// SPDX-License-Identifier: GPL-2.0-or-later /* * US-X2Y AUDIO * Copyright (c) 2002-2004 by Karsten Wiese * * based on * * (Tentative) USB Audio Driver for ALSA * * Main and PCM part * * Copyright (c) 2002 by Takashi Iwai * * Many codes borrowed from audio.c by * Alan Cox (alan@lxorguk.ukuu.org.uk) * Thomas Sailer (sailer@ife.ee.ethz.ch) */ #include #include #include #include #include #include #include #include #include "usx2y.h" #include "usbusx2y.h" /* Default value used for nr of packs per urb. * 1 to 4 have been tested ok on uhci. * To use 3 on ohci, you'd need a patch: * look for "0000425-linux-2.6.9-rc4-mm1_ohci-hcd.patch.gz" on * "https://bugtrack.alsa-project.org/alsa-bug/bug_view_page.php?bug_id=0000425" * * 1, 2 and 4 work out of the box on ohci, if I recall correctly. * Bigger is safer operation, smaller gives lower latencies. */ #define USX2Y_NRPACKS 4 /* If your system works ok with this module's parameter * nrpacks set to 1, you might as well comment * this define out, and thereby produce smaller, faster code. * You'd also set USX2Y_NRPACKS to 1 then. */ #define USX2Y_NRPACKS_VARIABLE 1 #ifdef USX2Y_NRPACKS_VARIABLE static int nrpacks = USX2Y_NRPACKS; /* number of packets per urb */ #define nr_of_packs() nrpacks module_param(nrpacks, int, 0444); MODULE_PARM_DESC(nrpacks, "Number of packets per URB."); #else #define nr_of_packs() USX2Y_NRPACKS #endif static int usx2y_urb_capt_retire(struct snd_usx2y_substream *subs) { struct urb *urb = subs->completed_urb; struct snd_pcm_runtime *runtime = subs->pcm_substream->runtime; unsigned char *cp; int i, len, lens = 0, hwptr_done = subs->hwptr_done; int cnt, blen; struct usx2ydev *usx2y = subs->usx2y; for (i = 0; i < nr_of_packs(); i++) { cp = (unsigned char *)urb->transfer_buffer + urb->iso_frame_desc[i].offset; if (urb->iso_frame_desc[i].status) { /* active? hmm, skip this */ snd_printk(KERN_ERR "active frame status %i. Most probably some hardware problem.\n", urb->iso_frame_desc[i].status); return urb->iso_frame_desc[i].status; } len = urb->iso_frame_desc[i].actual_length / usx2y->stride; if (!len) { snd_printd("0 == len ERROR!\n"); continue; } /* copy a data chunk */ if ((hwptr_done + len) > runtime->buffer_size) { cnt = runtime->buffer_size - hwptr_done; blen = cnt * usx2y->stride; memcpy(runtime->dma_area + hwptr_done * usx2y->stride, cp, blen); memcpy(runtime->dma_area, cp + blen, len * usx2y->stride - blen); } else { memcpy(runtime->dma_area + hwptr_done * usx2y->stride, cp, len * usx2y->stride); } lens += len; hwptr_done += len; if (hwptr_done >= runtime->buffer_size) hwptr_done -= runtime->buffer_size; } subs->hwptr_done = hwptr_done; subs->transfer_done += lens; /* update the pointer, call callback if necessary */ if (subs->transfer_done >= runtime->period_size) { subs->transfer_done -= runtime->period_size; snd_pcm_period_elapsed(subs->pcm_substream); } return 0; } /* * prepare urb for playback data pipe * * we copy the data directly from the pcm buffer. * the current position to be copied is held in hwptr field. * since a urb can handle only a single linear buffer, if the total * transferred area overflows the buffer boundary, we cannot send * it directly from the buffer. thus the data is once copied to * a temporary buffer and urb points to that. */ static int usx2y_urb_play_prepare(struct snd_usx2y_substream *subs, struct urb *cap_urb, struct urb *urb) { struct usx2ydev *usx2y = subs->usx2y; struct snd_pcm_runtime *runtime = subs->pcm_substream->runtime; int count, counts, pack, len; count = 0; for (pack = 0; pack < nr_of_packs(); pack++) { /* calculate the size of a packet */ counts = cap_urb->iso_frame_desc[pack].actual_length / usx2y->stride; count += counts; if (counts < 43 || counts > 50) { snd_printk(KERN_ERR "should not be here with counts=%i\n", counts); return -EPIPE; } /* set up descriptor */ urb->iso_frame_desc[pack].offset = pack ? urb->iso_frame_desc[pack - 1].offset + urb->iso_frame_desc[pack - 1].length : 0; urb->iso_frame_desc[pack].length = cap_urb->iso_frame_desc[pack].actual_length; } if (atomic_read(&subs->state) >= STATE_PRERUNNING) { if (subs->hwptr + count > runtime->buffer_size) { /* err, the transferred area goes over buffer boundary. * copy the data to the temp buffer. */ len = runtime->buffer_size - subs->hwptr; urb->transfer_buffer = subs->tmpbuf; memcpy(subs->tmpbuf, runtime->dma_area + subs->hwptr * usx2y->stride, len * usx2y->stride); memcpy(subs->tmpbuf + len * usx2y->stride, runtime->dma_area, (count - len) * usx2y->stride); subs->hwptr += count; subs->hwptr -= runtime->buffer_size; } else { /* set the buffer pointer */ urb->transfer_buffer = runtime->dma_area + subs->hwptr * usx2y->stride; subs->hwptr += count; if (subs->hwptr >= runtime->buffer_size) subs->hwptr -= runtime->buffer_size; } } else { urb->transfer_buffer = subs->tmpbuf; } urb->transfer_buffer_length = count * usx2y->stride; return 0; } /* * process after playback data complete * * update the current position and call callback if a period is processed. */ static void usx2y_urb_play_retire(struct snd_usx2y_substream *subs, struct urb *urb) { struct snd_pcm_runtime *runtime = subs->pcm_substream->runtime; int len = urb->actual_length / subs->usx2y->stride; subs->transfer_done += len; subs->hwptr_done += len; if (subs->hwptr_done >= runtime->buffer_size) subs->hwptr_done -= runtime->buffer_size; if (subs->transfer_done >= runtime->period_size) { subs->transfer_done -= runtime->period_size; snd_pcm_period_elapsed(subs->pcm_substream); } } static int usx2y_urb_submit(struct snd_usx2y_substream *subs, struct urb *urb, int frame) { int err; if (!urb) return -ENODEV; urb->start_frame = frame + NRURBS * nr_of_packs(); // let hcd do rollover sanity checks urb->hcpriv = NULL; urb->dev = subs->usx2y->dev; /* we need to set this at each time */ err = usb_submit_urb(urb, GFP_ATOMIC); if (err < 0) { snd_printk(KERN_ERR "usb_submit_urb() returned %i\n", err); return err; } return 0; } static int usx2y_usbframe_complete(struct snd_usx2y_substream *capsubs, struct snd_usx2y_substream *playbacksubs, int frame) { int err, state; struct urb *urb = playbacksubs->completed_urb; state = atomic_read(&playbacksubs->state); if (urb) { if (state == STATE_RUNNING) usx2y_urb_play_retire(playbacksubs, urb); else if (state >= STATE_PRERUNNING) atomic_inc(&playbacksubs->state); } else { switch (state) { case STATE_STARTING1: urb = playbacksubs->urb[0]; atomic_inc(&playbacksubs->state); break; case STATE_STARTING2: urb = playbacksubs->urb[1]; atomic_inc(&playbacksubs->state); break; } } if (urb) { err = usx2y_urb_play_prepare(playbacksubs, capsubs->completed_urb, urb); if (err) return err; err = usx2y_urb_submit(playbacksubs, urb, frame); if (err) return err; } playbacksubs->completed_urb = NULL; state = atomic_read(&capsubs->state); if (state >= STATE_PREPARED) { if (state == STATE_RUNNING) { err = usx2y_urb_capt_retire(capsubs); if (err) return err; } else if (state >= STATE_PRERUNNING) { atomic_inc(&capsubs->state); } err = usx2y_urb_submit(capsubs, capsubs->completed_urb, frame); if (err) return err; } capsubs->completed_urb = NULL; return 0; } static void usx2y_clients_stop(struct usx2ydev *usx2y) { struct snd_usx2y_substream *subs; struct urb *urb; int s, u; for (s = 0; s < 4; s++) { subs = usx2y->subs[s]; if (subs) { snd_printdd("%i %p state=%i\n", s, subs, atomic_read(&subs->state)); atomic_set(&subs->state, STATE_STOPPED); } } for (s = 0; s < 4; s++) { subs = usx2y->subs[s]; if (subs) { if (atomic_read(&subs->state) >= STATE_PRERUNNING) snd_pcm_stop_xrun(subs->pcm_substream); for (u = 0; u < NRURBS; u++) { urb = subs->urb[u]; if (urb) snd_printdd("%i status=%i start_frame=%i\n", u, urb->status, urb->start_frame); } } } usx2y->prepare_subs = NULL; wake_up(&usx2y->prepare_wait_queue); } static void usx2y_error_urb_status(struct usx2ydev *usx2y, struct snd_usx2y_substream *subs, struct urb *urb) { snd_printk(KERN_ERR "ep=%i stalled with status=%i\n", subs->endpoint, urb->status); urb->status = 0; usx2y_clients_stop(usx2y); } static void i_usx2y_urb_complete(struct urb *urb) { struct snd_usx2y_substream *subs = urb->context; struct usx2ydev *usx2y = subs->usx2y; struct snd_usx2y_substream *capsubs, *playbacksubs; if (unlikely(atomic_read(&subs->state) < STATE_PREPARED)) { snd_printdd("hcd_frame=%i ep=%i%s status=%i start_frame=%i\n", usb_get_current_frame_number(usx2y->dev), subs->endpoint, usb_pipein(urb->pipe) ? "in" : "out", urb->status, urb->start_frame); return; } if (unlikely(urb->status)) { usx2y_error_urb_status(usx2y, subs, urb); return; } subs->completed_urb = urb; capsubs = usx2y->subs[SNDRV_PCM_STREAM_CAPTURE]; playbacksubs = usx2y->subs[SNDRV_PCM_STREAM_PLAYBACK]; if (capsubs->completed_urb && atomic_read(&capsubs->state) >= STATE_PREPARED && (playbacksubs->completed_urb || atomic_read(&playbacksubs->state) < STATE_PREPARED)) { if (!usx2y_usbframe_complete(capsubs, playbacksubs, urb->start_frame)) { usx2y->wait_iso_frame += nr_of_packs(); } else { snd_printdd("\n"); usx2y_clients_stop(usx2y); } } } static void usx2y_urbs_set_complete(struct usx2ydev *usx2y, void (*complete)(struct urb *)) { struct snd_usx2y_substream *subs; struct urb *urb; int s, u; for (s = 0; s < 4; s++) { subs = usx2y->subs[s]; if (subs) { for (u = 0; u < NRURBS; u++) { urb = subs->urb[u]; if (urb) urb->complete = complete; } } } } static void usx2y_subs_startup_finish(struct usx2ydev *usx2y) { usx2y_urbs_set_complete(usx2y, i_usx2y_urb_complete); usx2y->prepare_subs = NULL; } static void i_usx2y_subs_startup(struct urb *urb) { struct snd_usx2y_substream *subs = urb->context; struct usx2ydev *usx2y = subs->usx2y; struct snd_usx2y_substream *prepare_subs = usx2y->prepare_subs; if (prepare_subs) { if (urb->start_frame == prepare_subs->urb[0]->start_frame) { usx2y_subs_startup_finish(usx2y); atomic_inc(&prepare_subs->state); wake_up(&usx2y->prepare_wait_queue); } } i_usx2y_urb_complete(urb); } static void usx2y_subs_prepare(struct snd_usx2y_substream *subs) { snd_printdd("usx2y_substream_prepare(%p) ep=%i urb0=%p urb1=%p\n", subs, subs->endpoint, subs->urb[0], subs->urb[1]); /* reset the pointer */ subs->hwptr = 0; subs->hwptr_done = 0; subs->transfer_done = 0; } static void usx2y_urb_release(struct urb **urb, int free_tb) { if (*urb) { usb_kill_urb(*urb); if (free_tb) kfree((*urb)->transfer_buffer); usb_free_urb(*urb); *urb = NULL; } } /* * release a substreams urbs */ static void usx2y_urbs_release(struct snd_usx2y_substream *subs) { int i; snd_printdd("%s %i\n", __func__, subs->endpoint); for (i = 0; i < NRURBS; i++) usx2y_urb_release(subs->urb + i, subs != subs->usx2y->subs[SNDRV_PCM_STREAM_PLAYBACK]); kfree(subs->tmpbuf); subs->tmpbuf = NULL; } /* * initialize a substream's urbs */ static int usx2y_urbs_allocate(struct snd_usx2y_substream *subs) { int i; unsigned int pipe; int is_playback = subs == subs->usx2y->subs[SNDRV_PCM_STREAM_PLAYBACK]; struct usb_device *dev = subs->usx2y->dev; struct urb **purb; pipe = is_playback ? usb_sndisocpipe(dev, subs->endpoint) : usb_rcvisocpipe(dev, subs->endpoint); subs->maxpacksize = usb_maxpacket(dev, pipe); if (!subs->maxpacksize) return -EINVAL; if (is_playback && !subs->tmpbuf) { /* allocate a temporary buffer for playback */ subs->tmpbuf = kcalloc(nr_of_packs(), subs->maxpacksize, GFP_KERNEL); if (!subs->tmpbuf) return -ENOMEM; } /* allocate and initialize data urbs */ for (i = 0; i < NRURBS; i++) { purb = subs->urb + i; if (*purb) { usb_kill_urb(*purb); continue; } *purb = usb_alloc_urb(nr_of_packs(), GFP_KERNEL); if (!*purb) { usx2y_urbs_release(subs); return -ENOMEM; } if (!is_playback && !(*purb)->transfer_buffer) { /* allocate a capture buffer per urb */ (*purb)->transfer_buffer = kmalloc_array(subs->maxpacksize, nr_of_packs(), GFP_KERNEL); if (!(*purb)->transfer_buffer) { usx2y_urbs_release(subs); return -ENOMEM; } } (*purb)->dev = dev; (*purb)->pipe = pipe; (*purb)->number_of_packets = nr_of_packs(); (*purb)->context = subs; (*purb)->interval = 1; (*purb)->complete = i_usx2y_subs_startup; } return 0; } static void usx2y_subs_startup(struct snd_usx2y_substream *subs) { struct usx2ydev *usx2y = subs->usx2y; usx2y->prepare_subs = subs; subs->urb[0]->start_frame = -1; wmb(); usx2y_urbs_set_complete(usx2y, i_usx2y_subs_startup); } static int usx2y_urbs_start(struct snd_usx2y_substream *subs) { int i, err; struct usx2ydev *usx2y = subs->usx2y; struct urb *urb; unsigned long pack; err = usx2y_urbs_allocate(subs); if (err < 0) return err; subs->completed_urb = NULL; for (i = 0; i < 4; i++) { struct snd_usx2y_substream *subs = usx2y->subs[i]; if (subs && atomic_read(&subs->state) >= STATE_PREPARED) goto start; } start: usx2y_subs_startup(subs); for (i = 0; i < NRURBS; i++) { urb = subs->urb[i]; if (usb_pipein(urb->pipe)) { if (!i) atomic_set(&subs->state, STATE_STARTING3); urb->dev = usx2y->dev; for (pack = 0; pack < nr_of_packs(); pack++) { urb->iso_frame_desc[pack].offset = subs->maxpacksize * pack; urb->iso_frame_desc[pack].length = subs->maxpacksize; } urb->transfer_buffer_length = subs->maxpacksize * nr_of_packs(); err = usb_submit_urb(urb, GFP_ATOMIC); if (err < 0) { snd_printk(KERN_ERR "cannot submit datapipe for urb %d, err = %d\n", i, err); err = -EPIPE; goto cleanup; } else { if (!i) usx2y->wait_iso_frame = urb->start_frame; } urb->transfer_flags = 0; } else { atomic_set(&subs->state, STATE_STARTING1); break; } } err = 0; wait_event(usx2y->prepare_wait_queue, !usx2y->prepare_subs); if (atomic_read(&subs->state) != STATE_PREPARED) err = -EPIPE; cleanup: if (err) { usx2y_subs_startup_finish(usx2y); usx2y_clients_stop(usx2y); // something is completely wrong > stop everything } return err; } /* * return the current pcm pointer. just return the hwptr_done value. */ static snd_pcm_uframes_t snd_usx2y_pcm_pointer(struct snd_pcm_substream *substream) { struct snd_usx2y_substream *subs = substream->runtime->private_data; return subs->hwptr_done; } /* * start/stop substream */ static int snd_usx2y_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_usx2y_substream *subs = substream->runtime->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: snd_printdd("%s(START)\n", __func__); if (atomic_read(&subs->state) == STATE_PREPARED && atomic_read(&subs->usx2y->subs[SNDRV_PCM_STREAM_CAPTURE]->state) >= STATE_PREPARED) { atomic_set(&subs->state, STATE_PRERUNNING); } else { snd_printdd("\n"); return -EPIPE; } break; case SNDRV_PCM_TRIGGER_STOP: snd_printdd("%s(STOP)\n", __func__); if (atomic_read(&subs->state) >= STATE_PRERUNNING) atomic_set(&subs->state, STATE_PREPARED); break; default: return -EINVAL; } return 0; } /* * allocate a buffer, setup samplerate * * so far we use a physically linear buffer although packetize transfer * doesn't need a continuous area. * if sg buffer is supported on the later version of alsa, we'll follow * that. */ struct s_c2 { char c1, c2; }; static const struct s_c2 setrate_44100[] = { { 0x14, 0x08}, // this line sets 44100, well actually a little less { 0x18, 0x40}, // only tascam / frontier design knows the further lines ....... { 0x18, 0x42}, { 0x18, 0x45}, { 0x18, 0x46}, { 0x18, 0x48}, { 0x18, 0x4A}, { 0x18, 0x4C}, { 0x18, 0x4E}, { 0x18, 0x50}, { 0x18, 0x52}, { 0x18, 0x54}, { 0x18, 0x56}, { 0x18, 0x58}, { 0x18, 0x5A}, { 0x18, 0x5C}, { 0x18, 0x5E}, { 0x18, 0x60}, { 0x18, 0x62}, { 0x18, 0x64}, { 0x18, 0x66}, { 0x18, 0x68}, { 0x18, 0x6A}, { 0x18, 0x6C}, { 0x18, 0x6E}, { 0x18, 0x70}, { 0x18, 0x72}, { 0x18, 0x74}, { 0x18, 0x76}, { 0x18, 0x78}, { 0x18, 0x7A}, { 0x18, 0x7C}, { 0x18, 0x7E} }; static const struct s_c2 setrate_48000[] = { { 0x14, 0x09}, // this line sets 48000, well actually a little less { 0x18, 0x40}, // only tascam / frontier design knows the further lines ....... { 0x18, 0x42}, { 0x18, 0x45}, { 0x18, 0x46}, { 0x18, 0x48}, { 0x18, 0x4A}, { 0x18, 0x4C}, { 0x18, 0x4E}, { 0x18, 0x50}, { 0x18, 0x52}, { 0x18, 0x54}, { 0x18, 0x56}, { 0x18, 0x58}, { 0x18, 0x5A}, { 0x18, 0x5C}, { 0x18, 0x5E}, { 0x18, 0x60}, { 0x18, 0x62}, { 0x18, 0x64}, { 0x18, 0x66}, { 0x18, 0x68}, { 0x18, 0x6A}, { 0x18, 0x6C}, { 0x18, 0x6E}, { 0x18, 0x70}, { 0x18, 0x73}, { 0x18, 0x74}, { 0x18, 0x76}, { 0x18, 0x78}, { 0x18, 0x7A}, { 0x18, 0x7C}, { 0x18, 0x7E} }; #define NOOF_SETRATE_URBS ARRAY_SIZE(setrate_48000) static void i_usx2y_04int(struct urb *urb) { struct usx2ydev *usx2y = urb->context; if (urb->status) snd_printk(KERN_ERR "snd_usx2y_04int() urb->status=%i\n", urb->status); if (!--usx2y->us04->len) wake_up(&usx2y->in04_wait_queue); } static int usx2y_rate_set(struct usx2ydev *usx2y, int rate) { int err = 0, i; struct snd_usx2y_urb_seq *us = NULL; int *usbdata = NULL; const struct s_c2 *ra = rate == 48000 ? setrate_48000 : setrate_44100; struct urb *urb; if (usx2y->rate != rate) { us = kzalloc(struct_size(us, urb, NOOF_SETRATE_URBS), GFP_KERNEL); if (!us) { err = -ENOMEM; goto cleanup; } usbdata = kmalloc_array(NOOF_SETRATE_URBS, sizeof(int), GFP_KERNEL); if (!usbdata) { err = -ENOMEM; goto cleanup; } for (i = 0; i < NOOF_SETRATE_URBS; ++i) { us->urb[i] = usb_alloc_urb(0, GFP_KERNEL); if (!us->urb[i]) { err = -ENOMEM; goto cleanup; } ((char *)(usbdata + i))[0] = ra[i].c1; ((char *)(usbdata + i))[1] = ra[i].c2; usb_fill_bulk_urb(us->urb[i], usx2y->dev, usb_sndbulkpipe(usx2y->dev, 4), usbdata + i, 2, i_usx2y_04int, usx2y); } err = usb_urb_ep_type_check(us->urb[0]); if (err < 0) goto cleanup; us->submitted = 0; us->len = NOOF_SETRATE_URBS; usx2y->us04 = us; wait_event_timeout(usx2y->in04_wait_queue, !us->len, HZ); usx2y->us04 = NULL; if (us->len) err = -ENODEV; cleanup: if (us) { us->submitted = 2*NOOF_SETRATE_URBS; for (i = 0; i < NOOF_SETRATE_URBS; ++i) { urb = us->urb[i]; if (!urb) continue; if (urb->status) { if (!err) err = -ENODEV; usb_kill_urb(urb); } usb_free_urb(urb); } usx2y->us04 = NULL; kfree(usbdata); kfree(us); if (!err) usx2y->rate = rate; } } return err; } static int usx2y_format_set(struct usx2ydev *usx2y, snd_pcm_format_t format) { int alternate, err; struct list_head *p; if (format == SNDRV_PCM_FORMAT_S24_3LE) { alternate = 2; usx2y->stride = 6; } else { alternate = 1; usx2y->stride = 4; } list_for_each(p, &usx2y->midi_list) { snd_usbmidi_input_stop(p); } usb_kill_urb(usx2y->in04_urb); err = usb_set_interface(usx2y->dev, 0, alternate); if (err) { snd_printk(KERN_ERR "usb_set_interface error\n"); return err; } usx2y->in04_urb->dev = usx2y->dev; err = usb_submit_urb(usx2y->in04_urb, GFP_KERNEL); list_for_each(p, &usx2y->midi_list) { snd_usbmidi_input_start(p); } usx2y->format = format; usx2y->rate = 0; return err; } static int snd_usx2y_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { int err = 0; unsigned int rate = params_rate(hw_params); snd_pcm_format_t format = params_format(hw_params); struct snd_card *card = substream->pstr->pcm->card; struct usx2ydev *dev = usx2y(card); struct snd_usx2y_substream *subs; struct snd_pcm_substream *test_substream; int i; mutex_lock(&usx2y(card)->pcm_mutex); snd_printdd("snd_usx2y_hw_params(%p, %p)\n", substream, hw_params); /* all pcm substreams off one usx2y have to operate at the same * rate & format */ for (i = 0; i < dev->pcm_devs * 2; i++) { subs = dev->subs[i]; if (!subs) continue; test_substream = subs->pcm_substream; if (!test_substream || test_substream == substream || !test_substream->runtime) continue; if ((test_substream->runtime->format && test_substream->runtime->format != format) || (test_substream->runtime->rate && test_substream->runtime->rate != rate)) { err = -EINVAL; goto error; } } error: mutex_unlock(&usx2y(card)->pcm_mutex); return err; } /* * free the buffer */ static int snd_usx2y_pcm_hw_free(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_usx2y_substream *subs = runtime->private_data; struct snd_usx2y_substream *cap_subs, *playback_subs; mutex_lock(&subs->usx2y->pcm_mutex); snd_printdd("snd_usx2y_hw_free(%p)\n", substream); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { cap_subs = subs->usx2y->subs[SNDRV_PCM_STREAM_CAPTURE]; atomic_set(&subs->state, STATE_STOPPED); usx2y_urbs_release(subs); if (!cap_subs->pcm_substream || !cap_subs->pcm_substream->runtime || cap_subs->pcm_substream->runtime->state < SNDRV_PCM_STATE_PREPARED) { atomic_set(&cap_subs->state, STATE_STOPPED); usx2y_urbs_release(cap_subs); } } else { playback_subs = subs->usx2y->subs[SNDRV_PCM_STREAM_PLAYBACK]; if (atomic_read(&playback_subs->state) < STATE_PREPARED) { atomic_set(&subs->state, STATE_STOPPED); usx2y_urbs_release(subs); } } mutex_unlock(&subs->usx2y->pcm_mutex); return 0; } /* * prepare callback * * set format and initialize urbs */ static int snd_usx2y_pcm_prepare(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_usx2y_substream *subs = runtime->private_data; struct usx2ydev *usx2y = subs->usx2y; struct snd_usx2y_substream *capsubs = subs->usx2y->subs[SNDRV_PCM_STREAM_CAPTURE]; int err = 0; snd_printdd("%s(%p)\n", __func__, substream); mutex_lock(&usx2y->pcm_mutex); usx2y_subs_prepare(subs); // Start hardware streams // SyncStream first.... if (atomic_read(&capsubs->state) < STATE_PREPARED) { if (usx2y->format != runtime->format) { err = usx2y_format_set(usx2y, runtime->format); if (err < 0) goto up_prepare_mutex; } if (usx2y->rate != runtime->rate) { err = usx2y_rate_set(usx2y, runtime->rate); if (err < 0) goto up_prepare_mutex; } snd_printdd("starting capture pipe for %s\n", subs == capsubs ? "self" : "playpipe"); err = usx2y_urbs_start(capsubs); if (err < 0) goto up_prepare_mutex; } if (subs != capsubs && atomic_read(&subs->state) < STATE_PREPARED) err = usx2y_urbs_start(subs); up_prepare_mutex: mutex_unlock(&usx2y->pcm_mutex); return err; } static const struct snd_pcm_hardware snd_usx2y_2c = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH), .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_3LE, .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, .rate_min = 44100, .rate_max = 48000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = (2*128*1024), .period_bytes_min = 64, .period_bytes_max = (128*1024), .periods_min = 2, .periods_max = 1024, .fifo_size = 0 }; static int snd_usx2y_pcm_open(struct snd_pcm_substream *substream) { struct snd_usx2y_substream *subs = ((struct snd_usx2y_substream **) snd_pcm_substream_chip(substream))[substream->stream]; struct snd_pcm_runtime *runtime = substream->runtime; if (subs->usx2y->chip_status & USX2Y_STAT_CHIP_MMAP_PCM_URBS) return -EBUSY; runtime->hw = snd_usx2y_2c; runtime->private_data = subs; subs->pcm_substream = substream; snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1000, 200000); return 0; } static int snd_usx2y_pcm_close(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_usx2y_substream *subs = runtime->private_data; subs->pcm_substream = NULL; return 0; } static const struct snd_pcm_ops snd_usx2y_pcm_ops = { .open = snd_usx2y_pcm_open, .close = snd_usx2y_pcm_close, .hw_params = snd_usx2y_pcm_hw_params, .hw_free = snd_usx2y_pcm_hw_free, .prepare = snd_usx2y_pcm_prepare, .trigger = snd_usx2y_pcm_trigger, .pointer = snd_usx2y_pcm_pointer, }; /* * free a usb stream instance */ static void usx2y_audio_stream_free(struct snd_usx2y_substream **usx2y_substream) { int stream; for_each_pcm_streams(stream) { kfree(usx2y_substream[stream]); usx2y_substream[stream] = NULL; } } static void snd_usx2y_pcm_private_free(struct snd_pcm *pcm) { struct snd_usx2y_substream **usx2y_stream = pcm->private_data; if (usx2y_stream) usx2y_audio_stream_free(usx2y_stream); } static int usx2y_audio_stream_new(struct snd_card *card, int playback_endpoint, int capture_endpoint) { struct snd_pcm *pcm; int err, i; struct snd_usx2y_substream **usx2y_substream = usx2y(card)->subs + 2 * usx2y(card)->pcm_devs; for (i = playback_endpoint ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE; i <= SNDRV_PCM_STREAM_CAPTURE; ++i) { usx2y_substream[i] = kzalloc(sizeof(struct snd_usx2y_substream), GFP_KERNEL); if (!usx2y_substream[i]) return -ENOMEM; usx2y_substream[i]->usx2y = usx2y(card); } if (playback_endpoint) usx2y_substream[SNDRV_PCM_STREAM_PLAYBACK]->endpoint = playback_endpoint; usx2y_substream[SNDRV_PCM_STREAM_CAPTURE]->endpoint = capture_endpoint; err = snd_pcm_new(card, NAME_ALLCAPS" Audio", usx2y(card)->pcm_devs, playback_endpoint ? 1 : 0, 1, &pcm); if (err < 0) { usx2y_audio_stream_free(usx2y_substream); return err; } if (playback_endpoint) snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_usx2y_pcm_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_usx2y_pcm_ops); pcm->private_data = usx2y_substream; pcm->private_free = snd_usx2y_pcm_private_free; pcm->info_flags = 0; sprintf(pcm->name, NAME_ALLCAPS" Audio #%d", usx2y(card)->pcm_devs); if (playback_endpoint) { snd_pcm_set_managed_buffer(pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream, SNDRV_DMA_TYPE_CONTINUOUS, NULL, 64*1024, 128*1024); } snd_pcm_set_managed_buffer(pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream, SNDRV_DMA_TYPE_CONTINUOUS, NULL, 64*1024, 128*1024); usx2y(card)->pcm_devs++; return 0; } /* * create a chip instance and set its names. */ int usx2y_audio_create(struct snd_card *card) { int err; err = usx2y_audio_stream_new(card, 0xA, 0x8); if (err < 0) return err; if (le16_to_cpu(usx2y(card)->dev->descriptor.idProduct) == USB_ID_US428) { err = usx2y_audio_stream_new(card, 0, 0xA); if (err < 0) return err; } if (le16_to_cpu(usx2y(card)->dev->descriptor.idProduct) != USB_ID_US122) err = usx2y_rate_set(usx2y(card), 44100); // Lets us428 recognize output-volume settings, disturbs us122. return err; }