// SPDX-License-Identifier: GPL-2.0 // ff-protocol-former.c - a part of driver for RME Fireface series // // Copyright (c) 2019 Takashi Sakamoto #include #include "ff.h" #define FORMER_REG_SYNC_STATUS 0x0000801c0000ull /* For block write request. */ #define FORMER_REG_FETCH_PCM_FRAMES 0x0000801c0000ull #define FORMER_REG_CLOCK_CONFIG 0x0000801c0004ull static int parse_clock_bits(u32 data, unsigned int *rate, enum snd_ff_clock_src *src) { static const struct { unsigned int rate; u32 mask; } *rate_entry, rate_entries[] = { { 32000, 0x00000002, }, { 44100, 0x00000000, }, { 48000, 0x00000006, }, { 64000, 0x0000000a, }, { 88200, 0x00000008, }, { 96000, 0x0000000e, }, { 128000, 0x00000012, }, { 176400, 0x00000010, }, { 192000, 0x00000016, }, }; static const struct { enum snd_ff_clock_src src; u32 mask; } *clk_entry, clk_entries[] = { { SND_FF_CLOCK_SRC_ADAT1, 0x00000000, }, { SND_FF_CLOCK_SRC_ADAT2, 0x00000400, }, { SND_FF_CLOCK_SRC_SPDIF, 0x00000c00, }, { SND_FF_CLOCK_SRC_WORD, 0x00001000, }, { SND_FF_CLOCK_SRC_LTC, 0x00001800, }, }; int i; for (i = 0; i < ARRAY_SIZE(rate_entries); ++i) { rate_entry = rate_entries + i; if ((data & 0x0000001e) == rate_entry->mask) { *rate = rate_entry->rate; break; } } if (i == ARRAY_SIZE(rate_entries)) return -EIO; if (data & 0x00000001) { *src = SND_FF_CLOCK_SRC_INTERNAL; } else { for (i = 0; i < ARRAY_SIZE(clk_entries); ++i) { clk_entry = clk_entries + i; if ((data & 0x00001c00) == clk_entry->mask) { *src = clk_entry->src; break; } } if (i == ARRAY_SIZE(clk_entries)) return -EIO; } return 0; } static int former_get_clock(struct snd_ff *ff, unsigned int *rate, enum snd_ff_clock_src *src) { __le32 reg; u32 data; int err; err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST, FORMER_REG_CLOCK_CONFIG, ®, sizeof(reg), 0); if (err < 0) return err; data = le32_to_cpu(reg); return parse_clock_bits(data, rate, src); } static int former_switch_fetching_mode(struct snd_ff *ff, bool enable) { unsigned int count; __le32 *reg; int i; int err; count = 0; for (i = 0; i < SND_FF_STREAM_MODE_COUNT; ++i) count = max(count, ff->spec->pcm_playback_channels[i]); reg = kcalloc(count, sizeof(__le32), GFP_KERNEL); if (!reg) return -ENOMEM; if (!enable) { /* * Each quadlet is corresponding to data channels in a data * blocks in reverse order. Precisely, quadlets for available * data channels should be enabled. Here, I take second best * to fetch PCM frames from all of data channels regardless of * stf. */ for (i = 0; i < count; ++i) reg[i] = cpu_to_le32(0x00000001); } err = snd_fw_transaction(ff->unit, TCODE_WRITE_BLOCK_REQUEST, FORMER_REG_FETCH_PCM_FRAMES, reg, sizeof(__le32) * count, 0); kfree(reg); return err; } static void dump_clock_config(struct snd_ff *ff, struct snd_info_buffer *buffer) { __le32 reg; u32 data; unsigned int rate; enum snd_ff_clock_src src; const char *label; int err; err = snd_fw_transaction(ff->unit, TCODE_READ_BLOCK_REQUEST, FORMER_REG_CLOCK_CONFIG, ®, sizeof(reg), 0); if (err < 0) return; data = le32_to_cpu(reg); snd_iprintf(buffer, "Output S/PDIF format: %s (Emphasis: %s)\n", (data & 0x00000020) ? "Professional" : "Consumer", (data & 0x00000040) ? "on" : "off"); snd_iprintf(buffer, "Optical output interface format: %s\n", (data & 0x00000100) ? "S/PDIF" : "ADAT"); snd_iprintf(buffer, "Word output single speed: %s\n", (data & 0x00002000) ? "on" : "off"); snd_iprintf(buffer, "S/PDIF input interface: %s\n", (data & 0x00000200) ? "Optical" : "Coaxial"); err = parse_clock_bits(data, &rate, &src); if (err < 0) return; label = snd_ff_proc_get_clk_label(src); if (!label) return; snd_iprintf(buffer, "Clock configuration: %d %s\n", rate, label); } static void dump_sync_status(struct snd_ff *ff, struct snd_info_buffer *buffer) { static const struct { char *const label; u32 locked_mask; u32 synced_mask; } *clk_entry, clk_entries[] = { { "WDClk", 0x40000000, 0x20000000, }, { "S/PDIF", 0x00080000, 0x00040000, }, { "ADAT1", 0x00000400, 0x00001000, }, { "ADAT2", 0x00000800, 0x00002000, }, }; static const struct { char *const label; u32 mask; } *referred_entry, referred_entries[] = { { "ADAT1", 0x00000000, }, { "ADAT2", 0x00400000, }, { "S/PDIF", 0x00c00000, }, { "WDclk", 0x01000000, }, { "TCO", 0x01400000, }, }; static const struct { unsigned int rate; u32 mask; } *rate_entry, rate_entries[] = { { 32000, 0x02000000, }, { 44100, 0x04000000, }, { 48000, 0x06000000, }, { 64000, 0x08000000, }, { 88200, 0x0a000000, }, { 96000, 0x0c000000, }, { 128000, 0x0e000000, }, { 176400, 0x10000000, }, { 192000, 0x12000000, }, }; __le32 reg[2]; u32 data[2]; int i; int err; err = snd_fw_transaction(ff->unit, TCODE_READ_BLOCK_REQUEST, FORMER_REG_SYNC_STATUS, reg, sizeof(reg), 0); if (err < 0) return; data[0] = le32_to_cpu(reg[0]); data[1] = le32_to_cpu(reg[1]); snd_iprintf(buffer, "External source detection:\n"); for (i = 0; i < ARRAY_SIZE(clk_entries); ++i) { const char *state; clk_entry = clk_entries + i; if (data[0] & clk_entry->locked_mask) { if (data[0] & clk_entry->synced_mask) state = "sync"; else state = "lock"; } else { state = "none"; } snd_iprintf(buffer, "%s: %s\n", clk_entry->label, state); } snd_iprintf(buffer, "Referred clock:\n"); if (data[1] & 0x00000001) { snd_iprintf(buffer, "Internal\n"); } else { unsigned int rate; const char *label; for (i = 0; i < ARRAY_SIZE(referred_entries); ++i) { referred_entry = referred_entries + i; if ((data[0] & 0x1e0000) == referred_entry->mask) { label = referred_entry->label; break; } } if (i == ARRAY_SIZE(referred_entries)) label = "none"; for (i = 0; i < ARRAY_SIZE(rate_entries); ++i) { rate_entry = rate_entries + i; if ((data[0] & 0x1e000000) == rate_entry->mask) { rate = rate_entry->rate; break; } } if (i == ARRAY_SIZE(rate_entries)) rate = 0; snd_iprintf(buffer, "%s %d\n", label, rate); } } static void former_dump_status(struct snd_ff *ff, struct snd_info_buffer *buffer) { dump_clock_config(ff, buffer); dump_sync_status(ff, buffer); } static int former_fill_midi_msg(struct snd_ff *ff, struct snd_rawmidi_substream *substream, unsigned int port) { u8 *buf = (u8 *)ff->msg_buf[port]; int len; int i; len = snd_rawmidi_transmit_peek(substream, buf, SND_FF_MAXIMIM_MIDI_QUADS); if (len <= 0) return len; // One quadlet includes one byte. for (i = len - 1; i >= 0; --i) ff->msg_buf[port][i] = cpu_to_le32(buf[i]); ff->rx_bytes[port] = len; return len; } #define FF800_STF 0x0000fc88f000 #define FF800_RX_PACKET_FORMAT 0x0000fc88f004 #define FF800_ALLOC_TX_STREAM 0x0000fc88f008 #define FF800_ISOC_COMM_START 0x0000fc88f00c #define FF800_TX_S800_FLAG 0x00000800 #define FF800_ISOC_COMM_STOP 0x0000fc88f010 #define FF800_TX_PACKET_ISOC_CH 0x0000801c0008 static int allocate_tx_resources(struct snd_ff *ff) { __le32 reg; unsigned int count; unsigned int tx_isoc_channel; int err; reg = cpu_to_le32(ff->tx_stream.data_block_quadlets); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF800_ALLOC_TX_STREAM, ®, sizeof(reg), 0); if (err < 0) return err; // Wait till the format of tx packet is available. count = 0; while (count++ < 10) { u32 data; err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST, FF800_TX_PACKET_ISOC_CH, ®, sizeof(reg), 0); if (err < 0) return err; data = le32_to_cpu(reg); if (data != 0xffffffff) { tx_isoc_channel = data; break; } msleep(50); } if (count >= 10) return -ETIMEDOUT; // NOTE: this is a makeshift to start OHCI 1394 IR context in the // channel. On the other hand, 'struct fw_iso_resources.allocated' is // not true and it's not deallocated at stop. ff->tx_resources.channel = tx_isoc_channel; return 0; } static int ff800_allocate_resources(struct snd_ff *ff, unsigned int rate) { u32 data; __le32 reg; int err; reg = cpu_to_le32(rate); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF800_STF, ®, sizeof(reg), 0); if (err < 0) return err; // If starting isochronous communication immediately, change of STF has // no effect. In this case, the communication runs based on former STF. // Let's sleep for a bit. msleep(100); // Controllers should allocate isochronous resources for rx stream. err = fw_iso_resources_allocate(&ff->rx_resources, amdtp_stream_get_max_payload(&ff->rx_stream), fw_parent_device(ff->unit)->max_speed); if (err < 0) return err; // Set isochronous channel and the number of quadlets of rx packets. // This should be done before the allocation of tx resources to avoid // periodical noise. data = ff->rx_stream.data_block_quadlets << 3; data = (data << 8) | ff->rx_resources.channel; reg = cpu_to_le32(data); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF800_RX_PACKET_FORMAT, ®, sizeof(reg), 0); if (err < 0) return err; return allocate_tx_resources(ff); } static int ff800_begin_session(struct snd_ff *ff, unsigned int rate) { unsigned int generation = ff->rx_resources.generation; __le32 reg; if (generation != fw_parent_device(ff->unit)->card->generation) { int err = fw_iso_resources_update(&ff->rx_resources); if (err < 0) return err; } reg = cpu_to_le32(0x80000000); reg |= cpu_to_le32(ff->tx_stream.data_block_quadlets); if (fw_parent_device(ff->unit)->max_speed == SCODE_800) reg |= cpu_to_le32(FF800_TX_S800_FLAG); return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF800_ISOC_COMM_START, ®, sizeof(reg), 0); } static void ff800_finish_session(struct snd_ff *ff) { __le32 reg; reg = cpu_to_le32(0x80000000); snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF800_ISOC_COMM_STOP, ®, sizeof(reg), 0); } // Fireface 800 doesn't allow drivers to register lower 4 bytes of destination // address. // A write transaction to clear registered higher 4 bytes of destination address // has an effect to suppress asynchronous transaction from device. static void ff800_handle_midi_msg(struct snd_ff *ff, unsigned int offset, __le32 *buf, size_t length) { int i; for (i = 0; i < length / 4; i++) { u8 byte = le32_to_cpu(buf[i]) & 0xff; struct snd_rawmidi_substream *substream; substream = READ_ONCE(ff->tx_midi_substreams[0]); if (substream) snd_rawmidi_receive(substream, &byte, 1); } } const struct snd_ff_protocol snd_ff_protocol_ff800 = { .handle_midi_msg = ff800_handle_midi_msg, .fill_midi_msg = former_fill_midi_msg, .get_clock = former_get_clock, .switch_fetching_mode = former_switch_fetching_mode, .allocate_resources = ff800_allocate_resources, .begin_session = ff800_begin_session, .finish_session = ff800_finish_session, .dump_status = former_dump_status, }; #define FF400_STF 0x000080100500ull #define FF400_RX_PACKET_FORMAT 0x000080100504ull #define FF400_ISOC_COMM_START 0x000080100508ull #define FF400_TX_PACKET_FORMAT 0x00008010050cull #define FF400_ISOC_COMM_STOP 0x000080100510ull // Fireface 400 manages isochronous channel number in 3 bit field. Therefore, // we can allocate between 0 and 7 channel. static int ff400_allocate_resources(struct snd_ff *ff, unsigned int rate) { __le32 reg; enum snd_ff_stream_mode mode; int i; int err; // Check whether the given value is supported or not. for (i = 0; i < CIP_SFC_COUNT; i++) { if (amdtp_rate_table[i] == rate) break; } if (i >= CIP_SFC_COUNT) return -EINVAL; // Set the number of data blocks transferred in a second. reg = cpu_to_le32(rate); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF400_STF, ®, sizeof(reg), 0); if (err < 0) return err; msleep(100); err = snd_ff_stream_get_multiplier_mode(i, &mode); if (err < 0) return err; // Keep resources for in-stream. ff->tx_resources.channels_mask = 0x00000000000000ffuLL; err = fw_iso_resources_allocate(&ff->tx_resources, amdtp_stream_get_max_payload(&ff->tx_stream), fw_parent_device(ff->unit)->max_speed); if (err < 0) return err; // Keep resources for out-stream. ff->rx_resources.channels_mask = 0x00000000000000ffuLL; err = fw_iso_resources_allocate(&ff->rx_resources, amdtp_stream_get_max_payload(&ff->rx_stream), fw_parent_device(ff->unit)->max_speed); if (err < 0) fw_iso_resources_free(&ff->tx_resources); return err; } static int ff400_begin_session(struct snd_ff *ff, unsigned int rate) { unsigned int generation = ff->rx_resources.generation; __le32 reg; int err; if (generation != fw_parent_device(ff->unit)->card->generation) { err = fw_iso_resources_update(&ff->tx_resources); if (err < 0) return err; err = fw_iso_resources_update(&ff->rx_resources); if (err < 0) return err; } // Set isochronous channel and the number of quadlets of received // packets. reg = cpu_to_le32(((ff->rx_stream.data_block_quadlets << 3) << 8) | ff->rx_resources.channel); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF400_RX_PACKET_FORMAT, ®, sizeof(reg), 0); if (err < 0) return err; // Set isochronous channel and the number of quadlets of transmitted // packet. // TODO: investigate the purpose of this 0x80. reg = cpu_to_le32((0x80 << 24) | (ff->tx_resources.channel << 5) | (ff->tx_stream.data_block_quadlets)); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF400_TX_PACKET_FORMAT, ®, sizeof(reg), 0); if (err < 0) return err; // Allow to transmit packets. reg = cpu_to_le32(0x00000001); return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF400_ISOC_COMM_START, ®, sizeof(reg), 0); } static void ff400_finish_session(struct snd_ff *ff) { __le32 reg; reg = cpu_to_le32(0x80000000); snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, FF400_ISOC_COMM_STOP, ®, sizeof(reg), 0); } // For Fireface 400, lower 4 bytes of destination address is configured by bit // flag in quadlet register (little endian) at 0x'0000'801'0051c. Drivers can // select one of 4 options: // // bit flags: offset of destination address // - 0x04000000: 0x'....'....'0000'0000 // - 0x08000000: 0x'....'....'0000'0080 // - 0x10000000: 0x'....'....'0000'0100 // - 0x20000000: 0x'....'....'0000'0180 // // Drivers can suppress the device to transfer asynchronous transactions by // using below 2 bits. // - 0x01000000: suppress transmission // - 0x02000000: suppress transmission // // Actually, the register is write-only and includes the other options such as // input attenuation. This driver allocates destination address with '0000'0000 // in its lower offset and expects userspace application to configure the // register for it. static void ff400_handle_midi_msg(struct snd_ff *ff, unsigned int offset, __le32 *buf, size_t length) { int i; for (i = 0; i < length / 4; i++) { u32 quad = le32_to_cpu(buf[i]); u8 byte; unsigned int index; struct snd_rawmidi_substream *substream; /* Message in first port. */ /* * This value may represent the index of this unit when the same * units are on the same IEEE 1394 bus. This driver doesn't use * it. */ index = (quad >> 8) & 0xff; if (index > 0) { substream = READ_ONCE(ff->tx_midi_substreams[0]); if (substream != NULL) { byte = quad & 0xff; snd_rawmidi_receive(substream, &byte, 1); } } /* Message in second port. */ index = (quad >> 24) & 0xff; if (index > 0) { substream = READ_ONCE(ff->tx_midi_substreams[1]); if (substream != NULL) { byte = (quad >> 16) & 0xff; snd_rawmidi_receive(substream, &byte, 1); } } } } const struct snd_ff_protocol snd_ff_protocol_ff400 = { .handle_midi_msg = ff400_handle_midi_msg, .fill_midi_msg = former_fill_midi_msg, .get_clock = former_get_clock, .switch_fetching_mode = former_switch_fetching_mode, .allocate_resources = ff400_allocate_resources, .begin_session = ff400_begin_session, .finish_session = ff400_finish_session, .dump_status = former_dump_status, };