From 2c3c1048746a4622d8c89a29670120dc8fab93c4 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 20:49:45 +0200 Subject: Adding upstream version 6.1.76. Signed-off-by: Daniel Baumann --- Documentation/admin-guide/pm/cpufreq_drivers.rst | 274 +++++++++++++++++++++++ 1 file changed, 274 insertions(+) create mode 100644 Documentation/admin-guide/pm/cpufreq_drivers.rst (limited to 'Documentation/admin-guide/pm/cpufreq_drivers.rst') diff --git a/Documentation/admin-guide/pm/cpufreq_drivers.rst b/Documentation/admin-guide/pm/cpufreq_drivers.rst new file mode 100644 index 000000000..9a134ae65 --- /dev/null +++ b/Documentation/admin-guide/pm/cpufreq_drivers.rst @@ -0,0 +1,274 @@ +.. SPDX-License-Identifier: GPL-2.0 + +======================================================= +Legacy Documentation of CPU Performance Scaling Drivers +======================================================= + +Included below are historic documents describing assorted +:doc:`CPU performance scaling ` drivers. They are reproduced verbatim, +with the original white space formatting and indentation preserved, except for +the added leading space character in every line of text. + + +AMD PowerNow! Drivers +===================== + +:: + + PowerNow! and Cool'n'Quiet are AMD names for frequency + management capabilities in AMD processors. As the hardware + implementation changes in new generations of the processors, + there is a different cpu-freq driver for each generation. + + Note that the driver's will not load on the "wrong" hardware, + so it is safe to try each driver in turn when in doubt as to + which is the correct driver. + + Note that the functionality to change frequency (and voltage) + is not available in all processors. The drivers will refuse + to load on processors without this capability. The capability + is detected with the cpuid instruction. + + The drivers use BIOS supplied tables to obtain frequency and + voltage information appropriate for a particular platform. + Frequency transitions will be unavailable if the BIOS does + not supply these tables. + + 6th Generation: powernow-k6 + + 7th Generation: powernow-k7: Athlon, Duron, Geode. + + 8th Generation: powernow-k8: Athlon, Athlon 64, Opteron, Sempron. + Documentation on this functionality in 8th generation processors + is available in the "BIOS and Kernel Developer's Guide", publication + 26094, in chapter 9, available for download from www.amd.com. + + BIOS supplied data, for powernow-k7 and for powernow-k8, may be + from either the PSB table or from ACPI objects. The ACPI support + is only available if the kernel config sets CONFIG_ACPI_PROCESSOR. + The powernow-k8 driver will attempt to use ACPI if so configured, + and fall back to PST if that fails. + The powernow-k7 driver will try to use the PSB support first, and + fall back to ACPI if the PSB support fails. A module parameter, + acpi_force, is provided to force ACPI support to be used instead + of PSB support. + + +``cpufreq-nforce2`` +=================== + +:: + + The cpufreq-nforce2 driver changes the FSB on nVidia nForce2 platforms. + + This works better than on other platforms, because the FSB of the CPU + can be controlled independently from the PCI/AGP clock. + + The module has two options: + + fid: multiplier * 10 (for example 8.5 = 85) + min_fsb: minimum FSB + + If not set, fid is calculated from the current CPU speed and the FSB. + min_fsb defaults to FSB at boot time - 50 MHz. + + IMPORTANT: The available range is limited downwards! + Also the minimum available FSB can differ, for systems + booting with 200 MHz, 150 should always work. + + +``pcc-cpufreq`` +=============== + +:: + + /* + * pcc-cpufreq.txt - PCC interface documentation + * + * Copyright (C) 2009 Red Hat, Matthew Garrett + * Copyright (C) 2009 Hewlett-Packard Development Company, L.P. + * Nagananda Chumbalkar + */ + + + Processor Clocking Control Driver + --------------------------------- + + Contents: + --------- + 1. Introduction + 1.1 PCC interface + 1.1.1 Get Average Frequency + 1.1.2 Set Desired Frequency + 1.2 Platforms affected + 2. Driver and /sys details + 2.1 scaling_available_frequencies + 2.2 cpuinfo_transition_latency + 2.3 cpuinfo_cur_freq + 2.4 related_cpus + 3. Caveats + + 1. Introduction: + ---------------- + Processor Clocking Control (PCC) is an interface between the platform + firmware and OSPM. It is a mechanism for coordinating processor + performance (ie: frequency) between the platform firmware and the OS. + + The PCC driver (pcc-cpufreq) allows OSPM to take advantage of the PCC + interface. + + OS utilizes the PCC interface to inform platform firmware what frequency the + OS wants for a logical processor. The platform firmware attempts to achieve + the requested frequency. If the request for the target frequency could not be + satisfied by platform firmware, then it usually means that power budget + conditions are in place, and "power capping" is taking place. + + 1.1 PCC interface: + ------------------ + The complete PCC specification is available here: + https://acpica.org/sites/acpica/files/Processor-Clocking-Control-v1p0.pdf + + PCC relies on a shared memory region that provides a channel for communication + between the OS and platform firmware. PCC also implements a "doorbell" that + is used by the OS to inform the platform firmware that a command has been + sent. + + The ACPI PCCH() method is used to discover the location of the PCC shared + memory region. The shared memory region header contains the "command" and + "status" interface. PCCH() also contains details on how to access the platform + doorbell. + + The following commands are supported by the PCC interface: + * Get Average Frequency + * Set Desired Frequency + + The ACPI PCCP() method is implemented for each logical processor and is + used to discover the offsets for the input and output buffers in the shared + memory region. + + When PCC mode is enabled, the platform will not expose processor performance + or throttle states (_PSS, _TSS and related ACPI objects) to OSPM. Therefore, + the native P-state driver (such as acpi-cpufreq for Intel, powernow-k8 for + AMD) will not load. + + However, OSPM remains in control of policy. The governor (eg: "ondemand") + computes the required performance for each processor based on server workload. + The PCC driver fills in the command interface, and the input buffer and + communicates the request to the platform firmware. The platform firmware is + responsible for delivering the requested performance. + + Each PCC command is "global" in scope and can affect all the logical CPUs in + the system. Therefore, PCC is capable of performing "group" updates. With PCC + the OS is capable of getting/setting the frequency of all the logical CPUs in + the system with a single call to the BIOS. + + 1.1.1 Get Average Frequency: + ---------------------------- + This command is used by the OSPM to query the running frequency of the + processor since the last time this command was completed. The output buffer + indicates the average unhalted frequency of the logical processor expressed as + a percentage of the nominal (ie: maximum) CPU frequency. The output buffer + also signifies if the CPU frequency is limited by a power budget condition. + + 1.1.2 Set Desired Frequency: + ---------------------------- + This command is used by the OSPM to communicate to the platform firmware the + desired frequency for a logical processor. The output buffer is currently + ignored by OSPM. The next invocation of "Get Average Frequency" will inform + OSPM if the desired frequency was achieved or not. + + 1.2 Platforms affected: + ----------------------- + The PCC driver will load on any system where the platform firmware: + * supports the PCC interface, and the associated PCCH() and PCCP() methods + * assumes responsibility for managing the hardware clocking controls in order + to deliver the requested processor performance + + Currently, certain HP ProLiant platforms implement the PCC interface. On those + platforms PCC is the "default" choice. + + However, it is possible to disable this interface via a BIOS setting. In + such an instance, as is also the case on platforms where the PCC interface + is not implemented, the PCC driver will fail to load silently. + + 2. Driver and /sys details: + --------------------------- + When the driver loads, it merely prints the lowest and the highest CPU + frequencies supported by the platform firmware. + + The PCC driver loads with a message such as: + pcc-cpufreq: (v1.00.00) driver loaded with frequency limits: 1600 MHz, 2933 + MHz + + This means that the OPSM can request the CPU to run at any frequency in + between the limits (1600 MHz, and 2933 MHz) specified in the message. + + Internally, there is no need for the driver to convert the "target" frequency + to a corresponding P-state. + + The VERSION number for the driver will be of the format v.xy.ab. + eg: 1.00.02 + ----- -- + | | + | -- this will increase with bug fixes/enhancements to the driver + |-- this is the version of the PCC specification the driver adheres to + + + The following is a brief discussion on some of the fields exported via the + /sys filesystem and how their values are affected by the PCC driver: + + 2.1 scaling_available_frequencies: + ---------------------------------- + scaling_available_frequencies is not created in /sys. No intermediate + frequencies need to be listed because the BIOS will try to achieve any + frequency, within limits, requested by the governor. A frequency does not have + to be strictly associated with a P-state. + + 2.2 cpuinfo_transition_latency: + ------------------------------- + The cpuinfo_transition_latency field is 0. The PCC specification does + not include a field to expose this value currently. + + 2.3 cpuinfo_cur_freq: + --------------------- + A) Often cpuinfo_cur_freq will show a value different than what is declared + in the scaling_available_frequencies or scaling_cur_freq, or scaling_max_freq. + This is due to "turbo boost" available on recent Intel processors. If certain + conditions are met the BIOS can achieve a slightly higher speed than requested + by OSPM. An example: + + scaling_cur_freq : 2933000 + cpuinfo_cur_freq : 3196000 + + B) There is a round-off error associated with the cpuinfo_cur_freq value. + Since the driver obtains the current frequency as a "percentage" (%) of the + nominal frequency from the BIOS, sometimes, the values displayed by + scaling_cur_freq and cpuinfo_cur_freq may not match. An example: + + scaling_cur_freq : 1600000 + cpuinfo_cur_freq : 1583000 + + In this example, the nominal frequency is 2933 MHz. The driver obtains the + current frequency, cpuinfo_cur_freq, as 54% of the nominal frequency: + + 54% of 2933 MHz = 1583 MHz + + Nominal frequency is the maximum frequency of the processor, and it usually + corresponds to the frequency of the P0 P-state. + + 2.4 related_cpus: + ----------------- + The related_cpus field is identical to affected_cpus. + + affected_cpus : 4 + related_cpus : 4 + + Currently, the PCC driver does not evaluate _PSD. The platforms that support + PCC do not implement SW_ALL. So OSPM doesn't need to perform any coordination + to ensure that the same frequency is requested of all dependent CPUs. + + 3. Caveats: + ----------- + The "cpufreq_stats" module in its present form cannot be loaded and + expected to work with the PCC driver. Since the "cpufreq_stats" module + provides information wrt each P-state, it is not applicable to the PCC driver. -- cgit v1.2.3