From 2c3c1048746a4622d8c89a29670120dc8fab93c4 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 20:49:45 +0200 Subject: Adding upstream version 6.1.76. Signed-off-by: Daniel Baumann --- rust/alloc/boxed.rs | 2028 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2028 insertions(+) create mode 100644 rust/alloc/boxed.rs (limited to 'rust/alloc/boxed.rs') diff --git a/rust/alloc/boxed.rs b/rust/alloc/boxed.rs new file mode 100644 index 000000000..dcfe87b14 --- /dev/null +++ b/rust/alloc/boxed.rs @@ -0,0 +1,2028 @@ +// SPDX-License-Identifier: Apache-2.0 OR MIT + +//! A pointer type for heap allocation. +//! +//! [`Box`], casually referred to as a 'box', provides the simplest form of +//! heap allocation in Rust. Boxes provide ownership for this allocation, and +//! drop their contents when they go out of scope. Boxes also ensure that they +//! never allocate more than `isize::MAX` bytes. +//! +//! # Examples +//! +//! Move a value from the stack to the heap by creating a [`Box`]: +//! +//! ``` +//! let val: u8 = 5; +//! let boxed: Box = Box::new(val); +//! ``` +//! +//! Move a value from a [`Box`] back to the stack by [dereferencing]: +//! +//! ``` +//! let boxed: Box = Box::new(5); +//! let val: u8 = *boxed; +//! ``` +//! +//! Creating a recursive data structure: +//! +//! ``` +//! #[derive(Debug)] +//! enum List { +//! Cons(T, Box>), +//! Nil, +//! } +//! +//! let list: List = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil)))); +//! println!("{list:?}"); +//! ``` +//! +//! This will print `Cons(1, Cons(2, Nil))`. +//! +//! Recursive structures must be boxed, because if the definition of `Cons` +//! looked like this: +//! +//! ```compile_fail,E0072 +//! # enum List { +//! Cons(T, List), +//! # } +//! ``` +//! +//! It wouldn't work. This is because the size of a `List` depends on how many +//! elements are in the list, and so we don't know how much memory to allocate +//! for a `Cons`. By introducing a [`Box`], which has a defined size, we know how +//! big `Cons` needs to be. +//! +//! # Memory layout +//! +//! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for +//! its allocation. It is valid to convert both ways between a [`Box`] and a +//! raw pointer allocated with the [`Global`] allocator, given that the +//! [`Layout`] used with the allocator is correct for the type. More precisely, +//! a `value: *mut T` that has been allocated with the [`Global`] allocator +//! with `Layout::for_value(&*value)` may be converted into a box using +//! [`Box::::from_raw(value)`]. Conversely, the memory backing a `value: *mut +//! T` obtained from [`Box::::into_raw`] may be deallocated using the +//! [`Global`] allocator with [`Layout::for_value(&*value)`]. +//! +//! For zero-sized values, the `Box` pointer still has to be [valid] for reads +//! and writes and sufficiently aligned. In particular, casting any aligned +//! non-zero integer literal to a raw pointer produces a valid pointer, but a +//! pointer pointing into previously allocated memory that since got freed is +//! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot +//! be used is to use [`ptr::NonNull::dangling`]. +//! +//! So long as `T: Sized`, a `Box` is guaranteed to be represented +//! as a single pointer and is also ABI-compatible with C pointers +//! (i.e. the C type `T*`). This means that if you have extern "C" +//! Rust functions that will be called from C, you can define those +//! Rust functions using `Box` types, and use `T*` as corresponding +//! type on the C side. As an example, consider this C header which +//! declares functions that create and destroy some kind of `Foo` +//! value: +//! +//! ```c +//! /* C header */ +//! +//! /* Returns ownership to the caller */ +//! struct Foo* foo_new(void); +//! +//! /* Takes ownership from the caller; no-op when invoked with null */ +//! void foo_delete(struct Foo*); +//! ``` +//! +//! These two functions might be implemented in Rust as follows. Here, the +//! `struct Foo*` type from C is translated to `Box`, which captures +//! the ownership constraints. Note also that the nullable argument to +//! `foo_delete` is represented in Rust as `Option>`, since `Box` +//! cannot be null. +//! +//! ``` +//! #[repr(C)] +//! pub struct Foo; +//! +//! #[no_mangle] +//! pub extern "C" fn foo_new() -> Box { +//! Box::new(Foo) +//! } +//! +//! #[no_mangle] +//! pub extern "C" fn foo_delete(_: Option>) {} +//! ``` +//! +//! Even though `Box` has the same representation and C ABI as a C pointer, +//! this does not mean that you can convert an arbitrary `T*` into a `Box` +//! and expect things to work. `Box` values will always be fully aligned, +//! non-null pointers. Moreover, the destructor for `Box` will attempt to +//! free the value with the global allocator. In general, the best practice +//! is to only use `Box` for pointers that originated from the global +//! allocator. +//! +//! **Important.** At least at present, you should avoid using +//! `Box` types for functions that are defined in C but invoked +//! from Rust. In those cases, you should directly mirror the C types +//! as closely as possible. Using types like `Box` where the C +//! definition is just using `T*` can lead to undefined behavior, as +//! described in [rust-lang/unsafe-code-guidelines#198][ucg#198]. +//! +//! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198 +//! [dereferencing]: core::ops::Deref +//! [`Box::::from_raw(value)`]: Box::from_raw +//! [`Global`]: crate::alloc::Global +//! [`Layout`]: crate::alloc::Layout +//! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value +//! [valid]: ptr#safety + +#![stable(feature = "rust1", since = "1.0.0")] + +use core::any::Any; +use core::async_iter::AsyncIterator; +use core::borrow; +use core::cmp::Ordering; +use core::convert::{From, TryFrom}; +use core::fmt; +use core::future::Future; +use core::hash::{Hash, Hasher}; +#[cfg(not(no_global_oom_handling))] +use core::iter::FromIterator; +use core::iter::{FusedIterator, Iterator}; +use core::marker::{Destruct, Unpin, Unsize}; +use core::mem; +use core::ops::{ + CoerceUnsized, Deref, DerefMut, DispatchFromDyn, Generator, GeneratorState, Receiver, +}; +use core::pin::Pin; +use core::ptr::{self, Unique}; +use core::task::{Context, Poll}; + +#[cfg(not(no_global_oom_handling))] +use crate::alloc::{handle_alloc_error, WriteCloneIntoRaw}; +use crate::alloc::{AllocError, Allocator, Global, Layout}; +#[cfg(not(no_global_oom_handling))] +use crate::borrow::Cow; +use crate::raw_vec::RawVec; +#[cfg(not(no_global_oom_handling))] +use crate::str::from_boxed_utf8_unchecked; +#[cfg(not(no_global_oom_handling))] +use crate::vec::Vec; + +#[cfg(not(no_thin))] +#[unstable(feature = "thin_box", issue = "92791")] +pub use thin::ThinBox; + +#[cfg(not(no_thin))] +mod thin; + +/// A pointer type for heap allocation. +/// +/// See the [module-level documentation](../../std/boxed/index.html) for more. +#[lang = "owned_box"] +#[fundamental] +#[stable(feature = "rust1", since = "1.0.0")] +// The declaration of the `Box` struct must be kept in sync with the +// `alloc::alloc::box_free` function or ICEs will happen. See the comment +// on `box_free` for more details. +pub struct Box< + T: ?Sized, + #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, +>(Unique, A); + +impl Box { + /// Allocates memory on the heap and then places `x` into it. + /// + /// This doesn't actually allocate if `T` is zero-sized. + /// + /// # Examples + /// + /// ``` + /// let five = Box::new(5); + /// ``` + #[cfg(not(no_global_oom_handling))] + #[inline(always)] + #[stable(feature = "rust1", since = "1.0.0")] + #[must_use] + pub fn new(x: T) -> Self { + box x + } + + /// Constructs a new box with uninitialized contents. + /// + /// # Examples + /// + /// ``` + /// #![feature(new_uninit)] + /// + /// let mut five = Box::::new_uninit(); + /// + /// let five = unsafe { + /// // Deferred initialization: + /// five.as_mut_ptr().write(5); + /// + /// five.assume_init() + /// }; + /// + /// assert_eq!(*five, 5) + /// ``` + #[cfg(not(no_global_oom_handling))] + #[unstable(feature = "new_uninit", issue = "63291")] + #[must_use] + #[inline] + pub fn new_uninit() -> Box> { + Self::new_uninit_in(Global) + } + + /// Constructs a new `Box` with uninitialized contents, with the memory + /// being filled with `0` bytes. + /// + /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage + /// of this method. + /// + /// # Examples + /// + /// ``` + /// #![feature(new_uninit)] + /// + /// let zero = Box::::new_zeroed(); + /// let zero = unsafe { zero.assume_init() }; + /// + /// assert_eq!(*zero, 0) + /// ``` + /// + /// [zeroed]: mem::MaybeUninit::zeroed + #[cfg(not(no_global_oom_handling))] + #[inline] + #[unstable(feature = "new_uninit", issue = "63291")] + #[must_use] + pub fn new_zeroed() -> Box> { + Self::new_zeroed_in(Global) + } + + /// Constructs a new `Pin>`. If `T` does not implement `Unpin`, then + /// `x` will be pinned in memory and unable to be moved. + #[cfg(not(no_global_oom_handling))] + #[stable(feature = "pin", since = "1.33.0")] + #[must_use] + #[inline(always)] + pub fn pin(x: T) -> Pin> { + (box x).into() + } + + /// Allocates memory on the heap then places `x` into it, + /// returning an error if the allocation fails + /// + /// This doesn't actually allocate if `T` is zero-sized. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api)] + /// + /// let five = Box::try_new(5)?; + /// # Ok::<(), std::alloc::AllocError>(()) + /// ``` + #[unstable(feature = "allocator_api", issue = "32838")] + #[inline] + pub fn try_new(x: T) -> Result { + Self::try_new_in(x, Global) + } + + /// Constructs a new box with uninitialized contents on the heap, + /// returning an error if the allocation fails + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// let mut five = Box::::try_new_uninit()?; + /// + /// let five = unsafe { + /// // Deferred initialization: + /// five.as_mut_ptr().write(5); + /// + /// five.assume_init() + /// }; + /// + /// assert_eq!(*five, 5); + /// # Ok::<(), std::alloc::AllocError>(()) + /// ``` + #[unstable(feature = "allocator_api", issue = "32838")] + // #[unstable(feature = "new_uninit", issue = "63291")] + #[inline] + pub fn try_new_uninit() -> Result>, AllocError> { + Box::try_new_uninit_in(Global) + } + + /// Constructs a new `Box` with uninitialized contents, with the memory + /// being filled with `0` bytes on the heap + /// + /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage + /// of this method. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// let zero = Box::::try_new_zeroed()?; + /// let zero = unsafe { zero.assume_init() }; + /// + /// assert_eq!(*zero, 0); + /// # Ok::<(), std::alloc::AllocError>(()) + /// ``` + /// + /// [zeroed]: mem::MaybeUninit::zeroed + #[unstable(feature = "allocator_api", issue = "32838")] + // #[unstable(feature = "new_uninit", issue = "63291")] + #[inline] + pub fn try_new_zeroed() -> Result>, AllocError> { + Box::try_new_zeroed_in(Global) + } +} + +impl Box { + /// Allocates memory in the given allocator then places `x` into it. + /// + /// This doesn't actually allocate if `T` is zero-sized. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api)] + /// + /// use std::alloc::System; + /// + /// let five = Box::new_in(5, System); + /// ``` + #[cfg(not(no_global_oom_handling))] + #[unstable(feature = "allocator_api", issue = "32838")] + #[rustc_const_unstable(feature = "const_box", issue = "92521")] + #[must_use] + #[inline] + pub const fn new_in(x: T, alloc: A) -> Self + where + A: ~const Allocator + ~const Destruct, + { + let mut boxed = Self::new_uninit_in(alloc); + unsafe { + boxed.as_mut_ptr().write(x); + boxed.assume_init() + } + } + + /// Allocates memory in the given allocator then places `x` into it, + /// returning an error if the allocation fails + /// + /// This doesn't actually allocate if `T` is zero-sized. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api)] + /// + /// use std::alloc::System; + /// + /// let five = Box::try_new_in(5, System)?; + /// # Ok::<(), std::alloc::AllocError>(()) + /// ``` + #[unstable(feature = "allocator_api", issue = "32838")] + #[rustc_const_unstable(feature = "const_box", issue = "92521")] + #[inline] + pub const fn try_new_in(x: T, alloc: A) -> Result + where + T: ~const Destruct, + A: ~const Allocator + ~const Destruct, + { + let mut boxed = Self::try_new_uninit_in(alloc)?; + unsafe { + boxed.as_mut_ptr().write(x); + Ok(boxed.assume_init()) + } + } + + /// Constructs a new box with uninitialized contents in the provided allocator. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// use std::alloc::System; + /// + /// let mut five = Box::::new_uninit_in(System); + /// + /// let five = unsafe { + /// // Deferred initialization: + /// five.as_mut_ptr().write(5); + /// + /// five.assume_init() + /// }; + /// + /// assert_eq!(*five, 5) + /// ``` + #[unstable(feature = "allocator_api", issue = "32838")] + #[rustc_const_unstable(feature = "const_box", issue = "92521")] + #[cfg(not(no_global_oom_handling))] + #[must_use] + // #[unstable(feature = "new_uninit", issue = "63291")] + pub const fn new_uninit_in(alloc: A) -> Box, A> + where + A: ~const Allocator + ~const Destruct, + { + let layout = Layout::new::>(); + // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. + // That would make code size bigger. + match Box::try_new_uninit_in(alloc) { + Ok(m) => m, + Err(_) => handle_alloc_error(layout), + } + } + + /// Constructs a new box with uninitialized contents in the provided allocator, + /// returning an error if the allocation fails + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// use std::alloc::System; + /// + /// let mut five = Box::::try_new_uninit_in(System)?; + /// + /// let five = unsafe { + /// // Deferred initialization: + /// five.as_mut_ptr().write(5); + /// + /// five.assume_init() + /// }; + /// + /// assert_eq!(*five, 5); + /// # Ok::<(), std::alloc::AllocError>(()) + /// ``` + #[unstable(feature = "allocator_api", issue = "32838")] + // #[unstable(feature = "new_uninit", issue = "63291")] + #[rustc_const_unstable(feature = "const_box", issue = "92521")] + pub const fn try_new_uninit_in(alloc: A) -> Result, A>, AllocError> + where + A: ~const Allocator + ~const Destruct, + { + let layout = Layout::new::>(); + let ptr = alloc.allocate(layout)?.cast(); + unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } + } + + /// Constructs a new `Box` with uninitialized contents, with the memory + /// being filled with `0` bytes in the provided allocator. + /// + /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage + /// of this method. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// use std::alloc::System; + /// + /// let zero = Box::::new_zeroed_in(System); + /// let zero = unsafe { zero.assume_init() }; + /// + /// assert_eq!(*zero, 0) + /// ``` + /// + /// [zeroed]: mem::MaybeUninit::zeroed + #[unstable(feature = "allocator_api", issue = "32838")] + #[rustc_const_unstable(feature = "const_box", issue = "92521")] + #[cfg(not(no_global_oom_handling))] + // #[unstable(feature = "new_uninit", issue = "63291")] + #[must_use] + pub const fn new_zeroed_in(alloc: A) -> Box, A> + where + A: ~const Allocator + ~const Destruct, + { + let layout = Layout::new::>(); + // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable. + // That would make code size bigger. + match Box::try_new_zeroed_in(alloc) { + Ok(m) => m, + Err(_) => handle_alloc_error(layout), + } + } + + /// Constructs a new `Box` with uninitialized contents, with the memory + /// being filled with `0` bytes in the provided allocator, + /// returning an error if the allocation fails, + /// + /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage + /// of this method. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// use std::alloc::System; + /// + /// let zero = Box::::try_new_zeroed_in(System)?; + /// let zero = unsafe { zero.assume_init() }; + /// + /// assert_eq!(*zero, 0); + /// # Ok::<(), std::alloc::AllocError>(()) + /// ``` + /// + /// [zeroed]: mem::MaybeUninit::zeroed + #[unstable(feature = "allocator_api", issue = "32838")] + // #[unstable(feature = "new_uninit", issue = "63291")] + #[rustc_const_unstable(feature = "const_box", issue = "92521")] + pub const fn try_new_zeroed_in(alloc: A) -> Result, A>, AllocError> + where + A: ~const Allocator + ~const Destruct, + { + let layout = Layout::new::>(); + let ptr = alloc.allocate_zeroed(layout)?.cast(); + unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) } + } + + /// Constructs a new `Pin>`. If `T` does not implement `Unpin`, then + /// `x` will be pinned in memory and unable to be moved. + #[cfg(not(no_global_oom_handling))] + #[unstable(feature = "allocator_api", issue = "32838")] + #[rustc_const_unstable(feature = "const_box", issue = "92521")] + #[must_use] + #[inline(always)] + pub const fn pin_in(x: T, alloc: A) -> Pin + where + A: 'static + ~const Allocator + ~const Destruct, + { + Self::into_pin(Self::new_in(x, alloc)) + } + + /// Converts a `Box` into a `Box<[T]>` + /// + /// This conversion does not allocate on the heap and happens in place. + #[unstable(feature = "box_into_boxed_slice", issue = "71582")] + #[rustc_const_unstable(feature = "const_box", issue = "92521")] + pub const fn into_boxed_slice(boxed: Self) -> Box<[T], A> { + let (raw, alloc) = Box::into_raw_with_allocator(boxed); + unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) } + } + + /// Consumes the `Box`, returning the wrapped value. + /// + /// # Examples + /// + /// ``` + /// #![feature(box_into_inner)] + /// + /// let c = Box::new(5); + /// + /// assert_eq!(Box::into_inner(c), 5); + /// ``` + #[unstable(feature = "box_into_inner", issue = "80437")] + #[rustc_const_unstable(feature = "const_box", issue = "92521")] + #[inline] + pub const fn into_inner(boxed: Self) -> T + where + Self: ~const Destruct, + { + *boxed + } +} + +impl Box<[T]> { + /// Constructs a new boxed slice with uninitialized contents. + /// + /// # Examples + /// + /// ``` + /// #![feature(new_uninit)] + /// + /// let mut values = Box::<[u32]>::new_uninit_slice(3); + /// + /// let values = unsafe { + /// // Deferred initialization: + /// values[0].as_mut_ptr().write(1); + /// values[1].as_mut_ptr().write(2); + /// values[2].as_mut_ptr().write(3); + /// + /// values.assume_init() + /// }; + /// + /// assert_eq!(*values, [1, 2, 3]) + /// ``` + #[cfg(not(no_global_oom_handling))] + #[unstable(feature = "new_uninit", issue = "63291")] + #[must_use] + pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit]> { + unsafe { RawVec::with_capacity(len).into_box(len) } + } + + /// Constructs a new boxed slice with uninitialized contents, with the memory + /// being filled with `0` bytes. + /// + /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage + /// of this method. + /// + /// # Examples + /// + /// ``` + /// #![feature(new_uninit)] + /// + /// let values = Box::<[u32]>::new_zeroed_slice(3); + /// let values = unsafe { values.assume_init() }; + /// + /// assert_eq!(*values, [0, 0, 0]) + /// ``` + /// + /// [zeroed]: mem::MaybeUninit::zeroed + #[cfg(not(no_global_oom_handling))] + #[unstable(feature = "new_uninit", issue = "63291")] + #[must_use] + pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit]> { + unsafe { RawVec::with_capacity_zeroed(len).into_box(len) } + } + + /// Constructs a new boxed slice with uninitialized contents. Returns an error if + /// the allocation fails + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?; + /// let values = unsafe { + /// // Deferred initialization: + /// values[0].as_mut_ptr().write(1); + /// values[1].as_mut_ptr().write(2); + /// values[2].as_mut_ptr().write(3); + /// values.assume_init() + /// }; + /// + /// assert_eq!(*values, [1, 2, 3]); + /// # Ok::<(), std::alloc::AllocError>(()) + /// ``` + #[unstable(feature = "allocator_api", issue = "32838")] + #[inline] + pub fn try_new_uninit_slice(len: usize) -> Result]>, AllocError> { + unsafe { + let layout = match Layout::array::>(len) { + Ok(l) => l, + Err(_) => return Err(AllocError), + }; + let ptr = Global.allocate(layout)?; + Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len)) + } + } + + /// Constructs a new boxed slice with uninitialized contents, with the memory + /// being filled with `0` bytes. Returns an error if the allocation fails + /// + /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage + /// of this method. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?; + /// let values = unsafe { values.assume_init() }; + /// + /// assert_eq!(*values, [0, 0, 0]); + /// # Ok::<(), std::alloc::AllocError>(()) + /// ``` + /// + /// [zeroed]: mem::MaybeUninit::zeroed + #[unstable(feature = "allocator_api", issue = "32838")] + #[inline] + pub fn try_new_zeroed_slice(len: usize) -> Result]>, AllocError> { + unsafe { + let layout = match Layout::array::>(len) { + Ok(l) => l, + Err(_) => return Err(AllocError), + }; + let ptr = Global.allocate_zeroed(layout)?; + Ok(RawVec::from_raw_parts_in(ptr.as_mut_ptr() as *mut _, len, Global).into_box(len)) + } + } +} + +impl Box<[T], A> { + /// Constructs a new boxed slice with uninitialized contents in the provided allocator. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// use std::alloc::System; + /// + /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System); + /// + /// let values = unsafe { + /// // Deferred initialization: + /// values[0].as_mut_ptr().write(1); + /// values[1].as_mut_ptr().write(2); + /// values[2].as_mut_ptr().write(3); + /// + /// values.assume_init() + /// }; + /// + /// assert_eq!(*values, [1, 2, 3]) + /// ``` + #[cfg(not(no_global_oom_handling))] + #[unstable(feature = "allocator_api", issue = "32838")] + // #[unstable(feature = "new_uninit", issue = "63291")] + #[must_use] + pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit], A> { + unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) } + } + + /// Constructs a new boxed slice with uninitialized contents in the provided allocator, + /// with the memory being filled with `0` bytes. + /// + /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage + /// of this method. + /// + /// # Examples + /// + /// ``` + /// #![feature(allocator_api, new_uninit)] + /// + /// use std::alloc::System; + /// + /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System); + /// let values = unsafe { values.assume_init() }; + /// + /// assert_eq!(*values, [0, 0, 0]) + /// ``` + /// + /// [zeroed]: mem::MaybeUninit::zeroed + #[cfg(not(no_global_oom_handling))] + #[unstable(feature = "allocator_api", issue = "32838")] + // #[unstable(feature = "new_uninit", issue = "63291")] + #[must_use] + pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit], A> { + unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) } + } +} + +impl Box, A> { + /// Converts to `Box`. + /// + /// # Safety + /// + /// As with [`MaybeUninit::assume_init`], + /// it is up to the caller to guarantee that the value + /// really is in an initialized state. + /// Calling this when the content is not yet fully initialized + /// causes immediate undefined behavior. + /// + /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init + /// + /// # Examples + /// + /// ``` + /// #![feature(new_uninit)] + /// + /// let mut five = Box::::new_uninit(); + /// + /// let five: Box = unsafe { + /// // Deferred initialization: + /// five.as_mut_ptr().write(5); + /// + /// five.assume_init() + /// }; + /// + /// assert_eq!(*five, 5) + /// ``` + #[unstable(feature = "new_uninit", issue = "63291")] + #[rustc_const_unstable(feature = "const_box", issue = "92521")] + #[inline] + pub const unsafe fn assume_init(self) -> Box { + let (raw, alloc) = Box::into_raw_with_allocator(self); + unsafe { Box::from_raw_in(raw as *mut T, alloc) } + } + + /// Writes the value and converts to `Box`. + /// + /// This method converts the box similarly to [`Box::assume_init`] but + /// writes `value` into it before conversion thus guaranteeing safety. + /// In some scenarios use of this method may improve performance because + /// the compiler may be able to optimize copying from stack. + /// + /// # Examples + /// + /// ``` + /// #![feature(new_uninit)] + /// + /// let big_box = Box::<[usize; 1024]>::new_uninit(); + /// + /// let mut array = [0; 1024]; + /// for (i, place) in array.iter_mut().enumerate() { + /// *place = i; + /// } + /// + /// // The optimizer may be able to elide this copy, so previous code writes + /// // to heap directly. + /// let big_box = Box::write(big_box, array); + /// + /// for (i, x) in big_box.iter().enumerate() { + /// assert_eq!(*x, i); + /// } + /// ``` + #[unstable(feature = "new_uninit", issue = "63291")] + #[rustc_const_unstable(feature = "const_box", issue = "92521")] + #[inline] + pub const fn write(mut boxed: Self, value: T) -> Box { + unsafe { + (*boxed).write(value); + boxed.assume_init() + } + } +} + +impl Box<[mem::MaybeUninit], A> { + /// Converts to `Box<[T], A>`. + /// + /// # Safety + /// + /// As with [`MaybeUninit::assume_init`], + /// it is up to the caller to guarantee that the values + /// really are in an initialized state. + /// Calling this when the content is not yet fully initialized + /// causes immediate undefined behavior. + /// + /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init + /// + /// # Examples + /// + /// ``` + /// #![feature(new_uninit)] + /// + /// let mut values = Box::<[u32]>::new_uninit_slice(3); + /// + /// let values = unsafe { + /// // Deferred initialization: + /// values[0].as_mut_ptr().write(1); + /// values[1].as_mut_ptr().write(2); + /// values[2].as_mut_ptr().write(3); + /// + /// values.assume_init() + /// }; + /// + /// assert_eq!(*values, [1, 2, 3]) + /// ``` + #[unstable(feature = "new_uninit", issue = "63291")] + #[inline] + pub unsafe fn assume_init(self) -> Box<[T], A> { + let (raw, alloc) = Box::into_raw_with_allocator(self); + unsafe { Box::from_raw_in(raw as *mut [T], alloc) } + } +} + +impl Box { + /// Constructs a box from a raw pointer. + /// + /// After calling this function, the raw pointer is owned by the + /// resulting `Box`. Specifically, the `Box` destructor will call + /// the destructor of `T` and free the allocated memory. For this + /// to be safe, the memory must have been allocated in accordance + /// with the [memory layout] used by `Box` . + /// + /// # Safety + /// + /// This function is unsafe because improper use may lead to + /// memory problems. For example, a double-free may occur if the + /// function is called twice on the same raw pointer. + /// + /// The safety conditions are described in the [memory layout] section. + /// + /// # Examples + /// + /// Recreate a `Box` which was previously converted to a raw pointer + /// using [`Box::into_raw`]: + /// ``` + /// let x = Box::new(5); + /// let ptr = Box::into_raw(x); + /// let x = unsafe { Box::from_raw(ptr) }; + /// ``` + /// Manually create a `Box` from scratch by using the global allocator: + /// ``` + /// use std::alloc::{alloc, Layout}; + /// + /// unsafe { + /// let ptr = alloc(Layout::new::()) as *mut i32; + /// // In general .write is required to avoid attempting to destruct + /// // the (uninitialized) previous contents of `ptr`, though for this + /// // simple example `*ptr = 5` would have worked as well. + /// ptr.write(5); + /// let x = Box::from_raw(ptr); + /// } + /// ``` + /// + /// [memory layout]: self#memory-layout + /// [`Layout`]: crate::Layout + #[stable(feature = "box_raw", since = "1.4.0")] + #[inline] + pub unsafe fn from_raw(raw: *mut T) -> Self { + unsafe { Self::from_raw_in(raw, Global) } + } +} + +impl Box { + /// Constructs a box from a raw pointer in the given allocator. + /// + /// After calling this function, the raw pointer is owned by the + /// resulting `Box`. Specifically, the `Box` destructor will call + /// the destructor of `T` and free the allocated memory. For this + /// to be safe, the memory must have been allocated in accordance + /// with the [memory layout] used by `Box` . + /// + /// # Safety + /// + /// This function is unsafe because improper use may lead to + /// memory problems. For example, a double-free may occur if the + /// function is called twice on the same raw pointer. + /// + /// + /// # Examples + /// + /// Recreate a `Box` which was previously converted to a raw pointer + /// using [`Box::into_raw_with_allocator`]: + /// ``` + /// #![feature(allocator_api)] + /// + /// use std::alloc::System; + /// + /// let x = Box::new_in(5, System); + /// let (ptr, alloc) = Box::into_raw_with_allocator(x); + /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; + /// ``` + /// Manually create a `Box` from scratch by using the system allocator: + /// ``` + /// #![feature(allocator_api, slice_ptr_get)] + /// + /// use std::alloc::{Allocator, Layout, System}; + /// + /// unsafe { + /// let ptr = System.allocate(Layout::new::())?.as_mut_ptr() as *mut i32; + /// // In general .write is required to avoid attempting to destruct + /// // the (uninitialized) previous contents of `ptr`, though for this + /// // simple example `*ptr = 5` would have worked as well. + /// ptr.write(5); + /// let x = Box::from_raw_in(ptr, System); + /// } + /// # Ok::<(), std::alloc::AllocError>(()) + /// ``` + /// + /// [memory layout]: self#memory-layout + /// [`Layout`]: crate::Layout + #[unstable(feature = "allocator_api", issue = "32838")] + #[rustc_const_unstable(feature = "const_box", issue = "92521")] + #[inline] + pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self { + Box(unsafe { Unique::new_unchecked(raw) }, alloc) + } + + /// Consumes the `Box`, returning a wrapped raw pointer. + /// + /// The pointer will be properly aligned and non-null. + /// + /// After calling this function, the caller is responsible for the + /// memory previously managed by the `Box`. In particular, the + /// caller should properly destroy `T` and release the memory, taking + /// into account the [memory layout] used by `Box`. The easiest way to + /// do this is to convert the raw pointer back into a `Box` with the + /// [`Box::from_raw`] function, allowing the `Box` destructor to perform + /// the cleanup. + /// + /// Note: this is an associated function, which means that you have + /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This + /// is so that there is no conflict with a method on the inner type. + /// + /// # Examples + /// Converting the raw pointer back into a `Box` with [`Box::from_raw`] + /// for automatic cleanup: + /// ``` + /// let x = Box::new(String::from("Hello")); + /// let ptr = Box::into_raw(x); + /// let x = unsafe { Box::from_raw(ptr) }; + /// ``` + /// Manual cleanup by explicitly running the destructor and deallocating + /// the memory: + /// ``` + /// use std::alloc::{dealloc, Layout}; + /// use std::ptr; + /// + /// let x = Box::new(String::from("Hello")); + /// let p = Box::into_raw(x); + /// unsafe { + /// ptr::drop_in_place(p); + /// dealloc(p as *mut u8, Layout::new::()); + /// } + /// ``` + /// + /// [memory layout]: self#memory-layout + #[stable(feature = "box_raw", since = "1.4.0")] + #[inline] + pub fn into_raw(b: Self) -> *mut T { + Self::into_raw_with_allocator(b).0 + } + + /// Consumes the `Box`, returning a wrapped raw pointer and the allocator. + /// + /// The pointer will be properly aligned and non-null. + /// + /// After calling this function, the caller is responsible for the + /// memory previously managed by the `Box`. In particular, the + /// caller should properly destroy `T` and release the memory, taking + /// into account the [memory layout] used by `Box`. The easiest way to + /// do this is to convert the raw pointer back into a `Box` with the + /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform + /// the cleanup. + /// + /// Note: this is an associated function, which means that you have + /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This + /// is so that there is no conflict with a method on the inner type. + /// + /// # Examples + /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`] + /// for automatic cleanup: + /// ``` + /// #![feature(allocator_api)] + /// + /// use std::alloc::System; + /// + /// let x = Box::new_in(String::from("Hello"), System); + /// let (ptr, alloc) = Box::into_raw_with_allocator(x); + /// let x = unsafe { Box::from_raw_in(ptr, alloc) }; + /// ``` + /// Manual cleanup by explicitly running the destructor and deallocating + /// the memory: + /// ``` + /// #![feature(allocator_api)] + /// + /// use std::alloc::{Allocator, Layout, System}; + /// use std::ptr::{self, NonNull}; + /// + /// let x = Box::new_in(String::from("Hello"), System); + /// let (ptr, alloc) = Box::into_raw_with_allocator(x); + /// unsafe { + /// ptr::drop_in_place(ptr); + /// let non_null = NonNull::new_unchecked(ptr); + /// alloc.deallocate(non_null.cast(), Layout::new::()); + /// } + /// ``` + /// + /// [memory layout]: self#memory-layout + #[unstable(feature = "allocator_api", issue = "32838")] + #[rustc_const_unstable(feature = "const_box", issue = "92521")] + #[inline] + pub const fn into_raw_with_allocator(b: Self) -> (*mut T, A) { + let (leaked, alloc) = Box::into_unique(b); + (leaked.as_ptr(), alloc) + } + + #[unstable( + feature = "ptr_internals", + issue = "none", + reason = "use `Box::leak(b).into()` or `Unique::from(Box::leak(b))` instead" + )] + #[rustc_const_unstable(feature = "const_box", issue = "92521")] + #[inline] + #[doc(hidden)] + pub const fn into_unique(b: Self) -> (Unique, A) { + // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a + // raw pointer for the type system. Turning it directly into a raw pointer would not be + // recognized as "releasing" the unique pointer to permit aliased raw accesses, + // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer + // behaves correctly. + let alloc = unsafe { ptr::read(&b.1) }; + (Unique::from(Box::leak(b)), alloc) + } + + /// Returns a reference to the underlying allocator. + /// + /// Note: this is an associated function, which means that you have + /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This + /// is so that there is no conflict with a method on the inner type. + #[unstable(feature = "allocator_api", issue = "32838")] + #[rustc_const_unstable(feature = "const_box", issue = "92521")] + #[inline] + pub const fn allocator(b: &Self) -> &A { + &b.1 + } + + /// Consumes and leaks the `Box`, returning a mutable reference, + /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime + /// `'a`. If the type has only static references, or none at all, then this + /// may be chosen to be `'static`. + /// + /// This function is mainly useful for data that lives for the remainder of + /// the program's life. Dropping the returned reference will cause a memory + /// leak. If this is not acceptable, the reference should first be wrapped + /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can + /// then be dropped which will properly destroy `T` and release the + /// allocated memory. + /// + /// Note: this is an associated function, which means that you have + /// to call it as `Box::leak(b)` instead of `b.leak()`. This + /// is so that there is no conflict with a method on the inner type. + /// + /// # Examples + /// + /// Simple usage: + /// + /// ``` + /// let x = Box::new(41); + /// let static_ref: &'static mut usize = Box::leak(x); + /// *static_ref += 1; + /// assert_eq!(*static_ref, 42); + /// ``` + /// + /// Unsized data: + /// + /// ``` + /// let x = vec![1, 2, 3].into_boxed_slice(); + /// let static_ref = Box::leak(x); + /// static_ref[0] = 4; + /// assert_eq!(*static_ref, [4, 2, 3]); + /// ``` + #[stable(feature = "box_leak", since = "1.26.0")] + #[rustc_const_unstable(feature = "const_box", issue = "92521")] + #[inline] + pub const fn leak<'a>(b: Self) -> &'a mut T + where + A: 'a, + { + unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() } + } + + /// Converts a `Box` into a `Pin>` + /// + /// This conversion does not allocate on the heap and happens in place. + /// + /// This is also available via [`From`]. + #[unstable(feature = "box_into_pin", issue = "62370")] + #[rustc_const_unstable(feature = "const_box", issue = "92521")] + pub const fn into_pin(boxed: Self) -> Pin + where + A: 'static, + { + // It's not possible to move or replace the insides of a `Pin>` + // when `T: !Unpin`, so it's safe to pin it directly without any + // additional requirements. + unsafe { Pin::new_unchecked(boxed) } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Box { + fn drop(&mut self) { + // FIXME: Do nothing, drop is currently performed by compiler. + } +} + +#[cfg(not(no_global_oom_handling))] +#[stable(feature = "rust1", since = "1.0.0")] +impl Default for Box { + /// Creates a `Box`, with the `Default` value for T. + fn default() -> Self { + box T::default() + } +} + +#[cfg(not(no_global_oom_handling))] +#[stable(feature = "rust1", since = "1.0.0")] +#[rustc_const_unstable(feature = "const_default_impls", issue = "87864")] +impl const Default for Box<[T]> { + fn default() -> Self { + let ptr: Unique<[T]> = Unique::<[T; 0]>::dangling(); + Box(ptr, Global) + } +} + +#[cfg(not(no_global_oom_handling))] +#[stable(feature = "default_box_extra", since = "1.17.0")] +#[rustc_const_unstable(feature = "const_default_impls", issue = "87864")] +impl const Default for Box { + fn default() -> Self { + // SAFETY: This is the same as `Unique::cast` but with an unsized `U = str`. + let ptr: Unique = unsafe { + let bytes: Unique<[u8]> = Unique::<[u8; 0]>::dangling(); + Unique::new_unchecked(bytes.as_ptr() as *mut str) + }; + Box(ptr, Global) + } +} + +#[cfg(not(no_global_oom_handling))] +#[stable(feature = "rust1", since = "1.0.0")] +impl Clone for Box { + /// Returns a new box with a `clone()` of this box's contents. + /// + /// # Examples + /// + /// ``` + /// let x = Box::new(5); + /// let y = x.clone(); + /// + /// // The value is the same + /// assert_eq!(x, y); + /// + /// // But they are unique objects + /// assert_ne!(&*x as *const i32, &*y as *const i32); + /// ``` + #[inline] + fn clone(&self) -> Self { + // Pre-allocate memory to allow writing the cloned value directly. + let mut boxed = Self::new_uninit_in(self.1.clone()); + unsafe { + (**self).write_clone_into_raw(boxed.as_mut_ptr()); + boxed.assume_init() + } + } + + /// Copies `source`'s contents into `self` without creating a new allocation. + /// + /// # Examples + /// + /// ``` + /// let x = Box::new(5); + /// let mut y = Box::new(10); + /// let yp: *const i32 = &*y; + /// + /// y.clone_from(&x); + /// + /// // The value is the same + /// assert_eq!(x, y); + /// + /// // And no allocation occurred + /// assert_eq!(yp, &*y); + /// ``` + #[inline] + fn clone_from(&mut self, source: &Self) { + (**self).clone_from(&(**source)); + } +} + +#[cfg(not(no_global_oom_handling))] +#[stable(feature = "box_slice_clone", since = "1.3.0")] +impl Clone for Box { + fn clone(&self) -> Self { + // this makes a copy of the data + let buf: Box<[u8]> = self.as_bytes().into(); + unsafe { from_boxed_utf8_unchecked(buf) } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl PartialEq for Box { + #[inline] + fn eq(&self, other: &Self) -> bool { + PartialEq::eq(&**self, &**other) + } + #[inline] + fn ne(&self, other: &Self) -> bool { + PartialEq::ne(&**self, &**other) + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl PartialOrd for Box { + #[inline] + fn partial_cmp(&self, other: &Self) -> Option { + PartialOrd::partial_cmp(&**self, &**other) + } + #[inline] + fn lt(&self, other: &Self) -> bool { + PartialOrd::lt(&**self, &**other) + } + #[inline] + fn le(&self, other: &Self) -> bool { + PartialOrd::le(&**self, &**other) + } + #[inline] + fn ge(&self, other: &Self) -> bool { + PartialOrd::ge(&**self, &**other) + } + #[inline] + fn gt(&self, other: &Self) -> bool { + PartialOrd::gt(&**self, &**other) + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl Ord for Box { + #[inline] + fn cmp(&self, other: &Self) -> Ordering { + Ord::cmp(&**self, &**other) + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl Eq for Box {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl Hash for Box { + fn hash(&self, state: &mut H) { + (**self).hash(state); + } +} + +#[stable(feature = "indirect_hasher_impl", since = "1.22.0")] +impl Hasher for Box { + fn finish(&self) -> u64 { + (**self).finish() + } + fn write(&mut self, bytes: &[u8]) { + (**self).write(bytes) + } + fn write_u8(&mut self, i: u8) { + (**self).write_u8(i) + } + fn write_u16(&mut self, i: u16) { + (**self).write_u16(i) + } + fn write_u32(&mut self, i: u32) { + (**self).write_u32(i) + } + fn write_u64(&mut self, i: u64) { + (**self).write_u64(i) + } + fn write_u128(&mut self, i: u128) { + (**self).write_u128(i) + } + fn write_usize(&mut self, i: usize) { + (**self).write_usize(i) + } + fn write_i8(&mut self, i: i8) { + (**self).write_i8(i) + } + fn write_i16(&mut self, i: i16) { + (**self).write_i16(i) + } + fn write_i32(&mut self, i: i32) { + (**self).write_i32(i) + } + fn write_i64(&mut self, i: i64) { + (**self).write_i64(i) + } + fn write_i128(&mut self, i: i128) { + (**self).write_i128(i) + } + fn write_isize(&mut self, i: isize) { + (**self).write_isize(i) + } + fn write_length_prefix(&mut self, len: usize) { + (**self).write_length_prefix(len) + } + fn write_str(&mut self, s: &str) { + (**self).write_str(s) + } +} + +#[cfg(not(no_global_oom_handling))] +#[stable(feature = "from_for_ptrs", since = "1.6.0")] +impl From for Box { + /// Converts a `T` into a `Box` + /// + /// The conversion allocates on the heap and moves `t` + /// from the stack into it. + /// + /// # Examples + /// + /// ```rust + /// let x = 5; + /// let boxed = Box::new(5); + /// + /// assert_eq!(Box::from(x), boxed); + /// ``` + fn from(t: T) -> Self { + Box::new(t) + } +} + +#[stable(feature = "pin", since = "1.33.0")] +#[rustc_const_unstable(feature = "const_box", issue = "92521")] +impl const From> for Pin> +where + A: 'static, +{ + /// Converts a `Box` into a `Pin>` + /// + /// This conversion does not allocate on the heap and happens in place. + fn from(boxed: Box) -> Self { + Box::into_pin(boxed) + } +} + +#[cfg(not(no_global_oom_handling))] +#[stable(feature = "box_from_slice", since = "1.17.0")] +impl From<&[T]> for Box<[T]> { + /// Converts a `&[T]` into a `Box<[T]>` + /// + /// This conversion allocates on the heap + /// and performs a copy of `slice`. + /// + /// # Examples + /// ```rust + /// // create a &[u8] which will be used to create a Box<[u8]> + /// let slice: &[u8] = &[104, 101, 108, 108, 111]; + /// let boxed_slice: Box<[u8]> = Box::from(slice); + /// + /// println!("{boxed_slice:?}"); + /// ``` + fn from(slice: &[T]) -> Box<[T]> { + let len = slice.len(); + let buf = RawVec::with_capacity(len); + unsafe { + ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len); + buf.into_box(slice.len()).assume_init() + } + } +} + +#[cfg(not(no_global_oom_handling))] +#[stable(feature = "box_from_cow", since = "1.45.0")] +impl From> for Box<[T]> { + /// Converts a `Cow<'_, [T]>` into a `Box<[T]>` + /// + /// When `cow` is the `Cow::Borrowed` variant, this + /// conversion allocates on the heap and copies the + /// underlying slice. Otherwise, it will try to reuse the owned + /// `Vec`'s allocation. + #[inline] + fn from(cow: Cow<'_, [T]>) -> Box<[T]> { + match cow { + Cow::Borrowed(slice) => Box::from(slice), + Cow::Owned(slice) => Box::from(slice), + } + } +} + +#[cfg(not(no_global_oom_handling))] +#[stable(feature = "box_from_slice", since = "1.17.0")] +impl From<&str> for Box { + /// Converts a `&str` into a `Box` + /// + /// This conversion allocates on the heap + /// and performs a copy of `s`. + /// + /// # Examples + /// + /// ```rust + /// let boxed: Box = Box::from("hello"); + /// println!("{boxed}"); + /// ``` + #[inline] + fn from(s: &str) -> Box { + unsafe { from_boxed_utf8_unchecked(Box::from(s.as_bytes())) } + } +} + +#[cfg(not(no_global_oom_handling))] +#[stable(feature = "box_from_cow", since = "1.45.0")] +impl From> for Box { + /// Converts a `Cow<'_, str>` into a `Box` + /// + /// When `cow` is the `Cow::Borrowed` variant, this + /// conversion allocates on the heap and copies the + /// underlying `str`. Otherwise, it will try to reuse the owned + /// `String`'s allocation. + /// + /// # Examples + /// + /// ```rust + /// use std::borrow::Cow; + /// + /// let unboxed = Cow::Borrowed("hello"); + /// let boxed: Box = Box::from(unboxed); + /// println!("{boxed}"); + /// ``` + /// + /// ```rust + /// # use std::borrow::Cow; + /// let unboxed = Cow::Owned("hello".to_string()); + /// let boxed: Box = Box::from(unboxed); + /// println!("{boxed}"); + /// ``` + #[inline] + fn from(cow: Cow<'_, str>) -> Box { + match cow { + Cow::Borrowed(s) => Box::from(s), + Cow::Owned(s) => Box::from(s), + } + } +} + +#[stable(feature = "boxed_str_conv", since = "1.19.0")] +impl From> for Box<[u8], A> { + /// Converts a `Box` into a `Box<[u8]>` + /// + /// This conversion does not allocate on the heap and happens in place. + /// + /// # Examples + /// ```rust + /// // create a Box which will be used to create a Box<[u8]> + /// let boxed: Box = Box::from("hello"); + /// let boxed_str: Box<[u8]> = Box::from(boxed); + /// + /// // create a &[u8] which will be used to create a Box<[u8]> + /// let slice: &[u8] = &[104, 101, 108, 108, 111]; + /// let boxed_slice = Box::from(slice); + /// + /// assert_eq!(boxed_slice, boxed_str); + /// ``` + #[inline] + fn from(s: Box) -> Self { + let (raw, alloc) = Box::into_raw_with_allocator(s); + unsafe { Box::from_raw_in(raw as *mut [u8], alloc) } + } +} + +#[cfg(not(no_global_oom_handling))] +#[stable(feature = "box_from_array", since = "1.45.0")] +impl From<[T; N]> for Box<[T]> { + /// Converts a `[T; N]` into a `Box<[T]>` + /// + /// This conversion moves the array to newly heap-allocated memory. + /// + /// # Examples + /// + /// ```rust + /// let boxed: Box<[u8]> = Box::from([4, 2]); + /// println!("{boxed:?}"); + /// ``` + fn from(array: [T; N]) -> Box<[T]> { + box array + } +} + +#[stable(feature = "boxed_slice_try_from", since = "1.43.0")] +impl TryFrom> for Box<[T; N]> { + type Error = Box<[T]>; + + /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`. + /// + /// The conversion occurs in-place and does not require a + /// new memory allocation. + /// + /// # Errors + /// + /// Returns the old `Box<[T]>` in the `Err` variant if + /// `boxed_slice.len()` does not equal `N`. + fn try_from(boxed_slice: Box<[T]>) -> Result { + if boxed_slice.len() == N { + Ok(unsafe { Box::from_raw(Box::into_raw(boxed_slice) as *mut [T; N]) }) + } else { + Err(boxed_slice) + } + } +} + +impl Box { + /// Attempt to downcast the box to a concrete type. + /// + /// # Examples + /// + /// ``` + /// use std::any::Any; + /// + /// fn print_if_string(value: Box) { + /// if let Ok(string) = value.downcast::() { + /// println!("String ({}): {}", string.len(), string); + /// } + /// } + /// + /// let my_string = "Hello World".to_string(); + /// print_if_string(Box::new(my_string)); + /// print_if_string(Box::new(0i8)); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn downcast(self) -> Result, Self> { + if self.is::() { unsafe { Ok(self.downcast_unchecked::()) } } else { Err(self) } + } + + /// Downcasts the box to a concrete type. + /// + /// For a safe alternative see [`downcast`]. + /// + /// # Examples + /// + /// ``` + /// #![feature(downcast_unchecked)] + /// + /// use std::any::Any; + /// + /// let x: Box = Box::new(1_usize); + /// + /// unsafe { + /// assert_eq!(*x.downcast_unchecked::(), 1); + /// } + /// ``` + /// + /// # Safety + /// + /// The contained value must be of type `T`. Calling this method + /// with the incorrect type is *undefined behavior*. + /// + /// [`downcast`]: Self::downcast + #[inline] + #[unstable(feature = "downcast_unchecked", issue = "90850")] + pub unsafe fn downcast_unchecked(self) -> Box { + debug_assert!(self.is::()); + unsafe { + let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self); + Box::from_raw_in(raw as *mut T, alloc) + } + } +} + +impl Box { + /// Attempt to downcast the box to a concrete type. + /// + /// # Examples + /// + /// ``` + /// use std::any::Any; + /// + /// fn print_if_string(value: Box) { + /// if let Ok(string) = value.downcast::() { + /// println!("String ({}): {}", string.len(), string); + /// } + /// } + /// + /// let my_string = "Hello World".to_string(); + /// print_if_string(Box::new(my_string)); + /// print_if_string(Box::new(0i8)); + /// ``` + #[inline] + #[stable(feature = "rust1", since = "1.0.0")] + pub fn downcast(self) -> Result, Self> { + if self.is::() { unsafe { Ok(self.downcast_unchecked::()) } } else { Err(self) } + } + + /// Downcasts the box to a concrete type. + /// + /// For a safe alternative see [`downcast`]. + /// + /// # Examples + /// + /// ``` + /// #![feature(downcast_unchecked)] + /// + /// use std::any::Any; + /// + /// let x: Box = Box::new(1_usize); + /// + /// unsafe { + /// assert_eq!(*x.downcast_unchecked::(), 1); + /// } + /// ``` + /// + /// # Safety + /// + /// The contained value must be of type `T`. Calling this method + /// with the incorrect type is *undefined behavior*. + /// + /// [`downcast`]: Self::downcast + #[inline] + #[unstable(feature = "downcast_unchecked", issue = "90850")] + pub unsafe fn downcast_unchecked(self) -> Box { + debug_assert!(self.is::()); + unsafe { + let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self); + Box::from_raw_in(raw as *mut T, alloc) + } + } +} + +impl Box { + /// Attempt to downcast the box to a concrete type. + /// + /// # Examples + /// + /// ``` + /// use std::any::Any; + /// + /// fn print_if_string(value: Box) { + /// if let Ok(string) = value.downcast::() { + /// println!("String ({}): {}", string.len(), string); + /// } + /// } + /// + /// let my_string = "Hello World".to_string(); + /// print_if_string(Box::new(my_string)); + /// print_if_string(Box::new(0i8)); + /// ``` + #[inline] + #[stable(feature = "box_send_sync_any_downcast", since = "1.51.0")] + pub fn downcast(self) -> Result, Self> { + if self.is::() { unsafe { Ok(self.downcast_unchecked::()) } } else { Err(self) } + } + + /// Downcasts the box to a concrete type. + /// + /// For a safe alternative see [`downcast`]. + /// + /// # Examples + /// + /// ``` + /// #![feature(downcast_unchecked)] + /// + /// use std::any::Any; + /// + /// let x: Box = Box::new(1_usize); + /// + /// unsafe { + /// assert_eq!(*x.downcast_unchecked::(), 1); + /// } + /// ``` + /// + /// # Safety + /// + /// The contained value must be of type `T`. Calling this method + /// with the incorrect type is *undefined behavior*. + /// + /// [`downcast`]: Self::downcast + #[inline] + #[unstable(feature = "downcast_unchecked", issue = "90850")] + pub unsafe fn downcast_unchecked(self) -> Box { + debug_assert!(self.is::()); + unsafe { + let (raw, alloc): (*mut (dyn Any + Send + Sync), _) = + Box::into_raw_with_allocator(self); + Box::from_raw_in(raw as *mut T, alloc) + } + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl fmt::Display for Box { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + fmt::Display::fmt(&**self, f) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl fmt::Debug for Box { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + fmt::Debug::fmt(&**self, f) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl fmt::Pointer for Box { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + // It's not possible to extract the inner Uniq directly from the Box, + // instead we cast it to a *const which aliases the Unique + let ptr: *const T = &**self; + fmt::Pointer::fmt(&ptr, f) + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +#[rustc_const_unstable(feature = "const_box", issue = "92521")] +impl const Deref for Box { + type Target = T; + + fn deref(&self) -> &T { + &**self + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +#[rustc_const_unstable(feature = "const_box", issue = "92521")] +impl const DerefMut for Box { + fn deref_mut(&mut self) -> &mut T { + &mut **self + } +} + +#[unstable(feature = "receiver_trait", issue = "none")] +impl Receiver for Box {} + +#[stable(feature = "rust1", since = "1.0.0")] +impl Iterator for Box { + type Item = I::Item; + fn next(&mut self) -> Option { + (**self).next() + } + fn size_hint(&self) -> (usize, Option) { + (**self).size_hint() + } + fn nth(&mut self, n: usize) -> Option { + (**self).nth(n) + } + fn last(self) -> Option { + BoxIter::last(self) + } +} + +trait BoxIter { + type Item; + fn last(self) -> Option; +} + +impl BoxIter for Box { + type Item = I::Item; + default fn last(self) -> Option { + #[inline] + fn some(_: Option, x: T) -> Option { + Some(x) + } + + self.fold(None, some) + } +} + +/// Specialization for sized `I`s that uses `I`s implementation of `last()` +/// instead of the default. +#[stable(feature = "rust1", since = "1.0.0")] +impl BoxIter for Box { + fn last(self) -> Option { + (*self).last() + } +} + +#[stable(feature = "rust1", since = "1.0.0")] +impl DoubleEndedIterator for Box { + fn next_back(&mut self) -> Option { + (**self).next_back() + } + fn nth_back(&mut self, n: usize) -> Option { + (**self).nth_back(n) + } +} +#[stable(feature = "rust1", since = "1.0.0")] +impl ExactSizeIterator for Box { + fn len(&self) -> usize { + (**self).len() + } + fn is_empty(&self) -> bool { + (**self).is_empty() + } +} + +#[stable(feature = "fused", since = "1.26.0")] +impl FusedIterator for Box {} + +#[stable(feature = "boxed_closure_impls", since = "1.35.0")] +impl + ?Sized, A: Allocator> FnOnce for Box { + type Output = >::Output; + + extern "rust-call" fn call_once(self, args: Args) -> Self::Output { + >::call_once(*self, args) + } +} + +#[stable(feature = "boxed_closure_impls", since = "1.35.0")] +impl + ?Sized, A: Allocator> FnMut for Box { + extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output { + >::call_mut(self, args) + } +} + +#[stable(feature = "boxed_closure_impls", since = "1.35.0")] +impl + ?Sized, A: Allocator> Fn for Box { + extern "rust-call" fn call(&self, args: Args) -> Self::Output { + >::call(self, args) + } +} + +#[unstable(feature = "coerce_unsized", issue = "27732")] +impl, U: ?Sized, A: Allocator> CoerceUnsized> for Box {} + +#[unstable(feature = "dispatch_from_dyn", issue = "none")] +impl, U: ?Sized> DispatchFromDyn> for Box {} + +#[cfg(not(no_global_oom_handling))] +#[stable(feature = "boxed_slice_from_iter", since = "1.32.0")] +impl FromIterator for Box<[I]> { + fn from_iter>(iter: T) -> Self { + iter.into_iter().collect::>().into_boxed_slice() + } +} + +#[cfg(not(no_global_oom_handling))] +#[stable(feature = "box_slice_clone", since = "1.3.0")] +impl Clone for Box<[T], A> { + fn clone(&self) -> Self { + let alloc = Box::allocator(self).clone(); + self.to_vec_in(alloc).into_boxed_slice() + } + + fn clone_from(&mut self, other: &Self) { + if self.len() == other.len() { + self.clone_from_slice(&other); + } else { + *self = other.clone(); + } + } +} + +#[stable(feature = "box_borrow", since = "1.1.0")] +impl borrow::Borrow for Box { + fn borrow(&self) -> &T { + &**self + } +} + +#[stable(feature = "box_borrow", since = "1.1.0")] +impl borrow::BorrowMut for Box { + fn borrow_mut(&mut self) -> &mut T { + &mut **self + } +} + +#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] +impl AsRef for Box { + fn as_ref(&self) -> &T { + &**self + } +} + +#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")] +impl AsMut for Box { + fn as_mut(&mut self) -> &mut T { + &mut **self + } +} + +/* Nota bene + * + * We could have chosen not to add this impl, and instead have written a + * function of Pin> to Pin. Such a function would not be sound, + * because Box implements Unpin even when T does not, as a result of + * this impl. + * + * We chose this API instead of the alternative for a few reasons: + * - Logically, it is helpful to understand pinning in regard to the + * memory region being pointed to. For this reason none of the + * standard library pointer types support projecting through a pin + * (Box is the only pointer type in std for which this would be + * safe.) + * - It is in practice very useful to have Box be unconditionally + * Unpin because of trait objects, for which the structural auto + * trait functionality does not apply (e.g., Box would + * otherwise not be Unpin). + * + * Another type with the same semantics as Box but only a conditional + * implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and + * could have a method to project a Pin from it. + */ +#[stable(feature = "pin", since = "1.33.0")] +#[rustc_const_unstable(feature = "const_box", issue = "92521")] +impl const Unpin for Box where A: 'static {} + +#[unstable(feature = "generator_trait", issue = "43122")] +impl + Unpin, R, A: Allocator> Generator for Box +where + A: 'static, +{ + type Yield = G::Yield; + type Return = G::Return; + + fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState { + G::resume(Pin::new(&mut *self), arg) + } +} + +#[unstable(feature = "generator_trait", issue = "43122")] +impl, R, A: Allocator> Generator for Pin> +where + A: 'static, +{ + type Yield = G::Yield; + type Return = G::Return; + + fn resume(mut self: Pin<&mut Self>, arg: R) -> GeneratorState { + G::resume((*self).as_mut(), arg) + } +} + +#[stable(feature = "futures_api", since = "1.36.0")] +impl Future for Box +where + A: 'static, +{ + type Output = F::Output; + + fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll { + F::poll(Pin::new(&mut *self), cx) + } +} + +#[unstable(feature = "async_iterator", issue = "79024")] +impl AsyncIterator for Box { + type Item = S::Item; + + fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll> { + Pin::new(&mut **self).poll_next(cx) + } + + fn size_hint(&self) -> (usize, Option) { + (**self).size_hint() + } +} -- cgit v1.2.3