT_EQ(rgn->size, total_size); + ASSERT_EQ(rgn->base, r1.base - r2.size - r3_size); + + ASSERT_EQ(memblock.reserved.cnt, 1); + ASSERT_EQ(memblock.reserved.total_size, total_size); + + test_pass_pop(); + + return 0; +} + +/* + * A test that tries to allocate memory when the memory is filled with reserved + * regions with memory gaps too small to fit the new region: + * + * +-------+ + * | new | + * +--+----+ + * | +-----+ +-----+ +-----+ | + * | | res | | res | | res | | + * +----+-----+----+-----+----+-----+----+ + * + * Expect no allocation to happen. + */ +static int alloc_small_gaps_generic_check(void) +{ + void *allocated_ptr = NULL; + phys_addr_t region_size = SZ_1K; + phys_addr_t gap_size = SZ_256; + phys_addr_t region_end; + + PREFIX_PUSH(); + setup_memblock(); + + region_end = memblock_start_of_DRAM(); + + while (region_end < memblock_end_of_DRAM()) { + memblock_reserve(region_end + gap_size, region_size); + region_end += gap_size + region_size; + } + + allocated_ptr = run_memblock_alloc(region_size, SMP_CACHE_BYTES); + + ASSERT_EQ(allocated_ptr, NULL); + + test_pass_pop(); + + return 0; +} + +/* + * A test that tries to allocate memory when all memory is reserved. + * Expect no allocation to happen. + */ +static int alloc_all_reserved_generic_check(void) +{ + void *allocated_ptr = NULL; + + PREFIX_PUSH(); + setup_memblock(); + + /* Simulate full memory */ + memblock_reserve(memblock_start_of_DRAM(), MEM_SIZE); + + allocated_ptr = run_memblock_alloc(SZ_256, SMP_CACHE_BYTES); + + ASSERT_EQ(allocated_ptr, NULL); + + test_pass_pop(); + + return 0; +} + +/* + * A test that tries to allocate memory when the memory is almost full, + * with not enough space left for the new region: + * + * +-------+ + * | new | + * +-------+ + * |-----------------------------+ | + * | reserved | | + * +-----------------------------+---+ + * + * Expect no allocation to happen. + */ +static int alloc_no_space_generic_check(void) +{ + void *allocated_ptr = NULL; + phys_addr_t available_size = SZ_256; + phys_addr_t reserved_size = MEM_SIZE - available_size; + + PREFIX_PUSH(); + setup_memblock(); + + /* Simulate almost-full memory */ + memblock_reserve(memblock_start_of_DRAM(), reserved_size); + + allocated_ptr = run_memblock_alloc(SZ_1K, SMP_CACHE_BYTES); + + ASSERT_EQ(allocated_ptr, NULL); + + test_pass_pop(); + + return 0; +} + +/* + * A test that tries to allocate memory when the memory is almost full, + * but there is just enough space left: + * + * |---------------------------+---------| + * | reserved | new | + * +---------------------------+---------+ + * + * Expect to allocate memory and merge all the regions. The total size field + * gets updated. + */ +static int alloc_limited_space_generic_check(void) +{ + struct memblock_region *rgn = &memblock.reserved.regions[0]; + void *allocated_ptr = NULL; + phys_addr_t available_size = SZ_256; + phys_addr_t reserved_size = MEM_SIZE - available_size; + + PREFIX_PUSH(); + setup_memblock(); + + /* Simulate almost-full memory */ + memblock_reserve(memblock_start_of_DRAM(), reserved_size); + + allocated_ptr = run_memblock_alloc(available_size, SMP_CACHE_BYTES); + + ASSERT_NE(allocated_ptr, NULL); + assert_mem_content(allocated_ptr, available_size, alloc_test_flags); + + ASSERT_EQ(rgn->size, MEM_SIZE); + ASSERT_EQ(rgn->base, memblock_start_of_DRAM()); + + ASSERT_EQ(memblock.reserved.cnt, 1); + ASSERT_EQ(memblock.reserved.total_size, MEM_SIZE); + + test_pass_pop(); + + return 0; +} + +/* + * A test that tries to allocate memory when there is no available memory + * registered (i.e. memblock.memory has only a dummy entry). + * Expect no allocation to happen. + */ +static int alloc_no_memory_generic_check(void) +{ + struct memblock_region *rgn = &memblock.reserved.regions[0]; + void *allocated_ptr = NULL; + + PREFIX_PUSH(); + + reset_memblock_regions(); + + allocated_ptr = run_memblock_alloc(SZ_1K, SMP_CACHE_BYTES); + + ASSERT_EQ(allocated_ptr, NULL); + ASSERT_EQ(rgn->size, 0); + ASSERT_EQ(rgn->base, 0); + ASSERT_EQ(memblock.reserved.total_size, 0); + + test_pass_pop(); + + return 0; +} + +/* + * A test that tries to allocate a region that is larger than the total size of + * available memory (memblock.memory): + * + * +-----------------------------------+ + * | new | + * +-----------------------------------+ + * | | + * | | + * +---------------------------------+ + * + * Expect no allocation to happen. + */ +static int alloc_too_large_generic_check(void) +{ + struct memblock_region *rgn = &memblock.reserved.regions[0]; + void *allocated_ptr = NULL; + + PREFIX_PUSH(); + setup_memblock(); + + allocated_ptr = run_memblock_alloc(MEM_SIZE + SZ_2, SMP_CACHE_BYTES); + + ASSERT_EQ(allocated_ptr, NULL); + ASSERT_EQ(rgn->size, 0); + ASSERT_EQ(rgn->base, 0); + ASSERT_EQ(memblock.reserved.total_size, 0); + + test_pass_pop(); + + return 0; +} + +/* + * A simple test that tries to allocate a small memory region. + * Expect to allocate an aligned region at the beginning of the available + * memory. + */ +static int alloc_bottom_up_simple_check(void) +{ + struct memblock_region *rgn = &memblock.reserved.regions[0]; + void *allocated_ptr = NULL; + + PREFIX_PUSH(); + setup_memblock(); + + allocated_ptr = run_memblock_alloc(SZ_2, SMP_CACHE_BYTES); + + ASSERT_NE(allocated_ptr, NULL); + assert_mem_content(allocated_ptr, SZ_2, alloc_test_flags); + + ASSERT_EQ(rgn->size, SZ_2); + ASSERT_EQ(rgn->base, memblock_start_of_DRAM()); + + ASSERT_EQ(memblock.reserved.cnt, 1); + ASSERT_EQ(memblock.reserved.total_size, SZ_2); + + test_pass_pop(); + + return 0; +} + +/* + * A test that tries to allocate memory next to a reserved region that starts at + * the misaligned address. Expect to create two separate entries, with the new + * entry aligned to the provided alignment: + * + * + + * | +----------+ +----------+ | + * | | rgn1 | | rgn2 | | + * +----+----------+---+----------+-----+ + * ^ + * | + * Aligned address boundary + * + * The allocation direction is bottom-up, so the new region will be the second + * entry in memory.reserved array. The previously reserved region does not get + * modified. Region counter and total size get updated. + */ +static int alloc_bottom_up_disjoint_check(void) +{ + struct memblock_region *rgn1 = &memblock.reserved.regions[0]; + struct memblock_region *rgn2 = &memblock.reserved.regions[1]; + struct region r1; + void *allocated_ptr = NULL; + phys_addr_t r2_size = SZ_16; + /* Use custom alignment */ + phys_addr_t alignment = SMP_CACHE_BYTES * 2; + phys_addr_t total_size; + phys_addr_t expected_start; + + PREFIX_PUSH(); + setup_memblock(); + + r1.base = memblock_start_of_DRAM() + SZ_2; + r1.size = SZ_2; + + total_size = r1.size + r2_size; + expected_start = memblock_start_of_DRAM() + alignment; + + memblock_reserve(r1.base, r1.size); + + allocated_ptr = run_memblock_alloc(r2_size, alignment); + + ASSERT_NE(allocated_ptr, NULL); + assert_mem_content(allocated_ptr, r2_size, alloc_test_flags); + + ASSERT_EQ(rgn1->size, r1.size); + ASSERT_EQ(rgn1->base, r1.base); + + ASSERT_EQ(rgn2->size, r2_size); + ASSERT_EQ(rgn2->base, expected_start); + + ASSERT_EQ(memblock.reserved.cnt, 2); + ASSERT_EQ(memblock.reserved.total_size, total_size); + + test_pass_pop(); + + return 0; +} + +/* + * A test that tries to allocate memory when there is enough space at + * the beginning of the previously reserved block (i.e. first fit): + * + * |------------------+--------+ | + * | r1 | r2 | | + * +------------------+--------+---------+ + * + * Expect a merge of both regions. Only the region size gets updated. + */ +static int alloc_bottom_up_before_check(void) +{ + struct memblock_region *rgn = &memblock.reserved.regions[0]; + void *allocated_ptr = NULL; + phys_addr_t r1_size = SZ_512; + phys_addr_t r2_size = SZ_128; + phys_addr_t total_size = r1_size + r2_size; + + PREFIX_PUSH(); + setup_memblock(); + + memblock_reserve(memblock_start_of_DRAM() + r1_size, r2_size); + + allocated_ptr = run_memblock_alloc(r1_size, SMP_CACHE_BYTES); + + ASSERT_NE(allocated_ptr, NULL); + assert_mem_content(allocated_ptr, r1_size, alloc_test_flags); + + ASSERT_EQ(rgn->size, total_size); + ASSERT_EQ(rgn->base, memblock_start_of_DRAM()); + + ASSERT_EQ(memblock.reserved.cnt, 1); + ASSERT_EQ(memblock.reserved.total_size, total_size); + + test_pass_pop(); + + return 0; +} + +/* + * A test that tries to allocate memory when there is not enough space at + * the beginning of the previously reserved block (i.e. second fit): + * + * | +--------+--------------+ | + * | | r1 | r2 | | + * +----+--------+--------------+---------+ + * + * Expect a merge of both regions. Only the region size gets updated. + */ +static int alloc_bottom_up_after_check(void) +{ + struct memblock_region *rgn = &memblock.reserved.regions[0]; + struct region r1; + void *allocated_ptr = NULL; + phys_addr_t r2_size = SZ_512; + phys_addr_t total_size; + + PREFIX_PUSH(); + setup_memblock(); + + /* + * The first region starts at the aligned address to test region merging + */ + r1.base = memblock_start_of_DRAM() + SMP_CACHE_BYTES; + r1.size = SZ_64; + + total_size = r1.size + r2_size; + + memblock_reserve(r1.base, r1.size); + + allocated_ptr = run_memblock_alloc(r2_size, SMP_CACHE_BYTES); + + ASSERT_NE(allocated_ptr, NULL); + assert_mem_content(allocated_ptr, r2_size, alloc_test_flags); + + ASSERT_EQ(rgn->size, total_size); + ASSERT_EQ(rgn->base, r1.base); + + ASSERT_EQ(memblock.reserved.cnt, 1); + ASSERT_EQ(memblock.reserved.total_size, total_size); + + test_pass_pop(); + + return 0; +} + +/* + * A test that tries to allocate memory when there are two reserved regions, the + * first one starting at the beginning of the available memory, with a gap too + * small to fit the new region: + * + * |------------+ +--------+--------+ | + * | r1 | | r2 | r3 | | + * +------------+-----+--------+--------+--+ + * + * Expect to allocate after the second region, which starts at the higher + * address, and merge them into one. The region counter and total size fields + * get updated. + */ +static int alloc_bottom_up_second_fit_check(void) +{ + struct memblock_region *rgn = &memblock.reserved.regions[1]; + struct region r1, r2; + void *allocated_ptr = NULL; + phys_addr_t r3_size = SZ_1K; + phys_addr_t total_size; + + PREFIX_PUSH(); + setup_memblock(); + + r1.base = memblock_start_of_DRAM(); + r1.size = SZ_512; + + r2.base = r1.base + r1.size + SZ_512; + r2.size = SZ_256; + + total_size = r1.size + r2.size + r3_size; + + memblock_reserve(r1.base, r1.size); + memblock_reserve(r2.base, r2.size); + + allocated_ptr = run_memblock_alloc(r3_size, SMP_CACHE_BYTES); + + ASSERT_NE(allocated_ptr, NULL); + assert_mem_content(allocated_ptr, r3_size, alloc_test_flags); + + ASSERT_EQ(rgn->size, r2.size + r3_size); + ASSERT_EQ(rgn->base, r2.base); + + ASSERT_EQ(memblock.reserved.cnt, 2); + ASSERT_EQ(memblock.reserved.total_size, total_size); + + test_pass_pop(); + + return 0; +} + +/* Test case wrappers */ +static int alloc_simple_check(void) +{ + test_print("\tRunning %s...\n", __func__); + memblock_set_bottom_up(false); + alloc_top_down_simple_check(); + memblock_set_bottom_up(true); + alloc_bottom_up_simple_check(); + + return 0; +} + +static int alloc_disjoint_check(void) +{ + test_print("\tRunning %s...\n", __func__); + memblock_set_bottom_up(false); + alloc_top_down_disjoint_check(); + memblock_set_bottom_up(true); + alloc_bottom_up_disjoint_check(); + + return 0; +} + +static int alloc_before_check(void) +{ + test_print("\tRunning %s...\n", __func__); + memblock_set_bottom_up(false); + alloc_top_down_before_check(); + memblock_set_bottom_up(true); + alloc_bottom_up_before_check(); + + return 0; +} + +static int alloc_after_check(void) +{ + test_print("\tRunning %s...\n", __func__); + memblock_set_bottom_up(false); + alloc_top_down_after_check(); + memblock_set_bottom_up(true); + alloc_bottom_up_after_check(); + + return 0; +} + +static int alloc_in_between_check(void) +{ + test_print("\tRunning %s...\n", __func__); + run_top_down(alloc_in_between_generic_check); + run_bottom_up(alloc_in_between_generic_check); + + return 0; +} + +static int alloc_second_fit_check(void) +{ + test_print("\tRunning %s...\n", __func__); + memblock_set_bottom_up(false); + alloc_top_down_second_fit_check(); + memblock_set_bottom_up(true); + alloc_bottom_up_second_fit_check(); + + return 0; +} + +static int alloc_small_gaps_check(void) +{ + test_print("\tRunning %s...\n", __func__); + run_top_down(alloc_small_gaps_generic_check); + run_bottom_up(alloc_small_gaps_generic_check); + + return 0; +} + +static int alloc_all_reserved_check(void) +{ + test_print("\tRunning %s...\n", __func__); + run_top_down(alloc_all_reserved_generic_check); + run_bottom_up(alloc_all_reserved_generic_check); + + return 0; +} + +static int alloc_no_space_check(void) +{ + test_print("\tRunning %s...\n", __func__); + run_top_down(alloc_no_space_generic_check); + run_bottom_up(alloc_no_space_generic_check); + + return 0; +} + +static int alloc_limited_space_check(void) +{ + test_print("\tRunning %s...\n", __func__); + run_top_down(alloc_limited_space_generic_check); + run_bottom_up(alloc_limited_space_generic_check); + + return 0; +} + +static int alloc_no_memory_check(void) +{ + test_print("\tRunning %s...\n", __func__); + run_top_down(alloc_no_memory_generic_check); + run_bottom_up(alloc_no_memory_generic_check); + + return 0; +} + +static int alloc_too_large_check(void) +{ + test_print("\tRunning %s...\n", __func__); + run_top_down(alloc_too_large_generic_check); + run_bottom_up(alloc_too_large_generic_check); + + return 0; +} + +static int memblock_alloc_checks_internal(int flags) +{ + const char *func = get_memblock_alloc_name(flags); + + alloc_test_flags = flags; + prefix_reset(); + prefix_push(func); + test_print("Running %s tests...\n", func); + + reset_memblock_attributes(); + dummy_physical_memory_init(); + + alloc_simple_check(); + alloc_disjoint_check(); + alloc_before_check(); + alloc_after_check(); + alloc_second_fit_check(); + alloc_small_gaps_check(); + alloc_in_between_check(); + alloc_all_reserved_check(); + alloc_no_space_check(); + alloc_limited_space_check(); + alloc_no_memory_check(); + alloc_too_large_check(); + + dummy_physical_memory_cleanup(); + + prefix_pop(); + + return 0; +} + +int memblock_alloc_checks(void) +{ + memblock_alloc_checks_internal(TEST_F_NONE); + memblock_alloc_checks_internal(TEST_F_RAW); + + return 0; +} |