// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2018-2021 Intel Corporation #include #include #include #include #include #include #include #include #include #include "common.h" #define CORE_NUMS_MAX 64 #define BASE_CHANNEL_NUMS 5 #define CPUTEMP_CHANNEL_NUMS (BASE_CHANNEL_NUMS + CORE_NUMS_MAX) #define TEMP_TARGET_FAN_TEMP_MASK GENMASK(15, 8) #define TEMP_TARGET_REF_TEMP_MASK GENMASK(23, 16) #define TEMP_TARGET_TJ_OFFSET_MASK GENMASK(29, 24) #define DTS_MARGIN_MASK GENMASK(15, 0) #define PCS_MODULE_TEMP_MASK GENMASK(15, 0) struct resolved_cores_reg { u8 bus; u8 dev; u8 func; u8 offset; }; struct cpu_info { struct resolved_cores_reg *reg; u8 min_peci_revision; s32 (*thermal_margin_to_millidegree)(u16 val); }; struct peci_temp_target { s32 tcontrol; s32 tthrottle; s32 tjmax; struct peci_sensor_state state; }; enum peci_temp_target_type { tcontrol_type, tthrottle_type, tjmax_type, crit_hyst_type, }; struct peci_cputemp { struct peci_device *peci_dev; struct device *dev; const char *name; const struct cpu_info *gen_info; struct { struct peci_temp_target target; struct peci_sensor_data die; struct peci_sensor_data dts; struct peci_sensor_data core[CORE_NUMS_MAX]; } temp; const char **coretemp_label; DECLARE_BITMAP(core_mask, CORE_NUMS_MAX); }; enum cputemp_channels { channel_die, channel_dts, channel_tcontrol, channel_tthrottle, channel_tjmax, channel_core, }; static const char * const cputemp_label[BASE_CHANNEL_NUMS] = { "Die", "DTS", "Tcontrol", "Tthrottle", "Tjmax", }; static int update_temp_target(struct peci_cputemp *priv) { s32 tthrottle_offset, tcontrol_margin; u32 pcs; int ret; if (!peci_sensor_need_update(&priv->temp.target.state)) return 0; ret = peci_pcs_read(priv->peci_dev, PECI_PCS_TEMP_TARGET, 0, &pcs); if (ret) return ret; priv->temp.target.tjmax = FIELD_GET(TEMP_TARGET_REF_TEMP_MASK, pcs) * MILLIDEGREE_PER_DEGREE; tcontrol_margin = FIELD_GET(TEMP_TARGET_FAN_TEMP_MASK, pcs); tcontrol_margin = sign_extend32(tcontrol_margin, 7) * MILLIDEGREE_PER_DEGREE; priv->temp.target.tcontrol = priv->temp.target.tjmax - tcontrol_margin; tthrottle_offset = FIELD_GET(TEMP_TARGET_TJ_OFFSET_MASK, pcs) * MILLIDEGREE_PER_DEGREE; priv->temp.target.tthrottle = priv->temp.target.tjmax - tthrottle_offset; peci_sensor_mark_updated(&priv->temp.target.state); return 0; } static int get_temp_target(struct peci_cputemp *priv, enum peci_temp_target_type type, long *val) { int ret; mutex_lock(&priv->temp.target.state.lock); ret = update_temp_target(priv); if (ret) goto unlock; switch (type) { case tcontrol_type: *val = priv->temp.target.tcontrol; break; case tthrottle_type: *val = priv->temp.target.tthrottle; break; case tjmax_type: *val = priv->temp.target.tjmax; break; case crit_hyst_type: *val = priv->temp.target.tjmax - priv->temp.target.tcontrol; break; default: ret = -EOPNOTSUPP; break; } unlock: mutex_unlock(&priv->temp.target.state.lock); return ret; } /* * Error codes: * 0x8000: General sensor error * 0x8001: Reserved * 0x8002: Underflow on reading value * 0x8003-0x81ff: Reserved */ static bool dts_valid(u16 val) { return val < 0x8000 || val > 0x81ff; } /* * Processors return a value of DTS reading in S10.6 fixed point format * (16 bits: 10-bit signed magnitude, 6-bit fraction). */ static s32 dts_ten_dot_six_to_millidegree(u16 val) { return sign_extend32(val, 15) * MILLIDEGREE_PER_DEGREE / 64; } /* * For older processors, thermal margin reading is returned in S8.8 fixed * point format (16 bits: 8-bit signed magnitude, 8-bit fraction). */ static s32 dts_eight_dot_eight_to_millidegree(u16 val) { return sign_extend32(val, 15) * MILLIDEGREE_PER_DEGREE / 256; } static int get_die_temp(struct peci_cputemp *priv, long *val) { int ret = 0; long tjmax; u16 temp; mutex_lock(&priv->temp.die.state.lock); if (!peci_sensor_need_update(&priv->temp.die.state)) goto skip_update; ret = peci_temp_read(priv->peci_dev, &temp); if (ret) goto err_unlock; if (!dts_valid(temp)) { ret = -EIO; goto err_unlock; } ret = get_temp_target(priv, tjmax_type, &tjmax); if (ret) goto err_unlock; priv->temp.die.value = (s32)tjmax + dts_ten_dot_six_to_millidegree(temp); peci_sensor_mark_updated(&priv->temp.die.state); skip_update: *val = priv->temp.die.value; err_unlock: mutex_unlock(&priv->temp.die.state.lock); return ret; } static int get_dts(struct peci_cputemp *priv, long *val) { int ret = 0; u16 thermal_margin; long tcontrol; u32 pcs; mutex_lock(&priv->temp.dts.state.lock); if (!peci_sensor_need_update(&priv->temp.dts.state)) goto skip_update; ret = peci_pcs_read(priv->peci_dev, PECI_PCS_THERMAL_MARGIN, 0, &pcs); if (ret) goto err_unlock; thermal_margin = FIELD_GET(DTS_MARGIN_MASK, pcs); if (!dts_valid(thermal_margin)) { ret = -EIO; goto err_unlock; } ret = get_temp_target(priv, tcontrol_type, &tcontrol); if (ret) goto err_unlock; /* Note that the tcontrol should be available before calling it */ priv->temp.dts.value = (s32)tcontrol - priv->gen_info->thermal_margin_to_millidegree(thermal_margin); peci_sensor_mark_updated(&priv->temp.dts.state); skip_update: *val = priv->temp.dts.value; err_unlock: mutex_unlock(&priv->temp.dts.state.lock); return ret; } static int get_core_temp(struct peci_cputemp *priv, int core_index, long *val) { int ret = 0; u16 core_dts_margin; long tjmax; u32 pcs; mutex_lock(&priv->temp.core[core_index].state.lock); if (!peci_sensor_need_update(&priv->temp.core[core_index].state)) goto skip_update; ret = peci_pcs_read(priv->peci_dev, PECI_PCS_MODULE_TEMP, core_index, &pcs); if (ret) goto err_unlock; core_dts_margin = FIELD_GET(PCS_MODULE_TEMP_MASK, pcs); if (!dts_valid(core_dts_margin)) { ret = -EIO; goto err_unlock; } ret = get_temp_target(priv, tjmax_type, &tjmax); if (ret) goto err_unlock; /* Note that the tjmax should be available before calling it */ priv->temp.core[core_index].value = (s32)tjmax + dts_ten_dot_six_to_millidegree(core_dts_margin); peci_sensor_mark_updated(&priv->temp.core[core_index].state); skip_update: *val = priv->temp.core[core_index].value; err_unlock: mutex_unlock(&priv->temp.core[core_index].state.lock); return ret; } static int cputemp_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str) { struct peci_cputemp *priv = dev_get_drvdata(dev); if (attr != hwmon_temp_label) return -EOPNOTSUPP; *str = channel < channel_core ? cputemp_label[channel] : priv->coretemp_label[channel - channel_core]; return 0; } static int cputemp_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct peci_cputemp *priv = dev_get_drvdata(dev); switch (attr) { case hwmon_temp_input: switch (channel) { case channel_die: return get_die_temp(priv, val); case channel_dts: return get_dts(priv, val); case channel_tcontrol: return get_temp_target(priv, tcontrol_type, val); case channel_tthrottle: return get_temp_target(priv, tthrottle_type, val); case channel_tjmax: return get_temp_target(priv, tjmax_type, val); default: return get_core_temp(priv, channel - channel_core, val); } break; case hwmon_temp_max: return get_temp_target(priv, tcontrol_type, val); case hwmon_temp_crit: return get_temp_target(priv, tjmax_type, val); case hwmon_temp_crit_hyst: return get_temp_target(priv, crit_hyst_type, val); default: return -EOPNOTSUPP; } return 0; } static umode_t cputemp_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { const struct peci_cputemp *priv = data; if (channel > CPUTEMP_CHANNEL_NUMS) return 0; if (channel < channel_core) return 0444; if (test_bit(channel - channel_core, priv->core_mask)) return 0444; return 0; } static int init_core_mask(struct peci_cputemp *priv) { struct peci_device *peci_dev = priv->peci_dev; struct resolved_cores_reg *reg = priv->gen_info->reg; u64 core_mask; u32 data; int ret; /* Get the RESOLVED_CORES register value */ switch (peci_dev->info.model) { case INTEL_FAM6_ICELAKE_X: case INTEL_FAM6_ICELAKE_D: ret = peci_ep_pci_local_read(peci_dev, 0, reg->bus, reg->dev, reg->func, reg->offset + 4, &data); if (ret) return ret; core_mask = (u64)data << 32; ret = peci_ep_pci_local_read(peci_dev, 0, reg->bus, reg->dev, reg->func, reg->offset, &data); if (ret) return ret; core_mask |= data; break; default: ret = peci_pci_local_read(peci_dev, reg->bus, reg->dev, reg->func, reg->offset, &data); if (ret) return ret; core_mask = data; break; } if (!core_mask) return -EIO; bitmap_from_u64(priv->core_mask, core_mask); return 0; } static int create_temp_label(struct peci_cputemp *priv) { unsigned long core_max = find_last_bit(priv->core_mask, CORE_NUMS_MAX); int i; priv->coretemp_label = devm_kzalloc(priv->dev, (core_max + 1) * sizeof(char *), GFP_KERNEL); if (!priv->coretemp_label) return -ENOMEM; for_each_set_bit(i, priv->core_mask, CORE_NUMS_MAX) { priv->coretemp_label[i] = devm_kasprintf(priv->dev, GFP_KERNEL, "Core %d", i); if (!priv->coretemp_label[i]) return -ENOMEM; } return 0; } static void check_resolved_cores(struct peci_cputemp *priv) { /* * Failure to resolve cores is non-critical, we're still able to * provide other sensor data. */ if (init_core_mask(priv)) return; if (create_temp_label(priv)) bitmap_zero(priv->core_mask, CORE_NUMS_MAX); } static void sensor_init(struct peci_cputemp *priv) { int i; mutex_init(&priv->temp.target.state.lock); mutex_init(&priv->temp.die.state.lock); mutex_init(&priv->temp.dts.state.lock); for_each_set_bit(i, priv->core_mask, CORE_NUMS_MAX) mutex_init(&priv->temp.core[i].state.lock); } static const struct hwmon_ops peci_cputemp_ops = { .is_visible = cputemp_is_visible, .read_string = cputemp_read_string, .read = cputemp_read, }; static const struct hwmon_channel_info *peci_cputemp_info[] = { HWMON_CHANNEL_INFO(temp, /* Die temperature */ HWMON_T_LABEL | HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT | HWMON_T_CRIT_HYST, /* DTS margin */ HWMON_T_LABEL | HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT | HWMON_T_CRIT_HYST, /* Tcontrol temperature */ HWMON_T_LABEL | HWMON_T_INPUT | HWMON_T_CRIT, /* Tthrottle temperature */ HWMON_T_LABEL | HWMON_T_INPUT, /* Tjmax temperature */ HWMON_T_LABEL | HWMON_T_INPUT, /* Core temperature - for all core channels */ [channel_core ... CPUTEMP_CHANNEL_NUMS - 1] = HWMON_T_LABEL | HWMON_T_INPUT), NULL }; static const struct hwmon_chip_info peci_cputemp_chip_info = { .ops = &peci_cputemp_ops, .info = peci_cputemp_info, }; static int peci_cputemp_probe(struct auxiliary_device *adev, const struct auxiliary_device_id *id) { struct device *dev = &adev->dev; struct peci_device *peci_dev = to_peci_device(dev->parent); struct peci_cputemp *priv; struct device *hwmon_dev; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = devm_kasprintf(dev, GFP_KERNEL, "peci_cputemp.cpu%d", peci_dev->info.socket_id); if (!priv->name) return -ENOMEM; priv->dev = dev; priv->peci_dev = peci_dev; priv->gen_info = (const struct cpu_info *)id->driver_data; /* * This is just a sanity check. Since we're using commands that are * guaranteed to be supported on a given platform, we should never see * revision lower than expected. */ if (peci_dev->info.peci_revision < priv->gen_info->min_peci_revision) dev_warn(priv->dev, "Unexpected PECI revision %#x, some features may be unavailable\n", peci_dev->info.peci_revision); check_resolved_cores(priv); sensor_init(priv); hwmon_dev = devm_hwmon_device_register_with_info(priv->dev, priv->name, priv, &peci_cputemp_chip_info, NULL); return PTR_ERR_OR_ZERO(hwmon_dev); } /* * RESOLVED_CORES PCI configuration register may have different location on * different platforms. */ static struct resolved_cores_reg resolved_cores_reg_hsx = { .bus = 1, .dev = 30, .func = 3, .offset = 0xb4, }; static struct resolved_cores_reg resolved_cores_reg_icx = { .bus = 14, .dev = 30, .func = 3, .offset = 0xd0, }; static const struct cpu_info cpu_hsx = { .reg = &resolved_cores_reg_hsx, .min_peci_revision = 0x33, .thermal_margin_to_millidegree = &dts_eight_dot_eight_to_millidegree, }; static const struct cpu_info cpu_skx = { .reg = &resolved_cores_reg_hsx, .min_peci_revision = 0x33, .thermal_margin_to_millidegree = &dts_ten_dot_six_to_millidegree, }; static const struct cpu_info cpu_icx = { .reg = &resolved_cores_reg_icx, .min_peci_revision = 0x40, .thermal_margin_to_millidegree = &dts_ten_dot_six_to_millidegree, }; static const struct auxiliary_device_id peci_cputemp_ids[] = { { .name = "peci_cpu.cputemp.hsx", .driver_data = (kernel_ulong_t)&cpu_hsx, }, { .name = "peci_cpu.cputemp.bdx", .driver_data = (kernel_ulong_t)&cpu_hsx, }, { .name = "peci_cpu.cputemp.bdxd", .driver_data = (kernel_ulong_t)&cpu_hsx, }, { .name = "peci_cpu.cputemp.skx", .driver_data = (kernel_ulong_t)&cpu_skx, }, { .name = "peci_cpu.cputemp.icx", .driver_data = (kernel_ulong_t)&cpu_icx, }, { .name = "peci_cpu.cputemp.icxd", .driver_data = (kernel_ulong_t)&cpu_icx, }, { } }; MODULE_DEVICE_TABLE(auxiliary, peci_cputemp_ids); static struct auxiliary_driver peci_cputemp_driver = { .probe = peci_cputemp_probe, .id_table = peci_cputemp_ids, }; module_auxiliary_driver(peci_cputemp_driver); MODULE_AUTHOR("Jae Hyun Yoo "); MODULE_AUTHOR("Iwona Winiarska "); MODULE_DESCRIPTION("PECI cputemp driver"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(PECI_CPU);